ML043000314

From kanterella
Revision as of 00:31, 16 March 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Supplement to the Request for License Amendment Related to Application of Alternative Source Term, Dated February 27, 2004
ML043000314
Person / Time
Site: Limerick  Constellation icon.png
Issue date: 10/25/2004
From: Degregorio R
Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML043000314 (45)


Text

Exelon Nuclear Limerick Generating Station www.exelon corp.com Nuclear P.O. Box 2 3 0 0 Sanatoga, PA 19464 10 CFR 50.90 October 25, 2004 U. S. Nuclear Regulatory Commission AJTN: Document Control Desk Washington, DC 20555-0001 Limerick Generating Station, Units I& 2 Facility Operating License Nos. NPF-39 and NPF-85 NRC Docket Nos. 50-352 and 50-353

Subject:

Supplement to the Request for License Amendment Related to Application of Alternative Source Term, dated February 27, 2004

References:

(1) Letter from M. P. Gallagher (Exelon Generation Company, LLC) to US NRC, dated February 27, 2004 (2) Email from T. Tate (U. S. Nuclear Regulatory Commission) to Douglas Walker (Exelon Generation Company, LLC), dated August 23, 2004 This is a supplement to the Reference ( I ) License Amendment Request (LAR). The Reference (1) LAR proposed certain Technical Specification and Technical Specification Bases changes to implement an alternative source term (AST) methodology at Limerick Generating Station (LGS), Units 1 & 2.

In the Reference (2) email, the U. S. Nuclear Regulatory Commission requested additional information regarding the Limerick AST LAR. Attachment 1 to this supplemental letter provides the response to the questions associated with the request for additional information. Attachment 2 to this supplemental letter provides the description of the methodology used to calculate Suppression Pool pH.

There is no adverse impact to the No Significant Hazards Consideration submitted in the Reference (1) letter. References to the MSlV closure time extension contained in the No Significant Hazards Consideration in Reference (1) should be disregarded as they are removed from the LAR per the response to this MI. There are no additional commitments contained within this letter.

If you have any questions or require additional information, please contact Doug Walker at (610)765-5726.

I declare under penalty of perjury that the foregoing is true and correct.

Respectfully, Executed on ro-Pi- o t Ron J. DeGregorio Site Vice President Limerick Generating Station Exelon Generation Company, LLC Attachments: 1. Response to Questions

2. Suppression Pool pH Calculation Methodology

ATTACHMENT 1 LIMERICK GENERATING STATION UNITS 1 AND 2 Docket Nos. 50-352 50-353 License Nos. NPF-39 NPF-85 Supplement to License Amendment Request for LGS Alternative Source Term Implementation Response to Request for Additional Information

Supplement to License Amendment Request for LGS Alternative Source Term Implementation Attachment 1 Response to Request for Additional Information Page 1 REQUEST FOR ADDITIONAL INFORMATION LIMERICK GENERATING STATION, UNITS 1 AND 2 REQUEST FOR LICENSE AMENDMENTS RELATED TO APPLICATION OF ALTERNATIVE SOURCE TERM

1. Limerick Generating Station (LGS), Units 1 and 2, Technical Specifications (TSs) 3.8.1.2, 3.8.2.2, and 3.8.3.2 (which are currently applicable in Modes 4, 5, and during handling of irradiated fuel assemblies in the secondary containment) currently requires, in part, immediate suspension of handling irradiated fuel in the secondary containment when both offsite preferred sources, redundant safety related electric onsite power sources, or redundant safety related distribution systems are no longer operable. The proposed requirements relax the current TS requirements such that TSs 3.8.1.2, 3.8.2.2, and 3.8.3.2 would be applicable when in Modes 4, 5, and during handling of recently irradiated fuel. The proposed change would thus allow, without TS restrictions, the handling of irradiated fuel assemblies that has decayed at least 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> without any offsite power, onsite power, or A.C. and D.C. electrical power sources through the electric distribution system to safety related loads.

The Technical Specifications Task Force (TSTF)-51 guidelines for systems removed from service during movement of irradiated fuel that has decayed for two days or more and during core alternations state that:

During fuel handling/core alterations, ventilation system and radiation monitor availability (as defined in NUMARC 91-06) should be assessed, with respect to filtration and monitoring of releases from the fuel.

Following shutdown, radioactivity in the fuel decays away fairly rapidly.

The basis of the Technical Specification operability amendment is the reduction in doses due to such decay. The goal of maintaining ventilation system and radiation monitor availability is to reduce doses even further below that provided by the natural decay. A single normal or contingency method to promptly close primary or secondary containment penetration should also be developed. Such prompt methods need not completely block the penetrations or be capable of resisting pressure. The purpose of the prompt methods mentioned above is to enable ventilation systems to draw the release from a postulated fuel handling accident in the proper direction such that it can be treated and monitored.

Please provide the justification for handling irradiated fuel assemblies that have decayed at least 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> without the availability of power source to any safety systems such as those needed to maintain plant shutdown, to monitor and maintain the plant status, or to mitigate a postulated fuel handling accident.

RESPONSE

As part of the AST LAR submittal, Exelon proposed a change to the Shutdown Electrical Power Systems TS in accordance with Technical Specification Task Force (TSTF)

Traveler-51. The extent of the proposed revision qualified the Applicability of the

Supplement to License Amendment Request for LGS Alternative Source Term Implementation Attachment 1 Response to Request for Additional Information Page 2 Shutdown Electrical Power Systems Technical Specifications TS 3.8.1.2, 3.8.2.2, and 3.8.3.2 to apply only to the movement of recently irradiated fuel.

Upon further review and consideration of the actual benefits received for this TS revision, Exelon requests that the AST LAR Reference (1), be revised to delete the proposed changes to LGS Electrical Technical Specifications 3.8.1.2, 3.8.2.2, and 3.8.3.2. The Specifications for Electrical Power System requirements during movement of irradiated fuel will not be revised per the AST LAR. Submitted revisions for the following Technical Specification pages are no longer requested and should be removed from the LAR for both Unit 1 and Unit 2:

Unit 1 Unit 2 3/4 8-9 3/4 8-9 3/4 8-14 3/4 8-14 3/4 8-14a 3/4 8-14a 3/4 8-20 3/4 8-19 3/4 8-20

2. In the February 27, 2004, submittal, an evaluation of the sump pH control was performed to support the determination that the pH is maintained above 7. The sump pH is maintained above 7 in order to minimize the release of radioactive iodine and to minimize stress corrosion cracking susceptibility in stainless steel following a loss-of-coolant accident (LOCA). In order to complete its evaluation, the NRC staff needs to review the assumptions and calculations used to support a conclusion that the containment sump pH will be maintained above 7 throughout the duration of the accident. Please provide a description of the methodology used to calculate the pH at different time intervals during the 30 day period after a LOCA. Please include sufficient detail to enable the NRC staff to perform independent calculations, including sample calculations, computer code descriptions, and inputs.

RESPONSE

Excerpts from the Suppression Pool pH Calculation for Alternative Source Terms, LM-0642, are provided as Attachment 2 to address this question.

3. In the February 27, 2004, submittal, the licensee proposed a change to TS 3/4.4.7, for the Main Steam Isolation Valve (MSIV) closing time. The proposed change would increase the closing time from 5 seconds to 10 seconds. Please identify all transient and accident analyses where the MSIV closure time of 5 seconds is currently assumed.

Please provide the results of the recalculated analyses using the proposed closure time of 10 seconds. Include a comparison of the revised results using the 10 second closure time to the applicable acceptance criteria, and a discussion of deviations, if any, from the previous calculation methodology used.

RESPONSE

During preparation for submittal of the AST LAR, Exelon had performed a qualitative assessment to validate that the proposed MSIV stroke time limits were bounded by Limericks transient and accident analyses. The analysis was conducted using information from Limericks UFSAR and PBAPS MSLB analysis (since both plants have

Supplement to License Amendment Request for LGS Alternative Source Term Implementation Attachment 1 Response to Request for Additional Information Page 3 similar power level, diameter steam lines, reactor pressure and steam flow rates) and had concluded that the proposed change was bounded. The qualitative assessment performed at the time of submittal has since been determined to be inadequate to support this change; this issue has been documented in the stations corrective action program.

Following discussions with General Electric pertaining to a quantitative analysis, it has been determined that the cost to perform the required analyses on the RPV, RPV internals, fuel damage, and design basis accidents and transients, does not support the benefit anticipated from this change.

Therefore, due to the unanticipated high cost of this change, Exelon requests that the AST LAR, Reference (1), be revised to delete the proposed changes to LGS Technical Specifications 3.4.7 and 4.4.7 and TS Bases 3/4.4.7. The Specifications for MSIV Closure Time requirements will not be revised per the AST LAR. Submitted revisions for the following Technical Specification and Technical Specification Bases pages are no longer requested and should be removed from the LAR for both Unit 1 and Unit 2:

Unit 1 Unit 2 3/4 4-23 3/4 4-23 B 3/4 4-6 B 3/4 4-6

ATTACHMENT 2 LIMERICK GENERATING STATION UNITS 1 AND 2 Docket Nos. 50-352 50-353 License Nos. NPF-39 NPF-85 Supplement to License Amendment Request for LGS Alternative Source Term Implementation Suppression Pool pH Calculation Methodology

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 1 Attachment 2 Suppression Pool pH Calculation Methodology

1. Purpose and Objective In order to prevent iodine re-evolution following an accident, the pH of the Suppression Pool should be maintained above 7.0. Information contained in this attachment is extracted from the Suppression Pool pH Calculation for Alternative Source Terms, LM-0642. Attachments referenced within this document are as shown on the attached spreadsheets.

The objective of this calculation is to determine the pH of the Suppression Pool following a Loss of Coolant Accident (LOCA) based on the use of Alternative Source Terms (AST). The pH values are determined, as a function of time, with and without the addition of the sodium pentaborate in the Standby Liquid Control System. The minimum quantity of sodium pentaborate required to maintain the Suppression Pool at a pH above 7.0 is determined and compared to the current Technical Specifications (TS) limit.

2. Methodology and Acceptance Criteria The calculation is based on the methodology developed for the equivalent calculation done for the Grand Gulf Nuclear Station, Unit 1 as revised December 2000. The calculation formulas developed in these documents were reviewed by an experienced Chemical Engineer and used by him to develop the spreadsheets included herein in Attachments C and D. The accuracy of translation of the equations in these documents into spreadsheet cell formulas was verified by duplicating the Grand Gulf calculation.

As noted, injection of sodium pentaborate solution by the Standby Liquid Control System (SLCS) is a required function in order to control post-LOCA pH in the suppression pool, and prevent iodine re-evolution. Based on the worst-case beginning of cycle condition, injection should be completed within 13 hours1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> after the start of the Design Basis Accident (DBA) LOCA. Therefore, manual initiation is acceptable. Manual initiation of SLCS is expected early in a DBA-LOCA as a result of emergency operating procedures and severe accident guidelines, particularly for events resulting in fuel damage that would be consistent with AST source terms.

3. Assumptions/Engineering Judgments
  • The Suppression Pool is assumed to be well mixed so that the pH at any time can be represented by a single value.
  • For cable parameters, the cable data consisted of the lengths and outside diameters of all cables located in raceways in the drywell, all considered as exposed to Post-LOCA environment. As a conservative estimate of the cable lengths in free air, an additional 10%

of the totals are assumed to be in free air. A 10% contingency on the cable surface area is also included. Radiolysis of surface coatings on the steel and concrete surfaces in the Drywell and Containment would not be significant contributors, since the coatings utilize non-chlorinated polymers.

4. Design Input 4.1 Cable Data Cable lengths, diameters, and average jacket thickness are developed separately from plant data.

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 2 4.2 Temperature Suppression Pool temperatures are taken from the current Limerick LOCA Long Term Containment Analysis (SIL-636) results, such as those contained in the Limerick Generating Station (LGS) AST LOCA Calculation. This data only extends to 100,000 seconds, but as indicated in UFSAR Figure 6.2-9A, Suppression Pool temperatures are decreasing with time by 100,000 seconds, and there is no mechanism for the temperatures to rise between 100,000 seconds and 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />. Therefore, the Suppression Pool temperature at 100,000 seconds is used from then until 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />, as this is conservative (higher temperatures give lower calculated pH values).

4.3 Sodium Pentaborate Mass in SLCS Tank The minimum quantity of sodium pentaborate required to maintain the Suppression Pool at a pH above 7.0 is determined and compared to the current minimum available volume of sodium pentaborate solution stored in the SLCS tank of 3160 gallons, as per LGS Technical Specification section 4.1.5. Per the LGS TS Figure 3.1.5-1, a 10% solution concentration, by weight, is chosen to conservatively bound the acceptable operable range. A specific gravity of 1.0485 gm/cm3 corresponds to this Na2B10O16*10H2O concentration. Based on the TS 3160 gallon volume and this specific gravity, the total solution mass equals 27,651 lbs. and, at 10 wt% the total mass of Na2B10O16*10H2O in solution is 2765 lbs.

Although artificially enriched Boron is used in the SLCS sodium pentaborate, the natural 10B enrichment of Boron, 19.9%, is assumed in order to conservatively minimize its available gm-moles. Because 10B has an atomic weight of 10.0129 gm/mole, and 11B has an atomic weight of 11.0093 gm/mole, the calculated naturally occurring molar mass of Boron is 10.811 gm/mole. This value agrees with the periodic table value. The total molar mass of Na2B10O16*10H2O is 590.23 gm/mole. Based on the 10.811 gm/mole mass of Boron, the percentage of total Boron in Na2B10O16*10H2O is 18.3165%. Taking 18.3% of the 2765 lbs. total mass of Na2B10O16*10H2O for the TS 3160 gallon volume gives a total of 506 lbs., or 21,249 gm-atoms of total available Boron for the TS 3160 gallon volume.

The Spreadsheet labeled as Attachment C, page C-6 provides the corresponding derivation of the minimum quantities in gallons of sodium pentaborate solution stored in the SLCS tank and resulting lbs. and gm-atoms of total available Boron required to maintain the Suppression Pool at a pH above 7.0.

4.4 Suppression Pool and Drywell + Suppression Pool Airspace Volume In order to determine the minimum quantity of sodium pentaborate required to maintain the Suppression Pool at a pH above 7.0 for the purposes of this calculation, the maximum Suppression Pool volume and corresponding minimum Drywell + Suppression Pool Airspace volume is required. Initially, for conservatism in this calculation, the entire 200,000 gal. (26,736 cu.

ft.) Condensate Storage Tank capacity was considered as added to the maximum Suppression Pool volume as derived from the UFSAR Table 6.2-4A High Water Level volume of 134,600 cu. ft.

plus a maximum Reactor Coolant System liquid and applicable piping volume for a total of approximately 185,000 cu. ft. However, the Condensate Storage Tank volume would not be applicable to large break DBA-LOCA conditions considered herein, where low-pressure Emergency Core Cooling Systems would be utilized. Considering this, an approximately 154,000 cu. ft. maximum Suppression Pool volume is derived. However, to increase the conservatism, a 175,000 cu. ft. maximum Suppression Pool volume is used.

For the corresponding minimum Drywell + Suppression Pool Airspace volume, the 403,120 cu. ft.

value from ST-4-LLR-001-1 is used minus the above 175,000 cu. ft. conservative maximum Suppression Pool volume and plus the 122,120 nominal minimum Suppression Pool volume provided in TS 3/4.5.3 for a value of 350,240 cu. ft.

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 3

5. Calculations pH - Fundamental Relationships pH = -log10[H+] 5-1

[H+][OH ] = KW(T) 5-2 where:

[H+] = concentration of hydrogen ions in moles/liter

[OH ] = concentration of hydroxyl ions in moles/liter KW(T) = ionization constant for water as a function of temperature T The data for KW for T between 77 and 212 °F can be represented by the following correlation developed in Section 3.0 of Reference 5.1:

Log10KW(T) = 15.5129 - 2.24E-2

  • T + 3.352E-5
  • T2 5-3 Hydriodic Acid Production Iodine, accompanied by Cesium, is released during the Gap Release and Early In-Vessel Release phases.

The following equation, valid during the Early Vessel Release Phase, includes the release during the Gap Release Phase.

Iodine and cesium core inventories are calculated for both beginning and end of cycle (BOC and EOC) conditions. Since EOC conditions result in increased inventory of both acidic (iodine) and basic (cesium) compounds, pH values are calculated for both conditions. For conservatism, the EOC radiation doses are used for the BOC calculation.

The hydriodic acid concentration is governed by the following equation:

[HI](t) = mI / (120

  • VPOOL) * [t - (0.5 + tgap)] + mI / (400
  • VPOOL) 5-4 where:

[HI](t) = concentration of Hydriodic Acid at time t (moles/liter) mI = core iodine inventory (gram-moles)

VPOOL = Suppression Pool volume (liters) t = time after start of accident (hrs) (includes tgap + Gap Release [0.5 hrs] + Early In-Vessel Release [1.5 hrs] duration for a tmax = 2.0336 hrs) tgap = time of onset of gap release = 121 seconds = 0.0336 hrs tmax = 2.0336 hrs = end of Early In-Vessel Release Nitric Acid Production Nitric Acid is produced by radiolysis of the water in the Suppression Pool with a G value of 0.007 molecules HNO3 / 100 eV absorbed dose or 7.3E-6 g moles / megarad- liter.

The nitric acid concentration is governed by the following equation:

[HNO3](t) = 7.3E-6

  • D(t)pool 5-5

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 4 where:

[HNO3](t) = nitric acid concentration at time t (moles/liter)

D(t)pool = Total accumulated dose in Suppression Pool at time t (megarad)

Hydrochloric Acid Production Hydrochloric Acid is produced by radiolysis of chlorinated polymer cable jacketing. Radiolysis of surface coatings on the steel and concrete surfaces in the Drywell and Containment would not be significant contributors, since the coatings utilize nonchlorinated polymers.

