ML053330370

From kanterella
Revision as of 11:22, 14 March 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Calculation LM-0644, Rev 1, Re-analysis of Main Stream Line Break (MSLB) Accident Using Alternative Source Terms, Attachment 007
ML053330370
Person / Time
Site: Limerick  Constellation icon.png
Issue date: 09/20/2005
From: Reichert P, Rothstein H
Exelon Generation Co, Exelon Nuclear
To:
Office of Nuclear Reactor Regulation
References
CC-AA-309-1001, Rev 2 LM-0644, Rev 1
Download: ML053330370 (56)


Text

ADDITIONAL ATTACHMENTS TO 10-10-05 Letter: SupPlement to Request for LAR Application of AST Attachment 007 AST -. LM-0644 Rev 1 MSLB.

CC-AAk-301 001 Pevlsion 2 A1TACID?.LE1T Desip Analysis CoarSbeet Design Analysis (Major Revision) Last Page No. ¶17 t Aiit B-1 Analysis No_ 1 LM-0644 Revision: I Tlte: 3 Reanalysis Of Main Steam Lh~e Break (MSLB) Accident Usling Alternative Source Terns ECIECR No.:' 04.00003 Revision:a O Station(s): Linerick Component(s):

Uni No-,' 1 _

DisciplIne:' MEDC des/wor:i'° H84 lAST. MSLB SafetyfOA Cass:" SR System Code: w VC & MS _

St.cmv. .

CONTROLLED DOCUMENT REFERENCES U Document No.: Vromiro Document No: Fromro Caicclation LM-0641, Rev. o hom Calculation LM-031 1, Rav. 0 from_

Calcuaton LM40642, Rev. 0 s this Design Analysb Safeguards InformatIon? Yes 0 No E If yes. see SY-AA-101-106 Does this GasIn Analysis contaln Un Yes Nol If yes.

Assumption? ' ATVAFU:

This Design Analysis SUPERCEDES:" en n Ints Description of Revision Vist affected pages for partials):'

This revision hcorporates respomes to pertinent NRC Roquosts for Additional Information (RAls) with respect to all Exelon Nuclear Station Aftemaie Source Term Ucensl Amendnent Applications. A nw total reactor water mass release from the break of 140,000 lbs Isbutlized as a bounding value fron Standard Review Plan 15.6.4 for MSLE dose analysis purposes orgy for all Exelon Boling Water Reactor plants. In addition, Cesium relesse from the main steam line as Ceslum lodire Is Indclued.

Finally, additional assumptions from Regulatory Gulde 1.183 are Included to directly dicte conformance with this Regulatosy Guide.

Preparer. 2° Harold Rothtin / 9116/2005 Print Name SW Name Date Method of Detailed Review Altiorna e Testng 0 Review: t' Testng RevlewerM Paul ReFihert Print Name

,M 6955K\

Sion Name Date W/IQ200O Review Ind rview l Ondent Peer rvew n Notes: ECS e i?). 3. Jo.i n soy, (s Li External Approver' A d 2 Le/

Print Name Sign Name@> Date Print Narno SW Name Da Is a Supplementat Review Required?1 Yes1 Ne'WJ Ho0 1 Exelon o o ¢ , gpeA T n tjR .C ApproverE 6l1;o0 T FL; -

PV"t Name Sign Nne Oats

I CALCULATION NO. LM-0644 I REV. NO. I PAGE NO. 2 of CALCULATION TABLE OF CONTENTS 1.0 PURPOSE/OBJECTIVE ................................................. 3 2.0 METHODOLOGY AND ACCEPTANCE CRITERIA ............................................... 4 2.1 General Description ................................................. 4 2.2 Source Tern Model ................................................. 4 2.3 Release Model ................................................. 4 2.4 Dispersion Model ................................................. 4 2.4.1 EAB and LPZ .4 2.4.2 Control Room .5 2.5 Dose Model . . . 5 2.5.1 EAB and LPZ .5 2.5.2 Control Room .6 2.6 Acceptance Criteria ................................................. 6 3.0 ASSUMPTIONS ................................................. 9 3.1 Activity Release and Transport ................................................. 9 3.2 Control Room .................................................. 9 4.0 DESIGN INPUT ................................................ . 10 4.1 Mass Release Data ................................................. 10 4.2 Iodine and Noble Gas Activity Release ................................................. 10 4.3 Control Room Data ................................................. I1 4.4 EAB and LPZ Data ................................................. 11

5.0 REFERENCES

................................................ . 12 6.0 CALCULATIONS ................................................ . 13 6.1 Cloud Volumes, Masses, and Control Room Intake Transit Times . ........................................... 13 6.2 Dispersion for Offsite Dose Assessment ................................................. 14 6.3 Release Isotopics and Quantification ................................................ . 14 6.4 Dose Assessment ................................................. 15 7.0

SUMMARY

AND CONCLUSIONS ................................................ 16 8.0 OWNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS. 17 Attachments:

A. Spreadsheet Performing Cesium Molar Fraction and Total MSLB Dose Assessment, With Formula Sheets [pages A I -A 18]

B. Computer Disclosure Sheet [pages B I -B I]

I CALCULATION NO. LM-0644 I REV. NO. I - . PAGE NO. 3 o f17 1.0 PURPOSE/OBJECTIVE The purpose of this calculation is to determine the Control Room (CR), Exclusion Area Boundary (EAB), and Low Population Zone (LPZ) doses following a Main Steam Line Break (MSLB) Accident. This calculation is performed in accordance with Regulatory Guide (RG) 1.183 [Ref. 6] as described herein.

The principal attributes of this Revision 1 analysis compared to previous Revision 0 and prior analyses for this event under Standard Review Plan 15.6.4 guidance and 10CFR100 and 10CFR50, General Design Criterion 19 requirements are:

1. Doses are evaluated in terms of Total Effective Dose Equivalent (TEDE) and evaluated against 10CFR50.67 limits as modified by RG 1.183.
2. Noble gas releases are as previously analyzed and are not impacted by AST application.
3. Historically determined liquid reactor coolant and steam release continue to be the basis for the determination of the fact that no fuel damage results from an MSLB.
4. A simplified and more conservative basis is used for the determination of radionuclide releases based on a bounding reactor coolant blowdown value.
5. Cesium releases, as cesium iodide, are now considered in addition to iodine and noble gas release that have been historically assumed.

As per LGS UFSAR Section 15.6.4 [Ref. 1], this event involves the postulation that the largest steam line instantaneously and circumferentially breaks outside the primary containment at a location downstream of the outermost isolation valve, with this event representing the envelope evaluation of steam line failures outside primary containment. Closure of the Main Steam Isolation Valves (MSIVs) terminates the reactor coolant mass loss when the full closure is reached. No operator actions are assumed to be taken during the accident, and the radioactivity concentration inside the Control Room is considered the same as that just outside the intake (with a geometry factor applied for submersion doses) to address any degree of postulated unfiltered inleakage during the duration of the event.

The mass of coolant released during the MSLB is taken as a bounding value for all current Boiling Water Reactor (BWR) plants and for dose analysis purposes only of 140,000 pounds, as provided in Standard Review Plan 15.6.4, Paragraph 111.2.a for a GESSAR-251 plant. This ensures that the discharge quantity and dose consequences are maximized, and that the releases should bound any other credible pipe break. As per UFSAR Section 15.6.4.4 and the Ref. 2 Calculation of Impact of Power Rerate on Main Steam Line Break Doses and Activities, a release of 88,333 pounds of reactor water and 20,452 pounds of steam applies, therefore the plant licensing basis mass release following a MSLB for consideration of the potential for fuel damage is the UFSAR Section 15.6.4 total of 108,785 lb of the primary coolant.

I CALCULATION NO. LM-0644 I REV. NO. I PAGE NO. 4 of 17 2.0 METHODOLOGY AND ACCEPTANCE CRITERIA 2.1 General Description The radiological consequences resulting from a design basis MSLB accident to a person at the EAB; to a person at the LPZ; and to an operator in the Control Room following an MSLB accident were performed using a Microsoft EXCEL spreadsheet, provided as Attachment A.

2.2 Source Term Model As noted in UFSAR Sections 15.6.4.2.1 and 15.6.4.3, no fuel damage is expected to result from a MSLB, as the core would be covered throughout the accident, and the temperature and pressure transients resulting as a consequence of the accident are insufficient to cause fuel damage. Therefore, the activity available for release from the break is that present in the reactor coolant and steam lines prior to the break, with two cases analyzed. Case 1 is for continued full power operation with a maximum equilibrium coolant concentration of 0.2 uCilgm dose equivalent 1-131 [Ref. 8]. Case 2 is for a maximum coolant concentration of 4.0 uCi/gm dose equivalent 1-131, based on a pre-accident iodine spike caused by power changes. This accident source term basis meets the guidance in RG 1.183 for analysis of this event.

Inhalation Committed Effective Dose Equivalent (CEDE) Dose Conversion Factors (DCFs) from Federal Guidance Report (FGR) No. 11 [Ref. 3] and External Dose Equivalent (EDE) DCFs from FGR No. 12 [Ref. 4] are used.

2.3 Release Model Noble gas releases are those historically determined to correspond to 0.35 Ci /sec offgas release rate after 30 minutes delay. These release quantities are taken from Ref. 1.

Iodine releases are determined based on a release of 140,000 lbs of reactor coolant with either 0.2 uCi/gm or 4.0 uCi/gm of 1-131 dose equivalent activity per Technical Specification 3.4.5.

The iodine species released from the main steam line are assumed to be 95% Csl as an aerosol, 4.85% elemental, and 0.15% organic. Therefore, 95% of iodine releases have an atom equivalent cesium release. Cesium isotopic abundance is determined based on source terms developed for pH control for longer lived or stable isotope [Ref.11], and from ANSI/ANS-18.1-1999 [Ref.12] for shorter lived isotopes.

Releases are assumed to be instantaneous and no credit is taken for dilution in turbine building air.

2.4 Dispersion Model 2.4.1 EAB and LPZ EAB and LPZ X/Q's are determined using the methodology in R.G. 1.5 [Ref. 5]. Specifically:

I CALCULATION NO. LM-0644 REV. NO. I PAGE NO. 5 of 17 x = 0.0133 Q Oyu where cy = horizontal standard deviation of the plume (meters) u = windvelocity(meters/second)

Horizontal standard deviations are taken from the PAVAN outputs for the EAB and LPZ included in Rev. 0 of Calculation LM-0641 [Ref. 9]. Per R.G. 1.5, F stability and a 1 meter/sec wind speed are used.

2.4.2 Control Room For control room dose calculations, the plume was modeled as a hemispherical volume, the dimensions of which are determined based on the portion of the liquid reactor coolant release that flashed to steam at atmospheric pressure. The activity of the cloud is based on the total mass of water released from the break. This assumption is conservative because it considers the maximum release of fission products.

Activity release is conservatively assumed to effectively occur at the Control Room intake elevation and, again conservatively, no credit is taken for plume buoyancy.

Although Control Room X/Q values do not apply to this calculation, equivalent X/Q's are developed in the spreadsheet contained in Attachment A.

2.5 Dose Model Dose models for both onsite and offsite meet R.G. 1.183 [Ref.6] requirements, providing results in units of Total Effective Dose Equivalent (TEDE). Dose conversion factors are based on Federal Guidance Reports 11 and 12 [Refs 3 & 4].

2.5.1 EAB and LPZ Doses at the EAB and LPZ for the MSLB are based on the following formulas:

3 DoseCEDE (rem) = Release (Curies)

  • X (sec/m3) *Breathing Rate (m /sec)
  • Inhalation DCF(remCEDE/Ci inhaled)

Q and DoseEDE (rem) = Release (Curies)

  • X (sec/m3)
  • Submersion DCF (remEDE -m 3 / Ci -sec)

Q and finally, DoseTEDE (rem) = DoseCEDE (rem) + DoseEDE (rem)

I CALCULATION NO. LM-0644 I REV. NO. I PAGE NO. 6 of 17 l 2.5.2 Control Room CR operator doses are determined somewhat differently. Steam cloud concentrations are used, rather than X/Q times a curie release. No CR filter credit is taken and, therefore, for inhalation, a dose for a location outside of the CR is used. For cloud submersion, a geometry factor is used to credit the reduced plume size seen in the CR. This Is a conservative implementation of RG 1.183 guidance. The formulas used are:

DoseCEDE (rem) = Plume Concentration (Ci/m3 )

  • Transit Duration (sec)
  • Breathing Rate (m3 /sec)
  • Inhalation DCF (remCEDE/Ci inhaled) and 3

DoseEDE (rem) = Plume Concentration (Ci/m 3 )

  • Transit Duration (see)
  • Submersion DCF (remEDE - m / Ci - see)
  • Geometry Factor and finally, DoseTEDE (rem) = DoseCEDE (rem) + Dose EDE (rem) 2.6 Acceptance Criteria Dose acceptance criteria are per 10CFR50.67 [Ref.7] and R.G. 1.183 [Ref. 6] guidance.

The following Table lists the regulatory limits for accidental dose to 1) a control room operator,

2) a person at the EAB, and 3) a person at the LPZ boundary.

Regulatory Dose Limits (Rem TEDE) per Refs. 6 and 7.

1-131 Dose CR EAB LPZ Equivalent (30 days) (2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />) (30 days Normal Equilibrium 5 2.5 2.5 Iodine Spike 5 25 25 Direct conformance with the relevant guidance in Regulatory Guide 1.183 (e.g., the TEDE concept and the above limits) and in particular its assumptions provided in Appendix D "Assumptions for Evaluating the Radiological Consequences of a BWR Main Steam Line Break Accident" is provided by this analysis, as shown in the Conformance Matrix Table 2.1.

I CALCULATION NO. LM-0644 I REV. NO. I I PAGE NO. 7 of l

- Table 2.1: C formnc ith RG1.183 AppendIx D(Main Steam LIe Break) '

RG ]- Lmrik Scin -RG Position -Anayi Omments 1 Assumptions acceptable to the NRC staff regarding core inventory and Not Applicable No fuel damage (as per the release of radionuclides from the fuel are provided in Regulatory Section 2.2), release estimate Position 3 of this guide. The release from the breached fuel is based on based on coolant activity.

Regulatory Position 3.2 of this guide and the estimate of the number of fuel rods breached.

2 If no or minimal fuel damage is postulated for the limiting event, the Conforms See 2.1 and 2.2 below released activity should be the maximum coolant activity allowed by technical specification. The iodine concentration in the primary coolant is assumed to correspond to the following two cases in the nuclear steam supply system vendor's standard technical specifications.

2.1 The concentration that is the maximum value (typically 4.0 pCi/gm DE I- Conforms 4.0 uCi/gm DE 1-131 is a limit 131) permitted and corresponds to the conditions of an assumed pre- in Technical Specification accident spike, and (TS) 3.4.5 and is used in this analysis.

2.2 The concentration that is the maximum equilibrium value (typically 0.2 Conforms 0.2 uCil/gm DE 1-131 is a limit pCi/gm DE 1-131) permitted for continued full power operation. in TS 3.4.5 and is used in this analysis.

