CP-201000611, Submittal of Core Operating Limits Reports

From kanterella
Jump to navigation Jump to search
Submittal of Core Operating Limits Reports
ML101190182
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 04/22/2010
From: Madden F
Luminant Power
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CP-201000611, TXX-10059
Download: ML101190182 (24)


Text

Rafael Flores Luminant Power Senior Vice President P 0 Box 1002

& Chief Nuclear Officer 6322 North FM 56 rafael.flores@Luminant.com Glen Rose, TX 76043 Luminant T 254 897 5550 C 817 559 0403 F 254 897 6652 CP-201000611 Ref: Tech. Spec. 5.6.5 TXX-10059 April 22, 2010 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

SUBJECT:

COMANCHE PEAK NUCLEAR POWER PLANT DOCKET NO. 50-445 CORE OPERATING LIMITS REPORT

Dear Sir or Madam:

Enclosed is the Core Operating Limits Report for Comanche Peak Nuclear Power Plant (CPNPP) Unit 1, Cycle

15. This report is prepared and submitted pursuant to Technical Specificatiorn 5.6.5.

This communication contains no new licensing basis commitments regarding CPNPP Units 1 and 2. Should you have any questions, please contact Mr. J. D. Seawright at (254) 897-0140.

Sincerely, Luminant Generation Company LLC Rafael Flores By:

Fred W. Madden Director, Oversight & Regulatory Affairs Enclosure c- E. E. Collins, Region IV B. K. Singal, NRR Resident Inspectors, Comanche Peak A member of the STARS (Strategic Teaming and Resource Sharing) Alliance Callaway

  • Comanche Peak
  • Diablo Canyon
  • Palo Verde
  • San Onofre. South Texas Project
  • Wolf Creek Azu tl-ý k9 jJ17

ERX-10-002, Rev. 0 CPNPP UNIT 1 CYCLE 15 CORE OPERATING LIMITS REPORT March 2010 Prepared z f Date: 3-_____

J. M. Ralston P incipal Engineer, Westinghouse Electric Co.

Reviewed: Date: 3*- --_*9o0 D. E. Brozak Principal Engineer, Westinghouse Electric Co.

Reviewed: _ _ _

N.Rolk'n c

_ _ _ Date: - II '/V/0 Principal Engineer, Westinghouse Electric Co.

Approved: .________ _ana__ r.Date: ____-__-1 W.etn. Boatwueght, Manager -

Westinghouse Engineering Services - Texas

DISCLAIMER The information contained in this report was prepared for the specific requirement of Luminant Generation Company LLC and may not be appropriate for use in situations other than those for which it was specifically prepared. Luminant Generation Company LLC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, Luminant Generation Company LLC does not authorize its use by others, and any such use is forbidden except with the prior written approval of Luminant Generation Company LLC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall Luminant Generation Company LLC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

ii ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 TABLE OF CONTENTS DISCLAIMER ...................................................... ii TABLE OF CONTENTS ............................................... iii LIST OF TABLES .................................................. iv LIST OF FIGURES ................................................. v SECTION PAGE 1.0 CORE OPERATING LIMITS REPORT .............................. 1 2.0 OPERATING LIMITS .......................................... 2 2.1 SAFETY LIMITS ........................................ 2 2.2 SHUTDOWN MARGIN ...................................... 2 2.3 MODERATOR TEMPERATURE COEFFICIENT .................... 2 2.4 ROD GROUP ALIGNMENT LIMITS ........................... 3 2.5 SHUTDOWN BANK INSERTION LIMITS ....................... 3 2.6 CONTROL BANK INSERTION LIMITS ........................ .4 2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 ..................... 4 2.8 HEAT FLUX HOT CHANNEL FACTOR ......................... 4 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR o

................ 6 2.10 AXIAL FLUX DIFFERENCE ................................ 6 2.11 REACTOR TRIP SYSTEM INSTRUMENTATION .................. 6 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS .............................. 7 2.13 BORON CONCENTRATION .................................. 8