The calculation of the resulting concentration in the Suppression Pool is based on the following G value for HCl production in Hypalon chlorinated polymer.

GHCl = 2.115 molecules/100eV = 3.512E-20 g moles HCl / MeV The hydrochloric acid concentration is governed by the following equations:

Doses from beta and gamma radiation are calculated separately.

[HCl](t) = GHCl / VPOOL * (Stray / 2 + Sfa) / µ air

  • D(t) 5-6 where the effective cable surface area for dose is:

Stray / 2 + Sfa =

  • D0 * (Ltray / 2 + Lfa)

[HCl](t) = GHCl / VPOOL * (Stray + Sfa) * (1- e - µ air

  • r) / µ air
  • (1 - e - µ hypalon
  • th)
  • D(t) 5-7 where: Stray + Sfa =
  • D0 * (Ltray + Lfa) where:

[HCl](t) = HCl concentration from Beta radiation at time t (g moles/liter)

[HCl](t) = HCl concentration from Gamma radiation at time t (g moles/liter)

D0 = cable diameter (cm)

Ltray = cable length in trays (raceways) (cm)

Lfa = cable length in free air (cm)

µ air = linear beta absorption coefficient in air (1/cm)

µ air = linear gamma absorption coefficient in air (1/cm) r = gamma free path (cm)

µ hypalon = linear gamma absorption coefficient in Hypalon (1/cm) th = Hypalon jacket thickness (cm)

D(t) = accumulated beta dose per unit volume at time t (MeV/cm3)

D(t) = accumulated gamma dose per unit volume at time t (MeV/cm3)

GHCl = 3.512E-20 (g moles HCl / MeV)

VPOOL = Suppression Pool volume (Liters)

Stray = Cable surface area in trays (cm2)

Sfa = Cable surface area in free air (cm2)

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 5 Cesium Hydroxide Production Cesium, accompanied by Iodine, is released during the Gap Release and Early In-Vessel Release phases. The following equation, valid during the Early Vessel Release Phase, includes the release during the Gap Release Phase.

Iodine and cesium core inventories are calculated for both beginning and end of cycle (BOC and EOC) conditions. Since EOC conditions result in increased inventory of both acidic (iodine) and basic (cesium) compounds, pH values are calculated for both conditions. For conservatism, the EOC radiation doses are used for the BOC calculation.

The cesium hydroxide concentration is governed by the following equation:

[CsOH](t) = (0.4

  • mCs - 0.475
  • mI) / 3
  • VPOOL) * [t - (0.5 + tgap)]

+( 0.05

  • mCs - 0.0475
  • mI) / VPOOL 5-8

[CsOH](t) = concentration of Cesium Hydroxide at time t (g moles/liter) mI = core Iodine inventory (gram-moles) mCs = core Cesium inventory (gram-moles)

VPOOL = Suppression Pool volume (liters) t = time after start of accident (hrs) (includes tgap + Gap Release [0.5 hrs] + Early In-Vessel Release [1.5 hrs] duration for a tmax = 2.0336 hrs) tgap = time of onset of gap release = 121 seconds = 0.0336 hrs tmax = 2.0336 hrs = end of Early In-Vessel Release Final Pool pH Calculation (No SLCS Addition)

The net Suppression Pool pH can be calculated from the total of the [H+] and [OH-] concentrations using the following equations.

[H+](t) = [H+](t=0) + [HI](t) + [HNO3](t) + [HCl](t)

[H+](t) = 10-pH(t=0) + [HI](t) + [HNO3](t) + [HCl](t) 5-9

[OH-](t) = [OH-](t=0) + [CsOH](t)

[OH-](t) = 10-14/10-pH(t=0) + [CsOH](t) 5-10 Accounting for the concentration of neutralized ions [x]:

( [H+] - [x] ) * ( [OH-] - [x] ) = KW(T)

[x] ={ [H+] + [OH-] - {([H+]+[OH-])2 - 4*([H+]*[OH-]-KW)}1/2 } / 2 5-11 note: KW = 10-(-Log Kw)

The equation for the net [H+] becomes:

[H+]net = [H+] - [x] 5-12 and pH = - log10([H+]net) 5-13 Effect of Sodium Pentaborate (SLCS) Addition

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 6 The pH of the suppression Pool is increased by the addition of Sodium Pentaborate from the Standby Liquid Control (SLCS) System.

A limiting value (minimum weight) of Boron is used. The limiting value is used since it minimizes the number of moles available for buffering.

Addition of Sodium Pentaborate introduces a buffer into the Suppression Pool, which will maintain the pool at a pH corresponding to the following equation:

pH = pKa + log10 ( [anion] / [acid] ) 5-14 with data for Ka fitted by the equation Ka = (0.0585

  • T + 1.309)E-10 5-15 where:

Ka = boric acid dissociation constant pKa = negative of the log of the boric acid dissociation constant T = °F

[anion] = borate concentration of [2B(OH)4 -]

[acid] = boric acid concentration of [8H3BO3]

based on the equation

+

Na2B10O16 + 16H2O 2Na + 2B(OH)4- + 8H3BO3 Therefore, Borate (g-equivalents) = 2

  • Na2B10O16
  • 10 H20 (g-moles)

Boric acid (g-equivalents) = 8

  • Na2B10O16
  • 10 H20 (g-moles)

The net strong acid equivalents [H+]net are neutralized by the borate and the above equations become:

Borate (g-equivalents) = 2

  • Na2B10O16 (g-moles) [H+]net
  • Na2B10O16 (g-moles) + [H+]net
  • Vpool 5-17 And equation 5-14 becomes:

(2

  • Na2B10O16 (g-moles) [H+]net
  • Vpool) / Vpool pH = log10Ka +log10 __________________________________________

(8

  • Na2B10O16 (g-moles) + [H+]net
  • Vpool) / Vpool 5-18

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 7

6. Summary of Results and Conclusions The post accident Suppression Pool pH is calculated as a function of time after accident initiation. The results are shown below in the attached graphs for Beginning of Cycle (BOC) and End of Cycle (EOC) conditions respectively. These graphs are based on Excel spreadsheet calculations presented in Attachment C (Sheets 1 and 5).

The BOC (actually early cycle) condition produces the lowest pH and is therefore the limiting case.

Without addition of sodium pentaborate from the Standby Liquid Control System (SLCS), the pH in the Suppression Pool could drop below a pH 7 after 13 hours1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br />.

Therefore, SLCS addition is required to prevent iodine re-evolution.

With SLCS addition of only 1500 gallons (of the TS 4.1.5 3160 gallons available), the Suppression Pool remains above pH 7 for 30 days (720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br />). This equates to 240 lbs.

total Boron or 1313 lbs. sodium pentaborate.

7. Spreadsheet Attachments from the Calculation (LM-0642, Rev. 0)
  • Attachment A - pH vs Time - Beginning of Cycle
  • Attachment B - pH vs Time - End of Cycle
  • Attachment D - pH Transient Spreadsheet Cell Formulas
  • Attachment E - pH Transient - Grand Gulf Reference Data

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 8 Figure 7-1 pH vs. Time - BEGINNING OF CYCLE 10.00 9.00 8.00 7.00 6.00 w/o SLCS pH 5.00 with SLCS 4.00 3.00 2.00 1.00 0.00 1 10 100 1000 Time (Hours)

Attachment A

Supplement to the Request for License Amendments Related to Application of Alternative Source Term Attachment 2 Suppression Pool pH Calculation Methodology Page 9 Figure 7-2 pH vs. Time - END OF CYCLE 9.00 8.00 7.00 6.00 5.00 w/o SLCS pH with SLCS 4.00 3.00 2.00 1.00 0.00 1 10 100 1000 Time (Hours)

Attachment B

Spreadsheet Attachments from the Calculation (LM-0642, Rev. 0)

Attachment C pH Transient Spreadsheet

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION A B C D E F G H I J K L M N O 22 1 LIMERICK pH CALCULATION pH TRANSIENT BEGINNING OF CYCLE Cable Data 2 Linear Absorption Coefficients 4 SA tray [cm2] 2,668,443 Cable Surface [trays]- Drywell + 10% contingency 3 13 3 VPOOL 4.955E+06 Liters [175,000 ft ] ubeta air 1.980E-02 1/cm SA fa [cm2] 133,422 Cable Surface [free air]- Drywell + 10% contingency 19 4 mI 1.700E+02 Iodine inventory [g-atoms] EOC ubeta hypalon 52.08 1/cm SB tray [cm2] 0 Cable Surface [trays] - Supp. Pool + 10% contingency 19 5 mCs 1.600E+03 Cesium inventory [g-atoms] EOC ugamma air 3.75E-05 1/cm SB fa [cm2] 0 Cable Surface [free air] - Supp. Pool + 10% contingency 20 6 tgap 3.361E-02 Onset of Gap release [hrs] ugamma hypalon 0.099 1/cm 16 22 7 r [gamma free path-DRYWELL] 1310.42 cm th [cm] 0.62992 Hypalon Jacket Thickness 16 8 r [gamma free path-SUPP POOL AIR] 1310.42 cm 9 INTEGRATED DOSES 10 Beta+Gamma 18 Gamma 18 Beta 18 Gamma 18 Beta 18 From Beta From Gamma From Beta From Gamma 1

11 TIME POOL Temp POOL DRYWELL DRYWELL Supp. Pool AIR Supp. Pool AIR [HI] [HNO3]

2

[HCL] -DRYWELL 5 [HCL] -DRYWELL 6 [HCL] -CONTAIN5 [HCL] -CONTAIN6 Total [H+] 7

[CsOH] 3 17 3 12 Hours Deg F Mrad MeV/cm MeV/cm3 MeV/cm3 MeV/cm3 g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-ions/liter g-mols/liter 13 0 95 0.00E+00 5.012E-06 0.000E+00 14 1 187.2 2.191E-07 5.231E-06 3.206E-05 15 2 195.8 1.001E-01 3.956E+12 1.730E+12 3.956E+12 1.730E+12 5.050E-07 7.306E-07 8.675E-07 5.784E-06 0.000E+00 0.000E+00 1.290E-05 6.968E-05 16 2.0336 195.8 1.044E-01 4.121E+12 1.802E+12 4.121E+12 1.802E+12 5.146E-07 7.619E-07 9.037E-07 6.025E-06 0.000E+00 0.000E+00 1.322E-05 7.094E-05 17 3 199.9 2.158E-01 8.368E+12 3.689E+12 8.368E+12 3.689E+12 5.146E-07 1.575E-06 1.850E-06 1.223E-05 0.000E+00 0.000E+00 2.118E-05 7.094E-05 18 5 203.1 3.988E-01 1.505E+13 6.797E+12 1.505E+13 6.797E+12 5.146E-07 2.911E-06 3.408E-06 2.201E-05 0.000E+00 0.000E+00 3.385E-05 7.094E-05 19 12 199.5 8.293E-01 2.878E+13 1.421E+13 2.878E+13 1.421E+13 5.146E-07 6.054E-06 7.124E-06 4.208E-05 0.000E+00 0.000E+00 6.078E-05 7.094E-05 20 18 193.1 1.086E+00 3.595E+13 1.881E+13 3.595E+13 1.881E+13 5.146E-07 7.927E-06 9.432E-06 5.256E-05 0.000E+00 0.000E+00 7.544E-05 7.094E-05 21 24 186.6 1.292E+00 4.145E+13 2.263E+13 4.145E+13 2.263E+13 5.146E-07 9.429E-06 1.135E-05 6.060E-05 0.000E+00 0.000E+00 8.690E-05 7.094E-05 22 48 186.6 1.883E+00 5.709E+13 3.409E+13 5.709E+13 3.409E+13 5.146E-07 1.375E-05 1.709E-05 8.348E-05 0.000E+00 0.000E+00 1.198E-04 7.094E-05 23 72 186.6 2.315E+00 6.878E+13 4.269E+13 6.878E+13 4.269E+13 5.146E-07 1.690E-05 2.141E-05 1.006E-04 0.000E+00 0.000E+00 1.444E-04 7.094E-05 24 96 186.6 2.678E+00 7.877E+13 4.988E+13 7.877E+13 4.988E+13 5.146E-07 1.955E-05 2.501E-05 1.152E-04 0.000E+00 0.000E+00 1.653E-04 7.094E-05 25 120 186.6 3.002E+00 8.778E+13 5.615E+13 8.778E+13 5.615E+13 5.146E-07 2.192E-05 2.815E-05 1.283E-04 0.000E+00 0.000E+00 1.839E-04 7.094E-05 26 150 186.6 3.375E+00 9.807E+13 6.303E+13 9.807E+13 6.303E+13 5.146E-07 2.464E-05 3.160E-05 1.434E-04 0.000E+00 0.000E+00 2.051E-04 7.094E-05 27 200 186.6 3.942E+00 1.135E+14 7.274E+13 1.135E+14 7.274E+13 5.146E-07 2.877E-05 3.647E-05 1.660E-04 0.000E+00 0.000E+00 2.368E-04 7.094E-05 28 240 186.6 4.359E+00 1.247E+14 7.928E+13 1.247E+14 7.928E+13 5.146E-07 3.182E-05 3.975E-05 1.823E-04 0.000E+00 0.000E+00 2.594E-04 7.094E-05 29 300 186.6 4.939E+00 1.400E+14 8.754E+13 1.400E+14 8.754E+13 5.146E-07 3.605E-05 4.389E-05 2.047E-04 0.000E+00 0.000E+00 2.902E-04 7.094E-05 30 360 186.6 5.473E+00 1.538E+14 9.436E+13 1.538E+14 9.436E+13 5.146E-07 3.995E-05 4.732E-05 2.249E-04 0.000E+00 0.000E+00 3.177E-04 7.094E-05 31 400 186.6 5.809E+00 1.624E+14 9.830E+13 1.624E+14 9.830E+13 5.146E-07 4.240E-05 4.929E-05 2.375E-04 0.000E+00 0.000E+00 3.347E-04 7.094E-05 32 480 186.6 6.438E+00 1.784E+14 1.051E+14 1.784E+14 1.051E+14 5.146E-07 4.700E-05 5.269E-05 2.608E-04 0.000E+00 0.000E+00 3.660E-04 7.094E-05 33 600 186.6 7.301E+00 2.000E+14 1.133E+14 2.000E+14 1.133E+14 5.146E-07 5.330E-05 5.681E-05 2.924E-04 0.000E+00 0.000E+00 4.080E-04 7.094E-05 34 700 186.6 7.966E+00 2.166E+14 1.190E+14 2.166E+14 1.190E+14 5.146E-07 5.815E-05 5.967E-05 3.166E-04 0.000E+00 0.000E+00 4.400E-04 7.094E-05 35 720 186.6 8.094E+00 2.198E+14 1.201E+14 2.198E+14 1.201E+14 5.146E-07 5.909E-05 6.020E-05 3.213E-04 0.000E+00 0.000E+00 4.461E-04 7.094E-05 36 37 NOTES: 14 Acid dissociation constant from: Entergy Eng. Report GGNS-98-0039 Rev.3, Sect.6.1,p.21 38 1 Entergy Eng. Report GGNS-98-0039 Rev.3 , Equation 3-1d [30+90 min release duration] 15 Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 39 2 Ibid, Equation 3-2b 16 See attachment B for gamma free paths 40 3 Ibid, Equation 3-4d [30+90 min release duration] 17 ECR 01-01233 for SIL-636, extrpolated to times beyond 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> using the constant value at 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 41 4 Ibid, Table A-1 18 Attachment B 42 5 Ibid, Equation 3-3a 19 Attachment B 43 6 Ibid, Equation 3-3b 20 USNRC Reg. Guide 1.183 44 7 Ibid, Equation 3-5a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 21 See page C-6 of this attachment.

45 8 Ibid, Equation 3-5b; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 22 Cable Data from Attachment A.

46 9 Ibid, Equation 3-0a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 47 10 Ibid, Equation 3-5d; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 48 11 Ibid, Equation 3-5d; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 49 12 Ibid, Equation 3-5e; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 50 13 Max. Suppression Pool volume from Calc. body section 4.4, including 51 UFSAR Table 6.2-4A HWL Suppression Pool volume of 134,600 cu ft, Reactor Coolant System Liquid Volume of 13,108 cu ft 52 and low-pressure Emergency Core Cooling System sources, roundd up to 175,000 cu. Ft.

