ML20129E546

From kanterella
Jump to navigation Jump to search
Rev 0 to VYNPS Cycle 19 Colr
ML20129E546
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 10/11/1996
From:
VERMONT YANKEE NUCLEAR POWER CORP.
To:
Shared Package
ML20129E542 List:
References
NUDOCS 9610280091
Download: ML20129E546 (20)


Text

c v l

t I

1 .-

Vermont Yankee Nuclear Power Station Cycle 19  ;

Core Operating Limits Report l Revision 9 October 1996 l

l l

l Controlled Copy No.

9610200091 961021

!= PDR ADOCK 05000271

! p PDR l

l

\

l Preparer [4 .< W /# /!/6 9Y Nuclear Eng)ffe'ering Coordinator ' Ddte l

p fc ^+ M ** ? h.lltly(

LDCA Group Managtr Date Reviewed JZ4 /o//</9/

  • R or Physic roup Manager ' bate Reviewed ~

. /0 / f[r Transient Anal ais Group Manager ate Approved 8#dd /c//< !9 ( ,

l tiu r Engi ing Department Director Date I Approved . [. /# / [M Nuc 2ar Services Manager D' ate l

l Approved Reactor Enginearing Manager Data l

Reviewed Plant Operttions Review Committee Date i

I l Approved I Plant Manager Date i l

l Vice President Operations Date a

4

! -ii- l I

i ..

.,- . -- .- . . . - . ~ . - ._ - - . . . .- - _~ ._

j i 1

REVISION RECORD Cycle Revision Date Description 14 0 10/89 Initial printing. Rev'iewed by PORC and approved by management. ,

l 15 0 9/90 Cycle 15 revisions. Reviewed by PORC and approved by management.

15 1 11/91 Incorporate new MCPR limits to allow ,

operation within the exposure window.

Reviewed by PORC and approved by management.

16 0 3/92 Cycle 16 revisions. Reviewed by PORC and approved by management.

17 0 7/93 Cycle 17 revisions. Reviewed by PORC and approved by management.

18 0 4/95 Cycle 18 revisions. Reviewed by PORC and approved by management.

18 1 8/95 incorporate new MAPLHGR limits to account for Loss of Stator Cooling Event. Reviewed by PORC and approved by management.

18 2. 8/95 Incorporate the thermal-hydraulic stability exclusion region. Reviewed by PORC and approved by management.

18 3 11/95 Revise the thermal-hydraulic stability exclusion region to more accurately represent the exclusion region boundary equation.

Revise the.MCPR limits to allow SRV and SV setpoint tolerance relaxation. Reviewed by PORC and approved by management.

l' 19 0 10/96 Cycle 19 revisions. Reviewed by PORC and l approved by management.

l l

i

-iii-

I ABSTRACT This report presents the cycle-specific operating limits for the l operation of Cycle 19 of the Vermont Yankee Nuclear Power Station. The limits are the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion region. ,

l l

i

! l l

l l

-iV-

l t

f TABLE OF CONTENTS Page l REVISION RECORD . . . . . . . . . . . . . . . . . . iii l

l ABSTRACT . . .. . . . . . . . . . . . . . . . iv l .* i l

LIST OF TABLES vi j i

l LIST Of FIGURES . . . . . . . . . . . . . . . . . . . . . vii  ;

1 l

1.0 INTRODUCTION

. . . .. . . . . . . . . . . . . . . . . . . . . . 1 l

2.0 CORE OPERATING LIMITS . . . . . . . . . . . . . . . . . . . . . . . 2 l

2.1 Maximum Average Plantr Linear Heat Generation Rate Limits . . 2 2.2 Minimum Critical Power Ratio Limits . . . . . . . . . . . 3 2.3 Maximum Linear Heat Generation Rate Limits . . . . . . . . . . 3 2.4 Thermal-Hydraulic Stability Exclusion Region . . . . . . . . 4

3.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . 12 l

[

i t

t

{

t I

i l

i t

I l 1 i  !

l i

I

_y.

l l

l 1

l i- 1 l

l LIST OF TABLES j i

Page  !