3.0 REFERENCES

................................................ 8 iii ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 LIST OF TABLES TABLE PAGE 1 FQ(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD .......... 9 iv ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 LIST OF FIGURES FIGURE PAGE 1 REACTOR CORE SAFETY LIMITS .............................. 10 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER ............ 11 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT ............................................. 12 4 W(Z) AS A FUNCTION OF CORE HEIGHT -

(150 MWD/MTU) .........  ; ................................. 13 5 W(Z) AS A FUNCTION OF CORE HEIGHT (2,000 MWD/MTU) ......................................... 14 6 W(Z) AS A FUNCTION OF CORE HEIGHT (8,000 MWD/MTU) ......................................... 15 7 W(Z) AS A FUNCTION OF CORE HEIGHT (16,000 MWD/MTU) .............................. . .......... 16 8 W(Z) AS A FUNCTION OF CORE HEIGHT -

(20,000 MWD/MTU) ........................................ 17 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER ........................... ........ 18 V ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPNPP UNIT 1 CYCLE 15 has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

SL 2.1 SAFETY LIMITS LCO 3.1.1 SHUTDOWN MARGIN LCO 3.1.3 MODERATOR TEMPERATURE COEFFICIENT LCO 3.1.4 ROD GROUP ALIGNMENT LIMITS LCO 3.1.5 SHUTDOWN BANK INSERTION LIMITS LCO 3.1.6 ,CONTROL BANK INSERTION LIMITS LCO 3.1.8 PHYSICS TESTS EXCEPTIONS - MODE 2 LCO 3.2.1.2 HEAT FLUX HOT CHANNEL FACTOR LCO 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR LCO 3.2.3.2 AXIAL FLUX DIFFERENCE LCO 3.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION L dO 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE PROM NUCLEATE BOILING LIMITS LCO 3.9.1 BORON CONCENTRATION 1 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5b, Items 1, 2, 14, 16, and 21 through 29.

These limits have been determined such that all applicable limits of the safety analysis are met.

2.1 SAFETY LIMITS (SL 2.1) 2.1.1 In MODES 1 and 2, the combination of thermal power, reactor coolant system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1.

2.2 SHUTDOWN MARGIN (SDM) (LCO 3.1.1) 2.2.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 with Keff < ,1.0, and in MODES 3, 4, and 5.

2.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) (LCO 3.1.3) 2.3.1 The MTC upper and lower limits, respectively, are:

The BOL/ARO/HZP-MTC shall be less positive than +5 pcm/°F.

The EOL/ARO/RTP-MTC shall be less negative than -40 pcm/°F.

2 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 2.3.2 SR 3.1.3.2 The MTC surveillance limit is:

The 300 ppm/ARO/RTP-MTC shall be less negative than or equal to -31 pcm/°F.

The 60 ppm/ARO/RTP-MTC shall be less negative than or equal to -38 pcm/°F.

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.4 ROD GROUP ALIGNMENT LIMITS (LCO 3.1.4) 2.4.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODES 1 and 2.

2.5 SHUTDOWN BANK INSERTION LIMITS (LCO 3.1.5) 2.5.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

3 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 2.6 CONTROL BANK INSERTION LIMITS (LCO 3.1.6) 2.6.1 The control banks shall be limited in physical insertion as shown in Figure 2.

2.6.2 The control banks shall always be withdrawn and inserted in the prescribed sequence. For withdrawal, the sequence is control bank A, control bank B, control bank C, and control bank D. The insertion sequence is the reverse of the withdrawal sequence.

2.6.3 A 115 step Tip-to-Tip relationship between each sequential control bank shall be maintained.

2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 (LCO 3.1.8) 2.7.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 during PHYSICS TESTS.

2.8 HEAT FLUX HOT CHANNEL FACTOR (F. (Z) (LCO 3.2.1.2)

RTP FQ0 2.8.1 FQ(Z) -- - [K(Z)] for P > 0.5 P

QRTP FQ (Z) [K(Z)] for P -< 0.5

0.5 where

P = THERMAL POWER RATED THERMAL POWER 4 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 2.8.2 FFRTP = 2.50 2.8.3 K(Z) is provided in Figure 3.