53 (For Attachment B page B-6 minimization of Drywell + Suppression Pool Airspace volume, the LLRT Program 54 403,120 cu ft value - 175,000 + 122,120 Tech Spec 3/4.5.3 nominal minimum Suppression Pool Volume is used)

LM-0642, Rev. 0, Attachment C, Page C-1 of C-7

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION P Q R S T U V W X Y Z AA AB 1 pH TRANSIENT BEGINNING OF CYCLE 22 2 Cable Data 3 2,425,858 Cable Surface [Trays] - DRYWELL [cm2]

21 4 121,293 Cable Surface [Free air] - DRYWELL [cm2] 1008.67 g. mols Na2B10O16*10H2O Added 21 5 0 Cable Surface [Free air] - Supp. Pool [cm2] 10086.71 g.atoms total boron 6 0 Cable Surface [Trays] - Supp. Pool [cm2]

7 8 pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CONTROL [SLC] SOLUTION 9

10 Strong Acid 8 9 10 11 12 11 Total [OH+] -LOG(Kw) Root x Net [H+] pH Ka g-equiv. Na2B10O16*10H2O Borate Boric Acid pKa pH 14 15 12 g-ions/liter g-ions/liter Before SLC Net [H+]

  • V POOL g-mols g-equiv. g-equiv. -log10Ka 13 1.995E-09 1.369E+01 -2.101E-09 5.014E-06 5.30 6.867E-10 2.485E+01 1008.7 1992 8094 9.16 8.55 14 3.206E-05 1.249E+01 5.219E-06 1.194E-08 7.92 1.226E-09 5.915E-02 1008.7 2017 8069 8.91 8.31 15 6.968E-05 1.241E+01 1.289E-05 6.818E-09 8.17 1.276E-09 3.379E-02 1008.7 2017 8069 8.89 8.29 16 7.094E-05 1.241E+01 1.321E-05 6.707E-09 8.17 1.276E-09 3.323E-02 1008.7 2017 8069 8.89 8.29 17 7.094E-05 1.237E+01 2.118E-05 8.481E-09 8.07 1.300E-09 4.203E-02 1008.7 2017 8069 8.89 8.28 18 7.094E-05 1.235E+01 3.384E-05 1.215E-08 7.92 1.319E-09 6.019E-02 1008.7 2017 8069 8.88 8.28 19 7.094E-05 1.238E+01 6.074E-05 4.103E-08 7.39 1.298E-09 2.033E-01 1008.7 2017 8070 8.89 8.28 20 7.094E-05 1.244E+01 7.086E-05 4.578E-06 5.34 1.261E-09 2.268E+01 1008.7 1995 8092 8.90 8.29 21 7.094E-05 1.250E+01 7.092E-05 1.598E-05 4.80 1.223E-09 7.918E+01 1008.7 1938 8149 8.91 8.29 22 7.094E-05 1.250E+01 7.094E-05 4.891E-05 4.31 1.223E-09 2.423E+02 1008.7 1775 8312 8.91 8.24 23 7.094E-05 1.250E+01 7.094E-05 7.345E-05 4.13 1.223E-09 3.640E+02 1008.7 1653 8433 8.91 8.21 24 7.094E-05 1.250E+01 7.094E-05 9.432E-05 4.03 1.223E-09 4.674E+02 1008.7 1550 8537 8.91 8.17 25 7.094E-05 1.250E+01 7.094E-05 1.130E-04 3.95 1.223E-09 5.599E+02 1008.7 1457 8629 8.91 8.14 26 7.094E-05 1.250E+01 7.094E-05 1.342E-04 3.87 1.223E-09 6.651E+02 1008.7 1352 8734 8.91 8.10 27 7.094E-05 1.250E+01 7.094E-05 1.658E-04 3.78 1.223E-09 8.217E+02 1008.7 1196 8891 8.91 8.04 28 7.094E-05 1.250E+01 7.094E-05 1.885E-04 3.72 1.223E-09 9.341E+02 1008.7 1083 9003 8.91 7.99 29 7.094E-05 1.250E+01 7.094E-05 2.192E-04 3.66 1.223E-09 1.086E+03 1008.7 931 9156 8.91 7.92 30 7.094E-05 1.250E+01 7.094E-05 2.468E-04 3.61 1.223E-09 1.223E+03 1008.7 795 9292 8.91 7.84 31 7.094E-05 1.250E+01 7.094E-05 2.637E-04 3.58 1.223E-09 1.307E+03 1008.7 710 9376 8.91 7.79 32 7.094E-05 1.250E+01 7.094E-05 2.950E-04 3.53 1.223E-09 1.462E+03 1008.7 555 9531 8.91 7.68 33 7.094E-05 1.250E+01 7.094E-05 3.371E-04 3.47 1.223E-09 1.670E+03 1008.7 347 9740 8.91 7.46 34 7.094E-05 1.250E+01 7.094E-05 3.690E-04 3.43 1.223E-09 1.829E+03 1008.7 189 9898 8.91 7.19 35 7.094E-05 1.250E+01 7.094E-05 3.752E-04 3.43 1.223E-09 1.859E+03 1008.7 158 9928 8.91 7.12 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment C, Page C-2 of C-7

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION A B C D E F G H I J K L M N O 22 1 LIMERICK pH CALCULATION pH TRANSIENT END OF CYCLE Cable Data 2 Linear Absorption Coefficients 4 SA tray [cm2] 2,668,443 Cable Surface [trays]- Drywell + 10% contingency 3 13 3 VPOOL 4.955E+06 Liters [175,000 ft ] ubeta air 1.980E-02 1/cm SA fa [cm2] 133,422 Cable Surface [free air]- Drywell + 10% contingency 19 4 mI 2.900E+02 Iodine inventory [g-atoms] EOC ubeta hypalon 52.08 1/cm SB tray [cm2] 0 Cable Surface [trays] - Supp. Pool + 10% contingency 19 5 mCs 3.200E+03 Cesium inventory [g-atoms] EOC ugamma air 3.75E-05 1/cm SB fa [cm2] 0 Cable Surface [free air] - Supp. Pool + 10% contingency 20 6 tgap 3.361E-02 Onset of Gap release [hrs] ugamma hypalon 0.099 1/cm 16 22 7 r [gamma free path-DRYWELL] 1310.42 cm th [cm] 0.70514 Hypalon Jacket Thickness 16 8 r [gamma free path-SUPP POOL AIR] 1310.42 cm 9 INTEGRATED DOSES 10 Beta+Gamma 18 Gamma 18 Beta 18 Gamma 18 Beta 18 From Beta From Gamma From Beta From Gamma 1

11 TIME POOL Temp POOL DRYWELL DRYWELL Supp. Pool AIR Supp. Pool AIR [HI] [HNO3]

2

[HCL] -DRYWELL 5 [HCL] -DRYWELL 6 [HCL] -CONTAIN5 [HCL] -CONTAIN6 Total [H+] 7

[CsOH] 3 17 3 12 Hours Deg F Mrad MeV/cm MeV/cm3 MeV/cm3 MeV/cm3 g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-ions/liter g-mols/liter 13 0 95 0.00E+00 5.012E-06 0.000E+00 14 1 187.2 3.738E-07 5.386E-06 6.534E-05 15 2 195.8 1.001E-01 3.956E+12 1.730E+12 3.956E+12 1.730E+12 8.614E-07 7.306E-07 8.675E-07 6.451E-06 0.000E+00 0.000E+00 1.392E-05 1.422E-04 16 2.0336 195.8 1.044E-01 4.121E+12 1.802E+12 4.121E+12 1.802E+12 8.778E-07 7.619E-07 9.037E-07 6.719E-06 0.000E+00 0.000E+00 1.427E-05 1.448E-04 17 3 199.9 2.158E-01 8.368E+12 3.689E+12 8.368E+12 3.689E+12 8.778E-07 1.575E-06 1.850E-06 1.364E-05 0.000E+00 0.000E+00 2.296E-05 1.448E-04 18 5 203.1 3.988E-01 1.505E+13 6.797E+12 1.505E+13 6.797E+12 8.778E-07 2.911E-06 3.408E-06 2.454E-05 0.000E+00 0.000E+00 3.675E-05 1.448E-04 19 12 199.5 8.293E-01 2.878E+13 1.421E+13 2.878E+13 1.421E+13 8.778E-07 6.054E-06 7.124E-06 4.693E-05 0.000E+00 0.000E+00 6.600E-05 1.448E-04 20 18 193.1 1.086E+00 3.595E+13 1.881E+13 3.595E+13 1.881E+13 8.778E-07 7.927E-06 9.432E-06 5.862E-05 0.000E+00 0.000E+00 8.186E-05 1.448E-04 21 24 186.6 1.292E+00 4.145E+13 2.263E+13 4.145E+13 2.263E+13 8.778E-07 9.429E-06 1.135E-05 6.759E-05 0.000E+00 0.000E+00 9.425E-05 1.448E-04 22 48 186.6 1.883E+00 5.709E+13 3.409E+13 5.709E+13 3.409E+13 8.778E-07 1.375E-05 1.709E-05 9.310E-05 0.000E+00 0.000E+00 1.298E-04 1.448E-04 23 72 186.6 2.315E+00 6.878E+13 4.269E+13 6.878E+13 4.269E+13 8.778E-07 1.690E-05 2.141E-05 1.121E-04 0.000E+00 0.000E+00 1.563E-04 1.448E-04 24 96 186.6 2.678E+00 7.877E+13 4.988E+13 7.877E+13 4.988E+13 8.778E-07 1.955E-05 2.501E-05 1.285E-04 0.000E+00 0.000E+00 1.789E-04 1.448E-04 25 120 186.6 3.002E+00 8.778E+13 5.615E+13 8.778E+13 5.615E+13 8.778E-07 2.192E-05 2.815E-05 1.431E-04 0.000E+00 0.000E+00 1.991E-04 1.448E-04 26 150 186.6 3.375E+00 9.807E+13 6.303E+13 9.807E+13 6.303E+13 8.778E-07 2.464E-05 3.160E-05 1.599E-04 0.000E+00 0.000E+00 2.220E-04 1.448E-04 27 200 186.6 3.942E+00 1.135E+14 7.274E+13 1.135E+14 7.274E+13 8.778E-07 2.877E-05 3.647E-05 1.851E-04 0.000E+00 0.000E+00 2.563E-04 1.448E-04 28 240 186.6 4.359E+00 1.247E+14 7.928E+13 1.247E+14 7.928E+13 8.778E-07 3.182E-05 3.975E-05 2.034E-04 0.000E+00 0.000E+00 2.808E-04 1.448E-04 29 300 186.6 4.939E+00 1.400E+14 8.754E+13 1.400E+14 8.754E+13 8.778E-07 3.605E-05 4.389E-05 2.283E-04 0.000E+00 0.000E+00 3.141E-04 1.448E-04 30 360 186.6 5.473E+00 1.538E+14 9.436E+13 1.538E+14 9.436E+13 8.778E-07 3.995E-05 4.732E-05 2.508E-04 0.000E+00 0.000E+00 3.440E-04 1.448E-04 31 400 186.6 5.809E+00 1.624E+14 9.830E+13 1.624E+14 9.830E+13 8.778E-07 4.240E-05 4.929E-05 2.648E-04 0.000E+00 0.000E+00 3.624E-04 1.448E-04 32 480 186.6 6.438E+00 1.784E+14 1.051E+14 1.784E+14 1.051E+14 8.778E-07 4.700E-05 5.269E-05 2.908E-04 0.000E+00 0.000E+00 3.964E-04 1.448E-04 33 600 186.6 7.301E+00 2.000E+14 1.133E+14 2.000E+14 1.133E+14 8.778E-07 5.330E-05 5.681E-05 3.261E-04 0.000E+00 0.000E+00 4.421E-04 1.448E-04 34 700 186.6 7.966E+00 2.166E+14 1.190E+14 2.166E+14 1.190E+14 8.778E-07 5.815E-05 5.967E-05 3.531E-04 0.000E+00 0.000E+00 4.768E-04 1.448E-04 35 720 186.6 8.094E+00 2.198E+14 1.201E+14 2.198E+14 1.201E+14 8.778E-07 5.909E-05 6.020E-05 3.583E-04 0.000E+00 0.000E+00 4.835E-04 1.448E-04 36 37 NOTES: 14 Acid dissociation constant from: Entergy Eng. Report GGNS-98-0039 Rev.3, Sect.6.1,p.21 38 1 Entergy Eng. Report GGNS-98-0039 Rev.3 , Equation 3-1d [30+90 min release duration] 15 Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 39 2 Ibid, Equation 3-2b 16 See attachment B for gamma free paths 40 3 Ibid, Equation 3-4d [30+90 min release duration] 17 ECR 01-01233 for SIL-636, extrpolated to times beyond 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> using the constant value at 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 41 4 Ibid, Table A-1 18 Attachment B 42 5 Ibid, Equation 3-3a 19 Attachment B 43 6 Ibid, Equation 3-3b 20 USNRC Reg. Guide 1.183 44 7 Ibid, Equation 3-5a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 21 Page C-6 of this attachment 45 8 Ibid, Equation 3-5b; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 22 Cable Data from Attachment A.

46 9 Ibid, Equation 3-0a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 47 10 Ibid, Equation 3-5d; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 48 11 Ibid, Equation 3-5d; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 49 12 Ibid, Equation 3-5e; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 50 13 Max. Suppression Pool volume from Calc. body section 4.4, including 51 UFSAR Table 6.2-4A HWL Suppression Pool volume of 134,600 cu ft, Reactor Coolant System Liquid Volume of 13,108 cu ft 52 and low-pressure Emergency Core Cooling System sources, roundd up to 175,000 cu. Ft.

53 (For Attachment B page B-6 minimization of Drywell + Suppression Pool Airspace volume, the LLRT Program 54 403,120 cu ft value - 175,000 + 122,120 Tech Spec 3/4.5.3 nominal minimum Suppression Pool Volume is used)

LM-0642, Rev. 0, Attachment C, Page C-3 of C-7

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION P Q R S T U V W X Y Z AA AB 1 pH TRANSIENT END OF CYCLE 22 2 Cable Data 3 2,425,858 Cable Surface [Trays] - DRYWELL [cm2]

21 4 121,293 Cable Surface [Free air] - DRYWELL [cm2] 1008.67 g. mols Na2B10O16*10H2O Added 5 0 Cable Surface [Free air] - Supp. Pool [cm2] 10086.71 g.atoms total boron 6 0 Cable Surface [Trays] - Supp. Pool [cm2]

7 8 pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CONTROL [SLC] SOLUTION 9

10 Strong Acid 8 9 10 11 12 11 Total [OH+] -LOG(Kw) Root x Net [H+] pH Ka g-equiv. Na2B10O16*10H2O Borate Boric Acid pKa pH 14 15 12 g-ions/liter g-ions/liter Before SLC Net [H+]

  • V POOL g-mols g-equiv. g-equiv. -log10Ka 13 1.995E-09 1.369E+01 -2.101E-09 5.014E-06 5.30 6.867E-10 2.485E+01 1008.7 1992 8094 9.16 8.55 14 6.534E-05 1.249E+01 5.380E-06 5.343E-09 8.27 1.226E-09 2.648E-02 1008.7 2017 8069 8.91 8.31 15 1.422E-04 1.241E+01 1.392E-05 3.019E-09 8.52 1.276E-09 1.496E-02 1008.7 2017 8069 8.89 8.29 16 1.448E-04 1.241E+01 1.427E-05 2.967E-09 8.53 1.276E-09 1.470E-02 1008.7 2017 8069 8.89 8.29 17 1.448E-04 1.237E+01 2.296E-05 3.465E-09 8.46 1.300E-09 1.717E-02 1008.7 2017 8069 8.89 8.28 18 1.448E-04 1.235E+01 3.675E-05 4.172E-09 8.38 1.319E-09 2.068E-02 1008.7 2017 8069 8.88 8.28 19 1.448E-04 1.238E+01 6.599E-05 5.314E-09 8.27 1.298E-09 2.633E-02 1008.7 2017 8069 8.89 8.28 20 1.448E-04 1.244E+01 8.186E-05 5.807E-09 8.24 1.261E-09 2.878E-02 1008.7 2017 8069 8.90 8.30 21 1.448E-04 1.250E+01 9.425E-05 6.257E-09 8.20 1.223E-09 3.101E-02 1008.7 2017 8069 8.91 8.31 22 1.448E-04 1.250E+01 1.298E-04 2.114E-08 7.67 1.223E-09 1.047E-01 1008.7 2017 8069 8.91 8.31 23 1.448E-04 1.250E+01 1.447E-04 1.161E-05 4.94 1.223E-09 5.753E+01 1008.7 1960 8127 8.91 8.30 24 1.448E-04 1.250E+01 1.448E-04 3.415E-05 4.47 1.223E-09 1.692E+02 1008.7 1848 8239 8.91 8.26 25 1.448E-04 1.250E+01 1.448E-04 5.433E-05 4.26 1.223E-09 2.692E+02 1008.7 1748 8339 8.91 8.23 26 1.448E-04 1.250E+01 1.448E-04 7.729E-05 4.11 1.223E-09 3.830E+02 1008.7 1634 8452 8.91 8.20 27 1.448E-04 1.250E+01 1.448E-04 1.115E-04 3.95 1.223E-09 5.525E+02 1008.7 1465 8622 8.91 8.14 28 1.448E-04 1.250E+01 1.448E-04 1.361E-04 3.87 1.223E-09 6.743E+02 1008.7 1343 8744 8.91 8.10 29 1.448E-04 1.250E+01 1.448E-04 1.694E-04 3.77 1.223E-09 8.392E+02 1008.7 1178 8909 8.91 8.03 30 1.448E-04 1.250E+01 1.448E-04 1.992E-04 3.70 1.223E-09 9.873E+02 1008.7 1030 9057 8.91 7.97 31 1.448E-04 1.250E+01 1.448E-04 2.177E-04 3.66 1.223E-09 1.079E+03 1008.7 939 9148 8.91 7.92 32 1.448E-04 1.250E+01 1.448E-04 2.516E-04 3.60 1.223E-09 1.247E+03 1008.7 770 9316 8.91 7.83 33 1.448E-04 1.250E+01 1.448E-04 2.973E-04 3.53 1.223E-09 1.473E+03 1008.7 544 9543 8.91 7.67 34 1.448E-04 1.250E+01 1.448E-04 3.321E-04 3.48 1.223E-09 1.646E+03 1008.7 372 9715 8.91 7.50 35 1.448E-04 1.250E+01 1.448E-04 3.388E-04 3.47 1.223E-09 1.679E+03 1008.7 339 9748 8.91 7.45 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment C, Page C-4 of C-7

Weight % Sodium Pentaborate in Solution vs. Specific Gravity @ 80 F 1.075 y = 0.5x + 0.9985 1.07 1.065 Specific Gravity @ 80 F 1.06 Data between 11wt% and 15wt% is from LGS 1.055 Procedure No. CH-C-105, Rev. 5, Table CH-C-105-3 (Ref. 5.11) 1.05 1.045 1.04 10.00% 11.00% 12.00% 13.00% 14.00% 15.00%

Weight % Sodium Pentaborate in Solution LM-0642, Rev. 0, Attachment C, Page C-5 of C-7

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION A B C D E 1 Available Boron Calculation 2

