CP-201000611, Submittal of Core Operating Limits Reports
| ML101190182 | |
| Person / Time | |
|---|---|
| Site: | Comanche Peak |
| Issue date: | 04/22/2010 |
| From: | Madden F Luminant Power |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| CP-201000611, TXX-10059 | |
| Download: ML101190182 (24) | |
Text
Rafael Flores Senior Vice President
& Chief Nuclear Officer rafael.flores@Luminant.com Luminant Power P 0 Box 1002 6322 North FM 56 Glen Rose, TX 76043 Luminant T 254 897 5550 C 817 559 0403 F 254 897 6652 CP-201000611 Ref:
TXX-10059 Tech. Spec. 5.6.5 April 22, 2010 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555
SUBJECT:
COMANCHE PEAK NUCLEAR POWER PLANT DOCKET NO. 50-445 CORE OPERATING LIMITS REPORT
Dear Sir or Madam:
Enclosed is the Core Operating Limits Report for Comanche Peak Nuclear Power Plant (CPNPP) Unit 1, Cycle
- 15. This report is prepared and submitted pursuant to Technical Specificatiorn 5.6.5.
This communication contains no new licensing basis commitments regarding CPNPP Units 1 and 2. Should you have any questions, please contact Mr. J. D. Seawright at (254) 897-0140.
Sincerely, Luminant Generation Company LLC Rafael Flores By:
Fred W. Madden Director, Oversight & Regulatory Affairs Enclosure c -
E. E. Collins, Region IV B. K. Singal, NRR Resident Inspectors, Comanche Peak A member of the STARS (Strategic Teaming and Resource Sharing) Alliance Callaway
- Comanche Peak
- Diablo Canyon
- Palo Verde
- San Onofre. South Texas Project
- Wolf Creek Azu jJ17 k9 tl-ý
ERX-10-002, Rev.
0 CPNPP UNIT 1 CYCLE 15 CORE OPERATING LIMITS REPORT March 2010 Prepared z
f Date: 3-_____
J. M. Ralston P incipal Engineer, Westinghouse Electric Co.
Reviewed:
Reviewed:
Date:
3*-
--_* 9o0 D.
E.
Brozak Principal Engineer, Westinghouse Electric Co.
Date:
II
'/V/0 N.Rolk'n c Principal Engineer, Westinghouse Electric Co.
_ana__
r.Date:
____-__-1 W.
etn.
Boatwueght, Manager Westinghouse Engineering Services -
Texas Approved:
DISCLAIMER The information contained in this report was prepared for the specific requirement of Luminant Generation Company LLC and may not be appropriate for use in situations other than those for which it was specifically prepared.
Luminant Generation Company LLC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR
- IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
By making this report available, Luminant Generation Company LLC does not authorize its use by others, and any such use is forbidden except with the prior written approval of Luminant Generation Company LLC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.
In no event shall Luminant Generation Company LLC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.
ii ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 TABLE OF CONTENTS DISCLAIMER ii TABLE OF CONTENTS iii LIST OF TABLES iv LIST OF FIGURES v
SECTION PAGE 1.0 CORE OPERATING LIMITS REPORT 1
2.0 OPERATING LIMITS 2
2.1 SAFETY LIMITS 2
2.2 SHUTDOWN MARGIN 2
2.3 MODERATOR TEMPERATURE COEFFICIENT 2
2.4 ROD GROUP ALIGNMENT LIMITS 3
2.5 SHUTDOWN BANK INSERTION LIMITS 3
2.6 CONTROL BANK INSERTION LIMITS
.4 2.7 PHYSICS TESTS EXCEPTIONS MODE 2.....................
4 2.8 HEAT FLUX HOT CHANNEL FACTOR 4
2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR................
6 o
2.10 AXIAL FLUX DIFFERENCE 6
2.11 REACTOR TRIP SYSTEM INSTRUMENTATION 6
2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS 7
2.13 BORON CONCENTRATION 8
3.0 REFERENCES
8 iii ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 LIST OF TABLES FQ(Z)
MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD TABLE 1
PAGE 9
iv ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 LIST OF FIGURES FIGURE PAGE 1
REACTOR CORE SAFETY LIMITS 10 2
ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 11 3
K(Z)
NORMALIZED FQ(Z)
AS A FUNCTION OF CORE HEIGHT 12 4
W(Z)
AS A FUNCTION OF CORE HEIGHT (150 MWD/MTU) 13 5
W(Z)
AS A FUNCTION OF CORE HEIGHT (2,000 MWD/MTU) 14 6
W(Z)
AS A FUNCTION OF CORE HEIGHT (8,000 MWD/MTU) 15 7
W(Z)
AS A FUNCTION OF CORE HEIGHT (16,000 MWD/MTU) 16 8
W(Z)
AS A FUNCTION OF CORE HEIGHT -
(20,000 MWD/MTU) 17 9
AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 18 V
ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPNPP UNIT 1 CYCLE 15 has been prepared in accordance with the requirements of Technical Specification 5.6.5.