2.8.4 Elevation and burnup dependent W(Z) values are provided in Figures 4, 5, 6, 7 and 8. For W(Z) data at a desired burnup not listed in the figures, but less than the maximum listed burnup, values at 3 or more burnup steps should be used to interpolate the W(Z) data to the desired burnup with a polynomial type fit that uses the nearest three burnup steps. For W(Z) data at a desired burnup outside of the listed burnup steps, a linear extrapolation of the W(Z) data for the nearest two burnup steps can be used.

2.8.5 SR 3.2.1.2.2 If the two most recent FQ (Z) evaluations show an increase in the expression maximum over Z [ FQC(Z) / K(Z) ],

the burnup dependent values in Table 1 shall be used instead of a constant 2% to increase FQw(Z) per Surveillance Requirement 3.2.1.2.2.a. A constant factor of 2% shall be used for all cycle burnups that are outside the range of Table 1.

5 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (F"AHI- (LCO 3.2.2) 2.9.1 FNAH -5 FRTPAH [1 + PFAH (l-P)J where: P = THERMAL POWER RATED THERMAL POWER 2.9.2 FRTPAH = 1.60 2.9.3 PFAH = 0.3 2.10 AXIAL FLUX DIFFERENCE (AFD) (LCO 3.2.3.2) 2.10.1 The AFD Acceptable Operation Limits are provided in Figure 9.

2.11 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION (LCO 3.3.1) 2.11.1 The numerical values pertaining to the Overtemperature N-16 reactor trip setpoint are listed below;

= 1.15 K(2 = 0.0139 /'F K(3 = 0.00071 /psig C

= indicated loop specific T. at Rated Thermal Power, IF 1

PI 2235 psig T,  ?: 10 sec T2 < 3 sec f 1 (Aq) = -2.78 * {(q,-q,) + 18%} when (q,-q,) 18% RTP

= 0% when -18% RTP < (q,-q,) < +10.0% RTP

= 2.34 {(q 1 -qb) - 10.0%) when (qt-qb) Ž +10.0% RTP 6 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING (DNB) LIMITS (LCO 3.4.1) 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the surveillance limits specified below:

2.12.2 SR 3.4.1.1 Pressurizer pressure

  • 2220 psig (4 channels) a 2222 psig (3 channels)

The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

2.12.3 SR 3.4.1.2 RCS average temperature 5 588 °F (4 channels) 5 588 °F (3 channels)

The RCS average temperature limits correspond to the analytical limit of 591.9 'F which is bounded by that used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

7 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 2.12.4 SR 3.4.1.3 The RCS total flow rate shall be 2 403,700 gpm.

2.12.5 SR 3.4.1.4 The RCS total flow rate based on precision heat balance shall be

  • 403,700 gpm.

The required RCS flow, based on an elbow tap differential pressure instrument measurement prior to MODE 1 after the refueling outage, shall be greater than 327,000 gpm.

2.13 BORON CONCENTRATION (LCO 3.9.1) 2.13.1 The required refueling boron concentration is -1842 ppm.

03.0 REFERENCES

Technical Specification 5.6.5.

8 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 Table 1 FQ(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD Cycle Maximum Decrease Burnup In F.(Z) MARGIN (MWD/MTU) (Percent) 4448 2.00 4663 2.05 4877 2.01 5092 2.00 5307 2.00 5522 2.01 5737 2.08 5952 2.17 6167 2.26 6382 2.25 6597 2.08 6811 2.00 7026 2.19 7241 2.51 7456 2.25 7671 2.00 Note: All Cycle burnups outside the range of the table shall use a constant 2% decrease in FQ(Z) margin for compliance with the 3.2.1.2.2.a Surveillance Requirements. Linear interpolation is acceptable to determine the FQ(Z) margin decrease for cycle burnups which fall between the specified burnups.

o 9 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 Figure 1 Reactor Core Safety Limits 680 -

2445 psig 660

  • Unacceptable 1985 psig 640 a) 1845 psig E

(D620 _____

nAcceptable 600 580 _

560 0 20 40 60 80 100 120 140 Percent of Rated Thermal Power 10 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240

,, -- ---- * (25.3,218) (79.6,218) 220 200 BANK B 180

.* 160 4J

-r-I 140 4J i it tBANK C 120 z

0 H

r 100 0

80 II I I o 60 IIl I 2F 40 20 0 10,9 20- 30 40 5-0 7 0 90 PERCEN OFRTDTERAOE 0

NOTES: 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn.

