CP-201100528, Cycle 13 Core Operating Limits Report, March 2011

From kanterella
(Redirected from CP-201100528)
Jump to navigation Jump to search
Cycle 13 Core Operating Limits Report, March 2011
ML111250445
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 04/28/2011
From: Flores R, Ralston J
Luminant Generation Co, Luminant Power
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CP-201100528, TXX-11045
Download: ML111250445 (24)


Text

Rafael Flores Luminant Power Senior Vice President P 0 Box 1002

& Chief Nuclear Officer 6322 North FM 56 rafael.flores@Luminant.com Glen Rose, TX 76043 Luminant T 254 897 5550 C 817 559 0403 F 254 897 6652 CP-201100528 Ref: Tech. Spec. 5.6.5 TXX-11045 April 28, 2011 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

SUBJECT:

COMANCHE PEAK NUCLEAR POWER PLANT DOCKET NO. 50-446 CORE OPERATING LIMITS REPORT

Dear Sir or Madam:

Enclosed is the Core Operating Limits Report for Comanche Peak Nuclear Power Plant (CPNPP) Unit 2, Cycle

13. This report is prepared and submitted pursuant to Technical Specification 5.6.5.

This communication contains no new licensing basis commitments regarding CPNPP Units 1 and 2. Should you have any questions, please contact Mr. J. D. Seawright at (254) 897-0140.

Sincerely, Luminant Generation Company LLC Rafael Flores By:4'74 Fred W. Madden Director, Oversight & Regulatory Affairs Enclosure c- E. E. Collins, Region IV B. K. Singal, NRR Resident Inspectors, Comanche Peak A member of the STARS (Strategic Teaming and Resource Sharing) Alliance ADD Callaway

  • Comanche Peak
  • Diablo Canyon
  • Palo Verde
  • San Onofre. South Texas Project
  • Wolf Creek "a

ERX-1I-001, Rev. 0 CPNPP UNIT 2 CYCLE 13 CORE OPERATING LIMITS REPORT March 2011 Prepared: 3-2-3-2011 Reviewed: a A___ __&- r _ _ Date: 5/Z5/-Ol Christopher M. riggs Senior Engineer, Westinghouse Electric Co.

Reviewed:

  • 322I'
  • J* Date: 3/s /

42evin N. Rbfand Principal Engineer, Westinghouse Electric Co'.

Approved: Date: e_________l W. Jam~sBoat/¶ight, Manager Westinghouse Engineering services - Texas

DISCLAIMER The information contained in this report was prepared for the specific requirement of Luminant Generation Company LLC and may not be appropriate for use in situations other than those for which it was specifically prepared. Luminant Generation Company LLC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, Luminant Generation Company LLC does not authorize its use by others, and any such use is forbidden except with the prior written approval of Luminant Generation Company LLC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall Luminant Generation Company LLC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

ii ERX-1I-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 TABLE OF CONTENTS DISCLAIMER ............... ii TABLE OF CONTENTS ........ iii LIST OF TABLES ........... iv LIST OF FIGURES .......... V SECTION PAGE 1.0 CORE OPERATING LIMITS REPORT ..................... 1 2.0 OPERATING LIMITS ................................. 2 2.1 SAFETY LIMITS ............................... 2 2.2 SHUTDOWN MARGIN ............................. 2 2.3 MODERATOR TEMPERATURE COEFFICIENT ........... 2 2.4 ROD GROUP ALIGNMENT LIMITS .................. 3 2.5 SHUTDOWN BANK INSERTION LIMITS .............. 3 2.6 CONTROL BANK INSERTION LIMITS ............... 4 2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 ........... 4 2.8 HEAT FLUX HOT CHANNEL FACTOR ................ 4 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR .... 6 2.10 AXIAL FLUX DIFFERENCE ....................... 6 2.11 REACTOR TRIP SYSTEM INSTRUMENTATION ......... 6 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS ..................... 7 2.13 BORON CONCENTRATION ......................... 8

