ML18026A119

From kanterella
Jump to navigation Jump to search
Results of Non-Nuclear Hot Test with the Relief System in the Philippsburg Nuclear Power Plant
ML18026A119
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 03/22/1977
From:
KWU, Pennsylvania Power & Light Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML18026A119 (439)


Text

{{#Wiki_filter:xfi1(

                                                                                                              ~

V/ViL H as translatedinto ..E. Il .G. L.I. S.H...:... RESULTS OF THE NOIN-NUCLEAR HOT TEST tIITH THE RELIEF SYSTEf1 II> THIE PHILIPPSBURG NUCLE. LR POI'tER PLANT as translated from ..G. E .R. Yi J. IJ........ ERGEBNISSE DES NICHTNUKLEARE I HEISSTESTS MIT DEM ENTLASTUNGSSYSTEM IM KERNKRAFT'AEPK PHILI PPSBURG 3 Ti 3KDR/Rl " 60BEL KHU HORKING REPORT R 1 I2 58/77 22 NARcH 1977 (PPRL DOCUMENT NO 18) 1977 CiCo)9'UGUsT MJ 1 J)')

                                                                                                            ~   JJ PPa,I'E
                                                                                       ,J
                                                                                   )

NN S Y LVAN)A POV/E R r~ >/ JJJI JJJ'w LI G HT COkl PAN Y 71 RAF)NAR0 AVENUE, wAT2RT0wN AL).E'(To<vir, PErtr<SY).vhrr)A r~ASSAC) IUSETTS 02)72 <6)7) 924-55CO J eccl~et+<-~~~

                                                                           ~p~<<1@   PtOi6ol<0 Il><<~g-gg -77        g 9pcumeat IIEGULGOIIVDGg<H RLF.

I I \ V

 )

COMPANY CONFIDENTIAL Working Report R 142 38/77 Topic: Number (department/no./year) Results of the non-nuclear hot Of fenbach, 22 March ] 977 test with the relief system in Place, date the Philippsburg nuclear power plant 3245 Gobel R 142 Reference (e.g., project, RGD project): Author Department Tel. Suppression chamber, relief system, II /s/ Frenkel Signature/classifier test results Class File no. Summary This report represents a summary of the loads measured with the relief system during the non-nuclear hot test in KKP. The information relates to:

- the    measured pressures     and pressure    distributions in the sup-pression chamber during vent clearing and condensation;
-  the loads on the relief system itself, insofar as they are solely of a thermal-hydraulic nature.

The measurement values are transposed to the most unfavorable boundary conditions in the plant and are compared with the speci-fication values. The specification values are not exceeded in any case. There are adequate reserves relative to the specification values. Accordingly, the expert condition of GB 2.6.3-7 of the expert opinion for the pressure relief system /9/ is satisfied.

       /s/ [ille ible]                                   /s/

Author Gobel s signature Counters'.gnature Distribution list: RF 13 . 3x R 314 R 1 R 321 R 14 R 322 R 142 3x R 52 R 522 3 x 18- 1

Table of Contents Pacae

l. Introduction
2. Scope of the tests
3. Pressure load on the suppression chamber 3.1 Vent clearing 3.2 Condensation
4. Loads on the relief system 4.1 Vent clearing pressure 4.2 Steady-state pressure 12 4.3 Vertical force on the blowdown pipe 12 4.4 Forces on the struts of the protective tube 13 References 18-2
1. Introduction Extensive development tests with the perforated-pipe quencher were performed in the Mannheim Central Power Plant and in the model test stand. The test results are documented in /1,2/.

The relief system'with perforated-pipe quencher was tested under actual conditions and in the actual geometry as part of a non-nuclear hot test in the Brunsbuttel nuclear power plant in October 1974. The test results of those tests are documented in /3,4/. The result of the KKB hot test displayed an adequate margin

  'between the measurement results and the specified limits.

Furthermore, tests with the relief system were performed during the KKB nuclear start-up. The measurement results are docu-mented in /5,6,7/. In addition, tests were performed with the relief system during the non-nuclear hot test in the Philippsburg nuclear power plant. Those tests were based on the actual geometry of the relief system. They were performed under plant-relevant or conservative operating conditions in September 1976. The measurement results confirm the measurements of the KKB non-nuclear hot test and the KKB nuclear commissioning. The results display an adequate margin relative to the specifi-cation values. The maximum measured pressure at, the bottom was

   +0.48 bar, compared to a maximum      specification value of +0.8/-0.57 bar.                           18- 3
2. Sco e of the tests Vent clearing and condensation tests with the relief system were performed during the non-nuclear hot test in September 1976 in the Philippsburg nuclear power plant. The relief pilot valves were actuated in the relief and safety function.

In order to cover "single failures", the relief valves were also opened with simultaneous actuation of two pilot valves. To measure the pressure profile during clearing of several quenchers, clearing tests were performed with adjacent perforated-pipe quenchers (E, F, G). A total of about 70 clearing and condensation .tests were performed. The operating range in which the relief system was tested is illustrated in Figure 01. The operating range tested in KKB is illustrated in Figure 02. The tests performed and their boundary conditions are shown in Tables 1-7. The actuated relief valves and the associated perforated-pipe quenchers and all the instrumentation are shown .in Figures 1-13. From the tests in KKP it was able to be demonstrated that the measurement results of the non-nuclear hot test and the KKB nuclear start-up test are reproducible;

  - any further test series with the relief system would provide        no 18- 4

new information concerning the loads on the containment and relief system;

   - the load reductions     determined  for the containment load in KKB  are equally  valid for KKP; the clearing tests with three adjacent perforated-pipe quenchers resulted in no significant increases of the bottom and wall pressures; the condensation proceeded calmly.
3. Pressure load on the su ression chamber 3.1 Vent clearing In the vent clearing tests, the main interest lies on the pressure oscillations that are produced by the expulsion of air from the relief system into the pool of the suppression chamber.

The effect on the pressure oscillations caused by the variation of parameters such as reactor pressure, valve opening time, water pool temperature and condition in the blowdown pipe was examined thoroughly during the KKB non-nuclear hot test. Accordingly, a repetition of these parameter variations was no longer necessary for the KKP non-nuclear hot test. All that remained was the parameter variations caused by the trial operation: reactor pressure, valve opening time, condition in the blowdown pipe ~ The variation of the valve opening time was caused by the different 18 5

opening characteristics of the relief valves and also by the actua-tion of one or two pilot valves. The condition in the blowdown pipe was varied in such a way that the initial conditions in the blowdown pipe with respect to the water level in the pipe were left as they were set instantane-ously (real conditions) or a pressure equalization was brought about by opening the snifting valves so that the water levels in the pipe and in the suppression chamber were the same (clean con-ditions). In the tests with real conditions, the water level in the blowdown pipe was determined by a pressure-difference measurement. As in KKB, no dependence of the pressure oscillations on the 'above-mentioned parameters was found in KKP. A dependence of the pressure oscillations on the clearing pressure was found, as in KKB. Figure 14 shows the measured maximum pressure amplitudes in com-parison to the limits of the scatter band that was measured in the KKB non-nuclear hot test. We note that the pressure amplitudes t measured in KKP fit well into the KKB scatter band. The measure-ment values from test 192 are somewhat above the KKB scatter band boundary. Considering the boundary conditions prevailing for that test (e.g., clearing pressure 21 bar, which was not nearly reached in KKB), the difference is within the statistical error of the test. Figure 15 shows the slight rise of the pressure oscillations with clearing pressure fox "clean conditions", as measured previously 18-6

in KKB. For comparison, the test results with ".real conditions" are also entered in this Figure. No dependence of these bottom pressures on the clearing pressure is recognizable. When the relief valves were opened sequentially at intervals of 5 or 10 seconds, the following pressures were measured at the bot-tom in time order: +0.19/-0.21 bar; +0.21/-0.32 bar; +0.27/-0.32 bar. Thus, the interval test shows a behavior similar to that observed for such boundary conditions in the multiple interval tests in KKB. A slight load increase must be anticipated in the second and subsequent clearing processes /3/. This is probably attributable to the larger amount of air expelled, due to the 4 quencher being only just filled with water. Figure 16 shows the variation of the bottom pressure (DA 10) for "real conditions". Figure 17 shows the same pressure variation for "clean conditions". Zt is clearly evident from the two Figures that, after five oscillations the bottom pressure has fal-len below 0.5 bar and has dropped to values <0.3 bar. According to the expert condition GB2.6.3-9 from /9/, the bottom pressure of 0.5 bar is to be used as a basis for the fatigue analysis as a mean expected load. From the KKP hot test it can be confirmed that this is a very conservative hypothesis. The decay of the clearing oscillations can also be seen at the protective tube. This is demonstrated by DMS 5/6 in Figure 17. The KKP containment is designed to be durable for a pressure load 18-7

of +0.4 bar ) +0.3 bar for loads from the pressure relief system (see /12/) . Figure 18 shows a comparison of the ratio of positive to negative pressure amplitudes based on KKB measurements and theory. The theory is based on the formula

                    ~p os    po
           *               +                       ETT neg    hp pos   p0        o     KK p KK = pressure in the    air space  of the suppression chamber BRETT
           = hydrostatic pressure corresponding to the submergence

[ETT] of the blowdown pipe. This formula was presented at the 1974 Reactor Convention in the lecture entitled "Depressurization of a boiling water reactor with perforated-pipe quencher; Part 1: Air oscillations during vent clearing". The formula is also the basis of the pressure ampli-tude assignment in the expert opinion for the KKB pressure relief system /8/. A theory describes the primary trend of a process which proceeds under the conditions specified in the theory. In practice, those conditions are falsified by perturbing factors. Therefore, this formula is confirmed in practice only for those events which are large enough to enable possible perturbing factors to be neglected. In the non-nuclear hot test, the pressure ampli-tudes were (+0.4 bar. In that range, the measurement values were scattered about the theoretical curve in KKB also. Only for pressure amplitudes greater than 0.6 did the theoretical curve 18 8

f indicate the trend unambiguously. In principle, therefore, the theoretical relation Qp ~ neg pros b,p

                               'o
                               + p is valid for      KKP  also.

The negative pressure amplitude measured under extreme conditions (opening with two pilot valves under clean conditions with a valve opening time of 250 ms) was -0.48 bar and thus was sufficiently far from the design value of -0.7 bar. As shown in Figures 14 and 15, the KKP measurement values fit in well with the KKB measurement values. As shown in Figure 15, the pressure amplitude remains (0.8 bar even at the specified clearing pressure of 34 bar. Therefore, the pressure amplitudes in Table 8 from /9/, which were specified on the basis of KKB measurements, can be considered as verified. Figure 19 shows the circumferential distribution of the bottom pressures. The measured circumferential distribution for test 192 is illustrated in the upper part of the Figure. Test 19K was used on the basis of the evaluation of the KKB tests, where bottom pres-sures >0.5 bar were selected for the circumferential distribution, since 'it turned out to be the only KKP test having a comparably high bottom-pressure of 0.48 bar. In turn, the selection of the pressure magnitude is based on the fact that perturbing influences 18- 9

can be minimized only for relatively powerful events. Thus, what was already said concerning the ratio of positive to negative pressure amplitudes applies here also. The 1/R law in the circumferential direction was able to be con-firmed with the KKB tests. For the KKP tests, Figure 19 shows that the 1/R law was also able to be confirmed in test 19Z. In this circumferential distribution it is assumed that the pressure remains constant. within the circumscribed circle having the radius of the quencher. In the bottom part of the Figure it is shown that the 1/R circum-ferential distribution, based on the specification value of 0.5 bar (see Table 8), represents an upper envelope for normal response of the relief system for all KKP tests. As already <shown in Figure 14, the load reduction found at the spherical shell in comparison to the values at the L-joint in the vicinity of the quencher is also verified in the KKB hot test. As part of the vent clearing test program, a few tests were run in which three adjacent relief valves were opened simultaneously., The measurement results show that this causes no increase of the pressures. Furthermore, there were also no differences in the pressure distributions in the meridional and circumferential directions compared to the single-valve tests. The pressure values measured in the multi-pipe tests are entered as crosses in Figure 14. 18- 10

On the whole, it can be stated that the vent clearing tests in Philippsburg have fully confirmed the KKB measurements in regard to the pressure amplitudes and pressure distribution. Thus, the suppression chamber loads according to Table 8 were able to be verified for the clearing of the pressure relief system. 3.2 Condensation The condensation tests were so performed that condensation occur-red through one or two quenchers at reactor pressures of 70-11.5 bar and with the quenchers provided only in the automatic depres-surization mode II at reactor pressures below 11.5 bar. A maximum harmonic pressure oscillation of +0.18 bar was measured (see Figure 20). This is below the specified condensation pres-sure of +0.2 bar. The frequency was approximately 80 Hz. At re-actor pressures below 11.5 bar, pulsating condensation occurred. The pressure spikes measured then had a maximum value, of 1.2 bar with a base width of <2 ms. Because of this small duration of action, the pressure spikes have no effect on the stresses in the structural members of the suppression chamber (see Figures 21, 22) . The temperature distribution in circumference and elevation ex-hibited a mean deviation of +4.5 C in the condensation tests. On the whole, the condensation proceeded calmly and exhibited the results already measured previously in KKB.

4. Loads on the relic f s stem 18- 11

4.1 Vent clearing pressure Pronounced clearing pressures were measured only in three tests. The reactor pressure was approximately 70.5 bar. The measured maximum clearing pressure was approximately 21 bar with a valve opening time of approximately 250 ms. Figure 23 shows the extrapolation to 88 bar reactor pressure and 100 ms valve opening time based on the measurement values. The computation results for the reactor pressure of 70.5 bar and the corresponding valve opening times envelop the measurement results. Thus, the basis of the extrapolation is conservative with respect to the clearing pressures. The maximum clearing pressure calculated on that basis is 29 bar. Th's value is clearly smaller than the specified clearing pressure of 34 bar. 4.2 Steady-state pressure The steady-state pressure in the quencher's vicinity is plotted versus the mass flow density in Figure 24. Zt can be seen that the maximum steady-state pressure for a reactor pressure of 88 bar is approximately 13 bar. This value is below the value of 16 bar specified for the quencher. 4.3 Vertical force on the blowdown 'aipe To measure the vertical force on the blowdown pipe, two strain gauges each in the circumferential and vertical directions were 18- 12

mounted in the water region (see Figure 2). The evaluation technique used to infer the vertical force from the measured stresses and to perform the extrapolation to 100 ms valve opening time and 88 bar reactor pressure based on the available measurement results is described in /7/. The evaluated measurement results for the three informative tests are shown in the following Table: Test Reactor Valve Pipe Vertical pressure opening pressure force time bar ms bar kN 70.8 816 t?]* 180 8 70 616 7.5 190 19Z 71 255 21 385 The extrapolation to 100 ms valve opening time and 88 bar reactor pressure results in a vertical force of approximately 600 kN. P The specification value of the vertical force is 700 kN. There is an adequate margin between the specification value of 700 kN and the extrapolated value of 600 kN for the vertical force. 4.4 Forces on the struts of the protective tube The maximum strut force was measured in test 19Z at a clearing pressure of 21 bar and a valve opening time of about 250 ms. It was 85 kN. t

   *Tr. note:     First digit not clear in     German document.

18- 13

This force is composed of three factors:

1. Pressure difference across the vent pipe
2. Pressure I difference across the protective tube
3. Displacement of the pivot point of the struts on the inner cylinder.

All three factors together yield the total force. The measured total force must be viewed in terms of the load case on which the design is determined. That case is not. the clearing of the relief system, but rather air-poor condensation at the vent pipes. A temporal coincidence of the two load cases was excluded by the premature automatic depressurization. The external force on a strut of the inner cylinder for the load case of air-poor condensation is 195 kN /10/. This force is larger by a factor of'.3 than the measured force of 85 kN on the struts of the protective tube. The difference between the two values seems to be large enough, so that it can be stated that the load case of air-free condensation conservatively envelops the load case of vent clearing.

                                             -3                  inner For the   probability of occurrence of     10    /LOCA, a maximum strut force of approximately 230 kN was demonstrated in /ll/.

This force is greater by a factor of 2.7 than the force of 85 kN measured in KKP and can surely still be supported by the struts. 18-14

References /1/ Becker, M.: Construction and design of the relief system with perforated-pipe quencher Technical Report KWU/R 113 2703, July 1973 /2/ Becker, M.: KKB Blow-free with the perforated-pipe quencher Technical Report KWU/R 113 2796, October 1973 /3/ Becker, M.: Results of the non-nuclear hot test with the relief system in the Brunsbuttel nuclear power plant Technical Report KWU/R 113 3267, December 1974 /4/ Becker, Feist, Gobel: Analysis of the loads measured on the relief system in the KKB non-nuclear hot test I Technical report KWU/R 11/R21 3346, April 1975 /5/ KKB Relief valve tests KKB EB 50 I August 1 97 6 /6/ KKB Relief valve tests KKB EB 46, August 1976 /7/ Gobel, D.: KKB Nuclear start-up, results of the tests with the pressure relief system Working Report KWU/R 142-136/76, September 1976 18-15

/8/ Expert opinion on the safety of the 770 NWe boiling water reactor for the Brunsbuttel site, Part 9, April 1976 /9/ KKP pressure suppression system Expert opinion on the relief system hlay 1976 /10/ Gobel, D.: Design specification for load on the bracing of the pipes immersed in the pool of the suppression chamber Spec. No. KKP/ZK/SD 010, Rev. 1, Oct. 1975 /ll/ Gobel, D.: Determination of strut load combinations and their probabil-ity, based on the GKM II tests with the 600 mm pipe and a submergence of 2 m Norking Report KWU/R 142 168/76, Nov. 1976 /12/ Nowotny: Design specification KKP ], KKP 2 Pressure and temperature load on the containment and suppres-sion chamber No. KKP/ZA/SD/002, Rev. 1, April 1974 18- 16

KKP I HOT TEST, test phase IE (blovdown tests) Status Operating Log 26 Jan. 1977 KWU KKP I HEISSTEST, Testphase II (Abblaseversuche) Stand V 822/R 521 Bet rie bsprotok oil 26 ~ I I')77 5 I<) )) I ru))- Versuch )r Enl tnstungs-

                                                ".)  venlil-Ansteuerung Ct F>(

im US

                                                                                                     <I)                  llenktor) ck ful                          is I3 0~C l)urct)sntz Ventil-Nr.

Ai II F< n-E 1'erne)kungen Oa turn zeit vor s)) chs. Prtrri Ptl)cl In AI)l G f%=Nr IAT. Nr EV V SVV Abblascrohr var Sl r an<3 Sir>>>>9 Slran9 S)rang O<>gltvl dauer Oeginn Ende Ktt Qg Oc sinn I 2 3 C 1976 -snW5 - mV(S = 'C bar bar m I/h II h I/O I Ih

                     )7 ')                                                                            31         lo         I<3 6 ) )        ~  C  ) Ci , <i                                             35's
                           ~ I~   I < ~
                                          >i(                                      rc                                       ls!'~ ~ 7  Is ) ~ ls   I Ci, <s                                     3, 3
                                                                                                                                                                                                   ~

17 ~ s, 21 "i< /s i r

                                                                                                                                  ~,>   s >     3  I C> ~  6                                    300 I0      )>   ~

3>,> )>s) ~ Cl 6 )fi, 0's

                                                                                                                                                                                                                                                  's >>r-
                                         !'!'c 8    (          8>F>)     ~    X    X          rc          cc                           )<9i<>     43i3        I C>, )s                                    730       3C>9       >>ffsir)          > r<snn   cc               )7 17.9.       nn      >
                                           ~
                                             <. 0,)',r.        E    ri rc                35          )0         )<6 9      4,7         16,)s                                       728       3(>)s
                                                                                                                                                                                                                    )Ichtnrhnik nur tci ls<rira X    X                                                                                                                                           rs  f 10),

17 9 2 3 ~ I >. I'., I', ci 8 r, I. rc )>5>,G )s),9 )G,)s 7)ti 357 Mi ci! > r tiu I >>>>0 ever such x x x voss Yrrs>>ch G.I 9.1 20 20 9

                     ~
                       >>  >) ~

12.)>I'c I

                                 )7 I~

i)< <)>5 3)s 3)s 10 C>9 70> 3 71,0 Gi9,8 65

                                                                                                                                     '>7>5
                                                                                                                                               )> 16
                                                                                                                                                  )C) -;f>7
                                                                                                                                                  )C ~ Iss)
                                                                                                                                                           <is>

12 >Ci0

                                                                                                                                                                )2,9 5>)(>

C>0<i 6 I ')

   ))I 9.

9-3

           )<I 1.1
                ~
!0, 9.
20. 9 ~

2<)

                    ' i) 9,
                                 )7 ~ <>>

17 lb.

                                      ~

10 's) I'>3 s)< rc rc

                                                                                  'i,3 32 32 3ls (i'9 8 67,0 7" I 7"

C>7 C)5,0 Ci

                                                                                                                                            ~
                                                                                                                                          ),2 8  IG ~ I <)

IG>)s!) IC> ~ 5>2

                                                                                                                                                                )2,')

I >> ~ 7(i C>01 Ci II 3 I 5S nnC)i Vnrs>>Ch 9.1 Ios nnch Yrrr>>ch <l.2 0

                                          )'c 11   )                 9                                                                          3ls                            5 70 0        I)i     )>C>  12>7) 00.i)'c
                                                                                                                                                       ~                                       Ciz>C Il    2           s)     11     0'>                                        3 ~

I> 35 7- 7 70,3 )6,)>7 12,02 Ciz(i In 12 30-9. 9> 70> I 6>7 ~ 6 I C>, 13 ~ I 3)) ~ ) ~ <>0, js 33 73,) 73>1 ) Ci,)s 12,7 >>>I ) I ho) I)ii): I< sss<'1st  !)r ~2 isn < ) 11 ) 1.:! 30.'). <I') ~ ~ rc 71,2 Ci)),2 )(>,>s s)s r!s<>)>>s ~ issvi riisscls Vnrs>>ch 13 I Il E)ngetragene tlenktordluCke wurden un)>>ittelbar vpr und nach Versuch von der Digitalnnzeige in der Wnrte nbgelesen. 5) <<>>I I ~

                                                                                                                                                                                                                                 -'"   >>-r>> 26 9      ~  ~ 7C>
2) OurCh atZt)eStim!>>un@ naCh rr-Vlert - MeSSungen 3) tnterVallleSt C) rC = real COndiliOnS, s>>s t I!ucksc)i)nssv< ss)s I i>>

CC = Ctenn COnditiOnS l)000 S)r,,) (SEE NEXT PAGE FOR KEY)

KEY FOR TABLE 1

1. Test
2. PA no. [abbreviation unknown]
3. Running no.
4. Date
5. Time
6. Relief valve no. 5)
7. Actuation [EVV = relief pilot valve, SVV = safety pilot valve]
8. Liquid level in blowdown pipe 4) mNS = m water column
9. 6KK before beginning
10. Test duration
11. Reactor pressure 1) rel rel Beginning End
12. Liquid level in suppression chamber
13. Liquid level in reactor pressure vessel before beginning
14. Flow rate, valve no. 2) [Strang = leg]

15. 16 ') Remarks Entered reactor pressures were read from the digital reading in the control room before and after the test.

2) Flow-rate determination according to c-value measurements
3) Interval test
4) rc = real conditions, cc ~ clean conditions
5) Valves E and G with swing check valve in control line of independent safety and accident protection system from 26 September 1976 on.
17. 1 min previously, F opened 2 s due to cc
18. Measurement technique only partially covered
19. Repeat test of test 6.1
20. 5 s after test 9.1
21. 10 s after test 9.2
22. Test was repeated (valve had not opened)
23. Repeat test of test 13.1 18- 18

KKP I IIOT TEST, test phase Xl (blot<)down tests) Status Operating log 26 Jan. 1977 I(VUU KKP I HEISSTEST, Testphase tt (Abblaseversuche) Stand Y 82210 521 - Betriebsprotokoll  :? II ~ 'I ~ I I I7 7 S 9 I rj 0 I/ Ver such q hr- Enllastung Ansteuerung Zl Full a) an/i tteaktor ck lu s Full urchsatz Yen)it-t4(. )) Oemerkun<3en venlil- im K <

                                                                                                                                                                                     <l  l3      t)r C
z. Daluo vor s>ucl >s PR<c) t ~rc) <n Al> A ~ ll I< ~ G OrE A-ttr EVV SVV Abblaacrohl vol Slrnii9 Sl<cin9 Slsanfl Sl<nng Hr. Oegi(>n <)auer t3eg<nn Ende itt<

Og De<Jinc> I 2 3 1976 -mVIS - mWS = 'C bar bar ll h Its Its 'o.'). "J 0 "I 3 ~ 3 35 7).(i 69> I 1(ie i7 10, Gls Gij I si ')<l '>, <>>', 3" I~ X I0 <3 Ci7 ) I Ci ~ )0 )0 Ci

                                                                                                                                                 ~            ~                        ~
                          )<i.n. In."0                   v,
                                                                                         ),0                                      5        7)   I'-'i     7~3         I <i, J7    10,00                          I '"Ci             kc'iis ih ch>s<<r(iro<vkol I vol'h 's<<III'<<
    )7                                 c>0            r., v,r.

I'e I! rc: r. 73,3 Ci,iej ifeel<C> I, Ci f>)n vurhon<)r n e kkk X X V 3, I< ~ () rr I') 30,it, 1,0" r. v r. ki in lie<el>>> ~ <')I>'nt<ek<e) I 17e-" ) r.,v,n xxx I 35 70 ~ 3 Ci.'i ~ 5 IG I ') 7 I ~, fltl I in (,n5 vari>nese)r.>>

              )0                  II   u<> ~  0(      F.,I',(           v.r      r. 0       rr.          r.

Cili,7 fi, 3':. I 5 I'G 0< in )Inch>>c r(>ro<ok<i) 1

                                                              ~

X X X v 3,( Is,n 73,5 ) ~ vorhonrlr n

    )n                   30.       l. 1>.)C I'               F'              r                                 IJ                                       ', Gli x     x              ~ I         Ie
                                                                                                             ~ 0                  5             ~  5   Ci7    ~ 3     ICi    )    I n      '>O. I      ")       9. 10 (l ~        F.,V,G r;  r    r. I!      ra I (I 5      )'4<93                         I:!Its            koinr i)i<ha>>(Inichn>>nn XXX V               li ~ I,      ls 70>Ci       Cili >7 von Vc.n< i I        K 0 V< )!             rc                                                                                                                                     kri <>c'l>>l>n>>fvc i on                             9    10,>')

X X X V

                                                                                  ~

lc,.'s le ~ I> 71,0 f>3,7 Ifi,.>3 I",01 I;!3(i Ci1 0 von Vr<<<i) G c h<<<i<ifl Ij re )! rc On 00 3 Or> ~ r), I ~ >,n3 r.,v,r. F. X X X I'e .." le, I> tin 5 7! I (I) 9 ) (> 5rj I,Ci ) ~ (nl "I> i(',<i7

                                  ~>

II Sell <'c ) le 7)s<> Ci'i I<u< h>>c i')irolcekol )

       ~                  ~

et 3(, 70,0 Gfl,l lc,l<fl Ci(>9 vI>l'I<<II<aI'll oe I s ~ 53 7)>7 Cia," I (i ~ sj I"I <37 (i I 7 I) 'I ~ ~ 0 I 10. <!'I le.i 3'> 70 ~ Cefl ~ I I I ~ ic) (inle I~ . ) r>. >>)I. Ii 5

                         )                       ~                                                                                        fifl ~   I   (I(i I 9      )  6 sli'>  I::.00                   505                      7< nnch        Vs r ts>><    h    0". I ~ ~

o) '3 2) 9. )0 ~ CO rc I II ~ 71, 0 Ci ntl, 0 rc 3(l I I~ I Iso< <<o Iliils s>>fl~i ch>>s>>>r>