3 The activity released from the fuel should be assumed to mix Not Applicable There is no activity released instantaneously and homogeneously in the reactor coolant. Noble gases from the fuel as there is no should be assumed to enter the steam phase instantaneously. fuel damage (as per Section 2.2).

4.1 The main steam line isolation valves (MSIV) should be assumed to close Conforms As a bounding mass release in the maximum time allowed by technical specifications. was used, the MSIV closure time was not used in the analysis. However, this closure time is considered in UFSAR Section 15.6.4 as 5.5 seconds, per the Technical Specification SR

ICALCULATION NO. LM-0644 I REV. NO. I I PAGE NO. 8 ofl

. ' ' -. ' -- Tabl 2.1 ; Cono I.:~~~~ 'mftd With R 1.8 A8'A"4 p ndxD(an

. SemLn

. .. r' ';k~ ., .. '- '

l f ' RG '"

Section RG P osition A' Limerick Analysis Comments 3.4.7 maximum allowed MSIV closure time of 5 seconds plus 0.5 seconds for instrument response.

4.2 The total mass of coolant released should be assumed to be that I Conforms A bounding value of 140,000 amount in the steam line and connecting lines at the time of the break lbs of reactor coolant for a plus the amount that passes through the valves prior to closure. GESSAR-251 plant as provided in Standard Review Plan 15.6.4 is used for dose assessment. This bounds the RG Position total mass of coolant released.

4.3 All the radioactivity in the released coolant should be assumed to be Conforms Release is assumed at released to the atmosphere instantaneously as a ground-level release. ground level, with no credit No credit should be assumed for plateout, holdup, or dilution within taken for plateout, holdup or facility buildings. dilution within facility buildings, and the buoyancy effects of the steam neglected for conservatism. Activity releases considered are iodines, noble gases and cesium.

4.4 The iodine species released from the main steam line should be Conforms The subject values are used.

assumed to be 95% Csl as an aerosol, 4.85% elemental, and 0.15%

organic.

CALCULATION NO. LM-0644 REV. NO. I PAGE NO. 9 of 17 3.0 ASSUMPTIONS 3.1 Activity Release and Transport

  • Iodine coolant activity isotopic distributions and Noble Gas activity releases are taken from Refs. 1 and 2.
  • Cesium releases are based on the fact that a single cesium atom will accompany 95% of the released iodine atoms, and considering all of the iodine isotopes (including stable ones) from the End-of-Core condition per page B-14 of Ref. 11.
  • Release from the break to the environment is assumed instantaneous. No holdup in the Turbine Building or dilution by mixing with Turbine Building air volume is credited.
  • The steam cloud is assumed to consist of the portion of the liquid reactor coolant release that flashed to steam.
  • The activity of the cloud is based on the total mass of water released from the break; i.e., the activity in water which does not flash to steam is conservatively added to the activity of the steam cloud.
  • Buoyancy effect of the cloud was conservatively ignored.
  • For the control room dose calculations,

> The plume was modeled as a hemispherical volume. This is consistent with the assumption of no Turbine Building credit.

> Dispersion of the activity of the plume was conservatively ignored.

> The cloud was assumed to be carried away by a wind of speed I m/s. Credit is not taken for decay.

3.2 Control Room

  • Inhalation doses are determined based on concentrations at the intake, and exposures for the duration of plume traverse.
  • External exposure doses are determined based on concentrations at the intake, exposures for the duration of plume traverse, and a geometry factor credit (Equation 1 of Ref. 6) based on the control room envelope volume of 126,000 cubic feet [Ref.

2]. As the LGS control room has no exterior walls or overlying structures that are less than 2 feet thick concrete, this cloud dose model is considered sufficient to eliminate separate consideration of the radiation shine from the external radioactive plume release.

I CALCULATION NO. LM-0644 I REV. NO. I PAGE NO. IO of 17 4.0 DESIGN INPUT 4.1 Mass Release Data

  • As stated in UFSAR Section 15.6.4.2.1, there is no fuel damage as a consequence of this accident. For this dose analysis, 140,000 lbs of reactor coolant is assumed to be released, which is more conservative than the 108,785 lb release in UFSAR Section 15.6.4.2.1.

4.2 Iodine and Noble Gas ActivityRelease The MSLB Power Rerate Calculation [Ref. 2] provides the following concentrations of Iodine isotopes contained in the coolant:

InHinn l, mlJlt, Icntnncx

  • O:JU.v.t A~ntvht /lo i/'nml 11411J1 kv %&AWv.J 1-131 0.039 1-132 0.36 1-133 0.267 1-134 0.72 1-135 0.39 These are normalized to 0.2 uCi/gm for Case 1 and 4.0 uCi/gm for Case 2 in this calculation, as indicated in Section 6.3.

The UFSAR and MSLB Power Rerate Calculation [Refs. I and 2] provide the following Design Basis Accident releases for Noble Gases:

Noble Gas Release Isotope Ci Kr-83M 8.73E-02 Kr-85M 1.54E-01 Kr-85 5.97E-04 Kr-87 4.76E-01 Kr-88 4.88E-01 Kr-89 2.04 Xe-1 31 M 4.87E-04 Xe-133M 7.30E-03 Xe-1 33 2.05E-01 Xe-135M 5.98E-01 Xe-1 35 5.52E-01 Xe-1 37 2.69 Xe-138 2.04

I CALCULATION NO. LM-0644 I REV. NO. I I I PAGE NO.1 Iof 17 4.3 Control Room Data

  • No Emergency Filtration Credit taken.

4.4 EAB and LPZ Data

  • EAB Distance from Release, m 731 [Ref. 1, 9]
  • LPZ Distance from Release, m 2043 [Ref. 1, 9]

I CALCULATION NO. LM-0644 I REV. NO. I PAGE NO. 12 of 17 l

5.0 REFERENCES

1. Limerick Generating Station Unit 1 & 2 UFSAR Section 15.6, Rev. 12.
2. LGS Design Analysis LM-031 1, Rev. 0, "Impact of Power Rerate on Main Steam Line Break Doses and Activities".
3. Federal Guidance Report No. 11, 'Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion",

1988.

4. Federal Guidance Report No. 12, "External Exposure to Radionuclides in Air, Water, and Soil", 1993.
5. Regulatory Guides 1.5, uAssumptions Used for Evaluating the Potential Radiological Consequences of a Steam Line Break Accidents for Boiling Water Reactors," 3/10/71.
6. Regulatory Guide 1.183, "Alternative Radiological Source Temis For Evaluating Design Basis Accidents At Nuclear Power Reactors", July 2000.
7. 10 CFR Part 50.67, "Accident Source Term".
8. LGS Technical Specification Section 3.4.5, "Specific Activity".
9. LGS Design Analysis No. LM-0641, Rev. 0 "Calculation of Alternative Source Terms Onsite and Offsite X/Q Values".
10. LGS Calculation No. M-78-01, "Control Room Area - Room Volume", Rev. 6.
11. LGS Design Analysis No. LM-0642, Rev. 1 "Suppression Pool pH Calculation for Alternative Source Terms ".
12. American Nuclear Society Standard (ANS) 18.1-1999 "Radioactive Source Terms For Normal Operation of Light Water Reactors", Table 5.

I CALCULATION NO. LM-0644 I REV. NO. I I PAGE NO.13 of 17 6.0 CALCULATIONS No fuel damage is expected for the limiting MSLB. As discussed in Section 2, two iodine concentrations are used (0.2 pCi/g and 4.0 pCilg) [per Ref. 6] when determining the consequences of the main steam line break. All of the radioactivity in the released coolant is assumed to be released to the atmosphere instantaneously as a ground-level release. No credit is taken for plateout, holdup, or dilution within facility buildings.

The spreadsheets in Attachment A perform this analysis using data and formulations discussed above and shown in Attachment A. The following summarizes parameters and their treatment in the spreadsheet.

6.1 Cloud Volumes, Masses, and Control Room Intake Transit Times The cloud is assumed to consist of the portion of the conservatively bounding liquid reactor coolant release that flashes to steam. The flashing fraction (FF) is derived as follows:

FF x (steam enthalpy at 212 F) + (1-FF) x (liquid enthalpy at 212 F) =

(liquid enthalpy at temperature of steam at reactor vessel outlet)

A 548 F vessel outlet temperature is used, with liquid enthalpy of 546.9 BTU/lb.

At 212 F, a steam enthalpy of 1150.5 BTU/lb and a liquid enthalpy of 180.17 BTU/lb are used (these enthalpies are taken from the ASME Steam Tables).

Substituting, FF = (546.9 - 180.17) / [(1150.5 - 180.17)] = 0.378 For conservatism, a value of .40 or 40% is used.

As stated in Section 3.1, the cloud is assumed to consist of that portion of the liquid reactor coolant release that flashed to steam.

The mass of liquid water released = 140,000 lb Flashing fraction for calculating cloud volume = 40%

The mass of water carrying activity into the cloud = 140,000 lb

= (140,000 lb)(453.59 galb)

= 6.350E7 g The mass of steam in the cloud =40%*140,000 lb

= 56,000 lb The release is assumed to be a hemisphere with a uniform concentration. The cloud dimensions (based on 56,000 lb of steam at 14.7 psi and 212 OF, vg = 26.799 ft3 /lb) were calculated as follows:

I CALCULATION NO. LM-0644 I REV. NO. I I PAGE NO.14 of 17 Volume = (56,000 Ib)(26.799 ft3/lb)

= 1,500,744 ft3

= (1,500,744 ft3 )/(35.3 ft3/m3 )

= 42,514 m3 The volume of a hemisphere is 7c d3 /12. Thus, the diameter of the hemispherical cloud is 54.6 meters.

The period of time required for the cloud to pass over the control room intake, assuming a wind speed of 1 m/s is 54.6 s (=(54.6 m)/(1 mWs)). Therefore, at a wind speed of I m/s, the base of the hemispherical cloud will pass over the control room intake in 54.6 seconds.

6.2 Dispersion for Offsite Dose Assessment As discussed in Section 2.4.1 the following formulation was used for Offsite Dose X/Q assessment, with F Pasquill Stability and a 1 m/sec wind speed.

x 0.0133 Q ayu where y = horizontal standard deviation of the plume (meters) u = wind velocity (meters/second)

As calculated in the PAVAN run in Ref. 9, at the 731 meter EAB distance cry is 27.9, and at the 2043 meter LPZ distance aay is 70.5. The resulting EAB and LPZ XIQs are 4.77E-04 and 1.89E-04 sec/M 3 , respectively.

6.3 Release Isotopics and Quantification The iodine, noble gas and cesium activity releases are given In Attachment A, which also determines resulting doses.

Noble gas releases are taken from the input in Section 4.2.

Iodine releases are based on reactor coolant isotopic distributions from Section 4.2, which are normalized based on FGR-1 I CEDE dose conversion factors to obtain coolant concentrations corresponding to Case 1: 0.2 uCi/gm, and Case 2 4.0 uCi/gm, which are the TS 3.4.5 values.

The resulting concentrations were multiplied by the 140,000 lbs of release converted to grams.

Cesium releases are based on the fact that a single cesium atom will accompany 95% of the released iodine atoms. The iodine isotopes (including stable ones) from the End-of-Core (EOC) condition per page B-14 of Ref. 11 are considered, with the total iodine moles calculated in Attachment A based on the ratio of the page B-14 total iodine gm-moles including 1-127 and 1-129 to the total on page B-14 of the radioactive iodine isotopes 1-131 through 1-135, times the total radioactive iodine moles for the activity releases for each of Cases 1 and 2. For Cs-1 33, Cs-1 34, Cs-1 35, and Cs-1 37, isotopic data (in Curies per Megawatt) for end of cycle conditions

I CALCULATION NO. LM-0644 I REV. NO. I IlPAGE NO. 15 of 17 from Ref. 11 were used. For shorter lived isotopes such as Cs-1 36 and Cs-1 38, the ratio of their concentration values in Reactor Water to that of Cs-1 37 in Ref. 12 is used to predict their relative concentrations. Releases reflect this distribution, with the molar fractions converted to curie quantities based on the isotope's decay constant. Cs-133, representing about 38% of the cesium, is stable.

6.4 Dose Assessment Doses at the EAB and LPZ distances, and in the Control Room are calculated in Attachment A using the formulas In Section 2.5. Concentrations at the receptor locations are that in the steam plume for the Control Room or based on the release times the applicable X/Q for the EAB and LPZ.

Doses are calculated for inhalation (rem CEDE) and plume submersion (rem EDE) and totaled to yield rem TEDE. The breathing rate of 3.5E-04 m /sec Is per RG 1.183 guidance.

The resulting calculated doses are in the spreadsheet and in the Summary and Conclusions Section below.

I CALCULATION NO. LM-0644 I REV. NO. I I PAGE NO.16 of 17 7.0

SUMMARY

AND CONCLUSIONS Accident doses from a design basis MSLB were calculated for the control room operator, a person at the EAB, and a person at the LPZ. Table 7.1 shows the CEDE and EDE contributions from lodines, noble gases and cesiums and the TEDE results are summarized in Table 7.2. The doses at the Control Room, EAB, and LPZ resulting from a postulated design basis MSLB are all below the regulatory limits.

TABLE 7.1 CASE 1 CASE 2 Dose (rem CEDE) Dose (rem EDE) Dose (rem CEDE) Dose (rem EDE)

(Inhalation) (External)_(Inhalation) (External)

CR EAB LPZ CR EAB LPZ CR EAB LPZ CR EAB LPZ lodines 1.88E-01 6.97E.02 2.76E-02 4.38E.03 3.60E-02 1.42E.02 3.76E+OO 1.39E+OO 5.52E-01 8.75E-02 7.20E-01 2.85E-O1 Ceslums 5.84E-03 2.17E.03 8.57E-04 3.51E-04 2.89E-03 1.14E.03 1.17E-01 4.33E.02 1.71E.02 7.03E.03 5.78E.02 2.29E.02 Gases N/A NIA N/A 4.45E-05 3.66E.04 1.45E-04 NIA I NIA NIA 4.45E.0513.66E-0411.45E-OA TABLE 7.2 Location Case I Case 2 (normal equilibrium (iodine spike limit of 0.2 ICl) limit of 4.0 piCI)

Dose (rem TEDE) Dose (rem TEDE)

LIMITS CR: 5.0; EAB&LPZ: 2.5 CR: 5.0; EAB&LPZ: 25 EAB 1.11 E-01 2.22E+00 LPZ 4.40E-02 8.77E-01 CR 1.98E-01 3.97E+00

I CALCULATION NO. LM-0644 REV. NO. I I PAGE NO. 17 of 17 8.0 OWNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS DESIGN ANALYSIS NO. LM-0644 REV: I Yes No N/A

1. Do assumptions have sufficient rationale? V El 0 Are assumptions compatible withthe way the plant is operated and with the
2. licensing basis? (iPDC ST) El O El
3. Do the design inputs have sufficient rationale? f 1: O:
4. Are design inputs correct and reasonable? ' 11 El
5. Arc design inputs compatible with the way the plant is operated and with the licensing basis? ( Fvx PAST) T/ o 0
6. Are Engineering Judgments clearly documented and justified? lo/ 00n
7. Are Engineering Judgments compatible with the way the plant is operated and with the licensing basis? Eg/ 0 El
8. Do the results and conclusions satisfy the purpose and objective of the Dcsign Analysis? 03 03 Are the results and conclusions co patible with the way the plant is operated and with the licensing basis? CM-cAST) 11 OF
10. Does the Design Analysis include the applicable design basis documentation? 0l El Have any limitations on the use of the results been identifiedand transmitted to the appropriate organizations? CAST i po C>Ja 200
12. Are there any unverified assumptions? lo El'o
13. Do all unverified assumptions have a tracking and closure mechanism in El place?

