ML042940288

From kanterella
Revision as of 02:09, 16 March 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Core Operating Limits Report
ML042940288
Person / Time
Site: North Anna Dominion icon.png
Issue date: 10/11/2004
From: Funderburk C
Dominion Resources
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
04-619
Download: ML042940288 (22)


Text

L - -<*

Dominion Resources Services, Inc.

5000 Dominion Boulevard, Glen Allen, VA 23060 Aelominion-October 11, 2004 United States Nuclear Regulatory Commission Serial No.: 04-619 Attention: Document Control Desk NL&OS/vlh Washington, D.C. 20555-001 Docket No.: 50-338 License No.: NPF-4 VIRGINIA ELECTRIC AND POWER COMPANY NORTH ANNA POWER STATION UNIT 1 CORE OPERATING LIMITS REPORT Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Virginia Electric and Power Company's (Dominion) Core Operating Limits Report for North Anna Unit 1 Cycle 18 Pattern LM, Revision 1.

No new commitments are intended by this letter. If you have any questions or require additional information, please contact Mr. Tom Shaub at 804/273-2763.

Very truly yours, C. L. Fundeiburk, Director Nuclear Licensing & Operations Support Dominion Resources Services, Inc.

for Virginia Electric and Power Company Attachment cc: U. S. Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street, S.W., Suite 23 T85 Atlanta, Georgia 30303-8931 Mr. M. T. Widmann NRC Senior Resident Inspector North Anna Power Station Ac'(

T  ;

CORE OPERATING LIMITS REPORT North Anna Unit 1 Cycle 18 Pattern LM Revision 1 September 2004 NlC18/LM COLR, Revision I Page I of 21

I NIC18 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 18 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:

TS 2.1.1 Reactor Core Safety Limits TS 3.1.1 Shutdown Margin (SDM)

TS 3.1.3 Moderator Temperature Coefficient (MTC)

TS 3.1.5 Shutdown Bank Insertion Limit TS 3.1.6 Control Bank Insertion Limits TS 3.2.1 Heat Flux Hot Channel Factor TS 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNM)

TS 3.2.3 Axial Flux Difference (AFD)

TS 3.3.1 Reactor Trip System (RTS) Instrumentation TS 3.4.1 RCS Pressure, Temperature, and Flow DNB Limits TS 3.9.1 Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (IRM) refers to the COLR:

TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.

Cycle-specific values are presented in bold. Text in italics is provided for information only.

NIC18/LM COLR, Revision I Page 2 of 21

REFERENCES

1. VEP-FRD42 Rev 2.1-A, Reload NuclearDesign Methodology, August 2003.

(Methodology for TS 3.1.1 - Shutdown Margin, TS 3.1.3 - Moderator Temperature Coefficient, TS 3.1.5 - Shutdown Bank Insertion Limit, TS 3.1.6 - Control Bank Insertion Limits, TS 3.2.1 -

Heat Flux Hot Channel Factor, TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.9.1- Boron Concentration)

2. WCAP-9220-P-A Rev 1, Westinghouse ECCS Evaluation Model - 1981 Version, February 1982.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

3. WCAP-9561-P-A Rev 1 Add. 3, BART A-1: A Computer Code for the Best Estimate Analysis of Reflood Transients - Special Report: Thimble Modeling in W ECCS Evaluation Model, July 1986.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

4. WCAP-10266-P-A Rev 2, The 1981 Version of the Westinghouse ECCS Evaluation Model Using the BASH Code, March 1987.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

5. WCAP-10054-P-A, Westinghouse Small Break ECCS Evaluation Model Using the NOTRUMP Code, August 1985.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

6. WCAP-10079-P-A, NOTRUMP, A Nodal Transient Small Break and General Network Code, August 1985.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

7. WCAP-12610-P-A, VANTAGE+ Fuel Assembly - Reference Core Report, April 1995.

(Methodology forTS 3.2.1 - Heat Flux Hot Channel Factor)

8. VEP-NE-2-A, Statistical DNBR Evaluation Methodology, June 1987.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

9. VEP-NE-3-A, Qualification of the WRB-1 CHF Correlation in the Virginia Power COBRA Code, July 1990.

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

NIC18/LM COLR, Revision I Page 3 of 21

10. VEP-NE Rev. 0.1-A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor and TS 3.2.3 - Axial Flux Difference)

11. WCAP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation)

12. WCAP-14483-A, Generic Methodology for Expanded Core Operating Limits Report, January 1999.

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.1.1 - Shutdown Margin, TS 3.3.1