                                                                                                                                               ~   I                 )    ~  3                   fiofi                             Ilr 'ch'I I h )I I I II I ho) >><sr)
                                                                                                                                                                                                                                                           ~
   ~~~      'IlI   ~
                     ~e  ~   ~

cr 70 7 Ifl,l II, I I",fl.s Go') A I I I I h<II I>>II< vo>>

                                                                                                                                                                                                                                         ~ ~

Vrr~>>c h:!Ii . I

            ~ srI                     0'>     '

I0 ~ 3 CI7 ~ Ce I (i ~ 3 9< lio I ii Eingetragene tteakto(drucke wurden un<oiltelbar vor und nach Versuch von der Digitalanzeige in der Wnrte ab<getese)). 5) "">><<1 F>> ~ G>>>>

                                                                                                                                                                                                                                <I) < f)iick~ch) ilr>v~<<< i I i<<
                                                                                                                                                                                                                                                                   "-.': 7(j ~
2) Durchsatzbestimlnung nach I> -Wert - Messungen )l Inlervalllest ct rc = real conditions, cc = clean conditions <)s<>s-. c I
                                                                                                                                                                                                                                               ~
                                                                                                                                                                                                                                                   <    ..   <      q (SEE NEXT PAGE FOR KEY)

KEY FOR TABLE 1

1. Test
2. PA no. [abbreviation unknown]
3. Running no.
4. Date
5. Time
6. Relief valve no. 5)
7. Actuation [EVV = relief pilot valve, SVV = safety pilot valve]
8. Liquid level in blowdown pipe 4) AS = m water column
9. 6K before beginning
10. Test duration ll. Reactor PR pressure PR 1) el Beginning End
12. Liquid level in suppression chamber
13. Liquid level in reactor pressure vessel before beginning
14. Flow rate, valve no. 2) [Strang = leg]
15. Remarks
16. 1) Entered reactor pressures were read from the digital reading in the control room before and after the test.
2) Flow-rate determination according to a-value measurements
3) Interval test
4) rc = real conditions, cc = clean conditions
5) Valves E and G with swing check valve in control line of independent safety and accident protection system from 26 September 1976 on.
17. No computer log available
18. No recording of lift for valve E
19. No recording of lift for valve G
20. 7 s after test 22.1 **
21. No recording of lift, therefore repetition
22. Repeat of test 24.1 18- 20
                                                                                                                                                                                                                                                                                     ~ e KKP     l HOT TEST,         Operating test phase                         XX       (blowdown                      tests)                                                   Status Log                                                                                                       26        Jan. 1977 KWU                                                               }lKP I HEISSTEST Testphase II (AbbIaseversuche)                                                                                                                                    Stand V 822/R 52 t                                                                                             Bet I l0 l)spc0l0 It 01 l                                                                                                                          ~ e   I   I ~ I ~~ ~
/      Ye)such                             5                          7              C)Fuf island                         )D  1)                   ll fleaktof ck l ul st.

2 Fullr Jurchsatz Venlil-Nr. 1'emerkungen hr Ansleuerung K il I3

2. 3 l)alu(11 zeil s) venlil- ~ O> suchs <<'/tref I'Arsi in AO I) + C A~ ll F~ G 0~E A-Nr d, Nr CVV SVV Abb la sar ahr Strung Slrnng Sllang Stlang Oegi(s) (k)uer Lk'g(nn El)de llK VOI'lag>nn I 2 3 1976 -ss>WS - mvls ='C bar bar. tris If h lfh tlh "Ci "I ~ <I, II ~ II X >'C 7'-', 1 fae) r> I(i< 30 I:! <0 (~ 3
     '7                                    I  ~

Ill >'C J3 ~, ~ jo Ci (>7 ~ Ci I Ci ~ 3('< I'j C.i 0

                           ~

I ~ i I ~ s) ~ i'C 7 ~ ) C>ll ~ 7 I (>, ')ls I . ~ r. I C<'!! 1

                ~ <1 I    al                                                         >'C                                         71,>         Ci<), l>   IC>,)1 "I 'l.~           I?      )r<                               1'c                                         71, Ci       C>7,(>     I fi, )l>      )0, Ci)                   Ci17 I    ~

711 7 (>0, r I(> ~ )) I < ~ I Ci 1 0 I' I: Ii li

                          )s) ')

X X ls,O 30 s () e l< I (i, 3,> I ", ls (io(> I'. naris flan gs iiffii ~ ( /7 33 K,F

                                                                          )1 X

F X lC li F e) 33 Ci) ale l< 9 I(a ~ gl I ) ~ f1 i ~ '1 I'>srh )as gs'i>f fsac (, I ~ IO ~ )1 le'!! rc 3') <7 1(i, ls ~ 9 <1 35 3 i> I lu r ~ I~ rc lO I C> rgCi

1. IO ~ )la. 30 31 ~ 3 "'J, Ci I (i, ri7 I I ~ '>0
   )7        37                           I I> c     <1      o                      ls,(<                            )9         .3,     0:.fi, I        I C>,,0       11,07                               >ra
             .10         I ~ Is>. I .) ~           . <1                      X      3.95                  3?         l>O                                 )(i, ri0                                            <O J?       3 el         I ls> ~          I g l<O                                   I> ~ I<              l>O         30           a  a 0    'O,7       I Ci ~ sfl    I I ~ 76                           I?7 ls  I           I I   .. Is>                                                      rc                               Cisl                                                                                        lla0      <ecehsnlse i (is)< s Xhlil w sn>>
              ~

3 e) li I ~ Z . I(> ~ s Ill 1'c Ci0 I rg n 1(i, ls i I'-'>7i 1)g >inchsnl ss. i (i >cs Alii>lass>>>

                                                                                                                                                                                                                                                    ~

ls I ><1,3 < l(1 (1!I. 0 39 (io lls, I 13,3 1(i, l>.e I'-e l e I "Gi ~ enrhsc is<>i (i as s Xlihlas<'>1 sl le>, el1 I(i larq <7 119 ~ ee ries< Is< i

                                                                                                                                                                                                                                     ~
                                                                                                                                                                                                                                                > i<>> s       Xhlilascii la  I     la    I."<                  (ill.;(>                                    rc                    3<)       Ci(1         I isla        11,0                    I'-',77                                             sei  chsc   I ss ~ i ( i 
1) EingClragene Aeakta(druCke 1Vurden unmltlelbar Ver und nuCh VerSuCh VOn der t)igitntanZeige in der Wnrte nbgeleSen. 9) 'niitil 0 >>.O ab '..(..<3.76 23 Durchsatzbestimlr)ung nnch ll -Wer t - Messungen )I lnlervnlllest cl rc = real co(1(lilion, cc = clenn conditions 0( (SEE NEXT PAGE FOR KEY)

KEY FOR TABLE 3

1. Test
2. PA no. [abbreviation unknown]
3. Running no.
4. Date
5. Time
6. Relief valve no. 5)
7. Actuation [EVV = relief pilot valve, SVV = safety pilot valve]
8. Liquid level in blowdown pipe 4) mWS = m water column
9. 8 before beginning
10. Test duration ll. Reactor pressure PR 1) rel rel Beginning End
12. Liquid level in suppression chamber
13. Liquid level in reactor pressure vessel before beginning
14. Flow rate, valve no. 2) [Strang = leg]
15. Remarks
16. 1) Entered reactor pressures were read from the digital reading in the control room before and after the test.
2) Flow-rate determination according to a-value measurements
3) Interval test
4) rc = real conditions, cc = clean conditions
5) Valves E and G with swing check valve in control line of independent safety and accident protection system from 26 September 1976 on.
17. E opened after 14 s
18. E opened after 10 s
19. Two-way blowdown 18- 22

KKP I IIOT TEST, test phase II (blowdown tests) Status Operating Log 26 Jan. 1977 KV/U KKP I HEISSTEST, Testphase tt (Abblaseversuche) Stand V 822/B 521 Be t rie I3s Prot o k o I I 26.1. In;7

                                                                  '7 t>>Fullsland                   9        Irs I)          I              /1. ullr      I'< l)t)rchsntz Venlil-Nr.

Ver such Enllar tlingS- Ans ever ung V Reaklo( ruck l.u st. I Oe(nerkungen ln /) 1'3 ventil- A ~ II F<6 0<E Dalum I'eil e) Qp vor suchs- PRrci l'Rrci in Ao C EYV SVV Abbla "c(ahr VOI Slrang Slrang Slrang Slrang Nr. Oeginn dauer (k'giiin Cnde M ~( Is 2 (<2 I 1976 I lc> I fi. 2r

                                                                           .<saWS rc cs>WS     ='c (iO       (io bc>r 13eA     13 bar tttt 0cginn rn I C<, 52 ln I ~,Al I      2 II h 3

l(h t 1)h 123 arc chsi I sc i I I gc

                                                                                                                                                                                                                           ~                  is 17 Abb      la<<cn I<<~
            ~        I. In. ICi.26i                                         3    Ii                  I<0       (aO        13    r5 I<<7       ICi,52      1,01                         121 lrc chsc I hei           t i <irs
                                                                                  ~

Al)b I 'Isa'>> ir c ' I l la i I s r i t i I) c s I2 Ia I Ill ICi 27 rc Isa Go 12,7 I I,') IGe52 ,Ai I 1(a A)shin<<c'>> a srr chnr. Inc i t sties i<2,le I 10 ICi 2tl rc I<O cio 11 e9 11,(i l(s 52 ,01 I l)5> A lib I n s s'>>

                                                                                                    '1
 'i3      'i3        I. Io. 1(>.58          G,F.,A,c                    lie A<C           G 2    13(s                    7e9     1(i,53      )2,(i 0                                        hydr so< I i scl<c s Of f c>>les I tees rc         Is   ~

Is Ic )Isla sai t Tll-Systras I'., A,C

                       ~ lo    I7          I   li,l'., A,c                     i'c                                          )O,I<       7,0     I Ci, 57                          gr                       Of f ilhnl tcsys                tease ts   <0                (i 6                                                   95               95       95               e
                                                                                                                                                                                                                                                            /9 I'. AaC        r, I,5      Is  ri       ~ ll>   I I~       O    r,A.A,C                          a l'C        Is, I<

Ii 3 1 1e4 7e9 I OO IOO IOO 1nO Offc>>hnltrsystcia I'., A ~ C C>(re as)enl tc sy<<t< sa nncls Ie (i Is 6 . Ic>. I> ). 3O F i A,C,G I'c Ie G Ie as 7 7~ I Ci, (<7 I" ~ ri I 9n go 9o Ic>2 3nn A,C,G xiin< schni tnt ~

                                                                                              ~

Is7 Ii7 Isl I'iA C ~ l~ I'e A <C t>(la sihnl I '<<rial<'ia>>nrh

                                                                                                                                                                                                                                 ~

I ~ I ~ O2 ~ i'c I<,3 I 2,(e A,o IC, 0 12;7 112 ')On A,C,G r>>ne sc)inl trt

                    ' )ci. Ill.<ill                                        li A <C a~

Ie 0 (all I' ll A aC

                                                                               ~             lie 3(e      <)O                                           o(<3     71        71     71       71       Of re'cabal tnny ~ tc.ca
                                                      ~

rc 4 Is I<9.1 2<10. II AeAec G II' OCfcnliel tc <<yslraa nh<ir

                                   ~ 56        Ga e 0 e A~C rc          Is     I<

26 7,o 6,3 <5 13 ~ OA I'.I<sr)la i sar sl lvrrA>>ch nb- Qzi

                                                                                              ~

I la

                       . I O. 12                                              rc                                                                                                                           Of I'rnlinl ter           ys  la ia ah>>r Ia c)    Isa)   2                    1's      GaE<AaC                                                          lla>>                    3,0     l(i alar                (iO      (iO     6o       Go       F in sec i sl il I i: is Ocrhcl I sess<)      s (Qz Vrril>>rh I<<).1 50       geo       2 ~ lc> ~ 20 ~ 3(a                                        rc                       Is  I    300            Oe9      OS   0  ICia 31    IC e3                                           Of fr nhnl tc'sy.atria
                                                                                                                                                                                                                                                           +/9 ll cingelragene            ReaktO(d(uCke Wurden uninittetbar VOr und naoh VerSuCh VOn der DigilalanZeige in der Wnrtf abgeleSen.                                                                  5)      Vcntil         f. >>.G nl            26.9.76
2) Ourchsalzbestimmung nach (I-Weri - Messungen 3l lntervalllest tt rc = real conditions, cc = clean conditions (SEE NEXT PAGE FOR KEY)

KEY FOR TABLE 4

l. Test
2. PA no. [abbreviation unknown]
3. Running no.
4. Date
5. Time
6. Relief valve no. 5)
7. Actuation [EVV = relief pilot valve, SVV = safety pilot valve]

8". Liquid level in blowdown pipe 4) mNS = m water column

9. 6<K,before beginning
10. Test duration
11. Reactor pressure 1) rel rel Beginning End
12. Liquid level in suppression chamber
13. Liquid level in reactor pressure vessel before beginning
14. Flow rate, valve no. 2) [Strang = leg]
15. Remarks
16. 1) Entered reactor pressures were read from the digital reading in the control room before and after the test.
2) Flow-rate determination according to a-value measurements
3) Interval test
4) rc = real conditions, cc = clean conditions
5) Valves E and G with swing check valve in control line of independent safety and accident protection system from 26 September 1976 on.
17. Two-way blowdown
18. Hydraulic holding open with TH system
19. Hold-open system
20. Hold-open system connected to A, C, G after 30 s
21. Hold-open system without injection (test interrupted)
22. Hold-open system without injection (repeat of test 49.1) 18-2 4
                                                                                                                                                                                                                                    ~ ~

KKP I EIOT TEST, test Operating Log phase II (blowdown tests) Status 26 Jan. l977 KWU l(l(P I HEISSTEST, Teslpl1Qse II (Abblaseversuche) Stand V 822/R 521 - Detriebsprotokoll 24. ) . 19l. I 5 Enttastungs- 7 C) Fu Its 9 Ir> t) /I It>i)ts 7< Versuch Dalum r-

6) ventil-Ans erun tan>

im ~S V Aenktor ruck )au%st tt 0~ l)urchsnlz Yen)it-Nr. Aitt F G 0~ E

                                                                                                                                                                                             +5'emer              kungen 3                          zeit                                                     vor   suchs. PAret AAret                   in       At)              C t>> -Nr       d    ter,                                       EVV    SVV   Abbtnserahr                                                                         Stratig  Strntig Sl rang Sttang
                                                        @                                   Begi)11 ck)uef Aeginn Ende                 KK         Vat'eg<<>n I       7         3     c 19 76                                           -miYS        - mWS   -'C       s          bar       bar                                 tlh     tl h     tlh    llh 71          23>9        11     41                               2~3                31                17>3     16>li      16>39       12>99                          Irsz
           ?              3.n.     )).      >6                             3  ~              31                          )G>0       ICis39      12 e)ri                        I i>>e 7.3         23 9.       12 13                                   3~5                                  )g,>s    I)e  e 7   16,)e               i)>e                   137 11Z           '9    9~ 17.      I)>                             3>9                                 7>>,0                )C>   rp3   12 Gri                        Ci 3))

I '7. 2) 9 )j,ll)l t'c 37 73>3 Cie),9 ) C>, 33 C>37

           ) >> 7.       )        17-33                                                                                                         I2 ~ r iI
                       ~       e) 70>9      G7,2        I Ci, 3)>                                 60Ci 197.       30. >i.                                             cc                 3)>              7)l,t)    67, ir                                                Ci0 9 2)Z,       21       9  )rg.>s7                                 t  c               37               73.3      jo,re       ) G,3)e         ,G                 G32
                                  )6.00                                   rc                 38               7    ~ I  69,3        )6,3>e                             Cr ~ I 21 9 ~      I I>    2ri                             I'c                                 72, It    C> 0,)e     ) 6>, 3 >I  I 2,   >e 3
   ~ r                :; I . >t . I Ci . >i Ci                            rc                 37               C>lt, 9   C>te,   I)  I C,3)e
  )7      'ef 7       "I    ~ 's    ti   ti>e                             I'                                 -- 70                                                                           V<<t've't'ti<<t'I> ru Ve'rn >e'Ii 17
                                                                                                                                                                                                                           ~
                                                                                                                                                                                                                                 )7 sleet'  ~ 'll) I lt ete' el )'ii 'I 1               ~

17 7 >>~ 0 ~ 10 ..70 I) Eingetragene AeaklOrdruCke Wurden unmiltelbar VOr und naCh VerSuCh der DigilalanZeige in der Warle abgeleSen. VOn S) Vcn))1 E u ~ 0 n)> 2C>') 7Ci jl ourchsatzt)estirn)nung nnch I) -Weri- Messungen 3) Intervulltesl 4) rc = real conditions. cc = clean conditions (SHE NEXT PAGE FOR KHY)

KEY FOR TABLE 5

1. Test
2. PA no. [abbreviation unknown]
3. Running no.
4. Date
5. Time
6. Relief valve no. 5)
7. Actuation [EW = relief pilot valve, SW = safety pilot valve]
8. Liquid level in blowdown pipe 4) mNS = m water column
9. 6<< before beginning
10. Test durat'on
11. Reactor pressure 1) rel PR rel Beginning End
12. Liquid level in suppression chamber
13. Liquid level in reactor pressure vessel before beginning
14. Flow rate, valve no. 2) [Strang = leg]
15. Remarks
16. 1) Entered reactor pressures were read from the digital reading in the control room before and after the test.
2) Flow-rate determination according to u-value measurements
3) Interval test
4) rc = real conditions, cc = clean conditions
5) Valves E and G with swing check valve in control line of independent safety and accident protection system from 26 September 1976 on.
17. Preliminary test for test, 17, only valve E opened 18-26

KKP I HOT TEST, test phase II (blowdovn tests) Status 26 Jan. Operating Log 1977 f<KP I HEISSTEST, Testphase II (Abblaseversuche) Stand V 8221A 521 Bet rie bsprol ok oil I~ ~ I ~ )9 ~ < / Versuch 5 Ent tnstung~- 7 41 Full si an<L /I> I) ftenkto rud<

                                                                                                                             //

F st. Fi>iir " Ourcl)sotz Ventil-Nr. " Demerkungen hns etterung i< /3 Oatum .) ventil- vor such& I'rtrci I'ft(ci Itl Ail 0 ~ C A ~ II Fia 0 ~ E zeit 1976 =( Mr. Q6 Syy Abbiosnrohr

                                                                      -mV/S      - IWS Begit>n <Ia<<er Oegi<>t> F0<le
                                                                                         = 'c Itlt ll vct ncgsno Si tang St tong Strung Strong I

1th Z i) h 3 ilh C ilh

       / II>2 2<<i.<),

2 ~ r><l I I 2<) rc 2e) 3-'4 In 3<> ~ 0 27 2/i, n IG, I '),I>') If>,3'> )2,7C> 2I I

       /r I 0)  2G.o. I).)Ci                                             )e9                                        3 ~                16, '):i 12,A I                           ) <)9
       / In>s   2<i.<l.        I ~ >.Isn                                                   3 I                   '<7,7     ts C>, 'I   IG, )I', 12,/sf>                 ts<>2
       /,) 05   2A. 9          I<) r>2                                                                           t>9,0     l>7         16 I 30    12<7                  Ii I /s 7, I OCI 211      9    '<3         )Ci, )A 12, 'r)7                 302
       / )<a<   20.0.                                                   rc                                       46>fl     /sr, ~ r,
                                                                                                                                  ~    iG ~  )I',07           39   ~
       /,1<.)A  2)i.<). 2<>.')ii                                        rc                 33                    4/i,o 4),0            i6,3.'I i2,76          371 z)09        A.g. 20.4O                                           rc                              5        'i5,9 li/s, 3         ICi< 31<   )2>CiA      3O7
       /'I 10   2A.n.         21 Ofi                                    rc                 3t>                    t>7,9    tiC>,4      IG,)<>                                           lint>

7.111 2A.9. 21.' rc )5 5 50I3 s') 0 I G I 3'>> '-' 36 Is 24 Z112

       / I Ils "A

O ~ <> ~

                         <)       'ri ls A li ~

ls ~

                                                                             'Ci, I, ~ 3
                                                                                           ) Ci ~
                                                                                                   ~

rs 5 t>O,0 4/<,7 II I ~ ~ I> 3,

                                                                                                                                  '<i,4
                                                                                                                                       ) Ci,)<>

Il' 3 i 12, 15 i ~, Ii 405 377 375 I/i< s)r> ho)o<>0 ross Vr roach ?.113 7.) 15 29, 9 10 ~ nn I< 3 7)s5 16,4'. )2,C>> Ci ) Ci

                   ~
                     ) ~ <> ~  if>.oA          A X

usus /5' C 7'>> Cig,C> )G>5 13 ~ 12 G" I<

      ':I ) 7   2)       9     )fi )7                                   I'C                36                     73  ~    C>9<7       I 6 ~ 51   I '),01
      /1)A      '  <I    <)    17 ~ a)                                  rc                                        73,6     7OI2        ICi, 5> l )",Ci7                 Ci) ls Ai>.9.         Ifi, )0                                  rc                 37                     7n, Ci   fiA I"      iG,    >7  i2,)ii     607 i)FII)gettagene rteaktatdtuCke Wurden un<nittetbnr VOr und na(h VerSuCh                              VOn     der DigitatnnZeige in der Wnrte nhglleSen.                                     5) V>>sti) Ii i>-n>>i Al ).7f>     ~
                                                                                                                                                                                                >III I Iuic)<~cia)oarat I I i is 7I Ourchsnlzbestimrr)itn<j nnch n -wert - htessungen                         3l Intervalltest                 cl rc = reol cnnditions, cc = clean conditions (SEE NEXT PAGE FOR KEY)

KEY FOR TABLE 6

1. Test
2. PA no. [abbreviation unknown)
3. Running no.
4. Date
5. Time
6. Relief valve no. 5}
7. Actuation [EVV = relief pilot valve, SVV = safety pilot valve]
8. Liquid level in blowdown pipe 4) mWS = m water column
9. 6KK before beginning
10. Test duration ll. Reactor pressure 1)

PR PRrel Beginning End

12. Liquid level in suppression chamber
13. Liquid level in reactor pressure vessel before beginning
14. Flow rate, valve no. 2) [Strang = leg]
15. Remarks
16. 1) Entered reactor pressures were read from the digital reading in the control room before and after the test.
2) Flow-rate determination according to a-value measurements
3) Interval test
4) rc = real conditions, cc = clean conditions
5) Valves E and 6 with swing check valve in control line of independent safety and accident protection system from 26 September 1976 on.
17. Repeat of test 2113
18. Independent safety and accident protection system 18- 28

KKP I NOT TESZ, test phase II (blowdown tests) 26 Jan. Status Operating Log 1977 KWU KKP I I-IEISSTEST, Tesiphase II (Abblaseversuche) Stand V 822/A 521 Bet rich protokoll >)<> I I')7 >

/  Vers<<eh                         fnt lasl<<ngs.                 t)Fu)) lnnd                  Ye I)          II lleaklol uck    I'U
                                                                                                                           /z   I'vi)           /~ Ourcllsnlz Yentit-Hr.  "        )  $     Demerkungen
                            'lr-                 Ans euerung                                                                         <I  /3      o-c                  0~

Dot<<In zeit sl ventil- i<n vof SUchs PArr) rn,<< ln )) ) I F~ G E nscr<)hr fn(le Strong Slrnng Strung St<<lng 5'bb) PA-t)r FVV SVV vn< d llr. ttr. Qegila dnuer Beqinn KK 0cginn 'I 2 3 C

                  )976                                          -m)vs     - <nVIS     ='C                      bar        <<1                       tIh   tlh    Ilh    IIh l.l "0 ..i<.')    )6.3     )6,")3 Z) I     10 ~ 9.                                          rc                                 7  ~

0 Citl,o )Ci, 3<i I '-~ i I~ i

                                                                                                                                    ~

6.o knliic v i <<irni'ili.rnchrinlic lil. 1.

                     ~

6)), 3 )6,3, Ini(>9 r>)17 zl" I,; I I<1. II k >. i n II< nh <9 i 3 67 9 I Ci, r> )3 6>I v iir4 n>> i) >. >> z)33.:: ).10. 11-37 (i7>9 Ci(,,I, ICiis rll3 kr iii I<> rhiirrlii'ntoknlI 3l vnrhn<ii)n>> X

       >I I "I<, g            '13>77 I) fingelragene Aenktordrucke wu)den Unlnittetbnr vor und nach Vers<<et) von der Digitatanzeige in der Warte nbgelesen.                                                  Sl
                                                 -                                                                                                                           n>t t I)lick>>eh) ni<vr>>1 i I i>>

21 DurChSn)ZtteStimmung nnCh <I -Wert hteSS<<ngen 3l lnlerVallleSt CI rC = rent COndiliOnS, CC = Clenn COndiliOnS I!Sl)! Stri<ri ) ~ ili>iig [SEE NEXT PAGE FOR KEY]

KEY FOR TABLE 7

1. Test
2. PA no. [abbreviation unknown]
3. Running no.
4. Date
5. Time
6. Relief valve no. 5)
7. Actuation [EVV = relief pilot valve, SVV = safety pilot valve]
8. Liquid level in blowdown pipe 4) mNS = m water column
9. 6 before beg'nning
10. Test duration
11. Reactor pressure 1) rel PR rel Beginning End
12. Liquid level in suppression chamber
13. Liquid level in reactor pressure vessel before beginning
14. Flow rate, valve no. 2) [Strang = leg]
15. Remarks
16. 1) Entered reactor pressures were read from the digital reading in the control room before and after the test.
2) Flow-rate determination according to a-value measurements
3) Interval test
4) rc = real conditions, cc = clean conditions
5) Valves E and G with swing check valve in control line of independent safety and accident protection system from 26 September 1976 on.
17. No Visicorder traces
18. No computer log available
19. Independent safety and accident protection system 18-30
                             ~ ~

~ 4 ~ 0 gp Q ~ ~ 4 I ~ p t S o t

           ~ ~

I 4 ~

                ~ ~

KEY FOR TABLE 8

1. No.

2; Load case

3. Number of events
4. Reactor pressure (bar)
5. Drywell pressure (bar) 1)
6. Suppression chamber pressure (bar) 1)
7. Vent clearing
8. Condensation
9. Number of valves
10. Temperature load case 2)
11. Frequency of occurrence
12. Pressure transient
13. First response
14. Interval
15. Holding, T
16. Maximum values
17. Normal response
18. Condensation, pressure relief system
19. Maximum differential pressure
20. Water fall-back
21. Large break, AD [abbreviation unknown]
22. Small leak
23. Small leak
24. 1) Overpressure
2) Specification, Rev. 1 of April 1974 KKP/XA/SD/002
3) Still being supplemented Remark: 1 kg/cm2 = 1 bar was set 18- 32

W I ~

                                                                                                         ~

a0 80 O Vl Tested range I rI 7C-Vl Clperating .range a I I Cr 60 0 getesteter C I~ Be reich Vl 50 Betrlebsberelch C 2 C Ui C gp 4Q r n 0 30 6~ 3 n 20 K s E 8 I 10 0 0 10 20 30 40 QQ 70 80 Reakrordruck [bar] Reactor KKP pressure Bitd o'1 8etriebsbere!ch und getesteter Bereich des Entlastungs-systerns nge o f th e Figure 01 OPerating range and tested range relief system

90-80 $E O CJ Tested range tA Operating range 1 rtp 70-IJ l/l a 60 E ~ X getestete.A,,' E 0 C Bereiche tA y Betriebsbereich I C 50 0 f4 a f4 ol I C V liPx'A'A '~

  'a   40 C

A 0 Ul 30 o a 20 CL E 10 0 0 10 20 30 40 50 60 70 80 Reakrardruck [bar] Reactor pressure I'i I( B Bild o~: Betriebsbere!ch Und getestete Bereiche des Entlastungs-systems Figure 02 Operating range and tested range of the relief system

lr 6

                                                                                                                                                                                                 ~ ~

Arrangement of blowdown

                                                                                                                                                                                                     ~

quenchers in the suppression chamber with associated relief valve numbers 8', Terlperolurlonze

                                                                 "'26IT2lltl2                                                  der Abbl used. +en
                                                           /r                                                   Anorb~x ln 6 r Kolldensollcnsl on.lrer rAI zo2 rcoyrr> 8 rotoslr.res rrOonzr    rn
                                                                            /

0 ig <o'0< 2 r ~ .rr~

                                                                                                                                                                                         ~8
                                                                                         -2 9,lpcry~

10

                                    )I r I

I P~ O42h) A ~ ~ I

                                                                                                                                                                                          ~

04 R II3o Lrr ~A I I

                                                                                                                                                                          >o2s      0 g

J

  • II A)LSC, O3 S 'd DMS-68
                                                                                                                                                                       ~

QHQ S DllS-69 III 5 jI,O700 OI4S-70 > 9'7'losd OI4S-II @

                                                                                                                                                                           ~I38 S S O I A.SA<<. yn                           2OACA oO Ltrrr I    Ortl
         'o CI  Orlon onltr                                                                                                         gh'5      V KeSrl                                                                                                                                g OIJ p S

l~g owen s s

                                                                                                               ~Ac                                                         S     OI aC--Ot.~.rt                                                          Pr
                                                                           /                                             C6 Q

TCEDqrql32rjon~ T 29I T22IT2l, III I0 5 8

                                                                                                   ~Temoero urlonze                                                                   n T 23I T 251 T 27
                               / j/      ]-
                             /    /                                                                                             QIU3'I KKP. I-g l leiAlesl                                             n o

AbClcseversucne 0 o A rn 6~~.C 2I J ~f 3 I 77S 0 Pl 6 Cll 2'

                                                                                                                                                     ~                                 s SS. 2 fr Figure 1:

K'KP X hot test, lowdown tests

Fa.gure 2 ~ KKP IXnstrumentation Slowdown tests of during e the hot test. P ressure relief system. Revision: 3 of l Septe er [SEE NEXT PAGE FOR KEY] ) Mio -': KKPI-Abblctseversuche bet tTt Het() tes i trun)ent(erung ches Oruckentlastunass/tems Schnit t I('! Revision: 3 vom 19 76 Wd -2 I WV Pd -'5 Wd -1 Tv Tv 1 I Pst n pd-2 u. pd OI,

                                                                           ~
                                                                                 ~

M

                                                                                                 ~  .  'chnt tt I/I
                                                                               ~      ~

0 OMS(Y) 4 OMS(v)1 OM S

                                                     ~
                                                  ~

(V) 2 r r VI

                      ~   V        '
                                                ~    ~

r rp r

                                     ~
                                         ~    ~                                                         Q           0  OMS(Y) 3 Abbfaser ohr
                             +17 54 Wd2~

D~ Sch n)tt II 1 li

                                                                  ~

aMs(v) (o va~ers na >z,~In( D DMs(v) s t OMS (v) 6

                                                                                                             ~

l Cl HUll (Oh(~ DMS( V) 2 CD m Q II I['r PF1 U (Duse G) DMs(v)s r St.-hni t III / III OMS(V) 14 iIII OM S(V)16 I I OMS(V) 11 MS(U) 18 CMS(v) )2 Wd3 OMS(U) 17 s)she 8 OMS(V) 13 Bi(d 12 Abbtaserohr OMs(v) 15 Falls nichts a~res vernterkt, 8 A n reer k ung: V= Ver tika I O9 sird c!ie hteAgec)er he) Enttaslungs-systeII2+auf 260 o U =Um tang l es w ssisl Az(s ssccs) 1ss 7 ls- 36

KEY FOR FIGURE 2

1. Section l
2. Blowdown'ipe
3. Quencher E
4. Quencher G
5. PF 1 and PF 2 (quencher G)
6. Normal water level
7. See Figure 12
8. Note: V = vertical, U = circumference
9. If not otherwise noted, the measurement relief transmitters in system F at 260 DMS = stain gauge 18- 37

Figure "3: KKP Z <<'lowdown tests in the hot test (RA 31 S22) Xnstrumentation of quencher P Revision 3 of '1 September 1976 BlLD,~: KKPi-Abblaseversuche beim Heiittest Instrumentierung der DUse F (RA 31 S 221) View toward fitting All strain rotatably gauges displaced to the left by 65 mm from the middle of the 6itWeld weld on the top of the SchweiAncht two quencher arms

 ) +4 r
 ~r r r~ t o

/ Og r 7g DMS- 23

 ~" Via g4        \

i Pi~( .c~ j

 <<;.k    j,  DMS = strain   gauge                                          OM 5-      25/  26 770 <<

DMS-2< L DMS- lB D M 5-20 MS -21/22 Glen und unten an Cusenarmen in der seokrechten Ebene Top and bottom on quencher arms in the vertical plane 18- 38

Duse A Quencher A DA = pressur transducer ADA -lI

                                           ~

WA = displa ement transducer

                          + l2,78 m          DMS =   strain        gauge WA->6 DA- ~5 DMS-86                    + 1G,C5   m DA->6 DWS -87~

WA->7 DMS-88 DQ -89 Figure 4: KKP 1 Bild 4: KKP 1 Instrumentation of the Instrurnen ti er vng der suppression chamber Meridian: 108o Kondensations- Kammer Revision: 3 of 1 September 1916 Meridian: 108 on ~ 3 yarn 1.9.76

                                                     'evels) 18-39

+16,54 DA -17

                                                      +10,45  I DMS-94 V/A -19 DMS   -95 Figure 5: KKP 1              Bild 5 KKP ',        1 Xnstrumentation of the       Instruml.n ti er vng der suppression chamber Meridian: 145o               Kondensations- Kammer Revision 3 of 1 September 1976          M srldian:      14 5
                                                   's vIs I on:  3 vom 1.9. 76 18- 40

"1 OUse 6 Quencher G DA-18 + 12,780

         /

WA-20 DA-2,

           'o+     I DM S-90         +-10,<5 OA-1                              D MS-91 VfA- 22 DMS-92 DMS-93 WA-   21 Figure 6: KKP 1                Bild a     ',

KKP l Xnstrumentation of the suppression chamber Instruman t i ar ung der Meridian: 228o Kondensations-Karnml.r Revision: 3 of 1 September 1976 Meridian: 228o Rt vision: 3 vom 1.9.76 ZS- 4j.

                                                          +15QL

+ 1450 DA -3 DA-5 DA-< +10,45 Figure 7: KKP 1 BiId 7 KKP

                                      .       1 Instrumentation of the      Instrumen ti er ung der suppression chamber Meridian: 244o              Kondensations-Kammer Revision: 3 of 1 September 1976        Meridian: 244o Re  Yision: 3   YolTl 1.9,76 1S 42
 +) 6,54 DM S-68/70 69/71    ) )

DA-12 +) 5,04

 +'l0 50 OMS-67               DMS-65 DMS-66               DMS-64           Ouse F WA- 23.                               Quencher F
               ~  +12 780
1) DA-11 WA-15 DMS-63,I

+ 11,92 I A~ D iV S'5 2 DA -8 V/A-14 I

             /                j
                                                            +10 45 DMS-60                                          DMS-52 DMS-61 OA -10                     D MS-53~))

OM S-50 DMS-57 D MS-51 DMS . 56 DMS58 DMS- 55

1) Strain gauges glued ~DMS- 54 twice, wired, connected only once DMS-59 DA-9
  )) DMS       doppett Kleben, verdrahten,nur 1- tach          Bi ld 8      KKP   1 anschlie       Ben Instruman tier ung        de,r Figure 8: KKP 1                  Kondensations- Kammer instrumentation of the           M e.ridian: 260 o suppression chamber Meridian: 260o                   Revision:      3  Vom>.9.76 Revision: 3 of 1 September                                    H 1976 18-43

Duse E

                                          'uencher E

I I I ig 4x strain gauges earth displaced by 90 +88 DMS-82 85 Cx DMS jeweils um 900versetzt Stutze auf 2850 0 OMS82 Support at 285 Bild 8 'KP 1 X 3M 180 OMS 83 Instr uman tier ung der RM QMS 85 Kondansations- Kammsr CQS 8E Me,ridian: 284o

              )

270 Revision; 1.9.76'igure 9: KKP 1 Instrumentation of the suppression chamber Meridian: 284 1976 Revision: 1 September 18-44

MESSTELLEN AM T-STOSS Measurement points at T- 'oint

                                                      /     r OI4S 58 DI IS 59
                                       ~".oiX~.

BILD!'.". KKP I-lnstrurnentiervng am T-StoA der KK-Ver-star kung, I<eridion

                                                                        ~

2<o'4 O 7dd'l5 3 1 9.75 I 11175 2 15.5.75 I ~~ \ g ~ gt, ~ ~~ ~ Figure 1Q: KKP I Instrumentation at the T-joint of the suppression chamber reinforcement, meridian 260

I LAGF MESSTELLEN AM L-STOSS Position of measurement points at the L-joint DWS-62 DMS-63 / WA 14 DWS- Ga DI4 S- 61 Figure ll: KKP I Instrumentation at the BILD // i KKPI-L-joint of the sup- Instrumentierung am L- 5 too der KK-Ver-pression chamber rein- 0 starkung,Hernia~ forcement, meridian 260 o- e I it e ". ) r 9 v: 1u75 2ro:: e l~ 515

DM S-78 OM S -79~ DMS-76 DMS -7a DM S-77 OM S -75 100 DMS- 80 DMS-8] 30

                                             +  9890     m f

a 3Z

      ~
                                      <<W A      -          at s4   I '

11/12 ouf 260 WA - a 7N 17 ouf 108 go NA - 21 f 228 a DbiS 73 longitudinally I Ansicht von unten

f. gegen Rippe glued Bottom view toward rib Middle WA-12 hg ccaical rilf/

ll

                     ~l~                                       idion   2SO~

li I I l i/'er Bitd ll, WA - ll Inst ru me.n t i er ung d es Etc r e,i ches Bodenha t terung in der Kond-DMS- 72 Ka rnm er tangs geklebt longitudinally glued Rav)sion 3 v.1.g.i6 t Figure 12: Instrumentation of the region of the bottom mount in the suppression chamber Revision 3 of 1 September 1976 18-47

4I 4

(M) (U) at DMS-96 auf 108~(H) DMS-97 auf 228 (M) I D M S -98 au f 260 ~ (M) DMS - 99 auf 108 (U) DMS -100 auf 228'U) DMS -101 ouf 260 (U) Figure 13: KKP 1 Bi td ~9: KKP 1 Xnstrumentation of the Instrume,ntiarung der suppression chamber lining Kondenso ti ons- Kamrn e.r Revision: 3 of 1 September 1976 -Lin ing-RG Yi s I on,: 3 Y0 fn 1.9.76. 1S- 48

max. pressure amplitude during c1earing max. 0 rue ka rnp li t u de l L-joint Ljeim Freiblasen 0 Mean water temperature 34 C 0,8 o one-pipe test KKP measurement bar x multi-pipe test, ~ values 0,6 0,< 0 KKB 0 X Qxo scatter o band 0,2 0 0 iKKB 0 10 max. pressure amplitude 20 30 AO 50 60 Reactor pressure 70

                                                                                ~b    80 Q r during clearing                       Spherical shell max. Druckampli tude                  Mean water temperature 0

34 C beim Freiblasen values

                                                            ) KKP measurement 0,8 x multi-pipe test bar 0,6 G,a 0

0,2 X 0 Streu-,~ I bBAd Kf(a 0 KKB sd att ba d 0 )0 20 30 <0 50 60 70 80 Reak tor druck -2~bar Reactor pressure Figure 14 KKP hot test clearing Maximum positive pressure amplitudeofduring the in comparison to the scatterband maximum pressure amplitudes measured in the KKB hot test 18- 49

0,9 0,8 0,7 0,5 0< d an canclidions 0,3 o 0 0 0 I tel c.one!i Aons'

              ~ r+

0,2. 0

      /

lo

                                                                 ~

0,1 o 0 20 25 3S 5 15 Frei b ta se druck )

                                                                               ~bar 0

Vent clearing pressure Figure 15 KKP hot test Dependence of the bottom pressure amplitudes on the clearing pressure

                         'Kgp Hei O,test A b h a n g i g k 'e i t, de,'r I

oden'-D'ucl<a nP ti tudor.A vami= >i b.! asedI uc~< 18- 50

gY

   ~ ~

tf p /

                //

p, r i r iC r t P g s

                                 \                                           '&r    &>>t I   LN ('4   C'r  '4
                                                   ~    ~                     'l, e,'

I T ~ Q... csQQl j l (+<4

             ~   r
               .> {"4), jlgt                                                                                              ~ ~ grI'I r )riig
                                                                                                                                    ~

r) I j )hgl l ();I)

                             ~
                                                                                                   ~

f

  & ~     ~

I/

                                                                             -f       i          gi-                                                                      a   /pe, I

r')~'~tj. ~, I

                                                               $ {r rf
                                                                                             ~

4 Valve lift "NR

         ;1i Blowdown          test
 ~     ~

r{'j'. r* gL p, If r

                                                                                                                                                                       @    ~i" Valve
                                                                                                                                                                             ~ >>
                               >>r         ~  P ~

lW~J m.-~ C r

                                                                                                                     &r&
                                                                                   &~
                                                                                                             ~
 ~I       ~
                                                                          ~     ~                                  ~&        ~        I M

l r ~~

                                                                                                        ~ ~
                                                                                                               )
                                                                                        ~ I
                                                                                               ~~~uk'!                    .,

C'g ~~) TrV~ $ fp I ~g Iy', P,

                                                                                                                       /I                       '

I Frequency 10 Hz I TxDie Rzi s &r 18- S2 Figuxe 17

Figure l8 KKD hot of negative to positive bottom pressures tests'atio

                                                    .during clearing .of the perforated-pipe quenchers Comparison of theory and experiment

~p neg

            >,0 bar 0,8 o

0 DA13 / I l 04 DA16 o x ~%~x 02 ~~x4x~~ 0 02 04 08 1,0 1,2 14 i,6 i,8 2,0 4p POS bar Et i l d 'l;".= K K Et H ei 0 tes t Yerhaltnis der negativen zv den positiven Bodendrucken beim Freiblasen der Lochrohr dusen Yergleich Theoric -Experiment

s Test

 ~p     'L                                                   VerslJch
                                                                                    +

1 g Z p " P I c-. /'!: Cr t 8 bar meas. values DA13 0,2 0A1 01

                     . 10     20            30o         40o             500            6 0 U m f Q 9 g 5 Vl fl k 8 f 6 f Q
                                                                      }                             Cl Ap         OA IQ                        Circumferential angle, degrees Te 03 0,5,                                                                     Test          1  0 bar                                                                           Test             9.2 Test DAB 0,4                                                                      Test              4
                                                                   ~+          Test           ]9        Z DA33                   -,      3/R - ~ r.~y) l ung a u s do n 0)3                    0                                     SPezl fik q t I ans~or ton f ur I

I 3 ho< rqa ta < Anoprocho fl garo chn a

                                                                                   + ap 1/R       distribution calcu-lated from specification
                                                          !   v'alues'for           nor'mal response 6I                                    I a

I [ I I I 0 I I 00 ]po po gg ag  : d trnfanga inlrai grad Bild 79 f3h, I Cirhumfhrential an g, I I lh I de g rees i ~ I I 4> I

                            ~r3o~Y-~"~i!vip '! r Bo.,g,ng,",

Figure 19 KKP hot test Circumferential distribution of bottom pressures 18- 54

La &Oh J ~ ~ ~ I

                                          ~ 'i 0    ~ 'i   iII J I I
                                                                   ~~me   ~ lg      ~'E          C
                    !                                                                      (up
                                                                                               ~

I

                                 ~   I Q     .lMcMrk,;

I

                                                                                                           ~ ~   ~

Blowdown

                         ~  ~

test 35 r,.r . ~, ~' I ggMJ H IG g)TOgQ( g

                                                                        'f 'n'
                                                                           ~
                                                                                                                                                            ~ .

Valve G

                                                                                                                                                     ~PQP r'gt     r Time      axis                                                                                                            i, ~
                                                                                                                                                                  'I ~