3.0 REFERENCES

....................................... 8 iii ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 LIST OF TABLES TABLE PAGE 1 FQ(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD 9...........9 iv ERX-l1-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 LIST OF FIGURES FIGURE PAGE 1 REACTOR CORE SAFETY LIMITS .............................. 10 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER ............ 11 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT ............................................. 12 4 W(Z) AS A FUNCTION OF CORE HEIGHT -

(150 MWD/MTU) ........................................... 13 5 W(Z) AS A FUNCTION OF CORE HEIGHT -

(4,000 MWD/MTU) ......................................... 14 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

(6,000 MWD/MTU) ......................................... 15 7 W(Z) AS A FUNCTION OF CORE HEIGHT -

(14,000 MWD/MTU) ........................................ 16 8 W(Z) AS A FUNCTION OF CORE HEIGHT -

(20,000 MWD/MTU) ........................................ 17 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER .................................. 18 V ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPNPP UNIT 2 CYCLE 13 has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

SL 2.1 SAFETY LIMITS LCO 3.1.1 SHUTDOWN MARGIN LCO 3.1.3 MODERATOR TEMPERATURE COEFFICIENT LCO 3.1.4 ROD GROUP ALIGNMENT LIMITS LCO 3.1.5 SHUTDOWN BANK INSERTION LIMITS LCO 3.1.6 CONTROL BANK INSERTION LIMITS LCO 3.1.8 PHYSICS TESTS EXCEPTIONS - MODE 2 LCO 3.2.1 HEAT FLUX HOT CHANNEL FACTOR LCO 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR LCO 3.2.3 AXIAL FLUX DIFFERENCE LCO 3.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION LCO 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS LCO 3.9.1 BORON CONCENTRATION 1 ERX-II-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5b, Items 1 through 4 and 7 through 15.

These limits have been determined such that all applicable limits of the safety analysis are met.

2.1 SAFETY LIMITS (SL 2.1) 2.1.1 In MODES 1 and 2, the combination of thermal power, reactor coolant system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1.

2.2 SHUTDOWN MARGIN (SDM) (LCO 3.1.1) 2.2.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 with Keff < 1.0, and in MODES 3, 4, and 5.

2.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) (LCO 3.1.3) 2.3.1 The MTC upper and lower limits, respectively, are:

The BOL/ARO/HZP-MTC shall be less positive than +5 pcm/°F.

The EOL/ARO/RTP-MTC shall be less negative than -40 pcm/°F.

2 ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 2.3.2 SR 3.1.3.2 The MTC surveillance limit is:

The 300 ppm/ARO/RTP-MTC shall be less negative than or equal to -31 pcm/°F.

The 60 ppm/ARO/RTP-MTC shall be less negative than or equal to -38 pcm/°F.

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.4 ROD GROUP ALIGNMENT LIMITS (LCO 3.1.4) 2.4.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODES 1 and 2.

2.5 SHUTDOWN BANK INSERTION LIMITS (LCO 3.1.5) 2.5.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

3 ERX-II-O01, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 2.6 CONTROL BANK INSERTION LIMITS (LCO 3.1.6) 2.6.1 The control banks shall be limited in physical insertion as shown in Figure 2.

2.6.2 The control banks shall always be withdrawn and inserted in the prescribed sequence. For withdrawal, the sequence is control bank A, control bank B, control bank C, and control bank D. The insertion sequence is the reverse of the withdrawal sequence.

2.6.3 A 115 step Tip-to-Tip relationship between each sequential control bank shall be maintained.

2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 (LCO 3.1.8) 2.7.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 during PHYSICS TESTS.

2.8 HEAT FLUX HOT CHANNEL FACTOR (F.(Z)) (LCO 3.2.1)

RTP FQ0 2.8.1 FQ(Z) < [K(Z)] for P > 0.5 P

F RTP FQ FQ(Z) - [K(Z)] for P < 0.5

0.5 where

P = THERMAL POWER RATED THERMAL POWER 4 ERX-1I-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 RTP 2.8.2 F = 2.50 2.8.3 K(Z) is provided in Figure 3.

