ML13232A217: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
Line 15: Line 15:
| page count = 62
| page count = 62
}}
}}
=Text=
{{#Wiki_filter:ATTACHMENT 2AREVA Document No. ANP-3102, Revision 3, "Three-Mile Island Unit 1 Appendix GPressure-Temperature Limits at 50.2 EFPY with MUR," Revision 3, dated July 2013 ANP-3102, Rev. 3July 2013Three-Mile Island Unit I Appendix GPressure-Temperature Limitsat 50.2 EFPY with MUR ANP-3102, Rev. 3July 2013Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limitsat 50.2 EFPY with MURPrepared byS. H. MahmoudReviewed byA.D. NanaAREVA Document No.77-3102-003 Prepared forExelon Generation Co., LLC AAREVAANP-3102, Rev. 3Copyright
© 2013AREVA.All Rights ReservedAAREVA AAREVAANP-3102, Rev. 3Record of RevisionRevision Pages/Sections/Paragraphs No. Changed Brief Description
/ Change Authorization 000 All Original Release001 Page 2 Changed first sentence of first paragraph and deleted secondand third paragraphs.
001 Page 49 Corrected graph format.002 Pages 3 and 4 Corrected the entry on the first column last row from "IS toLS Circ. Weld (63%)" to "LS Longit. Weld (OD 63%)" inboth Tables 1 and 2003 Page 2 Corrected misrepresentation of reference number toRegulatory Guide 1.99, Revision 2 in the reference list.Page 6 Corrected description of the input temperature-time histories (225 is changed to 255)Page 13 1. Changed "The location adjusted P-T limits calculated fornormal step cooldown are shown in Table 10" to "Thelocation adjusted P-T limits calculated for ISLH stepcooldown are shown in Table 10"2. Changed "The criticality limit temperature corresponding to a pressure of 2500 psig read fromFigure 2, or it can be can be determined throughinterpolation of ISLH heatup data in Table 6." to "Thecriticality limit temperature corresponding to a pressureof 2500 psig can be determined through interpolation ofISLH heatup data in Table 6.3. Changed "The criticality limit curve is shown in Figure1" to "The criticality limit curve is shown in Figure 3"Page 53 Inserted reference 10.++AAREVA AAREVA ANP-3102, Rev. 3Table of ContentsPageRECORD OF REVISION
........................................................................................................................
ILIST OF TABLES .................................................................................................................................
IVLIST OF FIGURES ................................................................................................................................
V
==1.0 INTRODUCTION==
........................................................................................................................
12.0 BACKGROUND
..........................................................................................................................
13.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES
........................
24.0 DESIGN BASIS FOR PRESSURE/TEMPERATURE LIMITS .................................................
54.1 Material Properties
............................................................................................................................
54.2 Postulated Flaws ...............................................................................................................................
54.3 Upper Shelf Toughness
............................................................................................................
54.4 Uncorrected Reactor Vessel Closure Head Limits ........................................................................
64.5 Convection Film Coefficient
...............................................................................................................
64.6 Reactor Coolant Temperature-Time Histories
..............................................................................
64.7 Adjusted Reference Temperatures
...............................................................................................
65.0 TECHNICAL BASIS FOR PRESSURE/TEMPERATURE LIMITS ...........................................
85.1 Fracture Toughness
..........................................................................................................................
95.2 Thermal Analysis and Thermal Stress Intensity Factor ...............................................................
95.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region ................................
105.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles ............................................
116.0 PRESSURE CORRECTIONS
................................................................................................
127.0 SUMMARY O F RESULTS ........................................................................................................
127.1 P-T Curves for ISLH Heatup / Cooldown
...................................................................................
137.2 P-T Curves for Normal Heatup / Cooldown
...............................................................................
328.0 SUM MARY ...............................................................................................................................
489.0 CERTIFICATION
......................................................................................................................
52iiAAREVA AAREVAANP-3102, Rev. 3Table of Contents(continued)
Page
==10.0 REFERENCES==
.........................................................................................................................
53AAREVA AARE'VA ANP-3102, Rev. 3List of TablesPageTable 1: Adjusted Reference Temperature Evaluation for the TMI-1 Reactor Vessel Beltline Materials at the 1/1/2-Thickness Locations Applicable Through 50.2 EFPY with MUR ...................................
3Table 2: Adjusted Reference Temperature Evaluation for the TMI -1 Reactor Vessel Beltline Materials at the 3/4-Thickness Locations Applicable Through 50.2 EFPY with MUR ...................................
4Table 3: M aterial Properties
...........................................................................................................
5Table 4: Lim iting RTNDT'S for TM I-1 Beltline Materials
........................................................................
7Table 5: Limiting Location Corrections Factors for Pressure
...............................................................
12Table 6: TMI-1 Adjusted Location Specific P-T Limits for ISLH Heatup ..........................................
14Table 7: TMI-1 Criticality Limit Temperature Determination
............................................................
16Table 8: TMI-1 Tech. Spec. Basis P-T Limits for ISLH Heatup ........................................................
17Table 9: TMI-1 Adjusted Location Specific P-T Limits for ISLH Ramp Cooldown
............................
20Table 10: TMI-1 Adjusted Location Specific P-T Limits for ISLH Step Cooldown
............................
23Table 11: TMI-1 Tech Spec. Basis P-T Limits for ISLH Cooldown
.................................................
24Table 12: TMI-1 Tech Spec. Basis P-T Limits for ISLH Composite Curve ......................................
27Table 13: TMI-1 Adjusted Location Specific P-T Limits for Normal Heatup .....................................
33Table 14: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup .................................................
36Table 15: TMI-1 Adjusted Location Specific P-T Limits for Normal Ramp Cooldown
.......................
39Table 16: TMI-1 Adjusted Location Specific P-T Limits for Normal Step Cooldown
........................
42Table 17: Tech Spec. Basis P-T Limits for Normal Limiting Cooldown
............................................
43ivAAREVA AAREVA ANP-3102, Rev. 3List of FiguresPageFigure 1: TMI-1 Adjusted P-T Limits for ISLH Heatup and Cooldown
.............................................
30Figure 2: TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve) ...................................
31Figure 3: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup and Criticality Limit .....................
46Figure 4: TMI-1 Tech. Spec. Basis P-T Limits for Normal Cooldown
...............................................
47Figure 5: TMI-1 Summary Tech Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Heatup andC ritica lity L im it ...............................................................................................................................
4 9Figure 6: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Cooldown......................................................................................................................................................
5 0Figure 7: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for ISLH (Composite C u rv e ) ...........................................................................................................................................
5 1AAREVA AAREVA ANP-3102, Rev.
==31.0 INTRODUCTION==
This report presents operational pressure-temperature (P-T) limits for the reactor vessel at Three-Mile-Island Unit1 (TMI-1).
These limits are expressed in the form of a curve of allowable pressure versus temperature.
Inaddition, the minimum temperature for core criticality is determined to satisfy the regulatory requirements of 10CFR Part 50, Appendix G [1]. The uncorrected P-T limits for TMI-1 were determined for 50.2 effective fullpower years (EFPY) of operation with Measurement Uncertainty Re-capture (MUR). Pressure-temperature limitsare calculated for the reactor vessel beltline, inlet and outlet nozzles, and closure head locations for normalheatup, normal cooldown, and inservice leak and hydrostatic (ISLH) test conditions.
Pressure correction factorswere determined between the RCS hot leg pressure taps and various other RCS locations.
==2.0 BACKGROUND==
The ability of the reactor pressure vessel to resist fracture is the primary factor in ensuring the safety of theprimary system in light water-cooled reactors.
The three areas of the reactor coolant pressure boundary addressed in the present report are the beltline shell region, the reactor coolant nozzles, and the closure head flange region.A method for guarding against brittle fracture in reactor pressure vessels is described in Appendix G to the ASMEBoiler and Pressure Vessel Code, Section XI, "Rules for Inservice Inspection of Nuclear Power PlantComponents."[2].
This method utilizes fracture mechanics concepts and the reference temperature for nil-ductility transition, RTNDT, which is defined as the greater of the drop weight nil-ductility transition temperature (perASTM E208 [3]) or the temperature that is 60 'F below that at which the material exhibits 50 ft-lbs and 35 milslateral expansion.
The RTNDT of a given material is used to index that material to a reference stress intensity factorcurve (K1,). The Kl,, curve appears in Appendix G of ASME Code Section XI. When a given material is indexedto the K1, curve, allowable stress intensity factors can be obtained for this material as a function of temperature.
Plant operating limits can then be determined using these allowable stress intensity factors.The RTNDT of the reactor vessel materials, and in turn, the pressure/temperature limits of a reactor vessel, must beadjusted to account for the effects of irradiation.
Neutron embrittlement and the resultant changes in mechanical properties of a given pressure vessel steel are monitored by a surveillance program consisting of periodic removalof surveillance capsules from an operating reactor and testing of reactor vessel material specimens obtained fromthe capsules.
The increase in the Charpy V-notch 30 ft-lb temperature is added to the unirradiated RTNDT to adjustit for neutron embrittlement.
This adjusted RTNDT is used to index the material to the K1, curve, which in turn, isused to set new operating limits for the nuclear power plant. These new limits take into account the effects ofirradiation on the reactor vessel materials.
Pressure-temperature limits for the TMI-1 reactor vessel are developed in accordance with the requirements of 10CFR Part 50, Appendix G [1], utilizing the analytical methods and flaw acceptance criteria of topical reportBAW-10046A
[4] and ASME Code Section XI, Appendix G[2].As mentioned
: earlier, the three areas of the reactor coolant pressure boundary addressed in this report are thebeltline shell region, the reactor coolant nozzles, and the closure head flange region. The beltline and nozzleregions are analyzed specifically for TMI-1 using the K1c reference fracture toughness.
The effect of the change inthe reference fracture toughness curve on the P-T limits for the closure head flange region is included by utilizing generic limits that have been derived for B&W-designed 177FA reactor vessels.The TMI-1 reactor vessel contains both axially and circumferentially oriented welds. Therefore, the P-T limits forTMI-1 is based on the postulation of both axial and circumferential flaws in the most limiting axial andcircumferential welds and the postulation of an axial flaw in the most limiting forging material of the reactorvessel.Page 1AARE VA AAREVA ANP-3102, Rev. 3One-hundred percent steady state condition Appendix G limits were considered for the development of lowtemperature overpressure protection (LTOP) P-T limits. To further support the development LTOP system limits,temperature differences between the reactor coolant in the downcomer region and the 1/4/4 t wall location aredetermined for the maximum heatup rate transient.
The V4 t wall location is defined as a point within the vesselwall that is located at a distance of one quarter of the vessel thickness from the cladding-base metal interface.
3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES The '/4 t and / t ART values for the TMI-I reactor vessel beltline materials applicable to 50.2 EFPY with MURare listed in Table 1 and Table 2. These values were calculated in accordance with Regulatory Guide 1.99,Revision 2 [10]. The calculation of the ART values for the weld metals also used BAW-2308 Revision IA and2A [5]. The controlling beltline materials for the Three Mile Island Unit 1 reactor vessel are the lower nozzle beltto upper shell circumferential weld with ART values at 50.2 EFPY with MUR of 216.0 OF at the 1/4T wall locationand 161.1 OF at the 3/4T wall location and the axial welds of the lower shell and upper shell, respectively with ARTvalues at 50.2 EFPY with MUR of 183.9 °F at the 1/4 T wall location and 126.8 °F at the /4 T wall location.
The ART values used for the development of the Three Mile Island Unit 1 reactor vessel P-T limits curves,calculated in 2006 for license renewal, were 234.5°F at the '/4T wall location and 178.5°F at the 3/4T wall locationfor the circumferential welds. The ART values used for the axial welds were 184.7 °F at the 1/4/ T wall location and126.8 °F at the 3/4 T wall location.
Thus, in all instances the actual ART values or conservative ART values wereused in the development of P-T limit curves performed in 2006.Page 2AAREVA AARIEVAANP-3102, Rev. 3Table 1: Adjusted Reference Temperature Evaluation for the TMI-1 Reactor Vessel Beltline Materials at the 1/4-Thickness Locations Applicable Through 50.2 EFPY with MUREstimated Fluence Adiusted Reference Temperature Evaluation at 1/4T LocationReactor Vessel MatI. Heat A 50.2 EFPY, n/cm2  Chema. Fluence R Initial I a, I 0e I RTNr r, 1/4T_____________________
ent Numer RT.sT, Shift,Beltllne Region Location Ident. Number Type Cu Ni IS 1/4T Factor Factor F J F Margin ART Guide 1.99, Revision 2, Position 1.1Lower Nozzle Belt Forging(LNB) ARY 59 123S454 SA-508 CI2 0.08 0.72 1.32E+19 7.698E+18 51.0 0.927 3 31 17 47.3 70.7 121.0Upper ShellPlate (US) C2789-1 C2789-1 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 8.575E+18 58.0 0.957 1 26.9 17 55.5 63.6 120.1Upper Shell Plate (US) C2789-2 C2789-2 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 8.575E+18 58.0 0.957 1 26.9 17 55.5 63.6 120.1Lower Shell Plate (LS) C3307-1 C3307-1 SA-302 Gr B Mod. 0.12 0.55 1.47E+19 6.575E+18 82.0 0.957 1 26.9 17 78.5 63.6 143.1Lower Shell Plate (LS) C3251-1 C3251-1 SA-302 Gr B Mod. 0.11 0.5 1.47E+19 8.575E+18 73.0 0.957 1 26.9 17 69.9 63.6 134.5LNB to US Circ. Weld (100%) WF-70 72105 Linde 80 Flux 0.32 0.58 1.32E+19 7.698E+18 199.3 0.927 -31.1 13.7 28 184.8 62.3 [216.0]US Longit. Weld (Both 100%) WF-8 8T1762 Linde 80 Flux 0.19 0.57 1.31E+19 7.662E+18 167.0 0.925 -47.6 17.2 28 154.5 65.7 172.6US to LS Circ. Weld (100%) WF-25 299L44 Linde 80 Flux 0.34 0.68 1.43E+19 8.335E+18 220.6 0.949 -74.3 12.8 28 209.3 61.6 196.6LS Longit. Weld (100%) SA-1526 299L44 Linde 80 Flux 0.34 0.66 1.16E+19 6.778E÷18 220.6 0.891 -74.3 12.8 28 196.6 61.6 {183.9)LS Longit. Weld (ID 37%) SA-1526 299L44 Linde 80 Flux 0.34 0.68 1.15E+19 6.755E+18 220.6 0.890 -74.3 12.8 28 196.3 61.6 183.6LS Longit. Weld (OD 63%) SA-1494 8T1554 Linde 80 Flux 0.16 0.57 1.15E+19 N/A 167.0 N/A -47.6 17.2 28 N/A N/A N/A-Highest values of the adjusted reference temperature for circumferential welds.-Highest values of the adjusted reference temperature for base metal or longitudinal welds.Page 3AARIEVA AAR EVAANP-3102, Rev. 3Table 2: Adjusted Reference Temperature Evaluation for the TMI -1 Reactor Vessel Beltline Materials at the %-Thickness Locations Applicable Through 50.2 EFPY with MUREstimated Fluence Adusted Reference Temperature Evaluation at 3/4T LocationReactor Vessel Matt Heat C 50.2 EFPY, n/cm2  Chem. (Fluence Initial J o. RTNoT 3/4TBeltilne Region Location Ident. Number Type CU Ni IS 3/4T Factor Factor F ' F Margin ARTRegulatory Guide 1.99, Revision 2, Position 1.1Lower Nozzle Belt Forging(LNB) ARY 59 123S454 SA-508 C02 0.08 0.72 1.32E-19 2.80E+18 51.0 0.652 3 31 17 33.3 70.4 106.7Upper Shell Plate (US) C2789-1 C2789-1 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 3.12E+18 58.0 0.680 1 26.9 17 39.4 63.6 104,0Upper Shell Plate(US)