                                                                                                                                                   ~,

r I g

                                                                                                                                                                       ~

M~A PC...~ 1'-P g+/~g i P ':-'.-'-

                  ~
              ~ I                                      ~ ~

t,~I L I v(54 N

                                                                                                                        ~]A c> ~~/re P
         ~ I              Z
                                                                               ~A~  AAAP                                     .

C '" "'

                                                                    "49~        ~ 5                 g L'         I I!  r.'
                                                 . ~

p~

                                                                                        ~~

I

                      \~

Frequency 10 Hz 18-55 Figure 20

                                                                                                                                                                                                          ~

t ~ Blowdown test 47

                                                                                                                                                 )V.A.I
                                                                              -. y    a<.t    ~ ~ ~  W +IVY ..      e~~>t. <: ...:@&i.t+r>~'.
                                                                                                                                                                .    "4. g0$

tPQ"SW+

                                                                                                                                                                                      ~

I. a"arx~ I

                                                                              ~ Vta444444 ~      V '4P       ~   4t Pt   a ~  te   ~'~~raeatatrW taPttet      'w"   gV eeae~tet4PIVeaaaa>>

A'I ttI I t Ab~~~~<+I'sUch /~4 ~ 4P4 II P~~

                                                                                                                                                                                                            ~

4 il eap 'WO Visicor~ier ~ 1'~

                                                                        ~                                                                                 't"                              ~~t ~  ~

l4 4 'gY ' tt' I ta ae <<M ~ ~ " " ~' 444 ptp 4 'ett ~ IC\tPV'ttPttet t t I~

                                                                                                                                   ~                                       )>>,

J pj$ 44'- -'

                                                                                                                                                                  .                  P
                                                                                                                       ~
                                                                                                                                                    ~                  ~           ~
                                                                                                                                                                                                                 ~   V~ v

~ I f

                                                                                                                                              ~~4-z ~ W
                                                                                                                           'l ~                                                                                    ~ w             ~
                                                                                                                                                                                                                 ~        0      ~
                                                                                                                                           ~   ~

I

                                                                                                                                               ~so~           48
        'P Iae ~'ert
                                                                                                                                                                                +Q 9A'4'                          '

t'4

                                                                                                                                                                         ~
                                                                                                                                    ~ -----                           O~r       4.>>~

SPc~ ZP:.- .

                                                                                                                                               ~
                                                                                                                                                   ~~~.> ~gQ                         ~~                                               e e        ~ ~

v-~ WQ-0 Pt'6'Qy-P "

                                                                                                                                                                                                                             ~       ~

IVI pt pt ~ L e~ 44e tat 44pw 4 aeattt44 st

                                                                                                                                                . WI'te'eat             e~     wtp~~'

4 p ~ ad'pv ~ ~ va4 IPea ~ I v44eap vv 4eservvWavr

                                                                                                               ~            ~    ~

a

                                                                                                                                                                                        ~ VUthAW    V~4 OA /0 I

i t t I ~ ~' Wit< .,$ +"Pgg-WP' g~

                                                                                ~
                                                                                               ~
                                                                                                 ~ ~   ~   ~ I                4 P  P,tt4 y ~ ett~gqp tppeV I P.J                                                      ~ '$    ~

lNy&p K + g

                       ~           ~+4gg~fg                           ar ac@~              ~         ~,t,q H

I t

                                                                                                                                                        ~
                                                                                                                                                              '             I P4 ~                                        ~~
                                                                                                                                                                                                                            \

p ~ ~,, A,JL4tr.. PV.P; I ~ PWIeV t~~4tt4'VPCA-BuCK4

                                                                                                ~t CCRRP 4.

Jehu

                                        ~
                                                                                                                       .:r~~~~~                                                                                     ~~ ~t 18-      56
                                                                                                                                                                                                                                                                        'r
  • 9>>I; a
             ~

L,: Blowdown

                         ~

r

                               -~y
                                    ~

r>>.<<~' 4

                                           ~   ~

E3 test

                                                                   ~

47 r>> rr )r<<<<r

                                                                                                       )>>          I
                                                                                                                          )
                                                                                                                                            ~  r
                                                                                                                                                 ~                  ~

r~ '

                                                                                                                                                                                                                                  ~ /"

ASa

                                                                                                                                                                                                                                                                 ~ ~
                            ~                 >>    ~
                                                                           ~
                                                                                     )i'
                                                                                     ~ ')
                                                                                                                 ~     '  .

r

                                                                                                                                ~ ~ ~ ~ ~
                                                                                                                                     ~   <<  ~           ~
                                                                                                                                                            ~

I

                                                                                                   -   f'-f' ---;:,'                                         -.   .~,;.-:--.r..-..v.-...                     "       r+, ..-.-.
                       ~b~ (Qs~e/SQQ~[)-,
  ~            >>>>                           ~     I   r  <<      ~ ~   >>A     p << I,"<<r A                 rrr ~ ~ ~pf >><<r~                  p>>  ~      r    <<<<r>>444 <<<<                ~ <<1rAA ve           ~     <<Aa<<           '         ~

gP ¹.". '.

                    '))

j ~" CQI-.d Bt...:2.

                                                 "           '               '\<
                                                                          '<<vr<<' <<')<<r)II>><<I:>>rtv-oy~ av.gk~ +<<PppL<<<<p,)C.trt>>'.<<)<<>>)~~
                                                                                                                                                                  ~   ~

wTh~r~', PI V." "0 Ill'~,

                                                                                                                                                                                                                                               ' ~      ~ ~   ~
                                                                                                                                                                                                                     ~l'vg gQ w.4
                        ~                 I ~         ~
                                                         ~ ~         ~ ~                                                                                                                                             )))                     ~

I'

                                                                                                                                                                                                                                                          .DQg.r           ~       ~

1 ' gl'

                                  ~                                                   '                                - ~      ~   " -                        -  ~    --                      )              . 4'p~c'g ~               &(v>$ Qqf'
                                                                                                                                                                                              'I   ~                                                                   >>I
                                                                                                                                                                                ~       ~ ~
                                                                                                                                                                                                                    ~ I
    ~   >>       ~ v v~                >>      <<r     ~   r     ~        4I      <<I ~

Q ) VV +)'<<<<<<<< I >> I

 ~l                                                                               I l
                                                                                       , '<<t~~
                                                                                       ~

I)'

                                                                                           ~   y
                                                                                                     ~
                                                                                                                                     ~        'Pve'0+                                                                                       Q PiPw~g 3w+~)

S I I

     ~         ~      ~   ~ A>>                           ~          ~  \>>>>        \>>       I           r Irv>>>><<>><<<<<<r>>>>I                  rv>>v>>v v<><<r                      ~ >><<d>> ~4v;J4<<4Q<<<<h                                   r,   r gr    phv       ~  ~
                                                                                                                                                                                                                                                                       <<)    ~
                                                                                                                                                                                                         ~Qg+><<<               ~~a Mwa
                                                                                                                                                                                                              ~                   I  ~
                                                                                                                                                                                                 ~
                                                                                                                                                                                                                                ~

I, I

                                                                                                                                                                           *                                                                                             (

r<<>><<

            ~.
                        ~r')IC,<<r>>. v>>r                                  I r        -I L
                                                                                               ).
                                                                                                           <<l >>kI >>>>rrr)VI                                                               A>><<c>>>><<"                          ', ~ Jr>>

I ~ I

                                                                                                                                                                                                                         ~i   @      z a".g
                                                                                                                                                                                                                                         ~

J y~Q> "g.C~ g

          ~ ~       *      ~    ~       ~
                                                                                                                                                                                                       ~1 I      ~             <<t
                                                                                                                            ~       v~                 ~         '>>r,v        ~     .>>             ~ <<    ~ ~     ~

PD3

                                                                                                                                                                                                                                     ~
                                                                                                                                                                                                                                                      <<rr
                                                                                                                                                                                        <<>><<<<<<r>>>><<<<              ~ >>>> +     v>>v        <<<<>> e          <<,Ir r<<I      I r
                                                                                                                                     'I'                                                 I       V I         ~    ~                                                                             ~ I I                                                                                                                                                                                         C',
                     ~       r    ~
                                                                                                                     ~ I
                                                                                                                                                                        <<r 1)v>>>>rg f%.-.. I ..'.:..-" .                                 '>>rr:r.-..>>>>r>>>>II'rc:""-"

lb'>> 7 ~ 4 )>>r <<<<l') I I ivy<<~)III'V>>';4'rr>>IS LZC>>>>v)>>VLg>> ~~(t lWf~ Irk<<<<r>>>>r<<>> <<

                                                                                 ~P'                    )!

Figuie k2"' I~ ~ ~ ~ Time axis 18- 57

Vent Clearing Pressure 36 Freib lase-druc k 32 bar 28 0 APR= 88 bar 20

                                  ~pR -70,6              b Qr 12 0

I 0 0 1 0: 200 300 400 . 500 600 700 V en t i I II f f n u ngs z e i t m s:

                                         \

Valve opening time

              '0     Re   C h.en W e'.'r  te:     'Computed. alues I

Measured values Specification'alue g;Spezifikationswer t r I I Hild ="."- KKP -'Nichtnukiearer Hei,f3 test Abh cing i 0 Reit des FI eib fase dr 0 c j(e s von.der Van jiloffnungszeit Figu're 23 KKP non-nuclear hot tqst Dependence of: the clearing pressure on the valvei opening: time 18-58

KKP non-nuclear hot test Steady-state pressure in the quencher Coefficient of contraction e = 0.75 x measurement values near the quencher KKP Nichtnu i< learer Hei 0 test stationary Steady-state !3rucke in pressures in Stationarer Drucl< in der Duse the quencher )(ontraktionsziffer M = 0,75

.ter Duse b

14 XHeowerte in der Dusenncihe P

           ."-12
                                                                            ~X X
--- ----..10                                                              XXX x'
   -   -- ----8                                                                          apR  = 88 bar 4

po ca I 2 Mass flow density Massenstromdichte ttg/rn s 0 200 400 60 8 0 100 1 00 1400 160 180 2 00 200 200

m Zl g l as translated info ~ E N. G L. I. 8. H I

                                                                                             ~Cy 111
                                                                                                  ~

PHII IPPSBURG I NUCLEAR POMER PLAiilT ESPY LIST OF TEST PARAflETERS AND HOST It'lPORTANT MEASUREI"'lEINT '11 Ci g Q Qt RESULTS OF THE NON-iNUCLEAR HOT TESTS i'(ITH THE PRESSURE 0 RELIEF SYSTEN as translated from i KERNKRAFTWERK PHILIPPSBURG I p ci'

                                                                                                 ~

AUFLISTUNG DER VERSUCHSPARAMETER UND WICHTIGSTEN t'1ESS- tll ~ il ERGEBN I SSE DER N ICHTNUKLEAREN HEI SSTESTS MIT DEM DRUCKENTLASTUNGSSYSTEM if'

                                                                                             >~I~

~IV P~C3+/R/; HOFFiXANNJ SCHNID BC, $ KNU WORKING REPORT R 521/41/77 ITI 2 AUGUsT 1977 8 y) (PPRL DOCUMENT NO 19) hcC UIf%IIIICll%It%4 AUGUsT 1977 VOo1 PPaL Joy;,:"-'.:: ,.7 tO i ll PENNSYLVANIA POWER 8c LIGHT COMPANY 71 SARNARO AVENUE. WATERTOWN mID

                                                                                                 -I ALLENTOWN, PENtiSYLVANIA                iVIASSACHUSETTS 02172   1617) 924-5500         ~

Top3.co Working Report R 521/41/77 Philippsburg I nuclear power Number plant List. of test parameters and Karlstein, 2 Au ust 1977 most important measurement Place, date results of the non-nuclear hot tests with the pressure Hoffmann R 521 337 relief system Schmid R 521 328 Authors Dept. Tel

Reference:

KKP I 2 /s/ Class Signature/classifier R 521-Hff/1551-150 005 File no. Su'mmary: This report contains a summary of the most important measurement results of the non-nuclear hot tests with the pressure relief system in the Philippsburg I nuclear power plant (KKP I) . The results are presented in the form of Tables and graphs. The content of those documents are briefly described. In I particular, the following subjects are discussed: test parameters behavior of safety/relief valves pressure load on the structures of'he suppression chamber loads on the structures of the pressure relief system. A complete compilation of the instrumentation diagrams is not included. Reference is made to the Test, Specification /1/ for that. The designations used for measurement points in this report correspond to that Test Specification. COMPANY CONFIDENTIAL /s/ /s/ /s/ /s/ Countersigned Author's signature Witt Dr. Becker Hoffmann Schmid Distribution list '("z.K." = Summary for info only!): R 142 3x R 1 z.K. RF 14 lx R 14 z.K. R 52 lx R 5 z.K. Opc'hpt+ 48'> R 521 . 4x R 522 z.K. gpss! p) g 7goj6'0 (60 R 523 z.K. Bats /8=28'-TED Opc!!Npui~ R',6~JLATG'.!7 DGLKET F )LE Kraftwerk Union 19-1

~ Brief descri tion of contents
1. Abbreviations used German English DAS PSS Pressure suppression system DES Pressure relief system dyn o dyn. dynamic EVV Relief pilot valve KK SC Suppression chamber KKP I KKP I Philippsburg I nuclear power plant lfd. Nr. No. Number max. max. maximum-PA Nr. 'est instruction no.

RDB Reactor pressure vessel S G. EV SRV Safety/relief valve SVV Safety pilot valve US US ISAP Independent Safety and Accident System Pilot valve pD ym/m 19-2

2. Introduction In accordance with the goals set in the Test Specification /1/,

primary emphasis in the KKB non-nuclear hot test was on pre-operational testing or the behavior of the SRV, the behavior of the components of the pressure relief system,

  - the magnitude and distribution of pressures in the suppression chamber .

The test results relevant to these subjects are discussed separately in the following Sections. Comments are made only when necessary to understand the Tables and Figures.

3. Test arameters We shall dispense here with a detailed description of the test arrangement and instrumentation, which are reported upon at length in /1/.

The overall arrangement of the pressure relief system inside the pressure suppression system is shown in Fig. 1. The arrangement of the 8 SRV and the blowdown quenchers A-H in the suppression chamber is shown in Figure 2. The most important measurement transmitters for evaluating the pressure relief system and their exact positions can be seen in Figures 3 and 4. Those Figures show the pressure relief system with blowdown quencher F on the 260'eridian, on which most of the blowdown tests were concentrated. For further identification of the measurement transmitters. and their positions, we refer here once again to the Test Specification /1/. 19-3

A complete list of the test parameters is given in Tables 1-7. They include the relevant parameters for the blowdown tests: blowing SRV and quenchers,

    'type of actuation, liquid level in blowdown pipe before beginning of test, pool temperature before beginning of test, test duration, reactor overpressure at beginning and after end of test, liquid level in suppression chamber, liquid level in RPV before beginning of test, steady-state flow rate.
4. Behavior of safet /relief va ves Zn order that the pressure in the RPV not rise impermissibly, e.g., in the event of a failure of the main heat sink, the valve opening time of the SRV may not exceed 1000 ms with an additional dead time of 500 ms. Figure 5 shows diagrammatically the definition of all dead times and opening times of the pilot valves and SRV.

4.1 Dead and opening times of the safety/relief valves Listed in Tables 8 14 are the results of the vent clearing tests at ca. 70 bar reactor pressure for SRV "A - H", divided according to the excitation of the SRV by relief ilot valve or safet ilot valve and also relief ilot valve and safet A comprehensive survey of the measured valve times is given in 19-4

l Table 15. Figure 6 exhibits these results once again with respect to the scatter of the valve opening times for valves B, D, F, H and'he excitation by means of 1 pilot valve or 2 pilot valves. 4.2 Typical lift/time variations Figure 7 shows a comparison of theoretical and hypothetical lift/time variations with measured opening characteristics. Besides the lift/time variation determined computationally by the manufacturer of the SRV, the idealized variation used for precalculations and the variation assumed for extreme hypo-thetical accident conditions (jamming valve), we have also drawn in three of the lift/time variations that were measured in the vent clearing tests and which are representative of the following cases: quick-opening valve (test 19 2), normal-opening valve (test 18), slow-opening valve (test 28). By selecting the quickest and slowest of the measured lift/time variations, we simultaneously get the upper and lower envelopes for the experimentally determined opening characteristics.

4. 3 Flow rate of SRV Table 16 is a comparison of the required total flow rates during the valve opening phase and the total flow rates determined from the discharge coefficients (< values, Figure 8) in accordance with the lift/time variations. One representative test each was selected for valves B, D, E, F, G, and H. According to 19-5

that, the actual steam flow rates are higher than the required values. Figures 9 and 10 show two supplementary examples of measured lift/time variations and the corresponding flow rate/time variations based on the < calculations, with which the required and the specified flow rate/time variations are compared.

5. Load on the structures of the su ression chamber The pressure values indicated in Tables 17 31 represent maximum values of the measured dynamic pressures during the vent clearing phase.

The following subdivision was made: Pressures in 260'eridian in Tables 17 19, Pressures in 244'eridian in Tables 20 22, Pressures at periphery of the conical bottom in Tables 23 25, Pressures at periphery of spherical shell in Tables 26 28, Pressures at the inner cylinder in Tables 29 31." To clarify the pressure distributions in the meridian cross-section at 260', Figures 11 14 show representative examples for the different types of tests: Figure ll Distribution during vent\ clearing with quencher F at a reactor pressure of ca. 50 bar. Figure 12 Distribution during vent clearing with only one quencher (F), with two adjacent quenchers (F,G) and three adjacent quenchers (E,F,G) at. a reactor pressure of ca. 70 bar. 19-6

                                                             ~    r Figure  13    Distribution during vent clearing with three adjacent quenchers (E,F,G) and reactor pressures of ca. 45 bar and  70 bar.

Figure 14 Distribution during the vent clearing phases of an interval test with quencher F. Figure 15 shows the measured circumferential distribution of the bottom pressures. Xt turns out that the 1/R circumferential distribution, based on the specified value of 0.5 bar for normal response of the pressure relief system, represents an upper enve-lope for all KKP l blowdown tests.

                          \
6. Load on the structures of the relief s stem
                                    '\ ~

For conversion of the strains measured at the various components of the pressure relief system into stresses and forces, the appropriate conversion factors for the individual measurement points are listed in Table 32.. The strains indicated in Tables 33-42 (and stresses or forces) represent the maximum values measured during. the vent clearing phases. The strains and stresses at measurement points DMS 15/16 and DMS 17/18 are an exception. Those values are correlated in time with the corresponding vent-clearing pressures. Tables 33-36 contain the measured dynamic strains, stresses and deflections of the blowdown pipe and cladding tube. Tables 37-40 contain the measured dynamic strains, stresses and deflections of:the perforated-pipe quencher and bottom mount. 19-7

Tables 41 and 42 contain the measured dynamic strains and forces W in the struts of the cladding tube.

7. References
  /1/ KKP   i extension Hot   test: Specification for the tests of the relief valves and   the emergency cooling and suppression chamber cooling systems.

Revision 3 of 1 September 1976 19-8

Ig KEY FOR TABLES 1 7 KKP I HOT TEST, Test Phase II (blowdown tests) Status: Operating Log 1/26/77 Test PA No. Running no. [PA = Test Instructions]

2. Date
3. T3.me 1 Relief valve no.
5. Actuation EW = relief pilot valve SVV = safety pilot valve
6. Liquid level in blowdown pipe 4) (-m water column) 7 ~ Temperature in suppression chamber before beginning
                                      \ ~
8. Test duration
9. Reactor pressure 1)

PR PR Beginning End 10 Liquid level in suppression chamber

  '2.

Liquid level in RPV before beginning Flow rate,, valve no. B+C A+H F+G D+E [t = 1000 kg] Leg 1 Leg 2 Leg 3 Leg 4

13. Remarks
14. 1) Entered reactor pressures were read off from the digital indication on the control panel immediately before and after test.
2) Flow rate determination by measurements of 4 values
3) Interval test
4) rc = real conditions, cc = clean conditions
5) Valves E and G beginning on 9/26/76 with swing check valve in control line of Independent Safety and Accidient System.

19-9

~ ~ a KWU KKP I HEISSTEST, Testphase II (Abblaseversuche) ~ Stand V 822IB 521 Bet riebsprot ok ot l "6 o I o 11)77 3 4)Fultstand 7 0 Fullsl. Durchsalz Ventil-Nr. ersuch r- Entlaslungs- Ansteuerung Ve Aeaktord Fu in Demerkungen A ~ ll Fi G 1'iC Datum 5) venlil- im vor suchs- I'Arel PA(et in II00 OtE zeit EVV SVV Abblaserahr vcr Strang Slrang Strang Slrang r PA-Nr. Itd. Nr. Nr. Oeginn dauer Oeginn Ende Ktt Oeginn I 2 3 4 1976 -rnWS - mWS ='C bar I I ta lt Ii I Ih 17.9 ~ 15 2ta rc 10 t,) ~ I, 4t,6 I C>,4 35ta

     ~~

17-9 ~ 17-5C C rc 35 5 I,'>,7 ta I ~ Ia IG,4 353 I 17 ~ 9 ~ 21 ~ 5(> ta,>> 33 'aZ 5 45 3 16,ta 300 10 9 ln,t>5 3 5 32 t>9 IZ I ~ I Ci, Ia tant> E 0 E,C F Opened for 2 s 1 min before P 10 9 11 56 E,F,G X X rc cc 5 I>9 >O 43>3 ICi,4 730 369 due to cc 6.1 17 9 "-'9 E ~ F,(i E C I' rc 35 10 4Ci,') 42>7 t6,4 7'i 0 3(it> Measurement only partially deter-a X X I mined I 6 2 17 ' ) 39 E,F,C E X C X F X rc )C> 5 Ia 5,6 41 ~ 9 I G,ta 71'a 357 Repeat of test. 6.1 2oe9 cc ) ta 10 t6 I>5 r a) Ci 2O cc 70,2 67>5 16,47 I2,60 Ciot> 9+I 09170( O>5 7l,fl 69,0 I Ci ~ I>9 l2>') G19

~

I I(,', a) 20 ~ ') ~ I 7~0( 1 c 69,0 67>0 16>ti9 601 5 s after'est 9.1 lr ~ 9' 20 9i 17 0( rc r5 Ci7,0 65,0 16,4>) I>>,9 50) 10 s after test 9.2 10 10 2o.9. 10.3.'a )i 3 G9,2 I Ci ~ 5'6 12,7C> 6'2 S

                                                                                    'i,3
                                                                                                                                                               ~,0i'>

10 Iat )Ia . 5 7>> ~ 5 70>o Ii Ci 12>79 624 nfl,o'c

                                                                                                                                                    ~

ll 2 11 04 Ia 35 7 >7 Zn,) tC>,I,7 I

 -:II t

a. i:1'.1

 ':';i a

t at'..

              ~o 12 13 2)

S) ~ 1 I) ~ 2 I) Eingelragene

                                  )o 30,9 9

n.9. 30 9 ~ 21 ~ 2( ()0 0') 0'c rgi DurChSalZbeStimtnung naCh Ir -Vlert - t4eSSungen rc rc 37

                                                                                           )I inter VatlleSt 5

70>l 71,1 Cio,o 73> I 73> I 7I ~ C>7,6 GO,2 Reaklordrucke wurden unrnlttetbar vor und nach Versuch von der Digitalanzeige in der Warte abgetesen. I G, Ia 1Ci, Ia') I Ci, Ia I Ci,4 12>7 I',0

                                                                                                                                                                 ,07 I ~,60
4) rC = real COndiliOnS, CC = Clean COndiliOnS Go) 612 Test was repeated opened)

Repeat of test 13.1 wl I I(iia I(>>clat.aai>va n( I I iia uSOS St, aarr la I (aaua

                                                                                                                                                                                                                                ~

(valve had not.

KWU KKP I HElSSTEST, Testphase H (Abbiaseversuche) Stand V 822IA 521 Betriebs protokoll Ce ~ ). ~ 1977 4t Fultstand I)

                                                                                                +KK Ver- Aeaktordrudl Fiillst.

FOllst. Durchsalz Ventil-Nr. ') Versuch Uhr- Entlastungs- Ansteuerung 0+C Ai li Fi G D ~ E Bemerkungen Datum zeit 5) ventil- I III vor suchs PAret PAcet in III)O PA-Nr. Ild. EVV SVV Abbtaserohr vor Strong Slrang Slrang Strang Nr. Nr. Berjir)) dauer Beginn Ende KK Oeginn I 2 3 4 1970 -mvls - mYIS ..'C bar bar tlh II h tl h Ilh 14 <<0.9> ~

                                    )  05                                 3>3                    35               7),6        C9,1i     IC,I>7        )2  ~ G4                      6)7 15     15        30            09  '2                                  Ia                                       70,2        67,)      16,)0                                       Co1>
  )Ci    16        30> 9 ~        10    0       F ~ Ii
                                                             )

X G X F 3,0 0 Ii ~ 3 31> 71>2 67.3 )6.)7 12,08 )

                                                                                                                                                                                    ~
                                                                                                                                                                                      >>(>           No     computer. lof                    available 17     17        21 ~ 9        oo>37        F>F ~ G E  G    I'    Il      rc       0 7),3                  ) G,Ii6       )',G                        ) "C>Ii            No    computer'. log                   available X  X          F       )>8      Ia )0
             '                                               EFGII rc                  G 17        30 9           )1 ~ 02     E>F>G XXXI 3                              35>.'            70,3        G5,5      ) 6,37        )n,00                       1210               No    computer log                     available 30.9 ~ 2o.oC               E,F,r,         E  I'e   E       rC       G
                                                                                                                                        )6,)                                                63)      No    computer log.available 16     10 XXXI'>C                   Ii,o                       73     r5   CIi 7                   )2>52                       I 66 F    G         F          G 19     19        30,9. I )           1Ci      ) >G Ii,o                5      73,5        67     )  )C,)          12,G4                       I 6G 20      20 I      2') ~ ) ~
                             '0.01i           E>F >G X

El'0 XXXV X V. 3~5 rc 4 ~4 G 4,1a 7o,G 64,7 )(> 5 12, 9.') 1211> No recording of lift for valve 8 20 no 'n >9 a) 10.59 E>F>G E I' XXXV I'. rc G Ii Ii 5 71>0 (>3>7 )6,53 12,01 )2)Ci 610 Ho recording of lift for valve G IIV G rc 20 20-) 29 ' 19>23 E>F>G X X X I'i,) I> G I, , I, 1>O 7" >I )(I 55 I 21>" G 1 n1 21 <<9 ' 11 58 rc 31> 7),o 70,4 )G,I>7 ,81> 62) 22 22

                             )

9 ~ ) la 07 3G 70>8 f>0 i)i 16, I>0 87 Gog No computer log ava).lable

2) 29.9. 14-5) rc 71>7 Ce) )6 r5 ),97 6)7

)) ~ ~~ I ~ 104 a)O.I> 5 3 > 70,2 CO ~ I I fi ~ Ii ) 12,88 601> ))) ~ I ~ 10 ~ OO.Ia5 rc 68,1 GG,9 )G,49 12,8tl 585 7 s after t6st 22.l **

         -'3       21     9. )0 00                                          rc                   29, '.            ll,        6),o       16, 38       12, )(i G)3 n4               n  ~

9 08. 5 rc 70 ~ I> 68 ~ I )(> ~ 3 ~ ) le 60G No recording of repetition lift, therefore . nla nI ~ 9~ I)8.47 rc 31 5 lo>7 CiO> I )Ci, 3 12,85 'C>09 Repetition o8 test 7A.l

                   '>)~    ~      II') n7                                   rc                                     (I) ~
                                                                                                                           ') Ci l   6   )6,)          12            605 ll Eingetragene Aeaklordrucke wurden unmiltelbar                   vor und nad) Versuch von der Digilalanzeiqe in der Wnrte abgetesen.                                                        5) <>I I )

ail I I)i)ac)> sc'Ie I >eave'I> I I I )>> 2i DurChSatZbeSlimmung naCh n-Wert- MOSSungen 3l InterVallleSt 4I rC = real COndiliOnS, CC = Ctean COnditiOnS l>>OS Slr>>,, ),.) I>>>>9

,1

 ~   I>>

KWU KKP i HEISSTEST, Testphase ii (Abblaseversuche) Stand V 022IR S21 - Betriebsprotokoll Ci I 1977 ct Full stand Ver- tlAt.'aktordr uck Fiillsl Fulls I. Ourchsatz Ventil-Nr. " Ver such Uhr- Enllastungs- Ansteuerung <xx in OiC AiH F+ G OiE Bemer kungen Oatum zeit 5) ventil- I nl vor suchs- PA,el <'rtrel In ADO I/d. EVV SVV Abbl as erahr var Slrang Strong Sltang Slrang Nr. Nr. Beginn dauer Aecjtnn Ende Kt( 0eginn 1 2 3 4 1976 -mvt S - mYlS w'C bar bar tin 2C 9 rc 7 ~ 3 69,>>6,30 12,O Ci23 27 >7 12. 10 rc 33<<5 70,6 67,6 16,36 12,pl G08 28 I 9 15.05 rc 7 ~ 3 60,7 16,)t, 12,C>1 29 29 ~ 1 21 9 19 ~ 11 rc 73i5 69,4 IG,33 12, 51 C33 ng 21>>9 19 35 rc 3G  ? I,G C?,6 IG,3t, f i 63 617 30 30 21 ~ 9 15 37 rc 37 5 ?1>7 60,5 16,33 12,t> I Ci10 I' E F 3 30.9- 22 ~ 40 E,F X rc 4,o 35 20 70, t> 58,5 ICi,35 GOG r>C I E opened after 14 s t 33 I 10 13 ~ 27 F>>, I' E X F X rc E F 3>>9 33 41 C l,t> 49 ~ r5 16, 51 13,0ti 525 r5 12 E opened after 10' I 3t, I~ Ip 13 42 rc 3G <<) I> t>9 r 39,7 IG,5t> >> Q 35 I 10 13 ~ 52 t>p r 3> 5 16, r5G 12<< 3') 3ti 5 >> I 10 14. 30 30 3o ~ 9,6 IG,57 11,90 20r t>$ 37 37 I 10, I 4 ~ <<'<<l I> ~ t> 30 . 3) ~ <<) ~ l 2ri, 1 IG>50 11,87 agp

          <<                           1 ~ 10>>  I r5. 2')   F                    3>95                       t>0         <<5   ~ 6  '>>2   8  I Ci, r58    I I ~ 0)                    <<0
    , t I 10     15    40                                             t>o               22 ~ 8     20,7     IG,50        11<<75                     197
 ~       r
     \

41 41.1 2 10. 08.2C> rc 6o 16,0 15 IC> t>5 12<<7? ft>0 Alternate blowdown I ri I ~ 2 10. 08 '27 rc 15 i'<<' 14,1 16,45 I '>77 135 Alternate blowdown .

 >I>

g t>1.3 2 10. Itff.20 rc 3') 6l) ti ~ I 13>3 IG,t 5 1 ii7l Alternate vlowdown O 41 t>> I.t<< lp ~ >>8 ~ ~~

                                                        <<)                       >'c                 3<<l    Cip      13<<3                 l(>>>>t<<5      I 2,7'I                                    Alternate blowdown i"

r 2 ~ 10. >>0.30 3<<) Cip 12,4 I ti ~ I> 5 12 ~ 77 112 ': Alternate blowdown" Il Eingetrogene Aectktor<lruche wurden untnillelhar vor und noch Yersuch von der Digilalanzeigc in der vlarte ahgelesen. 5>) v".>if I I 0 t>.o ~ >> 2c.').7r", 2l Durchsatzhestimtltuttg nnch tl -Wert - Messungen 3l lntervalllest 4) rc = real conditions, cc = clean conditions

1 I

t I

~ ~

KWU KKP I HEISSTEST, Tes tphase H (Abblaseversuche) Stand. V 822/A 521

  ~

I\ s etriebsp rotokoll 26> 1 ~ 1977 Versuch Uhr- Ent tastungs- Ansteuerung 4)Fiillstand al

                                                                                         +KK Ver- Aeaklordruck Fullsl Fullst.         Durchsalz Ventil-Nr. 'I            Oemerkungen
5) ventil- lm in 8+C Dalum zei,t vof suchs. PAI PA/ct in tl00 Ae II F+ G 0 ~ e PA-Nr. )ld. Nr. EVV SVV Abblascrobr vcr Strong Sl/ang Sl/ang Slrang Nr. Begi/vl dauer Oeginn Cade Ktt 0cginn I 2 3 4 1970 -mW5 - mVIS ~

C bar bar rn I Its I I ta t/h 1.10. 16. 5 rc /au 13 ~ 0 14,52 12,01 123 Alternate blowdown

                />2      I 10   16 2C                                  3'a              Iso      Go         13>5     12>7         ~ n      12,01                        121 Alternate blowdown
                /2       I los I ri 27                                rc                lao      Go         12>7     11>9   16             12,01                               114     Alternate        blowdown i>2             I. Io   16.. 0                               rc                laO      Go         11 >9    11 >4  !6>5           12 ~ 01                      105            Alternate blowdown la3    43       I. Io. 16.50     rE,h,c                  E,A,C         G la 2    13/a        11>4      7>a)
                                                                                                                                     '6,53 12,/>0 Hydraulic ht3ld-open with              TH    system rc Io                                      Esh>C         G
                /s la           17 21      4>E>A>c rc       4,o               /,Cs       Io,l      7 0
                                                                                                                        ~   I G, 57        12>39     95        .95      95             Hold-open system 45     '>5     2 10    11 20      G,E,A,C                  E,A,C         0 rc       4,/a l>3      CI         11s/a     7 ~9  16,45               >14   100       100     100    loo     Hold-open system 46     46      2   lo (/9 30 E>A        ~ Cioi             I'shee rc G

li ~ Ia lli5 7>7 16,47 12 ~ 51 90 90 90 102 Hold-open system connected after 30 s, A/C/G

                /,7      I Ioe 21 02       E+Asc>G                  E>A>c rc       ta G

10 ~ 12s4 0,0 IG,58 1,7 112 aa aa

                                                                                                                                                                                                              ~
                                                                                                                                                                                                                'a      aa as   aa    aa Eshsc         G 40     48      2 ~ 10  10 00      Gi>E>hic rc       ls ~

I> 36 cj0 7,/a 4,8 I C>, 5li I',63 71 71 71 71 Hold-open system . 49 la 9 I 2 ~ loe 11 5G G>E>A>C E,A,C G

                                                                                       'ala      2C          7,o      G,3   IG,45          13,oO Hold-open syst: em without             injection s c      ls,la                                                                                                    (test interrupted) 2 10    12   I/i   4>E>hec                    rc               l>5      162          G,l      3,0   IG,45          12,9      60         Co      4o             Hold open system without injection (repeat of test 49sl) 50     50      2 IO    2O          II s Oe<                  rc                ls I    30o          0~9      0>0   16> 31         16,3 Hold-open system 0

0 I) Cingctragene Aeaklordrucke wurden unmillelbar vor und nadl Versuch von der Digitalanzeige in der Warte abge)esen. 5) viiisl1 I E a 0 nl> 2/i 'J:76

2) Durchsalzbesti/nmung nnch>> -VIerl - Messungen 3) Interval)test 4) rc = real cond)lions cc = clean condilions uhob Slee>era'n a In>>il

KV/U KKP I HElSSTEST, Testphase H (Abblaseversuche) Stand V 822/R 521 Betriebsprotokotl- 26 1 15/1 Versuch f'rr llaslungs- ttFIt tstanrt 1

                                                                                                       +KK   Ver-    r)

Reahtor drudge l ullsl. Fut1st. Ourchsalz Venlil-Nr. " Oemer kungen Uhr- Ansleuerung rn B+C Oatum zell .1 ventit- rrn VOf su ebs- PRret PRrel I(1 tt00 Ae II F+ G 0 ~ E PA-Nr. lfd. Nr. EVV SVV Abbtaserohr Var Slrang Strang Slrang Slrang Nr. Beginn <lauer Oeginn Ende ittt Beginn 'I 3 4 2 1976 -mWS - rnWS "- 'C 5 birr bar tlh tlh tlh llh

                                 'i)  I) ~  11 ~ li 1                                                                   1? I3 16,li    16,35     12,99                      152 IV Z       2) i9   ~  11    5G                                 ) ~               31                      1(i,o   16,)i)    12, i)(i
2) ~ 9 ~ 120 1) 3~5 15 II tli, 7 16 ~ 4 12 9ll 137 1lz 29 9a 17 ~ 14 ?li,o 69,9 16,5) 12 (i5 G30 12Z 21 ~ 9 17 00 rc 37 5 73,3 G9,9 16 33 14 14Z 21 9 17 70 ' (i7,2 16,)ri 12,51 6o(i
 ~ II             19     19Z      )0 9, 20 59                                        CC                         5       ?o,0  67 5               12     li9                 (i09 tr) 21       'Iz     1-9 ~    15 ~  li?                                I C               37               73,3  7o.4     1G,  )li  1                    6)2
                                                                                                                                                    ~,6'2,6 I   ~  ~

I 21.9 ~ 16. ott I'C 30 72,1 6),) 16, )li 6 1 2li Z 21.9 ~ 16o25 rc 72,0 60,4 12,4) ri l.

      'ij
      ~   =

o 25 17 25z 26Z 21 9, 16 ~ O.ol 46 rc 35 5 5'70 60i9 Gli,0 16,)li 1",liG 5') 2 Preliminary test for test 17. Only valve F. opened'. n << II ii II ~ I 17 27Z 21. 9. Oe 10 0 35 70 I 0 0 tl Erngetragene ReaktardruCke Wurden unmlltelbar VOr und naCh VerSuCh VOn der DrgtlalanZerge ln der Warte abgeleSen. 5) triiiitt 0 <<r'< 2("9 76 1 ~ ~ sat t lliii:krrctrt.ii)veiirt la 1 2I Durchsalzbeslimlnung nach (1-Vlert- Messungen 3l Intervatttest ct rc = real conditions, cc = clean conditions

~ I I.'I ~ KWU KKP I HElSSTEST, Testphase 6 (Abblaseversuche) Si and lae e II V 822/A 52k Betriebsprotokotl 20 I I')77 4lFull staa>d Ver- >3 Fullsl. Durchsalz Ventit-Nr. 1>> Versuch Uhr- Enllastungs-venlil-Ansteuerung im Aeaktordruck Fiillst. in OiC A ~ ll Fia 0 ~ E Oemerkungen Oatum zeit vof suchs. PArel "Arel in ADO PA>>Nr. Ifd. Nr. EVV Abblaserohr vor Strang Strang Slrang Sir ang Nr. Oegire dauer Deginn Ende I(it Geginn I 2 3 4 3976 -mWS - mv)S ='C bar bar nl l)h I) h tlh t)h ZIOI 2Ge9, tn 50 X rc 3n in 30,0 27,4 36,3a 13>03 Z102 26.9. it. on 32 2>4 ~ tt IG ~ 3'I 12>76 211 XI03 26.9. i1.3G 3>9 3 ~ ~ 7 IG,33 ,Qi Zinla I e).40 2'c 47.7 4Ci ~

                                                                                                                              'C     ~   30 12 ~ 4G              402 Z105     n09     1952                             rc                              Iig,o      47 '        i'0          I   ~ 7             414 XIOG     n0.9. nn.io                 X            rc                               45>3      '        9  16 ~ 3tl 12>97 30>

Z107 20.9. o. o rc 46 ~ 0 Ia5 ~ 5 16 '0 12,07 395 Cl v X100 0.9. o.30 I'c 4II,O Ia3,O IC> ~ 3tl 12 76

                                                                                                                                                 ~       371 t         I
           'LD I

XI09 nQ '.40 rc 3la Ia5 ~ 9 4>>i e 3 16 ~ 30 12,(,0 Xi 10 n0.9. I.oG ac 34 47 ~ ') 46,4 I(> i 3') In 54 404 txj o'A Zt 1 I nQ 9 nQ ac 5lt 3 49>t>> I 6 ~ 3!> 12.36 42>>a 35 2112 nQ 9  :! i.40 Gi a3 IGLOO I 6,3 16 ~ 3>> 4og X113 n0.9. 15 4 36 5 4'i 7~ 43e 3 16 ~ Ii 12> I 5 377 ZI 14 nQ 9 en 0 4 n 36 ~ 5 4I, >3 ~ IC ~ 3') 12> I I 375 Repeat of test Z113 Z115 Io.oo 'i>3 3te 71 ' C9>4 t(i 4r> 12>61 C> t(i X 2

       \               zl IG      9.9. IG.00               USUS rc              35              72 '       C9 ~ 6      16 ~ 5       13,12                            624 e

Q X117 299 IG 17 rc 73 ~ '-'>9 ~ 7 IC> ~ 51 13,01 631 0 Z110 2') 9. 17 01 2'C 37 73 C> 70>2 16 53 12 ~ (i7 Ci)4 X119 -").9. 16. 30 ac 37 .5 70,(> 60 2 F 16 ~ 5'2, 0 I Iin7 ll Eingelragene AeaklOrdru(ke Wurden unmlllelbar VOr und naCh YerSuCh Vnn der DigitalanZeige in der VYarte abgeteSen. 5>> V>>etli I: ee.r>>l 26 ~ ').76 Ml I Itiickncte I>et>ve nt i I zt Ourchsatzbestimmung nnch tt -Vlert - Messungen 3) intervalltest 4l rc = real conditions. cc = clean conditions usus st . ~,

I' KWU KKP I HEISSTEST, Testphase II (Abblaseversuche) Stand Y 822/A 521 Bet rie bs proto k ol I 2a 1~1977

1) FiilI stand Ver- 0 lteaklordruck Futtst. Fu.list. Ourchsalz Ventit-Nr. "

Ver such Uhr- Enllastungs- Ansleuerung in OiC Av ll Fi G Oi f Bemerkungen Oalum zeit 5) venlil- In vor suchs- f'Arel Pnrct ln ll00 PA-Nr. Ild. Nr. EVV SVV *bbtascrchr vcr Slrang Slrang Slrang Strang Nr. Oe gina dauer Oeginn Ende H)t 0 egin>> I 2 3

                   )976                                            -rnWS  - iC               bar    bar                                    tl 4  tlh     tlh z120    2'),9,  16,)in                          rc                37             7   ~ 3            16,J3                Cirl 3 Z121    30.9 ~  21   lri                        rc                               72,0                                                          6 0 35                      Gll ~ 0   1G  ~ 3ri 1   ~ 47 No    Visicorder traces Z122    30 9 ~  21 47                           rc                3ri            66,3     6J   ~ Ci 1Ci,35    1 2 Ci')
