ML100850406

From kanterella
Jump to navigation Jump to search
Calculation LE-0113, Rev. 0, Reactor Core Thermal Power Uncertainty Calculation Unit 1
ML100850406
Person / Time
Site: Limerick Constellation icon.png
Issue date: 12/02/2009
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML100850379 List:
References
LE-0113, Rev 0
Download: ML100850406 (94)


Text

ATTACHMENT 11 Exelon Generation Company, LLC Calculation LE-0113, Rev. 0, Reactor Core Thermal Power Uncertainty Calculation Unit 1.

Design Analysis Major Revision Cover Sheet Exel n Design Analysis (Major Revision) Last Page No. 93 l

Analysis No.: LE-0113 Revision: 0

Title:

Reactor Core Thermal Power Uncertainty Calculation Unit 1 ECIECR No.: LG 09-00096 Revision: 001 Station(s): 1 Limerick Component(s):

Unit No.: 1 N/A Discipline: LEDE Descrip.

Code/Keyword: N/A Safety/QA Class: N System Code:

Structure:

006. 041. 042, 043. 044.

047 N/A CONTROLLED DOCUMENT REFERENCES zz Document No.: From/To Document No.: From/To LEAE-MUR-0001, Bounding Uncertainty L-S-11, Rev. 15, DBD Feedwater System Analysis for Thermal Power determination fm From LM-0552, Rev 7, Reactor Heat Balance L S-15, Rev. 10, DBD Control Rod Drive Calculation Limerick Units 1 & 2 From From System LM-553. Rev. 0. Determination of the RPV Heat L-S-19. Rev. 10. DBD Recirculation System Loss From From LE-Ol 16, Reactor Dome Narrow Range L-S-36, Rev. 10, DBD Reactor Water Makeup Pressure Measurement Uncertainty From From System LM-562, Rev 2. CRD Flow Rates and System Limerick PEPSE M MUR PU and EPU Heat Pressures From From Balances Eval 2009-03880 RO LEAM-MUR-0038 (Reactor Heat Balance> To LEAM-MUR0046 (TS Instrument Setpoints) To LEAM MUR 0039 (Power Flow Map> LEAM-MUR-0041 (Neutron Monitoring System To w RBM) - -

LEAM-MUR-0048 (Generic Disposition Applicability Confirmationi Is this Design Analysis Safeguards Information? Yes [1 No If yes, see SY-AA-101 -1 06 Does this Design Analysis contain Unverified If yes Assumptions?

1 Yes [1 No ATl/AR This_Design Analysis SUPERCEDES: NA In its entirety.

Description of Revision (Ii.t ffct I p.igt fr at s lt I su t.

( ,. ri.,,.,- i 1 r a ( t t - sa r F JF/ ver i I r tz .4 thod of Review Detailed Review [.l Alternate Calculations (attached) [ Testing [i eever ---

LGS Caic No. LEO113 Exe fl Reactor Core Thermal Power Uncertainty Revision 0 Review Notes: Independent review Peer review El Performed a line by line review of the calculation, All comments were incorporated to the satisfaction of the reviewer. This calculation supports the margin uncertainty recapture (MURI by reducing the measurement uncertainty uf Core Thermal Power from 2 % to 0.35 .

For External Analyses Only External Approver: Richard Brusato Print Name SigriName Date Exelon Reviewer: MitulAjmera .

Print Name SignName Date 3i Independent Party Review Required? Yes No fl Exelon Approver: Raymond George I (

Print Name Sign Name Date

Exel()n. Reactor Core Reactor Uncertainty Calculation Uncertainty Core Thermar Thermal Power Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision 0 Revision 0 TABLE LE OF OF CONTENTS CONTENTS 1.0 .s.... ................ .........i1tkllY "KK*YkpYtiY .. .... ....c.ft ..... . .......................s......s . ... .......... ..w........ ........ . ............. . ........

1.1 FUNCTIONAL DESCRIPTION AND CONFlGUAATION CONFIGURATION ......h-........ ... . ........w.... ..>>.. ........ ..- - .. ..........-.1........5 ou u H ******************* HO H H 5

2.0 IS........... .... ............. ...............F... . ..- .Ff . ........K"fY .b.c ... .k.....x.... . .........c....t....:.x..... ... ..... .t".....kK+Yw .. ..

2.1 2.1 INPUTS *.*......

INPUTS .... ..... .... ........ ....................... . ............

u . . .... .......1.... ... Y .......R H ... ..,.-..........e.. . .... .. ...............x......xt- 5 2.2 22 REACTOR WATER ClEANUP (AWCU) FLOW LOOP UNCERTAINTY UNCERTAINTY . .. . ......a........ . ........'........... . ........... .8 8 2.3 REACTOR CLEANUP REACTOR CLEANUP SYSTEM SYSTEM TEMPERATURE TEMPERATURE . . .lwwv . as . . "KN .RkKK . . . .sKK.. . .Yk .hkhi".cNk . "TY.4 . . .sw>> .-kw.w . ., . . . . . . . " ...s . .r .. 12 12 2.4 2.4 CAD ROW RATE *E UNCERTAiNTY UNCERTAINTY Y .w.w......s.. ..a........s.sw . . ".F.....rt1k .NKt. . ..K.)...".f1 . aklPC1[##f..#"31.: .1.a...."x...Yrrxx . ,... . .e .... ....... 15 1 2.5 ,

2.5 RECIRCULATION PUMP RECIRCULATION PUMP MOTOR MOTOR UNCERTAINTY UNCERTAINTY ... . ..............*.. . .. .... ..w.... mHO.m ...... ..... ....".T4.......... ..... .fbf.........Y m *** ou................. *** m. 1 19 3.0 3.0 ASSUMPT10NS AND UMITATIONS .KFb . .>>VRF##M . .h .w . " h.A. . .rtxh-s . .wwx . .>>e.w . . .a-# . . . " ."F . " .wx yyyy">> .YV4 . " .Pt9llcK.3EYYAFK . .Y . . . . . . . . . .. . . . . . . .,.22 H H 0

.c 4.0 4.0 EFERENCES ........... ............. .'. .1P. . . .. ......iK .K.....o....h.... ...f3f.A1fK...Y......tkf..."##s ....w........s.ansa....xa . ..w.......axaf4 ...... .....w... . ... .

..tK1 METHODOLOGY .. ................ -- ................. .-Y....."....f.. .A.bfi...F....kfk.... .>>........ . .. . ... . ..... . ...x........... . ...... . . ....... .. ... .24 4.2

'TU S . PROCEDURES .... ............. .... ........... ..... ................... . ........... drtv.....t........ . ........... ............... . . .............. ....s-... 4 4.3 4.3 DESIGN BASIS OOCUMENTS NT ....... . .....as . ................ . "...-........ . .......N....~ ...h"..isRilIHi .......~~.u u " ** H

... ................. ...--.......24

    • u ** .., 24 4.4 SPECIFrCATIONS., CODES, t CODES~ & STANDARDS ....'s.... . ..a.. ....... .v... ....xs ... .. .. ..f..... ... . ...m"....... . . ....,.--a. ... ......... 24 u

4 4.5 4.5 LIMERICK STATION DRAWiNGS . ...........K..Y.k..........cii......... n n . ' ............. ................ n ........... . ..... .."4- .. .bf ........- ....24 H 24 4.6 K GENERAL GENERAL ELECTRIC ELECTRIC (GE) (GE) DOCUMENTS DOCUMENTS ............f.......>... .s....x.......w ... .....a.'.... ....... .a.k...a....... ...... . . . . ... . ... .. . 25 H hn n 25 4] F . ........... ................ ......... . . ........ .... .......... .... .............. . ....... .. ..25 4,

4.8 CALCULATION CALCULATIONS and engine n `;analysis and engineering ~ .... . .. . . . .n . . .. .. . a+ . . . .yF-.bx...

moo. . . .e .r . . . .... . .#w- . . . . .. . . . . . . . . . .w..-.,. . . . . . . .. . . . . . . . .

H *** h . "

..2525 4.9

4.9 REFERENCES

.. ..x".. ...e:.... ..s.,. ........ ..............e... ..r>>.....sw,a ..... .....:. . . . ...I........ 1Fr . F . b.. . . . . . - . .x#*. . . . . . . oa..'LF 5.0 IDENTIFICATION OF COMPUTER PROORAMS 771 S .. . ."......... ......... ..........N ifik aw. ,

. . . . . . . .... . .. . . . . -b . . . . ----- .27 27 6.IKe a.o.lf . e R" . . e`..¢ w ANALYSIS....KKa. N iJ+ki . . . . .. . . .. . . . . . . .. .- . . Nf . .. .. .. . .. .rtsa .ww.a . .w:w . . . . . . . . . . .... . ..wxk . .... .:. . . .. . ..- .k'- . . . . .. . . ..... .Y. . . -

6.1 Methodology .. .t... . " .... .. . . . .rt . .. ........ ......- .... .......... i.>n. . ............ ..... ........ ......... .BNrt- . ........... . ..4............ ........27

8.2 CALCULATION

...... ... ................s.................. ... ... ........ . .. . . .....................a1 . ..2F 7.0 . ..... ......... .- .. ............ . .....'(B..AF4il ..YiY.. a Pkt . . .. . ... . .- " .besw. " ..s .. . . . . . ... . .tx . . . . . .. .... . . . . . . . . . .. . . . ...- eao-.-Y35 7.1 7.1 dwater Flaw Feedwster Flow Uncertainty..

Uncertainty .. .e ....... . ......T...... .k.-..... . ..iiifbif.kic..fTea1....R.as .rxs...rn .n. ............ .---.......... . .........x335 7.2i Steam Steam Dome Dome PressurePressure Measurement Measurement Uncertain UnoertaintyHHO H ., . ... . .. . . . . . . .. . . .. . . . . . . . . .. ... . ... . . . . . . . .. . . . . . . .3 35 7"93 7.3 Reactor Reactor Water Water Clean-up Clean--up (R (RWCU) CU Pew Flow Loop Loop Uncertainty Uncertainty... H .

. . . . . .. . .ins . .a-www. . ... . " .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 35

            • m S5 77.4.4 RWCU U Temperature Tel'11perature Loop loop Uncertainty Uncertainty ....a. .. . . . .YF1aK.wf ..,*.**.Klff..KKi.eEw.R..1.rt .. . ...........

H H~ **** n ........ .4.. .. ............ . . ua........ ...42 42 7,5 CRD CRD Flow Flow Rate Rate Uncertainty Uncertainty ... . .. ........ .., . . .. . . . . .... .... .......... + H F . il ~

. . .. . . .. .. .7 . . ..re"T . .. .a . vra .n x . . . . . . . . . . . ... . . . . .. . . 45 45 7,6 7.6 RecircUlation .ation Pump p HEAT HEAT UNCERTAIN UNCERTAINTY . .- . ..00+. . . . . .FA . . f.

" .r 51

. . . . . . . .* .. . . . . ... . . .. . . . . . . .w... . . .. . .. .. . . . 51 7.7 7.7 Determination Determination of CTP Unce rtainty. . . .. . . . .. .

P Urortainty . . . . ... . . . . . . . . . n.. . . ... . . . .. . . . .- .-".'.h. M H.'.4 . . . .

... . . . . . . . ...a . . . . .. . . . . . .v .syr>>n .x . " .2st. . .t55 7.8 Total CTP Uncertainty Total CT7 Ureenainly Ca Ca.tcufation ulation . . . . . . . . . . . . .. . . . .Va . .Nf ..i . . .Kk .+l .a ..9ktteF .i .6bffi$c H  : .,.a .erx. . . .s. . . . . . . . . . . . . . . . . . .. . . . .. . . . . .- . . . . .6 61 B.O C*ONCLUSIONS N . . . ... . .. . . .a,ee .arezree . . .. .. . . .. .ssss .a. .a . .a . . ..a. . . . . . . . . . . .. .ttY4L4aN1. .tYy .F4ib .94 .#. . . . .- .-. . . . . . . . . .w.v . . .. . . . . . .. . . . . . . . . . . . aw . . . . . ...64 H"" *

  • M' H 64 9.0 . .wxx . .w.w. .. . . . . .t ". . . . . . . . ... . .. . . . . . . . . . .. . . . . .a>>

. . . . a-- .y-F. . . .f . . . . .fff. .kK . . . . . . . . . . . . axe . . ..- .. . . . . . . .. . . .-n . . . . .. . .I . ...... . . . . . . . .. . . ..

Page Page 33 of of 93 93

Exelon, Exelon. Reactor Core Reactor Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision 0Q Revision TABLE OFF TABLES TABU! TABLES TaNe 2- 1 " Design I rpxts ...... .... .. ... . ...s........ ................ . ......... . ............ -.. ...... ..- k.... .....x.. .. ..s.....F.. .... ............. . ... ........... .. 6 Table 2-2.

Table 2-2. RWCU RWCU SystemSystem In~t Inlet Flow Flow Eler'l\ent le - Unit nit 1I ....... . .......2........ . .....a............s..... ........... .. ...... ....... . . .P..

u * ~ ..+.....- ..8 n 8 Tab.'.' 2-3.

Table 2 . RWCU RWCU SystemSystem Inlet Wt FlowFl Differential Differential Pressure Pressure Transmitter Transmitter.......... ... . . . .........2i......+..N.s..M'4.......-f".....---..

mw u ..,w .9 9

Table TabIe2-4. . RWCU FIWCUI System System PPC PPC Precision Precision Signal Signal Resistor Resistor Unit Unit ..... ..Hm ... ......NA...... .A..s1A.. m ***......k......

u ***** w . .......--

on U

. . .............s... 10 H

10 Table 2-6. AWCU Table 2*5. R System PPC System PPC Analog Analog Input Card Unit Input Card Unit 1 I . ..+.~ .....+.. . . .i .. ........x.....-.:. ..s... . .. .. ........... "* . . ..........

.-ka". 11 H

11 Table 2-6.

Table RWCU S'YStem

6. RWCU

- LocV service System LooaI Service Envirooments ~1FentR7N~ ...NA"ss...+... .x.. . .s.w..as...s..s.....x.a.." a .... .YYFdS .+FF ..6ftk.S ... .NSi.........--A12 H un 'H Tables. 2*7.

Table 2-7. RWCU RWCU SystemSystem Inlet Inlet Thermocouple Thermocouple s... ...w.....x... . .s......s....wsx. . .....+1 ..YF...fFaPk n ..k-.F.1l.

n .ki5"..kkY... .............. .,.. . .............-. . . .12 12 Table 2-8.

Table 2-8. RWCU RWyste System .O!u't Themkxmple .. . ...-.......

Outtet TherTn()COlJpl$ " ' . .,...Y...".FF.. ...........illfN .a~1..k."i4fr........v.......s.. .cr.- . . .......-.......... ...13 13 Table 2..9.

Table 2-9. RWCU RWCU SystemSystem Therrnocoople The PPC AnalogAnalog Input Input Card Ca Unit Unit 11 . ..ss......s... ..........s...ss. .......... . ..m--.-

u m m . on ..... ....H 1414 Table .2..

Table 2- 10.. RWCU System Thermocouple mrocouple Local Local Service Service Environments Environments ...........s............... n ~ ~u . . " V>.ai....... ............. .. .....114 m* H 4

Tabfe 2..11.

Table 2-1 CAD HycIraulic I'" Ioraulic System Fl Element - Unk System Flow Elel118nt - Unit 1 ..* ~ n ,.. .......aF. ...W1.iki*...r .... .....

H,. H 15 Table 2..12.

Table 2-1 CRD CRD Hydraulic Hydraulic System System Differential Differential Pressure T Pressure Transmilter.m Wor...... ...F......... m .... ..--. . .......... u .... ............ ........... 16 1 Table 2..13.

Table 2-13 . CRC Hydraulic System CRD Hydraulic System PPC PPC Precision Precision Sign Signal Resistor Resistor Unit.. Unit. .. ............. .. ........

Hn u ~*' '*.., ...,....... .... .. ......... ...."..... .17 17 Table 2..14.

Table 2-'14. CAD CRD Hyd Hydrauliculic System y em PPC PPC Analog Analog Input Input Card Card Unit Unit 1 1 ............ .. ++> 17 Table 2-1 Table S. CAD 2..15. CRD Hydraulic System Local Hydraulic System Service Environmenfs locaJ Service Environments ........... . ..s. ...F..,.. . . ..F........ m *** on . . ..."..k.a...... . .......+3a. u . .......... 18 Table ,2-16. Recirculation Table 2*16. ecirculation Pump Pump Motor Motor Waft Watt Transducer Transctucer ...... ................. ..'. .............. .......k . .......+...... ........".. . .........s 19

'1'+ "' 19 Table 2..-17N Table Recirculation Pump

11. Recirculation Pump Motor Motor Watt Watt Transducer Transducer PPC PPC Precision Precision Signal Signal Resistor Resistor Unit Unit . . . . . . . . ... . . .. . . . . . . .. . . ... . . .. 20 20 Vale 2-18 . Recirculation Table 2..18. Recirculat Pump Motor Watt Pump Motor Watt Tt r ducer PPC Transducer PPC Analog Analog Input Input Card Card Unit unlit 1 1 .. ........ .............. . .... -......- .20 m 20 Table A7-1.

Table A7-1 . CTP CaJcufatlon Sensltivity Allalysis .............. .x........ ..... . . ................ .... ....."..s.+f..F...-..-......

sensitivity Analysis u ~ ** + ...-- ........ .. . 76 H 1e Table AS*1.. Relationship, TabJe Relationship between between a,, Y (f,. (aj ), ' , and Y(G1), O')(J and fn/ . . . . . . . . . . .. . . .s . . . . . . . . .Fl . . .k. . . .. .+ ". .UYfik4 . .bk . . . . ....-i .. . ... . .. . . . . . . . . .... . . . . . . . 79 HH H 79 Page Page 44 of of 93 93

Exel6n .

LE-0113 Exelon. Reactor Reactor Core Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 1 1 LE-0113 Revision Revision 0 0 1 .0 1.0 PURPOSE PURPOSE The The purpose purpose of of this calculation is this calculation is to to determine determine the the uncertainty uncertainty in in the the reactor reactor core core thermal thermal powerpower (heat balance) calculation performed by the Plant Process Computer (heat balance) calculation performed by the Plant Process Computer (PPC)

(PPC). . This calculation This calculation will evaluate the will evaluate the contribution contribution of of the different instrument the different instrument channel channel loop uncertainties to loop uncertainties to the the uncertainty uncertainty of of the Core Thermal the Core Thermal Power Power (CTP)

(CTP) value value using using the reactor heat the reactor heat balance relationship balance relationship when the when plant is the plant is operating operating at at 100%

1000k rated power under rated power steady state under steady state conditions.

conditions.

This calculation This calculation is is being being performed performed in in support support of of the the licensing licensing amendment amendment for for Measurement Measurement Uncertainty Recapture Uncertainty Recapture (MUR)

(MUR) power power uprate.

uprate. This This calculation calculation applies applies to to Limerick Limerick Generating Generating Station Unit Station Unit 1.1.

1 .1 1.1 FUNCTIONAL DESCRIPTION FUNCTIONAL DESCRIPTION AND AND CONFIGURATION CONFIGURATION Limerick Generation Limerick Generation Station Station (LGS)

(LGS) Unit Unit 1 1 will will be be installing installing highly highly accurate accurate ultrasonic ultrasonic feedwater feedwater flow meters per flow meters per Engineering Engineering ChangeChange RequestRequest (ECR)(ECA) LG 09-00096 . This LG 09-00096. This calculation calculation will will determine determine the uncertainty in the uncertainty in Core Core Thermal Thermal Power calculation when Power calculation when the the reactor reactor heat heat balance balance is is performed using performed using the the process process computer computer with the feedwater with the feedwater flow flow andand temperature temperature measurement measurement input supplied by input supplied by thethe Caldon@

Caldon Leading Leading Edge Edge FlowFlow Meters Meters CheckCheck Plus Plus (LEFMV+)

(LEFM-/ +) System System Ultrasonic Ultrasonic Flow Flow Meters Meters (UFM)

(UFM). .

2.0 2.0 DESIGN DESIGN BASISBASIS Various plant Various parameters are plant parameters are monitored monitored by by the the NSSS NSSS computer computer to to develop develop the the reactor reactor core core thermal thermal power calculation power calculation.. On June 1, On June 2000 Appendix 1, 2000 Appendix K K to Part 50 to Part 50 ofof Title 10 of Title 10 the Code of the Code of of Federal Federal Regulations was Regulations was changed changed to to allow licensees to allow licensees to use power uncertainty use aa power uncertainty of less than of less than 22 %  % in in their their LOCA analysis.

LOCA analysis. The change allowed The change allowed licenses licenses to to recapture recapture power power by by using using state-of-art state-ot-art devicesdevices to to more precisely more precisely measure measure feedwater feedwater flow flow.. Feedwater Feedwater flow flow inaccuracy inaccuracy is is a large contributor a large contributor in in the the uncertainty determination uncertainty determination of reactor power.

of reactor power. This calculation is This calculation is being being performed performed in in the the support support of ot aa License Amendment License Amendment Request Request (LAR)(LAR) for for aa MUR power uprate MUR power uprate..

.1 2.1 INPUTS INPUTS Table 2-1 Table 2-1 lists lists the the parameters parameters which which specify input to specify input to the core thermal the core thermal power calculation, their power calculation, their uncertainty uncertainty values, values, and the source and the source of of these these values values..

The The values values for Feedwater Flow.

for Feedwater Flow, Feedwater Feedwater Temperature, Temperature, and Reactor Narrow and Reactor Narrow Range Range Dome Dome Pressure are specified by separate Pressure are specified by separate calculations calculations as as follows follows (Ref.

(Ref. 4.8 .6 4.8.6 thru thru 4 .8 4.8.8):.8) :

"* LEAF-MUR-0001, LEAE-MUR-0001, Bounding Uncertainty Analysis Bounding Uncertainty Analys;s for Thermal Power for Thermal determination Power determination

"* LE-0116, LE-0116, Reactor Reactor Dome Dome Narrow Narrow RangeRange Pressure Measurement Uncertainty Pressure Measurement Uncertainty The uncertainties The uncertainties for for Reactor Aeactor Water Water Clean-up Clean-up (RWCU)

(RWCU) Flow Flow Rate, RWCU Inlet Rate, RWCU Inlet Temperature Temperature Thermocouple, Control Thermocouple. Control Rod Rod Drive Drive (CRD)

(CRD) Flow Flow Rate, Rate, and and Recirculation Recirculation Pump Pump Power Power are are calculated calculated in in individual individual sections sections of of this this calculation.

calculation. Recirculation Recirculation Pump Efficiency is Pump Efficiency is given given inin calculation LM-0552 calculation LM-0552 (Ref. (Ref. 4.8.2) 4.8.2).. TheThe thermal thermal losslass due due to radiated heat to radiated heat lossloss to to the drywall is the drywell is specified by specified separate calculation by separate calculation LM-553 LM-553 (Ref. (Ref. 4.8.3) 4.8.3) for for calculating calculating the the reactor reactor heat heat balance balance by by hand.

hand.

Other inputs Other inputs andand the related source the related source references references are are listed listed in the Table in the Table 2-12-1..

Page 55 of Page 93 of 93

Exelon.

Exelvn .

Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision Revision 00 Table 2-1.

Table 2-1 .

Design Inputs Design Inputs Description Inst. Tag Inst. Tog Computer Computer Uncertainty Uncertainty Description No . Nominal Value Nominal Value Uncertainty Uncertainty No. Point Point Basis Basis 71 .93 Btu/Ibm 71.93 Btu/Ibm +/-t 0.005 0 .005 CRD Enthalpy CRD Enthalpy NIA N/A N/A NlA (100 OF (100 °F and and 1448 1448 psig) prig) (Ref. 4 .9 .3)

(Ref. 4.9.3)

BtuAbm Btullbm (Ref . 4.9.3, (Ref. 4.9.3, Attachment Attachment 6) 6)

CRD Water CRD Water Flow Flow Discharge Discharge TE-046-103 TE..046*103 A1201 A1201 100°F(Ref. 4.4.1) 100°F(Ref. 4.4 .1) +/-t 0.7 0.7 OF

°F (Ref. Attachment (Ref. Attachment 1) 1)

Temperature Temperature Nominal Flow Nominal Flow CRD Water CRD Water Flow Flow FT-046-FT-046-A1711 A1711 105 GPM 105 GPM 5.4%

5.4% (Section 7.5.6)

(Section 7.5 .6)

Rate Rate 1 N004 1N004 (Ref . 4.8.5, (Ref. 4.8.5, Sec.

Sec. 2.0) 2.0)

Feedwater Feedwater 409.71 Btullbm 409.71 BtuAbm 0. 005

+/-0.005 NIA NlA N/A NlA (430 .8 OF (430.8 °F and and 11551155 psig) psig) (Ref . 4 (Aef. .9.3) 4.9.3)

Enthalpy Enthalpy Bt005 Btu/Ibm (Ref . 4 (Ref. .9.3, Attachment 4.9.3, Attachment 6) 6)

Feedwater Mass Feedwater Mass 15.09 Mlbmlhr 15.09 Mlbmfir Flow Rate Flow Rate (LEFM (LEFM 10-C986 10-C986 NIA NlA t 0.32 %

+/-0.32  % (Ref.

(Ref. 4.$ .6) 4.8.6)

~+ System)

-/+ System) (Ref (Ref.. 4.8.9, 4.8.9, Table Table 6-11 6-11a)a)

Feedwater 1155 PSIG 1155 PSIG P eeess~urer Pressure N/A N/A N/A NlA (Ref.4 .4.1)

(Ref.4.4.1) t

+/- 1010 psig psig (Section (Section 3.11) 3.11)

Feedwater Feedwater TE-006-TE-Ooe- A1744 A1744 thru thru 430.8 430.8 °F OF Temperature 11N041A*F N041 A-F A1750 t

+/- 0.57 0.57 °F OF Ref. 4.8 (Ref. .6 4.8.6)

Temperature A1750 (Ref (Ref.. 4.8.9, 4.8.9, Table Table 6-11 6-11a) a) ( }

Radiated Radiated Reactor Reactor 0.89 0.89 MWMtN (U 1)

(U1)

Pressure Pressure Vessel Vessel NIA N/A NIA NlA +/- 10%

10% (Section (Section 3 .12) 3.12)

(RPV)

(RPV) Heat Heat Loss Loss 11.04

.Q4 MWMW (U2) U2 (Ref.

(Ref. 4.8.3, 4.8.3, See.

Sec. 2.0) 2.0) 1043 1043 PSIGPSIG Reactor Reactor Dome Dome PT-042-PT-042- El 234 E1234 (1057.7 (1057.7 psia, psia, Ref.

Ref. 4.8 .9, 4.8.9, 20 prig t::20 pslg (Ref (Ref.. 44.8.8)

.8 .8)

Pressure Pressure 11N008 N008 Table Table 6-116-11a)a)

Saturated Saturated Steam Steam 1191 1191.1 .1 Btu/Ibm BtuJIbm Enthalpy Enthalpy N/A NIA N/A N/A (1043 (1043 psig, psig, sat) sat) t+/- 0.05 0.05 Btullbm Btu/Ibm {Ref.

(Ref. 4.9 .3}

4.9.3)

(Ref (Ref.. 4.9.3, 4.9.3, Attachment Attachment 5) 5)

Recirculation Recirculation 94  % (Attachment

.8 °la 94.8 (Attachment 10 10& &

Pump Pump Motor Motor 11A(B)-P201 A(B)-P201 NIA N/A N/A N/A N/A Ref.

Ref. 44.8.2)

.8.2) N/A efficiency efficiency Recirculation Recirculation 7700 7700 Hp Hp (5 .74 MW)

(5.74 MW)

Pump PumpMotor Motor 1A(B)-P201 1A(B)~P201 NIA N/A t:t11.4  %

.4 °lo (Section (Section 77.6.8)

.6.8)

Power Power .

(Ref 4.3.3)

(Ref. 4.3.3) 419.83 419.83 Btulibm BtuJIbm RWCU AWCU Discharge Discharge t+/-0.005 0.005 Enthalpy NIA N/A N/A NlA 440 °F (440 OF and and 1168 1168psi psig) (Ref.

(Ref.4.9 .3) 4.9.3)

Enthalpy ( g) BtuAbm Btu/lbm (Ref (Ref.. 4.9.3, 4.9.3,Attachment Attachment6) 6)

Page Page66of of9393

Exelc'~

Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation Unit Unit 11 LE-0113 LE-Q113 Revision 00 Revision Table 2-1.

Table 20 .

CaNgn Inputs Design Inputs Inst. Tag Inst. Tag Computer Computer Uncertainty Uncertainty Description Description Nominal Value Nominal Value Uncertainty Uncertainty No.

No. Point Point Basis Baais RWCU Discharge RWCU Discharge TE-044-TE-044- 440 OF 440°F A1742 A1742 4.37 (Section 7.4.6)

(Section 7.4.6)

Temperature Temperature I N015 1N015 (Section 2.3.2)

(Section 2.3.2)

t:4.37 RWCU Inlet RWCU Inlet Flow Flow FT-044-FT*044* 360 GPM 360 GPM (Max)

(Max)

Rate Rate A171$

A1718 2.3 %

1:2.3% (Section 7.3.6)

(Section 7.3.6)

I N036A 1N036A RA 1111)

Ref. 4.5.11)

RWCU Regen AWCU Regen TE-044-TE*044* 530 of 530 OF Heat Exchanger Heat Exchanger A1741 A1741 (Section (Section 7.4.6) 7.4.6)

I N004 1N004 2.3.1 )

(Section 2.3.1)

(Section 4.37 of 4.37 OF Inlet Temperature Inlet Temperature RWCU Suction RWCU Suction 524.39 l3tu/Ibm 524.39 Btulfbm 0.005

% 0.005 Enthalpy Enthalpy WA NlA N/A N/A (Ref. 4.9.3)

(Ref. 4.9.3)

(530 OF and 1060 (530 of and 1060 psig) prig} 13tu/Ibm Btu/Ibm Page Page 77 of of 93 93

Exelc°~n.

Exelen. Reactor Reactor Core Core Thermal Uncertainty Calculation Unit Uncertainty Power Thermal Power Calculation Unit 11 Revision 0 Revision LE-0113 LE-0113 0

2.2 2.2 REACTOR WATER REACTOR WATER CLEANUP CLEANUP (RWCU) (RWCU) FLOW FLOW LOOP LOOP UNCERTAINTY UNCERTAINTY 2.2.1 2.2.1 Reactor Water Reactor Water Cleanup Cleanup System System Equipment Equipment Design Design Data (Ref. 4.3.4)

Data (Ref. 4.3.4)

System flow System flow rate rate (Ibm/hr) (Ibm/hr)

Normal operation "A" pump pump 154,000 lf Normal operation"A 154,000 Normal Normal operation operation "B" "B" prus plus "e" "C" pump pump 133,000 133,000 Maximum Maximum operation operation 180,000 180,000 Main Cleanup Main Cteanup Recirculation Recirculation Pumas Pumps "A" Pump "Aft Pump "B" "B" & & "C" Pumps "C" Pumps Number required Number required 11 22 Capacity, Ok Capacity,  % (each) (each) 100 100 50 50 "A"

"A" pump pump capacity capacity is is greater greater that that the the combined combined capacity capacity ofof the the "B" "B" and "C" pumps and "C" pumps 2.2.2 2.2.2 RWCU Flow RWCU Flow Measurement Measurement Loop Loop Diagram Diagram RWCU RWCU flow flow is is measured measured by by an an orifice orifice plate plate (FE-044-1(FE-044-1 N035)N035) located located on the suction on the suction sideside of of the the RWCU Recirculation Pumps, RWCU Recirculation Pumps, which which provides provides aa i.\P OP signal signal toto a a Rosemount Rosemount transmitter transmitter (FT-044- (FT-044-1 N036A). The 1N036A). The transmitter transmitter supplies supplies aa milliamp milliamp signal signal toto the the PPC PPC for for display display in in thethe Control Control Room.

Room.

The instrument The instrument loop consists of loop consists of the the following following:: flow element, flow flow element, flow transmitter, transmitter, aa signal signal resistance resistance unit unit and a and a PPC PPC input/output input/output (i/O) (I/O) module module.. The The loop loop configuration configuration is is shown shown below below (Ref. (Ref. 4.5.10):

4.5.10):

FE-044- FT-044- PPC 1N035 1N036A A1718 The loop The loop components components evaluated evaluated in in this this document document (the (the applicable performance specifications applicable performance specifications and and process parameter data) process parameter data)::

2.2.3 2.2.3 RWCU System Inlet RWCU System Infet Flow Flow (Ref (Ref.. 4.4 4.4.1, .1, 4.5 4.5.6,.6, 4.5.10, 4.5.10, 44.5.11,

.5.11, 4.5.16, 4.5.16, 4.6.4,4.6.4, and and 4.9.1) 4.9.1)

Table 2-2 Table 2-2..

RWCU System RWCU System Inlet Inlet Flow Flow Element Element -- Unit Unit 11 Com;~~ent 1.0.:

'<<'>>+><<0>: ,~""","?"""- '~"".'>>:>:<< j::"."",,,

J Component I.D.: FE-044-1 N035 "RWCU FE-044-1N035 uRWCU SUCTION SUCTION FLANGE FLANGE UPSTRE AM OF UPSTREAM VALVE V OF VAL E MV-44-1 F001 HV-44-1F001"

- >,=,~.,~",<&.,..

>'=,~.,~"'<&.,..

Device Type:

Device Type: Orifice Orifice Plate Plate Manufacturer/Model No.:

Manufacturer/Model No.: Vickery Vickery Simms Simms Inc ./145C3227P037 Inc.l145C3227P037

~eference Reference Accuracy (A1)

Accuracy (A1):: +/-1 .50°la of

+/- 1 .500/0 actual ftow of actual flow rate rate

~Installation Accuracy:

jlnstaliatiOn Accuracy. +/-0.5%

+/- 0.50/0 Cond~jons (Temp.):

Envi ronme ntal`Conditions (Te mp.):

I Environmental c<.'.-~.,

c<.'.-~., ___ ~ ~

~ ~ ..."""'.>Y:"".;"'...,""....

..."""'''.;''''''.... . ____ . _",,"*'WNN'","-",",,*"

40"F 40°F (min.) (min.), toto 156°F 156°F (max.) (max.)

Page Page 88 of 93 of 93

LE-01 13 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation Unit Unit 11 Revision 00 Revision LE-0113 Table 2-2.

Table 20.

RWCU System RWCU System Inlet Inlet Flow Flow Element Element -- Unit Unit 11 Environmental Conditions Environmental Conditions (Press.):

(Press .): (-) 1.0

(-) 1 .0 (min.)

(min.) to to (+)

(+) 7.0 7.0 inches inches H H20 (max.)

2 0 (max.)

Environmental Conditions Environmental Conditions (RH (RH %): 20 (min.)

20 (min.) to to 90 90 (max.)

(max.)

Pipe Size:

Pipe Size: 66 inch inch schedule schedule 80 80 Flange Rating:

Flange Rating : 600#

600#

Pipe Class Pipe Class Service Service No.:

No.: DCA-101 "AWCU DCA-101 "RWCU from from Recirc.

Recirc . Pump Pump Suction Suction Valve Valve F004 FOO4 Normal Operating Normal Operating Temperature:

Temperature : 530 539°F Design Temperature:

Design Temperature : 582 OF 582 OF Maximum Operating Maximum Temperature :

Operating Temperature: 582 OF 582 OF Normal Operating Normal Operating Pressure:

Pressure : 1060 psig 1060 prig Design Pressure:

Design Pressure : 1250 psig 1250 psig Maximum Operating Maximum Operating Pressure:

Pressure : 1360 psig 1360 psig Normal flow Normal Rate:

flow Rate: 360 gpm 360gpm Maximum Flow Rate:

Maximum Flow Rate : 477 gpm 4ngpm AP @

L\P 0 Max.

Max. Flow Flow Rate:

Rate: 200 inches 200 H20, nameplate inches H20, nameplate data: 1 178 psig data: 1178 psig &

& 545 OF 545 OF 2.2 .4 2.2.4 RWCU RWCU System Inlet Flow System Inlet (Ref. 4.5.6, Flow (Ref. 4.5.6,4.5.10,4.6.4, 4.7.2,4 .7.6,4.7.7,4.9.5, and 4.5.10,4.6.4,4.7.2,4.7.6,4.7.7,4.9.5, and 4.9.7) 4.9.7)

Table Table 2-3.

2-3.

RWCU RWCU System System Inlet InJet Flow Flow Differential Differential Pressure Pressure Transmitter Transmitter Component I.D.:

Component 1.0.: FT-044-1 N036A"REACTOR FT-044-1 N036A "REACTOR WATER WATER CLEANUP CLEANUP INLET" INLET" Location (AREA Location (AREA /I EVEL EVEL /I RM):

AM): 016 1283' // 506 016/283' 506 Device Type:

Device Type: Differential Pressure Transmitter Differential Pressure Transmitter Manufacturer/Model Manufacturer/Model No .:

No.: Rosemount/1 153DB5RCN0039 Rosemountl1153DB5RCNOO39 Quality Quality Classification Classification:: a Q (Not (Not Required)

Required)

Accident Accident Service:

Service: N/A N/A

- -_. --~_.~--

Seismic Seismic Category:

Category: N/A N/A

Tech ITech Spec Spec Requirement

Requirement: N/A N/A t---- -,-~---,-

IUpper Upper Range Range Limit Limit @ 68 68 OF: OF: 750 750 inches inches H20 H 2O ILower Lower Range Range Limit Limit @

@ 68 68 'IF OF:: 0-125 0-125 inches inches H20 H20 0083

,,~----

~Calibrated Range

[c;librated Range:: 0o to 218.3 inches H20 -- static inches H20 static pressure pressure corrected corrected

,-~-,

IOperating Operating Range:

Range:

L""''''''''W"",,,_mH_'

_____,______ ~

~ ,

, ~

~ ,

, ____, 0oto

~

~ _

to 220 220 inches inches H20

_ ~

~

H20 at at 1060psig, 1060psig H

H .

. ~

~ '

1V,..,.,.",,"'*-""'.*,W.*N-""'.*.w.*NN,W.*.. '.*.w.*,*,*,*,*.*.*g*,***.* ....,**, **, .........w ........wn.*.* ,.-,-_nf:

Page Page 99 of of 93 93

Exelon, Exelon. Reactor Core Reactor Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision 00 Revision Table 2*3.

Table 2-3.

RWCU System RWCU System InletInlet FlowFlow Differential Differential Pressure Pressure Transmitter Transmitter Calibration Span:

Calibration Span: 218.3 inches 218.3 inches H H2O2O Output Signal:

Output Signal : 4 - 20 mA 4-20 mA Setpoint:

Setpoint: N/A N/A Calibration Period:

Calibration Period: 24 months 24 months Accuracy (A2):

Accuracy (A2) : +/-t 0.25 0.25 %  % calibrated calibrated span span (see (see note) note)

Calibration Accuracy:

Calibration Accuracy: t 0.50/0

+/- 0.5 %

Stability (Drift, Stability (Drift, 02):

D2): t 0.2

t 0.2 % % URL URL for for 30 30 months months [20-] f2cs]

Temperature Effect Temperature Effect (DTE1),

(DTE1), per per 100°F 100°F +/- t (0.75 (0.75 %% of of upper upper range range limitlimit ++ 0.5 0.5 %% span)span)

Temperature Normal Temperature Normal Operating Operating Limits:

Limits : 40 40 to 200 of to 200 °F Overpressure Effect:

Overpressure Effect : Maximum zero Maximum zero shift shift of of +/-t 1.0 1 .0 %

% URL above URl above 2000 2000 psigpsig Static Pressure Static Pressure ZeroZero Effect:

Effect: +/-0.2

+/-O.2 %  % ofof upper upper range range limit limit Static Pressure Static Pressure Span Effect (SPNE2):

Span Effect (SPNE2) : t+/- 0.5 0.5 %% input input reading reading per 1, 000 psi.

per 1,000 psi.

Seismic (vibration) Effect Seismic (vibration) Effect (SEIS2):

(SEIS2): Accuracy within Accuracy within +/-O.5 f0.5 % Ok of of upper upper range range limit limit duringduring and and after after a a seismic seismic disturbancedisturbance defined defined by by a a required required response response spectrum spectrum with with a a ZPA ZPA of of 44 g's.

g's.

Power Supply Power Supply Effect Effect (PSE2)

(PSE2):: << 0.005 0.005 %  % ofof calibrated calibrated span span perper volt volt Mounting Position Mounting Position Effect Effect:: No No spanspan effect.

effect. Zero Zero shift shift ofof up up toto 11.5.5 inH20 inH20 EMI/RFI Effect EMIIRFI Effect:: Not Not Specified Specified

Response

Response time time (damping)

(damping):: Code Code N N -* Adjustable Adjustable damping damping;; max. max. 0.8 0.8 seconds seconds Harsh Harsh temperature temperature effecteffect (HTE2)

(HTE2):: Accuracy Accuracy within within +/- +/- 5.05.0 % % of of URL URL during during and and after after exposure exposure to to 265 265 °F of (129(129.5 .5 °C),

°C), 24 24 psig, psig. for for 35 35 hours4.050926e-4 days <br />0.00972 hours <br />5.787037e-5 weeks <br />1.33175e-5 months <br /> hours..

Humidity Humidity limits:

limits: 0oto to 100 100 % % Relative Relative Humidity Humidity (RH) (RH)

Safety Safety Classification:

Classification: Application Application -- Non-safety-Related Non-safety*Related Radiation Radiation Effect Effect (e2R):

(e2R): Accuracy Accuracy within within t:t 4.0 4.0 % Ok ofof URL URl during during and and after after exposure exposure to to 2.2 2.2 x107 x1 07 rads, rads. TID TID ofof gamma gamma Note:

Nota: Includes Includes combined combined effects effects ofof linearity, linearity, hysteresis, hysteresis, and and repeatability repeatabUity 2.2.5 2.2.5 RWCU RWCU SystemSystem Signal Signal Resistor Resistor Unit Unit (Ref.

(Ref. 44.1.1,4.5.10,4.5.17,

.1 .1, 4.5.10, 4.5.17, and and 4.7 .3) :

4.7.3):

Table Table 2-42-4..

RWCU RWCU System System PPC PPC Precision Precision SignalSignal Resistor Resistor Unit Unit IDwg Dwg.. DDesignation:

esignation: SRU-1 SRU*1 ro~vice Type:

Device Type *------_'----+~p-re-c-is-iO-n-Sj-gn-a-l-re-s'--is-to-r-u-n-it----"--'--------i

Precision signal resistor unit ^

(M anufacturer/Model No. :

1",~~_n_u_fa_c~~,:.r._1M_o_d_e!_~~::_,~_~._,~ Bailey Type 766

_ __L__8a_i_le~y_T_yp_e",_.~7 __6,.,,6. "WN...W,.,_. N'"""_._**__.,,'" ----J Page Page 110 0 ofof 9393

Exelun.

Exelon. ReactorCore Reactor CoreThermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision 00 Revision Table 2-4.

Table 2-4 .

RWCU System PPC Precision RWCU System PPC Precision Signal Signal Resistor Resistor Unit Unit Selected Range:

Selected Range: 250 Ohm 250 Ohm Accuracy:

Accuracy: +/-t 0.1 0.1 o/Ot

%, (+/- (t 0.25 0.25 ohm) ohm)

Safety Classification:

Safety Classification : NIA N/A Temperature Effect:

Temperature Effect: 0.5 %

+/- 0.5  % forfor 40 40 --120°F 120°F Input Signal Input Signal Range:

Range : 4 to 20 4to 20 mAde mAdc 2.2.6 2.2.6 RWCU System RWCU System Computer Computer PointPoint- Plant Process

- Plant Process Computer Computer (PPC) (PPC) (Ref.

(Ref . 4.5.10 4 .5.10 and and Attachment Attachment 4):4):

The PPC The PPC calculates calculates CoreCore Thermal Thermal Power Power based based in in part part on on the measurement of the measurement of Reactor Reactor Water Water Cleanup flow.

Cleanup flow. TheThe PPC PPC uses uses an an analog analog input input card, card, which read the voltage drop across which read the voltage drop across aa precision precision 250 ohm 250 ohm resistor.

resistor.

Table Table 2-5. 2-5 .

RWCU System AWCU System PPCPPC Analog Analog InputInput Card Card Unit Unit 11 Component 1.0.:

Component I.D. : A1718 A1718 Location :

Location: 10-0603 (H12-P603) 1Q-C603 (H12-P603)

Device Device Type:

Type: PPC PPC -- Potentiometer Potentiometer (Analog)

(Analog) Input Input Card Card Manufacturer/Model No.

Manufacturer/Model No.:: Analogic/ANDS5500 AnalogiclANDS5500 Quality Classification:

Quality Classification: N/A N/A Accident Accident Service:

Service: N/A N/A Seismic Seismic Category:

Category: N N

Tech Tech Spec Spec Requirement:

Requirement: N/A N/A Selected Selected FullFull Scale Scale Span:

Span: t:t:5VDC 5 VDC Calibration Calibration Span:

Span: (,)

(-) 55 VDC VDC to to (+)

(+) 55 VDC VDC Calibration Calibration Period:

Period: 24 24 months months Accuracy Accuracy (A3):

(A3): f+/- 0.5 0.5 % % ofof full fuU scale scale span span Input Input Impedance Impedance (resistance):

(resistance): 10 10 Meg Meg Ohms Ohms Analog Analog to to digital Digital Converter.

Converter: Not Not Specified Specified Power Power Supply Supply Effect Effect (PSE3)

(PSE3):: N/A N/A EMI/RFI EMI/RFI Effect:

Effect: N/A N/A

Response

Response time time (damping)

(damping):: N/A N/A Operating Operating Temperature Temperature LimitsLimits:: 32 32 to to 122 122 °FOF (0(0 to to 50 "C) 50°C)

Humidity Humidity limits limits:: Not Not Specified Specified Safety Safety Classification Classification:: Non NonSafety-Related Safety-Related Page Page 111 1 ofof93 93

C-~celun, Exelon. ReactorCore Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation Unit Unit 11 LE-Q113 Revision 00 Revision 2.2 .7 2.2.7 RWCU System RWCU System Local Local Service Service Environments Environments (Ref. (Ref. 4.4.2):

4.4.2} :

Table 2-6.

Table 2-6.

RWCU System RWCU System Local Local Service Service Environments Environments Flow Transmitter Flow Transmitter Plant Process Plant Process Computer Computer Area f Room.

Area/ Room. Area 016 Area 016 Area 008 Area ~B -- Control Control Room Room Location Location 506C -- Cont.

506e Cont. H2 H2 Recombiner Recombiner Control Room Control Room (Camp.

(Comp. Rm.

Rm. 553) 553 }

Normal Temp.

Normal Temp. Range Range (OF)

(°F} 65 min 65 min /106

/ 106 maxmax /l 8585 norm norm 65 min 65 min /78

/ 78 max max // norm norm N/A N1A Normal Pressure Pressure (-} 0.25 Normal (..) 0.25 inches inches WG WG ++ 0.25 0.25 inches inches WG WG Normal Humidity Normal Humidity (RH

{RH %)°/d} 50 average 50 average /90 l 90 maximum maximum 50 average 50 average /l 90 ~? maximum maximum Radiation Radiation 2.50E-03 Radslhr, 2.50E-03 Rads/hr, 8.78E+02 8 .78E+02 TIDTiD NlA hUA 2.3 2.3 REACTt?R CLEANUP REACTOR CLEANUP SYSTEM TEMPERATURE SYSTEM TEMPERATURE 2.3.1 2.3.1 RWCU System RWCU System Regenerative Regenerative Heat Heat Exchanger Exchanger Inlet Temperature (Ref Inlet Temperature (Ref.. 4.4.1, 4.4.1. 4.5.6, 4.5.6, 4.5.71, 4.5.16, 4.5.11, 4.5.16, 4.6 .4, 4,9.5, 4.6.4, and 4.9 4.9.5, and .7}

4.9.7)

TE-U44-1 NL~4 TE-044-1 N004 PPC PPC A7 741 A1741 Thermocouple a

Thermocouple ~

Table Table 2-7.

2-7.