3 4 Quantity Value Basis 5

6 Volume of Solution (gal)= 1.5000E+03 Assumed Minimum (LGS Tech Spec Sect. 4.1.5 7 indicates 3160 gallons) 8 wt% of Na2B10O16*10H2O= 10% LGS Technical Specification figure 3.1.5-1 9 Specific Gravity (gm/cm3)= 1.0485 Table CH-C-105-3 3

10 Conversion Factor (cm /gal)= 3785.41 11 Conversion Factor (lbs/gm)= 0.0022 12 13 Total Mass of Solution (lbs)= 1.3125E+04 14 Total Na 2B10O16*10H2O (lbs)= 1.3125E+03 15 Total Na 2B10O16*10H2O (gm)= 5.9535E+05 16 Total Na 2B10O16*10H2O 17 (gm-moles)= 1.0087E+03 18 Total Boron (gm-atoms)= 1.0087E+04 19 20 21 Total Available Boron (lbs)= 2.4041E+02 22 al Available Boron (gm-atoms)= 1.0087E+04 23 24 B-10 Enrichment= 19.90%

25 26 Molar Mass Total Molar Mass of 27 (gm/mole) Na2B10O16

  • 10H2O 28 Sodium 22.99 590.2330 29 Boron 10.8110 30 Oxygen 16.00 31 Hydrogen 1.01 32 Boron-10 10.0129 33 Boron-11 11.0093 34 35 Percentage of Total Boron= 18.3165%

LM-0642, Rev. 0, Attachment C, Page C-6 of C-7

Spreadsheet Attachments from the Calculation (LM-0642, Rev. 0)

Attachment D pH Transient Spreadsheet Cell Formulas

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION A B C D E F G H I 1 LIMERICK pH TRANSIENT BEGINNING OF CYCLE 2 Linear Absorption C 3 VPOOL =175000*28.3168 Liters [175,000 ft 3] 13 ubeta air 0.0198 1/cm 4 mI =170 Iodine inventory [g-atom ubeta hypalon 52.08 1/cm 5 mCs =1600 Cesium inventory [g-ato ugamma air 0.0000375 1/cm 6 tgap =121/3600 Onset of Gap release [h ugamma hypalon 0.099 1/cm 7 r [gamma free path-DRYWELL]16894.08 cm 8 r [gamma free path-SUPP POOL894.08 cm 9 INTEGRATED 18 10 Beta+Gamma Gamma 18 Beta 18 Gamma 18 Beta 18 1 2 11 TIME POOL Temp POOL DRYWELL DRYWELL Supp Pool AIR Supp Pool AIR [HI] [HNO3]

12 Hours Deg F 17 Mrad MeV/cm 3 MeV/cm 3 MeV/cm 3 MeV/cm 3 g-mols/liter g-mols/liter 13 0 95 0 14 1 187.2 =$B$4/(120*$B$3)*($A14-(0.5+$B$6))+$B$4/(400*$B$3) 15 2 195.8 0.100087111151012 3956052849546.56 1730013153896.35 3956052849546.56 1730013153896.35 =$B$4/(120*$B$3)*($A15-(0.5+$B$6))+$B$4/(400*$B$3) =0.0000073*$C15 16 =0.5+1.5+B6 195.8 0.104365847573824 4120748284326.69 1802214752482.87 4120748284326.69 1802214752482.87 =$B$4/(120*$B$3)*($A16-(0.5+$B$6))+$B$4/(400*$B$3) =0.0000073*$C16 17 3 199.9 0.215756878516613 8367522752309.87 3688722168022.81 8367522752309.87 3688722168022.81 =H$16 =0.0000073*$C17 18 5 203.1 0.398753951242835 15051283188018 6796717122483.9 15051283188018 6796717122483.9 =H$16 =0.0000073*$C18 19 12 199.5 0.829274158572949 28781202708989.2 14207462998066.7 28781202708989.2 14207462998066.7 =H$16 =0.0000073*$C19 20 18 193.1 1.08584565286588 35947219280802.3 18809856471831.5 35947219280802.3 18809856471831.5 =H$16 =0.0000073*$C20 21 24 186.6 1.29165941930598 41450203689486.6 22625236709381.3 41450203689486.6 22625236709381.3 =H$16 =0.0000073*$C21 22 48 186.6 1.88316646363286 57094527006647.7 34089477741320.3 57094527006647.7 34089477741320.3 =H$16 =0.0000073*$C22 23 72 186.6 2.31488045241861 68775684974726 42694278802823 68775684974726 42694278802823 =H$16 =0.0000073*$C23 24 96 186.6 2.67760819687578 78774903495935.1 49880534617235 78774903495935.1 49880534617235 =H$16 =0.0000073*$C24 25 120 186.6 3.0022610140995 87776415615034.7 56145093552860.5 87776415615034.7 56145093552860.5 =H$16 =0.0000073*$C25 26 150 186.6 3.37480313336637 98069389403685.5 63027129381434.4 98069389403685.5 63027129381434.4 =H$16 =0.0000073*$C26 27 200 186.6 3.94157016913884 113525022634318 72737793079027.3 113525022634318 72737793079027.3 =H$16 =0.0000073*$C27 28 240 186.6 4.35914715584886 124718856946027 79280404587774.5 124718856946027 79280404587774.5 =H$16 =0.0000073*$C28 29 300 186.6 4.93895422570735 139994683781518 87536763527759.8 139994683781518 87536763527759.8 =H$16 =0.0000073*$C29 30 360 186.6 5.47325714195057 153829094639737 94361689798228.1 153829094639737 94361689798228.1 =H$16 =0.0000073*$C30 31 400 186.6 5.80851378579049 162409963290567 98299968870279.8 162409963290567 98299968870279.8 =H$16 =0.0000073*$C31 32 480 186.6 6.43777056431354 178352381268313 105070419526278 178352381268313 105070419526278 =H$16 =0.0000073*$C32 33 600 186.6 7.30114927597588 199990905047147 113291889646017 199990905047147 113291889646017 =H$16 =0.0000073*$C33 34 700 186.6 7.96603186890977 216560042435043 119000318577454 216560042435043 119000318577454 =H$16 =0.0000073*$C34 35 720 186.6 8.09431558980373 219753186435482 120054170939062 219753186435482 120054170939062 =H$16 =0.0000073*$C35 36 37 NOTES: 14 Acid dissociation constant from: Entergy Eng. Report GGNS-98 38 1 Entergy Eng. Report 15 Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 39 2 Ibid, Equation 3-2b 16 See attachment B for gamma free paths 40 3 Ibid, Equation 3-4d [3 17 LGS UFSAR Rev. 11 41 4 Ibid, Table A-1 18 Attachment B 42 5 Ibid, Equation 3-3a 19 Attachment B 43 6 Ibid, Equation 3-3b 20 USNRC Reg. Guide 1.183 44 7 Ibid, Equation 3-5a; E 21 See page C-6 of this attachment.

45 8 Ibid, Equation 3-5b; E 22 Cable Data from Attachment A.

46 9 Ibid, Equation 3-0a; E 47 10 Ibid, Equation 3-5d; E 48 11 Ibid, Equation 3-5d; E 49 12 Ibid, Equation 3-5e; E 50 13 Max. Suppression Po 51 UFSAR Table 6.2-4A 52 and low-pressure Em 53 (For Attachment B pa 54 403,120 cu ft value -

LM-0642, Rev. 0, Attachment D, Page D-1 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION J K L 1 Cable Data 22 2

2 SA tray [cm ] =$P$3*1.1 Cable Surface [trays]- Drywell + 10% contingency 3 SA fa [cm 2] =$P$4*1.1 Cable Surface [free air]- Drywell + 10% contingency 4 SB tray [cm 2] =$P$6*0.95*1.1 Cable Surface [trays] - Supp. Pool + 10% contingency 5 SB fa [cm 2] =P6*1.1*0.05 Cable Surface [free air] - Supp. Pool + 10% contingency 6

22 7 th [cm] 0.62992 Hypalon Jacket Thickness 8

9 10 From Beta From Gamma From Beta 11 [HCL] -DRYWELL 5 [HCL] -DRYWELL6 [HCL] -CONTAIN5 12 g-mols/liter g-mols/liter g-mols/liter 13 14 15 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E15 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D15 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E15 16 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E16 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D16 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E16 17 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E17 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D17 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E17 18 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E18 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D18 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E18 19 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E19 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D19 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E19 20 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E20 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D20 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E20 21 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E21 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D21 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E21 22 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E22 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D22 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E22 23 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E23 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D23 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E23 24 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E24 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D24 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E24 25 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E25 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D25 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E25 26 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E26 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D26 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E26 27 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E27 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D27 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E27 28 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E28 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D28 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E28 29 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E29 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D29 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E29 30 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E30 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D30 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E30 31 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E31 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D31 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E31 32 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E32 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D32 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E32 33 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E33 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D33 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E33 34 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E34 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D34 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E34 35 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E35 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D35 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-2 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION M N O 1

2 3

4 5

6 7

8 9

10 From Gamma 11 [HCL] -CONTAIN6 Total [H+] 7 [CsOH] 3 12 g-mols/liter g-ions/liter g-mols/liter 13 =POWER(10,-$T$13)+$H13+$I13+$J13+$K13+$L13+$M13 0 14 =POWER(10,-$T$13)+$H14+$I14+$J14+$K14+$L14+$M14 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A14-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 15 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D15 =POWER(10,-$T$13)+$H15+$I15+$J15+$K15+$L15+$M15 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A15-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 16 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D16 =POWER(10,-$T$13)+$H16+$I16+$J16+$K16+$L16+$M16 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A16-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 17 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D17 =POWER(10,-$T$13)+$H17+$I17+$J17+$K17+$L17+$M17 =$O$16 18 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D18 =POWER(10,-$T$13)+$H18+$I18+$J18+$K18+$L18+$M18 =$O$16 19 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D19 =POWER(10,-$T$13)+$H19+$I19+$J19+$K19+$L19+$M19 =$O$16 20 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D20 =POWER(10,-$T$13)+$H20+$I20+$J20+$K20+$L20+$M20 =$O$16 21 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D21 =POWER(10,-$T$13)+$H21+$I21+$J21+$K21+$L21+$M21 =$O$16 22 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D22 =POWER(10,-$T$13)+$H22+$I22+$J22+$K22+$L22+$M22 =$O$16 23 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D23 =POWER(10,-$T$13)+$H23+$I23+$J23+$K23+$L23+$M23 =$O$16 24 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D24 =POWER(10,-$T$13)+$H24+$I24+$J24+$K24+$L24+$M24 =$O$16 25 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D25 =POWER(10,-$T$13)+$H25+$I25+$J25+$K25+$L25+$M25 =$O$16 26 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D26 =POWER(10,-$T$13)+$H26+$I26+$J26+$K26+$L26+$M26 =$O$16 27 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D27 =POWER(10,-$T$13)+$H27+$I27+$J27+$K27+$L27+$M27 =$O$16 28 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D28 =POWER(10,-$T$13)+$H28+$I28+$J28+$K28+$L28+$M28 =$O$16 29 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D29 =POWER(10,-$T$13)+$H29+$I29+$J29+$K29+$L29+$M29 =$O$16 30 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D30 =POWER(10,-$T$13)+$H30+$I30+$J30+$K30+$L30+$M30 =$O$16 31 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D31 =POWER(10,-$T$13)+$H31+$I31+$J31+$K31+$L31+$M31 =$O$16 32 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D32 =POWER(10,-$T$13)+$H32+$I32+$J32+$K32+$L32+$M32 =$O$16 33 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D33 =POWER(10,-$T$13)+$H33+$I33+$J33+$K33+$L33+$M33 =$O$16 34 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D34 =POWER(10,-$T$13)+$H34+$I34+$J34+$K34+$L34+$M34 =$O$16 35 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D35 =POWER(10,-$T$13)+$H35+$I35+$J35+$K35+$L35+$M35 =$O$16 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-3 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION P Q R S T U 1 pH TRANSIEN BEGINNING OF CYCLE 22 2 Cable Data 3 2425857.59715346 Cable Surface [Trays] - DRYWELL [cm2]

4 =$P$3*0.05 Cable Surface [Free air] - DRYWELL [cm2]

5 =P6*0.05 Cable Surface [Free air] - Supp. Pool [cm2]

6 0 Cable Surface [Trays] - Supp. Pool [cm2]

7 8 pH EFFECT 9

10 8 9 10 11 12 11 Total [OH+] -LOG(Kw) Root x Net [H+] pH Ka 14 12 g-ions/liter g-ions/liter Before SLC 13 =POWER(10,-14)/POWER(10,-$T$13)+$O13 =15.5129-0.0224*$B13+0.00003352*POWER(B13,2) =(N13+P13-SQRT(POWER(($N13+$P13),2)-(4*(N13*P13-POWER(10,-$Q13)))))/2 =$N13-$R13 5.3 =(0.0585*B13+1.309)/10000000000 14 =POWER(10,-14)/POWER(10,-$T$13)+$O14 =15.5129-0.0224*$B14+0.00003352*POWER(B14,2) =(N14+P14-SQRT(POWER(($N14+$P14),2)-(4*(N14*P14-POWER(10,-$Q14)))))/2 =$N14-$R14 =-LOG10($S14) =(0.0585*B14+1.309)/10000000000 15 =POWER(10,-14)/POWER(10,-$T$13)+$O15 =15.5129-0.0224*$B15+0.00003352*POWER(B15,2) =(N15+P15-SQRT(POWER(($N15+$P15),2)-(4*(N15*P15-POWER(10,-$Q15)))))/2 =$N15-$R15 =-LOG10($S15) =(0.0585*B15+1.309)/10000000000 16 =POWER(10,-14)/POWER(10,-$T$13)+$O16 =15.5129-0.0224*$B16+0.00003352*POWER(B16,2) =(N16+P16-SQRT(POWER(($N16+$P16),2)-(4*(N16*P16-POWER(10,-$Q16)))))/2 =$N16-$R16 =-LOG10($S16) =(0.0585*B16+1.309)/10000000000 17 =POWER(10,-14)/POWER(10,-$T$13)+$O17 =15.5129-0.0224*$B17+0.00003352*POWER(B17,2) =(N17+P17-SQRT(POWER(($N17+$P17),2)-(4*(N17*P17-POWER(10,-$Q17)))))/2 =$N17-$R17 =-LOG10($S17) =(0.0585*B17+1.309)/10000000000 18 =POWER(10,-14)/POWER(10,-$T$13)+$O18 =15.5129-0.0224*$B18+0.00003352*POWER(B18,2) =(N18+P18-SQRT(POWER(($N18+$P18),2)-(4*(N18*P18-POWER(10,-$Q18)))))/2 =$N18-$R18 =-LOG10($S18) =(0.0585*B18+1.309)/10000000000 19 =POWER(10,-14)/POWER(10,-$T$13)+$O19 =15.5129-0.0224*$B19+0.00003352*POWER(B19,2) =(N19+P19-SQRT(POWER(($N19+$P19),2)-(4*(N19*P19-POWER(10,-$Q19)))))/2 =$N19-$R19 =-LOG10($S19) =(0.0585*B19+1.309)/10000000000 20 =POWER(10,-14)/POWER(10,-$T$13)+$O20 =15.5129-0.0224*$B20+0.00003352*POWER(B20,2) =(N20+P20-SQRT(POWER(($N20+$P20),2)-(4*(N20*P20-POWER(10,-$Q20)))))/2 =$N20-$R20 =-LOG10($S20) =(0.0585*B20+1.309)/10000000000 21 =POWER(10,-14)/POWER(10,-$T$13)+$O21 =15.5129-0.0224*$B21+0.00003352*POWER(B21,2) =(N21+P21-SQRT(POWER(($N21+$P21),2)-(4*(N21*P21-POWER(10,-$Q21)))))/2 =$N21-$R21 =-LOG10($S21) =(0.0585*B21+1.309)/10000000000 22 =POWER(10,-14)/POWER(10,-$T$13)+$O22 =15.5129-0.0224*$B22+0.00003352*POWER(B22,2) =(N22+P22-SQRT(POWER(($N22+$P22),2)-(4*(N22*P22-POWER(10,-$Q22)))))/2 =$N22-$R22 =-LOG10($S22) =(0.0585*B22+1.309)/10000000000 23 =POWER(10,-14)/POWER(10,-$T$13)+$O23 =15.5129-0.0224*$B23+0.00003352*POWER(B23,2) =(N23+P23-SQRT(POWER(($N23+$P23),2)-(4*(N23*P23-POWER(10,-$Q23)))))/2 =$N23-$R23 =-LOG10($S23) =(0.0585*B23+1.309)/10000000000 24 =POWER(10,-14)/POWER(10,-$T$13)+$O24 =15.5129-0.0224*$B24+0.00003352*POWER(B24,2) =(N24+P24-SQRT(POWER(($N24+$P24),2)-(4*(N24*P24-POWER(10,-$Q24)))))/2 =$N24-$R24 =-LOG10($S24) =(0.0585*B24+1.309)/10000000000 25 =POWER(10,-14)/POWER(10,-$T$13)+$O25 =15.5129-0.0224*$B25+0.00003352*POWER(B25,2) =(N25+P25-SQRT(POWER(($N25+$P25),2)-(4*(N25*P25-POWER(10,-$Q25)))))/2 =$N25-$R25 =-LOG10($S25) =(0.0585*B25+1.309)/10000000000 26 =POWER(10,-14)/POWER(10,-$T$13)+$O26 =15.5129-0.0224*$B26+0.00003352*POWER(B26,2) =(N26+P26-SQRT(POWER(($N26+$P26),2)-(4*(N26*P26-POWER(10,-$Q26)))))/2 =$N26-$R26 =-LOG10($S26) =(0.0585*B26+1.309)/10000000000 27 =POWER(10,-14)/POWER(10,-$T$13)+$O27 =15.5129-0.0224*$B27+0.00003352*POWER(B27,2) =(N27+P27-SQRT(POWER(($N27+$P27),2)-(4*(N27*P27-POWER(10,-$Q27)))))/2 =$N27-$R27 =-LOG10($S27) =(0.0585*B27+1.309)/10000000000 28 =POWER(10,-14)/POWER(10,-$T$13)+$O28 =15.5129-0.0224*$B28+0.00003352*POWER(B28,2) =(N28+P28-SQRT(POWER(($N28+$P28),2)-(4*(N28*P28-POWER(10,-$Q28)))))/2 =$N28-$R28 =-LOG10($S28) =(0.0585*B28+1.309)/10000000000 29 =POWER(10,-14)/POWER(10,-$T$13)+$O29 =15.5129-0.0224*$B29+0.00003352*POWER(B29,2) =(N29+P29-SQRT(POWER(($N29+$P29),2)-(4*(N29*P29-POWER(10,-$Q29)))))/2 =$N29-$R29 =-LOG10($S29) =(0.0585*B29+1.309)/10000000000 30 =POWER(10,-14)/POWER(10,-$T$13)+$O30 =15.5129-0.0224*$B30+0.00003352*POWER(B30,2) =(N30+P30-SQRT(POWER(($N30+$P30),2)-(4*(N30*P30-POWER(10,-$Q30)))))/2 =$N30-$R30 =-LOG10($S30) =(0.0585*B30+1.309)/10000000000 31 =POWER(10,-14)/POWER(10,-$T$13)+$O31 =15.5129-0.0224*$B31+0.00003352*POWER(B31,2) =(N31+P31-SQRT(POWER(($N31+$P31),2)-(4*(N31*P31-POWER(10,-$Q31)))))/2 =$N31-$R31 =-LOG10($S31) =(0.0585*B31+1.309)/10000000000 32 =POWER(10,-14)/POWER(10,-$T$13)+$O32 =15.5129-0.0224*$B32+0.00003352*POWER(B32,2) =(N32+P32-SQRT(POWER(($N32+$P32),2)-(4*(N32*P32-POWER(10,-$Q32)))))/2 =$N32-$R32 =-LOG10($S32) =(0.0585*B32+1.309)/10000000000 33 =POWER(10,-14)/POWER(10,-$T$13)+$O33 =15.5129-0.0224*$B33+0.00003352*POWER(B33,2) =(N33+P33-SQRT(POWER(($N33+$P33),2)-(4*(N33*P33-POWER(10,-$Q33)))))/2 =$N33-$R33 =-LOG10($S33) =(0.0585*B33+1.309)/10000000000 34 =POWER(10,-14)/POWER(10,-$T$13)+$O34 =15.5129-0.0224*$B34+0.00003352*POWER(B34,2) =(N34+P34-SQRT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER(10,-$Q34)))))/2 =$N34-$R34 =-LOG10($S34) =(0.0585*B34+1.309)/10000000000 35 =POWER(10,-14)/POWER(10,-$T$13)+$O35 =15.5129-0.0224*$B35+0.00003352*POWER(B35,2) =(N35+P35-SQRT(POWER(($N35+$P35),2)-(4*(N35*P35-POWER(10,-$Q35)))))/2 =$N35-$R35 =-LOG10($S35) =(0.0585*B35+1.309)/10000000000 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-4 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION V W X Y Z AA 1

