ML20065G583
| ML20065G583 | |
| Person / Time | |
|---|---|
| Site: | Vermont Yankee File:NorthStar Vermont Yankee icon.png |
| Issue date: | 09/26/1990 |
| From: | VERMONT YANKEE NUCLEAR POWER CORP. |
| To: | |
| Shared Package | |
| ML20065G582 | List: |
| References | |
| NUDOCS 9010220148 | |
| Download: ML20065G583 (19) | |
Text
{{#Wiki_filter:.e. Vermont Yankee Nuclear Power Station Cycle 15 Core' Operating Limits Report Revision 0 September 1990 905'/ / - 9h4h Reviewed de Plant.Oper ions D/te Review Comm ttee. Approved-CD / Plant Man'ager-- batel _. --Approved Y -Mm - - / 9-Js - M Se
- r. Vide Tsi{ent;fDate-:
Op tions-Controlled Copy No. 9010220148 901011 PDR ADOCK 05000271 P PNU u
o REVISION RECORD Ecrision Date Description 0 Initial printing. Reviewed by PORC and approved by management. I l i WPP40/9
c - I ABSTIMCI This report presents the cycle-specific operating limits forlihe_ [ operation of Cycle 15 of the Vermont Yankee Nuclear Power _. Station. The-limits:' are the maximum average planar linear heat generation rate, maximum linear-- ' i ? heat generation rate, and minimum critical power ratio. l + l 1 5-I e l- + l l ~ h --lii-i i WPP40/9 u 5 y .~., -w. 4 ...,r., .,v,%- w-. ,. + ..w-._ y
I I TABLE OF CONTENTS EASa' REVISION RE00RD.......................................'............ l iiE q ABSTRACT........................................................... iii i i LIST OF TABLES....................................................- v LIST OF FIGURES...................................................- vi 1.0 INTRvDUCTI0N..................................................... L1 2.0 CORE OPERATING LIMITS............................................ 2 2.1 Maximum Average Planar Linear Heat Generation Rate Limits.. 12 2.2 Minimum Critical Power Ratio Limits.....................'...= 3 2.3 Maximum Linear Heat Generation Rate Limits.................- 3
3.0 REFERENCES
12 1 -l -l a -iv-WPP40/9
LIST OF TARLES-Number Title Eags ' 2.1-1 MAPLHGR Versus Average-Planar Exposure for BP8DRB299 4 2.1-2 MAPLHGR Versus Average Planar Exposure for BD324B- ~5 2.1-3 MAPLHGR Versus Average Planar Exposure for BD326B 6 2.1-4 MAPLHGR Versus Average Planar Exposure for BP8DWB311-10GZ 7-and ANFIX-3.04B-EGZ 2.1-5 MAPLHGR Versus Average Planar Exposure for BP8DWB311-11GZ 8 2.2-1 MCPR Operating Limits-for Cycle 15 9 2.3-1 Maximum Allowable LHGR Limits for Cycle 15 10 i l l ' I i r -v-WPP40/9 4
/Q LIST OF FIGURES Hunhar lilla East 2.2-1 Kg Versus Percent of Rated Core Flow Rate 11. 1 -vi-WPP40/9 a
_ = _.. _ _. _ _ _ _ _. _.. i l ) -1
1.0 INTRODUCTION
-l b This report provides the_ cycle-specific limits for. operation of the -i -Vermont Yankee Nuclear Power Station through Cycle 15. It includes the limits for the maximum average planar linear heat generation rate, maximum linear j i heat generation rate, and minimum critica1' power ratio._ In~this report -l i Cycle 15 will frequently be referred to as the Present Cycle. If any-of..these j limits are exceeded,_ action will be taken as defined in the Technical-i Specifications. e This report has been prepared'in accordance with_the,reduirements of Technical Specification 6.7.A.4.- The core operating limits have been j developed using the NRC-approved methodologies listed in References-1 ) t 4 through 16 and in Technical Specification 6.7.A.4. The bases for these limits are in References 11 and 12, and 17 through 19.: i k 9 k -I E i ? ! WPP40/9 1 s I i. _ ;-,.~,,, . _ _.. ~,,..,.. _., _, _..,. ~.,.,