RhVCU RWCU System System Inlet rnlet Therm~ouple Thermocouple Component Component Numbers Numbers:: TE-044-i TE-044-1N004 N004 "REACTOR "REACTOR 1NATER WATER CLEANUPCLEANUP SYSTEM SYSTEM REGEN REGEN HEAT HEAT EXCHEXCH INLET INLET TEMP" TEMP" Devic Device Type:

Type: Type Type TT Copper Copper- - Constant Constantan an (CU/CN (CU/CN)}

ManufacturerlModel Manufacturer/Model No.: No.: California Carifornia AllayAlloy CalModel ColModel 117C34$5P073 117C3485P073 Element Element Range Range:: {-}200°

{..)200 0 toto (+}700

(+)700 °FOF Calibrated Calibrated Range Range 0° 0° -.. 600°F 600°F Rated Rated Accuracy:

Accuracy: t+/- 0.75°F O.75°F Output Output Signal:

Signal: (-}

(-) O0.674

.fi74 mVmV toto (+}15.769

(+)15.769 mV mV Safety Safety Classification Classification:: NIA N/A Pipe Pipe Class Class Service Service No.:

No.: DCC-101 DCC-101 "RWCU uAWCU pump pumpdischarge dischargethru thru Regen Regen HXs HXs Normal Normal Operating Operating Temperature Temperature 530 530°F OF(See (See Note Note 11)

}

Normal NormalOperating OperatingTemperature Temperature Spec: Spec: 535 535°F °F Design Design Temperature Temperature:: 582 582¢F ~'F Maximum Maximum Operating OperatingTemperature Temperature:: 582 582°F OF Page Page 1 12 2 of of93 93

LE-01 13 Exelon. Reactor Reactor Core Core Thermal Uncertainty Calculation Unit Uncertainty Calculation ThermaJ Power Power Unit I1 LE-0113 Revision 00 Revision Table Table 2q. 2-7.

RWCU RWCU System System Inlet Inlet Thermocouple Thermocouple Normal Normal Operating Operating Pressure:

Pressure: 1235 1235 prig psig Design Design Pressure Pressure:: 1290 1290 prig psig Maximum Maximum Operating Operating Pressure Pressure:: 1542psig 1542 psig Normal Normal flow flow Rate:

Rate: 360 360gpm gpm Note 1:

Note 1 : Reactor Reactor Engineering Englneenng provided provided normal normal operating operating temperature temperature based based on on 100%

1000/0 power power operation operation for for both both Units.

Units. Data Data was was retrieved once per retrieved once per hour hour for for one one week.

week. The The Unit Unit 2 2 value value ofof 530 530 'F of in in lieu lieu of of Unit Unit 11 528 of was 528 'IF was used used based based onon itit being being the the most most conservative conservative..

2.3.2 2.3.2 RWCU RWCU System Regenerative Heat System Regenerative Heat Exchanger Exchanger Outlet Outlet Temperature Temperature (Ref. (Ref. 4.1 .1, 4.5.6, 4.1.1, 4.5.6, 4.5.16, 4.5.16, 4.6.4, 4.6.4, 4.5.11, 4.9.5, and 4.9.7) 4.5.11,4.9.5. and 4.9.7)

TE-044-1 N015 TE-044-1 N015 PPC PPC A1742 A1742 Thermocouple Thermocouple ..

Table 20.

Table 2-8.

RWCU System Outlet RWCU System Outlet Thermocouple Thermocouple

~.---

Component Numbers:

Component Numbers: TE-044-1 N015 TE-044-1 N015 "REACTOR "REACTOR WATER WATER CLEANUP CLEANUP SYSTEM REGEN SYSTEM REGEN HEAT HEAT EXCHEXCH OUTLET OUTLET TEMP"TEMP" Device Type:

Device Type: Type Type T T Copper Copper - Constantan (CU/CN)

- Constantan (CU/CN)

Manufacturer/Model No.:

Manufacturer/Model No.: California California Alloy Alloy Co/Model 11 7C3485PO73 ColModeJ 117C348SP073 Element Range:

Element Range: (-)200" to

(-)200° to (+)700 (+)700 *F of Input Range Input Range 0,0 -- 600"F 0° 600°F Rated Accu Rated Accuracy:

racy: :t O.75°F

I: 0.75'OF Output Range Output Range 0) 0.874

(-) 0.674 mV mV to (+}15 .789 MV to (+)15.769 mV Safety Classification Safety Classification:: N/A N/A Class Service No.:

Pipe Class Pipe Service No.: ECC-1 05 "RWCU ECC-10S "RWCU Regen Regen HX HX toto HV-1 F042 HV-1F042 Normal Operating Normal Operating Temperature Temperature 440 440 of OF (See (See Note Note 2) 2) based on actual based on actual plant plant data data ,-

Normal Operating Normal Operating Temperature Temperature:: 438 of 438 OF Design Temperature:

Design Temperature: 434 OF 434 of Maximum Operating Maximum Operating Temperature Temperature:: 434 'IF 434 of Normal Operating Normal Operating Pressure:

Pressure: 1168 psig 1168 psig Design Pressure:

Design Pressure: 1290 psig 1290 psig

~._~

Operating Pressure:

Maximum Operating

[MaXimum Pressure : 1542 psig 1542 psig

--~------

Normal flow Normal flow Rate:

Rate: 360 gpm 360 gp n+~","""",,,"""'H"""N**' .. ? ................,......" ....H.

-~-,-,=-,---<<~<<~.

~ .. _ -

Note 2:

Note 2: Reactor Reactor Eng,neerlng Engineering provided provided normal normal operating operating temperature temperature basedbased onon 100%

100% powerpower Page 13 Page 13 of of 93 93

Exele)

LE-01 13 Exel(tn. Reactor Reactor Core Core Thermal Thermal Power Uncertainty Calculation Unit Uncertainty Calculation Power Unit 11 Revision 00 Revision LE-0113 operation operation for for both both Units.

Units. Data Data was was retrievedretrieved once once perper hour hour for for one one week.

week.

2.3.3 2.3.3 RWCU RWCU System System Plant Plant Process Process Computer Computer (PPC) (PPC) (Ref. (Ref. 4.5 .6, 4.5.16, 4.5.6, 4.5.16, and Attachment 4):

and Attachment 4):

Table Table 2-9. 2..9.

RWCU RWCU System System Thermocouple Thermocouple PPC PPC Analog Analog InputInput Card Card Unit Unit 11 Component Component I.D. 1.0.:: Al A1718 718 andand Al 742 A1742 Location:

Location: 10-C603 10-C603 (H12-P603)

(H12-P603)

Device Device Type:

Type: PPC PPC -- Potentiometer Potentiometer (Analog) (Analog) Input Input Card Card Manufacturer/Model Manufacturer/Model No.: No.: Analogic/ANDS5500 AnalogiclANDS5500 Quality Quality Classification Classification:: N/A NJA Accident Accident Service Service:: N/A N/A Seismic Category::

Seismic Category N N

Tech Tech Spec Requirement:

Spec Requirement: N/A N/A Selected Range::

Selected Range Upper Upper:: -25 mV to

-25 mV to ++ 25mV 25mV Calibration Calibration SpanSpan:: (-)

(-) 0.674 0.674 mV mV to (+) 15.769 mV to (+)15.769 mV Calibration Period Calibration Period:: 24 months 24 months Accuracy (A2):

Accuracy (A2): t

+/- 0.5 0.5 %% of full scale of full scale span span Input Impedance (resistance)

Input Impedance (resistance):: 10 10 Meg Meg OhmsOhms Analog Analog toto Digital Digital Converter Converter.: Not Specified Not Specified Signal Source Signal Source Resistance:

Resistance: 2800 2800 n 0 maximum maximum Power Supply Power Supply Effect Effect (PSE2)

(PSE2):: N/A N/A EMI/RFI Effect:

EMI/RFJ Effect: N/A N/A Response time Response (damping) :

time (damping): NIA N/A Operating Temperature Operating Temperature Limits: Limits : 32 to 32 to 122 122 of°F (0 to 50 (0 to 50°C) °C)

Humidity limits Humidity limits:: Not Not Specified Specified Safety Classification:

Safety Classification : Non Safety-Related Non Safety-Related 2.3 .4 2.3.4 System Local RWCU System RWCU Service Environments Local Service Environments (Ref. (Ref. 4.4.2):

4.4.2):

Table 2-10.

Table 2-10.

RWCU S RWCU System ysem t Thermocoup Th ermocouple Ile Local LocaIS Service EnVlronments ervlce Environments .

Thermocouple Thermocouple Plant Process Plant Process Computer Computer i--, -

Area 1 Room.

Areal Room. Area 016 Area 016 Area 008 Area Control Room 008 -- Control Room Location Location 506C --- Cont.

506e Cant. H2H2 Recombiner Recombiner Control Room Control Room (Comp. Rm. 553)

(Camp. Rm. 553)

-~_. .. _-

Normal Temp.

Normal Temp . RangeRange (F)

(OF) 65 min 65 min 1112 /112 max / 104 norm max /104 norm 65 min 65 min I/ 78 max I/ norm 78 max norm NI NIAA Normal Pressure Normal Pressure (-) 0.25

(-) 0.25 inches inches WGWG + 0.25

+ 0.25 inches inches WGWG k .... ,=,,~" *"",,"if=~m ..

~ "_".,,,,,~,,.", .*,.,, .., .,. ..

_ ~

>>-"~,-,.,.,. .

Page 14 Page 1 4 of of 93 93

Exelon.

Exelon. ReactorCore Reactor Uncertainty Calculation Uncertainty Core Thermal Thermal Power Power Calculation UnitUnit 11 LE-0113 LE-0113 Revision Revision 00 Normal Humidity Normal Humidity (RH (RH %)%) 5050 averageaverage I/ 90 90 maximum maximum 50 average 50 average // 90 90 maximum maximum Radiation Radiation 2.50E-03 Radslhr.

2.50E-03 Rads/hr, 8.78E+02 8.78E+02 TID TID NIA NlA 2.4 2.4 CRD FLOW CRD FLOW RATE RATE UNCERTAINTY UNCERTAINTY 2.4.1 2.4.1 CRD Hydraulic CRD Hydraulic System System FlowFlow loop Loop Diagram Diagram Each analyzed Each analyzed instrument instrument loop loop consists consists of of aa flow flow element element supplying supplying aa differential differential pressure pressure to to aa pressure transmitter.

pressure transmitter, andand aa PPCPPC input/output input/output (I/O) (1/0) module module with with aa precision precision resistor resistor (8 0) across the (80) across the input. The input. The loop loop is is shown shown as as forrows:

follows :

Flow element:

Flow element: Flow Flow Input Input Comp. Point Compo Point FE-046-1 NOO3 FE-046-1 N003 f---t Transmitter FT*

Transmitter FT- Resistor Resistor ---+ A1711 A1711 0046-1 N004 r---t 0046-1NOO4 8 ohm 80hm The loop The loop components components evaluated evaluated in in this this document document (and (and the the applicable applicable performance performance specification specification and and process parameter process data):

parameter data):

2.4.2 2.4.2 CRD Hydraulic System CRD Hydraulic System FlowFlow Element Element (Ref. (Ref. 4.4.1,4.4.1, 4.5.8, 4.5.8, 4.5.12, 4.5.12, 44.6.2,

.6.2, 4.6.3, 4.6.3, 4.8.5, 4.8.5, and 4 .9.5) and 4.9.5)

Table 2-11 .

Table 2-11.

CRD Hydraulic System CRD Hydraulic System Fl ow Element Flow Element -- Unit Unit 11 Component Component 1.0.: I.D.: FE-046-1 FE-04f3..1 NOO3 N003 "CRD HYDRAULIC SYS "CRD HYDRAULIC SYS DRIVE DRIVE WTR WTR FLOW FLOWCONT" CONT" Device Type:

Device Type: Flow Nozzle Flow Nozzle Manufacturer/Model Manufacturer/Model No.: No.: GE GE -- Vickery Vickery Simms Simms Inc ./ 158B7077AP016 Inc./15887077AP016 Reference Reference Accuracy Accuracy (A1):

(A 1): t+/- 11.0.0 %Ok flow flow Design Design Tempe rature :

Temperature: 150°F 150°F Design Design Pressure Pressure:: 2000 2000 psig psig Pipe Pipe Size Size:: 22 inchinch schedule schedule 80 80 Material Material ... . Stainless Stainless Steel Steel y.

Maximum Maximum Flow Flow 100100 gpm gpm Pipe Pipe Class C'ass Service Service No.:

No.: DCD-112, DCD-112, "Control"Control Rod Rod Drive Drive Hyd Hyd.. from from DBD-I DBD-I 08 08 to to Hydraulic Control Units Hydraulic Control Units I NormalNormal Operating Operating Temperature Temperature:: 100100 °F OF

~--

Design Design Temperature Temperature:: 150 150 °F OF Maximum Maximum Ope rating Temperature Operating Temperature:: 150 150 OF OF Normal Normal Operating Operating Pressure:

Pressure: 14481448 psig psig

_n.

Design Design Pressure:

Pressure: 1750 1750psig psig f--~'

Maximum MaximumOperatingOperating Pressure Pressure:: 1750 1750psig psig

~.. ~.,,.

-",",' A.. ....._

N.*',........""'*,*,, .....r ,TH~...m._.__~

,....;.'W'w"..,.,.. ."rN"" ,. .. . ,M.._c... . ., .

  • """""",,-,~rr _... ._.. .

Page Page 1 15 5 ofof93 93

Exel6n*

Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision 0 Revision 0 Table 2-11 .

Table 2-11.

CRD Hydraulic System CAD Hydraulic System Flow Flow Element Element - - Unit Unit 1 1 Normal Normal flow flow Rate:

Rate: 105 105 gpmgpm @ @ 1515.8 1515.8 psigprig AP L\P @ Max Max.. Flow Flow Rate:

Rate: 200 200 inches inches H H20 20 0 @ 100 gpm 100 gpm ,

2.4 .3 2.4.3 CRD Hydraulic CAD System Flow Hydraulic System Flow Transmitter Transmitter (Ref.

(Ref. 4.5.8, 4.5.8, 4.5.12, 4.5.12, 4.5.2, 4.6.2, 4.6.3, 4.6.3, 4.7 4.7.4.4 and and 4.9.5) 4.9.5)

Table Table 2-12.2-12.

CRD Hydraulic System Differential CRD Hydraulic System Pressure Transmitter Differential Pressure Transmitter Component 1.0.:

Component I.D.: FT-046-1 FT -046-1 N004 NOO4 "CRD HYDRAULIC SYS "CAD HYDRAULIC SYS DRIVE DRIVE WTR WTR FLOW FLOW CONT"CaNT" Location (AREA Location (AREA 1 / EVEL EVEL 1 / RM)

AM):: 015 / 253'/1402 015/253' 402 Device Type:

Device Type: Differential Differential Pressure Pressure Transmitter Transmitter Manufacturer/Model ManufacturerlModel No.: No.: Rosemount/ 1151 DP5D22PB Rosemount/1151DP5D22PB Quality Quality AssuranceAssurance Classification Classification:: N N

Accident Accident Service Service & Category:.

Seismic Category

& Seismic NIA N1A Tech Spec Tech Spec Requirement Requirement:: N/A N/A Upper Range Upper Range Limit Limit:: 750 750 inches inches H H2O2O Lower Range Lower Range Limit:

Limit: 0-125 inches H 0-125 inches H22O O

Calibrated Span:

CaJibrated Span: 0oto to 197.5 197.5 inches inches H H2O 20 -- Static static pressure pressure corrected corrected Operating Operating Span: Span: o 0 to to 2(30 inches H2O 200 inches H20 atat 100 100 gpmgpm Output Output Signal: Signal: 4-4 - 20 mA, Corresponding 20 rnA, Corresponding to to 00 -100

- 100 gpm gpm Calibration Period:

Calibration Period: 24 24 months months Accuracy Accuracy (A2): (A2): t+/- 0.25 0.25 % % calibrated calibrated spanspan Calibration Calibration Accuracy: Accuracy: +/- 0.5

+/-0.5%

Stability Stability (Drift, (Drift. D2):

02): f

+/-0 .25 °lo 0.25  % of URL for of URL for 6 6 months months [2a] [20']

Temperature Effect Temperature Effect (DTE1),

(DTE1), per per 100"F 100°F t 11.5%

+/- .5% of URL per of URl 100 "F per 100 OF t 2.5 %

+/- 2.5 for low

% for low range range (URL/6)

(URL/6)

This This taken taken to to be be equal equal to to 2.4 2.4 %% at 197.5 inches at 197.5 inches H H2O 2O span span Temperature Temperature Normal Normal Operating Limits :

Operating Limits: (-)40

(-}40 to to 150 150 °Fof (Amplifier)

(Amplifier)

Overpressure Overpressure Effect: Effect: Zero shift Zero shift of of less than +/-

less than t 2.0 2.00/0 Static Static Pressure Pressure Zero Effect:

Zero Effect: t+/- 0.5 0.5 % % ofof upper range limit upper range limit for for 2000 2000 psipsi Static Static Pressure Pressure Span Effect (SPNE2):

Span Effect (SPNE2) : (-)

(-) 0.5 0.5 % %t 0.1%

+/- 0.1  % input input reading reading per per 1,000 psi.. This 1,000 psi This is is aa systematic systematic error error which which cancan bebe calibrated calibrated out out for for aa particular particular pressure before installation.

pressure before installation .

Page 16 Page 1 6 of 93 of 93

&elonl.

LE-01 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 1 1 Revision 13 LE-Q113 Revision 00 Table 2-12.

Table 2*12.

CAD Hydraulic CAD Hydraulic System System Differential Differential Pressure Pressure Transmitter Transmitter Seismic (vibration)

Seismic (vibration) Effect Effect (SEIS2)

(SEIS2):: +/-+/- 0.05 0.05 % % of URL of URL perper g9 atat 200 200 Hz Hz in in any any axis. axis.

Power Supply Power Supply Effect (PSE2) :

Effect (PSE2): << 0.005 0.005 %  % of of calibrated calibrated span span per per volt. volt.

Mounting Mounting Position Effect:

Position Effect: No No span effect. Zero-shift span effect. Zero-shift can can be be calibrated calibrated out. out.

EMI/RFI Effect :

EMIIRFI Effect: Not Specified Not Specified

Response

Response time time (damping)

(damping):: Not Not Specified Specified Harsh temperature Harsh temperature effect (HTE2) :

effect (HTE2): Not Applicable Not Applicable Humidity limits:

Humidity limits: 0Ototo 100 100 % % RH RH Safety Classification Safety Classification:: Non-safety Non-safety relatedrelated Radiation Effect Radiation Effect (e2R):

(e2R): Not Not Specified Specified 2.4.4 2.4.4 CAD Hydrau'ic CAD Hydraulic System System Flow Flow Signal Signal Resistor Resistor Unit (Ref. 4.1 Unit (Ref. .1, 4.5.12, 4.1.1, 4.5.12, Attachment Attachment 12, 12, and and 4.7.3) 4.7.3)::

Table Table 2-13.

2-13.

CAD Hydraulic System CAD Hydraulic System PPC PPC Precision Precision Signal Resistor Unit Signal Resistor Unit Dwg Dwg.. Designation Designation:: 8anD Device Type:

Device Type: Precision signal Precision signal resistor resistor unitunit (wire-wound)

(wire-wound)

Manufacturer/Model No.:

Manufacturer/Model No.: Bailey Type Bailey Type 766766 Selected Range:

Selected Range: 8aOhm Ohm Accuracy Accuracy:: *

+/- 0.008 0.008 ohm ohm (+/-(+/- 0.1 0.1 %) 0/0)

Safety Classification :

Safety Classification: N/A N/A Temperature Effect Temperature Effect:: +/- 0.5 0.5 % % forfor 40 40 -120°F

- 120°F Input Signal Range:

Input Signal Range : 4 4 toto, 20 20 mAdc mAdc 2.4.5 2.4.5 CAD Hydraulic System CAD Hydraulic System Flow Flow PPC PPC 1/0 (Refs. 4.5.8, I/O (Refs. 4.5.8, 4.5.12, 4.5.12, and and Attachment Attachment 4): 4) :

Table Table 2-14.

2-14.

CAD Hydraulic CAD Hydraulic System PPG System PPC Analog Analog Input Card Unit Input Card Unit 11 Component I.D.:

f Component I.D.: A1711 A1711 r---------

Location:

Location: 10-C603 (H12-P603) 1o-C603 (H12-P603)

,.~~

Device Type:

Device Type: PPC PPC -- Potentiometer Potentiometer (Analog) (Analog) Input Input Card Card

- .~~~._~

Manufacturer/Model Manufacturer/Model No.: No.: Analogic/ANDS5500 Analogic/ANDS5500

- . .m . . . ._ . .' ** ~ _ _

I Quality CJassification:

I Quality Classification : N/A N/A _.

--~-

[~~~~~~,~~_"~ervice Accident Service & & Seismic Seismic Category:

Category: --N/A ,

N/A

~--<<.~- _-,.......w~;-_- .. ,_*_*_*,..N,_~_*,_*_*.*_*,?,.,.''_*'N-"''''''.*."',,*,.

Page 17 Page 1 7 of of 93 93

Exel6n, LE-0113 LE-0113 Exelon. ReactorCore Reactor CoreThermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 Revision 00 Revision Table 2*14.

Table 2-14.

CRD Hydraulic CAD Hydraulic SystemSystem PPCPPC Analog Analog Input Input Card Card Unit Unit 11 Tech Spec Tech Spec Requirement:

Requirement : N/A N/A Selected Full Selected Full Scale Scale Span:

Span: +/-t 160 160 mVmV Calibration Span:

Calibration Span: 0 160 mV

(-) 160 mV toto (+)

(+) 160 160 mV mV Calibration Period:

Calibration Period : 24 months 24 months Accuracy (A3):

Accuracy (A3): +/-t 0.5 0.5 %°lo of of fuJI full scafe scale span span Calibration Accuracy:

Calibration Accuracy: N/A N/A Input Impedance Input Impedance (resistance):

(resistance): 10 Meg 10 Meg Ohms Ohms Analog to Analog to Digital Digital Converter:

Converter : Not Specified Not Specified Power Supply Power Supply Effect Effect (PSE3):

(PSE3) : N/A N/A EMI/RFI Effect:

EMI/RFI Effect: N/A N/A Operating Temperature Operating Temperature Limits:

Limits : 32 32 toto 122 122 of

°F (0(0 to to 50°C) 50 "C)

Humidity limits:

Humidity limits: Not Not Specified Specified Safety Classification:

Safety Classification : Non Safety-Related Non Safety-Related _--

2.4.6 2.4.6 CRD Hydraulic CAD Hydraulic System Flow Process System Frow Parameters (Refs.

Process Parameters 4.3 .2 and (Refs. 4.3.2 4.8.5):

and 4.8.5):

Process Process Temp Maximum:

Temp Maximum: 1501 "F Process Process Temp Temp Minimum Minimum 4511E The The minimum minimum water water temperature temperature is is based based onon the the CST CST being being outside outside andand exposed exposed to to winter winter elements elements.. TheThe maximum maximum temperature temperature is is based based on on 140°F 140°F of the condensate of the condensate andand condenser condenser system system plus plus 10"F 10°F nominal nominal heat heat addition addition fromfrom thethe CRD CRD Water Water pump.

pump. (Ref.

(Ref. 4.3.2) 4.3.2) 2 .4.7 2.4.7 CRD CAD Hydraulic Hydraulic System System Local Local Service Service Environments Environments (Ref.(Ref. 4:4.2) 4.4.2)::

Table Table 2-15.

2-15.

CRD CRD Hydraulic Hydraulic System System Local Local Service Service Environments Environments

-~

Flow Flow Transmitter Transmitter Plant Plant Process Process Computer Computer Area Area /I Room Room.. Area Area 015 015 /I Room Room 402402 Area Area 008 008 -- Control Control Room Room Location Location Room Room 402 402 Control Control Room Room (Camp.

{Compo Rm Rm.. 553) 553}

l 1----"

Normal Normal Temp.

Temp. Range Range (°F)

(OF) 65 65 min min//106 106 max max //90 90 norm norm 65 65 min min // 78 78 max max/Inorm norm N/A N/A Normal Normal Pressure Pressure (-)

(-) 0.25 0.25 inches inches WGWG ++0.25 0.25 inches inches WGWG f------

Normal Normar Humidity Humidity (RH (RH °to) 50 50 average average// 90 90 maximum l 0/0) maximum 5050average average/I 9090maximum maximum f.*"f'N'_vN-"*.*",.,....N"..Nf,..'WUN.""'>N"""ff....*.~...'.*,...

Radiation Radiation 11.00E-01

.00E-01 Rads/hr, Radslhr, 3.51 3.51E+04 E+04 TID TID!I N/A NlA Page Page 1188 ofof93 93

&elon. LE-0113 Exelon. Reactor Core Reactor Uncertainty Calculation Uncertainty Core Thermal Thermal Power Calculation Unit Power Unit 1 1 LE-0113 Revision Revision 00 2.5 2.5 RECIRCULATION RECIRCULATION PUMP PUMP MOTOR MOTOR UNCERTAINTY UNCERTAINTY 2.5.1 2.5.1 Recirculation Recirculation Pump Pump Motor Motor Loop Loop Diagram Diagram Each analyzed instrument Each analyzed instrument loop loop consists consists of of aa Watt Watt Transducer, Transducer, and PPC input/output and aa PPC (I/O) module.

input/output (I/O) module .

The uncertainty The magnitude of uncertainty magnitude of the the CT CT and and PT PT is negligible for is negligibre for this this calculation calculation..

PT PT CT CT Potential Potential Current Current Transformer Transformer Transformer Transfonner

~Ir Watt Watt Transducer PPC PPC Analog Analog Input Input Card Card Transducer

.... Computer Computer PointsPoints -- Al 725 &

A1725 & Al 726 A1726 2.5.2 2.5.2 Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Transducer (Ref. (Ref. 44.5.13 .5.13 to to 4.5.15, Attachment 9, 4.5.15, Attachment 4 .9.5, and 9,4.9.5, and 4.9.7) 4.9.7)

Table Table 2-16 2-16..

Recirculation Pump Motor Watt Recirculation Pump Motor Transducer Watt Transducer Component Component J.D.:I .D.: MT1 MT1 A and MT1 A and MT1 B B Location Location:: 10-C603 (H12-P603) 10-C603 (H 12-P603)

Device Device Type:

Type: Watt Watt Transducer Transducer Manufacturer/Model No.:

Manufacturer/Model No.: Ametek Power Ametek Systems 1I XL3-1 Power Systems XL3-1 K5A2-25 K5A2-25 Quality Classification::

Quality Classification N/A N/A Accident Service &

Accident Service Seismic Category:

& Seismic Category: N/A N/A Tech Spec Requirement Tech Spec Requirement:: N/A N/A Rated Rated Output Output (RO)(RO) 10.5 MW 10.5 MW Current Input Current (Current Transformer)

Input (Current Transformer):: 00-5 -- 5 Amps Amps (1500/5)

(1500/5)

Voltage Input Voltage Input (Potential (Potentiar Transformer) Transformer):: 0 0-- 120 120 V (4160/120)

V (4160/120)

Output Range:

Output Range: 0 0-1 -1 mAde mAdc

..... ~,~..... .

Calibration Calibration Period Period:: 24 months 24 months Accuracy (A1):

Accuracy (A1): t (0.2%

+/- (0.2°/0 Reading Reading + + 0.01 0.01 %% Rated Rated Output)

Output) atat 0-200% Rated Output 0-200°10 Rated Output Stability (Drift, D1)

Stability (Drift, per year:

01) per year: t+/- 0.10.1% % RO, RO, Non-cumulative Non-cumulative Temperature Effect:

Temperature Effect: 1+/- 0.0050.005 %% /I ° C 0 C

- ~,--,-

PF Effect on Accuracy t+/- 0.1% VA (maximum) l;~;FE~:~~curacy 0.1% VA (maximum)

, .......,.,.,.".wc..w *.".'"",,*.w.*'va''''',N,.,.*

EMI/RFI Effect: N/Au N/A .W.

.'<'"-.:.,~,,,,,,,,,,,,""

.""""#'-h"W"*""_""'"'''.~~_~'F:'C''''

Page 19 Page 1 9 of of 93 93

Exel6n, LE-0113 ReactorCore LE..0113 Exelon. Reactor Core Thermal Thermal Power Uncertainty Calcufation Uncertainty Calculation Unit Power Unit 11 Revision 00 Revision Table 2-16.

Table 2-16.

Recirculation Pump Recirculation Pump Motor Motor WattWatt Transducer Transducer Operating Temperature Operating Temperature Limits: Limits : (-)4°F to

(-)4°F to 158 158 of (-200 CC to

'IF (-20° to +70 x-70° C) 0 C)

Operating Humidity:

Operating Humidity: o0 to to 95 95 % °lo RH RH nonnon condensing condensing Safety Classification:

Safety Classification : Non Safety-Related Non Safety-Related 2.5.3 2.5.3 Recirculation Pump Recirculation Pump Motor Motor Watt Watt Meter Meter Transducer Transducer Precision Precision SignalSignal ResistorResistor (Ref. (Ref. 4.5.13 4.5.13 to to 4.5.15, 4.5.15, and 4.9.7):

and 4.9.7) :

Table 2-17.

Table 2-17.

Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Transducer PPC PPC Precision Precision Signal Signal Resistor Resistor Unit Unit Dwg . Designation:

Dwg. Designation : R3A &

R3A & R3S R3B Device Type:

Device Type: Precision signal Precision signal resistor resistor unit unit (Wire-wound)

(wire-wound)

Manufacturer/Model No.:

Manufacturer/ModeJ No.: CE / Type HR41D5B GE/Type H R41 13513 Selected Rating Selected Rating:: 160 Ohm 1600hm Accuracy Accuracy:: +/-

t 0.1 Ok 0.1 °lfl of of input signal range, input signal range, 0.1 0.1 watt watt I Safety Safety Classification Classification:: N/A N/A Temperature Effect Temperature Effect:: NIA N/A Input Input Signal Signal Range:

Range: 00-1

- 1 mAdc mAdc w_

2.5.4 2.5.4 Recirculation Recirculation Pump Pump MotorMotor Watt Watt Transducer Transducer PPCPPC Analog Analog Input Input Card Card (Ref. (Ref. Attachment Attachment 4): 4):

Table Table 2-18.

2-18.

Recirculation Recirculation Pump Pump Motor Motor Watt Watt Transducer Transducer PPG PPC AnalogAnalog Input Input Card Card Unit Unit 11 Component Component I.D.: 1.0.: Al 725 and A1725 and Al A1726726 Location Location:: 10-C603 10-COO3 (H12-P603)

(H12-P603)

-~

Device Device Type:

Type: PPC PPC -- Potentiometer Potentiometer (Analog) (Analog) Input Input Card Card Manufacturer/Motel Manufacturer/Model No.: No.: Analogic/ANDS5500 Analogic/ANDS5500 Quality Quality Classification Crassification:: N/A N/A Accident Accident Service Service & &Seismic Seismic Category:Category: N/A N/A Tech Tech Spec Spec Requirement Requirement:: N/A N/A f--- --

Selected Selected Full Full Scale Scale Span:

Span: t+/- 160 160 mV mV Calibration Calibration Span:

Span: (-)

(-) 160 160 mV mV to to (+)

(+) 160 160 mV mV Calibration Calibration Period Period:: 24 24months months

-- ___.. . . ._~~_..___~..-----

-_.~.~~

Accuracy Accuracy(A2):(A2): t+/-0.5 0.5 % % ofoffull full scale scale span span

"'~<c"',,c~<<,_-,~-.,

Page Page 2020ofof93 93

LE-01 13 Exelon.

Exel6n.

Reactor Core Reactor Core Thermal Thermal Power Power Uncertainty Calculation Unit Uncertainty Calculation Unit 1I LE-0113 Revision 00 Revision Me 2..18.

Table 218 .

Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Transducer PPCPPG Analog Analog Input Input Card Card Unit Unit 11 Input Impedance Input Impedance (resistance):

(resistance): 1 0 Meg 10 Meg Ohms Ohms Analog to Analog to Digital Digital Converter:

Converter: Not Specified Not Specified Power Supply Power Supply Effect Effect (PSE2):

(PSE2): N/A N/A EMI/RFI Effect:

EMI/RFI Effect: N/A N/A Operating Temperature Operating Temperature Limits:

Limits : 32 to 32 to 122 122 of "F (0 (0 to to 50°C) 50 OC)

Humidity limits:

Humidity limits: Specified Not Specified Not L

I Safety Safety Classification:

Classification : - Non Safety-Related Non Safety-Related Page Page 2121 of of 93 93

Facelun.

Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision 00 Revision 3.0 3.0 ASSUMPTI ONS AND ASSUMPTIONS AND LIMITATIONS LIMITATIONS 3.1 3.1 Standard practice Standard practice is is to to specify specify calibration calibration uncertainty uncertainty in in calculations calculations equal equal to to the the uncertainty uncertainty associated with associated with thethe instruments instruments under under testtest (Ref.

(Ref. 4.1.1).

4.1 .1) .

3.2 3.2 Instrumentation uncertainty Instrumentation uncertainty caused caused by by the the operating operating environment's environment's temperature, temperature, humidity,humidity, and and pressure variations pressure variations are are evaluated evaluated when when these these error error sources sources are specified by the instrument's are specified by the instrument's vendor. IfIf the vendor. the instrument's instrument's operating operating environment environment specifications specifications bound bound the the in-service in-service environmental conditions environmental conditions where where the the equipment equipment is is located located and and separate separate temperature, temperature, humidity,humidity, and and pressure uncertainty pressure uncertainty terms terms are are not not specified specified for for the the instrument, instrument, then then these these uncertainties uncertainties are are assumed to assumed to be be included included in in the the manufacturers manufacturer's referencereference accuracy accuracy specification.

specification .

3.4 3.4 Published instrument Published instrument vendor vendor specifications specifications are are considered considered to to be be based based on sufficiently large on sufficiently large samples so samples so that that the probability and the probability confidence revel and confidence level meets meets the the 20 2a criteria, criteria, unless unless statedstated otherwise otherwise by the by the vendor.

vendor.

3.5 3.5 Seismic effects are Seismic effects are considered considered negligible negligible or or capable capable of of being being calibrated calibrated out out unless unless the the instrumentation instrumentation is is required required to to operate operate duringduring andand following following a a seismic event.

seismic event.

3.6 3.6 The insulation The insulation resistance resistance error error isis considered negligible unless considered negligible unress the the instrumentation instrumentation is is required required to to operate in operate in anan abnormal abnormal or or harsh harsh environment.

environment.

3.7 3.7 Regulated instrument Regulated instrument power power supplies supplies are are assumed assumed to function within to function within specified specified voltage voltage limits limits;;

therefore, therefore, power power supply supply errorerror is considered negligible is considered negligible withwith respect respect to to other other error error terms terms unless unless the the vendor vendor specifically specifically specifies specifies a a power power supply effect.

supply effect.

3.8 3.8 Measurement Measurement of of CRD CRD hydraulic hydraulic system system purgepurge water water temperature temperature is is found found to to be be accurate accurate within within t +/- 0.7 0.7

°F per Attachment OF per Attachment 11.. The The enthalpy enthalpy of of water water at at the the CRD normal operating pressure of 1448 psig and CAD normal operating pressure of 1448 psig and normal normal operating operating temperature temperature of of 100 100 OFOF as as listed listed inin P-300 P-300 (reference (reference 4.4.1) 4.4.1) are are used used to to determine determine uncertainty uncertainty of of the the CRD CRD hydraulic hydraulic systemsystem enthalpy enthalpy because because this this isis more more conservative conservative than than using using the the higher higher temperatures temperatures normally normally foundfound during during operation operation..

3.9 3.9 The The CRDCRD system system uses uses a a Rosemount Rosemount 1151 1151 differential differential pressure pressure transmitter transmitter (Section (Section 2.4.3),2.4.3). which which is is mounted mounted in in aa radiation radiation exposure exposure area. area. A A radiation radiation exposure exposure effect effect is is not not specified specified for for the the Model Model 1151 1151 transmitter; transmitter; therefore therefore the the radiation radiation effect effect applicable applicable to to this this transmitter transmitter is is assumed assumed to to be be 10 10 %% of of span.

span. This This assumption assumption is is considered considered conservative conservative based based on on three three factors factors:: (1)(1) periodic periodic surveillance surveillance is is performed perlormed on on this this transmitter transmitter and and itit is is required required to to operate operate within within 0.5 0.5 % % ofof span span or or maintenance maintenance activities activities mustmust be be performed.

performed. Existing Existing calibration caJibration records records did did not not indicate indicate anything anything unusual unusual occurring occurring with with the the calibration calibration of of these these transmitters transmitters in in this this service service.. (2) (2) A A Rosemount Rosemount Model Model 1153 1153 series series BB transmitter transmitter is is rated rated forfor radiation radiation exposure exposure and and may may be be expected expected to to have have aa radiation radiation effecteffect ofof t+/- 44 %

% of of upper upper range range limitlimit (UPL)

(URL) during during and and after after exposure exposure to to 2.2 2.2 xx 107 7 10 rad rad (Section (Section 7.3.1 .16). However, this 7.3.1.16). However, this exposure exposure is ;s over over aa 1000 1000 timestimes thethe expected expected exposure exposure for for the the CRD CAD system system flow flow transmitter transmitter ss during during normal normal service service.. The The estimated estimated TO TID during during normal normal service service forfor thethe CRD CRD flow flow transmitter transmitter isis 3.51 3.51 xx 104 10" rad rad (Section (Section 4.4.2)4.4.2).. TheThe 10 look% span span estimated estimated effecteffect isis more more than than an an order orderof of magnitude magnitude greatergreaterthanthan the the threshold threshold for for maintenance maintenance activity activity and and of of the the same same order order of of magnitude magnitude of of the the effect effect on on aa similar similar transmitter transmitter with with 1000 1000times times thethe exposure exposure..

3.10 3.10 Interim Interim results results areare rounded rounded to to the the level level ofof significance significance of of the the input input data data to to avoid avoid implying implying that that aa higher higher level fevel of of precision precision existsexists in in the the calculated calculated values values.. For For example, example, uncertainty uncertainty may may be be specified specified by by aa supplier supplier to to one one significant significant figure figure (e.g.,

(e.g., 0.5 0.5 %).

Ok). This This value value says says that that the the level level ofof significance significance associated associated with with this this uncertainty uncertainty isis one one part part inin two two hundred.

hundred. The The results results are are rounded rounded when when the the numeric value numeric value of of aa result result implies implies aa higher higher level level ofof significance significance than than what what thethe input input data datasuggests suggests..

Page Page 22 22 of of 9393

Exel6n Exelon. LE-4113 Reactor Core Reactor Core Thermal Thermal Power Power LE-0113 Uncertainty Calculation Uncertainty Calculation UnitUnit 1 1 Revision Revision 0 0 3.11 3.11 An uncertainty An uncertainty of of +/-t 10 10 psig psig is is assumed assumed for for the the feedwater feedwater pressu pressure to cover re to cover the variations in the variations in the the actual steam actual steam dome dome pressure. The variation in pressure has a negligible effect on the enthalpy of pressure. The variation in pressure has a negligible effect on the enthalpy of the the feedwater .

feedwater.

3.12 3.12 An uncertainty An uncertainty of of 10 10 %°lo is is assumed assumed for for the the RPV RPV thermal thermal radiation radiation heat loss term, heat loss term, ORAD, based on ORAD, based on aa review of review of calculation calculation LM-0553 LM-0553 (Reference (Reference 4.8.3).

4.8.3). LM-DS53 LM-0553 determined determined the the RPV RPV heat heat loss loss by by calculating the calculating the actual actual heat heat road load inin the the drywell, drywell, subtracting subtracting thethe heat heat load load attributed attributed to to any any operating operating equipment in equipment in the the drywell, drywell, and and proportioning proportioning the the heat load based on the shared chilled water heat load based on the shared chilled water system system design flows design flows assigned assigned to to Unit Unit 11 drywell drywell and and Unit Unit 22 drywell drywell onon aa percentage percentage basis.

basis. lM*0553 LM-0553 assumes assumes Unit 11 and Unit and Unit Unit 2 2 are operating at are operating at 100 100 percent percent power power and and the the drywall drywell air air cooling cooling fans fans are are aligned aligned as as designed.

designed.

3.13 3.13 Steam table Steam table excerpts excerpts havehave beenbeen provided provided forfor convenience convenience as as Attachment Attachment 5, 5, National National Institute Institute for for Standards and Standards and Technology Technology (NIST) (NIST) Saturated Saturated Properties Properties of of Water, and Attachment 6, NIST Isobaric Water, and Attachment 6, NIST Isobaric and Isothermal and Isothermal Properties Properties of of Water, Water, as as extracted extracted from from the the NIST NIST fluid fluid properties properties WebBook WebBook (Reference 4.9.3).

(Reference 4.9.3) . For For conservatism, conservatism, factorsfactors of one-half the of one-half the least least significant significant figure figure in in the the tables tables are are used for used for the the interpolation interpolation error error.. The The factors factors are 0.05 Btullbm are 0.05 BtuAbm for for vapor vapor and 0.005 Btu/Ibm and 0.005 Btullbm for liquid .

for liqUid.

Page Page 23 23 ofof 93 93

Exelon.

Exelon.


~--~---

Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation Unit Unit 11 LE-0113 LE..o113 Revision 00 Revision 4.0

4.0 REFERENCES

REFERENCES 4.1 4.1 METHODOLOGY METHODOLOGY 4.1 .1 4.1.1 CC-MA-103-2001, CC-MA-1 03-2001, Rev Rev 0, 0, "Setpoint "Setpoint Methodology Methodology for for Peach Peach Bottom Bottom Atomic Atomic Power Power Station Station and and Limerick Generating Limerick Generating Station Station 4.1 .2 4.1.2 IC-11-00001, Rev.

IC-11-00001, Rev. 4, 4, Calibration Calibration ofof Plant Plant Instrumentation Instrumentation andand Equipment Equipment 4 .2 4.2 PROCEDURES PROCEDURES 4.2.1 4.2.1 ST-2-044-400-1, Rev.

ST-2-044-40D-1. Rev. 23,23, Reactor Reactor Water Water Cleanup Cleanup High High Differential Differential Flow Flow Isolation Isolation Calibration Calibration 4.2.2 4.2.2 IC-C-11-00307, Rev.

IC-C-11-00307, Rev. 5,5, Calibration Calibration ofof Rosemount Rosemount ModelModel 1153 1153 and and 1154 1154 Transmitters Transmitters 4 .3 4.3 DESIGN BASIS DESIGN DOCUMENTS BASIS DOCUMENTS 4.3.1 4.3.1 L-S-11, Rev.

L-S-11, Rev. 15, 15, DBD Feedwater System DBD Feedwater System 4.3 .2 4.3.2 L-S-15, Rev.

L-S..15, Rev. 10, 10, DBD Control Rod DBD Control Rod Drive Drive System System 4.3.3 4.3.3 L-S-19, Rev.

L-S-19, Rev . 10, 10, DBD Recirculation System DBD Recirculation System 4.3.4 4.3.4 L-S-36, L-S.. Rev.. 10, 36, Rev 10, DBD DBD Reactor Reactor Water Water Makeup Makeup System System 4.3.5 4.3.5 L-S-42, Rev L-S-42, Rev.. 09, DBD Nuclear 09, DBD Nuclear BoHer Boiler System System 4.4 4.4 SPECIFICATIONS, CODES, SPECIFICATIONS, CODES, & & STANDARDS STANDARDS 4.4.1 4.4.1 P-300, Rev P-300, Rev.. 45, 45, Specification Specification "Piping "Piping Materials Materials and Instrument Piping and Instrument Piping Standards Standards" 4.4.2 4.4.2 M-171, Rev.

M-171, Rev. 16, 16, Specification Specification forfor Environmental Environmental Service Service Condition Condition LGS LGS Units 1 &

Units 1 &2 2 4.5 4.5 LIMERICK LIMERICK STATION STATION DRAWINGS DRAWINGS 4.5.1 4.5.1 M-06 M-06 Sheet Sheet 3,3, Rev Rev.. 58, 58, P&ID P&ID Feedwater Feedwater 44.5.2

.5.2 M-23 M-23 Sheet Sheet 4,4, Rev Rev.. 33, 33, P&ID P&ID Process Process Sampling Sampling 4.5.3 4.5.3 M-41 M-41 Sheets Sheets 112, Rev.. 46/62, 1/2, Rev 46/62, P&ID P&ID Nuclear Nuclear Boiler Boiler 4.5 4.5.4.4 M-42 M-42 Sheets Sheets 112, 1/2, Rev.

Rev. 41134, 41/34, P&ID P&ID Nuclear Nuclear Boiler Boiler Vessel Vesse' Instrumentation Instrumentation 4.5.5 4.5.5 M-43 M-43 Sheets Sheets 112, 1/2, Rev.

Rev. 48139, 48/39, P&ID P&ID Reactor Reactor Recirculation Recirculation Pump Pump 4.5.6 4.5.6 M-44 M-44 Sheets Sheets 112, 1/2, Rev Rev.. 56147, 56/47, P&ID P&ID Reactor Reactor Water Water Clean-up Clean-up 4.5.7 4.5.7 M-45 M-45 Sheet Sheet 1, 1, Rev.

Rev. 30, 30, P&ID P&ID Cleanup Cleanup Filter Filter and and Demineralizer Demineralizer 44.5.8

.5.8 M-46 M-46 Sheet Sheet 1, 1, Rev.

Rev. 51, 51, P&ID P&fD Control Control Rod Rod Drive Drive Hydraulic-Part Hydraulic-Part A A 4.5.9 4.5.9 M-47 M-47 Sheet Sheet 1, 1, Rev Rev.. 45, 45, P&ID P&JD Control Control Rod Rod Drive Drive Hydraulic-Part Hydraulic-Part BB 4.5.10 4.5.10 B21-1050-E-008, 821-1050-E-008, Rev Rev.. 13, 13, Elem.

Elem. Diagram Diagram Steam Steam Leak Leak Detection Detection Schematic Schematic 4.5.11 4.5.11 G31-N011-C-003, G31-N011-C-003, Rev Rev 002, 002, Purchased Purchased PT. PT. ORF ORF.. PLT PLT.. S SHH 11 4.5.12 4.5.12 C11-1060-E-002, C11-1060-E-002, Rev. Rev. 23, 23, Elem.

Elem. Diagram Diagram CRD CRD Hydraulic Hydraulic System, System, LGS LGS U1 U1 44.5.13

.5.13 B32-1030-E-050, 832-1030-E-050, Sheet Sheet 18,18, Rev Rev.. 5, 5, Elem.

Elem. Diag.

Diag. Reactor "A" Recirc Reactor "A" Recirc Pump Pump anan MG MG Set, Unit 11 Set, Unit Page Page 2424 of of 93 93

Exel6n. LE-01 13 LE-0113 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 Revision 00 Revision 4.5.14 B32-1030-E-050 4.5.14 B32-1030-E-050,i Sheet Sheet 19 19,i Rev.

Rev. 4, 4, Elem.

Elem. Diag.

Diag. Reactor Reactor "B" Recirc Pump "B" Recirc Pump an an MG MG Set, Set, Unit Unit 11 4.5.15 832-1030-E..Q50, B32-1030-E-050, Sheet Sheet 3, 3, Bev.

Rev . 7, 7, Elem.

Elem. Diag.

Diag. Reactor Reactor "An"A"&& nB "B" Recirc Recirc PumpPump an an MG MG Set, Set, Parts Parts H

4.5.15 List; Unit Ust, Unit 1I 4.5.16 G31-1040-E-003, 4.5.16 G31-1040-E-003, Rev. Rev. 28, 28, Elementary Elementary Diag.

Diag. Reactor Reactor Water Water Cleanup Cleanup System, System, Unit Unit 11 4.5.17 C32-102D-E..Q03, 4.5.17 C32-1020-E-003, Rev. Rev . 33, 33, Elem.

Elem. Diag.

Diag. Feedwater Feedwater Control Control System, System, Unit Unit 11 4.5.18 821 4.5.18 B21-1040-E-003,

  • 1040-E-003, Rev. Rev. 21,21, Elem.

Elem . Diag.

Diag. Nuclear Nuclear Boiler Boiler Process Process 4.5. 19 E-Q701, 4.5.19 ET701, Sheets Sheets 6/16, 6016, Rev.

Rev . 9/8, 9/8, Schematic Schematic & & Connection Connection Diagram Diagram NSSS/BOP NSSS/BOP Computer Computer Analog Analog Inputs, Unit Inputs, Unit 11 4 .5.20 G31-103Q-G-001, 4.5.20 G31-1030-G-001, Rev. Rev . 20, 20, Process Process Diagram Diagram Reactor Reactor Water Water Clean-Up Clean-Up System System (High (High Pressure)

Pressure) 4.5.21 B32-C-001-J..Q23, 4.5.21 B32-C-001-J-023, Rev. Rev . 1,1, Recirculation Recirculation PumpPump Curve Curve (Attachment (Attachment 10) 10) 4.6 4.6 GENERAL ELECTRIC GENERAL ELECTRIC (GE) (GE) DOCUMENTS DOCUMENTS 4.6.1 4.6.1 C11-4010-H-004, Rev.

C11-4010-H-004, Rev . 13.

13, Control Control RodRod Drive Drive System System 4.6 .2 4.6.2 C11-N003-C-041 Rev C11-NOO3-C-001 Rev 002 002 PPO-Flow PPD-Flow Nozzle Nozzle 4.6 .3 4.6.3 C19 -3050-H-001, Rev.