The Technical Specifications affected by this report are listed below:
SL 2.1 LCO 3.1.1 LCO 3.1.3 LCO 3.1.4 LCO 3.1.5 LCO 3.1.6 LCO 3.1.8 LCO 3.2.1.2 LCO 3.2.2 LCO 3.2.3.2 LCO 3.3.1 L dO 3.4.1 LCO 3.9.1 SAFETY LIMITS SHUTDOWN MARGIN MODERATOR TEMPERATURE COEFFICIENT ROD GROUP ALIGNMENT LIMITS SHUTDOWN BANK INSERTION LIMITS
,CONTROL BANK INSERTION LIMITS PHYSICS TESTS EXCEPTIONS -
MODE 2 HEAT FLUX HOT CHANNEL FACTOR NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR AXIAL FLUX DIFFERENCE REACTOR TRIP SYSTEM INSTRUMENTATION RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE PROM NUCLEATE BOILING LIMITS BORON CONCENTRATION 1
ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.
These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5b, Items 1, 2, 14, 16, and 21 through 29.
These limits have been determined such that all applicable limits of the safety analysis are met.
2.1 SAFETY LIMITS (SL 2.1) 2.1.1 In MODES 1 and 2, the combination of thermal power, reactor coolant system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1.
2.2 SHUTDOWN MARGIN (SDM)
(LCO 3.1.1) 2.2.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 with Keff <,1.0, and in MODES 3, 4,
and 5.
2.3 MODERATOR TEMPERATURE COEFFICIENT (MTC)
(LCO 3.1.3) 2.3.1 The MTC upper and lower limits, respectively, are:
The BOL/ARO/HZP-MTC shall be less positive than +5 pcm/°F.
The EOL/ARO/RTP-MTC shall be less negative than -40 pcm/°F.
2 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 2.3.2 SR 3.1.3.2 The MTC surveillance limit is:
The 300 ppm/ARO/RTP-MTC shall be less negative than or equal to -31 pcm/°F.
The 60 ppm/ARO/RTP-MTC shall be less negative than or equal to -38 pcm/°F.
where:
BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.4 ROD GROUP ALIGNMENT LIMITS (LCO 3.1.4) 2.4.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODES 1 and 2.
2.5 SHUTDOWN BANK INSERTION LIMITS (LCO 3.1.5) 2.5.1 The shutdown rods shall be fully withdrawn.
Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.
3 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 2.6 CONTROL BANK INSERTION LIMITS (LCO 3.1.6) 2.6.1 The control banks shall be limited in physical insertion as shown in Figure 2.
2.6.2 The control banks shall always be withdrawn and inserted in the prescribed sequence.
For withdrawal, the sequence is control bank A, control bank B, control bank C, and control bank D.
The insertion sequence is the reverse of the withdrawal sequence.
2.6.3 A 115 step Tip-to-Tip relationship between each sequential control bank shall be maintained.
2.7 PHYSICS TESTS EXCEPTIONS MODE 2 (LCO 3.1.8) 2.7.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 during PHYSICS TESTS.
2.8 HEAT FLUX HOT CHANNEL FACTOR (F. (Z)
RTP FQ0 2.8.1 FQ(Z)
[K(Z)]
for P
P (LCO 3.2.1.2)
> 0.5 FQ (Z)
QRTP 0.5
[K(Z)] for P -< 0.5 where:
P =
THERMAL POWER RATED THERMAL POWER 4
ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 FRTP 2.8.2 F
= 2.50 2.8.3 K(Z) is provided in Figure 3.
2.8.4 Elevation and burnup dependent W(Z) values are provided in Figures 4, 5,
6, 7 and 8.
For W(Z) data at a desired burnup not listed in the figures, but less than the maximum listed burnup, values at 3 or more burnup steps should be used to interpolate the W(Z) data to the desired burnup with a polynomial type fit that uses the nearest three burnup steps. For W(Z) data at a desired burnup outside of the listed burnup steps, a linear extrapolation of the W(Z) data for the nearest two burnup steps can be used.
