ML070600211
ML070600211 | |
Person / Time | |
---|---|
Site: | Dresden, Peach Bottom, Braidwood, Limerick, Quad Cities, Zion, LaSalle |
Issue date: | 01/17/2003 |
From: | Nickerson T Exelon Nuclear |
To: | NRC/FSME |
References | |
03-00050, Rev 0, CC-AA-309-1001, Rev 0 C-1302-243-E540-083 | |
Download: ML070600211 (85) | |
Text
ExeI(I,n CC-AA-309-1001 ATTACHMENT 1 Revision 0 1M Design Analysis Cover Sheet I Nuclear I Last Page No. 6-1 Analysis No. GE # Index 9-3 Revision 1 EClECR NO. 03-00050 Revision 0 I
Title:
An ASME Section Vlll Evaluation of OC D w e l l for Without Sand Case Part 1 Stress Analysis Station($) oc Component(s) I Unit No.: 1 Description Code1 Stress Analysis Document No. FromlTo Document No. FromtTo C-7302-243-E540-083 From 8 To I
II Is this Design Analysis Safeguards?
Does this Design Analysis Contain Unverified Assumptions?
Is a Supplemental Review Required?
Yesa Nom Yes Yes a No [XI No ATIIAR#
If Yes, complete Attachment 3 Preparer Tedd Nickerson 1/17/03 Print Name Date Reviewer Suji! Niogi /&do3 Print Name a n Name Dale Method of Review Detailed Review 0Alternate Calculations 0 Testing Verified that revised areas of vendor analysis, to address C-1302-243-E540-083 info, are Review Notes: warrented and acceptable.
Approver Tom Quinlenz f- 9d3 Print Name Sign Name Date (Fer Extwnal Analyses Onlvl ixeton ~ e v i e w e r Frlnt Name Sign Name Date Approver Print Name Sign Name Date Description of Revision (list affected pages for partials): See next (summary) sheet for revision details.
THtS DESIGN ANALYSIS SUPERCEDES:
AmerGen Sheet 1a DOCUMENT NO.
INDEX 9-3 An ASME Section Xlll Evaluation of OC Drywell for Without Sand Case Part IStress Analysis REV
SUMMARY
OF CHANGE APPROVAL DATE 1
GE Report has been revised to addresskeference Calc C-I 302-243-E540-083 as per ECR-DCR 03-00050 8.AR A2019253 Eva1 01.
L - //,7/03 As such, the following pages have been affected:
D D
0 Added new cover sheet 1 8, summary sheet la.
Renumbered vendor covers to 1 b & IC.
Revised sheets 1-2, 1-4, 3-4, 3-12,4-1 & 4-3.
0 S. Niogi 4
Note: RM was unable to retrieve t h e original report so this is the best available copy.
T.Q P . tenz
DRF X 00664 INDEX NO. 9 - 3 REV. 0 AN ASME SECTION V I 1 1 EVALUATION '.
OF OYSTER CREEK DRYWELL FOR WITHOUT SAND CASE ART I I STRLSS A N A L Y S I S February I991 prepared f o r GQU Nuclear Corporation Parslppany, New Jersey prepared by GE Nuclear Energy San Jose, C a 1 ifornia
ME!R86'4.3, REV. o d&&-i- IC AN ASME S E C T I O N V I 1 1 EVALUATION OF OYSTER CREEK DRYWELL FOR WITHOUT SAND CASE PART 1 ,
STRESS ANALYSIS
/-
Prepared by: e- &- v C . D . Frederlckson, Senior Engineer Materials Monttoring 8 Structural Analysis Services Y '
G. W. Contreras, Erqineer Materials Honltoring K Structural Analysis Services Revlewed by:
H. S . Mehta, Princlpal Engineer Materials Monitoring &
Structural Analysis Services S. Ranganath, Hanager Hstertals N o n f t n r i n g d S t r u c t u r a l Analysis S e r v Ices
F k #X 0N8.663 - 3 , R E V . 0 TABLE O f CON'IENTS Pase N o .
1 . INTRODUCTION 1-1
- 1. I Background 1-1 1.2 Supplementary Code Stress Analyses 1-2 1.3 Scope o f Present Analysis 1-3 1.4 Report Outline 1-3 1.5 References 1-3 2 . A N A L Y S I S BASES 2-1 2.1 Drywell Geometry and Materlals 2- 1 2.2 ASME Code A1 lowable Values 2-3 2.2.1 T h i c k n e s s Reductions From Local Corrosi un 2-4 Effects 2.2.2 Allowable Stresses f o r Post-Acc dent 2.5 Condi tlon 2.3 Load Magnitudes and Combinations 2-5 2.4 Temperature Gradients 2-6 2.5 References 2-7 3 . D R Y Y E L L F I N l T E ELEHENT ANALYSIS 3-1 3.1 Description o f Finite Element Models 3-1 3.1.1 Axisymnetrlc Model 3-1 3.1.2 Pie Slice Finite Element Model 3- I 3 . 2 Load Application on Pie Slice Model 3-2 3.2.1 Gravity Loads 3-3 3.2.2 Pressure Load 3-3 3.2.3 Seismic Loads 3-4 3.3 Stress Results for Various t o a d Cases and 3-4 Cornbinat tons 1
IjRF I N EX 08664 N . 9 - 3 , KEY. 0 TABLE OF CONTENTS (CONT'D)
/
Pase N o .
3.4 Temperature Stress Analysis 3-5 3.5 References 3-6 c
- 4. SEISMIC LOAD DEFINITION 4- I 4.1 Finite Element Model 4 -1 4 3ynamic Analysis Methodology and'Response Spectra 4- 1 4.. Post-Accident S e l s m i c Analysls 4 -2
' 4.4 Analysis for Relative Support Olsplacement Effects 4-2' 4.5 References 4-3 5 . CODE STRESS EVALUATION 5 -1 5.1 Code Stress Evaluation o f Regions Above the Lower 5-1 Sphere 5.2 E l a s t f c Stress Analysls o f Sandbed and Lower 5-2 Sphere 5.2.1 Small Displacement Solution Results 5-2 5.2.2 Large Displacement Solution Results 5-4 5.3 Code Evaluat'ion o f tha Sandbed and lower Sphere 5-4 5.3.1 Prtmary Stress Evaluatlon 5-4 5.3.2 Extent o f l o c a l Prjmary Membrane S l r e s s 5-5 5.3.3 Primary Plus Secondary Stress Evaluation 5-6 6 . SUHKARY AND CONCLUSIONS 6 -1 APPENDIX A DETAILED RESULTS FOR A X I S Y M E T R I C MODEL T E H P E FA 1 UR E S 1 RE S S ANA L Y S I S
L I S T bF T A B L E S Table Page No. Title No.
2- 1 As-designed and Projected 95% Confidpnce 2-8 '
I thicknesses used f n thk'Code Stress Evaluation ,
2-2 Allowable Stresses f o r Drywell Shell in 2-9 Section VI11 Analysis 1 .
2-3 Allowable Stresses for Post-Accident Condition 2-10 I
2-4 ' , Load Combinations specf'led in the Farsons 2-11 Geport (Reference 2-3) 2-5a Gead Weight Loads 2- 12 I
2-5b Penetratfon Lcads 2 - 13 2-5r L i v e Loads 2-15 3 -1 load Cases Consfdered in the Finite Element 3-7 Analysis 3-2 Adjusted Uelgh? Dens1tt.s o f Shell to Account 3 -8 f o r Compressible Material Weight 3-3 Oyster Creek Drywell A d 4 f tlonal Weights a 3-9 Refuel I n g Condition 3-4 Oyster Creek O r p e l l Addltional W e i g h t s . 3 - 10 Acctdent and Post-Accider~tCondition 3-5 fiydrostatic Pressures fOi* Post-Accident 3-11 Condition iii
I LIST OF TABLES (CONT'D)
TJblc Paqe No. Title No.
3-6 Meridional Seismic Stresses at Four S e c t i o n s j-12 I I
3-7 Application o f toads to Match S e i s m i c 3-13 Stresses - Accident Conuition 3-8 Applicatfon o f l o a d s t o Match Seismic 3-14 Stresses - Post-Accident Condition I
, I 3-9 4 Description o f load Comblnatlons in T e r m s o f j-15 Unit Load Case Sum 5 -l a Comparison o f Calculated Stresses to Code 5.'
Allowable Values (Nominal Drywell Wall I
Thicknesses Above Lower Sphere) 5-lb Ccmparisoq o f Calculated Stresses t o Lode 5-8 Allowable Valuer ( 9 5 % Projected Drywell Wall Thicknesses Above Lower Sphere) 5-2a Comparfson o f calculated Primary Stresses to 5-9 Code Allowable Values (Small Displacemrnt; Lower Sphere and Sandbed) 5-2b Comparison o f Calculated Primary S t r e s s e s to 5 - 10 Code Allowable Values {large Displacement; lower Sphere and Sandbed) 5.3a Comparison o f Calculated Primary Plus Secondary 5 - 1 1
' S t r e s s e s to Code Allowable Values (Small Otsplacement; Lower Sphere and Sandbed) iv
P k xI 0148.6649-3, R E V . 0 ,
LIST OF TABLES (CONTD)
Tdbl e Page No: Title No.
5-3b CompariLon of Calculated Primary Plus Secondary 5-12 I I
Stresses to Code Allowable V a l u e s (Large I Djsplacement; Loner Sphere and Sandbed)
V
I 0 66
?&Ex N!. 4 - 3 , R E V . o ,
L I S T OF FIGURES f icjure Page
-Np.- FIGURE No.
I 1-1 [Irywel 1 I.onf i gurat i on 1-5 I 3- 1 Complete Axlsymetrlc Finite Element 3-16 .
Yodel o f Drywell +
- 3-2 Sand Bed Region o f Drywell finite Element 3-17 I
' Model , I I 3 -3 Knuckle Region of Drywell CFinlte Element 3-18 Model 3-4 Cylindrical Region o f Drywell Finite 3-19 Element Model 3-5 Upper Cy1 indrlcal Region o f Dr;.well 3-20 F i n i t e Element Model 3-6 Oyster Creek Drywell Ple Sltce Finite 3-21 Element Hodel 3-7 lnstde Closeup V l e w o f Lower Drywe11 3-22 Sect ion 3.8 A p p l icatlon o f Loading t o Simulate 3-23 Seismic Stresses 3.9 3elor Curb Drywell Hodel Nodilization 3-21 for Temperature Analysis D u r t n g Accldent Condi L i o n vi
LIST OF FIGURES (CONT'D) f igurp Page Ng.. FIGURE No '.
I 3-10 Example o f Calculated Temperature 3-25 Dlstributlon at 'Various [lapsed Times 3-11 Merldlonal Stress Ofstrlbutlon in the 3-26 Sand Bed Region from Temperature I Distribut.ion(at t-210 Seconds I 3-12 Circumferential Stress Olstr'lbution 3-27 in the Sand Bed Regton from Temperature O I stri but 1 on at t -210 Seconds I
5 1 C i rcumferen t 1a1 Stresses for Acc i dent 5-13 Condition V - l In 'Wlth Sand' and 'Without Sand' Cases - Small Displacement Plot o f Accident Conditton V - 1 Herldlonal 5-14 Stresses for 'Wlthout Sand' Case - Small Displacement 5-3 Circumferent a1 Hembrane Stress 5 - IS Dlstributlon u s ng Small Displacement Option S-4 C irc unf e ren t a1 Hrmbrrnc Strtsr Hdgnitudes 5-16 at Four Mer! tonal Planer in Sandbed Region
- Srarll OlsDlaccwnt 5-5 ~ C I RWlth. Transverse Plus A x l a l toadinq 5.17 5-6 Clrcumferentlal Hembrane Stress 5-18 Distributfon Using large Displacement Optton vii
LIST OF FIGURES (CONT'D) figure Page NQ. F ICURE NQ I I
5-7 Comparison o f Circumferential Membrane s-19 '
Stress Magnitudes With Large and Small 01 spl acement Options ,
+,
5-0 Circumferential Uernbrane Stress Magnitudes 5-20 at Four Heridtonil Planes I n Sandbed Regfon I
- Large Displjcernent I I
vlii
I P86EX 8.