C2789-2 C2789-2 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 3.12E+18 58.0 0.680 1 26.9 17 39.4 63.6 104.0Lower Shell Plate(LS)
C3307-1 C3307-1 SA-302 Gr B Mod. 0.12 0.55 1.47E+19 3.12E+18 82.0 0.680 1 26.9 17 55.8 63.6 120.4Lower Shell Plate (LS) C3251-1 C3251-1 SA-302 Gr 8 Mod. 0.11 0.50 1.47E+19 3.12E+18 73.0 0.680 1 26.9 17 49.6 63.6 114.2LNB to US Circ. Weld (100%) WF-70 72105 Linde 80 Flux 0.32 0.58 1.32E+19 2.80E+18 199.3 0.652 -31.1 13.7 28 129.9 62.3 [161.1]US Longit. Weld (Both 100%) WF-8 8T1762 Linde 80 Flux 0.19 0.57 1.31E-19 2.78E+18 167.0 0.651 -47.6 17.2 28 108.7 65.7 {126.8JUS to LS Circ. Weld (100%) WF-25 299L44 Linde 80 Flux 0.34 0.68 1.43E+19 3.03E+18 220.6 0.673 -74.3 12.8 28 148.5 61.6 135.8LS Longit. Weld (100%) SA-1526 299L44 Linde 80 Flux 0.34 0.68 1.16E+19 2.46E+18 220.6 0.620 -74.3 12.8 28 136.8 61.6 124.1LS Longit. Weld (ID 37%) SA-1526 299144 Linde 80 Flux 0.34 0.68 1.15E+19 N/A 220.6 N/A -74.3 12.8 28 N/A N/A N/ALS Longit. Weld (OD 63%) SA-1494 8T1554 Linde 80 Flux 0.16 0.57 1.15E+19 2.45E+18 167.0 0.619 -47.6 17.2 28 103.4 65.7 121.53 -Highest values of the adjusted reference temperature for circumferential welds.-Highest values of the adjusted reference temperature for base metal or longitudinal welds.Page 4AAREVA AAREVAANP-3102, Rev. 34.0 DESIGN BASIS FOR PRESSURE/TEMPERATURE LIMITSEssential geometric data and analytical parameters used in the preparation of TMI-1 P-T limits are described below.4.1 Material Properties Table 3 describes the material properties used in the development of the P-T limits for the TMI-1.Table 3: Material Properties Temp. Elastic Thermal Thermal Specific Density Poisson's Modulus Expansion Conductivity Heat RatioRef. [6] Ref61 Ref.[6] Ref.[6] (assumed)
(°F) (106 psi) (10- in/in/°F)
Btu/hr-ft-°F)
(Btu/lb-°F)
(lb/ft3)70 29.20 7.02 23.3 0.104 490.9 0.3100 29.04 7.06 23.6 0.107 490.5 0.3150 28.77 7.16 24.1 0.111 489.9 0.3200 28.50 7.25 24.4 0.114 489.2 0.3250 28.25 7.34 24.6 0.117 488.6 0.3300 28.00 7.43 24.7 0.121 487.9 0.3350 27.70 7.50 24.7 0.124 487.3 0.3400 27.40 7.58 24.6 0.127 486.7 0.3450 27.20 7.63 24.4 0.129 486.0 0.3500 27.00 7.70 24.2 0.132 485.4 0.3550 26.70 7.77 23.9 0.135 484.7 0.3600 26.40 7.83 23.5 0.138 484.1 0.3650 25.85 7.90 23.2 0.141 483.4 0.3700 25.30 7.94 22.8 0.144 482.8 0.34.2 Postulated Flawsa. Postulated Reactor Vessel Beltline FlawsSemi-elliptical surface flaws that are '/4t deep and 1 1/2 t long are postulated on the inside and outside surfaces ofthe reactor vessel beltline region. A longitudinal flaw is postulated in the base metal and the axial seam welds anda circumferential flaw is postulated in the circumferential welds.b. Postulated Nozzle Comer FlawA 3" (1/4 tNB) deep comer flaw is postulated on the inside surface of the reactor vessel inlet and outlet nozzles.4.3 Upper Shelf Toughness A maximum value of 200 ksi'An is used for the upper shelf fracture toughness of the reactor vessel beltline.
Forthe nozzle forging materials, a "no cut-off' limit is used.Page 5AAREVA AAREVA ANP-3102, Rev. 34.4 Uncorrected Reactor Vessel Closure Head LimitsPressure-temperature limits for the reactor vessel head-to-flange closure region for normal operation and ISLHoperation were derived for TMI- I reactor vessel closure head region based on the K c fracture toughness curve.4.5 Convection Film Coefficient A value of 1000 BTU/hr-ft 2-°F is used for an effective convective heat transfer film coefficient at the cladding-to-base metal interface for all times during heatup and cooldown when reactor coolant pumps (RCPs) are in use.When no reactor coolant pumps are running (i.e., before the first RCP is started during heatup and after the lastRCP is shut off during cooldown),
a value of 430 BTU/hr-ft 2-°F is used as an effective film coefficient at thecladding-to-base metal interface.
This value was developed for flow conditions when no RCPs are running and 40°F water enters the vessel through the core flood nozzle as the decay heat removal system switches to an idle lowpressure injection cooler. The outside surface is always modeled as a perfectly insulated boundary.
4.6 Reactor Coolant Temperature-Time Histories Both ramped and stepped transient definitions are modeled for normal operation heatup and cooldown.
Thelimiting normal heatup and cooldown transients (as determined by the controlling P-T limits) are also used tosimulate the reactor coolant transients used for inservice leak and hydrostatic (ISLH) pressure testing.The following input temperature-time histories are considered:
Normal Ramp Heatup, 50 *F/hr.Normal Step Heatup, 15 OF/ 18 min. steps.Normal Ramp Cooldown, 100 °F/hr to 255 'F then 30 0F/hr to 70 'F.Normal Step Cooldown, 15'F/ 9 min. steps to 255 'F then 15 'F/ 30 min. steps to 70 'F.4.7 Adjusted Reference Temperatures As discussed in Section 3.0, limiting values of the adjusted reference temperature were evaluated.
The limitingART or RTNDT values that were used for determining the P-T curves are also listed in Table 4 for the l/4t and 3/4tlocations of the reactor vessel beltline wall at 50.2 EFPY with MUR. An RTNDT of 60 OF is used for the reactorvessel nozzles.Page 6AARE VA AAREVAANP-3102, Rev. 3Table 4: Limiting RTNDT'S for TMI-1 Beltline Materials Vessel Wall Limiting RTNDT (OF)Component Location Material at 50.2EFPYBeltline 1/4t SA-1526 184.7Axial Weld WF-8 126.8Beltline 1/4t WF-70 234.5Circ. Weld _7/_4t _ WF-70 178.5Page 7AAREVA AAREVA ANP-3102, Rev. 35.0 TECHNICAL BASIS FOR PRESSURE/TEMPERATURE LIMITSPressure-temperature limits are developed using an analytical approach that is in accordance with therequirements of the ASME Boiler and Pressure Vessel Code, Section XI, Appendix G [2]. Additional requirements are contained in Table 1 of Appendix G to Title 10, Code of Federal Regulations, Part 50 [1]. Theanalytical techniques used to calculate P-T limits are based on approved linear elastic fracture mechanics methodology described in topical report BAW-10046A
[4]. The fundamental equation used to calculate theallowable pressure isPallow KIR -KrrSFx kiwhere, Pallow = allowable pressureK I = reference stress intensity factor ( K a or K 1cSrr = thermal stress intensity factorI, = unit pressure stress intensity factor (due to 1 psig)SF = safety factorFor each analyzed transient and steady state condition, the allowable pressure is determined as a function ofreactor coolant temperature considering postulated flaws in the reactor vessel beltline, inlet nozzle, outlet nozzle,and closure head. In the beltline region, flaws are postulated to be present at the 1/4t and 3/4t locations of thecontrolling material (shell forging, or circumferential weld), as defined by the fluence adjusted RTNDT. The reactorvessel nozzle flaws are located at the inside juncture (comer) with the nozzle shell, and the closure head flaw islocated near the outside juncture with the head flange. P-T limits for the beltline and nozzle regions are calculated using a safety factor of 2 for normal operation and 1.5 for ISLH operation.
The P-T limit curves presented consistof the allowable pressures for the controlling beltline flaw, inlet and outlet nozzles, and closure head, as a functionof fluid temperature.
These curves have been "smoothed",
as necessary, to eliminate irregularities associated withthe startup of the first reactor coolant pump during heatup and the initiation of decay heat removal duringcooldown.
After the initial determination of the P-T limit curves, location specific curves were adjusted for sensorlocation.
No instrument error correction has been applied.
The final results include the determination of aminimum/lower bound P-T curve.The criticality limit temperature is obtained by determining the maximum required ISLH test temperature at apressure of 2500 psig (approximately 10% above the normal operating pressure).
The ISLH analysis considers themost limiting heatup and cooldown transients.
The approach satisfies the requirement of Item 2.d in Table 1 of 10CFR 50, Appendix G [1]. It requires the minimum temperature to be the larger of minimum permissible temperature for inservice system hydrostatic pressure test or the RTNDT of the closure flange material
+ 160 OF.Various aspects of the calculation procedures utilized in the development of P-T limits are discussed below.Page 8 AAREVA AAREVAANP-3102, Rev. 35.1 Fracture Toughness The fracture toughness of reactor vessel steels is expressed as a function of crack-tip temperature, T, indexed tothe adjusted reference temperature of the material, RTNDT. Pressure-Temperature limits developed in accordance with ASME Code, Section XI, Appendix G, as permitted by RIS 2004-04 [7] , utilize the crack initiation fracturetoughness, Kic = 33.2 + 2.806 exp [0.02 ( T -RTNDT + 100 'F)]The upper shelf fracture toughness is limited to an upper bound value of 200 ksi'lin for the reactor vessel weldsand base metal and 250 ksi x/in for the inlet and outlet nozzles.
The crack-tip temperature needed for these fracturetoughness equations is obtained from the results of a transient thermal analysis, described below.5.2 Thermal Analysis and Thermal Stress Intensity FactorThrough-wall temperature distributions are determined by solving the one-dimensional transient axisymmetric heat conduction
: equation, PCP" O _ .c2T 1 aT.P a Or 2 r Orsubject to the following boundary conditions:
at the inside surface, where r = Ri,-k = h(Tw -Tb)Orat the outside surface, where r = Ro,-0agrwhere,p densityCP = specific heatk = thermal conductivity T = temperature r = radial coordinate t= timeh = convection heat transfer coefficient Page 9AAREVA AAREVAANP-3102, Rev. 3Tw= wall temperature Tb = bulk coolant temperature R= inside radius of vesselRo = outside radius of vesselThe above equation is solved numerically using a finite difference technique to determine the temperature at 17points through the wall as a function of time for prescribed changes in the bulk fluid temperature, such as multi-rate ramp and step changes for heatup and cooldown transients.
An equivalent linear thermal bending stresses (based on AT through the wall) is derived from the through-wall temperature distribution at each solution time point. Through-wall thermal stress distributions are determined bytrapezoidal integration of the following expression:
Thermal hoop stresses:
o()=Ea I r 2 + Ri2f'Tr&dr+fr TrdrTr2~1- ý R' ,R[8, Eqn (255)]Expressing the thermal stress distributions bycr(x) = Co + C, (x/a) + C2 (x/a)2 + C3 (x/a)3,where,x = is a dummy variable that represents the radial distance from the appropriate (i.e., inside or outside)surface, in.a = the flaw depth, in.The thermal stress intensity factors are defined by the following relationships:
For a 1/4 t inside surface flaw during cooldown, Kit = (1.0359 Co + 0.6322 C, + 0.4753 C2 + 0.3855 C3),r-a4For a 1/4 t outside surface flaw during heatup,Kt= (1.043 Co + 0.630 CI + 0.481 C2 + 0.401 C3)O a5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline RegionThe membrane stress intensity factor in the reactor vessel shell due to a unit pressure load isKjm = Mm x Ri/twhereRi = vessel inner radius, in.Page 10AAREVA AREVA ANP-3102, Rev. 3t= vessel wall thickness, in.For a longitudinal
'/4 -thickness x 3 -thickness semi-elliptical surface flaw:at the inside surface,Mm. 1.85 for 4t < 20.926 4t for 2 _< 4t _< 3.4643.21 for 4t > 3.464at the outside surface,Mm = 1.77 for 4t < 2= 0.893 4/t for 2 _< 4It _< 3.464= 3.09 for 4t > 3.4645.4 Unit Pressure Stress Intensity Factor for Reactor Vessel NozzlesConsidering a nozzle as a hole in a shell, WRC Bulletin 175 [9] presents the following method for estimating stress intensity factors for a nozzle comer flaw:Klm = o'r/-'i F(a/rn)where(= Ri/tR= nozzle belt shell inner radius, in.t = nozzle belt shell wall thickness, in.a = flaw depth, in.r,= apparent radius of nozzle, in.= ri + 0.29rcr= inner radius of nozzle, in.rc= nozzle comer radius, in.andF(a/r,) = 2.5 -6.108(a/rn)
+ 12(a/r,)2 -9.1664(a/r,)
3Page 11AAR EVA AAREVAANP-3102, Rev. 36.0 PRESSURE CORRECTIONS The uncorrected P-T limits are calculated at the required locations or components in the RCS. However, the plantuses only two instruments locations for indicated
: pressure, the pressurizer low range tap and the hot leg widerange tap. Therefore, the uncorrected P-T limits may be corrected to one or both of these locations.
These locationcorrections were calculated using a TMI-1 Cycle 19 RCS hydraulics model with 0% steam generator tubeplugging, and analyzing it for various temperatures and pump combinations.
The location corrections are based on 0/0 pumps operating up to 100 OF (the conservative start temperature for thefirst two pumps) and then based on 2/0 pumps up to -200 OF, and 2/1 pumps up to -350 OF. The low rangecorrections (taken from the pressurizer) are conservatively estimated to be a constant 10 psi less than the widerange corrections (taken from the hot leg tap). Thus the limiting location corrections are from hot leg (wide range)tap and are applied to the P-T limits. The hot leg (wide range) tap pressure corrections are presented below inTable 5.Table 5: Limiting Location Corrections Factors for PressureTemperature 70-100 101-199 200-349 350-499 500-5321Range, &deg;FComponent AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCPBeltline 22 (WR) 0/0 90 (WR) 2/0 104 (WR) 2/1 111 2/2 99 2/2Outlet Nozzle 17 (WR) 0/0 74 (WR) 2/0 74 (WR) 2/0 67 2/0 51 2/1RVCH 13 (WR) 0/0 70 (WR) N/A N/A N/AThe correction factor was used for 601F as well, since the rounded correction factors are found to be boundingThe correction factor is used for temperatures above 532&deg;F since the values are bounding for higher temperature 7.0 SUMMARY OF RESULTSThe following is a summary of results for the TMI-l P-T limits at 50.2 EFPY with MUR analysis corrected forlocation only. No correction due to instrument uncertainty is applied.Page 12AAREVA AREVA ANP-3102, Rev. 37.1 P-T Curves for ISLH Heatup / CooldownThe Pressure-Temperature limits are developed for ISLH test operations.
For ISLH heatup, adjusted locationspecific (i.e. on a per component basis) P-T limits are presented in Table 6. The Tech. Spec. basis P-T limits forISLH heatup are shown in Table 8. The location adjusted P-T limits for ISLH ramp cooldown are presented inTable 9. The location adjusted P-T limits calculated for ISLH step cooldown are shown in Table 10. TheTechnical specification (Tech. Spec.) basis P-T limits for ISLH cooldown generated as the limiting allowable pressure at every calculated temperature is shown in Table 11. The adjusted P-T limits for ISLH heatup andcooldown are plotted in Figure 1. A limiting composite curve for Tech. Spec. Basis P-T limits for ISLH isdeveloped, the pressure-temperature data is shown in Table 12 and the curve is plotted in Figure 2. The criticality I limit temperature corresponding to a pressure of 2500 psig can be determined through interpolation of ISLHheatup data in Table 6. As shown in Table 7, the criticality limit temperature is 262.7 'F. The criticality limitcurve is shown in Figure 3 along with the normal heatup Tech. Spec. basis P-T limit curve.Page 13 AAREVA AAREVAANP-3102, Rev. 3Table 6: TMI-1 Adjusted Location Specific P-T Limits for ISLH HeatupAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)606570758085909510010511011512012513013514014515015516016517017518018519019520020521021522022523023524024525025526083283383583884184185085786380281081982883985186487989591393295497810051035106711031143118712221275133514001473155316421740184819672099224424058738788929129349489911029107110591108116212221289136314441534163417441866200121492314249526962918316334333732405040504050405040504050405040504050405040504050907912927947971985103010691113110211531210127213411418150315961700181419412080223524052594280230333287356838784208420842084208420842084208420842084208420842086718119531095123714351633183120292170Page 14AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi (psi)265270275280285290295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465470475480485258227772993323134943785410644604788478847884787478747874786478647864778477847774777477647764775477547744774477347734772477247714771477147704770477047704769476947684768476647664766405040504050405040504050405040504050405040504050405040504050.405040504057405740574057405740574057405740574057405740574057405740574057405740574057405740574057405740574057405740574057420842084208420842084208420842084208420842084208420842084208420842084215421542154215421542154215421542154215421542154215421542154215421542154215421542154215421542154215421542154215Page 15AARE VA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(4F) (psi) (psi) (psi) (psi)490 4765 4057 4215495 4765 4057 4215500 4776 4073 4231505 4776 4073 4231510 4775 4073 4231515 4775 4073 4231520 4774 4073 4231525 4773 4073 4231530 4773 4073 4231535 4772 4073 4231540 4772 4073 4231545 4772 4073 4231550 4771 4073 4231555 4771 4073 4231560 4770 4073 4231565 4769 4073 4231570 4769 4073 4231Table 7: TMI-1 Criticality Limit Temperature Determination Criticality LimitTemp. at 500 psigPressure Temp.(psig) (OF)2405 2602582 265Interpolating:
