ML20011F436

From kanterella
Jump to navigation Jump to search
Rev 0 to Millstone Unit 3 Cycle 3 Core Operating Limits Rept
ML20011F436
Person / Time
Site: Millstone Dominion icon.png
Issue date: 02/28/1990
From:
NORTHEAST NUCLEAR ENERGY CO.
To:
Shared Package
ML20011F434 List:
References
NUDOCS 9003060031
Download: ML20011F436 (14)


Text

,,

W' l

t y.

.s.

q t

e I

i L

.t

'1,f 4

i r

". h li h

a If; e,\\

.e

.t f

l MILLSTONE UNIT NO. 3

.l CYCLE 3 CORE OPERATING LIMITS REPORT

~

l.

d l-REVISION 0 e

6 FEBRUARY 1990

1. t i r

(!

'L

=

l

~,

g,

'[

?A f

h l.

l.-

~i 1.

1 ft) t; 15 900306co31 900221 PDR ADOCK 05000423

{y

_p pnn

i MILLSTONE UNIT NO. 3 CYCLE 3 CORE OPERATING LIMITS REPORT 1.0 : CORE ~0PERATING LIMITS REPORT This Core. Operating Limits Report (COLR) for Millstone Unit No. 3, Cycle 3, has been prepared in, accordance with the requirements of Techni-cal Specification 6.9.1.6.

i

~ The Technical Specifications affected by this report are listed below:

3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.3.5-Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits (Four Loop and Three Loop) i 3/4.2.1.1 Axial Flux Difference--Four Loop, 3/4.2.1.2 Axial Flux Difference--Three Loop

'3/4/2.2.1 Heat Flux Hot Channel Factor--Four Loop 3/4.2.2.2 Heat Flux Hot Channel Factor--Three Loop 3/4.2.3.1 RCS Flow Rate and Nuclear Enthalpy' Rise Hot Channel Factor--Four Loop 3/4.2.3.2 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel Factor--Three Loop-2.0 OPERATING LIMITS i

The-cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.

These limits have been developed using the NRC-approved methodologies specified in

.c Technical -Specification 6.9.1.6.

2.1 Moderator Temnerature Coefficient (Soecification 3/4.1.1.3) t 2.1.1 The moderator temperature coefficient (MTC) limits are:

The BOL/AR0/0%-70% RTP--MTC shall be less positive than

+0.5 x'10 4 Ak/k/'F.

Above 70% RTP the MTC limit is a p'

linear ramp to 0 Ak/k/*F at 100% RTP.

l The E0L/AR0/RTP--MTC shall be less negative than

-4.75 x 10 4 Ak/k/*F.

L l

Page 1, Revision 0 3

e o

. c 2.1.2 The MTC surveillance' limit is:

The 300 ppm /AR0/RTP--MTC should be less negative than or equal to -4.0 x 10 4 Ak/k/'F.

Where:

BOL stands for beginning of cycle life ARO stands for all rods out HZP stands for hot zero power EOL stands for end of-cycle life RTP stands for rated thermal power 2.2 Shutdown Rod Insertion Limit (Soecification 3/4.1.3.5)

The shutdown rods shall be fully withe.rawn.

2.3 Control Rod insertion limits (Specification 3/4.1.3.6)

The control rod banks shall be limited in physical insertion as shown in Figure 1 for four loop operation and Figure 2 for three-loop operation.

2.4 Axial Flux Difference--Four looo Operation (Soecification 3/4.2.1.1) 2.4.1 The axial flux difference (AFD) target band is +5%, -5%

for core average accumulated burnup 5 3000 MWD /MTV.

2.4.2 The AFD target band is +3%, -12% for core average accumu-lated burnup 2 3000 MWD /MTV.

i Where:

MWD /MTV stands for megawatt days / metric ton of initial uranium metal.

2.4.3 The AFD acceptable operation limits are provided in Figure 3.

I 2.5 Axial Flux Difference--Three-looo Operation (Specification 3/4.2.1.2) 2.5.1 The AFD target band is +5%, -5%.