11 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 FIGURE 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.1 111 1111 (0. 11.0) ffl ffl 11111111 11 ýý U (6.0 , 1 . 0) 1.0 0.9 (121.0 0 125)

-ijil -Ldi-i 7 j, I I'l _I_ý I I iý 0.8 0 0.7 0.6 O 0.5 . 11....- .................. I . ý . .. . . . .. . . . . - ......I...

0.4 0.3 0.2 d H I k W 0.1 -th MH I W liilile ýI ffllmliý -L Hid 0.0 0 1 2 3 4 5 6- 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node K (Z) Node K(Z) Node K(Z) Node K (Z) 61 0. 9250 53 0.9450 45 0.9650 37 0. 9850 60 0. 9275 52 0.9475 44 0.9675 36 0.9875 59 0.9300 51 0.9500 43 0.9700 35 0.9900 58 0.9325 50 0:9525 42 0.9725 34 0.9925 57 0.9350 49 0.9550 41 0.9750 33 0.9950 56 0.9375 48 0.9575 40 0.9775 32 0.9975 55 0.9400 47 0.9600 39 0.9800 1 - 31 1.0000 54 0.9425 46 0.9625 38 0.9825 Core Height (ft) = (Node - 1)

  • 0.2 12 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 i i 1 N 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 44 1.1374 30 1. 1489 16 1.2576 57 1.3730 43 1.1466 29 1.1490 15 1.2768 56 1.3645 42 1.1529 28 1.1525 14 1.2983 55 1.3557 41 1.1577 27 1. 1628 13 1. 3268 54 1.3393 40 1.1610 26 1.1727 12 1. 3546 53 1.3106 39 1.1626 25 1.1811 11 1.3814 52 1.2833 38 1.1626 24 1. 1889 10 1.4072 51 1.2616 37 1.1615 23 1.1957 9 1.4312 50 1.2418 36 1.1608 22 1.2017 8 1.4532 49 1.2210 35 1.1587 21 1. 2070 7 1. 4729 48 1.1972 34 1.1550 20 1.2113 6 1.4893 47 1.1713 33 1.1517 19 1.2156 5 1.5009 46 1.1523 32 1.1503 18 1.2234 1 - 4 45 1.1384 31 1.1493 17 1. 2383 Core-Height (ft) = (Node - 1)

  • 0.2 13 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (2,000 MWD/MTU) 1.650 1.600 1.550 i i Xi 1.500 1.450 7-I-N 1.400 1.350

D 1.300 /I F 1.250 4rtlztlzzvz 1.200 ~ft1 I IhI~T JEM-1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node W(Z) Node W (Z) 58 - 61 --- 44 1.1291 30 1.1384 16 1.2856 57 1.4296 43 1.1317 29 1.1469 15 1.3110 56 1.4092 42 1.1328 28 1.1617 14 1.3412 55 1.3808 41 1.1370 27 1.1745 13 1.3705 54 1.3514 40 1.1404 26 1.1862 12 1.3993 53 1.3256 39 1.1420 25 1.1970 11 1.4282 52 1.2965 38 1.1424 24 1.2067 10 1.4565 51 1.2639 37 1.1425 23 1.2154 9 1.4833 50 1.2314 36 1.1423 22 1.2237 8 1.5079 49 1.2011 35 1.1401 21 1.2315 7 1.5301 48 1.1713 34 1.1377 20 1.2381 6 1.5490 47 1.1439 33 1.1370 19 1.2451 5 1.5630 46 1.1332 32 1.1363 18 1.2553 1 - 4 45 1.1294 31 1.1363 17 1.2679 Core Height (ft) = (Node - 1)
  • 0.2 14 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (8,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N 1.400 1.350 D

