ML18026A218: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:SUSQUEHANNASTEAMELECTRICSTATIONDESIGNASSESSMENTREPORT(DAR)""-'";",:So-+6'tio'goIggV-lq.pS.=.Revision1  
{{#Wiki_filter:SUSQUEHANNA STEAMELECTRICSTATIONDESIGNASSESSMENT REPORT(DAR)""-'";",:So-+6'tio'goI ggV-lq.pS.=.Revision1  
'',~>'h)~h PREPACEThisReportcontainsdata,descriptionsandanaylsisrelativetotheadequacyoftheSusquehannaSteamElectricStationdesigntoaccommodateloadsresultinqfromsafetyreliefvalve(SRV)discharqeand/orloss-of-coolantaccident(LOCA)conditions.Rev.2,5/8p  
'',~>'h)~h PREPACEThisReportcontainsdata,descriptions andanaylsisrelativetotheadequacyoftheSusquehanna SteamElectricStationdesigntoaccommodate loadsresultinq fromsafetyreliefvalve(SRV)discharqe and/orloss-of-coolant accident(LOCA)conditions.
Rev.2,5/8p  


DARTABLEOFCONTENTSChapter1GENERAL.INFORMATION1.1PurposeofReport1.2HistoryofProblem1.3SSESContainmentProgram1.4PlantDescription1.5Figures16TablesChapter2SUMMARY2.1LoadDefinitionSummary2.2DesignAssessmentSummaryIChapter3SRVDISCHARGEANDLOCATRANSIENTDESCRIPTION3.1DescriptionofSafetyReliefValve(SRV)Discharge3.2DescriptionofLoss-of-CoolantAccident(LOCA)Chapter4LOADDEFINITION4.1LoadsfromSafetyReliefValveDischarge4.2LoadsfromLoss-of-CoolantAccident4.3AnnulusPressurization4.4Figures4.5TablesChapter5LOADCOMBINATIONSFORSTRUCTURES~PIPING~A'NDEQUIPMENT5.1ConcreteContainmentandReactorBuildingLoadCombinations5.2StructuralSteelLoadCombinations5.3LinerPlateLoadCombinations5.4DowncomerLoadCombinations5.5Piping,Quencher,andQuencherSupportLoadCombinations5.6NSSSLoadCombinations5.7EquipmentLoadCombinations5.8ElectricalRacewaySystemLoadCombinations5.9HVACDuctSystemLoadCombinations5.10Figures5.11TablesChapter6DESIGNCAPABILITYASSESSMENT6.1ConcreteContainmentandReactorBuildingCapabilityAssessmentCriteria6.2StructuralSteelCapabilityAssessmentCriteria6.3LinerPlateCapabilityAssessmentCriteria'ev.2,5/80  
DARTABLEOFCONTENTSChapter1GENERAL.INFORMATION 1.1PurposeofReport1.2HistoryofProblem1.3SSESContainment Program1.4PlantDescription 1.5Figures16TablesChapter2SUMMARY2.1LoadDefinition Summary2.2DesignAssessment SummaryIChapter3SRVDISCHARGE ANDLOCATRANSIENT DESCRIPTION 3.1Description ofSafetyReliefValve(SRV)Discharge 3.2Description ofLoss-of-Coolant Accident(LOCA)Chapter4LOADDEFINITION 4.1LoadsfromSafetyReliefValveDischarge 4.2LoadsfromLoss-of-Coolant Accident4.3AnnulusPressurization 4.4Figures4.5TablesChapter5LOADCOMBINATIONS FORSTRUCTURES~
PIPING~A'NDEQUIPMENT 5.1ConcreteContainment andReactorBuildingLoadCombinations 5.2Structural SteelLoadCombinations 5.3LinerPlateLoadCombinations 5.4Downcomer LoadCombinations 5.5Piping,Quencher, andQuencherSupportLoadCombinations 5.6NSSSLoadCombinations 5.7Equipment LoadCombinations 5.8Electrical RacewaySystemLoadCombinations 5.9HVACDuctSystemLoadCombinations 5.10Figures5.11TablesChapter6DESIGNCAPABILITY ASSESSMENT 6.1ConcreteContainment andReactorBuildingCapability Assessment Criteria6.2Structural SteelCapability Assessment Criteria6.3LinerPlateCapability Assessment Criteria'ev.
2,5/80  


TABLEOFCONTENTSfContinued)-6.4DowncomerCapabilityAssessmentCriteria6.5Piping,Quencher,andQuencherSupportCapabilityAssessmentCriteria6.6NSSSCapabilityAssessmentCriteria67EquipmentCapabilityAssessmentCriteriaChapter7DESIGNASSESSMENT7.1AssessmentMethodology7.2DesignCapabilityMargins7.3FiquresChapter8SSE~S-U~ECHERVERIFICATIONTEST8.1Introduction82TestFacilityandInstrumentation8.3TestParametersandMatrix8.4TestResults8.5DataAnalysis'andVerificationofLoadSpecification8.6Figures8.7TablesChapter9GKMIIMSTEAMBLOWDOWNTESTS9.1Introduction9.2TestFacilityandMatrix9.3TestParametersandMatrix9.4TestResults9.5DataAnalysis9.6VerificationoftheDesignSpecification9.7FiguresChapter10RESPONSESTONRC~UESTIONS10110210.310.4IdentificationofQuestionsUniquetoSSESQuestionsUniquetoSSESandResponsesTheretoQuestionsPertainingtotheNRC~sRevievoftheDARandResponseTheretoFiguresChapte'r11REFERENCESAppendixACONTAINMENTDESIGNASSESSMENTA.1ContainmentStructuralDesignAssessmentA.2SubmergedStructuresDesignAssessmentAppendixBCONTAINMENTRESPONSESPECTRADUETOSRVANDLOCALOADS'.1ContainmentModeShapesB.2ContainmentResponseSpectraAppendixCREACTORBUILDINGRESPONSESPECTRADUETOSRVANDXOCALOADSRev.2,5/80  
TABLEOFCONTENTSfContinued)-
6.4Downcomer Capability Assessment Criteria6.5Piping,Quencher, andQuencherSupportCapability Assessment Criteria6.6NSSSCapability Assessment Criteria67Equipment Capability Assessment CriteriaChapter7DESIGNASSESSMENT 7.1Assessment Methodology 7.2DesignCapability Margins7.3FiquresChapter8SSE~S-U~ECHERVERIFICATION TEST8.1Introduction 82TestFacilityandInstrumentation 8.3TestParameters andMatrix8.4TestResults8.5DataAnalysis'andVerification ofLoadSpecification 8.6Figures8.7TablesChapter9GKMIIMSTEAMBLOWDOWNTESTS9.1Introduction 9.2TestFacilityandMatrix9.3TestParameters andMatrix9.4TestResults9.5DataAnalysis9.6Verification oftheDesignSpecification 9.7FiguresChapter10RESPONSES TONRC~UESTIONS 10110210.310.4Identification ofQuestions UniquetoSSESQuestions UniquetoSSESandResponses TheretoQuestions Pertaining totheNRC~sRevievoftheDARandResponseTheretoFiguresChapte'r11REFERENCES AppendixACONTAINMENT DESIGNASSESSMENT A.1Containment Structural DesignAssessment A.2Submerged Structures DesignAssessment AppendixBCONTAINMENT RESPONSESPECTRADUETOSRVANDLOCALOADS'.1Containment ModeShapesB.2Containment ResponseSpectraAppendixCREACTORBUILDINGRESPONSESPECTRADUETOSRVANDXOCALOADSRev.2,5/80  


