ML20248C495

From kanterella
Jump to navigation Jump to search
Rev 1 to Vermont Yankee Nuclear Power Station Cycle 20 Colr
ML20248C495
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 05/31/1998
From: Holland B, Stephen Schultz, Sironen M
VERMONT YANKEE NUCLEAR POWER CORP.
To:
Shared Package
ML20013J785 List:
References
NUDOCS 9806020167
Download: ML20248C495 (25)


Text

.

s O )

f_

UN:0 E lB ftB GFY c___._..._ -

{

3 I

i l

I Verr.ont Yankee Nuclear Power Station Cycle 20 Core Operating Limits Report Revision 1 I O

l .

Hay 1998 i

i.

l Controlled Copy No.

O 9806020167 980528  ?

PDR ADOCK 05000271 P PDR  ;

i Preparer S 9 / '

5/2(o/C)?

VY Pfuclear Engineering Reload Coordinator Date Reviewed //1 6 7!fg VYClientManage/ D(te Approved i T!M h4 Nuciear 'and F 'l Sdryices Teneral Manager Date I Apprcved /L S!0l/$$

Reactor Enghtpf/ing Manager Date Reviewed 2 hc/'& 4 9f oCZ. 5[27/$

Plant 6hajli bns Review Committee ' D' ate Approved I f dr$

'Date

~

Plant @l' * ,

Approved -

\ T

,5;;[ o

/

O Vice President Operations ~ Date N

l i

1 1

J .ij.

l REVISION RECORD Cycle Revision Date Description j 14 0 10/89 Initial printing. Reviewed by PORC and approved by management.

15' O. 9/90 Cycle 15 revisions. Reviewed'by PORC and approved by management.

15 1 11/91 Incorporate new MCPR limits to allow operation within the exposure window.

Reviewed by PORC-and approved by management.

16 0 3/92 Cycle 16 revisions. Reviewed by PORC and approved by management.

17 'O 7/93 Cycle 17 revisions. Reviewed by PORC and approved by management.

18 0 4/95 Cycle 18 revisions. Reviewed by PORC and approved by management.

18 1 8/95 Incorporate new MAPLHGR limits to account for Loss of Stator Cooling Event. Reviewed by PORC and approved by management.

~(

18 2 8/95 Incorporate the thermal-hydraulic stability exclusion region. Reviewed by PORC and approved by management.

18~ 3 11/95. Revise the thermal-hydraulic stability exclusion region to more accurately represent the exclusion region boundary equation.

Revise the MCPR limits to allow .SRV- and SV setpoint tolerance relaxation. Reviewed by PORC and approved by management.

19' 0 10/96' Cycle 19 revisions. Reviewed by PORC and approved by management.

20 0 5/98 Cycle 20 revisions. Reviewed by PORC and approved by management.

20 l' 5/98 Revise the thermal-hydraulic stability I exclusion region. I i

O

-iii-

+. ,

l O ABSTRACT This report presents the cycle-specific operating limits for the l

l operation of Cycle 20 of the Vermont Yankee Nuclear Power Station s The limits i are the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion region.

i i

l l

O

-iV-

?

f

\

,rx t 8

\# TABLE OF CONTENTS Page REVISION RECORD . .......................3 . . . iii ABSTRACT .... . . . . . . . ................ . . . . . iv LIST OF TABLES ............................. vi LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1.0 INTRODUCTION

. . . . . . . ................ . . . . 1 2.0 CORE OPERATING LIMITS . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Maximum Average Planar Linear Heat Generation Rate Limits . . 2 2.2 Minimum Critical Power Ratio Limits . . . . . . . . . . . . . 3 2.3 Maximum Linear Heat Generation Rate Limits . . . . . . . . . . 3 2.4 Thermal-Hydraulic Stability Exclusion Region . . . . . . . . . 4

3.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

('~'N 1

\s I l 1

i 1

l l

l l

l l

i

/N l / \

\.m)

.y.

's s

(]

Y LIST OF TABLES

{

Number Title Page 1

1 Table 2.1-1 MAPLHGR Versus Average Planar Exposure for i BP80WB335-10GZ Fuel l Bundle No. 2017 5 l

1 Table 2.1-2 MAPLHGR Versus Average Planar Exposure for i BP8DWB335-11GZ Fuel l Bundle No. 2018 6 l

l Table 2.1-3A MAPLHGR Versus Average Planar Exposure for i BP80WB354-12GZ Fuel' l -Bundle No. 2153 7 I

.I . Table 2.1 3B MAPLHGR Versus Average Planar Exposure for 1- BP80WB354-12GZ Fuel l Bundle No. 2153 - with .1.0% MAPLHGR Penalty 8 l

l Table 2.1-3C MAPLHGR Versus Average Planar Exposure for i l BP80WB354-12GZ Fuel l Bundle No. 2153 - with 2.5% MAPLHGR Penalty 9 l Table-2.1-30 MAPLHGR Penalties. Exposure Intervais. and i Bundle Locations for BP8DWB354-12GZ Fuel 10-l 4 1 . Table 2.1-4 MAPLHGR Versus Average Planar Exposure for

.I P9HTB380-12GZ Fuel i Bundle No. 2278 11 q

.I

'l Table 2.1-5 MAPLHGR Versus Average Planar Exposure for 1 P9HTB379-13GZ Fuel

'l Bundle No. 2279 12 Table 2.2-1 Vermont Yankee Nuclear Power Station Cycle 20 MCPR Operating Limits 13

, ' Table 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits 14

-vi-i

LIST OF FIGURES Number Title Page 1

2.2-1 Kr Versus Percent of Rated Core Flow Rate 15 2.4-1 Limits of Power / Flow Operation 16 l

l

. i l

O O

-vii-l l

\d

1.0 INTRODUCTION

1 1

This report provides the cycle-specific limits for operation of the Vermont Yankee Nuclear Power Station in Cycle 20. It includes the limits for i the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion region. If any of these limits are exceeded, action will be taken as defined in the Technical Specifications.