2.0 00RLQEIBATING LIMITS The Present Cycle operating limits have been defined using NRC-approved i methodologies. The Present Cycle must be operated within the bounds of these limits and all others specified in the Technical Specifications. 2.1 Maximum Averagg_flanar Linear Heat Generation Rate Limits During steady-state power operation, the Maximum Average Planar Linear Heat Generation Rate (MAPLHCR) for each fuel type, as a function of the average planar exposure, shall not exceed the limiting values shown in Tables 2.1-1 through 2.1-5. For single recirculation loop operation, the limiting values shall be the values from these Tables listed under the heading " Single Loop Operation." These values are obtained by multiplying the values for two loop operation by 0.83. The source of these values is identified on each table. These tables only list the limits for fuel types in the Present Cycle. The ANFIX bundle will be monitored as if it were a BP8DWB311 bundle. Therefore, the limits for the ANFIX bundle are the same as the BP8DWB311 bundle. The MAPLHGR values are the most limiting composite of the fuel mechanical design analysis MAPLHCR-and the ECCS MAPLHCR. The fuel mechanical design analysis, using the methods in Reference 12 demonstrates that all fuel rods in a lattice, operating at the bounding' power history, meet the fuel design limits specified in Reference 12. The LOCA analysis performed in accordance with 100FR50, Appendix K, demonstrates that the MAPLHGR values-comply with the ECCS limits specified in 100FR50.46. The MAPLHGR actually varies axially, depending upon the-specific combination of enriched uranium and gadolinia that comprises a fuel bundle cross section at a particular axial node. Each particular combination of. enriched uranium and gadolinia is called a lattice type.- Each lattice type has a set of MAPLHGR values that vary with fuel burnup. The process computer will verify that these lattice MAPLHGR limits are not violated. Tables 2.1-2 through 2.1-5 provide a limiting composite of MAPLHGR values for each fuel WPP40/9 i
type, which evelope the lattice MAP 13GR values employed by the process computer. When hand calculations are required, these MAPLHGR values are used for all lattices in the bundle. 2.2 tiinimum cri-isaLEpwar Ratio Limita During steady-state power operation, the Minimum Critical Power Ratio (MCPR) shall be equal to, or greater than, the limits shown in Table 2.2-1. The EOFPL exposure in Tabic 2.2-1 is 9.054 mwd /ST based on the analysis in Reference 18. For single recirculation loop operation, the MCPR limits at rated flow shall be the values from the Table listed under the heading, " Single Loop Operation." The single loop values are obtained by adding 0.01 to the two loop operation values. For core flows other than the rated condition, the MCPR limit shall be the appropriate value from Table 2.2-1 multiplied by Kf where Kg is given in Figure 2.2-1, as a function of the flow control method in use. These limits are only valid for the fuel types in the Present Cycle. 2.3 Maximum Linear Heat Generation Rate Limita During steady-state power operation, the Linear Heat Generation Rate (LHGR) of any rod in any fuel bundle at any axial location shall not exceed the maximum allowable LHGR limits in Table 2.3-1. There are different LHGR limits for different fuel types. These limits are only valid for the fuel types in the Present Cycle. The ANFIX bundle will be monitored as if it were a BP8DWB311 bundle. Therefore, the limits for the ANFIX bundle are the same as the BP8DWB311 bundle. 1 j l i 1 l l WPP40/9
.~ ... ~. 'l TABLE 2.1-1 9 MAPLHGR Versus Averane Planar Exposure-Plantt Vermon1_Yankit Fuel Type: BP8DRB299 Average: Planar MAPLHCR (kW/ft) Exposure Two Loop Single Loop. (mwd /ST) __ Operation. _Qperation* 200.0 10.7 8.8 1,000.0 '10.8 8.9 5,000.0 11.4 9.4 10,000.0 12.2 10.1 15,000.0 12.3 10'2 20,000.0 12,; 10.1 25,000.0 ,11. 7 - 9.7 35,000.0 10.6 8.8 41.900.0 9.4
7.8 Source
NEDO-21697, August 1977.(revised), Reference 11. -Technical Specif1; tion References 3.6.G.la and13.11.A.