- Reactor Trip System Instrumentation, TS 3.4.1 - RCS Pressure, Temperature, and Flow DNB Limits and TS 3.9.1 - Boron Concentration)

13. BAW-10227P-A, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel."

(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.2.1 - Heat Flux Hot Channel Factor)

14. BAW-10199P-A, "The BWU Critical Heat Flux Correlations."

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

15. BAW-10170P-A, "Statistical Core Design For Mixing Vane Cores."

(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits)

16. EMF-2103 (P) (A), "Realistic Large Break LOCA Methodology for Pressurized Water Reactors."

(Methodology forTS 3.2.1 - Heat Flux Hot Channel Factor)

17. EMF-96-029 (P) (A), "Reactor Analysis System for PWRs."

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

18. BAW-10168P-A, "RSG LOCA - BWNT Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants." Volume II only (SBLOCA models).

(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)

NIC18/LM COLR, Revision 1 Page 4 of 21

2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.

2.1. 1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.

2.1.1.2 The peak fuel centerline temperature shall be maintained < 50800 F, decreasing by 580 F per 10,000 MWD/MTU of bumup, for Westinghouse fuel and < 5173 0F, decreasing by 650 F per 10,000 MWD/MTU of burnup, for AREVA fuel.

NIC18ALM COLR, Revision 1 Page 5 of 21

COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 660 655

\2400 psia 650-645 - 0 psia 22 640 635-630 - 0 psiX 625-X 620 -

~-615- 8pa 610-605-600-595-590-585-580 -

575 570-0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 POWER (fraction of nominal)

NIC18/LM COLR, Revision 1 Page 6 of 21

I 3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)

LCO 3.1.1 SDM shall be 21.77 % Akfk.

3.1.3 Moderator Temperature Coefficient (MTC)

LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit of MTC is +0.6 x 104 Ak/k/0 F, when < 70% RTP, and 0.0 Ak/k/0 F when 2 70%

RTP.

The BOC/ARO-MTC shall be < +0.6 x 104 Ak/l/ 0 F (upper limit), when <

70% RTP, and < 0.0 Ak/k/ 0 F when Ž 70% RTP.

The EOC/ARO/RTP-MTC shall be less negative than -5.0 x 104 Ak/k/0 F (lower limit).

The MTC surveillance limits are:

The 300 ppmIARO/RTP-MTC should be less negative than or equal to

-4.0 x 104 Ak/k/0 F [Note 2].

The 60 ppni/ARO/RTP-MTC should be less negative than or equal to

-4.7 x 104 Ak/k/0 F [Note 3].

SR 3.1.3.2 Verify MTC is within -5.0 x 104 Ak/k/0 F (lower limit).

Note 2: If the MTC is more negative than -4.0 x 104 Ak/k/ 0 F, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.

Note 3: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of < 60 ppm is less negative than -4.7 x 104 Ak/°kIF.

3.1.4 Rod Group Alignment Limits Required Action A.1. I Verify SDM to be 2 1.77 % Ak/k.

Required Action B.1.1 Verify SDM to be 21.77 % Ak/k.

Required Action D. 1.1 Verify SDM to be 2 1.77 % Ak/k.

NIC I8LM COLR, Revision I Page 7 of 21

3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 230 steps.

Required Action A. 1.I Verify SDM to be 2 1.77 % Ak/k.

Required Action B.1 Verify SDM to be 2 1.77 % Ak/k.

SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 230 steps.

3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in COLR Figure 3.1-1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 102 steps.

Required Action A.1.1 Verify SDM to be 2 1.77 % Ak/k.

Required Action B.1.1 Verify SDM to be 2 1.77 % Ak/k.

Required Action C. 1 Verify SDM to be 2 1.77 % Ak/k.

SR 3.1.6.1 Verify estimated critical control bank position is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.2 Verify each control bank is within the insertion limits specified in COLR Figure 3.1-1.

SR 3.1.6.3 Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LCO 3.1.6 above.

3.1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is 21.77 % Ak/k.

SR 3.1.9.4 Verify SDM to be 2 1.77 % Ak/k.

NIC1IJLM COLR, Revision 1 ' Page 8 of 21

COLR Figure 3.1-1 North Anna I Cycle 18 Control Rod Bank Insertion Limits 230 (0. 49, 23 )

220 210 200 7- _t (1.0 194) 190 180 Fully wid po ition = 230 st S 170 160 O 150 a,. 140 0

4I-t 130

.2 120 I-o 110 0.