2.8.5 SR 3.2.1.2.2 If the two most recent FQ (Z) evaluations show an increase in the expression maximum over Z
[ FQC(Z)
/ K(Z)
],
the burnup dependent values in Table 1 shall be used instead of a constant 2% to increase FQw(Z) per Surveillance Requirement 3.2.1.2.2.a. A constant factor of 2% shall be used for all cycle burnups that are outside the range of Table 1.
5 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (F"AHI-(LCO 3.2.2) 2.9.1 FNAH
-5 FRTPAH
[1
+ PFAH (l-P)J where:
P =
THERMAL POWER RATED THERMAL POWER 2.9.2 2.9.3 F
RTPAH =
PFAH
=
1.60 0.3 2.10 AXIAL FLUX DIFFERENCE (AFD)
(LCO 3.2.3.2) 2.10.1 The AFD Acceptable Operation Limits are provided in Figure 9.
2.11 REACTOR TRIP SYSTEM (RTS)
INSTRUMENTATION (LCO 3.3.1) 2.11.1 The numerical values pertaining to the Overtemperature N-16 reactor trip setpoint are listed below; K(2 K(3 P1I
= 1.15
= 0.0139 /'F
= 0.00071 /psig C
= indicated loop specific T. at Rated Thermal Power, IF 2235 psig T,
?: 10 sec T 2
< 3 sec f1 (Aq) = -2.78 * {(q,-q,) + 18%}
when (q,-q,) 18% RTP
= 0%
when -18% RTP < (q,-q,) < +10.0% RTP
= 2.34
{(q 1 -qb) 10.0%)
when (qt-qb) Ž +10.0% RTP 6
ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING (DNB)
LIMITS (LCO 3.4.1) 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the surveillance limits specified below:
2.12.2 SR 3.4.1.1 Pressurizer pressure 2220 psig (4 channels) a 2222 psig (3 channels)
The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertainty.
These uncertainties are based on the use of control board indications and the number of available channels.
2.12.3 SR 3.4.1.2 RCS average temperature 5 588 °F (4 channels) 5 588 °F (3 channels)
The RCS average temperature limits correspond to the analytical limit of 591.9 'F which is bounded by that used in the safety analysis with allowance for measurement uncertainty.
These uncertainties are based on the use of control board indications and the number of available channels.
7 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 2.12.4 SR 3.4.1.3 The RCS total flow rate shall be 2 403,700 gpm.
2.12.5 SR 3.4.1.4 The RCS total flow rate based on precision heat balance shall be
- 403,700 gpm.
The required RCS flow, based on an elbow tap differential pressure instrument measurement prior to MODE 1 after the refueling outage, shall be greater than 327,000 gpm.
2.13 BORON CONCENTRATION (LCO 3.9.1) 2.13.1 The required refueling boron concentration is
-1842 ppm.
03.0 REFERENCES
Technical Specification 5.6.5.
8 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 Table 1 FQ(Z)
MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD Cycle Maximum Decrease Burnup In F.(Z) MARGIN (MWD/MTU)
(Percent) 4448 2.00 4663 2.05 4877 2.01 5092 2.00 5307 2.00 5522 2.01 5737 2.08 5952 2.17 6167 2.26 6382 2.25 6597 2.08 6811 2.00 7026 2.19 7241 2.51 7456 2.25 7671 2.00 Note: All Cycle burnups outside the range of the table shall use a constant 2% decrease in FQ(Z) margin for compliance with the 3.2.1.2.2.a Surveillance Requirements.
Linear interpolation is acceptable to determine the FQ(Z) margin decrease for cycle burnups which fall between the specified burnups.
o 9
ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 Figure 1 Reactor Core Safety Limits 680 2445 psig 660 Unacceptable 1985 psig 640 a) 1845 psig E
(D620 nAcceptable 600 580 560 0
20 40 60 80 100 120 140 Percent of Rated Thermal Power 10 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240 220 200 180
.* 160 4J
-r-I 140 4J 120 z0 H
r 100 0
80 o
60 (25.3,218)
(79.6,218)
BANK B i
it tBANK C
I I I I IIl I 2F 0
10,9 20-30 40 5-0 7
0 90 PERCEN OFRTDTERAOE 40 20 0
NOTES:
- 1.
Fully withdrawn shall be the condition where control rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.
- 2.
Control Bank A shall be fully withdrawn.
11 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 FIGURE 3 K(Z)
NORMALIZED FQ(Z)
AS A FUNCTION OF CORE HEIGHT 1.1 1.0 0.9 111 1111 ffl ffl 11111111 11 ý ý U (0.
11.0)
(6.0, 1. 0)
(121.0 0 125)
-ijil
-Ldi-i 7
j, I I'l
_I _ý I I iý 0.8 0 0.7 0.6 O 0.5 0.4 0.3 0.2 0.1
. 1 1.... -
I.
