ML20092G305

From kanterella
Jump to navigation Jump to search
Rev 2 to Vynp Cycle 18 Colr
ML20092G305
Person / Time
Site: Vermont Yankee File:NorthStar Vermont Yankee icon.png
Issue date: 08/30/1995
From:
VERMONT YANKEE NUCLEAR POWER CORP.
To:
Shared Package
ML20092G272 List:
References
NUDOCS 9509190223
Download: ML20092G305 (21)


Text

__

Vern,ont Yankee Nuclear Power Station Cycle 18 Core Operating Limits Report Revision 2 Preparer 1 alt h. YA0lf[

VY Nuclear / 'D a t'e Engineer Coordinator Approved F 3o/95 (3dclearEnginee(ing ' Dat'e Department Director l

Approved N de O!3c[9T l Reactor & Computer Date i Engineering Manager August 1995 Reviewed 2MOtle./1 950 /O.f 7 /51/9.7 P1 ant Operati%ns 'D'tea Review Committee r \_

Approved g1v.tbb@M

. 3)31M l

'Da te Pfant]alNger Approved 7 4 84/P/M f-/f(

Vice Pr~eside'nt Date Operations ,

1 Controlled Copy No.

9509190223 DR 950912 ADOCK 05000271

.PDR

i I

e REVISION RECORD 9

Cycle Revision Date Description 14 0 10/89' Initial printing. Reviewed by PORC and approved by management.

15 0 9/90 Cycle 15 revisions. Reviewed by PORC and approved by management.

15 1 11/91 Incorporate new MCPR limits to allow operation within the exposure window.

Reviewed by PORC and approved by management.

16 0 3/92 Cycle 16 revisions. Reviewed by PORC and approved by management.

17 0 7/93 Cycle 17 revisions. Reviewed by PORC and approved by management.

18 0 4/95 Cycle 18 revisions. Reviewed by PORC and approved by management.

18 1 8/95 Incorporate new MAPLHGR limits to account for Loss of Stator Cooling Event. Reviewed by PORC and approved by management.

18 2 8/95 Incorporate the thermal-hydraulic stability exclusion region. Reviewed by PORC and 1 approved by management.  :

l 1

l l

1 l

l

)

l

-ii-

o ABSTRACT This report presents the cycle-specific operating limits for the operation of Cycle 18 of the Vermont Yankee Nuclear Power Station. The limits are the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion region.

l l

l l

l 1

-iii-

  • \

TABLE OF CONTENTS Page REVISION RECORD . . . . . . . . . . . . . . . . . . . . . . . . . . ii ABSTRACT ............................. iii LIST'0F TABLES .......................... y

LIST OF' FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1.0 INTRODUCTION

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 CORE-0PERATING LIMITS . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Maximum Average Planar Linear Heat Generation Rate Limits .. 2 2.2 Minimum Critical Power Ratio Limits' . . . . . . . . . . . . . 3 2.3 l'sximum Linear Heat Generation. Rate Limits . . . . . . . . . . 3 2.4 Thermal-Hydraulic Stability Exclusion Region . . . . . . . . . 3 l

3.0 REFERENCES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 i

l l

4 iv-g.

h i . . . . . - m __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ . _ _

. . .. .. . . . ~ . . . . . _ _. .. -=- - - . . . . .. . . .._ .- -.

1 .

LIST OF TABLES ,

Number Title Page s .

.i Table 2.1-1 MAPLHGP Versus Average Planar Exposure for BP8DWB311-10GZ Fuel 5 1

! Table 2.'l-; MAPLHGR Versus Average Planar Exposure for BP80WB311-11GZ Fuel 6 4.

j Table 2.1-3 MAPLHGR Versus Average Planar Exposure for BP80WB335-10GZ Fuel 7

, Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel 8 Table 2.2-1 Minimum Critical Power Ratio Operating Limits 9 Table 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits 10

{.

t i

i 1

l 1

1 i

4 l

.y.

e v

-_, ,,, w vr . -

Y a

LIST OF FIGURES Number Title Page 2.2-1 Kf Versus Percent of Rated Core Flow Rate 11 2.4-1 Stability Power and Flow Exclusion Region 12 1

1 1

4

-vi-

1,0~ INTRODUCTION This report provides the cycle-specific limits foi operation of the Vermont Yankee Nuclear Power Station in Cycle 18. It includes the limits for the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion regien. If any of these limits are exceeded, action will be taken as defined in the Technical Specifications.