2.8.4 Elevation and burnup dependent W(Z) values are provided in Figures 4, 5, 6, 7 and 8. For W(Z) data at a desired burnup not listed in the figures, but less than the maximum listed burnup, values at 3 or more burnup steps should be used to interpolate the W(Z) data to the desired burnup with a polynomial type fit that uses the nearest three burnup steps. For W(Z) data at a desired burnup outside of the listed burnup steps, a linear extrapolation of the W(Z) data for the nearest two burnup steps can be used.

2.8.5 SR 3.2.1.2 If the two most recent FQ(Z) evaluations show an increase in the expression maximum over Z [ FQ (Z) / K(Z) ],

the burnup dependent values in Table 1 shall be used instead of a constant 2% to increase FQW(Z) per Surveillance Requirement 3.2.1.2.a. A constant factor of 2% shall be used for all cycle burnups that are outside the range of Table 1.

5 ERX-1I-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (F"AH) (LCO 3.2.2)

T 2.9.1 FNAH  : FR PAH [1 + PFAH (l-P)]

where: P = THERMAL POWER RATED THERMAL POWER 2.9.2 FRTPAH = 1.60 for all Fuel Assembly Regions 2.9.3 PFAH = 0.3 2.10 AXIAL FLUX DIFFERENCE (AFD) (LCO 3.2.3) 2.10.1 The AFD Acceptable Operation Limits are provided in Figure 9.

2.11 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION (LCO 3.3.1) 2.11.1 The numerical values pertaining to the Overtemperature N-16 reactor trip setpoint are listed below; K, = 1.15 K2 = 0.0139 /°F K3 = 0.00071 /psig T°0 = indicated loop specific TC at Rated Thermal Power, °F P1 2235 psig T i0 1 sec T2 5 3 sec f 1 (Aq) = -2.78 - {(qt-qb) + 18%} when (qt-qb) :5 -18% RTP

= 0% when -18% RTP < (qt-qb) < +10.0% RTP

= 2.34 - {(qt-qb) - 10.0%} when (qt-q,)  ? +10.0% RTP 6 ERX-II-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING (DNB) LIMITS (LCO 3.4.1) 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the surveillance limits specified below:

2.12.2 SR 3.4.1.1 Pressurizer pressure 2 2220 psig (4 channels) 2 2222 psig (3 channels)

The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

2.12.3 SR 3.4.1.2 RCS average temperature 5 592 °F (4 channels) 591 'F (3 channels)

The RCS average temperature limits correspond to the analytical limit of 595.2 °F which is bounded by that used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

7 ERX-II-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 2.12.4 SR 3.4.1.3 The RCS total flow rate shall be ? 408,000 gpm.

2.12.5 SR 3.4.1.4 The RCS total flow rate based on precision heat balance shall be ý 408,000 gpm.

The required RCS flow, based on an elbow tap differential pressure instrument measurement prior to MODE 1 after the refueling outage, shall be greater than 327,000 gpm.

2.13 BORON CONCENTRATION (LCO 3.9.1) 2.13.1 The required refueling boron concentration is  ?:1973 ppm.

3.0 REFERENCES

Technical Specification 5.6.5.

8 ERX-II-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 Table 1 FQ(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD Cycle Maximum Decrease Burnup In F. (Z) MARGIN (MWD/MTU) (Percent) 365 2.00 581 3.44 796 4.03 l011 3.94 1227 3.41 1442 2.76 1657 2.11 1872 2.00 Note: All cycle burnups outside the range of the table shall use a constant 2% decrease in FQ(Z) margin;for compliance with the 3.2.1.2.a Surveillance Requirements. Linear interpolation is acceptable to determine the FQ(Z) margin decrease for cycle burnups which fall between the specified burnups.