                                                                                                                           ~              5117
3) 2123.; 1.10+ 11 37 rc 32 67,9 16 ~ 5 13 ~ 6'J sii) f Ho computer log available Z123. ' e lo 11 ~ 37 rc 32 fi7 9 6fi ri 16 ~ 5 13 (Ia 503 No computer log available
3) ~ ~

X Zlzt, 1 10, 1201 USUS rc 31 Ciri ~ 5 16,5 13 i 77 Jfl5

1) Eingelragene ))eaktordrucke wurden unrnittetbar vor und nach Versuch von der Oigilatanzeige in dei Warle ahgetesen.

Ourchsatzbestimmung nach n -Wert - Messunr)en 3) lntervalllesl 5>>r>><< 1 >:=>>-0 " ').7'i1 lliick>>Clilanvr>>l r 1

2) c) rc = real conditions, cc = clean conditions allis slaii I 1'i l>>>>a

KEY FOR TABLES 8-14 KWU KKP I HOT TEST," Test Phase II (blowdown tests) Status R 521 Dead and opening times of'safety/relief valves 2/4/77

1. Test no.
2. Date
3. Time
4. Valve
5. Pr, rel 6 . Reactor pressure, beginning
7. Independent safety and accident system
8. Excitation
9. Relief pilot valve
10. Safety pilot valve
11. Excitation ~ pilot valve not closed
12. Dead time, pilot valve
13. Pilot valve not closed ~ Beginning of SRV opening
14. Dead time, main valve
15. Excitation ~ Beginning of SRV opening
16. Total dead time
17. Beginning of SRV opening ~ static lift
18. Valve opening time
19. Excitation W static lift, SRV
20. Total opening time 19-17

1, KWU KitP I HElSSTEST, Testphase II (Abblasvel.suche) Stand R 521 Tot- und Offnungszeiten der Sichecheits-u. Enlastungsventile l .2.1977 I II VV I>>cl) t z<<)l A)II o<3. 4 Vor suc Q3 AI)l.c.cl af VV Ac)roc). llocliI III S- <<.Ii V I ~ off)loll W s to l . lub 3f<liHr. Oat.<<<II zci t Vo)lti1 USUS Anr ocl<<II g II I CII I zll I loci))Ill Of S u,rV fIICI) I le<I I I II IS u I' o ffllcl) stot Ill ~ S I

                                                                                                                                                               -u. EYyg C

llo<<l< t:or- /2 Cicsoml.

                                                                                                                               /b Vr.uti 1<if f         GcSI)III    t-1976                       <Il uclc        EVV      SVY   I'ol.zr.l t VV   t'olr<<i t       IIY it     l)unclszo     it      f o f ))<>>) <Js llc)ciillllQ l,ol,zc                             lt        zr,it IIIS                                                           IIIS d3                10 F 00            71 )2                               150                286                                       l)65                '1 109 2l<Z     21 9 ~   16 ~  )5           72,8                      X         16')               &5 1                                      71ll 2ll. 2   22.9,     0 ~ l)7            70,7                                                  3'<5                    ')73              729                 1202 Z120        0 9     1G.l,9   13         72) 3                                                                         l) 96             r60                  1056 27       21  i 9. 12.10               70,6                                1GO               IvJ 32                  l) 00             782              ;1182 2.'\              15.05              72 3 1                                                 315                     i<  70            037                  1,307 Z121       30.9. 21. 1ll             72) 0                               'l 20             3llll                   ll Gl<          . 7)O               -'1192) 20  '. 11 29               69,3                                150               2) 5()                  ll 0()            616                  1022
20. 9. 12.l)0 70,2 153 6 '9 2 375 616 .

9 ' 20+ 9 17.00 71,8 1 72 266 ll 30 6)0 1050 10 20.9 10. 35 72) 1 167 27'l l< 3l3 700 1130

I(WU KI(P I HEISSTEST, Testphase II (Abblasversuche) 'Stand R 521 Tot- und Offnungszeiten der Siclierheits-u. Enlastungsventile I) . 2..:1977 Ul)r- VV I)tell t /.ug At)rcg. 0 f3egit)<) S"tt,l" y hr)rC g. 0 Vet sucl) Attreg. W YV xei t yc)t ti l of ftten 4 stat On tllm l>>li,r el USUS A>>re gut) g

  • lief lit)n S <l llcgitn)S <).Ey ~ llub 1 f<l.Ht . I Uffttctt uf f>>cn stnt. llub S <t.l V llenl<tor- C>>esnmt-V<.tt ti l()ff Gc>>snwtt- .

1976 <lrttck EVV SVV 'I'otxei t VV 1<<>ci t I<< to tacit nun<Isa.e i t uffnungs-Begittn zeit bnr les NS Ns ms 11.1 29 '. 10.I< X ~07 2I< 3 I<50 6) 75 1 125

  'l1 ~ 2  29.9. 11.0lt               ~7777                              10>>              27 1                I<53                          .,1X00 30.9. 10.20                   71%2                            120               320                I<I< 0        67"                1120 17       21.9. 0.37                73>>3                 . X                                            It 56)        520                   976 17 2     30 9. 11.02                   70)3                            120              360                 I< 00         69G                110I<

30.9. 20.06 73)5 177 >>06 I) 6>>3 G00 1 al) 3 19 30 ~ 9- 19. 16) 73>>5 207 I< 00 70I< .1 10I<

                                                                                                                                              >>   a 20.1     29.9. 10.0I<               70,G                            102              206                 It 60         700                1160 20.2. 2').9  ~ 10  '9               71,0                            102              2<) 0               I<7           71 I)              1186 20 '     29.9   ~ 19 '3                7a   1                          16)7             256)                I< 23         665                 10I30 29      2)1. 9 ~ 1') ~ 11             73>>5                            157              231                               6)75                1()63

KWU KKP I HEISSTEST, Testphase II (Abblasversuche) Stand R 521 Tot- und Offnunqszeiten der Sicherheits-u. Enlastungsventile . It.- 2. 1977 VV ntcll t rug All r e O. at Oegin>> S-u.l'V A>>re 0 '4 Versuch l)atum Ullt- A>>r(t(J. + VV stat I f(I.Nt . zeit V('.>>ti l Itlltrel USUS Ant e(J>>>>(J

                                                                     >>icll t  r.u Ik.(tt>>>> S u EV II(:(Ii(litS->>.LV of f>>en 6                      ~ llult (i I'fnett      (iff>>etl        stat      lluh      S -II.EV llealctor-                                                      Gesallt     t-  Yett  tiloff-      Ciesatllt-1976                       (Iruclc       EVV       SVV  fotzeit Yv   'I'otzeit      IIV totzeit         tluttgsze   1 t. of ftlungs-Be(lintl                                                                                               zei t bar                            IIIS             IIIS               IIIS          IIIS                I IIS
29. 2 21.9 ~ 19-35 71,6 157 261 62o 1o30 30 21.9 ~ 15 '7 71 17 123 335 It 50 751 1209 Z110 29-9. 17.01 73,6 395 656 1051 11Z 29-9. 17. 1I( 7It to X 200 320 6oo 19Z 30.9 ~ 20.59 70,0 138 6It 202 255 It 57 0

U C)

ll KWU I(KP I HElSSTEST, Testphase II (Abbiasvers)jche) Stcind R- 521 Tot- und Offnungszeiten der Sichecheits- u. Enlastungsventile Is .,2. 1977 VY n)cllt xu4 A)ll cg. c7 Ocgi,n>> S-II.EV Anreg. + V crsucl) Ul)r- A>>reg ~ W VV lfd.Hr. Datum xeit Vc>>til Pit,rcl USUS Anregu>>g >> i cll t zu IIc<)i>>1) S.l!.EV lle ill w)S-u. EV iiff>>en 1 of f>>e>> offne>> stat. Ilub at p.ti~t ~ Ilub S "-u.EY Ite aktor-(scsa!I! t- Ventil(iff .Gesamt-1976 druclc EVY SVV Totxcit YV Yotzcit llY totxcit nu>>gsxeit .ofinungs 0egi ))ll z;eit bar illS 111 S 111 S 111 S 111 S 21Z 21.9. 15.I)7 7313 X 515 706 1510 2216. 22Z 21.9. 16.o0 72 1 1 X 177 I)-90 667 156) 0 2235 25Z 21.9. 16.46 C 60,9 193 63o 023 136o 2103 21.9. 11 ~ 1'I 721 3 X >) 33 635 107I) 1709 13 20 9 ~ 21 20 11) 0 505 1099 1'752 21.9. 0.37 73 3 1 522 706 90o 1'601) 26Z 21.9. n. OII n 70 120 600 096) . 1576 27Z 2'1. 9 0.1O -~ 70 752 OOo 1632 20.9 ~ 23.05 71,6 '1 53 62I) 777 17o8-17 21.9 0-37 G 7313 70>) 1176 '960

KWU KKP I HEISSTEST, Testphase Il (AbblasveI.suche)  ;, Stand H 521 Tot- und Offnungszeiten dec Sichecheits- u. Enlastungsventile 2.1977

1) VV olcllt zug A>>rcg 4 Ocgl>>>>S->>.l'4 0 Versucll Datum Ullr- I'l,rel Anreg. A YY ffoe>> Iluh.'>>reg.
                                                                                                                                +      stat. Ilub lfd.Hr.                zeit Vc>>ti 1               USUS     Aol cgu>><<g
                                                                       >> icll t  zu lie<<Ii>>n S->>.EV lie<<lin>>S->>.LV f

ii f neo ii f fneo

                                                                                                                    <>ti 1 off      (i C S a t 111 1976                           drllclc         EVV      SVV  Votzeit VV Totzcit         IIV totzeit      nuogszeit         qffnungs-0ogi on                                                                                              zeit tl nr                            111 S            111 S            ms                               111 S 29 11.50                      73~0                             103              227           (I 10          5o(                931E 22'9.9-           'I(l.07               7o,0             X               177                            3Ci9           (I 9(l 22     29      1'I 53                71 17    X                       177              103           36o            (104           '<<0!<<(l 22 '      1. 10     0. (l5              70 2             X               175              100           355            520             . 075 22.9.        9.27                70~3     X       X       X       192              221           tl13           557         .: 970
         -29.9. 16.30                     7016                                                            560                        .   >000         .

12Z Sl ~ 9 ~ 17 08. E 7313 10o 102 362 537 ': ':099 9- 17-33 70,5 X X 187 527 9o6

1) Yen ti l I'. >>>>d 0 ab 26.9.76 mi t Itiicl(sclllagve>> ti 1 I>> USUS-Sl eucrl oi t>>>>g l) Valves 8 and G from 9/26/76 with swing check valve in XSAP control line

KV/0 KKP I HEISSTEST, Testphase II (Abblasversuche) Stand R 521 Tot- und Offnungszeiten der Sicherheits- u. Enlostungsventile . !p-2 '977 Ul)r- 1) VV>>ic)) t zug A>>l eg~ Oc{II,>>IIS 1)el>V A>>l eg ~ .% Versuch A>>reg. + VV stnt n >>III zeit Vc>>t i 1 PI), re 1 usvs Anr e {lullg

                                                                                >>1 el) t zU  Ik'.{linn S-LI EV Ilc{)i>>I>S-U.EV  (iff>>cn O                         .l)u))
                                                                                                 )iff>>e>>         tiffncn        stnti     Ilub :    S     -u.l'.V I)cnlctor-                                                          Gcsnnlt-       Ve>>ti loff- G os nlII t '-.

dr u cl< USUS- Totzcit nungszeit off>>>>ngs-1976 YV SVV Totzeit VV IIV to I.ze). t 7.nit'II Begl>>n hnr IIIS IIIS IllS S t4 80* a 12 30.9. 8.09 70,1 X  !)!)7 750 1197 13.2 30.9. 9.03 71 )2 1C) 3 300  !) 63 700 1163, 17.2 30 9 11.02 70,3 5I) I) 7!xl) . 1288 txj 0 10.9. 20.06 X 10 l) ~ I 20 2 29-9. 18-59 l) 60 720 1180 20 3 29 19-23 721 1  !) Gla 720 118!) Z116 29.9. 16.08 72,6 X C) 08 776 138!) K117 29.9. 16.17 73 ) 2 l) 56 792 . 1'2l>8 15 30 9 '2 70 167 I) 63 630 71!) 13lglg 30.9. 10.20 71,2 182 3!) 6 7>5 127.2 17 2 30.9. 11.02 70,3 X 520 69C) 1216

1) Ventil L'>>)d G nl) 26.9.76 Ini t. I\lie)csc))lngve>>ti I i>> USUS-Steuerlei tung l) Ualves I"; and G from 9/26/76 with swing check valve in XSAP control line

KWU KKP. I HEISSTEST, Testphclse II (AbblasveI suche) . Stand R 521 Tot- und Offnungszeiten der Sicherheits-u. Entastungsventite I).2.1977,

1) VV nicht zuc4 Anreg. 4 l3eginuS->>.EV APreg. +

Versuch Uhr- Pll,rel Anr eg A VV stat llub S u.LV lien)IInS u W offnen A

                                                                                     ~

lfd.Nr ze1t Vcnti1 USUS Anregullg n 1 cl1 t zu lien)nn

              ~

offnen offne>> stat. llub . g, u.J V llealctor- Gcsalnt- Venti 1 of f Gesa)I)t-, dr uclc USUS- SV'V nungszeit offnungs<< 1976 33e ginn VV Totzeit VV totze it ze'i t hnr lnS IIIS IIIS 30 9 ~ 20 06 X 10 12 0 30.9. 19.16 73') 5 X >Io0 . 106I) 20.1 29 9. 10 ~ 0I) 7O 6 6) Oo 20 1400 I)3 0 20 3 29 9 ~ 19. 23 72 ) 1 550 6I)o 1'1 92 I td hD Z115 29; 9 ~ 10 00 71 )5 Il 50 700 '-1315 .

1) Venti1 E un(l G ab 26.9 76 mit lliicl<sclllagve))til in USUS-Steuerleitung l) Valves E and G from 9/26/76 with swing check valve in XSAP control line

KKP X hot test, blowdown tests Statistics of dead and opening times of the SRV at ca. 70 bar reactor pressure Status fSEE NEXT PAGE FOR KEYl 2/4/77 KWU KKP I HeiHtest, Abblaseversuch'e Stand R 521 Statistik der Tot- und Offnungszeiten der S- u. EV bei ca. 70 bar Reaktordruck 4.2.1977 OI USUS USUS 4 A>>reguofl 5 GcseIIIC Cotzei t Ve>> ti ll fnu>>oszeil IIIi Ctlero nzohl d. Vo>>til 1 IIIit llV ol>>Ie ltV

1) USUS- mit IIIj. t lll1 n ~

mittlere Gesomt- IIeriidcsid I t. mittlcre off>>u>>os-VY 1 VV 2 VV IIIe X ~ IIIoX ~ zei VbrstIche IIIS IIIS 375 44o 520 1110 il, D,r',ll 496 670  :. 25 202 255 X 241 529 20o 320 A,CIE,G 635 00o 710 1147 1065 10 023 1560 A,C,E,G 355 404 401 521 922 56o 557 E,G 400 63o X 600 507 710 1217 14 792 E',G 600 700 611 730 1349 6I15 776

1) RiiclCschl aoveIiti l i>>

USUS-Steuer le i Cc>>Ig Swing check valve in spezifizierte Zei te>> 500 1000 1500 XSAP control line Specified times

I KEY FOR TABLE 15

1. Valve
2. ISAP (Independent Safety and Accident System) with swing check valvel>
3. ASAP without swing check valvel~
4. Excitation ASAP pilot valve with 1 pilot valve with 2 pilot valves
5. Total dead time min. mean max.
6. Valve opening time min. mean max.
7. Mean total opening time
8. Number of tests considered 19-26

1

        )I . ~ t t

r

                       ~

KKP i hot test, blowdown tests

      ) I      %)
.'tatus
                                                                                                                                                                                               ~   J t
              ~
      ~(..i:.
       )I flow rates for                0  4        < 1.5 s                                                                                              '1/30/76       '."'otal j

C p I I

             ~
                   ~
                   .I KWU                                              KKP I HeiHtest, Abblaseversuche R 521-VR                                           . Integrale Durchsatzmengen                                  fur    0- t <1,5s                                      .gg. II. 75
                                                                                                                                                                                                   ,I Time           after        Zeit nach              Valve P                         galve       E                 'Valve G                      Valve    8         Valve D              Val~e H pilot., valve                                      Ventil F                        Yenti l E                     Yentil G                     Venti l 8           Ventil D               Ventil H VV-excit'ation                                       Versuch         7               Versuch 12                    Versuch 15                   Versuch 23           Yersuch 27         Versuch 29.1
                         . Anregung               Test                            Test
       ')

7 12 Test 15 Test 23 Test 27 Test '29.1

                      ~
1) 1) 2) j ~

m erf. rn m<<f m m crt. 1) m m erf. 1) ma m erf. 1) m 2) mer )

1) 2)
            ;I kg -.:

CI

            ~ ~

kg kg kg kg kg kg kg kg

a. 0,5. 0 o,30. 0 o,oO 0 0 0 0,24 0 0 i 97 0 ) ~

0,25 1

                                                                                                                                                                                          ~ j
oi75 4,22 13 $ 1 4,27 6,09 4j27 0,94 4,33 11,64 4,3o 11,30 4 11 s2 t
           ~   )
     ~

jt

    ';t        ~

ij I) ~ lj 'P

. 1,0 16,00 47,8 17,o7 26,94 17,10 9,o6 1734 37,41 17s19 32,40 17, 09:.,; 4o,3 I .~
   ~       rt I

1 ~ ~

                    ~
                            )

r 1 $ 25 40,0 . 00<7 30i41 67,06 38,47 37,1,3 39,01 79>39 30,60 72,00 40g25 05,1 It

      ~    )I 1 t5         67,5          $ 29,7          60729         '109y0          60'y39           70,9          69>35      12o, 7    60,77     115,16     71,56:::            130,0 required flow rate acc. to Spec.

e r fo r d e r li c h e r D u r c h s a t z 0 e m ii 6 S P e z i f i k n t i o n

              ~                       )  m er f   ~                                                                                                                                              I I"t                                                                                                                            bezooen auf. jeweili))en Renktordruck flow rate calculatedmi twith               AusfluGkennzi ffer I                      2)  m <           Durchsntz errechnet                                                                  relative to particular'eactor. piessure discharge coeff.                                                                      ~  )

I* hIn r E ~ KKP I HOT TL'ST, Test phase II (blowdown tests) 1j Statu's

~

hiI Pressures in suppression charrher (260 meridian) 10/2~76 4.II) KKP I l<EISSTEST,

         ,I
            ,I         KWU                                                                     Testphase D (Abblaseversuche)                                           Stand R  521/ V 822                                         Driicke in der Kond. Kamrner I Meridianschnit t 26p                             j         3.1. 40:-16 Test no Valve no Versuch       VentH-                     KK         OA7                OA 8         DA 9          OA 1P        DA11         DA12        OA:       OA   g.-r lid. Nr.      Nr.        PRrei     vor Begi'nn  max. rnnx. max     mnx. mnx. max. mnx. max. mnx. mnx. rnnx. mnx. max. mnx  max   fnnx
 ~
   ~   II
        'I bnr h3.4
                                                              'C        bar    bar
                                                                                      ') Ols bar 0,05 I /r bnr    bar    bnr OOC OO4 bnr O,02. O,O5 bar r

bar bar 0.OS n,OS bar bnr bar bar bar 003Q 0,15 0,2.6 >ZP 0$/j )l1(j 03<i 0,015 0.1Z5 '-t '-" 3Z D,OS O,OG p,QQ. 0,24 02150215 0,3 O,"8 0/5 0,33 ~),<1> 0,12.c

                                                                                                             /

Jt ~

'. l,  ~

IP E,I:,Ct )OZ5 .DZS 0,05 O,ol" ') OQ 0,01 5 0,08 O.Q. 0.1S 0,025 0,025 l E,r- c~ i= 3Q 0,23 o,32. 6 Z E F(l 4Se 0,038 0,0G3 O,LS 0,2.4 0,56 0lZ. 0.52.5 0,% 69,3 0,03O 0,025 0,125 0,19 OI2) 0;l5 0,181 OI125 Dill" f0,2. O,OS 0,2.6 02.0 02.8 O,LO 0,22~ 0,1g 0,088 0,1

                    ~)

re il. I 11,8 A 32. O,D25 0,0$ pl 1 0,10 0,/ZS D,1Q 019 O.l'I 0,015 Ol126 DID',OS

                    ". 9.Z                    = 69,8     =   32.      O,D3Q           OQ.       0,2.               OI21   0 33 O'Z2 (}.0      01     0~

Q]C o,Ol5 0,2. 0.Q 0'2 0,3Li ~OQ Oi3li OIZ5 Olo 0,45 0,1L1

                                                         ~3/          0,05 00l5 O,L 0,3'1 O,ZS 039 Dl3K Oil) OI2150I31"                       0,125 0,138
~    ~

a 12,S

                                                         =35
                                                                      ~,D2.5 O,DZ5 D,]% 0,3'1 0,01',05 0.088   Ii          O2e    O~P O.08 0,13 O,os OI05 0015 0,0i) O,Dei 0,02.5 I          0,'ll 013 O,oa   o,ozS O,GXB 0,0% D,O2$
     $4 If 0                                      =33          OI025 0'Ot.5             0,081 O'D5 O,O88 ),O3 O,OB       it0%   O,OC? 0,025  O,DSQ I

3g IhII I

                                                         = 33                DID'.5 OI033 O,QBB 0,05 0 1Z-OIO(i3 O'DQQ OOS O,D38             O,OE   0,02  >

interval test

KKP I IIOT TEST, Test phase XX gblowdown tests) i Status Pressures in suppression chamber (260 meridian) lO/22/76

        ~
 ~

l HEt >>TEST,

      <1
~

r ~ j KWU <Kp Testphase lI (Abbiaseversuche) Stand R 521/ V 822 e innin Drocke in der Kond. Kammer(Meridianschnitt 260 ) Z2. /u,74 Test no Valve no Versuch Ventir-PRreI . KK OA7 OA8 OA9 oA 1Q oA ll oA1 OA OA Itd. Nr. Nr. var Beginn ma x. max. max. max mnx. max. mnx. max mnx. mnx rnnx mnx max. mnx max mnx bnr 'C bar bor bar bar bar 'bar bar bar bar bar bar bar bar bar bar o<0 @7~~ oysg ~006' 0 0~037 0~075 70 ls "- 3y 00ZS oo~S OO<3 OOZ~ l/'O~ OOS orle>> or75'$ F t". 12 dN~ ~020 Oso 02& 0 8 ~O2 OQO dos '8

                                                                                                                                 ~z
                                                    = +5       P,05 oo3~ 0?25 0775 Ogrf ~OZ/ ~030               ~OQ  7 0,25                       oozS o/G ~ol       g 9g g gl                           0j/0
                                                                                                    /

OOZED oZ(, OSB 73 V- ~ 8Y- O/7 OIl' E,es /o,g n,

                                                                 / ~antis                          /                       / /
                                                                                         ~/                     orts 2221                                                                                       0120                               Or079
                                                                / / OIC

~ g ez 6 7~> o,2C ~osr. o/zr

    ~

03 'r2 0 / / ~020 o3o oe / / o,/$ 21 goal / os) / nox o,o3 oo& 0OZ5 22 / / ~005 o o3S I '

                                                                                                        ~008 0,08 1) 221 A         ~77, 70,$

4d'iI

                                                  '2=
                                                     " 82
                                                            '5
                                                                / /
                                                                / /
                                                                /      I rQs 0>2$ oNS OIS 0l0 onz8 0lo I
                                                                                           /
                                                                                                   /
                                                                                                  ~o~o, d,o/8'n/6 ao/- no~

ct77,

                                                                                                                           / /              005 0 os r" 2           2$                         o/3  ~007$ 0 O'l5                            005        ooze 37
                                                                / /
                                                                       /

0op 00/ / / ~n

                                                                                                          ~0<

vol o~o3 oops'l/.2

                                                                            ~ooS                        ~oo6 O3                                        025                 oo6 ood'

\ I

KKP I RIOT 'L "ai, test p ase~ LL ( Lowdown t:ests) Status I Pressures in suppression chamber (260'eridian) 10/22/76 KWU KKP I HEISSTEST, Testphase II (AbbIaseversuche) 5ioAd 8 521/ Y 822 Driicke in der Kond. Kammer(Meridianschnitt 260'j 2 2./0I74 Test no Valve no oA 11 OA1$ OA OA Versuch Ventll- OA7 OA8 OA 9 OA ]Q PRrel max. max. max. max. max. max. nvlx. max. max. max. max. max. max, rnnx max max lid Nr. Nr. var Beginn

                                                  'C       bar  bar          bar    bar    bar  bar     bar bar     bar  bar   bar bar   bar bar    bar
   ~   d
   ~,

3 ~ 3 '/ $ 02$ og o~> 0025 yqy poZ5 P,OZ5 ~0/5 0/5 OO="$ POPE OO25 O,OZ5

   ~   j 30 6       3)5          o,oz         008 0o7       0105 O,06 ~006     g n5 0~05 ooZX 0oZ5 00           8/

2 .0 OO5 o s / 005 905 j

                                                                                                                 /         4o2~~ oOZS 2                                                                     /     0       0                 0~0)5 0~05 30                                                                             g,oC    o~o<

Vo 9 />3 i~3f7 OZ8 PzB 0,03 ~DOS. r ~ 0/25 o,os 05 0,0'l- OOG 70 O'ER Or/8 i r r r Oi02 OOZ 0 3 0103 0,0II 0 0</. r r r r f jj I'~ j 2l]p r 062 ool ~ i r r

I

                                                 '( Lese p   lase    ll    Olowuovn      tests)

Pressures in suppression chamber (244'eridian) . Status lO/2O/76 I KWU KKP i HEISSTEST, Testphase H (Abblaseversuche) .Stand 0 5211 V 822 Drucke in der Kond. Karnmer Meridianschnitt 244'jC ZP./P. 7g Test no. Valve no Ver"uch Ventil- +im DA4 OAQ Dn DA DA DA ifd. Nr. Nr. vor Bcrjinn'A3 ma x. wrax. max. max. mnx. fnax. .n)(rx. max. max. max. max. max. max. max .max rr>ax

                                                                                                                                              +
                                           ;>ar          'C       bar    bar   bar   bar    bar    har      bar    bar   bar   bar bar   bar bar    har    bar   bar
                                                                               / /
                                                                  / / /               /
                                           /7,>                   /      /                       A"5
                                           'fg g.               VOS 0038     d >9g ocP                   0 1'O,/7 E,/,               /go                 0~5 ~0.5      oo~ o og>                  0~0+>   0025 6',Fg
                                                                               /      /                      /    /'

6.Z E, F6 ouzo 025

                                                                  / /           / /                               /
                                                                  //     /      / /                       ~
                                                                                                            ./

7/. 8 o05 os Od/2 ~dog on250,07 dd38 ooS Ol/ orb'7 f)Zo vo 5 ~O/0

                                        = C7E          ~8Z      doczs     oE 0/4 ~025            oZS ygg5        g~4g

~ ~ /0 7Z,/ =3& OKZ5 yO7B Oid OZZ5 QQP 0/ZS 7Z S / / / /

               //. Z                     722           -35
                                                        =33'    QQP   > ~1. OO~ do28 Oo5 ooz5 o os 0~02
                /3                        /8.8            Q7    gOQ. ~0025                 0037 oa37
                 /3,/                                                          / /                          /     /

cg2 7025 00 >I3 okla />oat , o38 00/2 >0/Z

 '.      C)
            >) 2n/ecru/      tgst

KKP I IIOT TEST, test phase XX (blowdown tests) . Status ~ 10/21/76 Pressures in suppression chamber (244'eridian) KWU KKP I HEISSTES I, Testphase II (Abblaseversuche) Stand 0 52]I V822 nz Driicke in der Kond. Kan mer (Meridianschnitt 244'j 2/ A,14 Test no. Valve no 'A6 Dn DA DA Versuch Venlll-'r. KK 3 DA4 OA lfd, Hr. Pnrql vor Bcginn'Ama x. mnx max. max. rnnx. max. Avlx. fnax. nnx. mnx. max. max max bar bar bar bar bar bar bar bar bar bar bar bar bar bar . bar 0 038 OiZZ 0/37 0 @f7 one

                 /5                               /0r 2                                 0, /0   0 4'ISA,04~                o~6c F,G                 7/ 2                                  Q/5     023$  ~4'ZZ~
                 /7        E,     +,6            /3,                            0 oh 0rsr ore oar 0/d7
                /7. 7      F. F.S                     3'3,
                                                              "< 3G      ~OoP           008'8'~8 oizx                    s ~~oP 5,Fg                       S.                                 /        / / './'ar F,'                                                         / /            /

go. / r,rr 707 6 / r.rs / / / ~ Z0, 3 Pi& G 7Z / / / 73, 0 I ~ ll

    '4p A                 70@            -"3G                     / /
 't    ~

I

         ~

Qt,' / /'

                                                                                         / / /

a ZZ. /"" A 70 2

            ~~)~                                                 =82       /              / / .

3 ~ 7~i 8 012 ON7 gul2 ~OOI Z o/0 ~< O~nfr" err. r ~74 -30 / / J' Z9. Z ZO 7 / rO3

8) '2'n/c.r u'0 II 8 pg t"

KkP n i' bT, test. phase. XI ..{blowdown tests) Status Pressures in suppression chamber {244'eridian) 10/21/76 KWU KKP I HEISSTEST, Testphase II (AbbIaseversuche) Starid R 521! Y822 e annwfn Drucke in der Kond. Kammer(Meridianschnitt 244') 21. )o.RG Test no. Va ve no Versuch Venlll- KI( OA4 'A6 DA OA DA OA

              ~ ~    lid. Nr. Nr.       PArel        vor Beginn'A3 ma x. mnx. max. mnx. mnx. max. max. max. mnx.      rnnx. max. max. max. max    rrinx.

bar 'C bar bar bar bar bnr bar bnr bar bar bar bar bar bar bar bar

                                           'I-Z,3                   0,012 o,o>Z. D.MS o,oz.S n,Og  0,ojl 0,02.5 0 025
                              -  D          IO,G                     ,O<2. O,012 0,015 O,OS OATS O,DS    0,Oat O,DZ5 l2,3        x 3$
   ~    ~
          /

33,5: I //lr 30 4d HALI 0 =- ae l3,3 =33 l0,5 t 0<8 r' t3,3 y r zzz t 2.'7 =38 (I 72,8 39 C I L li,

        ~

68,9

I e KKP I ttOT TEST, test nase ll (oxbow own tests) Status e Pressures. in suppression chamber (at periphery of conical. bottom) 10/19/76 tr I,:

          <    j I

KWU KKP I HEISSTEST, Testphase H (Abblaseversuche) Starid

          ;I
       ~

f 0 S211V 022 Drocke in der Kond. Karnmer(am Umfang d: Kegelbodens) /~/, /d. 74 West no. Va ve no Ver"..vch I(d. Nr. Venttl-'r. var Her(inn'ax. KK max. OA1 niox. max max. OA10 max DA13 max. ma x. max. DA16

                                                                                                                                                       <nox.

DA max. mox. DA max. max. OA max rrIox ~ ~

                                                                    'C        bar     bar           bar   bar   bar     bar   bar           bar   tnr   bar  bar   bar bar   bar . bar    . bar
                                                    +3,P                   oto5'/I7                  / /       ~oo6    o op oo7s urged          ~

z 4"2, 7 ohio ozo ozzie / / 0~II Z IIS~ ~025 oo25 ohio oral ores OZg ~OZD /f,36 rt9 Z: 3Z 0/o ozzz 4,'ZS ~03o ~o36 ~O//Z ~IO/ZQ

                                  .F,r,s             4Po          IV QQ
                                                                           ~O/O     ~O2S ~d/0           4? r/  ~0/2   4/Z    O~/ZD  0/ZS
         ~  r F,S,S                                   d PZS ~0/3l               / /       o43 032          /           /

I~ I I~ I I 6' Fr,b 0/o ~dt's de o2s ~pzp ~03Cy / /

                                                                           /fo76 oo7$ o//Z              0/5'rg        02/    PoJ'7  ddt             / /

i;-:I ~,

             ~

3 ~ ( I 7' ppd'7 oo(p7

                                                                                           ~0/7'oz7 o/7~~ ~ozg    ozo           Ou2.

7/8 oopS ozZS o075 4/9 d3/ 0/0

                                                                                                                                                        /

0/i/'ro n)

                             ~ 2                  "= 6'9g                  Oto       oa'/D              ~OZo d Z/ P3Z                   arZ        /

I' r',5

     ~              ~3 y) 0/Y O/25        d~/rS        oZZ ore oats Orz orS                      / /
                                                                                                                                                   /. /

10 7Z/ d/ZS o// OZ 028Ã 03o 4'vo oat d/5

                    ~1.1             I                                     Or j~g   @Z~r            / /        428 or/2                           007'ops gf-2                        7Z,Z                 DDT 8j/8                 / /        ~Pod' 70,/                  ~doZ~     oozs Oos ~H2$ oro~f ojol.               ~L/0     0 /D 1

V~ OOPS ooze oo37 oo87 Oo3 ~d4'd' odin c7/>

                            /3.1                                                /                                / /                        /

~ I 1.2 F oozed ooze os 0'03'A'3 ooÃ8 doN'r I ~

KKP I'IIQT TEST, tea l a>e. li o o o n.tests) Status Pressures in suppression chamber. (at periphery of conical bottom) 10/19/76

   )

4 M'

         'g KM/U                           KKP I HEI SSTEST,                  Testphase II (Abblaseversuche)                                                    Stand.

8 52>/V 822 in der Kond. Kammer(am Umfong d. Kegelbodens 'riicke

                                                                                                                                                                                   /k ru, 7l.
           ~
     'l ~

P I Ver such lld, IIIr. Ventll-Nr. parol KK vor Bellinn DA1 max. ninx. max DA5 mnx. DA1Q mnx max. DA13 max. rnnx. DA16 rnnx. nl(l X OA inn x. mn x. DA mn x. rn<1 x OA max rnnX

                                                                    'C        bar    bar         bar      bnr  bar           bar         bar    bar    IMr        bar     bor   . bar    bar 0/0   ~o2o         drS      Oo~        Oo82   oe~      /
     ~     ~
                                                                  =8 ~       dr3   org          OZr3 ~daS                  oorz     /
                                                                                                                                    /
        ~ I      ~
                               /7         E, F,6733:                      O/D ~O/3I ca~ o2o o238 ~o3Z
                                                                                                ~o/<<t'7  030 d,H odom     /
                              /7. Z                    703           34      Oi//  d/+          OdW ~oZD            drd3 o/o        /
                                                                                                 /                                 /
          ~
       <    'i
  --;P                                                 735                                              //26
                                                                   ~ 36     o~/63 ~o/o                              d/Q    o/1Q F,G                              Or38    d2           /       o/7 dr7           dodd'
   ~

I I i< i I ) F/=,s 7O6 o/s o,2~< / neo OI YO / oem 007$

 ..I
 ~  ..

M I 2'o.2 E)F,B 7/g g ~3 Or<I O~6 / dZ6 OoQ Zo. 3 E,r,8 -)r'0 o zo ~ozo / o3o / no~a "3'f oo62'o~~ ~dos r oz/z ~o/37

                                                                    ~34     0~063 or)6$                 dog                      on~
                   ~

I

                       ~
                                                                   -34      uozS o os                         oo/6           /r  r)w 8  o/2r 7 2         -32      ooag oozed           /       oo/-                    d,rg 8~      ooI8 A/68                   os          /" ~

os)

                                                                   ~Z~5 ooS        ~6)g7 Oo 7   o/o oo5' ooI 7or y                                           oo<   o06 JI/      2              70 7                                       /     dos   o or/

~ 1 7o/J our, Pod / /

8) j'n /cr vo/ pP4

1V .i v j.o~ wi tests) c

                 /                                                                                                                                          Status c,.l I, I       C Pressures in suppression chamber (at periphery of conical bottom)                                                           10/19/76 I'-'wfVU
                                                                                                                                                            ~ ~

i KKP I HEISSTEST, Testphase II (Abbtaseversuche) :5taqd 8 521/ V 822 r k in r Kond. Karnmer (am Urnfang d.. Kegelbodens)  :-/r/, ro, Ã Test no Valve no l ~ Ver such Yentil- KK oA1 oA1Q DA13 oA16 DA OA  : OA PAre( max. max. max. If lax. fnnx fnox. fnnx. fna x. mnx. max. fnnx. max. fnax. fnrfx fnOX lfIflX lld. Nr, Nr. vor Beginn bnr bar bar bar bar bar bar bar bar bar bar bar bar bnr bar bar bar 72'3 ~O'02 0 OZa ~Oc87 oo87 Borh 2~0/Q 0037 ~ 'l 1c 33 ~ PL'6'3 yoga Pd7$ Io5 Oo/> ~006 00lg OOE 721 3

    ~  l. I'
)I ltI
     -~

Q ~ 292 73$ 7' f

                                                       =36 CIcg 7 ooze doS os        r'od          ppg ops o~a OoS Hogg r

0/ZS OzO

                   ~z           ~ F       ~o
                                          ~o~

08 go6 O/0 0 ZSO~

                                                                                                @28 0 0't ozg 006' d,0G OOZ ~002 4,tB> g r

r A

                                                                                                                          ~00   ~C I            I 003 003         r C'

I I' I ~ OcOV. 0c 0~ 002 t tc. Q

I KKP I ELIOT TL'S T, tes t phase II (blowdown tests) ~ Status 1 0/l 8/76 Pressures in su ression chamber at eri her of s herical shell 10. 45 'm) KWU KKP I HE ISSTEST, Testphase II (Abblaseversuche} Stand

                                                                                                                                'TI Uin fan9 d. Kugelschale A 5211 Y 822                                  beginning Driicke in der f(ond. Karnrner(a lO I 5m                                                                         :  /g, /o, 74 Test Versuch ltd no. Vgvg no Nr.           Nr.                        vor E3erinn
                                                            'Amax.

2 max. OA 4 rrra x. max. max. OA 0 ma x.

                                                                                                                      'Al5 mo x. max. max.

DA l7 r>>ox. OA max. mox DA ma x. rnn x mox OA ma x bar 'C bar bar bar har bar bar bar bar bor bar bar bar bar bar bar

                                                                ~ //
                              ~sgn                     5      9    /f  7  I.i     / /              0 oi? // r/0-.c.
                                                                                                       ~
                                                                                                                               ~oat jj'.5           33                           / /               0,1~ O.HS                            ~no'~'2 M97      ~J1Z5 o Z2$ 0. r?0 ~OF Il ~g2               l  / /           /'

6:s rf /P y, KO A o proà o~o5 3875 ~~

              ~c.        G                          3C
                                                                  /      jj I      ~           0~2D 0~25 O~o o S'5
                                                                                                                     /

n)

                                  '7> 2                          /      //       / /,e, 76 ~/o 32      0 of) o~o6 2 ~oo62 o~osv e o 9 ~ohio

~2 /7) O os ~O/r7 oZsv O /2 ohio / / n) jr/<6 u 'r 5 ~). 0 ~32'/ / / ,/ /

                                     ~

P7 O, 77 ~r; 1'5 Ojl g r." /lg 3 -'i/j 17 $7 / 7,D a~/. 8 ~7>>

                                   '72 2         =  35       ~003     D~o3 8                                                   0 nZ.">
                                    /o, /            38              <oo    5 o n5',        ).".-: O,os o,nr>                      /            /
                                     '71 1          D7        ~/if')                                                              /
                                                  -'3             /       /
     '73. 2                         '77 15       =-  93      .r, o38 O,o>>     o,o'3 /r,oats z o.,z oo tl 8                       /             /

n) J j/~r.'v vp /C/c l r

             ~ (       I K P   I    IIOT ';S'1,     est phase      XX   (blowdown       'tests)

Status 1( (

             ~         ',     I Pressureh       in s'uppression       chamber        (at periphery of spherical shell 10.45 m)                                    10/18/76
             ~    l(!    ~

K'NU KKP I HEI SSTEST, Testphase II (Abbjaseversuche) Stand 0 52I/. V 822 . befo~e " Druc<<<e in der gong. <<gammer(am Urnfang d. Kugelscha)e 10 l,5m Test. no. Valve n BefIinn'Al, (

   ",.I! '                        Vef'uch         Yentl I-                       KI(                                    DA8             DA15 .      DA17      DA        DA          DA pp PRNI                    max.                                                                                rnnx.

ljd. hfdf. vor mnx. max. max, mnx. fnox. mnx. fnox. mnx. mnx. mnx. mnx. fnOX ff(n X.

   ",I( '
                                                                                'C      bar     bar    bor   bar    bnr     bar    bnr     bar   bar    bor bar   bor bnr   bor   bor   bar l
                                                   &            71r.           '35    o~I5 o~<5 g~125 9 f37       ~on s    o10
                                                                                                                                                        /
    ~

(

                                    /5                           2o, (5                  143 o~~/3 n    40           63 0~05                /     /

71 2 - 3// ~<25 ~o1g8 o,<5 o,hts 0120 0~30 / /

                                                                           = 35       ~0125~o15      ~ogg-/ 046   I2 P25  o~7                     /     /
                                ~1            ~F. 6         7((1 3         3C     0025    O,a95 doIS    oo~                                   /      /'
                                                                                        /       l /                                               /
                                ~1'                     0'~3~/                         /

2o.f E F,6 =38 / 3/25 0,29 oo3

                                                                                                                                          ~

0~A~2 ~o f,'

   .;r'.-,                           2o.2     ~EF              7<    r    ~3~do fop'                              of16 032                     a~075 o 063
 ~ I: fe l         I; 2o.a      E   r("          7-2  1      =  40:    Of 20 0~225       l         ~Di'0 o~g5              0/z  o,<250,4$

<< ~ 3LI of097 0103) / ~0077 ~09 010 ~o'/0 00.3 0~637

                                                                                                       /
                   ~        ~
!  ~   (           I 7o,8       ~ 86     oops o~oS                    oj05    0~038           o~H',05     oo63
       , .I'(I
             <<(
            '<<(

7/i 7 IM~S~OZ5 /' O~/8'~/0. 0 1Z n o25 o~03

~(t
              >.  ~~
                     ~

f'

                            ~
                                ~)

22.1 70f z. 32 o,og8 n,oS l O,o.'.8 O~o38 o.Q o~o5 o,os ( "<<I 1.t

      ~

fc a ~ (, 32 011/ og1 0 / Of /0 oif'/ O,A',29 O,32 o<25 o,~63

l. l
   '.(            ~

l, ~ 30 5 o~ojp 2 OOQ,o68

                                                                            = 30        / /                       007     of063 2/-~        3                         = 3'/                                 0,05 oio5

~ .:j 25 -3d 203.I O,U25 0 2~/f.reel 1'(.gf'0f3

Og ~ 1

  ~ ~
      ~

hl<P 3., ~ t ase II ['blowdoCyn= tests) Status 10/18/76 Pressures in suppression chamber (at periphery of spherical shell 10.45 m) KV/U KKP I HEISSTEST, Testphase II (AbbIaseversuche) Stond 0 52} I Y 822 Drucl<e in der Kond Kam e (QITl UolfQIlg d.KugelschQle lj'/A74 Test

         ~

no. Valve n

    ~

Ycr"vch Yentil- OA8 ~ DA15 . DA17 DA DA DA lld h'r gr

                                         ""re}         HK var DerIinn    ma x. max. max  mnx   mnx   max. mnx. max. max. max. mnx. mnx. max. mnx. (nox  frIo x.

bnr 'C bar bar bar bar bnr bar bnr bar bar bar bar bnr bar bar bar

                                                                @25 o~OZ5   ~025 o 025 On25  > 03.   / /

13 ~O ~ooA O~O5 ~OOS 2,075 0,05 / /

                                                   =35          1      /     1    1      r
                             ~                                               /                                        o <~r
             }

I I 2r(-1 006 O,g~r 2 . 11 ~16 ~ 86 O~OQ ~@06'2 0 og7 0,075 ~ Oi1O Oo75 0~185

                             ~
 ~    IL v         3:0                    711
         ~

I Q I

               ~1P                     ~io ~3                  O,OG   O/5    r     ~ Ogg 03+       ~OO37 0a37 0 D)$ ~g05
                                       ~30                                         r
                                          -05                                            r' w3C(                                 r

es ts) Stat.us "l ~

   ~,    \                           Pressures    in suppression chamber (at inner cylinder)                                                                   10/25/76
   ~     ~

KtIU KKP t HEISSTEST,. Testphase H (Abblaseversuche) Stand R 521/Y 822 Driicl<e in der I(pnd. - f(ammel {om Innenzylinder) ZS />.7G i Test qo. Vali.v r po oa 14 oA 18 'A KK DA OA OA OA DA, I

 ~

I~ ji lid Nr. Hr. vor 8crinrj ma x. mox. max. max. AlAX. max. mnx. mo x. max. ma x. ma x. mo x. max. mnx max irla x

  )~  .,\

l bar 'C bar bor bar bar bar bar bor bar bor bor bor bar bar bar bar bar

      ~

I I / rh I illj I" rc",7 o oy oor/ oi/o

                                                                              /

0/2's

                                                +7K                                      oro
                                                                       /     /      / /

Are &go F,F,g / / F,F,6 05;6 / / I 7 =39 . / / oo6 oo6 3'F oW' og l ~

                     ~)
                                                                       / /        o08 oo6 g'. 2                                      / /        oo'/ o/o 1J
9. 3 = f78 ~z / / oro o/o
             ~

j

                   ~
-/0 / / Odg i C 7Z,5 oo~ Oo 0/o 0 op I ~

7Z,2 dot op oo6 o oy )I', ~ I[a /2 / 4'.l. 0  ! / / oog U do'er

                                                                        /     /     / /
                            /8. Z                                                 0 of oo~i.

g) jn)g'r s'pl (eS t

                                                                                                                                                             ~ ~

P K test phase XX (blowdown tests) Status lO/25/76 pressures zn su ression chamber at inner c linder)

~   ~

KWU KKP i HEI SSTEST, Testphase 0 (Abblaseversuche) Stand ., I

       'I      R 521I V 822                                        Orucke in der Kond. Kamrnt.r(am                Innenzylinder)               ZS /0.78 Versuch  'entil- n Test no. Valve F'R rei KK        OA max.

V NQx. OA 18 NQ x. max. OA max. OA mnr. max. OA max. max. OA max. Nox. OA Nax. mnx OA rnIIX fry lX Ild Mr. Nr. vor Qcrinn oar 'C bar bor bar bar bar bor bor bor bar bar bar bar boI'ar bar

                                                                        / /                                                                                      44
                                                                                                                                                                 'I-74'i 2                                                                                                                  ~"

I 7//2 4 I E, F)5 / / 4 E,FG /013 E,F,G / /

                            . F,'F,S                    =DE       00 ~006 ~042 Z4,2      E, FG        7/g g         r>>

Jg r, I II.: I F,z6

<:i, I, I 4
                                                        =39     0/I   4!0$ r 05 II
     ~
        ~

C)'d./

                                     /'0,470' 7/ 7
                                                        =34     o/g   0/2
     'I        <)

I I ~~~~I 432 0,/+ 0,28 Ii'!: i. I>> ~ 7/j 9 / /

   ;-.i     Q
                                           /'0, ?
                 ~) Jn~<<va/ /e'5 70,3                                                                                                LJ

KKP I IIOT TI;'T, test phase XX (blowdown tests) Status lo/25/76 s rc P K8/U KKP I HEISSTEST, Testphase II (Abblaseversuche) Stand R 5711'll'822 Drocke in der I(ond. Kammer(am Innenzylinder) z> /0 74 Test no Valve no 'A Ycr"uch XK OA 'lk+ DA 18 DA DA OA DA OA

                    'entil-'ld P" rel                                                                                                      max Nr.              Nr.                vor Bcr~inn  max. max. max. max. max. max. mnx. rrka x. mnx. max. mnx. max.      mnx        frkrl x Dar           'C       bar    bar     bar    bar   bar   bar    bar   bnr   bar   bar  bar   bar bar   bar .bar    bar k                                                n,gy
                                                    ~f3 Q e
     ~                                               QS
   ~

I. I O~og +08'~0 f 0,02 7/, IIk dd6 ow'd6

                                                     -37
                                                     -38    .

000 00~7 0 08008 o5 0, 21K

        ~zz                    A 25K
                                                                                                                                                                 -~ I F

k

KKP j: l(O'x l'EST, test phase XX (blowdown tests) Status Converpzon factors for measurement points in relief system 3.2.8.76 KM/0 KKP I HEISSTEST, Testphase II (Abbiaseversuche } Stand R 521 Unreel>>lu>>gsl'aktoran fUr dla Hagstollo>> na E>>tl natu>>gsaystas 8. 12. 76 I Kospo>>enta dos Usrechnung HogMort " Auauartunp En 1 I asti>>los Nngst>>l la Hollnufgabe von ~ ~ ~ I>> ~ ~ ~ ln ln SXs toss Abblaaorohq Ilot Uo 1atlvuag l>> X-f1lcht>>>>g xuischo>> Abl>lnsorohr>>. Ililllrnhr Oa IID II V II ss s aa QU3 It I~ Z Dodonhaltorung DklS 1/2 (V ) >) Dlegespannunp ln X Illchtunp uD 2 0>2 N/as 2 N/as 1 /uD DNS 3/I ~ (V) Il II V~ I~

             >>ii1 lrohr               o>>s 5/6        (v)          Dl agespn>>nunp            I>> X-Illchtu>>g os                                  7/0      (v)