Number Title l '

I 1 l l Table 2.1-1 MAPLHGR Versus Average Planar Exposure for BP8DWB33S-10GZ Fuel 5 l l Table 2.1-2 MAPLHGR Versus Average Planar Exposure for BP8DWB335-11GZ Fuel 6 l

l Table 2.1-3 MAPLHGR Versus Average Planar Exposure for BP80WB354-12GZ Fuel 7 l

Table 2.2-1 Minimum Critical Power Ratio Operating Limits 8 Table 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits 9 l

1 1

i l

5 A

d d

.yj.

I i

LIST OF FIGURES Number Title Page 2.2-1 Kf Versus Percent of Rated Core Flow Rate 10 2,4-1 Limits of Power Flow Operation .- 11 1 i l'

l f

i l

l l

l l

i I

i l

1

-vii-

I i

l

1.0 INTRODUCTION

This report provides the cycle-specific limits for operation of the l Vermont Yankee Nuclear Power Station in Cycle 19. It includes the limits for the maximum average planar linear heat generation rate, maximum linear he,at , ,

generation r;te, minimum critical power ratio, and thermal-hydraulic sta'bility l exclusion region. If any of these limits are exceeded, action will be taken as defined in the Technical Specifications.

This report has been prepared in accordance with the requirements of Technical Specification 6.7. A.4. The core operating limits have been developed using the NRC-approved methodologies listed in References 1.through l 13, and 27 through 28. The methodologies are also listed in Technical I

l Specification 6.7.A.4 and the SERs are listed in References 14 through 22 and l 29. The bases for these limits are in References 12. 13, 24 through 26 and j l 30.

i i

i 1

l

. 1 l

I l

l i

J

.].

l l . - . _ .

I 2.0 CORE OPERATING IIMITS l The Cycle 19 operating limits have been defined using NRC-approved l methodologies. Cycle 19 must be operated within the bounds of these limits and all others specified in the Technical Specifications. ,.

2.1 Maximum Average Planar Linear Heat Generation Rate Limits During steady-state power operation, the Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) for each fuel type, as a function of the l

average planar exposure, shall not exceed the limiting values shown in l Tables 2.1-1 through 2.1-3. For single recirculation loop operation, the limiting values shall be the values from these Tables listed under the heading

" Single Loop Operation." These values are obtained by multiplying the values for two loop operation by 0.83. The source of these values is identified on l each table. These tables only list the limits for fuel types in Cycle 19.

t The MAPLHGR values are usually the most limiting composite of the f.uel l l thermal-mechanical design analysis MAPLHGRs and the loss-of-Coolant Accident  ;

l l (LOCA) MAPLHGRs. The fuel thermal-mechanical design analysis, using the l methods in Reference 13, demonstrates'that all fuel rods in a lattice, i operating at the bo'unding power history, meet the fuel design limits specified l in Reference 13. The Vermont Yankee LOCA analysis, performed in accordance l

with 10CFR50, Appendix K, demonstrates that the LOCA analysis MAPLHGR values are bounded at all exposure points by the mechanical design analysis MAPLHGR values.

The MAPLHGR actually varies axially, depending upon the specific combination of enriched uranium and gadolinia that comprises a fuel bundle

cross section at a particular axial node. Each particular combination of 1

enriched uranium and gadolinia is called a lattice type. Each lattice type j e e l

l l

(

~

i i l

has a set of MAPLHGR values that vary with fuel burnup. The process computer will verify that these lattice MAPLHGR limits are not violated. Tables 2.1-1 l l through 2.1-3 provide a limiting composite of MAPLHGR values for each fuel type, which envelope the lattice MAPLHGR values employed by the process computer. When hand calculations are required, these MAPLHGR values are,used

~

for all lattices in the bundle.

2.2 Minimum Critical Power Ratio limits l During steady-state power operation, the Minimum Critical Power Ratio l l

i (MCPR) shall be equal to, or greater than, the limits shown in Table 2.2-1. l l The MCPR limits are also valid during coastdown beyond 10701 mwd /St.