1 This report has been prepared in accordance with the requirements of Technical Specification 6.7.A.4. The core operating limits have been developed using the NRC-approved methodologies listed in References 1 through

29. 34 through 36, and in Technical Specification 6.7.A.4.

The bases for these limits are in References 20, 21. and 30 through 35.

I l

l

l l

. . l 2.0 CORE OPERATING LIMITS The Cycle 18 operating limits have been defined using NRC-approved methodologies. Cycle 18 must be operated within the bounds of these limits and all others specified in the Technical Specifications.

2.1 Maximum Average Planar linear Heat Generation Rate Limits J During steady-state power operation, the Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) for each fuel type, as a function of the average planar exposure, shall not exceed the limiting values shown in Tables 2.1-1 through 2.1-4. For ' ingle recirculation loop operation, the liniting values shall be the v- uses from these Tables listed under the heading

" Single Loop Operation." These values are obtained by multiplying the values for two loop operation by 0.83. The source of these values is identified on each table. These tables only list the limits for fuel types in Cycle 18. j The MAPLHGR values are usually the most limiting composite of the fuel mechanical design analysis MAPLHGRs and the Loss-of-Coolant Accident (LOCA)

MAPLHGRs. The fuel mechanical design analysis, using the methods in Reference 21, demonstrates that all fuel rods in a lattice, operating at the bounding power history, meet the fuel design limits specified in Reference 21. The Vermont Yankee LOCA analysis, performed in accordance with 10CFR50, Appendix K, demonstrates that the LOCA analysis MAPLHGR values are bounded at all exposure points by the mechanical design analysis MAPLHGR values.

The MAPLHGR actually varies axially, depending upon the specific combination of enriched uranium and gadolinia that comprises a fuel bundle cross section at a particular axial node. Each particular combination of enriched uranium and gadolinia is called a lattice type. Each lattice type has a set of MAPLHGR values that vary with fuel burnup. The process computer will verify that these lattice MAPLHGR limits are not violated. Tables 2.1-1 through 2.1-4' provide a limiting composite of MAPLHGR values for each fuel type, which envelope the lattice MAPLHGR values employed by the process computer. When hand calculations are required, these MAPLHGR values are used for all lattices _in the bundle.

2.2 Minimum Critical Power Ratic limits During steady-state power operation, the Minimum Critical Power Ratio (MCPR) shall be equal to, or greater than, the limits shown in Table 2.2-1.

The MCPR limits are also valid during coastdown beyond 10644 mwd /St.

For single recirculation loop operation, the MCPR limits at rated flow shall be the values from Table 2.2-1 listed under the heading, " Single Loop Operation." The single loop values are obtained by adding 0.01 to the two loop operation values. Fcr core flows other than the rated condition, the MCPR limit shall be the appropriate value from Table 2.2-1 multiplied by Kf, where K r is given in Figure 2.2-1 as a function of the flow control method in use. These limits are only valid for the fuel types in Cycle 18.

2.3 Maximum Linear Heat Generation Rate limits During steady-state power operation, the linear Heat Generation Rate I (LHGR) of any rod in any fuel bundle at any axial location shall not exceed the maximum allowable LHGR limits in Table 2.3-1. This table only lists the l

limits for fuel types in Cycle 18. I 2.4 Thermal-Hydraulic Stability Exclusion Reoion Normal plant operation is not allowed inside the bounds of the exclusion region defined in Figure 2.4-1. These power and flow limits are applicable

for Cycle 18. Operation inside of the exclusion region may result in a thermal-hydraulic oscillation.

l l

l l

l l

1 l

l 9

f..-

(

Table 2.1-1 ,

MAPLHGR Versus Average Planar Exposure for BP80WB311-10GZ Fuel Plant: Vermont Yankee Fuel Type: BP80WB311-10GZ MAPLHGR (kW/ft)  !

Average Planar Exposure (mwd /ST) Two Loop Operation Single Looo Operation, 0.0 10.93 9.07 200.00 11.00 9.13

'1,000.00 11.13 9.24 2,000.00 11.32 9.40 3.000.00 11.52 9.56 4,000.00 11.64 9.66 5,000.00 11.77 9.77 6,000.00 11.92 9.89 7.000.00 12.11 10.05 8,000.00 12.34 10.24 9,000.00 12.59 10.45 10,000.00 12.83 10.65 12,500.00 13.00 10.79 15,000.00 12.81 10.63 20,000.00 12.24 10.16 25,000.00 11.55 9.59 35,000.00 10.24 8.50 45,000.00 8.76 7.27 50,735.00 5.91 4.91 Source: Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station Sinole LooD ODeration, NED0-30060, Reference 30; Letter, ,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for  !

Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

Technical Specification

References:

3.6.G.la and 3.11.A.

I

  • MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.

Table 2.1-2 MAPlHGR Versus Average Planar Exposure for BP80WB311-11GZ Fuel Plant: Vermnnt Yankee Fuel Type: BP80WB311-11GZ MAPLHGR (kW/ft)

Average Planar Exposure (mwd /ST) Two Loon Operation Single Loon Operation, 0.00 10.93 9.07 200.00 11.00 9.13 1,000.00 11.13 9.24 2,000.00 11.32 9.40 3,000.00 11.52 9.56 4,000.00 11.64 9.66 5,000.00 11.77 9.77 6,000.00 11.92 9.89 7,000.00 12.11 10.05 8,000.00 12.34 10.24 9,000.00 12.59 10.45 10,000.00 12.83 10.65 12,500.00 13.00 10.79 15,000.00 12.81 10.63 l

20,000.00 12.24 10.16 25,000.00 11.55 9.59 35,000.00 10.24 8.50 45,000.00 8.76 7.27 50,735.00 5.91 4.91 i Source: Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: Vermont YaJree Nuclear Power Station Single Loon Operation, NE00-30060, Reference 30: Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

Technical Specification

References:

3.6.G.la and 3.11.A.

  • MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.

F Table 2.1-3 MAPLHGR Versus Average Planar Exposure for 8P80WB335-10GZ Fuel Plant: V.ermont Yankee Fuel Type: BP80WB335-10GZ MAPLHGR (kW/ft)

Average Planar Exnosure (mwd /ST) Two Loop Operation Single loop Operation.

0.00 11.29 9.37 200.00 11.34 9.41 1,000.00 11.48 9.53 2,000.00 11.69 9.70 3,000.00 11.92 9.89 4,000.00 12.17 10.10 5,000.00 12.43 10.32 6,000.00 12.68 10.52 7,000.00 12.87 10.68 8,000.00 13.06 10.84 9,000.00 13.24 10.99 ,

1 10,000.00 12.99 10.78 12,500.00 12.84 10.66 15,000.00 12.65 10.50 20,000.00 11.93 9.90 25,000.00 11.26 9.35  !

1 35,000.00 9.88 8.20 45,000.00 8.38 6.96 50,593.00 5.65 4.69 l

Source: Vermont Yankee Cycle 18 Core Performance Analysis Report,  ;

YAEC-1908, Reference 31; Vermont Yankee Nuclear Power Station  !

Single Loop Operation, NE00-30060, Reference 30: Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

l Technical Specification

References:

3.6.G.la and 3.11.A. i l

MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.

l l

l l

Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel Plant: Vermont Yankee Fuel Type: BP8DWB335-11GZ MAPLHGR (kW/ft)

Average Planar Exposure (MVd/ST) Two Loop Operation Single Loop Operation, 0.00 11.28 9.36 200.00 11.33 9.40 1,000.00 11.43 9.49 2,000.00 11.60 9.63 3,000.00 11.80 9.79 4,000.00 12 04 9.99 5,000.00 12.30 10.21 6,000.00 12.53 10.40 7,000.00 12.73 10.57 8,000.00 12.94 10.74 9,000.00 13.13 10.90 10,000.00 12.99 10.78 12,500.00 12.84 10.66 15,000.00 12.65 10.50 20,000.00 11.93 9.90 25,000.00 11.26 9.35 35,000.00 9.88 8.20 45,000.00 8.38 6.96 50,593.00 5.65 4.69 Source: Vermont Yankee Cycle 18 Core Performance Analysis Report, j YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station '

Single Loop Operation, NE00-30060, Reference 30; Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event," l Reference 33. l I

Technical Specification

References:

3.6.G.la and 3.11.A.

  • MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for i two loop operation by 0.83. I l

l

1 Table 2.2-1 Minimum Criticc1 Power Ratio Operating Limits MCPR Operating Limits Value of "N" Single in RBM Average Control Cycle Exposure Two Loop Loop Ecuation (A)I Rod Scram Time Range Operation Operation 2 42% Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0. 5500 to 10644 mwd /St 1.33 1.34 3.3.C.1.1 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0. 5500 to 9035 mwd /St 1.33 1.34  ;

3.3.C.1.2 9035 to 10644 mwd /St 1.34 1.35 41% Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0. 5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.1 6500 to 9035 mwd /St 1.27 1.28 9035 to 10644 mwd /St 1.32 1.33 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0. 5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.2 6500 to 8035 mwd /St 1.27 1.28 8035 to 9035 mwd /St 1.30 1.31 9035 to 10644 mwd /St 1.34 1.35 140% Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 '

L.C.0. 5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.1 6500 to 8035 mwd /St 1.25 1.26 8035 to 9035 mwd /St 1.27 1.28 9035 to 10644 mwd /St 1.32 1.33 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 l L.C.0. 5500 to 6500 mwd /St 1.29 1.30 '

3.3.C.1.2 6500 to 8035 mwd /St 1.25 1.26 8035 to 9035 mwd /St 1.30 1.31 9035 to 10644 mwd /St 1.34 1.35 Sources: Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, Reference 32: and Vermont Yankee Nuclear Power Station Single Loop Operation, NED0-30060, Reference 30.

Technical Specification

References:

3.6.G.la and 3.11.C.

1 The Rod Block Monitor (RBM) trip setpoints are determined by the equation shown in Table 3.2.5 of the Technical Specifications.

2 MCPR Operating Limits are increased by 0.01 for single loop operation.

~9-

.T,able 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits Maximum Allowable Linear Fuel TyDe Heat Generation Rate (kW/ft)

BP80WB311-10GZ 14.4 BP80WB311-11GZ 14.4 EP80WB335-10GZ 14.4 BP80WB335-11GZ 14.4 Source: NEDE-24011-P-A, Reference 21.

Technical Specification

References:

2.1.A.la, 2.1.B.1, and 3.11.B.

1 l

l

. . 1 I

l Kf 1.4 l

.  ;  ;  ; EQUATIONS for Kf Curves:

=

Kf 2 1.0 l

\

' l

~

Kf(WT>40%) = A.O.441(WT/100%) 1 1

t . .

Kf(WT<40%) = l j,} .-....l.. ..'.......l...... K f(WT> 40 %)*(1.0 +0.003 2(40.WT)) {

, l l Where A(102.5 %) = 1.3308 l 1

A(104.5 %) = 1.3406

, , A(107.0%) = 1.3528  !

~

A(ll2.0%) = 1.3793

[ ,

l A(ll7.0%) = 1.4035 l

1,2 ,- . . . . . . . . . .

. . . AUTOMATIC FLOW CONTROL j , j _-_ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... .....

~

MANUAL FLOjV CON'IROL ,

j~._ Scoop. Tube S:t Point Calibration .. '.

positioned such that: .

, l Flowmax = = 102.5%/ l l l

= 104.5% / . . .

. = 107.0%

!!2.0% / l l l

- - 117.0 % . . .

0.9 ~ ....... . ......... ......... ......... ......... ......... ......... .........

20 30 40 50 60 70 80 90 100 l Core Flow (%) (WT)

Figure 2.2-1 L Versus Perc(.nt of Rated Core Flow Rate (Technical Specification Reference 3.11.C) 150 _

~

140 130

! 1l l 120 b

l l l /

l<

l:l" 80 - --

\ \ \

\;;g M

4 c

y 10


y ,j 8  : <

" . r s*

50 b

.9-=

5 <5 o, i J Ep' I

20

// /

g i

J....

/ l5 j 0 10 20 30 40 50 60 70 80 90 100 110 120 cm,mamem+

i TcrrAL CORE FLOW (%)

Exclusion Region Boundary Equation

lbwer = 133.7831 - 6.61 (FLOW - 0.5) +0.113 (FLOW - 0.5)2 i

Fiqure 2.4-1 Stability Power and Flow Exclusion Region (Technical Specification Reference 3.6.J) i

4

3.0 REFERENCES

1. Report, A. A. F. Ansari, Methods for the Analysis of Boiling Water Reactors: Steady-State Core Flow Distribution Code (FIBWR), YAEC-1234 December 1980.
2. Report A. A. F. Ansari and J. T. Cronin, Methods for the Analysis of Boiling Water Reactors: A System Transient Analysis Model (RETRAN),

YAEC-1233, April 1981.

3. Report, A. A. F. Ansari, K. J. Burns and D. K. Beller, Methods for the Analysis of Boiling Water React)rs: Transient Critical Power Ratio Analysis (RETRAN-TCPYA01), YAEC 1299P, March 1982.
4. Report, A. S. DiGiovine, et ii., CASM0-3G Validation, YAEC-1363-A, April 1988.