ý...........
...... I...
d H I
k W
-th MH I
W liilile
ý I ffllmliý
-L Hid 0.0 0
1 BOTTOM 2
3 4
5 6-CORE HEIGHT 7
8 9
10 (FEET)
Axial Node 61 60 59 58 57 56 55 54 K (Z)
- 0. 9250
- 0. 9275 0.9300 0.9325 0.9350 0.9375 0.9400 0.9425 Axial Node 53 52 51 50 49 48 47 46 K(Z) 0.9450 0.9475 0.9500 0:9525 0.9550 0.9575 0.9600 0.9625 Axial Node 45 44 43 42 41 40 39 38 K(Z) 0.9650 0.9675 0.9700 0.9725 0.9750 0.9775 0.9800 0.9825 Axial Node 37 36 35 34 33 32 1 -
31 11 12 TOP K (Z)
- 0. 9850 0.9875 0.9900 0.9925 0.9950 0.9975 1.0000 Core Height (ft)
= (Node -
- 1)
- 0.2 12 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 FIGURE 4 W(Z)
AS A FUNCTION OF CORE HEIGHT (150 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 i
i 1
0 1
2 3
4 5
6 7
8 9
10 11 12 BOTTOM CORE HEIGHT (FEET)
Axial Node 58 -
61 57 56 55 54 53 52 51 50 49 48 47 46 45 w(Z) 1.3730 1.3645 1.3557 1.3393 1.3106 1.2833 1.2616 1.2418 1.2210 1.1972 1.1713 1.1523 1.1384 Axial Node 44 43 42 41 40 39 38 37 36 35 34 33 32 31 w(Z) 1.1374 1.1466 1.1529 1.1577 1.1610 1.1626 1.1626 1.1615 1.1608 1.1587 1.1550 1.1517 1.1503 1.1493 Axial Node 30 29 28 27 26 25 24 23 22 21 20 19 18 17 w(Z)
- 1. 1489 1.1490 1.1525
- 1. 1628 1.1727 1.1811
- 1. 1889 1.1957 1.2017
- 1. 2070 1.2113 1.2156 1.2234
- 1. 2383 Axial Node 16 15 14 13 12 11 10 9
8 7
6 5
1 -
4 TOP w(Z) 1.2576 1.2768 1.2983
- 1. 3268
- 1. 3546 1.3814 1.4072 1.4312 1.4532
- 1. 4729 1.4893 1.5009 Core-Height (ft)
=
(Node -
- 1)
- 0.2 13 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 FIGURE 5 W(Z)
AS A FUNCTION OF CORE HEIGHT (2,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N 1.400 1.350
- D 1.300 1.250 1.200 1.150 1.100 1.050 1.000 i
i X i 7-I-
/I F
4rtlztlzzvz
~ft1 I
IhI~T JEM-0 1
2 3
4 5
6 7
8 9
10 11 12 BOTTOM Axial Node W(Z) 58 -
61 57 1.4296 56 1.4092 55 1.3808 54 1.3514 53 1.3256 52 1.2965 51 1.2639 50 1.2314 49 1.2011 48 1.1713 47 1.1439 46 1.1332 45 1.1294 CORE HEIGHT (FEET)
Axial Node 44 43 42 41 40 39 38 37 36 35 34 33 32 31 w(Z) 1.1291 1.1317 1.1328 1.1370 1.1404 1.1420 1.1424 1.1425 1.1423 1.1401 1.1377 1.1370 1.1363 1.1363 Axial Node 30 29 28 27 26 25 24 23 22 21 20 19 18 17 W(Z) 1.1384 1.1469 1.1617 1.1745 1.1862 1.1970 1.2067 1.2154 1.2237 1.2315 1.2381 1.2451 1.2553 1.2679 Axial Node 16 15 14 13 12 11 10 9
8 7
6 5
1 -
4 TOP W (Z) 1.2856 1.3110 1.3412
- 1. 3705 1.3993 1.4282 1.4565 1.4833 1.5079 1.5301 1.5490 1.5630 Core Height (ft)
= (Node -
- 1)
- 0.2 14 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 FIGURE 6 W(Z)
AS A FUNCTION OF CORE HEIGHT (8,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 N 1.400 1.350 D
2 1.300 1.250 1.200 1.150 1.100 1.050 1.000 1
i 11 1
67 0
1 2
3 4
5 6
7 8
9 10 11 12 BOTTOM CORE HEIGHT (FEET)
Axial Node 58 -