9 ERX-1I-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 Figure 1 Reactor Core Safety Limits 680 660 ______ _____

2445 psig 640 0 1985 psig CD (D 1845 psigi 60.

020 40 60 80 100 120 140 Percent of Rated Thermal Power 10 ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240 220 (25.3,218) 1111 .ii

. 1 11 1 (79.6, 2 18)j I I I I I I I I I I . I . . ." I .. .i. .. .. .i ..i I .

  • 1. 1, ..

200 I I I IB IBII 180 "o

IO164) 41 160 02 (100,146) w 140

.Ii 02 / BANK CY o 120 H

H H

o 100 r 80 0 BAKD 60 F4 40 20 0

0 10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THERMAL POWER NOTES: 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn.

11 ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 FIGURE 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.1 1 11 1 1 1 11 1 1 1 1 11 1 1 1 (0.011.0) (6.0,1.0) 1.0 11 1111117 "t+H----,

0.9 (12.0,0.925) 0.8 N

C.

rx~

0.7 .... ......... - .... 1.

N H

0.6 0.5 N

0.4 0.3 0.2 0.1 ...................................I..............

0.0 0 1 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node K(Z) Node K(Z) Node K(Z) Node K(Z) 61 0.9250 53 0.9450 45 0.9650 37 0.9850 60 0.9275 52 0.9475 44 0.9675 36 0.9875 59 0.9300 51 0.9500 43 0.9700 35 0.9900 58 0.9325 50 0.9525 42 0.9725 34 0.9925 57 0.9350 49 0.9550 41 0.9750 33 0.9950 56 0.9375 48 0.9575 40 0.9775 32 0.9975 55 0.9400 47 0.9600 39 0.9800 1 - 31 1.0000 54 0.9425 46 0.9625 38 0.9825 Core Height (ft) = (Node - 1)

  • 0.2 12 ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 1.400 1.350 D

1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W (Z) Node w (Z) Node w(Z) Node w (Z) 58 - 61 --- 44 1.1399 30 1.1755 16 1.2319 57 1.2170 43 1.1502 29 1.1760 15 1.2467 56 1.2184 42 1.1596 28 1.1804 14 1.2665 55 1.2116 41 1.1679 27 1.1886 13 1. 2849 54 1.1996 40 1.1763 26 1.1961 12 1.3029 53 1.1878 39 1.1837 25 1.2019 11 1.3204 52 1.1751 38 1.1884 24 1.2067 10 1.3370 51 1.1625 37 1.1913 23 1.2102 9 1.3526 50 1.1569 36 1.1942 22 1.2125 8 1.3667 49 1.1531 35 1.1955 21 1.2139 7 1. 3789 48 1.1460 34 1.1943 20 1.2139 6 1.3883 47 1.1381 33 1.1911 19 1.2140 5 1.3965 46 1.1295 32 1.1861 18 1.2170 1 - 4 45 1.1306 31 1.1795 17 1.2232 Core Height (ft) = (Node - 1)

  • 0.2 13 ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (4,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 1.400 D

1.350 1.300 0470 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node W (Z) Node w(Z) Node w (Z) 58 - 61 44 1.1404 30 1.1341 16 1.2448 57 1.2820 43 1.1456 29 1.1394 15 1.2663 56 1.2715 42 1.1455 28 1.1501 14 1.2933 55 1.2575 41 1.1450 27 1.1591 13 1.3217 54 1. 2452 40 1.1420 26 1.1671 12 1.3498 53 1.2351 39 1.1404 25 1.1744 11 1.3772 52 1.2237 38 1.1419 24 1.1807 10 1.4036 51 1.2118 37 1.1434 23 1.1861 9 1.4284 50 1.1992 36 1. 1434 22 1.1908 8 1.4512 49 1.1858 35 1.1417 21 1.1940 7 1.4712 48 1.1725 34 1.1394 20 1.1994 6 1.4870 47 1.1604 33 1.1376 19 1.2065 5 1.5010 46 1.1495 32 1.1354 18 1.2137 1 - 4 45 1.1409 31 1.1340 17 1.2278 Core Height (ft) = (Node - 1)