2500 262.7Page 16AAREVA AAREVAANP-3102, Rev. 3Table 8: TMI-1 Tech. Spec. Basis P-T Limits for ISLH HeatupFluidTemp.(OF)6065707580859095100105110115120125130135140145150155160165170175180185190195200205210215220225230235240245250255260Governing AdjustedPressure(psi)6718028028028028028028028028028108198288398518648798959139329549781005103510671103114311871222127513351400147315531642174018481967209922442405Page 17AAREVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)265 2582270 2777275 2993280 3231285 3494290 3785295 4050300 4050305 4050310 4050315 4050320 4050325 4050330 4050335 4050340 4050345 4050350 4057355 4057360 4057365 4057370 4057375 4057380 4057385 4057390 4057395 4057400 4057405 4057410 4057415 4057420 4057425 4057430 4057435 4057440 4057445 4057450 4057455 4057460 4057465 4057470 4057475 4057480 4057485 4057Page 18AAR EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)490 4057495 4057500 4073505 4073510 4073515 4073520 4073525 4073530 4073535 4073540 4073545 4073550 4073555 4073560 4073565 4073570 4073Page 19 AAREVA AAREVAANP-3102, Rev. 3Table 9: TMI-1 Adjusted Location Specific P-T Limits for ISLH Ramp CooldownAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)70758085909510511011512012513013514014515015516016517017518018519019520020521021522022523023524024525025526026527027573374275376578078672472774375977679581684086689492696199910421089114111991263133413971469154916381735184419632066219324022580277729953235350137959379921041109411541219129513611501160917281860200621672346254227603001326635603772376137483733371636963674364636163581354034923395346234053342329332953296329833009741031108111371199126713471416156216741798193520862254243926432869311933953700391939083895387938623841381837893757372136793629352835983538347334233424342634283430953109512371435163318312170Page 20AAR EVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beitline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)280285290295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465470475480485490495500411943084308430743064306430543054305430443044304430443044297429842984298429842994299430043014302430443044306430843114314431843224326433143374343434943564364437343834393440544184444330233043307330933123315331833233326333033343338334233473358336333693375337833853392339934073415342434333442345234633474348534963509352235363550356535813597361436323651367036903727343234343436343934423445344834543457346134653469347334783490349535013507351135183525353335413549355835683577358835983610362236333646366036743689370537213738375637743793381438343872Page 21AARE VA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)505 4459 3749 3895510 4476 3769 3916515 4494 3793 3941520 4513 3818 3966525 4533 3843 3993530 4556 3870 4020535 4582 3897 4049540 4609 3925 4077545 4638 3953 4107550 4670 3982 4137555 4703 4010 4166560 4738 4037 4194565 4772 4060 4218570 4793 4072 4231Page 22AAR EVA AAREVAANP-3102, Rev. 3Table 10: TMI-1 Adjusted Location Specific P-T Limits for ISLH Step CooldownAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(F) (psi) (psi) (psi) (psi)70808510010511513014516017519020522023524025527028530031533034536037539040542043545046548049551052554055576678178881375778082889398010981258146417352050224127773501434743454343434343424336433643374341434543534366438244054436448745394605469091010381094129213241501186023463001381137723712361934353501331433183323333033383351336233833398341834423470350235383580362836823759382739053989945107811371342137715621935243931193960392038583761357036383444344834543461347034823495351635313552357736063639367637203770382639063976405741449531237143520292170Page 23AAREVA AAREVA ANP-3102, Rev. 3Table 11: TMI-1 Tech Spec. Basis P-T Limits for ISLH CooldownGoverning Fluid AdjustedTemp. Pressure(OF) (psi)70 72475 72480 72485 72490 72495 724105 724110 727115 743120 759125 776130 795135 816140 840145 866150 894155 926160 961165 999170 1042175 1089180 1141185 1199190 1258195 1334200 1397205 1464210 1549215 1638220 1735225 1844230 1963235 2050240 2193245 2402250 2580255 2777260 2995265 3235270 3298275 3300280 3302285 3304Page 24 AAREVA AR ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)290 3307295 3309300 3312305 3315310 3318315 3323320 3326325 3330330 3334335 3338340 3342345 3347350 3358355 3363360 3369365 3375370 3378375 3385380 3392385 3399390 3407395 3415400 3424405 3433410 3442415 3452420 3463425 3474430 3485435 3496440 3509445 3522450 3536455 3550460 3565465 3580470 3597475 3614480 3628485 3651490 3670495 3682500 3727505 3749510 3759Page 25AA R EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)515 3793520 3818525 3827530 3870535 3897540 3905545 3953550 3982555 3989560 4037565 4060570 4072Page 26AAR EVA AAREVAANP-3102, Rev. 3Table 12: TMI-1 Tech Spec. Basis P-T Limits for ISLH Composite CurveFluidTemp.('F)6065707580859095100105110115120125130135140145150155160165170175180185190195200205210215220225230235240245250255260265GovemingAdjustedPressure(psi)67172472472472472472472472472472774375977679581684086689492695497810051035106711031143118712221275133514001473155316421740184819672099224424052582Page 27AAREVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)270 2777275 2993280 3231285 3304290 3307295 3309300 3312305 3315310 3318315 3323320 3326325 3330330 3334335 3338340 3342345 3347350 3358355 3363360 3369365 3375370 3378375 3385380 3392385 3399390 3407395 3415400 3424405 3433410 3442415 3452420 3463425 3474430 3485435 3496440 3509445 3522450 3536455 3550460 3565465 3580470 3597475 3614480 3628485 3651490 3670495 3682Page 28AA R EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)500 3727505 3749510 3759515 3793520 3818525 3827530 3870535 3897540 3905545 3953550 3982555 3989560 4037565 4060570 4072Page 29AAR EVA AAREVAANP-3102, Rev. 3Figure 1: TMI-1 Adjusted P-T Limits for ISLH Heatup and Cooldown240022002000.2- 1800U'G1600(A1400U) 1200I--1000S800-06 1004 0004OO20000 50 100 150 200 250 300 350Indicated RCS Inlet Temperature, OF400 450 500Page 30AAREVA AAREVAANP-3102, Rev. 3Figure 2: TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve)240022002000.-1800G0.0160001400ID.a.U) 12001000j 80060040020000 50 100 150 200 250 300 350Indicated RCS InletTemperature, IF400 450 500Page 31AAREVA AAREVA ANP-3102, Rev. 37.2 P-T Curves for Normal Heatup / CooldownThe Pressure-Temperature limits are developed for both normal heatup and cooldown operations.
For heatup,location specific adjusted P-T limits are presented in Table 13. The Tech. Spec. basis P-T limits for normalheatup are shown in Table 14. The location specific adjusted P-T limits for ramp cooldown are presented inTable 15. The location adjusted P-T limits calculated for normal step cooldown are shown Table 16. TheTechnical specification (Tech. Spec.) basis P-T limits for cooldown generated as the limiting pressure at everycalculated temperature is shown in Table 17. The Tech. Spec. basis P-T limits for heatup are plotted in Figure 3and the Tech. Spec. basis cooldown P-T limits are plotted in Figure 4.Page 32AAR EVA AAREVAANP-3102, Rev. 3Table 13: TMI-1 Adjusted Location Specific P-T Limits for Normal HeatupAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)60657075808590909095100101105110115120123125130135140145150155160165170175180185190195200205210215220225230235240618619621623626629632632632637642575579585592599604607616626637649662677693711731753778805835868890931975102410791139120512791360650654665679696716738738739768799749776813853898928948100410651132120712901381148215931717185320032170235325562780301930193019301930193019301930196766806917067247447677677687988307808088478899369679881045110811791256134214371542165817861927208322562447265728903138313831383138313831383138313861261261261261276191091091010581207118013601585181020352170Page 33AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)245250255260265270275280285290.295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465144915481657177719102057221923982595281330533319356535653565356435643564356435633563355635563555355535553554355435533553355335523552355135513551355135503550355035503549354935493548301930193019301930193019301930193019301930193019301930193019301930193019301930193019302630263026302630263026302630263026302630263026302630263026302630263026302630263026302630263026313831383138313831383138313831383138313831383138313831383138313831383138313831383138314531453145314531453145314531453145314531453145314531453145314531453145314531453145314531453145Page 34 AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)470 3548 3026 3145475 3547 3026 3145480 3547 3026 3145485 3546 3026 3145490 3546 3026 3145495 3546 3026 3145500 3558 3042 3161505 3557 3042 3161510 3557 3042 3161515 3556 3042 3161520 3556 3042 3161525 3555 3042 3161530 3555 3042 3161535 3555 3042 3161540 3554 3042 3161545 3554 3042 3161550 3554 3042 3161555 3553 3042 3161560 3553 3042 3161565 3552 3042 3161570 3552 3042 3161Page 35AAREVA AREVA ANP-3102, Rev. 3Table 14: TMI-1 Tech. Spec. Basis P-T Limits for Normal HeatupGoverning Fluid AdjustedTemp. Pressure(OF) (psi)60 57565 57570 57575 57580 57585 57590 57590 57590 57595 575100 575101 575105 579110 585115 592120 599123 604125 607130 616135 626140 637145 649150 662155 677160 693165 711170 731175 753180 778185 805190 835195 868200 890205 931210 975215 1024220 1079225 1139230 1205235 1279240 1360245 1449250 1548Page 36 AAR EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)255 1657260 1777265 1910270 2057275 2219280 2398285 2595290 2813295 3019300 3019305 3019310 3019315 3019320 3019325 3019330 3019335 3019340 3019345 3019350 3026355 3026360 3026365 3026370 3026375 3026380 3026385 3026390 3026395 3026400 3026405 3026410 3026415 3026420 3026425 3026430 3026435 3026440 3026445 3026450 3026455 3026460 3026465 3026470 3026475 3026Page 37AAR EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)480 3026485 3026490 3026495 3026500 3042505 3042510 3042515 3042520 3042525 3042530 3042535 3042540 3042545 3042550 3042555 3042560 3042Page 38AA R EVA AAREVAANP-3102, Rev. 3Table 15: TMI-1 Adjusted Location Specific P-T Limits for Normal Ramp CooldownAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)70758085909510111011512012312513013514014515015516016517017518018519019520020521021522022523023524024525025526026527027528054555155956857958451952353554755556057459060762764867269872775979483487792597810221076113612021276135714461524161917751909205722202400260028203063699740776817861910913100211071188124212781377148616071741188820522232243126522810280227922781276827542737271626932667263626002527257825352488245124532454245524562458726769807849895946951104411531237129313301433154616721810196421332321252827562921291229022891287828622845282327992772274127032627268026352586254825502551255225542555612612612761910105811801585181020352170Page 39AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)285290295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465470475480485490495500505320532053204320432033203320332023202320232023202320231953196319631963196319631973197319831993200320032023203320532083210321432173221322532293234323932453252325932673276328633083320246024612463246524682470247424762479248224852488249125022506251025142517252225272533253925452551255825652573258025892597260626152625263526462657266926812694270727212736275127832799255725592561256325652568257225742577258025832586259026012605260926132616262126272633263926452652265926662674268226912699270827182728273927502762277427872800281428282843285928912908Page 40AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)510 3332 2814 2924515 3346 2832 2943520 3360 2850 2962525 3375 2870 2982530 3392 2889 3002535 3411 2910 3024540 3432 2931 3045545 3454 2952 3067550 3478 2973 3090555 3503 2995 3112560 3529 3015 3133565 3554 3032 3151Page 41AAREVA AAREVAANP-3102, Rev. 3Table 16: TMI-1 Adjusted Location Specific P-T Limits for Normal Step CooldownAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(F) (psi) (psi) (psi) (psi)7080851001011151231301451601751902052202352402552702853003153303453603753904054204354504654804955105255405555695805866045385625815986477138019211072127615111655205726003234323232313231323132243224322532283231323732473259327632993341338034293493678774817965921110712511377174122322839281127662696255826072467247024742479248524952503252125312547256525862609263726682704274528072858291629797058048491002959115313021433181023212951292128752802265927102564256825722577258425932602262026312647266626872712274027732810285329172969303030966126127611207118018102170Page 42AAR E VA AAREVAANP-3102, Rev. 3Table 17: Tech Spec. Basis P-T Limits for Normal Limiting CooldownFluidTemp.(OF)707580859095101110115120123125130135140145150155160165170175180185190195200205210215220225230235240245250255260265270Governing AdjustedPressure(psi)519519519519519519519523535547555560574590607627648672698727759794834877921978102210721136120212761357144615111619177519092057222024002455Page 43AAREVA AREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure('F) (psi)275 2456280 2458285 2460290 2461295 2463300 2465305 2468310 2470315 2474320 2476325 2479330 2482335 2485340 2488345 2491350 2502355 2506360 2510365 2514370 2517375 2522380 2527385 2533390 2539395 2545400 2551405 2558410 2565415 2573420 2580425 2589430 2597435 2606440 2615445 2625450 2635455 2646460 2657465 2668470 2681475 2694480 2704485 2721490 2736495 2745Page 44A"AR EVA AARIEVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)500 2783505 2799510 2807515 2832520 2850525 2858530 2889535 2910540 2916545 2952550 2973555 2979560 3015565 3032Page 45AAR EVA AAREVAANP-3102, Rev. 324002200200018000.)1600(A 1400I.r/) 1200UA14000S800o)"-6004002000Figure 3: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup and Criticality Limit-P-T Limits for Normal Heatup-Criticality Limit P-T Limit Curve0 50100 150 200 250 300 350Indicated RCS InletTemperature, OF400 450 500Page 46AAREVA AAREVAANP-3102, Rev. 3Figure 4: TMI-1 Tech. Spec. Basis P-T Limits for Normal Cooldown240022002000.018000.a1600U) 1400S1200.2 800-60040020000 50 100 150 200 250 300 350Indicated RCS Inlet Temperature, OF400 450 500Page 47AAREVA AAREVA ANP-3102, Rev. 38.0 SUMMARYThe Tech. Spec. basis P-T limits for normal operating heatup and cooldown and ISLH operation were reported in theprevious section for TMI-1 at 50.2 EFPY with MUR. This section provides summary P-T curves for heatup,cooldown, and ISLH with some key points (P-T limits) indicated on the plot.Figure 5 shows a summary of the TMI-1 Tech. Spec. basis P-T Limits for normal heatup and criticality limit withsome key points noted on the plot. Figure 6 shows a summary of the TMI-1 Tech. Spec. basis P-T Limits for normalcooldown with some key points noted on the plot. Figure 7 shows a summary of TMI-1 Tech. Spec. Basis P-T Limitsfor ISLH (Composite Curve).Page 48AAREVA AAREVAANP-3102, Rev. 3Figure 5: TMI-1 Summary Tech Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Heatup and Criticality Limit24002200200018000.01600W 14002!0.(/1200U-o 1000u 80060040020000 50 100 150 200 250 300 350Indicated RCS InletTemperature,OF 400 450 500Page 49AAREVA AAREVAANP-3102, Rev. 3Figure 6: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Cooldown24002200200018001600U3 1400CLi-a-W 12001000u 8006004002000T265, 2400... -In250, 1909240, 1619- -____220, 1276/1 90, 921________
________16069 70, 519 13 3 &#xfd; 130 '574101. 519 ____ ____ ____0 50100 150 200 250 300 350Indicated RCS Inlet Temperature, OF400450 500Page 50AAREVA AAREVA ANP-3102, Rev. 3Figure 7: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for ISLH (Composite Curve)2400220020001800eL* 1600Wfl 1400(Lh.12001000a)o 80060040020000 50 100 150 200 250 300 350Indicated RCS Inlet Temperature, OF400 450 500Page 51AAREVA AAREVAANP-3102, Rev. 39.0 CERTIFICA71ON Pressure/temperature limits for the TMI-1 reactor vessel have been calculated to satisfy the requirements of 10CFR Part 50, Appendix 0 using analytical methods and acceptance criteria of the ASME Boiler and PressureVessel Code, Section XI, Appendix G,1995 Edition.Samer -L. Malmioud, Principal EngineerComponent Analysis and Fracture Mechanics Date 'This report has been reviewed for technical content and accuracy.
Ashok D. Nana, Supervisor Component Analysis and Fracture Mechanics DateVerification of independent review.lk&#xfd;tw c6rPl-'Wirr
,I--,DateTim M. W'iger, Manager IComponent Analysis and Fracture Mechanics This report is approved for releaseDavid Skulna, Project ManagerDatePage 52AAREVA AAREVA ANP-3102, Rev. 3
==10.0 REFERENCES==
: 1. Code of Federal Regulations, Title 10, Part 50 -Domestic Licensing of Production and Utilization Facilities, Appendix G -Fracture Toughness Requirements, Federal Register Vol. 60. No. 243, December19, 1995.2. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, "Rulesfor Inservice Inspection of Nuclear Power Plant Components,"
Appendix G, Fracture Toughness Criteriafor Protection Against Failure, 1995 Edition with Addenda through 1996.3. ASTM Standard E 208-81, "Standard Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels,"
American Society for Testing and Materials, Philadelphia, Pennsylvania.
: 4. AREVA NP Document BAW-10046A, Rev. 2, "Methods of Compliance with Fracture Toughness andOperational Requirements of 1OCFR50, Appendix G," by H. W. Behnke et al., June 1986.5. AREVA NP Document BAW-2308, Rev. IA and Rev. 2A, "Initial RTNDT of LINDE 80 Weld Materials,"
by K. K. Yoon., August 2005 and March 2008.6. ASME Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Power PlantComponents, Division 1 -Appendices, 1995 Edition with Addenda through the 1996 Edition.7. NRC Regulatory Issue Summary 2004-04:
Use of Code Cases N-588, N-640, and N-641 in developing Pressure-Temperature Operating Limits, Dated April 5, 2004.8. Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity, Third Edition, McGraw-Hill Book Company,1970.9. PVRC Ad Hoc Group on Toughness Requirements, "PVRC Recommendations on Toughness Requirements for Ferritic Materials,"
Bulletin No. 175, Welding Research
: Council, August 1972.10. U. S. Nuclear Regulatory Commission, "Radiation Embrittlement of Reactor Vessel Materials,"
Regulatory Guide 1.99, Revision 2, May 1988.Page 53AAR EVA}}