2.5.2 The AFD acceptable operation limits are provided in i

Figure 4.

1 2.6 Heat Flux Hot Channel Factor (Four Loops Operating)--F (Z) i 0

I (Specification 3/4.2.2.1)

RTP p

Q F (Z) 1

  • K(Z) for P > 0.5 0

P Page 2, Revision 0

e s

RTP

{

p Q

F (Z) s

  • K(Z) for P s 0.5 g

0.5 Thermal Power Where:-

P=

Rated Thermal Power FlTg2.32 2.6.1 2.6.2 K(Z) is provided in Figure 5.

See Figure 6 for a plot of [Ff. PRel) versus exial core 2.6.3 height..

F l,pRTP, (3, pp

,(3,p))

xy RTP

2.6.4 Where

F*# - 1.67 for unrodded core planes 1.79 for core planes containing Bank D control rods 2.6.5 PFxy = 0.2 2.7 Heat Flux Hot Channel Factor (Three Loops Operating)--F (Z) n (Snecification 3/4.2.2.2)

RTP p

Q F (Z) s

  • K(Z) for P > 0.325 0

P RTP p

Q F(Z)s

  • K(Z) for P s 0.325 g

Thermal Power Where:

P=

Rated Thermal Power Page 3, Acv sion 0

e, t

FhTg1.69 j

2.7.1 Note.

Since maximum power in three-loop operation is 65%,FhTP represents the theoretical F limit if g

power were at 100%.

j 2.7.2 K(Z) is provided in Figure 7.

See Figure 8 for a plot of [Ff. PRel) versus axial core 2.7.3 height.

F

-F 65 RTP * (1 + M

  • [0.65P))

l xy y

F*RTP - 1,69 for unrodded core planes

2.7.4 Where

1.81 for core planes containing Bank D control rods 2.7.5 M

- 0.281 p

Nuclear Enthalpy Rise Hot Channel Factor (Four Loops Operating)--F"H 2.8 A

(Soecification 3/4.2.3.1)

I r

RTP, (3, pp

,[3,p))

FAH s FAg g

Thermal Power Where:

P-Rated Thermal Power 1

2.8.1 FRTP, 3,49 A

2.8.2 PFAH - 0.3 l

l Page 4, Revision 0

s h'

0 4

s 2.9 Hgelear Enthalov Rise Hot Channel Factor (Three loops Operating)--FAH(Specification 3/4.2.3.2)

Ffg5FRTP. (3, pp

, [3,pg Thermal Power Where:

P=

Rated Thermal Power RTP 2.9.1 F

= 1.351 A

2.9.2 PFAH = 0.43 Page 5, Revision 0 j

o (FULLY WITHDRAWN)

(028.228)

(0.78.228) 228

/

200 SANK B (1.0,164)

(0.Q164) t 150

/

e

/

n.

BANK C

/

k BANK 0

/

(0.0,50)

(028,0) 0 o

0.2 0.4 0.6 0.8 1.0 (FULLY INSERTED)

FRACTION OF RATED THERM AL POWER FIGURE 1 R0D BANK INSERTION LIMITS VERSl1S THERMAL POWER FOUR LOOP OPERATION MILLSTONE - UNIT 3

i l

-,e (FOLLY WITHDRAWN) j (007228)

(0 57 228)

/

/ BANK B

( 0,212) 200

/

5 MSANK C e

/ (0.65,132) 5<

8 100

,( 0,0.98)

-SANK D 50 (0 07,0) 0 O

02 04 06 0.8 10 (FULLY INSERTED)

FRACTION OF RATED THERMAL POWER k

l FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER THREE LOOP OPERATION j

1 i

l MILLSTONE - UNIT 3

\\

1

[

.c.'

