CP-200800514, Cycle 11, Core Operating Limits Reports

From kanterella
(Redirected from CP-200800514)
Jump to navigation Jump to search
Cycle 11, Core Operating Limits Reports
ML081200756
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 04/22/2008
From: Madden F
Luminant Generation Co, Luminant Power
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CP-200800514, TXX-08058
Download: ML081200756 (23)


Text

um Mike Blevins Luminant Power Executive Vice President P 0 Box 1002

& Chief Nuclear Officer 6322 North FM 56 Luminant Mike.Blevins@Luminant.com Glen Rose, TX 76043 T 254 897 5209 C 817 559 9085 F 254 897 6652 CP-200800514 Ref. # Tech. Spec. 5.6.5 Log # TXX-08058 April 22, 2008 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

SUBJECT:

COMANCHE PEAK STEAM ELECTRIC STATION DOCKET NO. 50-446 CORE OPERATING LIMITS REPORTS

Dear Sir or Madam:

Pursuant to Technical Specification 5.6.5, Luminant Generation Company LLC (Luminant Power) hereby submits the Core Operating Limits Reports for Comanche Peak Unit 2, Cycle 11.

This communication contains no new licensing basis commitments regarding Comanche Peak Units 1 and 2. Should you have any questions, please contact Mr. J. D. Seawright at (254) 897-0140.

Sincerely, Luminant Generation Company LLC Mike Blevins By:: _ _ _ _ _

/ Freýl W. Madden Director, Oversight & Regulatory Affairs Enclosure Unit 2, Cycle 11 Core Operating Limits Report (COLR) c- E. E. Collins, Region IV B. K. Singal, NRR Resident Inspectors, Comanche Peak A member of the STARS (Strategic Teaming and Resource Sharing) Alliance..

Callaway - Comanche Peak

  • Diablo Canyon Palo Verde - South Texas Project - Wolf Creek

ERX-08-001, Rev. 0 CPNPP UNIT 2 CYCLE 3.1' CORE OPERATING LIMITS REPORT April2008 Prepared: (_

2z 'Date:

Daniel E. Brozak Principal Engineer, Westinghouse El ectricý Co.

ReViewed:

~\ ~

Date: . ...

Somporn Srinilta Prin-cpalý Engineer, Westinghouse Electric Co.

Reviewed: _____ Date:

evin N. Roland Principal Engineer, Westinghouse El .ectric Co.

Approved:

JesBoatwi -Managerr Date:

Westinghouse Engineering Serivices - Texas

DISCLAIMER The information contained in this report was prepared for the specific requirement of Energy Future Holdings Company LP and may not be appropriate for use in situations other than those for which it was specifically prepared. Energy Future Holdings Company LP PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND) OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, Energy Future Holdings Company LP does not authorize its use by others, and any such use is forbidden except with the prior written approval of Energy Future Holdings Company LP. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.

In no event shall Energy Future Holdings Company LP have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this' report or of the information in it.

ii ii ERX-O8-O0l, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 TABLE OF CONTENTS DISCLAIMER...............................................................i TABLE OF CONTENTS.......................................................11 LIST OF TABLES........................................................... iv LIST OF FIGURES.......................................................... v SECTION PAGE 1.0 CORE OPERATING LIMITS REPORT......................................1 2.0 OPERATING LIMITS....................................................2 2.1 SAFETY LIMITS.................................................2 2.2 SHUTDOWN MARGIN...............................................2 2.3 MODERATOR TEMPERATURE COEFFICIENT.......................... 2 2.4 ROD GROUP ALIGNMENT LIMITS...................................3 2.5 SHUTDOWN BANK INSERTION LIMITS.............................. 3 2.6 CONTROL BANK INSERTION LIMITS............................... 4 2.7 PHYSICS TESTS EXCEPTIONS - MODE 2.......................... 4 2.8 HEAT FLUX HOT CHANNEL FACTOR................................ 4 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR....................5 2.10 AXIAL FLUX DIFFERENCE.........................................6 2.11 REACTOR TRIP SYSTEM INSTRUMENTATION.........................6 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS..................................... 7 2.13 BORON CONCENTRATION.......................................... 8

3.0 REFERENCES

...........................................................8 iii iii ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 LIST OF TABLES TABLE PAGE 1 FQ(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD ....... 9 iv ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 LIST OF FIGURES FIGURE PAGE 1 REACTOR CORE SAFETY LIMITS .............................. 10 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER ............. 11 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT ............................................. 12 4 W(Z) AS A FUNCTION OF CORE HEIGHT -

(150 MWD/MTU) ........................................... 13 5 W(Z) AS A FUNCTION OF CORE HEIGHT -

(5,000 MWD/MTU) ......................................... 14 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