0 66 4.3. R l V . 0 1 I . INTRODUCTION 1 . 1 Background I
The SlyJter Creek Nuclear Generating Station utilizes a CE BUR Nuclear S t e a m S u p p l y System and a steel Mark 1 pressure suppression t y p e containment vessel system. The pressure supp$ession system c q n s i s t s o f a drywell, a pressure suppressfon chamber (torus) which stores a large volume o f water and a connecttng vent system between the dryuell and the water pool. The drywell, sometimes referred t o as the containment vessel o r containment structure, houses the reattor I
vessel. reactor coolant recirculatlon loops, and other components dssoclated with the reactor system.
f i g u r e 1.1 shows the drywell along with the pertinent dimensions. lhe drywell i s a combfnation o f a sphere, cyltnder and 2:l ellipsoidal dome and i t resembles an Inverted light bulb. The sphericJ1 p o r t i o n o f d r y w e l l near the base includes a sandbed regfon t h a t prowtdes a n elastic transition zone whtch i s tntended t o amellorate abrupt thermal I
and mechanical dlscontinuttfeo. The pressure suppression system w a s deJiqned. analyzed and constructed by Chicago Bridge d Iron Company
((01).
A recent inspectton o f the steel shell (November 1986) p r t o r l o restdrt from the 11R outage in the sandbed reglon revealed that some d r y r i a a t i o n o f the shell had taken place durtng the years s i n c e completion o f construction. Subsequtnt inspectlons also lndicaled ninor thfckncsr degradations in the upper spherical and cy1 indrtcal sections o f the drywell.
I\ detailed dtscrlptlon o f tho p r e v ~ o u t anrlysrs pertrfnlnq to O y s t e r Creek drywell Is g l v c n In Reference 1 - 1 . An A S M Code stress analysis addressing t h e drywell thickness degradation i s documented in Reference 1 - 2 . The analyses in Reference 1-2 art based on the present m n f i g u r a t i o n in the sandbed region, t . c . . t t i s a s 5 u m d that the %and 1 s pre5ent. One o f the option CWH 1 5 erplorlng to mltlqate further b 1-1 .
corrosion In thr sandbed reglon, Is t o remove tho sand. The purpose o f the stress analyses presented in t h i s report i s to evaluate the drywell per ASNE Sectlon V I 1 1 for t h t s modlflcatlon.
/
1.2 Supplementdry Code Stress Analyses The Code of record for t h e stress analysis of O y s t e r Creek drywell i sSection VIII, 1962 Edition and Nuclear case tnterpretations 1270 N - S ,
1274 N - 5 and 1272 N.S. The CB1 stress report (Reference 1-31 augrner'.ed by the recent CE report (Reference 1 - 2 ) constitutes the Section V I 1 1 Code stress report o f record for the drywel?. The CE report i s a 5upplementrry stress report to the C B I stress report and addresses aspects of Code compltancc rs they ralrtr t o t h e l o c a l wall thlnning a b w r v e d In the Oyster Creek drywell. The stress analyses l n t h i s report as in the previous G E report [ 1 - 2 ] are guided by GPUN Techntcal Specfftcation for primary containment rnalysts ( 1 - 4 1 . (0 IA Based on tht ultraronlc (UT) Inspectlon results, the projected 95%
confidence thickness v a l u e for the d r p e l l shell In the sandbed region i s 0.736 inch. However, In several prevfous Oyster Creek drywell analyses, I S discussed In Reference 1-1, a conservative thickness value o f 0.700 inch w a s used. A shell thlckness o f 0.700 inch i n the randbed riglorr was used In the s t r e s s analyses documented in Reference 1.2.
In t h e first part of the strass analysis r e p o r t o f Reference 1 - 2 , the zczfnal or as-designed thicknesses were r r r u m d everywhere e x c e p t in the sand tmd region. The thicknasr in tht sand bed region was ar'rumed as 0.700 Inch c w a r e d to the- as-designed thickncs? :* 1.154 inch.
LaSet, the local thtnntng In areas other than the sand :.*d region of dtyvtll v i s addressed. The second part of Aefrrencu 1 - 2 report rddrt5std the buck1 Ing evaluit ton o f d r y w l l shall.
Note: 1. See Reference 1-6 for a discussion on the increase in seismic loads do to the change in Seismic Response compared to that defined in Reference 1-4 A
1.3 Scope o f Present Analysls
/
Ihc stress analvses described i n t h i s report address the c a s e when the sand has been removed f r o m the sandbed region (called the ' w i t h o u t s a n d case'). A companion report [ 1 - 5 ] addresses the buckling evaluation f o r this c a s e .
The f i n l t e element models used In the Reference 1 - 2 analyses were modified for t h i s case by removing the spring elements representing
, a n d stiffness. It will be shown t h a t thts change affects o n l y the s t r e s s e s in the sandbed and adjacent region. The stresses in the
' other r e g i o n s o f t h e drywell are essentially unaffected.
1.1 Report Outltne Section 2 of the report de5ctibes the drywell geometry, m a t e r l a l s ,
ASHE Code allowables and load cornblnatlonr used In the evaluatlon of aDpl ied s t r e s s e s . Also discussed I s the temperature gradient d e f i n i t i o n i n the 5rnd bed region under DBA conditions. Section 3 includes the aetails o f drywell f i n i t e element analysis. Seismic load a n a l y s e s are covered In Section 4 .
Section 5 presents the Code stress evaluation results t o meet the Code critertr. Finally, the surrnrry and conclusions arc discussed In Section 6. The Appendix Includes calculated s t r e s s e s f r o m some o f t h e unit load cases.
I . 5 References 1-1 Ycktr, M.. 'OC Drywell Structural Cvrlu&ttons.' CPUN Technical Data Report No. 926. Rtv. 1. februrry 6,1989.
1-3
I 0 66
?&EX N8. 4 - 3 , R E V . . W I 1-2 a. "An ASHE Sectton V I 1 1 Evaluation o f the Oyster Creek Drywell -
Part 1 - Stress Analysls," GE Index t 9-1, DRF I 00664
/ {November 1990).
b . "An ASME Section VI11 Evaluation of the Oyster Creek Orywell -
Part 2 - Stablllty Evaluation," G I Index I 9 - 2 , DRF 1 00664 (November 1990).
1 - 3 'Structural Design o f t h e Pressurle Suppression Containment Vessels," by thlcago Brfdgc & Iron Co.,Contract I 9 - 0 9 7 1 , 1965.
1-4 GPLiN Speclfication SP-1302-53-044. Technical Speclfication f o r Primary containment Analysis - Oyster Creek Nuclear Generating S t a t i m ; Rev. 2, October 1990.
1-5 'An ASHE Sectton V I 1 1 Evaluatlon o f the Oyster Creek Drywell for Without Sand Case - Part 2 - Stability Evaluatlon," GE Index I 9 - 1 . DRf I 00664 (February 1991).
1-6GPUN Calculation C-1302-243-E540-083, Rev. 0,Drywell Seismic Stress Adjustment, 0811Of00 1-4
' -I 1 flgutt 1-1 D r w l l Conflquratton
R 0 66
%X N8. 8 - 3 , REV. 0
- 2. ANALYSIS BASES 2.1 Drywell Geometry and Haterlals The spherical sectlon has an inside diameter o f 70 ft. which intersects the 32 ft. diameter cylindrical portion. A transltion knuckle i s provided at the connection o f the sphere to the cylinder (Figure 1 - 1 ) . The drywell I s 105'-6" high. The plate thlcknesses v a r y from a maximum o f 2.625 In. at the transition between the sphere and the cylinder down to a mlntmum o f 0.640 in. in the cylinder. The head k31l thickness I s 1.188 in.
' Jhe head, which i s 33 ft. fn diameter, , I s made w i t h a double tongue and groove seal which pennits periodic checks for tightness. Ten vent piper, 6'-6' tn dlameter, are equally spaced around the circumference t~ connect the drywell t o the vent her3-r Inside the pressure s q p r e s s t m chamber.
The drywell interior is filled with concrete to elevation 10'-3" to provide a level f l o o r . Concrete curbs f o l l o w the contour o f the vessel up to elevation 12'-3' wlth cutouts around the vent lines.
On the exterfor. the drywell I s encapsulated t n concrete o f varying thickness froa the base clevatlon up to the elevatlon of the top herd.
from there, t h e concrete continues vertically to the level o f the top o f the spent fuel pool.
The base o f the dryurll i s supported o n a concrete pedestal conformlng to the curvature o f the vessel. A structural steel rkfrt was f i r s t tnrtalled to provlde Inter;. support for the vessel durlng erection.
A p o r t i o n o f the rtwl sklrt was l e f t In pjacu which serves a s one o f the shear r i s s that provldes hotlrontrl restraint f o r the drywe11 during an earthquake.
The proximity o f the btologgrcr'l r h t e l d concrete surface to the steel shell varier with the clevrtton. The concrete t s In full contact with the rhtll over the b o t t m o f the sphere rt Its tnvtrt elevation 2.~3'
p1866%-3, R E V . o up t o elevation 8'-11 1/4". At that point, the concrete i s stepped 1 back 15 inches radtally to form a pocket which continues up, to elevation 12'-3". That pocket i s currently fflled with sand which forms a cushion whtch i s tntended l o smooth the transltlon o f the shell plate from a condition o f fully clamped between two concrete m a s s e s to a free standing condition, This sand filled pockr', is referred to here as the sandbell. In the analyses described in this report it I s assumed that the sand has been removed. U p from OI elevation 12'-3" there i s a 3-inch gap between the drywell and the concrete biological shield wall which i s filled with foam material that provides insulation but no structural support.
' An upper lateral svIsmlc restraint, attached to the cy1 fndrical portion o f the d r p e l l at elevation 82'-6', allows for thermal, deadweight, and pressure radial deflection, but not for lateial movement due to s e i m i c excitation. All penetrations for piping, instrumentation lines, vant ducts, electrical lines, equipment accesses, and persovnel entrance have ixpansior, Jo?ntr and double seals where appllcab e.
The tnaterlals of construction for the drywell are given in Speciftcatlon S - 2 2 3 9 - 4 [2-I]. The drywell shell, ! . e . , the sphere, I
cjlinder, dome, and transitions, w a s constructed from S A - 2 1 2 , Grade E High Tensile Strength Carbon-St1 tcon Steel Plates f o r 6ollers and other Pressure Vestals ordered to SA-300 spt-lflcatjon.
- ,E followlng steolr wtrt used fn the construction of penetrations.
reinforcements, and rpgurtenrnccs:
SA-300 Steel Plates for Pressure Vessels for Service at tow 8
Tempe r a t ure I .
S A - 3 3 3 Searless and Ye!ded Steel P i p e for Low Temperature Servtce.
SA-350 forged or Rolled Carbon and Alloy Steel Flanges, forged Fittings, And Valves and Parts for Lon temperature Servtce.
.. L 2-2
PBM HI,.66$ - 3 ,
0 REV. 0 T a b l e 2 - 1 shows the as-designed thicknesses used tn the Code stress evaluatton a f the drywell shell (1-21. Also shnwn I n the same Table are the projected 95% confidence thickness values i n the locally corroded areas [ 2 - 2 1 . These latter thicknesses are used in the primary stress evaluation presented In SubTectton 5.2.