AppendixDpRgGRggVgRIFICQTIQND.1PoolsvellModelVerificationD.2VelpotProqramVerificationD.3FiquresD.4TablesAppendixF.REACTOQBUILDINGSTRUCTURALDESIGNASSL'SSMEPTAppendixFBOP-ANDNSSSGRIPINGDESIGNASSESSMFNTAppendixGVASSSQESIGNASSESSMENTQDELETFOQAppendixHEQUIPMENTDESIGNASSESSMENT/DELETED}AppendixISUPPRESSIONPOOLTFMPERATJJRERFSPONSETOSRVDISCHARGE-AppendixJVFRIFICATIONOFSRVSUBMERGEDSTRUCTUREDRAGLOAD(PRO'PRIETARY)AppendixKDBYMELLFLOORVACCUMBREAKERJVB}CYCLINGDURINGCHUGGINGAppendixL.SUppLEMEQTALDESIGN.ASSFSSMENTL.1AssessmentMethodoloqyL.2AssessmentResultsJ..3FiquresL.4TablesRev.8,2/83 ICHAPTER"'1GENERALINFORMATTIONTABLEOPCONTENTS1.11.2PURPOSEOFREPORTHISTORYOFPROBLEM1-3SSESCONTAINMENTPROGRAM'4PLANTDESCRIPTION1.41Primary'ontainment'.1.41.1Penetrations1.4.1.2InternalStructures",'~','','"lI'5"FZGURES1.6TABLESI,wIIIIII>>Rev.2,.5/801-1 CHAPTER1FIGURESNumberTitle1-11-3CrossSectionofContainmentSuppressionChamber,PartialPlanSuppressionChamber,SectionVie@1-0QuencherDistributionRev.2,5/801-2  
AppendixDpRgGRggVgRIFICQTIQN D.1Poolsvell ModelVerification D.2VelpotProqramVerification D.3FiquresD.4TablesAppendixF.REACTOQBUILDINGSTRUCTURAL DESIGNASSL'SSMEPTAppendixFBOP-ANDNSSSGRIPINGDESIGNASSESSMFNT AppendixGVASSSQESIGNASSESSMENT QDELETFOQ AppendixHEQUIPMENT DESIGNASSESSMENT
~O'XTACHAPTER1TABLES~umber1-3TitleSSESLicensingBasisSSESContainmentDimensionsSSESContainmentDesignParametersComparisonoftheSSESProgramforSRVandLOCA,loadingswiththeNUREG0487AcceptanceCriteria,LeadPlantProgramandGenericLongTermProgramRev.2,5/801-3 10GNRRALINFORMATION1.1PU'RPOSEANDORGANIZATIONOFREPORTThepurposeofthisreportistopresentevidencethattheSusquehannaSteamElectricStation(SSES)designmarginsareadequateshouldtheplantbesubjectedtotherecentlydefinedthermohydrodynamicloadswhichresultfromsafetyreliefvalve(SRV)operationsand/ordischargesduringaloss-of-coolantaccident(LOCA)inaGEhoilinqwaterreactor(BWR).Rev;2,5/801-4 12HISTORy'FPROBLEMInApril1972attheGermanAEG-KraftwerkUnionMurgassenNuclearPlant,aboilingwater,reactor(BMR)safetyreliefvalve(SRV)wasopenedduringstartuptestingandfailedtoclose.Thereactorremainedatfullpressure,'andthevalvedischargedreactorsteamintothecontainmentsuppressionchamberuntilthesuppressionpoolwaterheatedfromgustaboveambienttoalmost170~C{inapproximately30minutes).Pulsatingcondensationdevelopedandlargeimpulsiveforceswithsubstantialunderpressureamplitudesacteduponthecontainment,eventuallycausinqleakaqefromthebottomlinerplate.Therefore,concern'asexpressedthatthestructuralintegrityofotherBMRpressurecontainmentsystemscouldbesensitivetoSRVinduceddynamicloads.TheNuclearRegulatoryCommission(NRC)issuedBulletin74-14toallBWRownersonNovember14,1974toalertthemtothepotentialproblemsofcondensationinstability(Murgasseneffect)'uetoSRVoperationTheNRCrequestedverificationthatBMRsuppressionpoolshadbeendesignedtowithstandloadssimilartothosewhichwerebeingexperienced.InJanuary1975theGeneralElectric-NuclearEnergyProgramDivision(GE-NEPD)identifiedthefollcwingdynamicloadingconditionswhichhadnotbeenfullyconsideredinthedesigncriteriaofMarkIIBMRcontainments:a.HainsteamSRVdischargethermo-hydrodynamicphenomena.b.Desiqnbasisaccident(DBA):loss-of-coolantaccident(LOCA)hydrodynamicphenomenaFollowingtheGEannouncement,thecontainmentconstructionsequencefortheSSESwasalteredtoenablethePennsylvaniaPowerandLightCompany(PPSL)anditsarchitect-engineer,BechtelPowerCorporation,toascertaintheeffectofthesephenomenaontheexistingSSESdesign.AtaskforcewasformedinNarch1975withrepresentativesfromBechtel-SanFrancisco,GE-NEPD,PPGL,andPhiladelphiaElectricCompanytoevaluateexistinqdesigncriteriawithrespecttothenewlydefinedSRVandDBA-LOCAloadinqs.InNay1975BechtelcompletedapreliminarystudyincorporatinqtheeffectsofthenewphenomenainthedesigncriteriafortheSSESsuppressionchamberstructuresandsafetyrelatedequipmentAsaresultofthisinvestigation,itwasdecidedthatthefollowingcivil-structuralmodificationsweretobeincorporatedimmediatelyinthecontainmentdesigntoaidinloadtransferandaddadditionalconservatismtotheexistingdesign:a.Thenumberofreinforcingbarsinthesuppressionchamberverticalwallswasincreased.b.Thenumberofembedmentsinthesuppressionchamberwallsfordowncomer/pipingrestraintswasincreasedtoaccommodatefuturerequirements.1-5 cAnchor.boltswereplacedontheundersideofthediaphragmslabtoaccommodateadditionalsupportsfoz'heSRVdischargepipingforhorizontalrunsshouldtheybeneeded.d.e.Additionalanchorboltswereplacedwithinthedrywellwalltoallowinstallationofadditionalsnubbersandpiperestraints,ifrequiredThediaphragmslabshearreinforcementwaschangedfroma45~toa90~orientation{withrespecttothehorizontalplane)toaccommodatethemostconservativepoolswellupliftloadingsyetpredicted.Itbecameevidentthatacomplex,technicalissueexistedforallNarkIIplants,andPPGl.soughttocreateaunifiedutilitygrouptoaddressthematter.AMarkIIBMRcontainmentownersgroupwasformedinJune1975todefinepreciselythesuppressionpooldynamicloadsandexplorewaystoassesstheirimpact,.AsthedirectresultofactiontakenbytheMarkIIcontainmentownersorganization,agenericDynamicForcinqFunctionInformationReport,NEDE-21061PRev.1,whichwasalsoknownastheDFFIR,wasissuedjointlybyGE-NEPDandSargentandLundyfortheMarkIIownersinSeptember1975BasedontheanalyticaltechniquesincludedintheDFFIR,apreliminarySSESuniquecontainmentdesignassessmentwassubmittedbyPPGI.totheNuclearRegulatoryCommission{NRC)onNarch15,1976Asthebodyoftheusefulsupportivedataincreased,Revision2oftheDFFZHwasissuedjointlybyGE-NEPDandSargentandt.undyfortheMarkIIcontainmentownersgrouponSeptember1,1976,asNEDO/NEDE21061,Rev.2.Itwasatthistimerenamed.theDFFR.ThelicensingdocumentationconsideredfortheSSESissummarizedinTable1-1.1-6 1'SSES-CONTAINMENTPROGRAM.PPGLisamemberoftheHarkIIowners-groupthatvasformedinJune,1975todefineandinvestigatethedynamicloadsduetoSRVdischargeandLOCA.TheMarkIIovnersgroupcontainmentprogramconcentratedinitiallyonthetasksrequiredfo'rthelicensingoftheleadplants(Zimmer,LaSalle,andShoreham).Thisphaseofvork,calledtheshort'ermproqram,iscompleteandalongertermprogramisunderway.ThefinalgoaloftheHarkIIprogramistoevolveacompleteDFFRwhichvillsupporttheplant-uniqueDARssubmittedbye'achplantforitslicensetooperate.Aftergainingsomeunderstandingofthecontainment.loadsthroughtheinitialMarkIXwork,PPGLdecidedtofindaqualified,consultanttosupplementin-housetechnicalresourcesandassistinthedeterminationofarealisticcourseofactionforSusquehannaInNovember,1976,StanfordResearchInstitute,nowcalledSRIInternational(SRI),wasselected,andaninformationexchangebetweenSRZ.andPPGLensuedtodeterminewhatcausedthegreatestloadsonthecontainmentstructure.AfterconductingacompletereviewofknowndatafromtheMarkIIprogramandotherknowledgeablepersonsandorganizations,PPGLandSRIdecidedthattheloadsfrommainsteamsafetyreliefvalve(SRV)d'ischargeverethekeyloadstobecontrolled.AstudyofpossiblemethodsofcontrollingtheloadandareviewofvhatactivitiesvereoccurrinqinEuropeledPPGLandSRItotheconclusionthatanSRVdischargemitigatingdevice(quencher)shouldbeemployedtoreduce.thisloadinqontheSusquehannacontainment.AlthoughtheHarkIIownersgrouphadquencher-relatedtasksintheirprogram,thesetasksverenotsufficientlytimelytosatisfySSES-constructionscheduleneeds.PromreviewingthevorkdoneinEuropebysuchfirmsasASEATOMMARVIKEN,andKraftverkUnion,PPGLdiscoveredthatallknownquencher'designswerebasedondatafromKraftverkUnion(KWU).Thus,inMarch,1977,SRI,Bechtel(theSSESArchitect/Engineer)andPPGLvisitedKWUfordiscussionandtourofquencher-relatedfacilities.XnlateJuly,1977,PPGLemployedtheservicesofKWUtodesignaSSES-uniquequencherdevice.KraftworkUnionprovidedPPGLapackageofsignificantdesignandtestreportspertainingtothequencherdevelopmenttodemonstratedesignadequacyandqualityoftheirdevice(refertoTablel-l).ThesedocumentsweresubmittedtotheNRCinJanuary,1978.ThequencherloadspecificationvassubmittedtotheNRCinApril,1978.ToverifyKWU~sdesignapproach,afull-scaleSSESuniqueunitcelltest,asdescribedinChapter8,wasperformedbyKWUforPPGL.ThedocumentationofthistestseriesandverificationofthedesignspecificationvassubmittedinMarch,1979.SubsequentlythequencherdesignbyKWUforuseonSSEShasbeenadoptedastheSRVdischargeusedbysixofthesevenotherHarkIIownersandtheSSESprogramhasbecomethegenericMarkIIprogram.Rev.2,5/801-7 ThedefinitionofLOCAloads(Section4.2)isinbasicaccordancewiththeMarkIIprogram.Inadditionthough,'PSLhasdecidedtoconductaseriesoftransientsteamblowdowntestsinamodifiedGKMIItesttankinNannheim,Germany(refertoChapter9).ThesetestswillprovidedatatoresolveNRCconcernsonthedifferencesinventconfigurationbetweentheoriginalGE4TfacilityandaprototypicalMarkIIcontainmentand,toverifythecondensationoscillationloadspecificationusedontheSSESdesign.Tablel-lprovidesasummaryofthedocumentationsupportingtheSSESlicensing.Inaddition,Table1-4providesacomparisonoftheSSESprogramforSRV.andLOCAloadingwiththeNUREG0487acceptancecriteria,LeadPlantProgramandGenericLongTermProgram.I'naccordancewiththedirectionsoftheNRCstaffattheOctober19,1978meetingwiththeMarkIIOwnersGroupthesepositionsassumethattheuseoftheSRSSmethodofloadcombinationwillbeacceptedforuseontheMarkIIcontainments.Rev.2,5/800-8 1.4-Pl.M1TDESCRIPTIONTheSSES,Units1and2,isbeingbuiltinSalemTownship,LuzerneCountyabout5milesnortheastoftheBoroughofBerwick.Twogeneratingunitsofapproximately1,100megawattseacharescheduledforoperation:Unit1forNovember1,1980,andUnit2forMay1,1982.GeneralElectricissupplyingthenuclearsteamsupplysystems;BechtelPowerCorporationisthearchitect-engineerandconstructor.ThereactorbuildingcontainsthemajornuclearsystemsandequipmentThenuclearreactorsforUnits1and2areboilingwater,directcycletypeswitharatedheatoutputof11.2x10~Btu/hr.Eachreactorsupplies13.4x10~lb/hrofsteamtothetandemcompound,doubleflowturbines.1.4.1PrimarvContainmentThecontainmentisareinforcedconcretestructureconsistingofacylindricalsuppressionchamberbeneathatruncatedconicaldrywell.Figure1-1showsthegeometryofthecontainmentandinternalstructures.Theconicalportionoftheprimarycontainment(drywell)enclosesthereactorvessel,reactorcoolantrecirculationloops,andassociatedcomponentsofthereactorcoolantsystem.Thedrywelli.sseparatedfromthewetwell,ie,thepressuresuppressionchamberandpool,bythedrywellfloor,alsonamedthediaphragmslab.Majorsystemsandcomponentsinthecontainmentincludetheventpipesystem(downcomers)connectingthedrywellandwetwell,isolationvalves,vacuumreliefsystem,containmentcoolingsystems,andotherserviceequipment.Theconeandcylinderformastructurallyintegratedreinforcedconcretevessel,linedwithsteelplateandclosedatthetopofthedrywellwithasteeldomedhead.Thecarbonsteellinerplateisanchoredtotheconcretebystructuralsteelmembersembeddedintheconcreteandweldedtotheplate.Theentirecontainmentisstructurallyseparatedfromthesurroundingreactorbuildingexceptatthebasefoundationslab(areinforcedconcretemat,toplinedwithacarbonsteellinerplate)whereacoldjointbetweenthetwoadjoiningfoundationslabsisprovided.ThecontainmentstructuredimensionsandparametersarelistedinTables1-2and1-3.AdetailedplantdescriptioncanbefoundintheSSESFSAR,Section3.8.1.4.11'PenetrationsServicesandcommunicationbetweentheinsideandoutsideofthe.containmentaremadepossiblebypenetrationsthroughthecontainmentwall.Thebasictypesofpenetrationsarethedrywellhead,accesshatches(eguipmenthatches,personnellock,suppressionchamberaccesshatches,CRDremovalhatch),electricalpenetrations,andpipepenetrations.ThepipingRev.2,5/801-9 penetrationsconsistbasicallyofapipewithplateflangeweldedtoit.Theplateflangeisembeddedintheconcretewallandprovidesananchorageforthepenetrationtoresistnormaloperatinqandaccidentpipereactionloads.1.4.1.2InternalStructuresTheinternalstructuresconsistofreinforcedconcreteandstructuralsteelandhavethemajorfunctionsofsupportingandshieldingthereactorvessel,supportingthepipingandequipment,andformingthepressuresuppressionboundary.Thesestructuresincludethedrywellfloor(diaphragmslab),thereactorpedestal(aconcentriccylindricalreinforcedconcreteshellrestingonthecontainmentbasefoundationslabandsupportingthereactorvessel),thereactorshieldwall,thesuppressionchambercolumns(hollowsteelpipecolumnssupportingthediaphragmslab),thedrywellplatforms,theseismictrusses,thequenchersupports,andthereactorsteamsupplysystemsupports.SeeFigures1-1thr'ough1-4andTables1-2and1-3.Rev.2,5/801-10 ILOFPRIMARYCONTAINMENTISYM.ABT.(LMORYWELLHEAD48'OV"0D.CONC.I36'PSI"(OUTSIDEFACEIWP.W.PEL.791'.9"J.'Lr5'"9/:,'/.../;/SHIELDIANNULUS/::-/r2/4DOWNCOMER/'JETDEFLECTORSHIELDi29'.I"O.D.18'JI"I.O.'IX~~EL.723'4(X"I2(P-3"I.D.CONC.:86'3"I.D.CONCT.O.C.rEL,703'l",'I'~~~C.~rT.O.S.EL.778'.9"JIlr7REACTORSHIELDII25"7"I.D.hIII4~)"Jh~~'Ij',~4htTOC~'EL.729'.95/8"DIAPHRAGMSLABW.P87'.O.C.L.704'-0"lhEI'DRYWELLEL.701'-11"OOWNCOMER(87TOTALIQUENCHERDEVICE(16TOTALICONTAINMENTWALLWATEASTOPSBASEMATWATEASTOPI~Ij~tII'.~~rhC''I1S0sSIII.D.CONCI12FT.'1'.6"'.,O'QII"'r~IQDECKANDSUPPORTBEAMIRP.V.PEDESTALIR.P.V.PEDESTALSTEELFOAMI19'.7"'Ar12,3'6"DIAM.STEELCOLUMNST,rhhig'~'~'1:~,III~I~I'".~I24FT.HIGHWATERLEVEL3'.6"~IhSUPPRESSIONCHAMBER7'41"COLDJOINT629'9".30'41"RO.O.CONC.I.D.CONC.MUDMATANDWATERPROOFING44'JY'.BOTTOMOFBASEMATEL.640'G"REACTORBUILDINGBASEMATCOLDJOINTSUSQUEHANNASTEAMELECTRICSTATIONtJNITS1AND2DESIGNASSESSMENTREPORTCROSSSECTIONOFCONTAINMENTFIGURE1-1 1064IgOi~4~Q'ICONTAINMENTVV~EgrOdy~r~e~013soSRVDIAPHRAGMSLABPENETRATIONFROMDIAPHRAGMSLABPENETRATIONOeC/03COLUMNOg30o>~~f0oo150oo>~o~'Ply+er~w~orOs..O~'EDESTALTOQUENCHERSSRVDIAPHRAGMSLABPENETRATIONNOTE:BRACINGISNOTSHOWNRev.2,5/80SUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENTREPORTSUPPRESSIONCHAMBER"PARTIALPLANFIGURE1-2}}