(10,000 MWD/MTU) ........................................ 15 7 W(Z) AS A FUNCTION OF CORE HEIGHT -

(20,000 MWD/MTU) ........................................ 16 8 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER ................................... 17 V ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPNPP UNIT 2 CYCLE 11 has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

SL 2.1 SAFETY LIMITS LCO 3.1.1 SHUTDOWN MARGIN LCO 3.1.3 MODERATOR TEMPERATURE COEFFICIENT LCO 3.1.4 ROD GROUP ALIGNMENT LIMITS LCO 3.1.5 SHUTDOWN BANK INSERTION LIMITS LCO 3.1.6 CONTROL BANK INSERTION LIMITS LCO 3.1.8 PHYSICS TESTS EXCEPTIONS - MODE 2 LCO 3.2.1.2 HEAT FLUX HOT CHANNEL FACTOR LCO 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR LCO 3.2.3.2 AXIAL FLUX DIFFERENCE LCO 3.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION LCO 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS LCO 3.9.1 BORON CONCENTRATION ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11

  • 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5b, Items 1, 2, 14, 16, 17, 18 and 21 through 29. These limits have been determined such that all applicable limits of the safety analysis are met.

2.1 SAFETY LIMITS (SL 2.1) 2.1.1 In MODES 1 and 2, the combination of thermal power, reactor coolant system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1.

2.2 SHUTDOWN MARGIN (SDM) (LCO 3.1.1) 2.2.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 with K... < 1.0, and in MODES 3, 4, and 5.

2.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) (LCO 3.1.3) 2.3.1 The MTC upper and lower limits, respectively, are:

The BOL/ARO/HZP-MTC shall be less positive than +5 pcm/*F.

The EOL/ARO/RTP-MTC shall be less negative than -40 pcm/°F.

2 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 2.3.2 SR 3.1.3.2 The MTC surveillance limit is:

The 300 ppm/ARO/RTP-MTC shall be less negative than or equal to -31 pcm/'F.

The 60 ppm/ARO/RTP-MTC shall be less negative than or equal to -38 pcm/*F.

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.4 ROD GROUP ALIGNMENT LIMITS (LCO 3.1.4) 2.4.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODES 1 and 2.

2.5 SHUTDOWN BANK INSERTION LIMITS (LCO 3.1.5) 2.5.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

3 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 2.6 CONTROL BANK INSERTION LIMITS (LCO 3.1.6) 2.6.1 The control banks shall be limited in physical insertion as shown in Figure 2.

2.6.2 The control banks shall always be withdrawn and inserted in the prescribed sequence. For withdrawal, the sequence is control bank A, control bank B, control bank C, and control bank D. The insertion sequence is the reverse of the withdrawal sequence.

2.6.3 A 115 step Tip-to-Tip relationship between each sequential control bank shall be maintained.

2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 (LCO 3.1.8) 2.7.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 during PHYSICS TESTS.

2.8 HEAT FLUX HOT CHANNEL FACTOR (F. (Z) (LCO 3.2.1.2)

FRTP F

2.8.1 FQ(Z) -- [K(Z)] for P > 0.5 P

IRTP FQ FQ(Z) <_< [K(Z)] for P S 0.5

0.5 where

P = IFHERMAL POWER RATI ED THERMAL POWER 4 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 2.8.2 FFRTP = 2.50 2.8.3 K(Z) is provided in Figure 3.

2.8.4 Elevation and burnup dependent W(Z) values are provided in Figures 4, 5, 6, and 7. The burnup dependent values can be used to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup.

2.8.5 SR 3.2.1.2.2 If the two most recent FQ(Z) evaluations show an increase in the expression maximum over Z [ FQC(Z) / K(Z) ],

the burnup dependent values in Table 1 shall be used instead of a constant 2% to increase FQw(Z) per Surveillance Requirement 3.2.1.2.2.a. A constant factor of 2% shall be used for all cycle burnups that are outside the range of Table 1.

2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (FNAHI (LCO 3.2.2),

2.9.1 FNAH 5 F'T'AH [1 + PFA (l-P)]

where: P = THERMAL POWER RATED THERMAL POWER 2.9.2 F TPAH = 1.41 for Region 1-13B and liB Fuel Assemblies FRTPAH = 1.60 for all other Fuel Assembly Regions 2.9.3 PFAH = 0.3 5 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 2.10 AXIAL FLUX DIFFERENCE (AFD) (LCO 3.2.3.2) 2.10.1 The AFD Acceptable Operation Limits are provided in Figure 8.