Have all affected design analyses been documented on the Affected 14 Documents List (ADL) for the associated Configuration Change? 0l 0 Do the sources of inputs and analysis methodology used meet current technical requirements and regulatory commitments? (If the input sources or

15. analysis methodology are based on an out-of-date methodology or code, 03 0 additional reconciliation may be requird if the site has since committed to a more recent code) (Jv ArTs
16. Have vendor supporting technical documents and references (including GE 16 DRFs) been reviewed when necessary? 00 El EXELON REVIEWER: DATE: ______

Calculation LM-0644, Rev. I Attachment A Page Al of Al 8 A I B I C D E F G I H I I I J l K L M l N 1 LGS MSLB Dose Srreadsheet Case 1: Reactor Coolant at maximum value (DE 1-131 of 0.2 uCUcc) permitted for 2 _ _ _ _ continued full power operation 3 42,514 Volume of cloud (cubic metersl Case 2: Reactor Coolant at maximum value permitted (DE 1-131 of 4.0 uCVcc) 4 6.35E+07 Mass of water In reactor coolant release (grams) corresponding to an assumed pre-accident spike 5 2.54E+07 Mass of steam release (grams) I .I 6 1 reactor coolant density when activity is measured (grams/cc) I I 7 54.6 seconds for cloud to pass over CR intake for wind speed of 1 rnsecond .

8 126000 Volume of Control Room Envelope (cubic fe ___

9 10 Halogens Calc. LM-311 Case 1 Case 2 11 Rev. 0 Release Release _

12 Colant Normalized Case 1 Case 2 Case 1 Case 2 Cloud Cloud Case 1 Case 2 13 Isotope Activity FGR 11 1-131 DE Normalized Normalized Activity Activity Concentration Concentration Decay Activity Activity 14 Concentration DCF Activity Activity Activity Release Release Constant Release Release 3

15 uCVgm Rem/Ci uCugM uCigM uCVgm Ci Ci C1m 3 CVm 1/seconds moles moles 16 1-131 0.039 3.29E+04 3.90E-02 7.22E-02 1.44E+00 4.58E+00 9.17E+01 1.08E-04 2.16E-03 9.98E-07 2.82E-07 5.64E-06 17 1-132 0.36 3.81 E+02 4.17E-03 7.72E-03 1.54E-01 4.23E+01 8.46E+02 9.95E-04 1.99E-02 8.37E-05 3.10E-08 6.21 E-07 1 1-133 0.267 5.85E+03 4.74E-02 8.78E-02 1.76E+00 3.14E+01 6.28E+02 7.38E-04 1.48E-02 9.26E-06 2.08E-07 4.16E-06 19 1-134 0.72 1.31E+02 2.87E-03 5.31E-03 1.06E-01 8.46E+01 1.69E+03 1.99E-03 3.98E-02 2.20E-04 2.37E-08 4.73E-07 20 1-135 0.39 1.23E+03 1.46E-02 2.70E-02 5.40E-01 4.58E+01 9.17E+02 1.08E-03 2.162-02 2.91 E-05 9.67E-08 1.93E-06 21 1.08E-01 2.00E-01 4.00E+00 Totals 6.42E-07 1.28E-05 22 'non-spiked' spiked' 23 Total moles withl 1-127 and 1-129 24 25 26 Noble Gases Included from page B-14 of Ref. 11 I 1 I_

Iodine in Reactor Coolant Replacement Values for UFSAR 2.37E-05 4.74E-04 27 CaIc. I _Case I Case 2 Sec. 15.6.4.5.1. adjusted to be 0.2 uCVgr 1-131 dose 28 LM-31 1, Rev. Release Release Activity" 29 0, Table 4 Cloud Cloud Isotope (uCVgm) 30 Isotope Activity Concentration Concentration 1-131 0.0722 1 31 Release I-132 1 0.666 32 - Cl Vm3 CVm3 1-133 0.494 33 -134 1_ 1.33 34 Kr-83M 8.73E-02 2.05E-06 2.05E-06 1-135 0.722 35 Kr-85M 1.54E-01 3.62E-06 3.62E-06 36 Kr-85 5.97E-04 1.402-08 1.40E-08 Case 1 Case 2 Case 1 Case 2 37 Kr-87 4.76E-01 1.12E-05 1.12E-05 Activity Activity Decay Activity Activity 38 Kr-88 4.88E-01 1.152-05 1.15E-05 Release Release Constant Release Release 39 Kr-89 2.04 4.80E-05 4.80E-05 Molar Frac. moles moles 1/seconds curies curies 40 Xe-131M 4.87E-04 1.15E-08 1.15E-08 Cs-134 4.4317% 9.98E-07 2.00E-05 1.07E-08 1.73E-01 3.46E+00 41 Xe-133M 7.30E-03 1.72E-07 1.72E-07 _Cs-135 17.4506% 3.93E-06 7.86E-05 9.55E-15 6.11E-07 1.22E-05 42 Xe-133 2.05E-01 4.82E-06 4.82E-06 Cs-136 0.0120% 2.70E-09 5.40E-08 6.10E-07 2.68E-02 5.36E-01 43 Xe-135M 5.98E-01 1.41E-05 1.41E-05 CS-137 40.17% 9.05E-06 1.81E-04 7.28E-10 1.07E-01 2.14E+00 44 Xe-135 5.52E-01 1.30E-05 1.30E-05 Cs-138 0.0102% 2.30E-09 4.59E-08 3.59E-04 1.34E+01 2.68E+02 45 Xe-i 37 2.69 6.33E-05 6.33E-05 Totals 62.08% 1.40E-05 2.802-04 46 Xe-138 2.04 4.80E-05 4.80E-05 Balanceis stable Cs-133 47 _ _ _ _ =

Calculation LM-0644, Rev. Attachment A Page A2 of Al 8 A B C D E ] F G H I J K ( L M N 48 Inhalation Doses 49 Curies Released Case 1 Dose (rem CEDE) Case 2 Dose (rem CEDE) 50 to the Environment (Inhalation) (Inhalation) 51 Isotope Case 1 Case 2 DCF'. CR EAB LPZ CR EAB LPZ 52 1-131 4.58E+00 9.17E.01 3.29E.04 6.78E-02 2.52E-02 9.96E-03 1.36E+00 5.03E-01 1.99E-01 ____

53 1-132 4.23E'01 8.46E+02 3.81E+02 7.25E-03 2.69E-03 1.06E-03 1.45E-01 5.38E-02 2.13E-02 54 1-1331 3.14E+01 6.28E+02 5.85E+03 8.25E-02 3.06E-02 1.21 E-02 1.65E+00 6.12E2-01 2.42E-01____

55 1-134 8.46E+01 1.69E+03 1.31E+02 4.98E-03 1.85E-03 7.32E-04 9.97E-02 3.70E-02 1.46E-02 56 1-135 4.58E+01 9.17E+02 1.23E+03 2.53E-02 9.41 E-03 3.72E-03 5.07E-01 1.88E-01 7A45E-02

-57 _ _ _ _ _ __ _ _ _ _ __

58 Cs-134 1.73E-01 3.46E+00 4.63E+04 3.60E-03 1.34E-03 5.29E-04 7.20E-02 2.67E-02 1.06E2-02 ____

59 Cs-135 6.1 1E-07 1.22E-05 4.55E+03 1.25E-09 4.64E-10 1.84E-10 2.50E-08 9.28E-09 3.67E-09 ____

60 Cs-136 2.68E-02 5.36E-01 7.33E+03 8.83E-05 3.28E-05 1.30E-05 1.77E-03 6.55E-04 2.59E-04 ____

61 1CS-137 I1.07E-01 2.14E.00 3.19E+04 1.54E-03 5.71 E-04 2.26E-04 3.08E-02 1.14E-02 4.52E-03 ____

62 Cs-138 I____ 134E.01 I2.68E+02 I__ 1.01E402 6.1 1E-04 2.27E-04 8.97E-05 1.22E-02 4.53E-03 1.79E-03 ____

63 Sub-total (rem CEDE - ______J1.94E-01 7.19E-02 2.84E-02 3.87E+00 1.44E+00 5.69E-01 ____

66 ___ Curies Released Case 1 Dose (rem EDE) Cas 2 Dose (rem EDE)____

67 _____to the Environment ____________ (External) (External)____

2 EAB LPZ 68 Isotope Case 1 Case 2 DC CR EAB LPZ CR ___

69 1-131 _______ 4.58E+00 9.17E.O1 6.73E-02 1.79E-05 1.47E-04 5.82E-05 3.58E-04 2.94E-03 1.16E-03 ________

70 1-132 4.23E+01 8.46E+02 4.14E2-01 1.02E-03 8.36E-03 3.31 E-03 2.03E-02 1.67E-01 6.62E-02____

71 1-133 __ ___ 3.14E.01 6.28E.02 1.09E-01 1.98E-04 1.63E-03 6.44E-04 I3.96E-03 3.25E-02 1.29E-02 ____

72 1-134 8.46E+01 1.69E+03 4.81E-01 2.36E-03 1.94E-02 7.68E-03 I4.72E-02 3.88E-01 1.54E-01 ____

73 1-135 __ ___ 4.58E+01 9.17E+02 2.95E-01 7.85E-04 6.45E-03 2.55E-03 I1.57E-02 1.29E-01 5.1 1E-02____

751 Cs-134 1.73E-01 3.46E+00 2.80E-01 2.81 E-06 2.31 E-05 9.15E-06 5.62E-05 4.62E-04 1.83E-04 ___ ___

76 Cs-1135 6.1 1E-07 1.22E2-05 2.09E-06 7.41 E-1 7 6.09E-16 2.41 E-1 6 1.48E-15 1.22E-14 4.82E-15 ________

77 Cs-136 2.68E-02 5.36E-01 3.92E-01 6.10E-07 5.01 E-06 1.98E-06 1.22E-05 1.OOE-04 3.97E-05 ___ ___

78 CS-137 __ ____ 1.07E-01 2.14E+00 2.86E-05 - 1.78E-10 1.46E-09 5.79E-10 3.56E-09 2.93E-08 1.16E-08____

79 Cs-1 38 __ ____ 1.34E+01 2.68E+02 4.48E-01 3.48E-04 I2.86E-03 I1.13E-03 6.96E-03 5.72E-02 2.26E.02____

80 Sub-total (rem EDE) _______________ 4.73E-03 3.89E-02 I.54E-02 I9.46E-02 7.78E-01 3.OBE-01____

81 Iodine and Cesium Total (rem TEDE) _ ___ _______ 1.98E-01 1 IAIE-01 4.38E-02 3.97E+00 2.22E+00 8.77E-01____

8 2_ _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ I__ _ _ _ _ _

83 Curies Released _______Case 1 Dose (rem EDE) Case 2 Dose (rem ED) ________

84 _ _ __ _ _ to the Environment __ _ _ _ _ _ (External) _ __ (External)_ _ _ __ _ _

85 Isotope Case 1 Case 2 DCF 2

CR EAB j LPZ CR EAB LPZ____

86 Kr-83M __ ____ 8.73E-02 8.73E-02 5.55E-06 2.81 E-1 1 2.31 E-1 0 9.14E-1 1 2.81 E-1 1 2.31 E-1 0 9.14E-11 ________

87 Kr-85M __ ____ 1.54E-01 1.5.4E-01 2.77E-02 2.47E-07 2.03E-06 8.04E-07 2.47E-07 2.03E-06 8.04E-07____

88 Kr-85 __ ____ 5.97E-04 5.97E-04 4.40E-04 1.52E-11I 1.25E-1 0 4.96E-11I 1.52E-11I 1.25E-10 4.96E-1 1____

89 Kr-87 4.76E-01 4.76E-01 1.52E-01 4.21 E-06 3.46E-05 1.37E-05 4.21 E-06 3.46E-05 1.37E-05____

90 Kr-88 ______ 4.88E-01 4.88E-01 3.77E-01 1.07E-05 8.78E-05 3.47E-05 1.07E-05 8.78E-05 3.47E-05____

91 Kr-89 __ ____ 2.04 2.04E.00 O.OOE+00 0.OOE+00 0.OOE+00 0.00E+00 0.OOE+00 0.OOE+00 0.OOE+00 92 Xe-131M _ _____ 4.87E-04 4.87E-04 1.44E-03 4.06E-11I 3.34E-10 1.32E-10 4.06E-11I 3.34E-10 1.32E-10____

93 Xe-133M _______ 7.30E-03 7.30E-03 5.07E-03 2.15E-09 1.76E-08 6.98E-09 2.15E-09 1.76E-08 6.98E-09____

94 Xe-i133 I _____ 2.05E-01 2.05E-01 5.77E-03 6.86E-08 5.64E-07 2.23E-07 6.86E-08 5.64E-07 2.23E-07________

95 Xe-135M I5.98E-01 5.98E-01 7.55E-02 2.62E-06 2.15E-05 8.52E-06 2.62E-06 2.15E-05 ______E_____

96 Xe-135 ______ 5.52E-01 5.521E-01 4.40E-02 1.41 E-06 1.16E-05 4.59E-06 1.41 E-06 1.16E-05 4.59E-06 97 Xe-i 37 2.69 2.69E+00 0.OOE400 0.OOE2+00 0.OOE+00 0.00E+00 0.OOE+00 0.OOE+00 0.OOE+00____

98 Xe-138 2.04 2.04E+00 2.13E-01 2.53E-05 2.08E-04 8.22E-05 2.53E-05 2.08E-04 8.22E-05 ________

99 Noble Gas Sub-total (rmEDE) _ __________ 4.45E-05 3.66E-04 1.45E-04 4.45E-05 3.66E-04 1.45E-04____

100 _ _I___ _ _ _ __ I _ _ _ _

4.70-E-02 37.97E+00 2.22E+00 I8.77E-01

{50i Overall Total (rem TEDE) ___________ _____ _ 1 98E-01

-. 1.I1E-01 ____

Calculation LM-0644, Rev. 1 Attachment A Page A3 of A18 A B C D E F G H I J K L M N 103 Dose Conversion Factor (rem/Curie) from Federal Guidance Report (FGR) 11 per Reg. Guide 1.183 104 2 Dose Conversion Factor (rem-m/lCurie-second) from FGR 12 per Reg. Guide 1.183 105 3.50E-04 Breathing rate (mrlsecond) per Regulatory Guide 1.183 (without round-oft) 106 4.51E-02 Control Room Geometry Factor per Reg. Guide 1.183, Regulatory Position 4.2.7 107 2.79E+01 EAB a, (meters) for F stability (taken from PAVAN runs In Ref. 9) 1 108 7.050E+01 LPZa (meters) for F stability (taken from PAVAN runs In Ref. 9) 109 1.OOE+00 Wind Speed (mts) I_ _ .