2 3

4 ='Available Bg. mols 5 ='Available Bg.atoms 6

7 8 OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CONTROL [SLC] SOLUTION 9

10 Strong Acid 11 g-equiv. B10O16*10 Borate Boric Acid pKa pH 15 12 et [H+]

  • V PO g-mols g-equiv. g-equiv. -log10Ka 13 =S13*$B$3 =$V$4 =W13*2-V13 =W13*8+V13 =-LOG10(U13) =Z13+LOG10((X13/$B$3)/(Y13/$B$3))

14 =S14*$B$3 =$V$4 =W14*2-V14 =W14*8+V14 =-LOG10(U14) =Z14+LOG10((X14/$B$3)/(Y14/$B$3))

15 =S15*$B$3 =$V$4 =W15*2-V15 =W15*8+V15 =-LOG10(U15) =Z15+LOG10((X15/$B$3)/(Y15/$B$3))

16 =S16*$B$3 =$V$4 =W16*2-V16 =W16*8+V16 =-LOG10(U16) =Z16+LOG10((X16/$B$3)/(Y16/$B$3))

17 =S17*$B$3 =$V$4 =W17*2-V17 =W17*8+V17 =-LOG10(U17) =Z17+LOG10((X17/$B$3)/(Y17/$B$3))

18 =S18*$B$3 =$V$4 =W18*2-V18 =W18*8+V18 =-LOG10(U18) =Z18+LOG10((X18/$B$3)/(Y18/$B$3))

19 =S19*$B$3 =$V$4 =W19*2-V19 =W19*8+V19 =-LOG10(U19) =Z19+LOG10((X19/$B$3)/(Y19/$B$3))

20 =S20*$B$3 =$V$4 =W20*2-V20 =W20*8+V20 =-LOG10(U20) =Z20+LOG10((X20/$B$3)/(Y20/$B$3))

21 =S21*$B$3 =$V$4 =W21*2-V21 =W21*8+V21 =-LOG10(U21) =Z21+LOG10((X21/$B$3)/(Y21/$B$3))

22 =S22*$B$3 =$V$4 =W22*2-V22 =W22*8+V22 =-LOG10(U22) =Z22+LOG10((X22/$B$3)/(Y22/$B$3))

23 =S23*$B$3 =$V$4 =W23*2-V23 =W23*8+V23 =-LOG10(U23) =Z23+LOG10((X23/$B$3)/(Y23/$B$3))

24 =S24*$B$3 =$V$4 =W24*2-V24 =W24*8+V24 =-LOG10(U24) =Z24+LOG10((X24/$B$3)/(Y24/$B$3))

25 =S25*$B$3 =$V$4 =W25*2-V25 =W25*8+V25 =-LOG10(U25) =Z25+LOG10((X25/$B$3)/(Y25/$B$3))

26 =S26*$B$3 =$V$4 =W26*2-V26 =W26*8+V26 =-LOG10(U26) =Z26+LOG10((X26/$B$3)/(Y26/$B$3))

27 =S27*$B$3 =$V$4 =W27*2-V27 =W27*8+V27 =-LOG10(U27) =Z27+LOG10((X27/$B$3)/(Y27/$B$3))

28 =S28*$B$3 =$V$4 =W28*2-V28 =W28*8+V28 =-LOG10(U28) =Z28+LOG10((X28/$B$3)/(Y28/$B$3))

29 =S29*$B$3 =$V$4 =W29*2-V29 =W29*8+V29 =-LOG10(U29) =Z29+LOG10((X29/$B$3)/(Y29/$B$3))

30 =S30*$B$3 =$V$4 =W30*2-V30 =W30*8+V30 =-LOG10(U30) =Z30+LOG10((X30/$B$3)/(Y30/$B$3))

31 =S31*$B$3 =$V$4 =W31*2-V31 =W31*8+V31 =-LOG10(U31) =Z31+LOG10((X31/$B$3)/(Y31/$B$3))

32 =S32*$B$3 =$V$4 =W32*2-V32 =W32*8+V32 =-LOG10(U32) =Z32+LOG10((X32/$B$3)/(Y32/$B$3))

33 =S33*$B$3 =$V$4 =W33*2-V33 =W33*8+V33 =-LOG10(U33) =Z33+LOG10((X33/$B$3)/(Y33/$B$3))

34 =S34*$B$3 =$V$4 =W34*2-V34 =W34*8+V34 =-LOG10(U34) =Z34+LOG10((X34/$B$3)/(Y34/$B$3))

35 =S35*$B$3 =$V$4 =W35*2-V35 =W35*8+V35 =-LOG10(U35) =Z35+LOG10((X35/$B$3)/(Y35/$B$3))

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-5 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION A B C D E F 1 LIMERICK pH CALCULATION pH TRANSIENT 2

3 VPOOL =175000*28.3168 Liters [175,000 ft3] 13 4 mI =290 Iodine inventory [g-atoms] EOC19 5 mCs =3200 Cesium inventory [g-atoms] EOC19 6 tgap =121/3600 Onset of Gap release [hrs] 20 7

8 9 INTEGRATED DOSES 10 Beta+Gamma18 Gamma18 Beta18 Gamma18 11 TIME POOL Temp POOL DRYWELL DRYWELL Supp Pool AIR 12 Hours Deg F 17 Mrad MeV/cm3 MeV/cm3 MeV/cm3 13 0 95 14 1 187.2 15 2 195.8 0.100087111151012 3956052849546.56 1730013153896.35 3956052849546.56 16 =0.5+1.5+B6 195.8 0.104365847573824 4120748284326.69 1802214752482.87 4120748284326.69 17 3 199.9 0.215756878516613 8367522752309.87 3688722168022.81 8367522752309.87 18 5 203.1 0.398753951242835 15051283188018 6796717122483.9 15051283188018 19 12 199.5 0.829274158572949 28781202708989.2 14207462998066.7 28781202708989.2 20 18 193.1 1.08584565286588 35947219280802.3 18809856471831.5 35947219280802.3 21 24 186.6 1.29165941930598 41450203689486.6 22625236709381.3 41450203689486.6 22 48 186.6 1.88316646363286 57094527006647.7 34089477741320.3 57094527006647.7 23 72 186.6 2.31488045241861 68775684974726 42694278802823 68775684974726 24 96 186.6 2.67760819687578 78774903495935.1 49880534617235 78774903495935.1 25 120 186.6 3.0022610140995 87776415615034.7 56145093552860.5 87776415615034.7 26 150 186.6 3.37480313336637 98069389403685.5 63027129381434.4 98069389403685.5 27 200 186.6 3.94157016913884 113525022634318 72737793079027.3 113525022634318 28 240 186.6 4.35914715584886 124718856946027 79280404587774.5 124718856946027 29 300 186.6 4.93895422570735 139994683781518 87536763527759.8 139994683781518 30 360 186.6 5.47325714195057 153829094639737 94361689798228.1 153829094639737 31 400 186.6 5.80851378579049 162409963290567 98299968870279.8 162409963290567 32 480 186.6 6.43777056431354 178352381268313 105070419526278 178352381268313 33 600 186.6 7.30114927597588 199990905047147 113291889646017 199990905047147 34 700 186.6 7.96603186890977 216560042435043 119000318577454 216560042435043 35 720 186.6 8.09431558980373 219753186435482 120054170939062 219753186435482 36 37 NOTES:

38 1 Entergy Eng. Report GGNS-98-0039 Rev.3 , Equation 3-1d [30+90 min release duration]

39 2 Ibid, Equation 3-2b 40 3 Ibid, Equation 3-4d [30+90 min release duration]

41 4 Ibid, Table A-1 42 5 Ibid, Equation 3-3a 43 6 Ibid, Equation 3-3b 44 7 Ibid, Equation 3-5a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 45 8 Ibid, Equation 3-5b; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 46 9 Ibid, Equation 3-0a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 47 10 Ibid, Equation 3-5d; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 48 11 Ibid, Equation 3-5d; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 49 12 Ibid, Equation 3-5e; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 50 13 Max. Suppression Pool volume from Calc. body section 4.4, including 51 UFSAR Table 6.2-4A HWL Suppression Pool volume of 134,600 cu ft, Reactor Coolant Syste 52 and low-pressure Emergency Core Cooling System sources, roundd up to 175,000 cu. Ft.

53 (For Attachment B page B-6 minimization of Drywell + Suppression Pool Airspace volume, the 54 403,120 cu ft value - 175,000 + 122,120 Tech Spec 3/4.5.3 nominal minimum Suppression Po LM-0642, Rev. 0, Attachment D, Page D-6 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION G

1 END OF CYCLE 2 Linear Absorption Coefficients 4 3 ubeta air 4 ubeta hypalon 5 ugamma air 6 ugamma hypalon 16 7 r [gamma free path-DRYWELL]

16 8 r [gamma free path-SUPP POOL AIR]

9 10 Beta18 11 Supp Pool AIR 12 MeV/cm3 13 14 15 1730013153896.35 16 1802214752482.87 17 3688722168022.81 18 6796717122483.9 19 14207462998066.7 20 18809856471831.5 21 22625236709381.3 22 34089477741320.3 23 42694278802823 24 49880534617235 25 56145093552860.5 26 63027129381434.4 27 72737793079027.3 28 79280404587774.5 29 87536763527759.8 30 94361689798228.1 31 98299968870279.8 32 105070419526278 33 113291889646017 34 119000318577454 35 120054170939062 36 37 14 38 15 39 16 40 17 41 18 42 19 43 20 44 21 45 22 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-7 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION H I J K 1 Cable Data 22 2 SA tray [cm 2] =$P$3*1.1 3 0.0198 1/cm SA fa [cm 2] =$P$4*1.1 4 52.08 1/cm SB tray [cm 2] =$P$6*0.95*1.1 5 0.0000375 1/cm SB fa [cm 2] =P6*1.1*0.05 6 0.099 1/cm 7 894.08 cm th [cm] 0.70514 8 894.08 cm 9

10 From Beta From Gamma 1

11 [HI] [HNO3] 2

[HCL] -DRYWELL 5 [HCL] -DRYWELL6 12 g-mols/liter g-mols/liter g-mols/liter g-mols/liter 13 0 14 =$B$4/(120*$B$3)*($A14-(0.5+$B$6))+$B$4/(400*$B$3) 15 =$B$4/(120*$B$3)*($A15-(0.5+$B$6))+$B$4/(400*$B$3) =0.0000073*$C15 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E15 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D15 16 =$B$4/(120*$B$3)*($A16-(0.5+$B$6))+$B$4/(400*$B$3) =0.0000073*$C16 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E16 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D16 17 =H$16 =0.0000073*$C17 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E17 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D17 18 =H$16 =0.0000073*$C18 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E18 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D18 19 =H$16 =0.0000073*$C19 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E19 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D19 20 =H$16 =0.0000073*$C20 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E20 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D20 21 =H$16 =0.0000073*$C21 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E21 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D21 22 =H$16 =0.0000073*$C22 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E22 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D22 23 =H$16 =0.0000073*$C23 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E23 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D23 24 =H$16 =0.0000073*$C24 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E24 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D24 25 =H$16 =0.0000073*$C25 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E25 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D25 26 =H$16 =0.0000073*$C26 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E26 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D26 27 =H$16 =0.0000073*$C27 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E27 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D27 28 =H$16 =0.0000073*$C28 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E28 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D28 29 =H$16 =0.0000073*$C29 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E29 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D29 30 =H$16 =0.0000073*$C30 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E30 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D30 31 =H$16 =0.0000073*$C31 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E31 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D31 32 =H$16 =0.0000073*$C32 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E32 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D32 33 =H$16 =0.0000073*$C33 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E33 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D33 34 =H$16 =0.0000073*$C34 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E34 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D34 35 =H$16 =0.0000073*$C35 =3.512E-20/$B$3*($K$2*0.95/2+$K$3)/$H$3*$E35 =3.512E-20/$B$3*($K$2*0.95+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D35 36 37 Acid dissociation constant from: Entergy Eng. Report GGNS-98-0039 Rev.3, Sect.6.1,p.21 38 Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 39 See attachment B for gamma free paths 40 LGS UFSAR Rev. 11) 41 Attachment B 42 Attachment B 43 USNRC Reg. Guide 1.183 44 Page C-6 of this attachment 45 Cable Data from Attachment A.