This report has been prepared in becordance with the requirement.s of Technical Specification 6.7.A.4. The core operating limits have been developed using the NRC-approved methodologies listed in References 1 through

3. The methodologies are also listed in Technical Specification 6.7. A.4. The I bases for these limits are in References 5 through 8.  !

,<~

!.]5 l

l rh N.

l .

L 2.0 CORE OPERATING LIMITS I- The Cycle 20 operating limits have been defined using NRC-approved I methodologies. Cycle 20 must be operated within the bounds of these limits j and all others specified in the Technical Specifications.

2.1 Maximum Average Planar Linear Heat Generation Rate Limits

j. .

During. steady state power operation, the Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) for each fuel type, as a function of the average planar exposure, shall not exceed the limiting values shown in l Tables 2.1-1 through 2.1-5. In addition Tables 2.1-3B and 2.1-3C are to be

'l used by a subset of the BP80WB354 bundles.which require a MAPLHGR penalty due I to the loss-of-stator cooling transient. The bundles, their location, and the l exposure' intervals where the penalties should be applied, are shown in 1 1 l Table 2.1-3D. For single recirculation loop operation, the limiting values shall be the values from these Tables listed under the heading " Single Loop Operation." These values are obtained by multiplying the values for two loop i operation by 0.82 (Reference 5). The source of these values is identified on j l each table. These tables only list the limits for fuel types in Cycle 20.

The MAPLHGR values are usually the most limiting composite of the fuel thermal-mechanical design analysis MAPLHGRs and the Loss-of-Coolant Accident (LOCA) MAPLHGRs. The fuel thermal-mechanical design analysis, using the I methods in Reference 1, demonstrates that all fuel rods in a lattice, operating at the' bounding power history, meet the fuel design limits specified 1'

1;.in Reference 1. The Vermont Yankee LOCA analysis, performed in conformance I with 'the requirements of 10CFR50.46 and Appendix K demonstrates that the LOCA analysis MAPLHGR values are bounded at all exposure points by the I thermal-mechanical design analysis MAPLHGR values.

2

E p s l O '

l The MAPLHGR actually varies axially, depending upon the specific l combination of enriched uranium and gadolinia that comprises a fuel bundle cross section at a particular axial node. Each particular combination of enriched uranium and gadolinia is called a lattice type. Each lat'tice type has a set of MAPLHGR values that vary with fuel burnup. The process computer will verify that these lattice MAPLHGR limits are not violated. Tebles 2.1-1 through 2.1-5 provide a limiting composite of MAPLHGR values for each fuel I type, which envelope the lattice MAPLHGR values employed by the process computer. When hand calculations are required, these MAPLHGR values are used

.for all lattices in tne bundle.

2.2 Minimum Critical Power Ratio Limits During steady-state power operation, the Minimum Critical Power Ratio (MCPR) shall be equal to, or greater than, the limits shown in Table 2.2-1.

O' The MCPR limits are also valid during coastdown beyond 10175 mwd /St V I (Reference 6) which is the expected end of full power life exposure. I For single recirculation loop operation, the MCPR limits at rated flow shall be the values from Table 2.2-1 listed under the heading, " Single Loop Operation.' The single loop values are obtained by adding 0.02 to the two loop operation values (Reference 7). For core flows other than the rated I condition, the MCPR limit shall be the appropriate value from Table 2.2-1 multiplied by K ,f where Kg is given in Figure 2.2-1 as a function of the flow control method in use. These limits are only valid for the fuel types in Cycle-20. I 2.3 Maximum Linear Heat Generation Rate Limits l

l. During steady-state power operation, the Linear Heat Generation Rate l (LHGR) of any rod in any fuel bundle at any axial location shall not exceed

L the maximum allowable LHGR limits in Table 2.3-1. This table only lists the I limits for fuel types in Cycle 20.

I t

L 2.4 Thermal-Hydraulic Stability Exclusion Region Normal plant operation is not allowed inside the bounds of the exclusion l- region defined in Figure 2.4-1, Reference 7. These power and flow limits are L l_ applicable for Cycle 20. Operation inside of the exclusion region may result 1 in a thermal-hydraulic oscillation. Intentional operation within the buffer i.

I region is not allowed unless the Stability Monitor is operable. Otherwise, the buffer region is considered part of the exclusion region.

l O

t u

4 u_________.____ . _ _ _ _ _ _ _ I

\

<~

(_ > Table 2.1-1 1 I

HAPLHGR Versus Average Planar Exposure for BP80WB335-10GZ Fuel l Bundle No. 2017 l Plant: Vermont Yankee fuel Type: P80WB335-10GZ MAPLHGR (kW/ft) l Average Planar Exposure (mwd /ST) Two Loop Operation Single loop Operation!

0.00 11.29 9.25 1 200.00 11.34 9.29 l 1,000.00 11.48 9.41 1 2,000.00 11.69 9.58 1 3,000.00 11.92 9.77 1 4,000.00 12.17 9.97 1 5,000.00 12.43 10.19 I 6,000.00 12.68 10.39 1 7,000.00 12.87 10.55 1 7-.

8,000.00 13.06 10.70 1

(_,g) 9,000.00 13.24 10.85 1 10,000.00 13.35 10.94 1 12,500.00 13.20 10.82- 1 15,000.00 13.01 10.66 1 20,000.00 12.27 10.06 1 25,000.00 11.43 9.37 1 35,000.00 9.88 8.10 1 45,000.00 8.38 6.87 I 50,590.00 5.65 4.63 1 Source: NEOC-32814P, Report Vermont Yankee Nuclear Power Station i SAFER /GESTR-LOCA. Loss-of-Coolant Analysis, Reference 5. 24A5416AA, I Revision 0, GE Report, Lattice Dependent MAPLHGR Report for Vermont  !