                                                           '>>s IC                                                                                                  1  uo 2    0,2 ll/sa     /up          N/as2 O>>S   9/ln     (V)  ~>>     t vngsspan>>unp            I>> Z-lllchtu>>p Abblaserohr              o>>s   11/I'    (v) IIt      Dl ogospn>>>>u>>Q            l>> X-Ilichtu>>g
  = 'd                                oils 13/Ii. (v) 0                                                                                                       1  >>D 2    0,2 N/ss      />>D          N/as 2 oiis 15/i6 (v) 1 Llingsspannung ln Z-
  .'ll I

CO I, Q N Lochrohrdiise D>>S 17/1fl (U) Zi Ihnfnngsspnnnung D>>S IQ/211 (V) Zt Dlegespnnnunp ns Diisn>>ars 1 l>> X-Illchtung 1/ (V) II V II 0 DIIS . I uo g 0,2 N/sa /IID N/aal 2

    ~

X oils 23/2>I (v) 2 >~ X o>>S 25/26 (V) n II v Dodo>>halter>>ng o>>s 76/77 Z> S c hub v p a lulu>> g I I uo g 0,16 N/sa /Uil N/ss Q>; o>>s 70/flI } DNS 72 Z Qosastspa>>>>unp ln dar slttlaron Varatlirku>>gsrlpp>> Jas Kngoll>ada>>s I/uo 0 0,21 N/ n N/ss oils 73 } PA 11 A5 Itolattvbnuegu>>g des Kugotbodn>>a gagan Baton s>R n ss QA 12 } lib 1 1r I hr-S t re ha>> D>>s 6II/6>g I uD 2 0 5 kN /ul1 I>>IS 70/71 II n I~ ~ II II OI [SEE HHXT PAGE FOR KEY]

KEY FOR TABLE 32

i. Components of relief system
2. Blowdown pipe
3. Cladding (protective) tube
4. Blowdown pipe
5. Perforated-pipe quencher
6. Bottom mount
7. Struts of cladding tube
8. Measurement point
9. Measurement task
10. Relative displacement in X-direction between blowdown pipe and cladding tube
11. II Y II
12. 2
13. Bending stress in X-direction II II II 14 Y 11 l ~
15. Bending stress in X-direction II
16. Y II II
17. Longitudinal stress in 2-direction
18. Bending stress in X-direction
19. II Y It II
20. Longitudinal stress in Z-direction
21. Circumferential stress
22. Bending stress on quencher arm 1 in X-direction II 1 " Y II II 2 " Y
23. Shear stress
24. Total stress in middle reinforcement rib of conical bottom
25. Relative motion of conical bottom relative to concrete
26. Forces in strut 1 of cladding-tube bracing
27. Conversion from .... into
28. Measurement value in
29. Evaluation, in 19-44
                                                                                                                                                                                    ~,k '4 <<     '&44,<<J       <<        i   si J<<<<i 4,A NV'                             << 3<< iu i

r fe- w ~ l, ~ " '4

- KKP.-Z-HOT-TESTI~- test                                phase ZZ (blowdown tests)                                                                                                                                              Status D      amic       strains                and       deflections of blowdown ioe                                                          and        claddin             tube                                                   12/2/76 KV/U-                                              KKP I              - HEISSTEST, Testphase                                           9    (Abblaseversuche)                                                                       Stand R 521                Qyncmlsche             Oehnungen                        und Austenttungen von Abblcserohr und HrIllrohr                                                                                                      2.d.2-. 7 6 XCCJCSrtffhr                                                                                         hit f I'Cht 1

VxtsJJCT Ytfftit 'tl2 tta..Nt P"txt <<Tt 4TSI CMS 314 JTla I. OMS 11I12 max mcx. CMS 13ITI max. l mcx. 15I 16 OMS OMS tsl 18 wO3, cyn. max mcx,

                                                                                                                                                                   'MS vIO3 STCt.

Pr 1 1) PP 2 OMS I I6 JTla . tTla 1. CMS 218 lhax. TllCX OMS max ma I SJTQ 4JO uO uO ~ uO 4JO ~ 4JO uC uO. mm mm uO uQ uo uO uQ uQ F 32.5 40 't0 50 au3 rl 3 ~ ~ I,25 q "5 0n5 ='i8P 5 8I,) n 44 "I-0 <<35' 0,5 45 Ct.g E,F,G t35 tC b 243 2i,5 'r0 2.t3 Q p'. ni.) <,5 0 ~<<T6 3n 45 txf 0 tx5

                      $   12 3                50           50 30 35                         60                c5       5";,c 3      ~ ~  i           0;5 075 02>                                                                3; 4]

qg PFG z3 702 5'5<o>,. 30 tP 50

                                                                      ~     T ty,b p5 i
                                                                                                          ~

l ao 050

                                                                                                                <00 o0 40 g0 0j-" 0,) 05- "

45 <T5 Ob ='- nu0 q,0

                                                                                                                                                                                    ="0 10,0 2n ai=-

gas 40."ss 0, if 3Q

                                                                                                                                                                                                                 ~~

Zo

                                                                                                                                                                                                                                     <0 nn Jt0 n OJ u nof"
                       "-,0, 9                                                                         <G5 n30 440                                                                                                       60 C0 4

2+3 8 ";0,~ )0 ~ 4 Vi n2.= 2V.'l 8 7.0 "-, 24 o ~ ~ 4

                                                                                                                                                                                                                                             <<t) Cg tl        2,o 70,3                      2,= t         ~

74 O << '43

                      '-0,'i                      )0                                                   o    O  on 5 gpss t)  Freiblasedruck                                                Vent clea in                                  ressure stationarer Druck                                          1 Steadv-state                                                                                                                                                    Tab.          33 oressure KEYt 1)          Test no.                       2) Valve no.                                  3)      before beginning                                4) Blowdown                     pipe            5) Cladding                          tube KKP Z HOT TEST,                          test        phase ZZ (blowdown test's)                                                                                                                                          Status 0 namic          stresses                  and       deflections of blowdown oioe and claddinct tube                                                                                                                     12/2/76 KWU                                                KKP I - HEISSTEST, Testphase H (Abblaseversuche)                                                                                                                                Stand R 521                Cyncmische              Spcnnungen                      und Austentfungen von Abblcserohr und Hrtllrohr                                                                                                   O.~<. r6 TTTNC    +JT I                                                                                    J.uulal r wtlsuch    Vehl 1                                 CMS     1I2         CMS 3 I f4                       11I12      CM5 13'lx        OMS         QMS                  wQ Nt.

4 Pst Tt CIA S WO3, Cyh. QMS I OMS SI 8 has 9JTQ tta.Ngr CI illa frxTL TTTCI, max. l max, max. max 15 I'16 ts/18 max. ThCI. stat. illa 1. ITlax max.]max. lhC 1. fTXTX. 2 I ) << << Cat u iC NI444444 N 44444 NJ Jillli Wfrrl Nlfrrl'Jrtl44 Nlirill Wflrl'JJN444 uf4 N ltriir NJJ4444 Wrlhi 33 r Oi V 8,0 t3,0 ~00 o o 450 O

                                                                                                                                                                             - uc'2
                                                 ~ 4 Ol<<

ab"-. G2 C,, t', 8 p>, 6 3 tO P,O 5;0 rf<,0 42,0 <Ts,G "30 (0] 04'C C oo oO n.O 0,5 I'o nnO 4""b <~.0 3 nO,O 6,0 3.0 Oj50,r5 02' ~ 4th g ~ I ~ 40

                    =,0,2                                  c', 0 c 5              op        "<<,G     450 qil,0 30,0 q0.0 5.0 O,t:                                                r0                                              o na.o                 ,=,0                               4)   20             <,6 r

r)() 6,0 T)3 ilia 0 0,5 4 2~ 6.0 ~=.. nO.C 90, 4 8.0 2,0 2.0 440 Ot <<5 r.o

                                                                                                                                                                               >ig.O 3't                 03,       <3,o r,'o,d                 c,0 33,u '26.0                    246 d~.q                    245      O'O JJP r,i.o
                                                                                                                                                                                     <<4
                                                                                                                                                                                                   ". j,0                      42,C O,8 3 6                     ~
                    'ZP ti          30                   40 45 i0                                             3.G     2,0                                                                                    3,0                         xi)tx <0 4

i. Z~g 8 ro. I 0io <0 0o "..0 8,0 ri,P 0,8 0<< <<0; <<gu TQ3 0,5 0,5 <0 0, 04 << rll 5 <<0- <0J'P 3 42 V~ V 80 1t30 43,0 8"-,0 nq,5 n.2.0 0o 0,"( < SV O,c '00 JJ3 v O,r

1) Freib1 asedruck 1) Vent clearin pressure stationarer Druck Steady-state pressure Tab. 34 19-45

[SEE NEXT PAGE FOR KEY]

"- '=-.KKP I 'HeT TEsT test.aha'gh:-II .tbloldown tes'ts) ", .
      " Dynamic .stra'its and                                                                                                                                                        StatGs.,

deflectlons of,blowdown pipe and cladding tube '2/2/76'- KKP I - HEISSTE'ST, Testphase li (AbbIaseversuche) Stand Oynamische Oehnungen und Auslenkungen von Abblaserohr und Hullrohr

   'crxuctt'entit                                                                          xecIcxrlchr                                                                      IIU I I IC 9 I 3)GMS 112         5   3l(     2)OMS 11l12       OMS r3/I(     OMS     OMS      WO, cyn. YI03      PF1    PF 2       OMS Sic               its      GM5 9/IO ttd.       Kr                      maL CIcx,            n:CL max max.          IT4 1. max.

r 15rtj9 ITI19 INC1 max. xtat. 1) ita 1 max,) rha1 max rlax Car cx 'C uO uO uO UO uO IO u0 uO uO mm mm

                                                                                       ~                                                       Cat    Car                   UO                 UO    uQ 39                   (2                              ICO     >0                                                                           a5 j42         F     <5,2                                            +0 0'0         r.-.-10                                             G.2>

Q b >i,'".CCF 10 / I)5 40

      <<.3                        39                     2I I            >5 gG                                                                                 1I O
                                                                                                                                                                ~

4 (g cg 43,3 30 >5 G0 60 IIV <0 xgo 40 cg (q 39 (2,5 GG 25 10 c~ <4

1) Freibl asedruck 2) nieder fr equente 3)nicht auswertbar, da Mehspur in stat i onar er Druck Schwingungen e'ne andere MeQspur verlauft Tab. 35 fSEE NEXT PAGE FOR Kr Yl KKP I HOT TEST, test ohase II (blowdown tests) Status Dynamic stresses and deflections of blowdown pipe and cladding tube 12/2/76 KWU KKP l HEISSTEST, Testphase li (Abblaseversuche) Stand R Sjl Oynamische Spannungen und Auslenxungen von Abblaserohr und Hullrohr r1 2. ra~

CIC5+IChr NUI I ICIII'. Vcrxuch VTntl1 3)GMs l/2 5 3/( 2)GMS Itll2 OMS I3IIC GMS GMS yr03. Cyn. w03 rr2 0 MS xl D ~MS ir 9 GM 9lto 1 tel Kr I Kr. 2 max. l ITcx. I mcx. l mcx. max.l max. I max.l mcx. 15ltS 17l tb max. l max. I 5'. max. [max Ihax.lmcx. mcx. maL 4 4 C NINN'IIIIII~ Nlrrl'I Nlnllll NIII&l I wxNII'lllllll NI&ll!'hr\ ~ IN,I IN/INN'rl . I NNIII INIINIr (orb (0 c >0 r2G 05 05 Oc (02 (O,2 l qZ 39 2 0 9.0 0-'; f25 ":.0 3.8 "5 2,0 'g2 c0 1.3P

   ;-'f.3              QLs 0   39                     05     0,5               "0&~b                                                                      ~     = i~. r0      ~i  0 0,2 (02
                       >.3    39                                                            Jh0                     i0"b (02b 038 g rt3                            .0 2,0          42    (02 42,",   3                     (0      x)=                                                                                          ~.= 4,0        "i,1,o (02 (0c
1) Freiblasedruck 2)niederfrequente 3)nicht auswertbar, da MeGspur in stationarer Druck Schwingungen cine andere Mel3spur ver lauf t 8 Tab. 36 19-46

KEY FOR TABLES 35 AND 35

1. Test no.
2. Valve no.
3. Temp. in suppression chamber before beginning
4. Blowdown pipe
5. Cladding tube
6. 1) Vent clearin ressure Steady-state pressure
7. 2) Low-frequency oscillations
8. 3) Not able to be evaluated because measurement trace runs into another measurement trace 19-47

. P KKP I HOT TEST, test phase II (blowdown tests) Status Dynamic strains and deflections of quencher and bottom mount 12/2/76 KWU KKP I - HEISSTEST, Testphase II (Abbtaseversuche) Stand R 521 Oyno/TTische Oehnungen 'nd Auslenkungen von Ouse und Bodenhalierung g.dZ. 76'UT% s CehhCilerulld vetsUOI Venul- GMS '19/20 GM 21/22 GMS 23/2s GMS 25I26 CM5 7C/77 CMS 7d/61 GMS 72 GMS 73 VVC 11 wa 12 Cw '10 IIC N .Nt: >>/el max. plea max. t ITICX. ttlaa max max mcx. t max max, max. max. ITla I mcx, 'l max. tTlaa,lCIICX maa l~~ t max l~~

         /         2,                                  ~  I        I                                      '   I Oat    UO                   ii0    uo    I       UO      UO       UO     UO     UO              Uh                   UO        I'0       uo     UO    thht   I thht mm Tmm      I ccr I ddt F78 ./o VZg '/7P '/75                                  zo 80             N fs                                         n~2 iP~i ""//~~      i/5   g/yl: i/o              2o d5                           SO /CO rg            2~~         20                                     7O    dr tg2     SO                                                                        7P    25 fO qZ                                 60       fP                        O        P                 072 5 f7+                                   Z5      -'I/O            FSV?~ F5                                                                              ?~s HS 6s                                               S 7r>>r          75    KZ             475         Ir5'0
                                                                                                                                                        '75 /20                          /3 a7 /2 Crt+I" 7<8      75'5                                                              05 dS 2o                        d5 2/s'.7'       C'~g      75'             5                         <5 <5 <5                                                                                                                                Pard
   //,'2      8 FV                5       5                 <5        c             5            (5      ?~~    D      2/5',S's               2o zo               M?

go (5 <5 c= (5 r5 Z5 Z5 zs 20 4/0 30 /2 0/// 376, ping /ozz dao / p~ <zp <5 /2))25 85 oo 80 <5 p= pjz Tab.3 7

1) Test no.. 2) Valve no. 3) Quencher 4) Bottom mount KKP I HOT.TEST, test phase II (blowdown tests) Status Dynamic stresses and deflections of quencher and bottom mount 12/2/76 KNU )IlKP I - HEISSTFST, Testphase II (Abbtaseversuche) Stand R 521 Gynatnis ve Spcnnungen und Ausienkungen I/on Ouse und Bodenhcnerung Z. 4Z FE eddehhdlltruhd versudtt -Yehtll
                       >>tel      CMS 19I20           GMS 21/22            CMS 23/2X       GMS 26r26     CM5 7X/77     CM 5 76IS1               CNTS    72         CMS 73        VVA  ll         VVI 12      Cx 10 1'la.l        Nt.               ma I. mc I     maa. I mcx.       max                   fhaa   ITICX. maa. t maa. maa.         mcx. ftICI. INCI.              maa. t max. II:C X. ITTX  I, maa.imaa max I

Nthih 2 Ntmih Rthtih2lktthmZINttr iti/ Nl tllih1 Nlihh>>iklmi Nlmhi ikt~ kth I NI~ hither IINITTMTTilNl~ih Iklihihi 7 r/0 Jg5 jr'. <5 ~a 6.2 $ F,(j /ZS E~ 9 85 29 32 EzE /E~-. g~/ '7 /r/j. ESp 7  %<5 i/4 r/f l8 <7 ///,7 //l ,5':,7

                      ./o2    io                                                                               il    F//                                        ?r7              7,9 pic rr                  Z7'P
                                                          /~a        '/'<

Kyat z,6

                              .p                                       o                                      2 Z8                                  ~ //:~.I" Foe ./5                             Z< da                          <8     2/

Zi/.< 8 0 P,y 07' a ov 74 5 25 c 78~> < /r <.7/ OP og 1I73 '/2 Wp 2/5 /-"",-" ZZ P7'7 2P 2P 4,'& Vl7 Tab.38. 19-48

KcCP Z HOT TEST, test phase ZX (blowdown tests) Status Dynamic strains and deflections of quencher and bottom mount 12/2/76 KV/U KKP j - HElSSTEST, Testphase II. (Al blaseversuche) - Stand R 52'I Oynai71ische Oehnungen und Auslen'kungen yon Ouse und Bodenhcllerung Z. <Z. T6'uc

                                                                             ~                                                                                      ooennarrerunc Yerxur7T  Ycnlrl                         CMS 19I20             OM5 21122       CM5 23I2A       OMS    2"l25         CMS 7I,I77      GMS. pro   1      GMS 72             GMS 73          WA    11    WA 12           CA 10 lfa k       Nra                       ITlc a. ITla x. max. maa. ma x, mcx       Inc x       Iflcx.         ITlC X    Inca. ma a    max. )maa           max       max, Itic x. ma x. mcx lmcx. mcx imcx,
        /                                                            i uO          UO        UG       UO            uO                             UO                       uO      u0    I  uO                 uO   mm       mrn rnm    mm                  car
                      /ES 'l 5 <                     Z < 5' 5'O   <5 <5<5 <5 E                                                                                                                               o voA~
                                                 ~ c fr pe 45 20 2pp                                                                        7S 20 >0                             ZS Og gP
                                                 <5<5<5'1O
                                                                              <5 <5 <5                 <5'O 0                 0 Eo<s                               /o oooo WC         fu                  ~to             EO     ZS    2$                 r~~ <5 ZO                   20                           o>    p,S W.S         E       1Zq <5 <5 <5                                      <r            <5 <5 <5'                                                                                   -/0   Og      yg Tab. 39 KEYl        1)    Test no.                            2)     Valve no.                        3) Quencher                            4) Bottom mount IC   l HOT TEST,  IJ JO test           phase Tl (blowdown                             tests)

C'V/U KKP t - HEISSTEST, Testphase li (Abblaseversuche) Stand Q 52l Oyncrrrische Spannungen und Auslenkungen Yon Olise und Bodenhclterung Z. KZ i 76'v Ytrxuor Yonlil-oct(Incr lf uno lld. II IIII CMS 19I20 CMS 2ll22 ( OMS 23IZA OMS 25725 CM5 J'l77 CMS Mrsi l CMS Ix l GMS 73 WA ll WA 12 GA 10 1 max, mcx, max. mcx. mca max. mcx. mcx. (mcx z ( I ll Nr(nm I mxlx. l I ( I ~ I max. ( I max. max. max. max. ( I mcx. mcx. (max. mar, lmcx. I I ITICX Inca. O-I I Nrmr MJI (n?IMI(n(J(l(NInull( NI~ IJJJJ IJIMIn((J(~ r(rn((n MIJJJ ~ tmMIN ilr(JMII MlmmZI V IJnrn?I Nrlr((n ? I Nrmn J (JJ/ <-f c4 c-/ <-/ c/ < j 0 0 0 21 ,ozIp 3 95z 3 E2 7,'Z c-/ <1 <4 </ </ <T Z~>QO 0grT r

                                                                                                                @if             42       7,'Z                       /lr 2
                                                                                                     </ 0                        0 0                     27J
                                                                                                                                                         &/         ~2 ~7/                                   pz[

Tab. 40 19-49

1' HOT TEST, .t=st phase IZ (blowdown tests) Status Dynamic strains and forces in th5 struts 12/2/76 KYy'U KKP l - HEISSTEST, Testphase H (Abblaseversuche) Stand R 521 Oynarnisctie Oehnungen und Krcfte'n dcn Strebcn Z..iZ 7ttz 0 ahhtth ~h kMatahkllh ah at IIto I I ~ Vtr~ Vcttlil- RR. OMS 68/69 ~ Osis 7>arrl yl01 WOti OMS 68I69 CMS 70/7'L llC'lit' Nr.' m 'a t r.la mca 1 nca thCa, If Ca thC a mca mca mca mca 7 o I ~ ~ I UG a,*e ItN 1N kN 875 50 40 /5 0,7 80 275 frtG 85o go tz5 50

  'T        F       III93                     95                                                                                4'0 70Z                                            55    /7       <7$             15   c5 40       E,F,O      73'5                                                                        <5   rf'0              3P'0 75                  6'0    V,'8           2,3           ~5 37+ -'7g 3g
 <9- F             70@                                            <70            f75    325 1$                           55    tttt5 Za7'             .                                                g5                                  W5                 <0     r~

7'82 g 707 zo <0 zo 7g wo 32 Eg 700 430 oo fz5 30 30 Tab.41 MY 7 1) Test no. 2) Valve no. 3) St.'rains 4) Deflections 5) Eorces KKP T HOT TEST, test phase ZE (blowdown tests) Status D . amic strains and forces in the struts 12 2 76 KV/U KKP t - HEISSTEST, Testphase H (Abblaseversuche) Stand R 521 Oynalnische Oehnungen und Krttfte in dcn Strcben g. EZ.76' t a h tt U h tt h avaI ~ hIltjh ah itctla Vt't5V I Vett til CMS 68I69 OVIS 70I7l W01 W02 OMS 68t69 OMS 70/7l na Nr. m a 1 rca thCa 1 naia mca i area ITIC a mca mcx met I e ~ ( I 1 I

                                      ~

pro lg Vo

                                                          ~ IG I   ~
                                                                     ~

5 Itn IrN ItN VN 4/Z Z5 25 0,25 ozZ5 025 02$ kg Wg 7Q cOg~ I',og cO 5 2+ 5 2,'5 F age tttat ~zg~zp r5. c'5 40 co 7~ 5 5 Tab.42 19-50

3 a Oechet sprarhter tuag tr'uttcrags)oncrt OK-5p+aleitung Z C3.. hrcr Argusn 2-] 3' 3 f~rptkitung Cf P Q Sputa sc4Acbeton Z c-( KK Sprvhteatung

                                                                                                                                                   '     3 AaWtC3C)u34d       Ace rrat Einbcruten trcrrdceasnt~c3irraoc ttcrttber carta) 2, g
w. ~

fi tiitriri'tc .:.(:t

                                                                                                                                                        <5 0 S                           . l                 ~ '7gaa ~ aa   a~ a  ~ aaava                                     Kcnc)casot'3asccrhre S'easpeases)stena b i.           :( llliiI""'.!,"':i                             3 I              OrcNtcul             Z4 l   g  L33Ateg l                  i'3'I'I Ol                                                                                                                  na t4 C        7 gngst3eu O

I ~ ~ ~ 0 0 ttcrrdertsrrtensrcrhnrer strc4ung ZQ; ect 0 0 o P Qcrtaysctm SchL) t i ~ il ri I telmabereaCht Ul rJaat~ ySaa aa raaa 3D Q i, illIi I

                                                                                                  ~ ~
                                                                                                                   ,      D~aaa          > ~     3/

Q CL aa3aa g 3 a-

                                                         'lbuuuuitutiuurtrlil~'i           1 O                                                                                            ar                     Li lacer Aayc3m CL V

j Jai 0 I)!It l,

          ~3 fuacbrrect                                          ~.!i,',4t'j;)

Q//y, 3%:i:i I Stauezhbcrtiike f ittu Samtaa)crag 3 g I'l

                                                                         ,Ij    r.,

34:.:~Q ~m- , ttcbensctk~ t= Q. Dctttaul nat Sctla~ tt) Sd A~rctheg

                    ~ ~

KEY FOR FIGURE 1

1. Top spray line 18. Refuelling hatch cover
2. Erection opening 19. Ventilation duct
3. Main-steam line 20. Drywell spray line
4. RPV with internals 21. Upper annulus
5. Injection system 22. Missile protection concrete
6. Catwalk 23. Suppression chamber spray line
7. Annular gap 24. Suppression chamber (air space)
8. Insulation 25. Vent pipes
9. Biological shield 26. Outer shell
10. Inner cylinder 27. Suppression chamber cooling line
11. Suction line 28. Vent pipe bracing
12. Feedwater line 29. Suppression chamber (water space)
13. Foundation 30. Relief system with quencher
14. In-core instrumentation line 31. Containment
15. Bottom extension 32. Suction line
16. Erection machine 33. Lower annulus
17. Scram system 34. Axial-flow pump
35. Control rod drives
36. Scram line
37. Personnel airlock
38. Emergency airlock
39. Outer shell with airlock
40. Airlock mechanism 19-52

I

   ~

I ~ ~

    ~
                                                   /
                                 +e~/

I Ql

                                         /  y
                                                   'S
                                              .~e'/7A
                                                                  ~fr
                                                                          ~ >v AC~y~) q    ~      x >\

(

        ~nl                  OI   t
                                                                    ~ Tl4
                                                                      %It' 4$ g+

(

                                                                                ++a ce~."Pt1
                          //
                         /
                      //
                / /'!

l I O KEY: 1. Concrete-free zones

2. Concrete support KKP I HeiQtest, Abblasevt rsuche Anordnung der. Abblasedusen in der Kondensationskammer KKP Z.hot test, blowdown tests Arrangement of blowdown quenchers in the Bjtd 2 suppression chamber Figure 2 19-53

at valve A/I(2 hei lan/i( 2 ) lv'r Favj.)or rr>>'lj'o Reactor

                                                                                                                                                                                        ~    p~~

Q D middle E 7 F'

                                                                                                                                                     >  lt~

Ql~ Psr e l1 (2 (PI( t-P>>s < S) WS(nrc.D eeC) S~h~Q I I Section I-I 8 Duse = quencher

                                                                                                                                                                            ~   ~   ~ ~
               ~                                                                                                                                                                          ~
                                                                                                                                                           ~
                                                                                                                                                             ~
                                                                                                                                                               ~
                                                                                                                                                                  ~
                                                                                                                                                                  ~
                                                                                                                                                                   ~
                                                                                                                                                                   ~
                                                                                                                                                                     ~   ~
                                                                                                                                                                          ~
                                                                                                                                                                          ~
                                                                                                                                                                              ~
                                                                                                                                                                              ~
                                                                                                                                                                                  ~ ~
                                                                                                                                                                                   ~   ~                           DPfSP (VJ ense(V)                           D>ssz (y)
                                                                                                                                        ~
                                                                                                                             ~  ~    4     ~ ~
                                                                                                       ~     ~       ~        ~    ~  4  \   ~  4
                                                                                                                              ~   ~   ~     ~  ~ e                                 Abhid4crhhr
                                                                                                                     ~
                                                                                                                         ~    ~   ~  ~                                        Blowdown h
                                                                                                                 ~
                                                                                                                   ~  ~

e 4

                                                                                                                                ~    ~

pipe LP/58(V)

                                                                                                           ~               r
                                                                                                                       ~ ~

Z<hnI'>t I-J Sect>on X-I

                                                                                   ~ v C.5V       ~

kor4>MIh>4l>rrdI>>~

                                                                                                     . t>>                                                                                                        Dn(s.ro(v)

DH$8 ( VJ Normal water level DH5'(y) ZW G(y) r /5:pDm

                                                                                                + rv,$ g> ~    >

E Cladding t Dots-z(y) Jd tube l $ a,a~a(v) Section II-IX ee 1Z.Cur>>

                                                                                                                                                            }-~ ~(2.uv,
                     )a    P~p                                   D 5-8O I  n~s-ar                                               ~war (PFZ P>>4 L'r) puffs.ro (V) 260'(Iillrohr r'@~F4 i~le IV(y)

Abb/nSrrrdhr Blowdown pipe I rP~r' (p % /,'- 4'p>IS 2V 4:4>r'-(own'>: Reactor

                                                       ~  QPt S >A;
                                                         .Q~ll-'p dp/s- /v DIts-g5'>j Sv-IS mr/
                                                                                                                                                                                                      .4
                                                                                                                                                                                                             . I..

r

                                                                                                                                                                                                                           . &vs/8/i/g D81P/2(y) p h ~'     l middle                                                                                                                                           Pets-rr(ug OrI$ lo                                        Mls-pp   ~:s.>s-  yg                                                                                                                              DpM - fs(y)

Dp'js'fsgl ) 43

           /'i ~hnl'6'-~                                                 I Sck)ni pi'F"Zp
                                                                                                                                            . f)>'f                                                        ~4'~~'+     ~~                  Section IIX-.XII Section XV-IVB>.-.r>>i'-
     $ /lr section III-III                                                                                      u>>g; P-'ertiLa(                    Q                      En((as(e~                         55'l'en.F                     e~iNO "L                                   Remark: V =       verticaL                                            (J    Vr>>ro>>g                                                        system "F" 9'elief
                                                                                                                                                                                                                     -t U =    circumferential View H

C~ Lininc I m>SC/ SA <o i Cv< 13

                                                                        >Ms S'0 Strain gauge                l NPf& Sf longitudinally glued CursWa~rS grec'r/  ~>IS<C AN rr/a     .
                                                       ~S~

g YS g3 ~

                                         ~ +    +/A&       >>P1S SS'ms S~

Ansicnz'on u<Fcn pe~a n iPrppe View from below toward rib Figure 4 Bi(d 19-55

I' DEEINITION OF VALVE OPENING TIMES AND DEAD TIMES Zeitachse Time axis

                   ~
                    '2 "o

2 I 5 t0 Electrical actuation tl Dead time, pilot valve t~ Opening time,'ilot valve t3 Dead time, safety/relief valve tl+t3 Total dead time t4 Half opening time, safety/relief valve (lift 0-35 mm) Opening time, safety/relief valve tges Total opening time (tl+t3+t5) (l) Lift behavior, pilot valve (2) Lift behavior, safety/relief valve 19-56

KKP llOT TEST, test phase XX (blowdown tests) o 0 Excitation with l pilot 2 valve pilot valves Valve opening times of the SRV XSAP valves: A,C,E,Q E and G with swing check valve

                                                                                                                  'alves in XSAP control line (except at o Excitation with 2 pilot valves)

Specified opening time 1C )0 spezifizierte Offnungszeit 8

l. )0
        ~

N g Ol i:;i0 o

0 c

o I.:l0 200 0 Yentil A D Valve KKP I -HeiOtest, Testphase II (Abbtaseversuche) o Anregung mit 1 VV 4 re ~ 2VV Ventiloffnungszeiten der Sicherheits- u. Entlastungs- USUS -Ventile: A.C.E.G ventile Ventil E u. G mit Ruckschlagventil

                                                                    'in USUS-Steuerleitung'auAer hei   o  Anregung mit 2 Vy)

Mean opening time Slowest opening t:ime (test 18, valve F) (test 28, valve D) I I l l Rea tor pres ure mit tl. ()ffnungszeit langsamste Offnungszeit Reaktordru(k 70 bar (Versuch 18, Ventil F) (Versuch 28, Ventll D) eo J3 Fast:est opening time 70 (test 19Z, valve F) Hub 100% 100% lift Lift 60 3 2 N C 50

                                                              /                                                          Ql I

ln 40 C 30 / / o

                                                                                                                       ~

0 J rd o N 20 10 I l o U) 61 Q.

                /~-

0 0 100 200 300 400 500 600 700 800 800 1000 . 1100 ms KKP I safety/relief valves Zeit Time KKP I Sicherheits und Entktstungsventi(e HUb / Ze) t ger )aU fe I ift vs. time variations Qt von Fa. Bopp u.Reuther rechnerisch ermittelt Determined computationally by Bopp and Reuther. e Q. Q2 idealisiert Idealized Q3 klemmendes Ventil Jamming valve Qr, Q5 Q6 bei den Freiblaseversuchen gemessen Measured in vent clearing tests

KKP I HOT TEST ot" value for safety/relief valve Figure 8. 2 i'"! ' .". ~ .::: ~ I g 2 2

                                                                                                                                                                                         ~ ~
                                                                                                                                                                                                         ~
                                                                                                                                                                                                           ~ ~          ~    2   ~ ~

I

                                                                                                                                                                                                                                               ~
                                                                                                                                                                                                                                                    ~   ..'i::
                                                                                                                                                                                                                                                      ~ ~
                                                                                                                                                                                                                                                                                   ~    '..
                                                                                                                                                                       ~   ~     ~                   ~            ~       ~        ~ ~       ~ ~ ~ ~ ~ ~ ~ ~             ~ ~   ~ ~        ~ ~ ~
         ~         ~   ~~      ~

I

                             ~     - ~
           '2
I .:::.:I ":::.:i"::::: ":;.::::rtt."....'I.::t.t::; '

I'.: ....f'

                             -OV     ~2 2..
                             ~       ~     ~

il; ': ttt'. values KKB/caCP I acc. to DFVLR-Porz

        'r" ~::i 2 j:::::-':i -::::-::. I .,                 ~      .'.::-'..'.:. .:.:       ~
                                                                                                                                                                                                                    '.'.     ':-.';      ..:.'.-:::.: ~:-.:l.-:.:.:

2 '2  ::::t.tr:2"'I .t.'l:-:: .::::::.::..::I:r.t..".'..'ll ."..'..

                                                             ~

f 2 j 2 ~ I 7 2 ~ ~ ~ I 2

                           ~           ~
                                                                                                                                 ~  ': I"
                           ~          ~

2ttt.l ~ . I-... ~

                                                                                                                                                                                                   .:.:,...::...                                                                     I ~ ~

2 i f"':2:":j::2.'2

                                                                                                                                           ~   ~          ~
               ,  ~~    ~        . i              2-"                                                                                                               ,f ...

f ltttllt

                                                                                                                                                                                             ~            ~
j: "I . I:::: ." "2 f
                          ~ ~        ~

iris':fi: ! ; .i:-.; I  :::::. j

                                                                                                                                                                                       ~
-: ~
f -':::::
       ~:     "."'r                                              j'""'j""iI-"iiiiiii:           f I-'i    '

i:i ': I::

t. I h.

0,6.

                                                                                                                                                                                                                  . !,i.. i.":;.
                                                                                                                                                                                                                                                                                       ~  ~

jdo

                                                                                                                                               ~

2

                                                                                                                                                            ~,

iiiili:iii err ~ 2~ ~

                     '   ~

I I~ ~

.,;
;.,::-.e-.,V/crt,:;;-tot-;-:;Sit:herhetts- tend::: Entictstttngsventlt;,:::;
- i::: j .::.'. :.!;.!it::.:i;:i ti ." Ii:i:.i:iif"iiiiiii ~ I".

ii.ilia:i!:::ii:..:: ":I:"'fii"f';.ij :iii':.i

       ~

4

.:.I::: ": " "
                     ;:! : "It:
                           ~ ~
                                             ..I.:::f:"
                               ~:" ~" .'.'"...' .": '.".".'L
                                                                        ". I::. I:::.[::. ::.':::: ::
                                                                                                   '   ~   ' i:
2.:
                                                                                                                 ~

I'"

                                                                                                                    '        l.f
                                                                                                                                   ~
                                                                                                                                   ~
                                                                                                                                     ~
                                                                                                                   'I:...2.'".'.I:::'i..

I:. :I

                                                                                                                                                   ~
                                                                                                                                                      ..'i
                                                                                                                                                         ~~~
                                                                                                                                                                            " .iI  j ': ""';I ".'"
                                                                                                                                                                             't
                                                                                                                                                                                   ~ ~     ~ ~

I -' B ftd A" Ill(Lt' \ gl 1 ~ r . T:'r

                                                ~

t I 8 2

                                                                                                                                                                                                                                                ~ 2 ~,    ~    2~ 2,rr:rVI22 ~
                                                                                                                                                                                                                                                                     ~

19-59

tlh 800 acc. to 4 value 700 nowt M- Q/rg

         'I   N g 600 V
          ~ b 500 F'zi / 'z iR'rt speci pi ed O                                                                                                                              cr kzro crt'ch       reqttir'ed 400 300 200 100 0          0.1    0,2    0,3      0.4       0,5    0.6    0,7   0.8    09     1.0           1,2       1,3    1.4     1,5           s Zeii nach VV-Anregung Anregung steht                      tlV ottngt am VV an                             Main valve opens                                                 Time after pilot valve           actuation Excitation at p3.1          l I             mm Ch O               80 44                                                                                                                                     PCrr Zi lhci6
          ~g      70 Ualve'ift Cl C   60 50.

40 30 20

                     '0
                       ~

0

   <S                   0       O,l    02     03        0,4      0,5    0,6    0.7    0,8   09      1,0            2       1,3     1,4     1,5

': ~~'3 KKP I non-nuclear )tot test, blowdown tests Zeii nach VV-Anregung .

  .g KKP t nichtnul<tearer Hei0test, Abblaseversuche                                           Time after pilot    valve actuation
  .a  CL Sicherheits - und Enttastungsventile:         Hub  und Durchsatzvertauf AUblaseversuch Nr. 7, Reaktordruck abs. 70,3 bar, Yentil F, Yorsteuerventil SYY SRU: Lift and flow behavior.         Blowdown test no. 7, reactor pressure abs. 70.3 bar, valve F, pilot safety valve

tlh 800. e 700 ace~ gt 4 value 4 nj N /.

          >    cn   600
                                                                                                                                                ~+regC. Sir re@/Q/'/ Speci P. ed r.'I fore'Cr-le Ch Required    .

400

                  . 300 200 100 0

0 0,1 02 03 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,2 1,3 l,Ie 1,5 .S Zeir nach VV-Anregung Anregung steht HV ottnet am VV an Main valve opens T'ime after pilot valve actuation Excitation at pilo valve mm 80 et A fgl)/i/l~v6 lift

          ~

70. at'- Valve (~ a 60 50 40 30-20. 10 0 0 0.1 02 0.3 0.4 0.5 0,6 0,7 0,8 0,9 10 1,2 1,3 1,4 1,5

   ~  gJ                    KKP  Inon-nuclear    hot test, blowdown tests                                         Time Zeii nach VV-nnregung after pilot valve actuation Q                   Kt(P I      nit;htnuktearer Hei Otest, Abbtaseversut-he
  • lra Sicherhei ts - und En t last ungsvent tie: Hub - und Ourchsa tzver tauf
o O Abblaseversuch Nr. 27, Reaktordruck abs. 71,6 bar, Yentit 0, Yorsteuerventil EYV SRV: Lift and flow behavior. Blowdown test no. 27, reactor pressure abs..71.6 bar, valve D, pilot relief valve

KKPI: Druckverteiiung heim Freiblasen im Meridianschnitt 260', Duse F" KKP I: Pressure distribution in 260'eridian during vent clearing, quencher "F" B i(j aiba ll Fz.gure 11

'k ><45 cLM 43 cp 0/ +i/'2 03 0 P g ger

              /     C '/2
             /j I

I I I I I I

                          /Ow/o
                              ~

I Test 10 Quencher F P~ ~ 7Z foo~ Test 16 Quenchers r,G P~ ~ 7/ >6or

                                                            -~          Test. 17 4'8.3      bOJ-KKP j-:    Dt   Uckvel teitung    beirn Freib(amen irn Meridianschnitt 260 KKP I:. Pressure distribution in 260'eridian during vent clearing Bild t2
                                                              ......,Z.igure      ',2

P3 g7 0/ 0 QA /2 I i s 0rI /I I a I I I I jA /0 OAa I r45,Educe

                                                                  ~       Test 6.2 Z.

Quenchers E,F,G Vers. e Odze F,F,G Pg gg PgrSe /7 Ouse ",r, 8 r+g ~ 73( 3 0 pr Test 17 Quenchers E,F,G KKP I: Druckverteilung beim Freiblasen im

            'MeI idianschnitt Pressure  distribution in 260'eridian during 260'KP...I:.

vent clearing Bi[d 13 liame 13. 14-64 '"'-"'

g3 02 [I Oh 7 ii/ DA /2 lf I I i

    /

I ih QA // 1

                                                            /j