2.2 ASHE Code Allowable Values The Oyster Creek drywell vessel was designed, fabrfcated and erected in a c c o r d a n c e wlth the 1962 Edltton o f ASHE Code, Sectlon VIIS and Code Cases 327ON-5, 1271H and 1 2 7 3 - 5 .
The Code C a s e 1272 N-5 limits the general membrane stresses to 1.1 times t h e allowable stress values gtven fn Table UCS-23 o f Section YIII. The comblned general membrane, general bending, and local '
numbrane stresses are Iimtted to 1.5 times the general membrane stress allowable$. flnally, the Code Case limits the sum o f the primary p l u s secondary stresses t o three timet the allowable stresses given in T a b l e UCS-23. The allowable stress value given In Table UCS-23 for SA 212. Grade E It 17500 p t l . Accordingly, the allowable stress values f o r varlous categories o f stresses are shown In Table 2-2.
The original Coda o f record hnd tho todr Cases do n o t provide s p e c i f i c guidance i n two areas. Tha first relata$ t o t h i t i r e o f a r e g i o n o f
!r.:rcarcd &ran@ s t t a t s due t o thlcknasr rwluctionr from l o c a l o r general corrosion e f f r c t s , and tho second prrtalns to the r l l o w r b l r stresses for s r w l c e leva1 C or post-accidrnt condltlans. In tht f i r s t case, gutdrncr was sought from Substctlon NE o f Stctton 111.
The jurtiflcrtlon for the use o f t h t s guidance i s provided in a report prrprrtd by Or. U.E. Cooper o f Teladync [ Z - 5 ) . In the litter c a s e ,
t h g Strndrfd R e v f e n Plan d o c u w n t was used 4s guidance w l t h details discussed I n Rrfrnncr 2-6. The r l l c w b l c I l m i t r obtained art Ulscusrec next.
I 2-3
?ILEX 148.
- 0 66 L1 REVoI o 2.2.1 Thickness Reductions from Local Corroslon Effects Consfderatfon o f local corroslon effects can be achieved by app1 {cation of the requirements for Local Prfmary Membrane Stressef.
A thorough discussion of this 1s presented i n Reference 2-5. The I, discussion presented here is extracted from that reference.
I The N E - 3 2 1 3 . 1 0 definition o f Local Prlmary Membrane Stress I s :
I I
Cases arise In whtch a membrane stress produced by pressure o r I
other mechanical loadtng and assocfated w i t h a primary or I
discontinuity effect produces excessive distortion th the t transfer o f load to other portlons o f the structure.
Conservatism requlres that such a stress be classified as local Frtmary membrane stress even though I t has some charactertstics of a secondary stress. A stress reglon may be considered local t f tho dlstance over which the membrane stress lntenslty exceeds I 1.1 ,S does not extend 1n the wridlonrl dlrectton more than l.O((Rt), where R i s the minimum rnldsurface r a d i u s o f curvature and t i s the ainlmum thtckness i n the reglon considered. Reqlons o f local primary aembrrne stress intenstty Involving axisymnetrtc membrane stress dlstributtons whtch exceed 1.1 ,S shall not be closer in the wridfonal direction than 2.5((Rt), where R i s defined a s (R1tR2)/2 and t i s defined as (tl+t2)/2, where t l and-t2 are the m i n i m a thtcknesser at each of the regions considered, and R i and R2 are the mintmum rrldsurface radli of c u r v a t u r e at there regtons where the membrane stress Intensity exceeds 1.1
.5, Discrtte rtglonr o f local &rana stress tntensity, such as those resulting from concentrated lords actfng on brackets, there the membrane stress Intenslty exceeds 1.1 S, s h a l l be spaced SO that there I s no overlapping o f the areas in whtch t h e seabrine stress intensity exceeds 1.1 .,S The value o f 5, frm NE o f Section 111 1s equivalent to 1.1 S from Sectfon V I f f .
2-4
!KE! ~ 668 8. - 3 , REV. o 0
I There Is no Code limit for the extent o f the region in which the membrane stress exceeds 1.0 ,S but i s less than I.lS,,,,. This 10%
var,iation in the allowable stress was provfded because o f the "beam on elartfc foundation" effects of such local regions, the stress decays a s one moves away from the thin region, but overshoots general, m e m b r a n e stress value by a small amount 'as the effects dampen out w i t h 'I distance. Thus, this provislon i s & equfvalcnt to a 10% increase in the allowable stress whfch can be taken advantage o f In the original, design. Honever, given a deslgn nhlch satisfies the genera! Code intent, as the Oyster Creek drywell does as orfgjnally constructed, i t is not a violation o f Subsection NE requirements for the membrane stress to be between 1.0Smc and, l.iSmc over signlflcant distances. ,
0 I
Eased on the preceding discussion, a limit Qf 1.1Smc will be used in evaluating the general membrane stresses in areas o f the drywell where reduced thicknesses are specified.
2.2.2 Allowable Stresses f o r Post-Accident Condition In the past-accident condition, the drywell I s flooded to elevation 74'-6". The allowable stress values for t h l r condttion are given in Table 3.8.2-1 o f Reference 2-4. Table 2-3 shows the allowable stress values used for the post-accident conditlon.
2.3 Load Uagn tuder and Combinations Tt.e load5 t o k considered I n t h e Oyster Creek drywell stress rnalysis, and the load c d i n a t f o n r are specifled In Reference 1-4.
References 2-1 and 2-3 also contain slmllrr derctiptlons o f the loads and load combinations. Table 2 - 4 shows these load coarblnations. The Cases 1 and I 1 pertain t o t e s t toads imposed o n the drywell prfor to plant startup. There lords are enveloped by the loads specifled In Case V - Accldent Condltlon. Therefore, separate calculatfons were not conducted for Cases I and 11.
A comparison o f the load combinations shown In Table 2 - 4 and thcse
/ .given in Reference 2-4 i s covered i n ' Reference 2-6. From that comparison it was concluded that the load combinations in Table 2 - 4 essentially envelope those described In Reference 2-4.
The dead load, ljve load and other equipment loads used in the stress calculations were obtained from an earlier study by C B I [Reference No.
2 . 4 . 3 of Reference 1-41, and are shown fn Tables 2-Sa though 2-5c. In the dead weight loading, the weight o f the compressible material attached t o the drywell was separately added. Thls weight was taken as 10 lbs. per sq. ft. o f drywell surface [Reference No. 2.4 ? o f Reference 1-41. The additional weight on the cyllndrical portion o f the drywell during the refueling was obtained f r o m Reference No. 2.4.3 in Reference 1 - 4 as 561 lbs/fnch o f hrywell cylindrical region circumference.
The stresses from selsmic loads were separately calculated as described In Section 4.
2.4 Temperature Gradients The drywell shell is essentially at a unlform temperature during all o f the operating condltions except the accldent condition. During the accident conditlon i t i s assumed that the drywell shell except the region below the curb ( I . e . , the sand bed reglcn) i s at the same temperature as that o f the environment (nride the drywall. An d u l y s i s of t h e merldtonal temperature dtrtribution i n the sand bed region during the accldent conditlon w 1 5 reported In Reference 1-4.
The mertdfonal temperature rarultt In Reference 1 - 4 are gtven as a function o f 8lrpSQd tlaw f r o m the start o f the rccident condition to 4500 seconds. These temperature dlstrlbutionr w e used I n Section 3 to calculate the stresses.
c 2-6
PEEEX# 0~ 866.8 - 3 , REV. o 2.5 References
/
2-1 Technical Specf f ication 5 - 2 2 9 5 - 4 ; Design, Furnl shing, Erection and Testing o f the Reactor Drywell, and Suppression Chamber Containment Vessels ( 1 9 6 4 ) .
2 - 2 "Forcasted Drywell Thlcknesses to 1,4R," letter dated October 5 ,
1990 from S.C. Tumnlnelli o f GPUN to H,S. Mehta of GE, dated.
2-3 "Prlmary Contalnmant Design Report," prepared by The t b l p h H.
Parsons Company, FSAR Amendment 15.
' 2-4 Nuclear Regulatory Comnlsslon Standard Review Plan, Section 3.8.2, Steel Contalnment, Rev. 1, July 1981.
2-5 "Justlfication for use o f Sectlon 111, Subsectlon NE, Guidance i n Evaluatlng the Oyster Creek Drywell," Appendix A to letter dated December 21, 1990 f r o m H.S. Mehta o f GE to S.C. Tumninelll o f G PUN.
2-6 "Ccmpartson o f FDSAR and SRP Load Comblnatlont," Appendix 0 to letter dated December 21, 1990 from H3.S. Mehta o f CE to S.C.
T u n l n e l i i o f GPUN, I
t.7
TABLE 2 - 1 As-designed and Projected 95% Conftdence thicknesses used in the Code Stress Evaluation As-des Igned Projected 95%
Thicknesses 14R Thicknesses I'
prywell Res1 Qn [inl
, Cy1 indrical Region 0.640 a 0.619*
knuckle 2.625 2.625 Upper Spherical Region 0.722 0.677 Middle Spherical Region 0.770 0.723 lower Spherical Regfon 1.154 1.154 Except Sand Bed Area Sand Bed Region 1.154 0.736 no on-going corroslon
f 1
I TABLE 2 - 2
! Allowable Stresses f o r Drywell Shell I n Sectton V l I l Analysis I1 (Except Post-Accident Condition}
I Primary Stressef I ' I i
General membrane 19300 p s i 1 Generzl membrane p l u s bendlng 29000 psi I
, I I u m a r v olus S e c M d p r v Str-Surface stresses Including 3x17500 or, 52500 psi thermal e f f e c t s NOTE: The general membrane stress allowable value of 19300 p s i Is equal t o 1.1~17500, where 17500 p s l i s the allowable stress value for the Crywell material i n Table UCS-23 of Sectton V I I I .
Y 2-9
TABLE 2-3 Allowable Stresses for Past-Ac"dent Condition Primary S t r e w General Membrane 38000 p s i General Membrane p l u s 1 . 5 ~General rn?mbrane o r 57000 p s i Bend ing Pri dry r l u s Secondary 70000 p s i NOTE: The above allowable stresses are based Standard R e v i e w P l a n ,
Section 3.8.2., Steel Containment
Table 2-4 Load Comblnatjons specffled In the Parsons Report (Reference 2-3)
CASE I - INITIAL TEST CONDITION Deaduelght t Design Pressure (62 p r f ) t Setsmic (2 x D8E)
I CASE 11 - FINAL TEST CONDITION Deadueight t Deslgn Pressure (35 p s i ) ' + Seismtc ( 2 x 08C)
CASE I11 - NORMAL OPERATING CONDlTION Deadweight i Pressure (2 os1 external) + Seismic (2 x DEE)
CASE 1V - REFUELING CONOITION Deadweight + Pressure (2 p s i external) + Water load a t water seal b 118'-3" + Selsmfc ( 2 x OB)
CASE V - ACClDEN'I CONOITION Oerdue\ght + Pressure (62 g s l b 175 f or 35 p:! 1 281 F ) +
Seismic ( 2 x DBC}
CASE V I - POST ACCIOENT COHOITION Deadwelght + Y a t e t Load e 74' 6' + Selsailc ( 2 x DEE) b -.-
L . c s(1): The lords shown above ptedomlnrte. Reference 2.3 contains a l l o f the loads.