C11-3050-H..OO1, Rev . 14, 14, CRD Instrumentation System CRD Instrumentation System 4.6.4 4.6.4 G31-3050-H-001, G31-305Q-H-001, Rev Rev.. 26, 26, Reactor Reactor Water Water Clean-Up System Clean-Up System 4.6.5 4.6.5 B21-3050-H-001, B21-30SD-H-001, Rev. Rev . 27, Nuclear Boiler 27, Nuclear Boiler System System 4.6.6 4.6.6 B32-3050-H-001, B32-3050-H-001 t Rev. Rev. 6, Reactor Recirculation 6, Reactor Recirculation System System 4.7 4.7 VENDOR INFORMATION VENDOR INFORMATION 44.7.1

.7.1 M-1-832-0001-K7, M-1-B32-C001-K7. Recirculation Recirculation Pump Pump Vendor Manual Vendor Manual 4.7.2 4.7.2 Rosemount Rosemount ProductProduct DataData Sheet Sheet 00809-0100-4302, 00809-0100-4302 t Rev Rev BA, BA, January January 2008, 2008, Rosemount Rosemount 1153 1153 Series Series B

B AlphalineO Alphaline Nuclear Nuclear Pressure Pressure Transmitter Transmitter 4.7.3 4.7.3 A41-8010-K-018.6 A41-801 Q-K-018.6 -Bailey - Bailey Signal Resistor Unit Signal Resistor Unit (SRU)

(SRU) Type 766 (Attachment Type 766 (Attachment 12) 12) 4.7.4 4.7.4 Rosemount Rosemount Inc., Inc.* Instruction Instruction Manual Manual 4259, 4259, Model Model 1151 1151 Alphaline@

Alphaline liP Flow N[AP Flow Transmitter, Transmitter, 1977 1977 (Attachment (Attachment 11) 11) 4.7 4.7.5.5 C95-0000-K-002(1 C95-0000-K-002(1 }.2 ).2 -- ANDS481 ANOS481 00 -- DataData Acquisition Acquisition System System Instruction Instruction Manual Manua' 4.7.6 4.7.6 Rosemount Rosemount Specification Specification Drawing Drawing 01153-2734, "N0039 Option 01153-2734, "NO039 Option -Combination

- Combination N0016 N0016 && N0037" NOO31' 4.7.7 4.7.7 Rosemount Rosemount Product Product DataData Sheet Sheet 00813-0100-2655, 00813-0100-2655, Rev Rev.. AA AA June June 19991999 "N-Options "N-options forfor Use Use with with the the Model Model 1153 1153 &11154

&11154 AlphalineO Alphaline Nuclear Nuclear Pressure Pressure Transmitters" Transmitters" 4.7 4.7.8 .8 Fluke Fluke 8050A 8050A -- Digital Digital Multimeter Multimeter Measurement Measurement P/N PIN 530907 530907 Rev Rev 22 1984, 1984, Instruction Instruction Manual Manual 4.7.9 4.7.9 Ametek Ametek PowerPower Instruments, Instruments. Digital Digital &&Analog Analog Transducers, Transducers, Power Power Measurement Measurement Catalog, Catalog, Scientific Scientific Columbus Columbus Exceltronic Exceltronic AC AC Waft Watt Transducer Transducer Specification Specification (Attachment (Attachment 9) 9) 4.8 4.8 CALCULATIONS CALCULATIONS AND AND ENGINEERING ENGINEERING ANALYSIS ANALYSIS 4.8.1 4.8.1 LM-547, LM-547 t Rev Rev.. 2,2, Reactor Reactor CoreCore Thermal Thermal Power Power Calculation Calculation Correction Correction for for Unaccounted Unaccounted FlowFlow toto Reactor Reactor Vessel Vessel 4.8.2 4.8.2 LM-552, LM-552, Rev Rev.. 7,7, Reactor Reactor HeatHeat Balance Balance Calculation Calculation for for Limerick Limerick Units Units 11 && 22 Page Page 25 25 of of 93 93

Exelon, Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 LE-0113 LE-G113 Revision 00 Revision 4.8.3 4.8.3 LM-553, Rev.

LM-553, Rev. 0, 0, Determination Determination of of the the Reactor Reactor Pressure Pressure Vessel Vessel (RPV)

(RPV) Heat Heat Loss Loss 4.8.4 4.8.4 EE-94LGS, Rev.

EE-94LGS, Rev . 16,16, Proper Proper Calibration Calibration ofof Feedwater Feedwater Elements Elements FE*OO6*1 FE-006-1(2)N001A, (2)NOOl A, B, B, C C (GE (GE SIL SIL 452) 452) 4.8.5 4.8.5 LM-562, Rev.

LM*562, Rev . 2, 2, CRO CRD Flow Flow Rates Rates and and System System Pressures Pressures 4.8.6 4.8.6 LEAF-MUR-0001, Rev.

LEAE-MUR-0001, Rev . 0, 0, Bounding Bounding Uncertainty Uncertainty Analysis Analysis forfor Thermal Thermal Power Power determination determination atat Limerick Unit Limerick Unit 11 Using Using the the LEFM LEFM ,/ v+ System

+ System 4.8.7 4.8.7 LEAE-MUR-0002, Rev.

LEAE-MUR-0002, Rev. 0, 0, Pre-Commissioning Pre-Commissioning Uncertainty Uncertainty Analysis Analysis for for Thermal Thermal Power Power determination determination at Limerick at Limerick Unit Unit 11 Using Using the the LEFM LEFM ../ /+

, System

+ System 4.8.8 4.8.8 LE-0116, Rev.

LE-0116, Rev . 0, 0, Reactor Reactor DomeDome Narrow Narrow Range Range Pressure Pressure Measurement Measurement Uncertainty Uncertainty 4.8.9 4.8.9 Limerick PEPSETM Limerick PEPSETM MUR MUR PU PU and and EPU EPU Heat Heat Balances Balances -- EvaI2009*03880 Eval 2009-03880 RO RU 4.9 4.9 OTHER REFERENCES OTHER REFERENCES 4.9.1 4.9.1 ASME, "Fluid ASME, "Fluid Meters Meters Their Their Theory Theory and and Application" Application" Sixth Sixth Edition, Edition, 1971.

1971 .

4 .9.2 4.9.2 Limerick Updated Limerick Updated Final Final Safety Safety Analysis Report, R14 Analysis Report, R14 4.9.3 4.9.3 Lemmon, E.W.,

Lemmon, McLinden, M.D.,

E.W., Mclinden, M.O., and and Friend, Friend, D.G., "Thermophysical Properties D.G., uThermophysical Properties of of Fluid Fluid Systems",

Systems*,

NIST Chemistry NIST Chemistry WebBook, WebBook, NIST NIST Standard Standard Reference Reference Database Number 69, Database Number Eds . P.J.

69, Eds. P.J. Linstrom and Linstrom and W.G. Mallard, National W.G. Mallard, National Institute Institute of of Standards Standards andand Technology, Gaithersburg MD, Technology, Gaithersburg MD, 20899, 20899, http://webbook .nist.gov, (retrieved http;/Iwebbook.nist.gov, (retrieved September September 30, 2009) 30,2009) 4.9.4 4.9.4 NUREG/CR-3659, NUREG/CR-3659, Dated Dated January 1985, NRC January 1985, NRC Guidance, Guidance, A Mathematical Model A Mathematical Model for for Assessing Assessing the the Uncertainties Uncertainties of Instrumentation Measurements of Instrumentation Measurements for for Power Power and and Flow of PWR Flow of Reactors PWR Reactors 4.9 .5 4.9.5 Plant Information Plant Information Management Management System System (PIMS)

(PIMS) Data Data 4.9.6 4.9.6 TODI Tracking No:

TOOl Tracking No: SEAG SEAG #09-000167,

  1. 09-000167, PlantPlant Process Process Computer Computer DataData of of various various plant prant parameters, parameters, toto support support Core Core Thermal Thermal Power Power Uncertainty Uncertainty Calculations, Calculations, Station/Unit(s)

Station/Unit(s) U1/U2, U1/U2, 9/3/09 913/09 44.9.7

.9.7 IISCP f1SCP (Improved (Improved Instrument Instrument Setpoint Setpoint Control Control Program)

Program) Datasheets)

Datasheets) Version Version 77.5.5 4.9.8 4.9.8 Edwards, Edwards, Jerry Jerry L. L Rosemount Rosemount Nuclear Nuclear Instruments Instruments letter letter in in reference reference to to "Grand "Grand Guff Gulf Nuclear Nuclear Station Station message message on on INPO INPO plant plant reports, reports, subject subject Rosemount Rosemount Instrument Instrument Setpoint Setpoint Methodology, Methodology, dated dated March March 9, 2000". Letter 9,2000". Letter dated dated 04/04/2000 04/0412000.. (Attachment (Attachment 3) 3) 4.9.9 4.9.9 TODI TOOl A169446-80, A169446-80. subject subject "Steam IISteam Carryover Carryover Fraction Fraction on on Process Computer Heat Process Computer Heat Balance Balance Calculations" Calculations (Attachment lt (Attachment 2) 2)

Page Page 26 26 of of9393

LE-0113 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 LE-0113 Revision 00 Revision 5.0 5.0 IDENTIFICATION OF IDENTIFICATION OF COMPUTER COMPUTER PROGRAMS PRQGRAMS The results The results of of calculations calculations by by special special computer computer programs programs were were not not directly directly used used in in this this design design analysis . Microsottefl) analysis. MicrosoftO Office Office Excel Excel 2003 2003 SPSP 33 was was used used toto confirm confirm the arithmetic results.

the arithmetic results.

6.0 6.0 METHOD OF METHOD OF ANALYSIS ANALYSIS 6.1 6.1 METHODOLOGY METHODOLOGY The methodology The methodology used used to to calculate calculate Section Section 66 isis based based onon CC*MA-1 CC-MA-103-2001, "Setpoint Methodology 03-2001, ICSetpo;nt Methodology for Peach for Peach Bottom Bottom Power Power Station Station and Limerick Generating Station" (Ref. 4.1 .1) .

and Limerick Generating Station" (Ref. 4.1.1).

These are These are non-safety-rerated non-safety-related indication indication loops, loops, but but the the indication indication is is used used toto calculate calculate Core Thermal Core Thermal Power, which Power, which isis aa licensing licensing limit.

limit . This This analysis analysis wiU will use use the the Square Square Root Root of of the the Sum Sum ofof the the Squares Squares (SRSS) methodology (SASS) methodology for for combining combining the the random random and and independent independent uncertainties.

uncertainties. TheThe dependent dependent uncertainties will uncertainties will be combined according be combined according to their dependency to their relationships and dependency relationships biases will and biases be will be algebraically summed algebraicarJy summed in in accordance accordance with with the the Reference Reference 4 .1 .1 . The level of confidence for 4.1.1. The level of confidence for each each uncertainty will uncertainty wilf be normalized to be normalized to aa 2a 20' confidence level.

confidence level.

6.2 6.2 CORE THERMAL CORE THERMAL POWER POWER (CTP) (CTP) CALCULATION CALCULATION::

The process The process computer computer provides provides aa calculation calculation ofof the CTP based the CTP based on on aa system system heat heat balance, balance, where where CTP CTP is is the the difference difference between between the the energy energy leaving the system and the energy input into the system leaving the system and the energy input into the system from from energy energy sources sources external external toto the the core.

core. The The process process computer computer steadysteady state state reactor reactor heat heat balance balance equation equation is is based based on on aa summation summation of of all all heat heat sources sources raising raising the the inlet inlet feedwater feedwater andand other other cold cold water water to steam to steam exiting exiting the the pressure pressure vessel vessel.. Figure Figure 5-1 5-1 shows shows thethe Limerick Limerick heat balance control heat balance control volume.

vo'ume.

Page Page 2727 of of 93 93

Exel~n. Reactor Core Reactor Core Thermal Thermal Power Power LE..0113 Uncertainty Calculation Uncertainty Calculation Unit Unit 11 Revision 0 Revision


.Os..fW te II QFWJn

+ QCFlQ.OUT o

aCRO-IN

'-------fo--.---

cu Filter QAWCU Demo RWCU Heat Exchangers Figure 5-1, Figure 5-1, limerick Limerick Heat Heat Balance Balance Control Control Volume Volume Diagram Diagram CTP = Energy CTP = Energy outout -

- Energy Energy in in (Equation (Equation 1) 1)

Energy Energy in in == QFVV-1N OFW.JN ++ QCRD- N +

aeRO-IN + QP Qp (Equation (Equation 2) 2)

Energy Energy outout == Qs.Fw QS.FW + + QFiAD QCR()..()tJT +

+ QCRa-OUT ORAD + a

+ ORWCU RWCU (Equation (Equation 3) 3)

Where, Where, CTP CTP Core Core Thermal Thermal PowerPower generated generated by by nuclear nuclear fuelfuer QFW-IN OFW.IN Energy Energy ofof feedwater feedwater required to raise required to raise inlet inlet FW FW to to Steam Steam Energy Energy of of CRD CRD purgepurge water water and and recirculation recirculation pump pump seal seal purge purge water water QCRO4N OCR().IN going going toto feedwater feedwater Op QR Heat Heat added added bybythe the recirculation recirculation pumps pumps Qs-F.,,

QS.FW Energy Energy of of steam steam fromfrom feedwater feedwater supply suppry Page Page28 28 of of 93 93

xelun. LE-0113 LE-Q113 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 Revision 00 Revision Energy of Energy of CRD CRD purge purge water water andand recirculation recirculation pumppump seal seal purge purge waterwater ACRD-OUT going to going to steam steam QRAD Radiative heat Radiative heat losses losses from from thethe reactor reactor pressure pressure vessel vessel Heat removed Heat removed by by the the RWCU RWCU systemsystem regenerative regenerative heat heat exchangers exchangers QRWCU (includes both (incfudes both aa heat heat removal removal term term andand aa heat heat additions additions term)term) 6.2.1 6.2.1 Energy In Energy In Each of Each of the the above above heat heat contributors contributors are are individually individually evaluated evaluated as as follows follows::

6.2.1 .1 6.2.1.1 Energy of Energy of feedwater feedwater (aFW.IN)(QFW.IN) is is equal equal toto the the feedwater feedwater mass mass flow rate (WFW) flow rate multiplied by (wFw) multiplied the by the enthalpy of enthalpy of thethe water water at at the bulk temperature the buJk temperature of of the the feedwater feedwater (hFW(T FW))

(hFW(Tr-W)) entering entering the the reactor.

reactor.

Changes to Changes the bulk to the bulk temperature temperature of of the feedwater due the feedwater due toto the the influx influx of of recirculation recirculation water water and and RWCU water RWCU water are are ignored ignored because because these these mass mass flowsflows represent represent lessless than than 11 %  % of of the total mass the totar mass flowflow and the and the temperature temperature change change caused caused by by their influx negligible.

their influx negligible.

(Equation QFw .w =

QFW.fN = WFWwFw *" hF(TF:

hF(TFW) W) (Equation 4) 4) 6.2.1 .2 Energy 6.2.1.2 Energy of of Control Control Rod Drive purge Rod Drive purge water water and and recirculation recirculation pumppump sealseal purge purge waterwater (QcRD-,N)

(OCRO-IN) is is taken taken to be to be fixed fixed at at the the enthatpy enthalpy of of water water forfor a given temperature a given temperature and and pressure.

pressure.

QCFM-IN =

aCRO.IN = WCRO WORD -* hF(TcRo) hF(T CRO) (Equation (Equation 5) 5) 6.2.1 .3 6.2.1.3 Energy Energy of of recirculation recirculation pumps pumps (Qp) (Op)

Energy of Energy of recirculation recirculation pumps pumps (Op) (Qp) is taken as is taken the number as the number of of pump pump motors motors (n) (n) multiplied multiplied by by the the efficiency of efficiency the pump of the motors (n,)

pump motors multiplied by (Flm) multiplied by the power of the power of the pump motors the pump motors (WE). (We). This This isis a a

conservative value conservative value because because the the combined combined net net energy energy of of the the two two recirculation recirculation pump pump motors motors contributes contributes to to the the energy energy of of the the recirculation water. This recirculation water. This estimate estimate is is fixed fixed relative relative to to CTP CTP because because relatively relatively large large randomrandom variations variations in in Op Qp will be negligible will be negligible compared compared to to QOFW.

Fw .

Op Qp ==nn *" rl11mm "* WE We (Equation (Equation 6) 6) 6.2 .2 6.2.2 Energy Energy out out 6.2 .2.1 6.2.2.1 Energy Energy of of Steam Steam Energy of Energy of steam steam from from feedwater feedwater (Qs -FW ) is (as.Fw) is equal equal to to the the feedwater feedwater mass mass flow flow rate rate (WW)

\'NFW) multiplied multiplied by by the the enthalpy enthalpy (hG(Ps))(hG{Ps)) of of the the steam steam (hG)(h a) at at the the steam steam dome dome pressure pressure (Ps).(P s). TheThe moisture moisture carryover carryover mass mass fraction fraction is is conservatively conservatively set set toto 00 (See (See Attachment Attachment 2). 2).

Qs-FW QS-FW = WFW "* hG(Ps)

= WFw hG(Ps ) (Equation (Equation 7) 7) 6.2.2.2 6.2.2.2 Energy Energy of of CRDCRD Purge Purge Water Water In In aa Boiling Boiling Water Water Reactor Reactor (BWR),

(BWR), the the energy energy of of CRD CRD purge purge water water andand recirculation recirculation pump pump sealseal purge purge water water going going to to steam (OCRo-QUr) is steam (QCAD-OUT) is equal equal to to the the mass mass flowflow rate rate ofof control control rod rod drive drive and and recirculation recirculation pump pump seal seal purge purge water (WCRO) multiplied water (WCAD) multiplied by by its its enthalpy enthalpy.. However, However, the the Feedwater Feedwater mass mass flow flow rate rate will will makes makes up up greater greater thanthan 99 99 % % ofof the the steam steam massmass flowflow rate rate;; therefore, therefore, W CRO will WORD will be be quantified quantified as as aa fixed fixed number number because because relatively relatively large farge random random variations variations in WCADD will in WCR will be be negligible negHgibfe in in determining determining Qs. Os.

OeRo.ouT =::: wcRo QcRD-OUT WCRO -* hG(Ps) hG(Ps) (Equation (Equation 8) 8)

Page Page 29 29 ofof 93 93

Exelon. ReactorCore Reactor Core Thermal Thermal Power UncertaintyCalculation Uncertainty Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision Revision 00 6.2 .2 .3 6.2.2.3 Energy of Energy of Reactor Reactor Pressure Pressure VesselVessel Radiative Radiative Heat Meat LossLoss Energy of Energy of reactor reactorpressure pressure vessel vessel radiative radiative heat heat lossloss (ORAO) includes both (QRAD) includes both heat heat loss loss due due toto thermal thermal radiation as radiation as well well as as heat heat Jossloss through convection . This value is fixed relative to CTP because through convection. This value is fixed relative to CTP because relatively large relatively large random random variations variations in in ORAD will be QRAD will be negligible negligible in in determining determining Qs. as.

6.2 .2 .4 6.2.2.4 Energy of Energy of Reactor Reactor Water Water Clean-up Clean-up Energy of Energy of reactor reactor water water cleanclean up up (QRwCU)

(QRwcu) is is based based on on the net heat the net heat removed removed by by the the non-non-regenerative heat regenerative heat exchanges exchanges from from the the recirculated recirculated water stream bypassed from Recirculation water stream bypassed from Recirculation Loop Loop BB to to the the AWCU.

RWCU. The The actual actual contribution contribution to to the the heat heat removed removed from from the the reactor reactor pressure pressure vessel vessel is is negligible because negligible because the the non-regenerative non-regenerative heat heat exchangers exchangers cool cool the the stream stream going going to to the the cleanup cleanup filters and filters and demineralizers demineralizers and and the the regenerative regenerative heat heat exchangers exchangers use the incoming use the incoming streamstream to to reheat reheat the RWCU the RWCU trow flow back back up up to to the the feedwater feedwater temperature.

temperature. The The mass mass flowflow rate rate isis equal equal to to the the nominal nominal pump flow pump flow rate rate the the higher higher of Pump A of Pump A or or the the combination combination of of Pump Pump B B&& C.

C. The The pump pump flowflow rate rate isis fixed relative fixed relative to to CTP CTP because because relatively relatively farge large random random variations variations in in QRWCU will be QRwcu will be negligible negligible in in determining Os.

determining The net Qs . The net heat heat removed removed is is equal equal to to the the mass mass flow flow rate rate (W multiplied by RWCU ) multiplied (WRwcu) by difference of difference of enthalpies enthalpies acrossacross the the RWCU.

RWCU .

QRWCU =

QRWCU = WRWCU' WRWCU - [hF(T

[hF(TRPV)APV ) -- hF(T hF(TFw)1 FW)) (Equation 9)

(Equation 9) 6.2.3 6.2.3 Neat Balance Heat Balance Equation Equation The reactor The reactor heatheat balance balance is is based based on on the principle that the principle heat input that heat input to to the the reactor water equals reactor water equals heat heat out. Substituting out. Substituting Equations Equations 2 2 and and 3 3 into into Equation Equation 11 yields yields::

(QS.FW (QS.FW + + QCRD-OUr+

ACRD-our + ORADQRAD + QRwcu) == CTP

+ QRWCU) CTP + (Q FW-IN +

(QfW.IN + QDRD4N OCRD..fN + + QP)

Qp) (Equation (Equation 10) 10)

Solving Solving for for CTP yields, CTP yields, CTP =

CTP = (QS.FW (QS.fW + + ACRD-OUT OCRD.QUT+ + QRAD Q RAD + (QFW.IN +

RWCU) -* (QFw-IN

+ QRWCU) + ACRD-IN OCRO-IN -!- + QP)

Qp)

= [WFW ha(Ps ) -r-

[WFW -* hG(Ps) WCRO'- hG(Ps)

+ WCRD hG(Ps ) ++ QRAD ORAD + + WRWCU [hF(T RPV) -

WRWCU'- [hF(TRPV) hF(TFW)]

- hF(TFW)j

[WFW -* hF(TFW)

-- [WFw hF(TFW) + + wcRD hF(TcRo) ++ nn*. nm WCRD -* hF(TCRD) 11m'- WWE]jj (Equation (Equation 11) 11)

Combining Combining like like terms, terms, CTP eTP = ((WFw

= [(WFW "* hc(PS) ho(Ps ) -- WFw hF(TFW)J ++ (wcRD WFW -* hF(TFW)l hG(Ps) -- wcRD

[WCRD'" ho(Ps) hF(TcRD )]

WCRD*" hF(Tcno)J

++ QRAD ORAD ++ WRwcu hF(TFW)] -- nn -* nm

[hF(TRPV)' - hF(TFw))

WRWCU "* [hr(TRPv),- 11m -*WE)

WE] (Equation (Equation 12) 12)

CTP ==wWFW CTP Fw - *[hG(PS)

[hG{Ps ) -- hF(TFw)J hF(TFW)] ++wcRDWCRO - *lhG(P

[hc(ps) hF(TCRD)]

s ) -- hF(TcRD)1 ORAD++WRwcu

++ QRAo WRWCU "* (hF(TRPv)

[hF(TRPV) -- hF(TFw)J hdTFW)] -* nn*" nm11m'- WEWE (Equation 13)

(Equation 13)

Equation Equation 13 13 isis the the form form of ofthethe equation equation usedused bybythe the Plant Pfant Process Process Computer Computer (PPC)(PPC) to tocalculate calculate CTP CTP (Reference (Reference 4.8.2) 4.8.2).. The The CTPCTPcan can now now be be expressed expressed as asaa function functionof ofWFW, hG(Ps), QCRD.aur WFW , hc(PS), OCRO-OUT, ORAD.

, QRAD, QRwcu, QAWCU, hF(TFw),

hF(TFW), wcRD-IN aCRo- lN , , QP Qp..

Page Page 30 30 of of93 93

bcel6n. LE-0113 LE-0113 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 Revision 00 Revision CTP = f (wFw , hc(Ps), ACRD-our , QRAo , Qpwcu , hF(TFw), QCRO-IN , QP) (Equation 14)

(Equation 14)

Further simplification Further simplification of of Equation Equation 14 14 can can bebe made made by by setting setting variables variables with with negligible negligible input input into into the the uncertainty of uncertainty of the the CTP CTP to to constant constant values. values . The The variables variables thatthat have have negligible negligible contribution contribution to the to the determination of determination of the the uncertainty uncertainty of of the the heat heat from from CTP CTP areare aCRO.OUTt QCRD.OUT, ORAO, and Op QCRD-IN, and QRwcu, aCRO-IN, QRAD, aRWcu, Op as as discussed above discussed above (Sections (Sections 6.2.2.2, 6.2.2 .2, 6.2.2.3, 6.2 .2 .3, 6.2.2.4, 6.2 .2 .4, 6.2.1.2, 6.2 .1 .2, and and 6.2.1.3).

6.2 .1 .3).

CTP = [WFW CTP = CwFw ** ho(Ps) hG(P5) ++ QCRO-QUT QCRD-out + QRAD +

+ ORAD + QRWCU]

Qawcul --- [WFW

[wFw ** hF(T hF(Trw) QCRD-!N +

FW) ++ OCFIO-IN + Qp]

QP)

WFW * [hG(PS) - hF(TFw)) + (QcRD-OUT - ACRD-IN) + QRna + QRWCU - QP (Equation 15)

(Equation 15) 6.2.4 6.2.4 Uncertainty Determination Uncertainty Determination From NUREG/CR..3659 From NURECICR-3659 (Ref. (Ref. 4.9.4), 4.9.4), thethe standard standard uncertainty uncertainty (uc) (uc) ofof a function (y) a function (y) containing containing multiple statistically multiple independent terms statistically independent terms may may be be expressed expressed as as follows:

foUows:

= ~X1t X2, ***

yY=Axt,x2, . . .,XN)

, XN)

N N Uc = ~ ZICAXIY E uJ'(Y}

1 (Equation (Equation 16)16)

Where, Where, at cl = -

a~ and c, = TK u,(y) =

and Ul(y) = II Cj q If u(y4) u('<4) (Equation (Equation 17)17)

The The standard standard uncertainty, uncertainty, uc, uc , is is multiplied multiplied by by aa coverage coverage factor, factor, k, k, which which is is equivalent equivalent to to the the number number of of standard standard deviations deviations for for aa given given confidence confidence levellevel to to arrive arrive at at the the measurement measurement uncertainty uncertainty U U and and the the expected expected value varue of of y, y, Y,V, isis taken taken as as yy plus plus oror minus minus the the measurement measurement uncertainty uncertainty..

U = kuC(y)

U = kuc(y) and and Y Y== yY:t+/- U U (Equation (Equation 18)18) 6.2.4.1 6.2.4.1 Standard Standard Uncertainty Uncertainty for for CTP CTP The The standard standard uncertainty uncertainty for for CTP CTP can can be be determined determined by by taking taking the the square square root root of of the the sum sum ofof the the squares squares of of the the partial partial derivatives derivatives of of each each subcomponent subcomponent of of CTP CTP multiplied multiplied by by the the square square of of the the uncertainties uncertainties of of the the subcomponents subcomponents as as shown shown in in Equation Equation 19 19 (Reference (Reference 4.9.4) 4.9.4)..

nsr*

k (V FW

)2 (UwFw (u wp) + ah0(Pg) r*

]+[( d~~~~) (uhG(Ps,f ]+

DCTP

~ (ahctPsa r*

)

[(Idh~~;: J*

CTP ahF (TFw )

(

`(UhF(TPN) 6hF(TFw ) f ] dQ:~::UT hCAO~~ f]

+[(

acTP CRD _ OUT I) Z

  • (010CRO . arr ~ +

CTP aQ CAD _ . IN r2

[( ~~::IN .(UOCAO~'.f]+[(~r ,(uOAAQ f]+t aCTP

~ ~60c~  irr (Equation (Equation 19) 19)

[( ~~::u r*

IaCTP aQRWGU r

  • ,~awc1) (UORWCJ u ]+[(~r .(uo. f]

The partial The partial derivative derivative termsterms can can be solved for be solved for by by recalling recalling CTPCTP from from Equation Equation 15. 15.

Page Page 31 31 ofof93 93

LE-01 13 Exelc!)n. Reactor Reactor Core Core Thermal Therma' Power Uncertainty Calculation Unit Uncertainty Calculation Power Unit I1 LE..0113 Revision 00 Revision CTP =

CTP = wFw WFW *- (hG(PS)

(hG(Ps) -* hF(T hF(TFw))

FW)) + + (OeRO-ouT AFO-OUT -- 0CF04N)

QCfID.IN) + Q RAD +

+ ORAD + QRWCU QRWCU -- QP Qp The partial derivatives The partial derivatives are are determined determined from from Equation Equation 15 15 and and shown shown below,below, remembering remembering that that the the terms 0CRD-0VT terms OCRO-IN QCRD-otJr I, QCAD .1N I, OnAD ORAD,I QAWCU Qlqwcu I, andand QpQp are are fixed relative to fixed relative to the determination of the determination of the the uncertainty uncertajnty of of CTP CTP..

'ICTP acTP

- - =(h(hGG (p (PsS )) -- hF hF (TFW))

(TFW ))

aWFW dwFW (Equation 20)

(Equation 20) aaCTP CTP


w -

() ho(P ) - wow a ha(PS) FW s (Equation (Equation 21)21) aaCTP CTP ahF(T ) := -WFW wn FW DhATIV) FW (Equation (Equation 22)22)

DCTP aCTP =1 aa OCRD,OUT QCRO"OUT (Equation (Equation 23)23) aCTP aCTP =-1 aa QCRO_'N QCRD-1N (Equation 24)

(Equation 24) aaCTP CTP =1 aQ a () RAO RAO (Equation (Equation 25)25) aCTP =1

- aCTP a QRWcU iJQRWCU (Equation (Equation 26)26) a CTP =-1 aCTP aQ a 0pp (Equation 27)

(Equation 27)

The Feedwater mass The Feedwater mass flowrate flowrate uncertainty, uncertainty, oW Fw, is O'wf:W, equal to is equal to the the measurement measurement uncertainty uncertainty as as shown shown in Equation in Equation 28. 28.

(J'W FW

=UFW . W FW (Equation (Equation 28)28)

The steam The steam enthalpy enthalpy uncertainty, uncertainty, a h o, is Uh(3, is determined determined by Equation 29.

by Equation 29.

2 .

aha 0 he (Ps ITS 10) =

(Ps,Ts,I.)

=

(J'aTT")2*aT a haG ah T

2

,6 H +

+ (iiF' *a ahG ah G )2 CFPp 22 + ()2 (ah ah ( )2

+ dlo G3

  • a~

. alo 92 7- a la 1

P) (Equation (Equation 29)29)

Substituting finite differences Substituting finite differences for for the partial derivatives:

the partial derivatives :

2 2 )2 2

(_G~h,, ) 2 (.dh,3 ) 2 + (AhG UT + CrP crio AT AP -El-0 (Equation (Equation 30)30)

Noting Noting that for saturated that for saturated steam, steam, pressure determines the pressure determines the temperature temperature of of the the steam thus, CFT steam;; thus, 0T =0

=0 .

In addition, In addition, the steam tables the steam tables usedused were were derived derived from from NIST NEST Chemistry Chemistry WebBookWebBook (Reference 19.3).

(Reference 4.9.3).

  • The interpolation The interpolation error error for for steam steam enthalpy, enthalpy, 0\ =+/-+/- 00.05 a lo = .05 Btu/Ibm.

Btu/lbm .

Page Page 32 32 of of 9393

LE-01 13 Exelc.;n. Reactor Reactor Core Uncertainty Care Therm Uncertainty Calculation Thermal Power al Power Carculation Unit Unit 1 i LE-D113 Revision Revision 00 O'ha (Ps,o ar~(PS, 1I0)) -'-

F (~hG(Ps))2*

dho(Ps)

  • liP dPsS 2

QP O'p 22

+(

+

ah G(l o } 2 G

(Lih Lil NO0a (lo))2. 0'1 2QF°0 2 (Equation (Equation 31) 31 )

The The Feedwater Feedwater enthalpy enthalpy uncertainty, uncertainty, 6hF, (ThF, is is determined determined by Equation 32.

by Equation 32.

2 2 ahF *aT2 + ahF *CrP2 + ('IF) *a1Q 2 0h,(TFWIPFW'lo)=

~(aT () aP atO (Equation (Equation 32) 32)

Substituting finite differences for the partial derivatives yields

=

dhF Lih liT Fj)22 *OT

  • CF T +

z2 + (Ah dhFF)2 AP j

2 2 + dhFF)2

  • a P 2 + (Ah Ala 10 2

( AT AP

  • O'p *0'10 The interpolation The interpolation error error forfor liquid enthalpy, ab liquid enthalpy, 0'10 = :t 0.005

= :t 0.005 BTUIb,BTU/lb, and and thatthat thethe enthalpy enthalpy ofof subcooled subcooled water varies with water varies temperature and with temperature slightly with and slightly pressure; thus, with pressure; thus, 0' ('Tt , P ahhFF (Trw PFw,la)I) = Lih F

( AT (T>>)2

  • o0 TTa2 ++ (Lih liP liP (p>>)2 dhFF (P) 2

.0'apP e 2 +

+

(ah d h ala ala F F )2 j

z

  • 0 z2
  • aJ (Equation (Equation 33)33)

( AP do °0 FW I FW, 0 T P 1

'0 The The following following uncertainty uncertainty terms terms are are relatively insignificant in relatively insignificant in the the determination determination of of CTP uncertainty;;

CTP uncertainty therefore, therefore, itit is is on'y only necessary necessary to to quantify quantify the uncertainty to the uncertainty to within within aa reasonably reasonably conservative conservative value.

value.

Refinement Refinement of of the uncertainty of the uncertainty of these these itemsitems after initial determination this initial after this determination is is not required given not required given that that the uncertainty is within the tolerances shown in the sensitivity analysis (See Attachment 7).

the uncertainty is within the tolerances shown in the sensitivity analysis (See Attachment 7).

The Control Rod The Control Rod DriveDrive (CR©)

(CAD) outlet outlet energy uncertainty, aoeao_our, energy uncertainty, O'acRD~OUT, is determined by is determined by Equation Equation 34,34, where where XCAO xcm is is the the uncertainty uncertainty calculated calculated for for thethe GRD CRD flow flaw stream.

stream.

a -

Q CRO _ our (7QcP'O_ OUT - xcAD XCRD % % "* OCRU-OUT QCRO_OUT (Equation (Equation 34) 34)

The The CRDCRD inletfnret energy energy uncertainty, uncertainty, o'acRO (TQCRO,,)Nt is determined

.Inr, Is determined by by Equation Equation 35, 35, where where xcaQXCAO is is the the uncertainty calculated for uncertainty calculated the CAD for the CRD flowflow stream.

stream .

(] eRO Cr a 0"0 - "IN - XCAO

<< xcr,c %  % "* QcRD_JN OCROjN (Equation (Equation 35) 35)

The reactor The reactor pressure pressure vessel vessel heat loss uncertainty, heat loss uncertainty, O'QRAD, crQpA p, is is determined determined by Equation 36, by Equation where xFAD 36, where XRAO is the

s the uncertainty uncertainty assigned assigned to to the the heat heat lossloss value calculated by value calcufated by LM-0553 LM-0553 (Reference (Reference 4.$.3)4.8.3)..

Q = XAAD o~ -* QRAD a"O =

(J QRA(I XRAO % ORAD (Equation (Equation 36) 36)

The RWCU The AWCU heat heat removal removal uncertainty.

uncertainty, (TQRWCU, dQpwcu, is is determined determined by by Equation Equation 37, 37, where XAWCU is where xPwcu is the the uncertainty calculated uncertainty calculated for for the RWCU heat the RWCU heat balance balance terms.terms.

a°A"CU (J QRWCU xRwcu °la

-= XAWCU  % *" Qawcu ORWCU (Equation (Equation 37) 37)

The Recirculation The Recirculation Pump Pump heat heat addition addition uncertainty, uncertainty, aov, (Top, is is determined determined by by Equation Equation 38, 38, where where xP Xp is is the the uncertainty calculated uncertainty calculated for far measurement measurement of of thethe recirculation recirculation pump pump motormotor power power..

°a aQPp T = xp Xp %  %.- Op Qp (Equation (Equation 38) 38) 6.2.5 6.2.5 Extended Instrument Extended Instrument Drift Drift Instrument drift Instrument drift specifications specifications are usually published are usually published for for aa defined defined periodperiod of of time.

time. The instrument drift The instrument drift for for one one period period of time is of time independent from is independent from the instrument drift the instrument drift of of any any other equivalent period other equivalent period ofof time.

time.

Therefore, the Therefore, the drift drift specification specification D far a D for period of a period of X months can X months can be be expanded expanded to to n"X n*X months months (where (where nn Page Page 33 33 of of 9393

LE-Q113 LE-0113 Exelon. ReactorCore Reactor CoreThermal Thermal Power Uncertainty Calculation Unit Uncertainty Calculation Power Unit 11 Revision Revision 00 isis the the station station surveiJtance surveillance interval interval divided divided by by the the vendor vendor drift drift interval interval and and nn Isis an an integer integer greater greater than than zero) by zero) by the the SASS SRSS method.

method . Instrument Instrument drift drift for for surveillance surveillance intervals exceeding the instrument intervals exceeding the instrument suppliers' specified suppliers' specified driftdrift interval Interval is is calculated calculated using using Equation Equation 39 39 (Section (Section 4.1.1 4.1 .1 of of reference reference 4.1.1 ~).

4.1 .1,).

Dr,n ==(n.

D (Dx.)2]112

[n " (D (Equation 39)

)2fl2 (Equation 39)

Page Page34 34ofof93 93

Exelon, Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision 00 Revision 7.0 7.0 NUMERIC ANALYSIS NUMERIC AN ALYSIS 7 .1 7.1 FEEDWATER FLOW FEEDWATER FLOW UNCERTAINTY UNCERTAINTY The uncertainty The uncertainty of of the the feedwater feedwater mass mass flow flow rate rate measurement measurement for for the the Caldon Caldon(b Ultrasonics Ultrasonics Leading Edge Leading Edge Flow Flow MeterMeter CheckCheck Plus Plus (LEFM.,I (LEFMV+) system is

+) system is taken taken from from Reference Reference 4.8.6, 4 .8.6, Section 2.0, Section 2.0, using using Equation Equation 28. 28.

Or w Fw =0.320/0

    • WFW = 0.32 % ** Wr:w w Fw WFW -UFwmeasurement O'Wr:w =UFWmeasurement

== 0.0032 0.0032

  • 15 15,090,000 j 090,OOO IbmJhr Ibmlhr 48,288 Ibmlhr

=: 48,288 lbmlhr 7.2 7.2 STEAM DOME STEAM DOME PRESSURE PRESSURE MEASUREMENT MEASUREMENT UNCERTAINTY UNCERTAINTY The uncertainty The uncertainty of of the the steam steam dome dome pressure pressure measurement measurement is is taken taken from from Reference Reference 4.8.8. 4.8.8.

cs ns =

O'Ps W t 20psig

+/- 20 psig 7.3 7.3 REACTOR WATER REACTOR WATER CLEAN-UP CLEAN-UP (RWCU) (RWCU) FLOW FLOW LOOP LOOP UNCERTAINTY UNCERTAINTY 7 .3.1 7.3.1 RWCU Flow RWCU Flow LoopLoop Accuracy Accuracy (LAR,rcu_Fjow)

(LARWCU_FJow) 7.3 .1 .1 7.3.1.1 RWCU RWCU Flow Element Reference Flow Element Reference Accuracy Accuracy (A1) (A1)

Reference Reference AccuracyAccuracy is specified as is specified as f 1 .50% of

+/- 1.50% of actual rate of actual rate of flow (Section 2.2.3) flow (Section 2.2.3)..

A1 2, A1 2<1 -= t+/- 11.50%

.50% Flow Flow 77.3.1.2

.3.1 .2 RWCU Flow RWCU Flow Element Element Installation fnstanatlon Effect Effect (IE1)

(IE1)

The The flow flow elements elements meet meet the the installation installation requirements requirements of Ref . 4.6.5.

of Ref. 4.6.5. Therefore, Therefore j IE1 IE1 ==*:t: 0.50%

0.50% Flow Flow 7.3 .1 .3 7.3.1.3 RWCU RWCU Flow Flow Element Element Temperature Temperature Effect Effect on on Flow Flow Element Element Expansion Expansion (TN1) (TN1)

Per Per section section 2.2.3,2.2.3, the the maximum maximum temperature temperature of of the the water water passing passing through through the the flow flow element element is is 582 582

°F of and and the the normal normal temperature temperature is is 539 539 °Fof with with the the flow flow elements elements located located justjust upstream upstream of of the the RWCU RWCU Recirculation Recirculation Pumps. Pumps. Since Since the the system system temperature temperature operation operation band band is is small, small. there there is is aa minor minor change change in in the the flow flow element element expansion expansion factor factor.. The The change change is is in in order order ofof 0.003 0.003 inches inches or or less less for for the the temperature temperature range range of of 515 515 '"F of to to 560 560 OFOF.. Therefore Therefore the the temperature temperature effect effect on on flow flow element element expansion expansion can can beba neglected neglected..

TN TN1 I ==+/-ook t 0% Flow Flow 77.3.1.4

.3.1 .4 RWCU RWCU Flow Flow Element Element Temperature Temperature Effect Effect on on Density Density (TD1)(TD1)

During During normal normal operations operations the the temperature temperature band band forfor the the fluid fluid passing passing through through the the flow flow element element at at the the inlet inlatof of thethe RWCU RWCU system system is ;s approximately approximately 530 530 °F.

of. TheThe effect effect temperature temperature has has onon density density will wUl be be evaluated evaluated at at t:t44.37

.37 aF of (Section (Section 7.4.6) 7.4.6) from from thethe base base condition condition of of 530 530 OF (tF at at 1060 1060 prig psig atat the the flow flow element element (Section (Section 2.2.3)2.2.3).. Density Density isis relatively relatively constant constant at at 1060 1060 psig; psig; however, however, for for conservatism conservatism aa variation variation of of *:t 10 10 psig psig isis used usedto to show show that that thethe pressure pressure effect effect isis negligible negligible even even at atfour four times times the the nominally nominallyspecified specified transmitter transmitterreference reference accuracy accuracy of of 00.25

.25 %. The uncertainty in the density, 0/0. The uncertainty in the density, ap(T,P),

O'p(TIP), as as aa function function of of temperature temperature and and pressure pressure will wUl follow follow Equation Equation 33. 33.

Page Page35 35of of93 93

LE-01 1 3 LE-Q113 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 Revision 00 Revision

(

lbm]2 Ibm ft 3

(

(p(534 P(534.4) .4) -- P(525.6>>)2 p(525 .6)1z jt3 ft3 ** (4.4 "FY +

(4 .4 `F)'

534.4-534 .4-- 525.6 525 .6

[ °F of ap C TRWCU Ibm]2 r P(1070) p(1070) -- P0050))2 p(1050) 12 jt' ft' ** (10 psi)l (10 psi ),

( 1070 - 1050 psi 11070070--105 i [

Ibm z lbm]2 ft 3 47 .046 --- 47 47.046

( 534

.612 47.612)2 jt3 ft3 ** (4.4 0FY +

(4 .4 OF)' +

534.4 .4 -- 525.6 525 .6

[ 0°FF

=

lbm]2 Ibrn 47 .339- 47 .326 z 47.339-47.326)2 7 jt' ft' ** (10 psiY (10 psi 2

( 1070 1050 1070 ---1050

[ psi psi ibm]2 [lhm]2V Ibm

= (-0.57)2fi3" *(4.40Fy+(O.Ol)"jt'.

  • (4.40Fy+(O.Ol)"ft'. *(lOpsi)"
  • (10 psi Y 8.8 [ of 20 psi pSI

= 0.08009 (Ibm)2 ft3

+0.OO4 (ibm)2

+0.00004 ft3 Ibm Ibm U jJ (TFlV )

0' 0.28307 --r

0 .26307 0.28307 It

/t fr Divide by Divide by the the base base density density to to convert convert to to aa percentage percentagevalue value O'p(T c','

Up (TxtVcU tT ,~o):::

RWCU , PI o~

0 .283 @

0.283 @530°F:::

530V= 0 0.00598

.00598 =0 = 0.598

.598 % %

47.333 47 .333 The The percent percent change change in in density, density, a,,,O'x, as as aa function function of of the the percent percent change change in in flow, flow, a,,

01, is is given given by by the the following following equation equation (Reference (Reference Attachment Attachment 8, 8, Equation Equation A8-10):

A8-10):

cs, - 2

  • a, Page Page 336 6 of of 93 93

Exele) J Exelon. Reactor Core Reactor CoreThermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 LE-0113 LE-0113 Revision 00 Revision Rearranging Equation Rearranging Equation A8-10 A8-10 andand substituting substituting O'opa forO'x for a, to to solve solve for for the the unknown unknown flow flow uncertainty, uncertainty, 0'1:

cs, :

I TDl %

TD]~.f&tw = _. TDl~dmrftr-2 '

~.!..O.598

- . 0.598%  %

22

.0.299 %
0.299  %

TD1 ;m = 0.3 %

0.3  % of of flow flow 7.3.1 .5 7.3.1.5 RWCU Flow RWCU Flow Element Element Humidity Humidity Error Error (elH)

(e1H)

The flow The flow erement element Is is aa mechanical mechanical device device installed installed within within the the process.

process . Therefore, Therefore, humidity humidity effects effects are not are not applicable.

applicable.

e1H elH =0

=0 7.3.1 .6 7.3.1.6 RWCU Flow RWCU Flow Element Element RadiationRadiation Error Error (e1 (e1 R)

R)

The flow The flow element element is is a a mechanical mechanical device installed within device installed within the the process.

process . Therefore, Therefore, radiation radiation effects effects are not are not applicable.

applicable.

e1 alAR =

= 00 7.3.1 .7 7.3.1 .7 RWCU Flow RWCU Flow Element Element Seismic Seismic Error Error (e1S)

(e1 S)

For normal For normal error error analysis, analysis, normal normal vibrations vibrations andand seismic seismic effects are considered effects are considered negligible or negligible or capable of capable of being befng calibrated calibrated out.out. Therefore, Therefore, there there isis no no seismic seismic error error for for normal normal operating operating conditions (Section conditions (Section 3.5) 3.5)..

e1S alB == 00 7.3.1 7.3.1.8.8 RWCU AWCU Flow Flow Element Element Static Static Pressure Pressure Offset Offset Error Error (el (e1 SP)

SP)

The The flow flow element element is is aa mechanical mechanical device device installed installed within within the the process process.. Therefore, Therefore, static static pressure pressure effects effects are are notnot applicable.

applicable.

e1SP e1SP =

= 00 7.3.1.9 7.3.1.9 RWCU RWCU Flow Flow Element Element Ambient Ambient Pressure Pressure ErrorError (e1 (e1 P)

P)

The The flow flow element element is is aa mechanical mechanicar device device installed installed within within the the process process.. Therefore, Therefore, therefore therefore the the flow flow element element is is not not subject sublect to to ambient ambient pressure pressure variations.

variations.

e1P alP =

= 00 77.3.1.10

.3.1 .10 RWCU RWCU Flow Flow Element Element Process Process Error Error (e1 (el Pr)

Pr)

Any Any process process errors errors have have beenbeen accounted accounted for for as as errors errors associated associated with with Temperature Temperature Effect Effect on on Density Density.. Therefore, Therefore, e1 Pr elPr == 00 7.3.1 .11 RWCU 7.3.1.11 RWCU Flow Flow Element ElementTemperature Temperature Error Error(e1 T)

(e1T)

Temperature Temperature error error IsIs considered considered to to be be aa random random variable variable forfor the the flow flow elements elements and and isis addressed addressed under underTemperature Temperature Effect Effecton on Flow Flow Element Element Expansion Expansion (Section (Section 7.3.1 .3) . Therefore, 7.3.1.3). Therefore, e1T elT :I 00 Page Page37 37ofof93 93

Exelon Exelc;n. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Unit Uncertainty Calculation Power Unit 11 LE-0113 LE*0113 Revision 00 Revision 7.3.1 .12 RWCU 7.3.1.12 RWCU Flow Flow Transmitter Transmitter Reference Reference AccuracyAccuracy (A2) (A2)

Reference Accuracy Reference Accuracy is Is specified specified as as +/- 0.25 °Ia

+/- 0.25 of span

% of span considered considered to to be be a a 3a value (Section 30' value (Section 2.2.4).

2.2.4) .

The reference The reference accuracy accuracy is is set set to to the the calibration calibration accuracy accuracy per per plant plant procedure procedure (Reference (Reference 44.1.1).

.1 .1) .

A2 3,,

A2 30 =- t 0.50

I: 0.50  % [30']

% (3a]

Converting to Converting to aa 20' value 2a value

- A220 =.