I l I For single recirculation loop operation, the MCPR limits at rated flow l

l shall be the values from Table 2.2-1 listed under the heading, " Single Loop l

l Operation." The single loop values are obtained by adding 0.02 to the two loop operation values. For core flows other than the rated condition, the MCPR limit shall be the appropriate value from Table 2.2-1 multiplied by K ,f where K f is given in Figure 2.2-1 as a function of the flow control method in l use. These limits are only valid for the fuel types in Cycle 19.

i 2.3 Maximum linear Heat Generation Rate Limits During steady-state power operation the Linear Heat Generation Rate (LHGR) of any rod in any fuel bundle at any axial location shall not exceed i the maximum allowable LHGR limits in Table 2.3-1. This table only lists the l limits for fuel types in Cycle 19.

f I

I i

l 1

2.4 Thermal-Hydraulic Stability fxClusion Region l

I Normal plant operation is not allowed inside the bounds of the exclusion '

region defined in Figure 2.4-1. These power and flow limits are applicable l for Cycle 19. Operation inside of the exclusion region may result in a , ,

l thermal-hydra 0lic oscillation. Operation within the buf fer region is al' lowed i

l when using the Stability Monitor. Otherwise, the buffer region is censidered part of the exclusion region.

l l

l I

i

?

l 4

)

4

{

- - - _ _ _ - . . - . . ~.

l Table 2.1-1 MAPlHGR Versus Average Planar Exposure for BP80WB335-10GZ Fuel Plant: Vermont Yankee Fuel Type: BP80WB335-10G7 MAPLHGR (kW/ft) .

Average Planar Exposure '

(mwd /ST) Two Loop Operation Sinale Loop Operation, i l

l 0.00 11.29 9.37

[ 200.00 11.34 9.41 l 1.000.00 11.48 9.53

! l 2.000.00 11.69 9.70 l l

3,000.00 11.92 9.89 l

4,000.00 12.17 10.10 l

5,000.00 12.43 10.32 l

l 6,000.00 12.68 10.52 l

7,000.00 12.87 10.68 l 8.000.00 13.06 10.84 l 9.000.00 13.20 10.96 l

10,000.00 12.79 10.62 12,500.00 12.65 10.50 l

l 15,000.00 12.47 10.35 j l 20.000.00 11.76 9.76 25,000.00 11.09 9.20 l

l 35,000,00 9.83 8.20 45,000.00 8.38 6.96 l

50.590.00 5.65 4.69 l

l l Source: Vermont Yankee Cycle 19 Core Performance Analysis Report, j YAEC-1935, Reference 24; Vermont Yankee Nuclear Power Station Sinole Loop Operation NED0-30060 Reference 23; Letter, " Revised lhermal Mechanical MAPLHGR Limits for Vermont Yankee Reload 18/ Cycle 19." Reference 26.

Technical Specification

References:

3.6.G.la and 3.11.A.

I 3

  • MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.

_S.

l l'

l Table 2.1-2 MAPLHGR Versus Average Planar Exposure for BP80WB335-llG7 Fuel Plant: Vermont Yankee fuel Type: BP80WB335-11GZ MAPLHGR (kW/ft)

Average Planar Exposure (mwd /ST) Two Loop Operation SingleLoopOperafion, j 0.00 11.28 9.36 l 200.00 11.33 9.40 l 1,000.00 11.43 9.49 l 2,000.00 11.60 9.63 l

3,000.00 11.80 9.80 l 4,000.00 12.04 9.99 i

l 5,000.00 12.30 10.21 l

l 6,000.00 12.53 10.40 l 7,000.00 12.73 10.57 i l 8,000.00 12.94 10.74 l 9.000.00 13.12 10.89 l 10,000.00 12.79 10.62 l 12,500.00 12.65 10.50 l

l 15,000.00 12.47 10.35 l

20,000.00 11.76 9.76 l 25,000.00 11.09 9.20 l

35,000:06 9.88 8.20 l l 45,000.00 8.38 6.96 I l 50,590.00 5.65 4.69 Source: Vermont Yankee Cycle 19 Core Performance Analysis Report, YAEC-1935, Reference 24; Vermont Yankee Nuclear Power Station Single Loop Operation, NE00-30060. Reference 23: Letter, " Revised Thermal Mechanical MAPLHGR Limits for Vermont Yankee Reload 18/ Cycle 19," Reference 26.