E

$ h 1

b lw Y 5 i

40 0 I

I I

I l-1 I

I UNACCEPTABLE

( 11,9 0)

(11. 9 0 )

UNACCEPT ABL E OPERATION OPERATION 60

/

\\

ACCEPTABLE OPERATION 60

/

\\

/

\\

( 31. 5 0)

(31. 5 0 )

40 e

20 0

50 40 30 20 10 0

10 20 30 40 50 FLUX DIFFERENCE (6I)'/.

i FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (FOURLOOPSOPERATING) l l

l l

MILLSTONE - UNIT 3

~

O N,

e E

S 2 5 Y Is !

. W 10 0 80 UNACCEPTABLE

( 8,65)

(8.65)

UNACCEPTABLE OPERATION OPERATION I

I I

\\

So ACCEPTABLE OPERATION I

I L

\\

4

/

\\

( 24 5,32)

(24 5,32) 20

\\

l 0

50 40 30 20 10 0

10 20 30 40 50 i,

FLUX OtFFERENCE (61)*f.

I FIGURE 4 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (THREELOOPSOPERATING)

MILLSTONE - UNIT 3

~

!6 g-e.

1.50 1.25 - -

1.00 o

e 3

O.75 -

T T*'

2.320 2

CORE HEIGHT K(2) 0.000 1.000 5ON 1 000 a

O.50 -

t!

10.000 0.94 0 5

12.000 0.647 0.25 - -

0.00 O

2 4

6 8

10 12 CORE HEIGHT (FT)

FIGURE 5 K(Z)-NORMALIZEDF(Z)ASAFUNCTIONOFCOREHEIGHT n

FOR POUR LOOP OPERATION MILLSTONE - UNIT 3 i

i f

2.50

_ 0,0,2.321 I.0 2.321 l i

p 10.8m 2.18 W

2.fS -p K

%q 4

5

++

  • 1 1

[

'4' I

f t,

t L

8#

_4a.

J vf

+4 m

i g

a

+;

W 1 73 I ',l l

CL j

  • , '\\

l l

s' 12.0. 1.60 o

,I a

g ll 1

x 1.25 i

l 3

I l

f I

1.00 i

+

l l

c" i

.no i'

i i

.500 0

2 4

4 8

10 12 l

sorrow COREHEIGHT(FEET) top l

l t

FIGURE 6 T

MAXIMUM F P

VERSUS AXIAL CORE HEIGHT g

ggt DURING NORMAL CORE F0VR-LOOP OPERATION MILLSTONE - UNIT 3

I.

'o i

mm.

i 1.50

1. 2 5' - -

i C

[o 1.00 8

3 0.75 -

TOTAL 2.60o CORE HEIGHT M(Z) 2 0.000 1.000 a

O.50 -

e.ooo i.ooo 5

10.Soo 0.940 12.000 0.577 0.25 - -

t 0.00 O

2 4

6 8

10 12 CORE HEIGHT (FT)

FIGURE 7 K(Z) - NORMALIZED F (Z) AS A FUNCTION OF CORE HEIGHT g

FOR THREE-LOOP OPERATION I

MILLSTONE - UNIT 3

_.... ~ -

-.. ~.. ~... -.. - -...

l'

+.

6 O i.F 2.00 t

1 t

1 IS 0.0. 1.600 6.0 1.690rj i!

sc,.6. 1.sai w mm%

ea l.S0 -

i

,e +,

l N

b, ++4 /

  • I.\\ l
    • " t 7 '+,I 5,

,p t

i 1.25 g

g O

r O

6 v

l i

e l

x

' i 4 1*00 E

12.CI. 0.975 l

2 s

l

.o 1

s 4l

.750 i

i

. 500,'

2 4

6 8

10 12 COREHEIGHT(FEET) l TOP 90Tf0W i

FIGUPE 8 T

MAXIMUM F P

VERSUS AXIAL CORE HEIGHT g

ggt DURING NORMAL CORE THREE-LOOP OPERATION J

MILLSTONE - UNIT 3 L.

U