/DELETED}
AppendixISUPPRESSION POOLTFMPERATJJRE RFSPONSETOSRVDISCHARGE-AppendixJVFRIFICATION OFSRVSUBMERGED STRUCTURE DRAGLOAD(PRO'PRIETARY)
AppendixKDBYMELLFLOORVACCUMBREAKERJVB}CYCLINGDURINGCHUGGINGAppendixL.SUppLEMEQTAL DESIGN.ASSFSSMENT L.1Assessment Methodoloqy L.2Assessment ResultsJ..3FiquresL.4TablesRev.8,2/83 ICHAPTER"'1GENERALINFORMATTION TABLEOPCONTENTS1.11.2PURPOSEOFREPORTHISTORYOFPROBLEM1-3SSESCONTAINMENTPROGRAM'4PLANTDESCRIPTION 1.41Primary'ontainment'.
1.41.1Penetrations 1.4.1.2InternalStructures",'~
','','"lI'5"FZGURES1.6TABLESI,wIIIIII>>Rev.2,.5/801-1 CHAPTER1FIGURESNumberTitle1-11-3CrossSectionofContainment Suppression Chamber,PartialPlanSuppression Chamber,SectionVie@1-0QuencherDistribution Rev.2,5/801-2  
~O'XTACHAPTER1TABLES~umber1-3TitleSSESLicensing BasisSSESContainment Dimensions SSESContainment DesignParameters Comparison oftheSSESProgramforSRVandLOCA,loadingswiththeNUREG0487Acceptance
: Criteria, LeadPlantProgramandGenericLongTermProgramRev.2,5/801-3 10GNRRALINFORMATION 1.1PU'RPOSEANDORGANIZATION OFREPORTThepurposeofthisreportistopresentevidencethattheSusquehanna SteamElectricStation(SSES)designmarginsareadequateshouldtheplantbesubjected totherecentlydefinedthermohydrodynamic loadswhichresultfromsafetyreliefvalve(SRV)operations and/ordischarges duringaloss-of-coolant accident(LOCA)inaGEhoilinqwaterreactor(BWR).Rev;2,5/801-4 12HISTORy'F PROBLEMInApril1972attheGermanAEG-Kraftwerk UnionMurgassen NuclearPlant,aboilingwater,reactor(BMR)safetyreliefvalve(SRV)wasopenedduringstartuptestingandfailedtoclose.Thereactorremainedatfullpressure,'and thevalvedischarged reactorsteamintothecontainment suppression chamberuntilthesuppression poolwaterheatedfromgustaboveambienttoalmost170~C{inapproximately 30minutes).
Pulsating condensation developed andlargeimpulsive forceswithsubstantial underpressure amplitudes acteduponthecontainment, eventually causinqleakaqefromthebottomlinerplate.Therefore, concern'as expressed thatthestructural integrity ofotherBMRpressurecontainment systemscouldbesensitive toSRVinduceddynamicloads.TheNuclearRegulatory Commission (NRC)issuedBulletin74-14toallBWRownersonNovember14,1974toalertthemtothepotential problemsofcondensation instability (Murgassen effect)'ue toSRVoperation TheNRCrequested verification thatBMRsuppression poolshadbeendesignedtowithstand loadssimilartothosewhichwerebeingexperienced.
InJanuary1975theGeneralElectric-NuclearEnergyProgramDivision(GE-NEPD) identified thefollcwing dynamicloadingconditions whichhadnotbeenfullyconsidered inthedesigncriteriaofMarkIIBMRcontainments:
a.HainsteamSRVdischarge thermo-hydrodynamic phenomena.
b.Desiqnbasisaccident(DBA):loss-of-coolant accident(LOCA)hydrodynamic phenomena Following theGEannouncement, thecontainment construction sequencefortheSSESwasalteredtoenablethePennsylvania PowerandLightCompany(PPSL)anditsarchitect-engineer, BechtelPowerCorporation, toascertain theeffectofthesephenomena ontheexistingSSESdesign.AtaskforcewasformedinNarch1975withrepresentatives fromBechtel-San Francisco, GE-NEPD,PPGL,andPhiladelphia ElectricCompanytoevaluateexistinqdesigncriteriawithrespecttothenewlydefinedSRVandDBA-LOCAloadinqs.
InNay1975Bechtelcompleted apreliminary studyincorporatinq theeffectsofthenewphenomena inthedesigncriteriafortheSSESsuppression chamberstructures andsafetyrelatedequipment Asaresultofthisinvestigation, itwasdecidedthatthefollowing civil-structural modifications weretobeincorporated immediately inthecontainment designtoaidinloadtransferandaddadditional conservatism totheexistingdesign:a.Thenumberofreinforcing barsinthesuppression chamberverticalwallswasincreased.
b.Thenumberofembedments inthesuppression chamberwallsfordowncomer/piping restraints wasincreased toaccommodate futurerequirements.
1-5 cAnchor.boltswereplacedontheunderside ofthediaphragm slabtoaccommodate additional supportsfoz'heSRVdischarge pipingforhorizontal runsshouldtheybeneeded.d.e.Additional anchorboltswereplacedwithinthedrywellwalltoallowinstallation ofadditional snubbersandpiperestraints, ifrequiredThediaphragm slabshearreinforcement waschangedfroma45~toa90~orientation
{withrespecttothehorizontal plane)toaccommodate themostconservative poolswellupliftloadingsyetpredicted.
Itbecameevidentthatacomplex,technical issueexistedforallNarkIIplants,andPPGl.soughttocreateaunifiedutilitygrouptoaddressthematter.AMarkIIBMRcontainment ownersgroupwasformedinJune1975todefineprecisely thesuppression pooldynamicloadsandexplorewaystoassesstheirimpact,.AsthedirectresultofactiontakenbytheMarkIIcontainment ownersorganization, agenericDynamicForcinqFunctionInformation Report,NEDE-21061P Rev.1,whichwasalsoknownastheDFFIR,wasissuedjointlybyGE-NEPDandSargentandLundyfortheMarkIIownersinSeptember 1975Basedontheanalytical techniques includedintheDFFIR,apreliminary SSESuniquecontainment designassessment wassubmitted byPPGI.totheNuclearRegulatory Commission
{NRC)onNarch15,1976Asthebodyoftheusefulsupportive dataincreased, Revision2oftheDFFZHwasissuedjointlybyGE-NEPDandSargentandt.undyfortheMarkIIcontainment ownersgrouponSeptember 1,1976,asNEDO/NEDE 21061,Rev.2.Itwasatthistimerenamed.theDFFR.Thelicensing documentation considered fortheSSESissummarized inTable1-1.1-6 1'SSES-CONTAINMENT PROGRAM.PPGLisamemberoftheHarkIIowners-group thatvasformedinJune,1975todefineandinvestigate thedynamicloadsduetoSRVdischarge andLOCA.TheMarkIIovnersgroupcontainment programconcentrated initially onthetasksrequiredfo'rthelicensing oftheleadplants(Zimmer,LaSalle,andShoreham)
.Thisphaseofvork,calledtheshort'erm proqram,iscompleteandalongertermprogramisunderway.
ThefinalgoaloftheHarkIIprogramistoevolveacompleteDFFRwhichvillsupporttheplant-unique DARssubmitted bye'achplantforitslicensetooperate.Aftergainingsomeunderstanding ofthecontainment
.loadsthroughtheinitialMarkIXwork,PPGLdecidedtofindaqualified, consultant tosupplement in-housetechnical resources andassistinthedetermination ofarealistic courseofactionforSusquehanna InNovember, 1976,StanfordResearchInstitute, nowcalledSRIInternational (SRI),wasselected, andaninformation exchangebetweenSRZ.andPPGLensuedtodetermine whatcausedthegreatestloadsonthecontainment structure.
Afterconducting acompletereviewofknowndatafromtheMarkIIprogramandotherknowledgeable personsandorganizations, PPGLandSRIdecidedthattheloadsfrommainsteamsafetyreliefvalve(SRV)d'ischarge verethekeyloadstobecontrolled.
Astudyofpossiblemethodsofcontrolling theloadandareviewofvhatactivities vereoccurrinq inEuropeledPPGLandSRItotheconclusion thatanSRVdischarge mitigating device(quencher) shouldbeemployedtoreduce.thisloadinqontheSusquehanna containment.