                        /I 1

OA IO Doe r I

           .L                                         /p
                                                     /j
                                                   /'/

Vers. = test

                                                                    ~~    fera. e.g P+~goggzr
                                                                          '/era. g, 3 o
                                                                           +g i 7l~ 8 b
                                                                                        ~

or 3n~ri I/y/ge~g P~ig7$ joe KKP j:: Druc[ vertei[ung beim Freib[csen im Duse F" during

                   'Mei.idianschnitt 260', 260'eridian
           .-KKP  I:.. Bressure. distribution in "F" vent clearing, quencher v   ~                                                       . ~

Bi[d t/

DA10 DAS DA13 DA 1 0,6 bar Test g CL 0 Vers. 10 m cl Vers. 9.2 0,5 Vers. 9.3 Vers. g O. Vers. 19 Z ~E 04 rn ~ Q g,CI 0,3 1/R distribution calcu-m N o 0 lated from the specified N Q. values for normal

                                                       .response 0,2 0,1 10         20      30         40      50 Position    on 60 Position om Umfang periphery
                                                                           ~

rod KKP I: Druckverteilung in Umfangsrichtung auf Kegetboden KKP I: Pressu e distribution in circumferential direction on conical bottom Figure 15 Bi id 'i 5 14-6 6..

ITl g I as translated into ..E. 0 .G. I..I. S .H........ ~ Ct AIR OSCILLATIONS DURING YENT CLEARING HITH 5 m,~j

                                                                                             'll S  INGLE AND DOUBLE      P I PES
                                                                                             ~OH m

as translated from ..G, E .R. M .A. N......... IC 1" 8 $ a~H Ul ~ LUFTSCHWINGUNGEN BEIN FREIBLASEN MIT EINZEL-1" UND DOPPELROHR g@,' 0 gg H 0 ~ SCHNABEL> HECKER N

                                                                                                 )
                            'EG-TELEFUNKEN         REPQRT     No. 2327                       A   cT P

fll m~g RcO O VfN!Ãllll%95~ OCTOBER PP8,L PENNSYLVANIA POWER 5 LIGHT COMPANY j.977 Joy' u) IlI

                                                                                                 -I ALLENTOV/N, PENNSYLVANIA 71 BARNARO AVENUE WATERTOWN MASSACHUSETTS 02172
                                                                            ~

I617) 924-5500 u I

                                                         . go-9<7

AEG- TELEFUNKEN NUCLEAR REACTORS Ffm., August ',72 E3/E2-SA Dr. B/Schn/ru Re ort No. 2327 AIR OSCILLATIONS DURING VENT CLEARING WITH SINGLE AND DOUBLE PIPES COMPANY CONFIDENTIAL Prepared: /s/ Schnabel, E3/E2-SA

                  /s/         Becker , E3/E2-SA Checked:           /s/         Frenkel,   E3/E2-SA Classified:        /s/         Grabener,  E3/El Class  II

Distribution list: E 3 - Secretariat E 3/V E 3/V 1 E 3/V 2 E 3/V 3 E 3/V 4 E 3/V 5 E 3/V 4-KWW E 3/E E3/El E 3/E 2 E 3/E 3 2 x E 3/E 1 LP E 3/E 2 E 3/E 2/ SA 4 x E 3/R E 3/R 1 E 3/R 2 E 3/R 3 E 3/R4 E 3/R 5 E 3/R 2-KL E 3/Library HE/E-F

NONLIABILITY CLAUSE This report is based on the latest state of the art in science and technology achievable hy our best possible efforts. The knowledge and experience of AEG-TELEFUNKEN are incorporated in it. However, AEG-TELEFUNKEN and all parties acting in its behalf make no guarantee. In particular, they are not liable for the correctness, accuracy and completeness of the data contained in this report nor for the observance of third-party rights. This reservation does not apply insofar as the report is delivered in fulfillment of contractual obligations, nor with respect to licensing authorities or the experts appointed by them. AEG-TELEFUNKEN reserves all rights to the technical information contained in this report, particularly the right to apply for patents. Further dissemination of this report and of the information contained therein requires the written approval of AEG-TELEFUNKEN. Moreover, this report is communicated under the assumption that it will be handled.,confidentially.

Table of Contents Pa<ac

1. Summary
2. Statement of problem
3. Test set-up
4. Compilation and interpretation of the GKM test results 4.1 Dependence of the pressure peaks on the pressure build-up in the vent pipe (vent clearing pressure) 8 4.2 Dependence of the pressure peaks on the valve opening time 4.3 Pressure profile at the bottom for the single and double pipes References 12 Tables Figures
1. ~Summar A total of 29 tests to investigate the air oscillations after vent clearing were performed in the AEG condensation test stand in the Mannheim Central Power Station (GKM). The tests were carried out with a single NW 150 or NW 200 pipe and with an NW 150 double pipe. The vent pipe submergence and the valve opening time were intentionally varied.

It was found that the pressure peaks beneath the central pipe are at most equal to the pressure in the vent pipe at the time of the vent clearing. When plotted against the valve opening time, the measurement points representing the pressure peaks fall along a uniform curve. No significant influence of the submergence or pipe geometry is revealed. The tests show further that the assumption of an additive superposition of the central pressure peaks, as was made in the Loading Specification for the KWW suppression chamber bottom, is conservative.

2. Statement of the roblem When a relief valve is blown down, the water slug located in the pipe has to be expelled during the flow initiation process.

A cushion of compressed air is formed between the water slug and the steam flowing behind it. When this air cushion emerges from the pipe, it begins to expand rapidly. Physical models that provide -good agreement with experimental results have been described previously in /l/ and /2/. Zn this report, test results shall be used to investigate the quantities that. have a substantial influence on the pressure peaks of the gas bubble oscillation. Xn addition, the pressure profile at the bottom of the tank during simultaneous blowdown through a double pipe having a pipe separation of 600 mm is compared with the profile for a single pipe.

The vent clearing tests were performed in the GKM test stand illustrated in Figure 3.1. This test stand is used for vent clearing and condensation tests. A detailed description of the test stand is contained in /3/. The test stand is connected to the steam system of the GKM via an NW 200 pipeline. Superheated steam at 20 kg/cm 2 (gauge) and ca. 280'C can be obtained from that system. An NW 200 repair gate-valve, which is mounted directly on the steam header, represents the beginning of the experimental section and simultaneously delimits the test stand from the GKM. An actual KWW relief valve is located approximately 25 m down-stream from this repair gate-valve. After opening the relief valve, steam is conducted into the following vent pipe and condenses in the water pool of the test tank. Some of the tests described here were performed with the test set-up using a double pipe, as illustrated in Figure 3.2. In the vicinity of the distribution point from the single pipe to the double pipe, the off-center pipe could be sealed off from the rest of the test stahd by means of a pipe blanking disk. The most important dimensions and instruments are shown in Figures 3.1 and 3.2.

1

4. Com ilation and inter retation of the GKM test results Vent clearing tests were performed in GKM on a vent pipe with mass flow densities such as those that occur when a relief valve is blown down. The measurements were made on a single pipe (NW 200 or NW 15) and on a 2 x NW 150 double pipe. Besides the vent pipe submergence, the valve opening time was also varied in the tests. All tests performed to investigate the vent clearing process in GKM are compiled in Table 4.1 togther with the parameters of greatest importance for the vent clearing process.

4.1 Dependence of the pressure peaks on the pressure build-up in the vent pipe (vent clearing pressure) During the vent clearing process, there is a pressure build-up in the vent pipe. It causes an acceleration of the water column standing in the pipe, but simultaneously also causes a compression of the air column. At the instant of expulsion of the water column (either the water slug is expelled in its entirety or the following air bores a channel in the water pool), the ai column is under maximum compression. Therefore, it may be expected that the maximum overpressures during the subsequent air oscillations do not exceed this vent clearing pressure. The investigations relating to this question are summarized in Fig. 4.1. In that Figure, the measured pressure peaks beneath the pipe (beneath the central pipe in the double-pipe configura-tion) in the second oscillation are'lotted versus the vent clearing pressure. The second oscillation was used for the evaluation because it is in the second oscillation that the

larger overpressures occur, even compared to the first oscillation. The first expansion of the air bubble probably already begins before the entire volume of air has left the vent pipe. Accordingly, energy continues to be fed in during the first oscillation, so that the second pressure peak can be higher. Figure 4. 1 shows that the measured pressure peaks at the bottom were found to be at most equal to the vent clearing pressure. The condensation shocks, which are superimposed on these pressure I peaks and falsify the result, were not taken into consideration here. However, most of the measurement points were found below the vent clearing pressure, which can be explained by the fact that a damping had already occurred in the second oscillation. Finally, it should be noted that no significant differences were found with respect to the nominal bore, submergence and number of pipes. 4.2 Dependence of the pressure peaks on the valve opening time In the preceding Section, a relation was found between the pressures measured at the bottom beneath the pipe during the air oscillations and the pressure in the vent pipe at the instant of vent clearing (vent clearing pressure). However, the vent clearing pressure is not a very suitable magnitude for practical applications. In searching for a more suitable physical magnitude, the following analysis is relevant: The pressure build-up in the vent pipe is surely dependent on the time variation of the valve opening process. It is therefore

obvious to investigate 'the dependence of the pressure peaks on the valve opening time. The last tests, in which the displacement-vs.-time function of the valve piston was measured directly, revealed the following problem concerning the valve opening time: In slow opening processes, the valve lift does not increase linearly with time. Instead, there can be a slower increase at the beginning and at the end of the opening process, as is illustrated in a graph in Figure 4.2. In the earlier tests, some of which were discussed .in /3/, the valve opening time was determined by another method. There, a valve opening time was extrapolated linearly by using 2 contacts which were separated from the upper and lower end points (Figure 4.2). The start and gradual end of the valve lift process are disregarded in that method. The switching point. of the contacts is not very exact and thus represents an additional uncertainty. Therefore, the valve opening time was determined from the pressure before the orifice which precedes the valve. The dependence of t the pressure peak beneath the pipe during the same oscillation on the valve opening time determined in that way is illustrated in Figure 4.3. The measurement points yield a uniform variation which is approximated by a curve drawn through them. For short opening times, high pressure peaks are produced, but they decrease very quickly as the valve opening time is increased and tend toward a low limiting. value for very slow valve opening processes. No significant influence of the submergence, the lo

pipe nominal bore or a superposition due to the second pipe can be found from Figure 4.3. 4.3 Pressure profile at the bottom for the single and double pipes Figure 4.4 shows a comparison of the pressure profiles at the bottom for a single pipe and a double pipe. Both tests were performed with a submergence of 4 m and approximately identical valve opening times. Approximately the same pressure peaks were found centrally, as shown in Figure 4.4. In regard to the superposition of loads caused by 2 pipes blowing down simultaneously, a statement was already made with Figure 4.3. Both for the NN 200 and NN 150 single pipes and for the Nid 150 double pipe, the pressure peak beneath the central pipe was found to depend only on the valve opening time. Hence, no superposition of the pressure peaks occurs. However, the Load Specification for the KWN suppression chamber bottom, described in detail in /4/, is based on an additive superposition. Thus, the tests performed in the GKN with single and double pipes demonstrate that that Load Spec'.fication is conservative.

REFERENCES /1/ Neissh'aupl, Schall Calculation model to clarify the pressure oscillations in the suppression chamber after the vent clearing AEG E3 2208, March 1972 /2/ Slegers, Weisshaupl, Becker, Zieglowski, Kleinow, Schall KNW - Design load for the suppression chamber bottom AEG E3 2238, May 1972 /3/ Berndt, Proyer, Becker, Schall, Vaida, Frenkel Condensation tests in the GKH with single pipe AEG E3 2301, August 1972 /4/ Nowotny, Slegers, Andersen KNW Specification Loads t for the suppression chamber bottom KNW XA SD 001, July 1972 12

'\
   )

J I

Table 4.1 Com ilat'on of GKN vent clearing tests GKH . test Pipe Submergence Vent clearin Pressure peak Valve opening no. geometry pressure beneath central time from pipe in the 2nd orifice oscillation measurement 2 k /cm (gau e) kg/cm~ sec 20 NV 200 failed 7~7 o, 16 2! 8.0 8.1 0,15 2~2 0 ~ )0 10I3 7~7 0,08 'I 3 9I6 8,5 0 19

                                                                                        ~

h I9 7IS 7,4 0.07$ 1,8 0,10 30 hV 200 I ~ 5 6,3 o, 16

)G            2  x,'Iv  I 50                       8,6                7,0            0, IS SI2                3   3          0,47
)7                                                                      ~
)8                                                 4,6                               0,19 O,2                0 ~

0 ~ 3I 4'I 2 x I'V 150 failed 0,4 ~ ) 0,4 45 hV IIpo failed 1,2 1,0 h Il 3I4 failed 9,4 SI7 OI21 52 2,0 2,0 not evaluat-1 I7 IIS ab3e I 55 hV 150 2I) 1.8 IiV 150 1,0 o,6 57 1,5 58 o,6 o,hS 59 I,o OI7 60 o,e 0,4 I~) 0,7 OI) 2IO 62 1,6 I.h 1,0 G) o,6 0,2 64 2 x hV 150 o,6 0~2 13

                                                                                                                                                              'i First set-up,                         test stand                   [SEE NEXT PAGE FOR KEY]

Fig. 3.1 GKN

         /

,," I'e<

I I<, <<<<~~ (> I (l I I 'I I!<< . <. I l!I I I ,, o~,l . )II ~ ,.I I} r.- r:. ( . ..r rl ~< e t I':II I "I <. I ('z 'r, /~<., / QQ ~ ~ ~ / r'I Qro (I,' ee> ~ e><<>/> e>J V r( (Ale .<<I, r Zl (7, q }I} '>I~ - ~I-- j<,//- 6>ye<A 0":: l)( 2 J << ': - I:,<<e I ~, <n r~<<<l'. ~ <ne) <<I/< 0-/ q .>.~ I'.;r,,~,~, h~.:d I!UQ- ~rw SCi1I'IUf IW<" ~rs';cgtldlkii(~ .,~ra IIC fi'Ir l.lift . t'} b4- .'IIA Q- t>I};I<<Ome<.'>Q/7 P!( PIT Ql Mrs p '~ $ ,/!r;,q; Ir e>>r<piC f. P '+ e!A<<> I >c>. 5 ~ <<'<e> g< fs 3000" 20'/'(l~ ~/9 T (l~GL

. Wo L'}I<<~Q Iu'<<);:;-

1c i'I:uu A< < 1 Je () I LQ Ze,

P- V )

<<:Q -. --.<<<> l Q>, Oi AA> ~ (> r Q9 T V..~3, . /)0 1000 "- C,> << ') 500 I~ ~ ' v ~ I j, (~~) rl/ <<8 >A> >rrrr>>I<<7>><<<r <T<<<<f ~~$ S>>>>~ ir>>IC> rl'ural nr>gr ~r</err! n/r ~ }1(III r I I 'rl. 4r (T >/f<r>< > '. r~>>Jig "r<,'-,$i' <<<e< > e p/T f'/T , 0 < QT Q<<; 14 IA ~ I KEY FOR FIGURE 3.1

1. Water injection
2. Throttle valve
3. Repair gate-valve
4. Steam header, 20 kg/cm 2 (gauge) 5..Beginning with Test 22, without throttle valve
6. Signal line, NW 25, 20 kg/cm 2 (gauge)
7. Drain
8. Safety valve
9. Tests 1-25
10. Steam admission ll. Air addition
12. Vent
13. air
14. Water admixture
15. Snifter valve
16. Capability for air connection
17. Pressure gauge
18. Damage:

p4 failed in Test 4 p5 failed in Test 5 p4 5I6I7 fai led in Test 8

19. Inside diameter 207 mm
20. Cross-over pipe
21. Lance
22. 2 struts at 5.5 m and 3.58 [?] m
23. p~? is rearranged at 255 mm below zero beginning with Test No. 7, with separate supply pipe beginning with Test No. 10 15

Pressure peak beneath the pipe in the 2nd oscillation ~5,2 10 GKM tests, NW 200 GKM tests, NW l50 (single pipe) tests, 150 (double pipe) X 8 GKM NW ( ) ( X ) Max. value in condensation shocks Pressure .peak of air oscillation ),oo 0 2 G 8 >0 12 'g/cm2 Pressure in the pipe at time of vent clearing plF Dependence of pressure peaks on the pressure build-up in the vent pipe Valve lift H max 1st reed contact i2nd reed contact valve opening time from time reed contact measuremen actual valve opening time Figure 4.2: Diagram of the valve opening process Pressure peaks beneath the pipe in the 2nd oscillation 10 p5 x 4m ETT A'W 200 kg/cm:. Limit G 2m ET T N~P'00 X 0 also for test.s 1]5m E T T @VI 200 x x with rupture disk 0 2m ETT Nor 150 gl E 7 T g'f/ 1~~0 double pipe E 7 T N +'5 0 double pipe o Qi 0 Og2 0) 4 0~ 6 0)8 1)0 1,2 t)4 1)6 1,8 20 22 24 s 2JG Figure 4.3: Valve opening time from orifice measurement Dependence of pressure peaks .on valve opening time i single pipe 2nd pipe or central pipe 2 kg/cm I N l4 200 ( GKM test no. 20) I 7~ 2x NH/ 150 ( GA'M test no. 36) 0 0 0 8 Submergence: 4 m 8 Oa 8 0 distance from tank axis 0 200 500 coo 1000 mm 1500 Figure 4.4 Pressure profile at bottom for single and double pipe 19 I p I C <<4 I f I 1 Nm 53 TITLE as translatedinto ..E. N .. "..I...H.... KKB CONSTRUCTION AND TASK OF THE RELIEF SYSTEfl lip g ,-p.d as translated from G E R M A. N a~W Ul~ 0 AUFBAU UND AUFGABE DES ENTLASTUNGSSYSTEMS +g) W I:1R KNAPP DR i HECKER a lNU TEGHNIGAL REPQRT lQ'(U/E 5 2871 Ã~ +g ) R 15 JANUARY 1974 gS@ (PPRL DOCUMENT NO 8) a >><~~p a(k Aususl 1977 PPaL Joy~ M PENNSYLVANIA POWER 5 LIGHT COMPANY 71 BARNARO AVENUE. WATERTOWN MASSACHUSETTS 02172 (617) 924-5500 ALLENTOV/N, PENNSYLVANIA t l e yw ~ Ss r 1 I P t t ~ A I Frankfurt 15 Janu'ar 1974 Place Date Technical Report KWU/E 3 2871 KRAFTWERK UNION File numb'er R 521 / R 113 Author Kna R 521 / R 113 Department Dr. Becker Countersignature

Title:

Pages of Text.: 20 Construction and task of Figures: 16 the relief system Circuit diagrams: Key words (max. 12) to identify Diagr./oscillogr.: the report's content: Tables: Survey description of relief Reference list: s stem Summary: This report represents a description of the relief system in regard to its construction a'nd its use during operation and accidents. It contains the operational boundary conditions and, in survey form, the requirements on individual components. By reference to detailed reports and specifications, the report helps the reader in the search for more detailed information. The conclusion of the report is a discussion concerning the failure of individual impermissible secondary components. damages It isruled can be shown clearly out. that COf1PANY COfdF I DENT IAL (Kna ) (Dr. Becker) (Frenkel) (Zimmermann) II Author's signature Examiner Classifi'er Class For information Distribution list: (cover sheet only) lx KWU/GA 19 Erl lx /PSW 22 Ffm lx R 1 Erl lx R 1Ffm Transmission or duplication of this document, exploitation or communication of its content not permitted unless expressly authorized. Infringers liable to pay damages. All rights to the award of patents or registration of utility patents re-served. 8-1

~ i ~ V V V ~ V

                        ~ C
               ~ V ~ It

NONLIABILITYCLAUSE This report is based on the current technical knowledge of KRAFTWERK UNION AG. However, KRAFTWERK UNION AG and all persons acting in its behalf make no guarantee. In particu-lar, they are not liable for the correctness, accuracy and completeness of the data contained in this report nor for the observance of third-party rights. This reservation does not apply insofar as the report is delivered in fulfillment of contractual obligati'ons, nor with respect to licensing authorities or the experts appointed by them. KRAFTWERK UNION AG reserves all rights to the technical in-formation contained in this report, particulary the right to apply for patents. Further dissemination of this report and of the knowledge contained therein requires the written approval of KRAFTWERK UNION AG. Moreover, this report is communicated under the assumption that it will be handled confidentially. 8-2

Distribution list (internal) R-Ffm RZR 1 2 x RS RS 2 x RS RS 115/G KT RS 12/KKB RS 12/KKK RS 13/e~V RS 13/KKP 2 x RS 14/KKI RS 15 RS 2 RS 21 RS 213 2 x R 11-Ffm R 11- Erl R 111 2 x R 113 R 213 R 3 R 314 3 x R 32 R 322 R 5 R 52 R 521 8-3

TABLE OF CONTENTS Pa<ac Introduction 8-5

2. Description of the relief system 8-6
3. Use of the relief system 8-10 3.1. Use for relief function 8-11 3.2. Use for safety function 8-13 4 ~ Operational boundary conditions 8-15 4.1. Blowdown capacity 8-15 4.2. Opening of the valves 8-17 4.3. Water level and submergence 8-17 4,4. Temperature distribution in the suppression 8-18 chamber during relief processes 4.5. Permissible pressure loads on the suppression 8-20 chamber 4.5.1. Pressure oscillations during vent clearing 8-21 4.5.2. Pressure oscillations during condensation 8-21
5. Requirements on individual components 8-22 5.1. Relief valves 8-22
5. 2. Perforated-pipe quencher and blowdown pipe 8-22 5.3. Bottom mount 8-23 5.4. Restraining structure 8-24 5.5. Protective tube 8-24
6. Discussion concerning the failure of individual 8-26 components Figures References 8-4

Introduction The purpose of the report is to provide a comprehensive survey of the relief system. Important relationships in regard to the system's use are made clear and the require-ments on individual components are justified. The indi-cation of very specialized data and information was in-tentionally dispensed with for the sake of a better survey and, instead, reference is made to detailed reports and specifications. This facilitates the search for detailed information. 8-5

Descri tion of the relief s stem Two relief pipes branch off from the main-steam lines in the upper annulus of the drywell. They lead into the suppression chamber, which is partially filled with water, and are sub-merged in the water pool (Figure 2.1) . This system, called the relief system, is used to relieve the pressure in the reactor pressure vessel in the event of accidents (e.g., failure of the main heat sink). For that purpose, main steam is blown into the water pool of the suppression chamber and is condensed as water. The total of 7 relief lines, which are equipped with quick-opening valves, are connected to the main-steam lines inside the drywell. Figure 2.2 shows the relief system beginning at, the valve. Xt consists of the relief valve, restraining structure, blowdown pipe, perforated-pipe quencher, bottom mount and protective tube. Each of the 7 main valves is equipped with two separate pilot valves (Figure 2.3) which can be actuated either by internal means (steam) or by external means (electromagnetically) . Figure 2.4 shows a section through the spring-loaded pilot-operated safety valve. After opening the control valves, steam flows from the reactor via the control line into the pressure chamber of the main valves and the valve opens. The valves are arranged in three groups which are actuated at different reactor pressures (Section 3.1). 3 valves are 8-6

I provided for the automatic depressurization mode (Section 3.1). The arrangement of the safety-relief valves is illustrated diagrammatically in Figure 2.5. From the Figure it is ob-vious that the various groups of valves are distributed uniformly over the circumference of the suppression chamber. The 3 valves which are actuated for automatic depressuriza-tion are also distributed along the circumference. ln this way, adjacent valves are not actuated simultaneously (except P in the safety mode (Section 3.2)) and the pool is heated uniformly when there is a high thermal load. A fitting with an orifice plate is connected to the relief valve. It is followed by a second fitting with two connec-tions for snifter valves, to which is connected the blowdown pipe with a nominal bore of 400 mm (Figure 2.2). The orifice plate is meant to generate a steam velocity which is uniform in time and space by limiting the extent. of the supersonic "braid" emerging from the valve. The snifter valve opens at. a low adjustable underpressure in the blowdown pipe with respect to the pressure in the drywell and allows air to flow in so as to equalize the pressure. Large fluctuations of the water column in the blowdown pipe can thereby be avoided. More details of this process are described in /1/. 8-7

The blowdown pipe widens in the suppression chamber to an inside diameter of 555 mm and is drawn in again to a nominal bore of 400 mm at the water level. The submergence of the quencher is about 4 m with respect to the normal water level and centerline of the quencher arms. Figure 2.6 shows the construction of the perforated-pipe quencher which is rigidly connected to the blowdown pipe. The central member of the quencher between the blowdown pipe and the 4 quencher arms is a ball. The angles between the arms are so chosen that favorable installation conditions are achieved in the suppression chamber (Figure 2.7). The perforated-pipe quencher is built with a total of 2216 bores of 10 mm diameter. Two quencher arms, which point in the same circumferential direction, each have 88 thrust bores in the arm bottom in order to produce a circulating flow in the suppression chamber so as to obtain a uniform temperature mixing of the pool water. The 8 hole arrays themselves are arranged symmetrically and thus in a neutral-force manner on the sides of the quencher arms. The installation conditions and arrangement of the perforated-pipe quenchers in the suppression chamber are shown in Figure 2.7. The perforated-pipe quencher makes possible a calm condensation up to high pool temperatures (> 80') and re-duces the pressure oscillations which occur during clearing of the blowdown pipes. 8-8

The blowdown pipe is surrounded by a protective tube in the area of the suppression chamber. The protective tube is mounted in the top head of the suppression chamber and in the area of the catwalk is supported in the brace with the vent pipes. Below the water level, the protective tube is led in a water-tight manner to the spherical central member of the perforated-pipe quencher welded to the blowdown pipe. Near the quencher the protective tube is tapered and forms an annular gap there with a width of 10 mm. The task of the protective tube is to prevent the emergence of steam into the air space of the suppression chamber in the event of a leak in the blowdown pipe and thus to maintain the operation of the pressure suppression system. The restraining structure near the valve represents the anchor point of the relief system. A diagrammatic illustration is shown in Figure 2.8. The bottom mount is fastened to the sandwich structure by webs. The connection between the perforated-pipe quencher and the bottom mount is so designed that a displacement of the perforated-pipe quencher in the vertical direction due to thermal expansion of the blowdown pipe is possible (Figure 2.9) . The task of the bottom mount is to guide the system and to absorb the transverse forces and moments about the vertical axis which act on the quencher. 8-9

Use of the relief s stem The description given here is taken essentially from /1/. The safety/relief valves protect the pressure vessel in the event of pressure excursions. They prevent the reactor pres-sure from exceeding 1.1 times the pressure-vessel design pressure, even from maximum possible pressure transients. Xn the event of a loss of coolant and failure of the coolant injection system in the automatic depressurization mode, the valves also provide for a lowering of the reactor pressure in order to make possible the injection of water by the RHR system and the core spray system. The valves are also used briefly together with the turbine bypass systems in order to prevent a shutdown of the reactor in the event of a "Turbine tripout" or "Load rejection" accident. The main valves have a dual function as combined safety and relief valves. The pilot valves open electromagnetically both in the safety function and in the relief function. The main valves are opened and kept open by internal means. Due to the higher response accuracy, the electrical control sys-tem permits a more exact excitation of the valves and thus a closer staggering of the response pressures in the event of pressure excursions. The electrical control system also makes it possible to open the valves and keep them open, as is necessary for automatic depressurization and when they are used together with the turbine bypass system. The pilot 8-10

'i solenoid valves also receive a pneumatic supplementary load -which is controlled via separate solenoid valves. This second external energy source, in combination with the elec-trical system, which is installed for the opening process, permits a very exact. closing of the valves. Use for relief function The main valves are opened by one of their two control valves in the following cases: Turbine tri out Because of the limited capacity of the turbine bypass system (75% of the nominal steam flow rate), 1 valve opens for ca. 5 sec at a reactor power of 80 90% full load and 1 addi-tional valve opens for ca. 10 sec at )90% full load. These two valves are designated by TSS in Figure 2.5 and are actuated directly from the Geamatic. The reactor pressure is thereby held at 70 bar. Hi h reactor ressure If the reactor pressure rises impermissibly due to failure of the control system or components, e.g., in the event of a turbine tripout caused by failure of the main condenser, then the relief valves, staggered in three groups, open at the following set pressures: 8-11

( 1st group, 74.3 + 0.5 bar, 1 valve 2nd group, 74.8 + 0.5 bar, 2 valves 3rd group, 75.5 + 0.5 bar, 4 valves in order to handle this pressure transient. The-'time varia-tion of the reactor pressure is plotted in Figure 3.1 to-gether with an indication of the response marks for scram and safety/relief valves. The following boundary conditions are applicable: failure of the main heat sink reactor at nominal load reactor shutdown due to high neutron flux and control-rod fast-insertion time of 5 sec. A detailed description of the transient operational and acci-dent behavior is contained in /7/. Hold at ressure and tern erature when the main heat sink is not available Following the scram, the residual heat is removed by periodic opening of several valves in the first 15 seconds and 1 valve thereafter. Emer enc shutdown when the main heat sink is not available The reactor is depressurized in 5 hours by repeated manual opening of one valve according to a prescribed pressure vari-ation. 8-12

Automatic de ressurization in the event of loss of coolant In the event of a loss of coolant, one relief valve is opened automatically in any event in order to depressurize the system gradually. This occurs only if the liquid level in the reac-tor pressure vessel is high enough and, at the earliest, 10 minutes after appearance of the accident criteria. At a reactor pressure below ll bar, 3 relief valves are opened in the event. of a loss of coolant in order to create a closed emergency cooling loop: suppression chamber pump reactor suppression chamber. Finally, the depressurization system is used as a redundance for the coolant injection system. If the coolant injection system does not convey a sufficient amount of water into the reactor when needed, then 3 relief valves are opened in order to bring the low-pressure emergency cooling systems quickly into use by means of a rapid lowering of the pressure. Performance test Each valve can be actuated individually by hand during opera-tion. 3.2. Use for safety function In the improbable event that several valves should not open in their relief function during a reactor pressure transient, 8-13

the control valves open the main valves in the safety func-tion on the basis of a reactor pressure of 81.5 + 1.5 bar. 8-14

e

4. 0 erational boundar conditions The relief system must satisfy the following boundary condi-tions in regard to the reactor pressure regulation and the effect on the pressure suppression system. This description represents an extension of the compilation of operational boundary conditions previously contained in /1/.

4.1. Blowdown capacity The nominal flow rate of one relief valve is 600 t/h at a reactor pressure of 83 bar.* This flow rate is utilized, in accordance with the relevant standards, as a basis for the calculation of reactor pressure transients which are covered by the safety function. A value of 600 t/h at 70 bar reactor pressure is expected for the actual flow rate by the valve manufacturer. The flow rate actually expected by the valve manufacturer is shown in Figure 4.1 as a function of reactor pressure. The design of the pressure relief system, especially the perforated-pipe quencher, is based on this flow-rate variation. At high reactor pressures, a critical pressure ratio prevails above the seat of the safety/relief valve. The flow rate through the valve is then determined by the reactor pressure and is approximately proportional to it. Xf the reactor pres-sure drops to low values, then the pressure above the valve

     " Translator's note:       t =  metric ton = 1000  kg 8-15

seat finally drops below the critical pressure gradient and the flow rate decreases superproportionally with the reactor pressure. Since the blowdown capacity plays an important role at lowered reactor pressure for the automatic depressuri-zation mode described in Section 3, the flow rate per relief valve for low reactor pressures was plotted in Figure 4.2. The upper curve corxesponds to the flow rate through the valve as indicated by the valve manufacturer. In the plotted range of reactor pressure, these values also apply in prac-tice for the flow rate through the relief system with the perforated-pipe quencher inserted further on. The reduced flow rates illustrated in the lower curve occur for a pressure of 2.8 kg/cm (absolute) in the air space of the suppression chamber. The flow rate through the xelief system at lowered reactor pxessure is only slightly influ-enced by the perforated-pipe quencher (for reactor pressures <- 5 kg/cm~ (absolute)) but more strongly by a rise of the suppression-chamber pressure. The variation of the liquid level inside the core shroud during the automatic depressurization following a 44 cm 2 leak and failure of the coolant injection system is plotted in Figure 4.3. The illustration makes it clear that the liquid-level variation is favorably influenced at elevated pressure in the suppression chamber. This result is due to the fact that in the event of an elevated pressure in the 8-16

suppression chamber, the low-pressure coolant injection sys-tem can already inject coolant at a higher reactor pressure and can convey more coolant at the same reactor pressure. The reduced flow through the relief valve is thereby over-compensated. As the accident proceeds further, heat is also removed to an increasing extent via the injected cold water and an additional lowering. of the pressure is effected. 4.2. Openinq of the valves In order that the pressure in the reactor pressure vessel not rise impermissibly, e.g., in the event of failure of the main heat sink, the valve opening time of the safety/relief valves may not exceed 1 second with an additional dead time of 0.5 second. According to the measurements with K%1 valve /8/, the expectation value of the opening time is about 300 ms. However, shorter opening times down to 100 ms must not cause impermissible loads (in this regard, see Section 6). The valve opening time is defined as the total setting time of the valve.'uring the opening process, the flow rate increases in pro-portion to the time. 4.3. Water level and submergence The nominal water level is plotted in Figure 2.2. The sub-mergence of the quencher relative to the arm axis is 3.975 m for normal water level in the suppression chamber but the sys-tem must also remain operable for deviations of +0.40 and 8-17

-3.00 m in the water level; the latter, of course, in the event of sharply reduced reactor pressure (see Figure 4.4). Detailed information is contained in /6/ concerning the con-densation of the steam when the quencher submergence is very small. When the depth of the water covering the quencher arms is only 1 to 2 arm diameters (40 to 80 cm), a steam flow rate of 600 t/h can still be condensed completely. An appre-ciable lowering of the water level below the nominal value occurs if the suppression pool water is used for core flooding. The lowest water level occurs in the event of a so-called runout of the suppression chamber. Zn the event of a suppres-sion chamber leak having the size of a connection line, the relief system must still be capable of permitting an auto-matic depressurization. In this case, at least the design pressure of the containment must not be exceeded. Figure 4.4, taken from /1/, shows the decrease of the flow rate with decreasing water level in the suppression chamber. Temperature distribution in the suppression chamber during relief processes A most uniform possible temperature distribution of the water in the suppression chamber is necessary because then the heat capacity of the water is better exploited and thermal stresses at the walls and bottom due to nonuniform heating are avoided. 8-18

J In order to achieve a uniform vertical temperature distribu-tion, the perforated-pipe quencher was installed very deep in the water space of the suppression chamber (Figure 2.2). The warm, specifically lighter water rises, mixes with the colder water situated above it and a uniform heating of the pool in the vertical direction is obtained. Due to a strong large-scale turbulence in the pool, which is generated by the flow processes and condensation processes at the quencher, a suf-ficient quantity of heat is also delivered to the water below the quencher /1/. A uniform mixing in the circumferential direction is achieved by the thrust bores in the bottoms of two arms pointing in the same circumferential direction. The water is set into a slow motion by this one-sided impulse on the water mass. An important active element for the mixing of the pool water is the recirculation cooling system. After an averaged pool temperature of 36' is exceeded, water is taken from the lowest point of the pool, cooled and carried back, distributed over the circumference of the suppression chamber, via four RHR legs near the water surface. In this manner, a recircu-lation of the suppression pool water is effected every half hour by the four RHR legs shown in Figure 2.5. This measure alone already produces a uniform temperature distribution, since the emergency shutdown of the reactor is extended over 5 hours, for example, i.e., over a 10-times-longer time. 8-19

On the basis of the numerous investigations performed in /l/, it can be assumed that the maximum deviation of the -tempera-ture in the pool of the suppression chamber does not exceed

    +5', except for regions in the immediate vicinity of the steam outlet. This difference should be maintained even if the pool is heated by 20'       by one or more blowdown lines during a blowdown process and, simultaneously, 2 out of 4 RHR system pumps are in operation.

The temperature range of the pool water in the vicinity of the quencher at which the blowdown can be effected with full flow rate should be at least between 35' and 60'. With a linearly decreasing flow rate, it must still be possible to pass through the temperature range from 60' to 80' according to Figure 4.5. This stipulation was based on a mean pool temperature of up to 55' for full flow rate and a maximum permissible mean pool temperature of 75' and the above-mentioned nonuniformity of the water heating. 4.5. Permissible pressure loads on the suppression chamber A distinction is made between two types of loads which gener-ate pressure loads on the suppression chamber during opera-tion of the blowdown lines. First, after opening the valve the water slug in the blowdown pipe is expelled, whereupon the air in the pipe is compressed. When this air is expelled, brief pressure oscillations are generated which act on the bottom and walls of the suppression chamber. This process C is described in detail in /5/. The pressure loads to be 8-20

expected are also indicated there. Second, pressure oscil-lations which depend on the steam flow rate and the water temperature occur during the steady-state condensation of steam. A detailed description of these processes and the expected pressure amplitudes is contained in /1/. Both loads are to be limited to the following limiting values in the plant: 4.5.1. Pressure oscillations during vent clearing For a reactor pressure of up to 88 bar and for the specified valve-opening times, the air oscillations on the bottom and wall should not exceed the value

            +1.45 kg/cm    and -0.4 kg/cm globally
                               -0. 6 kg/cm~ locally during blowdown of all valves in the safety function.

4.5.2. Pressure oscillations during condensation For the specified range of flow rate and temperature, the pressure amplitudes on the bottom and wall should be kept below +0.4 atm. 8-21

5. Re uirements on individual com onents The requirements which should ensure the operation and utili-zation of the individual components are compiled in this Section, taking into consideration the design details of the pressure suppression system. In addition, an extract from the specifications for the individual components is reproduced.

However, only the most significant loads are considered and reference is made to the individual specifications for the others. 5.1. Relief valves The safety/relief valves are used for pressure limitation in the event of accidents with a pressure rise in the reactor pressure vessel and for pressure relief in the event of loss-of-coolant accidents. The requirements with respect to re-sponse pressures, opening times and blowdown capacity and the data determinative for the design are indicated in /2/. 5.2. Perforated-pipe guencher and blowdown pipe The processes during vent clearing and the model extended for the perforated-pipe quencher to calculate the clearing pres-sure are described in detail in /5/. The pressure profile in the blowdown pipe during clearing due to pressure transients (88 bar reactor pressure) is plotted versus time in Figure 5.1. For an extremely short valve-opening time of 100 ms, a maximum possible pressure of 31 bar 8-22

results in the blowdown pipe, conservatively neglecting the rate of condensation of the inflowing steam at the pipe wall and at the water surface. For an assumed 208'eduction of the outlet area of the quencher, the steady-state pressure in the nozzle is l6 bar. 6000 response cases (produced primarily in the "Hold at pressure and temperature" accident) arise with respect to,, the valve actuated in the first valve group. A total of 5000 clearing processes result from this accident. All other response cases together, such as emergency shutdown, depressurization, etc., then amount, to 1000. The other requirements relating to the load on the perforat-ed-pipe quencher and blowdown pipe are specified in /3/ for the operating conditions vent clearing steady-state condensation and intermittent condensation. 5.3. Bottom mount The bottom mount of the quencher (Figure 2.9) is so con-I structed that the flow around the quencher arm is not impaired. The task of the bottom mount is to absorb the transverse forces and torsional moments acting on the quencher during the clearing process and steady-state condensation. The val-ues applicable in the individual load cases are specified in 8-23

l 5.4. Restraining structure The restraining structure (Figure 2.8) forms the anchor point of the relief system. Xt supports the outward-acting forces and moments especially during vent clearing, but, also during condensation. The load on the restraining structure is speci-fied and described in detail in /9/. 5.5. Protective tube The task of the protective tube surrounding the blowdown pipe inside the suppression chamber is to prevent the emergence of steam into the air space of the suppression chamber in the event of a leak and thereby to maintain the operation of the pressure suppression system. The operational loads and the load in the event of a leak in the blowdown pipe are specified and described in detail in /10/. The water in the annular gap between the blowdown pipe and the protective tube is heated when the relief system responds. The flashing rates into the drywell are very low. Expectation values are indicated in /l0/. lf it should turn out during the start-up measurements that undesirably high moisture rates emerge into the drywell from the gap, then this gap shall be sealed in the region of the suppression-chamber head in a pres-sure-tight manner with respect to a differential pressure of 0.2 bar by means of a leaktight membrane which breaks under a larger load. Through small openings in the protective tube, 8-24

a natural circulation could then be created between the hot water in the gap and the pool of the suppression chamber. 8-25

Discussion concernin the failure of individual com onents A failure of the valve is conceivable in the following form: - A valve jams and does not open. In this accident, the re-maining 6 valves can be used. A valve jams at first and then opens suddenly when full sys-tem pressure appears on the control pressure side. This perturbed opening behavior of the valve is taken care of by very small valve-opening times of only 100 ms, which are allowed for in the design of the system. Smaller opening times are not possible according to /8/. Furthermore, the GKM tests, in which a larger pressure is present on the con-trol pressure side than on the system side, demonstrate that the valve-opening time in the plant cannot be less than 100 ms. A failure of the safety/relief valves to close can be caused by a failure of the pilot valves (which are present in dupli-cate) to respond. Accident sequences which could be produced in this manner are excluded by a limitation of the pool water temperature, which produces a timely shutdown of the reactor. In order to prevent an impermissible amount of water from collecting at the valve seat and also in the control line, which delays the valve opening, the valve is drained and the control line is also provided with a specified drain hole. On the other hand, these intentional leakage points, which 8-26

also include the leakage via the piston rings, have such small dimensions that an impermissible amount of steam cannot flow out from the control side. Should the redundant snifter valves not close completely, then a leak is produced in the drywell. The quencher is so sized and made safe by production monitor-ing and inspection that a tearing-off of the perforated-pipe quencher or one of its arms can be ruled out. ln the event of a leak in the blowdown pipe, the protective tube prevents an emergence of steam into the air space of the suppression chamber. Xn so doing, the load reduction achieved by the quencher is maintained, since the protective tube and the blowdown pipe form a small annular gap only 10 mm wide in the water space of the suppression chamber. Otherwise, the protective tube represents a redundance of the blowdown pipe. Therefore, the same loads due to internal pres-sure and temperature have been specified for the protective tube as for the blowdown pipe. The torsional moment exerted on the quencher is transferred to the bottom mount through guide bolts. The bolts have a re-dundant construction. 8-27

1 6 TlM IIa 4o( 0

                                                              +el.         h                                  ~    ~
                                                                                                                                                   ~ '" I I
                                                                                                                                          '    I (11">>(

Ii I I I

                        ..'I' I                                                                                       >>,$
                        'I                                                                  (I I                                                                                            I'/re.

I{ I tq'! I ~ I Y.( I r.: g4 1( ~ 'I I I I ','I; I

                                                    ~ '-{l II
                                                   )'r
                           "(    ~
                                             ,1r         )I
                                              ~  C 0                         s                'r(/,
                                                                                              . 1%
                         ~   '\                                                j.       jl P ~

Q !I ~1

                                                                                                  ~   >>I C

(((Ill

                    ~ ~

t~ l(I ji)l

                                                                                                         ~~

(, ~, 44

                 'I, II
                           ~e      ~
                                                                                                                                ;"  ~ 4 ~ P' 495~               g3 v (( g ({ct'((aiba > <          ~

(I $ '%L 4

                                        />>

l'; I; I ( ( I

                                                                                                                 ~

g

                                                                                                                      . ~;.'       '    I';   I >>/

I l,

f I ~~
                      ~         I J ~

KKB Pressure suppression system 8-28

KEY

1. Safety/relief valve 5. Protective tube
2. Fitting with orifice plate 6. Blowdown pipe
3. Restraining structure 7. Perforated-pipe quencher
4. Connection for'nifter valve 8. Bottom mount (total of 2)

Entlostun s-/Sichcrhcits-ventil

             .+27,200 ForrnsiUck rnit Rohrbicnde Eins annkonstruktion AnschluA fur SchnUT'falventil (insgesarnt 2 Stuck j ti     ~   ~

Schutzrohr Q.c'n Abblo scrohr s'p