[ 2 ) DBE Is the deslgn basts earthquake.
d 2-11
I 0 66
?&EX N8. 1 . 3 . R E V . 0 TABLE 2 . h Dead Weight Lords Upper Header 60.00 36000 lower Header 40.00 41000 Upper Weld Pads 65.00 40000 I ,
3iddle Weld Pads 60.00 40000 lower Weld Pdds 56.00 48000, Top flange 95.75 ' 2OlOO
- , I 6ottom F,Irnge 93
- 7 5 20700 Strbtllzets 82. A7 21650 Upper Berm f e a t s 50.00 1102000 tower Beam Seats 22.00 556000 12 F t Oiam. EQ OOOR 30.25 48000 Personnel l o c k 30.00 64 100 Vents 15.56 50000 13 F t Olaa E Q WOR 30.25 51000 U m e r Weld Pads 65.00 12000 Yiddlc Weld Pads 60.00 19200 Lover Weld Pads 56.00 8400 2-12
T A B l f 2-Sb Pencttatlon l o a d s P e n e t r w ciht I n 1 b
I x - 54A ' 07.00 1000 I x - 5 A Thru H 16,OO 150000 I .
X - 6 x - 7 A Thru D 16.00 30.00 . 60dd 45600 X - 8 26.00 2450 x - 9A, 90 , 34.00 22600 '
x - io, 11 26.00 8650 x - 12, 45 31.00 I6500 x - 13A, 138 33.00 154 50 x - 14.15.398 70.00 5750 x - 4 3 . 44 54.00 7850 x - 16A.B 13 .oo 8850 x - 17 90.00 2750 x - 18, 19 20.00 900 x - 20,21,22 40.00 850 I[ - 23.24,341\,0 20.00 6000 x - 25 90.00 37 50 X - 27 90.00 1000 x - tu-6 34.00 5450 x - 30AB. 32A 16.00 3 700 x - 31AB. 53 16 .OO 3750 x - 26 20.00 3900 II - 3SA Thw 6 16.00 900
TABLE 2 - 5 b (Cont'd)
Penetration Loads 60.00 40.00 I 40.00 20.00 30.00 30,OO I 30.00 35.00 32 .oo 40.60 40.00 40.00 40.00 40.00 40.00 40.00 40.00 90.00 90.00 40.00 40.00 90.00 16.00 36.00 90.00
TABLE 2 - S C L t v r Lords 8
Up pur He rder 60.00 1290 Lowe
- Herder 40.00 7150 ,
Upper Weld Pads 65.00 20000 I HfCdls Weld Pads "60.:OO 20000 Lobar Y e i d 'Pads 56.00 24000 Eu1.t~Door 30.25 1 coooo PevsonneI Lock 30.00 1sboo
, 3. 0RYUlI.L F l N l T L fLlHEHl ANALYSIS 4 3.1 Description o f flnfte Element Hodc1r 8 I
I The drywell was nodelled for ffnita element analysls 'using t h e ANSYS cornouter program [ 3 - I ] . Two f j n i t e element models, an rxlsymnetrrc jcodel and r 36' plc slice model, were used I n the stress a n a l y s i s .
I Both o f these models art essentlrlly the same a s t h o s e used In the s t r e s s rnafyrts 11-2) except that the elements representlng sand I
s t i f f n e s s n y e rlfatnated. The axfiyarwtrlc model was used in dete,mlnYng the stresses for "the seismic and the thermal gradiebt load '
cases. The p i e slice rodel w i t used f o r dead cr4ght and pressure l o a d cases and to evaluate the stresses f o r load comblnatlons.. The pie s l i c e podel Includes the e f f e c t of vent pipes and the r e i n f o r c i n g ttnq on the stress s t r t a In the sandbed and adjacent r e g t o n .
I 3.1.1 Axts-tric We1 The axfsymetrlc model I s shown I n Figures 3-1 through 3 - 5 . where I
f i g u r e 3 - 1 i s an o v t r v l t u . and Flgurrs 3-2, 3 - 3 , 3 - 4 , and 3-5 show the sand bed, knuckle, cyllndrlcrl, and upper m o s t cylfndrfcal regf,ons, resptcttvt'y. The q e o r t r y I S dercrlbed In Subsectton 2.1, along w i t h Refertncts 3-2 and 3.3, M a $ used In genrrrtlnq this nodel.
3.1.2 P i e S l i c e f i n i t e f l m n t Model lattnq rdvantrge o f t m l r y o f tho d r y w l l u \ t h 10 vrntllner, 4 36' rectlon urs .odeled. Ftgurr 3 - 4 shors the 36' pte sltce f t n l t e c r l m n t d e 1 of the drywell. Thlr W e 1 tnclubrs the drywell she\:
3-1
from the base o f the sandbed region t o the t o p o f t h e elliptical head and the vent and vent header. the torus i s not included I n t h i s model because the bellows ptovlde a v e r j flrrrb:c! connection which does not a l l o w s i g n i f i c a n t s t r u c t u r a l l i l t e r i c t Ion botvcen :>e drywell and I torus. The various c o l o r s i c Ffgure 3:6 r e p r e s e n t t.he IJ*fFerent shell 1
""knesses o f the drywc:l and v e n t l i n e . Figure 3 - 7 . b v , w ~ the fro- the Instde o f t h e drywell w l t h t h e g u s s e t s and t b v vent j e t I
de F1 e< :or.
- !ii drywell and vent !hell a t e modeled uslng the 3-dimensi?qil p l a s t i c ,
Q u a d r l l r t e r a l s h e l l (STlF43) element. A t a d t s t a n c e o f 76 tl;ches f r o m the drywell s h e l l , the vectljne:fwdel!ng w a s s i m p l i f i e d by rasing beam , 4
' I elements. The t r a n r i t i o r c from shell t o b e i n elentectr i s made by extend{?: r i g I d beam elu;;.enrs frm a nGde ,along tha cen!e*-lfne of the vent r a d i d l l y outward t o each o f the shell nodes ~t t h e ' v e n t l t n e .
AHSYS STIF4 beam elemer,tr a r e t h e n c m n e c t i c t c t h i s c e n t e r l l n e w d e t o model t h e a x i a l and bendr-ig s t t f f o e s s cf t h r r e n t l i n e and header.
I Spring (STIF14) elements a r e used t o model the v e r t i c a l header supports inside the t o r u s . AHSYS STIF4 beam elements are a l s o used t o model t h e s t i f f e n e r s I n the c y l t n d r l c a l reglon o f t h e drywell.
Symnotric boundary c o n d t t i o n t a f t deflned , f o r both edges o f the 36' drywell segment. This a l l w r t h e nodes a t t h l s boundarj t o 'move r a d i a l l y outward f r o a the d r p l l c e n t e r l l n e and v e r t l c r l l y , b u t not i n the c t r c u a f r r e n t f a l d l r t c t f o n . Rotatfons a r e a l s o fixed i n two d i r e c t i o n s t o prevent the boundary f r o a r o t a t i n g o u t o f the plane o f
>Insbetry. Nodes at the b o t t c r edge o f t h e d r y u e l l are flxed I n a l l d i r e c t i o n s t o s l u l a t e t h e f l x l t y o f the s h e l l w t t h i n the c o n c r e t e foundat ion.
3.2 Lord b p 1 I c a t i o n on Pie 51 ice Model The loads are agplled t o the d r y w t l l f f n f t e element d e 1 f n t h e u n n e r h t c h mort a c c u r a t t l y r e p r e s t n t r t h e a c t u a l l o r d s a n t i c i p a t e d on the drywell. Dttrtlr on t h q r g p l i c a t l o n o f l o i d s arc d l s c u s r r d I n the f o l l o u t n g paragraphs.
3.2.1 C r a v I t y Loads Ihe qravtty loads include dead weight loads o f the drywell shell, weight o f the compressible material and penetrations and live l o a d s .
The dryuell shell loads are imposed on' the model by defining the I I
weight density of the shell material and a p p l y i n g ' a vertical rcceleration o f 1.0 g to simulate grrvfty. The. ANSYS program automatically distributes the loads consfsteht wlth the mass and' I
arceltration. The compressible materlal welght o f 10 lb/ft* IS'added '
by adjusting the weisht density o f the shell to also Include the compressible mat$rlal. The adjusted relght densities for the various I
shell thicknesses are sumartred' in' Table 3-2. I The additional dead weights, penetration welghtt and l i v e loads are rpplred as addltlonal nodal misses to the model. A s shown on Table 3 . 3 Cor the refueling condition case, the total additional mass 1 s sumned f o r each 5 foot elevatlon o f the drywell. The t o t a l is then divided by 10 f o r the 36' sectlon assumlng that the m a s s is e v e n l y distributed around the perfmeter o f the drywell. The tesultlng mass i s then applied unffomly to a set o f nodes a t the desired elevation a s shown in Table 3-3. fhcie applled masses automatically impose g r a v i t y loads on the drywell model wlth the deffned acceleration o f l g . The saw method i s used to apply the additlonil masses to the model for the acctdent and the post-accident condltions as sumnarized i n Table 3-4.
3.2.2 Pressure Lord The a p p r o p r i a t e pressure load I s appl icd to the internal/externrl faces of a l l of the drywell and vrnt shell elements. The a x i a l strerr a t the transition from vent shell to beam elements i s rfmulrted by app\ying cgulvalent a x i a l forces to the nodes o f tho shall elements.
In the port-accident condition, the d r p e l l f s assumed t o be flooded to elevrtlon 74' (894 Inches). Using a uater density of 62.3 l b / f t 3 (0.0361 1b/in3], the pressure gradient versus elevation i s calculated as shown I n Table 3-5. The hydrostatfc pressure at the 3-3
z I
I bottom o f the randbed r t g l o n Is calculated t o be 28.3 p s l . Accordlng t o the elevatlon , o f the element centerline, the a p p r o p r i a t e pressures a r e applied t o the inside surface o f the shell elements.
3.2.3 Sei smfc Loads I I
I Seirnlc Inertla and dlsplrcewnt stresses were first calculated urlog the r x r s y m t t r i c d e l . The seIsIp1c merldlonrl stresses determined I f r o n the rxfsyametric laode1 wre t h e n imposed on the pie 5 l l c s model I ,
b j applylng domrard forces at four elevations of the model ( A :
23 - ? * , B : 37'-3',C: 50'-11' and 0: 88'-9') as shown on F i g u r e 3 - 8 .
Using this g t h o d , the wrid!onrl stresses calculated from the a r l r p u e t k i c mode1 a r e dup1t;atcb a t four sectlons o f the pic' s l i c e Podel including 1) t h t rid-elevation o f the sandbed reglon. 2 ) 17.25' bel- the t q u r t o t , 3) 5.75' above t h e cguftor and 4 ) j u s t above the knuckle reglon. These four stcttons were chosen t o most accurately represent t h e l o r d l y In the lower drpell uhlle a l s o p r o v i d l n q a reasonably accurate stress dlstrlbutlon I n the upper drywell. Table I 3-6 5 h w t the n r t d l o n r l s t r e s s magnitudes rt the f o u r sections.(1) In Unrt l o r d s a n them rpplled t o t h e p i a s l i c e r o d e 1 I n separate l o r d steps a t each elevation shorn I n Flqure 3-8. The resultlnq s t r t r s e s at the f o u r sections o f I n t e n s t are then a v e ~ a g r df o r erch of ,the applted u n i t lords. By solvlng four equrtlonr with Cwr unknowns, the c o r r e c t lords tn determined t o u t c h the stresses shown l n Table 3 - 6 a t t h e faur sectlcnd!) The c r l c u l r t l o n f o r t h e correct l o r d s a r e 5 h m tn i n f a b l e r 3-? and 3-8 f o r t k rccldtnt and post-tccldrnt condlttons.
rtsmtively.