Yankee Nuclear Power Station Reload 19 Cycle 20, Reference 8. l Technical Specification

References:

3.6.G.la and 3.11.A.

l I MAPLHGR for single loop operation is obtained by multiplying MAPLHGR f- s

( ) for two loop operation by 0.82. 1 l

1 u-_-- I

[- .

a s

\

! l' Table 2.1-2 i l l MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel l Bundle No. 2018 l- I j l Plant: Vermont Yankee Fuel Type: P80WB335-11GZ l l MAPLHGR (kW/ft) l Average Planar Exposure Single Loop Operation!

(mwd /ST) Two Loop Operation

! 1- 0.00 11.28 9.24 1 200.00 11.33 9.29 1 1,000.00 .11.43 9.37 l 2,000.00 11.60 9.51 1 3.000.00 11.80 9.67 i

1- 4,000.00 12.04 9.87 1 5.000.00 12.30 10.08 1 6,000.00 12.53 10.27 1 7,000.00 12.73 10.43 8,000.00 12.94 10.61 l ,q l OI 9,000.00 13.13 10.76 1 10,000.00 13.29 10.89 1 12,500.00 13.20 10.82 1 15,000.00 12.99 10.65 1 20,000.00 12.27 10.06 1 25,000.00 11.43 9.37 I -35,000.00 9.88 8.10 l~ 45,000.00 8.38 6.87 I 50,590.00 5.65 4.63 l Source: NEDC-32814P, Report, Vermont Yankee Nuclear Power Station l SAFER /GESTR-LOCA. Loss-of-Coolant Analysis Reference 5. 24AS416AA, l Revision 0, GE Report, Lattice DeDendent MAPLHGR Report for Vermont l Yankee Nuclear Power Station Reload 19 Cycle 20 Reference 8.

Technical Specification

References:

3.6.G.la and 3.11.A.

l l

l l-I MAPLHGR for single loop operation is obtained by multiplying MAPLHGR f' for two loop operation by 0.82.

4")

f.

I

'ju

.=

\

Table 2.1-3A i l

MAPLHGR Versus Averaae Planar Exposure for BP80WB354-12GZ Fuel l Bundle No. 2153 l

-Plant: Vermont Yankee Fuel Type: P$DWB354-12GZ l MAPLHGR (kW/ft) i Average Planar Exposure (mwd /ST) Two looD Operation ,Si.nale i Loop Operation!

0.00 10.96 8.98 l 200.00 11.04 9.05 l 1,000.00 11 18 9.16 l

-2,000.00 11.40 9.34 l 3,000.00- 11.63 9.53 1 4,000.00- 11.81 9.68 l-5,000.00 12.01 9.84 1 6,000.00 12.14 9.95 1 7,000.00 12.26 10.05 I 8.000.00 12.37 10.14 i k/ 9,000.00 12.46 10.21 1 10,000.00 12.52 10.26 l 12,500.00 12.40 10.16 l 15,000.00 12.10 9.92 1 20,000.00 11.40 9.34 1 25,000.00 10.72 8.79 1 35,000.00 9.44 7.74 l-45,000.00 7.24 5.93 1 48,200.00 5.67 4.65 l Source: NEDC-32814P, Report,- Vermont Yankee Nuclear Power Station l SAFER /GESTR-LOCA. Loss-of-Coolant Analysis, Reference 5.- 24A5416AA, I Revision 0, GE Report, Lattice Dependent MAPLHGR Report for Vermont I Yankee Nuclear Power Station Reload 19 Cycle 20, Reference 8. 1

. Technical Specification

References:

3.6.G.la and 3.11.A.

A I MAPLHGR for single loop cperation is obtained by multiplying MAPLHGR

' for two loop operation by 0.82. 1 1

\

/

b l Table 2.1-3B 1

l MAPLHGR Versus Average Planar Exposure for BP80WB354-12GZ Fuel l Bundle No. 2153 - with 1.0% MAPLHGR Penalty l Plant: Vermont Yankee fuel Type: P80WB354-12G7 1 MAPLHGR (kW/ft)

Average Planar Exposure (mwd /ST) Two Loop Operation Single Loop Operation i 1 0.00 10.85 8.89 l 200.00 10.93 8.96 1 1,000.00 11.07 9.07 1 2,000.00 11.29 9.25 1 3,000.00 11.51 9.43 1 4,000.00 11.70 9.59 1 5,000.00 11.89 9.74 1 6,000.00 12.02 9.85 1 7,000.00 12.14 9.95

,g I 8,000.00 12.25 10.04

() I 9,000.00 12.34 10.11 1 10,000.00 12.39 10.15 l 12,500.00 12.28 10.06 1 15,000.00 11.98 9.82 l 20,000.00 11.29 9.25 1 25,000.00 10.62 8.70 1 35,000.00 9.35 7.66 1 45,000.00 7.16 5.87 1 48,200.00 5.62 4.60 l Source: NEDC-32814P, Report, Vermont Yankee Nuclear Power Station i SAFER /GESTR-LOCA. Loss-of-Coolant Analysis, Reference 5. 24AS416AA, l Revision 0, GE Report, Lattice Dependent MAPLHGR Report for Vermont l Yankee Nuclear Power Station Reload 19 Cycle 20. Reference 8.

Technical Specification

References:

3.6.G.la and 3.11.A.

rm. 'l MAPLHGR for single loop operation is obtained by multiplying MAPLHGR (j i for two loop operation by 0.82.

l

', I 1

l .

s f%

)

V Table 2.1-3C l l

l MAPLHGR Versus Average Planar Exposure for BP80WB354-12GZ Fuel l Bundle No. 2153 - with 2.5% MAPLHGR Penalty l Plant: Vermont Yankee Fuel Type: PdDWB354-12G2 l MAPLHGR (kW/ft) I Average Planar Exposure (mwd /ST) Two Loop Operation Sing ~ie Loop Operation!