Revision as of 11:49, 4 July 2018

Attachment 2 - Areva Document No. ANP-3102, Revision 3,Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with Mur, Revision 3, Dated July 2013
ML13232A217
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 07/31/2013
From: Mahmoud S H
AREVA NP
To:
Office of Nuclear Reactor Regulation
References
TMI-13-107 77-3102-003, ANP-3102, Rev. 3
Download: ML13232A217 (62)


Text

ATTACHMENT 2AREVA Document No. ANP-3102, Revision 3, "Three-Mile Island Unit 1 Appendix GPressure-Temperature Limits at 50.2 EFPY with MUR," Revision 3, dated July 2013 ANP-3102, Rev. 3July 2013Three-Mile Island Unit I Appendix GPressure-Temperature Limitsat 50.2 EFPY with MUR ANP-3102, Rev. 3July 2013Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limitsat 50.2 EFPY with MURPrepared byS. H. MahmoudReviewed byA.D. NanaAREVA Document No.77-3102-003 Prepared forExelon Generation Co., LLC AAREVAANP-3102, Rev. 3Copyright

© 2013AREVA.All Rights ReservedAAREVA AAREVAANP-3102, Rev. 3Record of RevisionRevision Pages/Sections/Paragraphs No. Changed Brief Description

/ Change Authorization 000 All Original Release001 Page 2 Changed first sentence of first paragraph and deleted secondand third paragraphs.