= 100 80 0

It 80 .4t ___-f 70 60 50 40 30 / ,/

20 10 0 / /048. 0 p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Fraction of Rated Thermal Power N1C18/LM COLR, Revision 1 Page 9 of 21

3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channei Factor (FQ(Z))

LCO 3.2.1 FQ(Z), as approximated by FQm(Z), shall be within the limits specified below.

The change in the FQ(Z) limit for coastdown operation is accommodated by defining a variable quantity, CFQ as indicated below. Then, the following expressions apply to both normal operation and Tavg coastdown regimes.

CFQ = 2.19, for normal operation at full power; CFQ = 2.15, for flux map immediately preceding EOC temperature coastdown and during subsequent power coastdown operation.

The Measured Heat Flux Hot Channel Factor, FQ~VZ), shall be limited by the following relationships:

CFQ K (Z)

FQl ) - K(Z) for P>0.5 P N(Z)

CFQ K(Z)

FQ' (Z) C for P<0.5 0.5 N(Z)

THERMAL POW1ER ep RATED THERMAL POWER; K(Z) is provided in COLR Figure 3.2-1 (exception noted below), and N(Z) is a cycle-specific non-equilibrium multiplier on lF Q '(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.

7The discussion in the Bases Section B 3.2.1 for this LCO requiresthe application of a cycle dependent non-equilibriinm multiplier, N(Z), to the measuredpeaking factor, FQ"'(Z), before comparing it to the limit. N(Z) accounts for power distribution transients encountered during nonnal operation. As fitnction N(Z) is dependent on the predicted equilibriuim FQ(Z) and is sensitive to the axial power distribution, it is typically generated fromt the actual EOC burnup distribution that can only be obtained after the shutdonmz of the previous cycle. The cycle-specif c N(Z) finction is presented in COLR Table 3.2-1.

NICI8ALM COLR, Revision 1 Page 10 of 21

COLR Table 3.2-1 NIC18 Normal Operation N(Z)

NODE HEIGHT 0 to 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 (FEET) MWDIMTU MWDIMTU MWDIMTU MWDIMTU MWDIMTU 10 10.2 1.107 1.124 1.124 1.124 1.125 11 10.0 1.109 1.123 1.123 1.123 1.123 12 9.8 1.113 1.123 1.125 1.125 1.123 13 9.6 1.118 1.127 1.131 1.131 1.126 14 9.4 1.119 1.128 1.133 1.133 1.126 15 9.2 1.121 1.132 1.136 1.136 1.132 16 9.0 1.131 1.146 1.149 1.149 1.148 17 8.8 1.143 1.159 1.162 1.162 1.165 18 8.6 1.151 1.165 1.167 1.167 1.171 19 8.4 1.157 1.166 1.168 1.170 1.174 20 8.2 1.163 1.169 1.170 1.177 1.180 21 8.0 1.165 1.170 1.170 1.181 1.185 22 7.8 1.166 1.170 1.170 1.183 1.188 23 7.6 1.164 1.167 1.167 1.183 1.191 24 7.4 1.162 1.163 1.162 1.184 1.194 25 7.2 1.157 1.158 1.159 1.182 1.196 26 7.0 1.153 1.155 1.159 1.179 1.196 27 6.8 1.151 1.151 1.160 1.178 1.197 28 6.6 1.148 1.146 1.159 1.176 1.195 29 6.4 1.143 1.141 1.156 1.169 1.191 30 6.2 1.136 1.136 1.151 1.159 1.183 31 6.0 1.135 1.135 1.150 1.154 1.182 32 5.8 1.132 1.132 1.145 1.146 1.174 33 5.6 1.120 1.119 1.129 1.129 1.154 34 5.4 1.110 1.110 1.116 1.116 1.135 35 5.2 1.105 1.112 1.114 1.111 1.127 36 5.0 1.104 1.118 1.117 1.109 1.121 37 4.8 1.104 1.122 1.122 1.107 1.113 38 4.6 1.106 1.126 1.126 1.108 1.111 39 4.4 1.110 1.128 1.128 1.111 1.115 40 4.2 1.117 1.130 1.130 1.117 1.120 41 4.0 1.124 1.134 1.134 1.124 1.124 42 3.8 1.129 1.135 1.135 1.129 1.128 43 3.6 1.134 1.135 1.135 1.132 1.132 44 3.4 1.136 1.135 1.134 1.136 1.136 45 3.2 1.141 1.138 1.137 1.140 1.141 46 3.0 1.148 1.143 1.142 1.145 1.144 47 2.8 1.160 1.152 1.151 1.151 1.148 48 2.6 1.169 1.161 1.159 1.157 1.153 49 2.4 1.183 1.174 1.170 1.167 1.162 50 2.2 1.202 1.191 1.186 1.184 1.178 51 2.0 1.214 1.202 1.197 1.195 1.189 52 1.8 1.217 1.204 1.199 1.198 1.191 N1C18ILM COLR, Revision I Page I11 of 21