l Technical Specification

References:

3.6.G.la and 3.11.A.

l

-

  • MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.

i l

., .- . . - - - . _ . - - - - . - . _ . - - ~ ~

l Table 2.1-3 l

MAPLHGR Versus Average Planar Exposure for BP80WB354-12G7 Fuel l Plant: Vermont Yankee Fuel Type: BP80WB354-12GZ MAPLHGR (kW/ft)

Average Planar Exposure Two loop Operation Single Loop Opera' tion.

(mwd /ST) l 0.00 10.96 9.10 l 200.00 11.04 9.16 l

1,000.00 11.18 9.28 l

2,000.00 11.40 9.46 l

3,000.00 11.63 9.65 l

4,000.00 11.81 9.80 l

l 5,000.00 12.01 9.97 l

6,000.00 12.14 10.08 l

7,000.00 12.26 10.18 l

8,000.00 12.37 10.27 l

9,000.00 12.46 10.34 l

10,000.00 12.52 10.39 l

12,500.00 12.40 10.29 l

15,000.00 12.10 10.04 l

l 20,000.00 11.40 9.46 l

25,000.00 10.72 8.90 l

35,000.00 9.44 7.84 l

45,000.00 7.24 6.01 l

48,200.00 5.67 4.71 l

i Source: Vermont Yankee Cycle 19 Core Performance Analysis Report, YAEC-1935. Reference 24; Vermont Yankee Nuclear Power Station Single loop Operation, NED0-30060, Reference 23; Letter, " Revised Thermal Mechanical MAPLHGR Limits for Vermont Yankee Reload 18/ Cycle 19," Reference 26.

Technical Specification

References:

3.6.G.la and 3.11.A.

  • MAPLHGR for single loop operation is cbtained by multiplying MAPLHGR for two loop operation by 0.83.

Table 2.?-1 Minimum Critical Power Ratio Operatina Limits l

l MCPR Operating Limits l Value of "N" Single

in RBM Average Control Cycle Exposure Two Loop Loop Equation (A)I Rod Scram Time Range Operation Operation 2 l

l 42% Equal to or 0.0 to 9701 mwd /St 1.32 1.34 l better than 9701 to 10701 mwd /St- 1.34 1.36 L.C.0. I 3.3.C.1.1 l j l Equal to or 0.0 to 9701 mwd /St 1.32 1.34 l l better than 9701 to 10701 mwd /St 1.41 1.43 l L.C.0, 3.3.C.1.2 l 41% Equal to or 0.0 to 9701 mwd /St 1.29 1.31 i l better than 9701 to 10701 mwd /St 1.34 1.36 L.C.0.

3.3.C.1.1 l Equal to or 0.0 to 8701 mwd /St 1.29 1.31 l better than 8701 to 9701 mwd /St 1.32 1.34 l L.C.0. 9701 to 10701 mwd /St 1.41 1.43 l

3.3.C.1.2 f l 140% Equal to or 0.0 to 9701 mwd /St 1.29 1.31 better than 9701 to 10701 mwd /St 1.34 1.36 l l l '

l L.C.O.

l 3.3.C.1.1 I l Equal to or 0.0 to 8701 mwd /St 1.29 1.31 l better than 8701 to 9701 mwd /St 1.32 1.34 l

l l L.C.0. 9701 to 10701 mwd /St 1.41' 1.43 3.3.C.1.2 j Vermont Yankee Cycle 19 Core Performance Analysis Report.

l l Sources:

l l YAEC-1935, Reference 24, "SLMCPR Calculation for Vermont Yankee l

Reload 18/ Cycle 19," Reference 30.