001 Page 49 Corrected graph format.002 Pages 3 and 4 Corrected the entry on the first column last row from "IS toLS Circ. Weld (63%)" to "LS Longit. Weld (OD 63%)" inboth Tables 1 and 2003 Page 2 Corrected misrepresentation of reference number toRegulatory Guide 1.99, Revision 2 in the reference list.Page 6 Corrected description of the input temperature-time histories (225 is changed to 255)Page 13 1. Changed "The location adjusted P-T limits calculated fornormal step cooldown are shown in Table 10" to "Thelocation adjusted P-T limits calculated for ISLH stepcooldown are shown in Table 10"2. Changed "The criticality limit temperature corresponding to a pressure of 2500 psig read fromFigure 2, or it can be can be determined throughinterpolation of ISLH heatup data in Table 6." to "Thecriticality limit temperature corresponding to a pressureof 2500 psig can be determined through interpolation ofISLH heatup data in Table 6.3. Changed "The criticality limit curve is shown in Figure1" to "The criticality limit curve is shown in Figure 3"Page 53 Inserted reference 10.++AAREVA AAREVA ANP-3102, Rev. 3Table of ContentsPageRECORD OF REVISION

........................................................................................................................

ILIST OF TABLES .................................................................................................................................

IVLIST OF FIGURES ................................................................................................................................

V

1.0 INTRODUCTION

........................................................................................................................

12.0 BACKGROUND

..........................................................................................................................

13.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES

........................

24.0 DESIGN BASIS FOR PRESSURE/TEMPERATURE LIMITS .................................................

54.1 Material Properties

............................................................................................................................

54.2 Postulated Flaws ...............................................................................................................................

54.3 Upper Shelf Toughness

............................................................................................................

54.4 Uncorrected Reactor Vessel Closure Head Limits ........................................................................

64.5 Convection Film Coefficient

...............................................................................................................

64.6 Reactor Coolant Temperature-Time Histories

..............................................................................

64.7 Adjusted Reference Temperatures

...............................................................................................

65.0 TECHNICAL BASIS FOR PRESSURE/TEMPERATURE LIMITS ...........................................

85.1 Fracture Toughness

..........................................................................................................................

95.2 Thermal Analysis and Thermal Stress Intensity Factor ...............................................................

95.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region ................................

105.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles ............................................

116.0 PRESSURE CORRECTIONS

................................................................................................

127.0 SUMMARY O F RESULTS ........................................................................................................

127.1 P-T Curves for ISLH Heatup / Cooldown

...................................................................................

137.2 P-T Curves for Normal Heatup / Cooldown

...............................................................................

328.0 SUM MARY ...............................................................................................................................

489.0 CERTIFICATION

......................................................................................................................

52iiAAREVA AAREVAANP-3102, Rev. 3Table of Contents(continued)

Page

10.0 REFERENCES

.........................................................................................................................

53AAREVA AARE'VA ANP-3102, Rev. 3List of TablesPageTable 1: Adjusted Reference Temperature Evaluation for the TMI-1 Reactor Vessel Beltline Materials at the 1/1/2-Thickness Locations Applicable Through 50.2 EFPY with MUR ...................................

3Table 2: Adjusted Reference Temperature Evaluation for the TMI -1 Reactor Vessel Beltline Materials at the 3/4-Thickness Locations Applicable Through 50.2 EFPY with MUR ...................................

4Table 3: M aterial Properties

...........................................................................................................

5Table 4: Lim iting RTNDT'S for TM I-1 Beltline Materials

........................................................................

7Table 5: Limiting Location Corrections Factors for Pressure

...............................................................

12Table 6: TMI-1 Adjusted Location Specific P-T Limits for ISLH Heatup ..........................................

14Table 7: TMI-1 Criticality Limit Temperature Determination

............................................................

16Table 8: TMI-1 Tech. Spec. Basis P-T Limits for ISLH Heatup ........................................................

17Table 9: TMI-1 Adjusted Location Specific P-T Limits for ISLH Ramp Cooldown

............................

20Table 10: TMI-1 Adjusted Location Specific P-T Limits for ISLH Step Cooldown

............................

23Table 11: TMI-1 Tech Spec. Basis P-T Limits for ISLH Cooldown

.................................................

24Table 12: TMI-1 Tech Spec. Basis P-T Limits for ISLH Composite Curve ......................................

27Table 13: TMI-1 Adjusted Location Specific P-T Limits for Normal Heatup .....................................

33Table 14: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup .................................................

36Table 15: TMI-1 Adjusted Location Specific P-T Limits for Normal Ramp Cooldown

.......................

39Table 16: TMI-1 Adjusted Location Specific P-T Limits for Normal Step Cooldown

........................

42Table 17: Tech Spec. Basis P-T Limits for Normal Limiting Cooldown

............................................

43ivAAREVA AAREVA ANP-3102, Rev. 3List of FiguresPageFigure 1: TMI-1 Adjusted P-T Limits for ISLH Heatup and Cooldown

.............................................

30Figure 2: TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve) ...................................

31Figure 3: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup and Criticality Limit .....................

46Figure 4: TMI-1 Tech. Spec. Basis P-T Limits for Normal Cooldown

...............................................

47Figure 5: TMI-1 Summary Tech Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Heatup andC ritica lity L im it ...............................................................................................................................

4 9Figure 6: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Cooldown......................................................................................................................................................

5 0Figure 7: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for ISLH (Composite C u rv e ) ...........................................................................................................................................

5 1AAREVA AAREVA ANP-3102, Rev.

31.0 INTRODUCTION

This report presents operational pressure-temperature (P-T) limits for the reactor vessel at Three-Mile-Island Unit1 (TMI-1).

These limits are expressed in the form of a curve of allowable pressure versus temperature.

Inaddition, the minimum temperature for core criticality is determined to satisfy the regulatory requirements of 10CFR Part 50, Appendix G [1]. The uncorrected P-T limits for TMI-1 were determined for 50.2 effective fullpower years (EFPY) of operation with Measurement Uncertainty Re-capture (MUR). Pressure-temperature limitsare calculated for the reactor vessel beltline, inlet and outlet nozzles, and closure head locations for normalheatup, normal cooldown, and inservice leak and hydrostatic (ISLH) test conditions.

Pressure correction factorswere determined between the RCS hot leg pressure taps and various other RCS locations.

2.0 BACKGROUND

The ability of the reactor pressure vessel to resist fracture is the primary factor in ensuring the safety of theprimary system in light water-cooled reactors.

The three areas of the reactor coolant pressure boundary addressed in the present report are the beltline shell region, the reactor coolant nozzles, and the closure head flange region.A method for guarding against brittle fracture in reactor pressure vessels is described in Appendix G to the ASMEBoiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power PlantComponents."[2].

This method utilizes fracture mechanics concepts and the reference temperature for nil-ductility transition, RTNDT, which is defined as the greater of the drop weight nil-ductility transition temperature (perASTM E208 [3]) or the temperature that is 60 'F below that at which the material exhibits 50 ft-lbs and 35 milslateral expansion.

The RTNDT of a given material is used to index that material to a reference stress intensity factorcurve (K1,). The Kl,, curve appears in Appendix G of ASME Code Section XI. When a given material is indexedto the K1, curve, allowable stress intensity factors can be obtained for this material as a function of temperature.

Plant operating limits can then be determined using these allowable stress intensity factors.The RTNDT of the reactor vessel materials, and in turn, the pressure/temperature limits of a reactor vessel, must beadjusted to account for the effects of irradiation.

Neutron embrittlement and the resultant changes in mechanical properties of a given pressure vessel steel are monitored by a surveillance program consisting of periodic removalof surveillance capsules from an operating reactor and testing of reactor vessel material specimens obtained fromthe capsules.

The increase in the Charpy V-notch 30 ft-lb temperature is added to the unirradiated RTNDT to adjustit for neutron embrittlement.

This adjusted RTNDT is used to index the material to the K1, curve, which in turn, isused to set new operating limits for the nuclear power plant. These new limits take into account the effects ofirradiation on the reactor vessel materials.

Pressure-temperature limits for the TMI-1 reactor vessel are developed in accordance with the requirements of 10CFR Part 50, Appendix G [1], utilizing the analytical methods and flaw acceptance criteria of topical reportBAW-10046A

[4] and ASME Code Section XI, Appendix G[2].As mentioned

earlier, the three areas of the reactor coolant pressure boundary addressed in this report are thebeltline shell region, the reactor coolant nozzles, and the closure head flange region. The beltline and nozzleregions are analyzed specifically for TMI-1 using the K1c reference fracture toughness.

The effect of the change inthe reference fracture toughness curve on the P-T limits for the closure head flange region is included by utilizing generic limits that have been derived for B&W-designed 177FA reactor vessels.The TMI-1 reactor vessel contains both axially and circumferentially oriented welds. Therefore, the P-T limits forTMI-1 is based on the postulation of both axial and circumferential flaws in the most limiting axial andcircumferential welds and the postulation of an axial flaw in the most limiting forging material of the reactorvessel.Page 1AARE VA AAREVA ANP-3102, Rev. 3One-hundred percent steady state condition Appendix G limits were considered for the development of lowtemperature overpressure protection (LTOP) P-T limits. To further support the development LTOP system limits,temperature differences between the reactor coolant in the downcomer region and the 1/4/4 t wall location aredetermined for the maximum heatup rate transient.

The V4 t wall location is defined as a point within the vesselwall that is located at a distance of one quarter of the vessel thickness from the cladding-base metal interface.

3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES The '/4 t and / t ART values for the TMI-I reactor vessel beltline materials applicable to 50.2 EFPY with MURare listed in Table 1 and Table 2. These values were calculated in accordance with Regulatory Guide 1.99,Revision 2 [10]. The calculation of the ART values for the weld metals also used BAW-2308 Revision IA and2A [5]. The controlling beltline materials for the Three Mile Island Unit 1 reactor vessel are the lower nozzle beltto upper shell circumferential weld with ART values at 50.2 EFPY with MUR of 216.0 OF at the 1/4T wall locationand 161.1 OF at the 3/4T wall location and the axial welds of the lower shell and upper shell, respectively with ARTvalues at 50.2 EFPY with MUR of 183.9 °F at the 1/4 T wall location and 126.8 °F at the /4 T wall location.

The ART values used for the development of the Three Mile Island Unit 1 reactor vessel P-T limits curves,calculated in 2006 for license renewal, were 234.5°F at the '/4T wall location and 178.5°F at the 3/4T wall locationfor the circumferential welds. The ART values used for the axial welds were 184.7 °F at the 1/4/ T wall location and126.8 °F at the 3/4 T wall location.

