ML13232A217

From kanterella
Jump to navigation Jump to search
Attachment 2 - Areva Document No. ANP-3102, Revision 3,Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with Mur, Revision 3, Dated July 2013
ML13232A217
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 07/31/2013
From: Mahmoud S
AREVA NP
To:
Office of Nuclear Reactor Regulation
References
TMI-13-107 77-3102-003, ANP-3102, Rev. 3
Download: ML13232A217 (62)


Text

ATTACHMENT 2 AREVA Document No. ANP-3102, Revision 3, "Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with MUR," Revision 3, dated July 2013

ANP-3102, Rev. 3 July 2013 Three-Mile Island Unit I Appendix G Pressure-Temperature Limits at 50.2 EFPY with MUR

ANP-3102, Rev. 3 July 2013 Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with MUR Prepared by S. H. Mahmoud Reviewed by A.D. Nana AREVA Document No.

77-3102-003 Prepared for Exelon Generation Co., LLC

A ANP-3102, Rev. 3 AREVA Copyright © 2013 AREVA.

All Rights Reserved A

AREVA

A ANP-3102, Rev. 3 AREVA Record of Revision Revision Pages/Sections/Paragraphs No. Changed Brief Description / Change Authorization 000 All Original Release 001 Page 2 Changed first sentence of first paragraph and deleted second and third paragraphs.

001 Page 49 Corrected graph format.

002 Pages 3 and 4 Corrected the entry on the first column last row from "IS to LS Circ. Weld (63%)" to "LS Longit. Weld (OD 63%)" in both Tables 1 and 2 003 Page 2 Corrected misrepresentation of reference number to Regulatory Guide 1.99, Revision 2 in the reference list.

Page 6 Corrected description of the input temperature-time histories (225 is changed to 255)

Page 13 1. Changed "The location adjusted P-T limits calculated for normal step cooldown are shown in Table 10" to "The location adjusted P-T limits calculated for ISLH step cooldown are shown in Table 10"

2. Changed "The criticality limit temperature corresponding to a pressure of 2500 psig read from Figure 2, or it can be can be determined through interpolation of ISLH heatup data in Table 6." to "The criticality limit temperature corresponding to a pressure of 2500 psig can be determined through interpolation of ISLH heatup data in Table 6.
3. Changed "The criticality limit curve is shown in Figure 1" to "The criticality limit curve is shown in Figure 3" Page 53 Inserted reference 10.

+

+

A AREVA

A AREVA ANP-3102, Rev. 3 Table of Contents Page RECORD OF REVISION ........................................................................................................................ I LIST OF TABLES ................................................................................................................................. IV LIST OF FIGURES ................................................................................................................................ V

1.0 INTRODUCTION

........................................................................................................................ 1

2.0 BACKGROUND

.......................................................................................................................... 1 3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES ........................ 2 4.0 DESIGN BASIS FOR PRESSURE/TEMPERATURE LIMITS ................................................. 5 4.1 Material Properties ............................................................................................................................ 5 4.2 Postulated Flaws ............................................................................................................................... 5 4.3 Upper Shelf Toughness ............................................................................................................ 5 4.4 Uncorrected Reactor Vessel Closure Head Limits ........................................................................ 6 4.5 Convection Film Coefficient ............................................................................................................... 6 4.6 Reactor Coolant Temperature-Time Histories .............................................................................. 6 4.7 Adjusted Reference Temperatures ............................................................................................... 6 5.0 TECHNICAL BASIS FOR PRESSURE/TEMPERATURE LIMITS ........................................... 8 5.1 Fracture Toughness .......................................................................................................................... 9 5.2 Thermal Analysis and Thermal Stress Intensity Factor ............................................................... 9 5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region ................................ 10 5.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles ............................................ 11 6.0 PRESSURE CORRECTIONS ................................................................................................ 12 7.0

SUMMARY

O F RESULTS ........................................................................................................ 12 7.1 P-T Curves for ISLH Heatup / Cooldown ................................................................................... 13 7.2 P-T Curves for Normal Heatup / Cooldown ............................................................................... 32 8.0 SUM MARY ............................................................................................................................... 48 9.0 CERTIFICATION ...................................................................................................................... 52 ii A

AREVA

A ANP-3102, Rev. 3 AREVA Table of Contents (continued)