A22a +/- 0.50 %

+/- 0.50 °la ** 22 //33

- A22a A220 = +/-t 0.3333 0.3333 a!a  % ofof span span Converting %

Converting °Ja span span to to °!a

% flowflow Rearranging Equation Rearranging Equation A8-10, A8-10, a/1p =

app = 22 ** aFi ow, to O'FLOW, to solve solve for for flow flow (Reference (Reference Attachment Attachment 8) 8)::

A222a%F A2 bvv o%FIow =- A2%Span //

A2%span 22

= 0.3333 %

1 0.3333

I:  % of span //2 of span 2

=

-- 0.1667

+/- 0.1667 t  % of

% Flow of Flow A22a%Flow A22o%Flow -

= t 0.1667

+/- 0.1667 % °la of of Flow Flow 7.3.1 .13 RWCU 7.3.1.13 RWCU Flow Flow Transmitter Transmitter Power Power SupplySupply Effects (a2PS2)

Effects (a2PS2)

Power supply effects Power supply effects are are considered considered to be negligible to be negligible (Section (Section 3.7)3.7).. Therefore, Therefore, a2PS2 =

a2PS2 = t0

1:0 7.3.1 .14 RWCU 7.3.1.14 RWCU Flow Flow Transmitter Transmitter Ambient Temperature Error Ambient Temperature Error (a2T)

(a2T)

The The temperature temperature effect effect is is +/- (0.75 %

+/- (0.75 °la UAL URL + + 0.5 0.5 % % span)/100°F span)/100°F (3a] [30'] (Section 2 .2.4) . The (Section 2.2.4). The maximum maximum temperature at temperature at thethe transmitter transmitter locationlocation is is 106 106 °F, and minimum OF, and minimum temperature temperature during during calibration calibration could could be be 6565 IF, bF, so so the the maximum maximum difference =

difference = 106 - 65 106 .... 65 OF = 41

\f>F = l)F (Section 41 IF 2.3.4)

(Section 2.3.4) a2T~

o2T30 == +/-+/- [(0 .0075 ** 750

[(0.0075 750 INWCINWC + + 0.005 0.005 ** 220220 INWC)

INWC) ** 41 41 ~F/1100 IF/ 00 OF]

oF]

=

= +/- [(5

+/- .625 INWC

[(5.625 fNWC ++ 11.1 .1 INWC)

INWC) ** 0 .41 ]

0.41]

a2T3,,

o2T 3cr =

= t+/- 2.76 2.76 INWCINWC [3a], [3c1], rounded rounded to to level level of of significance significance Converting Converting to to aa 2a 20 value value a2T a2T2o 2a == t+/- 2.76 2.76 INWCINWC ** 22/3 /3

= a2T2a o2T 20 = +/-+/- 11.8382 .8382 IINWC NW C Converting to % span Converting to Ok span a2T2a a2T 20 == t

+/- 11.8382

.8382 INWC fNWC /1220 220 INWC INWC

-=

= t +/- 0.008355 0.008355 = 0.8355 = 0.8355 % Ok Converting °la Converting  % span span to to a/n

% flow flow Rearranging Rearranging Equation Equation A8-10, A8-10, a a/1P =

jp = 22** an_ow, anow, to to solve solve forfor flow flow (Reference (Reference Attachment Attachment 8): 8):

o-2T2a%Fjow a2T2o%Flow == a2T2a%span 0'2T20'%Sp8n /12 2

-= +/-+/- 0.8355 0.8355 %  % /I 2 2

= t+/- 0.4178 0.4178 % 0/0 a2T2 o%p ow 02T2o%Ffow == 0.418 °la

+/-+/- 0.418  %

Page Page 38 38 of of 93 93

Exeloln.

Exelon. Reactor Reactor Core Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 1 1 LE-01'13 LE-0113 Revision Revision 00 7.3.1 .15 RWCU 7.3.1.15 RWCU Plow Flow Transmitter Transmitter HumidityHumidity Error (e2H)

Error (e2H)

The manufacturer The manufacturer specifies specifies the the transmitter transmitter operating operating humidity limits between humidity limits between 00 and and 100 100 % % RHRH (Section 2.2.4)

(Section 2.2.4).. The The transmitter transmitter is is located located in in Containment Containment H2 Recombiner Room H2 Recombiner Room 506C, 506C, Area Area 16 16 where where humidity humidity may may varyvary from from 50 50 to 90% RH to 90% RH (Reference (Reference 4.4 4.4.2). Humidity errors

.2) . Humidity are set errors are set to to zero zero because they because they are are considered considered to to be included within be included within the reference accuracy the reference accuracy specification specification under under these these conditions conditions.. (Section (Section 33.2) .2) e2H e2H =

= 00 7.3.1 .16 RWCU 7.3.1.16 RWCU Flow Ffow Transmitter Transmitter RadiationRadiation Error Error (e2R)

(e2R)

The manufacturer The manufacturer specifies specifies the transmitter operating the transmitter operating radiation effect during radiation effect and after during and after exposure exposure to to 2 .2 xx 10 107 rads rads TO (Section 2.2 .4) . The The transmitter 7

2.2 TID (Section 2.2.4). transmitter is is located located in Containment H2 in Containment H2 Recombiner Recombiner Room Room 5060,506C, AreaArea 16, 16, where where totaltotal integrated integrated dose dose (TID)

(TID) could could be be asas high high as as 8.78 102 rad 8.78 xx 102 rad (Reference Section (Reference Section 4.4.2).

4.4.2) . Therefore, Therefore, e2R e2R -

= t (4.0

+/- (4.0 % % of URL) ** dose of URL) dose /I rated rated dose dose

= t+/- (0.04 (0.04 *.750 INWC) ** 8.78 750 INWC) 8.78 xx 10 2

102 //2.2 2.2 xx 107 10 7

--= t30INWC*3

+/- 30 INWC

  • 3.99 .99x10`x 10-55 t 11.20 10"3 INWC 3

e2R e2R -.

= :t: .20 xx 10* INWC Converting to Converting to %% span span e2R%S

e2Rcx,Span =

= t+/- 1.20 10~3fNWC // 220 1 .20 xx 10-31NWC 220 INWCINWC

=

= .44x

+/-5

+/- 5.44 x 1O=5.44x 10-6 = 5.44 X 10,4 10-4 % 0/0 Converting % span to % flow Converting  % span to  % flow Rearranging Equation Rearranging Equation A8-10, A8-1 0, craO'APp ==2 2 ** ar Lo ,, to O'FlOW, to solve solve for for flow flow (Reference (Reference Attachment Attachment 8): 8):

e2R e2R %Aow = e2R e2R %Span, /I 22

=

- t5 .44x

+/- 5.44 10' ° %/2 x 10. 4

°/012

t

+/-2 10.4 %

.72 xx 10'4 2.72

== t 2.72

+/- 2.72 xx 10.10,4%,

4

%, which which is is negligible negligible e2R %F,,

e2R%FIow =:: 0 0

7.3.1 .17 AWCU 7.3.1.17 RWCU Flow Flow Transmitter Transmitter SeismicSeismic Error Error (e2S)

(e28)

The The transmitter's transmitter's accuracy accuracy is within t+/- 0.5%

is within 0.50/0 ofof URL UAL (upper (upper rangerange limit) during and limit) during and after after aa seismic seismic disturbance disturbance defineddefined by by a required response a required spectrum with response spectrum with a a ZPA ZPA of of 44 g's.

g's. A seismic event A seismic event defines defines a particular a particular type type of of accident accident condition condition.. Therefore, Therefore, there there is is no no seismic seismic errorerror for normal operating for normal operating conditions (Section conditions (Section 3.5) 3.5) e2S e2S =

= 00 7.3.1 .18 AWCU 7.3.1.18 RWCU Flow Transmitter Ambient Flow Transmitter Ambient PressurePressure Error Error (e2P)

(e2P)

The flow transmitter The flow transmitter is is an an electrical electr;cal devicedevice and and therefore therefore not not affected affected by ambient pressure.

by ambient pressure.

e2P e2P =

= 0 0

7.3.1 .19 RWCU 7.3.1.19 RWCU Flow Flow Transmitter Transmitter Temperature Temperature Error (e2T)

Error (e2T)

Temperature error Temperature error;s is considered considered to to bebe aa random random variable variable forfor aa Rosemount Rosemount transmitter transmitter.. Therefore Therefore e2T e2T =- 0 0

Page 39 Page 39 ofof 93 93

Exel6n, Exelan. LE-0113 Reactor Core Reactor Core Thermal Thermal Power Power LE-0113 Uncertainty Calculation Uncertainty Calculation UnitUnit 11 Revision 00 Revision 7.3.1 .20 RWCU 7.3.1.20 RWCU PPC PPC I/O I/0 ModuleModule and and SRU SRU Reference Reference Accuracy Accuracy (A3) (A3)

Reference accuracy Reference accuracy of of the the computer computer input input isis taken taken toto bebe the the SRSS SRSS of of the the reference reference accuracies accuracies of of the SRU the SRU andand the the I/O I/0 module.

module . The The reference reference accuracy accuracy of of the the SRU SRU is is 0.1 0.1 % % ofof span span (Section (Section 2.2.5).

2.2.5) .

Reference Accuracy Reference Accuracy for for the the 1/0 i/0 module module is is specified specified as as +/- t 0.25 0.25 %% of of span span (Section (Section 2.2.6).

2.2.6) .

A~(J A32,, == JO.10.122 + 0.5 22 =

+ 0.5 0.5099 == 0.51

= 0.5099 0.51 0,10

%span span Converting %

Converting  % span span to to %% ffow flow Rearranging Equation Rearranging Equation A8-10, A8-10, GAP = 22 It* O'FLOW, o'ap = GROW, to to solve solve for for flow flow (Reference (Reference Attachment Attachment 8): 8):

A3%Flc,

A~FIow =

A3%s a // 22 A3%Span
+/-0.51%/2

+/-O.51%/2 A3%Fk,

A3%Flow =-. +/-0.255

+/- 0.255 %  %

7.3.1 .21 RWCU 7.3.1.21 RWCU PPC va PPC 1/0 Module Module Humidity Humidity Error Error (e3H)

(e3H)

The manufacturer The manufacturer specifies specifies thethe I/O UO module module operating humidity limits operating humidity between a limits between 0 and and 95 95 % % RHRH (Section 2.2.6)

(Section 2.2.6).. The The I/O I/0 module module is is located located In the Control in the Control RoomRoom 533, 533, where humidity may where humidity may vary from vary from 50 to 50 90% AH to 90% RH (Reference (Reference 4.4.2).4.4.2) . Humidity Humidity errorserrors are set to are set to zero because they zero because are considered they are considered to to be be included within included within the the reference reference accuracy accuracy specification specification under these conditions under these (Section 3.2).

conditions (Section 3 .2) .

e3H e3H =

= 00 7.3.1 .22 AWCU 7.3.1.22 RWCU PPC PPC I/O  !/0 ModuleModule Radiation Radiation Error Error (e3R)(e3R)

No radiation No radiation errors errors are are specified specified in in the the manufacturer's manufacturer's specifications The instrument specifications.. The instrument is is located in located in the the Control Control RoomRoom 533, 533, a a mild environment (Section 4.4 .2) . Therefore, it is reasonable to consider mild environment (Section 4.4.2). Therefore, it is reasonable to consfder the the normal normal radiation radiation effect effect asas being included in being included the reference in the reference accuracy.

accuracy.

e3R e3A =

= 0a 77.3.1.23

.3.1 .23 RWCU AWCU PPC PPC l/0 flO ModuleModule Seismic Seismic Error Error (e3S)

(e3S)

No No seismic seismic effect effect errorserrors are are specified specified in in the the manufacturer's manufacturer's specifications specifications.. A A seismic seismic event event defines defines a

a particular particular typetype of of accident accident condition condition.. Therefore, Therefore, therethere isis no no seismic seismic error error for for normal normal operating operating conditions conditions (Section (Section 3.5) 3.5)..

e3s eSS =

= 00 7.3.1 7.3.1.24.24 RWCU RWCU PPC PPC 1/0 1/0 Module Module Static Static Pressure Pressure Offset Offset Error Error (e3SP)

(e3SP)

The The 1/0flO module module is is an an electrical electrical device device and and therefore therefore notnot affected affected byby static static pressure pressure..

e3SP e3SP == 00 7.3.1 .25 RWCU 7.3.1.25 RWCU PPC PPC l/0 I/O ModuleModule Ambient Ambient Pressure Pressure Error Error (e3P)

(e3P)

The The I/01/0 module module is is an an electrical electricar device device and and therefore therefore notnot affected affected byby ambient ambient pressure.

pressure.

e3P e3P -

= 0a 77.3.1.26

.3.1 .26 RWCU RWCU PPC PPC I/0 I/O ModuleModule Process Process Error Error (e3Pr)

(e3Pr)

The The 1/0110 module module receives receives an an analog analog current current inputinput from from the the flow trow transmitter transmitter proportional proportional to to the the pressure pressure sensed sensed.. Any Any process process errors errors associated associated with with the the conversion conversion of of pressure pressure to to aa current current signal signal have have beenbeen accounted accounted for for as as errors errors associated associated with with Flow Flow Element.

Element. Therefore, Therefore, e3Pr == 00 e3Pr Page Page 40 40 of of93 93

LE-0113 Exelon. Reactor Core Reactor Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 11 LE-G113 Revision 00 Revision 7.3.1 .27 RWCU 7.3.1.27 RWCU Flow Flow loop Loop Accuracy Accuracy (lAAWCU_FIoW)

(LARwcu_Fkyw)

LAAWCU Flow LARWCU rr,, =_ +/-+/- [(A1}2 (IE1)'+

[(A1)2 ++ (IE1)2 (TN1)2 ++ (T01)2

+ (TN1)2 (TD1)2 + (el H)2 +

+ (e1H)2 (e1 R)2 ++ (e15)2

+ (e1R)2 (e1 S)z + + (e1Spt (e1 SPI2 ++ (e1pt (e1 P~2 + +

- (e1 prt (ei PrI2 ++ (e1n

+

(e1T) 2 +

2 (A2 2

+ (A2~2 + + (S2PS2)2 (s2T)2 ++ (e2H)2 (s2PS2) 2 ++ (s2T)2 (e2H)2 + (e2R)2 +

+ (e2R)2 + (e2S~

(e2SI ++ (e2P)(e2P) ++

(e2T)

(e2T) + (A3) 2 + (e3H) + (e3R)2 + (e3S) 2 + (e3SP)2 + (e3P)2 + (e3Pr) ]'12 (A3)2 + (e3H) + (e3R)2 + (e38)2 + (eSSp)2 + (e3p)2 + (e3Pr) ]112 2

=== +/-+/- [(1.5)2 (0.5) 2 +

[(1 .5) ++ (0.5}2 (0)2 +

+ (0)2 (0) 2 ++ (0)2 (0.3)2 ++ (0)2

+ ~0.3)2 (0)2 ++ (0)2 (0) 2 + (0) 2 +

+ (0)2 (0) a ++ (0)2

+ (0)2 (0)2 ++ (0)2 2 (0) ++

(0 . 1667)2 + (0) 2 + (0.41 ) + (0) 2 + (0) 2 + (0) 2 + (0) 2 + (0)2 + (0.255)2 + (0) 2 +

(0.1667)2 (0) 2 ++ (0)2

+ (0)2 (0)

+ (0)2 2+

+ (0.418l

+ (0)2]1/1 (0)a],

+ (0)2 + (0)2 + (0)2 + (0)2 + (0)2 + (0.255)2 + (0)2 (0) 2 +

+ (0}2 +

(0)2 (0)2 +

=t[2.25+0.25+0+0.09+0+0+0+0+0+0+0+0

== +/- [2.25 + 0.25 + 0 + 0.09 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.02n89 .027789+0+0 .174724+

+ 0 + 0.174724 +

o 0+0+0+0+0+0

+ 0 + 0 + 0 + 0 + 0.065025 .065025+0+0+0+0+0+0]"2

+ 0 + 0 + 0 + 0 + 0 + 0]112

=

= +/-t [2.85754]112

[2.85754] 1"2

=::t:t 1.690425 1 .690425 0/0 °gyp LAFwcug.

LARWCU.,.Aow = +/-t 1.7

== 1 .7 %%

7.3 .2 7.3.2 RWCU Flow AWCU Flow Loop Loop Drift Drift (lDRWcu_Flow)

(LDRwcu_now) 7.3.2.1 7.3.2.1 RWCU Flow RWCU Flow Element Element Drift Drift Error Error (01) (D1)

The flow The flow element element is is aa mechanical mechanical device; device ; drift drift error error isis not not applicable applicable for the flow for the flow elements.

elements.

Therefore, Therefore, D1 01 =+/-

== t 0.00%

0.00% Flow Flow 7.3 .2 .2 7.3.2.2 RWCU RWCU Flow Flow Transmitter Transmitter Drift Drift Error Error (02) (D2)

Drift Drift error error forfor the the transmitter transmitter is is t 0.2% of

+/- 0.2°10 of URL URL /130 30 months, months, takentaken as as a a random random 2cs 20' value value (Section (Section 2.2.4) . The 2.2.4). The calibration calibration frequency frequency is is 22 years, years, with with aa late late factor factor of of 66 months months..

D2 022a 20 =

= t (0.2% ** UAL)

+/- (0.2% URL)

Drift is Drift is applied appUed to to thethe surveillance surveiUance interval interval (SI)

(51) using using Equation Equation 39 39 (Section (Section 6.2.5) 6.2.5) asas follows follows D22.

0220 -= t [nO(Dx)2fl2,

+/- [n(D.)2]1r2,

= t ([(24 months

+/- ([(24 months + + 66 months) months) /130 30 months]

months] "* [0.002

[0.002 URL]URL] 2)112

2) 112

_= ([(30 /I 30)]

+/-+/- ([(30 30)] "*[1.5

[1 .5 1NWCh1/2 INWCf) 112

- D2 022a2<1 = +/-:t: 11.50 .50 IfNWC NW C Converting Converting to to % % span span D2%s D2%$pan=w= t+/- 11.5INWC

.5 INWC /1219.81NWC 219 .8 INWC

== t+/- 00.00682439

.00682439 ==0.682439 0.682439 % 0/0 Converting Converting %  % span span to to % % flow flow Rearranging Rearranging EquationEquation A8-10, A8-l0, aAp (j~p = == 22 *It 6FLow, O'FLOW, toto solve solve forfor flow flow (Reference (Reference Attachment Attachment 8): 8):

D2 %now ==

D2%Aow D2q sw /I 22 D2,,.span

=

- t+/- 0.682439%

0.682439% /12 2

+/- 0.341219 0.341219 % 0/0 D2%FIow =

D2%Fbw +/- 0.34 %

+/-0.34 0/0 7.3.2 .3 7.3.2.3 RWCU RWCU Flow Flow PPC ppe 1/O flO Module Module DriftDrift Error Error (D3)

(03)

The The vendor vendor does does not not specify specify aa drift drifterror errorfor for the the 1/O JlO module module.. Therefore, Therefore, per per Ref.

Ref. 4.1 .1 Section 4.1.1 Section I,I, itit is is considered considered to to be be included included in in the the reference reference accuracy.

accuracy.

D3 D3 =

= t+/-O 0 Page Page 441 1 ofof 93 93

Exelon, Exelon. Reactor Core Reactor Uncertainty Core Thermal Thermal Power Uncertainty Calculation Power Calculation UnitUnit 1 1 LE-0113 LE-6113 Revision Revision 00 7.3.2 7.3.2.4.4 RWCU RWCU Flow Loop Drift Flow Loop (LDRvCU.u Frow)

Drift (LDRWCU,~FIow)

LD [(01)2 + 2 + (D2)2 (D3)2]ir2

{D2)2 ++ (03)2]112 RWcu_Flow =

LDRwcu_now  ::: [(D1)

=

= [(0)2

[(0)2 + (0.34)2 +

+ (0.34)2 + (0)2]ll (0)2]112

=::: t+/- [0[0 + + 0.116431 0.116431 + 0]"

+ 0]1/2

=::1: [0.1164311"2 (0.116431]1/2

+/- 0.341219 0.3412190/0 LDRWcu_FloW =

LDRwcu-Raw  :::

  • 0 .34 %

+/- 0.34 7 .3 .3 7.3.3 RWCU Flow RWCU Flow Loop Loop ProcessProcess Measurement Measurement Accuracy (PMAR,cu_Fj'W)

Accuracy (PMARWCU_Aow)

(PMARWCU_AOW)

No additional No PMA effects additional PMA effects beyond beyond the the effects effects specified specified in in the the calculation of loop calculation of loop accuracy accuracy..

PMAnwcu_Fww = 0 PMARwcu",Flow::: 0 7.3.4 7.3.4 RWCU Flow RWCU Flow Loop Loop Primary Primary ElementElement Accuracy Accuracy (PEARwcu_Fj'w)

(P~CU_FIow)

No additional No additional PEM PEM effects effects beyond beyond the the effects effects specified specified in in the calculation of the calculation loop accuracy.

of loop accuracy.

PEARwcu_Flow PEARwcu_Flow =  ::: 00 7.3 .5 7.3.5 RWCU RWCU FlowFlow Loop Loop Calibration Calibration AccuracyAccuracy (CAswcu-now)

(CA RWCU_FIow)

Standard practice Standard practice is is toto specify specify calibration calibration uncertainty uncertajnty in in calculations calculations equal equal to to the the uncertainty uncertainty associated with associated with thethe instruments instruments under under testtest (Reference (Reference 4.1 .1) .

4.1.1).

Therefore, Therefore, CAawc., F~ow =:::

CARWCU=FIOW [(A1)

[(A1)22 + + (A2)2

{A2)2 + + (A3)2]"2 (A3)2Jll2

[(1 .5 0/0)2

[(1.5  %) 2 + (0.1667 %)2+

+ (0.1667 (0.255 %)

0/0)2 + (0.255 2

]"2 0/0)2]112

[2.3428

[2.3428 % 2

= 2]f2 0/0 ]112

= 11.5306

.5306 0./0 CARwcu_r1ow ==

CARWCU_Flow 11.5

.5 %

7.3.6 7.3.6 Total Uncertainty Total Uncertainty RWCU RWCU Flow Flow Loop Loop (TURwcu_Fl.)

(TURWCUJlow)

[(lA)2 + (LD)2 ++ (PMA)

(PMA)22 + + (PEA) (C A) a]"2 (PEA)22 ++ (CA)2J1f2 TURrcu.tl :::

TURWcuYJow = +/- [(LA)2 + (LD)2

[(1 .7)2 ++ (0.34)2

*+/- [(1.7)2 (0.34)2 + (0)22 +

+ (0) + (0)2 (0)2 ++ (1 .5)2]'

(1.5)2]112

=

=t[2.89+0.1156+0+0+2

+/- [2.89 + 0.1156 + 0 + 0 + 2.25]112 .25]"

=

=+/-

  • 15 .2556]'t2

[5.2556]112

= t 2.29251

=+/-2.29251%

TURwcu,F tow =

TURWCU,.FIow '+/- 2.3 °%

t 2.3 fo 7 .4 7.4 RWCU TEMPERATURE RWCU TEMPERATURE LOOP LOOP UNCERTAINTY UNCERTAINTY 7.4.1 7.4.1 RWCU Temperature RWCU Temperature loop Loop Accuracy Accuracy (LARwcu-r)

(lARWCUJ) 7.4.1 .1 7.4.1.1 RWCU Temperature Element RWCU Temperature Reference Accuracy Element Reference Accuracy (A1) (A1)

RWCU Temperature Element RWCU Temperature Element Reference Reference Accuracy Accuracy is is provided provided in in Section 2.3.1..

Section 2.3.1 A1 A1 ==:to.

  • 0.75 75°F OF Page 442 Page 2 of of 93 93

Exelun .

ExelC)n. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 LE-0113 LE-0113 Revision 0 Revision 0 7.4.1 .2 7.4.1.2 RWCU Temperature RWCU Temperature Element Element Power Power Supply Supply Effects Effects (<f1 (al PS)

PS)

Power supply Power supply effects effects are are considered considered to to be negligible (Section be negligible (Section 3.7).

3.7) . Therefore, Therefore, al PS 0'1PS =

= 00 7.4.1 .3 7.4.1.3 RWCU Temperature AWCU Temperature Element Element Ambient Ambient Temperature Temperature Error Error (o1T)

(a1T)

All thermocouple All thermocouple extension extension wire wire junctions junctions are are onon adjacent adjacent terminals terminals and and are are assumed assumed to to be at the be at the same temperature.

same temperature . Therefore, Therefore, for for the thermocouple, the thermocouple, 0'1T 10= 0 7.4.1 .4 7.4.1.4 RWCU Temperature RWCU Temperature Element Element Humidity Humidity ErrorError (e1 (e1 H)

H)

The manufacturer The manufacturer does does not not specify specify the thermocouple operating the thermocouple operating humidity humidity limits (Section 2.3.1).

limits (Section 2.3.1) . TheThe thermocouple is thermocouple located in is located In the the RWCU RWCU System System Room Room 506,506, where where humidity humidity may may vary from 50 to 90%

vary from 50 to 900/0 RH (Reference 4.4.2)

RH (Reference 4.4.2).. Humidity Humidity errors errors areare set set toto zero because they zero because they are are considered considered to be included to be included within within the reference accuracy the reference accuracy specification specification underunder these conditions (Section these conditions (Section 3.2).

3 .2) .

e1H e1H =

- 0 0

7.4.1 .5 7.4.1.5 RWCU Temperature RWCU Temperature Element Element Radiation Radiation ErrorError (e1 (e1 A)

R)

No radiation No radiation errors errors are are specified specified inin the the manufacturer's manufacturer's specifications specifications.. The instrument is The instrument is located located in in the Control the Control Room Room 533, 533, aa mild mild environment (Reference 4.4.2).

environment (Reference 4.4.2) . Therefore, Therefore, it is reasonable it is reasonable to to consider the consider the normal normal radiation effect as radiation effect as being included in being included in the the reference accuracy . Therefore, reference accuracy. Therefore, e1 R e1R =

= 00 7.4 .1 .6 7.4.1.6 RWCU Temperature RWCU Temperature Element Element Seismic Seismic ErrorError (e1 (e1 S)

S)

No seismic No seismic effect effect errors errors are specified in are specified in the manufacturer's specifications the manufacturer's specifications.. A A seismic seismic event event defines defines aa particular particular type type of accident condition.

of accident condition . Therefore, Therefore, there there isis no no seismic seismic error error for normal operating for normal operating conditions (Section conditions (Section 3.5) 3.5)..

e1S e1S =

= 00 7.4.1 7.4.1.7 .7 RWCU Temperature RWCU Temperature Element Element Vibration Vibration Effect Effect (e1 V)

(elV)

The The error error due due to to vibration vibration is is considered considered to to be be negligible negligible because because itit isis small small and and unaffected unaffected by by vibrations in the system .

vibrations in the system.

e1V elV == 00 7.4.1 .8 7.4.1.8 RWCU RWCU Temperature Temperature Element Element Static Pressure Error Static Pressure Error (e1 (el SP)

SP)

The thermocouple The thermocouple output output is is not not subject subject to to pressure pressure variations variations..

e1 el SP,,

SP1G == 00 7.4.1 7.4.1.9.9 RWCU Temperature RWCU Temperature Element Element Ambient Ambient Pressure Pressure ErrorError (e1 (e1 P)

P)

The The thermocouple thermocouple is is an an electrical electrical device device and and therefore therefore not not affected affected by by ambient ambient pressure.

pressure.

e1P alP == 00 7.4.1 .10 RWCU 7.4.1.10 RWCU Temperature Temperature Element Element Temperature Temperature Error Error (e1 (e1n T)

The The temperature temperature error error is is assumed assumed to to be be included included in in the the reference reference accuracy (Reference 44.1.1).

accuracy (Reference .1 .1) .

Therefore, Therefore, e1T elT =

- 00 7.4.1 .11 RWCU 7.4.1.11 Temperature Loop RWCU Temperature Loop PPC 1/0 Module PPC i/0 Module Reference Reference Accuracy Accuracy (A2) (A2)

Reference Reference Accuracy Accuracy;s is specified specified asas +/-+/- 3.0 3.0 IF~F (Section (Section 2.3.3) 2.3.3) and and considered considered to to bebe aa 20 20' value value (Section (Section 3.4)3.4)

Page Page 43 43 ofof 93 93

Exel~n. LE-0113 Reactor Core Reactor Core Thermal Thermal Power Power LE-0113 Uncertainty Carcuration Uncertainty Calculation Unit Unit 11 Revision 00 Revision

-- A22a A2 2c = 3.0 of

+/-t3.0 *F 7.4.1 .12 RWCU 7.4.1.12 RWCU Temperature Temperature Loop Loop PPCPPC I/O I/O Module Module Humidity Humidity Error Error (e2H)

(e2H)

The manufacturer The manufacturer specifies specifies the the I/O I/O module module operating operating humidity humidity limits limits between between 00 and and 9595 ok% RH RH (Section 2.3.3).

(Sectjon 2.3.3) . The The 1/0I/O module module is is focated located in in the the Control Control RoomRoom 533, 533, where where humidity humidity maymay vary vary from from 50 to 50 to 900/0 90% RH RH (Reference (Reference SectionSection 4.4.2).

4.4.2) . Humidity Humidity errorserrors are are set set toto zero zero because because they they are are considered to considered to be be included included within within the the reference reference accuracy accuracy specification specification underunder these these conditions.

conditions .

(Section 3.2)

(Section 3.2) e2H e2H =- 00 7.4.1 .13 RWCU 7.4.1.13 RWCU Temperature Temperature Loop Loop PPC PPG I/O1/O Module Module Radiation Radiation Error Error (e2R)

(e2R)

No radiation No radiation errors errors are are specified specified in in the the manufacturer's manufacturer's specifications.

specifications . The The instrument instrument is is located located in in the Control the Control Room Room 533, 533, a a mild mild environment environment [Section

[Section 4.4.2J.

4.4.2] . Therefore, Therefore, itit is is reasonable reasonable to to consider consider the normal the normal radiation radiation effect effect asas being being included included in in the the reference reference accuracy.

accuracy. Therefore, Therefore, e2R e2R =

= 00 7.4 .1 .14 RWCU 7.4.1.14 RWCU Temperature Temperature Loop Loop PPCPPC I/O I/O Module Module Seismic Seismic Error Error (e2S)

(e2S)

No seismic No seismic effect effect errors errors areare specified specified in in the the manufacturer's manufacturer's specifications.

specifications. A seismic event A seismic event defines defines a particular a particular type type of of accident accident condition.

condition . Therefore, Therefore, there is no seismic error for normal operating there is no seismic error for normal operating conditions (Section 2.8) conditions (Section 2.8)..

e2S e2S _

= 00 7 .4.1 .15 RWCU 7.4.1.15 RWCU Temperature Temperature Loop Loop PPCPPC I/OI/O Module Static Pressure Module Static Pressure Offset Offset Error Error (e2SP)

(e2SP)

The The t/O riO module module is is an an electrical device installed erectrical device installed in in the the control control room room and and isis not not subject subject toto pressure pressure effects effects..

e2SP e2SP = 00 7.4.1 .15 RWCU 7.4.1.16 RWCU Temperature Temperature Loop Loop PPG ppe I/OI/O Module Module Ambient Ambient Pressure Pressure Error Error (e2P)

(e2P)

The The I/O1/0 module module Is is an an electrical electrical device device andand therefore therefore not not affected affected by by ambient ambient pressure.

pressure.

e2P a2P == 00 7.4.1 .17 RWCU 7.4.1.17 AWCU Temperature Temperature Loop Loop Accuracy Accuracy (LARwcu_n (LARWCU_FlOW) .)

LARwcuj LARWCU..T =t+/- [(Al [(A 1)2

++ (e1T)

(e1T)2

)2 +

+ (a1 (01 PS)2 PS)2 +

2 ++ (A2)2

+ (a1T)2 (0'1T)2 +

(A2)2 ++ (e2H)2 (e2H)2 +

+ (e1

+ (e2R)

(el H)2 H)2 +

2

+ (el (e2R)2 ++ (e2S)2 R)22 +

(el R)

(e2S)2 +

+ (e1

+ (e2SP)

(e2SP) +

Si2 ++ (e1 (el S~2

+ (e2P) vt

{e1 V 2 ++ (e1 (e2P) ]'/2]112 (el SP)2 (el P)2 SP)2 ++ (e1 p)2

t +/- ((~o.75)2 + (0)2 + (0)22 +40) 0.75)2+(0)2+(0) +40) (0)2z ++ (0) jO)21 ++ (0) (0)22 + (0)22 ++ (0)

+ (0) (0)22 + (0)22 ++ (0)2+(3

+ (0) . 0)2+(0)2+

(0)2 + (3.0)2 + (0)2 +

(0) + (0)22 +(0)

+ (0)22 +(0)

CO) +(0) 2]1

+ (0)2]1

=t[0.5525+0+0+0+0+0+0+0+0+0+9

=+/- [0.5625 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 9.0 .0+0+0+0+0+0]

+ 0 + 0 + 0 + 0 + 0]112 1r2

[9.5625 °F2]112

;: +/- [9.5625 °F2]1f2 LARwcuj LARwcu-T

= t+/- 33.09 .09 °FOF 7.4.2 7.4.2 RWCU RWCU Temperature Temperature Loop Loop Drift Drift 7.4.2.1 7.4.2.1 RWCU RWCU Temperature Temperature Element Element DriftDrift Error Error (D1)

(01)

The The error error associated associated with with the the thermocouple thermocouple isis alreadyalready included included in in the the reference reference accuracy accuracy (Section (Section 33.2).

.2) . Therefore, Therefore, for for the the thermocouple, thermocouple, D1 01 -= t0

+/-O Page Page 44 44 ofof 93 93

^qw1on.

rw LE-01 13 Exelon.

P-NrnAeft x.

Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 1I LE-0113 Revision 00 Revision 7 .4.2.2 7.4.2.2 RWCU Temperature RWCU Temperature Loop Loop PPC PPC 1/0 1/0 Module Module DriftDrift Error Error (D2)

(D2)

The vendors The vendors do do not not specify specify driftdrift errors errors for for the the SAU SRU andand va 1/0 module.

module . Therefore, Therefore, per per Section Section 3.2, 3.2, itit is is considered to considered to be be included included in in the reference accuracy.

the reference accuracy.

D2 D2 = +/-0

+/-O 7.4.2.3 7.4.2.3 RWCU Temperature RWCU Temperature Loop Loop DriftDrift (LD RWCU_T)

(LDRWCU-T)

(D2)2]1/2 LD RWcu _T LDRWCU-T [(DI) 2 +

== [(Dl)2 + (02)2]112

== [(0)2

[(0) 2 ++ (0)2]1,2 (0)2]1/2

= :t (0[0 + + 0]1/2 0]""2

[0/2 12

= +/- [ot

+/-0.0 0/0

= +/-O.O  %

LDRWcu_:T LDFWCU-T =+/-+ 00 %  %

7.4 .3 7.4.3 RWCU Temperature RWCU Temperature Loop Loop (PMARWCU",T)

(PMARwCU,,,T)

No additional No additional PMA PMA effects beyond the effects beyond the effects effects specified specified in the calculation in the of loop calculation of loop accuracy_

accuracy.

PMApwcu_TT =

PMARWCU.. =+/- :t 00 7.4.4 7.4.4 RWCU Temperature RWCU Temperature Loop loop (PEARwcu_T)

(PEARWCU_r)

No No additional PMA effects additional PMA effects beyond beyond the the effects effects specified specified in in the calculation of the calculation loop accuracy.

of loop accuracy.

PEARWCU-T = 0 PEARWCU~T = 0 7.4.5 7.4.5 RWCU Temperature AWCU Temperature Loop Loop Calibration Calibration Accuracy (CARwcu-T)

Accuracy (CARWCU_r)

Standard Standard practice practice is is to specify calibration to specify caJibration uncertainty uncertainty in in calculations calculations equal equal to to the the uncertainty uncertainty associated associated withwith the the instruments instruments under under test test (Reference (Reference 4. 1 . 1 ).

4.1.1 Therefore, Therefore,

)2+

[(Al CAFiwcu,:r CARWCU.",T = [{A 1)2 + (A2)2 (A2)2 + + (A3)21"2

{A3)2J112

= [(0 .75 -°F)2

[(0.75 F)2 + + (3.09 (3.09 -F)2 1"2

°F)2]112

= [0-5625

[0.5625 ++ 9]" 9]1/2

= [9.5625]"

[9.5625]112 CA RWCU_T CARWCU-T = 3.09 3.09 'F OF 7.4 .6 7.4.6 Total Total Uncertainty Uncertainty RWCU RWCU Temperature Temperature Loop Loop (TURwcuj)

(TURWCU3)

TURWCU_T =

TURWCU_T =:t [(LA)2 ++ (LD)'

t [(LA)2 (lD)2 ++ (PMA)

(PMA)22 + {PEA)2 ++ (CA)']""2

+ (PEA)2 (CA)2]1/2

=

=+/-+/- [(3-09)'

[(3.09)2 ++ (0)2 (0)2 ++ (0)

(0)2 ++ (0)' {O)22 ++ (3 (3.09)2)112

.09)']"2

=t[9 .5625+0+0+0+9

= +/- [9.5625 .5625] 2

+ 0 + 0 + 0 + 9.5625]1I2

= +/- [19 .125]"

[19.125]112 4.373 *F

=+/-4.373 OF 4 TURwcu TURWcu_T -T =:t 4.37 .37 *F OF 7.5 7.5 CRD CRD FLOWFLOW RATERATE UNCERTAINTY UNCERTAINTY 7.5.1 7.5.1 CRD CRD FlowFlow Rate Rate Loop Loop Accuracy Accuracy (LAcRD_F1,w)

(LACRO_Row)

Page Page 45 45 ofof 93 93

1-5-0113 Exelon. ReactorCore Reactor Core Thermal Thermal Power Uncertainty Calcuration Uncertainty Power Calculation Unit Unit 1I LE*0113 Revision 00 Revision 7.5.1 .1.1 7.5.1 CRD Flow CRD Flow Element Element Reference Reference Accuracy Accuracy (A1)(Al)

The accuracy The accuracy of of the the flow flow element element isis +/-+/- 1°k1% of of actual actual rate rate ofof flow flow (Section (Section 2.4.2).

2.4.2) .

Therefore, Therefore.

Al A1 = +/- 1I % % now flow 7.5.1 .2 7.5.1.2 CRD Flow CAD Flow Element Element Humidity, Humidity, Radiation, Radiation, Pressure, Pressure, and and Temperature Temperature Errors Errors (e1 (elH, H, e1el A, R, 91 el P, P, e1T) e1T) its The flow The flow element element isis aa mechanical mechanical device device mounted mounted in in the the process process and and its output output isis not not SUbject subject to to environmental or environmental or vibration vibration effects.

effects . Therefore; Therefore ;

e1H el H= = e1 el RR= = el el P =

P = e1T e1T == 00 7 .5.1 .3 7.5.1.3 CRD Flow CAD Flow Element Element Seismic Seismic Error Error (e18)

(e1 S)

A seism A seismic event is ic event is an an abnormal abnormal operating operating condition condition andand is is not not addressed addressed by by this this calculation calculation (Section 3.5).

(Section 3.5) . Therefore; Therefore ;

els elS = 00 7.5.1 .4 7.5.1.4 CRD Flow CAD Flow Element Element Static Static Pressure Pressure Error (e1 SP)

Error (el SP}

The flow The element is flow element is constructed constructed of of stainless stainless steel steel and and is is not not affected affected byby process process pressure.

pressure.

Therefore, Therefore, e1SP e18P =

= 00 7.5.1 .5 7.5.1.5 CRD Flow CAD Flow Transmitter Transmitter Reference Reference Accuracy Accuracy (A2)(A2)

Reference Accuracy Reference Accuracy;s is +/-* 0.25 0.25 Ok % of of span span (Section (Section 2.4.3).

2.4.3) . The The reference accuracy is reference accuracy is set set to to the the calibration accuracy calibration accuracy per per plant plant procedure (Reference 4.1 procedure (Reference 4.1.1.1))..

A2 A2 = :t

+/- 0.50 0.50 % 0/0 Converting Converting % span to

% span to %

% flow flow Rearranging Rearranging Equation Equation A8-10, A8-10, ( ;craP AF == 22 ** CROW, O'FLOW, to to solve solve for for flow trow (Reference (Reference Attachment Attachment 8): 8):

A2%Flow A2%FIoW  ;: A2%Span // 22 A2%Span

= +/-+/- 0.500.50 %  % ofof span span // 2 2

= +/-+/- 0.250.25 %  % ofof Flow Flow A2 %Flow A2%FIOW = +/-:I:: 0.25 0.25 %  % ofof Flow Flow 7.5.1 .6 7.5.1.6 CRO CAD FlowFlow Transmitter Transmitter Power Power Supply Supply Effects Effects (a2PS)

(cr2PS)

Power Power supply supply effects effects are are considered considered to to be be negligible negligible (Section (Section 3.7) 3.7).. Therefore, Therefore, a2PS cr2P8 =:= +/- 00

L-7.5.1 .7 7.5.1.7 CRD CRD FlowFfow Transmitter Transmitter Ambient Ambient Temperature Temperature Error Error (a2T)

(02T)

The The temperature temperature effect effect is is *+/- 2.4 2.4 % % of of span span per per 100 OF at 100 OF at 197.5 197.5 INWGrNWC spanspan (Section (Section 2.4.3) 2.4.3).. The The calibrated calibrated span span is is 197.5 197.5 INWC.

INWC. The The maximum maximum temperature temperature at atthe the transmitter transmitter location location isis 106 -F, 106CtlF, and and minimum minimum temperature temperature during during calibration calibration could could bebe 65 OF. so 65 OF, so the the maximum difference == 106 maximum difference 106 --6565 t>F == 41 OF 41 "F GF (Section (Section 2.3.4) 2.3.4)..

a2T cr2T  := *:I:: t(O.024

[(0.024* .197.5 INWC) //100 197.5INWC) 100 "F]

oF]..4141 '-F

"*F [3a]

(30']

= +/-+/-[(4.74[(4.74 1 INWC)1100 NWC)/100 *F] #F] -*41 *F 41°F

= +/-+/- 11.943.943 INWCfNWC Converting Convertingto to % % span span Page Page46 46ofof9393

E~celc'm.

Exelon. Reactor Core Aeactor Core Thermal Thermal Power Uncertainty Calculation Unit Uncertainty Calculation Power Unit 11 LE-01 13 LE-0113 Revision Revision 00 a2T2a 02T 20 == +/-t 1.943INWC/

1 .943 INWC / 197.5 197 .5 rNWC INWC

= +/-t 0.0098 0.0098 Converting %

Converting  % span span to to %% flow flow Rearranging Equation Rearranging Equation A8-1 A8-10, 0, <1M' =

aep = 22 ** O'FlOW, aF.ow, to to solve solve for for trow flow (Reference (Reference Attachment Attachment 8): 8):

a2T2,%Fiow

<12T 2G%FIow =- a2T2,,%S,,,

a2T 2o%Span I/ 2 2

=- +/-0.98

t 0.98 %%/2 / 2

=- +/-0.49

+/-0.49%

a2T2,%F,,,

<12T 2o%Flow =-- +/-t 0.49 0.49 o/Q 7.5.1 .8 7.5.1.8 CRD Flow CAD Flow Transmitter Transmitter Humidity Humidity ErrorError (e2H) (e2H)

The manufacturer The manufacturer specifies specifies the the transmitter transmitter operating operating humidity humidity limits limits between between 00 andand 100 100 % % RH RH (Section 2.4.3).

(Section 2.4.3) . The The transmitter transmitter is is located located in in the the CRD CRD Equipment Equipment Area, Area, Room Room 402,402, where where humidity humidity may vary may vary from from 50 50 to to 900/0 90% RH RH (Reference (Reference 4.4.2). 4.4.2) . Humidity Humidity errors errors are are set set to to zero zero because because they they are are considered to considered to bebe included included within the reference accuracy specification under these conditions.

within the reference accuracy specification under these conditions.

3.2)

(Section 3.2)

(Section e2H e2H -.

=: 0 0

7.5.1 .9 7.5.1.9 CRD Flow Transmitter CAD Flow Transmitter Radiation Radiation ErrorError (e2R) (e2R)

Radiation error Radiation error Is assumed to is assumed to bebe 1010 %  % of of span span (Section 3.9) .

(Section 3.9).

e2R e2R =- 10 10 %  % of of Span Span

_ 1 0 °!o 10  %." 197.5 197.5 INWC rNWC e2R e2R

=: 19.751NWC 19.751NWC Converting Converting to to %  % spanspan o2 R cr2R .-=: t+/- 19.75 19.75 INWC INWC // 197 197.5 .5 INWC INWC

=

- 10.10

+/-0.10 ==: 10 10 %Ok Converting Converting %  % span span to to %  % flow flow Rearranging Rearranging EquationEquation A8-10, A8-10, aap crAP == 22 '`11 aFLow,

<1FlOW, toto solve solve for for flow flow (Reference (Reference Attachment Attachment 8): 8):

cr2R%F[Ow 0'2R%FIow -.=: a2R2^sW cr2R2o%Span /I 22

=: :t+/- 10.0%

10.0%/2 /2

= t:t 5.00%

5.000k a2R%F,,,

cr2R%FIOWw --- t 5.0%

7.5.1 .10 CRD 7.5.1.10 CAD Flow Flow Transmitter Transmitter Seismic Seismic ErrorError (e2S)(e2S)

No No seismic seismic effect effect errors errors are are specified specified In in the the manufacturer's manufacturer's specifications.

specifications. AA seismic seismic event event defines defines aa particular particu'ar typetype of of accident accident condition condition.. Therefore, Therefore, there there isis no no seismic seismic error error for for normal normal operating operating conditions conditions (Section (Section 3.5) 3.5) e2S e2S == 00 7.5.1 .11 CRD 7.5.1.11 CRD Flow FfowTransmitter Transmitter Vibration Vibration Effect Effect(e2V) (e2V)

The The error error due due to to vibration vibration isis considered considered to to be be negligible negligiblebecause because itit isis small smalfand and unaffected unaffected by by vibrations vibrations inin the thesystemsystem..

e2V e2V = = 00 Page Page47 47ofof9393

LE-01 13 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 1I LE-G113 Revision 0 Revision 0 7.5.1 .12 CRD 7.5.1.12 CRD FlowFlow Transmitter Transmitter Static Static Pressure Pressure ZeroZero Error Error (e2SP)

(e2SP)

The transmitter The transmitter has has aa ZeroZero Error Error ofof:t 0.5 %

t 0.5  % ofof UAL URL for for 2000 2000 psipsi (Section (Section 2.4.3).

2.4.3) . The The calibrated calibrated range shown in Table 2-12 shows the static pressure adjustment made to account for range shown in Table 2*12 shows the static pressure adjustment made to account the span for the span error effect. Therefore, error effect. Therefore, the the total Static Pressure Error is total Static Pressure Error is e2SP e2SP =

+/- 0.5

+/- 0.5  % of

% of URL URL for 2000 psi for 2000 psi The normal The normal operating operating pressure pressure (Table(Table 2-11) 2-11) is 1448 psig.

is 1448 prig. Therefore, Therefore, e2SP e2SP  ::: +/-0.5%

+/- 0.5 % .7501NWC-1448prig

  • 750 INWC . 1448 psig //2000psi 2000 psi
+/- 2.715 INWC
i:2.715INWC e2SP e2SP =
+/-+/- 2.72 2.72 INWC,INWC, roundedrounded Converting Converting to to %  % spanspan cr2SP a2SP =
:t 2.72 INWC / 200 INWC

+/-2.72INWCI200INWC

= .32%

.01316=1 X0

t 0.01316 = 1.32 ok Converting %

Converting  % spanspan to to % flow

% ffow Rearranging Equation Rearranging Equation A8-1 A8-10, 0, O'M>:::

(Y,&p 2 2 ** O'FlOW, GROW, to solve for to solve flow (Reference for flow (Reference Attachment Attachment 8): 8):

a2SP%O,,

0'2SP%FIOW = QSP,aso.

a2SP2~Span /2 2

= 11

+/- 1.32.32%12%I2

= 0.66 %

+/-0.66  %

a2SP%Fl.