AlthoughtheHarkIIownersgrouphadquencher-relatedtasksintheirprogram,thesetasksverenotsufficiently timelytosatisfySSES-construction scheduleneeds.Promreviewing thevorkdoneinEuropebysuchfirmsasASEATOMMARVIKEN, andKraftverk Union,PPGLdiscovered thatallknownquencher'designs werebasedondatafromKraftverk Union(KWU).Thus,inMarch,1977,SRI,Bechtel(theSSESArchitect/Engineer) andPPGLvisitedKWUfordiscussion andtourofquencher-related facilities.
XnlateJuly,1977,PPGLemployedtheservicesofKWUtodesignaSSES-unique quencherdevice.Kraftwork UnionprovidedPPGLapackageofsignificant designandtestreportspertaining tothequencherdevelopment todemonstrate designadequacyandqualityoftheirdevice(refertoTablel-l).Thesedocuments weresubmitted totheNRCinJanuary,1978.Thequencherloadspecification vassubmitted totheNRCinApril,1978.ToverifyKWU~sdesignapproach, afull-scaleSSESuniqueunitcelltest,asdescribed inChapter8,wasperformed byKWUforPPGL.Thedocumentation ofthistestseriesandverification ofthedesignspecification vassubmitted inMarch,1979.Subsequently thequencherdesignbyKWUforuseonSSEShasbeenadoptedastheSRVdischarge usedbysixofthesevenotherHarkIIownersandtheSSESprogramhasbecomethegenericMarkIIprogram.Rev.2,5/801-7 Thedefinition ofLOCAloads(Section4.2)isinbasicaccordance withtheMarkIIprogram.Inadditionthough,'PSL hasdecidedtoconductaseriesoftransient steamblowdowntestsinamodifiedGKMIItesttankinNannheim, Germany(refertoChapter9).ThesetestswillprovidedatatoresolveNRCconcernsonthedifferences inventconfiguration betweentheoriginalGE4Tfacilityandaprototypical MarkIIcontainment and,toverifythecondensation oscillation loadspecification usedontheSSESdesign.Tablel-lprovidesasummaryofthedocumentation supporting theSSESlicensing.
Inaddition, Table1-4providesacomparison oftheSSESprogramforSRV.andLOCAloadingwiththeNUREG0487acceptance
: criteria, LeadPlantProgramandGenericLongTermProgram.I'naccordance withthedirections oftheNRCstaffattheOctober19,1978meetingwiththeMarkIIOwnersGroupthesepositions assumethattheuseoftheSRSSmethodofloadcombination willbeacceptedforuseontheMarkIIcontainments.
Rev.2,5/800-8 1.4-Pl.M1TDESCRIPTION TheSSES,Units1and2,isbeingbuiltinSalemTownship, LuzerneCountyabout5milesnortheast oftheBoroughofBerwick.Twogenerating unitsofapproximately 1,100megawatts eacharescheduled foroperation:
Unit1forNovember1,1980,andUnit2forMay1,1982.GeneralElectricissupplying thenuclearsteamsupplysystems;BechtelPowerCorporation isthearchitect-engineer andconstructor.
Thereactorbuildingcontainsthemajornuclearsystemsandequipment ThenuclearreactorsforUnits1and2areboilingwater,directcycletypeswitharatedheatoutputof11.2x10~Btu/hr.Eachreactorsupplies13.4x10~lb/hrofsteamtothetandemcompound, doubleflowturbines.
1.4.1PrimarvContainment Thecontainment isareinforced concretestructure consisting ofacylindrical suppression chamberbeneathatruncated conicaldrywell.Figure1-1showsthegeometryofthecontainment andinternalstructures.
Theconicalportionoftheprimarycontainment (drywell) enclosesthereactorvessel,reactorcoolantrecirculation loops,andassociated components ofthereactorcoolantsystem.Thedrywelli.sseparated fromthewetwell,ie,thepressuresuppression chamberandpool,bythedrywellfloor,alsonamedthediaphragm slab.Majorsystemsandcomponents inthecontainment includetheventpipesystem(downcomers) connecting thedrywellandwetwell,isolation valves,vacuumreliefsystem,containment coolingsystems,andotherserviceequipment.
Theconeandcylinderformastructurally integrated reinforced concretevessel,linedwithsteelplateandclosedatthetopofthedrywellwithasteeldomedhead.Thecarbonsteellinerplateisanchoredtotheconcretebystructural steelmembersembeddedintheconcreteandweldedtotheplate.Theentirecontainment isstructurally separated fromthesurrounding reactorbuildingexceptatthebasefoundation slab(areinforced concretemat,toplinedwithacarbonsteellinerplate)whereacoldjointbetweenthetwoadjoining foundation slabsisprovided.
Thecontainment structure dimensions andparameters arelistedinTables1-2and1-3.Adetailedplantdescription canbefoundintheSSESFSAR,Section3.8.1.4.11'Penetrations Servicesandcommunication betweentheinsideandoutsideofthe.containment aremadepossiblebypenetrations throughthecontainment wall.Thebasictypesofpenetrations arethedrywellhead,accesshatches(eguipment hatches,personnel lock,suppression chamberaccesshatches,CRDremovalhatch),electrical penetrations, andpipepenetrations.
ThepipingRev.2,5/801-9 penetrations consistbasically ofapipewithplateflangeweldedtoit.Theplateflangeisembeddedintheconcretewallandprovidesananchorage forthepenetration toresistnormaloperatinq andaccidentpipereactionloads.1.4.1.2InternalStructures Theinternalstructures consistofreinforced concreteandstructural steelandhavethemajorfunctions ofsupporting andshielding thereactorvessel,supporting thepipingandequipment, andformingthepressuresuppression boundary.
Thesestructures includethedrywellfloor(diaphragm slab),thereactorpedestal(aconcentric cylindrical reinforced concreteshellrestingonthecontainment basefoundation slabandsupporting thereactorvessel),thereactorshieldwall,thesuppression chambercolumns(hollowsteelpipecolumnssupporting thediaphragm slab),thedrywellplatforms, theseismictrusses,thequenchersupports, andthereactorsteamsupplysystemsupports.
SeeFigures1-1thr'ough1-4andTables1-2and1-3.Rev.2,5/801-10 ILOFPRIMARYCONTAINMENT ISYM.ABT.(LMORYWELLHEAD48'OV"0D.CONC.I36'PSI"(OUTSIDEFACEIWP.W.PEL.791'.9"J.'Lr5'"9/:,'/.../;/SHIELDIANNULUS/::-/r2/4DOWNCOMER
/'JETDEFLECTOR SHIELDi29'.I"O.D.18'JI"I.O.'IX~~EL.723'4(X"I2(P-3"I.D.CONC.:86'3"I.D.CONCT.O.C.rEL,703'l"
,'I'~~~C.~rT.O.S.EL.778'.9"JIlr7REACTORSHIELDII25"7"I.D.hIII4~)"Jh~~'Ij',~4htTOC~'EL.729'.95/8"DIAPHRAGM SLABW.P87'.O.C.L.704'-0"lhEI'DRYWELLEL.701'-11"OOWNCOMER (87TOTALIQUENCHERDEVICE(16TOTALICONTAINMENT WALLWATEASTOPS BASEMATWATEASTOP I~Ij~tII'.~~rhC''I1S0sSIII.D.CONCI12FT.'1'.6"
'.,O'QII"'r~IQDECKANDSUPPORTBEAMIRP.V.PEDESTALIR.P.V.PEDESTALSTEELFOAMI19'.7"'Ar12,3'6"DIAM.STEELCOLUMNST,rhhig'~'~'1:~,III~I~I'".~I24FT.HIGHWATERLEVEL3'.6"~IhSUPPRESSION CHAMBER7'41"COLDJOINT629'9".30'41"RO.O.CONC.I.D.CONC.MUDMATANDWATERPROOFING 44'JY'.BOTTOMOFBASEMATEL.640'G"REACTORBUILDINGBASEMATCOLDJOINTSUSQUEHANNA STEAMELECTRICSTATIONtJNITS1AND2DESIGNASSESSMENT REPORTCROSSSECTIONOFCONTAINMENT FIGURE1-1 1064IgOi~4~Q'ICONTAINMENT VV~EgrOdy~r~e~013soSRVDIAPHRAGM SLABPENETRATION FROMDIAPHRAGM SLABPENETRATION OeC/03COLUMNOg30o>~~f0oo150oo>~o~'Ply+er~w~orOs..O~'EDESTAL TOQUENCHERSSRVDIAPHRAGM SLABPENETRATION NOTE:BRACINGISNOTSHOWNRev.2,5/80SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTSUPPRESSION CHAMBER"PARTIALPLANFIGURE1-2}}