3 110 4.77E-04 X/Q (seconds/m ) at EA Boundary 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> based on RG 1.5 methodology 111' 1.89E-04 XtQ (seconds/mi) at Low Population Zone 2 based on RG 1.5 methodology 112 1 1 1 I 113 Equivalent CR X/Q, based on (Curies Released)x(Equiv. XtQ)x(Breathing Rate)x(Dose Conversion Factor) = CEDE Dose 114 __ Case 1 Case 1 Dose (rem 115 Isotope Actnrity FGR 11 CEDE) 116 Release DCF1 (Inhalation) Equivalent XtQ 11, Ci Rem/Cl CR sec/im 118 1-131 4.58E+00 3.29E+04 6.78E-02 1.28E-03 119 1-132 4.23E+01 3.81 E+02 7.25E-03 1.28E-031 120 1-133 3.14E+01 5.85E+03 8.25E-02 1.28E-03' 121 1-134 8.46E+01 1.31E+02 4.98E-03 1.28E-031 122 1-135 4.58E+01 1.23E+03 2.53E-02 1.28E-031

Calculation LM-0644, Rev. I Attachment A Page A4 of Al 8 A B C D l E 1 LGS MSLB Dose _q 2

3 42514 Volume of cloud (cubic meters) 4 63500000 Mass of water In reactor coolant r 5 =56000-453.59 Mass of steam release (rams) 6 1 reactor coolant density when acth 7 54.6 seconds for cloud to pass over CF 8 126000 Volume of Control Room Envelop 9

10 Halogens Calc. LM-311 11 Rev. 0 12 Colant Normalized Case 1 13 Isotope Activity FGR 11 1-131 DE Normalized 14 Concentration DCF1 Activity Activity 15 uCi/gm Rem/Ci uCi/gm uCi/gm 16 1-131 0.039 32900 =C16'B16/C$16 =D16'0.2/D$21 17 1-132 0.36 381 =C17*B17/C$16 =D17-0.2/D$21 18 1-133 0.267 5846 =C18'B18/C$16 =D18*0.2/D$21 19 1-134 0.72 131 =C19-B19/C$16 =D19'0.2/D$21 20 1-135 0.39 1230 =C20*B20/C$16 =D20-0.2/D$21 21 =SUM(D16:D20) =SUM(E16:E20) 22 ~non-spiked' 23P 24 25_

26 Noble Gases 271 Calc. Case 1 28 LM-31 1, Rev. Release 29 0, Table 4 Cloud 30 Isotope Activity Concentration 31 Release 32 Ci Ci/m3 33 34 Kr-83M 0.0873 =$C34/$A$3 35 Kr-85M 0.154 -$C35/$A$3 36 Kr-85 0.000597 =$C36/$A$3 37 Kr-87 0.476 =$C37/$A$3 38 Kr-88 0.488 =$C38/$A$3 39, Kr-89 2.04 =$C39/$A$3

-40 Xe-131 M 0.000487 =$C40/$A$3 41 Xe-133M 0.0073 =$C41/$A$3 42 Xe-133 0.205 =$C42/$A$3 43 Xe-1 35M 0.598 =$C43/$A$3 44 Xe-135 0.552 .=$C44/$A$3

Calculation LM-0644, Rev. 1 Attachment A Page A5 of A18 A B C [ D E 45 Xe-137 2.69 =$C45/$A$3 46 Xe-138 2.04 =$C46/$A$3 47 48 Inhalation Doses 49 Curies Released 50 to the Environment 51 Isotope Case 1 Case 2 DCF1 52 1-131 =G16 =H16 32900 53 1-132 =G17 =H17 381 54 1-133 =G18 =H18 5846 55 1-134 =G19 =H19 131 56 1-135 =G20 =H20 1230 57 58 Cs-134 -M40 =N40 =(3700000000000)'0.0000000125 59 Cs-135 =M41 =N41 =(3700000000000)-0.00000000123 60 Cs-136 _=M42 =N42 =(3700000000000)-0.00000000198 61 CS-137 --M43 =N43 =(3700000000000)-0.00000000863 62 Cs-138 _=M44 _=N44 =(3700000000000)*0.0000000000274 63 I Sub-total (rem CEDE) I 64I 65.

66 Curies Released 67 to the Environment 68 Isotope Case 1 Case 2 DCF 2 69 1-131 =C52 =D52 0.06734 70 1-132 =C53 =D53 0.4144 71 1-133 =C54 =D54 0.10878 72 1-134 =C55 =D55 0.481 73 1-135 =C56 =D56 0.29526 74 75 Cs-134 =M40 =N40 =(3700000000000)'0.0000000000000757 76 Cs-135 =M41 =N41 =(3700000000000)*5.65E-19 77 Cs-136 =M42 =N42 =(3700000000000)-0.0000000000001 06 78 CS-137 =M43 =N43 =(3700000000000)*7.74E-1 8 79 Cs-138 --M44 =N44 =(3700000000000)'0.000000000000121 80 _ Sub-total (rem EDE)I +/-

81 Iodine and Cesium Tot j j 82 83 Curies Released 84 to the Environment 85 Isotope Case I Case 2 DCF 2 86 Kr-83M 0.0873 0.0873 0.00000555 87 Kr-85M 0.154 0.154 0.027676 88 Kr-85 0.000597 0.000597 0.0004403 89 Kr-87 _0.476 0.476 0.15244 90 Kr-88 0.488 10 488 0.3774 91 Kr-89 2.04 12.04 0

Calculation LM-0644, Rev. 1 Attachment A Page A6 of Al 8 A B C D E 92 Xe-131M 0.000487 0.000487 0.0014393 93 Xe-133M 0.0073 0.0073 0.005069 94 Xe-133 0.205 0.205 0.005772 95 Xe-135M 0.598 0.598 0.07548 96 Xe-135 0.552 0.552 0.04403 2 69 97 Xe-137 2.69 . 0 98 Xe-138 1 2.04 2.04 0.21349 99 I Noble Gas Sub-total (rem EDE)I I 100-101 Overall Total (rem TEO I I 102.

103 Dose Conversion Factor (remlCurle) I 3

104 2 Dose Conversion Factor (rem-m ICu_

3 105 0.00035 Breathing rate (m /second) per Regul 106 =($A$8-0.338y1173 Control Room Geometry Factor per R 107 27.9 EAB ar,(meters) for F stability (taken _

108 70.5 LPZ a, (meters) for F stability (taken t 109 1 Wind Speed (m/s) 3 110 =0.0133/A$107/A$109 X/O (seconds/m ) at EA Boundary -

i11 =0.0133/A$108/A$109 X/Q (seconds/m 3) at Low Population; 112 _

113 Equivalent CR X/Q, ba_

114 Case 1 Case 1 115 Isotope Activity FGR 11 Dose (rem CEDE) 116C Release DCF1 (Inhalation) Equivalent X/Q 117 Ci Rem/Ci CR secim' 118 1-131 4.58358015752869 32900 0.0677843518149616 =D118/(B118*C118-$A$105) 119 1-132 42.3099706848802 381 0.00724596812013104 =D119/(B119-C1i9*$A$105) 120 1-133 31.3798949246195 5846 0.082459180601388 0=D120/(B120-C120-$A$105) 121 1-134 84.6199413697604 131 0.00498279172565441 =D121/(B121 C121-$A$105) 122 1-135 45.8358015752869 1230 0.0253418701314294 =D122/(B122-C122-$A$105)

Calculation LM-0644, Rev. 1 Attachment A Page A7 of Al 8 F G I H I i 1 Case 1: Reactor Coolant at maximum value (DE 1-131 of 0.2 uClcc) permitted for continued full power operation 2

3 Case 2: Reactor Coolant at maximum value permitted (DE 1-131 of 4.0 uClcc) corresponding to an assumed pre-accident spike 4

5 7

9. Case 1 10 11 Release 12 Case 2 Case 1 Case 2 Cloud 13 Normalized Activity Activity Concentration 14 Activity Release Release 3

15 uCVgm Ci Ci Cinm 16 =E16*20 =(C$16/C16)'E16'$A$4'0.000001 =(C$16/C16) F16-$A$4*0.000001 =G16/$A$3 17 =E17*20 =(C$16/Cl7)*E17*$A$4'0.000001 =(C$16/Cl7)'F17$A$4*0.000001 =G17/$A$3 18 =E18'20 =(C$16/C18) E18-$A$4*0.000001 =(C$16/C18)*F18*$A$4*0 000001 =G18/$A$3 19 =E19*20 =(C$16/Cl9)*El9*$A$4'0.000001 =(C$16/Cl9)-F19'$A$4*0.000001 =G19/$A$3 20 =E20'20 =(C$16/C20)'E20'$A$4-0.000001 =(C$16/C20)'F20-$A$4'0.00000l =G20/$A$3 21 =SUM(F16:F20) 22 spiked' 23 Total moles with 1-127 and 1-129 24 included from page B-14 of Ref. 11 25 26 Iodine in Reactor Coolant Replacement Values for UFSAR Sec. 15.6 27 Case 2 28 Release 29 Cloud Isotope 30 Concentration 1-131 31 _

1-132 32 CLm_ 1-133 33 1-134 34 =$C34/$A$3 1-135 35 =$C35/$A$3 36 =$C36/$A$3 37 =$C37/$A$3 38 =$C38/$A$3 39 =$C39/$A$3 Molar Frac.

40 =$C40/$A$3 Cs-134 0.044317152955112 41 =$C41/$A$3 Cs-135 0.174506296053598 42 =$C42/$A$3 Cs-136 0.000119942189253291 43 =$C43/$A$3 CS-137 0.401736793048373 44 =$C44/$A$3 Cs-138 0.000101901239392202

Calculation LM-0644, Rev. 1 Attachment A Page A8 of Al 8 F jG JHI 45 -$C45/$A$3 Totals I=SUM(140:i44) 46 =$C46/$A$3 Balance is stable Cs-133 47 48 49 Case 1 Dose (rem CEDE) 50 (Inhalation) _

51 CR EAB LPZ CR 52 =116*$E52$A$105*$A$7 =C52*$E52'$A$105*$A$1 10 =C52*$E52*$A$105*$A$1 11 =J16'$E52'$A$105*$A$7 53 =117*$E53'$A$105*$A$7 =C53'$E53*$A$105'$A$1 10 =C53*$E53-$A$105*$A$1 11 =J17*$E53'$A$105*$A$7 54 =118*$E54 A$1 05'$A$7 =C54*$E54*$A$105*$A$1 10 =C54'$E54'$A$105'$A$1 11 =J1 8$E54'$A$1 05$A$7 55 =119*$E55$A$105'$A$7 =C55*$E55-$A$105'$A$1 10 =C55*$E55*$A$105'$A$1 11 =J1 9'$E55*$A$105^$A$7 56 =120*$E56'$A$105'$A$7 =C56*$E56-$A$105'$A$1 10 =C56'$E56'$A$105*$A$1 11 =J20*$E56-$A$105'$A$7 57 5 58 =($C58/$A$3)*$E58-$A$105*$A$7 =C58*$E589$A$105*$A$1 10 =C589$E58*$A$105'$A$1 11 =($D58/$A$3)'$E58*$A$105'$A$7 59 =($C59/$A$3)-$E596$A$105*$A$7 =C59*$E59-$A$105-$A$1 10 =C59*$E59*$A$105*$A$1 11 =($D59/$A$3)-$E59*$A$105'$A$7 60 =($C60/$A$3)-$E60-$A$105-$A$7 =C601$E601$A$105*$A$1 10 =C60-$E60-$A$105-$A$1l1l =($D60/$A$3)-$E60-$A$105-$A$7 61 -i$C61I$A$3)-$E61 -$A$105-$A$7 =C61 -$E61 *$A$105-$A$l IO =C61 -$E61 -$A$105-$A$111 i (D1$$)*$E61 -$A$105*$A$7 62 =($C62/$A$3)-$E62-$A$105-$A$7 =C62*$E62*$A$105*$A$1 10 =C62*$E62*$A$105'$A$1 11 ($D62/$A$3)$E62-$A$105$A$7 63 =SUM(F52:F62) =SUM(G52:G62) =SUM(H52:H62) =SUM(152:162) 65 66 Case 1 Dose (rem EDE) 67 (Extemal) 68 CR EAB LPZ CR 69 =116'$E69-$A$106*$A$7 =C69'$E69-$A$110 =C69-$E69-$A$1 11 =J1 6$E69*$A$106'$A$7 70 =117-$E70-$A$106-$A$7 =C70*$E70*$A$110 =C70*$E70*$A$1 i =J17-$E70'$A$106'$A$7 71 =11 8$E71 $A$106-$A$7 =C71 $E71 $A$110 =C71 *$E71-$A$1 i =J1 8$E71 $A$106-$A$7 72 =119'$E72*$A$106'$A$7 =C72-$E72-$A$110 =C72-$E72'$A$ 11 =J1 9$E72-$A$106*$A$7 73 =120-$E73-$A$106-$A$7 =C73-$E73-$A$1 10 =C73'$E73X$A$11 =J20-$E73'$A$106*$A$7 74 75 =($C75/$A$3)-$E75-$A$106-$A$7 =C75-$E75-$A$110 =C75-$E75-$A$ 11 =($D75/$A$3)*$E75-$A$106*$A$7 76 =($C76/$A$3)-$E76*$A$106*$A$7 =C76*$E76*$A$110 =C76$E76-$A$ 11 =($D76/$A$3)*$E76*$A$106-$A$7 77 =($C77/$A$3)*$E77'$A$106-$A$7 =C77-$E77*$A$110 =C77-$E77'$A$ 11 =($D77/$A$3)-$E77-$A$106-$A$7 78 =($C78/$A$3)'$E78-$A$106*$A$7 =C78-$E78-$A$1 10 =C78&$E78&$A$ 11 =($D78/$A$3)*$E78&$A$106'$A$7 79 =($C79/$A$3)*$E79*$A$106*$A$7 =C79*$E79-$A$110 =C79*$E79-$A$111 =($D79/$A$3)-$E79-$A$106$A$7 80 =SUM(F69:F79) =SUM(G69:G79) =SUM(H69:H79) =SUM(169:179) 81 =SUM(F63+F80) =SUM(G63+G80) SUM(H63+H80) =SUM(163+180) 82 83 1 Case 1 Dose (rem EDE) 84 (Extemal) 85 CR EAB LPZ CR 86 =E34'$E86-$A$106'$A$7 =C86-$E86'$A$110 =C86-$E86-$A$1 11 =F34'$E86*$A$106'$A$7 87 =E35'$E87*$A$106'$A$7 =C87*$E87*$A$110 =C87'$E87*$A$1 11 =F35'$E87'$A$106'$A$7 88 =E36'$E88*$A$106*$A$7 =C881$E88'$A$110 =C88&$E88*$A$1 11 =F36*$E88*$A$106*$A$7 89 =E37*$E89*$A$106'$A$7 =C89-$E89*$A$110 =C89'$E89'$A$1 11 =F37'$E89*$A$106*$A$7 90 =E38*$E90*$A$106'$A$7 =C90'$E90S$A$110 =C90'$E90$A$111 =F38'$E90'$A$106-$A$7 91 =E39*$E91 *$A$106*$A$7 =C91*$E91 $A$110 =C91 $E91 $A$11 =F39-$E91'$A$106*$A$7

Calculation LM-0644, Rev. I Attachment A Page A9 of Al8 F G H 1 92 =E40 $E92 $A$106*$A$7 =C923$E92*$A$110 -C923$E92*$A$1 11 =F401$E923$A$106'$A$7 93 =E41 $E93'$A$1 06'$A$7 =C93'$E93'$A$1 10 =C93'$E93'$A$l 11 =F41 $E93*$A$106*$A$7 94 =E42*$E94-$A$106*$A$7 =C94'$E94*$A$110 =C94*$E94*$A$11 _=F42*$E94*$A$106'$A$7 95 =E43'$E95*$A$106*$A$7 =C95*$E95*$A$110 =C95*$E95*$A$ 11 =F43'$E95'$A$106'$A$7 96 =E44*$E96*$A$106'$A$7 =C96*$E96*$A$110 =C96*$E96*$A$l 11_ =F44*$E961$A$106*$A$7 97 =E45*$E97*$A$106'$A$7 =C97*$E97*$A$110 =C97*$E97*$A$1Il =F45*$E97'$A$106'$A$7 98 =E46*$E98*$A$106*$A$7 =C98'$E98*$A$110 =C98*$E98*$A$11 =F46*$E98*$A$106'$A$7 99 =SUM(F86:F98) =SUM(G86:G98) l=SUM(H86:H98) =SUM(186:198) 100 ___

101 =SUM(F81+F99) =SUM(G81+G99) l=SUM(H81+H99) =SUM(181+199) 102 103 104 106 05~

107 108 109 1101 1111I 1121 1134 115 116 117 118 119 120 1211 11221

Calculation LM-0644, Rev. 1 Attachment A Page Al10 of Al18 J K L M

-2 3

5 6

-7

-8 9.