Thus, in all instances the actual ART values or conservative ART values wereused in the development of P-T limit curves performed in 2006.Page 2AAREVA AARIEVAANP-3102, Rev. 3Table 1: Adjusted Reference Temperature Evaluation for the TMI-1 Reactor Vessel Beltline Materials at the 1/4-Thickness Locations Applicable Through 50.2 EFPY with MUREstimated Fluence Adiusted Reference Temperature Evaluation at 1/4T LocationReactor Vessel MatI. Heat A 50.2 EFPY, n/cm2 Chema. Fluence R Initial I a, I 0e I RTNr r, 1/4T_____________________

ent Numer RT.sT, Shift,Beltllne Region Location Ident. Number Type Cu Ni IS 1/4T Factor Factor F J F Margin ART Guide 1.99, Revision 2, Position 1.1Lower Nozzle Belt Forging(LNB) ARY 59 123S454 SA-508 CI2 0.08 0.72 1.32E+19 7.698E+18 51.0 0.927 3 31 17 47.3 70.7 121.0Upper ShellPlate (US) C2789-1 C2789-1 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 8.575E+18 58.0 0.957 1 26.9 17 55.5 63.6 120.1Upper Shell Plate (US) C2789-2 C2789-2 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 8.575E+18 58.0 0.957 1 26.9 17 55.5 63.6 120.1Lower Shell Plate (LS) C3307-1 C3307-1 SA-302 Gr B Mod. 0.12 0.55 1.47E+19 6.575E+18 82.0 0.957 1 26.9 17 78.5 63.6 143.1Lower Shell Plate (LS) C3251-1 C3251-1 SA-302 Gr B Mod. 0.11 0.5 1.47E+19 8.575E+18 73.0 0.957 1 26.9 17 69.9 63.6 134.5LNB to US Circ. Weld (100%) WF-70 72105 Linde 80 Flux 0.32 0.58 1.32E+19 7.698E+18 199.3 0.927 -31.1 13.7 28 184.8 62.3 [216.0]US Longit. Weld (Both 100%) WF-8 8T1762 Linde 80 Flux 0.19 0.57 1.31E+19 7.662E+18 167.0 0.925 -47.6 17.2 28 154.5 65.7 172.6US to LS Circ. Weld (100%) WF-25 299L44 Linde 80 Flux 0.34 0.68 1.43E+19 8.335E+18 220.6 0.949 -74.3 12.8 28 209.3 61.6 196.6LS Longit. Weld (100%) SA-1526 299L44 Linde 80 Flux 0.34 0.66 1.16E+19 6.778E÷18 220.6 0.891 -74.3 12.8 28 196.6 61.6 {183.9)LS Longit. Weld (ID 37%) SA-1526 299L44 Linde 80 Flux 0.34 0.68 1.15E+19 6.755E+18 220.6 0.890 -74.3 12.8 28 196.3 61.6 183.6LS Longit. Weld (OD 63%) SA-1494 8T1554 Linde 80 Flux 0.16 0.57 1.15E+19 N/A 167.0 N/A -47.6 17.2 28 N/A N/A N/A-Highest values of the adjusted reference temperature for circumferential welds.-Highest values of the adjusted reference temperature for base metal or longitudinal welds.Page 3AARIEVA AAR EVAANP-3102, Rev. 3Table 2: Adjusted Reference Temperature Evaluation for the TMI -1 Reactor Vessel Beltline Materials at the %-Thickness Locations Applicable Through 50.2 EFPY with MUREstimated Fluence Adusted Reference Temperature Evaluation at 3/4T LocationReactor Vessel Matt Heat C 50.2 EFPY, n/cm2 Chem. (Fluence Initial J o. RTNoT 3/4TBeltilne Region Location Ident. Number Type CU Ni IS 3/4T Factor Factor F ' F Margin ARTRegulatory Guide 1.99, Revision 2, Position 1.1Lower Nozzle Belt Forging(LNB) ARY 59 123S454 SA-508 C02 0.08 0.72 1.32E-19 2.80E+18 51.0 0.652 3 31 17 33.3 70.4 106.7Upper Shell Plate (US) C2789-1 C2789-1 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 3.12E+18 58.0 0.680 1 26.9 17 39.4 63.6 104,0Upper Shell Plate(US)

C2789-2 C2789-2 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 3.12E+18 58.0 0.680 1 26.9 17 39.4 63.6 104.0Lower Shell Plate(LS)

C3307-1 C3307-1 SA-302 Gr B Mod. 0.12 0.55 1.47E+19 3.12E+18 82.0 0.680 1 26.9 17 55.8 63.6 120.4Lower Shell Plate (LS) C3251-1 C3251-1 SA-302 Gr 8 Mod. 0.11 0.50 1.47E+19 3.12E+18 73.0 0.680 1 26.9 17 49.6 63.6 114.2LNB to US Circ. Weld (100%) WF-70 72105 Linde 80 Flux 0.32 0.58 1.32E+19 2.80E+18 199.3 0.652 -31.1 13.7 28 129.9 62.3 [161.1]US Longit. Weld (Both 100%) WF-8 8T1762 Linde 80 Flux 0.19 0.57 1.31E-19 2.78E+18 167.0 0.651 -47.6 17.2 28 108.7 65.7 {126.8JUS to LS Circ. Weld (100%) WF-25 299L44 Linde 80 Flux 0.34 0.68 1.43E+19 3.03E+18 220.6 0.673 -74.3 12.8 28 148.5 61.6 135.8LS Longit. Weld (100%) SA-1526 299L44 Linde 80 Flux 0.34 0.68 1.16E+19 2.46E+18 220.6 0.620 -74.3 12.8 28 136.8 61.6 124.1LS Longit. Weld (ID 37%) SA-1526 299144 Linde 80 Flux 0.34 0.68 1.15E+19 N/A 220.6 N/A -74.3 12.8 28 N/A N/A N/ALS Longit. Weld (OD 63%) SA-1494 8T1554 Linde 80 Flux 0.16 0.57 1.15E+19 2.45E+18 167.0 0.619 -47.6 17.2 28 103.4 65.7 121.53 -Highest values of the adjusted reference temperature for circumferential welds.-Highest values of the adjusted reference temperature for base metal or longitudinal welds.Page 4AAREVA AAREVAANP-3102, Rev. 34.0 DESIGN BASIS FOR PRESSURE/TEMPERATURE LIMITSEssential geometric data and analytical parameters used in the preparation of TMI-1 P-T limits are described below.4.1 Material Properties Table 3 describes the material properties used in the development of the P-T limits for the TMI-1.Table 3: Material Properties Temp. Elastic Thermal Thermal Specific Density Poisson's Modulus Expansion Conductivity Heat RatioRef. [6] Ref61 Ref.[6] Ref.[6] (assumed)

(°F) (106 psi) (10- in/in/°F)

Btu/hr-ft-°F)

(Btu/lb-°F)

(lb/ft3)70 29.20 7.02 23.3 0.104 490.9 0.3100 29.04 7.06 23.6 0.107 490.5 0.3150 28.77 7.16 24.1 0.111 489.9 0.3200 28.50 7.25 24.4 0.114 489.2 0.3250 28.25 7.34 24.6 0.117 488.6 0.3300 28.00 7.43 24.7 0.121 487.9 0.3350 27.70 7.50 24.7 0.124 487.3 0.3400 27.40 7.58 24.6 0.127 486.7 0.3450 27.20 7.63 24.4 0.129 486.0 0.3500 27.00 7.70 24.2 0.132 485.4 0.3550 26.70 7.77 23.9 0.135 484.7 0.3600 26.40 7.83 23.5 0.138 484.1 0.3650 25.85 7.90 23.2 0.141 483.4 0.3700 25.30 7.94 22.8 0.144 482.8 0.34.2 Postulated Flawsa. Postulated Reactor Vessel Beltline FlawsSemi-elliptical surface flaws that are '/4t deep and 1 1/2 t long are postulated on the inside and outside surfaces ofthe reactor vessel beltline region. A longitudinal flaw is postulated in the base metal and the axial seam welds anda circumferential flaw is postulated in the circumferential welds.b. Postulated Nozzle Comer FlawA 3" (1/4 tNB) deep comer flaw is postulated on the inside surface of the reactor vessel inlet and outlet nozzles.4.3 Upper Shelf Toughness A maximum value of 200 ksi'An is used for the upper shelf fracture toughness of the reactor vessel beltline.

Forthe nozzle forging materials, a "no cut-off' limit is used.Page 5AAREVA AAREVA ANP-3102, Rev. 34.4 Uncorrected Reactor Vessel Closure Head LimitsPressure-temperature limits for the reactor vessel head-to-flange closure region for normal operation and ISLHoperation were derived for TMI- I reactor vessel closure head region based on the K c fracture toughness curve.4.5 Convection Film Coefficient A value of 1000 BTU/hr-ft 2-°F is used for an effective convective heat transfer film coefficient at the cladding-to-base metal interface for all times during heatup and cooldown when reactor coolant pumps (RCPs) are in use.When no reactor coolant pumps are running (i.e., before the first RCP is started during heatup and after the lastRCP is shut off during cooldown),

a value of 430 BTU/hr-ft 2-°F is used as an effective film coefficient at thecladding-to-base metal interface.

This value was developed for flow conditions when no RCPs are running and 40°F water enters the vessel through the core flood nozzle as the decay heat removal system switches to an idle lowpressure injection cooler. The outside surface is always modeled as a perfectly insulated boundary.

4.6 Reactor Coolant Temperature-Time Histories Both ramped and stepped transient definitions are modeled for normal operation heatup and cooldown.

Thelimiting normal heatup and cooldown transients (as determined by the controlling P-T limits) are also used tosimulate the reactor coolant transients used for inservice leak and hydrostatic (ISLH) pressure testing.The following input temperature-time histories are considered:

Normal Ramp Heatup, 50 *F/hr.Normal Step Heatup, 15 OF/ 18 min. steps.Normal Ramp Cooldown, 100 °F/hr to 255 'F then 30 0F/hr to 70 'F.Normal Step Cooldown, 15'F/ 9 min. steps to 255 'F then 15 'F/ 30 min. steps to 70 'F.4.7 Adjusted Reference Temperatures As discussed in Section 3.0, limiting values of the adjusted reference temperature were evaluated.

The limitingART or RTNDT values that were used for determining the P-T curves are also listed in Table 4 for the l/4t and 3/4tlocations of the reactor vessel beltline wall at 50.2 EFPY with MUR. An RTNDT of 60 OF is used for the reactorvessel nozzles.Page 6AARE VA AAREVAANP-3102, Rev. 3Table 4: Limiting RTNDT'S for TMI-1 Beltline Materials Vessel Wall Limiting RTNDT (OF)Component Location Material at 50.2EFPYBeltline 1/4t SA-1526 184.7Axial Weld WF-8 126.8Beltline 1/4t WF-70 234.5Circ. Weld _7/_4t _ WF-70 178.5Page 7AAREVA AAREVA ANP-3102, Rev. 35.0 TECHNICAL BASIS FOR PRESSURE/TEMPERATURE LIMITSPressure-temperature limits are developed using an analytical approach that is in accordance with therequirements of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G [2]. Additional requirements are contained in Table 1 of Appendix G to Title 10, Code of Federal Regulations, Part 50 [1]. Theanalytical techniques used to calculate P-T limits are based on approved linear elastic fracture mechanics methodology described in topical report BAW-10046A

[4]. The fundamental equation used to calculate theallowable pressure isPallow KIR -KrrSFx kiwhere, Pallow = allowable pressureK I = reference stress intensity factor ( K a or K 1cSrr = thermal stress intensity factorI, = unit pressure stress intensity factor (due to 1 psig)SF = safety factorFor each analyzed transient and steady state condition, the allowable pressure is determined as a function ofreactor coolant temperature considering postulated flaws in the reactor vessel beltline, inlet nozzle, outlet nozzle,and closure head. In the beltline region, flaws are postulated to be present at the 1/4t and 3/4t locations of thecontrolling material (shell forging, or circumferential weld), as defined by the fluence adjusted RTNDT. The reactorvessel nozzle flaws are located at the inside juncture (comer) with the nozzle shell, and the closure head flaw islocated near the outside juncture with the head flange. P-T limits for the beltline and nozzle regions are calculated using a safety factor of 2 for normal operation and 1.5 for ISLH operation.

The P-T limit curves presented consistof the allowable pressures for the controlling beltline flaw, inlet and outlet nozzles, and closure head, as a functionof fluid temperature.

These curves have been "smoothed",

as necessary, to eliminate irregularities associated withthe startup of the first reactor coolant pump during heatup and the initiation of decay heat removal duringcooldown.

After the initial determination of the P-T limit curves, location specific curves were adjusted for sensorlocation.

No instrument error correction has been applied.

The final results include the determination of aminimum/lower bound P-T curve.The criticality limit temperature is obtained by determining the maximum required ISLH test temperature at apressure of 2500 psig (approximately 10% above the normal operating pressure).

The ISLH analysis considers themost limiting heatup and cooldown transients.

The approach satisfies the requirement of Item 2.d in Table 1 of 10CFR 50, Appendix G [1]. It requires the minimum temperature to be the larger of minimum permissible temperature for inservice system hydrostatic pressure test or the RTNDT of the closure flange material

+ 160 OF.Various aspects of the calculation procedures utilized in the development of P-T limits are discussed below.Page 8 AAREVA AAREVAANP-3102, Rev. 35.1 Fracture Toughness The fracture toughness of reactor vessel steels is expressed as a function of crack-tip temperature, T, indexed tothe adjusted reference temperature of the material, RTNDT. Pressure-Temperature limits developed in accordance with ASME Code,Section XI, Appendix G, as permitted by RIS 2004-04 [7] , utilize the crack initiation fracturetoughness, Kic = 33.2 + 2.806 exp [0.02 ( T -RTNDT + 100 'F)]The upper shelf fracture toughness is limited to an upper bound value of 200 ksi'lin for the reactor vessel weldsand base metal and 250 ksi x/in for the inlet and outlet nozzles.

The crack-tip temperature needed for these fracturetoughness equations is obtained from the results of a transient thermal analysis, described below.5.2 Thermal Analysis and Thermal Stress Intensity FactorThrough-wall temperature distributions are determined by solving the one-dimensional transient axisymmetric heat conduction

equation, PCP" O _ .c2T 1 aT.P a Or 2 r Orsubject to the following boundary conditions:

at the inside surface, where r = Ri,-k = h(Tw -Tb)Orat the outside surface, where r = Ro,-0agrwhere,p densityCP = specific heatk = thermal conductivity T = temperature r = radial coordinate t= timeh = convection heat transfer coefficient Page 9AAREVA AAREVAANP-3102, Rev. 3Tw= wall temperature Tb = bulk coolant temperature R= inside radius of vesselRo = outside radius of vesselThe above equation is solved numerically using a finite difference technique to determine the temperature at 17points through the wall as a function of time for prescribed changes in the bulk fluid temperature, such as multi-rate ramp and step changes for heatup and cooldown transients.