Revision as of 03:51, 29 June 2018

Susquehanna Units 1 and 2 - SSES Design Assessment Report, Revision 1
ML18026A218
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 04/14/1978
From:
Pennsylvania Power & Light Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML18026A218 (21)


Text

SUSQUEHANNA STEAMELECTRICSTATIONDESIGNASSESSMENT REPORT(DAR)""-'";",:So-+6'tio'goI ggV-lq.pS.=.Revision1

,~>'h)~h PREPACEThisReportcontainsdata,descriptions andanaylsisrelativetotheadequacyoftheSusquehanna SteamElectricStationdesigntoaccommodate loadsresultinq fromsafetyreliefvalve(SRV)discharqe and/orloss-of-coolant accident(LOCA)conditions.

Rev.2,5/8p

DARTABLEOFCONTENTSChapter1GENERAL.INFORMATION 1.1PurposeofReport1.2HistoryofProblem1.3SSESContainment Program1.4PlantDescription 1.5Figures16TablesChapter2SUMMARY2.1LoadDefinition Summary2.2DesignAssessment SummaryIChapter3SRVDISCHARGE ANDLOCATRANSIENT DESCRIPTION 3.1Description ofSafetyReliefValve(SRV)Discharge 3.2Description ofLoss-of-Coolant Accident(LOCA)Chapter4LOADDEFINITION 4.1LoadsfromSafetyReliefValveDischarge 4.2LoadsfromLoss-of-Coolant Accident4.3AnnulusPressurization 4.4Figures4.5TablesChapter5LOADCOMBINATIONS FORSTRUCTURES~

PIPING~A'NDEQUIPMENT 5.1ConcreteContainment andReactorBuildingLoadCombinations 5.2Structural SteelLoadCombinations 5.3LinerPlateLoadCombinations 5.4Downcomer LoadCombinations 5.5Piping,Quencher, andQuencherSupportLoadCombinations 5.6NSSSLoadCombinations 5.7Equipment LoadCombinations 5.8Electrical RacewaySystemLoadCombinations 5.9HVACDuctSystemLoadCombinations 5.10Figures5.11TablesChapter6DESIGNCAPABILITY ASSESSMENT 6.1ConcreteContainment andReactorBuildingCapability Assessment Criteria6.2Structural SteelCapability Assessment Criteria6.3LinerPlateCapability Assessment Criteria'ev.

2,5/80

TABLEOFCONTENTSfContinued)-

6.4Downcomer Capability Assessment Criteria6.5Piping,Quencher, andQuencherSupportCapability Assessment Criteria6.6NSSSCapability Assessment Criteria67Equipment Capability Assessment CriteriaChapter7DESIGNASSESSMENT 7.1Assessment Methodology 7.2DesignCapability Margins7.3FiquresChapter8SSE~S-U~ECHERVERIFICATION TEST8.1Introduction 82TestFacilityandInstrumentation 8.3TestParameters andMatrix8.4TestResults8.5DataAnalysis'andVerification ofLoadSpecification 8.6Figures8.7TablesChapter9GKMIIMSTEAMBLOWDOWNTESTS9.1Introduction 9.2TestFacilityandMatrix9.3TestParameters andMatrix9.4TestResults9.5DataAnalysis9.6Verification oftheDesignSpecification 9.7FiguresChapter10RESPONSES TONRC~UESTIONS 10110210.310.4Identification ofQuestions UniquetoSSESQuestions UniquetoSSESandResponses TheretoQuestions Pertaining totheNRC~sRevievoftheDARandResponseTheretoFiguresChapte'r11REFERENCES AppendixACONTAINMENT DESIGNASSESSMENT A.1Containment Structural DesignAssessment A.2Submerged Structures DesignAssessment AppendixBCONTAINMENT RESPONSESPECTRADUETOSRVANDLOCALOADS'.1Containment ModeShapesB.2Containment ResponseSpectraAppendixCREACTORBUILDINGRESPONSESPECTRADUETOSRVANDXOCALOADSRev.2,5/80

AppendixDpRgGRggVgRIFICQTIQN D.1Poolsvell ModelVerification D.2VelpotProqramVerification D.3FiquresD.4TablesAppendixF.REACTOQBUILDINGSTRUCTURAL DESIGNASSL'SSMEPTAppendixFBOP-ANDNSSSGRIPINGDESIGNASSESSMFNT AppendixGVASSSQESIGNASSESSMENT QDELETFOQ AppendixHEQUIPMENT DESIGNASSESSMENT

/DELETED}

AppendixISUPPRESSION POOLTFMPERATJJRE RFSPONSETOSRVDISCHARGE-AppendixJVFRIFICATION OFSRVSUBMERGED STRUCTURE DRAGLOAD(PRO'PRIETARY)

AppendixKDBYMELLFLOORVACCUMBREAKERJVB}CYCLINGDURINGCHUGGINGAppendixL.SUppLEMEQTAL DESIGN.ASSFSSMENT L.1Assessment Methodoloqy L.2Assessment ResultsJ..3FiquresL.4TablesRev.8,2/83 ICHAPTER"'1GENERALINFORMATTION TABLEOPCONTENTS1.11.2PURPOSEOFREPORTHISTORYOFPROBLEM1-3SSESCONTAINMENTPROGRAM'4PLANTDESCRIPTION 1.41Primary'ontainment'.