Technical Specification

References:

3.6.G.la and 3.11.C.

l s

[ 1 The Rod Block Monitor (RBM) trip setpoints are determined by the equation l shown in Table 3.2.5 of the Technical Specifications.

l2 MCPR Operating Limits are increased by 0.02 for single loop operation.

I l

l Table 2.3-1  ;

i Maximum Allesable Linear Heat Generation Rate limits I

Maximum Allowable. Linear Fuel Type Heat Generation Rate (kW/ft)

BP80WB335-10GZ 14.4 l

i BP80WB335-11GZ 14.4 i

l BP80WB354-12GZ 14.4 l

NEDE-24011-P-A, Reference 13.

l l Source:

l Technical Specification

References:

2.1.A.la 2.1.B.1, and 3.11.B.

1 l

i l

l l

t I

i i

i l

1.40 i i i i r I i i. I i EqtdionsforMCuve:

i l i i i  !

l l l l l M > or = 1.0 I I i i I

- 1 I I I I MM>40%)= A0.441Ml100%)  ;

I I I I I

-- --- J------ 2------ '----- '------ ' .

1'30 I I I I I UpdO%)=  !

l l l l l Kfp>40%)*(1.0+0.0032(40%l))

l I I I I I I I I I

WhereA(104.5%)= 1.3406 I I I I I I I I I' J I I I I I I I U0 -- - - - - - - - - - T - - - - - i - - - - - r - - - - - - r - - - - - - i- - - - - i - - - - - -  ;

I I I I I I I I I I I I I i l I i i i l i I I I I I I I I I I I i  !

  • I- 1 I I I I I I

l l l l 1 l

__......J...... 1.......l.. ....L.......L.......l........l........

]' l I I I I I I l l

1 1 I I I I

I I I I I I .I ,
1 I I I 1 1 1 i l i I I I I I I I I 3 I 1 I

'MELFLOWCONm0L-I I I 1 1 00 r - - - - r - - - - - i- - - - - - i- - - - - - -

l i I gtyhe$gj.p0irdCollXOh I I posikstehthat l l l l l l 1 I I I I 1 '

flowma(= 104.5%

( > 1 1 I I I I I I I I I Q,90 llllllllll!!!!lllllllllllllllllll!!!!!!!!lllllI!!!ll!!!llll!!!llll!!!!llIi!!I!!

20 30 40 50 60 70 80 90 100 Core:ow;%; Y l

Fiqure 2.2-1 i

i Kg Versus Percent of Rated Core Flow Rate (Technical Specification Reference 3.11.C) j 10-

i 8

. ---;, - ,L, ...;.. o ,7,7, ;- U.1:,T, .Tr- 7. )43.. . .. 3 .;g .a 7 I  ;'._a, w t, ,w. %. . d, +, 7~I.,

7  : "  %

U,.,-._4,.T..W,,TT.*.*. "t. . g,..

W

.+- ro.... _;;+$,T.!.*t

., . + . . _- t. ,u,,,l...

d. ,e.i ..I.n.-

.w-+-m 4 .

. ..+ .a ...,

i

..1, 4_.,r, ., ~,. . .g ,.._,.

.,.- .-+n.+ .

e_ -,. .

.. . ... v, n. .Tr e. . , ._, . .,,.....o.

w n.

........ '.., -+.. 7...t. 4... ..g ., %..i I 1 . ,-; . . ., r. , .,,.,t..

., ,... ,. m.... . .

7.- . .

O I-.. !+MT*ii; . at i- M IO t I' t1 :

4..: . ' : (~ I: t'.f.f1 4

i

.- t-t ~:1! . t ;iM W. t t +n"'

1h F -1

~

.
**j.  ;  :

i,~. ! .. . _.t' .

  • t*

I.. ,....f.' .: ,t...,.

i, '. . !. . ...-,T, I ~T '}i, t1T. t- ;f;

,...l..o. r.;. { +j ;. . ;.. i. .~

. . . '!'...  !, ,! .4 't :JI.