                      %n ly gag bgq6 1945               2000
                                                                                          +20,000
                                                                                          +18,890 Q7  Lochrohrdiise

+14,91 5 Bodcnhc(t" rung Figure 2.2 KKB Pressure relief system 8-29

Section A-B 63

                                                                                            "--       28 62
                                                                                         ~
                                                                                          ~ "
                                                                                             '          61 66 1

l'2 G ~ ~ 8 ~~37

                          '65       66 r
                                                                                    /l /

2// 39 39 67 T 3C

                                                            '/'//~      ,2't                             33
                                                             ~

3Z

                                                            "~

Horizontal r/// 22 project~ 36 22 C~'7. 31 21 19 22 t

                                                  ~22
                                                                                            ~22 5
                                                                      ~
                                                                    )

I: View in directio 2 of arrow 2 Z9 51 l AW.~ n PtekCM llltg t 2

                                'r 22 9      ~      ~

A t ~ 7

                      ~~~4g                        1 0

l.~ cs

                                                                               ~,t 2

Pilot valve of the safety/relief valve 8-30

0 8 Q W

                                          ~

Q (5 0 6t" A 0 Q

       ~;1                                O Cl
                                   ~

rM I r QP N

                                           ~ o Pr
                '.A'

'yY '/ I'afety/relief valve 8-31

I RHR leg

               'YO. PO 90'2j                                  RHR lee o

0 de< TSS ~g) yO Kon densationskarnmer QSi S uppression chamber DE Q c l po DruckgefaA Pres use 180 ss

                                                           ~

i%g TSS jQ2 'rSo

                                                                                 . C/g
                                                                     +o,Cy
                                                                           '4j
                ~d 270'QI                             Og
         .$ '+

RHR leg 4',

      +

HR leg Q 6ROUP DESIGNATION DE AUTOMATIC DEPRESSURI ZATI ON TSS TURBINE TRIPOUT YALYES Arrangement of the safety/relief valves 8-32

Ball, 760 mm outside diameter x.30-mm wa3.$ thickness

                                                                                            ~ I
                                                                                              ~,:  .,   ~

View B I ~ 76005 u elx3PV(d. Sec'tion -C-D. SCHNITT C- D e

                                                                                                       ~=o
                                                                                                          ,  . ANSICHT 8 dQ    
                                                                                                                         ~       o
               ~s
                                                                                                                                         ~-

s 4 o

                                                                                                       .  -O-8 g          .

V 0 e N

                                                                                                  .8-o-             --0     0-A
                                                                                                                            -0 0 III p

5 N

                                                                                       -g                      p. p           e Section                                                         0                             6-     0- -.

SOIL ITT A-B A-B

                                                                                                     -8 0 .
                                                                                                                               -o O~    e p/    . ~
                                                                  -  View                         Detail    C 0

A'NSICHT A EINZELHEIT C 5 I ~ ~

                          ~

p~ 17 Irows of holes.. 4N30' JP I ~

                                                   ~
         ../
           /
    ~

Nr 406.4 outside ]pN diameter Fi ure 2;6 I Construction of the'perforated-pipe quencher,,'KB

t

                                                          ~ ~

90 105 35'b 325'25 Hobe' 200CG-'0 285'70 255' Height.

                                         ~

Q Gruppenbezeichnung ~~

                                                              ~ f Group designation
                                                      ~ ~

Arrangement, oZ the quenc5ers'.in the supgression chamber<.KKB

       ~ ~
                  ~ ~
                       .'4-34

Fi ure 2.8 Restraining structure of the KKB relief system 8-35

C' Ball, 760 mm outside diameter

                                                            +14,Q15 406.4 mm'utside diam  ter
                                                           +13,615 5
$00
           <o Fi ure 2.9 KKB  Bottom mount of the. perforated-pipe quencher 8-36

bar N Safety valves M Ot,5 bar Sichorheitsventi(e o oo0 0 OJ

~C Gruppe = Group                                                ... Ansprechstreuband Ventil    = Valve 7V~bar RGruo e EV(4V ntiie)                                                  Response scatter band i'~Gbar 2Cn.pp FV(2K"=n':!.)

()until 73 bar Druc'.c- Scram~ Permipglge.)cad time Permissible opening time Pressure- ram D,Ss )s 70-0 ),0 l,5 2,0 2,5 3,0 t ~ s Biid 3.1 KK8 Veriauf des Beaktordtuckes hei Drucktransiente Variation of the reactor pressure in the event of a pressure transient

                = pressure before valve pl p 2 = maximum permissible pressure under the orifice plate after the valve p   = Druck vor Ventit max. zutiissiger DruckVt.'petit 1

90 = unter der p 2 Rohrbtende nach dern 70 60 40 30 20 10 0 0 100 200 300 400 500 600 700 800 t/h Bild 4.1 KKB Durchsatz des voiigeoffneten Ventiis bei kritischem Druckgefttiie Flow rate of the fully opened valve during critical pressure drop 8-38

4 Flow rate pex relief valve DUrchsQt 2 E ntl as t un gs venti l 200 t/h 180 160 140 120 Flow rate according to 100 valve manufacturer's indication 80 60 I Flow rate with a pressure of 2.8 kg/cm (absolute) in the suppression chamber 20 kg/cm 2 0 (abs. ) 3 4 5 6 8 10 20 30 ota Fi ure 4.2 KKB Reaktordruck Reactor pressure dl KKB A bb i a s e leistung mit der Lochr ohr-duse bei abgesenktem Reaktordrucl< Blowdown capacity with the perforated-pipe quencher fox lowered reactor pressuxe 8-39

f l'

Liquid level With flow rate for a pressure of 2.8 kg/cm 2 (absolute) in the Fullstands- mit Durchsatz bei einem Druck in hohe der Kondensationskammer von 2j8 ata 16 mit Durchsatz nach Angabe with flow rate according to des Ventilherstellers valve manufacturer's indication 10 Upper edge of core l l{ernober kante J Lower edge of core Kernunter t(ante 0-0 100 200 300 400 500 s 600 . gait naCh Unfall Time after accident Variation of liquid level inside the core shroud with 44 cm 2 leak in the bottom of the RPV (failure of injection system, 3 pressure relief valves) h I

l Normal leve'1 Water level

                   ]

Vtasser-

              ~  .

Normaistand 18,89 spiegel . 18,5 18]0 17] 5 17] 0 0 100 200 300 400 500 600 t/h D h t* I Flow rate in the blowdown with dropping water level in the suppression chamber pipe {design leak, KiG3 suppression chamber) Temperature Temp eratur 80]125 80 DC 60] 590 60 40-Flow rate 0 100 in the 200 300 400 blowdown pipe with 500 tD.D 600 h t rising temperature t /h rate in pool (KKB emergency shutdown)

re. in ow own pi e 30 OtU kg/cm 2 {gauge) 25 spez~fiziertes Qrucl<profil Specified pressure .profile

                                     /

.20 I

                                  /               Druckprofil extrapoliert r                mit GKM-Versuch Nr. 252
                               /                  Pressure profile extrapolated with GKM test no. 252 r
                           /
                         /
                    /          Druckprofil gerechnet I           mit Programm HOGEM
                 /             Pressure profile calculated with HOGEM   progam Pressure  profile in the blowdown pipe during vent clearing from pressure transient {88 bar)
             /                                                               valve-opening time: 100 ms 0

0 100 200 300 400 500 ms 600 Zeit noch Offnen 'es Ventils Time after opening valve

t (

REFERENCES /1/ Becker, Frenkel, Melchior, Slegers Construction and design of the relief system with perforated-pipe quencher KNU/E 3 2703, July 1973 /2/ Hofmann, Seemann Safety/relief valves Spec. no. 0/Y 83/SL 005 /3/ Knapp, Hoffmann, Koch, Frenkel Specification Design load for blowdown pipe and perforated-pipe quencher Spec. no.: KKB/XK/SD 001 Rev. 1, December 1973 /4/ Knapp, Hoffman, Koch, Frenkel Specification Design load for the bottom mount of the perforated-pipe quencher Spec. no.: KKB/XK/SD 002 Rev. 1, December 1973 /5/ Beck'er, Hoffmann, Knapp, Kraemer, Melchior, Meyer, Schnabel KKB Vent clearing with the perforated-pipe quencher KWU/E 3 2796, October 1973 8-43

y

    't ~

C' i

/6/ Ho ffman,  Becker Investigations of condensation with the perforated-pipe quencher when there     is  little water covering the quencher arms KWU/E 3     2840, December 1973
/7/ Beckmann,    Bockelmann, Brauhauser,   Colmano Design reports concerning the transient operational and accident behavior of the Brunsbuttel nuclear power plant KWU/E 3 . 2752, August 1973
/8/ Hoffman, Sala, Becker, Frenkel, Schnabel,       Weisshaupl, Brauhauser,    Gieseler KWW  'Opening    behavior of the pressure  relief  valves AEG/E  3    2336, August 1972
/9/ Becker, Koch Design load    for the restraining structure of the relief system Spec. no.:    KKB/XH/SD 010 Rev. 1, December 1973

/10/ Becker, Koch Design load for the protective tube of the relief system Spec. no.: KKB/XK/SD 003 8-44

Xl gmhl

                                                                                               ~ k.)

0 5 as translatedinto . Z. N G. L Z. S A...... f Ci EXPERINENTAL STUDIES OF VENT CLEARING IN THE fRODEL TEST STAND fog m P as translated from,,G. E B. M . A.N......  ; Df.d

                                                                                               ~g  c  Ifc EXPERINENTELLE UNTERSUCHUNGEN ZUN FREIBLASEN IN flODELL-VERSUCHSSTAND mH 0

~~+H~~/+/ 'ERNER m

KNU TECHNICAL REPORT K)-/~7 Control @ 7g4i6OI60 mCC De'e.~>' ofDocemeet:

a I'"LSTOltYIII'"KH FILE co ( co m AUGUsT 1977 'ii'Oolf'PaL Qoj

                                                                                ~3
                                                                                      .e,V     ff1 5 PENNSYLYANIA POWER
5. LIGHT COMPANY 71 SARNARO AVENUE WATERTOWN 5
                                                                              ~

ALLENTOWN, PENtf SYLVAtff A MASSACHUSETTS 02172 (617) 924-5500 wm

Kraftwerk Union Karlstein ~9997 P ace Date Technical Report KWU/R 521-3129 File number R 521 - VR /Wr/Ho R 52'1 Author Werner Department Countersignature

Title:

Pages of test: Experimental studies of vent clearing in Figures: the model test stand Circuit diagrams: Key words (max. 12) to identify the Diagr./oscillogr.: report's content: Tables: Pressuie relief system, vent clearing, Reference list: pipe pressure, bottom pressure, per-forated cross pipe, model test stand Summary In order to study the transposition of the knowledge obtained in the Mannheim large-scale test stand (GKM) concerning the reduction .of loads in the suppression chamber of boiling-water reactors, parameter studies foz the pressure relief system with perforated-pipe guenchers were performed in the condensation model test stand in Grosswelzheim. Th'e dependence of the bottom loads during vent clearing on the clearing pressure in the pipe was studied. At a clearing pressuze above about 7 bar, the change of the positive pressure amplitude at the bottom with respect to the change of the clearing pressure yielded c = 0.0275, a value which practically coincides with the results in GKM. The pressure amplitudes at the bottom can be reproduced with an accuracy of

+0,15 bar (test series 2). Parameter study during vent clearing.

The relative size of the water pool has proved meaningful for the pressure values at the bottom. Because of the scale ratios of about 1 : 30 to 1 : 50, the absolute values measured in the test stand are not transposable to BWR plants.

     /s/    Werner         /s/                       /s/          IZ Class Author   s. signature For information           Distribution    list:

(cover sheet only): lx KWU/GA 19 Erl lx /PSW 22 Ffm Additional distribution according to appended list COMPANY CONFIDENTIAL Transmission or duplication of this document, exploitation or com-munication of its content not permitted unless expressly authorized. Infringers liable to pay damages. All rights to the award of patents or registration of utility patents reserved. 9-1

Distribution list (internal) RZR 1 2 x RS RS 1 .2 x RS 11 RS 11/GKT RS 12/KKB RS 12/KKK RS 13/KVV RS 13/KKP 2 x RS 14/KKI RS 15 RS 2 RS 21 RS 213 R 1 2 x R 11 2 x R 111 2 x R 113 3 x R 114 R 213 2 x B 3 R 31 R31<4 3 x R 32 R 322 R 5 >> Erie R 52 R 521 5 x R 522 2 x R 523 - Erl. V 822/TA 9-2

tI NONLIABILITYCL'AUSE This report is based on the current technical knowledge of KRAFTNERK UNION AG. However the Federal Minister for Research and Technology, KRAFTWERK UNION AG and all persons acting in its behalf make no guarantee. In particular, they are not liable for the correctness, accuracy and completeness of the data contained in this report nor for the observance of third-party rights. This reservation does not apply insofar as the report is delivered in fulfillment of contractual obligations, nor with respect to licensing authorities or the experts appointed by them. DRAFTWERK UNION AG reserves all rights to the technical infor-mation contained in this report, particularly the right to apply for patents. Further dissemination of this report and of the knowledge con-tained therein requires the written approval of KRAFKKRK UNION AG. Moreover, this report is communicated under the assumption that it will be handled confidentially. 9-3

'c> TABLE OF CONTENTS Introduction

2. Condensation model test stand 2.1.1 Basic set-up 2.1.2 Steam-boiler connection 2.1.3 Adjustment of steam flow rate / valve opening time 2.2 Instrumentation 2.2.1 Instrumentation of the steam supply 2.2.2 Determination of steam flow rate 2.2.3 Pressure transducers in the test stand 2.2.4 Temperature transducers in the test stand
2. 2.5 Displacement transducers on the diaphragm valve 2.2e6 Integral load on the test stand
3. Vent clearing tests in the model test stand 3.1 Test series 1 Influence of tank geometry on the bottom pressure 3.1.1 Test goal 3.1.2 Special test set-up 3.1.3 Test execution 3.1.4 Test results 3.2 Test series 2 Investigation of parameters during vent clearing 3.2.1 Test goal 3.2.2 Special test set-up 3.2.3 Test execution 3.2.4 Test results 4 ~ Summary of results Appendix Tables Figures References 9-4

LIST OF TABLES Tab. 1 List of vent clearing tests in the condensation model test facility Tab. 2 Test series 1 characteristics of various test arrangements Tab. 3 Test series 1 compilation of test data and results Tab. 4 Test series 2 compilation of transposition parameters Tab. 5 Test series 2 test data and maximum pressure values Tab. 6 Test series 2 mean speed of the water-air phase boundary surfaces Tab. 7 Test series 2 - assignment of measurement points for Visicorder I (temperatures) Tab. 8 Test series 2 - assignment of measurement points for Visicorder II (pressures and displacements) 9-5

LIST OF FIGURES P.igure Condensation model test stand Pigure High-pressure steam-connection instrumentation Figure Flow rate of saturated water vapor through throttle nozzles of different diameter as a function of the initial pressure for supercritical pressure ratio Figure 4 o Mass flow density of saturated water vapor flowing through throttle nozzles, with respect to the area AD = 0.00157 m2 (perforated cross pipe 2) Figure 5 ~ Termination geometry,, perforated cross pipe Figure 6: Test series 1: Instrumentation Pigure 7: Test series 1: Influence of tank geometry on bottom pres'sures Figure 8: Test series 1: Influence of tank geometry on bottom pressures Figure 9: Influence of preheating of the blowdown pipe on the bottom pressures during vent clearing Figure 10: Test series 1: Visicorder strip for test 212 Figure Test series 1: Copy of Visicorder s+rip for test 215 Figure 12: Test series 1: Copy of Visicorder strip for test 235 Figure 13: Test series 2: Test set-up and axrangement of measurement points Figure 14 Test series 2: Test set-up and data Figure 15: Test series 2: Vent clearing pressure as a function of the pressure before the throttle nozzle Figure 16: Test'series 2: Vent clearing pressure as a function of mass flow density Figure 17: Test series 2: Maximum bottom pressure as a function of vent clearing pressure Figure 18: Test series 2: Mean speed of the water-air phase boundary surface as a function of vent clearing pressure Figure 19: Test series 2: Speed of the water-air phase boundary surface Figure 20: Test series 2: Mean speed of the water-air phase boundary surface at time h,v after beginning of valve opening as a function of vent clearing pressure 9-6

Figure 21: Test series 2: Mean speed of the water-air phase boundary surface for various vent clearing pressures hP DE as a function of the time hv after beginning of valve opening Figure 22: Test series 2: Copy of Visicorder stxip for test no. 335 Figure 23: Test series 2: Copy of Visicorder strip for test no. 342 Figure 24: Test series 2: Copy of Visicorder strip for test no. 345 Figure 25: Test series 2: Copy of Visicorder strip for test no. 346 9-7

]. Introduction Pressure oscillations which occur in a water pool when pipes partially filled with water are cleared generate noticeable loads on the bottom and lateral walls in the water space of the suppression chambers of boiling-water reactors. These loads arise from oscillations of the air flushed over into the water space when the safety/relief valves are actuated. In order to reduce the loads on the relevant structural components, pipe termination geometries were developed and tested in the test stand of the Mannheim Central Power Station (GKM). Disadvantages of this large-scale test stand are the low pressure of the available steam (20 bar) and the unalterability of the tank geometry (earlier condensate tank). In order to obtain more exact knowledge concerning the deter-minative parameters for the analyses of the transposition from the GKM test stand to the reactor, the condensation model test stand located in the Grosswelzheim nuclear-power experimental facility was connected to the high-pressure steam boiler of the test facility. The set-up and operation of the test stand are described in /1/. With this set-up it was possible to include the entire pressure range of interest, starting from the initial pressure, and its influence on the pressure build-up in the blowdown pipe and the loads on the bottom of the water pool. These relationships were 9-8

investigated primarily in the second test series. Additional tests served to prepare for large-scale tests in the GKM. Among other things, these were to clarify the influence of different dimensions of the water pool. It should be noted that, because of the too sharply differing ratios of the quantities involved, the test results are not transposable as absolute values to the plant. 9-9

2. Condensation model test stand 2.1.1 Basic set-up
       ~ ~  ~  ~ ~   0 The   set-up and dimensions of the test stand are shown in Figure 1.       The model    tank consists of    a rectangular tank    3 m high, 1.6     m   wide and 1.59    m deep, which   is supported  by a   steel frame.

The tank is provided with glass discs on the front and back up to a height of 1.5 m in order to be able to also observe the vent clearing and condensation processes optimally. For safety reasons, the test stand is placed in a sheet-metal trough which can hold the water content of the tank if the glass discs should possibly break. Furthermore, the sheet-metal trough is shielded by movable positioning walls made of Plexiglas in order to protect persons and instruments from the outflowing hot water in the event, of a glass break. 2.1.2 Steam-boiler connection

       ~ ~  ~  ~ ~   ~  ~  ~ ~ ~   ~

The high-pressure boiler of the experimental facility was used as the steam generator. The steam output is 40 Mg/h, maximum pressure 165 bar and max.. superheated-steam temperature .520'C. Figure 2 shows the connection of the model test stand to the high-pressure boiler. Before beginning the test, the boiler is run up to the steam output and temperature desired later in the test. The generated steam is conducted from the main-steam line 9-10

via an exhaust-steam line into the condenser. The condenser is capable of absorbing the entire output of the boiler. The pres-sure in the condensation system (32 bar) is kept constant. During vent clearing and condensation tests, a pneumatically operated quick-opening valve is opened in the connection line to the boiler and two parallel-connected valves in the connection to the exhaust.-steam header are closed. At the end of the test, the valves are actuated in the opposite direction. These switching operations cause large changes in the flow rate in the condenser and thus large pressure oscilla-tions which cannot be compensated so quickly by the automatic pressure control. In order to prevent a response of the safety valves of the condenser, the steam flow rate therefore had to be limited to about 25 Mg/h in the tests. At higher pressures, the setting of the desired steam pressure at the quick-opening valve of the test stand is effected directly at the main-steam outlet. Then it is necessary to allow for an overpressure covering the piping losses. For required steam pressures of <30 bar, the steam is throttled from higher boiler-pressure by means of a manually operated valve in the connection line to the test stand. The desired steam condition, generally saturated steam, is ensured by monitoring the steam temperature. In order to avoid wet steam 'with certainty, the tests were always performed with minimally superheated steam. 9-11

2.1,.3 Adjustment

        ~ 0 ~   ~   ~

of steam flow rate g valve opening time

                       ~  ~  ~  ~   ~     ~  ~  ~ ~ ~  ~ ~ ~ ~ ~ ~  ~ ~   ~ ~

An exchangeable throttle nozzle was placed after the valve in order to set particular steam flow rates for different steam pressures before the valve. When the valve is opened, there results a flow rate which corresponds to the critical pressure drop across the valve at the beginning of the opening phase and to the critical pressure ratio across the quencher later. The full initial pressure across the quencher corresponding to the full flow rate is reached in a shorter time than the valve opening time. By measuring the pressure build-up before the throttle, a "fictitious valve-opening time" can be determined. Only for an initial fraction of the valve opening time does the increase of the flow rate not correspond to the flow rate through a valve operating in the critical pressure ratio. See Figure 20 for a clarification of this relation.

1. Steam flow rate at
            ~'g t1ii1c f'~i1unig> z   g.<  ~                           valve opening (idealized)

HQ Valve opening time 9-12

2. Steam flow rate through throttle nozzle connected
                           / I                               further   on
                        ~/   I (idealized)
                        /
                      /      l
                    /        I
                  /
                /
              /
            /
          /
                                                <o t fictitious The  valve opening time affects the quantities being measured. As mentioned before, the steam is supplied through a "quick-opening membrane valve". The air connections for the pneumatic drive were substantially enlarged in comparison to the normal design
                                                                                   'n order to make possible shorter opening and closing times.

valve opening time was controlled by providing the preceding

                                                                               'he electromagnet control valve with a manual control valve with which the  air flowing            from the membrane valve was regulated. It was thereby possible to vary the valve opening time in the range of about 150        -    900 ms.

2.2 Instrumentation An extensive outfitting of the test stand with measurement trans-ducers provided for a careful recording of static and dynamic pressures, temperatures, loads and steam flow rates. 1 9-13

P Most of the instrumentation was the same in all the tests described in this report. Deviations from the basic equipment. are mentioned in the individual test series. 2.2.1 Instrumentation t of the steam supply

          ~  ~  ~  ~  ~   0      ~  ~   0  ~  ~   ~  ~  ~  ~

To adjust the desired steam conditions, a number of measurement transducers for pressure and temperature were installed in the supply line between the main-steam line and the -test stand (see Figure 2, measuring points PFD, FP07-01, FT07-01). Between the quick-opening valve and test tank, additional measuring points were a'rranged in order to check the steam condition 'along the pipe. Especially important was the highly transient pressure and temperature variation during the valve opening. 2.2.2 Determination

       ~   ~  ~  ~  I  ~   ~

of steam flow rate

                              ~   ~  ~   ~  ~  ~   ~ ~   ~

In order to determine the amount. of steam introduced into the test facility, we used 3 methods which were differently well suited for different boundary conditions. a) A measuring orifice was installed in the connection between the main-steam line and quick-opening valve. The differential pres-sure occurring there was measured by a Barton cell. The mea-surement signal could be read off on a directly indicating instrument. Here we measured the steam flow which flowed before the beginning of the test in the exhaust-steam header and then the amount that flowed during the test to the blow-out geometry. 9-14

The steam flow rate in the steady-state can be determined quite exactly in long-term tests (condensation tests) by this measure-ment. This method is not suitable for vent clearing tests in which only the first few seconds of the test are of interest. But during this time the alternate closing and opening of the valves in the connection lines to the exhaust-steam header and to the test tank cause intense pressure fluctuations in the pipe. Of course, no reasonable measurement of the differential pressure across the orifice is then possible. b) The second method to determine the flow rate is made possible by the throttle nozzle between the quick-opening valve and the test tank. Since there is a supercritical pressure ratio across this nozzle under almost all existing conditions, the speed of sound is reached in the narrowest cross-section. Together with the nozzle cross-section and the pressure before the nozzle, the flow rate can be indicated exactly at any arbitrary time. Therefore, this method is especially well suited for recording the increasing steam flow rate through the opening valve during vent clearing tests. An inspection and calibration of the measurement, values is possible with the method described under c). Zn this regard, see also the dependence of the steam flow rate on the initial pressure for various throttle diameters as illus-trated in Figures 3 and 4. 9-15

c) The most exact method for determining the integral value of the supplied steam is to measure the water level in the test tank. In condensation tests with temperature increases of about 20 C to about 90 C, the water level rose by 200 to 250 mm. Thus, the measurement error is no larger than +1%. In long-term tests with constant steam mass flow, method c) can be used to check the accuracy of the first two methods, which are affected by a larger error because of their underlying principle. 2.2.3 Pressure transducers

       ~ ~  ~ ~ ~  ~   ~ ~ ~  ~

in the test stand

                                ~  ~  ~  ~ 0 ~  ~ ~  ~

E A number of pressure transducers are mounted on the bottom and on one side of the tank in order to record the'ressure waves emanating from the pipe texmination geometry. In order to avoid effects caused by deformations of the tank, the bottom pressure transducers were inserted into a rigid guide sunk into the bottom of the tank. In order to be able to continue comparison studies begun earlier concerning the suitability of different types of pressure trans-ducers /1/, transducers having rear and external diaphragms and piezo-electric transducers were used. The lateral pressure transducers could be used at various heights on the side wall in order to make possible an adaptation to the particular test geometry. 9-16

Xn order to be able to check whether and to what extent tank oscillations are superimposed on the recorded pressure amplitudes, in most of the tests an additional pressure transducer, diaphragm transducer was mounted down from the ceiling of the hall without any connection to the test tank. The data transmitter was placed freely in the water space. The measurement values were recorded by a light-beam oscillograph (Visicorder). The feed of the recording paper was variable within H broad limits. For most of the vent clearing tests, the recording was made at I a paper speed of 1 m/s. The basic configuration of the measurement chain is sketched below. Diaphragm transducer Membranaufnehmer Aufnehmer Tragerfrequenz Anpassuny Visicorder MeGverstarker Piezoelectric transducer Piezo-Aufnahmer I Vorverstarker'- Nachverstarker Anpassung Visicorder lAufnehme L. ce KEY: 1. Transducer

2. Carrier-frequency measuring amplifier
3. Matching .
4. Preamplifier
5. Post-amplif ier 9-17

2.2.4 Temperature transducers in the test stand

         ~  ~   ~  ~  ~  0  ~  ~ ~  ~   ~  ~  ~   ~  ~   ~   ~  ~ ~  ~ ~

In analogy to the pressure measurement points, thermocouple elements (NiCr-Ni) were built into the test tank for temperature measurement. During the vent clearing tests', which last only a few seconds, they were used primarily only to check the water temperatures before beginning the test. 2.2.5 Displacement transducers

                ~  ~  ~  ~  ~    ~  ~   ~  ~  ~

on

                                                  ~  ~    \ diaphragm valve the  0  ~  ~ ~ ~ ~ ~  ~

For an exact measurement of the valve opening time, an inductive-type displacement transducer was mounted parallel to the valve spindle. This recorded not only the end points of the valve travel but also the behavior during the opening displacement. 2.2.6 Integral load on the test stand 0 ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i The test tank was mounted at its four support points on load cells (piezoelectric measurement principle) which in turn sat on the substructure. The sum signal from these transducers cor-responded to the total load on the test tank due to the pressure pulsations occurring in the water space during vent clearing. Beginning in test 275, the load cells were removed and the tank bottom was propped additionally in order to reduce its suscep-tibility to oscillation. 9-18

f Vent clearin tests in the model'est stand 3., The tests performed from Nay 1973 to January 1974 on the clearing of water-filled pipes are listed in Table 1, Sheets 1-4. This list provides the test date, assignment to a particular test series and valve opening time. In this Table, the indicated mass flow density m always relates to the outlet cross-section, of the termination geometry of the blowdown pipe. A geometric configura-tion (a perforated cross pipe) with two different outlet areas was used exclusively for the tests covered in this Report (see Figure 5). The individual outlet opening was always a hole having a diameter of 10 mm, corresponding to the stipulated reactor design. 3.1 Test series 1 Influence of tank geometry on the bottom pressure during vent clearing. 3.1.1 Test goal

         ~ 0   ~ ~

Observations in earlier tests revealed an influence of the dimen-sions of the water pool on the measured bottom pressures. In the following tests, this influence was to be examined more exactly in order to make certain about the transposition of the values measured in the GKM test stand to reactor conditions. In these tests, the pipe between the valve and model tank was heated. 3.1.2 Special test set-up

         ~ ~   ~ ~ ~ ~   ~   ~  ~

The set-up corresponds essentially to the general description in 9-19

Item 2. The measurement set-up is illustrated in Figure 6. The perforated cross pipe 1 with A = 31.4 cm was used as blow-out geometry. Pi e heatin The specific surface area of the pipe between the valve and out-let geometry relative to the reactor is larger by a factor o f 10 to 12 in the model test stand than in the reactor. In order to reduce the associated substantially higher condensation rate in the model test stand, an electrical heater was installed along the major portion of this pipe. It consists of a total of 5 heater bands of 1070 watts each. They are divided into 3 groups of 2 or 1 heater band each, and each group is controlled by its own thermostat. The associated temperature sensors were installed V between the pipe surface and heater band. 'or an adjusted nominal temperature of 200 C, the temperature of the pipe surface is kept constant to within approximately +5 C. Larger deviations were found at the ends of the heated section and at a few unheated flanges. Here the temperature before beginning the tests was about 100 C. Restriction of the water s ace The tank's influence was investigated by arranging a circular sheet-metal jacket from the bottom up to the water surface con-centrically around the blow-out geometry or using the model tank without. any restriction. Since the pipe heating ended about 1 m 9-20

above the water surface, an appreciable heating of the water and increase of the water-vapor partial pressure was avoided. The transposition parameter between the model test stand and GKM or the reactor was assumed to be the ratio of the water surface area to the cross-sectional area of the air bubble, assumed spherical, corresponding to the amount of air enclosed in the pipe. Zn one case, the GKM conditions were to be simulated in this way in the model test stand. Zn the model test stand, the preheating of the pipe to 120 C on the average must be allowed for when determining the air volume. The effective air volume's reduced correspondingly. 3.1.3 Test execution

       ~  ~   ~ ~  ~ ~ ~

Vent clearing tests were performed with 4 different dimensions of the water space. The ratios described above between the air volume and water surface area are shown in Table 4. The last two columns indicate which water surface area or which suppres-sion-chamber section in the reactor corresponds to the parti'cular experimental set-up. The tests were performed with a mass flow density of 1000 kg/m s and, in a few cases, also with 500 kg/m s. The setting was done by the initial pressure across the throttle nozzle (58 kg/cm [gauge] at 1000 kg/m 2 s). The submergence was 1000 mm and the distance from the bottom was 300 mm. Chosen as the representative bottom pressure was the measuring point P>4 (piezoelectric trans-ducer) which was located precisely under the quencher and which 9-21

always indicated the highest values. Zn the eccentric arrangement of the quencher, the shortest distance to the tank wall was tank'.1.4 Test results

 ~ ~     ~       ~ ~ ~

All the essential test data are compiled in Table -' Figure 7 shows the bottom pressure as a function of the valve opening time. The various curves make clear the influence of the tank dimensions. This trend becomes still more clear from Figure 8 where the bottom pressure was plotted for various valve opening times as a function of the free water-surface-area or the ratio of air/ bubble cross-sectional area to water-space cross-sectional area. For the unrestricted water space, it seemed appropriate here to use the cross-sectional area of an inscribed circle. Zf we compare the bottom pressures for A+A = 8.7 (GKM ratio) to those for A+A = 38.7, then we find a reduction of about 60% for the positive pressures and an even somewhat larger reduction for the negative values. The question as to which A+A ratio should be used for BWR cannot be answered here. The entire water surface area in EKB is approximately 440 m . The cross-sectional area of the air bubble expelled from one quencher is approximately 1.6 m . Figures 10, ll and 12 represent copies of the Visicorder traces with which the pressure values were obtained for three different 9-22

test set-ups. Except, for the water space, the boundary condi-tions were, the same in all three tests. The influence of the pipe preheating is clearly shown in Figure 9. Tests which were performed during the last series to examine the double pipe with the unheated pipe are compared here with similar tests with a heated pipe. Although no transposition factor can be read off here either, the influence of the pipe heating and

     .of a more or less marked condensation can be seen.

3.2 Test series 2 Investigation of parameters during vent clearing. 3.2.1 Test goal

1. The pressure build-up in the pipe connection between a quick-opening valve (relief valve) and a pipe termination geometry arranged in the water space (perforated-pipe quencher) was to be investigated (vent clearing pressure).
2. The relation between the vent clearing pressure.and the loads occurring at the bottom of the test tank was to be determined experimentally. The vent clearing pressure was to vary at least in a ratio of 1:3.

3.2.2 Special test set-up

        ~ ~   ~ ~  ~  ~   ~ ~  ~

The set-up corresponds essentially to the description under Item 2. In order to guarantee the comparability of the model 9-23

tests with the GKM tests, a number of transposition parameters were to be considered. The corresponding data are compiled in Table 4 and Figure 14. The tests were always performed with an insert of the same diameter to restrict the water surface area. The steam was supplied via a quick-opening valve with a succeed-ing exchangeable throttle-nozzle. This throttle unit was con-nected closer to the test tank. The pipe section, which was shorter than in the earlier test series, could thereby be con-structed with a larger diameter. By this measure and the elec-trical auxiliary heating of the pipe also used here, greater condensation was prevented in this pipe. A In the part lying under water, the corresponding effect was achieved by means of an internal Hostaflon lining which was led as far as the stop of the perforated cross pipe. In order to obtain the same resistance coefficients, the diameter of the individual holes is the same as the hole diameter for GKN and reactor quencher (see Figure 5) . It should he noted that in com-parison to the preceding test series the outlet cross-sectional area A for the perforated cross pipe 2 used here is only half as large as for perforated cross pipe 1. To measure the velocity of the air/water phase boundary surface during the water expul-sion process, electrical resistance measurements were made at 5 points (Zl to Z5) (see Figure 13). 3.2.3 Test execution

       ~ ~ ~ ~ ~ ~ ~

In accordance with the test goal, a largest possible range of 9-24

vent clearing pressure was to be covered. For that purpose, the pressure before the valve was varied between 10 and 100 bar. The variation of the pressure before the throttle nozzle as a direct measure of the flow rate was 10 to 76 bar. Zn order to extend the range of the clearing pressures set in this manner, two test series were performed with a different diameter of the throttle nozzle.. The resulting mass flow density for the entire range covered was 220 to 2600 kg/m 2 s relative to the outlet cross-section of the perforated cross pipe. The submergence was 2.0 m in all tests. The valve opening time was adjusted to the smallest possible value. Zt was 145 ms

     + 15 ms on the average.       The test duration was about 3 s in each instance.

The sheet-metal insert was led beyond the water level in order to decouple the internal and external spaces. 3.2.4 Test results

        ~ ~  ~ ~  ~

The most important data from the test evaluation, indicating the relationship between vent clearing pressure and bottom load, are compiled in Table 5. The measurement point P>4, which was located

     ,centrally under the outlet geometry, was used exclusively for the indication of the maximum bottom pressure.        This measurement point also indicated the highest values in all cases.

The variation of the maximum clearing pressure (hPD< ) is illustrated in Figure 15 as a function of the initial pressure 9-25

before the throttle nozzle and thus as a function of the inflow-ing steam rate. In addition, the pressure value set at the mea-surement point PRl at the same time was also indicated. Basic-ally, the same dependence is shown in Figure 16, except that here the clearing pressure is illustrated as a function of the mass flow density relative to the pipe and outlet cross-section. The most important result from these tests, the relation between clearing pressure and bottom load, is evident from Figure 17. From the mean-value curve, a dependence of the change of the positive pressure amplitude at the bottom relative to the vent clearing pressure can be indicated in the form 8 = hPB hPDE

                                   = 0.0275 in the upper range. If we extrapolate beyond the measurement range, this value seems to decrease further. A quantitative indication concerning the further decrease of c is not possible.

For the positive pressure amplitudes, the range of double stan-dard deviation was also plotted. The reason for the larger scatter in the range hPDE DE max

                               = 8 bar compared to the other values surely lies in the fact that at this point there is a crossover of two measurement series with different prethrottling.

The highly variable initial pressure has effects which cannot be evaluated exactly and are responsible for the larger devia-tions from the mean value. In general, however, it can be stated that the pressure values at the bottom could be 9-26

reproduced with an accuracy of +0.15 bar. A statistical evaluation of the scatter was dispensed with for the negative pressure amplitudes at the bottom, because only slight deviations from the mean value occur, especially at the higher values. The curve leads us to conclude that there is an asymptotic approach to the value -0.5 bar. The measurements concerning the speed of the water surface-pass-ing thxough the pipe during the vent clearing are evaluated in Figures 18 to 21. The path-dependent change of the speed is il-lustrated for various clearing pressures in Figures 18 and 19. In Figures 20 and 21, the speed is illustrated as a function of the time after the valve opening begins. Copies of the Visicorder recordings together with the measured pressure values are included in Figures 22 to 25 for 4 tests. The particularly interesting curves for FP07-04, dP and hP 4 are specially emphasized. The measurement-point coverage of the light-beam oscillographs used for this test series (Visi-corder) is shown in >>Table 7 and Table 8. The frequency of the first air-water oscillation was 5.4 to 5.9 Hz in all tests. These relatively slight differences are caused by slightly different boundary conditions (temperature and moisture content of the air in the pipe before the test). The different clearing pressures quite obviously have no influences on the frequency. 9-27

4. Summar o f results The vent clearing tests in the condensation model test stand in Grosswelzheim have demonstrated the direct relation between the pressure build-up in the pipe and the dynamic pressure loads on the bottom of the confining tank. The clearing pressures in the pipe vary within a range of 3 to 18 bar.

Important observations concerned the influence on the bottom pressures exerted by the water space relative to the amount of air introduced during the clearing. By parametrizing the cross-sectional area of the water space, it was possible to obtain from these tests important information for the transposition of the quantitative results obtained in GEM tests to reactor conditions. The influence of the stiffness of the surrounding tank walls on the wall load and bottom load was determined qualitatively. A "compliant" confining wall, which was loaded up to or beyond the permissible limit, resulted in values up to 60% lower than a "noncompliant" wall. No quantitative statement can be made about this dependence. For all of the measured bottom pressures, it should be noted that no absolute values are transposable to reactor conditions. 9-28

REFERENCES /1/ Werner, Melchior Tests of mixed condensation with model quenchers DWU-E3-2596 May 1973 /2/ Becker, Hoffmann, Knapp, Kraemer, Melchior, Meyer, Schnabel Vent clearing with the perforated-pipe quencher KWU-E3-2848 January 1974 /3/ Hoffman, Knapp, Meyer, Waldhofer, Werle Condensation and vent clearing tests in GKM with perforated pipes KWU-E3-2594 May 1973 9-29

A AA 11~ Condensation Model Test Stand Experimental. Studies of Vent..Clearing I<'iod-'l l Kond Vl'rsuchsstand E.".pt rImentr=!!e Unte rsuchungen rum Fr tibiasl- n Vers. ter. DG tur A Vordruc, mA to Geornetri V-gt.ri .B~-merkc bar kg/ m2 s 'ms

                                            '7 206                 3.9. 73                        Vor   t  rsuc6-                 Are,uz-      Eigft+B Wrac(ra 20       (t'08
                                   'g,S                       927                   Lx/ffD)fJ Behalker-
                                                                                            <<A       P Ir/S felh'crt gl'5                      292       7o                       georn6r'g Zo9                               ao,S 210                              Z2,S                                 Boo 201.......................         24,S                      433 202                     9. 73     245                                  21&

2.43....... 5 e.73 49o 225' 2)4 0$ 2 6'9'o 15'77 220 3Z'Q 280 278 s19 250 219 ~ 0sr -. 8 70'$ 220 1(S' 203 0 222 sao 223 .. 7,S'6, 224 292 t'i'o 225 S'Qr< 2 S'tl 593 226 227 2'1,+ 20~ S 22'30 26 S'4,$ . 2.3...'l.... S9.78 Z1g A 6 A ~ A>> W Tab. 1 Btatt 1 Sheet 1 [SEE PAGE 9-34:FOR KEYS

Condensation Model Test Stand Experimental Studies of. Vent Clearing ..

.': '..! '.l ".~2; I idio.! -:!l Kond Versuchsstcncf l.-.".D;,-!;;-.<--~ <-!!.-

Untc r~t.izhUngr n zurn Fr CiblaSc 0 l'r turn \/<

                                  ,:.r is<

erg ~ Dc<i to Geometr'c 5 6 kg. bar kg I rrr~' 9 9 23Z <1.9 7S Krewz- Ein f'lu ~<.r>her

                                                                                                                    /l 760         210      l ochro5r'1 Bthh Incr 239                                                     47o                              pcornePr<'e Z3$                              38                     6'Fo        Z)$
                                                                            'rr d3                   z21             S 237                               g8,S                   327        57s 2SC                               2&,S 239                              z>,s                   433 290                              23,S 2s,5 zz,    5'98 243                              z<,5'7,S
                                                       ....274;    .:

212 ZO5 800 205 73 23,$ 20.9.73 477

                                                  '6,$

25O 2Z 38'9 318'Z7 2S6'4.S. 2S2. 2$ ;$ 2$ 3 '$ 259 370

                                         ,S'6,$

2$ S zzk 354 29.9. 73 gg,S Tab. 1 Blatt 2 j Sheet 2 [SEE PAGE 9-34 FOR KEY]

Condensation Model Test Stand Experimental,. Studies .of: Vent Clearing..:.. l'.V<<U-R uzi Viiidcl l Nond V. rsuch="stand Exp 'rimentel (. Untc rsuchungcn zurn Fr eibla."en mrs. Nr ) Datum gpss YOrdrUC to 6 ometr'/ Y.-Seri B~ m;. cj. bar kg I m2 s 258 69o <SW kreuz- Ei'nflud

                                                                                 ~>4 oe-259                  4Z                                 Locgrohr 7 Beholter-
                                                                     ~omehie WCri'6ar 261                 $ 05 26S'64'9.9.73        26 263                             $ '3o 24$     2).9.73                  340         492
                                            )"'~ "+z avZygpu 267     28.9. 73    ZO) 5        367         622 268                 ZO)G         367 2O,5        347 270                  2 7,5'8,5
'271 27Z                                          ZZ0 273                                          223..:..

274 2 8.9.'73 a6)5 2 OS

                                                     ~ ->>e-Blatt 3
                                                                               'heet      3

[SEE PAGE 9-34 FOR KEY]

Condensation Model Test Stand Experimental Studies of Vent Clearing 'i ~Vi<Li- i( ~i] iviodc [i Kond Versuchsstand

  ~M l= xpericn    "it~ l lc-    Unt=rsuchtingen          mum     Fretb~o~~~

Vers. ter, Datum YorJru G..om ie V-Seri 8l. l rk(j. bar kg/ m 2.s

                                                   ~

ms I /+ 3 23 12.12.73 220 161 A'reuz- %rome Cr-820 16O 15'9 Loc6rahl 2 un ber-32K 240 160 such un@ 324 3Zo berm 327 Frei susen 92+ $ 70 329 57 do f0 1S2 330 96o 331 13 10 332 ... 4390 3.33. 1Z. 12. T3 VZ 4O 29-1. V< Z 0($ 700 21 720 336 720 737 120o 339 12 00 48$ o Ig/0 302 191O IZO 303- 22oo 63 2Zao ~ W tw4 ww C3 228O AZ 29.1.70 Z6oo Venh'r'PXy~lt Z WO ~ Tab. ] Blott 4 I Sheet 4 [SEE PAGE 9-34 FOR KEY]

KEY FOR TABLE 1

1. Test no.
2. Date
3. Initial pressure
4. Geometry
5. Test series
6. Remarks