61 57 56 55 54 53 52 51 50 49 48 47 46 45 w(Z) 1.4554 1.4356 1.4192 1.4029 1.3842 1.3643 1.3415 1.3168 1.2917 1.2654 1.2440 1.2492 1.2550 Axial Node 44 43 42 41 40 39 38 37 36 35 34 33 32 31 w(Z) 1.2550 1.2538 1.2464 1.2366 1.2242 1.2120 1.2006 1.1871 1.1805 1.1741 1.1642 1.1525 1.1389 1.1281 Axial Node 30 29 28 27 26 25 24 23 22 21 20 19 18 17 W(Z) 1.1222 1.1221 1.1267 1.1326 1.1376 1.1420 1.1465 1.1505 1.1537 1.1578
- 1. 1631 1.1683 1.1730
- 1. 1788 Axial Node 16 15 14 13 12 11 10 9
8 7
6 5
1 -
4 TOP w(Z) 1.1895 1.2066 1.2284 1.2513 1.2742 1.2967 1.3183 1.3386 1.3573 1.3740 1.3881 1.3979 Core Height (ft)
=
(Node -
- 1)
- 0.2 15 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 1.650 1.600 1.550 1.500 1.450 N 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 FIGURE 7 W(z)
AS A FUNCTION OF CORE HEIGHT (16,000 MWD/MTU) 0 1
2 3
4 5
6 7
8 9
10 11 12 BOTTOM CORE HEIGHT (FEET)
Axial Node 58 -
61 57 56 55 54 53 52 51 50 49 48 47 46 45 W(Z) 1.3536 1.3629 1.3757 1.3769 1.3618 1.3441 1.3260 1.3060 1.2857 1.2636 1.2408 1.2325 1.2216 Axial Node 44 43 42 41 40 39 38 37 36 35 34 33 32 31 w(Z)
- 1. 2157
- 1. 2177
- 1. 2232 1.2325 1.2405 1.2453 1.2477 1.2475 1.2446
- 1. 2393 1.2313 1.2213 1.2108 1.1991 Axial Node 30 29 28 27 26 25 24 23 22 21 20 19 18 17 w(Z) 1.1881 1.1849 1.1877 1.1898 1.1900 1.1886 1.1856 1.1812 1.1755 1.1690 1.1613 1.1551 1.1522 1.1562 Axial Node 16 15 14 13 12 11 10 9
8 7
6 5
1 -
4 TOP w(Z)
- 1. 1645 1.1749 1.1865 1.1992 1.2119 1.2243 1.2364 1.2478 1.2586 1.2685 1.2766 1.2813 Core Height (ft)
=
(Node -
- 1)
- 0.2 16 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 FIGURE 8 W(Z)
AS A FUNCTION OF CORE HEIGHT (20,000 MWD/MTU) 1.650 1.600
.1.550 1.500 1.450 N 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000
_2
-I--/
I m m,
I Ir ii 0
1 2
3 4
5 6
7 8
9 10 11 12 BOTTOM CORE HEIGHT (FEET).
Axial Node W(Z) 58 -
61 57 1.3657 56 1.3655 55 1.3574 54 1.3402 53 1.3192 52 1.2999 51 1.2819 50 1.2651 49 1.2455 48 1.2291 47 1.2252 46 1.2212 45 1.2200 Axial Node 44 43 42 41 40 39 38 37 36 35 34 33 32 31 w(Z) 1.2221 1.2300 1.2396 1.2481 1.2568 1.2641 1.2689 1.2733 1.2743 1.2721 1.2668 1.2586 1.2476 1.2332 Axial Node 30 29 28 27 26 25 24 23 22 21 20 19 18 17 w(Z) 1.2209
- 1. 2163 1.2165 1.2195
- 1. 2207 1.2198 1.2169 1.2123 1.2060 1.1983 1.1895 1.1797
- 1. 1696 1.1632 Axial Node 16 15 14 13 12 11 10 9
8 7
6 5
1 -
4 TOP w(Z) 1.1645 1.1750 1.1904
- 1. 2049
- 1. 2192
- 1. 2333
- 1. 2469
- 1. 2598 1.2720
- 1. 2833 1.2927 1.2985 Core Height (ft)
= (Node -
- 1)
- 0.2 17 ERX-10-002, Rev.
0
COLR for CPNPP Unit 1 Cycle 15 FIGURE 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 90 80 70 0
W 0
p-1) 60 50 40 30 20 10
-40
-30
-20
-10 0
10 20 30 40 AXIAL FLUX DIFFERENCE (%)
18 ERX-10-002, Rev.
0