3.3 S t r r r t Results f o r Vrtiwr lord Cases and C o d l n r t l o m .
Only the two orthogonal s t m s r cOqOnents - wrtdlonal and circmfertnttal - are slgntffcmt a t the u r l u r s t r e s s locations In the dr-11 sM11. A r r r l n o f the c m n r n t rtresses lodfcattd that the c d l c u l a t d s h e w stmss u g n i t u d r s am Insignlficant compared t o t h e v a l u e s f o r the t o t a l w r i d l o n r l and c l r c u f r r e n t I a 1 stresses.
T h e r e f o n . t h e orthogonr? stress ugnftudrs rnd the p r l n c l p r ) stress Note: 1. See GPUN Calculation C-1302-243-E540-083 for a discussion on the adjustment to the Post- Accident Stress that would require a n adjustment to the pie shaped ANSYS model Loads. This adjustment does not have a significant effect on the Code evaluation for the without sand case.
- 3-4
? Rd E X4 0h 86. 61 - 3 . REV. 0 magnitudes were essentially the saw. Also, the maximum s t r e $ $ W ~ S
/ equivalent to the Stress intensity at the 1ocatloiiS e v r l u d t e d .
7ht stresses for the seismic inertia, seismic d i s p l a c e m e n t and temperature load cases (see Table 3.1) were calculated using the axlrymetrlc model. The details o f the temperature stress analysts 1 s descrlbod In the next Subsectlon and the procedures used in the calculation o f the s e l r d c rZresser are coveted In Sectfon 4. The I calculated values o f tht crane and racnrbrane plus bending stresses f o r temptfrturc case are tabulrttd I n Appendlx A .
The sefsrlc stresses wre fncorporated In the p j c rltce model to Oeteralnc the overall stress r e s u l t a n t s f o r the accldent and port-rccldtnt lcid c o d f n r t i o n s . The t m q c r a t u r e s t r e s s e s detemtncd froa the a n l r m t r i c model were separately added to the accident condltfon stresses obtained froa the pie r l f c e model. The m u l t l p l l e r s rpol4ed to the various u n i t lord cases (Table 3 - 1 ) to obtain t o t a l stresses f o r a particular load combinatton a r e shorn i n T a b l e 3-9.
The resulttng stresses for those lord c o a b ~ n a t i o n s are discussed rnd c w a d wlth the C d r allowablrs i n S t c t l o n 5.
3.4 l t a p r r r t u m Stress Analyslr The tht-1 response In the sand bed r w i o n to a D M L O U has been analyzed by CPU in Reference 1-4. Flgure 3-9 shows the w r l d l o n a l nodes k l o u tho d q u e l l floor, for which thr calculated temperatures 4 s 4 f w t i m o f r l r g s d t l w art reported 4n Reftttnce 1 . 4 . An er~pt& o f th calculated t-raturrs f s r h m 4n f i g u r e 3-10.
The predorlnant stresses for each of these cases occurred near the top o f the sand bed region (neat the 0.736. to 1.154' transitlon) and n e r t in t h e clrcwfrrenttrl and meridional directions. I t was found that t h e t h e m a l r t r ~ r r r s at 210 seconds ylrldcd the more severe s t r e s s condrtion. Figurer 3-11 and 3-12 show the meridlonal and c trcumfcrentlal s t r e s s dlstrtbutions I n th8 sand bed region.
3.5 R e f erences Gabriel 3 . DtSalvo, Ph.0. and John A. Swanson, Ph.D, 'AHSYS 3-1 Inglnttring Analysts Systea User's Manual ,.Rrvlslon 4 . , Swrnrorr Analysis S y r t w , lnc. Houston, PA. March 1, 1983.
3 - 2 CBIl Ow. 9-0971 shttt nuabet 4 , Rev. 1, 'Drywell - f t e l d Ueld Jolnt' 3 - 3 CUI Drug. 9-0971 sheet number 7, Rev. 5, 'Drywell - Cylindr'crl Shell L lop Head' I
/
TABLE 3 I -
Load C a s e s Consfdered t n the f t n l t c Element Analysis 1 Pressure 2 Cravlty-1 (Acctder.: Condttton) 3 Cravlty-2 (Refueling)
'4 U n f l ooded Se 1slat c
'5 Flooded Selrnlc 6 Flooacd Hydrort at IC Pres sure
- 7. $el m 1 c Rclatfve Support Dlspl acement
- 8. Tempera ture Grad 1 e n t Our f ng DBA toad Cases Analyzed by A x i s y r c t r l c f t n l t c Element Model I
I 0 66
?&EX Hi. ! - 3 , REV. 0
/
TABLE 3-2 Adjusted Weight Densttler o f Shell t o Account for Compress 1 bl e Hater 1 a1 We 1gh t I'
I Adjusted She1 1 Y e i g h t Density Jh t c k w s l 1 n 0 1.154 0.343 0.770 0.373 0.722 0.379 2.563 0.310 0.640 0.392 1.250 0.339 3 -0
? k XI 0 66 N.! ,d-3, REV. 0 TABLE 3-3 ,
/
Oyster Creek Orywell Additlonal Weights - Refueling Condition OCAD PtkLTR. TOTAL 5 FOOT LOAD PER VE 1 tnr v[ ICHT LOA0 RAkM 36 OEG. NODES OF 1bO
-.-----. (lbf)
(Ibf) tOAD (IbfJ
.-----.I APPLICA~IOM
.----I-*-..
50000 50000 I 168100 16d100 11200 llZW 229100 22930 6 116-119 18?2 5S6000 556000 556000 55600 0 161-110 6950 11100 11100 64 100 51500 115600 1osooo 2osooo 331700 33110 a 179-187 4146 16 500 16500 750 750 154SO 15150 znoso 28OSO 1500 1500 62250 6225 8 188- 196 176 I550 1SSO 11000 43350 84350 dS900 8590 I 19 7-205 1014 I IO2000 1I 02000 ll02000 110200 8 4lb-426 13115 78 50 78SO 7650 785 8 436-444 911 SUO0 80100 95200 700 115900 196300 19630 8 454-462 2154 szooo t2000 72000 7200 4 472-4bO 900 s7so 950 3730 515 I SO8-fI6 I2 w SO us0 U50 MI 4 m - 5 ~ 111 21650 21650 21650 2165 4 551-511 211 loo0 IODO 1soQa 15000 iaooo 1600 a S ? 1-57s 2 00 20700 20700 bS6000 ZOlOO 20100 nu00 ?ita0 a 5a9-591 9235 2 184150 3uzw 3434350 3434350 141435
d 0 66
!&EX N8. 8 - 3 , R E V . 0 TABLE 3-4 I
Oyster Creek Drywell Additlonal Welghts Accident and Post-Accident Condltion 15.56 50000 50000 I 16 168100 168100 20 11200 11200
.* 15-20 229300 22930 6 116-119 3822 I' 22t 556000 556000 I
- .21-251 556000 55800 I 161-169 6950 26 11100 11100 30 64 100 51500 1 15600 30.25 10s000 105000
'* i6-,30 231IDO 23170 I 179-161 2896 31 16500 l6SdO 32 7 30 ?SO 31 154SO 15450 34 280'.0 28050 35 1503 1500
.* 11.35 62250 b22S 8 188-196 178 38 1550 I550 40 4 1000 43150 84 3 50 36-40 85900 8 590 8 197-205 1014
.- 45-504 50)
S4 110z000 76SO 1102000 18SO 1102000 llO2OO 0 418-426 1)7?5 76SO ?IS 4 436-441 98
- 51-5s 56 56400 564 00 60 95100 I35 9s900 1S2300 lM9 I 454-462 1904
, " 5640 65 51000 52000
- ' 61-65 32000 szoo I 4 72-480 650 70 3) so 3730 3730 31s 8 500-518 I?
- ' 66-?0 (d50
- . 11-13 11 88 59 4050 883 4 -
528 53 b 111 8 2 . I? 21650 2tw 21150 210 1 553- 56 1 2ll
- 81-83 I? 1000 1000 90 I5W I so00 Iaooo 1800 4 571-37¶ 2 00
- 86-90 93.15 20700 20700 9s.75 ZOlOO 20100 re400 8080 8 %9-59? 5 10
-
- 91-06
?01AL1' 2184150 3-10
TABLE 3 - 5 Hydrostatlc Pressures for Post-Accident C o n d i t i o n
/
WATER OENS ITY: 62.32 I b / f t 3 0.03606 lb/In3 FLOODED EL'EY: 74.5 ft a94 inches ANGLE El EHf NTS ABOYE
, I' ABOVE EQUATOR ELEVATION DEPTH PRESSURE HOOES (degrees) (Inch) (inch) [PSl) ELEMENTS 40 -51.97 116.2 777.0 ' 28,l 53 -50.62 122.4 771.6 27.8
' 66
.. - 4 9.. 2 7 128.8 765.2 27.6 79 - 4 7 .so 137 _
i!5 6 , 7 ' 27.3 49-51 92 -;si20 143.9 i50. I 27. I 52-54, 102 -46.35 153.4 740.6 26.7 142-147, 59 108 -41.89 166.6 727.4 26.2 148-112 -39.43 180.2 713.8 25.1 152-116 -36.93 194.6 699.4 25.2 156-120 -34.40 209.7 604.3 24.7 160-124 - 3 1 .a7 225.2 668.8 24.1 166-130 -29.33 241.3 652.7 23.5 174 138 -26.80 257.6 636.4 23.0 148 -24.27 274.4 619,6 22,3 161 -20.13 302.5 591,s 21.3 170 -14.38 342.7 351,3 19.9 179 -8.63 384.0 510.0 18.4 188 -2.88 . 425.9 468.1 16.9 197 2.88 468.1 425.9 15.4 I00 8.63 .510.0 384 .O 13.8 438-445 ID9 14.38 551.3 342.7 I 12.4 4 6 - 453 3
io.iS 59i .s 302.5 10.9 454-461
'la 427 25.50 627.0 266.2 9.6 462.469 136 30.50 660 2I 233.0 8.4 470-477 445 35.50 690.9 203.1 I .3 470-485 454 40.50 719.8 174.2 6.3 486-493 4 63 45.50 746.6 147.4 5.3 494 -501 472 50 I50 711
- 1 122.9 4.4 -
502 509 510-517 790.5 1(13.5 3.7 43 1 490 -
54.06 805.6 820.7 88.1 73.3 3.2 2.6 s I a -52 5 526- 533 499 508 517
- 83s. 7 850.8
!58.3 43.2 2.1 1.6 534 5 4 1 542 549 526 885.3 8.7 0.3 550-557 187.3 706.7 25.5 340-399 (Ventl Inel F LOOOP. UK 1 I I
3-11
I TABLE 3-6 Meridional Seismic Stresses at Four Sections 2-0 ,
I She1 1 ' )le ri d 1ona 1 Stresses I Elevation Model Accident Post-Accident Section .llxhslw - 0 ,
A ) MIddle o f Sandbed 119 32 1258 1288 B) 1 7 . 2 5 ' Belon Equator 323 I 302
(
295 585 4 ,
I C ) 5 . 7 5 ' Above Equator 489 46 1 , 214 616 D) Above Knuckle 1037 1037 216 808 I
Note: GPUN Calculation C-l302-243-E540-083, Rev. 0, Drywell Seismic Stress Adjustment has increased the stress levels for the Post-Accident Condition at the location of 5.75" above the Equator and above the Drywell Knuckle. The increases are from 808 psi to 1300.0 psi above the knuckle and from 616 psi to 1000 psi at 5.75" above the Equator. These increases are small and there is no structural significance of this increase on the structural 4
n integrity of the drywell.
3- 12
?&EX I N8.