0.00 10.69 8.76 1 200.00 10.77 8.83 1 1,000.00 10.90 8.93 1 2,000.00 11.12 9.11 1 3,000.00 11.34 9.29 I 4,000.00 11.52 9.44 1 5,000.00 11.71 9.60 i j 6,000.00 11.84 9.70 1 7,000.00 11.95 9.79 l

,s 8.000.00 12.06 9.88 I I

V '\ 9,000.00 12.15 9.96 1 10,000.00 12.21 10.01 1 12,500.00 12.09 9.91 1 15,000.00 11.80 9.67 1 20,000.00 11.12 9.11 1 25,000.00 10.45 8.56 1 35,000.00 9.20 7.54 1 45,000.00 7.05 5.78 1 48,200.00 5.53 4.53 i Source: NEDC-32814P, Report, Vermont Yankee Nuclear Power Station l SAFER /GESTR-LOCA. Loss-or-Coolant Analysis, Reference 5. 24 A5416AA, I Revision 0, GE Report, Lattice Dependent MAPLHGR Report for Vermont i Yankee Nuclear Power Station Reioad 19 Cycle 20. Reference 8. I Technical Specification

References:

3.6.G.la and 3.11.A.

I HAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.82. 1 (Q y

._-__-____n

. p(s /-l Table 2.1-30 I i l HAPLHGR Penalties. Exposure Intervals and Bundle Locations

'l for BP8DWB354-12GZ Fuel I l I. Exposure Interval Penal ty 1 B0C to 5475 mwd /St 1%

l- 5475 mwd /St to EOC HWd/St l 2.5%

l Bundle Locations to be Penalized l 05-22 23 1 05-24 23-40 1 09-18 27-10

.1 09-28 27-18 1 17-10 27-28 l 17-18 ,

27-36 1 17-28 35-18

/~% .I' 17-36 35-28

\' I 21'-06 39-22 1 21-40 39-24 1

l l

. -~ .

.' l I E0C is defined as end of cycle including coastdown.

1

l f

Table 2.1-4 l I

I l

I MAPLHGR Versus Average Planar Exposure for P9HTB380-12GZ Fuel l Bundle No. 2278 i Plant: Vermont Yankee fuel Type: P9HTB380-12GZ l MAPLHGP (kW/ft) I i

Average Planar Exposure 1 (mwd /ST) Two Looo Operation sinole Lood 00eration1 0.00 10.64 8.72 1 200.00 10.71 8.78 l 1,000.00 10.85 8.89 i l 2,000.00 11.04 9.05 1 3,000.00 11.23 9.20 1 4,000.00 11.43 9.37 1 5,000.00 11.64 9.54 I 6,000.00 11.82 9.69 i  ;

7,000.00 11,96 9.80 i f 8,000.00 12.12 9.93 1 9,000.00 12.27 10.06 l 10,000.00 12.44 10.20 1 12,500.00 12.57 10.30 1 15,000.00 12.24 10.03 I f 17,500.00 11.90 9.75 1 20,000.00 11.54 9.46 1 25,000.00 10.82 8.87 I ,

30,000.00 10.12 8.29 1 35,000.00 9.43 7.73 1 40,000.00 8.76 7.18 1 45,000.00 8.10 6.64 1 50,000.00 7.44 6.10 1 55,000.00 6.77 5.55 1 57,480.00 6.43 5.27 I 57,580.00 6.42 5.26 i Source: NEDC-32814P, Report, Vermont Yankee Nuclear Power Station l SAFER /GESTR-LOCA. Loss-of-Coolant Analysis, Reference 5. 24A5416AA, I  ;

Revision 0, GE Report Lattice DeDendent MAPLHGR Report for Vermont I Yankee Nuclear Power Station Reload 19 Cycle 20 Reference 8. I Technical Specification

References:

3.6.G.la and 3.11.A.

I MAPLHGR for single loop operation is obtained by multiplying MAPLHGR ,

for two loop operation by 0.82. l l I

'll' I

l ,

l Table 2.1-5 1 l l l MAPLHGR Versus Averace Planar, Exposure for P9HTB379-13GZ Fuel Bundle No. 2279 l]

V l

l Plant: Vermont Yankee Fuel Type: P9HTB379-13GZ MAPLHGR (kW/ft)

Average Planar Exposure Two Loop Operation Sinole Loop' Operation 1 JMWd/ST) 1 0.00 10.64 8.72 l 200 00 10.69 8.76 1 1,000.00 10.81 8.86 1 2,000.00 10.99 9.01 1 3,000.00 11.18 9.16 1 4,000.00 11.36 9.31 1 5,000.00 11.49 9.42 1 6,000.00 11.63 9.53 I 7.000.00 11.78 9.65 1 8,000.00 11.92 9.77 l 9,000.00 12.07 9.89 1 10,000.00 12.22 10.02 Ol Q 12,500.00 12.33 10.11 1 15,000.00 12.23 10.02 l 17,500.00 11.90 9.75 1 20,000.00 11.54 9.46 1 25,000.00 10.82 8.87 1 30,000.00 10.11 8.29 1 35,000.00 9.42 7.72 1 40,000.00 8.75 7.17 I 45,000.00 8.09 6.63 1 50,000.00 7.43 6.09 1 55,000.00 6.76 5.54 i 1 57,500.00 6.42 5.26 1 57,560.00 6.40 5.24 l Source: NEDC-32814P. Report, Vermont Yankee Nuclear Power Station l SAFER /GESTR-LOCA Loss of-Coolant Analysis, Reference 5. 24AS416AA, I Revision 0, GE Report, Lattice Dependent MAPLHGR Report for Vermont j l Yankee Nuclear Power Station Reload 19 Cycle 20. Reference 8.

i (O) Technical Specification

References:

3.6.G.la and.3.11.A. l l

1 MAPLHGR for single loop operation is obtained by multiplying MAPLHGR l for two loop operation by 0.82.

l p

Table 2.2-1

~

Vermont Yankee Nuclear Power Station Cycle 20 MCPR Operatino Limits Value of "N" 5 Single

'in EBM Average Control Cycle Exposure Two Loop Loop. .