, ' .. i r .,.,.

5. , .,

w

-., i  %,  !- .,-

t .. , a. ., ,. 4 e

t , . . . e,

..,- . 3 o

, t ,r., ._-, ,a -.

,1,,1 ,.1..,,

,4

. . l,.. .

. 3

.. . . , 5

,},.4,,,. ... .

+

1 - .

+1-._...+

. ~. .. ._...,4.,a 4.y,.1,. .7, .. . . _. w; .

_4.

. ... ... p ,, .  %...., . . .-. ..y...g .. .

4, .7 ._ . g

... 1. . . . - . . _ ... _- , .

.o

,, ,. t -. . . ..e . e2 m

..4,,.t .... w .

z ,T. . u._ . y

,.r .. ,, t ,. r. ... 5; . .. i ,- .i T. T TT ,n..... t. .a1. .

.t.

,9 _.  :. ,

3

, z . ,.. ., ,.,,,.,-

I ,. _-

, . . ,, - , . .,_. ,.,,,Tn.,...* t.-. - . ,,,

- ,,. . ..+ . .

. C M

, 1,..s.4. . , .n.

xE .., ..4 , , .. , e cn 4

! .,,., 1g..., .....

44

.. ..4 i._... . . . ...

. .L ., .r ,

. .T_ .- . .J.

W ,._... ..+

,i. a .I%*.1. - . _. 7_. . , ._ . _

c- M C I~TTT ;O O . 71*i t'T-+ TT~ T!*'T !' **

< if 4 T'P* I~T!~IU * .T -'T + 2 ,, .

~

s TT*1TTTT': u m O

....,4* .

4 ....,.y , K_ a . o .. . . . . .--* . . . - ....,..

, ._u__ .. .. . .

d+.--f4 a c . rs to @ + , -

..-t* ..1 t-i. ..4-

  • t- t H+ p 4-,. o ,gE - -++w-+- ++--,- -~*+++++

p t tt* r .

u

  • ,;.. I*; n 3 4
. x
; . .
.u. 4t _ ,e ':1+Ti  :, ,:, $ $ _- :_,:: m, ,'.ti p t, -! 4,:t,;;t: 4s c, m.*. ---*- , t p4 . ,. i;= +

-Iu.]

c o. c gn .. k*_'...

p

.- a 4 . . .

-+'

g wy 7.4.q1.

f., '.

.., a.,

r- .. ....

I. 1. i d, !NII:1 .

2 , _ . . . . . . .

li!fliII I~I l s;. &

C -,-I L I .d+* .~I t.~1 r Hi++-

I 1!!!!

4 '1 -@

I'  :

O > +

0 C

, - - . ' .$$- - p..

2. . ,

.A 3. , .

.. n, .p.4 _.

+ ,~.

.,-.,,,T",, . , . , +._e,-. +.,o,m.... .

. .I.

3 .

4 t - + - +

^

gt! L O

.,y_.._. _ . . ..4, ' t, o+ + ,- _ .4 .) --

t...... ,f

, . ,6 l ^

...,.. .l 3

[ I. - .t..g,',,',* +4+ -

w e-a w

, + -

I,., .+._ ._..,,$.6,,.

_...w. ..3., w.. .. , .. .,

g .' 4, J u.. . .

.m W

.i. . .}. ,.6 .,,4 3

.. .,.. , . _ . .. O

.$ 9. ,.. ,._,.,,. , _ . i

. . - . ..r. ,

, . ~ , . ,

.... r, .. .T ._. .

ww#44*N e

'N,., ..M'e -++ +i ---t

  • j *- * * * .* ~ - ' +* "'+ s'I+I, C -

4 O i f--4**+-- [- '. .6I.'-* .. .t t-, H, ~ *.

i *+- U ' -

u.

E h L; .. " %: O

~

t' 3 n 4

, o w

My nw w'-

.-- ., w ......., , .,

.g. - o m m

,.14{I.1 cc . -

. . .. = . ...,,. .._;, ., o.. .n ., .