46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-8 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION L M N 1

2 Cable Surface [trays]- Drywell + 10% contingency 3 Cable Surface [free air]- Drywell + 10% contingency 4 Cable Surface [trays] - Supp. Pool + 10% contingency 5 Cable Surface [free air] - Supp. Pool + 10% contingency 6

22 7 Hypalon Jacket Thickness 8

9 10 From Beta From Gamma 11 [HCL] -CONTAIN5 [HCL] -CONTAIN6 Total [H+] 7 12 g-mols/liter g-mols/liter g-ions/liter 13 =POWER(10,-$T$13)+$H13+$I13+$J13+$K13+$L13+$M13 14 =POWER(10,-$T$13)+$H14+$I14+$J14+$K14+$L14+$M14 15 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E15 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D15 =POWER(10,-$T$13)+$H15+$I15+$J15+$K15+$L15+$M15 16 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E16 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D16 =POWER(10,-$T$13)+$H16+$I16+$J16+$K16+$L16+$M16 17 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E17 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D17 =POWER(10,-$T$13)+$H17+$I17+$J17+$K17+$L17+$M17 18 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E18 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D18 =POWER(10,-$T$13)+$H18+$I18+$J18+$K18+$L18+$M18 19 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E19 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D19 =POWER(10,-$T$13)+$H19+$I19+$J19+$K19+$L19+$M19 20 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E20 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D20 =POWER(10,-$T$13)+$H20+$I20+$J20+$K20+$L20+$M20 21 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E21 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D21 =POWER(10,-$T$13)+$H21+$I21+$J21+$K21+$L21+$M21 22 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E22 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D22 =POWER(10,-$T$13)+$H22+$I22+$J22+$K22+$L22+$M22 23 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E23 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D23 =POWER(10,-$T$13)+$H23+$I23+$J23+$K23+$L23+$M23 24 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E24 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D24 =POWER(10,-$T$13)+$H24+$I24+$J24+$K24+$L24+$M24 25 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E25 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D25 =POWER(10,-$T$13)+$H25+$I25+$J25+$K25+$L25+$M25 26 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E26 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D26 =POWER(10,-$T$13)+$H26+$I26+$J26+$K26+$L26+$M26 27 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E27 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D27 =POWER(10,-$T$13)+$H27+$I27+$J27+$K27+$L27+$M27 28 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E28 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D28 =POWER(10,-$T$13)+$H28+$I28+$J28+$K28+$L28+$M28 29 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E29 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D29 =POWER(10,-$T$13)+$H29+$I29+$J29+$K29+$L29+$M29 30 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E30 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D30 =POWER(10,-$T$13)+$H30+$I30+$J30+$K30+$L30+$M30 31 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E31 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D31 =POWER(10,-$T$13)+$H31+$I31+$J31+$K31+$L31+$M31 32 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E32 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D32 =POWER(10,-$T$13)+$H32+$I32+$J32+$K32+$L32+$M32 33 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E33 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D33 =POWER(10,-$T$13)+$H33+$I33+$J33+$K33+$L33+$M33 34 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E34 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D34 =POWER(10,-$T$13)+$H34+$I34+$J34+$K34+$L34+$M34 35 =3.512E-20/$B$3*($K$4*0.95/2+$K$5)/$H$3*$E35 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D35 =POWER(10,-$T$13)+$H35+$I35+$J35+$K35+$L35+$M35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-9 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION O P Q 1

2 Cable Data 22 3 2425857.59715346 Cable Surface [Trays] - DRYWELL [cm2]

4 =$P$3*0.05 Cable Surface [Free air] - DRYWELL [cm2]

5 =P6*0.05 Cable Surface [Free air] - TORUS [cm2]

6 0 Cable Surface [Trays] - TORUS [cm2]

7 8

9 10 3 8 9 11 [CsOH] Total [OH+] -LOG(Kw) 12 g-mols/liter g-ions/liter 13 0 =POWER(10,-14)/POWER(10,-$T$13)+$O13 =15.5129-0.0224*$B13+0.00003352*POWER(B13,2) 14 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A14-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 =POWER(10,-14)/POWER(10,-$T$13)+$O14 =15.5129-0.0224*$B14+0.00003352*POWER(B14,2) 15 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A15-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 =POWER(10,-14)/POWER(10,-$T$13)+$O15 =15.5129-0.0224*$B15+0.00003352*POWER(B15,2) 16 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A16-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 =POWER(10,-14)/POWER(10,-$T$13)+$O16 =15.5129-0.0224*$B16+0.00003352*POWER(B16,2) 17 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O17 =15.5129-0.0224*$B17+0.00003352*POWER(B17,2) 18 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O18 =15.5129-0.0224*$B18+0.00003352*POWER(B18,2) 19 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O19 =15.5129-0.0224*$B19+0.00003352*POWER(B19,2) 20 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O20 =15.5129-0.0224*$B20+0.00003352*POWER(B20,2) 21 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O21 =15.5129-0.0224*$B21+0.00003352*POWER(B21,2) 22 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O22 =15.5129-0.0224*$B22+0.00003352*POWER(B22,2) 23 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O23 =15.5129-0.0224*$B23+0.00003352*POWER(B23,2) 24 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O24 =15.5129-0.0224*$B24+0.00003352*POWER(B24,2) 25 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O25 =15.5129-0.0224*$B25+0.00003352*POWER(B25,2) 26 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O26 =15.5129-0.0224*$B26+0.00003352*POWER(B26,2) 27 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O27 =15.5129-0.0224*$B27+0.00003352*POWER(B27,2) 28 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O28 =15.5129-0.0224*$B28+0.00003352*POWER(B28,2) 29 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O29 =15.5129-0.0224*$B29+0.00003352*POWER(B29,2) 30 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O30 =15.5129-0.0224*$B30+0.00003352*POWER(B30,2) 31 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O31 =15.5129-0.0224*$B31+0.00003352*POWER(B31,2) 32 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O32 =15.5129-0.0224*$B32+0.00003352*POWER(B32,2) 33 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O33 =15.5129-0.0224*$B33+0.00003352*POWER(B33,2) 34 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O34 =15.5129-0.0224*$B34+0.00003352*POWER(B34,2) 35 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$O35 =15.5129-0.0224*$B35+0.00003352*POWER(B35,2) 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-10 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION R S T U V W X Y 1 pH TRANSIENT END OF CYCLE 2

3 4 ='Available Boron'!B17 g. mols Na2B10O16*10H2O Added 5 ='Available Boron'!B22 g.atoms total boron 6

7 8 pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CON 9

10 Strong Acid 10 11 12 11 Root x Net [H+] pH Ka g-equiv. Na2B10O16*10H2O Borate Boric Acid 14 12 g-ions/liter Before SLC Net [H+]

  • VPOOL g-mols g-equiv. g-equiv.

13 =(N13+P13-SQRT(POWER(($N13+$P13),2)-(4*(N13*P13-POWER(10,-$Q13)))))/2 =$N13-$R13 5.3 =(0.0585*B13+1.309)/10000000000 =S13*$B$3 =$V$4 =W13*2-V13 =W13*8+V13 14 =(N14+P14-SQRT(POWER(($N14+$P14),2)-(4*(N14*P14-POWER(10,-$Q14)))))/2 =$N14-$R14 =-LOG10($S14) =(0.0585*B14+1.309)/10000000000 =S14*$B$3 =$V$4 =W14*2-V14 =W14*8+V14 15 =(N15+P15-SQRT(POWER(($N15+$P15),2)-(4*(N15*P15-POWER(10,-$Q15)))))/2 =$N15-$R15 =-LOG10($S15) =(0.0585*B15+1.309)/10000000000 =S15*$B$3 =$V$4 =W15*2-V15 =W15*8+V15 16 =(N16+P16-SQRT(POWER(($N16+$P16),2)-(4*(N16*P16-POWER(10,-$Q16)))))/2 =$N16-$R16 =-LOG10($S16) =(0.0585*B16+1.309)/10000000000 =S16*$B$3 =$V$4 =W16*2-V16 =W16*8+V16 17 =(N17+P17-SQRT(POWER(($N17+$P17),2)-(4*(N17*P17-POWER(10,-$Q17)))))/2 =$N17-$R17 =-LOG10($S17) =(0.0585*B17+1.309)/10000000000 =S17*$B$3 =$V$4 =W17*2-V17 =W17*8+V17 18 =(N18+P18-SQRT(POWER(($N18+$P18),2)-(4*(N18*P18-POWER(10,-$Q18)))))/2 =$N18-$R18 =-LOG10($S18) =(0.0585*B18+1.309)/10000000000 =S18*$B$3 =$V$4 =W18*2-V18 =W18*8+V18 19 =(N19+P19-SQRT(POWER(($N19+$P19),2)-(4*(N19*P19-POWER(10,-$Q19)))))/2 =$N19-$R19 =-LOG10($S19) =(0.0585*B19+1.309)/10000000000 =S19*$B$3 =$V$4 =W19*2-V19 =W19*8+V19 20 =(N20+P20-SQRT(POWER(($N20+$P20),2)-(4*(N20*P20-POWER(10,-$Q20)))))/2 =$N20-$R20 =-LOG10($S20) =(0.0585*B20+1.309)/10000000000 =S20*$B$3 =$V$4 =W20*2-V20 =W20*8+V20 21 =(N21+P21-SQRT(POWER(($N21+$P21),2)-(4*(N21*P21-POWER(10,-$Q21)))))/2 =$N21-$R21 =-LOG10($S21) =(0.0585*B21+1.309)/10000000000 =S21*$B$3 =$V$4 =W21*2-V21 =W21*8+V21 22 =(N22+P22-SQRT(POWER(($N22+$P22),2)-(4*(N22*P22-POWER(10,-$Q22)))))/2 =$N22-$R22 =-LOG10($S22) =(0.0585*B22+1.309)/10000000000 =S22*$B$3 =$V$4 =W22*2-V22 =W22*8+V22 23 =(N23+P23-SQRT(POWER(($N23+$P23),2)-(4*(N23*P23-POWER(10,-$Q23)))))/2 =$N23-$R23 =-LOG10($S23) =(0.0585*B23+1.309)/10000000000 =S23*$B$3 =$V$4 =W23*2-V23 =W23*8+V23 24 =(N24+P24-SQRT(POWER(($N24+$P24),2)-(4*(N24*P24-POWER(10,-$Q24)))))/2 =$N24-$R24 =-LOG10($S24) =(0.0585*B24+1.309)/10000000000 =S24*$B$3 =$V$4 =W24*2-V24 =W24*8+V24 25 =(N25+P25-SQRT(POWER(($N25+$P25),2)-(4*(N25*P25-POWER(10,-$Q25)))))/2 =$N25-$R25 =-LOG10($S25) =(0.0585*B25+1.309)/10000000000 =S25*$B$3 =$V$4 =W25*2-V25 =W25*8+V25 26 =(N26+P26-SQRT(POWER(($N26+$P26),2)-(4*(N26*P26-POWER(10,-$Q26)))))/2 =$N26-$R26 =-LOG10($S26) =(0.0585*B26+1.309)/10000000000 =S26*$B$3 =$V$4 =W26*2-V26 =W26*8+V26 27 =(N27+P27-SQRT(POWER(($N27+$P27),2)-(4*(N27*P27-POWER(10,-$Q27)))))/2 =$N27-$R27 =-LOG10($S27) =(0.0585*B27+1.309)/10000000000 =S27*$B$3 =$V$4 =W27*2-V27 =W27*8+V27 28 =(N28+P28-SQRT(POWER(($N28+$P28),2)-(4*(N28*P28-POWER(10,-$Q28)))))/2 =$N28-$R28 =-LOG10($S28) =(0.0585*B28+1.309)/10000000000 =S28*$B$3 =$V$4 =W28*2-V28 =W28*8+V28 29 =(N29+P29-SQRT(POWER(($N29+$P29),2)-(4*(N29*P29-POWER(10,-$Q29)))))/2 =$N29-$R29 =-LOG10($S29) =(0.0585*B29+1.309)/10000000000 =S29*$B$3 =$V$4 =W29*2-V29 =W29*8+V29 30 =(N30+P30-SQRT(POWER(($N30+$P30),2)-(4*(N30*P30-POWER(10,-$Q30)))))/2 =$N30-$R30 =-LOG10($S30) =(0.0585*B30+1.309)/10000000000 =S30*$B$3 =$V$4 =W30*2-V30 =W30*8+V30 31 =(N31+P31-SQRT(POWER(($N31+$P31),2)-(4*(N31*P31-POWER(10,-$Q31)))))/2 =$N31-$R31 =-LOG10($S31) =(0.0585*B31+1.309)/10000000000 =S31*$B$3 =$V$4 =W31*2-V31 =W31*8+V31 32 =(N32+P32-SQRT(POWER(($N32+$P32),2)-(4*(N32*P32-POWER(10,-$Q32)))))/2 =$N32-$R32 =-LOG10($S32) =(0.0585*B32+1.309)/10000000000 =S32*$B$3 =$V$4 =W32*2-V32 =W32*8+V32 33 =(N33+P33-SQRT(POWER(($N33+$P33),2)-(4*(N33*P33-POWER(10,-$Q33)))))/2 =$N33-$R33 =-LOG10($S33) =(0.0585*B33+1.309)/10000000000 =S33*$B$3 =$V$4 =W33*2-V33 =W33*8+V33 34 =(N34+P34-SQRT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER(10,-$Q34)))))/2 =$N34-$R34 =-LOG10($S34) =(0.0585*B34+1.309)/10000000000 =S34*$B$3 =$V$4 =W34*2-V34 =W34*8+V34 35 =(N35+P35-SQRT(POWER(($N35+$P35),2)-(4*(N35*P35-POWER(10,-$Q35)))))/2 =$N35-$R35 =-LOG10($S35) =(0.0585*B35+1.309)/10000000000 =S35*$B$3 =$V$4 =W35*2-V35 =W35*8+V35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-11 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION Z AA AB 1

2 3

4 5

6 7

8 NTROL [SLC] SOLUTION 9

10 11 pKa pH 15 12 -log10Ka 13 =-LOG10(U13) =Z13+LOG10((X13/$B$3)/(Y13/$B$3))

14 =-LOG10(U14) =Z14+LOG10((X14/$B$3)/(Y14/$B$3))

15 =-LOG10(U15) =Z15+LOG10((X15/$B$3)/(Y15/$B$3))

16 =-LOG10(U16) =Z16+LOG10((X16/$B$3)/(Y16/$B$3))

17 =-LOG10(U17) =Z17+LOG10((X17/$B$3)/(Y17/$B$3))

18 =-LOG10(U18) =Z18+LOG10((X18/$B$3)/(Y18/$B$3))

19 =-LOG10(U19) =Z19+LOG10((X19/$B$3)/(Y19/$B$3))

20 =-LOG10(U20) =Z20+LOG10((X20/$B$3)/(Y20/$B$3))

21 =-LOG10(U21) =Z21+LOG10((X21/$B$3)/(Y21/$B$3))

22 =-LOG10(U22) =Z22+LOG10((X22/$B$3)/(Y22/$B$3))

23 =-LOG10(U23) =Z23+LOG10((X23/$B$3)/(Y23/$B$3))

24 =-LOG10(U24) =Z24+LOG10((X24/$B$3)/(Y24/$B$3))

25 =-LOG10(U25) =Z25+LOG10((X25/$B$3)/(Y25/$B$3))

26 =-LOG10(U26) =Z26+LOG10((X26/$B$3)/(Y26/$B$3))

27 =-LOG10(U27) =Z27+LOG10((X27/$B$3)/(Y27/$B$3))

28 =-LOG10(U28) =Z28+LOG10((X28/$B$3)/(Y28/$B$3))

29 =-LOG10(U29) =Z29+LOG10((X29/$B$3)/(Y29/$B$3))

30 =-LOG10(U30) =Z30+LOG10((X30/$B$3)/(Y30/$B$3))

31 =-LOG10(U31) =Z31+LOG10((X31/$B$3)/(Y31/$B$3))

32 =-LOG10(U32) =Z32+LOG10((X32/$B$3)/(Y32/$B$3))

33 =-LOG10(U33) =Z33+LOG10((X33/$B$3)/(Y33/$B$3))

34 =-LOG10(U34) =Z34+LOG10((X34/$B$3)/(Y34/$B$3))

35 =-LOG10(U35) =Z35+LOG10((X35/$B$3)/(Y35/$B$3))

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 LM-0642, Rev. 0, Attachment D, Page D-12 of D-13

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION A B C D 1

2 Available Boron Calculation 3

4 Quantity Value Basis 5

6 Volume of Solution (gal)= 1500 Assumed Minimum (LGS Tech Spec Sect. 4 7 indicates 3160 gallons) 8 wt% of Na2B10O16*10H2O= 0.1 LGS Technical Specification figure 3.1.5-1 9 Specific Gravity (gm/cm3)= =0.5*($B$8)+0.9985 Table CH-C-105-3 10 Conversion Factor (cm3/gal)= 3785.412 11 Conversion Factor (lbs/gm)= =(1/453.59) 12 13 Total Mass of Solution (lbs)= =B6*B9*B10*B11 14 Total Na2B10O16*10H2O (lbs)= =B13*B8 15 Total Na2B10O16*10H2O (gm)= =B14/B11 16 Total Na2B10O16*10H2O 17 (gm-moles)= =B15/D28 18 Total Boron (gm-atoms)= =10*B17 19 20 21 Total Available Boron (lbs)= =B14*B35 22 Total Available Boron (gm-atoms)= =(B21/B11)/B29 23 24 B-10 Enrichment= 0.199 25 26 Molar Mass Total Molar Mass of 27 (gm/mole) Na2B10O16

  • 10H2O 28 Sodium 22.98977 =2*(B28)+10*(B29)+16*(B30)+10*((2*B31)+(1*(B30)))

29 Boron =B32*(B24)+B33*(1-B24) 30 Oxygen 15.9994 31 Hydrogen 1.00794 32 Boron-10 10.0129369 33 Boron-11 11.0093054 34 35 Percentage of Total Boron= =10*(B29)/D28 LM-0642, Rev. 0, Attachment D, Page D-13 of D-13

Spreadsheet Attachments from the Calculation (LM-0642, Rev. 0)

Attachment E pH Transient - Grand Gulf Reference Data

GRAND GULF REFERENCE CALCULATION A B C D E F G H I J K L M N O P 1 CASE 1 GRAND GULF REFERENCE DATA pH TRANSIENT 4

2 Linear Absorption Coefficients LA tray [lb] 873.65 Cable Length [trays]- Zone A SLC [lbs]

3 VPOOL 4.841E+06 Liters [Min.Tech Spec Basis B 3.6.2.2] ubeta air 1.980E-02 1/cm LA fa [lb] 873.65 Cable Length [free air]- Zone A 4 mI 325 Iodine inventory [g-atoms] ubeta hypalon 52.08 1/cm LB tray [lb] 14049.27 Cable Length [trays] - Zone B 5 mCs 2400 Cesium inventory [g-atoms] ugamma air 3.75E-05 1/cm LB fa [lb] 1561.03 Cable Length [free air] - Zone B 6 tgap 0.0336 Onset of Gap release [hrs] ugamma hypalon 0.099 1/cm R0 [cm 2]/lb 800 Cable Area 13 7 r [gamma free path-A] 1112.5 cm th [cm] 0.7112 Hypalon Jacket Thickness 8 r [gamma free path-B] 1384 cm 9 INTEGRATED DOSES CONCENTRATIONS 10 Beta+Gamma Gamma Beta Gamma Beta From Beta From Gamma From Beta From Gamma 1

[HCL] -A 5 [HCL] -A 6 [HCL] -B 5 [HCL] -B 6 Total [H+]

2 7 3 8 11 TIME POOL Temp POOL DRYWELL DRYWELL CONTAINMENT CONTAINMENT [HI] [HNO3] [CsOH] Total [OH+]