Eauation'(A)I Rod Scram Time Ranae Operation Operation 2 42% Equal to or 0.0 to 8175 mwd /St 1.33 1.35 better than 8175 to 9175 mwd /St 1.34 1.36 L.C.0. 3.3.C.1.1 9175 to 10175 mwd /St 3 1.37 1.39 Equal to or 0.0 to 8175 mwd /St 1.37 1.39 better than 8175 to 9175 mwd /St 1.38 1.40 L,C.0. 3.3.C.I.2 9175 to 10175 mwd /St 3 1.47 1.49 Source: Report, Cycle Management Report for Vermont Yankee Nuclear Power Station Cycle 20. J11-03297 CHR, Rev. O April 1998, Reference 6.

Report, General Electric Nuclear Energy, Supplemental Reload I Licensino ReDort for Vermont Yankee Nuclear Power Station Reload i 19/ Cycle 20, 24AS416, Rev. 2. May 1998. Reference 7. 1 Technical Specification

References:

3.6.G.la and 3.11.C.

O I

l l

l l

-1 The Rod Block Monitor (RBM) trio setooints are determined by the eqertion shown in Table 3.2.5 of the Technical Specifications.

2. The MCPR operating limits should be increased by 0.02 for the sing'- oop operation.

3 MCPR values are also valid for coastdown beyond 10175 mwd /St.

r

^

1 s

- () Table 2.3-1 1

Maximum Allowable Linear Heat Generation Rate Limits l'

j 1 l

Maximum Allowable Linear

! Fuel TYDe }[ eat Generation Rate (kW/ft) l BP80WB13F-10GZ 14.4 BP80WB335-11GZ 14.4 BP80WB354-12GZ 14.4 l' P9HTB380-12GZ 14.4 j l P9HTB379-13GZ 14.4 Source: NEDE-24011-P-A.-Reference 1.

i l Technical Specification

References:

2.1.A.la. 2.1.B.1, and 3.11.B.

l lO L-

)

{'

O -

i 14

_ _ _ _ _ _ _ _ . - - _ __ __ _ _i

\

1 1.4 . . . . .

. . . . Equatiors for Kf Curve:

Kf >or- 1.0 j l l l. j Kf(WT>40%)- A.0.441(WT/100%)

l l l l l Kf(WTc40%) .

l l l l Kf(WT>40%)*(1.0 + 0.0032(40-WT))

Where A(104.5%) .1.3406 1.s ---- - ....i.. .. - . . . . -.F.. -. . . . ... 4.-

. . .--.. . .t. ..... .. -i.- <

1.2 -

..----.--4..-..-...-l...........i.--.......v.----.--..i..--..-.-.F.....-..4..------...

/, g g .

t . . .

t . . .

V .

l l l

l l l l

1.1 .-........

. MANUAL FLOW CONTROL: . .

1.0 - ....-..... .

sooortube sew. ar calibration;

. position euch that . . . .

l Flowmar - 104.6$. l l l l 0.9 .j. ,i. .;. .j. .j. .j. .j.

20 30 40 50 60 70 80 90 100 Core Flow (% Rated)(WT) r Fiqure 2.2-1 Q' T K Versus Percent of Rated Core Flow Rate

-f (Technical Specification Reference 3.11.C) 1

~

.g a.eo a . + . - ., -

. .. . ,. t 44,9 .

a.

+... *4., .-- 4+ ,. ,.t y- -

..r

+m " + ._+tt. + e T'.. e .. . a a *. . , 4* e 44 .-.l*4*- . .* y

. - .~ *4e l

44 - 4*t

- +e .4

- . . 4 4 % . a. -4~ + -

.4.

-m4m,,.,e,-l "m9t4"u L_- ",,~. 3m4+4uI 9,t +484M v * * +. 5M , +e

  • mre.4'4M f

- t .  :

.mm ,.

3 q .4M,b u.mt 4 4 4

p 4

0- 4 tT- s

.mm .,a4&a. . a..

m,,. ". 4,,. 4 4mMt4*+m"' e

" . erra44Mmt c4 p-m+tA"Mmt - t ' 4+ i . 4 + t *4

- 44gt .m*- u +mtamM $- . 4 e+tu.mmap - mE 4u+

8

- 34u

- . 34 .. 44 tg- Eme d

4, 44

- .. 44 +te 6- -

- - E+P'4+ :.44Mttt=q .44 - 4s

. , . . - ..*_ 4+t. a.*. .- ..-

.~ -- .- RE + eA n

  • ea&4 4 t ?- ..e ' #

.*e" E

.6

4. .. o

+'?*4-

.-t'4 . t Ls4

.7. ..+

u+t 8+++ 2

.e- 28 F t9

+2 p4-

, . u m. m.m.,. .. -um" t .umM -g:. Mmt,r 4 4 1eMt-1u4+t +t 44 tt .4M.t 4'

4^uum,t.9 4H+ 2" t

t*

" + teM, M, ,. ?u 4 + t,ts + ," .Mmt% mMm m-'+ .4+ .=t.m o,g -+ ?.tMesm t

t t .~.44 M +i . MMM, I.4 -

t t

-:m. : . ;. ..wmMe t

-t99 44+  ; . "4 m.m, "" .+~ 4 t e.

- m

+ . 4++.- ..

.. 4 4m + +T t.- +t t

.. .... .2i,,. . ' +. . 4 + M. . M+t**

Mm*44%t 44 . 4 .'4 + - .4 r .-

- 49( MrI.- .am4 s

  • . oo . 3M.. m.

u.- .m.,,,._

"m 4,e. ..'* -u. 4. ,.4M444t+

4 mm e4* .ae *. .