1.41.1Penetrations 1.4.1.2InternalStructures",'~

',,'"lI'5"FZGURES1.6TABLESI,wIIIIII>>Rev.2,.5/801-1 CHAPTER1FIGURESNumberTitle1-11-3CrossSectionofContainment Suppression Chamber,PartialPlanSuppression Chamber,SectionVie@1-0QuencherDistribution Rev.2,5/801-2

~O'XTACHAPTER1TABLES~umber1-3TitleSSESLicensing BasisSSESContainment Dimensions SSESContainment DesignParameters Comparison oftheSSESProgramforSRVandLOCA,loadingswiththeNUREG0487Acceptance

Criteria, LeadPlantProgramandGenericLongTermProgramRev.2,5/801-3 10GNRRALINFORMATION 1.1PU'RPOSEANDORGANIZATION OFREPORTThepurposeofthisreportistopresentevidencethattheSusquehanna SteamElectricStation(SSES)designmarginsareadequateshouldtheplantbesubjected totherecentlydefinedthermohydrodynamic loadswhichresultfromsafetyreliefvalve(SRV)operations and/ordischarges duringaloss-of-coolant accident(LOCA)inaGEhoilinqwaterreactor(BWR).Rev;2,5/801-4 12HISTORy'F PROBLEMInApril1972attheGermanAEG-Kraftwerk UnionMurgassen NuclearPlant,aboilingwater,reactor(BMR)safetyreliefvalve(SRV)wasopenedduringstartuptestingandfailedtoclose.Thereactorremainedatfullpressure,'and thevalvedischarged reactorsteamintothecontainment suppression chamberuntilthesuppression poolwaterheatedfromgustaboveambienttoalmost170~C{inapproximately 30minutes).

Pulsating condensation developed andlargeimpulsive forceswithsubstantial underpressure amplitudes acteduponthecontainment, eventually causinqleakaqefromthebottomlinerplate.Therefore, concern'as expressed thatthestructural integrity ofotherBMRpressurecontainment systemscouldbesensitive toSRVinduceddynamicloads.TheNuclearRegulatory Commission (NRC)issuedBulletin74-14toallBWRownersonNovember14,1974toalertthemtothepotential problemsofcondensation instability (Murgassen effect)'ue toSRVoperation TheNRCrequested verification thatBMRsuppression poolshadbeendesignedtowithstand loadssimilartothosewhichwerebeingexperienced.

InJanuary1975theGeneralElectric-NuclearEnergyProgramDivision(GE-NEPD) identified thefollcwing dynamicloadingconditions whichhadnotbeenfullyconsidered inthedesigncriteriaofMarkIIBMRcontainments:

a.HainsteamSRVdischarge thermo-hydrodynamic phenomena.

b.Desiqnbasisaccident(DBA):loss-of-coolant accident(LOCA)hydrodynamic phenomena Following theGEannouncement, thecontainment construction sequencefortheSSESwasalteredtoenablethePennsylvania PowerandLightCompany(PPSL)anditsarchitect-engineer, BechtelPowerCorporation, toascertain theeffectofthesephenomena ontheexistingSSESdesign.AtaskforcewasformedinNarch1975withrepresentatives fromBechtel-San Francisco, GE-NEPD,PPGL,andPhiladelphia ElectricCompanytoevaluateexistinqdesigncriteriawithrespecttothenewlydefinedSRVandDBA-LOCAloadinqs.

InNay1975Bechtelcompleted apreliminary studyincorporatinq theeffectsofthenewphenomena inthedesigncriteriafortheSSESsuppression chamberstructures andsafetyrelatedequipment Asaresultofthisinvestigation, itwasdecidedthatthefollowing civil-structural modifications weretobeincorporated immediately inthecontainment designtoaidinloadtransferandaddadditional conservatism totheexistingdesign:a.Thenumberofreinforcing barsinthesuppression chamberverticalwallswasincreased.

b.Thenumberofembedments inthesuppression chamberwallsfordowncomer/piping restraints wasincreased toaccommodate futurerequirements.

1-5 cAnchor.boltswereplacedontheunderside ofthediaphragm slabtoaccommodate additional supportsfoz'heSRVdischarge pipingforhorizontal runsshouldtheybeneeded.d.e.Additional anchorboltswereplacedwithinthedrywellwalltoallowinstallation ofadditional snubbersandpiperestraints, ifrequiredThediaphragm slabshearreinforcement waschangedfroma45~toa90~orientation

{withrespecttothehorizontal plane)toaccommodate themostconservative poolswellupliftloadingsyetpredicted.

Itbecameevidentthatacomplex,technical issueexistedforallNarkIIplants,andPPGl.soughttocreateaunifiedutilitygrouptoaddressthematter.AMarkIIBMRcontainment ownersgroupwasformedinJune1975todefineprecisely thesuppression pooldynamicloadsandexplorewaystoassesstheirimpact,.AsthedirectresultofactiontakenbytheMarkIIcontainment ownersorganization, agenericDynamicForcinqFunctionInformation Report,NEDE-21061P Rev.1,whichwasalsoknownastheDFFIR,wasissuedjointlybyGE-NEPDandSargentandLundyfortheMarkIIownersinSeptember 1975Basedontheanalytical techniques includedintheDFFIR,apreliminary SSESuniquecontainment designassessment wassubmitted byPPGI.totheNuclearRegulatory Commission

{NRC)onNarch15,1976Asthebodyoftheusefulsupportive dataincreased, Revision2oftheDFFZHwasissuedjointlybyGE-NEPDandSargentandt.undyfortheMarkIIcontainment ownersgrouponSeptember 1,1976,asNEDO/NEDE 21061,Rev.2.Itwasatthistimerenamed.theDFFR.Thelicensing documentation considered fortheSSESissummarized inTable1-1.1-6 1'SSES-CONTAINMENT PROGRAM.PPGLisamemberoftheHarkIIowners-group thatvasformedinJune,1975todefineandinvestigate thedynamicloadsduetoSRVdischarge andLOCA.TheMarkIIovnersgroupcontainment programconcentrated initially onthetasksrequiredfo'rthelicensing oftheleadplants(Zimmer,LaSalle,andShoreham)

.Thisphaseofvork,calledtheshort'erm proqram,iscompleteandalongertermprogramisunderway.

ThefinalgoaloftheHarkIIprogramistoevolveacompleteDFFRwhichvillsupporttheplant-unique DARssubmitted bye'achplantforitslicensetooperate.Aftergainingsomeunderstanding ofthecontainment

.loadsthroughtheinitialMarkIXwork,PPGLdecidedtofindaqualified, consultant tosupplement in-housetechnical resources andassistinthedetermination ofarealistic courseofactionforSusquehanna InNovember, 1976,StanfordResearchInstitute, nowcalledSRIInternational (SRI),wasselected, andaninformation exchangebetweenSRZ.andPPGLensuedtodetermine whatcausedthegreatestloadsonthecontainment structure.

Afterconducting acompletereviewofknowndatafromtheMarkIIprogramandotherknowledgeable personsandorganizations, PPGLandSRIdecidedthattheloadsfrommainsteamsafetyreliefvalve(SRV)d'ischarge verethekeyloadstobecontrolled.

Astudyofpossiblemethodsofcontrolling theloadandareviewofvhatactivities vereoccurrinq inEuropeledPPGLandSRItotheconclusion thatanSRVdischarge mitigating device(quencher) shouldbeemployedtoreduce.thisloadinqontheSusquehanna containment.

AlthoughtheHarkIIownersgrouphadquencher-relatedtasksintheirprogram,thesetasksverenotsufficiently timelytosatisfySSES-construction scheduleneeds.Promreviewing thevorkdoneinEuropebysuchfirmsasASEATOMMARVIKEN, andKraftverk Union,PPGLdiscovered thatallknownquencher'designs werebasedondatafromKraftverk Union(KWU).Thus,inMarch,1977,SRI,Bechtel(theSSESArchitect/Engineer) andPPGLvisitedKWUfordiscussion andtourofquencher-related facilities.