10 Case 2 11 Release Cloud Case 1 Case 2 12 Decay Activity Activity 13 Concentration Constant Release Release 14 1Iseconds moles moles 15 Ci/m3 16 =H1l6/$AS3 =LN(2y/(8 04-86400) =G1 6'37000000000/$Kl 6/6.023E+23 =H 16*37000000000/$Kl 616 023E+23 17=Hl17/$A$3 =LN(2y(2.3*3600) =G1 7-37000000000/$K1 7/6.023E+23 =H 17-37000000000/$K1 7/6.023E+23 18=-H1l8/$A$3 =LN(2y(20.8 3600) =G1 8*37000000000/$Kl 8/6.023E+23 =H1I 8-37000000000/$K1 8/6.023E+23 19 -=H19/$A$3 _7 N(52.6-60) =G1 9*370000000001$K19/6.023E+23 =H1l9*37000000000/$Kl9/6.023E+23 20 =H20/$A$3 =LN(2)/(6 61'3600) =G20-37000000000/$K20/6.023E+23 =H20*D3700000$2/.2E2 21 Totals =SUM(L16:L20) =SUM(M16:M20) 22_

23 24 -L21*(282.6/7.65) =M21*(282.6/7.65) 25.

26 4.5.1, adJusted to b~e 0.2 uC~gm 1-131 dose equivalent 27 28 Activity 29 (uUcgm) 30 =E16-C$16/C16 31 =E1l7'C$1 6/C17 32 =E1l8*C$1 6/C18 33 =El9*C$16/Cl9 34 =E20-C$1 6/C20 35 Case I Case 2 Case 1 36 Activity Activity Decay Activity 37 Release Release Constant Release 38 moles moles 1/seconds curies 39 40 =0.95'$140'L$24 -0.95*$140*M$24 =LN(2)/(2.062-86400*365.25) =J40'6.023E+23'$L40/37000000000 41 =0.95*$141*L$24 =0.95*$141'M$24 =LN(2)/(2300000*86400-365.25) =J41*6.023E+23'$L41/37000000000 42 =0 95*$14 'L$24 -0.95'$142'M$24 -LN(2)/(13.16'86400) =J42'6.023E+23*$L42/37000000000 43 =0.95*$143'L$24 =0.95-$143-M$24 =LN(2)/(30.17*86400*365.25) =J43'6.023E+23'$L43137000000000

_ -0.95'$144'M$24 =LN(2)/(32.2*60) + =J44'6.023E+23'$L44/37000000000::

44 -0.95*$144'L$24

Calculation LM-0644, Rev. I Attachment A Page All of Al18 J K L M 45 -SUM(J40 J44) =SUM(K40 K44) _

46 47 _

48 49 Case 2 Dose (rem CEDE) 50 (Inhalation) 51 EAB LPZ 52 =D52'$E52-$A$105*$A$l10 =D52'$E52*$A$105'$A$l 11 53 =D53'$E53*$A$105'$A$l 10 =D53*$E53*$A$105*$A$l 11 54 =D54*$E54*$A$105*$A$1 0 =D54'$E54*$A$105*$A$1 11 55 =D55*$E55*$A$105'$A$1 0 =D551$E55*$A$105'$A$l 11_

56 =D56*$E56*$A$105'$A$110 =D56'$E56'$A$105*$A$l 11 _

57 58 =E58*$D58&$A$105'$A$110 =E58-$D58-$A$105'$A$l 11_

59 =E59-$D59'$A$105*$A$110 =E59'$D59-$A$105'$A$l 11_

60 =E60-$D60-$A$105*$A$1 10 =E60-$D60'$A$105'$A$111 61 =E61-$D61 *$A$105*$A$1 0 =E61 $D61 $A$105'$A$111 62 =E62-$D62'$A$105-$A$110 =E62-$D62-$A$105-$A$l 111 63 =SUM(J52:J62) =SUM(K52:K62) 641 65 66 Case 2 Dose (rem EDE) 67 (External) 68 EAB LPZ 69 =D69-$E69-$A$110 =D69-$E69-$A$111 70 =D70'$E70$A$110 =D70'$E70-$A$ 11_

71 =D71*$E71-$A$110 =D71-$E71$A$S111 72 =D72'$E72-$A$110 =D72'$E72*$A$ 11_

73 =D73X$E73$A$110 =D73*$E73'$A$l 11_

74 75 =D75-$E75-$A$110 =D75-$E75*$A$111 76 =D76-$E76-$A$110 =D76-$E76*$A$111 77 =D77-$E77-$A$110 =D77-$E77'$A$l 11 78 =D78&$E78-$A$110 =D78-$E78-$A$l 111 79 =D79-$E79-$A$110 =D79-$E79-$A$11_

80 =SUM(J69:J79) =SUM(K69:K79) 81 =SUM(J63+J80) =SUM(K63+K80) 82 83 Case 2 Dose (rem EDE) 84 (External) 85 EAB LPZ 86 =D86-$E86*$A$110 =D86*$E86*$A$111 87 =D87-$E87-$A$110 =D87'$E87-$A$l 11

=D88*$E88*$A$1 11 _

88 =D88'$E88'$A$1 0 89 =D89*$E89*$A$110 =D89*$E89*$A$11_

90 =D90*$E90'$A$110 =D90*$E90*$A$l 11_

91 =D91'$E91'$A$110 =D91$E91*$A$111

Calculation LM-0644, Rev. 1 Attachment A Page A12 of Al8 J K L M 92 =D92'$E92-$A$110 =D92-$E92'$A$l 11 93 =D93'$E93X$A$110 =D93'$E93*$A$1 11_

94 =D94*$E94'$A$110 =D94'$E94*$A$111 95 =D95'$E95'$A$110 =D95*$E95*$A$l 11 _

96 =D96*$E96*$A$110 =D96'$E96*$A$11_

97 =D97'$E97*$A$110 =D97*$E97*$A$111 98 =D98*$E98*$A$110 =D98-$E98'$A$111 99 =SUM(J86:J98) =SUM(K86 :K98) 101 =SUM(J8I+J99) =SUM(K81 K99) 102 103 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

104 105 106 __l 107 108_

109 .. _

1 1a 1121 113 1_

114 115 117 i 118 1 _ _ _ _ _ _ _ _ _ _ _ _ _

120 T121 _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _

1 22 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Calculation LM-0644, Rev. 1 Attachment A Page Al 3 of Al 8 N

1 2

32 17 18 19 10 21 26 12 14 15 16 2i7 34 21 35 23 32 36 Case 2 37 Activity 38 Release 39 curies 40 =K40*6.023E+23'$L40/37000000000 41 =K416.023E+23*$L41/37000000000 42 ]=K42-6.023E+23'$L42/37000000000 43 I=K43'6.023E+23*$L43/37000000000 441 =-K446023E+23*SL44/37000000000 45 . ___ __

46 47 48

Calculation LM-0644, Rev. 1 Attachment A Page A14 of A18 N

51 52

-55 59 57 60 58 61 617i 62 64 65 66 68 70 .

85 72 74 775 78 80 82 84 86 88 89 92 94 95

Calculation LM-0644, Rev. 1 Attachment A Page Al5 of A18 N

96 101 103 105 106 104 105 1061 171 111 113 112 114 11E 115 114l 116 117 119 120 121 122

Calculation LM-0644, Rev. I Attachment A Page A16 of A18 A I B I C I D I E I F G H I I J K L 1 Limerick Beginning of Core Life (100 Effective Full Power Days) and End of Cycle (EOC Cesium Isotope Quantities 2 (Used for General Cs Molar Fraction Determination for AST) 3 . Decay 4 100 EFPD EOC 100 EFPD EOC Constant 100 EFPD EOC 5 (grams) grams) At. Mass (gm-moles) (gm-moles) Ilseconds Ci Ci 6 Cs-133 1.025E+05 1.678E+05 Cs-133 132.9054 7.712E+02 1.263E+03 0.OOOE+00 0.000E+00 0.OOOE+00 7 Cs-134 1.031 E+04 1.977E+04 Cs-134 133.9067 7.699E+01 1.476E+02 1.07E-08 1.335E+07 2.559E+07 8 Cs-135 4.502E+04 7.841 E+04 Cs-135 134.9059 3.337E+02 5.812E+02 9.55E-15 5.188E+01 9.035E+01 9 Cs-137 1.087E+05 1.832E+05 Cs-137 136.9071 7.940E+02 1.338E+03 7.28E-10 9.410E+06 1.586E+07 10 I Cs-136 2.37E-01 3.99E-01 6.1OE-07 2.352E+06 3.964E+06 11 I I Cs-138 2.01E401 3.39E-01 3.59E-04 1.176E+09 1.982E+09 12 Total IZ665E+05 4.492E+05 1.976E+03 3.331 E+03 _

13 1 14 ANSI/ANS-18.1-1999 Relative Abundances in Reactor Water Molar Fraction 15 _ uCi/gramof jmolesgramof 1ratioto Cs-i 33 39.0219% 37.9218%

16 Reactor Cooli Reactor Coolan Cs-137 Cs-134 3.8956% 4.4317%

17 Cs-1 34 3.OOE-05 1.04E+08 2.56E-02 C s-135 16.8848% 17.4506%

18 Cs-136 2.OOE-05 1.21E+06 2.99E-04 Cs-137 401755% 40.1737%

19 Cs-137 8.OOE-05 4.07E+09 1.OOE+00 Cs-136 0.0120% 0.0120%

20 Cs-138 1.0OE4-02 1.03E+06 2.54E-04_ Cs-138 0.01 02% 0.0102%

Calculation LM-0644, Rev. 1 Attachment A Page A17 of Al8 A B C D E F G H 1 Limerick Begi _

2 (Used for Gene 3= _

4 100 EFPD EOC 100 EFPD EOC 5 (grams) (grams) = At. Mass (gm-moles) (gnm-moles) 6 Cs-133 102500 167800 Cs-133 132.9054 771.2 1263 7 Cs-134 10310 19770 Cs-134 133.9067 76.99 147.6 8 Cs-135 45020 78410 Cs-135 134.9059 333.7 581.2 9 Cs-137 108700 183200 = Cs-137 136.9071 794 1338 10 _ Cs-136 =K10-37000000000/$J10/6.023E+23 =L10-37000000000/$J10/6.023E+23 11 = Cs-138 =K1 137000000000/$J 11/6.023E+23 =LI1 *37000000000/SJ1 1/6.023E+23 12 Total =SUM(B6:B9) =SUM(C6:C9) ____ =SUM(H6:HII) -SUM(16:111) 131..

14 ANSI/ANS-18.1 _

15 _ uCigram of moles/gram of ratio to 16 Reactor Coolant Reactor Coolant Cs-137 =

17 Cs-134 0.00003 =B17-37000/J7 =C17/CS19 _

18 Cs-136 0.00002 -B18-37000/J10 =C18/CS19 _ _

19 Cs-137 0.00008 =B19-37000/J9 =C19/CS19 _

20 Cs-138 0.01 =B20-37000/J11 =C20/CS19 _

Calculation LM-0644, Rev. 1 Attachment A Page AlB of A18 i K L 2

3 Decay_

4 Constant 100 EFPD EOC 5 I/seconds Ci Ci 6 0 =H6$SJ6'6.023E+23137D00000000 =16-SJ6 6.023E+23/37000000000 7 =LN(2y(2.062-86400-365.25) =H7$SJ7r6.023E+23/37000000000 =17'$J776.023E+23137000000000 8 =LN(2y(2300000-86400-365.25) =H8-SJ8-6.023E+23137000000000 =18$SJ8-6.023E+23137000000000 9 =LN(2y(30.17-86400-365.25) =H9-SJ9-6.023E+23137000000000 =19'$J9 6.023E+23/37000000000 10 =LN(2y(13.16 86400) =K$9*$BS181$B$19 =LS9-SBS18/$BS19 11 =LN(2y(32.260) =K$9-SBS20I$B$19 =LS9 SBS20/$B$19 12_

13 14 Molar Fraction 15 Cs-133 =H6/H$12 l=16/1112 16 Cs-134 =H7/HS12 1=17/1112 17 Cs-135 =H8IHS12 l=1811/12 18 Cs-137 -=H9/HS12 l=191112 19 Cs-136 =H1O/H$12 1=110/1$12 20 Cs-138 =H11/HS12 l=111/112

I CALCULATION NO. LM-0644 lREV.NO. 1 PAGENQ.B1 of BBI Computer Disclosure Sheet Discipline Nbuclear Client:: Exelon Corporation Date: September 2005 Project: Limerick Generating Station AST Job No.

Program(s) used Rev No. Rev Date Calculation Set No.: LM-0644, Rev. 1 Attachment A spreadsheet N/A N/A Status 1I Prelim.

[X1 Final

[ ] Vold WGI Prequalification [ ] Yes

[X] No Run No.

Description:

Analysis

Description:

Spreadsheet used to perform dose assessment for MSLB, as described in calculation.

The attached computer output has been reviewed, the input data checked, And the results approved for release. Input criteria for this analysis were established.

By: H. Rothstein On: September 2005 Run by: H. Rothstein Checked by: P. Reichert Approved by: H. Rothstein o Matf Remarks: WGI Form for Computer Software Control This spreadsheet Is relatively straight-forward and was hand checked. Attachment A includes the spreadsheet in both normal and formula display mode so it Is completely documented.