0'2SP%Flow  ::: +/- 0.66

+/- 0.66  %

7.5.1 .13 CAD 7.5.1.13 CRD FlowFlow Transmitter Transmitter Ambient Pressure Error Ambient Pressure Error (e2P)

(e2P)

The flow transmitter The flow transmitter is is an an electrical device and electrical device and therefore therefore not not affected affected by by ambient ambient pressure pressure..

e2P e2P == 00 7.5.1 .14 CRD 7.5.1.14 CAD FlowFlow Transmitter Transmitter Temperature Temperature Error Error (e2T)

(e2T)

Temperature Temperature error error is Is considered considered to to be be aa random random variable variable for for aa Rosemount Rosemount transmitter transmitter.. Therefore Therefore e2T e2T == 0 0 7.5.1 .15 CAD 7.5.1.15 CRD FlowFlow LoopLoop PPC PPC 1/0 I/O Module Reference Accuracy Module Reference Accuracy (A3) (A3)

Reference accuracy Reference accuracy of of the the computer computer input input isis taken taken toto bebe the the SRSS SRSS of of the the reference reference accuracies accuracies of of the the SRUSRU and and the the 1/0 1/0 module . The reference accuracy of the SRU is 0.1 % of span. Reference module. The reference accuracy of the SRU is 0.1 % of span. Reference Accuracy Accuracy for tor thethe 1/0 1/0 module module is is specified specified as as +/-+/- 0.5 0.5 %°k of of span span (Sections (Sections 2.4.4 2.4.4 and and 2.4.5) 2.4.5)..

A~(J At. =y4~O.12yoj.12 + +0.5002.5 =::: 0.5099 2 0.5099::: = 0.51 0.51 %  % span span Converting %

Converting  % span span to to %  % flow flow Rearranging Equation Rearranging Equation AS-10, A8-10, aAp =

O'AP = 2 O'FLOW, to 2 ** aFLOW, to solve solve for for flow flow (Reference (Reference Attachment Attachment 8): 8):

A3%n.

A3%Flow = = A3%spa A~span. // 22

=

= +/-::t 0

. 5i%/2 0.51°,10 /2 A 3%Ff. == +/-+/-0.255 0.255 %  %

7.5.1 .16 CRD 7.5.1.16 CAD FlowFlow LoopLoop PPC PPC 1/0 I/O Module Module Humidity Humidity ErrorError (e3H)

(a3H)

The The manufacturer manufacturer specifies specifies the the 1/0 1/0 module module operating operating humidity limits between humidity limits between 00 and and 9595 % 0,10 RH RH (Section (Section 2.4.4) 2.4.4).. The The 1/0 I/O module module is is located located in in the the Control Control RoomRoom 533,533, where where humidity may vary humidity may vary from from Page Page 48 48 ofof 93 93

LE-0113 Exelon. Reactor Reactor Core Uncertainty Core Thermal Thermal Power Calculation Unit Uncertainty Calculation Power Unit 1 1 LE-G113 Revision Revision 0 0 50 to 50 to 90 90 %

% RH AH (Reference (Reference 4.4.2).4 .4.2) . Humidity Humidity errors errors are are set set toto zero zero because because they they are are considered considered to to be included be included within within the the reference reference accuracy accuracy specification specification under under these these conditions. (Section 3.2) conditions. (Section 3.2) e3H e3H =

- 0 0

7.5.1 .17 CRD 7.5.1.17 CRD Flow Flow Loop Loop PPC PPC 1/O 1/0 Module Module Radiation Radiation ErrorError (e3R)

(e3R)

No radiation No radiation errorserrors are are specified specified in the manufacturer's in the manufacturer's specifications specifications.. The instrument is The instrument is located located inin the Control Room the Control Aoom 533, 533, a mild environment a mild [Reference 4.4.2].

environment [Reference 4.4 .2] . Therefore, Therefore, it it Is is reasonable reasonable to to consider consider the normal radiation the normal radiation effect effect asas being included in being included in the the reference accuracy . Therefore, reference accuracy. Therefore, e3R e3R =

= 00 7.5.1 .18 CAD 7.5.1.18 CRD FlowFlow Loop Loop PPC PPC 1/0 I/0 Module Module Seismic Seismic Error Error (e3S)

(e3S)

No seismic effect No seismic effect errors errors are are specified specified in in the the manufacturer's manufacturers specifications specifications.. A A seismic seismic event event defines defines a particular a partiCUlar type type of accident condition.

of accident condition . Therefore, Therefore, therethere Is Is no seismic error no seismic error for for normal normal operating operating conditions (Section conditions (Section 3.5). 3.5) .

e3S e3S .-=: 00 7.5 .1 .19 CAD 7.5.1.19 CRD FlowFlow Loop Loop PPC PPC 1/0 I/C? Module Static Pressure Module Static Pressure Offset Offset Error Error (e3SP)

(e38P)

The The 1/0l/O module module is an electrical is an electrical device device and and therefore therefore not affected by not affected by static static pressure.

pressure.

e3SP e3SP == 0 0

7.5.1 7.5.1.20.20 CRD CRD FlowFlow Loop Loop PPC PPC i/O I/O Module Modure Ambient Ambient Pressure Pressure Error Error (e3P)

(a3P)

The The t/O module is JlO module is an an electrical device and electrical device and therefore therefore not not affected affected by by ambient ambient pressure.

pressure.

e3P e3P =

-- 00 7.5.1 7.5.1.21.21 CRD CRD Flow Flow Loop Loop PPC PPC I/O I/O Module Process Error Module Process Error (e3Pr)

(e3Pr)

The 1/0 The I/O module module receives receives an an analog analog current input from current input the flow from the transmitter proportional flow transmitter proportional to to the the pressure sensed.

pressure sensed . Any Any process errors associated process errors associated with with the conversion of the conversion pressure to of pressure to a a current current signal have signal have been accounted for been accounted for as as errors errors associated associated with with flow flow transmitter.

transmitter. Therefore, Therefore, e3Pr e3Pr == 00 7.5.1 .22 CAD 7.5.1.22 CRD Flow Flow LoopLoop Accuracy Accuracy (LAcRD_FlOW)

(LAcRD-Fl1,)

LAM-LAcAO_FIow Flow [{A 1)22 +

=[(A1) + (e1 H)2 +

(e1 H)2 + (e1 R)2 +

(e1 A)2 + (el (e1 P)2 p)2 + (e1T)2 +

+ (e1T)2 (e1 S)2

+ (e1 8)2 + + (ell SP)2 +

(e1 SP)2 (A2)2 +

+ (A2)2 + (a2PS2)2 (0'2P82)2 + +

(o2T)2 +

(0'2T)2 (e2H)2 +

+ (e2H)2 + (e2R)2 (e2R)2 + (e2S)2 +

+ (e28)2 + (e2V)2 (e2V)2 + (e2SP)2 +

+ (e28p)2 +(e2P)

J92P)22 + + (e2T)2 (e2T)2 + + (A3)2 (A3)2 ++

2 + (e3R)2 (e3H) +

(e3H)2 (e3R)2 + (e3S)2 +

+ (e3S)2 + (e3SP)

(e3Sp)22 + (e3p)22 +

+ (e3P) + (e3Pr)2]1 (e3Pr)21'

=[( 1)22 +(0)

[(1) + (0)22 +(0)

+ (0)22 + (0)22 +

+(0) (0) 2 +

+ (0)2 (0) 2 +(0)

+ (0)2 + (0)22 +(0 .25) 2 +

+ (0.25)2 0) 2 +

+ ~0)2 0.49)2 +(0)

+ ~0.49)2 + (0)22 +(5 .2

0) +

+ (5.0).2 +

(0)2+(0)2+

(0)2 + (0)2 + (0.66)2+ (0)2+

(0.66)2 + (0)2 + (0) (0)22 +

+ (0 .255)2 + (0), + (0)2+(0)1]11 (0.255)2 (0)2 +

+ (0)2 + (0) ++ (0)

(0) + + (0)2 (0)2 + (0)2 + (0) ]'12

=t[1

=+/- [1 +0+0+0+0+0+0+0

+ 0 + 0 + 0 + 0 + 0 + 0 + 0.015625+ .015625+0+0.2401 0 + 0.2401 +0+25 + 0 + 25.0 .0+0+0+0 .4356+

+ 0 + 0 + 0.4356 +

0+0+0.065025+0+0+0+0+0+0]

0+0 + 0.065025 + 0 + 0 + 0 + 0 + 0 + 0]112 112

=t [26 .80323]'

+/- [26.80323]112

=

=15.177183

+/- 5.1n183 % 0/0 LACRD_Fbw LAcRD,.. FIoW =

=+/- 5.2 5.2 %

7.5.2 7.5.2 CRD CRD Flow Loop Drift Flow Loop Drift (LDCRO-Row)

(LDcRD_Row) 7.5.2.1 7.5.2.1 CRD CAD Flow Flow Element Element Drift Drift Error Error (D1)

(D1)

The flow element The flow element is is aa mechanical mechanical device;device; drift drift error error isis not applicable for not applicable the flow for the flow elements.

elements.

Therefore, Therefore, D

D11 =

=+/- 0.00°lam Flow

t 0.00% Flow Page 49 Page 49 ofof 9393

LE-0113 LE..0113 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 Revision Revision 0 0 7.5 .2.2 7.5.2.2 CRD CAD FlowFlow Loop Loop Transmitter Transmitter Drift Drift Error Error (D2)

(02) 7 .5 .2.3 7.5.2.3 CRD CAD FlowFlow Loop Loop Drift Drift Error Error (D2)

(D2)

Drift Drift error error for the transmitter for the transmitter is +/- 0.25 is t 0.25 % of URL

% of UAL //6 6 months, months, taken taken as as aa random random 2a 20' value value (Section (Section 3.4). The 3.4). The calibration calibration frequency frequency is is 22 years, years, with with a late factor a late factor ofof 6 months.

6 months.

- D22Q D2 20 = t+/- (0 .25 %

(0.25  % ** URL)

URL)

Drift is Drift applied to is applied to thethe surveillance surveillance interval interval as as follows follows (Section (Section 6.2.5) 6.2.5)::

D2 2c = +/-+/- ([(24

{[(24 months months + + 66 months) months) /16 6 months]

months] *... [0.0025

[0.0025 URL]

URL] 2) 1/2

= *+/- 030/6]'[0 .0025 *... 750

((30/6]"[0.0025 INWC] 2)"

750 INWCJ2) 1/2

= t:I: [17.578125]"

[17.578125]1/2

= t:l:4.192627458INWC 4.192627458 1 NWC 0220' = t 4.191NWC,

+/- 4.19 INWC, rounded rounded to level of to Jevel of significance significance Converting to Converting to %Ok span span D2 D2%Span= = t 4.19 INWC / 197.5 INWC

+/-4.19INWC/197.5INWC

-= +/-0.02121-2.121%

+/-0.02121=2.121°k Converting Converting %  % span span to to %% flow flow Rearranging Rearranging Equation Equation A8-10, AS-1 0, as p=

(fAP = 22 ** aFLrnar, O'FlOW, toto solve solve for flow (Reference for flow (Reference Attachment Attachment 8):8):

D2%Fbw =

02%FIow D2%s,

D2%Span I/ 2 2

=

.- +/-2

+/-2.121 .121 %/2%/2

=

- +/-+/- 1.06080/0 1 .0608 D2%n,.

D2%fJow = = +/- 1.0

+/- 1 .0 0/0 7.5.2.4 7.5.2.4 CRD Flow CAD Flow Loop Loop PPC PPC I/0 I/O Module Module Drift Drift Error Error (D3)

(03)

The The vendor vendor doesdoes not specify a not specify a drift error for drift error for the the 1/0 VO module module.. Therefore, per Ref.

Therefore, per Ref. 4.1 .1 Section 4.1.1 Section I,I, itit is is considered considered to to be be included included in in the the reference accuracy .

reference accuracy.

D3 03 =

- :to

+/-0 7.5.2 .5 7.5.2.5 CRD CAO FlowFlow Loop Loop Drift (LDRwcu-Fk,,)

Drift (LORWCU_Aow)

(D3)2]1r2 LDCRD-n,+ =

LOCRO_AOW [(01)22 +

= [(D1) + (D2)2 (02)2 + + (03)2]112

= (1 .0)1 +

= [(0)2

[(0)2 + + (1.0)2 + (0)2]112 (0)2]112

=

~t[0+:i: [0 + 11.0.0+0]"2

+ OJ 1/2

[11 1/2

=t+/- [1]1/2 LDCRO_Ft.

LD cRo _Flow = =+/- t1 1 .0

.0 %

7.5.3 7.5.3 CRD CAO FlowFlow Loop Loop Process Process Measurement Measurement Accuracy (PMAcRO_Frow)

Accuracy (PMAcRO_Aow)

No additional No additional PMA PMA effects beyond the effects beyond effects specified the effects specified in in the the calculation calcuJation ofof loop accuracy .

loop accuracy.

AWcu_Flow = 0 PMARwcu_m" PMA = 0 7.5 .4 7.5.4 CRD Flow CAD Flow Loop Primary Element Loop Primary Element Accuracy Accuracy (PEACRD-Ft (PEAcRD_FIow) .)

No additional PEM No additional PEM effects effects beyond beyond the the effects effects specified specified in the calculation in the calculation ofof loop loop accuracy.

accuracy.

PEARwcu_jqo ,r = 00 PEARWcu_Aow =

7.5.5 7.5.5 CAD Flow CAD Flow Loop Calibration Accuracy Loop Calibration (CAcRO_Row)

Accuracy (CACRO_FIOW)

Page 550 Page 0 of of 93 93

LE-0113 Exelon. Reactor Reactor Core Uncertainty Core Thermal Uncertainty Calculation Thermal Power Calculation Unit Power Unit 1 1 LE-0113 Revision Revision 0 0

Standard practice is Standard practice is to specify calibration to specify uncertainty in calibration uncertainty calculations equal in calculations equal to to the uncertainty the uncertainty associated with the instruments under test (Section 4.1 .1) .

associated with the instruments under test (Section 4.1.1).

Therefore, Therefore, CARWCU,~FIOW = )2 + (A2)2 + (A3)2 (A3)2]1r2 CARwcu_Frow = [(Al1)2

[(A + (A2)2 + J'12

=

w [(1 %)2

[(1  %)2 + +(0.25 (0.25 %)  %)22 + (0.255 %)211r2

+(0.255 0/0)2)"2

=

_ [1 %2]'122

.25 %2]"

[1.25

=

.- 11.12753

.12753 Ok CARwcu-Frnw =

CAAWCU_Flow = 1 .06185 %

1.06185  % :::= rounded rounded to 1 .1 to 1.1 7.5.6 7.5.6 Total Uncertainty Total Uncertainty CRD CRD Flow Flow LoopLoop (TUCRD_Flow)

(TUCRD_Row)

TUCRO_Flow TUDRD_Fl . =  ::: [(LA)2

[(LA)2 + + (LD)

(LD)22 + (PMA)2 +

+ (PMA)2 (PEA)2 +

+ (PEA)2 + (CA)2]1"2 (CA)2]'12 (0)2

==[(5.2)2

[(5.2)2 + + (1 .0) 2 +

(1.0)2 + (0)2 + (0)22 +

+ (0) + (1 (1.1.1)2]112

)2]'12

=f[27.04+1+0+0+1

= +/- [27.04 + 1 + 0 + 0 + 1..21] 1 21J '12

=+/-t [29

-- .25] 1

[29.25]112

=+/-5.4083 5.4083 %

TUc.Ro.

TU CAOMf1o'N,, = = +/- 5.4 5.4 %

7.6 7.6 RECIRCULATION PUMP RECIRCULATION PUMP HEAT HEAT UNCERTAINTY UNCERTAINTY 7 .6.1 .1 7.6.1.1 Recirculation Pump Recirculation Pump Motor Power (Qp)

Motor Power (QP)

The recirculation The recirculation pump pump system system consists consists of of two parallel pumps two parallel pumps that maintain forced that maintain forced circulation flow circulation flow loops loops inin the the reactor reactor core. core. The The water water originates originates In in the the core core andand returns returns to to the the core at aa higher core at higher pressure. The pressure. The work work performed performed by the recirculation by the recirculation pumps pumps includes includes the specific work the specific work ofof the the pump pump plus the pump inefficiency. This energy can be estimated by measuring the power consumed by plus the pump inefficiency. This energy can be estimated by measuring the power consumed by the the pump pump motor motor and and multiplying multiplying the the pump pump motor motor power power by by the the motor motor efficiency efficiency. . The maximum design The maximum design output output ofof the recirculation motor the recirculation motor M-GM-G setset is 7700 HP, is 7700 HP, which which is is monitored monitored by by the the watts watts transducer.

transducer.

The noo HP The 7700 HP is is conservatively conservatively used used in in lieu lieu of of the the motor motor 7500 7500 HP rated in HP rated in determining determining the the recirculation recircuration pump pump heat uncertainty.

heat uncertainty.

17m Brake Brake HP HP Fluid HP Fruid HP Motor Motor OPP WA

_W

_A

~m

'l m- - WA WE , motor WE 1 motor efficiency; efficiency; where where WA W A := '-- 'lm We, motor

'? m '. WE, motor output output to to pump pump (brake horsepower (HP>>

(brake horsepower (HP))

'lP = WI

)7P-WA 1 pump efficiency pump efficiency WA W, =

WI ideal work

= ideal work energy energy input input to to fluid fluid system system (fluid(fluid HP)

HP)

Page 51 Page 51 ofof 9393

Exelon'. LE-0113 Exelon. Reactor Reactor Core Uncertainty Thermal Power Core Thermal Uncertainty Calculation Power Calculation UnitUnit 11 LE-0113 Revision Revision 00 W

WEE = electric power

= electric input to power input to motor motor (measured power, Watts)

(measured power, Watts)

The The difference difference betweenbetween the the input input (actual (actual pumppump power) power) and and the output (ideal) the output (ideal) pump pump power power isis the the power power lost lost to friction in to friction in the the pump.

pump. The The heat heat added added to to the the pump pump is due to is due to inefficiency.

inefficiency.

Heat Heal Added Added by Pump =

by Pump (1-77

= ((1-(

j{

17 00) . W A

~00- WA The calculation of The calculation of the the total total recirculation recirculation pump pump heat Qp, is input, QP, heat input, taken from is taken from Equation Equation 6 (Section 6 (Section 6.2.1 .3) .

6.2.1.3).

QP Qp =

2 . 11m' 2* qr" . WeWe (Equation (Equation 40)40)

Motor Efficiency, qm, Motor Efficiency, 'lm, isis 94.8%

94.8% at at maximum maximum speed speed of of 1690 rpm (Reference 1690 rpm (Reference 44.8.2) .8 .2)

-= 22 ** 0.948 0.948 ** 5.74 5.74 MW MW (based(based on 7,700 Hp on 7,700 Hp motor (Table 2-1) motor (Table 2-1)

10 .8866 MW 10.8866 MW Multiply Multiply by 3,412,000 Btu/hr by 3,412,000 per MW Btulhr per MW to to convert convert to to Btu/hr Btuthr

== 10.8866 MW 10.8866 MW ** 3,412,000 Btu/hr/MW 3,412,000 Btulhr/MW

-= 37,145,079 Btu/hr 37,145,079 Btuthr QP Qp --

37,145,000 Btulhr, 37,145,000 Btu/hr, rounded rounded to level of to level of significance significance Where, Where, standard conversion factors standard conversion factors are are::

11 HP HP:::= 550 550 ft-IbVs ft-Ib,ls fe 11 ft3 == 7.48 7.48 galgal 1 W 1 = 3.412 W ::: 3.412 Btu/hrBtulhr 11 HP HP:::= 0.7457 0.7457 kW kW 1 HP == 2544.43 1HP 2544.43 Btulhr Btu/hr 7.6.2 7.6.2 Recirculation Pump Recirculation Pump Motor Motor Watt Transducer Loop Watt Transducer Loop Uncertainty Uncertainty 7.6.2.1 7.6.2.1 Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Reference Accuracy Transducer Reference Accuracy (A1) (A 1)

The accuracy The accuracy of of the the transducer transducer is t 0.2 is:t: 0.2 °la% of of Reading Reading + + 0.01 0.01 % % Rated Output at Rated Output at 0 to 200%

0 to 200% ofof the the Rated Rated Output Output (reference (reference Section 2.5 .2) .

Section 2.5.2).

Maximum error Maximum error is is when when the reading is the reading Is equal to the equal to recirculation pump the recirculation pump motor motor power power rating rating in in MW, MW, i.e.,

i.e.,

7700 HP 7700 HP (5.74 (5.74 MW, Reference 4.3 MW, Reference .3) .

4.3.3).

A1 2a=

A1 20'::: t(0 .2%*5

t: (0.20/0 .74MW+0
  • 5.74 MW + 0.010/0'".01%*10.5MW) 10.5 MW)

=::: t

+/- 0.01253 0.01253 MW MW A12 A120' a :::

= +/- 0.013 t 0.013 MW, rounded to MW, rounded level of to revel of significance significance 7.6 .2.2 7.6.2.2 Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Transducer Power Power Supply Effects (a1 Supply Effects PS)

(0'1 PS)

Power supply Power supply effects effects are are considered considered to to be be negligible negligible (Section .7) . Therefore, (Section 33.7). Therefore, ai PS 0'1 PS =

= 00 7.6 .2 .3 7.6.2.3 Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Transducer Ambient Ambient Temperature Temperature Error (a1T)

Error (0'1T)

The Watt The Transducer is Watt Transducer located in is located in the auxiliary electrical the auxiliary electrical room.

room. This This is is aa controlled controlled environment; environment; therefore, therefore, temperature temperature error error can can bebe neglected.

neglected .

Page 552 Page 2 of of 93 93

LE-0113 Exelon. Reactor Reactor Core Uncertainty Core Thermal Thermal Power Uncertainty Calculation Calculation Unit Power Unit 1 1 LE-0113 Revision 0 Revision 0 61T 0'11 == 0 0

7.6 .3 7.6.3 Watt Transducer Watt Transducer Humidity, Humidity, Radiation, Pressure, and Radiation, Pressure, and Temperature Temperature Errors Errors (el(e1 H, H, e1 e1 R, A, e1 P, e1T) e1 P, e1T)

The The wattwatt transducer transducer is an electrical is an electrical device device and the output and the output is is not not subject subject to environmental or to environmental or vibration effects . Therefore ;

vibration effects. Therefore;

=

H e1 R = e1 P =elT = 0 elH=elR=elP=e1T=0 e1 7.6.3.1 7.6.3.1 Recirculation Pump Recirculation Pump Motor Motor WattWatt Transducer Transducer Seismic Error (e1 Seismic Error (e1 S)S)

A seismic event A seismic event is is an abnormal operating an abnormal condition and operating condition and is not addressed is not addressed by by this calculation .

this calculation.

Therefore ;

Therefore; e1S e1S =

-- 00 7.6 .3.2 7.6.3.2 Recirculation Recirculation Pump Pump Motor Motor Watt Transducer Static Watt Transducer Static Pressure Pressure Error Error (e1 (e1 SP)

SP)

The watt The watt transducer transducer is an electrical is an electrical device device notnot affected affected by process pressure.

by process pressure. Therefore Therefore;;

e1 SP e1SP = 0 0

77.6.3.3

.6.3.3 Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Transducer PPC PPC I/OI/O Module Module Reference Accuracy (A2)

Reference Accuracy (A2)

Reference accuracy Reference accuracy of of the the computer computer input input is taken to is taken be the to be the SRSS SASS of of the the reference reference accuracies accuracies of of the the SRUSRU andand thethe I/0 1/0 module module.. TheThe reference reference accuracy accuracy of of the the SRU SRU is 0.1 %

is 0.1  % of of span span asas given in given in Section 2.5.3.

Section 2.5 .3. Reference Reference AccuracyAccuracy for for the the 1/0 module is I/O module is specified specified as as +/- 0.5 %

+/- 0.5  % ofof span span (Section (Section 2.5.4) 2.5.4) andand considered considered to to be be a a 2a 20' value (Section 3.4) value (Section 3.4)..

0..522

A22d = ~O.12 0.1 2 +

+0.5 = 0.509901951=

0.509901951= 0.51 0.51 0/0 A22, A2 2C1 -= t+/- 0.51 0.51 %  % *.. range range

- A22a A2 2G = t 0.0051

+/- 0.0051 ** 10.5 10.5 MW MW = =0.05355 0.05355 MW MW 7.6.3.4 7.6.3.4 Recirculation Pump Recirculation Pump Motor Motor WattWatt Transducer Transducer PPC PPC 1/0 I/0 Module Humidity Error Module Humidity (e2H)

Error (e2H)

The manufacturer specifies The manufacturer specifies the the I/0 1/0 module module operating operating humidity humidity limitslimits between between 00 and and 9595 %% RH RH (Section 2.4.4)

(Section 2.4.4).. The The I/0 I/O module module is is located located in in the the Control Control RoomRoom 533, 533, where where humidity humidity maymay vary vary from from 50 50 toto 9090 %

Ok RH RH (Reference (Reference 4.4.2) 4.4.2).. Humidity Humidity errors errors are set to are set to zero zero because because they are considered they are considered to to be be included included within within the the reference accuracy specification reference accuracy specification under under these these conditions conditions.. (Section (Section 3.2) 3.2) e2H e2H -

= 0 0

7.6.3.5 7.6.3.5 Recirculation Pump Recirculation Pump Motor Motor WattWatt Transducer Transducer PPC PPC 1/0 Module Radiation I/O Module Error (e2R)

Radiation Error (e2A) radiation errors No radiation No errors are are specified specified in the manufacturer's in the manufacturer's specifications specifications.. The The instrument instrument is is located located in in the the Control Control RoomRoom 533, 533, a a mild mild environment environment (Section (Section 4.4.2) 4.4.2).. Therefore, Therefore, itit is reasonable to is reasonable to consider consider the the normal radiation effect normal radiation effect asas being being included included in in the the reference reference accuracy.

accuracy. Therefore, Therefore, e2R e2R =

= 00 7.6 .3.6 7.6.3.6 Recirculation Recirculation Pump Pump Motor Motor WattWatt Transducer Transducer PPC PPC 110I/0 Module Module Seismic Seismic Error Error (e2S)

(e28)

No seismic effect No seismic effect errors errors are specified in are specified in the the manufacturers manufacturer's specifications specifications.. A seismic event A seismic event defines defines partiCUlar type aa particular type of accident condition.

of accident condition . Therefore, Therefore, there there is no seismic is no seismic error for normal error for normal operating operating conditions (Section conditions (Section 3.5) 3.5)..

e2S e2S == 00 7.6.3.7 7.6.3.7 Recirculation Pump Recirculation Pump Motor Motor Watt Transducer PPC Watt Transducer PPC I/0 I/O Module Module Static Pressure Offset Static Pressure Offset Error Error (e2SP)

(e2SP)

The I/O The 1/0 module module is is an electrical device an electrical device andand therefore therefore not not affected affected by by static static pressure.

pressure.

e2SP e2SP =

= 00 Page 53 Page 53 of of 93 93

C-xeiurt.

Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Unit Uncertainty Calculation Power Unit 11 LE-0113 LE-G113 Revision 00 Revision 7.6.3 .8 7.6.3.8 Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Transducer PPC PPC I/OI/0 Module Module Ambient Ambient Pressure Pressure Error Error (e2P)

(e2P)

The I/O The I/(3 module module is is an an electrical electrical device device and and therefore therefore not not affected affected by by ambient ambient pressure.

pressure.

e2P e2P =- 00 7.6 .3.9 7.6.3.9 Recirculation Pump Recirculation Pump Motor Motor Watt Watt Transducer Transducer PPC PPC I/O1/0 Module Module Process Process ErrorError (e2P)r (e2P)r Any process Any process errorserrors associated associated with with thethe conversion conversion of of pressure pressure to to aa current current signal signal have have beenbeen accounted for accounted for as as errors errors associated associated with with Watt Watt Transducer.

Transducer. Therefore.

Therefore, e2Pr e2Pr =- 00 7.6.3.10 Recirculation 7.6.3.10 Recirculation Pump Pump Motor Watt Transducer Motor Watt Transducer Loop Loop Accuracy Accuracy (LAp) (LAp)

LAP LAp =- [(Al1)2

t [(A )2 +

+ (<11 (a1 PS)2 PS)2 + + (<11T}2 (alT)2 + + (el (e1 H)2 H)2 +

+ (el (e1 R}2 R)2 + + (el (e1 Pt 2

P)2 ++ (e1T)2 (e1T)2 + + (e18)2 (e1 S)2 + + (e1 (e1 SP)2 SP) 2 + +

(A2)2 +

(A2)2 + (e2H)2 (e2H)2 + + (e2R)2 (e2R)2 + + (e2S)2 (e2S)2 + + (e28p)2 (e2SP)2 + + (e2P)

(e2P) + + (e2Pr)2]112 (e2Pr)2]1/2

= t [(0.013f

[(0 .013) 2 ++ (0)2 (0) 2 +

+~(0)2 +(0)

(0)22 + (of

+ (0)2 ++ (0)2 (0) 2 +

+ (0)2 (0) 2 +

+ (0.05355)2 (0.05355)2 + + (0)2 (0)2 +

+ (0)2 (0) 2 +

+ (0)22+

+/-

(0)2+

,JO)2 + (0) +

(0) 2 +

(0)2 + (0)2 + (O>>)'

(0)] '

= +/-t[0 .000169+0+0+0+0+0+0+0+0+0

[0.000169 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0.002867603 .002867603+0+0+0+0+0+01

+ 0 + 0 + 0 + 0 + 0 + 0]1/2 1 ~2 MW']2)112 at [0.003036603

+/- [0.003036603 t MW

=

  • 0.055105376 MW

+/- 0.055105376 MW LAP LAp -

= +/- 0.055 t 0.055 MW MW 77.6.4

.6.4 Recirculation Recirculation Pump Pump Motor Motor Watt Transducer Loop Watt Transducer Loop Drift Drift (LOp)

(LDP) 7 .6.4.1 7.6.4.1 Recirculation Pump Recircu'ation Pump Motor Motor Watt Watt Transducer Transducer Drift Drift Error Error (01)

(D1)

The drift The drift will will be considered random be considered random and and independent independent over over time.

time. The surveillance frequency The surveillance frequency;s Is 30 30 months ; therefore, months; therefore, drift drift error follows Equation error follows Equation 39 39 (Section (Section 6.2.5 6.2.5 andand reference reference 2.5.2) 2.5.2)..

D1 D1 -

= +/- 0.1 t 0.1 %

°16 of of RO RO perper year year

= [(30!12)

[(30/12) -*(+/- {+/- 0.1 0.1 % RO)2]112 Ok RO)2]t12

=

- [2

[2.5.5 -. 0.00011025 0.00011025 MW2]1/2MW2]1/2

-= 0.016601958 0.016601958 MW MW D1 01 -= 0.017 0.017 MW, MW, rounded rounded to to level level ofof significance significance 7.6.4.2 7.6.4.2 Recirculation Recirculation Pump Pump Motor Motor Watt Watt Transducer Transducer PPC PPC 1/0 I/O Module Module DriftDrift Error Error (D2)

(02)

The The vendor vendor does does not not specify specify aa drift drift error error forfor the the I/0 I/O module module.. Therefore, Therefore, per per Ref Ref.. 4.1 .1 Section 4.1.1 Section I,I, itit is is considered considered to to be be Included included in in the the reference reference accuracy.

accuracy.

D2 02 == t+/-O 0 7.6.4.3 7.6.4.3 Recirculation Recirculation Pump Pump Motor Motor Watt Watt Transducer Transducer Loop Loop Drift Drift (LDRWCU_FjO')

(lORWCtLAow)

LOp == t+/- [(D1) 2 LDp [(Dl)2 + + (D2)2]'r2 (02)2]112

== t +/- [(0 .017) 2 +

[(0.017)2 + (0)2],r2 (0)2fl2 LDP LOp - = t+/- 0.017 0.017 MW MW 7.6.5 7.6.5 Recirculation Recirculation Pump Pump Motor Motor Watt Watt Transducer Transducer Process Process Measurement Measurement Accuracy Accuracy (PMAP)

(PMAp )

No No additional additional PMA PMA effectseffects beyond beyond the the effects effects specified specifjed inin the the calculation calculation of of loop roop accuracy.

accuracy.

PMAP PMAp == 00 77.6.6

.6.6 Recirculation Recirculation Pump Pump Motor MotorWattWattTransducer Transducer Primary Primary Element Element Accuracy Accuracy (PEAp)

(PEA p)

Page Page 54 54 ofof 93 93

Exelon.

Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Unit Uncertainty Calculation Power Unit 1 1 LE-0113 LE-G113 Revision 00 Revision No additional No addnional PEM PEM effects beyond the effects beyond the effects specified in effects specified the calculation in the calculation of of loop roop accuracy.

accuracy.

PEAP PEAp = = 00 7.6.7 7.6.7 Recirculation Pump Recirculation Pump Motor Motor Watt Transducer Loop Watt Transducer Loop Calibration Accuracy (CAp)

Calibration Accuracy (CA P )

Standard practice is Standard practice to specify is to specify calibration calibration uncertainty uncertainty in in calculations calculations equal equal to to the the uncertainty uncertainty associated associated with with the instruments under the instruments under test.

test.

Therefore, Therefore, CAp CAp =.- t [(A1) 2 +

+/- [(A1)2 + (A2)2]'"2 (A2)2]112

=

= [(0 .013)2 ++ (0.05355)2]u2 t+/- [(0.013)2 (0.05355)2]'/2

= t+/- [0.000169

[0.000169 + 0.002667603]"2

+ 0.002867603]112

=

- +/- [0.003036603]'*

+/- [0.003036603j1fl

.-= t 0.055105376

+/- 0.055105376 CAp CAp _

= +/-+/- 0.055 0.055 MW MW 7.6.8 7.6.8 Total Uncertainty Tatar Uncertainty Recirculation Recirculation Pump Pump Motor Motor Watt Transducer Loop Watt Transducer Loop (TUP)

(TU p)

TUp TUp -

= t:t: [(LA)

[(LA)22 + + (LD)2 (LD)2 ++ (PMA)2 (PMAf ++ (PEA)2 (PEA)2 + + {CA)2]112 (CA)2]'"z

= a

= t+/- [(0 .055)2 ++ (0.017)2

[(0.055)2 (0.017) 2 ++ (0)

(0)2 ++ (0)2 (0) 2 ++ (0.055)2]'"

(0.055)2]'12

=

- t+/- [0.003025+

[0.003025+ 0.000289 0.000289 + + 00 +

+ 00 +

+ 0.003025]1"2 0.003025J /2 1

=

= t+/- [0.006339]'"

[0.006339]1/2

= t 0.079617837

+/- 0.079617837 MW MW Converting Converting to to Ok °lo motor motor power power TUP TU p =

= t

to.080.08 MW MW l/5.74 5.74 MWMW

= t+/- 0.0 13937282 0.013937282

= t1

+/-1.4 .4%  %

7.7 7.7 DETERMINATION DETERMINATION OF OF CTP CTP UNCERTAINTY UNCERTAINTY 7.7.1 7.7.1 Numerical Solutions tor Numerical Solutions for the the Partial Partial Derivative Derivative Terms Terms Solutions are Solutions are foundfound in in two two parts by first parts by first substituting substituting values into Equations values into Equations 20 20 through through 27,

27. as as shown.

shown.

a CTP =

(ho (Ps) - hF (TFW ))

a WFw

= (h

= (ho G (1043 (1043 psig)psig) -

- hhFF (430.8 O F)) Btullbm (430.8 <>F)) Btullbm (Reference (Reference Equation Equation 20) 20)

= (1191 .1 - 409.71)

= (1191.1 Btulibm 409.71) Btullbm

781 781.39 .39 Btullbrn Btu/Ibm dCTP

_dC_T_P_ = WFwWFW = 15,090,000 Ibmlhr

= 15,090,000 Ibmlhr (Reference (Reference Equation Equation 21) 21) aho dha(P(Pss ))

Page 55 Page 55 of 93 of 93

Reactor Core Core Thermal LE-01 13 Exelon. Reactor Uncertainty Thermal Power Calculation Unit Uncertainty Calculation Power Unit 11 LE-0113 Revision Revision 00 aCTP aCTP

--- = = -VV Fw === --

- WFW ,15090000

-15,090,000,Ibm/h Ibm/hrr (Reference Equation 22)

(Reference Equation 22) ahr (TFW ohF(T FW ))

a CTP aCTP


1 adQCRO_OUT (Reference Equation (Reference Equation 23) 23)

QCRO OUT

_CTP aCTP =-1

_1 (Reference (Reference Equation Equation 24) 24) aaOCROIN Qcna-Ire a CTP =1 aCTP (Reference (Reference Equation 25)

Equation 25) iJQ a Q wAo RAO aaCTP CTP1 =1

= {Reference Equation (Reference Equation 26) 26) a° a QRWCU AWCU a CTP =-1 aCTP =-1 (Reference (Reference Equation Equation 27) 27) oa a (~ pp 7.7.2 7.7.2 Component Uncertainty Component Uncertainty Terms Terms The component uncertainty The component uncertainty terms, terms, u uc, c , are found by are found substituting values by sUbstituting values into Equations 31, into Equations 31, 33 33 through through 37, 37, asas shown.

shown .

7.7 .2 .1 7.7.2.1 Peedwater Mass Feedwater Mass Plowrate FJowrate Uncertainty Uncertainty qor-Fw wFW = `` 48,2881bm/hr 48,288 Jbmlhr (8 ect'Ion 7 (Section .1) 7.1) 7.7 .2.2 7.7.2.2 Steam Enthalpy Steam Enthalpy Uncertainty Uncertainty x

a ah,(Ps (P I);::: (. Aho ha $,.lo) 0

~hG(PS>>)2 (Ps) * ~

~Ps.

APs p..

+(l1h a "2 + ( h;s A G

~ Al,~Io (l(Joo )>>)2 . . a. 2 ril (Reference Equation 31)

(Reference Equation 31)

The nominal steam The nomina' dome pressure steam dome pressure is evaluated at is evaluated at 1043 1043 psig psig (Reference (Reference 4.8.8) 4.8.8) with an uncertainty with an uncertainty of t of +/- 2020 psig psig (Section 7.2) . Steam (Section 7.2). Steam table table interpolation interpolation error error is taken to is taken be one-half to be one-half of of the the least least significant figure significant shown, i.e.*

figure shown. i.e., t 0.05 Btu/Ibm

+/- 0.05 Btu/Ibm..

Page 56 Page 56 of of 9393

Exelon, Exel~n. Reactor Core Reactor Core Thermal Thermal PowerPower LE-0113 Uncertainty Calculation Uncertainty Calculation Unit Unit 11 Revision 0U Revision hhGe (1063)

(1063) --- hhGe (1023>>)2 (1023) (Btu Btu /lbmJ2

/ lbm * (20 20 psiY psi ' +

+

( 1063-1023 1063 - 1023 psi psi a4" (PS 11") =

(

[hG

([h, (1190.3)

(1190.3) + +0.05]

0.05]-- rho [h c (1191.9)

(1191 .9)--- 0.05 lJ2[

0.05])' Btu!Ibm]'

Btu / Ibm * (0.05 0 .05 Btu)2 Btu 2

0.05- (-- 0.05) 0.05 - (- 0.05) Btu Btu hr )

hr hr hr

)2 1190 .3 -1191.9

-- 1191 .9 ( Btu / Ibm J2(BfUllbmJ2 ** (20 +

1190.3

( 1063 (20 pSi)2 psi ' +

1063-1023

- 1023 psi psi l

= CI~'~~:~~:;'lr[ BtrtmJ *(O.05~;r (1191 .2 ---1191 .11 2 Btu / Ibm 0-05+0.05 Btu hr 0.05 Btu hr 2

2 2

-1.60)2(StulI~m)2

-1 .60 Btu I Ibm 11 (20 psi 2 )+

  • (20pSi 2

)+

40 ) ( PSI 40 psi )

= 0.1 2 (o.1)2[StU/lbm]2 0.1

-(0.05 BfU)2

()

0.1 Btu hr hr Btu 22 +0.0025 Btu 2

== .100.064 Btu 2 + 0.0025 Btu22 fbm Ibm Ibm

!bm 0.80156 Btu

== 0.80156 Btu Ibm Ibm O'h (P = 0.802 (Ps,loI )):: 0.802 Btu,, rounded rounded to to thethe inherent inherent uncertainty uncertainty of of the the steam steam table table..

6h,,G s ' 0 Ibm bm 7.7 .2.3 7.7.2.3 Feedwater Feedwater EnthalpyEnthaJpy Uncertainty Uncertainty 2 (

) o ('t P J) == Ahr(T)

(Ah F(T>>)2 .0T2

, +

C1 2 + (Ah ~ hFF(P(p))2 2 ** ap 2+ AhFF )2

(] 2 + (ilh 2 -0

_a,.22 (Reference (Reference Equation Equation 33) 33)

QN(TFnr,PFW "lo) liT ,ap Pilla hy: FW' FW, 0 AT T AP ) ©lo ) 10 From From Table Table2-1, 2-1, feedwater feedwater pressure pressure isis given given as as 1155 1155 t+/- 10 10psig.

ps;g. From From Table Table2-1, 2-1, feedwater feedwater temperature isis given temperature given as as 430.8 430.8 t+/- 0.57 0.57 °F.OF. Enthalpy Enthalpy of of water from Attachment water isisfrom Attachment 6. 6. Steam Steam table table interpolation interpolation error errorisis taken taken to to be be one-half one-half of of the the least leastsignificant significantfigure figure shown, shown, i.e.,

i.e., +/-+/- 0.005 0.005 Btu/Ibm Btu/Ibm..

Page Page57 57of of93 93

Exelon'. LE-0113 LE-0113 Exelon. Reactor Core Reactor Uncertainty Core Thermal Thermal Power Calculation Unit Uncertainty Calculation Power Unit 11 Revision Revision 00 hF h F (431.37)