. 4 . .- ,.t

+.. g.H4m e,4 ,~ #.

+

44M. y. - -

4

={,-.u:t - 44+,.

4.. -' -

-^

+*m t*

a4M ~ g *: ?=

4

- . e4 .

3 I. n y

.,;.-le.t, 4I

. MM. - +4h0( i. I'MMMt.t ea

' 1 r-44 I

. .e.-u a4.g,t MM 4. r

. u.. ,..: ...-..,. u.un.m,

,g4 4 4,..

.,..v. M** 44uMM 4,.4M+

"e *4.' .,4 .-

o + M. i,..4++- =44+t 4

+,* . 4"-.4- +.-. M +: e447 4 M_

wtt . + * +

4 fy 4 4 e. +-. :m e +

-. 4 .

4t"

- u*

- y . .uMt E 9..

9p u4 *4ae 44+- -4+.

- - t- t 4yt.4 e te 2 - - M4+*+ r s+- + * ~44 .

  • m,mm 4 up = .'- ,. 4 a.mmt.'

t 7,- .4,.,

,t .m ^

u

+4m M T4 -

t

- 4 M++4 T,it,44Mt4+m t

4M ..tu-am . m i4m .:4mS,*

{

t.. mm 54 ..+

. um."..

A mM. 4+ -

t- 4 iM. aa.4 mmn. 4444t.1 mMmtn .t*i.,- . .m .4+..- 'i. 4. Aa - u - +-* ' - *A: ++t74+t+ MM+?

a u.MMM7 +++ .

.4 . ,.

.. . p 1m4+ .

.- 54+

+Mt*

a. - - -

0o

t. .o , ,

- 4 - .

- # _+. 4c 7. L 4...*'. .. .-

  • 44, . - ..,. - .
p. .44,.,

'% r .4'+

,m, . .m..mr .m4,e,349M.4..m.~~aMm+4uMmm ++. 4u44 + heee.3.4 t, ~- < r+54. i.p+4 E44tt .-

A.

1

+

4 9t* t. . mu . 4 +_

4

. . 84+ -

tP

. ,,. u ?4 g mt  :. + 44Mtt i a .MM~. +4M,. w 44

+, 4u+ , mmg,4.3

.m ,,,.. .- ~.,."m

. Mt

,-. 4u9* .

4 e 3. 4 ,

e. .-

tg

- 4+.

4+. , '" " 'MMmi*44 - t 4

  • 4 tfq

=11. Mm4"44MtT

,9 :o*Me9-.,9. *, - e

+,..

, .: .m 7- 35.,*t 44 M.4 e mmtt.

- - 4:ii s

%v .4 .- t9

. .% .u,u , +u4i: I4*

.  ! ,' i.

%% ++"" 4m+?=4

. l 4 44' *

..er. m u*,p ,3

. 44 - ..-

tg 5

+ . . * + .+ 4++t 4** t. 4 + .

> .m4

  • .t. . .

e .++. .- .-4+ N'.4*t

"_ '4++t .4?t44+

po - .

(

- . 444 + + , . . -

,4.. . l. Mt+;IM

-1

{. 4 4e* . . .

M+.- uy 4+ eM' M

- . i 4 e 44t t.u4 .m,,. am;.;M+MM;9 ut. 4 "r...:4m,. ..^. m te e m .u;.m u++++' m. t u. ,++ mMttrtm+Mtttt t

+u+ .+4t 4m+4ut4.a mt 4Mtm a.tm.

14

y. . - ._ r. . u. . t..

4

- i..

4, 4M+. u - .

.? .

+  ? ,- e

.aeu4ee-. +. ,e..+,.4- 4^ 1t4M+.+

-4 a.4M44

.~ . +g m. m. u 4e , - 4.4,. 9. 4... - ..e ^ MM. 44+,1*..

mr.*. 4m__4*.4 e-u

.m.m .am:.mP" 4t 1.-._"m4,4u4t s t +r.

44 9tt,.. ,

. a4 4 t 4 r 14 i

.m' w++ t.:(4 mn e. - 4 au&Mi m.+ .1M4Mtt I4+tt*t 4 e 44 4 i *L e

- )

4o f

. .M. +. u 4.

y , . +tt 4

,p 4Mm,

,t 34., +mtt -

4 s 1)4 + u,.4

(

. pt

,r4 -

r T ,. t ,.+ .t 4.4+tt M ta 34.4 -^ - ++t4+ - - ' + -..3t-,t+

a r f.4 }y 4yb e t

.. . . .m,tr . . " , .

,~u eau.+ + +-. .

M ,.m.

+

  • 4 + t'
  • 4+-

+MP. ..

-um+e.

f . -

+ . c. .t L L -

4 w ,.u . . - . 2>4- gh t t

+umf,t.l ,t,' Tem u +t 4 u(t:

o . - 44

. tP$4mt t . ,

+Y t,m u ; ?m&++t t

4HttM

- l P e .ma- 4.tmm,, .

.; g:m.ta.a.Mm"m. ..

4m ;. ,

4 mM ..

2:n 4

44m++u4 - ..m'.m+t;.

4 Mtt u M"- AMm t 4

$4.v t+ m.m4u++

t ,

l a

4 4+ M*4 44

. t =. + t 4 .+.-* = 4+++? ++t 44'M + .-

mo f.i.j... -

- , f.. '*=.4 4 r 44

. a +. .4 e ,. +

m -

c 8..ee t*L4+.

4. + ,-.-- -

.e.t ..

u .uu 4e.44 r 4 48 M ++ , _4 - -

m44+tp - e +Mr t i e 4mm, . . .u .m,.L.

.I4 4, om M tt -4 4 m434Mt.?r

.r X

,t E4M te 43- G I.4tg -

} 4Mt.i

.- t f4 h

14 r a tt m + 54 ,.