ADDITIONAL ATTACHMENTS TO 10-10-05 Letter: Supplement to Request for LAR Application of AST Attachment 008 AST -. LM-0644 Rev 1 MSLB Att A.

Calculation ILM-0644. Rev. 1 Attachment A Page Al of Al 8 A BC J D2FGHIJKL __TM N 1 LGS MSLB Dose Spreadsheetj___________ Casel1: Reactor Coolant at maximum value (DE 1-131 of0.2 uCVcc) permitted for 2 1 _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ continued full power operation_ _ _ __ _ _ _ _

3 42,5141 Volume of cloud (cubic meters) j ______ Case 2: Reactor Coolant at maximum value permitted (DE 1-1 31 of 4.0 uCVcc) ________

4 6.35E..07 1Mass of water In reactor coolant release (grams) ______corresponding to an assumed pre-accident spike __________

5 2.5E+07 Mass of steam release (grams) I I______I-__________

6 1Ireactor coolant densit when act"v Is measured (gram cc __ _ _ _ _ _ _ _ ________ _ _ _ _ _ _ _____ _ _ _ _

7 54.61seconds for cloud to pass over CR Intake for wind speed of 1 in/second _____________________________

8 1260001 Volume of Control Room 2nvelpe (cubic f e ~ ___________________

10 Halogens [Cabc. LM-31 1 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Case 1 Case 2 _ _ _ _ _

11 __ _ _ Rev. 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Release Release _ _ _ _ __ _ _

12 _____ Collant _____Normalized Case 1 Case 2 Case 1 Case 2 Cloud Cloud ______ Case 1 Case 2 ___

13 isotope Activity FORl11 1-131 DE Normalized Normalized Activt Act"vt Concentration Concentration Decay Activt" civt __

14____Concentration DCF1 Activity Activity Activify Release Release _____Constant Release Release ___

15 _____ UCIgrn Rem/Cl uCVgM uCI/gr uCVgrn CI C/m3 Ur 1/seconds moles moles____

16 1-1311 0.039 3.292+04 3.902-02 7.22E-02 1.44E+00 4.58E+00 9.17E+01 1.08E-04 2.16E-03 9.98E-07 2.82E-07 5.64E-06 ___ f 17 1-132 ~ 0.36 3.812E+02 4.17E-03 7.72E-03 1.54E-01 4.232+01 8.462+02 9.95E-04 1.99E-02 8.372-05 3.1 OE-08 6.212E-07

18. 1-1331 0.267 5.85 E+03 4.74 E-02 8.78E-02 1.76E+00 3.142+01 6.282+02 7.38E-04 1.482-02 9.262-06 2.08E-07 4.162-06 ___

19 1-134 1 0.72 1.312E+02 2.872-03 5.31 E-03 1.06E-01 8.462+01 1.692+03 1.99E-03 3.98E-02 2.20E-04 2.37E-08 4.732-07 ___

20 1-1351[ 0.39 1.232+03 1.462-02 2.702-02 5.402-01 4.582+01 9.172+02 1.082-03 2.16E-02 2.91 E-05 9.67E-08 1.93E-06 ___

21 _____r__________ 1.082-01 I2.OO2-01 4.002+00 _____ ____ Totals 16.422-07 1.282-051 22 __ __ _ [ _ _ _ _ _ _ _ __ _ _ _ _ _ 'non-spiked' 'spiked' _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _

23 Noble Gases Ca.I___ Casei1Casen Reactor Coolant toReplacementbe02Values for UFSAR ___ ___

25 _ _ _ _ _ _ _ _ _ .LM-31 1, Rev. __ _ _ _I Release Release . _ _ _ _ _ _ _ _ __ Act"vt _ _ _ _ _ _ _ _ _ _ _

26 __ _ _ _ _ _ _ _ _ _ 0. Table 4 . Cloud Cloud _ _ _ _ _ _ _ __ Isotope -- (Ucvgm) 27 Isotope ______ Activ" _ _ _ _ Concentration Concentration _____ _____ 1-131 0.0722 ______ ____

28 __ _ _ _ _ _ _ _ _ _ Release _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __1-132 0.666 _ _ _ _ _ _ _ _

3 3 29 __ _ _ _ _ _ _ _ _ _ Ci _ _ _ _ CVm CVrn _ _ _ _ _ _ _ __1-133 0.494 _ _ _ _ _ _ _ _

30 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _1-134 1.33 31 Kr-83M .8.73E-02 _____ 2.052-06 2.052-06 ____ ___ 1-135 0.722 _____ ___

32 Kr-85M __ _ _ _ _ 1.54E-01 __ _ _ _ 3.622-06 3.622-06 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

33 Kr-85 __ ____ 5.97E-04 _ ___ 1.402-08 1.402-08 __ _ _ _ _ _ _ _ _ _ _ _ _ Case I Case 2 _ __ Case 1 Case 2 34 Kr-87 .4.76E-01 ____ .1.12E-05 1.1221-05 ___ ___ .Act"vt Activity Decay Act"vty .Act"vt 35 Kr-88 ______4.882-01 ____ 1.152-05 1.152-05 _________ _____ Release Release Constant Release Release 36 Kr-89_______ 2.04 _____ 4.802-05 4.802-05 __________ Molar Frac. moles moles 1/seconds curles curies 37 Xe-131M ______4.872-04 ___ _ 1.152-08 J1.152-08 _____ Cs-134 J 4.4317% 1 2.702-081 5.402-07 1.072-08 4.692-031 9.3721-02 38 Xe-133M ______7.302-03 _____ 1.722-07 j1.722-07 ______jCS-135 17.4506% 1.062-071 2.132-06 9.552-15 1.652-081 3.312E-07 39 Xe-133 ______2.05E-01 _____ 4.822-06 j4.822-06 _____ Cs-136 j0.0120% 7.312E-111 .1.462-09 6.102-07 7.262-041 1.452-02 40 Xe-135M _ _____ 5.98E-01 __ _ _ _ 1.412E-05 j 1.412E-05 j ____j CS-137 40.17% 1 2.452-071 4.902-06 7.282-10 2.902-031 5.812E-02 41 Xe-l135 j______5.522-01 _____ .1.302-05 .1.30E-05 j ____ Cs-138 0.0102% .6.212E-111 1.242-09 3.592-04 3.63E-01 7.262+00 43 Xe-1381_ _ __ _ _ 2.04 _ _ _ _ 4.802-05 4.802-05 __ _ _ _BalanceIs stable Cs-133 _ _ _ _ ____ _ _ _

Calculation LM-M4, Rev. 1 Attachment A Page A2 of Al 8 A I B C D [ E F G H J I K ( L M N 45 Inhalation Doses II _ _ ___ _ _

4 _____Curies Released j ______ Case 1Dose (rem CEDE) Case_2_Dose (rem____CEDE) _ ____ ___

4_ __ _to the Environment __ _ _ _ _ _ _ _ _ _ _ _ _](Inhalation) _ _ _ _ _ _ _ _ _ _ __ (Inhalation) _ _ _ _ _ _ _ _ _ __ _ _ _ _

48Isotope ______]Case 1 Case 2 DCF1 CR j EAB LPZ J CR EAB LPZ ___ ______

49. 1-1311 4.581E+00 9.17E+01 3.29E+04 I6.78E-02 2.52E.02 9.96E-03 I1.36E+00I 5.03E-01 1.99E-01 ________

50 1-1321 __ ___ 4.23E+01 8.46E+02 3.81 E+02 7.25E-03 I2.69E-03 1.06E-03 1.45E-01 j 5.38E-02 j2.13E.02 ________

51 1-1331 _____ 3.14E+01 6.28E+02 5.85E+03 J8.25E-02 j3.06E-02 1.21 E-02 1.65E+00 9.97E-02 6.12E2-01 3.70E-02 2.42E-01 1.46E-02 52 1-134J __ ____ 8.46E+01 1.69E+03 1.31 E+02 4.98E2-03 j1.85E-03 7.32E-04 ____________

53 1__135 __ __ _ 4__ E___

__ 9.17E+02 1I3E 0 2_______ 9_ 4 E-03__ 3_______ 5________ 1________ 7_ __ ___5__ __ _ __ _

55 Cs-134 __ ____ 4.69E-03 9.37E-02 4.63E+04 [9.74E-05 3.62E-05 1.43E-05 [1.95E-03 7.23E-04 2.86E-04 ________

56 Cs-135 j__ ____ 1.65E-08 3.31 E-07 4.55E+03 L3.38E-1 1 1.26E-1 1 4.97E-12 [6.77E-10 J 2.51 E-1 0 9.94E-1 1 ____

57Cs-i136 j_ _____ 7.26E-04 1.45E-02 7.33E+03 2.39E-06 8.87E-07 3.51 E-07 [4.78E-05 J 1.77E-05 7.02E-06 ____

58CS-137 j _____ 2.90E-03 5.81 E-02 3.19E+04 4.17E-05 1.55E.05 6.12E-06 [8.33E-04 J 3.09E-04 1.22E-04 ___

59 Cs-138 __ ____ 3.63E-01 I 7.26E+00 1.O1 E+02 j1.65E-05 6.14E-06 2.43E.06 [3.31 E-04 J 1.23E-04 4.86E-05 ____

60 Sub-total (rem CEDE) I____ I_______I1.88E-01 £6.98E-02 £2.76E-02 [3.76E+00 1.40E+00 5.52E-01 ________

63 _____I______ Curies Released Case 1 Dose (rem EDE) Case 2 Dose (rem E)~

6 _ __ _ _ _ _ _ _ _ to the Envimonment __ _ _ _ _ _ _ _ _ _ _ (Extemnal) (External) _ _ _ _ _ _ _ _

2 65Isotope ______ Case 1 Case 2 DCF CR EAB LPZ CR EAB LPZ _______

66 1-131 __ ___ 4.58E+00 9.17E+01 6.73E-02 1.79E-05 1.47E-04 5.82E-05 3.58E-04 2.94E-03 1.16E-03 ____

67 1-132 __ ___ 4.23E+01 8.46E+02 4.14E-01 1.02E-03 8.36E-03 3.31 E-03 2.03E-02 1.67E-01 6.62E.02 ____

68 -13_____ 3.14E+01 6.28E+02 1.09E-01 1.98E-04 1.63E-03 6.44E-04 3.96E-03 3.25E-02 1.29E-02 ____

69 1-134 __ ___ 8.46E+01 1.69E+03 4.81 E-01 2.36E-03 1.94E-02 7.68E-03 4.72E-02 3.88E-01 1.54E-01 ________

70 1-135 I__ ____ 4.58E+01 9.17E+0O2 2.95E-01 7.85E-04 6.45E-03 2.55E-03 1.57E-02 1.29E-01 5.11 E-02 ________

72 Cs-l134 [__ ____ 4.69E-03 9.37E-02 2.80E-01 7.61 E-08 6.26E-07 2.48E-07 1.52E-06 1.25E-05 4.95E-06 ____

73 Cs-135 __ ____ 1.65E-08 3.31E-07 2.09E-06 2.00E-l18 1.65E-17 6.52E-1 8 4.01 E-1 7 3.30E-16 1.30E-16 ____

74 Cs-136 j _____j7.26E-04 1.45E-02 3.92E-01 1.65E-08 1.36E-07 5.37E-08 3.30E-07 2.71 E.06 1.07E-06 ___

75 CS-137 ______j2.90E-03 5.81 E-02 2.86E-05 4.82E-12 3.96E-1 1 1.57E-1 I 9.64E-1 1 7.93E-10 3.14E-10 ___ ___

76 Cs-l138 ______I3.63E-01 I7.26E+00 4A48E-01 9.42E-06 7.74E.05 3.06E-05 1.88E-04 1.55E-03 6.13E-04 ___

77 Sub-total (rem EDE)l I____j____ I _______ 4.39E-03 3.61 E-02 1.43E-02 8.77E.02 7.21 E-01 2.85E-01____

78 Iodine and Cesium Total (rem TEDE) ______I _______ 1.92E-01 1.06E-01 4.19E-02 3.85E+00 2.1 2E+OO 8.38E-01 ________

80 1_____ Curies Released _______Case 2

1 Dose (rem EDE) Case 2 Dose (rem EDE) ___

82Isotope _ __ Casel 1 Case2 DCF CR EAB LPZ CR EABLP _ _

83 Kr-83M __ ____ 8.73E-02 I 8.73E-02 5.55E*06 2.81 E-1 1 2.31 E-10 +/-9.14E-11 2.81 E-1 1 2.31 E-1 0 9.14E-1 1____

84 Kr-85M __ ____ 1.54E-01 I1.54E-01 2.77E-02 2.47E-07 j2.03E-6 B.04 7 2.47E-07 2.03E-06 8.04E-07____

85 Kr-85 __ ____ 5.97E.04 5.97E-04 4.40E-04 1.52E-11I 1.25E-10 4.96E-1i i .52E-1i1 1.25E-10 4.96E-1 1 86 Kr-87 __ ____ 4.76E-01 4.76E-01 1.52E-01 4.21 E-06 3A46E-05 1.37E-05 4.21 E-06 3.46E-05 1.37E-05____

87 Kr-88 4.88E-01 4.88E-01 3.77E-01 1.07E-05 8.78E-05 3.47E-05 1.07E-05 8.78E-05 3.47E-05 ____________

88 Kr-89 2.04 2.04E+00 0.OOE+00 0.00EE,00 0.OOE+00 0.OOE+00 0.00E+00 0.OOE+00 0.OOE+00 ___

89 Xe-131M- ______ 4.87E-04 4.87E-04 l.44E-03 4.06E-i1 3.34E-10 1.32E-10 4.06E-1 1 3.34E-10 1.32E1-10 ____ ___

901 Xe-133M I7.30E-03 7.30E-03 5.07E-03 2.15E-09 1.76E-08 6.98E-09 2.15SE-09 1.76E-08 6.98E-09 ___

91 I-Xe-133 2.05E-01 2.05E-01 5.77E-03 6.86E-08 5.64E-07 2.23E-07 6.86E-08 5.64E-07 2.23E-07____

92Xe-135M _______ 5.98E-01 5.98E-01 7.55E-02 2.62E-06 2.15E2-05 8.52E-06 2.62E-06 2.15E-05 8.52E-06 931 Xe-135 I______ 5.52E-01 5.52E-01 4.40E-02 1.41 E-06 1.16E.05 4.59E-06 1.41 E-06 1.16E-05 4.59E-06 94 1Xe-i137 2.69 2.69E+00 0.OOE-+00 0.OOE+00 0.OOE+00 0.OOE+00 0.0OE+00 0.OOE+00 0.OOE+00 ___

951 Xe-i138 2.04 2.04E+00 2.13E-01 2.53E.05 2.08E-04 I8.22E-05 2.E53E-05 2.08E-04 8.22E-05 ________

96 Noble Gas Sub-total (rem EDE) -4.45E-05 3.66E-04 1.45E-04 4.45E-05 3.66E-04 1.45E-04 ____

_ _ _ _ I __ ___ _ __ __

98 OveraillTotal (rem TEDE) I I _____I _______ 1.92E-01 1.06E-01 4.20E-02 3.85E+00 2.1 2E+00 8.3E0 ____

Calculation LM-0644, Rev. I Attachment A Page A3 of Al 8 A B I C D E F G H I J K L M l N 100 'I Dose Conversion Factor (rem/Curle) from Federal Guidance Report (FGR) 11 per Reg. Guide 1.183 j I 2