(431 .37) --- h hF (430.23>>)2 F (430 .23) (Btu/lbrn)2

)2(

Btu l lbm * (

)' * (0.57

)2

-F) 2 +

0.57'1= +

431 .37- 430.23 431.37 - 430.23 °F of q~ (T(TF ,,PFw,l 47hF FW = (hF(\\6~

PFw , lao )) =

hF (1165) =

1165-1145

~~~145)

- hF (1145) r r*

)2 (Blu:~~m Btu/lbm psi

)2 (10 Psi)' +

' (10ps1)2 +

(

(1h FF (430

[h .8) + 0.005]

(430.8)+ 0.005]-". - (h (430.8)~

(h,F (430 .8) - 0 .005] z Btu / Ibm 0.005])2[8tU/ Ibm]2 * (0.005 BIU)2 (0.005 Btu 0.005- (:0 0.005- .005)

(-0.005) Btu Btu Ibm)

Ibm Ibm lbm

)2(

410.33 -

410.33 409.08

- 409.08)2(Btu/lbrn)2 Btu 1 Ibm * (O.57~)2 +

"` (0 .57 F) 431 .37 - 430.23 431.37 - 430.23 nF )

of

)2 )2

=

_ 409.71-- 409.70 (409.71- Btu /Ibm 409.70)2 (Btu/lbrn)2 (10 psi)2

  • (10 pSi)2 ++

ps "

1165 -1145 1165 -1145 psii

)2 409.72-409.72 - 409.71409.71)2[StU/lbm]2Btu / Ibm 0.005 13tu

  • (0.005 BIU).2

( 0.005 0.005 +0.005

+ 0.005 Btu Btu Ibm Ibm lbrn Ibm

)2 1 .25 2 Btu l lbm ** (0 1.25J2(Btu/lbrn)2 .57 OF) 2 +

(O.57Of)2 +

1 .14 1.14 of OF 2 )2, 0.01 (Btu/lbrn)2

(0.01)2 Btu / !bm * (10 psi)22 +

(10 psi) +

20 20 psi psi

( ani . Btu Btu /lbrn

. 0.01)2[BtU/lbm]2 Bfu 0.005

'(0.005 BtU)~

bm lBbm 2

!bm Ibm 22 22 22

0.39063 0.39063 Btu Btu 2 + +0 0.00002

.00002 Btu Btu 2 + 0.00002 Btu

+0.00002 Btu 2 2

Ibm Ibm rbm 2 Ibm Ibm Ibrn 2

0.62504000 BTU BTU

0.62504000 Ibm Ibm BTU BTU ffh, (TFyy , PFw , I oo )

O'h (TFw,PFW,l );;;; 0.625 0.625--

F Ibm Ibm ,,rounded rounded to to the inherent uncertainty the inherent uncertainty of of the the steam steam table.

table.

The accuracy The accuracy of of the the temperature temperature measurementmeasurement determines determines the the feedwater enthalpy uncertainty.

feedwater enthalpy uncertainty.

Variations in Variations pressure and in pressure and steam steam table table interpolation interpolation are are negligible negligible..

Page Page 58 58 ofof 93 93

xelu~ LE-01 13 LE-0113 Exelon. Reactor Reactor Core Uncertainty Uncertainty Calculation Thermal Power Core Thermal CaJculation Unit Power Unit 1 I Revision Revision 00 7.7 .2 .4 7.7.2.4 Control Control Rod Outlet Energy Drive Outlet Rod Drive Uncertainty Energy Uncertainty The control The control rod rod drive drive outlet outlet energyenergy uncertainty uncertainty is is dominated dominated by by the the uncertainty uncertainty ofof the the mass mass flow flow rate. The steam rate. The steam table interpolation error table interpolation error isis negligible negligible and and is is not used in not used in the the following folfowing computation computation..

CRD flow CRD flow rate rate uncertainty, uncertaintYf XCFID, XCRO, is is 5.4 5 .4 %% ofof flow (Section 7.5.6) flow (Section 7.5.6)..

The Tha variation variation in in hfhf isis shown shown below. below.

(

hf h (100 . 7) -

l (100.7) - hf (99.3.)l(

hl (99 .3 )'( Btu BIU //lbm)2 Ibm * (O.7f>F (0.70F Y

yz 100 too.7 .7-99

- 99.3 .3 o OFF a11f V CRD ) =

+ (hi (hf (1458)

(1458) -- hf hi (1438 (1438 )2( Btu 2

Btu /I 1bm 1

Ibm ) * (10 si Y (10 psi)'

1458 -1438 1458 --1438 of 0F P I

( 2

)() 2 (72-63)-(71 .24 (72.63) -(71.24)2(BtU:lbm)2 Btu l Ibm ,. (o.7ot=f

  • (0.7-Fy 100.7-99.3 100.7-99.3 F OF 2

++(71.96) ) (11u l lbrn ) ** (1 ()pSi)2

( 71,96 )7- (71.91)2(Btu/lbrn) OpSi)2

( 14,58 1458 -1438

-1438 of OF (l~: n r*

2 (1 .39 (Btu/Ibm 140)

Btu~bmOF )

2 (0-7-Fy (0.70f'f (l~~5 nBtU~bm

((0 .05 , SW IM (1 op$1 )2

++ (_)

20 , OF

)- (1 Opsl)2

VO~0.483025

.483025 130 Bft? /IIbm Ibn?2 + + 0.000676 O.000676Btif Btu' IIbrif

/ Ibm' J0.48374018tu 22 /IbM

= 40.483740113tU

/1bm 22

=

= 0.69549 0.69549 Btuftm, Btullbm, rounded rounded 0.70 Btu/lbrn 0.70 Btu/Ibm Converting Converting oaf to %

Chf to  % of of h h,f

= :t 0.70

t
BtuAbm //71.93 0.70 Btullbm 71 .93 Btu/Ibm Btul1bm

=

=

  • 0.00973 = 0.97 %
t: 0.00973  ;:: 0.97  %

The SRSS method The SASS method is is used used to com bine the to combine flow rate the flow ate and and enthalpy uncertainty terms.

enthalpy uncertainty terms.

XCW.OUT %

XCROc,OUT  %  ;::

= ~, ~5.4 5.42

- 2

+ o.97 22 =

+ 0.97 0(79 =:

30.1 009

=: .J30.1  ::: 5 .486429 %

5.486429  %= =66 %,

0/0, conservatively conservatively rounded rounded up up COCIO-1111T

= XCFID-OUT % - QCA0,,0UT (Reference (Reference Equation Equation 34) 34)

=

= 66 %%

  • hG(1 1r ha( 1043043 psig) pslg)
  • WeRD 11 WCRD 3

= 6 %

  • 1131 .1 Btu/Ibm
  • 105
6  %
  • 1191.1 Btu/Ibm
  • 105 gal/min gaVmin *,. 60 m in/hr
  • 62.265Ibm/ft 60 minlhr" 62.265 Ibm/fe //7.487.48 gaVft3 garJft3

=

3,747,851 3,747,851.883 .883 Btu/hrBtu/hr

= 3,748,000 Btulhr,

3,748,000 Btu/hr, roundedrounded to to level level ofof significance significance Page Page 59 59 ofof 9393

Exelon. on. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 LE-0113 LE*0113 Revision 00 Revision 7.7.2 .5 7.7.2.5 Control Rod Control Rod Drive Drive Inlet Inlet Energy Energy Uncertainty Uncertainty The control The control rod rod drive drive inlet inlet energy energy uncertainty uncertainty is is dominated dominated by by the the uncertainty uncertainty of of the the mass mass flowflow rate.

rate.

CRD flow CRD flow rata rate uncertainty, uncertainty, XCAO,xcFO, is is 66 %,

%, which which was was conservatively conservatively roundedrounded up up from from 5.5%,

5.5%, of of flow flow (Section 7.7.2.4).

(Section 7.7.2.4) . CRD CRD normal normal operating operating temperature temperature and and pressure pressure is is 100 100 ~F"F and and 1448 1448 psig psig (Section 4.4.1).

(Section 4.4.1) .

a QCFO-. W = XCRO-ire % ' QCRO-IN (Reference Equation (Reference Equation 35) 35)

== 66 % % ** h ht(100 t(100 of°F at at 1448 psig) ** WCRD 1448 psig) WCRD

= 66 %  % 1/* 71.93 71 .93 Btu/Ibm Btullbm ** 105 105 gaVmin gal/min ..* 60 60 min/hr" min/hr

  • 62.265Ibm/fe 62.265 Ibmlft3 /7.48I 7.48 gaV te gal/ W

= 226,331.111

= 226,331 .111 Btulhr Btu/hr

== 226,000 226,000 Btu/hr, Btu/hr, rounded rounded to level of to level of significance significance 7.7.2.6 7.7.2.6 Reactor Pressure Reactor Pressure Vessel Vessel Heat Heat Loss Loss Uncertainty Uncertainty The determination The determination of of reactor reactor heat heat lossloss was was done done in Reference 4.8.3 in Reference for both 4.8.3 for both Unit Unit 11 and and Unit Unit 2.2. The The Unit 11 heat Unit heat loss loss was calculated to was calculated to bebe 0.89 0.89 MWt MWt.. The The UnitUnit 2 2 heat heat loss loss was was calculated calculated to to be 1 .04 be 1.04 MWt . A MWt. A conservative conservative variance variance of of 1010 % % ofof the the heat heat loss loss rate rate isis used used toto estimate estimate thethe heat heat loss loss uncertainty.

uncertainty.

GORAD (J ORao =

XRAO XRAO %  % "* ORAD ORAD (Reference Equation (Reference Equation 36) 36)

= 1010 %  % ** 0.89 0.89 MWt MWt** 3,412,000 3,412,000 Btulhr Btu/hr l/ MWt MWt

=

= 303,668 303,668 Btulhr Btu/hr 77.7.2.7

.7.2.7 RWCU Heat RWCU Heat Removal Removal Uncertainty Uncertainty The RWCU flow The RWCU flow loop uncertainty is loop uncertaInty is t+/- 2.3 2.3 %% ofof flow flow (Section (Section 7.3.6) 7.3.6).. The The RWCU AWCU temperature temperature measurement measurement uncertaintyuncertainty is t 4.37 is +/- 4.37 "F OF (Section 7.4 .6) . The (Section 7.4.6). The variation variation in in enthalpy enthalpy over over the the range range of of temperatures temperatures in in this this loop loop ofof about about 0.5 0.5 % Ok is is negligible negligible compared compared to to the the 2.3 2.3 % % flow flow variation variation.. RWCU AWCU normal normal operating operating temperatures temperatures and and pressures pressures are are 530530 OF OF and and 1060 1060 psig pslg (RWCU (RWCU suction) suction) and and 438 438

  • F and OF and 1168 1168 psig (RWCU discharge) psig (RWCU discharge) (Reference (Reference 4.4.1) 4.4.1).. Temperature Temperature values values of of 530 {)F (suction) 530 'IF (suction) and 440'OF and (discharge) are 440 OF (discharge) used to are used to bebe more more in in line line with with actual actual measurements measurements..

XAWCU is xrWcu Is set set 2.3 2.3 %  % based based on on the the flow flow loop loop uncertainty uncertainty..

aoRw = XAWCU %

XRWCU  % "* QRWCU QRWCU (Reference (Reference Equation Equation 37) 37)

Remembering Remembering that that Q'awcu QAWCU = =WRWCU WRWCU * [hdTAeclrcjn) --

  • thF(TRd<<j,) hF(TFW)] (See

- hf(TFw)j (See Equation Equation 9) 9)

TORWCU O'°RWCU

= 2.3 % . wnwcu - [hf (TnEcjRc_gN) - hf (TFW )l W =154,000 Ihm Ibm

== 154,OOO-hr (Pump A) and and 133,000 I m (Pump Ibm (PumpBBand and C)

C) hr RWCU WRWCU (PumpA) 133,OOO-hr (Section (Section 2.2.1) 2.2.1)

Maximum Maximum heat heat removal removal occurs occurs with with PumpPump A A running, running, therefore, =

WAWCU = 154,000 therefore, WRwcu 154,000 Ibmlhr Ibm/hr..

Page Page 60 60 ofof 93 93

Exelon.

Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 LE-0113 LE-0113 Revision 00 Revision hf (TREciac ,IH) h,(TAECIRC IN) == 524.39524.39 Btu (at tat530 530 "F and 1060 O1=and 1060 psig) psig)

- Ibm Btu Ibm hf (TFw)  :::= 419.83 419.83 Btu Btu (at(at 440 440 of

°Fand and 1168 1168 psig) psig)

Ibm m

  • 154,000 Ibm.- (524.39 or 0'0 =2
.3%-154,000' 2.3°/0 419 .83 Btu =

(524 .39 -- 419.83) 370,352 Btulhr

= 370,352 Btu/hr QAWCU AWCU h hr bm Ibm

== 370,400 3701,400 Btulhr, Btu/hr, rounded rounded to to leve' level of of significance significance 7.7 .2.8 7.7.2.8 Recirculabon Pump Recirculation Pump Heat Neat Addition Addition Uncertainty Uncertainty The power The power of the recirculation of the recirculation pumps pumps (WE)(WE ) is is measured measured by by aa watt-meter watt-meter with with aa calculated calculated uncertainty of uncertainty of 1.4 1 .4 010% (Section (Section 7.6.8).

7.6 .8) .

XP Xp = +/-t 1.4 1 .4 % °la The uncertainty The uncertainty of of the power measurement the power measurement multiplied multiplied by by the pump power, the pump power, Qp, is the Qp, is the uncertainty uncertainty of of the pump the pump power, power, crop. a0P . Op Qp is is 37,145,000 37,145,000 Btu/hr Btulhr (Section (Section 7.6.1 .1) 7.6.1.1). .

a a ao pP =:txp

= +/- Xp °lam . QP 0/0

  • Qp (See (See Equation Equation 38) 38)

= t 1 .4% ** 37,145,000

+/- 1.40/0 37,145,000 Btu/hr Btulhr

=:t+/- 520,030

520,030 Btu/hr Btuthr CT op crOp

t

+/- 520,000 520,000 Btu/hr, Btulhr, rounded rounded to to level level of of significance significance 7.8 7,,8 TOTAL TOTAL CTP CTP UNCERTAINTY UNCERTAINTY CALCULATION CALCULATION Total Total CTPCTP uncertainty, uncertainty, UcTP, UCTP, is is calculated calculated by by using using Equations Equations 19, 19,2020 through through 27, 27, 28, 28, 31, 31, 33, 33, and and 34 34 through through 37 37..

(Reference (Reference Equation Equation 19) 19) z CTP CTP d (6h . (P,)

FNr (w,. f ahQ (Ps ) ~

z a aCTP CTP ) (

ahF(TFW )

~ahF(7Fw) M a~c~ , vuf 1aQCAD_0UT UUCTP CTP - =

oCTP C aCTP ) ~ r

  • (aQCRD_tN ~ T (o'QA~ +

aQGRO_._ IN aQRAD CTP

~ (4 O~rcu (a

~QRWCU ) (I~oPJ = ~ Po~

Page Page61 61 of of93 93

LE-01 13 LE-0113 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Unit Uncertainty Calculation Power Unit 11 Revision 00 Revision DCTP aCTP

- - == (h(ha G (p (Ps) MA s ) -- hhFF (TFW )) (Reference Equation (Reference Equation 20) 20) aWFW aWFW a CTP aCTP (Reference Equation (Reference Equation 21) 21)

- - = W FwFw W dhG(Ps ) r a CTP aCTP

---=-WFW ah F (TF  ))

dhF(T FW (Reference Equation (Reference 22)

Equation 22) ra CTP aCTP =11 (Reference Equation (Reference Equation 23) 23) a OCaaOUT aOeRO_OUT a CTP aCTP =-1 (Reference Equation (Reference Equation 24) 24) a QCRO..IN aOCAOJN aCTP =1 aCTP ~1 (Reference Equation (Reference Equation 25) 25) a 0 RAO dOA AO a CTP aCTP =1

~1 (Reference Equation (Reference 26)

Equation 26) ao a OFiWCU RWCU aaCTP CTP (Reference Equation

---1

=-1 (Reference Equation 27) 27) aao0pp Substituting Substituting the the previously previously determined determined values values for the variables for the variables shown shown gives:

gives :

h )r) (1 2

( 1781 f81.39.39 ~~ IT "*(48,288 48,288 I~~

1 m

+ ( 15,090,000

+ 15,090,000 1 I~~

h m I)"2 **(0.802 0802

. ~~n Btu

+

n Btu Ibm bm UCTP UCTP =.

-15,090,000

( (/-15,090,000 lbrn hr Ir I~~ 1) 2 =*(0.625 0.6251~~ Btu n Ibm 2

+ ~

+ ( 1l/f **(3,748.000 3,748,000 ~t~

Btu 2 hr

+

2 2

(~-llr *(226,000 ~~n+(~llfIf *(303'668~~rr +

2 226,000 Btu + j1

  • 303,668 Btu n n hr hr

)2) +(l

~ ~t~ (~ ~t~

2 lOly 370,400 Btu

( llf *(370,400 hr

+ 1llf **( 520,000 520,000 Btu hr Bt 2 !bm 2 + 2 2

.2771 x 1014 lbm 14 Ibm 22.0.6432

  • 0 .6432 Btu 610,570 610,570 Btu 2 **2.3317x10 2.3317 x 1099 fbm ]+(2.2771Xl0 Btu 22).++

lbm Ibm 2 hr hr 2

-h-r2 hr 2 Ibm 2 )

Ibm2 2

lbm2 hr

~( 2.27710 2.27710x1014x 1014 lbm Ibm 22.0.3906 hr22 hr

  • 0 .3906 Btu Btu 2 1+

fbm 2 1 1

  • 1

)+(1*1.4048 .4048 x l0 13 Btu X 1013 Btu hr22 22

)+

UCTP =

2 2 + ( 1*9 .2210x101 Btu Btu 2 1J+

10 Btu +

!r 1*5 .1076x1010 1*S.1076Xl0 Btu2J+(1*9.2210X1010

( hr' hr 2 hr hr22 2 )+ (

(

1

  • 1 .3700 1*1.3700X10 x 1011 11 Btu hrhr 2 1
  • Btu2 ]+(1*2.7040X10 2.7040 x 101,11 Btu Btu2 hr22 hr 2

J Page Page 62 62 of of 9393

Exel~n. Reactor Core Reactor Gore Thermal Thermal Power Power LE-0113 LE-0113 Uncertainty Calculation Uncertainty Calculation Unit Unit 11 Revision 0 Revision 0 10,5 Btu 2 2 11 .4237

.4237 xx 10 15 Bt~ 2) ) +(

+ ( 1.4646 1 .4546 x x 10 101 14 Bt~ 2)

Bt2 +

+

hr hr hr hr )

8 .8940 x 1013

( 8.8940x10'3 ~;~2 Btu hr 2 2

)+( 1 .4048 x 1013 1.4048x10 '3 ~:~2)+

Btu hr 2 UCTP UCTP =

2 5.1080 x 1 (5.1080X10 10 ~:~ 2)+(

Oio Bt 9.2210 x i 01°

+ 9.2210x10 'O ~:~

Btu 21 2)+

hr hr 1

. 3700x1011

( 1.3700x10 f

~t~22

' Btu hr

)+(

+ 2.7040x10'1

) (

2.7040 x 1011 ~t~22 Btu hr 2 )

)

2 15 Btu2 UCTP ucTP = 1 .6740 x 1015 Btu2

= 1.6740x10 hr 2 hr

= 40,914,572 Btu

40,914,572 Btu hr Btu ,, rounded

~t~ rounded to to level ucTP =40,910,000 UCTP  :;;; 40,91 0,000 of significance level of significance Divide UCTP Divide UcTp by by 3,412,000 3,412,000 Btu/hr Btu/hr to to convert units to convert units to megawatts thermal (MWt) megawatts thermal (MWt)

Btu 40,910,000 Btu 40910000

' I hr UCTP - Btu UCTP -

Btu 3,412,000 3412000-l:!!..- hr

, t MWt MWt ucTP UCTP = 11 .99138 MWt

= 11.99138 MWt ==11 .99 MWt, 11.99 MWt, rounded rounded Divide UCTP by Divide UcTp by 3,458 Btu/hr to 3,458 Btulhr to convert convert to to percent percent ofof rated rated reactor reactor thermal thermal power power..

u = 11 .99 MWt 11.99 MWt .1000/0

.100%

ucTP CTP - 3,4583,458MWt MWt UCTP = 0.347 UCTP = 0.347  %

The The determination determination of of total totar CTP CTP uncertainty uncertainty is is sensitive sensitive to to two two measured measured parameters, parameters, feedwater feedwater mass mass flowrate flowrate measurement measurement uncertainty uncertainty and and feedwater feedwater temperature temperature measurement measurement uncertainty.

uncertainty.

Page Page 63 63 of of 93 93

Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 LE-0113 LE-0113 Revision 00 Revision 8.0

8.0 CONCLUSION

S CONCLUSrONS The total The total uncertainty uncertainty associated associated with with reactor reactor core core thermaJ thermal power power calculation calculation performed performed by by the the Plant Plant Process Computer Process Computer is is 0.347 0.347 °/0

% of of rated rated reactor reactor thermal thermal power power (20).

(2a).

Measurement Uncertainty Measurement Uncertainty Recapture Recapture (MUR)

(MUR) is is based based onon the Nuclear Regulatory the Nuclear Regulatory Commission Commission (NRC)

(NRC) amended 10CFR50, amended 10CFR50, Appendix Appendix K K "Emergency "Emergency Core Core Cooling Cooling System Evaluation Models" on June 1, System Evaluation Models lt on June 1, 2000. The 2000. The original original regulation regulation diddid not not require require the the power power measurement measurement uncertainty uncertainty bebe demonstrated.

demonstrated, but rather but rather mandated mandated a a 2%

2% margin.

margin. The The new new rule rule allows allows licensees licensees toto justify justify aa smaller smaller margin margin forfor power measurement power measurement uncertainty uncertainty based based on on the the installed installed highly highly accurate accurate feedwater feedwater flow flow measurement measurement instrumentation .

instrumentation.

Therefore, the Therefore, the Core Core Thermal Thermal Power Power (CTP)

(CTP) uncertainty uncertainty of of 0.3470/0 0.347% allows allows the the original20k original 2% margin margin toto be be reduced to reduced to 1.653 1 .653 %

% (2.0  % -- 0.347 (2.0 °/0 0.347 %%= = 1.6530/0),

1 .653 %), which which is is conservatively conservatively rounded rounded down down to 1 .65%.

to 1.650/0.

Page Page 6464 ofof 93 93

.Exe 'on Exelon. Reactor Core Reactor Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 11 LE-0113 LE-Q113 Revision 00 Revision 9.0 9.0 ATTAgHMENTS ATTACHMENTS Attachment 11 Taleeon Attachment Telecon URSURS and and TemTexTemTex Accuracy Accuracy of of RTDs RTDs for for TE-046*103 TE-046-103 . .... .... .... ......... .... . ........ . ........ ... 66 66 Attachment 22 TOOl Attachment TODI AAl695446-801-1695446-801 - Steam Steam Carryover Carryover Fraction Fraction Design Design Input Input (1 (1 page) page) . ......... . .... ..... ... . ......... 67 67 Attachment 33 Rosemount Attachment Rosemount Nuclear Nuclear Instruments Instruments customer customer letter letter to to Grand Grand Gulf Gulf (2 (2 pages) pages) .. .... .... ......... ......... .. 68 68 Attachment 44 Analoglc Attachment Analogic Analog Analog Input Input Card Card ANDS5500 ANDS5500 (4 (4 pages) pages) .... ........ . .............. . ........ .... . ............ . ........ .... 70 70 Attachment 55 NIST Attachment KIST Saturated Saturated Properties Properties of of Water Water ... ......... . ........ .... ........ . ...... ........ . ........ .... . ... ..... ..... ....... . ..... 74 74 Attachment 66 NIST Attachment NIST Isobaric Isobaric and and Isothermal Isothermal PropertiesProperties of of Water Water. . ........ . ....... ... .... . ... ......... ............. . ........ .... . ..75 75 Attachment 7 CTP CTP Calculation Calculation Results Results Sensitivity Sensitivity AnalysisAnalysis..... ............ ........ ... .... ........ . .... .... ....  . ,.,., 76 76 Attachment 8 Attachment Derivation of 8 Derivation of the the relationship relationship between between flow, flow, .1P, AP, and density ..... . ... .... . .... .... ......... ......... .... ...... 77 and density 77 Attachment 9 Ametek Ametek Scientific Scientific Columbus Columbus ExceltronicExceltronic AC AC Watt Watt Transducer Transducer Specification Specification (4 pages) ... .... ... 80 (4 pages) 80 0 0 B32-C-001-J-023, B32-C-001-J-023, Rev. Rev. 1 1,t Recirculation Recirculation Pump Pump Curve Curve (1 pages) ... ..... .... ........ . ............ . .... ..... 84 (1 pages) 84 Attachment 1 11 Rosemount Rosemount Inc Inc., ., Instruction Instruction Manual Manual 4259, 4259, Model Model 1151 Alphaltne<!> .j;;:p 1151 Alphaline dP Flow Flow Transmitter, Transmitter, 1977 (PAGES 19n (PAGES 1, 6, 14, 1,6, 14,24, 24, AND AND 29) 29) . .... ....... . ....... . ............ . ........ . . . . . . .. ... . ...... . .... ........ . .... ............. . . . . ........ 85 85 Attachment 2 12 Bailey Bailey Signal Signal ResistorResistor Unit Unit Type Type 766 766 (2 (2 pages).........................

pages) ... ......... .. ... . ........... . . ....... ..... . 88 88 Attachment 3 13 Rosemount Rosemount Specification Specification Drawing Drawing 01153-2734, 01153-2734, N0039 N0039 Option Option -- Combination Combination N0016 N0016 & &

N0037 NOO37 (2 Pages) . . . ... ...... . ........ . ..... ........ ... ........ . ...... . . .. ... ........ .... . . ....... .. ... . .... ........ . .. .......... .. .. . .... ..... ... . ...90 (2 Pages). 90 Attachment 4 14 Rosemount Rosemount Product Product Data Data SheetSheet 00813-0100-2655, 00813-0100-2655, Rev Rev.. AA AA June June 1999 1999 "N-Options "N.Qptions for for Use Use with with the the Model Model 1153 1153 & & 1154 1154 AlphallneS Alphaline Nuclear Nuclear Pressure Pressure Transmitters" Transmitters" (2 (2 Pages)

Pages) ..... ..... .. ... .... .... . .... . 92 92 Page Page 65 65 of of 93 93

LE-0113 Exelon. ReactorCore Reactor Core Thermal Thermal Power UncertaintyCalcufation Uncertainty Calculation Unit Power Unit 11 LE-0113 Revision 00 Revision Attachment 11 Attachment Telecon URS Telecon URS and andTemTex TemTex Accuracy Accuracy of of RTDs RTDs forfarTE-046-103 TE-046-103 Shah, Pravfn Shah, Pravin Frorn:

From: Pshush john P....ush.John sent:

Sent: Frkfay. 5eptltmber Friday. Sopterrsber25.

25, 200Q 2000 9;58 9:58 AM AM To :

To: Kimura . Stephen:

Kimura. SW%w Shah.

Shah, Pr.avin Pravin Cc:

Co: Clconnor, JoM; Ocomot. John: Low, Law. Richard Richard sub SubjHt: CRD 0riYe eRO walw ~

Orift Watat als&aw" Temperature z r Pravin:

Pravin:

CRD Drive eRn Drive Water Water Discharge Discharge Temperature Temperature is Is measured measured by by TE..Q46..103 TE-OW103 (Unit tuns 22 TE-046-203)~

TE-M-2o3), which whirr, isis auppUed supplied by; TemTex Temperature TemTex Temperature S~ Inc.

Systen-ts, Inc.

700 ~

700 E. HousIon Houston St. St.

Shermaan, TX Sherman, TX 75090 75090 Phone: (903)

Phone: (903) 813-1500 813-ISM Per telecom Per between John telecom betWeen John Pehush Pehush and and TemTex application engineering TemTex application engheering on on 09/24109.

09124109, the supplied to RTDs supplied the RTDs to Limerick Unit Limerick Unit 11 are 100 ohm are 100 platinum. The ohm pIatWIum. The model number 10457-8185 modet number 10457-8785 specined specified in PIMS its in PIMS the TemTex is the TemTex drawing 1'KJITlt)er.

number. The The RTD RTD was manufactured to was manufactured to the the ft" standard IEe-7S1, indusCry standard IEC-751, which which means thethe accuracy accuracy is is will mans drawing

+ f- 0.1296

+1- 0.12% (of ice) at (of resistance) 0*C, commonly at O*C, knows 88 convnonly knows as Class CJasa 8.B, Thwefone Therefore the RTD will `provide the RTD provide ., accuracy of an accuracy of

++ I.

f 0.3'C 0.3*C atat 0*C O*C (+I-(+1- 0.54'F O.54*F at at 32*F). The "Temperature 32*F).. The lrfemperature Coefficient Coefficient of Resistance (TeR),

of Resistance" (TCR), as as so called 1Ile so called the

ALPHA, ALPHA, Is Is the the average average increase Increase in in reslatance resWance perper degree increase . The degree increase, TCR of The TeR of a platinum RTD 8 piamum RTD Isis 00.00385

.00385 OJOIC*,

T'he range of The I'8f'I98 of TE-046-103 TE..Q46-103 Is is 00 to Co 200`F 20£r'F (-17.78

(-17.78 to 93.J3*C). The to 93.33*C). The overall accuracy is ovet'8JIacCtl"8cy is conservatively conservatively calculated caJculated at 93 C (2007),

at 93.33*C (2OO-F), which which is +l- 0.359'C ia +/- O.359*C (+/-

(+'- 0.65'F),

0.65*f)~ Therefore, Therefore, temperature tempef8111re accuracy of TE-046-103 used acctncyofTE..()46..103 used isis rounded rtlUnded to to +/-

+/- 0O.7"F.

.7'F .

John John E. E. Pehush, Pehush. P. P, EE.

washirigton washington Group Group URS URS Supewiskr9 SUperviIing Discipike Discipline Engkseer Engineer-- I&C f&C (609)

(609) 720-2274 720-2274 w w (609)

(609) 216-13922 2160-1392 cc John.

John. Pehueh4V" pehtJ8hOWgfnt. Int. com com Page Page66 66of of93 93

LE-0113 LE-G113 Exelon. Reactor Reactor CoreCore Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 1 1 Revision 00 Revision Attachment Attachment 22 TODI A1695446-801-TOOl A1695446-801 - Steam Carryover Fraction Steam Carryover Design Input Fraction Design Input (1(1 page) page)

EXELON EXELON TRANSMITTAL TRANSMllTAL OF OF DESIGN DESIGN INFORMATION INFORMATION dSAFETY-RELATED DSAFETY-RELATEO Originating Organization Originating Organization Tracking Tracking No:

No:

~NON-SAFETY*AELATED elon I8lExelon DREGULATOAYRRELATED

~REGULATO RELATED ~~ A 1695446-84 A169544&80 (Other (specify)

OOther (specify)

StationlUnit(s) U StationAJnit(s) 2rigk_ Units Umerick Units i1 &&22 Page Page 1 t of 1 of 1 To To:: John John Pehush Pehush WGI -* Mid WGI Mid Atlantic Atlantic Subject : Transmittal

Subject:

Transmittal of of information.

information.

2eve Drm&h I h4o Preparer P parers Signature Date Chris, Vie ie tnd Z :.

Appto er Signatur : ate MUR Project MUR Project Reviewer Reviewer s MUR i_ ject Signature D to For QuatitytCompfeteness For Quality/Completeness Status of Status Information:: f8JApproved of Information SApproved for for Use Use OUnverified OUnverified Description of Description Information-of Information:

The following information The following information was was requested requested by URS Washington by URS Washington Division Division (WGI) for input (WGI) for input toto Limerick's Limerick's corecore thermal power thermal power (CTP)

(CTP) uncertainty uncertainty calculations carculatkms (units (units 11 & 2).

& 2).

The steam The steam carryover carryover fractionfraction that that should should bebe used used asas design input to design Input the calculations to the calculations is is .<<£2.

zero.

Purpose Purpose of of Issuance Issuance and Limitations an and Limitations Use: This on Use: This information information isis being being supplied supplied solely solely for for (lie lhe uw use as as design design input input for the for the Link-rielc Limerick CTP CfP uncertainty calculations (unit; uncertainty calculations (units 1I & 2).

& 2). _ _

Source Source Documents Documents:  :

G.E. Document "Impact G.E. Document "Impact of Steam Carryover of Steam Carryover Fraction Fraction onon Process Process Computer Computer Heat Heat Balance Balance Calculations",

CalcuJations",

September September 2001 2001..

Distribution:

Distribution:

Original: Limerick file Original: Umerick fire CC: George, Electrical Ray George, CC: Ray Electrical Design Manager, Umerick Design Manager, Limerick John Pehush, John Pehush, I&C I&C Lead, Lead. WGl WGI -- Mid Mid Atlantic Atlantic Page Page 67 67 of of 93 93

LE..0113 Exelon.

Reactor Core Reactor Core Thermal Uncertainty Calculation Unit Uncertainty Thermal Power Calculation Power Unit 11 LE-0113 Revision 0 Revision 0 Attachment 33 Attachment Rosemount Nuclear Rosemount Nuclear Instruments Instruments customer customer letter letter to to Grand Grand Gulf Gulf (2 (2 pages) pages)


~-----,-_ .., .,.~-------* .... ---

Rosemount Nuclear Rosemount Nuclear Instruments Instruments Ro

RCltealOUnt 1700 Jfy¢~ .. lnstrumtnls. Inc-ftlBleu t?0¢Ir 1Cd"'O\o9V i admo" I}. (}, lYe ne im "lien Pr"",.

E,~n Priw`a 1,4/0:

MN l>S,1U S-44 WA USA (Gl t} S211*8;?S~

I "I IEfot2)82ihWs?

I(/1 F,x t 1(IlZ1 FiliI ltt$2) 8:21) 828 1f200 6280 44 April April 2000 2000}

Ref Grand Ref: Grand GulfGulf Nuclear Nuclear Station Station message message on on INPO INPO plant plant reports, subject Rosemount reports, subje<:t Rosemount InstrumentInstrument Setpoint Methodology, Setpoint Methodology, dated dated Marcb March 9, 9, 2000 2000 Dear Customer

Dear Customer:

`this fetter This letter is is intended intended toto eliminate eliminate any any confusion confusion that that may may have arisen as have arisen as aa result result ofthe ofthe reference reference message message (rom from Grand Gulf. The Orand Gulf. The massage message was was concerned concerned with with statistical variation associated statistical variation associated with with published performance published performance variables variables and and howhow the variation relates the variation relates to to the the published published specifications specifications in in Rosemount Rosemount Nuclear Nuclear Instruments, Instruments, Ine .(RNII) pressure Inc.(RNU) transmitter models pressure transmitter models 1152. 1152, 11 1153 S3 Series Series E3, D, 1153 11 SJ Series Series 0,D, t1154 and 1154 154 and II S4 Series Serie~ H H.. According According ten to our our understntnding, understanding, the performance the performance variables of variables of primary concern are primary concern are those those discussed discussed in OJ:: Instrument in GE Instrument Setpoint Setpoint Methodology Methodology document NEDC document 31336, namely NEDC 31336, namely I.

1. Reference Accuracy Reference Accuracy 2.
2. Ambient Ambient Temperature Temperature EffectEffect 33 . Overpressure Effect Overpressure Effect 44.: Static Pressure Static Pressure Effects Effects 55.. Power Supply Effect Power Supply Effect It It is is RNII's RNU's understanding understandi.lB that that GEGE andand (lie the NRC NRC have have accepted accepted the the methodology methodology of of using using transmitter transmitter testingtesting to to insure insure specifications specifications are arc metmet as as aa basis basis for for confirming confirming specificatiorns speeificatiofls are are

_+3o< 'niC

.:3<1. "13se conclusions conclusions we we draw regarding specifications draw regarding spccification.'i being +3o arc being,!3a are based based on on manufacturing manufacturing testing testing and and screening, screening, final final assembly assembly acceptance acceptance testing, testing, periodic periodic (e .g., every (e.g., every 33 months) months) audit audit testing testing oftransmitter of transmitter samples samples and and limited limited statistical statistical atnalysis analysis.. Please Please note note thatthat all aU performance perfonnance specifications specifications are are based based otson zero-based zero-based rangesranges urxie underr refcrcnce reference conditions.

conditions. Finally, Finally, we we wish wish to to make m.tke clearclear that that no no inferences inferences are are made made wills wilh respect r\-'Spect to to confidence confidence levels levels associated associated with with any any specification.

specification.

1I.. Referenee RercrcMe Accuracy_

Aecuracy ,

All All (100*,)

(tOO-A) RNII rransmilt~s, including RNII transafttets, including models models 11 52, 1153 "i52, liS) Series Series B, at 1153 1153 Series Series D, D, 1154 1154 and and 1154 1154 Series Series H,H, are are tested tested to to verify verify accuracy acxuracy to to +0.25%

+0.25% of span at ofspan at W*.

00/0. 20'%,

20%, 40%, 40%, 60'10, 6~/o.

80%

80% andand 100%

100% ofof span, span. Therefore, Therefore, tlse the reference reference accuracy accuracy published published in in our our specifications specifications is is considered +3Q.

considered ~J(1.

22.. Ambient Ambknt Temperature T~mpcraturcEffect Efred All(1t)0%)

All (100%) ausplI ier boards ampllfeer boards are are tested tesled forfor compliance compliance with with their their temperature temperature effect effect specifications specifications prior prior toto final final assembly.

assembly. All All sensor sensor modules, modules, with with the

[he exception exception of ofmodel model 1154, J154, are are temperature temperature compensated compensated to to assure assure compliance compliance with with their their temperature temperature effect effect specifications specifications.. All All (1000 (J 00%) 10) model model 1154, t 154. model model 1154 1154 Series Series HHand and model model 1153 1153 gagesgage and and absolute absolute pressure pressure transmitters transmitters are are tested tested following following final final assembly assembly to to verify verify compliance compliance with with specification specification.. Additionally, AdditionaUy, aa review review of ofaudit audit test test data data performed performed on on final final assemblies assemblies of or model 1152 model 1152 and and model model 1153 I J53 transmitters transmitters not not tested tested following following final final assembly assembly indicate indicate Page Page 68 68 ofof 9393

meloi Reactor Core Core ThermalThermal Power LE-0113 Exelc)n. Reactor Uncertainty Uncertainty Calculation Calculation Unit Power Unit 1 1 Revision 00 Revision cOnfortttartee to conformanoo to specification specification.. Therefore, Therefore. the ambient temperature the ambient temperature effect published in effect published in our our specifications s~dflCatiot1s is considered .:3<1.

is considered *3a,

3. O,v,~frprcssure Effect Testing of Te${iflg of this variable isis done this variable done at at the the module module stage.

stage. All (100%) range All (100%) range)3 through through 88 sensor sensor modules modules are are tested tC5ted forfor compliance compliance to 10 specifications specifications.. We We dodo not not test test range range 99 or or 10 modules 10 modules for (Of' overpressure overpressure for for safety safety reasons. However, design reasOllS, However, design similarity similarity permits permits usus to to conclude conclude thatthat statements made statements made for for ranges ranges 3J through through $8 would would alsoalso apply opply to to ranges ranges 99 and and 10. Therefore, the IG. Therefore, the overpressure effect overpressure effect published published in in our specifications is our specifications is consi lered !,3<J.

considered +3a.

44.. Static Pressure Effects Stade Pressure Effects All (100%) differential All (100%) differential pressure pressure sensor sensor modules modules are are tested tested for for compliance compliance with with static static pressure pressure zero crrol"$. Additionally, 2ero errors. Additioonlty. Models Models 1153 1153 and 1134 Ranges and 1154 Rongcs 7, 6,7 and 3,6,7 and 88 arc 100% tested arc 100% after tested aftel' final assembly for linnlflssembly added assurance for added assurance of of specification specificalion compliance.

compliance. Audit Audit testing testing performed performed on on ranges ra..gcs 44 andand 5S have have shown shown compliance compliance to the specification.

to the speciftcation. Therefore, Therefore, static static pressure effects pressure effects publisehed published in in our specifications are our specifications are considered considered ~3<J, }3Q,.

5. Power 8 Oct TcstlllG, har Testitr8, conformance to fOr conformance this specification to this specification is is performed pcrlbrmed on on aillmnsmiltcrs all trnnsinittcrs undergoing undergoing arnpic (audit)

~amplc testing. `this (audit) lesting, vadnblc has "n.is variable historically exhibited Ims historically exhibited extremely extremely small smaU performance performance errors cm~ ntul nnd small small standard deviation (cssc"tially" siandard t1cviatioll (es +:ntially a meanmcan errorerror of zero with afzero with aa siandard standard deviation deviation typically lypicnlly less than Io-A!

lo,;s than I Or% of ilea specil1cntion).

of tile specifica(ion), Al transmitters tested Alli transmitters tested were found in were f()tlnd in compliawc with eompltno<< with the specification, 'Iltereforu, the specification. 'l111,,'fc!Orc. power power supplysupply COcci effect published published in in our our speciticati icatiorm i~

spccificatiQll$ ii considered.+30.

considered -+3a .

ycata lutvc 511()411(1 you SIWtlid any further have any questions. please further gtwstiotty, plCOlSC contact contact Jerry Jt..'fTY Ldwards IldwanJs at at (612)

(6 12) 828-395 828-395 1, L

%inusruly, Sinccrely.

Jerry Jerry L. L. rdwards Edwards Manager, Man.1gcr. Sales, Sales. Marketing Marketing and and Contracts Contracts Rosemount Rosemount Nuclear Nuclear Instntments, Instntments. lnc. rne.

FOB- A IT FISIIR'IGSEMIIlJIJ Page 69 Page 69 ofof 9393

LE-0113 Exelon. Reactor Core Reactor Core Thermal Power Thermal Power Uncertainty Calculation Unit Uncertainty Calculation Unit 11 LE-0113 Revision 0 Revision 0 Attachment Attachment 44 Analogic Analog Input Analogic Analog Input Card Card ANDS5500 ANDS5500 (4 (4 pages) pages)

ANALaC51~.

PEABODY, PEABODY, MA 01860 MA 01960 POTENTIOMETER POTENTIOMETER INPUT INPUT CARD CARD ANDS5500 ANDS5500 SPECIFICATION SPECIFICATION 2-15227 2-15227 REV 01 REV 01 First Used First Used On:

On; ANDS5500 ANOS5500 Page 11 of Page a of 8 Code Ident:: 1BMOO Code Ident 1 BMOO File N File 2-15227revOl _doa ame: 2-15227rev01.doo Name: Printed: . April

_Printed:_ 4, 2003 April 4, 2003 REVISION REVISION HISTORY HISTORY REV REV DESCRIPTION OESCRIPnON DWN DWN APVD APVD DATE DATE 01 01 SEE E.C.0 SEEE.C.O K K.Q .Q RWA RWA 08125183 08125183 Approvals for Release:

Approvals for Release :

Richard Lane Richard Lane 2113103 2113/03 Originator Originator Date Date Richard Richard Lane Lane 3131103 3/31/03 Engineer Engineer Date Date Page Page 7070 of of 93 93

LE-0113 LE-0113 Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 Revision 00 Revision ANDS5500 ANDS5500 POTENTIOMETER INPUT POTENTIOMETER INPUT CARD CARD SPECIEICATI0N SPECIFICATION 2-15227 2-15227 RELATED DOCUMENTS:

RELATED DOCUMENTS :

Schematic Schematic D5-8814 05-8814 Theory of Theory of Operation Operation A2-5568 A2-5568 I.1. GENERAL DESCRIPTION GENERAL DESCRIPTION The Potentiometer The Potentiometer Card Card isis a a user user card card for for the the ANDS 5500 Data ANDS 5500 Data Acquisition Acquisition System.

System~ ItIt consists consists ofof a a power supply and voltage reference, an output multiplexer power suppfy and voltage reference, an output multiplexer and and four identical four identical signal' signal conditioning conditioning channels channels.. ThereThere are are two two 44-pin edge-card connectors 44-pin edge-card connectors (male) on (male) on thethe PCPC board, board, one one isis connected connected internally internally to to the the system and the other is system and the other is for for user connection.

user connection.

Each Each signal channel consists signal channel consists of of an an excitation excitation outputoutput section section and and a a signal input signal input section . The section. latter can The latter can be preset to be preset to accept accept aa variety variety of of voltage ranges and valtage ranges and types via types via jumpers.

jumpers. ItIt provides provides aa DC voltage to, DC voltage to, and and permits permits low low frequency frequency andand DCDC measurement measurement of of the signals from, the signals appropriate external from, appropriate external devices such as devices such as piezoelectric piezoelectric accelerometers accelerometers..

11.

II. SPECIFICATIONS SPECIFICATIONS 11.. GENERAL GENERAL Number Number of of Channels:

Channels: 44 Size Size and and Shape Shape:: Approximately ApprOXimately 77 W ~" xX 44 '/z" ~" (similar

%" xX '/2" (similar to to Analogic D4-7443)

Analogic 04-7443)

Operating Operating Temperature Temperature:: o-0 - 50 50 Degrees Degrees C. C.

Storage Storage Temperature Temperature:: -40

..40 - - 85 85 Degrees Degrees C. C.

Input Input && Output Output Connection Connection:: EDGECARD, EDGECARD, gold gold plated plated 2.

2. ELECTRICAL ELECTRICAL a) a) Power Power Requirement Requirement:: +5v

+5v (+/-5%)

(+/-5%) at at 100mA 100mA

+15v

+15v (+1-5%)

(+1-5%) atat 1OOmA 100mA

-15v

.. 15v (+l-5%)

(+/-5%) atat 1OOmA 100mA Page Page 771 1 of of 93 93

Exelon. Reactor Core Reactor Core Thermal Thermal Power Power Uncertainty Calculation Unit Uncertainty Calculation Unit 1 1 LE..0113 Revision 00 Revision rwontrolled Document.

Uncontrolled Document. Source Source Unknown Unknown ANALOGIC ANALOGIC *- PEABODY, PEABODY, MA 01960 MA 01960 2-15227 2-15227 REV REV 0101 POTENTIOMETER INPUT POTENTIOMETER CARD ANOS5500 INPUT CARD ANOSS500 Page 4 of P8084 0199 Code Ident, 1BMOO Code Ident 18M00 File Name.

File Name: 2-15227revOl .doc 2~15221rev01.doc Printed Printed:: April April 4, 4 2003 2003 b) Excitation b) Voltage Output Excitation Voltage Output (1(1 per per channel) channel)

Voltage Lever Voltage Level: +5v and

+5v and -5v -5v Voltage Voltage Accuracy:

Accuracy: +!- 0.2% over

+/~ 0.2% over operating operating temperature temperature range range Output Current:

Output Current: 10mA max.

10mAmax.

Output Impedance :

Output Impedance: << 00.1

.1 ohmohm Protection Protection:: Tolerate direct Tolerate direct short circuit or short circuit or short short to to