4MtT +

v ., 4 4 4 t t-u 4y. . 34 T .:,

m . . r.m. M mmtm .M M s+ ++ +u4m+m m,.4mmee 4 Mt*-9. mmtt~IMm. 4 t -"IMMe*44m. 4 t+ 4g4.M:t*44 44 4 t9 t*44 e . .

.. u.

4,.: 9 - t y-4

  • 4* e e4 :e 4$P~4+ +% . .4+Tt. 4 4 44t* 44+-

-- . ..m .+-m.~.u.am r

Co Mo ( f.

. t i

t

a. 4..

4

t. 4m.: 4 9

9 ty

u.  :

- tt - 4.- 44 . *m 44mM

=

+4 t 44h4u 44m + s4-9+ 4.ee4m9= . - p*umM+,- -

+

44t- 44+.

r. 44tt 44++

... ,. , + .

. 7 l .t ,A<<+t . - .

4 t'

.. a.- .t

e $1.um'm + .t +.umm,,++4m jJ4Mm m4t*t t

,. 4. a. ,,r.  ;

.umM. m * ,,3MM9g?.

+++-1M'Mm

,MMg. .+mt 3

. .. &4- ++. t 44 ?=

t. -
4. + + 9 . .+t?

4 f .p t- .

,r- - 44 .r44+ e . .-

.r5-4, +44 - -tt . -

- e.- .u 44gg4344-- -

48 4+ b +tt. +e- 4 t=--

$ 44+ +emt m..

4mv4Me54m i*44Mtt -*

y4 Mm

u. 4 4 4 9,,g . 4 M +,. , . mep.+S t*4*

i ,1 M +

e-4 t+4318m

. 4 an,I.s.3 44+ 44 (MI4M + - -

.Aum,t- -+g. M+m *44+m r-4 H++,.p*4Mttm+ .

4,t Au-- - -1

&o f..+.,,g+.

j 6 M M.44+ e

. t 4- 484 t4*4 .4s 444+4 4Mt 4 4+ i 4M+ t*J4 4+ . -. .

. . +2 4 . .

. t,. 44 - +4+ +t-

,t-a.M 4 -. + :tr t a ._ .

64 4 +

. 4 + +44tT, 4 4+ 4 + i -4**

. .,. ., - t. ,.

9 +.4

+t 4 t .

,, m .: a.M

.- a .me

..um+m .4mm- 44*t 9- 4 '4e. :_

4n+ :m+t.a. + e. 4 t ga+ .m' u

++4

. nt.

4 mg,. . M ,,. p;u.MM9 a

- =

s4 t. t .4t~ t 4a. 4 t 4 44m .

.3 M u4* 4+tt

  • 4444Mm

.,, ,,ro. - n a

s. .., ,. . ue t+, .+.4.u 9t 14+

U4.ig.mMt w4m , t .

3u i i,mt t ; t

. 4++I$4t 44m+ um+m,t

. mmp.mo ,.,

+4 + 4 4 +

t.

444m +=4.m..mM+

_.aau. 4m + ..,. 4umt 1;m .4 g

.4 -

4 :e '- 48Ht  !'4u ,=4-M Mtt + +..u+tt +tft?84Mm

- tg

.a4 a...e..44 + .44. oo- 4'. -

. . ,.,44,+44u e,49t, .

4M:

,-. 44+ + - ++ +.- ._4 *+ .. a. e'++

  • 4 4 +

mMt - t' ,*8 .

44H+

4M +++.a+4 ++4 3

. . 4 ^ d t.t Co i

,.+&

.. t ,t s

+4 t,t 8 t

a-

- g ,.+ e j.+Mr, L .t,r.++, t44+t

.u ,.4 uy,r Mu.4+l M - 4

.M e - -

m,. 4m+ . umt, tgI I

, g' -

.. 8 s.uM ,4 44 8 + 4 . 44 + :

m,6u mt, 4 .a4m a.-a*8m

.m,3m..4,t .m. . - M44m-4m.14mi4L4Mt M ..mI,,. r

+ r.m a.m

+ . + . .+ 4 m. n. t .y t. tr.-

.4.

u- +,,- 44 4 4M,, +- + 4M44. 44+ tm.

+t M t nt 4u.Mm.a +- ,- m:tt.I

tgI M r44 M i. 44 + t.1 4

- + m.+a,

?a t =4m++ I. + - . -

4 - .- M = 4 +H 4 44+tt - - 4

_,. .. . +.+

- 4 s4Mf -. + a .. { +4t+tt. - 44+ -++

e 4.,t, .99 4.. .+4+ .- e4..t

. 44.

.4' +*-

. 4 -

r 4.41

. r t rp4 t Po

.,E I.4,

+

t.

' 3M. M..t4

%+n 4 tt .i44

' m.m 4. .. -. m. .m9 -

4ts2u4h

4. - u.M.m..L8 m 44 +, 44. +f' m ++ 4+-A

.t1. . .

4mMM 4 +t.484+ M 4 4 c=m .

4 ttt . , r 44 44.t . s + tt 7.4 4 t

-m.,

  • . 4

-+4 mm.r4u *r =.

++4 4q.4 M+.t, ' .gt-m,t+ 4 94 e

=

4M M:mm4 444m - , ++ ,,mMe3=4Mt.m

.- s r ?.a.444M. ..mt r s4 a.a 6e ..+.7.' 4:.m%a ,4.4M 4,Mmt,- ,.. e -

.+

- m. m. . u.mM+

- u. , u _ t #

.. ,4 e64 -

..m, + t~4 9=. + .

4 +

H e .a s4 +* .u 4

++m.rm.M ..-

aasu e - . -

pI * . t 3 -m+ +u.4

.+9+ 4 44 i,4*ue h4 Ii 4 + 4e+ .- +4M .4ua . +u+m9 t m+,r ~

6

~.- 4M?.