0 664 - 3 , REV. 0 I
TABlE 3-7 A p p l i c a t i o n o f Loads to Hatch Seismic Stresses - Accldent Condltjon
' 4 I I
2-0 S E I W I C S l U t i S f S A T ftC7lOR
..................................... ( ~ 1 1 1 JCCT101: , I 2 3 ' ,
2-0 rOM: 12 302 (61 ICJJ CwaEsslvt snrssts ram 2-0 UULTSIS mv: 113.3" 322.5' 4b9.1'6 912 3 - .
0.051" S t l W l C OfREC11011: ?M.6? 151.51 103.41 8 5 11 W I Z .tiu3 vwiw sciyric r c i i i r i : 469,55 110.11 1)O 2 1
....................................... L- ............................
139.84 lOTU Stl5plt CWRtSflVL fTRESfL5: 119.22 294.91 213.b9 f15 5 2 I I
3-0 S I l t f f t S 1 7 SCCT104 I p s , )
3-0 ...................................
IhPUf 1t c11on : 1 1 3 4 111.3- J2Z.S" 441.1. 912.3-83.43 ll.04 3 4 94 1s 23 09 84 19 Bt J6.M 0 00 9t.64 CJ.)? 0 00 0 co 8Y.03 0.00 0 00 0 30 lZW.22 294.91 21j.51 215 $2 3-0 1r P UT tMD R L S U T I ~ S T l I 5 f C f A T 5CCtlDI [ p a t 1
...........LW StCTtOll
......70...W....MRILO .......2-D
.........TO...MTW .....S W S W ...................................
A 3902.2 333.37 lbJ.05 138.34 21s 52 6 1101.6 1U.V 13.83 17.25 0.04 c 1453 .a 141.93 63.04 0.00 0.00 94.05 0.00 0.00 0.00 D 6111.6 SW: 1254.22 291.91 213.59 21s 52 3- 13
i T A B l E 3-8 ication o f l o a d s t o Hatch Se smic Stresses Post-Accident Condi t an ,
I 2 - 0 s t i s m s t w s t s IT stc113~I : s ~ )
SfCtIOl: 1 ? ? 1 2-0 WOE: 32 302 461 lCIt CDu(Cl%lVC S T l t l S t L film 2-0 AMLTSIS tLCV: IlS.1- 322.5' 489.1-
............................. 9 1 2 I-0 OM' S t I 5 M t #fLICTIDI: tb1.67 1SS.U 101 46 8 5 11
-12. h v I , V t R T l C & l SCISIIC 1fittTI~:l
.*.......-..---.--*.-..--'-.--.-.*---~--.- ..............
499.l) 429.39 112 t6 I ? ) 14
, rorri stiwit c ~ ~ l ~ r t s sncssn: ~ivt 1101 41 I44 9J 616 22 b o a (I
, ?
5-D STttfSlL AT SfCT101 [ o s
- l SLCTIQ : I 2 1 4 3 - 0 WOES: 53-65 110-111 460-408 IZI-514 489. I' 1lB.J' 122.5-
..*..--....... .......9 1 2 I'
$5.45 1) 94 54.94 I S ZJ H.84 JI.*1 36.11 o ac B?.U 4 1 11 0 00 0 00 0 co 19.15 0.00 OM 12U.4b 5b4.9J 611.21 10a ( I 3-0 1 *UT LW TO Y -It0 U T C M 2-0 STRCSSES ttlUTl.6 S W S S C S AT SCCtIOb
$tCl'% TO tW
................................... ( ~ $ 1 1 A 14U1.1 l2JO.51 5s5 34 SII.4S bcb 4s a 21W.2 ZU.LI 1u.n I W . ~ o :a t -1B41.7 -1at.u 44.21 0 00 a 00
-2l.M a 0 -J11.1 DQ 0.00 0 00 lZU.4b W.93 816 22 Bo( 45 3-14
TABLE 3-9 Deicrlptlon o f Lord Comblnations in Terms o f Unlt lord Care Sum
' I I Lord Comb. I I
I Normal Operating 111 - (Case l)xO.O3226 t Case 12 2 ,
~ o n d ti i o n ( 3 ) Case 4 i Case 7 I
Refuel ing Condition 1 ,
IV , , - (Case l)x0.03226 + Case 3 { 6 I Case 4 f Case 7 Accident Conditton - 1 V-1 t Case 1 t Case 2 f Case 4 1 Case 7 + Case 8 Accident Condttion -2 v-2 + (Case 1)x0.56S + Case 2 t Caze 4 i Case 7 + Case 8 Post-Accident Condition VI t Case 2 t Case 5 + Case 6 2 Case 7 Notes: (1) For l o a d - c o d i n a t i o n definltlon see Reference 2-3.
( 2 ) f o r u n i t lord case dercriptton see Table 3-1,
( 3 ) nOrul @@ration also includes l i v e lord due to personnel lock.
(4) Lord C o d i n a t i o n Crrr Nwbrrr a n based on Table 2-44 3- 15
I I
I I
I I
I 3-16
L 0
0 c
3 I H 3- I7
mx-1278 mun- 1 RUTD SCRLIHG XJ.1 DIST-49.4 M -zz7 rr -82s DYSTER CREEK GOYUTLL - rf WDfL figure 3 - 3 Knuckle Regtan of Orpel1 Finltt Element M e 1
.. ... .. .._..._.._.._..- *.--. - A .
W-1052
.EDGE rigurr 3 - 4 Cylindttcrl Region o f -Drywe11 finftc Element Hodel
0 Y
w w
h W
LT W
c rll b
0,
/
I 3-21
I I
t
/
I 8
c
I I
DRYWEU ATMOSPHERE a
- I b
b 1 8
- 1 i CONCRETE REGION
': = a w n -
I b
b 0
b
I a
' 6.2s I 6.S ri ;w 44 t t .a I
W.b8 ea.-
a.u U.?l 7.n r0.a 4.n a m.1b u.m 4.n a.ii rr.29 4.s ei c0.a a.2t r.n a 0 a 9.n a 0.l m ei O.m rg a
$4 n a
.*.a )o a 9O.l w a IO. n 4 m 1t U m 11 .I a a
' I a a l! :1 m so r r.m a.6 a.bs a so W CI U.81 W.03 U m U a a am a a a a a (I a n a a w W a a c) a a m c) n * (I W a
- b
( I (I a
a a W
W W
a m a a c) a a z1.n a a a n.9 a c) U W t3.b so -*a a a W (I W a W 8.n a a n.s a m *w W W c)
M.a a 1 w l? a w a 0 2r.n a a a W 4.1
- a a (I a
r m
Ira r.n L1
- a rl a
a W CI a
F i g u r e 3-10 Exaqlr of C a l c u l a t d T e q w a t u r e Dlrttibution a t Various E j a R S d Tr-S 3-2s
I I
I I
I L
a P,
.P h.
0.
3 -26
I I
I ni d w I-I I
I
- 4. SEISHIC LOAD DfliJNITION Thfs s e c t i o n b r l e f l y d e s c r t b e s the general methodology followed i n the s'elsmic e v a l u a t i o n of the drywell, A d e t a i l e d r e p o r t on t h e seismic a n a l y s i s methodology and the results Is Included i n Reference 4 - 1 .
I 4.1 F i n i t e Element Model I The a x i s y m e t r l c f l n i t e element model was used I n the seismic a n a l y s t s . A l l of the concentrated loads l i s t e d i n Tables'~2-5a and 2-Sb were Included in both t h e flooded and unflooded seismic a n a l y s e s .
Since t h e lower and upper beams, connect t o the drywell through pads, the beam ,we'lghts do not . a c t during the hor!zontal eaqthquake I excitation. Therefore, t h e beam weights a r e a c t i v e only i n t h e
, v e r t i c a l d i r e c t i o n . I n a d d i t i o n , t h e lfve' loads l f s t e d i n Tab:.: 2-Sc were included i n the unfloaded seismic a n a l y s i s .
The drywell i s c o n s t r a l n e d a t the " r e a c t o r b u l l d i n g / d r y n e l l / s t a r truss" I n t e r f a c e a t e l e v a t l o n 82'-6" and a t i t s base. The upper c o n s t r a t n t was implemented i n the f i n t t e element analysis by r e s t r a i n i n g the mlddle node In the horfzontal d i r e c t i o n a t t h i s e l e v a t i o n . The base c o n s t r a i n t i s as b e f o r e , i , e , , a l l nodes f i x e d .
4.2 Dynamlc Analysls Hethodology and Response Spectra The selsmlc Input motlon s p e c t r a were provlded by GPUN I n Reference 1-4!')Ths seismic motion s p e c t r a were for two l o c a t t o n s : a t the mat foundation and a t the upper c o n s t r a t n t . Since the ANSYS program c a n only accept one input spectrum, the input spectra at the two e l e v a t f o n s were enveloped.
The response spectrum dynamic analyses were f j r s t conducted for f r e q u e n c t e s up t o the ZPA f r e q u e n c l e s o f the i n p u t motiI..i s p e c t r a ,
The response c o n t r t b u t t o n s due t o the t r u n c a t e d higher frequency modes Note: 1. See reference 1-6 far a discussion of the changes in Seismic Response and its effect on the Meridional Stresses in the Drywell shell for the Post-Accident Load Case.
- 0 66
?86EX N8. 8 - 3 , R E V . 0 ,
were calculated by static analyses in which the total model m a s s i s subjected to support accelerattons. These were taken as ZPA accelerations for each o f the orthogonal spatial directions. All colinear modal response contributlons uere combined by the Oouble, Sum Method and the spatial contributlons by the SRSS method. The response I I
contributions due to the truncated htgher frequency , modes were combined with the response totals due to the lower frequency modes I' included in the analysis by the SRSS method.! The resulting total '
colinear inertla responses were combined with the correspdnding '
responses due to relative support motion by the absolute sum method.
Thes? sttesses were then combined with the stresses from other loads #
( e . g . , pressure, thermal, etc.) fm h e Code evaluation. I ,
1 ,
I 4.3 Post-Accident Selsmic Analysfs I n the post-accfdent condition, the drywell is flooded to elevatfon 74'-6". The wefght of the water was lumped at several elevations along the meridfan of the drywell. Based on prevlous experience, the fluid-structure interaction effects were assumed as negl fgible and the hydrodynamic mass o f water was assumed as 8oX o f the total mass o f water which would flll an empty drywell. Thts exclusion o f 20% mass I reasonably accounts for the volume o f RPV, shield wall and pedestal. ,
4.4 Analysfs for Relative Support Displacement Effects The drywell i s flxed at its bare and i s lrtorally constrained by the reaclur bulldlng r t rlevatlon 8 2 ' - 6 " . During saismlc excltatlon, the reactor bulldlng would rxpetlrnce r e l a t i v e displacement between the drywell constraint elevation and the basemrt, SInce the r e a c t o r bulldtng i s much stiffer and much more m a s s i v e than the drywell, i t w i l l take the drywall for a 'rlde' durlng relative support displacement. Therefore, the stresses in the drywell due to relative support displacement uere determined and added to those from t h e seismic inertia loads.
The horizontal relattve dlsplrcement o f the drywell upper s:pport w i t h respect t o the drywell at the basemat war rpeclfied as 0.058 fnch f o r PxDBE condition [1-41(. 4) The stresses from thls relatlve dlsplacement
- were obtained by applying a horizontal displacement o f 0.058 inch at the upper support elevation. ,
I I
I 4-1 "Selrmlc Analysts Details," Appendix ( B o f letter dated December 21, 1990 from H.S. Mehtr o f GE to S.C. T u m l n e l l i o f W I N . ,
I I
I
.I I I I I I
Note: 1 . See Reference 1-6 for a discussion of the effect of changes in Seismic Response on D w e l l displacements and their effect on the Meridional Drywell shell Stresses for the Pdst-Accident Load Condition.
I
. ." e..
...1 .
(.