101 lDose Conversion Factor (rem-m 3 /Curie-second) from FGR 12 per Reg. Guide 1.183 102 3.50E-041 Breathing rate (mO/second) per Regulatory Guide 1.183 (without round-oit) _

103 4.51 E-02IControi Room Geometry Factor per Reg. Guide 1.183. Regulatory Positon 4.2.7 _

104 2.79E+01 EAB a (meters) for F stability (taken from PAVAN runs in Ref. 9) 105 7.050E+01 ILPZ a, (meters) for F stability (taken irom PAVAN nuns in Ref. 9) _

106 1.OOE+OOIWtnd Speed (mts) II _

107 4.77E-04 lXtO (seconds/mn) at EA Boundary 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> based on RG 1.5 methodology _

108 1.89E-041X/O (seconds/m 3 ) at Low Population Zone 2 based on RG 1.5 methodology 109. 1 I I 1 I 111 112 Isotope 113 _

tDose 110 Equivalent CR X/O, based on (Curies Released)x(Equiv. X/Q)x(Breathing Rate)x(Dose Conversion Factor) = CEDE Dose Case 1 Activity Release FGR 11 DCF1 Case 1 (rem CEDE)

I (Inhalation) Equivalent X/O _

114 Cl Rem/Cl CR sec/mr _ _ _ _

115 1-131 4.58E+00 3.29E+04 6.78E-02 1.28E-03 _

116 1-132 4.23E+01 3.81E+02 7.25E-03 1.28E-03 117 1-133 3.14E+01 5.85E+03 8.25E-02 1.28E-03 118 1-134 8.46E+01 1.31 E+02 4.98E-03 1.28E-03 119 1-135 4.58E+01 1.23E+03 2.53E-02 1.28E-03 I

Calculation LM-0644, Rev. 1 Attachment A Page A4 of Al 8 A B C D [ E 1 LGS MSLB Dosec 2

3 42514 Volume of cloud (cubic meters) 4 63500000 Mass of water in reactor coolant r_

5 =56000-453.59 Mass of steam release (grams) 6 1 reactor coolant density when acti_

7 54.6 seconds for cloud to pass over C 8 126000 Volume of Control Room Envelop, 9.

10 Halogens Calc. LM-311 11i Rev.0 121 Colant Normalized Case I 13 Isotope Activity FGR 11 1-131 DE Normalized 14 Concentration DCF 1 Activity Activity 15 uCVgm Rem/Cl uCIgm uCVgm 16 1-131 0.039 32900 =C16*B16/C$16 =D16 0.2/D$21 17 1-132 0.36 381 =C17'B17/CS16 =D17*0.2/DS21 18 1-133 0.267 5846 =C18-B18/CS16 =D18 0.2/DS21 19 1-134 0.72 131 =C19 B19/C$16 =D19 0.2/D$21 20 1-135 0.39 1230 =C20-B20/C$16 =D20 0.2/DS21 211 =SUM(D16:D20) =SUM(E16:E20) 22 23 Noble Gases j _

non-spiked' 24 Calc. Case 1 25 LM-311, Rev. Release 26 0, Table 4 Cloud 27 Isotope Activity Concentration 28 Release 29 Cl CVm 3 30 31 Kr-83M 0.0873 =SC31/$A$3 32 Kr-85M 0.154 =$C32/SA$3 33 Kr-85 10.000597 =SC33/$AS3 34 Kr-87 10.476 =SC34/SA$3 35 Kr-88 _0.488 =SC35/SAS3 36 Kr-89 2.04 =$C36/$A$3 37 Xe-131M 0.000487 =SC37/SA$3 38 Xe-133M 0.0073 =$C38/$AS3 39 Xe- 133 0.205 =SC39/$AS3 40 Xe-135M 0.598 =$C40/$A$3 41 Xe-135 0.552 - =$C41/$A$3 42 Xe-137 2.69 =SC42/$A$3 43 Xe-138 2.04 =SC43/SA$3 44

Calculation LM-0644, Rev. 1 Attachment A Page A5 of Al 8 A B C [ D l E 45 Inhalation Doses _

46 Curies Released 47 to the Environment 48 Isotope Case 1 Case 2 DCF 1 49 1-131 =G16 =H16 32900 50 1-132 =G17 =H17 381 51 1-133 =G18 =H18 5846 52 1-134 =G19 =H19 131 53 1-135 =G20 =H20 1230 54 55 Cs-134 =M37 =N37 =(3700000000000)'0.0000000125 56 Cs-135 =M38 =N38 =(3700000000000)-0.00000000123 57 Cs-136 =M39 =N39 =(3700000000000)-0.00000000198 58 CS-137 =M40 =N40 =(3700000000000) 0.00000000863 59 Cs-138 I=M41 =N41 =(3700000000000)'0.0000000000274 60 I Sub-total (rem CEDE) I I I 61I 62I 63 i Curies Released 64 to the Environment 65 Isotope Case 1 Case 2 DCF2 66 1-131 =C49 =D49 0.06734 67 1-132 =C50 =D50 0.4144 68 1-133 =C51 =D51 0.10878 69 1-134 =C52 =D52 0.481 70 1-135 =C53 =D53 0.29526 71 .

72 Cs- 134 =M37 =N37 =(3700000000000)'0.000000000000075 73 Cs-i 35 =M38 =N38 =(3700000000000)'5.65E-19 74 Cs-i 36 =M39 =N39 =(3700000000000)-0.000000000000106 75 CS-137 =M40 =N40 =(3700000000000)-7.74E-18 76 Cs-138 I=M41 =N41 =(3700000000000)*0.000000000000121 77 Sub-total (rem EDE)l I I 78 Iodine and Cesium Tol I I 79 80 Curies Released 81 _ to the Environment 82 Isotope Case 1 l Case 2 DCF 2 83 Kr-83M 0.0873 -_0.0873 0.00000555 84 Kr-85M 0.154 0.154 0.027676 85 Kr-85 0.000597 0.000597 0.0004403 86 Kr-87 0.476 __0.476 0.15244 87 Kr-88 0.488 0.488 10.3774 88 Kr-89 2.04 2.04 0 89 Xe-131M 0.000487 0.000487 0.0014393 90 Xe-133M 0.0073 0.0073 10.005069 -

91 Xe-i 33 0.205 0.205 0.005772

Calculation LM-0644, Rev.1I Attachment A Page A6 of Al18 A B I C I D E 92 Xe-135M 10.598 [0.598 0.07548 93 Xe-i 35 [0.552 [0.552 0.04403 94 Xe-137 [2.69 12.69 0 95 Xe-i 38 12.04 12.04 0.21349 96 I Noble Gas Sub-total (rem EDE) I I I 97 I i 1 I 98 Overall Total (rem TED - I I I 99 .

100 'IDose Conversion Factor (rem/Curie) 101 2 Dose Conversion Factor (rem-m_/Cu _

102 0.00035 Breathing rate (m3 /second) per Regul 103 =($A$8^0.338)/1173 Control Room Geometry Factor per R 104 27.9 EAB a (meters) for F stability (taken I 105 70.5 LPZ , (meters) for F stability (taken f 106 1 Wind Speed (m/s) 107 =0.0133/A$104/AS106 X/Q (seconds/m 3 ) at EA Boundary- 0 108 =0.0133/AS105/AS106 X/O (seconds/m3) at Low Population; 109 110 Equivalent CR X/O, bas 111 Case I ICase 1 112 Isotope Activity FGR 11 Dose (rem CEDE) 113 Release DCF1 (Inhalation) Equivalent X/Q 114 CI Rem/Ci CR sec/ms 15 1-131 4.58358015752869 32900 0.0677843518149616 =D 115/(B1 15-C1 15-$A$102) 116 1-132 42.3099706848802 381 0.00724596812013104 =D1 16/(B1 16-C116-$A$102) 117 1-133 31.3798949246195 5846 0.082459180601388 =Di 17/(B1 17C1 17-$A$102) 118 1-134 84.6199413697604 131 0.00498279172565441 =D1 18/(B1 18-C1 18-$A$102) 119 1-135 45.8358015752869 1230 0.0253418701314294 =D119/(B119-C119-$A$102)

Calculation LM-0644, Rev. I Attachment A Page A7 of Al 8 F GI H II 1 Case 1: Reactor Coolant at maximum value (DE 1-131 of 0.2 uCVcc) permitted for continued full power operation 2

3 Case 2: Reactor Coolant at maximum value permitted (DE 1-131 of 4.0 uCi/cc) corresponding to an assumed pre-accident spike 4

5i 6

8 9..

10 Case 1 11 Release 12 Case 2 Case I Case 2 Cloud 13 Normalized Activity Activity Concentration 14 Activity Release Release'3 15 uC~gm Cl Ci CVm3 16 -=E16'20 =(C$16/Cl6)*El6*$A$4*0.000001 =(C$16/Cl 6)'Fl 6 SAS4 0000001 =G 16/SAS3 17 =E17-20 =(CS16/C17) El7*$A$4'0 000001 =(C$16/Cl7)*Fl7'$A$4'0.000001 =G 17/SAS3 18 =E18*20 =(CSl6/Cl8)*E18 SAS4 0.000001 1=(CS16/C18) Fl8*$A$4-0.000001 =G 18/SAS3 19 =E19*20 =(CS16/C 19)EE19 SAS4 0.000001 =(C$16/Cl 9)*F 9 SAS4'0.000001 =G 19/SAS3 20 =E20'20 -(C$16/C20)'E20'$A$4 0.000001 =(CSl6/C20)'F20 SA$4'0.000001 =G20/SAS3 21 =SUM(F16:F20) 22 'spiked' 23 Iodine in Reactor Coolant Replacement Values for UFSAR Sec. 15.6 24 Case 2 25 Release 26 Cloud Isotope 27 Concentration 1-131 28 1 3 1-132 29 Ci/m 1-133 30 1-134 31 =SC31 /SAS3 1-135 32 =SC32/SAS3 33 -SC33/SAS3 34 =SC34/SAS3 35 --SC35/SA$3 36 I=SC36/SAS3 Molar Frac.

37 =$C37/$A$3 Cs-134 0.044317152955112 38 =SC38/SAS3 Cs-135 0.174506296053598 39 =SC39/SAS3 Cs 136 0.000119942189253291 40 =SC40/SAS3 CS-1 37 0.401736793048373 41 =$C41 /$A$ Cs-138 0.000101901239392202 42 I=SC42iSAS3 Totals =SUM(137:141) 43 1=SC43/$AS3 Balance is stable Cs-li 33 44  !

Calculation LM-0644, Rev. 1 Attachment A Page AB of Al 8 F l G l H I 45 46 Case 1 Dose (rem CEDE) l 47 (Inhalation) 48 CR EAB LPZ CR 49 1=116'$E49*$A$102$SAS7 =C49'$E49$A$102*SAS107 =C49*SE49*SAS1 02*$A$1 08 =J1 6SE49$A$102'$AS7 50 =117-SE50-$A$102-SAS7 =C50$SE50*AS1 02-SA$107 =C50*$E50*SAS1 02$AS1 08 =J 17*SE50*SAS1 02-SA$7 51 =118*$E51 SAS102*SA$7 =C51 $E51 SAS102'$A$ 07 =C51 *SE51 *SAS102 $A$108 =J18-SE51 $A$102'$A$7 52 =119'SE52'SA$102*$A$7 =C52'$E52SA$1 02*$AS107 =C52'$E52'$A$102'$A$108 =J1 9SE52*$AS102-SA$7 53 =120'$E53S$A$102*$A$7 =C53X$E53*$A$102'$A$107 =C53-SE53'SAS102-$A$108 =J20$E53*SA$102*$A$7 54 55 =(SC55/$A$3)$SE55 $A$102*$A$7 =C55$SE55 $A$1 02SAS1 07 =C55-SE55-$A$102-A$1A08 =(SD55/$A$3)-$E55-$A$102-$A$7 56 =($C56/$A$3)-$E56-$AS102-$A$7 =C56-SE56-$A$102-$A$107 =C56$SE56S$A$102*$A$108 =($D56/$AS3) $E56*SA$102 $AS7 57 =(SC57/$A$3)-SE57-$A$102-$A$7 =C57$SE57*$A$102 $A$107 =C57-$E57-SAS102-$A$1 08 =($D57/$A$3)r$E57*$A$102'$A$7 58 =(SC58/$AS3)'SE58*SA$102-$AS7 =C58-$E58-$AS1 02-SA$107 =C58 SE58SA$1 02'$A$108 =(SD58/SA$3)-SE58$AS1 02-SAS7 59 =(SC59/SA$3)-SE59-$A$102-$AS7 =C59-$E59-SAS102-$A$107 =C59-SE59-$A$102-$A$108 =($D59/SA$3)-$E59-$A$102-$A$7 60 =SUM(F49:F59) =SUM(G49:G59) =SUM(H49:H59) =SUM(149:159) 61I I 62 63 Case 1 Dose (rem EDE) 64 l (External) 65 CR EAB LPZ CR 66 =116 SE66 $A$103$A$7 =C66-$E66SA$1 07 =C66-SE66-SA$108 =J 16SE66'SA$103*$AS7 67 =117-$E67-$A$103-SAS7 =C67*SE67*$A$1 07 =C67*SE67$A$108 =J1 7SE67-AS1 03-SAS7 68 =118 SE68 $A$103'$A$7 =C68*SE68'SA$107 =C68S$E68SA$1 08 =J1 8SE68-$AS103-$AS7 69 =11 9$E69-$A$103-$A$7 =C69-$E69-$A$107 =C69'$E69-SA$108 =J1 9SE69-$A$1 03$A$7 70 =120-$E70-$A$103-$A$7 =C70-$E70-$A$107 =C70-$E70-$A$108 -J20-$E70-$A$103-$A$7 71 72 =($C72/$A$3)Y$E72-$A$103'$AS7 =C72*$E72S$A$107 =C72-$E72'$A$108 =($D72/$A$3)-$E72*$A$103*$A$7 73 =($C73/$A$3)y$E73*$A$103-$A$7 =C73*SE73*$A$107 =C73-$E73-$A$108 =($D73/$A$3)'$E73*$A$103-$A$7 74 =($C74/$A$3)-$E74*$A$103$A$7 =C74-$E74-$A$107 =C74*$E74-$A$108 =($D74/$A$3)-$E74-$A$103-$A$7 75 =(SC75/SA$3) SE75 SAS103*$A$7 =C75-SE75-SA$107 =C75 $E75*SA$108 =(SD75/SAS3)-SE75-SAS103-$AS7 76 =(SC76/SAS3)-SE76-$AS103-SAS7 =C76-SE76-SA$107 =C76-SE76-SAS108 =(SD76/SAS3)*SE76-SAS103 SAS7 77 =SUM(F66:F76) =SUM(G66:G76) =SUM(H66:H76) =SUM(166:176) 78 =SUM(F60+F77) =SUM(G60+G77) =SUM(H60+H77) =SUM(160+177) 79 1 II 80 _ Case 1 Dose (rem EDE) l 81 (External) _ ___