5, Report, A. S. DiGiovine, J. P. Gorski, and M. A. Tremblay, SIMULATE-3 Validation and Verification, YAEC-1659-A, September 1988.

6. Report, R. A. Woehlke, et al., MICBURN-3/CASM0-3/ TABLES-3/ SIMULATE-3 Benchmarking of Vermont Yankee Cycles 9 through 13, YAEC-1683-A, March 1989.
7. Report, J. T. Cronin, Method for Generation of One-Dimensional Kinetics Data for RETRAN-02, YAEC-1694-A, June 1989.
8. Report, V. Chandola, M. P. LeFrancois and J. D. Robichaud, Application of One-Dimensional Kinetics to Boiling Water Reactor Transient Analysis Methods, YAEC-1693-A, Revision 1, November 1989.
9. Report, RELAP5YA, A Computer Program for Light-Water Reactor System Thermal-Hydraulic Analysis, YAEC-1300P-A, Revision 0, October 1982:

Revision 1 July 1993.

10. Report, Vermont Yankee BWR Loss-of-Coolant Accident Licensing Analysis Method, YAEC-1547P-A, July 1993.
11. Letter from R. W. Capstick (VYNPC) to USNRC, HUXY Computer Code Information for the Vermont Yankee BWR LOCA Licensing Analysis Method, FVY 87-63, dated June 4, 1987. l
12. Letter from R. W. Capstick (VYNPC) to USNRC, Vermont Yankee LOCA Analysis Method FROSSTEY Fuel Performance Code (FROSSTEY-2), FVY 87-116, dated December 16, 1987.
13. Letter from R. W. Capstick (VYNPC) to USNRC, Response to NRC Reouest for '

Additional Information on the FROSSTEY-2 Fuel Performance Code, BVY 89-65, dated July 14, 1989.

I

I

14. Letter from R. W. Capstick (VYNPC) to USNRC, Supplemental Information on the FROSSTEY 2 Fuel Performance Code, BVY 89-74, dated August 4, 1989.
15. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Reauest for Additional Information on FROSSTEY-2 Fuel Performance Code, BVY 90-045, dated April 19, 1990.
16. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Supplemental Information to VYNPC April 19. 1990 Response Regardina F00SSTEY-2 Fuel Performance Code, BVY 90 054, dated May 10, 1990.
17. Letter ' rom f L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Reauest for Additional Inforrlation on FROSSTEY-2 Fuel Performance Code, BVY 91-024, dated March 6, 1991.
18. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, LOCA-Related ResDonses to ODen Issues on FROSSTEY-2 Fuel Performance Code, BVY 92-39, dated March 27, 1992.
19. Letter from L. A. Tremblay, Jr . (VYNPC) to USNRC, FROSSTEY-2 Fuel Performance Code - Vermont Yankee Response to Remaining Concerns, BVY 92-54, dated May 15, 1992.
20. Report, L. Schor, et al., Vermont Yankee loss-of-Coolant Accident Analysis, YAEC-1772, June 1993.
21. Report, General Electric Standard ADDlication for Reactor Fuel (GESTARII), NEDE-24011-P-A-10 GE Company Proprietary, February 1991, as l amended.
22. Letter, USNRC to VYNPC, SER, November 27, 1981.  !
23. Letter, USNRC to VYNPC, SER, NVY 82-157, September 15, 1982.

24 Letter, USNRC to VYNPC, SER, NVY 85-205, September 27, 1985.

l 25. Letter, USNRC to VYNPC, SER, November 30, 1977.

26. Letter, USNRC to VYNPC, SER NVY 87-136, August 25, 1987.

l I

27. Letter, USNRC to VYNPC, SER, NVY 91-26, February 27, 1991. l l l
28. Letter, USNRC to VYNPC, SER NVY 92-192. October 21, 1992.
29. Letter, USNRC to VYNPC, SER, NVY 92-178, September 24, 1992.
30. Report, Vermont Yankee Nuclear Power Station Single Looo Operation, NE00-30060, February 1983.

4

31. Report, M. A. Sironen, Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, January 1995.
32. Report, B. Y. Hubbard, et al ., End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, October 1991.
33. Letter, P. J. Savoia to R. T. Yee, " Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,* PJS 95106, July 25, 1995.
34. Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Solutions Licensing Methodology, NE00 31960, June 1991.
35. Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Solutions Licensino Methodology. NE00-31960, Supplement 1. March 1992.
36. Letter, USNRC to VYNPC, SER, August 9, 1995.

I 1

1 1

l i

i I

15-

__ ___ _. _ _ ,. , , -