ML20011F436
| ML20011F436 | |
| Person / Time | |
|---|---|
| Site: | Millstone |
| Issue date: | 02/28/1990 |
| From: | NORTHEAST NUCLEAR ENERGY CO. |
| To: | |
| Shared Package | |
| ML20011F434 | List: |
| References | |
| NUDOCS 9003060031 | |
| Download: ML20011F436 (14) | |
Text
,,
W' l
t y.
.s.
q t
e I
i L
.t
'1,f 4
i r
". h li h
a If; e,\\
.e
.t f
l MILLSTONE UNIT NO. 3
.l CYCLE 3 CORE OPERATING LIMITS REPORT
~
l.
d l-REVISION 0 e
6 FEBRUARY 1990
- 1. t i r
(!
'L
=
l
~,
g,
'[
?A f
h l.
l.-
~i 1.
1 ft) t; 15 900306co31 900221 PDR ADOCK 05000423
{y
_p pnn
i MILLSTONE UNIT NO. 3 CYCLE 3 CORE OPERATING LIMITS REPORT 1.0 : CORE ~0PERATING LIMITS REPORT This Core. Operating Limits Report (COLR) for Millstone Unit No. 3, Cycle 3, has been prepared in, accordance with the requirements of Techni-cal Specification 6.9.1.6.
i
~ The Technical Specifications affected by this report are listed below:
3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.3.5-Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits (Four Loop and Three Loop) i 3/4.2.1.1 Axial Flux Difference--Four Loop, 3/4.2.1.2 Axial Flux Difference--Three Loop
'3/4/2.2.1 Heat Flux Hot Channel Factor--Four Loop 3/4.2.2.2 Heat Flux Hot Channel Factor--Three Loop 3/4.2.3.1 RCS Flow Rate and Nuclear Enthalpy' Rise Hot Channel Factor--Four Loop 3/4.2.3.2 RCS Flow Rate and Nuclear Enthalpy Rise Hot Channel Factor--Three Loop-2.0 OPERATING LIMITS i
The-cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.
These limits have been developed using the NRC-approved methodologies specified in
.c Technical -Specification 6.9.1.6.
2.1 Moderator Temnerature Coefficient (Soecification 3/4.1.1.3) t 2.1.1 The moderator temperature coefficient (MTC) limits are:
The BOL/AR0/0%-70% RTP--MTC shall be less positive than
+0.5 x'10 4 Ak/k/'F.
Above 70% RTP the MTC limit is a p'
linear ramp to 0 Ak/k/*F at 100% RTP.
l The E0L/AR0/RTP--MTC shall be less negative than
-4.75 x 10 4 Ak/k/*F.
L l
Page 1, Revision 0 3
e o
. c 2.1.2 The MTC surveillance' limit is:
The 300 ppm /AR0/RTP--MTC should be less negative than or equal to -4.0 x 10 4 Ak/k/'F.
Where:
BOL stands for beginning of cycle life ARO stands for all rods out HZP stands for hot zero power EOL stands for end of-cycle life RTP stands for rated thermal power 2.2 Shutdown Rod Insertion Limit (Soecification 3/4.1.3.5)
The shutdown rods shall be fully withe.rawn.
2.3 Control Rod insertion limits (Specification 3/4.1.3.6)
The control rod banks shall be limited in physical insertion as shown in Figure 1 for four loop operation and Figure 2 for three-loop operation.
2.4 Axial Flux Difference--Four looo Operation (Soecification 3/4.2.1.1) 2.4.1 The axial flux difference (AFD) target band is +5%, -5%
for core average accumulated burnup 5 3000 MWD /MTV.
2.4.2 The AFD target band is +3%, -12% for core average accumu-lated burnup 2 3000 MWD /MTV.
i Where:
MWD /MTV stands for megawatt days / metric ton of initial uranium metal.