4 Mm,.r .

4 t :Mt

..0 0

4 M

-H+, e." Mmep.4m

,. ~ ~ 4

.4 e4+.v~

I4Mtt.H

-4 t.4

+ 4 r. a6

m. ,,tmrr iT.Mme.,t 44
u. .g I

Iu

  • m .4M,t 4um ,. M y. m: la$
M m,, m v.,I'

- , . -. t m,4uMt 4 +

.. .. + te mi.4v 4MMttt g.; ;-

  • o - u4 .-
j. Ie. . . M44+.+M .

{e 44 i4 - M.M.t j- . 3 . 4mti I4mm 4" - - MMt 4A. M

= ..

s+

.. . +. t4+

.++,t. .+t+ 64+.

r 4 t -t 444e. -

9 + -

t.

u+m.+.,.

.4.,.

e 4uM* 4.+ +

.M M1"1

+4. ep 44+

e...... Ms4u4 ee 4Me,g: .mt Aum + 44 4 t.

4 -

4M i 2_+ 4M m m4t,t-1M+m I.aM++,T uMt, m,.

- , 44M+ 7,MM 4 m, t u+4 t 4 . e 44 tp t 44+

m.n am.m.,....44ou,. ,.. .m, t,+m s. M .

4 t

m,44m + t4mt u4 i. t ,. +t 44+

n m.m.g.

.u 4 + + y, + M. e 4. + +m + um .t sHM.t,-

t 4MM t t,t. .uM,gt, .y44M.mMteumt a4 +

,. u4 *. 4++ $.m g.- m.m,t?-44 t j.

3 M. +,.;. u H. Mt +M,,-

,44 4 &

t 4

.. 4 + M.44. t M4 v 4 + M. p 4 4 + M.

.e~. = . . . . _ _ ..?. +

4 .

+.+. .4+...e. = = . . . ..e++e t 4.. , . -+ e++,..44+ 2o+,*- ++p._.4t, O .- . .

4++ t. ++.4..44 t4+4ty-o .o. ,o o g 8 yo .o ,O 4.8 4.

= ggr- , $

_ m,,OC7@ nS4 m

%v .

r .J. 3 , gu t.i o.g yOIm7%m,,O( .

m 7 m +. 4 O -5 g

_ %Hmn,3

, - .O . e. ,.,

M(OmO,,, '

A..n aq t..*O3 e -

mo m7m3na (,4, . y g

ep@,

E .t, l

t:. .

Tha coordinates of tha Exclusion

  • gion are as follows:

Point Power (1) Flow (t) l

\ A 74.9 49.8 l B 30.7 25.4 l The equation for the boundary is as follows:  ;

' I I

e w W-W 3 W-W 3 "

r s 1/2 +

P,P A W -W 3

. A WA-W 3 g ( s.

P3 j k )

where.

P- a core thermal power value on the Exclusion Region boundary (1 of rated).

W- the core tiow rate corresponding to power. P, on the Exclusion Region boundary (1 of rated).

P4- core thermal power at State Point A (I of rated).

Pg- core thermal power at State Point B (% of rated).

W4- core flow rate at State Point A (1 of rated).

Wg- core flow rate at State Point B (1 of rated).

The range of validity of the fit is: 25.41 <tFlow <49.8% l The coordinates of the Buffer Region are as follows:

Point Power (1) Flow (1) l C 78.2 54.8 1 D 25.7 24.3 1 1

The generic equation used to generate the 51 buffer zone exclusion region boundary is: i r

W-Wp W-W o n e i 1/2 +

  • WC-W p Pc WC-Wo )~

p,p D k l

Po u >

whers.

P- a core thermal power value on the Buffer Zone bound.gry (I of rated).

W- the core flow rate corresponding to power. P on the St Buffer Zone boundary (I of rated).

Pc - core thermal power at State Point C (1 of rated).

-Po: core thermal power at State Point D (1 of rated).

We- core flow rate at State Point C (t of rated).

WD- core flow rate at State Point D (I of rated).

The range of validit'y of the fit is: 24.3% <! Flow <54.8% l Fiqure 2.4-1 (Continued) v I

I t- ..

\

t 3.0 _ REFERENCES

1. Report General Electric Standard ADDlication for Reactor Fuel (GESTARII). NEDE-24011-P-A-13, GE Company Proprietary, August 1996, as amended.

1

2. Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Stability Solutions Licensino Methodology, NEDO-31960, June 1991.
3. Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term

, Stability Solutions Licensing Methodology, NED0-31960 Supplement 1, March 1992.

4. Letter, USNRC to VYNPC, SER, August 9, 1995.
5. Report. Vermont Yankee Nuclear Power Station SAFER /GESTR-LOCA Loss-of-Coolant Analysis, NEDC-32814P, March 1998.
6. Report, Cycle Management Report for Vermont Yankee Nuclear Power Station Cycle 20, J11-03297 CHR, Rev. O. April 1998.

l 7. Report, General Electric Nuclear Energy. Supplemental Reload i Licensino Report for Vermont Yankee Nuclear Power Station Reload

'l- 19/ Cycle 20, 24A5416, Rev. 2, May 1998.

8.

(#r) Report, Lattice Dependent MAPLHGR Report for Vermont Yankee Nuclear Power Station Reload 19. Cycle 20, 24AS416AA, Rev. O. March 1998.

9.* Report, BW'R Owners' Group Lono-Term Stability Solutions Licensino Methodology," NED0-31960-A, November 1995.

10.* Report, BWR Owners' Group Lono-Term Stability Solutions LicenJino Methodology," NED0-31960-A, Supplement 1. November 1995.

  • References 9 and 10 are the generically approved documents for References 2 and 3, including the SER from Reference 4.

i O

- _ _ - _ _ _ _ - - _ _ _ _ _ - _ _ _ - _ _ _