Page

10.0 REFERENCES

......................................................................................................................... 53 A

AREVA

A ARE'VA ANP-3102, Rev. 3 List of Tables Page Table 1: Adjusted Reference Temperature Evaluation for the TMI-1 Reactor Vessel Beltline Materials at the 1/1/2-Thickness Locations Applicable Through 50.2 EFPY with MUR ................................... 3 Table 2: Adjusted Reference Temperature Evaluation for the TMI -1 Reactor Vessel Beltline Materials at the 3/4-Thickness Locations Applicable Through 50.2 EFPY with MUR ................................... 4 Table 3: Material Properties ........................................................................................................... 5 Table 4: Lim iting RTNDT'S for TM I-1 Beltline Materials ........................................................................ 7 Table 5: Limiting Location Corrections Factors for Pressure ............................................................... 12 Table 6: TMI-1 Adjusted Location Specific P-T Limits for ISLH Heatup .......................................... 14 Table 7: TMI-1 Criticality Limit Temperature Determination ............................................................ 16 Table 8: TMI-1 Tech. Spec. Basis P-T Limits for ISLH Heatup ........................................................ 17 Table 9: TMI-1 Adjusted Location Specific P-T Limits for ISLH Ramp Cooldown ............................ 20 Table 10: TMI-1 Adjusted Location Specific P-T Limits for ISLH Step Cooldown ............................ 23 Table 11: TMI-1 Tech Spec. Basis P-T Limits for ISLH Cooldown ................................................. 24 Table 12: TMI-1 Tech Spec. Basis P-T Limits for ISLH Composite Curve ...................................... 27 Table 13: TMI-1 Adjusted Location Specific P-T Limits for Normal Heatup ..................................... 33 Table 14: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup ................................................. 36 Table 15: TMI-1 Adjusted Location Specific P-T Limits for Normal Ramp Cooldown ....................... 39 Table 16: TMI-1 Adjusted Location Specific P-T Limits for Normal Step Cooldown ........................ 42 Table 17: Tech Spec. Basis P-T Limits for Normal Limiting Cooldown ............................................ 43 iv A

AREVA

A AREVA ANP-3102, Rev. 3 List of Figures Page Figure 1: TMI-1 Adjusted P-T Limits for ISLH Heatup and Cooldown ............................................. 30 Figure 2: TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve) ................................... 31 Figure 3: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup and Criticality Limit ..................... 46 Figure 4: TMI-1 Tech. Spec. Basis P-T Limits for Normal Cooldown ............................................... 47 Figure 5: TMI-1 Summary Tech Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Heatup and Critica lity Lim it ............................................................................................................................... 49 Figure 6: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Cooldown

...................................................................................................................................................... 50 Figure 7: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for ISLH (Composite C u rv e ) ........................................................................................................................................... 51 A

AREVA

A ANP-3102, Rev. 3 AREVA

1.0 INTRODUCTION

This report presents operational pressure-temperature (P-T) limits for the reactor vessel at Three-Mile-Island Unit 1 (TMI-1). These limits are expressed in the form of a curve of allowable pressure versus temperature. In addition, the minimum temperature for core criticality is determined to satisfy the regulatory requirements of 10 CFR Part 50, Appendix G [1]. The uncorrected P-T limits for TMI-1 were determined for 50.2 effective full power years (EFPY) of operation with Measurement Uncertainty Re-capture (MUR). Pressure-temperature limits are calculated for the reactor vessel beltline, inlet and outlet nozzles, and closure head locations for normal heatup, normal cooldown, and inservice leak and hydrostatic (ISLH) test conditions. Pressure correction factors were determined between the RCS hot leg pressure taps and various other RCS locations.

2.0 BACKGROUND

The ability of the reactor pressure vessel to resist fracture is the primary factor in ensuring the safety of the primary system in light water-cooled reactors. The three areas of the reactor coolant pressure boundary addressed in the present report are the beltline shell region, the reactor coolant nozzles, and the closure head flange region.