1 }p ...

..,. L.  %..

.g. . t 2 . . .

1*. .

  • ~ '

' T' ~:~'-';'.' d,. * * ~ *

  • c 'o

-s 3

' L

[......_. ' '- I .' ,! [.1:.;t: !!*;_ .ut p'!! J! .t t . *C-

  • *i t u J.t tau. ri$;. !. ~.m~ s. ._

'g o o 3 3

.i ._ . . .

rt-n,t? r:

+

t

~- r $ -

ttTT . nr tr+t-r !!n+Tr- trn nt : o r .- - c- o

. . . .. ,.. . 4, ,,,, . v c' L v

"-- c.

. . s; O 6

. - . r '"_T--'~~- w v ,,.a... . w .,. _, .

t-4,.- ,

e .

T.:1

'.. . ;i .m.._ , , .

! . , ! . T! : 4 . :t;. f I lii! H  : -~2t.-- : o o Ie . _ ! _; . - -- -

c- M

^

?

I q 5 ---+d-+I:

g. A;,t h-+- *t:$II+!-
1:

o o y v.

co ~ g

. - . . . . ........ ,. L ..._...

~ aw -

..,7g- _e"j

.p g- ..;_.._._.. . ,. , . . . _ 4

_ uJ_. ',.. ' . .

.t

..t*

  • I= j- ei... a v '"E 7

.

  • J j ,, ,..
1 ,
f; ,t..

, . . . ._.-. n. a: ;L:1. ; y

'L ..;;f

.a{ . . ' t' ;,.

1i.

1:I::!* m.l.{. 11.

!!: ;.j' u} ;.1. ,[. .

1

% l::J,....... .

'[.: . !? l ocw

.i

. : : 4 !4 j

_, l . <r t .

,. .., . p . .q ._ .,...,  %... . . . . . n, .' ! w m

1. ...L...

o...

., 1

. . m. p.

p....,.t u. . .

u. . .l cn m

i j

e s ::

. _.1 d... n... . m.... 4 m:.

y.- ..,,_.... _,.

. _m, i,1.

r. . +{%:! .

._ _4 . s. _. }. gg. e. t :, .

m

+

t

p:n .a_u,g c n : n..
a. ,

4 _- .:m ....,. m u .n. _:: n.y m m.y. 4,_ t.d:- :. -

. a Q_M .._....:. .r ., .._.

_a,_..,.

.. . ... . . __ _..._. , 4- _, .a . . .

_ , r , , . .

...... . , n Emr-; ; U !.,:._'.

3. :. ... , ;-

I_ ..* !. t 50 . _.t . .__M,. .  :::t; 3 *:,

.,.,._m,_-

e r t.

"'..it

) "

u

. .r ... m... . . _. _n_i t_. M _. _.. .._-

_ . . . . . . - . . . . . . .- . . "! : . .,. .t-.. O W

.i- .i. ,

8 8 9 o R

9 8

8 8 R 8 8  ? c.

(%)Jenedleuuayleaoo

~

i .

3.0 REFERENCES

1. Report A. A. F. Ansari, Methods for the Analysis of Boiling Water Reactors: Steady-State Core Flow Distribution Code (FIBWR), YAEC-1234 December 1980.
2. Report, A. A. F. Ansari and J. T. Cronin, Methods for the Analysis of Boilina Water Reactors: A System Transient Analysis Model (RETRAN)c ,

YAEC-1233, April 1981.

3. Report A. A. F. Ansari, K. J. Burns and D. K. Beller, Methods for the Analysis of Boiling Water Reactors: Transient Critical Power Ratio

( Analysis (RETRAN-TCPYA01), YAEC-1299P, March 1982.

4. Report, A. S. DiGiovine, et al . , CASMO-3G Validation, YAEC-1363- A, April 1988.

l S. Report, A. S. DiGiovine, J. P. Gorski, and M. A. Tremblay, SIMULATE-3

! Validation and Verification, YAEC-1659- A, September 1988.