- MAPLilGR for single' loop operation is obtained.by, multiplying _MAPLEGR for:two loop operation by 0.83.
. l WPP40/9 l l L H 1 = i
. - - -... ~ - ~ _. -- i l TABLE 2.1-2 -) )MELEGR Versus Averaee Pinnar Exposure-Plant V3rmont Yankee Fuel Type: BD324B Average Planar MAPLHCR (kW/ft) Exposure Two Loop Singic Loop l (mwd /ST)- Operation Operation
- 200.0 11.22 9.31 3,000.0-11.83 9.81' 8,000.0 12.69 10.53 10,000.0 12.80 10.62.
15,000.0-12.74 10.57 20,000.0 12.05 10.00 25,000.0 '11.39 9.45 35,000.0 -10.12 8.39 45,000.0 8.46 7.02 50,000.0 5.99 4.97 So ce: NEDE-21697, Supplement 1 November 1987, Reference 11. Technical Specification Referencest 3.6.G.'la and'3.11.A.
- MAPLHGR for single loop operation'is obtained by multiplying MAPLHGR-for two loop _ operation by 0.83.
f WPP40/9 l-
I I IA2dJL 2.1 t M/WJLQJLYtrans. Averare Planar Expngut.t : f Plant: Vermont Yankee Fuel Type: BD326B Average Planar MAPLHCR'(kW/ft) Exposure 7Vo loop - Single Loop i (MVd/ST)' OptIAdon _Dperation* 200.0 11.26 9.34 f 3,000.0 11.72 9.72 + 8,000.0 12.76 10.59 I 10,000.0 12.90 10.70 f 15,000.0 12.82; 10.64 20,000.0 -12.12 10.05 l 25,000.0_ 11.44 9.49_ s 35,000.0-10.15 8.42 45,000.0-8.63 7.161 50,000.0-6.17 5.12 l Source: NEDE-21697, Supplement 1. November 1987,_ Reference 11. ~ Technical Specification Referencest 3.6.G.la and 3.11.A., t
- MAPLHGR for single loop operation is obtained-by multiplying MAPLHGR-for'two loop operation by 0.83.-
WPP40/9
. -~ --.-.n-. TARLE 2.1-4 MAPLHCR Versus Average Planar Erno g rg. Plantt Vermont Yankee Fuel Types B38DWB311-10G2 ANFIX-3.04B-EC7-Average Planar MAPLHCR (kW/ft) Exposure Two Loop Single Loop" (mwd /ST) Qperation Operation
- 200.0 11.00 9.13 6,000.0 11.92 9.89 7,000,0 12.11 10.05 r
8,000.0 12.34 10.24 10,000.0 12.83 10.64 12,500.0 13.00 10.79 20,000.0 12.24 10.15 25,000.0 11.55 9.58-i 45,000.0 8.76 7.27; - t 50,740.0 5.91 4.90 4 Source: NEDE-21697, Supplement 2, May 1990, Reference 11, and ANF-90-048. Reference 19. Technical Specification Referencest-3.6.G.la~and 3.11.A.
- MAPLHGR for single loop operation-is.obtained by multiplying lMAPlEGR.for two.
loop operation by 0.83. 4 -r 3 L WPP40/9 L L l
m TABLE 2.1-5 . l MAPLilGR Versus Averane Planar Ernosure i 1 Plant: Vermont Yankee Fuel Type BP8DWB311-11CZ' l Average Planar MAP 1]ICR (kW/ft) Exposure Two Loop _ Single Loop (mwd /ST) Operation-Qparation* 200.0 11.00 9.13' 6,000.0 11.92 9.89 7,000.0 12.11 10.05-8,000.0 12.34 10.24 10,000,0 12.83-10.64-12,500.0 12.90 10.70 15.000.0 12.81' 10.63' 35,000.'O 10.24 8.49! 45.000.0 8.76 7.27 50.740.0 . 5. 91-4.90-Source s. NEDE-21697, Supplement 2, May 1990. Reference 11. Technical Specification References - 3.6.G. la and'- 3.11. A..