3 12 Hours Deg F Mrad MeV/cm MeV/cm3 MeV/cm3 MeV/cm3 g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-ions/liter g-mols/liter g-ions/liter 13 0 77 0.00E+00 5.012E-06 0.0000E+00 2.00E-09 14 1 160 4.288E-07 5.441E-06 4.7472E-05 4.75E-05 15 2 160 1.3645E-01 1.4200E+12 2.8733E+12 0.0000E+00 1.1220E+12 9.8825E-07 9.961E-07 1.104E-06 1.067E-06 2.824E-06 0.000E+00 1.199E-05 1.0295E-04 1.03E-04 16 2.0336 160 1.4229E-01 1.4506E+12 2.8784E+12 0.0000E+00 1.2148E+12 1.0071E-06 1.039E-06 1.106E-06 1.090E-06 3.057E-06 0.000E+00 1.231E-05 1.0481E-04 1.05E-04 17 3 159.1 2.9415E-01 2.1630E+12 3.0235E+12 6.6925E+10 1.2908E+12 1.0071E-06 2.147E-06 1.161E-06 1.625E-06 3.249E-06 5.560E-07 1.476E-05 1.0481E-04 1.05E-04 18 5 155.5 5.4364E-01 3.0991E+12 3.3208E+12 6.4671E+11 1.4468E+12 1.0071E-06 3.969E-06 1.276E-06 2.328E-06 3.641E-06 5.373E-06 2.261E-05 1.0481E-04 1.05E-04 19 12 149.2 1.1306E+00 4.7032E+12 4.3312E+12 1.6404E+12 1.9789E+12 1.0071E-06 8.253E-06 1.664E-06 3.533E-06 4.980E-06 1.363E-05 3.808E-05 1.0481E-04 1.05E-04 20 18 146.4 1.4804E+00 5.4462E+12 5.1609E+12 2.1006E+12 2.4183E+12 1.0071E-06 1.081E-05 1.982E-06 4.091E-06 6.086E-06 1.745E-05 4.644E-05 1.0481E-04 1.05E-04 21 24 144.3 1.7610E+00 5.9733E+12 5.9584E+12 2.4271E+12 2.8430E+12 1.0071E-06 1.286E-05 2.289E-06 4.487E-06 7.155E-06 2.016E-05 5.297E-05 1.0481E-04 1.05E-04 22 48 139.4 2.5674E+00 7.2434E+12 8.8503E+12 3.2138E+12 4.4038E+12 1.0071E-06 1.874E-05 3.400E-06 5.442E-06 1.108E-05 2.670E-05 7.138E-05 1.0481E-04 1.05E-04 23 72 136.5 3.1560E+00 7.9863E+12 1.1319E+13 3.6740E+12 5.7649E+12 1.0071E-06 2.304E-05 4.348E-06 6.000E-06 1.451E-05 3.052E-05 8.444E-05 1.0481E-04 1.05E-04 24 96 134.4 3.6505E+00 8.5135E+12 1.3425E+13 4.0005E+12 6.9521E+12 1.0071E-06 2.665E-05 5.157E-06 6.396E-06 1.750E-05 3.323E-05 9.495E-05 1.0481E-04 1.05E-04 25 120 132.8 4.0931E+00 8.9224E+12 1.5224E+13 4.2538E+12 7.9874E+12 1.0071E-06 2.988E-05 5.848E-06 6.703E-06 2.010E-05 3.534E-05 1.039E-04 1.0481E-04 1.05E-04 26 150 131.3 4.6010E+00 9.3312E+12 1.7105E+13 4.5071E+12 9.0975E+12 1.0071E-06 3.359E-05 6.571E-06 7.010E-06 2.290E-05 3.744E-05 1.135E-04 1.0481E-04 1.05E-04 27 200 129.2 5.3738E+00 9.8584E+12 1.9521E+13 4.8336E+12 1.0574E+13 1.0071E-06 3.923E-05 7.499E-06 7.406E-06 2.661E-05 4.016E-05 1.269E-04 1.0481E-04 1.05E-04 28 240 127.9 5.9431E+00 1.0192E+13 2.0955E+13 5.0405E+12 1.1486E+13 1.0071E-06 4.338E-05 8.050E-06 7.657E-06 2.891E-05 4.187E-05 1.359E-04 1.0481E-04 1.05E-04 29 300 126.3 6.7335E+00 1.0601E+13 2.2506E+13 5.2938E+12 1.2519E+13 1.0071E-06 4.915E-05 8.645E-06 7.964E-06 3.151E-05 4.398E-05 1.473E-04 1.0481E-04 1.05E-04 30 360 125 7.4620E+00 1.0935E+13 2.3551E+13 5.5007E+12 1.3252E+13 1.0071E-06 5.447E-05 9.047E-06 8.215E-06 3.335E-05 4.570E-05 1.568E-04 1.0481E-04 1.05E-04 31 400 124.3 7.9191E+00 1.1128E+13 2.4049E+13 5.6203E+12 1.3618E+13 1.0071E-06 5.781E-05 9.238E-06 8.360E-06 3.427E-05 4.669E-05 1.624E-04 1.0481E-04 1.05E-04 32 480 123 8.7770E+00 1.1463E+13 2.4727E+13 5.8272E+12 1.4143E+13 1.0071E-06 6.407E-05 9.499E-06 8.612E-06 3.559E-05 4.841E-05 1.722E-04 1.0481E-04 1.05E-04 33 600 121.4 9.9540E+00 1.1871E+13 2.5259E+13 6.0805E+12 1.4592E+13 1.0071E-06 7.266E-05 9.703E-06 8.918E-06 3.672E-05 5.051E-05 1.845E-04 1.0481E-04 1.05E-04 34 700 120.3 1.0861E+01 1.2154E+13 2.5472E+13 6.2555E+12 1.4791E+13 1.0071E-06 7.928E-05 9.785E-06 9.131E-06 3.722E-05 5.197E-05 1.934E-04 1.0481E-04 1.05E-04 35 720 120.1 1.1035E+01 1.2205E+13 2.5500E+13 6.2875E+12 1.4819E+13 1.0071E-06 8.056E-05 9.795E-06 9.169E-06 3.729E-05 5.223E-05 1.951E-04 1.0481E-04 1.05E-04 36 37 NOTES 38 1 Entergy Eng. Report GGNS-98-0039 Rev.3 , Equation 3-1d [30+90 min release duration] 14 Acid dissociation constant from: Entergy Eng. Rep. GGNS-98-0039 Rev.3, Sect.6.1,p.21 39 2 Ibid, Equation 3-2b 15 Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 40 3 Ibid, Equation 3-4d [30+90 min release duration]

41 4 Ibid, Table A-1 42 5 Ibid, Equation 3-3a; Entergy Calc. XC-Q11111-98013 Rev.2, Equation 5-1 43 6 Ibid, Equation 3-3b; Entergy Calc. XC-Q11111-98013 Rev.2, Equation 5-2 44 7 Ibid, Equation 3-5a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 45 8 Ibid, Equation 3-5b; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 46 9 Ibid, Equation 3-0a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 47 10 Ibid, Equation 3-5d; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 48 11 Ibid, Equation 3-5d; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 49 12 Ibid, Equation 3-5e; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 50 13 Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.2.2 LM-0642, Rev. 0, Attachment E, Page E-1 of E-7

GRAND GULF REFERENCE CALCULATION Q R S T U V W X Y Z AA AB AC 1

2 5800 Na2B10O16 Added [MW=410]

3 4

5 6

7 8 pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CONTROL [SLC] SOLUTION 9

10 Strong Acid 9 10 11 12 11 -LOG(Kw) Root x Net [H+] pH Ka g-equiv. Na2B10O16 Borate Boric Acid pKa pH 14 12 g-ions/liter Net [H+]

  • VPOOL g-mols g-equiv. g-equiv. -log10Ka 13 1.399E+01 -6.1360E-11 5.0119E-06 5.300 5.8135E-10 2.4262E+01 6416.8 12809 51359 9.24 8.63 14 1.279E+01 5.4368E-06 3.8846E-09 8.411 1.0669E-09 1.8805E-02 6416.8 12834 51334 8.97 8.37 15 1.279E+01 1.1989E-05 1.7953E-09 8.746 1.0669E-09 8.6909E-03 6416.8 12834 51334 8.97 8.37 16 1.279E+01 1.2309E-05 1.7653E-09 8.753 1.0669E-09 8.5458E-03 6416.8 12834 51334 8.97 8.37 17 1.280E+01 1.4755E-05 1.7698E-09 8.752 1.0616E-09 8.5676E-03 6416.8 12834 51334 8.97 8.37 18 1.284E+01 2.2603E-05 1.7573E-09 8.755 1.0406E-09 8.5071E-03 6416.8 12834 51334 8.98 8.38 19 1.292E+01 3.8076E-05 1.8140E-09 8.741 1.0037E-09 8.7813E-03 6416.8 12834 51334 9.00 8.40 20 1.295E+01 4.6435E-05 1.9133E-09 8.718 9.8734E-10 9.2620E-03 6416.8 12834 51334 9.01 8.40 21 1.298E+01 5.2967E-05 2.0264E-09 8.693 9.7506E-10 9.8098E-03 6416.8 12834 51334 9.01 8.41 22 1.304E+01 7.1382E-05 2.7173E-09 8.566 9.4639E-10 1.3154E-02 6416.8 12834 51334 9.02 8.42 23 1.308E+01 8.4432E-05 4.0825E-09 8.389 9.2943E-10 1.9763E-02 6416.8 12834 51334 9.03 8.43 24 1.311E+01 9.4943E-05 7.9048E-09 8.102 9.1714E-10 3.8266E-02 6416.8 12834 51334 9.04 8.44 25 1.313E+01 1.0382E-04 7.4496E-08 7.128 9.0778E-10 3.6063E-01 6416.8 12833 51335 9.04 8.44 26 1.315E+01 1.0480E-04 8.7215E-06 5.059 8.9901E-10 4.2220E+01 6416.8 12791 51376 9.05 8.44 27 1.318E+01 1.0481E-04 2.2110E-05 4.655 8.8672E-10 1.0703E+02 6416.8 12727 51441 9.05 8.45 28 1.320E+01 1.0481E-04 3.1080E-05 4.508 8.7912E-10 1.5045E+02 6416.8 12683 51485 9.06 8.45 29 1.322E+01 1.0481E-04 4.2457E-05 4.372 8.6976E-10 2.0553E+02 6416.8 12628 51540 9.06 8.45 30 1.324E+01 1.0481E-04 5.1990E-05 4.284 8.6215E-10 2.5168E+02 6416.8 12582 51586 9.06 8.45 31 1.325E+01 1.0481E-04 5.7578E-05 4.240 8.5806E-10 2.7873E+02 6416.8 12555 51613 9.07 8.45 32 1.326E+01 1.0481E-04 6.7392E-05 4.171 8.5045E-10 3.2624E+02 6416.8 12507 51660 9.07 8.45 33 1.329E+01 1.0481E-04 7.9730E-05 4.098 8.4109E-10 3.8596E+02 6416.8 12448 51720 9.08 8.46 34 1.330E+01 1.0481E-04 8.8596E-05 4.053 8.3466E-10 4.2888E+02 6416.8 12405 51763 9.08 8.46 35 1.331E+01 1.0481E-04 9.0259E-05 4.045 8.3349E-10 4.3693E+02 6416.8 12397 51771 9.08 8.46 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 LM-0642, Rev. 0, Attachment E, Page E-2 of E-7

GRAND GULF REFERENCE CALCULATION A B C D E F G H 1 CASE 1 GRAND GULF REFEREN pH TRANSIENT 2 Linear Absorption Coefficie 3 VPOOL =170954*28.3168 Liters [Min.Tech Spec Basis B ubeta air 0.0198 4 mI =325 Iodine inventory [g-atoms] ubeta hypalon 52.08 5 mCs =2400 Cesium inventory [g-atoms] ugamma air 0.0000375 6 tgap =121/3600 Onset of Gap release [hrs] ugamma hypalon 0.099 7 r [gamma free path-A] 1112.5 8 r [gamma free path-B] 1384 9 INTEGRATED DOSES 10 Beta+Gamma Gamma Beta Gamma Beta 1

11 TIME POOL Temp POOL DRYWELL-A DRYWELL-A DRYWELL-B DRYWELL-B [HI]

3 12 Hours Deg F Mrad MeV/cm MeV/cm3 MeV/cm3 MeV/cm3 g-mols/liter 13 0 77 0 14 1 160 =$B$4/(120*$B$3)*($A14-(0.5+$B$6))+$B$4/(400*$B$3) 15 2 160 1.3783 1420000000000 2873300000000 0 1122000000000 =$B$4/(120*$B$3)*($A15-(0.5+$B$6))+$B$4/(400*$B$3) 16 =0.5+1.5+B6 160 1.3792 1450600000000 2878400000000 0 1214800000000 =$B$4/(120*$B$3)*($A16-(0.5+$B$6))+$B$4/(400*$B$3) 17 3 159.1 1.4049 2163000000000 3023500000000 66925000000 1290800000000 =H$16 18 5 155.5 1.4581 3099100000000 3320800000000 646710000000 1446800000000 =H$16 19 12 149.2 1.6425 4703200000000 4331200000000 1640400000000 1978900000000 =H$16 20 18 146.4 1.7985 5446200000000 5160900000000 2100600000000 2418300000000 =H$16 21 24 144.3 1.9526 5973300000000 5958400000000 2427100000000 2843000000000 =H$16 22 48 139.4 2.5509 7243400000000 8850300000000 3213800000000 4403800000000 =H$16 23 72 136.5 3.1213 7986300000000 11319000000000 3674000000000 5764900000000 =H$16 24 96 134.4 3.6648 8513500000000 13425000000000 4000500000000 6952100000000 =H$16 25 120 132.8 4.183 8922400000000 15224000000000 4253800000000 7987400000000 =H$16 26 150 131.3 4.7966 9331200000000 17105000000000 4507100000000 9097500000000 =H$16 27 200 129.2 5.7409 9858400000000 19521000000000 4833600000000 10574000000000 =H$16 28 240 127.9 6.4313 10192000000000 20955000000000 5040500000000 11486000000000 =H$16 29 300 126.3 7.3686 10601000000000 22506000000000 5293800000000 12519000000000 =H$16 30 360 125 8.1999 10935000000000 23551000000000 5500700000000 13252000000000 =H$16 31 400 124.3 8.7011 11128000000000 24049000000000 5620300000000 13618000000000 =H$16 32 480 123 9.5911 11463000000000 24727000000000 5827200000000 14143000000000 =H$16 33 600 121.4 10.685 11871000000000 25259000000000 6080500000000 14592000000000 =H$16 34 700 120.3 11.417 12154000000000 25472000000000 6255500000000 14791000000000 =H$16 35 720 120.1 11.546 12205000000000 25500000000000 6287500000000 14819000000000 =H$16 36 37 NOTES 38 1 Entergy Eng. Report GGN 14 39 2 Ibid, Equation 3-2b 15 40 3 Ibid, Equation 3-4d [30+9 41 4 Ibid, Table A-1 42 5 Ibid, Equation 3-3a; Ente 43 6 Ibid, Equation 3-3b; Ente 44 7 Ibid, Equation 3-5a; Ente 45 8 Ibid, Equation 3-5b; Ente 46 9 Ibid, Equation 3-0a; Ente 47 10 Ibid, Equation 3-5d; Ente 48 11 Ibid, Equation 3-5d; Ente 49 12 Ibid, Equation 3-5e; Ente 50 13 Entergy Calc. XC-Q1111 LM-0642, Rev. 0, Attachment E, Page E-3 of E-7

GRAND GULF REFERENCE CALCULATION I J K L 1

2 LA tray [lb] 873.65 Cable Length [trays]- Zone A 3 1/cm LA fa [lb] 873.65 Cable Length [free air]- Zone A 4 1/cm LB tray [lb] 14049.27 Cable Length [trays] - Zone B 5 1/cm LB fa [lb] 1561.03 Cable Length [free air] - Zone B 6 1/cm R0 [cm 2]/lb 800 Cable Area 13 7 cm th [cm] =0.28*2.54 Hypalon Jacket Thickness 8 cm 9 CONCENTRATIONS 10 From Beta From Gamma From Beta 11 [HNO3] 2

[HCL] -A 5 [HCL] -A 6 [HCL] -B 5 12 g-mols/liter g-mols/liter g-mols/liter g-mols/liter 13 14 15 =0.0000073*$C15 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E15 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D15 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G15 16 =0.0000073*$C16 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E16 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D16 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G16 17 =0.0000073*$C17 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E17 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D17 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G17 18 =0.0000073*$C18 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E18 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D18 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G18 19 =0.0000073*$C19 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E19 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D19 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G19 20 =0.0000073*$C20 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E20 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D20 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G20 21 =0.0000073*$C21 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E21 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D21 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G21 22 =0.0000073*$C22 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E22 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D22 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G22 23 =0.0000073*$C23 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E23 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D23 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G23 24 =0.0000073*$C24 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E24 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D24 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G24 25 =0.0000073*$C25 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E25 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D25 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G25 26 =0.0000073*$C26 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E26 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D26 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G26 27 =0.0000073*$C27 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E27 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D27 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G27 28 =0.0000073*$C28 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E28 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D28 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G28 29 =0.0000073*$C29 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E29 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D29 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G29 30 =0.0000073*$C30 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E30 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D30 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G30 31 =0.0000073*$C31 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E31 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D31 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G31 32 =0.0000073*$C32 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E32 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D32 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G32 33 =0.0000073*$C33 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E33 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D33 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G33 34 =0.0000073*$C34 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E34 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D34 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G34 35 =0.0000073*$C35 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E35 =3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6*$K$7))*$D35 =3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G35 36 37 38 Acid dissociation consta 39 Entergy Calc. XC-Q111 40 41 42 43 44 45 46 47 48 49 50 LM-0642, Rev. 0, Attachment E, Page E-4 of E-7