7. Preliminary test
8. Perforated cross pipe 1
9. Influence of tank geometry
10. Pipe heater installed
11. Not able to be evaluated
12. Not performed
13. Perforated cross pipe 2
14. Parameter study of vent clearing
15. Valve leaky?

9-34

A I C 0 O 0 Vl S IA lA LA S 0 Q Ol S ll S

    ~  <<8                                                                                               S WC                                                                                                  <<pf Vl 0 N f4                                                                                         I       A C Vl XS             4 N                                                                                   '44 0

a O O I I Vl Vl 0 I S Vld

     <<O          0 N   0 N     S  <<A S  WAN 0     U14l S S
                                                                                    ~ P4 Af 550 V104CP S S Ig <<Q BUCkW S

C

            ~  I eC cln         CO     W   Ch tM C

0 ~ 4l H 0 C O 4l C

                                                                                                    'CI CI    4 0     0 C

4 0 S o 0 a $E Q 0 SC IIl 0 I a Q 4J& S 4 Ol n C0 0

C
                                                                                                     'a 4l            O                C4   O          O O    I                    0     4 a                                                                       Cl       4l a         Ol  Ol          O    O a

4 0 0 C 0 0 ~ <<<< H pl c a

                                                                                                   ~

S C4 V Q W Q lA vt C) a S A Sl O CQ IA 4 Ql A 4 V << M 4l 4l l 0 4 O O Vl Cl O' 0 4 Vl 0'a C 0 4 0 0 x a O 4 0 4 H a C 4 C 4l 0 h4 tH Q 0 CI O<< IA 0 O O

      ~ Q                                      II S

Q U N ~ Q 0 a I Q

                                     ~

0 4 0 A 'Ck '5L 0 6 6 8:8 0 S CI ~ Q LA M~ nl

                                            '4                                                  Q Ch               CCI  IPl      0
                           'C    lA  W       ~     IA        H                                  S 0'80 C                            t<<   e Q 0                O                  a I         II      H     H   H    H 4 C0            C                Q IV V V C             0        S C                     CI  4    0 C               Q 0 4l              a     a   a
                           'C                 C     C   C                               IV A 4J 0                                                                   C <<A Q    CI
                                            ~ W   ~ P4 kl                          SOTS
                                                                             '5 S 9 Vl Q 4 S &

0 fb&C Q 0 "ZO@H D3 Q

                                                                                ~ ~      ~

Nwcvp)w 9-35

( I 1 l<i~d f<O~d ye f SUghSqtd Condensation Model Test c'tand Vorsuchssorl o.( - Elnflub Boh5ll org earn Test Series Influence of Tank Geometry Vers.-Nr. InA ZP >Paq bP(g ~ PR3 $&t bP~((~z(, Aw Be erma. k elm's kg/m's bar bcr bar bar bar bar G LC(< Pk<. fur %((me(( Jndc((4: Hcrf ur ~e'(/1i 207 co 10 00 827. 70o 42/ 036 3(~ 39 82,4 6,s 49'90 0 t- 7. r Is~Pe alCCr 208 zgt 750 4<5 . O38 C~ ..37 rtz0 245'c for Ycyg uc4 209 goo 96 OGZ OZ 69

                                                                                         .(                 g3           82,Z                       <9I S'8'33
   ?00                               3oD        68         0~5'g            0,4          0't I              ...I           42(0             63I       J9I                +) gIC."Cl   ~a'/3 g 21f                               Z,1S      $6          q5'It                 3P                     -I39                              8o     ..c90..                            rmuHg
                                            '(0
                                                                                       ...C                                         .                                     e('w'ra 212                     SD4       z 1S      64-        qs8'(

0,3tl'ps C<- ZV "I - . (3 zCh I(c4 243 69'0 415 fd (. 93

                                                                                                          .I             ~<C  >          S3          za      2(62$

215 'JZS 205 1o5'. $ 22, 0 4E'<z

                                                                                     . 5'f I. -"
                                                                                                     ~    S'9        ...4Z    p        +C9          zog'>

2)S 690 2 18'20 9s Oi~2 7,5 l(2 . $ 2,0 59 4) 216 67z 9z, 03

                                                         -C                 0?.P                         I2  I           4Z(0          SC9 217                   63'l       290       86          032         --02  I        -"-
                                                                                         ~C          ..'I,3 ..           42,p            .(         <9V 619        2$ '0                  OCQ             0,ZZ         d,'o         A0$               gz,p      ~
                                                                                                                                                    <90 8'0 C

219 4A 083 9s'8'0+ 0426 DCZ S,'9 .V3 C ~ .N(~. S'9 I 20) 220. 38o QZ . OZ C.. $3 .5;S.... rtlc 2 200 221 .. 203 9so 10$ 010C o ss 2,g .33 ( gZ2, C ..- kg

 . 222                   Z9Z       COD       AD)          DZ   C          or  17         lt'I l           S..I..            12C 2        6             ~96 2Z3 ...                8>o       S9S                    Dc     16        DC  f6                      I('3
                                                                                                         .(-..                        sj7           2OZ ca 10 o0     29Z      $ /0      440           02  C---       os       f3-C            49                4Z(Z                      pop
                                                                                                         ~ (

, 225.. Co SDO Og $ 46 39 I. 6p ( ' - 5$ C-"'- z,4 226 592 DC-VIt 39 l] 5' ~ . $ 5

                                                                                                                          ~

C zy

                                                                                                                                      ,I    .

22.7. 38o ~ 2S 407 012$ p gg SC'I 5;7 71 aSC 228 f63 32+ --02) I $ 17 S5'C9 6,9 f,9, Zc2 229 569 2 4$ OZ6, Dc 2 CC~ Z,D 230 cu500 Os9 03 OC 47 67 6(9 Irg $0 .2,6Z9

1 r Mod-Kond- Ver suck 'td Condensation Model Test Stand Versvrhsserle1 - Elnflvb Behdlt((rgeam Thst Series Influence of Tank Geometry V ers.-N. I 4 Q((+ lAp DPO(( >Pgg 'r c(prz4~s ( Ken k I(n's bar . bar bar . bar t> lP fur (Romar Q

                                                                                                                                                                 -Ze'd8f

. 23 (A SDO 46 (t Z<0 97 O,ZC o<f 202 ~ CZN .l. :Vert z rZeit tg t  ;~ (l'32 Cg 1000 Pf 4( o S WerC'V Qg 0,4S7 233 760 0(gZ oi~ . 7,-.0 7,3 . Q,z... ZOO 230 CVp 245 99 0 ((2 03+ 7d'P 7(( g S",7 20+ 235 6I0 2 fS'fS 9s Os I. 7(9 4fd'~,0 Z05 236 2.2f 42@ o,gl 0131 P3 (3. 5~9 ZOO 237 .. 327 5'7$ A/3 ogI( 0( j4. 4,'3 4,z 4f(C r9 ZOO 238 ((gg

                                                'SS pig     uf2          035'37 63(,.         S,'9      re..f g       Sg        20$

239 033 3SS 9z opz , C3I '5;9 gg Zo0 20o 016 3SS qff Q3P N,7 avd'- r $8 ZO6 291 $ 60 7$ '0 ZCO, 0($ 1 0(3Z z,9 sj/ 36 Nd'?P 292 ad 93S 1 08'09 0lj ( oat . ~.(f9 $3 $9 200 203 88o r('30 D)39 O(29 $I 4".,---(- S's ~i~ . 203 add'?0

               ~ f000     309           5'S'g             V<(I     Oj3Z        0(  8Z       39          ...4? ...                     (7     200 Z7f          %40              4?3                    $ 3'Z                                  64

(  ? 5's 202 2 I(6 242 49s 4 42/~ OZ3

l. Dug 3SI ~
                                                                                                           $   '?       J z~V                       863         300               40$       of          0 3g    -.(g f          .( S'O       A I           l,lt     ques cq $ 'oo                                                                       s9         S7 225                         0(4         0,3$                           (- - Ss( "~---     ZZ(. cd'4 co  lOM                   426            X72.                                  Z2             ~P       W2 I..                    zoS

( -. 0 0$ ', 250, 38) 403 q ((9 2o9 2Sf 348 ozg O,Z f2 ( "($3 1/C(, $(7 Zoo 450 0( Zg

                                                                      - .,---                              b(3       4/7        ....5;7. 2)0 2$>                        <S1        39o                         P,ZS 4$ ~       9/0                $$       Oi zd'3Z    O,p         43              6(7                    $(7        $ 0 "I 2SS           cg 1000      4s)         22/               ttrI                 0(2 )   -;.l4'D            Zg                      $7         zo5

fV']OCf- OACl - VBt'SU/ SStd Condensation Model Test Stand Versucl;sserie < - ftnflu6 BGMltergoom .Test Series Influence ofcubi Tank Geometry Vers.-Nr. 4 P gq LLPgq 4Pza 4 <PRv~eg ~Pm 4 jr'4t. rR oran g. k glm's k g/m~s ms ms bar bcr bar bar bar bat C 7 lt,'t. fij'r Pizza o z56 637 z30 7 Orz2 lo.- { r gp - --.l 7 Zoo Jrrd'& 'f l(art zur 2$ 7 690 ~gs 8Z d'6 ag s;7 F5 Ro rtemp vqkrr gI O,Zd'39 -I kg ZSZ GgO <9S 81 0z6 --9or-- Q'l $7 20+ v'D VerS u Z59 O,ZQ q . Lg 1< qq I $9 3Z 2.6o (zo 98 Ops zdozlt 33 4<,I 5;9 zod'0$ 26f ~ fooo $ rr4 g 9'0 9S . o35 . 4$l ALEII a<I I=- ~ ~ 43 I-ZG2 Cq SoO 290 Co( one o,? 4 60 4 3,0 Z05 263 Szo zf~ 91 0,3Z 8 23 7g 2,9 zOz 2~it ca 5'00 3<0 (gz ozz, $ 2Z s9 AS 80 ZOS Z6$ 4c Ic+ ears P+ Q4f 9 2.E6 ~0 26/ co oooo ..367 6/2 439 orof 0 21 . z,g ..21 267-2 co <Oo0 ,367 6ZZ 429 0 49 0 Q3 pod'OS Duse ccqPr,g l7 fd'23 268'72 967 <ZZ 0Z I ..I,.. f 4Plk asrg c or ref.. 493 E,oe 15 . 8 llS zlo Rt do0 79 Or Z8

                                                              =..

0I ZE OPS 4Z< e.. O,ZO 67 6' vr

                                                                                               ~

p'Z 42D Az0 420 205'sq4 ZOd'09 zoI

            .                                                                                                 7$
  . 273                   N  $5       ZZ3       cfog   ~0 z9         O20                    7l                     42,0              20$             4 mtooo        SS3         sos        79      ~03+        O~ZI                   7,l Ci

KEY FOR TABLE 3

1. Test no.
2. Remarks
3. Subscript 1: value at time tl tR pipe temperature before test
4. *) Uniform pipe heating questionable
5. Not able to evaluated
6. tl - time for P R44 max subscript 1: value at time tl 7- tR - pipe temperature before test
8. Tests 267-274 quencher arranged eccentrically in the tank
9. Not performed 9-39

Ubertra eunms aramet er Transposition Parameters

                                                     ~'ow          HodeI. tank R150,    tie f Qi   Luftvolumen           VL                      og37          0,0182 Qz:   Wa ss er vo lumen     Vw           m          o, 156        o,oo44 Gesamtvolumen         V                                     o,o    6 D~    Wasserraum-           FW                      7>07          o,346 Querschnitt Lochquerschnitt       A D

0,03581 0,00156 m" 2, 196 0, 1075 DQ v yes D 14,7 14,5 AW/ADQ 3,22 31 22 VLiA 0% 17 0,17 Cross-section of a circle describing the quencher

       ') Querschnitt     eines um die Duse beschriebenen Kreises Condensation model test stand Test series 2 - Parameter study for vent clearing Compilation of the transposition parameters 51odell   -  Kond  - Versuchsstand Versuchsserie     "   - Parameteruntersuchung      beim Freiblasen Zusammenstellung       der Ubertragungsparameter KEY:
l. Air volume
2. Hater volume

~

3. Total vo'lume
4. Cross-sectional area of water space
5. Cross-sectional area of hole Tab. 4

Condensation Model Test Stand Test Series:- Parameter study for"vent clearin'g KWU R521 Modei I Kond. Yersuchsstand Versuchsserie: Parameteruntersuchung beim Freibtasen 07-04 V. - Nr. +PB max t-) 4 PRt 4 FP o Vent. p be AP POE max B max b(-'< 4POE max I ms bar bar bar bar 323 1CW 0 O'VS 3S',NS0 4 ~ 4($ 0, Cga' 0(

                          +CO                                                             0, 47(S  ~

O, QVS 04 F$ 4$ 0 0(5 0( 9 301 0, $ 0(4 GQS'I 0, 94K' 44& Q4S' 13 0( 4 a? OS Z',43 Q3 0( WA 43,Z 0,4& 0 945'o($ 0 GAS'( 9 183 wo s'CS 0( CW O( 04~$ 94$ 0, CVS 0( 0$ 0( 4$ 0( 98 0( %$ ',+VS 44(Z 0( P o oxs rt'f($ rtS;S 0( >Z 0, 9X$ 3'Q3 4$(S 0( J'4S'( 0(( Xs

                                                 <<i <                j'4$                 0 9$ $

rtP(Z ', Octal 43

     ~ "a H G(S                 PS                   0( VVG M

KEY:

1. Test no.
2. Submergence
3. Valve opening time
4. Hei = at

Condensation Model Test Stand Experimental studies for vent, clearing points Mean veloc'itj'f the water front between 2 measurement KV/U-R 52] Mode) t Kond Versut=hsstond. Experimentel te Untersuchungen zun Freibtasen t'ai filere Gesckiwigdi keii c(er Vasscrfro~f cavi m'h~ z P1e @fellow Vers. A'r. g Pz,g 0/z, ~r/>c zc/za z~/z~ Z~ /z~ z~ /L Test no. bar 923 fr 7 <O,g fO,C 7 ~D,6 4$ ,2 7,d < 7<5 3Z4 2,24 $ 9<5 <8,f 327 Vb,7 Z0,4 2. 5,$ 47,S 2D,4 25. N3,6

        ~      I 09,g                  Z9,$

2,9 46,7 83 42 1<(2 2 419 2'33 i<,5I'9,z 2f,9 2r5 c7,5 2,6 33( 2,4$ 02,1 <7.S 233 337 WO,S Z1,9 8'S,z Z9g 2 02,Z Df 7 <5Z Z0,1 ZC,9 202 f4) 3'2

    ~39                              3, 1g              ZOq 4                               ~ h
    ~So           10,5'o,S
                                                                  ?AS                      8,3 ZOJ Q                            <2  I 342                                        <S('2     233      29,2        81,8'S 943           q5,$                                                                    +4c zc,9     30,8 kg
                           '5'6,5 23.3      Q1,
                                                   ~   <  y  ~ <     '

P ~ OI z, KVU Geh Modell Tank Vereuche jl 150 Rohr LochrohrdUee Vereuch Hr,s Datuat 5 Druck

                                                                                          @or                     Yentilt Wee nach             18  [<<m]

7 ETTA 1,0 r.,O t'a] BAa 0~3 ca lo Hebotelle IV 13 Habet ah Nullpunkt Beoerkung 4' 80 aa 10 Vaeeerteap o in Tonne 12nY n 80 caa 18 Tearpiia Freiblaeerohr l5

           ~ I n     ~   <I T4 n     ~   n                            50      Zaaenrohrteap.                         ~lb R1 n '       n                                    Aubenr ohr te<<<p ~                     Q7 n     ~   n                                    Innenrohrteap                         Qlg Aubenrohrteap                          Q(7 10               FT 07-04         n     ~   n                                    ~                 Dtlee FT  07~5                                                        hinter                      Dtlee FT  07Mi         ff    ~   II                           98      in D~Ssuruhrmg (Q 13               FT  07~          n     ~   n AT  07M1                                                        La Abda<epi'ondensation Model Test Stand Test series        2 Coverage     of   measurement               points       Temperatures Modei i  Kond  Versuchsstand 2

Versuchsserie Mef3stet tenbeleguna - Temperaturen [SEE NEXT PAGE FOR KEY] Tab. 7

KEX FOR TABLE 7

1. Model tank tests
2. 150 mm diameter pipe perforated-pi.'pe quencher
3. Test no.
4. Date
5. Pressure before valve
6. Nozzle after valve, diameter
7. Submergence
8. Distance from bottom
9. Channel
10. Measurement point
11. Scale
12. Zero point
13. Remarks
14. Water temperature in barrel 15., Temperature in clearing pipe
16. Inner pipe temperature
17. Outer pipe temperature
18. Before nozzle
19. After nozzle
20. In steam supply
21. In exhaust steam 9-44

2-KIIU~Gvh P 150 Rohr Hodell-Tank Yerauche Lochr ohrdQae Druck yes such IIri I DatunI d'or Yentilt y ti l ffI 22I 18[eai]ETTI 1,02 ~ 0[iaj 9 BAI oi3 n Kana l 9 10 II I I HeIIatelle Habstab ul lpunkt Beaerkung i.aaa a 0>05 at 110 Bodendruck r ~~ r 100 B3 r rA r 90 5 8o B5 C)~3 7 1 aa ~ 0,05 at \ 6o ran aben in VaaoerraQs R1 aa s 1~0 at Co ia f1150 Rahr 10 30 20 rar DQaeneintritt QI'7 FP 07M2 0 ZufQhrungaleitung FP 07M3 + 10 ror Yenti l FP 07 04 r g r + 20 vor DQae Qza FP 07M5 r g, r + 30 nach DQae Qu 16 oh e + Co Vaaaeratandaeai Z 20 iaa g 1 aa + Bo Yentilveg Ref+ Sf gn ~ + iCO Condensation Model Test Stand Test series 2 Coverage of measurement points Pressures and displacement~ Model l Kond Versuchsstand Yersuchsser~e MelIsteilenbeiegung Drucke u. Wege [SEE ViEXT PAGE FOR KEY] Tab. 8

KEY FOR TABLE 8

1. Model tank tests
2. 150 mm diameter pipe perforated-pipe quencher
3. Test no.
4. Date
5. Pressure before valve
6. Nozzle after valve, diameter
7. Submergence
8. Distance from bottom
9. Channel
10. Measurement point
11. Scale
12. Zero point
13. Remarks
14. Bottom pressure
15. From top in the water'pace X6. In 150 mm diameter pipe
17. Befoxe nozzle inlet
18. Supply line
19. Before valve
20. Before nozzle
21. After nozzle
22. Water level measurement
23. Valve travel
24. at = kg/cm 2
25. None 9-46

CFI 0 ~ g lO t5 cQl t Q3 O E I-8 QQL I I N c OOOO ~ g O O

't5 C

c c C o I') 0 8~ CV C)

                       >  Pn C)
                       + 5 0                                                       Q 5I 0                     ~

0 g e o Ql 4 0

                                           'a
                                              ~ +

n5 Ill 'I Q ~R p. III

~ rl A

8

                                                                .I La>

I~ ~$ 84 0 III e g O g LA ,CI g 0 C 0 g g I 8 N Ul 2 8 O

 ~ Q Modei l     Kond  Versuchsstand Condensation Model Test Stand Bitd       1 Figure       l

ann s earn 5, Nodal test stand

2. Exhaust steam 6, Outer
3. Outer wall 7. Inner atu = kg/cm 2 (gauge)
4. Inner wall 8. Drain
9. Air O~ rrischdn~p) 165(+7)ato 5po' Abda F 07-0)

A 07-03 FP 07-03 )" 5 I. p )nA A FP 07-04

                                                                                  /        F 07<3                                 F 07-02 O/FO   07..0)

AD 070) K 9, FZ 07-0S 7 07-04 7 07-Ol rl O7-O) 4) 07 Ol 75Au) e1r&anrl I / A 0>4) J Ul

                      ~6)nn~nnd                                       ~ A>00
                                                                    ~

A 07-a2 rt Ol ft 8 p l PR5

                                              /                     IT U7 FP 07-02           FT 07-02 P. 8                                          PBg p

J Ul +p 8 09 I I F07 04 I 8 I I I 0 8 Q 0 I 3 I I K07 0) 0) ~J 'K 07 Oc Ul I Q~ 8 U> Entwasserung n 9 I I K 07 )) 2 L3 4 )5 K 0716 I p Ul T)7 I I C O Ul Q Ul PR4 I 0 J 220 V

         ~   ~

CL L07 Ol 2 L07 OI

        )Q 5

dell- Versuchsstand o-"-- -" PL 07 0)

20 l6 12 d d 10 30 50 60 bar 70 Vordruck Initial pressure Condensation Model Test Stand Flow rate of saturated steam through throttle nozzles of different diameter d as a function of initial pressure Bitd 3 Figure 3

10 kg Ill S 28 24 20

   'l6 l0      20       30      40               60  bar  70 Mprdruck Xnitial pressure Condensation Model Test Stand Mass flow density of saturated steam flowing through               r throttle nozzles, relative to the  area of AD = 0.00157   m (perforated cross pipe 2)
                                                                        ?Q
                                                                             ~

jA 3>> i 1

                                                                        ~ l Bitd 4           '?

Figure 4 1 kk 9-50

Kreuz- Lochrohr Kreuz- Lochrohr 2 l 1 Perforated cross pipe Perforated cross pipe 2 5 Locher 5 holes je Seite per side holes x 3 Locher

                                                                + 2     Locher
                                 >0                                  30 30                                 50 370                                   370 Perforated cross pipe Number  of holes                    20 4

Holes per arm 10 Hole diameter 10mm 10 mm 70 370 Modei l Kond Versuchsstcnd AbschiuHgeornetrie Kreuz-Lochrohr Condensation Model Test Stand Bitd 5 Termination geometry of perforated cross Figure' pipe 9-51

Insert in water space Einsatz im Wasserraum p) P2 Kreuzlochrohr 1 Perforated cross pipe 1 Ivlodel l Kond Versuchsstand Versuchsserie ] I EinfluO Behattergeornetrte instrumentierung des Abblaserohres Condensation Model Test Stand Test series 1: Influence of tank geometry Instrumentation of the blowdown pipe Btld 6 Figure 6

Condensation Model Test Stand Modell - Kond. Versuchsstand Blowout geometry = perforated cross Ausblasegeametrie Kseuz Ladvahr pipe m* - $ 00 kglm s e A = 2 624 m2 X A 0 457 m2

                                                  + A       =     0 265 m2 A      =     t 05     rn2 a A       =    1,05     m2 exxen-tnsehe Anordnung Eccent       ic conf'uration 0,5 8                                        XX 04 Ng
                        ~ ~ ~                                        X 4L ~

SP O3 am~

    ~

e 0,2 0,1 100 200 400 500 coo 7oo [ms 1 ta 0,1 0,2 0,3 X 0,4 Bodendruck beim Freiblasen in Abhangigkeit von der Venti loffnungszei t Parameter: freie Wasseroberflache Bottom pressure during vent clearing as a Bild 7 function of valve opening time Figure 7 Parameter: free water surface area

Condensation Model Test Stand Model ( - Kond Versuchsstond Blowout geometry = perforated 0,6 Ausblctsegecxnetrie = Kreuz - Lochrohr cross pipe mA = - 1000 k> Im 2s 0,5 ETT = XXR mm BA = 300 mm P g 0,< M 8 a ~c o 03 o Cl: 0 Pl 0,2 I 0,1 10 20 30 8,7 19 38,7 4W/4L 0,1 0,2 0,3

                                                                    +    to      -   200 ms 0,!                                                           X    oo     -    4P()  ms 0    s.     -    600 ms Bottom pressures    during vent clearing as a function of the  ratio of the cross-sectional           area of the water space to the cross-sectional area of the air bubble (A /AL)

Parameter: valve opening time Figure 8

II bar 0,6 0,5 CL O,C Os 3 0,2

                                                        ~ meme
                                                               ~    +

0,1 + 10 200 300 coo , 500 0,1 tg 0,2 0,3 0,4 0,5

       + Unheated b lowdown   pipe,          open water space X     II restricted O Heated                     f        open 0     n restricted Perforated cross; pipe 1,  m> = 1000 kg/n 2 s Condensation Model Test Stand l

Bottom pressure during:venp clearing as a function of valve opening time Influence of preheating of the blowdown pipe I LW PeI Figure 9

Test no. J (( I

                                                  'll           (~/p                          '.000 L;n f t<~Z

( I

                                                                                                  '>-  <~:;.s
                                                                                                                ~   I hfqS -'Z:r .V'(((u I. i (;I I(e(-gC'(((((                (   (
                                                                                                            =

I 8( Zds ~~ I I Water space cross-.sectional area I(J

 ~~
     ~ ~
                              ~
                                ~
                                                                                     ~1 Kq-rg              .

l 'kg 'l.q. I

                   \        v ~

l ~ ~

                                                                                        ~
                                                                                          ~
                      ~ ' (  i(II,                                                                                                ~>>     O(S $ 4(

FP 0> -" '.

                                                                     'I ~ ' I I ~

k~ I) dmrvl a P,i (> 0,"(( bor Ple

                                                                                                ~ ~

P C ( g~~ 4. Q(2, b4t P) g arnm = P,02 l~

           ~
                                   .~      iJ I

I

                                                              ~
                                                                                                                       ~

yarn t %LAN p 02b~r 40'gq V I I Mod- pond- Versuchsstcl:.

                                     .. Vers'uchsseri'e1       <<C:influG Behaikergeom
             ~ ~

Condensation 'Model Test: Stand

                     '....'est"              series     1 =,'nfluen'ce            o' tank geometry                                                                   Bt td            10 Figure             10
                                                                        ~ \>> OW>>>>
                                                                                                                                                         .. Test .np.                                                                                                  ~
                                                                                                                                                                                                                                                                                          ~

l<<yo I I~ I ~ ' V~ I I j.Irl t~....iariiwG C ~ >>. I . ' ~ I ':I " ~ ~ gg

                          ~                 .                                                        ~  l         ~                                         I                  ~   ~          I  A          ~

tC ~

                                                                                                                                                                                                                             ~
                                                                                                                                                                                                                               +
                                                                                                                                                                                                                                      <<                ~  ~,
                                                                                                                                                                                                                                                                          ~ o~ p'g't                       ~  I       <<      ~  ~     ~     ~~ ~
          ~        '

I I Water space cross-sectional area ~, I t'I

                                                                                                                                         .I     '6      ~           'I        ~  .

A ~ 0 I'>>>> Cy.~i.

                                                                                                                                                                                                                                                                                                                                         / n"4li ~...

e

       ~   <<'                                                                                                                                                    >>I                                                                                               <<s~@               pe
i. ~ ~
                                                                                                                                                                            ~                                                                                   ~
   ~     ~
                               ~   A, ~:
     ~      A.   ~          ~ ~    '                    ~   .~ . ~   ~ ~ a     ~ >>      4 ~ I       i ~
                                                                                                         ~
                                                                                                            ~
                                                                                                                    " .,~   (    ~           ~       ~    ~,W    i ~ly.~yq                                                                                                                                                                      ~  4~ >>
                                   \
                                         'I     '                  ~ I >>  h>>>>4 Hi I t>>'04<< i                                                                                  ~    I                             ~    'I v~,                                      <<<<>> a            ~

I I I~ I ~ ~ ~ I

                                                                                                                                                                                                                                                                                                                                        ~~@
                                                                                                                                                                              ~      ~    ~

lmm vga+ I I

                                                                                                                    ~  P
                                                                                                                           .~  ..

0

                                                                                                                                                  ~
                                                                                                                                                                  ~
                                                                                                                                                                                                 ~   ."            ~
                                                                                                                                                                                                                         '         ~     6               -   - 4w &4 g Z+<.
                                                                                                                                                                                                                                                                                                                                        ~O A\~ >>>>

1

                                                                             -f                ~
                                                                                                                  ~                                '
                     ~,,... ~,   /II
                                                                             ~                >>       ~

v I t( . ~

                                                                                                                                                      ~
                                                                                                                                                              ,Ai
                                                                                                                                                                                                 ~   ~        i,<<>>

I~

                                                                                                                                                                                                                               ~         I y~             ~      >> ~
                                                                                                                                                                                                                                                                        ..   ~
                                                                                                                                                                                                                                                                                    ~              ~    ~
                                                                                                                                                                                                                                                                                                                      ~  ~
                                                                                                                                                                                                                                             ~ g
                                                                                                                         ~     ~                                       ~
                                                                                                                                           ~    ~                      ~                       I                                                           'I.
                                                                                                                                                                                                      ~                  ~             ~                            ~       ~         I
                                                                                                                                                               ,.( \ 94
~~ ' ' '
                                                      ~
                                                                                                                                                                        ~ ~. ~                   -        ~ -   ~        >>>> ~
                                                                                      ~          ~
                                                                                                                                                                                                                                                     .....s3 A
                                                                                                                                                                       .  ~     .,                                        ~          ~     ~ ~~   ~            A
                                                                                                                                                                                                                                                                                                                         ~         V h
                ~~                                '                          ~                ~
                     ~   l             ~                                                          ~

0 I

                                                                                                                                                                                       ~

I .El

                                                                                                                                 ~
                                                                                                                                                                                       ~
                                                                                                                                                                 ~                    +  ~
                      ~ ~    ~        ~"                  ~  ~ 4"      --    ~   ~                                                            ~        r           ~        ~

I

                                                                                                                                                                                            >><<          ~   ~~    ~        ~                          ~ ~~      ~~    ~      ~                                      4  ~     ~

c'..... W ~;02.&or

                                                                                                                                                               -.C...-..l ...---
                                                                                                                                                                                    'II>af++41'e
                                                                                                                                                                                                            ~  --- -- -         ~              ~~ ~     ~  - --              ~       ~  -   ~ -- -
                                                                                                                                                                                                                                                                                                      ~    ~ ~ ~       ~   -- -   ~ --    ~ ~    - ~ ~~  ',
                                                                                                                                                                                                                                                                                                                                                            ~ ~
                                                                                                            ~
                                                                                                                                           ~  A y ~
                                                                                                                                                                                                                                                                                                                                        ~          <<A t       a@i A

Condensation Model Test Stand

                                                                                                                                                                                          ~,,l <>
                                                    ~

I

                                                                             ~
                                                                                                                         ",est
                                                                    ~  <<                       I         ~

I I  !-. series = Influence of tank geometry

                               ~ \

I 4A 4 (.I ~ I << ~

     ~ A w=

0 0 I

                                  ~
                                                                                                                                                                                                                                                                        ~   t       J   ~

Figure gl ll

Test no. ((. /.~+ 1 p'tg /' ~ i~Ai~o I< 1 fg 4. 4( ((< q -l.g

                                                                   '-...6y                                                                             $0   ~  ~

Valve travel 4 ~ Iv'V4SSFY6! j I",rC

                                                                                                                                                                                 )gal(',             II1>
                                                                                                                                                                                                                .I'ef Water space cross-.sectional                                                                  area I'.

I I

                                                                                                                 <I~~~2)rugt(; VO< 3)i'OE4'(/~Ca J4
                                                                                                                                                 'Pressure before                                  throttle                  nozzle I

I i~ i i i I

                                                                                               ~

I ~ F~ oI-O"- I 1mm "0,5'd'or I i/ 1

                                                                                                           ~      I,                                                       +li (~(,
                                                                                                                                                                                                                         ~mm     '2&Oi' i                                                                                                                                           i)I1 ~

I i QQP

                                                       ,1 i
                                                                          ~                       W      ~
                                                                                               ~
                                                                                                     ~                       ~

l 1 I 1

                                                                                                                                                              ~ W           ~MWI                         ~

I 0,'E'0 N~'b0~ zw SIOL 0 t-J ZZC OQgi N~ (GAOL ~a&91 OZ} zw 9SLOO'0 Q~ segOq 'A c w 9ZZO'0 fw) S'~L ~VI~A 0000'0 NIA g w Z8LO'0 1A UIoqgoq MQ op pezoqsua gu'BJ, PQQUMQh LlQpOQ (zw 9>C'0 =~V) LLID JQ)) DQOg 0 '799 ~+0 zw 9SLOO'0 ">> o~ SLOL'0 = r'w Su~u y uoygeZ GuhP(a(~y - uOi~sg gw 1'IOO'0 yOS = 'P

                                     "-  'P y 6SL qq&uay O~l og mxgvyax                                                            3+86 II (Q ~ SQ ghD U96ozQQ) ~w       ZgLO'0 = 1A

( ~sp~ewoe6 <w LyZO'0 = 1A i ymoxxgeutoaG 60hz(Qglgog ~gslgyqgig zeqaeq ad~d yaovzqoayZ

                                                                       ~

gy ezn&xg C I bl fQ

                                                                         'yzzou eyqgozqq ezogeq eznssezd aqua go uo~qoung a sa eznssezd    Suxzaeyo gueg I

Suxzaeyo puca zog Epnq.s zeqsurezeg I

serves qseZ, puaqg Zseq sepoy uoxqasuepuog'E'1 CA Ca C) w 4 'l hD XX
                                                      ~   ~

I "t O o tn tn n o 8 o +

      ~

O ++ CL o O "o 8 o 0

      < g
                                          'C a    I+        e    rt 0                II Ul              ~8
                                            ~O               3 rl' N    I II             B~

8 8

22 L 20 18 c3 16 ee' o CL a 12 10 400 600 800 1000 1200

                                                   ~

1400 m~R 1600 [kgim~ s] 1800 2000 2200 200 400 600 800 1000 1200 1600 2000 2200 2600 mp p [kg /m~. s] ETT = 2.0 m m Mass flow density of the steam flowing into the pipe at time 6PDE DE max relative to the crosy-sectional area of the blowdown pipe (AR = 0.00196 m ) same relative to the quencher outlet area Condensation Model Test Stand Test series: Parameter study for vent clearing Pipe pressures at vent clearing time as a function of mass flow density Figure 16 9-62

         ~ ~

f .1f I 0,8 nR t3 III n 0 +

                                                                    ~+

NP III t III It P 8 0,7 g III N I t fl' 0,6 I 4 0 8 X 8 ft OI E I III 0

                    %0 o,5 QI  9  'tl OR    0 III 3, 9     0 0,4 6

g I 0,3 rnittlerer 2 o Bereich r fl 8 III mean range 8- O,2 M fl 0,1 sloub ~al o doppelte Werte es 0 12 14 16 bar 18 10 r. 0 III 0,1 PDE max rl 0 th n .9 O2 QI 03 C 0,4 txj 4~ C 0,5 C III [

               ~ C LA N   N       N         N         N I       I         I Pl                         CI N                              E E          N N                   N         N 8                                                            CQ Q 8

III a I C 0 N f4 0 C O III e-I 9 8 0 g Ul III III 8 8 Z 8 O O O O

                   ~M~

Condensation Model Test Stand Modeli Kond Versuchs stand Versuchsserie: Pararneteruntersuchunci heim Ereibiasen Test series: Parameter study for vent clearing Mittlere Geschwindigkeit der phaseng~mzf tahe

        %asser-Luft in Abhangigkeit vom Freibtase-dl Uck Mean  velocity of the      phase boundary surface           BIld 18 I

Fia between water and air as a function of vent clearing pressure

x0 6 CL Q-C3 CO O Condensation model test stand Model l Kond Versuchss tand gest series: Parameter study for vent clearin Versuchssene: Parameteruntersuckunci beirn Frei LIlasen Velocity of phase boundary surface between water and air Geschwindigkeit der Phasengrenzf (ache V/asser- Lust Figure 19 9-65

CO X a 0 CL 0 8 I I &8 I

                                                           .p     lQ 8

8 Q4 8

                                                            ~ 8   tP tpV 4 eg V td ttI rd         8 8

0 0 rd COS 0 8 8 9 Q N N td A8 C NC40

                                                      '6 4

NV.H C M A$ I NOES 8 8 8 Qs VVV 8 4 0

                          ~o                       8 9+8 C

Zp 0 CO@ ON~HO

                                                        ~o    V~

8 0 V.R 0 rd NSSR g N 8

                                                  'dVC~

g N 0888 OBZA A$ tD Eie "M Model l Kond Versuchsstand Yersuchsserie: Parameterunte suchung beim: Freiblasen Hitt tere Geschwindigkeit der Phasengrenzf tache Wasser Luft zur Zeit ~ 7 nach B ginn Yenta l-offnung in 4bhangigkeit vorn Freiblasedr Uck

O (4 CI ~ ~ O O

                                                                  ~ Q 8

CO 0 8 tA pl Ol C os8Q 8 ox W 8 0 0 tlat O V ra C 8 8 0 C~ 8 OA

                                                               > Sly toque O  C'5         8 N P N C4>         ~

I N 4 4 N

                                                             $ 885 444 8    r5 N

W'g Q 8 8 4 Q4Q 8% W A NC4 0 ~4

                                                                ~

880Q Q 4'rl N 8 N 8 8 cmkO 8 N 8 0884 Ul OAR > A5 O Model l Kond Versuchsstand Versuchsserie: Parameteruntersuchung beim Freiblasen Mittlere Geschwindigkeit der Phasengrenzflache Wasser -Luft fur verschiedene Freibl--- ---"- "~: - .~~"""~~'~Reit von der 2eit '

J

Jl Zi~ ' ~

             ~ ~
                     ~ ~ ~

oe ~

                                                                   ~ J 01 z l

P

                                                                       ~ ~

I P " I'e (~ r ~ J

                                       '       ~ J J

I P

 ~     ~ ~ ~

P

                                                   ~        % ~ I Mo63t6be s. Tab.. $ 0 H

See Table $ 0 'for scales

                                                                                              ~   ~

Yn..'.

                                                                                                    ~ ..

Jlp /

            ~~@ y ~~  a,~go s 'qua. ~ .h, 'w,iJ;,, O', 's  ~ ~   .t, ~ ~~
                                                                                 ~~
                                                                                                /

8 QA Jg

    ~ ~

Q 0 0> -Lg.

                                                                                                                         < r>

U Q~ 0U) r. cp 0,<s Fp 0 I-o' l l ul 0 ~ Q L ll U1 Ul

  ~
  ~

Ul C O rp 8 (8 rt p. Ul

                                                          ~    ~ s.<      ~+~ ~e C7                U)  rt.

9 C > Pz~-- O n P 8 cp I ~ Vr ~ ~ I C (0 p...Lp ~ 4 '

                                                                                                           ~      ~   0 See   Table lo   for scales
MaGstobe s. Tab. $ 0

A I

0-0 ~ ~ I l l

                                   ~;
                                    ~

I

                                               ~ 4I 'l' I!

I "t' I I Ol I l ~ ~ ~ ld I

                                                                                  ~          0 N

0 I V 1 ~ Iwo I Ce I=I

                                   )    I                                               ~
                                   ~  I Q:;          Il)

I I l5

               ~ ~

iE Cl;I Q

l. Q l Q)
                     ~: os::.                                            ~ I (Q

I I\ I ~ 1, j

                   ~

4

                       ~                                            ~f, I          t C
                                                                      ~,

e; I

                                                                                          \

1 I t ] I J I I I I I I Condensation model test stand Mod- Kond- Ver suchsitd Vent: clearing tests / Pressure values Freiblase Yersuche I DrucI<werte: lFigure $ 4, I I VerS. Nr. 345 Test no. f45 I P 1

I 1 %j I

v1) J

                                                                                                                        <<   ~   e\   ~  ~ v e<<
                                                                                                                                   ~  ~

r ~

         ~ ~

lv I ic~t'I I~

                                                                   ~

I~ I

                                                                      )

Valve I j J ~ OfS l YZ I -,r~)(r I o~ ~ ~ J ~~ VIVv,.v ~ J '0l <<4 ~ < ~ I)v kit. I ~ I ~ <<r y J Z4 r.." ~ '<<

                                                                   .r.v A    V J
                                            ~ vr
                                                  ~  ~   ~
                                                          ~ 4%J
                                                                                                             '\ <<>> v ~    ~   ~

I ~ MaGst6be s. Tab. '10

                                                                            ~

See .'Tab3.e-'XO -.foi;scales -:: 1}}