82 CR EAB LPZ CR 83 =E31 $E83'$A$103'$AS7 =C83-$E83'$A$107 I=C83-$E83*$A$108 =F31 $E83X$AS1 03$A$7 84 =E32*SE84 SAS103'$AS7 =C84*$E84-$A$107 =C84*$E84-$A$108 =F32*$E84$A$103'$A$7 85 =E33X$E85'$A$103$A$7 =C85'$E85*$A$107 =C85-$E85*$A$108 =F33*SE85*$AS1 03-SAS7 86 =E34 SE86*SA$103*$A$7 =C86'SE86-$A$107 =C86*$E86-$A$108 =F34'$E86*$A$103*SA$7 87 =E35'$E87SAS1A03'$A$7 =C87*$E87*$A$107 =C87-$E87'$A$108 =F35*$E8l0$A$10*$A$7 88 =E36-SE88S$A$103*$AS7 =C88-$E88*$A$107 =C88'SE88*$A$108 =F36-$E88-$A$103-$A$7 89 =E37'SE89*SA$103*$A$7 =C89*SE89-$A$107 =C89*$E89'$A$108 =F37*$E89'$A$103'$A$7 90 =E38 $E90*$A$103 SAS7 =C90 $E90$A$107 =C90 $E90'$A$108 =F38-SE90-$A$1 03$A$7 91 =E39$SE91 *SAS103*$A$7 =C91 *$E91 $A$107 =C91 *$E91 $A$108 =F39*SE91 *$A$103*SA$7

Calculation LM-0644, Rev. 1 Attachment A Page A9 of Al8 F G I*.H 1 92 =E40$E92'$AS103'$A7 =C92$E92SA$1 07 l08

=C92lSE92$A =F40 SE92$AS1 03$A$7 93 =E41 SE93 $AS103'$AS7 =C93 $E93X$AS107 =C93 SE93*$AS108 =F41 SE93*$A$103*$A$7 94 =E42 SE94*$A$103'SA$7 =C94 SE94*SAS107 l=C94 $E94$A$108 =F42 SE94$SA$103'$AS7 95 =E43 $E95$A$1 03'$A$7 =C95'$E95*SAS107 1=C95*SE95S$AS108 =F43*SE95*$A$1 03'$A$7 96 =SUM(F83:F95) =SUM(G83:G95) l=SUM(H83:H95) =SUM(183:195) 97 I 98 =SUM(F78+F96) =SUM(G78+G96)

_=SUM(H78+H96) =SUM(178+196) 99 100 101 102 103 104 105 106 107 108 109 1101 112 113 114 116 117 118_

119

Calculation LM-0644, Rev. 1 Attachment A Page Al 0 of Al 8 J K L l M 2

-3 4.

6

-7 8

9 101 Case 2 11 Release 12 Cloud Case I Case 2 13 Concentration Decay Activity Activity 14 Constant Release Release 15 Ci/m3 1l/seconds moles moles 16 I=H16/SAS3 =LN(2)/(8.04*86400) =G16^37000000000/SK16/6.023E+23 =Hl6'37000000000/SK16/6.023E+23 17 =Hl17/SAS3 =LN(2)/(2.3-3600) =Gl17-37000000000/SK17/6.023E+23 =H17-37000000000/SK17/6.023E+23 18 -H 18/SAS3 =LN(2)1(20.8'3600) =Gl 8*37000000000/$Kl 8/6.023E+23 =Hl 8'37000000000/$Kl 8/6.023E+23 l 19 -H19/SAS3 =LN(2)/(52.6-60) =G19-37000000000/SK19/6.023E+23 =H19*37000000000/SK19/6.023E+23 20 =H20/SAS3 - =LN(2)/(6.61 -3600) =G20-37000000000/SK20/6.023E+23 =H20*37000000000/$K20/6.023E+23 21 - Totals =SUM(L16:L20) =SUM(M16:M20) 22 4.5. 1, adjusted to be 0.2 uCVgmn -131 dose equivalent 25 ActivitY 26 -- (uCygrn) 27 I=El6'C$16/Cl6 -.

28 I=El7'C$16/Cl7 29 I=El8'C$16/Cl8:

30 I=Elg*C$16/C19 31 -E20-CS16/C20-32 33 Case 1 Case 2 Case 1 34 Activity Activity Decay. Activity 35 Release Release -- Constant. Release--

36 moles -moles -1/seconds -curies.

37 1=0.95'S137*L$21 =0.95'$137*M$21 =LN(2)/(2.062-86400-365.25) =J37*6.023E+23'$L37/37000000000 38 1=0.95'$138 L$21 =0.95'$138'MS21 =LN(2)/(2300000*86400-365.25) =J38-6.023E+23-SL38/37000000000 39 1=0.95'SI39'L$21 =0.95'$139*M$21 =LN(2)/(13.16'86400) =J39*6.023E+23'SL39/37000000000 40 1=0.95'$140 LS21 =0.95'$140'MS21 =LN(2)/(30.17-86400-365.25) -=J40'6.023E+23'$L40/37000000000 41 =0.95'S141 *L$21 -0.95'5141 *M$21 =LN(2)/(32.2*60) =J41 *6.023E+23*$L41/37000000000 42=SUM(J37:J41) -SUM(K37:K41) 43 44

Calculation LM-0644, Rev. 1 Attachment A Page All of A18 K L l M 45 46 Case 2 Dose (rem CEDE) _

47 (Inhalation) l 48 EAB LPZ _

49 =D49'SE49SA$102$AS107 =D49'$E49 SA$102$ASl 08 50 =D50S$E50$A$102*$A$107 =D50$E50*$A$102*SASl 08 l 51 =D51 SE51 SAS102^SA$107 =D51 SE51 SA$102$ASI108 52 =D52-SE52-$A$102-SASl 07 =D52*SE52-SAS102-SA$108 53 -D53 SE53 $A$102'$A$107 =D53*$E53'$A$102*SA$108 55 =E55-$D55'$A$102*$A$107 =E55-$D55-SA$102-$A$1 08 56 =E56-$D56-SA$102*$A$107 =E56*$D56-$A$102S$A$1 08 57 =E57*$D57T$A$102'$A$107 =E57*$D57*$A$102'SA$108 58 =E58-$D58-$A$102-$A$107 =E58-$D58-SA$102-$A$l 08 59 =E59 $D59 SA$102'$A$107 =E59*$D59-$A$102-$A$108 60 =SUM(J49:J59) =SUM(K49:K59) 61I 62I 63 Case 2 Dose (rem EDE) 64 (External) 65 EAB LPZ 66 -D66-$E66-$A$107 =D66-$E66-SA$108 67 =D67-$E67-$A$107 =D67*$E67-$A$108 68 =D68*$E68*$A$107 =D68-$E68*$A$108 69 =D69-$E69*$A$107 =D69-$E69-$A$108 70 =D70-$E70*$A$107 =D70-$E70-$A$108 71 72 =D72-$E72-$A$107 =D72*$E72-$A$108 73 =D73-$E73-$A$107 =D73-$E73^$A$108 74 =D74^$E74^SA$107 =D74^$E74^$A$108 75 =D75^SE75^SAS107 =D75^$E75^SAS108 76 =D76^SE76^SAS107 =D76$SE76^5AS108 77 =SUM(J66:J76) =SUM(K66:K76) 78 =SUM(J60+J77) =SUM(K60+K77) 79 80 Case 2 Dose (rem EDE) 81 (External) 82 EAB LPZ 83 =D83-5E83^SA$107 =D83*$E83-SA$108 84 =D84*$E84'$AS107 =D84^$E84^$A$108 85 =D85S$E85*$A$107 =D85*$E85-$A$108 86 =D86*$E86-$AS107 =D86^$E86^$A$108 87 =D87^$E87^$A$107 =D87^SE87^$A$108 88 =D88'SE88S$A$107 =D88$E88*$A$108 89 =D89^$E89^$A$107 lD89^$E89^$A$108 _

90 =D90^SE90^$A$107 =D90^$E90^$A$108 __ T _

91 =D91^$E91^$A$107 =D91$E91 $A$108 I

Calculation LM-0644, Rev. 1 Attachment A Page Al2 of Al8 J I K L M 92 =D92 SE92 $A$107 =D92*$E92 SAS108 93 =D93*SE93$SAS107 =D93*SE93*SA$1 08 94 =D94$SE94$AS1A07 =D94*SE94'SA$108 95 =D95'SE95'SAS107 =D95$SE95 SAS108 96 =SUM(J83:J95) =SUM(K83:K95) 98 =SUM(J78+J96) =SUM(K78+K96) 100 1021 104 10 09 _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

11 01 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

10i 108 l l_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 031 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 041 3 1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 051 4_ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 06 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

106 1018 11 2 _ _ _ _ _ _ _ _ _ _ _ _

Calculation LM-0644, Rev. 1 Attachment A Page Al 3 of Al 8 N

1 3

S 6

7 8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Case 2 34 Activity 35 Release 36 curies 37 I=K37'6.023E+23^$L37/3700000000 38 I=K3816.023E+23$SL38/3700000000

-I 39 I=K39-6.023E+23-SL39/3700000000 40 =K40'6.023E+2X3SL4/3700000000 41 I=K41 6.023E+23XSL41/3700000000 42

-I 43 44 _-

45 _-

46 47

-I

Calculation LM-0644, Rev. 1 Attachment A Page A14 of Al8 N

48 49 51 52 53 54 56 58 60 61 659 63 64 65 66 67 68 69 72 74 74 785 81 784 85 79 81 88 89 92

Calculation LM-0644, Rev. 1 Attachment A Page Al5 of Al8 N

95.I 96 97 98 99 100 101 102 103 104 105 106 107 108 109 ill 1101 112 113 114 115 116 117 119 1119

Calculation LM-0644, Rev. 1 Attachment A Page A16 of A18 A I B I C I D I E F I G H I I J l K l L T Limerick Beginning of Core Life (100 Effective Full Power Days) and End of Cycle (EOC Cesium Isotope Cuantitles 2 (Used for General Cs Molar Fraction Determination for AST) i I 3 . . I Decay 4 100 EFPD EOC 100 EFPD EOC Constant 100 EFPD EOC 5 (grams) (grams) At. Mass (gm-moles) (gm-moles) I/seconds Ci Ci 6 Cs-133 1.025E+05 1.678E+05 Cs-133 132.9054 7.712E+02 1.263E+03 I 0.000E+00 0.OOOE+00 0.000E+00 7 Cs-134 1.031 E+04 1.977E+04 Cs-134 133.9067 7.699E+01 1.476E+02 1.07E-08 1.335E+07 2.559E+07 8 Cs-135 4.502E+04 7.841 E+04 Cs-135 134.9059 3.337E+02 5.812E+02 9.55E-15 5.188E+01 9.035E+01 9 Cs-137 1.087E+05 1.832E+05 Cs-137 136.9071 7.940E+02 1.338E+03 7.28E-10 9.410E+06 1.586E+07 10 Cs-136 2.37E-01 3.99E-01 6.10E-07 2.352E+06 3.964E+06 11 Cs-138 2.01E-01 3.39E-01 3.59E-04 1.176E+09 1.982E+09 12 Total 2.665E+05 4.492E+05 1.976E+03 3.331 E.03 14 ANSI/ANS-18.1-1999 Relative Abundances in Reactor Water Molar Fraction 15 _ uCVgram of -moles/gram of Iratio to _ Cs-133 39.0219% 37.9218%

16 Reactor Coolt Reactor Coolant Cs-137 Cs-134 3.8956% 4.4317%

17 Cs-134 3.00E-05 1.04E+081 2.56E-02 Cs-135 16.8848% 17.4506%

18 Cs-136 2.00E-05 1.21 E+06j 2.99E-04 i Cs-137 40.1755% 40.1737%

19 Cs-137 8.002-05 4.07E+091 1.00E+00 i Cs-136 0.0120% 0.0120%

20 Cs-138 I 1.00E-02 1.03E+06i 2.54E-041 i I T _Cs-138 I - 0.0102% 0.0102%

Calculation LM-0644, Rev. 1 Attachment A Page Al7 of Al8 A B C D lEl F G H l 7 Limerick Begin _ I I

.2 (Used for Gene i I_

3 .

4 g00EFPD EOC i _ _ .o0 EFPD EOC 5 (grams) (grams) At. Mass (gm-moles) (gm-moles) 6 Cs-133 102500 167800 I Cs-133 132.9054 i771.2 1263 7 Cs-134 10310 19770 j Cs.134 133.9067 76.99 147.6 8 Cs-135 45020 78410 _ Cs-135 134.9059 333.7 581.2 9 Cs-137 108700 183200 _ Cs-137 136.9071 794 1338 10 _ _ Cs-136 =K10-37000000000/$J1O/6.023E+23 =L10-37000000000/SJ1O/6.023E+23 11 Cs-138 =K11*37000000000/$J11/6.023E+23 =L11*37000000000/$J11/6.023E+23 12 Total =SUM(B6:B9) =SUM(C6:Cg) _i =SUM(H6:Htt) =SUM(16:1t1) 13 14 ANSVANS-18.1 _

15 uCVgram of moles/gram of ratio to i 16 Reactor Coolant lReactor Coolant Cs-137 i I 17 Cs-134 0.00003 =B17'37000/J7 =C17/C519 l l 18 Cs-136 0.00002 =B18-37000/J1O l=C1B/CS19 l l 19 Cs-137 0.00008 I=B1937000/J9 I=Cl9/C519 i I 20 Cs-138 0.01 i I=B20-37000/Jl I=C20/C519 i _ i

Attachment A Page Al8 of Al8 Calculation LM-0644, Rev. 1

=K IL 2

3 Decay 4 Constant 100 EFPD EOC 5 1/seconds Cl Cl 6 0 =H6-$J6'6.023E+23I370000OO000 116 SJ6'6.023E+23/37000000000 7 =LN(2)/(2.062-86400-365.25) =H7TSJ7-6.023E+23/37000000000 1=17-SJ7-6.023E+23/37000000000 8 =LN(2)1(2300000-86400-365.25) =HS-SJB-6.023E+23137000000000 1=18-SJB'6.023E+23/37000000000-9 =LN(2)/(30.17-86400-365.25) =H9-$J9-6.023E+23137000000000 I=19'$J9-6.023E+23/37000000000 10 =LN(2)/(13.1 6-86400) =KS9$B$1 8/$BS1 9 =LS9 $BS18$IB$1 9 11 =LN(2)/(32.2-60) =K$9 $B$20/$BS19 I=L$9 SB$20/$B$19 13 14 Molar Fraction 15 Cs-133 =H6/HS12 1=16/I512 17 1 1 2 16 Cs-134 =H7/H$12 j= A $

17 Cs-135 =H8/HS12 =18/1S12 18 Cs-137 =H9/HS12 =1911S12 19 Cs-136 =H1O/HS12 =110/1S12 20 Cs-138 =H11/HS12 =111/lS12