6. Report, R. A. Woehl ke, et al . , MICBURN-3/CASMO-3/ TABLES-3/ SIMULATE-3 Benchmarking of Vermont Yankee Cycles 9 through 13 YAEC-1683- A, March 1989.
7. Report, J. T. Cronin, Method for Generation of One-Dimansional Kinetics Data for RETRAN-02, YAEC-1694-A, June 1989.

l

8. Report V. Chandola, M. P. LeFrancois and J. D. Robichaud, Application of One-Dimensional Kinetics to Boilina Water Reactor Transient Analysis Methods, YAEC-1693-A, Revision 1 November 1989.
9. Report, RELAPSYA. A Computer Program for Light-Water Reactor System Thermal-Hydraulic Analysis, YAEC-1300P-A, Revision 0, October 1982; Revision 1. July .993.

l 10. Report, Vermont Yankee BWR Loss-of-Coolant Accident Licensing Analysis

! Method YAEC-1547P-A, July 1993.

l 11. K. E. St. John, S. P. Schultz and R. P. Smith: Methods for the Analysis l

of 0xide Fuel Rod Steady-State Thermal Effects: YAEC-1912P-A, dated l l January 1995.

l l l 12. Report, L. Schor, et al . , Vermont Yankee loss-of-Coolant Accident j Analysis, YAEC-1772. June 1993.

l 13. Report, General Electric Standard Aoplication for Reactor Fuel I l (GESTARil), NEDE-24011-P-A-13, GE Company Proprietary, August 1996, as amended.

l 14. Letter, USNRC to VYNPC, SER, November 27, 1981.

l l

._ .- ... .~ .-

h l 15. Letter, USNRC to VYNPC, SER, NVY 82-157, September 15. 1982.

l 16. Letter, USNRC to T. W. Schnatz, SER, September 4, 1984.

l 17. Letter, USNRC to YAEC, SER, NVY 90-032, February 20. 1990.

l 18. Letter, USNRC to VYNPC, SER, NVY 87-136 August 25, 1987.

~

l l 19. Letter, USNRC to YAEC, SER, NVY 90-054, March 21,1990.

l 20. Letter, USNRC to VYNPC, SER, NVY 90-053, March 15, 1990.

l 21. Letter, USNRC to VYNPC, SER, NVY 92-192, October 21, 1992.

I l 22. Letter, USNRC to VYNPC, SER. NVY 92-178, September 24, 1992.

l 23. Report, Vermont Yankee Nuclear Power Station Single Loop Operation, NED0-30060. February 1983.

l 24. Report, M. A. Sironen, Vermont Yankee Cycle 19 Core Performance Analysis j l Report, YAEC-1935, October 1996.

l 25. Report, B. Y. Hubbard, et al., End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, October 1991.

h l 26. Letter, J. L. Tuttle to R. T. Yee, " Revised Thermal Mechanical MAPLHGR l

Limits for Vermont Yankee Reload 18/ Cycle 19," JLT96044, ,

l August 14, 1996. '

l 27. Report, General Electric Nuclear Energy, BWR Owners' Group Long-Term Solutions Licensina Methodology. NE00-31960, June 1991.

l 28. Report, General Electric Nuclear Energy, BWR Owners' Group Long-Term Solutions Licensing Methodology _; NEDO.-31960. Supplement 1, March 1992. l 4

l 29. Letter USNRC to VYNPC, SER, August 9, 1995.

l 30. Letter, J. L. Tuttle to R. T. Yee, "SLMCPR Calculation for Vermont l

Yankee Reload 18/ Cycle 19," JLT96035, August 5, 1996.

I l

l

~ .e ..--...s- -_..a . --,. e + + , . = * .s..4- - . = = . -. --. --s. ..z__ m . - - . . --v_---

. , . . .~f. 4 4_.4. . , s. -a . -- . #

. d U.'

7_. _ YANKEE ATOMIC ELECTRIC COMPANY E

l'  :

4

. ~

YANKEIE m _

l t

[.-

t.

(.

i-i.

t

I n-I e

I:

4 9

~