2 1.300 1 i

- 11 1 1.250 67 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node w(Z) Node W(Z) Node w(Z) 58 - 61 44 1.2550 30 1.1222 16 1.1895 57 1.4554 43 1.2538 29 1.1221 15 1.2066 56 1.4356 42 1.2464 28 1.1267 14 1.2284 55 1.4192 41 1.2366 27 1.1326 13 1.2513 54 1.4029 40 1.2242 26 1.1376 12 1.2742 53 1.3842 39 1.2120 25 1.1420 11 1.2967 52 1.3643 38 1.2006 24 1.1465 10 1.3183 51 1.3415 37 1.1871 23 1.1505 9 1.3386 50 1.3168 36 1.1805 22 1.1537 8 1.3573 49 1.2917 35 1.1741 21 1.1578 7 1.3740 48 1.2654 34 1.1642 20 1. 1631 6 1.3881 47 1.2440 33 1.1525 19 1.1683 5 1.3979 46 1.2492 32 1.1389 18 1.1730 1 - 4 45 1.2550 31 1.1281 17 1. 1788 Core Height (ft) = (Node - 1)

  • 0.2 15 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 FIGURE 7 W(z) AS A FUNCTION OF CORE HEIGHT (16,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N 1.400

  • 1.350
  • 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 44 1. 2157 30 1.1881 16 1. 1645 57 1.3536 43 1. 2177 29 1.1849 15 1.1749 56 1.3629 42 1. 2232 28 1.1877 14 1.1865 55 1.3757 41 1.2325 27 1.1898 13 1.1992 54 1.3769 40 1.2405 26 1.1900 12 1.2119 53 1.3618 39 1.2453 25 1.1886 11 1.2243 52 1.3441 38 1.2477 24 1.1856 10 1.2364 51 1.3260 37 1.2475 23 1.1812 9 1.2478 50 1.3060 36 1.2446 22 1.1755 8 1.2586 49 1.2857 35 1. 2393 21 1.1690 7 1.2685 48 1.2636 34 1.2313 20 1.1613 6 1.2766 47 1.2408 33 1.2213 19 1.1551 5 1.2813 46 1.2325 32 1.2108 18 1.1522 1 - 4 45 1.2216 31 1.1991 17 1.1562 Core Height (ft) = (Node - 1)
  • 0.2 16 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 FIGURE 8 W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 MWD/MTU) 1.650 1.600

.1.550 1.500 1.450 N 1.400 1.350

_2 1.300

-I--/

1.250 I m m, I 1.200 Ir ii 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET). TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.2221 30 1.2209 16 1.1645 57 1.3657 43 1.2300 29 1. 2163 15 1.1750 56 1.3655 42 1.2396 28 1.2165 14 1.1904 55 1.3574 41 1.2481 27 1.2195 13 1. 2049 54 1.3402 40 1.2568 26 1. 2207 12 1. 2192 53 1.3192 39 1.2641 25 1.2198 11 1. 2333 52 1.2999 38 1.2689 24 1.2169 10 1. 2469 51 1.2819 37 1.2733 23 1.2123 9 1. 2598 50 1.2651 36 1.2743 22 1.2060 8 1.2720 49 1.2455 35 1.2721 21 1.1983 7 1. 2833 48 1.2291 34 1.2668 20 1.1895 6 1.2927 47 1.2252 33 1.2586 19 1.1797 5 1.2985 46 1.2212 32 1.2476 18 1. 1696 1 - 4 45 1.2200 31 1.2332 17 1.1632 Core Height (ft) = (Node - 1)

  • 0.2 17 ERX-10-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 15 FIGURE 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 90 80 70 0

60 W 50 40 0

p-1) 30 20 10 30 -20 -10 0 10 20 30 40 AXIAL FLUX DIFFERENCE (%)

18 ERX-10-002, Rev. 0