An equivalent linear thermal bending stresses (based on AT through the wall) is derived from the through-wall temperature distribution at each solution time point. Through-wall thermal stress distributions are determined bytrapezoidal integration of the following expression:

Thermal hoop stresses:

o()=Ea I r 2 + Ri2f'Tr&dr+fr TrdrTr2~1- ý R' ,R[8, Eqn (255)]Expressing the thermal stress distributions bycr(x) = Co + C, (x/a) + C2 (x/a)2 + C3 (x/a)3,where,x = is a dummy variable that represents the radial distance from the appropriate (i.e., inside or outside)surface, in.a = the flaw depth, in.The thermal stress intensity factors are defined by the following relationships:

For a 1/4 t inside surface flaw during cooldown, Kit = (1.0359 Co + 0.6322 C, + 0.4753 C2 + 0.3855 C3),r-a4For a 1/4 t outside surface flaw during heatup,Kt= (1.043 Co + 0.630 CI + 0.481 C2 + 0.401 C3)O a5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline RegionThe membrane stress intensity factor in the reactor vessel shell due to a unit pressure load isKjm = Mm x Ri/twhereRi = vessel inner radius, in.Page 10AAREVA AREVA ANP-3102, Rev. 3t= vessel wall thickness, in.For a longitudinal

'/4 -thickness x 3 -thickness semi-elliptical surface flaw:at the inside surface,Mm. 1.85 for 4t < 20.926 4t for 2 _< 4t _< 3.4643.21 for 4t > 3.464at the outside surface,Mm = 1.77 for 4t < 2= 0.893 4/t for 2 _< 4It _< 3.464= 3.09 for 4t > 3.4645.4 Unit Pressure Stress Intensity Factor for Reactor Vessel NozzlesConsidering a nozzle as a hole in a shell, WRC Bulletin 175 [9] presents the following method for estimating stress intensity factors for a nozzle comer flaw:Klm = o'r/-'i F(a/rn)where(= Ri/tR= nozzle belt shell inner radius, in.t = nozzle belt shell wall thickness, in.a = flaw depth, in.r,= apparent radius of nozzle, in.= ri + 0.29rcr= inner radius of nozzle, in.rc= nozzle comer radius, in.andF(a/r,) = 2.5 -6.108(a/rn)

+ 12(a/r,)2 -9.1664(a/r,)

3Page 11AAR EVA AAREVAANP-3102, Rev. 36.0 PRESSURE CORRECTIONS The uncorrected P-T limits are calculated at the required locations or components in the RCS. However, the plantuses only two instruments locations for indicated

pressure, the pressurizer low range tap and the hot leg widerange tap. Therefore, the uncorrected P-T limits may be corrected to one or both of these locations.

These locationcorrections were calculated using a TMI-1 Cycle 19 RCS hydraulics model with 0% steam generator tubeplugging, and analyzing it for various temperatures and pump combinations.

The location corrections are based on 0/0 pumps operating up to 100 OF (the conservative start temperature for thefirst two pumps) and then based on 2/0 pumps up to -200 OF, and 2/1 pumps up to -350 OF. The low rangecorrections (taken from the pressurizer) are conservatively estimated to be a constant 10 psi less than the widerange corrections (taken from the hot leg tap). Thus the limiting location corrections are from hot leg (wide range)tap and are applied to the P-T limits. The hot leg (wide range) tap pressure corrections are presented below inTable 5.Table 5: Limiting Location Corrections Factors for PressureTemperature 70-100 101-199 200-349 350-499 500-5321Range, °FComponent AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCPBeltline 22 (WR) 0/0 90 (WR) 2/0 104 (WR) 2/1 111 2/2 99 2/2Outlet Nozzle 17 (WR) 0/0 74 (WR) 2/0 74 (WR) 2/0 67 2/0 51 2/1RVCH 13 (WR) 0/0 70 (WR) N/A N/A N/AThe correction factor was used for 601F as well, since the rounded correction factors are found to be boundingThe correction factor is used for temperatures above 532°F since the values are bounding for higher temperature 7.0 SUMMARY OF RESULTSThe following is a summary of results for the TMI-l P-T limits at 50.2 EFPY with MUR analysis corrected forlocation only. No correction due to instrument uncertainty is applied.Page 12AAREVA AREVA ANP-3102, Rev. 37.1 P-T Curves for ISLH Heatup / CooldownThe Pressure-Temperature limits are developed for ISLH test operations.

For ISLH heatup, adjusted locationspecific (i.e. on a per component basis) P-T limits are presented in Table 6. The Tech. Spec. basis P-T limits forISLH heatup are shown in Table 8. The location adjusted P-T limits for ISLH ramp cooldown are presented inTable 9. The location adjusted P-T limits calculated for ISLH step cooldown are shown in Table 10. TheTechnical specification (Tech. Spec.) basis P-T limits for ISLH cooldown generated as the limiting allowable pressure at every calculated temperature is shown in Table 11. The adjusted P-T limits for ISLH heatup andcooldown are plotted in Figure 1. A limiting composite curve for Tech. Spec. Basis P-T limits for ISLH isdeveloped, the pressure-temperature data is shown in Table 12 and the curve is plotted in Figure 2. The criticality I limit temperature corresponding to a pressure of 2500 psig can be determined through interpolation of ISLHheatup data in Table 6. As shown in Table 7, the criticality limit temperature is 262.7 'F. The criticality limitcurve is shown in Figure 3 along with the normal heatup Tech. Spec. basis P-T limit curve.Page 13 AAREVA AAREVAANP-3102, Rev. 3Table 6: TMI-1 Adjusted Location Specific P-T Limits for ISLH HeatupAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)606570758085909510010511011512012513013514014515015516016517017518018519019520020521021522022523023524024525025526083283383583884184185085786380281081982883985186487989591393295497810051035106711031143118712221275133514001473155316421740184819672099224424058738788929129349489911029107110591108116212221289136314441534163417441866200121492314249526962918316334333732405040504050405040504050405040504050405040504050907912927947971985103010691113110211531210127213411418150315961700181419412080223524052594280230333287356838784208420842084208420842084208420842084208420842086718119531095123714351633183120292170Page 14AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi (psi)265270275280285290295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465470475480485258227772993323134943785410644604788478847884787478747874786478647864778477847774777477647764775477547744774477347734772477247714771477147704770477047704769476947684768476647664766405040504050405040504050405040504050405040504050405040504050.405040504057405740574057405740574057405740574057405740574057405740574057405740574057405740574057405740574057405740574057420842084208420842084208420842084208420842084208420842084208420842084215421542154215421542154215421542154215421542154215421542154215421542154215421542154215421542154215421542154215Page 15AARE VA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(4F) (psi) (psi) (psi) (psi)490 4765 4057 4215495 4765 4057 4215500 4776 4073 4231505 4776 4073 4231510 4775 4073 4231515 4775 4073 4231520 4774 4073 4231525 4773 4073 4231530 4773 4073 4231535 4772 4073 4231540 4772 4073 4231545 4772 4073 4231550 4771 4073 4231555 4771 4073 4231560 4770 4073 4231565 4769 4073 4231570 4769 4073 4231Table 7: TMI-1 Criticality Limit Temperature Determination Criticality LimitTemp. at 500 psigPressure Temp.(psig) (OF)2405 2602582 265Interpolating:

2500 262.7Page 16AAREVA AAREVAANP-3102, Rev. 3Table 8: TMI-1 Tech. Spec. Basis P-T Limits for ISLH HeatupFluidTemp.(OF)6065707580859095100105110115120125130135140145150155160165170175180185190195200205210215220225230235240245250255260Governing AdjustedPressure(psi)6718028028028028028028028028028108198288398518648798959139329549781005103510671103114311871222127513351400147315531642174018481967209922442405Page 17AAREVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)265 2582270 2777275 2993280 3231285 3494290 3785295 4050300 4050305 4050310 4050315 4050320 4050325 4050330 4050335 4050340 4050345 4050350 4057355 4057360 4057365 4057370 4057375 4057380 4057385 4057390 4057395 4057400 4057405 4057410 4057415 4057420 4057425 4057430 4057435 4057440 4057445 4057450 4057455 4057460 4057465 4057470 4057475 4057480 4057485 4057Page 18AAR EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)490 4057495 4057500 4073505 4073510 4073515 4073520 4073525 4073530 4073535 4073540 4073545 4073550 4073555 4073560 4073565 4073570 4073Page 19 AAREVA AAREVAANP-3102, Rev. 3Table 9: TMI-1 Adjusted Location Specific P-T Limits for ISLH Ramp CooldownAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)70758085909510511011512012513013514014515015516016517017518018519019520020521021522022523023524024525025526026527027573374275376578078672472774375977679581684086689492696199910421089114111991263133413971469154916381735184419632066219324022580277729953235350137959379921041109411541219129513611501160917281860200621672346254227603001326635603772376137483733371636963674364636163581354034923395346234053342329332953296329833009741031108111371199126713471416156216741798193520862254243926432869311933953700391939083895387938623841381837893757372136793629352835983538347334233424342634283430953109512371435163318312170Page 20AAR EVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beitline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)280285290295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465470475480485490495500411943084308430743064306430543054305430443044304430443044297429842984298429842994299430043014302430443044306430843114314431843224326433143374343434943564364437343834393440544184444330233043307330933123315331833233326333033343338334233473358336333693375337833853392339934073415342434333442345234633474348534963509352235363550356535813597361436323651367036903727343234343436343934423445344834543457346134653469347334783490349535013507351135183525353335413549355835683577358835983610362236333646366036743689370537213738375637743793381438343872Page 21AARE VA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)505 4459 3749 3895510 4476 3769 3916515 4494 3793 3941520 4513 3818 3966525 4533 3843 3993530 4556 3870 4020535 4582 3897 4049540 4609 3925 4077545 4638 3953 4107550 4670 3982 4137555 4703 4010 4166560 4738 4037 4194565 4772 4060 4218570 4793 4072 4231Page 22AAR EVA AAREVAANP-3102, Rev. 3Table 10: TMI-1 Adjusted Location Specific P-T Limits for ISLH Step CooldownAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(F) (psi) (psi) (psi) (psi)70808510010511513014516017519020522023524025527028530031533034536037539040542043545046548049551052554055576678178881375778082889398010981258146417352050224127773501434743454343434343424336433643374341434543534366438244054436448745394605469091010381094129213241501186023463001381137723712361934353501331433183323333033383351336233833398341834423470350235383580362836823759382739053989945107811371342137715621935243931193960392038583761357036383444344834543461347034823495351635313552357736063639367637203770382639063976405741449531237143520292170Page 23AAREVA AAREVA ANP-3102, Rev. 3Table 11: TMI-1 Tech Spec. Basis P-T Limits for ISLH CooldownGoverning Fluid AdjustedTemp. Pressure(OF) (psi)70 72475 72480 72485 72490 72495 724105 724110 727115 743120 759125 776130 795135 816140 840145 866150 894155 926160 961165 999170 1042175 1089180 1141185 1199190 1258195 1334200 1397205 1464210 1549215 1638220 1735225 1844230 1963235 2050240 2193245 2402250 2580255 2777260 2995265 3235270 3298275 3300280 3302285 3304Page 24 AAREVA AR ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)290 3307295 3309300 3312305 3315310 3318315 3323320 3326325 3330330 3334335 3338340 3342345 3347350 3358355 3363360 3369365 3375370 3378375 3385380 3392385 3399390 3407395 3415400 3424405 3433410 3442415 3452420 3463425 3474430 3485435 3496440 3509445 3522450 3536455 3550460 3565465 3580470 3597475 3614480 3628485 3651490 3670495 3682500 3727505 3749510 3759Page 25AA R EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)515 3793520 3818525 3827530 3870535 3897540 3905545 3953550 3982555 3989560 4037565 4060570 4072Page 26AAR EVA AAREVAANP-3102, Rev. 3Table 12: TMI-1 Tech Spec. Basis P-T Limits for ISLH Composite CurveFluidTemp.('F)6065707580859095100105110115120125130135140145150155160165170175180185190195200205210215220225230235240245250255260265GovemingAdjustedPressure(psi)67172472472472472472472472472472774375977679581684086689492695497810051035106711031143118712221275133514001473155316421740184819672099224424052582Page 27AAREVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)270 2777275 2993280 3231285 3304290 3307295 3309300 3312305 3315310 3318315 3323320 3326325 3330330 3334335 3338340 3342345 3347350 3358355 3363360 3369365 3375370 3378375 3385380 3392385 3399390 3407395 3415400 3424405 3433410 3442415 3452420 3463425 3474430 3485435 3496440 3509445 3522450 3536455 3550460 3565465 3580470 3597475 3614480 3628485 3651490 3670495 3682Page 28AA R EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)500 3727505 3749510 3759515 3793520 3818525 3827530 3870535 3897540 3905545 3953550 3982555 3989560 4037565 4060570 4072Page 29AAR EVA AAREVAANP-3102, Rev. 3Figure 1: TMI-1 Adjusted P-T Limits for ISLH Heatup and Cooldown240022002000.2- 1800U'G1600(A1400U) 1200I--1000S800-06 1004 0004OO20000 50 100 150 200 250 300 350Indicated RCS Inlet Temperature, OF400 450 500Page 30AAREVA AAREVAANP-3102, Rev. 3Figure 2: TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve)240022002000.-1800G0.0160001400ID.a.U) 12001000j 80060040020000 50 100 150 200 250 300 350Indicated RCS InletTemperature, IF400 450 500Page 31AAREVA AAREVA ANP-3102, Rev. 37.2 P-T Curves for Normal Heatup / CooldownThe Pressure-Temperature limits are developed for both normal heatup and cooldown operations.