-30vdc protected

+1-30vdc protected up up to to 250v 250v by by a a thermistor thermistor c) Signal Input c) Signal (1 per Input (1 per channel) channel)

Input Impedence Input Impedence: 10Meg 10Meg ohm ohm Input Signal

'nput Flanges :

Signal Ranges: +f-5v, +/-2.5v, +M

+1-5v, +1-2,5v, .25v, +1-500mv,

+1-1,25v, +1-500mv,

+/-250mv, +/-125mv

+1-250mv. +/-I 25mv Jumper Jumper selected selected (see Table (see Table 1) 1) and fine adjustment and fine adjustment by by trimpot trimpot Primary Frequency Primary Content:

Frequency Content: DC DC to to 100Hz 100Hz Signal Signal Source Source Resistance Resistance:: 2800 ohm 2800 ohm max.

max.

Overall Accurancy : (includes Overalf Accurancy: (includes +l- 00.5%

+1- .5% over over operating operating excitation excitation accurancy) accurancy) temperature temperature range range Protection Protection:: Input protected Input protected upup to to 250v continuous 250v continuous AmplIfler Amplifier Upper Bandwidth :

Upper Bandwidth: 10Hz, 45Hz 10Hz, 45Hz and (2-pole filter) 1 OOHz (2-pote and 100Hz filter)

Jumper selected (see Table 2)

Jumper selected (see Table 2)

Input Coupling Input Coupling Jumper Jumper selectedselected forfor either, either, AC AC OR OR DC. DC.

Lower AC Lower AC bandwidth bandwidth is is 0.5Hz O.5Hz (see (see TableTable 2)2)..

IN PUT RANGE

'NPVI (F.S)

RANGE fE.S) JUMPERg2 JUMPER JUMPER 3 JUMPER

+/-5v

+1- 5v 22 66to7to 7 99 to to 1010

+I- Z

+1- 5v 2,5v 44 5 to 77 5to 99 to to 1010

+/-1 .5v 88 44 to to 68 99 to to 1010 Page Page 72 72 of of 93 93

Exelon.

Exelon. Reactor Core Reactor Core Thermal Thermal Power UncertaintyCalculation Uncertainty Calculation Unit Power Unit 11 LE-01 1 3 LE-0113 Revision 00 Revision Unoontrofled Ooctr'Aenl Uncontrotfed Deauwtent. SocJrce source Unknown unknown ANALOGIC ..- PEABODY, ANALOGIC PEASODY, MA MA01960 01964 2..15221 2-15227 REVREV01 01 POTENTIOMETER INPUT POTENTIOMETER INPUTCARD CARD ANDS5500 ANDS550 Page Page 55 019 of 9 Case Ident:

Code Ident: 1BMOO 1 BMD0 File Name:

rile Name : 2-15227rev01.doe 215227revOl .doc___ Printed: Aprl14.2oo3 Printed: April 4. 2003

+f- 500mv

+1.. 500mv 20 20 6 to 77 6to 8 to 99 8to

+- 250mv

+1- 250mv 40 40 55 to to 77 8 to 99 8to

+ - 125mv

+1- 125mv 80 80 4 to 6 4t06 8 to 99 8to TABLE 1.

TABLE 1.

INPUT RANGE INPUT RANGE (CHANNEL (CHANNEL GAIN) GAIN) VS.VS. JUMPER JUMPER POSITIONPOSITION BANDWID TH BANDWIDTH JUMP ER,1 JUMPER 1 JUMPE JUMPEB4 . Y=5 JUMPERS DC to DC to 10Hz 10Hz 22 to to 33 12 to 12 to 1313 16 to 16 to 17 17 DC DC to to 45Hz 45Hz 22 to to 33 13 to 13 to 1414 11 to 11 to 12 12 DC to DC to100Hz 100Hz 2to3 2 to 3 17 to 17 to 1816 15 to 16 15 to 16 0.5 to 0.5 10Hz to 10Hz 11 tot to 2 12 to 12 to 1313 16 to 17 16 to 17 0.5 0.5 to 45Hz to 45Hz 11 to to 22 13 13 to to 1414 11 11 to to 12 12 0.5 0.5 to to 100Hz 100Hz 11 to to 22 17 17to18to 18 15 15 to 16 to 16 TABLE TABLE 2.2.

CHANNEL CHANNEL BANDWIDTHBANDWIDTH VS. VS. JUMPER JUMPER POSITION POSITION d) d) Analog Analog Signal Signal Output Output to to Bus Bus Analog Analog Output Output Signal:

Signal: Ch.

Ch.l,1, Ch.2, Ch.2, Ch.3, Ch.3, Ch.4 Ch.4 oror Hiz Hiz (high (high impedance impedance state),

state),

digitally digitally selected selected Output Output Offset:

Offset: +!-

+/- 5mv 5mv over over operating o~ratingtemperature temperature Range, Range. adjustable adjustable toto zero zero byby trimpot trimpot Full Full Scale Scale Output Output Range Range:: +l-

+1- 10v 10v (+10.5a1o)

(+f-O.5%) with with full full scale scale input input Maximum Maximum Output Output Voltage Voltage in in Hiz Hizstate:

state: +/-

+/- 15v 15v e) e) Digital Digital Signal Signal Input rnput From From Bus:Bus: Channel Channel select select (see (see Table Table 3) 3)

Page Page 7373of of 93 93

Exel on.

Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 1I LE-01 13 LE-0113 Revision Revision 00 Attachment 55 Attachment NIST Saturated Properties NIST Saturated Properties of of Water Water Thermodynamic Properties Thermodynamic Properties of of Water WaterE Saturated P M ies - Pressure Saturated Properties* Pressure Pressure Pressure Temperature Temperature Enthalpy Enthalpy Density Density Enthalpy Enthalpy Density Density UK I (PSia)t (F)

CFl _ILMAK) tv. Btu/Ibm) (y, lbmlft1

{v lb {I(1, BtuJlbml BtuAbmI, Ibm/ft) o.lbm/fti 1023.0 1023.0 549 .16 549.16 1191 .9 1191.9 2.337 2.337 548 .77 548.n 46.008 46.008 1032.7 1032.7 55031 550.3 1191 .6 1191.6 2.361 2.361 550.23 550.23 45234 45.934 1033.0 1033.0 550 .3 550.3 11191 .5 1191.5 2.362 2.362 560.27 550.27 45.931 45.931 1033.5 1033.5 550.4 550.4 1191 s 1191.5 2.364 2.364 56135 550.35 445.927 45.927 11734.4 1034.4 550-6 550.5 1191 .5 1191.5 2.366 2.366 550.48 550.48 46.921 45.921 10303 1035.3 550.6 550.6 1191 .5 1191.5 2.368 2.368 550.61 550.61 45.914 45.914 1036.0 1036.0 550.7 550.7 1191 .4 1191.4 2.370 2.310 550.72 550.72 45-909 45.909 1036.1 1036.1 550 .7 550.7 1191 .4.

1191.4 2.370 2.370 550.74 550.74 45.908 45.908 1037.0 1037.0 550 .8 550.8 1191 .4 1191.4 ~~Mv#T;2.372 550.87 45.901 45.901 1037.8 1037.8 550 .9 550.9 1191 .4 1191.4 IMOMMEN9 MR MW 2.374 --Q3 551.00 45,895 45.895 1038.0 1038.0 550.9 550.9 1191 .3 1191.3 ~Qk~ 2.375 Mfg 551.02 45 .893 45.893 1038 .7 1038.7 551,0 551.0 1191 1191.3.3 2.3n MIMARMI551.12 45,8 45.888 1039.5 1039.5 551 551.1.1 1191 .3 1191.3 2.379 2.379 551-25 551.25 45 .882 45.882 1040.4 MM 1040.4 551.2 1191 .2 1191.2 2.381 2.381 551 .38 551.38 45.875 45.875 1041 .3 ~~~

1041.3 551.3 I 1191 .2 1191.2 2.383 2.383 551 .51 551.51 45.869 45.869

1042.1 1042.1 F 551A 551.4 1191 .2 1191.2 Z385 2.385 551 .64 551.64 45.862 45.862 104&0 1043.0 051 .5 551.5 1191 .1 1191.1 :1387 2.387 551.77 .8S56 45.856 10413.8 1043.8 561 .6 551.6 1191 1191.1.1 2390 2.390 1 .89 551.89 46519 45.849 1044.7 1044.7 551.7WA 91 .1 1191.1 2.392 2.392 552 552.02.02 45-842 45.842 1045.6 1045.6 551 551.8.8 1191 1191.0.0 Z3964 2.394 552.15 45.836 45.836 1046.4 1046.4 551 551.9.9 1191 1191.0.0 2.396 2.396 552.28 552.28 45.829 45.829 1047.3 1047.3 552 552.0.0 1191 .0 1191.0 2.398 2.398 552.41 552.41 45.823 45.823 1048.0 1048.0 552 552.1.1 1190.9 1190.9 22.400

.400 552 552.52.52 45.817 45.817 1048.1 1048.1 552 552.1.1 1190.9 1190.9 2.401 2.401 552.54 552.54 45.81 45.816 1049.0 MMMMM 1049. 552.2 1190.9 1190.9 2.403 2.403 552.67 552.67 45.810 45.810 1049 1049.9.9 MMMGXJ~-- 552.3 1190.9 1190.9 2.405 2.405 552.80 552.80 41843 45.803 1050.0 MMMMM~

1050.0 552.3 1190.9 1190.9 2.405 2.405 - 552.81 552.81 W02 45.802O 1052.5 1052.5 55160 552.60 11918 1190.8 2A12 2.412 553.18 553.18 45 .783 45.783 1053.0 1053.0 552-66 552.66 11907 1190.7 2.413 2.413 553.26 553.26 45.779 45.779 10533 1053.3 11063.0

~Lemmon,

.0

'lemmon, EE.W.,

552.70 552.70 55181 553.81

.W,, McLinder, Mclinden, ., .

M O and M.O.,

1190.7 1190.7 119Q3 1190.3 and Friend, 2.414 2.414 2.439 2.439 Friend, D.G,"Thermophysioal F

9 D.G., 'Thelmophysical Properties 553.31 553.31 55174 554.74 Properties of of Fluid 45.m 41777 41704 45.704 Fluid Systems",

Systems",

NIST NIST Chemistry WebBook, NIST ChemistryWebBook, NIST Standard Standard Reference Reference Database Database Number Number 69, 69, Eds.

Eds. Rj, Linstrom and P.J. Linstrom and National Wa W.G. Mallard, Mallard, National Institute Institute of ofStandards Standards and and Technology; Technology, Gaithersburg Gaithersburg MD,MO. 20899, 20899, hftp, IMebbook . nist, gov, (retrieved hftpJlwebbook.nistgov, (retrieved September September 30, 2009) 30,2009) tpsig tpsig:== psia 14.696, rounded psia , 14.696,  :

rounded.

Page Page 7474 ofof 93 93

L E-!0113 Exelon. Reactor Core Reactor Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 1 1 LE-0113 Revision Revision 00 Attachment Attachment 66 NIST Isobaric NJST Isobaric and Isothermal Properties and Isothermal Properties of Water of Water Thermodynamic Thermodynamic PropertiesProperties of of Water' Water'i isobaric Isobaric P Prooerties Temperature Ternperature Pressurer Pressure t Enthalpy EnthaJpy Density Density Volume Volume F

(F) iM losiai 6tuAbm lBtuJIbm\ ibmltt3 (lbmlft31 twbm lft3Jlbm) Phase Phase Feedwater Feedwater In In 428.8 42tH! 1155.0 1155.0 407 .52 407.52 52.729 52.7'2.9 00.018965

.018865 liquid liquid 429,8 429.8 1155 .0 11550 408 .61 408.61 52.685 52.685 0 .018981 0.018981 liliauldId 430.2 430.2 11155.0 1 55 .0 409 .05 409.05 52.667 52.661 0.018987 0.018987 q.

lliauid 430.23 430.23 1169 1169.7 .7 409 .08 409.08 52.688 52.666 0 .0189 0.018986 liliQuid y1d 430.8 430.8 1155 1155.0 .0 409 .71 409.71 $2.640 52JS40 0 .018997 0.018991 liquid liauid 431 ..37 431.37 1169,7 1169] 410.33 410.33 52.615 52.615 0.019006 0.019006 liquid liQuid 431 :4 431.4 1155,0 1155.0 410.36 410.36 52.613 52.613 0.019007 0.019001 liquid liQuid 431 4318 ;8 1156,0 1155,0 410.80 410.80 52.595 52.595 0.019013 0.019013 liliauldid 432 432.8 .8 1155.0 1155.0 411 .513 411.90 52 .551 52.551 0,01 W29 0.010029 liquid liauid RWCU RWCUSuction Suction _

525.6 525.6 1060.0 1060.0 - ._ I 518.94 518.94 47 .612 47.612 0.021003 0.021003 liquid liQuid x30 530.0.0 I 1060.0 1060.0 I 524.39 524.39 I 47.333 47.333 0.021127 0.021127 liquid liQuid 534.4 534,,4 1060.0 I 529.88 1060.0 529.88 I 447.046 7 .046 0.1121256 0.021256 liQuiduid RWCU Dischar e RWCU Oischarae 4M.0 433.0 1168.0 I 1168.0 417.62 417.62 I 5232 52.32 I 0.019113 0.019113 I li. ' .

liouid 440.0 440.0 1168.0 1168.0 419 .83 419.33 52.229 52.229 I 00.019147 .019147 I liaufd 442.0 442.0 1168.0 1168.0 422.04 422.04 52.137 I 00.01918 52.137 .01918 I liauid !i u~f Recirculation Recirculation 532.0 532.0 1280.0 1280.0 526.57 526.57 47.352 47.352 0.0211119 0.021119 liquid liQuid 533.0 533.0 1280.0 1280.0 527.81 527.81 47.288 47.288 0 .021147 0.021147 liquid liQuid 534 534.0.0 1280,0 1200.0 529.06 529.06 47.223 47.223 0 .021176 0.021176 fi id liQUid 5,35 .0 535,0 1280.0 1280.0 530.30 530.30 47.159 47.159 0 .021205 0.021205 liquid liquid 536.0 536.0 1280.0 1280.0 531,55 531.55 47.094 47.094 0 .021234 0.021234 liquid l!<luld CRD eRO 99.3 99.3 100 100,0.0 1448.0 1448.0 I 71 I 144&0 1448.0 I 11.24 71 .93 71.93 ,

.24 _ I 62.274 62-274 I 0.016055 62,265 62.265 0,016058 0.01606(}

0.016060 Hliouid liquid liquid Uid 100.7 10(),1 I 1448.0 I 72.63 1448.0 72.63 62.256 62.256 I 0.010163 0.016063 I liquid liQUid Isothermal Pro Isothermal ProOOfties 'es Feedwater Feedwater In In 430.8 430,6 1145 1145,0 .0 409.70 409.70 52 .636 I 0.018958 52.636 0018998 liquid liauid 430.8 430.8 1155 1155,0 .0 409.71 409.71 52640 I 0.018897 52.640 0.018997 I liauid liquid 430.8 430,8 1165.0 1165.0 409.71 409.71 52644 5~644 I 0.018996 0018996 1' id liquid RWCU RWCUSUctionSuction 5300 530.0 1050.0 1050.0 524 .40 i 47.326 524.40 47 .326 00,021130

.021130 liquid liQUid 530.0 530.0 530.0 530.0 10 60.0 1060.0 1070.0 I 1070.0 524.39 524.37 524.37 ,

524.39 I 47.333 47.333 47 0.021127 0.021127 0.021124

.339 I 0.021124 47.339 liquid liauid

--liquid liQuid RWCU C.Discharge RWCU char e 440.0 440.0 115&0 I 41$.82 1158.0 41 9.82 52.225 52.225 0.019148 I lillauid 0.019148 id 440.0 440.0 1188 1168.0 .0 I 419.83 419.83 52.229 52.229 0 .019147 I liquid 0.019147 liQuid 440 440.0.0 1178.0 1178,0 419.83 419.83 52,233 0 .019145 52.233 I 0.019145 li uid liquid Recirculation Recifculation 534 .0 534,0 534 534,0.0

, 1270.0 1270.0 1280 1280.0 .0 529

$29

.07 529.07

.06 529,06 47.217 47217 I 0.021179 47,223 0.021119 47,223 I 0.021176 0.021176 liquid liquid 1i: id liouid 534 .0 5340 1290.0 1290.0 529.04 529.04 I 47 .230 47,230 0.021173 0.021173 liquid liquid CRn CRD 100.0 100.0 I 1438.0 1438.0 I 71 .91 71.91 62.263 r 62.263 0.01W61 0.016061 liquid liQuid 100.0 1000 1448.0 1448.0 I 71 .93 71.93 62,265 I 62.265 0.016060 0.016060 I ii uid liQuid 100.0- 1I -.._-1458.0 100.0 1458.0 I 71 .96 I 62.267 71.96 62.267 0.01 00160606060 I liquid liquid kwimm, L .W., mctindtn,

'ltn'1f1lOn, E:'w., McUnden. wo M.O.*., srwd and Friend, Frlend. txG.,

D.G,. "Themrophysicw "l'hermophysiclll Properties Properties ot of Fluid systems".

FttJd Systems".

NIST NIST Chemistry ChemIstry WebBook, Web8ook. MIST N'ST Stsrdard Refererae Datebase sterodard Ref~e Datebew hkimbef Number 69, Eds. P.T

69. Eds. P,J Unstrom LInstrom and and W.G.

W.G. Mallerd, M9IIrd, Nationsi WORM of N8t1onaIlnstitute of SWWarct Sland4tdS endend Tedvwlagy, GaMerstxrg MD, TedlnOIogy. Gaittlersbt6g MO. 20895.

20&99, h0plAvebbook .rrast.gov, (retrieved hItp:/Mbbooll,nist.gov. (retfieved SWrxrrber September 30, 30, 2009) 2009~

'Prig =

'P$ig ps;t "* 14696,

.. psfe 14,696, rounded rOllllde<l,.

Page Page 75 75 of of 93 93

Exelun Exelon. Reactor Reactor Core Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 1 1 LE-0113 LE-0113 Revision Revision 00 Attachment 77 Attachment CTP CTP Calculation Calculation Results Results Sensitivity Sensitivity Analysis Analysis The sensitivity of The sensitivity of the the calculation calculation of of core thermal power core thermal power to to variations variations in in the energy terms the energy terms is is determined determined using using estimated estimated values values for for the the energy energy out, energy in, out, energy in, and and CTP.CTP .

Table Table A7-1A7-1 showsshows the results from the results from CasesCases 1, 1,2 and 3.

2 and 3. ForFor thisthis analysis, analysis, the the error error rate assumed for rate assumed for as Qs Is is set set equal to equal to aa predicted predicted error error forfor the measurement of the measurement of feedwater feedwater flow. flow.

In Case In Case 1 1 and Case 2, and Case 2, the the Qs Os error error is is kept the same; kept the same; even even though,though, the the errors errors for for thethe QRAD, QRAD. QRWCU, ORWCU, Qf=, OPt and and Qcau QCRO terms terms are are varied varied from from 1 1  %

°!a to to 19 19  %

% (29 (29  %

% for tor aero).

Qcrd). Case Case 1 1 and and Case Case 2 2 show show that that CTP CTP is is relatively relatively insensitive insensitive to to the the accuracy accuracy of of the QRWCU, Op, ORAD, QRwcu, the QRAO, Op, andand CCRO CcRD terms, terms, whenwhen the the CTPCTP error error is Is rounded rounded to to level revel of significance.

of significance.

Case Case 3 varied the 3 varied error rate the error rate assumed assumed for for as.

Qs. A A step step change change in in the the mass mass flow flow error error rate rate of 0.01 %

of 0.01  % (from (from 0.310.31

% to

°lo to 0.32 0.32 %)  %) was found necessary was found necessary to change the to change the CTPCTP error error by by 0.02 0.02 0/0

°lo (a(a change change of of 1 1 MW MW from from 17 MWt to 17 MWt to 18 MWt 18 MWt and 0.500 %

and 0.500  % to to 0.520  %).

0.520 0,10).

The step change The step change errorerror raterate waswas calculated calculated to to determine determine how how fine fine thethe parameters parameters used used to to calculate calculate Qs and as and Qrav need QFW need to to be to effect be to effect the the results results. . Parameter Parameter changes changes that that would would result in changes result in changes in in the the parameter's parameter's overall overall error error raterate less ress than than 0.020.02 %  % were were found found to to bebe negligible.

negligible. Small Small variations variations in in the the flow flow measurement measurement uncertainty were uncertainty found to were found to affect affect the the CTPCTP uncertainty.

uncertainty.

For example, For example, CTP CTP is is the difference between the difference between the energy leaving the energy leaving the the reactor reactor and and the the energy energy put put intointo the the reactor from reactor from other other sources sources outside outside of of the core. The the core. The enthalpy enthalpy of of saturated saturated water water varies varies with with changes changes in in pressure pressure.. For every 11 %

For every  % change change ;n in pressure, pressure, the the enthalpy enthalpy of of saturated saturated water water vaporvapor (and (and by by inference inference the the energy energy of of the flow) between the flow) between 800 800 andand 1,3001,300 psig psig wlllwill vary vary by by an an average average of 0.03 %.

of 0.03 0lc.. This This change change in in enthalpy enthalpy is is less than the less than 0.04 %

the 0.04  % found found necessary necessary to to cause cause a a significant significant change change in in the the CTPCTP error error rate.

rate. Thus, Thus. CTP CTP can can be be said said to to be be tolerant tolerant of of the steam dome the steam dome pressure pressure measurement measurement error error specified specified the pressure measurement the pressure measurement loop loop isis shown shown to to be be accurate accurate to to about about -10 --10 psig, psig, which which is is approximately approximately 11 %  % of the maximum of the maximum allowable anowable steam steam dome pressure.

dome pressure.

Table Tabre A7-1 A7-1.. CTP CTP Calculation Calculation SensitivitySensitivity Analysis Analysis 8ensilvity Sensilivity Analysis Analysis Case 1 Case 1 Case Case 2 2 Case Case 3 3 Predicted Predicted Predicted Predicted Predicted Predicted Energy 10 Energy in Assumed Assumed error as error as Assumed Assumed error error as as Assumed Assumed error error as as percent percent of CTP CTP of error Case rate Percent error rate Case t1 Percent of CTP CTP of error erlOr rate Case Case 2 Percent of rate Percenl 2 CTP CTP of error error rate Case rate Percent Case 3 3 Percent of CTP CTP 0'

Energy Out Energy Out 09 18,030,078,635 18.030.018,635 Btuhfir BtuA1r 152.70%

152.70% 031%

0.31% 0.4730r6 0.4'73% 031%

0.31% 0.473 0.4730,40/6 0.32%

0.32% 0 .489%

0.469%

QRAO 3,754,300 3.754.300 Btufir Btuhlr 0.03%

0.03% 1% 0.0003%

1% 0.0003% 10%

10% 0 .003%

0.003% 19'0 1% 0.000%

0.000%

GOU 16,407,160 16,407,160 8tufir BIUJflr 0.14%

0.14% 1 % 0.0014%

1% 0.0014% 10%

10% 0.014%

0.014% 11%

°70 0.001%

0.001%

Q out 18,050,240,095 18.050.240.095 Btuhr Btwtlr 152.879'0 152.87%

Energy In Energy In 0Fw Caw 6,201,235,621 6,201.235.621 BtuAtir BtOOr 52 .520/9 52.520.4 0.31% 0.163%

0.31% 0.163% 031%

0.31% 0 .16^

0.1630,{. 0.32%

0.32% 030.168%

.168%

Op OP 37,146,642 37,146,642 BtuAtr Btu.tlr 0.31%

0.31% 11%

% 0.0031%

0.0031% 10%

10% 0.031%0 0.031% 11%

% 0.003%

0.003%

Qcrd Qcld 4,578,000 4,576.000 Bt Whr Btuhl( 0.04%

0.04% 1%

1% 0.0004%

0.0004% 10%

10% 0.004%

0.004% 1 0l0 1% 0.000°!0 0.000%

Q in Oin 6,242,960,263 6.242.960,263 Stufir Btuhlr 52 .870.6 52.87%

CTP CTP QCTP QCTP 11,807,279,832 11.807,279,632 Btwhr BtUlhr SRSS all SRSS all error error terms' terms' 0.500%

0.500% 0.5009'0 0.500% 0.520%

0.520%

SRSS SRSS onlyonly Os am as and Qfw Qfw error termst( 0.500%

erlOr terms 0.500% 0.500%

0.500% 0.520 0.520% 010 Error rounded (fError rounded to 3 significant to 3 significant figures figures Convert COnvert to to MW MW Bturhr BhihrperWper W 3.412 3.412 BtLYhr per Btlihr per MW MW 3,412,000 3,412.000 In MWt InMWt a

Q out out 5,290 5,290 MwtMWt Relative errors Relative errors MWt MWI Q

Q inin 1,830 Mwt 1,830 MWl Case 11 Case Case 22 Case Case Case 3 3 crp CTP 3,461 MWt 3.461 MWt :t 1; 17 .31 MWt 17.31 MWt t

+/- 17 .31 MWt 17.31 MWt t 18 .00 Mwt

+/- 18.00 MoM

'Error rounded to

Error rounded 1022 significant significant figures figures Page Page 76 76 of of 93 93

Exelun .

Exelon. Reactor Reactor Core Uncertainty Core Thermal Thermal Power Uncertainty Calculation Power Calculation Unit Unit 11 LE-0113 LE*0113 Revision Revision 0 0 Attachment Attachment 8 8 Derivation Derivation of of the the relationship between flow, relationship between flow, AP, and density

~P, and density A8-1 A8-1 Basic Flow Basic Equation Flow Equation Given that Given that thethe basic flow equation basic flow equation (Reference (Reference A8.3-1)

A8.3-1) applicable applicable to orifice plates, to orifice plates, flow nozzles, trow nozzles, and venturis and venturis is is Q =

Q == C* C ~P 4

~p ,, where P '. AP where C C is a constant is a constant (Equation (Equation A8-1).

A8-1).

Then the relationship Then the relationship between between flow (Q) and flow (0) and differential pressure (AP) differential pressure (~P) and and density density (p)(p) can can be be derived .

derived.

AS-1 .1 .

A8-1.1. Relation-ship Relationship between between Or 0. ~pAP and, and p For constant density, For constant density, the flow can the flow can bebe shown shown to vary with to vary the square with the square root root ofof AP

~p such such that, that, a,1 = I Q

02 02 J'

1AP2 OPT lP AP2 1

(Equation A8-2)

(Equation A8-2)

If the If the variation variation around around somesome nominal flow, Qo, nominal flow, Qo. is equal to is equal to some some known known uncertainty, uncertainty, o,, 0'11 then then (1- a1) and 01 = Qo

  • Q2 = Qo * (1 + 61) (Equation (Equation A8-3)

A8-3)

Similarly, ifif the Similarly, variation around the variation around some nominal differential some nominal differential pressure, pressure. AP O , is

~Po, is equal equal toto some some unknown AP unknown LiP uncertainty, uncertainty, qX, O'x. then then API = Po * (1- ax )and AP2 .= Po * (1 + ax) (Equation (Equation A8-4a)

A8-4a)

For constant For constant AP, LiP, ifif the the variation around some variation around some nominal nominal density, density, Pb, Po, is is equal equal to to some unknown P some unknown p uncertainty, or, uncertainty, then O'x. then p1 = po * (1- ax ) and p2 = po * (1 + ax) (Equation A8-4b)

(Equation A8-4b)

These values These values can can be be substituted substituted into into Equation Equation A8-2 A8-2 and the equations and the equations manipulated manipulated to to solve sorve for for a, ox<

(1- at) 0 0 **(1-0'1)

Q0 P0

  • 0 - a'.J Q 0o
  • 1 + a1) 0 (1 + 0'1 ) = * (1 + 6-) ,

AP (Equation (Equation A8-5a)

I-PO AS-5a)

Qo0 ** ((11-0 - 0'1 fit)) Po *(1-6X1 po

  • 1- 0' x QQoo ** (1(17-¢i)

+ 0"1) = VP0*0+a.)'fo"'

Po* (1 + O")() , for p (Equation A8-5b)

(Equation AS-Sb)

Crossing out Crossing out likelike terms terms from from the the numerator numerator and and denominator, rearranging, and denominator, rearranging, and squaring squaring both both sides sides yields yields 12 0-at} = (1-6x) 1+Q1 ) (I+6 X )

(Equation (Equation A8-6)

A8-6)

Equation A8-6 Equation A8-6 can can be be simplified simplified by defining a by defining a new new function function ofof a, 0"1::

Page Page 77n ofof 93 93

LE-0113 Exelon. Reactor Core Reactor Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 11 LE-0113 Revision 00 Revision a'1)

Y(a1)Y0 (1+o,1 ) (Equation A8-7)

(Equation A8-7)

Substituting Y(CS1)

Substituting into Equation Y(a1) into Equation A8~6A8-6 and and rearranging, rearranging, gives gives Y (al )2 =

Y(O' 0 - (1

= (1- Qxx ))

1 1+c3'x )

(1+O'x) (Equation A8~8)

(Equation A8-8)

(1(1+or.)-Y(61)2

+ O'x)' Y(0'1)2 ==0-dx)(1- o-)J (V(0'1)2 (Y(O'1)2 + Y(rs1 )2 . + V(0'1? or.x) =

= (1- .))

t3' (1-- 0')(

Salving for Solving for O'x, gives the ax, gives the relationship relationship between between the the uncertainty uncertainty cs ax, for either x, for either 6P AP or p, and or p, and the the known known uncertainty of uncertainty of flow, flow, CS1.

a, .

ax O'x Y(Q1 )2 .- O'x

+ Y(0'1)2 o'x == (1- Y(,a1 Y )

(1-- Y(0'1 f)

{1 + Y(0'1)2)= (1- V(0'1 f) ax .(!+Y(a1)2)=(1-Y(a1)2)

(jx .

_ 1 _ y(0,1 )2

~x

~ (1 + Y(r1)2 (Equation A8-9)

(Equation A8-9)

Table A8-1 shows Table A8-1 shows the relationship between the relationship between the the uncertainties uncertainties in in pressure pressure or or density, ax, and density, ax. and thethe uncertainty uncertainty in in flow, a1 , to flow, <1" to be essentially linear be essentialfy linear withwith aa constant constant of of proportionality proportionaUty equal equal to 2, see A8-to 2, see A8-1 .2, provided 1.2, provided a, <1, is small, which is small, which is taken to is taken to be be less than or equal to 15 %.

less than or equal to 15  %.

Thus for Thus for small small flowflow uncertainties, uncertainties, smallsmall cf1,cs" Equation Equation A8-9 A8-9 can can be be simplified simplified asas aa linear linear function function

((0',). Equation qa1), Equation A8-10, A8-10, which which says says the uncertainty in the uncertainty in differential differential pressure pressure or or the the uncertainty uncertainty in in density density is is approximately approximately equal equal to to 2 2 times times the the flow flow uncertainty.

uncertainty. The The inverse inverse is is also also true; true; given given aa differential differential pressure pressure or or density density uncertainty, uncertainty. the the uncertainty uncertainty of of the the flow flow Isis one-half one-half thethe differential differential pressure pressure or or density density uncertainty uncertainty..

ax , n " 61, (Equation (Equation A8-10)

A8-1 0)

A8-1 .2.

A8-1.2. The The Limit Limit of of nn The The limit limit of of the the constant constant of of proportionality, proportionality, n, n t in in Equation Equation A8-10 A8-1 0 as as a1<11 approaches approaches zero zero isis found found toto confirm confinn thatthat nn care can be be considered considered as as aa constant constant withinwithin thethe range range of 0'1 less of er1 less than than 1515 °lo

% to to 0.

O.

1-Y(a1)2 z

= = 1 + Y(a1)

Lim (n Lim ~% Lim a,--> a,-*Ot ff1 ) a,--4(7"1 Recalling Y(a,) and expanding Y(a1 )2 in terms of a, r

+ Q12 2

1- 1-- 1- 2cr1 20'1 + 0'1 1-1-- Y(a1)2 2

11++20"1 2a1 ++ ff,12 0"1

- Lim a1 (I + Y(cr1)2 Q11:2 u{

a1[1+ 1+

1-2a,+

1-2U1 +U 1+ 20'1 + 0'1 J

]

Page Page 78 78 of of 93 93

LE-0113 Exelon. Reactor Reactor CoreCore Thermal Thermal Power Uncertainty Calculation Uncertainty Power Calculation UnitUnit 11 LE-G113 Revision Revision 0 0

Um 0+ 2a'1 + cxt2 2)_(,_ 2rs, + d,2

= Lim 4.

or, 1+2di + d1 )+ 1--2d' + dj a z d' d, dy (2 +2d1 r

,~~

4 Lim

' 2+ :0"1 2)) ,,which

+ 2d1z after sUbstnutlng which after substituting 00 for a, gives for cr, gives Lim L1m(n)(n) === 2 2

a, -40 (11~O A8-1 .3.

A8-1.3. References References 1 . ASME

1. ASME PTCPTC 19.5-2004, 19.5-2004, Flow Flow Measurement, Measurement, Performance Performance Test Code, ASME Test Code, ASME International International Table A8-1 Table A8-1..

Relationship Relationship between between a,, 0'11 Y(a,),

Y(O'l), ax, O'x, and and n n 0'1 Y(d~ ) = 0 Y(a)= _ O~t (1-0'1) dx O'x ;;

1-1-Y(0'1f Y(di Y nn = == dx f (dx) ,=

J!:::d(O'x) (1 x 1 + 0'1)

(11+d,~ 11+

+ Y(d j}

Y((11'f (11 0.0000001%

0.0000001 0/0 99.9999998 99.99999980/0 %p 2 .0E-09 2.0E-09 2.0000000585 2.0000000585 0,001%

0.001 0/0 99.998%

99.998  % 2.0E-05 2.0E-05 1 .9999999998 1.9999999998 0.4%0 0.4 0/ 99.2%

99.2% 0.008 0.008 2.0000000004 2.0000000004 5.0%

5.0% 90.5%

90.5% 0.100 0.100 11.995

.995 10.0%

10.0  % 81 .8%

81.8  % 0.198 0.198 11.980

.980 15.0%

15.0 ok 73.9%

73.9 ok 0.293 0.293 11.956

.956 20.0%

20.0% 66.7%

66.7 ok 0.385 0.385 11.923

.923 25.0%

25.0% 60.0%

60.0% 0 .471 0.471 1 .882 1.882 30.0%

30.0% 53.8 0/0 53.8% 0.550 0.550 11.835

.835 35.0%

35.00/0 48.1%

48.1 % 0.624 0.624 11.782

.782 40.0%

40.0% 42.9%

42.9% 0.690 0.690 11.724

.724 45.0%

45.0 0/0 37.9%

37.9% 0.748 0.748 ~_ 11.663

.663 50.0%

50.0% 33.3%

33.3% 0.800 0.800 1 .600 1.600 55.0%

55.0% 29.0%

29.0 Ok 0.845 0.845 11.536

.536 0 .882 60.0% -

60.00/0 25 .0°I° 25.00/0 0.882 11.471

.471 65.0%

65.00/0 21 21.2.2%% 0.914 0.914 1 .406 1.406 70.0%

70.0% 17.6%

17.6  % 0.940 0.940 1 .342 1.342 75.0%

75.0 0/0 14.3%

14.3% 0.960 0.960 1 .280 1.280 80.0%

80.0% 11 .1 %

11.1 °fo 0.976 0.976 1 .220 1.220 85.0%

85.00/0 8.1%

8.1 0/0 0.987 0.987 11.161

.161 90.0%

90.00/0 6.3%

5.3  % 0.994 0.994 11.105

.105 95.0%

95.0% 2.6%

2.6% 0.999 0.999 11.051

.051 100.0%

100.0 % 0.0%

0.0% 11.000

.000 1 .000 1.000 Page Page 79 79 of of 93 93

Exeleii Exelon. Reactor Core Reactor Core Thermal Thermal Power Uncertainty Calculation Uncertainty Calculation Unit Power Unit 11 LE-0113 lE*0113 Revision 00 Revision Attachment 99 Attachment Ametek Scientific Ametek Scientific Columbus Columbus Exceltronic Exceltronic AC AC Watt Watt Transducer Transducer Specification Specification (4 (4 pages) pages)

Exceltmnic watt Excelttonic watt and and var vat transducers transducers provide utility provide utility and and industrial industrial u~rs users with withaa highdcgree ofaccuracy highdegree of accuracy £orfor applications applications rc quiringprex'isemcasun.mcnts.Thcsc l1..'quiringpr<..'<.:isc tnmsurertrents.Thm trarrsdticersprovide tr<:U1Sducers adc-ourputsignal provide adc-outpUtsignal proportional to proporrional to input input watts watts oror V'<lflj.

vars. AllAll models are models are available available wirh with aa wide wide r<lnge range of of inputandoutput uptions.

inputandoutpUt options.

  • Accuracy Accuracy to to 0.2%

0.2% ofof reading reading "* Substation monitoring Substation monitoring "

  • 0 to t1 mAdc Oto+/-l mAde
  • i Exceptional reliability Exceptional reliability "* SCADA SCAOA "* 1-5 or 1-5 or 1-3-6 mAdc 1-3-5 mAde
  • " Excellent long-term Excellent long.term stability stability f* Energy-management Energy-management "
  • 4-20 4-20 oror 4-12-20 4-12-20 mAdcmAde
  • " Self-Self- or or externally externally powered systems systems

" 10-50 or powered

  • 10-60 10-30--50 mAdc or 10-30-50 mAde
  • No zero No zero adjustment adjustment required required 0* Distribution Distribution monitoring monitoring
  • Most Most popular popular models models are are 0* Process Process control control UL UL Recognized Recognized AJso avaiJallfe i. XlP modular, pJlIg*.in tormat for limited-space applieatioas requiring large numbers of transducers*
    • Two, four, or eight modu'es in one enclosure Easy to install. expand. or repair
    • Convenient front-panel access for calibration and output-current jacks available see page, n~ for more information.

AMETEK's Power hVdiumeaft 255 Nor* Woe Street Rochateti New York 14665 Phew 1-80D-274-5= Fein 5NA4486 42 42 Page Page 80 80 of of 93 93

Exeloi Exelon. Reactor ReactorCore Care Thermal Thermal Power Power LE-G113 LE-0113 Uncertainty Uncertainty Calculation Calculation Unit Unit 1 1 Revision Revision 0 0

EXCELTROMIC AC WATT 0 S S~cifiefriifxns P-Option" Watts o0 teto +/-1 AmAdemAda VI'" Yarn P-Opticr"Va,.

P-option* Mars (Watt Trwddced I (Var Transducert (Vat Transducer( (Var (Yar Transducer)

Trwadfuzer)

Camel i Narni"I 5A lap" Rams" 0-10A 20 A 2% A 8.2 VA (mexkrwao) at 5 A 120 V 0-15111V 200 V OM5 VA (maxar tum) at 1 20 V fix~sxi 100-130 oz Yet: 85-105 Vac 100-130 We AwtiNarp : 50-500 50-500 H2 66-500 Ht:

Power to Nominal 3 VA Nominal 6 VA Nominal or 50 MAdc far rion, dependng on td autputfbrye' ltcertactir. ret0ng ~ acs% Rai ~-- ~~ba~c Rsao~ ~o.~>&got

. 0-120% RO 4t 0-120% RO 7somilerawoEffect~r : . ;i .0015aA 1 C iaw% 1_" C 10.012% 1" C C GPeratfte0 Te~utriNture 3_f: to 50 . . . -20° C to +60° C -20° C to +50° C CeebPilaate Yelbp 10 Vde

[E

'~ We 2 an page 40. See S.. Table Table 2on2 on page pave 140.

40.

a a-1000011 0.25% RO < 0.5% RO <<0.1$%

0.25% RO RO and to 99% 4M ms to 99% <<: If Second Second toto N%

M f'tiwfr faCt!er . _ - Any Any Pf Bad at Accrue 1015% VA (maxinmm) f;o.I5~ VA lrnaximuml staaidaw callbestfoa Spin (minimum) t2%

12% ofof Rejig (n inimunt) 5%

ReNino (minifllUlll} :tM 120% 01 S~n (wutkntarn) of Span (Minimum)

WO o Point (Hrt6ttum l None nona Required RtqulteG -- +/-51' of of Zara Zaro Point Point (nxnimum)

[minimuml rretleleyt RsW 6e 6tH:Hz swbilkht (Pat Yosr) a.15% of Span, S~n. 10 .2% RO, flU'" RO, +0 .24% of

to.25'" Sp'.,

of Spas, ortcturNai3tiveaM Noncumulative Noncumulatlv. Noncurroletive Noncumtll.tlve Op-f)"" dittr 0-95% Noscondensing lsefsNoa _ complete llowoutput/Power/Case) bleloamric Withstood 25M 2500 VRMS"'

VRMS*" at at 60 GO HzHz S 1 Wi>Il+ataad ANSI/tEEE ANSI/IEEE 037,90.1 C31,90.1 Maximan Not wsi¢m :. 4.. [tit, Hls.,88oz, ot. (212 kg) leg' 33Ibs,.

lb:., 55oz U.5ltgl 01,. 04 kg) 44111'.,801;.

lbs., 8 or: (212kg) kg)

APpaxintate Dimowami (rwx3.TOx5.6'H

.rrWx3.ro x5,6'H 4YWx310x4,TH U'WxU'O xc,fH 7.YWx3.TOx5.6'H 7.rrw)( 3,r D)( U' H (excludWq ate gi plate) met xxt4 94 minx F/IlIl x142 142own) f 12 mat x)( 99 mml jlJJ2Iloo 99nua 111m_x i119 l9 mm) mrn} (110(178 mm mm. x 94 mm x.142 9(mm 142 mm) mm) i Case,.ae,seesee page

~alle 122 122 Style Style IfIICase, Cu., seesee pigs page 112 122 Style Sryl& 11Case.

case. 34e pater 122 ue ps" 122 Q"M" wtNt 1.lnaaity 06-600 Wattviisal WanS/EfMtnl nt S00-IMO 5(>>-1000Vars/Eiement VarstElltlMnt 500-MVarsAaemant wror wiiW vohaga compkanca. Reduce load resistance Reducelo<Jd r.slstance as 3Srequired.

required.

'* P-Op1l*a l.eIucMs1-Sri-3-f.

p.Optloa i&dW6i t-i'I-J-5,4-XV1u^?

4-20/ outPul6. Specifications subject to t:"a wkhortt Polka.

"`

    • Total Total k"t

",,",' Pat

"'to to4xcood

~JttC4286%

~ of stmw of. r ends wink 0 t4 ti aakdc aut:ut.

Total Tot81 input eat totoollCood inplltllqt axcood 120%

1mofof" staid an unks whit P-0064" aatVet .

"'Riettt uic levtls n1)jeltttrk Itwxas 8$iadieated i,ilwtd W l/IfUl ,

Ulll:~(; vary a w-UL Rtcagnizad models .

AMffW Power hoWneft 295 NoM Union Sheet RocltasteS New Yo* 14606 P) :1-8W2M-5368 Fm 585-454?M 43 43 Page 81 Page 81 of of 93 93

Exelon.

Exelon. Reactor Core Reactor Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 11 LE-0113 LE-Q113 Revision 0 Revision Ordering Procedure Ordering Procedure Exceitronic AC Exceltronic AC WattWatt or or VarTransducers Var Transducers ORDERING PROCEDURE ORDERING PROCEDURE Specify bv Specify by !taSI UsetrlfdelI numbernumber andand appropriate appropriate I.htetion suction or or option option wffh,es suffixes in in t~

theorder order shown shownin in the thefollowing following example.

example.

Auxiliary Auxlllary Current Currant Voltage Voltage -RS/Freq .

-RSlfreq. Opting Option Option Option External ExtefOal Ba. Mod., No. Output Power Input Input Option 11 12 13 Aux. Power r..ld 1.... 3 Teltlc.. Table 4 T."Ie.. Table 5 TlIbIe5 Table 6 T.ltlttS Table 6 Tabid Table 3 IfIf other other there 120 Vac then 120 Vac

{std.L specify (stdJ. specify ext ext.

aux . power voltage:

aux. power voltag..:

IfIf A2 A2 is salected, leave is srNected. leave this this space space blank; blank: specify specify 69 Vac Aux.,

69VacAux.,

ext . aux.

ext. aux. power voltage at power voltage at end of model end of model 00.no. 240 240 Vac Aux, VaeAux.,

277 Vac Aux 277Vac Aux.,.,

or 480 Vac Aux.

or 480 Vee Aux .

EXAMPLES:

EXAMPLES: XL342KM2-S-1-RS-SM-SC XI.J42K5A2*5,'*RS*SM-SC 3-element, 010 3-elemarrt, 0 to +/-lll1Adc it mAdc Watt Watt Transduc8I; Transducer: 120 120 Vac Vac external auxiliary power; external auxllla/Y power 1010 AA input; input 240 240 V Input; resistor Y Input; scaling resistor scafing (converts Iconvel1S current output to current Otltput voltage output);

to vollage output!; seismic brace; special seismic brace; special calibration cafibr.tion {example:

(example: 12007200 W).

W).

XL342KSPAN7A4-5-t-RS-SM-SC Xl..342K5PAN7A4*5-1-RS*SM*SC 3-element, 4-20 3*t'-ment. 4 mAdc Watt

.20 mAde Watt Transducer, TransduClr; Internal auxiliary powor;10 intarnalewcillary po~r; 10 A. A Input; 240 V input; 240 V input; input; resistor scaling !converts resistor scaling (celWert, current eurttnt output output to to voltage output); seismic volttgt output); brace; special seismic brac.: specill calibration calibration (example:

lelUlA1p": 72001200W).

WI, Tableo 1 Base Model Nmber Setectimf W

watt Watt Var V.r Calibration C.lil,atloa at at Rated R.te" Output Outptt Ettmanil MR&I Mg .

fI1IIdt1.II" matel N4.

M.UtI14I. ~

caf s (SA. 120 YNamleat i5~.126V low No*** IIpPMlI 1 XL5C5 Xl5C5 XLV5C5 XLV5CS Single Single Phase Ph3se 500 W or Vars 5OOWorVars "* till and2ut-shu Il12*&nd2ltl-el4JlllftC'"n 1 in* XLSC51in XL5C51112 XLVSC5ltr2 XlVSC51m 33 Phase, Phase, 33 Wire Wire 1000 1000 W W or or Vars Vars requaria

'.... a,Ilalue****

balurced vsltata.. <

2 XL31KS Xl31I<S XLV31K5 XlV31K5 33 Phase, Phase. 33Wire Wire 1000 1000 W Woror Vars Vars 2,17" XL31K52w X131K521O XLV31K52w

)(LV311(52~ 3 Phase, 4 Wire 3 Phase, 4 Wir. 1500 Wor Vars lliOOWor Vars 3 XL342KS Xl342K5 XLV342KS XlV342J<5 33Phase, Phase, 44Wire Wire 1500 Wor Vers 1500WorYer.

Table Table 22 fhapo Oatput Select4a Selectita Compliance ComplillceVoltage/

Volt.ge, Maximum Opeo Maximum Optll f.:Olllta PAID PAN6 Rout

_Ur8 I-5 Ran" 1O.'

MAdc Maximum MaXimum toad 15 15Vac/3D00 Loa_

n Vdcj3000 i2 circuk V,

Gira.Veluae 3OVck:

pI to 44 -Ad. 30 Vdc t-SmAdc 6'.(o+/-1 mAdeoutpsrt o~ b fa I st~ rd, and PA107 PAN1 -

4*21 011144 MAde 15 Y 15Vdc/7SfO 0 30Vdc 36 Ydrr It,"rd** dll ii:

itsprs4ified specifl... 1 bytkrt UteBass 8 tia .del . t PANG PANS ;v- 50 rnAdc 10*50 mAde 15 Vac/300 11 15Vdcl3OOU 30 Vdt JOVde by MolI,I Niuabrus' N Far hi outputs-outpIfb PANG-8 PANe*S 1-3-5

'.3-5mAdc mAde 15 15Vdc/30012 Vdcl3000 U 30Vdt 30 Vd4 other otIMrthaatfwt0* toIeto il mAdc I8AtIc. PAN7-B PAN7-8 4-12-20 4-12020mAdc mAde 15 15Vdc/750 Vdc/750U0 30 Vdc 30Vdc indlea" imIicllt8the'heapplepriate IfJIInJpriate PANS-B PANS*S 10-30-50 10-30-50mAdc mAde 15 Vdc/300 11 15VdC/300U 30 Vdc JOVdc P-Option P-option inlitthe the"Output' "O..,1It" posit;.. of dieeorapI.-

po.iti** .9A. COl8pktte ,

PA8 PAS 1-5 1-5MAdc mAde 40 Vdc/aoooi1 40Vdc18000 n 70 Vdc 70Vde

'..d .11 nuath- b PA7 PA7 4-20 HOmMe m-c 40 40Vdc/201X1 Vdc/2000i1U 70 vac 10Vdc model .......

PA8 PAS 10-50 mAdc IQ*50mAde 30 Vdc/600 0 JOYdc/600U 70 Vdc 10Vdc PAS-t3 PAS* 8 1-3-5 1*3-5 mAdc mAde 40 40Vdcj8W VdC/8000 11 U 7070Vdc Vdc PA7-8 PA1*S 4-12-20 4-12*20 mAdc mAde 40 40Vdc/2000 Vdcl2000 0 n Vdc 7OVdc:

70 PA8-8 PAS*S 10-30-50 10*30-50mAdc mAde 30 Vdc/600f2U 3tlVdcl600 70 We l0Vdc AMETEK" P4war Insbrunuots 255 Nadt Won Street RoclwstK fir York 14605 Pty1-8W274-631iB Fax: 585451-7806 44 44 Page Page 82 82 of of 9393

Exelon Exelon. Reactor Core Reactor Core Thermal Thermal Power Power LE-0113

!.E-0113 Uncertainty Calculation Uncertainty Calculation Unit Unit 11 Revision Revision 0 0

Ordering Procedure Ordering Pmcedure Exceitronic AC Exceltronlc AC Watt Watt or or VarTransducers Var Transducers 1"ahte 3 labre Auxihry Power Slpply 3 Auxiliary SupplySelection Selection

,.pIt"p.

low no kalm,om Ronnit

~ .tf+/-~llllltll Matt MAdc uaisl

~A2 A2--

    • External AuxllQrv Extflnal Auxiliary Pewer Power(121 (120 V.c Vac std.)

std.) x-135V.c 85-135 Vac 50-560 It!

50-581 Nt 3 VA 3VA A4 A4 Internal Auxiliary Iflt,rnal Auxiliary Powtr Pourer 1$.It-poweredl (self-powered) 70-112% of 76-112% of Nominal Nominal Auk. Aux. Power Power Volt.ge Voltage Equllllnput Equals Input Frequency Frequency 3 VA 3VA (P-optfwi usitsi (P-o,dII1JlIks1 A2"" (tasty .....1 A2**,r.." bgadr) External External Ailltllilry Auxiliary Pow.,

Power {120 (121 Vee st....

Vac std.) 1W130 Vee

,.,30 Vat 99-590 N:

!iO-!ilII1b I5 VA VA A4 A4 Internal Auxiliary hltemal Auxiliary Power Power (self-powered)

(self-powered) 84-106% of 84-108% of Nominal Nominal Aux. Aux, Pow.r Power Voltage Voltage Equals Input Fr.quencv Equals Input Frequency 66 VA VA I**""".e For external soxillary llIldlmy poor rues Idler pt'IMf ....... odw !IuIll12l1 fl= 120Vee. Vac, SlIftIly spcly1ft.tire . . . .in. the Y Iris ,.sitlft the IIs1 psitiew "1M of the ccomr{ose aadri amber. (u.,II: (ExsrspW 241 241 Vat:

We AssAIIl.).) I I DC DC axtaraN oaudliary patiwr t'ttemat auiJiary power ave"e; see 8pecltf Opians an page ,21.

Special o,Iiou I I , ... 121v ~

rTaiite able 4 Input Selection Input Sekiction cmetd Volets' Cun.1t rca"..

Current Range Calibration Ca Ilbrttioll atat fill...

Rated 0UqI1t Ouipot Vokaye Volta.. Rail"Rsnga CtUlmlti**

callbratiee at at Rata! out 0.,.. w 20110 DltIII NominalH.ltIIJul wI w/ Atcwecv Warley (14 A II Nominal Inputl A "omfa.llp,l1) IRtl.II Motai14t HIIIIJuj wl AgMutairs+

wI ACCUracy 1120 mo V VN Nominal1101ltl Inaitt)

-3

-3 ft AA 0-2 A 0-2 A 100 W 100 W oror Vars/Ellm.nt VaNEWmen( -0

  • 0 69 V 69 V 9-75 D-75 VV 250 W 250 W or or V.rs/Eillment vers/Element

-4

-4 2.5 2.5 A A 0-5 A Q-5A 250 W or VarsVElement 250WorVars/Elemtnt Std."'"'

St***.... In v 121Y 0-116111V "lSI V Mw or vwsfeawat

.WorVarsJEle.....

Std.""-

Stll.-*

-11 55 A 7.5 A