- 5. CODE STRESS EYALUATION Sectlons 3 and I describe the analyses for shell stresses for the various unit load cases and the llmltlng load combinations V and V I .
The stress analysls for the 'with sand case' In Refefence l-2a has shown that the accident condltlon, load combfnation V-I, and the post-accident condttlon, load comblnation VI,' represent the l , i m i t i n g load combinatlons for the Code stress evaluation. Thls wa's a l s o determined to be the case for the 'without sanb' conftguration considered In this report. The1 removal of sand f r o m the sandbed regfon affects ;he stresses only i n the sandbed and the adjacent 'lower spherical reglon. Therefore, the Code stress evaluation o f these regions is described separately from the other regions of the drywell.
5.1 Code Stress Evrluatlon o f Regfons Above the Loner Sphere I
Figure 5-1 shows a plot o f the acctdent condttlon membrane circumferential stresses for the 'wlth' and 'without' sand cases as o function of meridtonal dtstance. Stresses In both the sandbed and the other drywell regions are included In Figure 5-1. It i s seen that In the other regions the stress magnttudes for the two cases are essentially identical.
From the preceding It 3 s clear t h a t t h e stresses i n the other regions
($.e.. other than the sandbed and the adjacent lower spherical r e g l o n )
are unaffected by removing the sand. Nevertheless. for completeness, the calculated sLress mognttudes for these regions f r o m Reference 1-21 are repeated in Tables 5 - l a and 5 - l b .
The stress magnitudes shown fn Tables 5 - l a and 5-lb a r e computed using elastic small displacement analysis. As discussed in Subsectton 5.2, the stresses in the sandbed and loner sphere reglons were a l s o evaluated using e l a s t i c large displacement analysis. A comparison o f the component stresses ftm the small and large displacement solutions for the drywell regions above the lower sphere showed insignificant d i fferenccs.
s- 1
I 0 66
?&EX N8. d - 3 , R E V . 0 I
!n o r d e r to e v a l u a t e the fmpact on the p e n e t r a t i o n a n a l y s e s , a wmprrlson o f t h e r a d i a l and metldionrl displacements a t the equator p l a n e of t h e sphere ( e l e v a t i o n 37'-3.) f o r the w i t h and without sand cases was performed. The comparlron showed t h a t t h e , r a d i a l d i s p l a c e w n t s in the two cases were. e s s e n t i a l l y i d e n t i c a l b u t the I
meridional or v e r t l c a l dlsplacementr d i f f e r e d by = 0.042 inch f o r load combination Y-1. This d i f f e r e n c e was judged t o be small compared t o the c a l c u l a t e d v e r t i c a l t h e m a \ d l t p l r c e w n t of I 0.5 inch for the a c c i d e n t -0ndltton load combination V-2. 1, 5.2 E l a s t i c S t r e s s Analysls o f Sandbed and Lower Sphere I I
I I t I ,
5.2. I s & i i Displacement Solutfon Results I
The maxiu~um stresses are along t h e mertdional boundary of t h e model
( i . e . . the plane o f symnetry between the v e n t s ) , so the s t r e s s e s along t h i s boundary w i l l be considered f i r s t . Figure 5 - 2 shows the p l o t of meridtonal membrane s t r e s s aagni tudes for the accfdent condi t tan V - 1 a s a f u n c t l o n o f w r t d i o n r l d i s t a n c e froa t h e bottom o f the sandbed.
A compartson of t h e membrane stress magnitudes in Figures 5 - 1 'without sand' case and Figure 5 - 2 shows t h a t t h t c l r c u m f e r e n t i i l s t r e s s I s I higher than the w t i d i o n r l stress in both the sandbed regton and t h e lower s p h e r l c r l rtgfon. Th!s i s expected sinco the a b s m c e of ;and s p r i n g s allows mort r a d i a l displacement of the drywall s h e l l under dead weight and I n t e r n a l pressure. Flgure '5-3 shows a p l o t o f the membrane c i r c m f c r c n t l a l s t r e s s d l r t r l b u t i o n . The maximum v a l u e of the c i r c u f r r r n t i r l &rani s t r e s s Is 23.0 ksl. Further, t h i s s t r e s s exceeds 1.1 ,S (21.2 k s l ) for a meridional d i s t a n c e o f .I 26 rncher (see Ftgurr 5-1).
The Code (NE-3213.10) s t a t e s t h r t cases arfte i n whtch a membrane s t r e s s produced by pressuro o r other w c h a n f c r l lordlng and arroclrted w i t h a primary or d l r c o n t l n u t t y e f f e c t producii t x c t s s i v e d l s t o r t l o n t n t h e t r a n s f e r o f load to o t h e r p o r t f o n r of t h e structure. Such a meatwane stress t t c o n s e n a t l v e l y classlffed by the Code as l o c a l primary n e d r r n e stress. The Code ltmits t h e aagnttude of t h i s s t r e s s t o 1 . 5 5, (29.0 kit). A s t r e s s e d region u y be considered l o c a l i f 5-2
the dlstanco o v e r which the membrane stress Intensity cycerds 1.1 5, does not extend In the neridionrl dlrectlon more than l.Oj(Rt). With R-420 in. and t-0.736 inch I n tho srndbed regfon, I.Oj(Rt) i s equal to 17.6 inches. Thus, the maxlmun vrluo o f tho cfrcumferentlal membrane stress (23.0 k s l ) meets the Code stress limit (29.0 ksl) but Its I I
meridional extent over 1.1 S, I s greater than I.O/(Rt),.
The meridtonal extent o f 26 In. occurs only # a t the plane o f symnetry between the vtnt lines. The extent Is less at other mkrldionrl planes. figure 5-4 shows the raerld4onal extent of circumferential membrane stress above 1.1 5, ft four mcrtdtonrl planes. Using a I weighted p e r a g e over the circumference of the model, the mertdtonal I extent was calculated as I4 inches. Thls average value Is less than l.Oj(Rt) and, thus, meets the metidfonrl extent criterion g i v e n i n ML -3213. IO.
The objective of the Code In limlting the w r l d t o n a l extent and I olagnftude o f the local primary merpbrane stress I s to preclude excesslve distortion i n the transfer of load to other portions of the structure, since such distortion could inval idate the elastic analysis. The small displacement results showed t h a t the maximum I radial d l s p l a c w n t in the sandbed rtqlon was 0.28 Inch for the accident condition V-1. Thls i s less than half the -deled thlckncss of the dryvtll In that region and, therefore, I s judged n.*t t o be excessive.
Thc :=a1 1 displaceaent analysts conducted pravlously i s conservat t v c because the sttfftning effect o f the tensile in-plane stresses 1s not constdettd. This effect uould tend to reduce the local r a d i a l deflectlon (thus. also tho local circmferrntfal stress) of the drywell shell In the sandbed regton. For example, conrtder the case o f a kr. subjected to both transversa and tenslle r x i r l loads as s h m In figure 5-S. A s u l l d l t p l r c m n t rnrlysir o f this configuration considers the bending m n t s b a r d on the transverse load only. The btndfng stresses and deflections o f the bern art overpredfcted based on these brndtng moments. In a r e a l structure, tensile axial 'loads In c o d l n i t i o n with the deflections of the berm 5-3
prtducrd by trrntvetre lords crrrtrs an opporfng btndfng moment. A s a
/ r e s u l t thr overi" banding moment' !s reduced, Ieadlng to 'smaller bending dcflectlora and stresses. This stiffentng effect can be included only by conducttng a large dlsplrcement analys ts.
5.2.2 lrrgc Dlrplaceatent Solution Results Based on the prrctdlng dlscurrion, 8 largr dlsplaccment analysis was conducted using the s a pit sllce nodel and the accident c o n d i t i o n I'
V - l loads. A Irrqe d l s p l r c m n t analysis crn be conducted uslng the ANSYS code by rctlvrttng tho KAV(6) key. Yhin this option 1 s chosen.
the AkSYS program ftrrt calculrtrs displrcemcntr of the structure based on a small dlrplrcment rnr1ysis. Tho geometry o f the structure 1 s then updattd brstd on the calculated displacements. The lords are rgaln applied t o the structure and the displacements are recalculated.
l h t g e m t r y of tho structure Is continually updated and the d i s p l a c n r n t s are recalculated until tho u x t w r t dtsplrcrmcnt change k t w e n ruccrssfvr Iterrtlonr Is r d u c d k l o r the r r l e c t ~ ~
c o a v o c r i t w t a . 4 -0 critwir of 0.01 trwh -4s t
- b ~
tn mi+ mlnw la ---I $W W w o r r t 6 ~ rW C W ~
for t h e stcffintng of.*tn&*rtructort due t6 in-plane tenrrle stresses.
figure 5-6 shows the dlstrtbutlon o f v d r r n e circumfcrentirl stress.
figure 5-7 shows a plot o f membrane clrcwfrtcntlal strtss I S a function o f w r l d i o n r l dlrtrncr when the l r q r dlrplacerrwnt o p t i o n In ANSYS vas used. For c r n a r i s o n , the stress results from the small 4isp;riement solution (figuru 5 - 1 ) are also shown in f i g u r e 5-7. It tr seen t h a t tho u x i u value from the large displacement rolutton i s 2l.S t s i ( c o l p r r d t o I 23 k s l 4n the small displrctment rnalysfs) and I t exceeds 1.1 & (21.2 krt) ovar a u r l u distance o f only 1 1 inches at the w r i d l o n r l plane betvcen the vcnt ltncs. This i s clearly less than the 1.0 I1Rt) dtstancr of 17.6 fn.
f i g u r t 5-8 shows tht clrcufcrcntial u m b r i n t stress aagnitudes at four different r r l d f o n r l planes based on large d l s p l r c e w n t solutfon.
U s i n g a i tefghted average ovtr the circumference of the model, the meridional extent was calculated as 2 in. *[*{? ..
' If,
5.3 Cod0 Evaluation o f t h o Sindttod and Lmr Sphoro
/
5.3.1 Prlury Stress Evaluation Tables 5 - 2 1 and S-2b show t h e n a x l values ~ o f primary stresses f o r t h t a c c i d e n t c o n d i t t o n load c o r b i n r t l o n V-1, and the Code allowable values for the t u 1 1 and largo d l r p l a c m n t rolutlons, r e r p t c t l v e l y .
In t h e primary w d t a n r stress catoqory, t h e c a l c u l a t e d stress f n t e n s t t l e s f o r t h o sandbed n g i o n aro basod on t h e average values.
I' The peak value o f t h e clt~umforrntlrlr d r r n o rtrors in t h o randbed reglon was cmarod w i t h t h o local primary uabrano rtrosr l i n l t s .
A5 t x p t c t e d , a c o r Q r t l r o n o f Tables 5-2! and 5-Zb shows t h a t t h e c a l c u l a t e d s t r e s s magnitudes using t h o large displacement o p t l o n a r t i n g e n e r a l s l i g h t l y lower than t h o s e o b t r t n c d uslng the small d i r p l a c l w n t o p t l o n . The d l f f c r e n c e s I n t h e stresses are l a r g e r In t h e sandbed rogion when the r a d i a l d l s p l a c m n t r are l a r g e r . The c a l c u l a t e d y t f u r y stress u g n t t u d o r i n t h e rrndbcd r e g t o n and loner where w t t the Code stress limits.