- MAPLilGR for single loop operation is obtained by multiplying MAPLHGR for two loop operaticn by 0.83.
l. ' 8-WPP40/9 l .. u.. ..a.
TABLE 2.2-1 r MCPR Ooerating Liails Value of "N" MCPR Operating Lireits in RBM Average Control Cycle T m-Icop Single-loop Equation.(1) Rod Scram Time Exoosure Range Dpgration Operation 'Is L 42% -Equal or better BOC to EOFPL-2 GWD/P 1% 1_35 than L.C.O. EOFPL-2 GWD/T to EOfTL-1 GWD/T 1.34 1.35 3.3 C.1.1 EOFPL-1 GWD/T to EOFPL 1.34 1.35 Equal or better BOC to EOFPL-2 GWD/T 1.34 1.35 than L.C.O. EOFPL-2 GWD/T to EOFPL-1 GWD/I 1.34. 1.35 3.3.C.1.2 EOFPL-1 GWD/T to EOFPL M4 1.35 41% Equal 'or better. 'BOC to EOFPL-2 GWD/T 1.28 ' 1.29 than L.C.O. EOFPL-2 GWD/T to EOFPL-1 GWD/T 1.28 1.29 3.3 C.1.1 EOFPL-1 GWD/T to EOFPL '1.28 1.29 Equal' or better. BOC to EOFPL-2 GWD/T .1.28 1.29 than L.C.O. EOFPL-2 GWD/T to EOFPL-1 CWD/T '1.28 1.29 '3.3 C.1.2 EOFPL-1 CWD/T to EOFPL 1.29 1.30 140% " Equal 'or better -. BOC,to:EOFPL-2 GWD/T 1.25 1.26 .than'L.C.O. EOFPL-2 GWD/T to EOFPL-1 GWD/T 1.25 1.26
- 3. 3 C.1.1 -
EOFPL-1 GWD/T to EOFPL 1.25 1.26 Equal or.better BOC to EOFPL-2 GWD/T. 1.25 1.26 than L.C.O.
- EOFPL-2 GWD/T to EOFPL-1 GWD/T 1.25
'1.26 3.3 C.1.2 EOFPL-1 GWD/T to EOFPL 1.29 1.30 ' Source: Cycle 15 Core Performance Analysis Report, YAEC-1749, Reference 18. Technical' Specification
References:
.3.6.G.la and 3.11.C. (1) The Rod Block Monitor-(RBM) trip.setpoints.are determined by the equation shown.in. Table 3.2.5 of the Technical Specifications.- -(2): MCPR Operating. Limits are. increased by 0.01 for single loop operation.: _9_ 'WPP40/9 . =
i TABLE 2.3-11 Maximum Allowable LHCR Limits-Maximum Allowable Linear Heat Generation Rate Fuel Type (kW/ft) BP8DRB299 13.4' f BD324B 14.4. BD326B 14. 4't .BP8DWB311-10GZ 14.4 BP8DWB311-11GZ -14.4' ANFIX-3.01B-EGZ 14.4 Source: NEDE-24011-P-A, Reference 12, and ANF-90-048 Reference 19. Technical Specification
References:
2.1.A.la, 2.1.B.1, and 3.11.B. i l l WPP40/9
l r e m m I O NW l4 i i ~ :- -_- : :: p y 3 _p
- -- : 1 a
1.3 m N s._ s n n s s___s s c N \\ 2s y y _ ls 3 s s y s2d N i s s m N___3 ao -(ih __s _.__b_ _ __.2s s 3 a __) a o s s s 3g M - m'g~ 68* 3 T 'g 's. g 's
- 2 3
W:--2 s AUTOMATIC FLOW CONTROL -s s v_ o, s s s s s s s s s H et tn r s ,5 2s g _ __./ y a _s N- / 9-* D* s i o m N.. s s %___x c_ __2 / o rs 3 s s 's s . __.2s __f s [ -1.1 N- [ f r3 N s p. s s S a -Q s: s x s m N a a s s ~ M ,- x, o q s -N m s s s s g S z s s % 4-s s_ s 5 MANIIAI FI OW f'ONTROI g' y 5--- K:)2 ' N a Q-2!%: id E Scoop-Tube Set-Point Calibration ,h ' 's
- t-{
x Z m 1.0 -- = 102.5%j c:___~-' <c c1 posit.ioned such thatFlowmax = 104.5,.-____- _ c__ e__ y o -c __, e, y ~,---E ~ i; * = 107.07__,- = 112.0%'E ~ o i = 117.0%- r =. 0.g _ _r_ i .5 20 30 40 50 60 70 80 90 100 CORE FLOW % o O N s o. Un \\ to O