COLR Table 3.2-1 (cont.)

N1C18 Normal Operation N(Z)

NODE HEIGHT 9000 to 11000 i 1000 to 13000 13000 to 15000 15000 to 17000 17000 to 18750 (FEET) MWD/MTU MWD/MTU MWD/MTU MWDIMTU MWD/MTU 10 10.2 1.127 1.132 1.132 1.118 1.118 11 10.0 1.125 1.129 1.129 1.117 1.117 12 9.8 1.124 1.126 1.126 1.115 1.115 13 9.6 1.126 1.125 1.125 1.115 1.115 14 9.4 1.126 1.119 1.119 1.115 1.115 15 9.2 1.132 1.123 1.123 1.122 1.122 16 9.0 1.147 1.143 1.142 1.141 1.141 17 8.8 1.165 1.166 1.166 1.162 1.162 18 8.6 1.171 1.173 1.173 1.168 1.168 19 8.4 1.174 1.178 1.178 1.174 1.174 20 8.2 1.180 1.188 1.188 1.187 1.187 21 8.0 1.185 1.194 1.194 1.196 1.196 22 7.8 1.188 1.196 1.196 1.197 1.197 23 7.6 1.191 1.197 1.197 1.201 1.201 24 7.4 1.194 1.201 1.201 1.208 1.208 25 7.2 1.196 1.202 1.202 1.213 1.213 26 7.0 1.196 1.201 1.201 1.216 1.216 27 6.8 1.197 1.201 1.201 1.219 1.219 28 6.6 1.195 1.200 1.200 1.218 1.218 29 6.4 1.191 1.195 1.195 1.218 1.218 30 6.2 1.183 1.187 1.187 1.215 1.215 31 6.0 1.182 1.185 1.185 1.217 1.217 32 5.8 1.174 1.176 1.176 1.211 1.211 33 5.6 1.154 1.154 1.156 1.196 1.196 34 5.4 1.136 1.136 1.138 1.180 1.180 35 5.2 1.130 1.131 1.132 1.174 1.174 36 5.0 1.125 1.129 1.130 1.165 1.165 37 4.8 1.115 1.122 1.127 1.148 1.148 38 4.6 1.111 1.117 1.125 1.136 1.138 39 4.4 1.115 1.116 1.123 1.131 1.136 40 4.2 1.120 1.116 1.120 1.135 1.139 41 4.0 1.124 1.118 1.118 1.144 1.145 42 3.8 1.126 1.119 1.117 1.150 1.150 43 3.6 1.126 1.122 1.121 1.153 1.153 44 3.4 1.126 1.124 1.128 1.155 1.154 45 3.2 1.127 1.127 1.138 1.154 1.154 46 3.0 1.127 1.131 1.147 1.153 1.157 47 2.8 1.128 1.135 1.154 1.154 1.160 48 2.6 1.127 1.135 1.156 1.153 1.160 49 2.4 1.130 1.139 1.160 1.161 1.166 50 2.2 1.139 1.149 1.173 1.177 1.179 51 2.0 1.146 1.155 1.182 1.190 1.190 52 1.8 1.146 1.156 1.184 1.193 1.193 N1C18JLM COLR, Revision 1 Page 12 of 21

COLR Figure 3.2-1 K(Z) - Normalized FQ as a Function of Core Height 1.2 1.1

,6,1.0 1.0 0.9 (12 .925) 0.8 N

LCL'0.7 a

w N

-J E0.6 cr 0

z A 0.5 N

0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 CORE HEIGHT (FT)

NICI8/LM COLR, Revision I Page 13 of 21

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNOAH)

LCO 3.2.2 FNH shall be within the limits specified below.

F",u, < 1.49{1 + 0.3(1 - P)}

THERMAL POWER w e RATED THERMAL POWER SR 3.2.2.1 Verify FNAH is within limits specified above.