5.3.2 Extont o f Local P t i u r y Htmbrano S t r e s s I
ParrgraDh WE-3213.10 o f t h e cod0 rtrtrr t h a t 1 strrtrer r e g t o n r a y be c o n s i d e r e d local i f the d i s t r n c o over which t h e wmbrrne s t r e s s t n t e n s l t y e x c o d r 1.1 5, dws not extend i n t h e w r t d i o n r l d l r r c t t o n more t h a n I.OJ(Rt), which 4s I 17.6 Inches. Uhen the s m l l d l s p l a c r u n t solution i s used (5.2.1). t h e membrane c l r c w f r r e n t l a l stress u g n i t u d r i n t h e sandbd tqglon exceoddr 1.1 5, o w a r r l d I o n a \ d i r t a n c o of I 26 lnchor a t t h o plan0 of $).rwtty k t n e n the vent 1 1 ~ s . Howover, t h l r d t s t a n c o was found t o k 14 Inches uslng a w l g h t w l avrrrgo ccmrWering o t h e r w r l d i o n r l s .
f u r t k m o r r , t h i s dlStWU0 o f 26 inches a t tho plan0 of rymwtry between the v e n t lines was nducod t o I 11 inchos when t h o l a r g e d i $ @ l a c c w n t solution was u r d I n u h i c h t h e s t l f f n e r s r r t r l x Is updated bared on th. d r f o d shapo. Thenfore, i t 1s concluded t h a t
tht clrcumfarant\rl stress In thr rrndbod region mats the merldlonal
' extent crltwfon o f tha Code Firrptrph NE-jZl3.10.
5.3.3 Primary Plus ftcondrry Stress Evrluitlon Only 1- lord crros rorult in signlficrnt secondary sIr@sstr !n thr s h e l l . The first i s the t q e r a t u n qtrdient (accident condltion V a l )
whlch produces secondary strosses I n the rrndkd and lower sphere.
I The second I t the port-accldont condrdltlon which producer discontinutty banding writs i n the shall a t thr bottoa o f thr randbed. The post-accident lord c o d i n r t l o n c i t e V I controls. t a b l e s 5.3a and 5-3b
, show the calculated values o f p r i r r r y plus secondary stresser and a
'corparlson with the r l l o r r b l e values f o r r u l l and large d(sp1rcencnt solutions, r r r p c t l v e l y . All of tho calculated prlmrry p l u s secondary stress v a l u t s aca within the Code rllowrblo valuer.
TABLE 5 - l a Comparison o f Calculated Stresses to Code Allowable V a l u e s
( NoaInal Oryuell Wall thicknesses Above Lower Sphere) liritlng Load Coobinatlcn V - l Drywell Reglon Stress Calc. Stress 8
A1 1 owrbl e trtcg. Hagnitude, Hart. Stress (P5t) (Pll)
Cy1 tndcr Prlr. Hi 19200 19300
, 4.
' (1-0.640 In.)
Prim. Me&. t 20280 29000 lend 1rig Knuckle P r i m . Ned. 18430 19300 (t-2.625 In.)
P r i m . W. + 20620 29000 8end 1ng Upper Sphtrr Prir. w. 19090 I 19 300 (t-0.722 tn.)
Prtm. W. + 26350 29000
&ndtnp Hidle S p h r n Prim. Ilcd. 18460 19300 (t-0.770 In.)
Prlm. Re&. 231 10 29000 kndlng
P&rx# ~8.
0 66 8 - 3 , R E V . o
/ TABLE 5 - l b Comprrlron o f Calculated Sttrsrrs to Code Allowable Valuer
( 95% Projected Drywll Yall Thicknesses Above lower Sphere) llmlting Load Coablnrtlon Y - 1 I' Crywell Reqlon Stress Calc. Stress Allowable Crteg. Hagnitude, Max. Stress (vi) (PSj 1 I
Cy1 t nder Prfr. H n b . 19850 2 1200
( t 4 . 6 1 9 In.)
Prfr. Red. + 20970 29000 Bending Upper Sphem Prlr. M. 20365 21200 (t-0.677 In.)
Prlr. nnb. + 28 100 29000 8endiq Middle Sphwe Prlm. W. 19660 21200 (t-0.723 I n . )
Prim. W. + 24610 29000 Bcndlng I
Cocr9ctiron o f Calculated P t l u r y Stterrrr t o Coda Allowable V a l u e r
( h a l l Olsplrcmnt: Lonr Sphero and Srndbrd 1 t i m i t l n q Lord Codtnctlon V - 1 Drytell Reqion flterr talc. Strrar A1 1owole Cateq. Nrgaitude, Nrx. Str*br (PSf) (PSl)
LOrtr Sohrn Q t t m . nrd. a 13800 2 1 ZOO (t=!.154 I n . )
Loctl P r l m . n+.b. 17690 29000 Prf.. kd. + 17800 29000 lkndlng Srndbd Prlr. Mmb. 17130 21200 (t-0.736 In.)
tocrl Prl.. )Ird. 22973 z go00 I
,Collprrlson o f Ca1cu1rtod Prlury Stresses t o Coda Allourblr V a l u r i
( large D l r p l r c m n t ; Lower Sphere and Sandbrd )
l h t t l n g lord Codtnrtlon V - I c
I 13940 2 I ZOO 17530 2 9000 Prla. W. t 17640 29000 hndtng SlndW *I.. no&. 16540 2 1200 (t-0.736 in. )
Local kl.. )5nb. 2 1540 29000 23130 29000
~ ...
lA81t 1-31 Coa@artson o f Calculated P t l u r y Plus Stcondrry Stresses to Coda A l l w a b l Q Valuer ,
I
( f u l l Dirplrcmnt -towt Sphere and Srndbrd ) I I
I l m r Sphere PtM. + Sec. 29620 52 500 (t-l.lS4 In.) ( k c . Lord cond. 1-1)
Prim. 4 fee. 30280 70000
. (Post-kc. toad C o d . VI)
S r n d k b Regton Prim. + s+c. 38420 52 SO0 it-0.736 i n . ) ( k c . lord C d . V-1) ,
Prglm. + kc. 67020 7 OOOO
( P o s t - k c . lord C o d . VI)
TABLE S-3b Lorparlion o f Calculated P r l i r r y Plus Stcondirjd S t r e s s e s to Code Allowrblr Values 9 I
( l i r g e Dlrplrccunt . L w r Sphere and Sindbcd )
I 1,
Drywell Regtoon Strtss Calc, Strtrs A 1 lourble Catcg, Hrgnltudc, Max. Stress I I (Psi) {Psi 1
- I 1 ,
1 1 I Lower Sphere Prlr. 4 See. 28860 52 500 (r-l.lS4 tn.) (Ace. lord Cond. V - 1 )
Prlr. 4 SM. 30280 70000 I
(Post-ACC. l o r d Cond. V I )
S a d b e d Region Prim. + Scc. 36600 52 500 (ta0.736 In.) (Acc. Lord Cond. V - 1 )
Prim, + Src. 67020 70000
( P o s t - k c . Lard C o d . VI')
5-12 I
I I,
I
f L
s I I I I 1 1 L t I I 4.
ro C
-i CD LT N
I
/
. _- I I
5-15
2( t cl c
al E
W W
L r n a -
O Q L W e
f m
Q, L
a m
.C
6' I 1'
/
I I'
Figura 5 - 5 Beam YIth lrrnsvrrre Plus Axlrl Loadlng I
pl C
.C cn 3
E 0
.C CI 1
eL c,
m
.c a
M M
0 L.
c) v)
E a 0 C .C m c)
L Q n 0 t
c 0)
L
.C L9) n 4
V L
.C U L Y
IA 8
.I I
5.18
M 0)
U a
c)
.C E
m 9
c x
m ur Q,
L c
L h
/
I'
? N i xI ~0 846.1.1, RW o
/ 6. S W R Y AND CONCLUStONS This report fs a supp1ementary report to the Code stress report (Reference 1-2) o f record and addresser aspects of Code compltance as they relate to the tocal wall thtnnfng observed and the removal of sand from the :andbed region i n the Oyster Creek drywell. The loads and load comblnatlons used i n the analysfs were based on the previous I'
drywell stress analyses and the CPUN technical specification (Reference 1-4). I n developing the allowable stress 1 fmltr guidance was taken from Subsectton NE o f Section 111, ASHE Code where the Code o f record, Section VI11 and Code Case 1272H-5, f s not explicit.
I The stress analysts first considered a model I n whlch everywhere as-designed thicknesses were used except In the sandbed region where the thickness was assumed as 0.736 inch. Thls served as a basis for evaluating the stresses for the 95% confldence projected thicknesses to 14R.
The htghest stresses were determined to be from the Case V - l and VI load combinations in a11 the different reglons o f the drywell. It was I
shown that the prlmary and secondary stresses are wtthin the allowable 1 tmfts for both ccndlttons (rs-designed thicknesses and 95% projected 14R thlckncrses). At the plane of $-try batween the vent llnes, the meridional extent o f the ctrcumferentfal mmbrrna stress above
] , I S M , was i n excess o f l.OI[Rt). HOYtver. usfng r weighted average consl2tring other meridional planes, this dlstancc was less than l.Oj(At). Furthermore, a large dlsplaceaent solutton Indlcated the extent a t the syaactry plane t o be also less than l.OJ(Rt). Thts clearly satisfied the Code criterion for the ex'lent o f local primary membrane stress.
It Is concluded that the Oyster Creek drywell shall w\ll contlnue to w e t t h e Coda o f record r r q d r m n t s r t least up to 14R with the Iand reeoved from the sandbed region. Tho rnrlyslt for buckling CrDiblllty of the drywell shell without sand i s contrlned i n a comprnlon CE report (Reference 1-S).
6-1
J o b Messages ' XEROX EDMSAPPZ Document Name: CP12O-PS, J o b 215
%%[ P r o d u c t N a m e : X e r o x Nuvera 1 2 0 OC/P I%%
% % [ P a g e : 11%%
% % [ P a g e : 23%%
% % [ P a g e : 31%%
%%[Page: 41%%
% % [ P a g e : 51%%
%%[Page: 638%
%%[Page: 7 3 2 %
%%[Page: 81%%
%%[Page: 91%%
%%[Page: lo]%%
% % [ P a g e : 111%%
%%[Page: 1 2 1 8 %
% % [ P a g e : 131%% 1
% % [ P a g e : 141%% " 4
%%[Page: 153%% , 1 ,
%%[Page: 161%%
%%[Page: 1 7 1 % %
% % [ P a g e : 181%%
%%[Page: 191%%
% % [ P a g e : 201%%
%%[Page: 2 1 1 1 %
%%[Page: 223%%
% % [ P a g e : 231%%
% % [ P a g e : 241%% I
% % [ P a g e : 251%%
% % [ P a g e : 261%%
% % [ P a g e : 271%%
% % [ P a g e : 281%%
% % [ P a g e : 291%%
% % [ P a g e : 301%%
% % [ P a g e : 311%%
%%[Page: 321%%
% % [ P a g e : 331%%
% % [ P a g e : 34]%%
% % [ P a g e : 351%%
% % [ P a g e : 363%%
%%[Page: 371%%
%%[Page: 381%%
%%[Page: 3918%
% % [ P a g e : 403%%
% % [ P a g e : 41]%%
%%[Page: 42]%%
%%[Page: 431%%
%%[Page: 4438%
%%[Page: 451%%
%%[Page: 461%%
%%[Page: 47]%%
% % [ P a g e : 481%%
%%[Page: 4911%
% % [ P a g e : 501%%
% % [ P a g e : 511%%
% % [ P a g e : 521%%
%%[Page: 5312%
%%[Page: 541%%
% % [ P a g e : 55319%
%%[Page: 5638%
% % [ P a g e : 57]%%
%%[Page: 5832%
%%[Page: 591%%
%%[Page: 601%%
% % [ P a g e : 611%%
%%[Page: 623%%
50.08.12 Job I/ 1147
I I
%%[I[
%%[DL
% :EltlONV :IlhtlO : S d V % [ 6 9
%%l89
%%EL9
%%C99
%%[S9
%%CP9 I sa6essaN goy
,