2.11 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION (LCO 3.3.1) 2.11.1 The numerical values pertaining to the Overtemperature N-16 reactor trip setpoint are listed below; K, = 1.15 K = 0.0139 I°F K3 = 0.00071 /psig 0

TC0 = indicated loop specific T, at Rated Thermal Power, F P1 Z 2235 psig T, 10 sec T2 5 3 sec f 1 (Aq) = -2.78 - {(q-qb) + 18%} when (q,-q 1 ) 5 -18% RTP

= 0% when -18% RTP < (qt-q,) < +10.0% RTP

= 2.34 {(qt-q,) - 10.0%) when (qt-qb) a +10.0% RTP 6 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING (DNB) LIMITS (LCO 3.4.1) 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the surveillance limits specified below:

2.12.2 SR 3.4.1.1 Pressurizer pressure 2 2220 psig (4 channels) 2222 psig (3 channels)

The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

2.12.3 SR 3.4.1.2 RCS average temperature S 592 'F (4 channels) 5 591 'F (3 channels)

The RCS average temperature limits correspond to the 0

analytical limit of 595.2 F used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

7 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 2.12.4 SR 3.4.1.3 The RCS total flow rate shall be Ž 408,000 gpm.

2.12.5 SR 3.4.1.4 The RCS total flow rate based on precision heat balance shall be Ž 408,000 gpm.

The required RCS flow, based on an elbow tap differential pressure instrument measurement prior to MODE 1 after the refueling outage, shall be greater than 327,000 gpm.

2.13 BORON CONCENTRATION (LCO 3.9.1) 2.13.1 The required refueling boron concentration is 2!1899 ppm.

3.0 REFERENCES

Technical Specification 5.6.5.

8 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 Table 1 F, (Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD Cycle Maximum Decrease Burnup In F, (Z) MARGIN (MWD/MTU) (Percent) 982 2.00 1190 2.65 1398 3.75 1606 4.78 1814 5.21 2022 4.51 2230 3.83 2438 3.21 2647 2.63 2855 2.11 3063 2.00 Note: All Cycle burnups outside the range of the table shall use a constant 2% decrease in FQ(Z) margin for compliance with the 3.2.1.2.2.a Surveillance Requirements. Linear interpolation is acceptable to determine the FQ(Z) margin decrease for cycle burnups which fall between the specified burnups.

9 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 Figure 1 Reactor Core Safety Limits 680-660 ______ ______ _____

660 5 pUnacceptable 640O 0

0.

E 620 620- 100 120 14 600) 0 580 560 0 20 40 60 80 100 120 140 Percent of Rated Thermal Power (3458 MWt) 10 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240

- - (2 .3,28).(79.6,218) 220 200 BANK B 180

,n 160 -- (0,164)-

4J

-,-I

-(00,146) 140 4J BANK C + -+ /II 120 0

H H 100 0

80 BANK D o 60 40 20 0

0 10 20 30 40 50 60 70 80. 90 100 PERCENT OF RATED THERMAL POWER NOTES: 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn.

11 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 FIGURE 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.1 1 11 1 1 1 1 1 ýI I I I I (0.011.0) 6.0,1.0 1.0

-7 71 j, H111 11411, -11 0.9 1 1 2 . 0, 0.925) 0.8 00.7 N 0.6 o 0.5 I

.7; 7 IHF~

- 0.4 0.3 0.2 ... I ......... I ..... I ..... .. 1- 1- - .1- .... - I 0.1 0.0 0

H 1 2 3 4 5 I+rHi+/- Hr 6 7 8 FM H [++I+I 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node K(Z) Node KI(Z) Node K(Z) Node K(Z) 61 0.9250 53 0.9450 45 0.9650 37 0.9850 60 0.9275 52 0.9475 44 0.9675 36 0.9875 59 0.9300 51 0.9500 43 0.9700 35 0.9900 58 0.9325 50 0.9525 42 0.9725 34 0.9925 57 0.9350 49 0.9550 41 0.9750 33 0.9950 56 0.9375 48 0.9575 40 0.9775 32 0.9975 55 0.9400 47 0.9600 39 0.9800 1 - 31 1.0000 54 0.9425 46 0.9625 38 0.9825 Core Height (ft) = (Node - 1)

  • 0.2 12 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD/MTU) 1.450 1.400 1.350 1.300 N

1.250 1.200 1.150 N I I J J

/

S 2N 1.100 1.050 1.000 I I i 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.1608 30 1.1672 16 1.0802 57 1.1794 43 1.1624 29 1.1610 15 1.0849 56 1.1791 42 1.1632 28 1.1558 14 1.0887 55 1.1789 41 1.1643 27 1.1509 13 1.0931 54 1.1770 40 1.1685 26 1.1449 12 1.0978 53 1.1718 39 1.1735 25 1.1383 11 1.1023 52 1.1644 38 1.1774 24 1.1313 10 1.1083 51 1.1583 37 1.1832 23 1.1233 9 1.1171.

