ML20011F436

From kanterella
Revision as of 02:51, 17 February 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 0 to Millstone Unit 3 Cycle 3 Core Operating Limits Rept.
ML20011F436
Person / Time
Site: Millstone Dominion icon.png
Issue date: 02/28/1990
From:
NORTHEAST NUCLEAR ENERGY CO.
To:
Shared Package
ML20011F434 List:
References
NUDOCS 9003060031
Download: ML20011F436 (14)


Text

, , . . .. . .

W' l t

, y. .s. q t e I

i L

.t

'1 4 i ,f

, r

". h li h

a If; e,\ '

.e

.t f.

l MILLSTONE UNIT NO. 3 .l CYCLE 3 ,

~

CORE OPERATING LIMITS REPORT

l. d l-REVISION 0  ;

e ,:

6 FEBRUARY 1990

1. t i r

'L

(! =

~,

l .:

g,

'[

?A f

h l.

l .-

~i 1.

1 t;

900306co31 900221 ft) 15 PDR ADOCK 05000423 pnn {y

_p

i MILLSTONE UNIT NO. 3 -

, CYCLE 3 CORE OPERATING LIMITS REPORT ,

1.0 : CORE ~0PERATING LIMITS REPORT This Core. Operating Limits Report (COLR) for Millstone Unit No. 3, Cycle 3, has been prepared in, accordance with the requirements of Techni-cal Specification 6.9.1.6. i;

~ The Technical Specifications affected by this report are listed below:

3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.3.5- Shutdown Rod Insertion Limit '!

3/4.1.3.6 Control Rod Insertion Limits (Four Loop and Three Loop) i 3/4.2.1.1 Axial Flux Difference--Four Loop, 3/4.2.1.2 Axial Flux Difference--Three Loop ,

'3/4/2.2.1 Heat Flux Hot Channel Factor--Four Loop 3/4.2.2.2 Heat Flux Hot Channel Factor--Three Loop .;

3/4.2.3.1 RCS Flow Rate and Nuclear Enthalpy' Rise Hot Channel Factor--Four Loop 3/4.2.3.2 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel ,

Factor--Three Loop- -

2.0 OPERATING LIMITS i The- cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in .c Technical -Specification 6.9.1.6.

2.1 Moderator Temnerature Coefficient (Soecification 3/4.1.1.3) ,

t 2.1.1 The moderator temperature coefficient (MTC) limits are:

The BOL/AR0/0%-70% RTP--MTC shall be less positive than p' +0.5 x'10 4 Ak/k/'F. Above 70% RTP the MTC limit is a linear ramp to 0 Ak/k/*F at 100% RTP.

l The E0L/AR0/RTP--MTC shall be less negative than

-4.75 x 10 4 Ak/k/*F.

L l Page 1, Revision 0 3

e c o 2.1.2 The MTC surveillance' limit is:

The 300 ppm /AR0/RTP--MTC should be less negative than or equal to -4.0 x 10 4 Ak/k/'F.

Where: BOL stands for beginning of cycle life ARO stands for all rods out HZP stands for hot zero power EOL stands for end of-cycle life RTP stands for rated thermal power 2.2 Shutdown Rod Insertion Limit (Soecification 3/4.1.3.5)

The shutdown rods shall be fully withe.rawn.

2.3 Control Rod insertion limits (Specification 3/4.1.3.6)  ;

The control rod banks shall be limited in physical insertion as shown in Figure 1 for four loop operation and Figure 2 for three-loop operation.

2.4 Axial Flux Difference--Four looo Operation (Soecification 3/4.2.1.1) 2.4.1 The axial flux difference (AFD) target band is +5%, -5%

for core average accumulated burnup 5 3000 MWD /MTV.

2.4.2 The AFD target band is +3%, -12% for core average accumu-lated burnup 2 3000 MWD /MTV.

i Where: MWD /MTV stands for megawatt days / metric ton of  ;

initial uranium metal.

2.4.3 The AFD acceptable operation limits are provided in Figure 3. I 2.5 Axial Flux Difference--Three-looo Operation (Specification 3/4.2.1.2) 2.5.1 The AFD target band is +5%, -5%.