GRAND GULF REFERENCE CALCULATION M N O 1

2 3

4 5

6 7

8 9

10 From Gamma 6 7 3 11 [HCL] -B Total [H+] [CsOH]

12 g-mols/liter g-ions/liter g-mols/liter 13 =POWER(10,-$T$13)+$H13+$I13+$J13+$K13+$L13+$M13 0 14 =POWER(10,-$T$13)+$H14+$I14+$J14+$K14+$L14+$M14 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A14-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 15 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F15 =POWER(10,-$T$13)+$H15+$I15+$J15+$K15+$L15+$M15 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A15-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 16 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F16 =POWER(10,-$T$13)+$H16+$I16+$J16+$K16+$L16+$M16 =(0.4*$B$5-0.475*$B$4)/(3*$B$3)*($A16-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 17 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F17 =POWER(10,-$T$13)+$H17+$I17+$J17+$K17+$L17+$M17 =$O$16 18 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F18 =POWER(10,-$T$13)+$H18+$I18+$J18+$K18+$L18+$M18 =$O$16 19 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F19 =POWER(10,-$T$13)+$H19+$I19+$J19+$K19+$L19+$M19 =$O$16 20 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F20 =POWER(10,-$T$13)+$H20+$I20+$J20+$K20+$L20+$M20 =$O$16 21 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F21 =POWER(10,-$T$13)+$H21+$I21+$J21+$K21+$L21+$M21 =$O$16 22 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F22 =POWER(10,-$T$13)+$H22+$I22+$J22+$K22+$L22+$M22 =$O$16 23 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F23 =POWER(10,-$T$13)+$H23+$I23+$J23+$K23+$L23+$M23 =$O$16 24 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F24 =POWER(10,-$T$13)+$H24+$I24+$J24+$K24+$L24+$M24 =$O$16 25 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F25 =POWER(10,-$T$13)+$H25+$I25+$J25+$K25+$L25+$M25 =$O$16 26 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F26 =POWER(10,-$T$13)+$H26+$I26+$J26+$K26+$L26+$M26 =$O$16 27 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F27 =POWER(10,-$T$13)+$H27+$I27+$J27+$K27+$L27+$M27 =$O$16 28 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F28 =POWER(10,-$T$13)+$H28+$I28+$J28+$K28+$L28+$M28 =$O$16 29 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F29 =POWER(10,-$T$13)+$H29+$I29+$J29+$K29+$L29+$M29 =$O$16 30 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F30 =POWER(10,-$T$13)+$H30+$I30+$J30+$K30+$L30+$M30 =$O$16 31 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F31 =POWER(10,-$T$13)+$H31+$I31+$J31+$K31+$L31+$M31 =$O$16 32 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F32 =POWER(10,-$T$13)+$H32+$I32+$J32+$K32+$L32+$M32 =$O$16 33 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F33 =POWER(10,-$T$13)+$H33+$I33+$J33+$K33+$L33+$M33 =$O$16 34 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F34 =POWER(10,-$T$13)+$H34+$I34+$J34+$K34+$L34+$M34 =$O$16 35 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F35 =POWER(10,-$T$13)+$H35+$I35+$J35+$K35+$L35+$M35 =$O$16 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 LM-0642, Rev. 0, Attachment E, Page E-5 of E-7

GRAND GULF REFERENCE CALCULATION P Q R S T U 1

2 SLC [lbs] 5800 Na2B4O710H2O Added [MW=410]

3 4

5 6

7 8 pH EFFECT OF ADDITION OF SODIUM 9

10 8 9 10 11 12 11 Total [OH+] -LOG(Kw) Root x Net [H+] pH Ka 14 12 g-ions/liter g-ions/liter 13 =POWER(10,-14)/POWER(10,-$T$13)+$O13 =15.5129-0.0224*$B13+0.00003352*POWER(B13,2) =(N13+P13-SQRT(POWER(($N13+$P13),2)-(4*(N13*P13-POWER(10,-$Q13)))))/2 =$N13-$R13 5.3 =(0.0585*B13+1.309)/10000000000 14 =POWER(10,-14)/POWER(10,-$T$13)+$O14 =15.5129-0.0224*$B14+0.00003352*POWER(B14,2) =(N14+P14-SQRT(POWER(($N14+$P14),2)-(4*(N14*P14-POWER(10,-$Q14)))))/2 =$N14-$R14 =-LOG10($S14) =(0.0585*B14+1.309)/10000000000 15 =POWER(10,-14)/POWER(10,-$T$13)+$O15 =15.5129-0.0224*$B15+0.00003352*POWER(B15,2) =(N15+P15-SQRT(POWER(($N15+$P15),2)-(4*(N15*P15-POWER(10,-$Q15)))))/2 =$N15-$R15 =-LOG10($S15) =(0.0585*B15+1.309)/10000000000 16 =POWER(10,-14)/POWER(10,-$T$13)+$O16 =15.5129-0.0224*$B16+0.00003352*POWER(B16,2) =(N16+P16-SQRT(POWER(($N16+$P16),2)-(4*(N16*P16-POWER(10,-$Q16)))))/2 =$N16-$R16 =-LOG10($S16) =(0.0585*B16+1.309)/10000000000 17 =POWER(10,-14)/POWER(10,-$T$13)+$O17 =15.5129-0.0224*$B17+0.00003352*POWER(B17,2) =(N17+P17-SQRT(POWER(($N17+$P17),2)-(4*(N17*P17-POWER(10,-$Q17)))))/2 =$N17-$R17 =-LOG10($S17) =(0.0585*B17+1.309)/10000000000 18 =POWER(10,-14)/POWER(10,-$T$13)+$O18 =15.5129-0.0224*$B18+0.00003352*POWER(B18,2) =(N18+P18-SQRT(POWER(($N18+$P18),2)-(4*(N18*P18-POWER(10,-$Q18)))))/2 =$N18-$R18 =-LOG10($S18) =(0.0585*B18+1.309)/10000000000 19 =POWER(10,-14)/POWER(10,-$T$13)+$O19 =15.5129-0.0224*$B19+0.00003352*POWER(B19,2) =(N19+P19-SQRT(POWER(($N19+$P19),2)-(4*(N19*P19-POWER(10,-$Q19)))))/2 =$N19-$R19 =-LOG10($S19) =(0.0585*B19+1.309)/10000000000 20 =POWER(10,-14)/POWER(10,-$T$13)+$O20 =15.5129-0.0224*$B20+0.00003352*POWER(B20,2) =(N20+P20-SQRT(POWER(($N20+$P20),2)-(4*(N20*P20-POWER(10,-$Q20)))))/2 =$N20-$R20 =-LOG10($S20) =(0.0585*B20+1.309)/10000000000 21 =POWER(10,-14)/POWER(10,-$T$13)+$O21 =15.5129-0.0224*$B21+0.00003352*POWER(B21,2) =(N21+P21-SQRT(POWER(($N21+$P21),2)-(4*(N21*P21-POWER(10,-$Q21)))))/2 =$N21-$R21 =-LOG10($S21) =(0.0585*B21+1.309)/10000000000 22 =POWER(10,-14)/POWER(10,-$T$13)+$O22 =15.5129-0.0224*$B22+0.00003352*POWER(B22,2) =(N22+P22-SQRT(POWER(($N22+$P22),2)-(4*(N22*P22-POWER(10,-$Q22)))))/2 =$N22-$R22 =-LOG10($S22) =(0.0585*B22+1.309)/10000000000 23 =POWER(10,-14)/POWER(10,-$T$13)+$O23 =15.5129-0.0224*$B23+0.00003352*POWER(B23,2) =(N23+P23-SQRT(POWER(($N23+$P23),2)-(4*(N23*P23-POWER(10,-$Q23)))))/2 =$N23-$R23 =-LOG10($S23) =(0.0585*B23+1.309)/10000000000 24 =POWER(10,-14)/POWER(10,-$T$13)+$O24 =15.5129-0.0224*$B24+0.00003352*POWER(B24,2) =(N24+P24-SQRT(POWER(($N24+$P24),2)-(4*(N24*P24-POWER(10,-$Q24)))))/2 =$N24-$R24 =-LOG10($S24) =(0.0585*B24+1.309)/10000000000 25 =POWER(10,-14)/POWER(10,-$T$13)+$O25 =15.5129-0.0224*$B25+0.00003352*POWER(B25,2) =(N25+P25-SQRT(POWER(($N25+$P25),2)-(4*(N25*P25-POWER(10,-$Q25)))))/2 =$N25-$R25 =-LOG10($S25) =(0.0585*B25+1.309)/10000000000 26 =POWER(10,-14)/POWER(10,-$T$13)+$O26 =15.5129-0.0224*$B26+0.00003352*POWER(B26,2) =(N26+P26-SQRT(POWER(($N26+$P26),2)-(4*(N26*P26-POWER(10,-$Q26)))))/2 =$N26-$R26 =-LOG10($S26) =(0.0585*B26+1.309)/10000000000 27 =POWER(10,-14)/POWER(10,-$T$13)+$O27 =15.5129-0.0224*$B27+0.00003352*POWER(B27,2) =(N27+P27-SQRT(POWER(($N27+$P27),2)-(4*(N27*P27-POWER(10,-$Q27)))))/2 =$N27-$R27 =-LOG10($S27) =(0.0585*B27+1.309)/10000000000 28 =POWER(10,-14)/POWER(10,-$T$13)+$O28 =15.5129-0.0224*$B28+0.00003352*POWER(B28,2) =(N28+P28-SQRT(POWER(($N28+$P28),2)-(4*(N28*P28-POWER(10,-$Q28)))))/2 =$N28-$R28 =-LOG10($S28) =(0.0585*B28+1.309)/10000000000 29 =POWER(10,-14)/POWER(10,-$T$13)+$O29 =15.5129-0.0224*$B29+0.00003352*POWER(B29,2) =(N29+P29-SQRT(POWER(($N29+$P29),2)-(4*(N29*P29-POWER(10,-$Q29)))))/2 =$N29-$R29 =-LOG10($S29) =(0.0585*B29+1.309)/10000000000 30 =POWER(10,-14)/POWER(10,-$T$13)+$O30 =15.5129-0.0224*$B30+0.00003352*POWER(B30,2) =(N30+P30-SQRT(POWER(($N30+$P30),2)-(4*(N30*P30-POWER(10,-$Q30)))))/2 =$N30-$R30 =-LOG10($S30) =(0.0585*B30+1.309)/10000000000 31 =POWER(10,-14)/POWER(10,-$T$13)+$O31 =15.5129-0.0224*$B31+0.00003352*POWER(B31,2) =(N31+P31-SQRT(POWER(($N31+$P31),2)-(4*(N31*P31-POWER(10,-$Q31)))))/2 =$N31-$R31 =-LOG10($S31) =(0.0585*B31+1.309)/10000000000 32 =POWER(10,-14)/POWER(10,-$T$13)+$O32 =15.5129-0.0224*$B32+0.00003352*POWER(B32,2) =(N32+P32-SQRT(POWER(($N32+$P32),2)-(4*(N32*P32-POWER(10,-$Q32)))))/2 =$N32-$R32 =-LOG10($S32) =(0.0585*B32+1.309)/10000000000 33 =POWER(10,-14)/POWER(10,-$T$13)+$O33 =15.5129-0.0224*$B33+0.00003352*POWER(B33,2) =(N33+P33-SQRT(POWER(($N33+$P33),2)-(4*(N33*P33-POWER(10,-$Q33)))))/2 =$N33-$R33 =-LOG10($S33) =(0.0585*B33+1.309)/10000000000 34 =POWER(10,-14)/POWER(10,-$T$13)+$O34 =15.5129-0.0224*$B34+0.00003352*POWER(B34,2) =(N34+P34-SQRT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER(10,-$Q34)))))/2 =$N34-$R34 =-LOG10($S34) =(0.0585*B34+1.309)/10000000000 35 =POWER(10,-14)/POWER(10,-$T$13)+$O35 =15.5129-0.0224*$B35+0.00003352*POWER(B35,2) =(N35+P35-SQRT(POWER(($N35+$P35),2)-(4*(N35*P35-POWER(10,-$Q35)))))/2 =$N35-$R35 =-LOG10($S35) =(0.0585*B35+1.309)/10000000000 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 LM-0642, Rev. 0, Attachment E, Page E-6 of E-7

GRAND GULF REFERENCE CALCULATION V W X Y Z AA 1

2 3

4 5

6 7

8 9

10 Strong Acid 11 g-equiv. Na2B4O710H2O Borate Boric Acid pKa pH 15 12 Net [H+]

  • VPOOL g-mols g-equiv. g-equiv. -log10Ka 13 =S13*$B$3 =$Q$2*453.6/410 =W13*2-V13 =W13*8+V13 =-LOG10(U13) =Z13+LOG10((X13/$B$3)/(Y13/$B$3))

14 =S14*$B$3 =$Q$2*453.6/410 =W14*2-V14 =W14*8+V14 =-LOG10(U14) =Z14+LOG10((X14/$B$3)/(Y14/$B$3))

15 =S15*$B$3 =$Q$2*453.6/410 =W15*2-V15 =W15*8+V15 =-LOG10(U15) =Z15+LOG10((X15/$B$3)/(Y15/$B$3))

16 =S16*$B$3 =$Q$2*453.6/410 =W16*2-V16 =W16*8+V16 =-LOG10(U16) =Z16+LOG10((X16/$B$3)/(Y16/$B$3))

17 =S17*$B$3 =$Q$2*453.6/410 =W17*2-V17 =W17*8+V17 =-LOG10(U17) =Z17+LOG10((X17/$B$3)/(Y17/$B$3))

18 =S18*$B$3 =$Q$2*453.6/410 =W18*2-V18 =W18*8+V18 =-LOG10(U18) =Z18+LOG10((X18/$B$3)/(Y18/$B$3))

19 =S19*$B$3 =$Q$2*453.6/410 =W19*2-V19 =W19*8+V19 =-LOG10(U19) =Z19+LOG10((X19/$B$3)/(Y19/$B$3))

20 =S20*$B$3 =$Q$2*453.6/410 =W20*2-V20 =W20*8+V20 =-LOG10(U20) =Z20+LOG10((X20/$B$3)/(Y20/$B$3))

21 =S21*$B$3 =$Q$2*453.6/410 =W21*2-V21 =W21*8+V21 =-LOG10(U21) =Z21+LOG10((X21/$B$3)/(Y21/$B$3))

22 =S22*$B$3 =$Q$2*453.6/410 =W22*2-V22 =W22*8+V22 =-LOG10(U22) =Z22+LOG10((X22/$B$3)/(Y22/$B$3))

23 =S23*$B$3 =$Q$2*453.6/410 =W23*2-V23 =W23*8+V23 =-LOG10(U23) =Z23+LOG10((X23/$B$3)/(Y23/$B$3))

24 =S24*$B$3 =$Q$2*453.6/410 =W24*2-V24 =W24*8+V24 =-LOG10(U24) =Z24+LOG10((X24/$B$3)/(Y24/$B$3))

25 =S25*$B$3 =$Q$2*453.6/410 =W25*2-V25 =W25*8+V25 =-LOG10(U25) =Z25+LOG10((X25/$B$3)/(Y25/$B$3))

26 =S26*$B$3 =$Q$2*453.6/410 =W26*2-V26 =W26*8+V26 =-LOG10(U26) =Z26+LOG10((X26/$B$3)/(Y26/$B$3))

27 =S27*$B$3 =$Q$2*453.6/410 =W27*2-V27 =W27*8+V27 =-LOG10(U27) =Z27+LOG10((X27/$B$3)/(Y27/$B$3))

28 =S28*$B$3 =$Q$2*453.6/410 =W28*2-V28 =W28*8+V28 =-LOG10(U28) =Z28+LOG10((X28/$B$3)/(Y28/$B$3))

29 =S29*$B$3 =$Q$2*453.6/410 =W29*2-V29 =W29*8+V29 =-LOG10(U29) =Z29+LOG10((X29/$B$3)/(Y29/$B$3))

30 =S30*$B$3 =$Q$2*453.6/410 =W30*2-V30 =W30*8+V30 =-LOG10(U30) =Z30+LOG10((X30/$B$3)/(Y30/$B$3))

31 =S31*$B$3 =$Q$2*453.6/410 =W31*2-V31 =W31*8+V31 =-LOG10(U31) =Z31+LOG10((X31/$B$3)/(Y31/$B$3))

32 =S32*$B$3 =$Q$2*453.6/410 =W32*2-V32 =W32*8+V32 =-LOG10(U32) =Z32+LOG10((X32/$B$3)/(Y32/$B$3))

33 =S33*$B$3 =$Q$2*453.6/410 =W33*2-V33 =W33*8+V33 =-LOG10(U33) =Z33+LOG10((X33/$B$3)/(Y33/$B$3))

34 =S34*$B$3 =$Q$2*453.6/410 =W34*2-V34 =W34*8+V34 =-LOG10(U34) =Z34+LOG10((X34/$B$3)/(Y34/$B$3))

35 =S35*$B$3 =$Q$2*453.6/410 =W35*2-V35 =W35*8+V35 =-LOG10(U35) =Z35+LOG10((X35/$B$3)/(Y35/$B$3))

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 LM-0642, Rev. 0, Attachment E, Page E-7 of E-7

LIMERICK GENERATING STATION TRANSIENT POOL pH CALCULATION A B C 1

2 3

Specific Weight % Sodium Pentaborate in Gravity @ 80 Solution 4 F 5 0.1 1.0485 6 0.11 1.0535 7 0.111 1.054 8 0.112 1.0545 9 0.113 1.055 10 0.114 1.0555 11 0.115 1.056 12 0.116 1.0565 13 0.117 1.057 14 0.118 1.0575 15 0.119 1.058 16 0.12 1.0585 17 0.121 1.059 18 0.122 1.0595 19 0.123 1.06 20 0.124 1.0605 21 0.125 1.061 22 0.126 1.0615 23 0.127 1.062 24 0.128 1.0625 25 0.129 1.063 26 0.13 1.0635 27 0.131 1.064 28 0.132 1.0645 29 0.133 1.065 30 0.134 1.0655 31 0.135 1.066 32 0.136 1.0665 33 0.137 1.067 34 0.138 1.0675 35 0.139 1.068 36 0.14 1.0685 37 0.141 1.069 38 0.142 1.0695 39 0.143 1.07 40 0.15 1.0735