50 1.1574 36 1.1868 22 1.1145 8 1.1264 49 1.1591 35 1.1880 21 1.1057 7 1.1343 48 1.1591 34 1.1873 20 1.0983 6 1.1414 47 1.1561 33 1.1847 19 1.0920 5 1.1490 46 1.1537 32 1.1802 18 1.0850 1 - 4 45 1.1558 31 1.1740 17 1.0790 Core Height (ft) = (Node - 1)

  • 0.2 13 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (5,000 MWD/MTU) 1.450 1.400 1.350 I

1.300

-I------

i i F-- 1.250 1.200

/

1.150 ffiAffiLX 1.100 1.050

-l

+ I I~-I~-I-~

1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W (Z) Node w(z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.1437 30 1.1281 16 1.0959 57 1.3237 43 1.1516 29 1.1264 15 1.1062 56 1.3102 42 1.1533 28 1.1241 14 1.1203 55 1.2936 41 1.1527 27 1.1207 13 1.1343 54 1.2735 40 1.1498 26 1.1163 12 1.1488 53 1.2504 39 1.1478 25 1.1112 11 1.1618 52 1.2241 38 1.1479 24 1.1054 10 1.1805 51 1.1950 37 1.1482 23 1.0990 9 1. 2093 50 1.1746 36 1.1469 22 1.0926 8 1. 2406 49 1.1621 35 1.1440 21 1.0914 7 1. 2669 48 1.1518 34 1.1401 20 1.0915 6 1.2886 47 1.1424 33 1.1363 19 1.0916 5 1.3071 46 1.1329 32 1.1329 18 1.0914 1 - 4 45 1.1340 31 1.1301 17 1.0917 Core Height (ft) = (Node - 1)

  • 0.2 14 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (10,000 MWD/MTU) 1.450 1.400 1.350 1.300 I I I I i  ! i i i 1.250 i i I i 1.200 1.150 I I A.

F---IV 1.100 1.050 IHý 1.000 -fýwl 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.1897 30 1.1348 16 1.0689 57 1.2732 43 1.1922 29 1.1317 15 1.0691 56 1.2689 42 1.1900 28 1.1284 14 1.0747 55 1.2628 41 1.1858 27 1.1240 13 1.0868 54 1.2563 40 1.1792 26 1.1185 12 1.0986 53 1.2495 39 1.1719 25 1.1122 11 1.1126 52 1.2420 38 1.1669 24 1.1052 10 1.1276 51 1.2338 37 1.1653 23 1.0977 9 1.1462 50 1.2251 36 1.1634 22 1.0912 8 1.1718 49 1.2160 35 1.1598 21 1.0847 7 1.1927 48 1.2069 34 1.1545 20 1.0773 6 1.2088 47 1.1977 33 1.1485 19 1.0719 5 1.2223 46 1.1879 32 1.1438 18 1.0712 1 - 4 45 1.1870 31 1.1390 17 1.0702 Core Height (ft) = (Node - 1)

  • 0.2 15 ERX-08-001, Rev. 0

COLR for CPNPP Unit 2 Cycle 11 FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 MWD/MTU) 1.450 1.400 1.350 1.300 1.250 -- ýF 11200 /- 71 1.150 1.100 1.050 I I I I 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 44 1.1852 30 1.2037 16 1.0564 57 1.2502 43 1.1903 29 1.1966 15 1.0649 56 1.2492 42 1.1948 28 1.1927 14 1.0747 55 1.2444 41 1.1998 27 1.1861 13 1.0846 54 1.2344 40 1.2074 26 1.1775 12 1.0948 53 1.2232 39 1.2150 25 1.1674 11 1.1051 52 1.2161 38 1.2211 24 1.1556 10 1.1152 51 1.2086 37 1.2287 23 1.1426 9 1.1249 50 1.1980 36 1. 2333 22 1.1285 8 1.1341 49 1.1874 35 1.2348 21 1.1136 7 1.1425 48 1.1808 34 1. 2336 20 1.0983 6 1.1480 47 1.1778 33 1.2296 19 1.0826 5 1.1534 46 1.1799 32 1.2230 18 1.0672 1 - 4 45 1.1822 31 1.2137 17 1.0558 Core Height (ft) = (Node - 1)

  • 0.2 16 ERX-08-001 Rev. 0

COLR for CPNPP Unit 2 Cycle 11 FIGURE 8 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 90 80 70 0

60 so E-4 40 0

u 30 P4, 20 10 0-30 -20 -10 0 10 20 30 40 AXIAL FLUX DIFFERENCE (%)

17 ERX-08-001, Rev. 0