2.5.2 The AFD acceptable operation limits are provided in i Figure 4.  ;

1 2.6 Heat Flux Hot Channel Factor (Four Loops Operating)--F (Z) i 0

I (Specification 3/4.2.2.1) p RTP Q

F0 (Z) 1

  • K(Z) for P > 0.5 P

Page 2, Revision 0

e s .;. .

p RTP {

Q Fg (Z) s

  • K(Z) for P s 0.5 <

0.5  ;

Thermal Power Where:- P= -

Rated Thermal Power 2.6.1 FlTg2.32 2.6.2 K(Z) is provided in Figure 5.

2.6.3 See Figure 6 for a plot of [Ff . PRel) versus exial core height..

Fxyl,pRTP , (3 , pp ,(3,p))

RTP

2.6.4 Where

F*# - 1.67 for unrodded core planes 1.79 for core planes containing Bank D control rods 2.6.5 PF xy = 0.2 2.7 Heat Flux Hot Channel Factor (Three Loops Operating)--F (Z) n (Snecification 3/4.2.2.2) p RTP Q

F0 (Z) s

  • K(Z) for P > 0.325 P

p RTP Q

F(Z)s g

  • K(Z) for P s 0.325 Thermal Power Where: P=

Rated Thermal Power Page 3, Acv sion 0

e, .

t 2.7.1 FhTg1.69 j Note. Since maximum power in three-loop operation is 65%,FhTP represents the theoreticalg F limit if power were at 100%. j 2.7.2 K(Z) is provided in Figure 7. ,

2.7.3 See Figure 8 for a plot of [Ff . PRel) versus axial core height.

l F

xy -F 65 RTP * (1 + My *[0.65P)) .

2.7.4 Where

F*RTP - 1,69 for unrodded core planes .

  1. 1.81 for core planes containing Bank D '

control rods 2.7.5 Mp - 0.281  ;

2.8 Nuclear Enthalpy Rise Hot Channel Factor (Four Loops Operating)--F"H A (Soecification 3/4.2.3.1) r I

RTP , (3 , pp g ,[3,p))

FAH s FAg Thermal Power Where: P-Rated Thermal Power 1

2.8.1 FRTP , 3,49 A

2.8.2 PFAH - 0.3 l

l Page 4, Revision 0

s h'

0 '

s 4 ,

2.9 Hgelear Enthalov Rise Hot Channel Factor (Three loops Operating)--FAH(Specification 3/4.2.3.2)

Ffg5FRTP . (3 , pp , [3,pg Thermal Power Where: P=

Rated Thermal Power RTP 2.9.1 F A

= 1.351 2.9.2 PFAH = 0.43 Page 5, Revision 0 j

-., o (FULLY WITHDRAWN) .

(028.228) (0.78.228) 228 200 /

SANK B (1.0,164)

(0.Q164) t 150 e /

n.

/

BANK C

/

k BANK 0 (0.0,50)

/

(028,0) 0 o 0.2 0.4 0.6 0.8 1.0 (FULLY INSERTED) FRACTION OF RATED THERM AL POWER  ;

FIGURE 1 R0D BANK INSERTION LIMITS VERSl1S THERMAL POWER FOUR LOOP OPERATION MILLSTONE - UNIT 3

i

  • l

,e '

I l

(FOLLY WITHDRAWN) j (007228) (0 57 228) /

/ BANK B l

( 0,212) 200

/

5 MSANK C e / (0.65,132) 5 8 100

,( 0,0.98) ,

, -SANK D 50 (0 07,0) '

0 O 02 04 06 0.8 10 (FULLY INSERTED) FRACTION OF RATED THERMAL POWER k

l FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER THREE LOOP OPERATION j

1 i

l MILLSTONE - UNIT 3

.. \

. 1

[ .c.' ,  ;

E

$ h

, 1 b l

. w Y 5 ,

i 40 0 I I I I l- 1 I I -

UNACCEPTABLE ( 11,9 0) (11. 9 0 )

OPERATION UNACCEPT ABL E '

OPERATION 60 -

/ ' '

\

ACCEPTABLE OPERATION 60

\

. /

/

\

( 31. 5 0) (31. 5 0 )

40 e '

20 0

50 40 30 20 10 0 20 30 10 40 50 i

FLUX DIFFERENCE (6I)'/.

FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (FOURLOOPSOPERATING) l l

l l MILLSTONE - UNIT 3 ~

O N, e E

S

- 2 5 Y Is W

10 0 80 UNACCEPTABLE ( 8,65) (8.65) UNACCEPTABLE OPERATION OPERATION I I '

So I \ '

ACCEPTABLE OPERATION L

4  ; I I \

/ \

( 24 5,32) (24 5,32) 20

\

l 0

50 40 30 20 10 0 10 20 30 40 50 i, FLUX OtFFERENCE (61)*f.

I FIGURE 4 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (THREELOOPSOPERATING)

MILLSTONE - UNIT 3

~

, !6 g- e. .

1.50 1.25 - -

o 1.00 e

T T*'

3 O.75 - -

2.320 2 CORE HEIGHT K(2) 0.000 1.000 a O.50 - - 5ON 1 000 t! 10.000 0.94 0 5

12.000 0.647 0.25 - ,

0.00  !  !  !  !

O 2 4 6 8 10 12 CORE HEIGHT (FT)

> FIGURE 5 K(Z)-NORMALIZEDF(Z)ASAFUNCTIONOFCOREHEIGHT n

FOR POUR LOOP OPERATION MILLSTONE - UNIT 3 i

  • i 2.50 . . . _ . .

f

_ 0,0,2.321 I .0 2.321 li '

pW

-- --- --- ,, 10.8m 2.18 2.fS -p %q K

4 5 . *****$ 1 ++ ..

  • 1 ,

f t, t

[ '4' '*,

_4a.

I L

8# , ' '

m J vf +4

+;

i g a ' '

  • W 1 73 CL j I ',l, l
  • *, '\

l l s' 12.0. 1.60 '

g o ,I ,, a

, 1 ll ,

x 1.25 , i

< l 3 , ,

I l f I 1.00 ',,

i + .

l l c" i

.no i'

i i

.500 0 2 4 4 8 10 12 l sorrow COREHEIGHT(FEET) top l

l t

FIGURE 6 T

MAXIMUM F g

P ggt VERSUS AXIAL CORE HEIGHT DURING NORMAL CORE F0VR-LOOP OPERATION MILLSTONE - UNIT 3

I.  !

'o ,

i mm.

  • i 1.50 >
1. 2 5' - -

i C

[o 1.00 .

8 3 0.75 - - TOTAL

< 2.60o -

CORE HEIGHT M(Z) 2 0.000 1.000 a O.50 - - e.ooo i.ooo 5

" 10.Soo 0.940 12.000 0.577 0.25 - - t 0.00  !  !

O 2 4 6 8 10 12 CORE HEIGHT (FT)

FIGURE 7 K(Z) - NORMALIZED F g(Z) AS A FUNCTION OF CORE HEIGHT FOR THREE-LOOP OPERATION I

MILLSTONE - UNIT 3

. _ . . _ - . . - - - - _ . . . . . . . - _ . . . . ~ - . - - . - . . ~ . . ~ . . . - . . - - . . . .. ..-. . .

l'

+.

6O i.F 2.00 t 1

$ t 1 IS 0.0. 1.600 6.0 i!

1.690rj w mm%

-- sc,.6. 1.sai  :

e a l.S0 - i ,e +, l N b, ++4 / *I.\ l

,p ** " t 7 '+ ,I 5, 1.25 i

g t ,

> g O r O

6 .

v

  • e l i l x ' i 4

2 1*00 E 12.CI. 0.975 -

l .o s

l 1 '

s 4l

.750

' i i ,

8 10 12

. 500 ,' 2 4 6 l

COREHEIGHT(FEET) TOP 90Tf0W i

FIGUPE 8 T

MAXIMUM F P ggt VERSUS AXIAL CORE HEIGHT g

I DURING NORMAL CORE THREE-LOOP OPERATION J

MILLSTONE - UNIT 3 L. __._.______.__._._______U