XnlateJuly,1977,PPGLemployedtheservicesofKWUtodesignaSSES-unique quencherdevice.Kraftwork UnionprovidedPPGLapackageofsignificant designandtestreportspertaining tothequencherdevelopment todemonstrate designadequacyandqualityoftheirdevice(refertoTablel-l).Thesedocuments weresubmitted totheNRCinJanuary,1978.Thequencherloadspecification vassubmitted totheNRCinApril,1978.ToverifyKWU~sdesignapproach, afull-scaleSSESuniqueunitcelltest,asdescribed inChapter8,wasperformed byKWUforPPGL.Thedocumentation ofthistestseriesandverification ofthedesignspecification vassubmitted inMarch,1979.Subsequently thequencherdesignbyKWUforuseonSSEShasbeenadoptedastheSRVdischarge usedbysixofthesevenotherHarkIIownersandtheSSESprogramhasbecomethegenericMarkIIprogram.Rev.2,5/801-7 Thedefinition ofLOCAloads(Section4.2)isinbasicaccordance withtheMarkIIprogram.Inadditionthough,'PSL hasdecidedtoconductaseriesoftransient steamblowdowntestsinamodifiedGKMIItesttankinNannheim, Germany(refertoChapter9).ThesetestswillprovidedatatoresolveNRCconcernsonthedifferences inventconfiguration betweentheoriginalGE4Tfacilityandaprototypical MarkIIcontainment and,toverifythecondensation oscillation loadspecification usedontheSSESdesign.Tablel-lprovidesasummaryofthedocumentation supporting theSSESlicensing.

Inaddition, Table1-4providesacomparison oftheSSESprogramforSRV.andLOCAloadingwiththeNUREG0487acceptance

criteria, LeadPlantProgramandGenericLongTermProgram.I'naccordance withthedirections oftheNRCstaffattheOctober19,1978meetingwiththeMarkIIOwnersGroupthesepositions assumethattheuseoftheSRSSmethodofloadcombination willbeacceptedforuseontheMarkIIcontainments.

Rev.2,5/800-8 1.4-Pl.M1TDESCRIPTION TheSSES,Units1and2,isbeingbuiltinSalemTownship, LuzerneCountyabout5milesnortheast oftheBoroughofBerwick.Twogenerating unitsofapproximately 1,100megawatts eacharescheduled foroperation:

Unit1forNovember1,1980,andUnit2forMay1,1982.GeneralElectricissupplying thenuclearsteamsupplysystems;BechtelPowerCorporation isthearchitect-engineer andconstructor.

Thereactorbuildingcontainsthemajornuclearsystemsandequipment ThenuclearreactorsforUnits1and2areboilingwater,directcycletypeswitharatedheatoutputof11.2x10~Btu/hr.Eachreactorsupplies13.4x10~lb/hrofsteamtothetandemcompound, doubleflowturbines.

1.4.1PrimarvContainment Thecontainment isareinforced concretestructure consisting ofacylindrical suppression chamberbeneathatruncated conicaldrywell.Figure1-1showsthegeometryofthecontainment andinternalstructures.

Theconicalportionoftheprimarycontainment (drywell) enclosesthereactorvessel,reactorcoolantrecirculation loops,andassociated components ofthereactorcoolantsystem.Thedrywelli.sseparated fromthewetwell,ie,thepressuresuppression chamberandpool,bythedrywellfloor,alsonamedthediaphragm slab.Majorsystemsandcomponents inthecontainment includetheventpipesystem(downcomers) connecting thedrywellandwetwell,isolation valves,vacuumreliefsystem,containment coolingsystems,andotherserviceequipment.

Theconeandcylinderformastructurally integrated reinforced concretevessel,linedwithsteelplateandclosedatthetopofthedrywellwithasteeldomedhead.Thecarbonsteellinerplateisanchoredtotheconcretebystructural steelmembersembeddedintheconcreteandweldedtotheplate.Theentirecontainment isstructurally separated fromthesurrounding reactorbuildingexceptatthebasefoundation slab(areinforced concretemat,toplinedwithacarbonsteellinerplate)whereacoldjointbetweenthetwoadjoining foundation slabsisprovided.

Thecontainment structure dimensions andparameters arelistedinTables1-2and1-3.Adetailedplantdescription canbefoundintheSSESFSAR,Section3.8.1.4.11'Penetrations Servicesandcommunication betweentheinsideandoutsideofthe.containment aremadepossiblebypenetrations throughthecontainment wall.Thebasictypesofpenetrations arethedrywellhead,accesshatches(eguipment hatches,personnel lock,suppression chamberaccesshatches,CRDremovalhatch),electrical penetrations, andpipepenetrations.

ThepipingRev.2,5/801-9 penetrations consistbasically ofapipewithplateflangeweldedtoit.Theplateflangeisembeddedintheconcretewallandprovidesananchorage forthepenetration toresistnormaloperatinq andaccidentpipereactionloads.1.4.1.2InternalStructures Theinternalstructures consistofreinforced concreteandstructural steelandhavethemajorfunctions ofsupporting andshielding thereactorvessel,supporting thepipingandequipment, andformingthepressuresuppression boundary.

Thesestructures includethedrywellfloor(diaphragm slab),thereactorpedestal(aconcentric cylindrical reinforced concreteshellrestingonthecontainment basefoundation slabandsupporting thereactorvessel),thereactorshieldwall,thesuppression chambercolumns(hollowsteelpipecolumnssupporting thediaphragm slab),thedrywellplatforms, theseismictrusses,thequenchersupports, andthereactorsteamsupplysystemsupports.

SeeFigures1-1thr'ough1-4andTables1-2and1-3.Rev.2,5/801-10 ILOFPRIMARYCONTAINMENT ISYM.ABT.(LMORYWELLHEAD48'OV"0D.CONC.I36'PSI"(OUTSIDEFACEIWP.W.PEL.791'.9"J.'Lr5'"9/:,'/.../;/SHIELDIANNULUS/::-/r2/4DOWNCOMER

/'JETDEFLECTOR SHIELDi29'.I"O.D.18'JI"I.O.'IX~~EL.723'4(X"I2(P-3"I.D.CONC.:86'3"I.D.CONCT.O.C.rEL,703'l"

,'I'~~~C.~rT.O.S.EL.778'.9"JIlr7REACTORSHIELDII25"7"I.D.hIII4~)"Jh~~'Ij',~4htTOC~'EL.729'.95/8"DIAPHRAGM SLABW.P87'.O.C.L.704'-0"lhEI'DRYWELLEL.701'-11"OOWNCOMER (87TOTALIQUENCHERDEVICE(16TOTALICONTAINMENT WALLWATEASTOPS BASEMATWATEASTOP I~Ij~tII'.~~rhCI1S0sSIII.D.CONCI12FT.'1'.6"

'.,O'QII"'r~IQDECKANDSUPPORTBEAMIRP.V.PEDESTALIR.P.V.PEDESTALSTEELFOAMI19'.7"'Ar12,3'6"DIAM.STEELCOLUMNST,rhhig'~'~'1:~,III~I~I'".~I24FT.HIGHWATERLEVEL3'.6"~IhSUPPRESSION CHAMBER7'41"COLDJOINT629'9".30'41"RO.O.CONC.I.D.CONC.MUDMATANDWATERPROOFING 44'JY'.BOTTOMOFBASEMATEL.640'G"REACTORBUILDINGBASEMATCOLDJOINTSUSQUEHANNA STEAMELECTRICSTATIONtJNITS1AND2DESIGNASSESSMENT REPORTCROSSSECTIONOFCONTAINMENT FIGURE1-1 1064IgOi~4~Q'ICONTAINMENT VV~EgrOdy~r~e~013soSRVDIAPHRAGM SLABPENETRATION FROMDIAPHRAGM SLABPENETRATION OeC/03COLUMNOg30o>~~f0oo150oo>~o~'Ply+er~w~orOs..O~'EDESTAL TOQUENCHERSSRVDIAPHRAGM SLABPENETRATION NOTE:BRACINGISNOTSHOWNRev.2,5/80SUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DESIGNASSESSMENT REPORTSUPPRESSION CHAMBER"PARTIALPLANFIGURE1-2