2.4.3 The AFD acceptable operation limits are provided in Figure 3.
I 2.5 Axial Flux Difference--Three-looo Operation (Specification 3/4.2.1.2) 2.5.1 The AFD target band is +5%, -5%.
2.5.2 The AFD acceptable operation limits are provided in i
Figure 4.
1 2.6 Heat Flux Hot Channel Factor (Four Loops Operating)--F (Z) i 0
I (Specification 3/4.2.2.1)
RTP p
Q F (Z) 1
- K(Z) for P > 0.5 0
P Page 2, Revision 0
e s
{
p Q
F (Z) s
- K(Z) for P s 0.5 g
0.5 Thermal Power Where:-
P=
Rated Thermal Power FlTg2.32 2.6.1 2.6.2 K(Z) is provided in Figure 5.
See Figure 6 for a plot of [Ff. PRel) versus exial core 2.6.3 height..
F l,pRTP, (3, pp
,(3,p))
xy RTP
2.6.4 Where
F*# - 1.67 for unrodded core planes 1.79 for core planes containing Bank D control rods 2.6.5 PFxy = 0.2 2.7 Heat Flux Hot Channel Factor (Three Loops Operating)--F (Z) n (Snecification 3/4.2.2.2)
RTP p
Q F (Z) s
- K(Z) for P > 0.325 0
P RTP p
Q F(Z)s
- K(Z) for P s 0.325 g
Thermal Power Where:
P=
Rated Thermal Power Page 3, Acv sion 0
e, t
FhTg1.69 j
2.7.1 Note.
Since maximum power in three-loop operation is 65%,FhTP represents the theoretical F limit if g
power were at 100%.
j 2.7.2 K(Z) is provided in Figure 7.
See Figure 8 for a plot of [Ff. PRel) versus axial core 2.7.3 height.
F
-F 65 RTP * (1 + M
- [0.65P))
l xy y
F*RTP - 1,69 for unrodded core planes
2.7.4 Where
1.81 for core planes containing Bank D control rods 2.7.5 M
- 0.281 p
Nuclear Enthalpy Rise Hot Channel Factor (Four Loops Operating)--F"H 2.8 A
(Soecification 3/4.2.3.1)
I r
RTP, (3, pp
,[3,p))
FAH s FAg g
Thermal Power Where:
P-Rated Thermal Power 1
2.8.1 FRTP, 3,49 A
2.8.2 PFAH - 0.3 l
l Page 4, Revision 0
s h'
0 4
s 2.9 Hgelear Enthalov Rise Hot Channel Factor (Three loops Operating)--FAH(Specification 3/4.2.3.2)
Ffg5FRTP. (3, pp
, [3,pg Thermal Power Where:
P=
Rated Thermal Power RTP 2.9.1 F
= 1.351 A
2.9.2 PFAH = 0.43 Page 5, Revision 0 j
o (FULLY WITHDRAWN)
(028.228)
(0.78.228) 228
/
200 SANK B (1.0,164)
(0.Q164) t 150
/
e
/
n.
BANK C
/
k BANK 0
/
(0.0,50)
(028,0) 0 o
0.2 0.4 0.6 0.8 1.0 (FULLY INSERTED)
FRACTION OF RATED THERM AL POWER FIGURE 1 R0D BANK INSERTION LIMITS VERSl1S THERMAL POWER FOUR LOOP OPERATION MILLSTONE - UNIT 3
i l
-,e (FOLLY WITHDRAWN) j (007228)
(0 57 228)
/
/ BANK B
( 0,212) 200
/
5 MSANK C e
/ (0.65,132) 5<
8 100
,( 0,0.98)
-SANK D 50 (0 07,0) 0 O
02 04 06 0.8 10 (FULLY INSERTED)
FRACTION OF RATED THERMAL POWER k
l FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER THREE LOOP OPERATION j
1 i
l MILLSTONE - UNIT 3
\\
1
[
.c.'