3.2.3 AXIAL FLUX DIFFERENCE (AFD)

LCO 3.2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.

NC1I8/LM COLR, Revision 1 Page 14 of 21

COLR Figure 3.2-2 North Anna 1 Cycle 18 Axial Flux Difference Limits 120 110

(-1 ,100) (4{,100) 100 Uracc oU _ ep able Operaion una-,ale 90 a) 80 0

70 a)

E lac 60 a) 0 50 C) - ) (+20, )

IL 40 30 20 10 0

-30 ITV

-20 -10 0 10 20 30 Percent Flux Difference (Delta-1)

N1C18LM COLR, Revision 1 Page 1S of 21

3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature AT The Overtemperature AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

AT SAT K K {K-K2 +TS)[T-T']+K3 (P-P')-f,(A)}

where: AT is measured RCS AT, 'F.

ATo is the indicated AT at RTP, 'F.

s is the Laplace transform operator, secl.

T is the measured RCS average temperature, 'F.

T' is the nominal Tavg at RTP, < 586.8 OF.

P is the measured pressurizer pressure, psig.

P' is the nominal RCS operating pressure, 2 2235 psig.

K, < 1.2715 K 2 Ž0.02172 /'F K3 20.001144 /psig

1. 2= time constants utilized in the lead-lag controllerforTavg r, 2 23.75 sec T2 <4.4 sec (1 + r2s)/(1 + r2s) = fiunction generated by the lead-lag controllerforTavg dynamic compensation f,(AI) 2 0.0165( (q, - qb)) when (q, - qb) < -35% RTP 0 when -35% RTP < (q, - qb) < +3% RTP 0.0198{ (q, - qb) - 3) when (q, - qb) > +3% RTP

[See footnote]"

Where q, and qb are percent RTP in the upper and lower halves of the core, respectively, and qt + qb is the total THERMAL POWER in percent RTP.

  1. Footnote: f,(AI) is dimensionless, as shown in the setpoint equation and discussed in Plant Issue N-2002-1161-R2.

NlC18/LM COLR, Revision 1 Page 16 of 21

TS Table 3.3.1-1 Note 2: Overpower AT The Overpower AT Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of AT span, with the numerical values of the parameters as specified below.

AT*A{ -K{ T T-K [T-T']-f2 (AI)}

where: AT is measured RCS AT, 'F.

ATo is the indicated AT at RTP, 'F.

s is the Laplace transform operator, sec*'.

T is the measured RCS average temperature, 'F.

T' is the nominal Tavg at RTP, c 586.8 'F.

K4 < 1.0865 K5 2 0.0197 /1Ffor increasing Tavg K6 20.00162 /'F when T > T' 0 /T for decreasing Tavg 0 /'F when T < T' h7 = time constant utilized in the rate lag controllerforTavg T3 2 9.5 see T3 s/(l + r3s) = function generatedby the rate lag controllerforTavg dynamic compensation f2 (Al) = 0, for all Al.

N1C18LM COLR, Revision 1 Page 17 of 21

3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:

a. Pressurizer pressure is greater than or equal to 2205 psig;
b. RCS average temperature is less than or equal to 591 'F; and
c. RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.1 Verify pressurizer pressure is greater than or equal to 2205 psig.

SR 3.4.1.2 Verify RCS average temperature is less than or equal to 591 'F.

SR 3.4.1.3 Verify RCS total flow rate is greater than or equal to 295,000 gpm.

SR 3.4.1.4 ------------------------------ NOTE--------------------------------------------

Not required to be performed until 30 days after Ž90% RTP.

Verify by precision heat balance that RCS total flow rate is 2 295,000 gpm.

N1CIU8LM COLR, Revision 1 Page 18 of 21

3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)

Required Action B.2 Borate to an SDM 2 1.77 % Ak/k at 200 OF.

NICI8/LM COLR, Revision I Page 19 of 21

3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained 2 2600 ppm.

Note: The refueling boron concentrationsatisfies the more restrictive of the following conditions: (a) keff 0.9 5, or (b) boron concentration>2600ppni.

SR 3.9.1.1 Verify boron concentration is within the limit specified above.

N1C18/LM COLR, Revision 1 Page 20 of 21

NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1.1 Boration Flow Paths - Operating Required Action E.2 Borate to a SHUTDOWN MARGIN 21.77 % Ak/k at 200 OF, after xenon decay.

NIC18ALM COLR, Revision I Page 21 of 21