  • 0.2 14 ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (6,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 1.400 1.350

D 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w (Z) 58 - 61 --- 44 1.1770 30 1.1269 16 1.1872 57 1.3634 43 1.1740 29 1.1272 15 1.2043 56 1.3536 42 1. 1692 28 1.1272 14 1.2271 55 1.3385 41 1.1651 27 1.1291 13 1.2514 54 1.3195 40 1.1633 26 1.1338 12 1.2756 53 1.2968 39 1.1615 25 1.1386 11 1.2994 52 1.2724 38 1.1588 24 1.1424 10 1.3225 51 1.2576 37 1.1574 23 1.1456 9 1.3443 50 1.2454 36 1.1541 22 1.1479 8 1.3643 49 1.2334 35 1.1490 21 1.1521 7 1. 3820 48 1.2211 34 1.1418 20 1.1577 6 1.3957 47 1.2061 33 1.1338 19 1.1628 5 1.4077 46 1.1903 32 1.1293 18 1.1676 1 - 4 45 1.1808 31 1.1271 17 1.1759 Core Height (ft) = (Node - 1)
  • 0.2 15 ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT (14,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 1.400 N 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 44 1.2394 30 1.1547 16 1.1177 57 1.3298 43 1.2375 29 1.1523 15 1.1313 56 1.3296 42 1.2336 28 1.1526 14 1.1439 55 1.3251 41 1.2309 27 1.1513 13 1.1569 54 1.3159 40 1.2306 26 1.1487 12 1.1698 53 1.3076 39 1.2297 25 1.1458 11 1.1825 52 1.3027 38 1.2274 24 1.1424 10 1.1949 51 1.2981 37 1.2261 23 1.1380 9 1.2065 50 1.2930 36 1.2221 22 1.1328 8 1.2173 49 1.2881 35 1.2153 21 1.1281 7 1.2266 48 1.2820 34 1.2062 20 1.1241 6 1.2333 47 1.2726 33 1.1949 19 1.1205 5 1.2381 46 1.2633 32 1.1817 18 1.1163 1 - 4 45 1.2494 31 1.1656 17 1.1122 Core Height (ft) = (Node - 1)

  • 0.2 16 ERX-11-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 13 FIGURE 8 W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 Ri~ 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 44 1.2170 30 1.2024 16 1.1274 57 1.3068 43 1.2168 29 1. 1983 15 1.1326 56 1.3039 42 1.2230 28 1.1979 14 1.1407 55 1.2929 41 1.2288 27 1.1947 13 1.1513 54 1.2790 40 1.2354 26 1.1895 12 1.1630 53 1.2644 39 1.2414 25 1.1837 11 1.1748 52 1.2528 38 1.2454 24 1.1770 10 1. 1862 51 1.2490 37 1.2495 23 1.1688 9 1.1972 50 1.2466 36 1.2507 22 1.1595 8 1.2076 49 1.2445 35 1.2487 21 1.1502 7 1.2169 48 1.2423 34 1.2439 20 1.1428 6 1.2237 47 1.2373 33 1.2364 19 1.1365 5 1.2286 46 1.2328 32 1.2264 18 1.1300 1 - 4 45 1.2245 31 1.2131 17 1.1263 Core Height (ft) = (Node - 1)

  • 0.2 17 ERX-11-001 Rev. 0

COLR for CPNPP Unit 2 Cycle 13 FIGURE 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100


(-12,"100)i - / - - (10,100) 90 UNACCEPTABLE UNACCEPTABLE OPERATION OPERATION 80 ACCEPTABLE OPERATION 70 04 60 50

(-25,50) - - - (20,50) 40 Dz4 0

z 30 I f 20 10 0

-40 -30 -20 -10 0 10 20 30 40 AXIAL FLUX DIFFERENCE (%)

18 ERX-11-001, Rev. 0