E
$ h 1
b lw Y 5 i
40 0 I
I I
I l-1 I
I UNACCEPTABLE
( 11,9 0)
(11. 9 0 )
UNACCEPT ABL E OPERATION OPERATION 60
/
\\
ACCEPTABLE OPERATION 60
/
\\
/
\\
( 31. 5 0)
(31. 5 0 )
40 e
20 0
50 40 30 20 10 0
10 20 30 40 50 FLUX DIFFERENCE (6I)'/.
i FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (FOURLOOPSOPERATING) l l
l l
MILLSTONE - UNIT 3
~
O N,
e E
S 2 5 Y Is !
. W 10 0 80 UNACCEPTABLE
( 8,65)
(8.65)
UNACCEPTABLE OPERATION OPERATION I
I I
\\
So ACCEPTABLE OPERATION I
I L
\\
4
/
\\
( 24 5,32)
(24 5,32) 20
\\
l 0
50 40 30 20 10 0
10 20 30 40 50 i,
FLUX OtFFERENCE (61)*f.
I FIGURE 4 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (THREELOOPSOPERATING)
MILLSTONE - UNIT 3
~
!6 g-e.
1.50 1.25 - -
1.00 o
e 3
O.75 -
T T*'
2.320 2
CORE HEIGHT K(2) 0.000 1.000 5ON 1 000 a
O.50 -
t!
10.000 0.94 0 5
12.000 0.647 0.25 - -
0.00 O
2 4
6 8
10 12 CORE HEIGHT (FT)
FIGURE 5 K(Z)-NORMALIZEDF(Z)ASAFUNCTIONOFCOREHEIGHT n
FOR POUR LOOP OPERATION MILLSTONE - UNIT 3 i
i f
2.50
_ 0,0,2.321 I.0 2.321 l i
p 10.8m 2.18 W
2.fS -p K
%q 4
5
++
- 1 1
[
'4' I
f t,
t L
8#
_4a.
J vf
+4 m
i g
a
+;
W 1 73 I ',l l
CL j
- , '\\
l l
s' 12.0. 1.60 o
,I a
g ll 1
x 1.25 i
l 3
I l
f I
1.00 i
+
l l
c" i
.no i'
i i
.500 0
2 4
4 8
10 12 l
sorrow COREHEIGHT(FEET) top l
l t
FIGURE 6 T
MAXIMUM F P
VERSUS AXIAL CORE HEIGHT g
ggt DURING NORMAL CORE F0VR-LOOP OPERATION MILLSTONE - UNIT 3
I.
'o i
mm.
i 1.50
- 1. 2 5' - -
i C
[o 1.00 8
3 0.75 -
TOTAL 2.60o CORE HEIGHT M(Z) 2 0.000 1.000 a
O.50 -
e.ooo i.ooo 5
10.Soo 0.940 12.000 0.577 0.25 - -
t 0.00 O
2 4
6 8
10 12 CORE HEIGHT (FT)
FIGURE 7 K(Z) - NORMALIZED F (Z) AS A FUNCTION OF CORE HEIGHT g
FOR THREE-LOOP OPERATION I
MILLSTONE - UNIT 3
_.... ~ -
-.. ~.. ~... -.. - -...
l'
+.
6 O i.F 2.00 t
1 t
1 IS 0.0. 1.600 6.0 1.690rj i!
sc,.6. 1.sai w mm%
ea l.S0 -
i
,e +,
l N
b, ++4 /
- I.\\ l
- " t 7 '+,I 5,
,p t
i 1.25 g
g O
r O
6 v
l i
e l
x
' i 4 1*00 E
12.CI. 0.975 l
2 s
l
.o 1
s 4l
.750 i
i
. 500,'
2 4
6 8
10 12 COREHEIGHT(FEET) l TOP 90Tf0W i
FIGUPE 8 T
MAXIMUM F P
VERSUS AXIAL CORE HEIGHT g
ggt DURING NORMAL CORE THREE-LOOP OPERATION J
MILLSTONE - UNIT 3 L.
U