3.0 BEFERENCES 1. Report, S. P. Schultz and K. E. St. John, Methods for the Analysis of Qgide Fuel Rod Steady-State Thermal Effects (FROSSTEY) Code /Model Description Manual, YAEC-1249P, April 1981. 2. Report, S. P. Schultr and K. E. St. John, Methods for the Analysis of Oxide Fuel Rodl igg / g$tg(e Thermal Effects (FROSSTEY) Code Oualifications and applications, YAEC-1265P, June 1981. 3. Report, A. A. F. / nsari, Methods for the Analysis of Boiling Water Reactorst Steadr htate Care Flow Distribution Code (FIEWR), YAEC-1234, December 1980. 4. Report, A. A. F Ansari and J. T. Cronin, Methods for the Analysis of Enilingl aigr_heactors A System Transient Analysis Model (RETRAN), YAEC-1233, April 1981. 5. Report. A. A. F. Ansari, K. J. Burns and D. K. Beller, Methods for the Analysis of Boiling Water Reactore; Transient Critical Power Ratio Analysis (RETRAN-TCFJA01), YAEC-1299P, March 1982. 6. Report, A. S. DiGiovine, etal., CASMO-3G Validation, YAEC-1363-A, April 1988. 7. Report, A. S. DiGiovine, J. P. Goroki, and M. A. Tremblay, SIMULATE-3 Validation and Verification. YAEC-1659-A, September 1988. 8. Report, R. A. Woehlke, etal., MICDURN-3LCASMO-3/ TABLES-3/ SIMULATE-3 Ennahmarkinc of Vermont Yankee Cveles 9 throuah 13, YAEC-1683-A, March 1939. 9. Report, J. 1. Cronin, Method for Generation of One-Dimensional Kinetics Data f or_ RETRAN-02, YAEC-1694-A, June 1989.
- 10. Report, V. Chandola, M. P. LeFrancois and J. D. Robichaud, Application of One-Dimensional Kinetics to Boiline Water Reactor Transient Analysig-Methods, YAEC-1693-A, Revision 1, November 1989.
11. Report, Loss-of-coolant Accident Analysis for Vermont Yankee Nuclear Power Station, NEDO-21697, August 1977, as amended; NEDE-21697, Supplement 1, November 1987; and NEDE-21697, Supplement 2, May 1990. 12. Report, General Electric Standard Applieglion for Reactor Fugl' IQESTARII), NEDE-24011-P-A-9, GE Company Proprietary, September 1988, as amended.
- 13. Letter, USNRC to VYNPC, SER, November 27, 1981.
14. Letter, USNRC to VYNPC, SER, NVY 82-157, September 15, 1982.
- 15. Letter, USNRC to VYNPC, SER, NVY 85-205, September 27, 1985. WPP40/9
T 16. Letter, USNRC to VYNPC, SER, November--30, 1977. I 17. Report, Vermont Yankee Nuclear Power'Statica Sinele Loop Operation, NEDO-30060, February 1983. :
- 18. heport, Vermont _ Yankee Cycle-15 Core Performance Analvais Report,'
l YAEC-1749, August 1990.. ~ i
- 19. Report. M. E. Garrett,-K. D. Hartley, and M. H. Smith, Vermont Yankee 9X9-IX Oualification Fuel Assamhly Safety' Analysis Report, ANF-90-048, May 199D.
't 9 h k i r + b 1 f 9 'l i J WPP40/9 1 s..}}