For heatup,location specific adjusted P-T limits are presented in Table 13. The Tech. Spec. basis P-T limits for normalheatup are shown in Table 14. The location specific adjusted P-T limits for ramp cooldown are presented inTable 15. The location adjusted P-T limits calculated for normal step cooldown are shown Table 16. TheTechnical specification (Tech. Spec.) basis P-T limits for cooldown generated as the limiting pressure at everycalculated temperature is shown in Table 17. The Tech. Spec. basis P-T limits for heatup are plotted in Figure 3and the Tech. Spec. basis cooldown P-T limits are plotted in Figure 4.Page 32AAR EVA AAREVAANP-3102, Rev. 3Table 13: TMI-1 Adjusted Location Specific P-T Limits for Normal HeatupAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)60657075808590909095100101105110115120123125130135140145150155160165170175180185190195200205210215220225230235240618619621623626629632632632637642575579585592599604607616626637649662677693711731753778805835868890931975102410791139120512791360650654665679696716738738739768799749776813853898928948100410651132120712901381148215931717185320032170235325562780301930193019301930193019301930196766806917067247447677677687988307808088478899369679881045110811791256134214371542165817861927208322562447265728903138313831383138313831383138313861261261261261276191091091010581207118013601585181020352170Page 33AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)245250255260265270275280285290.295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465144915481657177719102057221923982595281330533319356535653565356435643564356435633563355635563555355535553554355435533553355335523552355135513551355135503550355035503549354935493548301930193019301930193019301930193019301930193019301930193019301930193019301930193019302630263026302630263026302630263026302630263026302630263026302630263026302630263026302630263026313831383138313831383138313831383138313831383138313831383138313831383138313831383138314531453145314531453145314531453145314531453145314531453145314531453145314531453145314531453145Page 34 AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)470 3548 3026 3145475 3547 3026 3145480 3547 3026 3145485 3546 3026 3145490 3546 3026 3145495 3546 3026 3145500 3558 3042 3161505 3557 3042 3161510 3557 3042 3161515 3556 3042 3161520 3556 3042 3161525 3555 3042 3161530 3555 3042 3161535 3555 3042 3161540 3554 3042 3161545 3554 3042 3161550 3554 3042 3161555 3553 3042 3161560 3553 3042 3161565 3552 3042 3161570 3552 3042 3161Page 35AAREVA AREVA ANP-3102, Rev. 3Table 14: TMI-1 Tech. Spec. Basis P-T Limits for Normal HeatupGoverning Fluid AdjustedTemp. Pressure(OF) (psi)60 57565 57570 57575 57580 57585 57590 57590 57590 57595 575100 575101 575105 579110 585115 592120 599123 604125 607130 616135 626140 637145 649150 662155 677160 693165 711170 731175 753180 778185 805190 835195 868200 890205 931210 975215 1024220 1079225 1139230 1205235 1279240 1360245 1449250 1548Page 36 AAR EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)255 1657260 1777265 1910270 2057275 2219280 2398285 2595290 2813295 3019300 3019305 3019310 3019315 3019320 3019325 3019330 3019335 3019340 3019345 3019350 3026355 3026360 3026365 3026370 3026375 3026380 3026385 3026390 3026395 3026400 3026405 3026410 3026415 3026420 3026425 3026430 3026435 3026440 3026445 3026450 3026455 3026460 3026465 3026470 3026475 3026Page 37AAR EVA AAREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)480 3026485 3026490 3026495 3026500 3042505 3042510 3042515 3042520 3042525 3042530 3042535 3042540 3042545 3042550 3042555 3042560 3042Page 38AA R EVA AAREVAANP-3102, Rev. 3Table 15: TMI-1 Adjusted Location Specific P-T Limits for Normal Ramp CooldownAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)70758085909510111011512012312513013514014515015516016517017518018519019520020521021522022523023524024525025526026527027528054555155956857958451952353554755556057459060762764867269872775979483487792597810221076113612021276135714461524161917751909205722202400260028203063699740776817861910913100211071188124212781377148616071741188820522232243126522810280227922781276827542737271626932667263626002527257825352488245124532454245524562458726769807849895946951104411531237129313301433154616721810196421332321252827562921291229022891287828622845282327992772274127032627268026352586254825502551255225542555612612612761910105811801585181020352170Page 39AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)285290295300305310315320325330335340345350355360365370375380385390395400405410415420425430435440445450455460465470475480485490495500505320532053204320432033203320332023202320232023202320231953196319631963196319631973197319831993200320032023203320532083210321432173221322532293234323932453252325932673276328633083320246024612463246524682470247424762479248224852488249125022506251025142517252225272533253925452551255825652573258025892597260626152625263526462657266926812694270727212736275127832799255725592561256325652568257225742577258025832586259026012605260926132616262126272633263926452652265926662674268226912699270827182728273927502762277427872800281428282843285928912908Page 40AAREVA AAREVAANP-3102, Rev. 3Allowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(OF) (psi) (psi) (psi) (psi)510 3332 2814 2924515 3346 2832 2943520 3360 2850 2962525 3375 2870 2982530 3392 2889 3002535 3411 2910 3024540 3432 2931 3045545 3454 2952 3067550 3478 2973 3090555 3503 2995 3112560 3529 3015 3133565 3554 3032 3151Page 41AAREVA AAREVAANP-3102, Rev. 3Table 16: TMI-1 Adjusted Location Specific P-T Limits for Normal Step CooldownAllowable Pressures Limiting Outlet Inlet ClosureFluid Beltline Nozzle Nozzle HeadTemp. Weld(F) (psi) (psi) (psi) (psi)7080851001011151231301451601751902052202352402552702853003153303453603753904054204354504654804955105255405555695805866045385625815986477138019211072127615111655205726003234323232313231323132243224322532283231323732473259327632993341338034293493678774817965921110712511377174122322839281127662696255826072467247024742479248524952503252125312547256525862609263726682704274528072858291629797058048491002959115313021433181023212951292128752802265927102564256825722577258425932602262026312647266626872712274027732810285329172969303030966126127611207118018102170Page 42AAR E VA AAREVAANP-3102, Rev. 3Table 17: Tech Spec. Basis P-T Limits for Normal Limiting CooldownFluidTemp.(OF)707580859095101110115120123125130135140145150155160165170175180185190195200205210215220225230235240245250255260265270Governing AdjustedPressure(psi)519519519519519519519523535547555560574590607627648672698727759794834877921978102210721136120212761357144615111619177519092057222024002455Page 43AAREVA AREVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure('F) (psi)275 2456280 2458285 2460290 2461295 2463300 2465305 2468310 2470315 2474320 2476325 2479330 2482335 2485340 2488345 2491350 2502355 2506360 2510365 2514370 2517375 2522380 2527385 2533390 2539395 2545400 2551405 2558410 2565415 2573420 2580425 2589430 2597435 2606440 2615445 2625450 2635455 2646460 2657465 2668470 2681475 2694480 2704485 2721490 2736495 2745Page 44A"AR EVA AARIEVA ANP-3102, Rev. 3Governing Fluid AdjustedTemp. Pressure(OF) (psi)500 2783505 2799510 2807515 2832520 2850525 2858530 2889535 2910540 2916545 2952550 2973555 2979560 3015565 3032Page 45AAR EVA AAREVAANP-3102, Rev. 324002200200018000.)1600(A 1400I.r/) 1200UA14000S800o)"-6004002000Figure 3: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup and Criticality Limit-P-T Limits for Normal Heatup-Criticality Limit P-T Limit Curve0 50100 150 200 250 300 350Indicated RCS InletTemperature, OF400 450 500Page 46AAREVA AAREVAANP-3102, Rev. 3Figure 4: TMI-1 Tech. Spec. Basis P-T Limits for Normal Cooldown240022002000.018000.a1600U) 1400S1200.2 800-60040020000 50 100 150 200 250 300 350Indicated RCS Inlet Temperature, OF400 450 500Page 47AAREVA AAREVA ANP-3102, Rev. 38.0 SUMMARYThe Tech. Spec. basis P-T limits for normal operating heatup and cooldown and ISLH operation were reported in theprevious section for TMI-1 at 50.2 EFPY with MUR. This section provides summary P-T curves for heatup,cooldown, and ISLH with some key points (P-T limits) indicated on the plot.Figure 5 shows a summary of the TMI-1 Tech. Spec. basis P-T Limits for normal heatup and criticality limit withsome key points noted on the plot. Figure 6 shows a summary of the TMI-1 Tech. Spec. basis P-T Limits for normalcooldown with some key points noted on the plot. Figure 7 shows a summary of TMI-1 Tech. Spec. Basis P-T Limitsfor ISLH (Composite Curve).Page 48AAREVA AAREVAANP-3102, Rev. 3Figure 5: TMI-1 Summary Tech Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Heatup and Criticality Limit24002200200018000.01600W 14002!0.(/1200U-o 1000u 80060040020000 50 100 150 200 250 300 350Indicated RCS InletTemperature,OF 400 450 500Page 49AAREVA AAREVAANP-3102, Rev. 3Figure 6: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Cooldown24002200200018001600U3 1400CLi-a-W 12001000u 8006004002000T265, 2400... -In250, 1909240, 1619- -____220, 1276/1 90, 921________

________16069 70, 519 13 3 ý 130 '574101. 519 ____ ____ ____0 50100 150 200 250 300 350Indicated RCS Inlet Temperature, OF400450 500Page 50AAREVA AAREVA ANP-3102, Rev. 3Figure 7: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for ISLH (Composite Curve)2400220020001800eL* 1600Wfl 1400(Lh.12001000a)o 80060040020000 50 100 150 200 250 300 350Indicated RCS Inlet Temperature, OF400 450 500Page 51AAREVA AAREVAANP-3102, Rev. 39.0 CERTIFICA71ON Pressure/temperature limits for the TMI-1 reactor vessel have been calculated to satisfy the requirements of 10CFR Part 50, Appendix 0 using analytical methods and acceptance criteria of the ASME Boiler and PressureVessel Code,Section XI, Appendix G,1995 Edition.Samer -L. Malmioud, Principal EngineerComponent Analysis and Fracture Mechanics Date 'This report has been reviewed for technical content and accuracy.

Ashok D. Nana, Supervisor Component Analysis and Fracture Mechanics DateVerification of independent review.lkýtw c6rPl-'Wirr

,I--,DateTim M. W'iger, Manager IComponent Analysis and Fracture Mechanics This report is approved for releaseDavid Skulna, Project ManagerDatePage 52AAREVA AAREVA ANP-3102, Rev. 3

10.0 REFERENCES

1. Code of Federal Regulations, Title 10, Part 50 -Domestic Licensing of Production and Utilization Facilities, Appendix G -Fracture Toughness Requirements, Federal Register Vol. 60. No. 243, December19, 1995.2. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, "Rulesfor Inservice Inspection of Nuclear Power Plant Components,"

Appendix G, Fracture Toughness Criteriafor Protection Against Failure, 1995 Edition with Addenda through 1996.3. ASTM Standard E 208-81, "Standard Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels,"

American Society for Testing and Materials, Philadelphia, Pennsylvania.

4. AREVA NP Document BAW-10046A, Rev. 2, "Methods of Compliance with Fracture Toughness andOperational Requirements of 1OCFR50, Appendix G," by H. W. Behnke et al., June 1986.5. AREVA NP Document BAW-2308, Rev. IA and Rev. 2A, "Initial RTNDT of LINDE 80 Weld Materials,"

by K. K. Yoon., August 2005 and March 2008.6. ASME Boiler and Pressure Vessel Code,Section III, Rules for Construction of Nuclear Power PlantComponents, Division 1 -Appendices, 1995 Edition with Addenda through the 1996 Edition.7. NRC Regulatory Issue Summary 2004-04:

Use of Code Cases N-588, N-640, and N-641 in developing Pressure-Temperature Operating Limits, Dated April 5, 2004.8. Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity, Third Edition, McGraw-Hill Book Company,1970.9. PVRC Ad Hoc Group on Toughness Requirements, "PVRC Recommendations on Toughness Requirements for Ferritic Materials,"

Bulletin No. 175, Welding Research

Council, August 1972.10. U. S. Nuclear Regulatory Commission, "Radiation Embrittlement of Reactor Vessel Materials,"

Regulatory Guide 1.99, Revision 2, May 1988.Page 53AAR EVA