A 0-10 A

.'0 A 0-15 A S00 W W errOf Varaf lonamt V.rII!IIMnt 750 W orV.rs/Element or Vers/Element

-1

  • 1 240 V 240 V 0-300 V 0*300 V 1000 1000 W Wor Vars/Etament or VarS/Elment
  • 11 7.5A ()-15 A 150W -9

-9 277 217 V V 0-340 V 00340 V 1200 1200W W crVerS/EIement or Vars/Ehrment

.5

-5 IC A 10 A 0-20 0*20 AA 1000 War 1000 W or Vers/Elemsnt VarsjElem.nt .2

  • 2 480 480 V V 0-600 V 0*600 V 200O 2000 W Wor or Vars/Elament VarS/B.llHlInt --77 IS IliA A 0-20 All 500 W

()'20 A1500 Wor or vary/Element Van/Element

  • S****

. 8.... 25A 25 A 0-30 6-30 AA MG 2500 W Wor or Vars/Elsment VarS/Elfment 1*-l.M~""""'poside*IlllctkJll""'" "".1

..... OF"*

"" -4 "Madras reqIIlrn aI ~ Style II caM.

case. Is" (SIt pppep 12lt22 for for case dliresasl"L

.............of.......,

0p1I.-"

height of or"" tcrip(s) WWsl is II 1.4rfer cae dilHatIOIIL soils with *...

urteuJliltwhIJ -a "VestftllJj Table 55_Scaling TabJe Ret:istar (AS"oency Seal. . Resistor (-RS)lfrequency Options OptiOM

.QJ!itI QucriptiQR If*iff ..

tt You Mist spoor YOll .... the doelrad dell.... ouipart 0lItpIII whop.

woINp:

-RSt

-RSt Scaling ScalJng Resistor Resisfo, 1M t rer Lto Fw ttlJA* IIIlt1.o"Hy tpeelfy . raw

. . .qua

...o aioto :tlDYtID......

tt vdc. Loa

.6

  • 6 400 Hz 400Hz harodenee Is

......... t ItM}/Vdc ll1MONlIc~ (ice.

-12

  • 12 50 50 Nz (not UL Hz (l1ot UL Recognized)

Recognized) Fm P-omits Ftr P:OptitI" awe- spsoffy speofty . aup boa+ "15

. .".. e.15 Vdc Vde (PAM WAN medWlIIOdefsl.r or RSt RSt 400 400 Nz Ht and and Scaling Scaling Resistor Resistor 4-+14W

...Y*(PA PAmotel" Load)tapdmcei2AI.9kor2atkstNdra 1JlH~1s2OlJ. * .,2ttkONde.

RSt RSt 50 50 Hz Hz arid and Scaring Scaling Resistor R.mtor Vim)

~),. for anito withwidt oatprds of of & 21, of 5.20. raped"".

54 aAdc respectively.

orSlm.Uc, TW, ilIIonaadoai is

?his aotpuc Is riot t~ of die mold asm0or, _ _.luItmnt" brA rmui bo prosgfod

........ to to d1s dle factory factoty when wtlta~ yea plow

, vow......

your aide(.

Tale Table 66 IffierOUter Optim Opti...

04920 0atkID 1111620110fi2e Qucrlgti. tt Yes nest tty.. _sf specify apedfy'" the desired lies,," lopm value:

1IpIt....

-21

  • 21

.20

  • 20 50-200%

50-200% Calibration 50-200%

Calibration Adjustment 50-200% Calibration Adjustment (current Calibration Adjustment (current outputs)

Adjustment (voltage outputs)

(voltag. outputs) outputs) 1It!to ttit mAde carillfadlll, eu'"

can be calibrated calibafiea Inpst watts or visa, faarpfo: C within Wt1O%

ClIIaII'..nwldlia

~A Az..

of doll ataaCsrd-

..1IKoflllolr 2-olearoat watt tow (available lavaliable only only with with 00 to to +/-1 mAdc units)

+/-1mAde units) dscer Mor Is atthwsd is Is" to 1010 1_W Wssaadsrd. The -SC opdee TlHI.sc optlHcn as be Ito

-24

-24 24 24 VdcVdc Loop-Powered loop-Pow.redIPA7 (PA7 andand PAT-B PA7-B models mod.,s only) onlyl added addUfor forinput hlp levels from 914 _w W(eM) totll1. 1110.W W(11146)1 (lM'll.U p. r:.otIiRI (consult (consult factory factory for for specifications) specifications) Mea nab can be cofitraNd

.~widIla were, wubdo W W% of *Wrasadard-cati6ratfea

.......,... r... mlard-elflllta1l..

-CE Analog An.'og Output Output Shorting Shorting Relay Relay irrpai waft a iIlpat wa. Of wars, (available lavailable only only with with 00to to tl

+/-1 mAdc mAde units)units) This Tllb hhearralion lafaorrdoBls is no

....part pMtd 01Oa

. .model modelllllllltle,.

fir. bet bitmat ,rovfdell be pmvWsd IIllISlIIa

-SCtt

-SCtt Special Special Calibration Cdbration toco the tile foctory

'ac1Olywhen wIIotI you pfKII year

,.. plow ye.order.

Older.

-SM

-SM Seismic Seismic BraceB(ac. (available (available with with 00to +/-1 roAdc to tl mAdc units) vnits)

(consult (consultfactory factory ifIf you you desire desirethis this option option with with N

If you yOI require "lplirl addihioul

. . . . .1optionsltptiou notnot shows

  • hem hete, see see Special Speci.1 aa P-Option P-Option unit) unit) Optiorm Opticnsan ell ptiga PIP 12L' f21. When WIle.wilarbrg orariqmy IAfspecial optioaI, or

$peelal options or z Zero-Based Zero-Based Output Output Calibration Calibration tax-:

lex.: PA7-Z PAJ*Z,. m0-20 6-20 mAdcl mAdei mats

....then thulIblaoption opti'", you YOll Moist musefirst first consult conaltthe til. factory faetory for for aavallable lavaHableonly only with with P- Option units, P-Optlon units, except except PAN-8 PANoS estirIaIR pricing pricing and ...del5irsty deJivefy esth-ees.

models) mod4llsl A Power lashumoaer 256 Nor* Union Street RocOesdar, New York 14MS Mtarta :1-800-274-536 Fax. 554%7M 45 45 Page Page 83 83 of of 93 93

LE-Q113 LE-01 13 Exelon. e6n .

Reactor Core Reactor Core Thermal Uncertainty Calculation Uncertainty Thermal Power Calculation Unit Power Unit 11 Revision Revision 0 0

Attachment 10 Attachment 10 832-C-001-J-023, B32-C-041-J-023, Rev. Rev. 1, 1, Recirculation Recirculation Pump Pump Curve Curve (1 (1 pages)pages) fic )4C.J:)

"C W-30 ;)t(1tU..

314""* ""..........

"a- F-"* ee. rust-K OtfttD*.,

flllflt( MMOIN CD co W *A >>" ~

0 na UoI>l

".0 -0144

...:t ...... , *4 n! TO i Jq"" "" r " r"4 . W {. . srw"s " N ~ s>: ~ O~ .,wv"t" , "" R"v " ` .'rtt^ . ..' avi " ~,~`"~. I"f"

-1" rte __

" .' .""N ~ i ~"" IIM .

1 ^ "

x W~tV" rFS~W" .w". "" " """"""" ""Y".arra4"d . "aa .R " ~'

~

0 1- 1 :7 gLz ~ "~~~ -t11 w "w" w .- . " . ..,~, r"v+"""r. wraw T PAP .

MEMBEBE

+~ r Ir r" p {w m .~ " . "

~ t w.j. w """ ~~ ."r M-C-2 ~

S'I

. r~ MIM .~~~ir

.1;/ -J " ~iJ1~" ~ J. ::.~.:  :

w. r"m w Jt

- ~~ ~~~ 1" t;, ;A-I TO-V,W7 z00- -

W s" '~ " M i r.~.-_ { " M" '~s w " s " Y. .v . 0 11 . . ~It" 5 ~ " s """ ~

MIwN~V NV" X-t =2 s " 1 "el " 511 It " f " izsr.- 7:7,-.Z . , 4 " r ~ ~ Iwi "N _ W " w ~. " . " ~a:R~ " . * " '11 P, it F_- F:7 F "" } "

M j 3T. EA1Q .

AgobrAct 1,Y,X..

Page Page 84 84 of of 93 93

LE-0113 LE-Q113 Reactor Core Core Thermal Thermal Exelon. Reactor Power Uncertainty Power Uncertainty Revision 00 Revision Attachment 11 Attachment 11 Rosemount Inc.,

Rosemount Inc., Instruction Instruction Manual Manual 4259, 4259, Model Model 1151 1151 Alphaline<mAlphalinee liP AP Flow Flow Transmitter, Transmitter, 19n 1977 (PAGES (PAGES 1, 1, 6, 14, 6, 14, 24, 24, AND AND 29) 29)

INSTRUCTION INSTRUCTION MANUAL MANUAL 4259 4259 MODEL 1151DP MODEL 11510P ALPHALINE8 ALPHALINEe vAI-F

.;filS FLOW fLOW TRAHSMlnER TRANSMITTER CAUTION:

CAUTION:

READ BEFORE READ BEFORE ATTEMPTINQ ATTEMPTING INSTALLATION INSTALLATION OR OR MAINTENANCE MAINTENANCE TO TO AVOID AVOID POSSfBLE POSSOSLE WARRANTY INVALIDATION WARRANTY INVALIDATION CONTENTS CONTENTS INSTALLATION

'NST At.!..A TION Page Page 11 CaitsraVon callb(ah~n Page Page 3 3 Span Span Correction Couectlon for tor High High Line Pressures lIn~ PreSSUfQ$ Page 44 Page OPERATION OPERATION P&ge 5 PageS Spe6tications 1fstop Squaw Root SpeeiiicatlOM 11$tOP Squ~lIe Root Page Page I7 MAINTENANCE MAINTENANCE Page Page 8 (1 PARTS PARTS LIST/DRAWINGS LlST/O~AWINGS Page Page 11 l' Deaign 08$19" S"cil¬ cations

$peclllcatloil$ Page Pag& 11 11 Parts Parts List List Page Page 14 14 Drawings and Schematics OrawinQa lind Sf;:l\emali<;s Page P3Qe 15 15 LOPYHr6"F W)SGQ0UN1 MC; . 1974, 197i1976

'ALFHALINE'

'ALPHAllNE' AND ANO `6-CELi.'

-CELL' at* ar. Rosemount Rosemount Trademarks Trademarks PrOl<iJt;Url ar O'O1e41ixr by 0001'&. or Of r>>o.a mo(~ of 01 1-0 (tIc.\ folk->>g fOI(f)w1119 U- S patewr U.S Pslimffi No 3,271.&;9: :J.J18. I~J. :USl8.3f>O; J.I5*M.!!3a. .*U9:l.88~

3.0!1,413,

.:1,80(1.4 13::l 9 85~Q34: > 1ytS.02B: .rnc¬ 854,009. 33.111~.02S; ,lrK/1.65S.

3.859.594, t;

`'anada

~,ma"'ll Pelerrsd Plllttnttd ?9&8;196$, 1974 tg74 p,719nfe Ml!~rc~.

P:J19ntt1 !6rezrc /\10. 1lHI.81t

~ t<fa. 1F1,8#2 0A"t"r Oit:tN US ii/V 11"0'<'1

IJ S.. 4"'V prvgn filter P;Jf(JMt . n "f1M.lt'd 3 ":, .~ ;+ -a" t n~Frrry

-x ;tfi'~if""1 Rosemount Inc. POST POST OFFfCE OFFICE. sax TWX: 910-575 SOX 35129 35129 MINHEAPrLIS.

MINNtAt'OlIS, MINKE5OTA 554~5 MINN£SOTA 55435 "NE: ($412)441-5580 PHON£: (612}9-4L*5S60 TWX: 910*516*3103 , 3103 1FLE}C:

T£lEX: 29 " 0183 CABLE; Z9*0l83 CABLE; POSEWtdtf ROStMOUNT "~

Revised R~"'IS<'e'd 11/77 11/77 Page Page 85 85 of of 93 93

LE..o113 i.E-0113 Reactor Reactor Core Core Thermal Exelon. Rower Power Uncertainty Uncertainty Thermal Revision Q0 Revision Specifications Specifications -- 1'151 11510P DP \/A vAP P Flow

- flow Transmitter Transmitter Functional Functional Specifications Speolflcatlons Dumping OiSmptng Load Load Effect effect No toad No load effect e(fcrct other other thanl/lao thelhe change change iri in Service S.rvlce Fixed Fixed response

!spons. time lime of Qf 1/3 1/3 second second,. power power supplied supplied to to the the transmitter t'ansmitt~r (Corer (Comer frequency fre{jlMocy of of 0404 Hz) Hl)

Liquid, liquid, gas gas or or vapor vapor Mounting Position Effect Mounting Position Erf~t Turn-on Turn-on Time Tim. Zero shift

$hifl of to 1" 1" W Ranges Range. Zero of up up to .0 wh fi~O ch can wh~ch earl be be to 10 seconds:

seconds No warmup required No warmup r~ulrfld calibrated cohbrQtQO out out. NoNQ span Gpon offoct effect.: No No cflooa effecl 0-5130 0-5/30 inches inche, H20 H 20 in jn Pfane pfane ofof diaphragm diaphragm.

0-2511,50 0'25/' 50 inches o-126/760 incMs H20

().1251150 inches lnchec H.0 H2 H~O

° Performance Performance Physical Specifications Physical Specifications Outputs Specifications Specifications Outputs Materials Materi,'s of of Construction Construction tt IlEAO BASED (ZERO OAS£O SPANS, SPANS WEtiENCE flEFEnENCE CONOf- CONOf*

4':!O rnAUC 4-1st mAIJC.. sQuars$.quar. root rool of Gt input Input froNS, TTONS, 376SS Jll!SS ISOLAMove ISOl.AflNG OIAPHRAGMI OIAf1HRA<Uf$- Isolating l,o**Ung D18phragms Diaphragms and /tAd DrainVenl Oratn/V(tll(

APPLIES APf>t.lES FRau 2~ ro FAo.'W 2s ro !fit

,~ ,LOW).

flOW) Valves:

Valwtt:

Power Power SupplySupply UI> t045 Accuracy A.ccuracy 316SS.

3l~SS. HAST£LLOY HASTELLOY C C qrOf MONEL, MONEL, External Extern at power power supplysupply required reQuited.. Uts to 45 voe. TransmHler 1:0 .25% of JO.25~ of calibrated calibrated span span for for aa range range of of VDC. Transmitter operates operates on on 12 12 VDC VDC Process Proc..., Flanges Ffaog4's and .nd Adapters Adepter.::

with no toad, with nQ toad 25%

25~ to to 100%

100'\\ ofot flow flow 1814

{6~ to to 100%

1~of of input input pressure), Inctudes combined effete of pressure,_ Includes comblnedeffecls ot Cadmium Cadmium Plated Carbon Sieel, Plated Carbon Sh~IH. 31635.

3163$,

Load Limitation.

Load Limitations hysteresis, repeatability and hystel8sis. repeatability and conformity conformIty HASTELLOY C HASTELlOY C or or MONEL.

MONEL.

of of the lh& square square root (oot function function,;

Sets See Figure Figure 7. 1. wetted W.ttfd o-flings O-Rlng_

Dead Dead Sans! Band Indication Indle,tion None NOM VITON.

VIl"ON.

Optional Optional meter meter with with f-314" 1-314'" linear

!loUt scale.

scale.

Stawttly Stebitltv Fill Fluid.

FlU Fluid:

(k-t00%,

(}. tOOlJls. Indication Indication accuracy accuracy is is +/-.2%

!.2% of of

~,0 .25*to of 1,:025,. upper range of upper range limit hmh fortlor6 months..

monthS.

Silicone Si1i.:one tit, Oil, Span span..

Ttmp..... tur. Effect Temperature Effect otts`

Hazardous Hazardous Loc"'onl Locations TI\(I total IQtaA effect aftect amtuding Inc'tKling zero Beoft~

The zerO and and span span Explosion prowl.

Expfo.'on pr()of: Approved Approved by by Factory Factory errnrst errors: tt 1,5% 1.5% of of Lpper upper range range limit limIt per per t',admiurn Plated C;Jldmlum Plated Carbon Carbon Steer Steel..

Mutual Mutual for for Class Clus 1,I. Division Division 1. Groups a',

1 . Groups 13', 100*F. (~:2<5% for ll)O"'P (::::2.50/. for low tow rata".)

raf19t'!.)

Electronics E"clronk:. Housing:

Housing:

CC andand 0; 0 . Class cra~s II. If . Division 0111/$;011 tL. Groups Groups E. E. F F

Overpressura Ov.,preuu:. Effect Effect and (3 : and Class lit. Division 1-,

and G; ,)n<! Clas, lit. Dht/slot} 1. Zero shiftshih of less lfum than --o.5% of upper Low-copper Low~Qpper aturnenum atlJfrnnurn (Nt~MA4)

(NCMA""}

Zero of ~ss  ::0.5% of upper Certification by Canadian Standards Certification by Canadian StandardS tango range limitlimit for tor 2000 2000 poi pSt (+/-2.0%

(+/-2.0'l4t for fQr range rang& Paint :

Paint:

Association Association (CSR) (CSA) for Class I.1 . Groups for Class Group$ C C s7=

5),

and and 0 El available available as as an an option option.. intrinsleatly IntrtnsleaUy Polyester-Epoxy, Palyesler*Epoxy,

  • ate:

ute: FM FM certification certiflcatlon optional opUonal lot 'Ot Class Clau Static Pressure Static Pr~**ure Effect Effect

1. Division t.

I. Division t. Groups Groups B. B, C C and and fJ 0 when wilen Zero Zaro Error:

Error; to of copper

.S°,o of to.S% lJp~r rangerange Ilimit (mIt for for Process Connections Proceu Conn_etlon.

used used with listed barrier witl'lli$ted bar,.~r systems.

systems, 2000 poi (-tt .0% for

1000 psl\-:!:1.0% tor range rango 3) 3)..

1f4-NPT on 1/4-NPT an 2-118" 2-1/8~ centers ct)nlers on on flanges-_

flanges, Spots Span and and Zero Zero Span Span Error_Error ~{3.5~O.t9b

-O.5':0.1~ of 01 reading reading per per 112-NPT on 112*NPT on 2"2~.. 2-t18" 2-118" or or 2-114" 2*1/4" centers e~l'lters 1 tOfl poi (-0.

1000P3i (-0.73!.tl.

75.',0. t'itr 1"IlJ for for range range:)'j,3, L Thi3is This is with adapte(s .

with adapt.f$.

Continuously adjustable Continuousty oxternalty, adjustable oxtemally, aa systematic syst~mahC error which error which can can txt be ftfe'rlcat Connections Electrical ConMCUon.

Zero Elnatton Zero Elevation and and $upprt!tS$on Suppression calibrated out calibrated out forfor 3a particular p;trt!cular pressure pressure tsefore Installation' l)efore rnl:UallatlOIl t/2-incti wndua WillI Ill-Wetl comJwt screw tvrrmrtdia:

with scr~w ttmHHI<cls Zero elevatlon Zero elevation or or zero zero suppression

$uppression up up to 10 integral lost and integra. tC$t jacks compatible with 0'

10% of cahofated 10% calibrated llpan span_ Vibration Vlbr.1lon Effect

,+/-,o*05%

to,.05~ of Effect uppor (tlngo of upper tango limit pot g limit POI' g to to 200 200 and 3690 or banM3

,ackS compatible miniature oanana plugs (Pomons 2944, mintature plugs {pomona with 2944,.

3890 Of equal)

"qoal~

Temperature Tem..-rattmt LImit. Limits Hr in Hz in any any 3)(ls.

axis .

Weight Weight

°-. 20°F to i-1501F Amplifier operating . Power Supply Effect

'20"F to i'1SO"F Amplifier op@rating. Pow., Supply EfflfCt

--40* FF to

'-40" to 42200F* ~20° F Sensing Sensing elemenl element Less than Less than 0,005%

O,OO5lft 0' of output output span span perper volt-:

vatt pounds excluding 12 POllr\dS 12 excludiog optionsoWions-operating .

operating.

-601F

-60 F toA to r t t3(}' F Storecle, t'tfID"F StoreQe. , . . . . . - - - - - - - ------ - - FIGURE FIGURE 17 - - - - - - - - - - -....

Static Static Pressure Pressu,e and and Overpressure OVet'prenurt Limits Limns LO D LIMITATIONS LOA.D LIMITATIONS 0 pl)iQ I) pain toto 2000 p2ig 2000 p~ig on on oHhcr octhvr oicfo without Q;OO without 4 -4"* -Ant 16'.10 damage to damage to the the traosmltter transmitter Operates Operates 150.0 within $£lacilicatlon5 within specifications between between static static line line pressures ut pft~$SUreli of 112 112 psid V::sils alto 200 ~j~,

lifltJ 2000 prig LOAD MV 10.000 psig 10.000 f?sip proof proof pressurepressure on on the the ;cNrr.+s) flanges.

flange'S, sot, Humidity Limits Humidity Limits 0

()-t00% AH.

0-100% A H.

Vofumettlc Displacement Volumetric O,spl.etmanl POWER SJPPCY POWER tvol~)

S.JP9t. y (VOC}

LGm than Lc~ than 0.01 cub O.()1 cub!,. ic Inche&..

inchaa.

._--~- tYDNt:L 1$is da l,adft.,**

p.K.'HEI. rr3f1(twork

,,1< i}1 WgrRdr011a1 FYKAW ul IN,tnJI.MI/J1 NK.S,4'

't?pr+anat ml!tllr

'OptlOftal motor riotnot drprudV!!U Ifp(lfOV!JC! for Ct ravp S~:

for (lroup 7 Go NASYFlL Y 4 /I.t radarusrk CiJ HASTI:HVY;.f ttiJd!lIVi),1f Ot 010 Ca,40r ot til') CiJ~O(

Canto Y1rON CorJJc wrON ,,';$

%a.. DuPont OUPoM t~4demsrk

~f"l1e'm;1f*

Tetrrflrnob4Y Far r"tlmfll1lc!Jy Srai:~ritrrl PnfC2r1 1f 1'}7$

SA+4fA Stllll(1llltJPMC2iJ P&f SA~M t q7; Page Page 86 8 6 of of 9393

LE..0113 LE-0113 Exelon. elun .

Reactor Reactor Core Power Core Thermal Uncertainty Power Uncertainty Thermal Revision 0 Revision PA 'S LIST/ORA PARTS LISTlORA 4INGS INGS SECTION SEC' Design Specifleatlons Design Specifications I MOOEL MOOEL AlPHALINE 1115101) 11510P

~'lOW YAA..SMI'tT£R PAN"$

COOl RANGEl

_i___-

) 0" 5 to

().S to 4-34 0.30 inc hevs ti;0 incheos H~O (0-127to.t~l to Ie 0-782 mm H 0-162 mrrs H1rp)

O)

.- 0-25

()..;lll t0 to 0-i50 0-150 u+clift inGMt HIO H10 (1'1635 (0-63$ to 10 t}-3810 0*36'0 /nUlmw H=0}

~()l

! 00,, 125 125 10to U*7Sa 0"750 In cfas H,rO Incl'\lU. Hjo (0-311'5 (lhU15 to 10 0-19050 trim "

0-19050 mll1  ; O)

H.O)

CODE OUTPUT C 4-20 mAOC. OC. lQu.r.

asttaerO (0011 root 0'Of tflPVl IN" MATERIALS OF MA'tlR'AUl CONSTRUCTIO14 OF CON$TRVCTlOH COOl! PLANGCS"lANG" AND AHD ARAPTERs AO"'UAS ORAIN-VENY ORAIH-YtN'I'VALvetVALVZS ISOLATING OIARHAAGM5 ISOlATJNG OIAPHl'tAGatlS It! Cadn++um CadfTWum PI'ltd PWsd C.8,C.3: 31Gss 316$$ 31$1`15 J!$SS l~ Cadtrtium Cadmium Plil.o MAW C C S.

$. HA$TELLOY HASTEI.LO'l' C C HA5Tel.LOY HMTiLl,.OY C-21l;C-275 14 Cadrntusn Cadmr\lm Pletoo Pletttd C.$.

C.S. MONEL MONEl MONSL MONIR n 3f6ss 3tti$$ 31fss 316$8 315'99 31(SS9 13 31 "s 316SS 31ess 316$8 HASTELLOY HASlalOY C-276 C-21&

24 3It3~'

)16Sl;i S'S 316""t' 116SS MOREL MONEL 33 HASTELLOY C HASTELLOYC HASTELLOY C HA$TEllOYC HASTELLOY C-2715 HASTeLlO.,. C*Ull

.... MONEL MONU h4QNEt MONEt MONEL MONfl cooa CORE OpTio" OPT!OH&

LM I.M Linew Matte_ 0-100%

lineal Mit.", 'u'*

(HOO~ scat*

M8 M8 Optional MOUf'ltltl9 I3ratkat OptfonCll Mounting 8raC\01 rat tor M*Untitrg Mounting toto Z<`

t'. MOO l"lpe PB Ps Optional Mountirv 8r*Cbsi OptiQrlal MCIll'ltino &r.c~" for Plln~ klpuntt+rg for Pane# M<luN~

F;3 F,g Optional Oplioo.' F~I Fiat Mourttio MountH'"; 8reckel 9fackt>t fOfrot Maearrting Moonlit!<) to 2"' Pips to 2" Pipe n) 01 pitta 7/nnlir}uttn.

~Il 'J~inf"l.., Tats TM 02 02 Skde Yltltiurofn, Bottom s."e '(entiO"'fl, 80ttom ce CE CllI\aQl,., YitRndflrds Canadla-t 8tRIl411rU) f :9oG ttpn (CSAJ AS~Il~IIQn {eSA, Fltploston E>lplO"on ProofProll4 Cteltkavon CfJ!1llketloll for lOt Cia3 Ctus i,l.

Group& C Grat>p. and 00;; Class C and 11" Grrnrpa Cr.a" It, F and E, F Groups Iii, .nd <k Clan 111; G.' Class Ill; (Entl (End,. IV)~

IV),

INTRINSIC SAFETY APPF40VAL I..-rA'HSIC SI.F£TY APJtI\OVl\l. (All At. Apprav*d tAli At* Af1Pf0\," 811 a,. Factory P"teIOf,. Mutus" M.mceij CLASS CLASS 1.I, DIV DIY.. t,l, 8AARIER BARRIE" GROUPS GRou,.$

AGeNCY AG ENCY MANUFACTURER MANU'ACtURER BARRIER 8MUUER 1140011.

MOOn 8 D c C 0 0

AI ll'1 -

l=U Foxbom F<;lJ'oo'o 2AI42V-PGS, 2AI-IZV.tG6, 2Al .13V-AG6 QAI.I;lV*f;C9 X It, y t;2 F2 FM Taylor Taylor 12431134, 12451144 1148'134,1%451'44 X X 1.

12~

124$931.12'8931 )( X T~~~t JZ4lS1264 1l4S12~. S ~tS4 x: J(

F3 FJ F,.. { WeatingtlrlusC We1\!i1l9'1I')l.I,e 7aS 7&58011 X X )(

SttFC 5l'lfCl~1? X X F4 f'4 f~ Leeds L~" & & Nortrtrvp NC)l'tt1rvp 316569, 3161747 318569,3t6141 X X )(

F8 F! FM { F*cur FJ$C,e, A & *sorter Pt>rklr 8051"1023V0l. W5tOVU01 - . . _

8MHOZ3\J01. J.JOSH017UOl X  ;(

ao5H()~1IJ02 )( X '(

Ft3 HI ~

FM ~ F;stutr Convot3 FJsbet Cotltrols A<=

AC302 X )(

F1 F7 FM Ff,t Homywetf

~mJyw.1f 3asa5-xxxx0lto 38S4S*l(XXX,OHO

,03-10$8$ X X )t

" III/t12

  • It I/H2*FS85 "F585 j " X X x~

t f

COMPLETF0 IIslop

'1l$10P 44 c C 12 12 LM, I.M.M8 US ...

-- COMpt.E11l0 OE5IGNDESIGN SJOLCFICATION SS'(ClflCAT'ON STANDARD STANDARD ACCESSORIES ACCESSORIeS All Modets are All Models are ship-ship- TAGGING TAGGING ALPHALINE ALPHAlINE OiHerential Differential Pressure Pressure Tram To;tns--

ped ped with with flange flange adapter, adapter, vent/drain veol/drain calves valves and end one one milters mitters willwill be be tagged lagged in in accordance accordance with with customer customer instruction manual per instruction manual per shipment_

shipment. requirements.

requh-ements. All All tags tags areare stainless stainless steelsteel OPTIONAL THRee-VALVE MANIFOLDS OPTIONAL THREE-VALVE MANIFOLDS CALIBRATION CALIBRATION Transmittvi Transmitter'S are are factory faCtory Calit)rated calibrated (Packaged Separatefy)

(Packaged Separatefy) to to customer's customer's specified specified spurn, span. kt Calibration is ff calibration not is not specified specified.. transmitters transmitters are are calibrated caHbrat&d 211 at maximum maximum Part 11S1~15G-1:

NQ . 115`1-is0-1 Port No.  : 3-'Valve 3Nalvo Manifold, M4nlfold. Carbon Carbon Steel Meet range range.. Calibrat=on Calibraton is is at at ambient ambient temperature temperature and and (Anderson, (Anderson. Greenwood Greenwood & Co,, WAVC)

& Co" M4AVC) pressure pressure Part No.

Part No . 1151-150-2:

1151-1511>>2 : 3-Valve 3-Valv, Manifold. Manifold . 316SS 316S8 (Anderson, Greenwood (Anderson. Greenwood & & C0_

Co" MaAVS)M4AVS) 11 Page Page 87 87 of of 93 93

LE-0113 LE-0113 Reactor Exelon. Power Core Thermal Reactor Core Power Uncertainty Thermal Uncertainty Revision 0 Revision 0 Attachment Attachment 12 12 Bailey Bailey Signal Signal Resistor Unit Type Resistor Unit Type 766766 (2 (2 pages) pages) 13733 G11-1513S VOLLM VOLUB IV IV Tau TA8LI OFOP CQNI'Bi9Ts CONTENTS SQQIPgNt '9'PSATIIII DtI!OIJllmlL NVMIII 1M Pressure Pt*** ar. Transmitter Tr....itt.r Ros"Ount 101..-0_' ..... model1 11 l1s1Dr 1151D' Power Supply Powu hpplJ' tmesosal O*** ~.l Electric Models l1.otrio 104.1. :13 n"n", mm**

OVUM, M6"88 aU J,"u,a, a" 9T66T939 Conductivity Alonentt Coad.othit, 81.... Balsbaugh

.ahba.p 1104.1 Xode1 3J OVI-2-N/

GYl-2"N/ 910 '10.. IT-IBN IT-IBN Calibrstios o.it Trip Cal1bratioa Trip Unit Rosomouat Io.eaout .4.1 model 4.of

$1009-2 SI001J-2 Relay I.la)' General O ***ral Sloo trio BI.otria 3'$

.4.11 .

mode MA .

Switch SWUok General Electric G***r.l II.etrie 66 model Mo.d CI2 192940940 Recorder 1.001".1' "estrosies

    • ,uoDl0' 77 model Model USE...,.

Switch awito. Osuoral G***ral alsatria models S8-1.

Mod...

Bl.otrio SB-1 . SS-0, SO-10 S..." Sa-10

  • a

&A' wad U Prsssuro Switch Pnuv. ,kito.

SIll Basksdale 8aR,4... Model 1104.1 ,

9 BIT-M1288-BB BI'P-112SHB Recorder I.cor'.r Loeda 1,** 4. wad Northrop

.ael Nort..r..., 10 10 Speed*w Sp**4oaas  : model Mod.l M*

Pressure Pt***aro Transmitter Tr....itt.r Rosemount 1o**lHuc. Model 1104.1 il 11 11S10P Alphaline 11$10' Alpha1i**

Signal Resistor Si,.al I ** i.tor Unit Vait Bailey Tnt-BaU., lype 166766 12 12 Inverter Ia.nt.r Topaz $000 S.ri**

Topas $000 Sorios 13 13 Invertor Ia* .,t.r Topas model Topaz JIoelel 14 14 ruse-MS-125-6o N'Uo-Gft5-1251O Page 88 Page 88 of of 9393

r LE*0113 Reactor Core Reactor Core Thermal Thermal Revision Revision 0 0 Power Uncertainty Power Uncertainty Pap PaseU 23 RENZWAL PARTS 4576KI6-00I 4576K16-001 rIO.. ,

FIG RST .

Uf. UNITS Son DlDIX 50. N4 . PART NO P.&aT NO.. DES .

DES. SCRIPTION PLRIASSY 3 614611"271 :3 RESISTOR, 250 0101S, -0 .17. FIXED, 12 12 WIRE-WOUND, 2 .5 WATTS (V91637, TYPE

"`" W-1C) (Y00213, TYPE 12005) (V12~4-0 44 6146K23P280 61461:15'280 13 13 USISTOR, 242 IISISTOR. 242 OHMS, :0 .1% FIXED,,

OHHS. 1.O.1"Z. 'IUD... 66 wlag-WOUND, VlII-VOUllD, 22.. S 5 WATTS WATTS (V91637, (V91637 , TYPE TYPE RS-2C) (V00213, as*2C) (VOO213. TYPE 12048) (V12463, TYPE 1200s) (V12463 ,

T'Y1'I TYPE T-2C)

T-2C) 44 6148K"P013 614a68tol' R4 14 RESISTOR, RUU'tOK. 8 a 015, OHMS, {0 .1% FIXED, lO.I'%. PIXED. 6 WIRE-WOUND, WIII-WOUHD, 00.66 .66 WATT, WATT, (V17870, (V17810 t TYPE

'1"tPI 11375) 1137S)

S5 614902P303 614902'303 R1 11 RESISTOR, llISlS'rOR, 12100 12100 OIIHS,, -0 .to..1% l1XED It. 'IXED 66 WIRE:-WOUND, WIRI-wouMD, (V17810.017970, TYPE TYPE R1391-11391-0030) 0030) ..; 0 .25 WATT 0.25 WATT S 6148U0P217 6148X60'217 12 U RESISM, USIS'rOIl. 400 400 OHMS, OHMS. 0O.l%. .1% F171ED, rIXID, 66 WIRE-WOUND, VIII-WOUND. 00.66 .66 WATT, WAtt, (V17870, (V11810, TYP!

nPI 1315)1375) 66 6146K15P226 6146115'226 13 1.3 R11SIMR, 100 ltISlS'tOR. 100 O1IfS, ,to.

OHMS, tO .17. FIM, 11.. FIXED, 12 12 WIRE-WOUND, WIU-wouNO, 22.S .5 WATT, (V91637, TYPI WAtt, (V91631, TYP9 1S-2C) (VOO213, TYPE R3-2C) (VO0213, 12008) 012463, TYPE 12008) (V12463,

.,7 6146K13P271 6146Kl,P211 R3 R3 TYPE n1'I T-2C)

RESISTOR, T-2C)

RESISTOR, 96.8 96 .8 OHMS, OHMS, 10 ~O.l~ FIXEn,

.1% FIXED, 66 wxu-womm, 22*.5.5 WATTS WME-WOM, WATTS 77 6148K68"22 6148Jt68"22 RO 14 RESISTOR, HlStsTOl. 3.2 3 .2 a1PlS, OHMS, W .17to. . FDM, 14 rlXlD, 66 WIRE-lim-WOUND., 0 .66 WATT 0.66 WATT (VL7870, (V17870, TYPE 11375 TYPE R1375 8

8 6146K15P277 6146K1SP277 R3 13 RSISTOR, IBSISTOR. 250 250 0WS, OHMS, '0.11.10 .1% FDCBD, FIXED. 66 WIRE-WOUM, WIR£-WOUND, l.S 2 .5 WATTS, WATTS. (V91637, (V91631. TYPETYPE RS-2C) as-2C) (V00213, (VOO213, TYPE UOOS) (V12463, tYPE l~OOS) (V12463.

, 6146KISP280 6146lC1SP280 R3

&1 TYPE TYPI T-2c)

RESISTOR, T-2C)

RESISTOR. 242 242 OHMS, OHMS. 10 .1% FIXED.

to.l't FDMD, 33 WIU-WOUND, 22..5S WATTS WIU-wouND, WATTS (V91637, (V91637, TYPI TYPE RS-2C) (VO0213, TYPI as-2Cl (VOO213, TYPE 1200s) 12003) (VI2463, (V12463.

nn TYP% T-2C)

T-2C) 6148K68POIS 614U68POt5 R4 14 RESISTOR, 88 OHM, JtlSIst'Ol. O'HMS, 10 .1% FDMD, to.l~ FIXED, 3.3 WIRE-SOUND, wm-wGURD, 00.66 .6b WATT WAtt (VI7870, (vt1870. TYPE TYPE 11375) ttl31S) 6146KISP226 6146ltlS'226 R1 11 USUTOR. tOO RESISTOR, 100 OHMS, 0M, :0 'to..X7.

17. rmD, 1'17180, 66 WIRE-WOUND, WlU...wouND, 2.S WATT 091637, 2 .3 WATT (V91631, TYPE TYPE RS-20 U-2C) (V00213, (VOO213, TYPE 12046) 012463, TYPE 1200$) (V12463, TYPE mE T-2C) T-20 11 11 6146X25P271 6146ltlSP211 R1 11 RESISTOR, RESISTOR, 96 96.8.8 OHNS, OIN, W .1'Ito. FIXED, IX FIXED, 33 WIRE-WOUND, WIU-wouND, 22.5 .5 WATTS, WAttS, 091637,(V91637, TYPE TYPE RS-2C) (VO0213, as-2C) (VOO213 , TYPE TYPE 12005) 1200s) (V12463, (V12463, TYPE TYPB T-2C)

T-ZC) 11 11 6148K6$P522 6148K68P522 R2 12 RZSISTOR, RESISTOR, 33.2 OHMS, 10

.2 08HS, ~O.l~

.1% FIlED, FIXED, 33 WM-WOjM, 00.66 WlIE-WOUND, .66 WATt, WATT, (V17870, (V11870, TYPE TYPE 81375)

R137S) 614900007 6149K94POO7 Rl 1t1 RESISTOR, 150 RlSIStoI.. 150 OWE, ORMS, t5% tS~ FIXED, FIXED, 66 WIRE-Wmm, W1llI-WOUttD. 5S WATTS, (V64655, TYPE WAtTS, (V446SS. tyPE g95) 995)

Page 89 Page 89 of 93 of 93

LE-0113 Exelo LE-0113 Reactor CoreCore Thermal Thermal Exelon. Reactor Power Uncertainty Power Uncertainty Revision 0 Revision 0 Attachment 13 Attachment 13 Rosemount Specification Rosemount Specification Drawing Drawing 011532734, N0039 01153~2734f N0039 Option Option - Combination NOO16

- Combination N0016 & N0037 (2

& N0037 Pages)

(2 Pages) 110039 H0039 LTR LTA ae ft* Na APwa DATI OA?$

AA _Original Original ReleaseRelease 626853 626853 I.

I. SCOPE

~

This specification This specification defines defines aa Model Model 1153 1153 Series Series 8B pressure pressure transmitter transmftter with with combined options combined options N0016 N0016 -- aa stainless stainless steel steel 1/21/2 -- 14 HPT 14 MPT pipe pips plug plug installed installed in one in one ofof the conduit hubs, the conduit hubs. andand MQ037 N0037 -- aa 4-20mA 4-20mA output signal output with adjustable signal with adjustable damping d**ping..

II..

II DETAILS DETAILS 1 . The

1. pipe plug The pfpe plug fs is toto be be assembled assembled on on the the nameplate/vent nameplate/vent valve side of valve side of thethe transmitter transmitter.. The The plug plug will will be sealed with be sealed with thread sealant and thread sealant and torqued torqued to to 150 in 150 .-Ibs .

fn.-lbs.

22.. The standard The standard "R "R" calibration M

calibration and and amplifier boards are llIp] ifier boards are replaced with the replaced with the special damping special damping calibration calibration and and amplifier boards .

amplifier boards.

III . SPECIFICATIONS 111. SPECIFICATIONS Maximum Maximum damping damping forfor the electronics, measured the electronics. measured at at the the 63%

631 time time constant constant is is::

Maximum Damping Maximum Damping Range Range 33 not not applicable app11 cab 1e Range Range 44 1.2 1.2 seconds seconds Range Range 5-9 5-9 0.8 0.8 seconds seconds The The damping damping electronics electronics are are not not intended intended for for the the range range 33 because because the slower the slower response response is is not not required required for for this this transmitter transmitter pressure pressure range range..

IV IV.. APPLICABILITY AND APPLICABILITY AND APPROVALS APPROVALS This specification This specification is is limited limited to to the the Model Model 1153 1153 Series Series BB with with "R`

"R- electronics electronics..

Qualification with Qualification with thethe pipe pipe plug plug was was addressed addressed in 1n Rosemount Rosemount Report Report 108026 108026 (see(see paragraph paragraph 5.3.15.3.1).) _Qualification Qualification of of the the damping damping optionoption waswas addressed addressed in in Class CLASS IE USAGE USAGE Rosemount 1M. MIHNIAPOLII. MINNOIOTA MINNUPDLM MINHQOTA

~Da "Y OA.IV DAT!

DAft TM 111UI

~.. Hildebrandt Hildebrandt 11/16/8 11/16/8 APP Specification Specification Drawing Drawing CJ N0039 HOO39 Option Option -.. Combination COIIbfnat1on N00 "001616_ &&N0037 "0037 8IZI! Coon IDENT. nNO

~ 10rr. a DAAWWO DRAWING MMHC.

A 0427404274 01153-2734 t1'-'

01153-2734 MASTER DRA 1 ISHUT' 1O' lOP 22 ram, f'orm No.

No. SOMI, Rev. AIi eo2t8-1, RW Page Page 9090 of of 93 93

LE-0113 Exelen..

LE-0113 Exelun Reactor ReactorCoreCoreThermal Thermal Power Uncertainty Power Uncertainty Revision Revision 00 Rosemount Report 08800053 Rosemount Report 08800053.. The The damping damping option option isis qualified qualified to to the the levels levels of of the the 1154 1154 transmitter trans.ftter.. However However.. when when being being used used in in the the Model Model 1153 1153 transmitter, transmitter, the the qualiffed requirements qualified requirements are are those those for for the original model the original Hodel 1153 1153 transmitter transmitter.. They They are are not not altered altered because because of of the the presence presence ofof the the damping damping electronics electronics..

MASTER MASTER ORAWING DRAW]

....--------r:=-r.:===:-:r'==::2":;;-----. o NO.

I CLASS CLASS IE IE USAGE USAGE A 0427404274 01153-2734 01153-2734 Iper 2 of 2 Foen No. 629!-2. Rw. a Page 91 Page 91 of of 93 93

LE-0113 LE-0113 Reactor Core Thermal Exelon. Reactor Core Thermal Power Uncertainty Power Uncertainty Revision Revision 0 0

Attachment Attachment 1414 Rosemount Product Data Rosemount Product Data Sheet Sheet 00813-0100-2655, Rev.. AA 00813-0100-2655, Rev June 1999 AA June 1999 "N-Options 4N-Options for Use with for Use with the the Model Model 1153 & 1154 Alphaline AlphalineO Nuclear Pressure Transmitters Transmitters" (2 (2 Pages) l 1153 & 1154 Nuclear Pressure ' Pages) 00813-O s W2655 oo813..Q101).2655 En EngflSh ash June 1999 June 1999 ReV, AA RevAA N-Options

-Options for for Use U with with the the Model Model 1153 1153 and Model 11 and Model 1154 Alphalin Alphaline(O a Nuclear Nuclear Pressuref ss Tans tt rs Transmitters R Qu T'mismogrim mom aww~*

Page 92 Page 92 of of 93 93

LE-0113 1.E-0113 Exel6n. Reactor Core Thermal Exelon. Reactor Core Power Power Uncertainty Thermal Uncertainty Revision 0 Revision 0 INTRODUCTION INTRODUCTION N0018 NOO18 Speritles a Specifies a inaximuin maximum stntic static pressure pressure rating rating of of 3,200 3,200 psi psi rather rather than than the the Rosemountlfl Model Ro,seniount`a Model 1153 115:3 and and Model Model 1154 1154 standard stundard 3,000 3,000 psi psi on on anyany high-line high*Jint' Alphaline* Nuclear AlphaJine* N Ud(~ltr PI'e's,sure Pressure Tratasinitt<-r3 Transmittt*t"j are ure differential pressure differential transmitter.

pressure trallSmitt.er.

designed for designed for precise pn:.-ciac pressure pressure measurements me-U5urements in in nuclear applications nuclear IIp()lkutions which which require require reliable reliable N0022 N0022 Specifies a Specifies a welded welded 114-in. $wngefok 'U

'l4~in . Swagelok1.

performance tuid perfol'nmncc safety over lUld &:tfety over an an extended service extended selvice Compression fitting compl'ession fitting on on differential differentinl and and life life.. These These transtuitters transmitters 00'-8 have been qualified per been qU<llified pOl" high-line high-Une transmitters.transmitters.

IEEE Std

{EEE 3:23-1974 tmd Std :J:23-1974 and £EEE IEEE Std Std 344-1975 344-t975 as t'S N0026 N0026 Allows Allows tin no 11531153 Series Sel'ies D D orOJ' 11541154 Range Range documented documented in in the corresponding Rosemount the corroepoftd.ing Rosernount Cede Code 4 transmitter to 4 transmitter to be be calibrated calibt'atcd up up to to qualification qualification reports. reports, ;210 210 inH,2O inH20 rather rather than than the the standard standard Model Model 11531153 and and Model Mod'1 1154 1154 'rnan~mittel'S Tnarismitiers ate atv Range Range Code Code 44 upper dipper range l-ange limit limit of of 1

. i0 150 available avnilnble in in a n variety va rieLy of of configurations coDft.gumtkms for fQr inll inH,)O.:>O. The The maximum maximum mid and minimum minimum differential, differential. flow, gage, absolute flow, gage, absolute.. and and level level span spa';: limitslimits are llI'e 155 155 nnd and 75 75 inH20, inHzO, measurements.

meO$urements. To accommodate speck To acconimodate spl'Clfic customer customer respectively.

respectively.

requirements, requirements. special N-Option features special N-Option featnres have trove been heen N0029 N0029 Specifies Spedfleg factory factory calibration calibration of of thet.he developed to developed to provide pl'Ovide greater grenter application appliention flexibility.

flexibilit.y. transmitter transmitter at at na customer-specifieJ customer-specified For For example, example, the N0010 option the NOOIO option allowsallows aa transmitter t.-ansmiUer elevated elevated line pressure.

line pressure, to be to be calibrated calibrated up up to to 55% T over over its its standaixl tipper standttJ'tl upper N0032 NOO32 Specifies S~cifi~ a .a Range R.'mge Code Code 3 3 or or 8 8 differential differelltinl range rtlUge limit.

limit. TheThe N002t3 NOO26opt.ion option allows.ilUOWS xa n Range Range CodeCode pressure pressure transmitter traOlunitter with wlth aa maxiintim maximum

..4 Trrmstuitter Transmitter to to be be calibrated

~llibrated up up toto 2101nHa 210 InHaO 0 static pressure glatic pressure rating rating of of 2,500 2,500 psi I)si rather rather rather rather than than the standard Range the standard Runge Code Code 44 upper upper range ronge than than the the standard standard 2,000 2.000 psi. Applicable psi. Applicnble limit limit of 150 inH of 150 in"2O. 2 0. to Model 1153 to Model 1153 Series Series Transmitters Transmitters only. only.

Following Following is itS a summary of a summary selected N.-

ofsefectt"d .Options. For N**Optious. For Nt1O:13 NOO33 90<> clockwise rotation Allows 90°clockwise AIIow6 rotation of of the the additional infornintion on additional information 011 these thf'...se and other nnd other electronics electronics housing. housing. The The terminal terminal block block N-Options, contact N*~Options, contact Rosettwunt Rosemount Nuclear Nudeo.* lines lilll:'S up up withwith the the vent/drain vl'ntJdrain valve vllive side side,.

Instruments Instruments,. Inc. Inc.

N0034 NOO34 Specifies Spedt1e.s aa Model Model 1153 1153 SeriesSeries D D or Of Model Model 1154 1154 Transmitter Transmitter with with aa special special

SUMMARY

OF

SUMMARY

OF N-OPTJONS N--OPTIONS mounting mounting bracket bracket that that bas has no no panel p;mel N0002 NOOO2 Specifies Specifif>S to(l t*everse.acting reverse,acting gage gnge pressure pressure mounting mounting holes. holes, transmitter.

tl*tmsmitter,. N0037 NOO:17 Specifies Specifies adjustable adjustable damping damping on on any any N0004 NOOO4 Specifies SpE'cifi(>$ factory factory calibration cnHbrntion of of the the Model tIna l\lodel 11.5:3 or Model 1154 or Model 1154 Transmitter Transmitter_

transmitter transmitter at at temperatures temperatures above abovf: oror N0077 N0077 Specifies Specifies aa Model Model 1153 1153 Series Series F F withwith a a below below ivom room temperature temperature.. Transmitters Transmitters SST SST electronics electl'Onics housing, housing, SST SST housing housing may may be be calibrnted calibrated at nt tenaperatures tempernhlrel3 covers covers and and SST SST mounting mounting bucket. bl'8cket.

between bet.we~n 40 40 andand 200 200 'iF.'f N0078 NOO78 Allows AUow$ 180" 1130° rotation rot.'1tlon of of thethe process process N0010 NOOlO Allows Allows the the transmitter transmitter to to be ca1ibr~ted be calibrated flanges flanges up up to to 5`h abo8v the S'-:l above standard upper the stnndnrd upper range range N0088 NOOS8 Allows Allows 90"' 90* counterclockwise counterclockwise rot..ytion rot.1tion of of limit.

limit, For example, if For exnmple, if the the stated stated tipper upper the the electronics electronics housing housing, The The terminaltermInal range runge litn limit t of th~ transmitter of the tranamitter is is block lines block lines u upp with with the process the prGee68 1,000 1.000 psi, p~i, nntan N0010 NOO10 transinitter transmitter may may be be connections connections..

calibrated

('o}ibrated up up to to 1,050 1,050 psi. psi. This

'nlis caption option is is available available on on aall II ranges l'noges..

ORDERING INFORMATION ORDERING INFORMATION N0011 NOOll Allows 180' Allows 180" rotation rotntion. of of the electronics the electronics Consult ConsuH. the the appropriate appropriate transmitter transmitter Product Product Data Data housing.

housing.

Sheet Sheet for for a a transmitter transmitter model model number, numbelt Append Append the the N001G NOOIG Specifies Specifies itn stainless stniolens steel steel pipe pipe plug plug N-Option N-Option number number to to the the endend of of the transmitter the t1'ansmittet*

installed on instnllcd Oil the the nameplatelvent namepl~llelventvalve valve model number. An modelllumber. An exrtniple example of of aa typical typical model model side side of of the the 1153 115a SeriesSeries li Transmitter.

B Trnu$mitter. number number with with N-Option N-Opt.ion added added )$ is 1153DI35R 1153DB5RANOOlO. .AN0010.

ROStMOtlrlt l" ROH/l'lOvflt, lIM' P03eMOU!)t F?osemoullf folIO, logo, :lfl(J and Alp4abne AI{)ttOtiM (Uf!are .,regltJ.tHed triJdemi1tlu;: of egratered rr.7dema.=xs 1)1 Retemmnt "Wear (astranemt, RotemMlllI ","lear IDSltlll1leRlt, Inc.

IIIC. +9asernoctat too RQ$emo<Jflt!IJC 5,va0etax i$

SI\'~k:J/( i$ a

~ re9ratered Itf~i~Wtd"IEM .ani a'Craw+ord lr.J<femiJrW. of CriJlI-1on1 Fi40g Filfing Co.

(:0, ramr y Dave 12001 T$C1l/lOlOlJYOI1\'9 1204*

N *I#, MN Even Ptaitlt.

£dfn 5534'-

tit 88344 Afay Mity oe oe ;toteoted

Jt~crt!(1 oy oae or t>y!)fIt- ercave *fare QI mQff! Mthe V ou fng tl.

!\:$owittg tl :,

$, pa!egt PM.'!t Ma tVO.,

T~ (612)

(612) 828-8252 828^8252 3.6;6,536. 3,793.886 3,800,4 3.646,$J':J,1~3,8$5, J,800,H3; 13; 3,271;7 J,g75]19; f9, R!

R~". 30,403, 30.603. Ca,aoa0sented Ci}'1a(1oJp;',fllt,'d TO Tax 4314012 Tm4310012 (8fe~ett~

(~'1f!t~) :9Ta,f4TS_tSiT6,

974 1975.1976, a-V

.nd 1979 197'1 44y yrtaend0a de;;en<t on madei.

1I'l(I(!I!( Omit Otl'lff taoiga 1"~lg" Men1S rSSU+ed aaa p;ttems!SSUe<t peldrflg

~fld Pl!'fIdl!ll)

Fax (612)

Fax (612) 828-8280 t.:1Wm Q 1m Rosem 0199'9 RosemOlJllt Nuc" hUuwnt5 . Inc.

Nuctt.3r lmttWlltnlS" Inc. CovePAofo Covet p/lofl)" 1753-00rAS 1153,00 tAS f&ttrllWYrt .rosetllowtcm 1lI11l')J'i'i\\'ljJ~lcom mllllllllllllllMlllllllllllll1 111111111111111111111111811111 00813-0100-2ti55 Rev. AA 00813-0100-2655 Rev. AA CE:

Fisher-Rosenounl Fisher*Rosemount sati$~$

fegtStatioo to legislatioo 10 harmonize E..,rope:m Vr4on.

European linion satisfies aft harmon';;:e trroduct Obfgattvns "Mmg

,111 ob!rgJII\:ms

",roduet requfWnnir, req;;ifemeOI$ iq coming irom

,1) thefrom the Page 93 of 93