A method for guarding against brittle fracture in reactor pressure vessels is described in Appendix G to the ASME Boiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components."[2]. This method utilizes fracture mechanics concepts and the reference temperature for nil-ductility transition, RTNDT, which is defined as the greater of the drop weight nil-ductility transition temperature (per ASTM E208 [3]) or the temperature that is 60 'F below that at which the material exhibits 50 ft-lbs and 35 mils lateral expansion. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (K1,). The Kl,, curve appears in Appendix G of ASME Code Section XI. When a given material is indexed to the K1 , curve, allowable stress intensity factors can be obtained for this material as a function of temperature.

Plant operating limits can then be determined using these allowable stress intensity factors.

The RTNDT of the reactor vessel materials, and in turn, the pressure/temperature limits of a reactor vessel, must be adjusted to account for the effects of irradiation. Neutron embrittlement and the resultant changes in mechanical properties of a given pressure vessel steel are monitored by a surveillance program consisting of periodic removal of surveillance capsules from an operating reactor and testing of reactor vessel material specimens obtained from the capsules. The increase in the Charpy V-notch 30 ft-lb temperature is added to the unirradiated RTNDT to adjust it for neutron embrittlement. This adjusted RTNDT is used to index the material to the K1, curve, which in turn, is used to set new operating limits for the nuclear power plant. These new limits take into account the effects of irradiation on the reactor vessel materials.

Pressure-temperature limits for the TMI-1 reactor vessel are developed in accordance with the requirements of 10 CFR Part 50, Appendix G [1], utilizing the analytical methods and flaw acceptance criteria of topical report BAW-10046A [4] and ASME Code Section XI, Appendix G[2].

As mentioned earlier, the three areas of the reactor coolant pressure boundary addressed in this report are the beltline shell region, the reactor coolant nozzles, and the closure head flange region. The beltline and nozzle regions are analyzed specifically for TMI-1 using the K1c reference fracture toughness. The effect of the change in the reference fracture toughness curve on the P-T limits for the closure head flange region is included by utilizing generic limits that have been derived for B&W-designed 177FA reactor vessels.

The TMI-1 reactor vessel contains both axially and circumferentially oriented welds. Therefore, the P-T limits for TMI-1 is based on the postulation of both axial and circumferential flaws in the most limiting axial and circumferential welds and the postulation of an axial flaw in the most limiting forging material of the reactor vessel.

Page 1 A

ARE VA

A ANP-3102, Rev. 3 AREVA One-hundred percent steady state condition Appendix G limits were considered for the development of low temperature overpressure protection (LTOP) P-T limits. To further support the development LTOP system limits, temperature differences between the reactor coolant in the downcomer region and the 1/4/4t wall location are determined for the maximum heatup rate transient. The V4 t wall location is defined as a point within the vessel wall that is located at a distance of one quarter of the vessel thickness from the cladding-base metal interface.

3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES The '/4 t and / t ART values for the TMI-I reactor vessel beltline materials applicable to 50.2 EFPY with MUR are listed in Table 1 and Table 2. These values were calculated in accordance with Regulatory Guide 1.99, Revision 2 [10]. The calculation of the ART values for the weld metals also used BAW-2308 Revision IA and 2A [5]. The controlling beltline materials for the Three Mile Island Unit 1 reactor vessel are the lower nozzle belt to upper shell circumferential weld with ART values at 50.2 EFPY with MUR of 216.0 OF at the 1/4T wall location and 161.1 OF at the 3/4Twall location and the axial welds of the lower shell and upper shell, respectively with ART values at 50.2 EFPY with MUR of 183.9 °F at the 1/4 T wall location and 126.8 °F at the /4T wall location.

The ART values used for the development of the Three Mile Island Unit 1 reactor vessel P-T limits curves, calculated in 2006 for license renewal, were 234.5°F at the '/4T wall location and 178.5°F at the 3/4Twall location for the circumferential welds. The ART values used for the axial welds were 184.7 °F at the 1/4/T wall location and 126.8 °F at the 3/4 T wall location. Thus, in all instances the actual ART values or conservative ART values were used in the development of P-T limit curves performed in 2006.

Page 2 A

AREVA

A ARIEVA ANP-3102, Rev. 3 Table 1: Adjusted Reference Temperature Evaluation for the TMI-1 Reactor Vessel Beltline Materials at the 1/4-Thickness Locations Applicable Through 50.2 EFPY with MUR Estimated Fluence Adiusted Reference Temperature Evaluation at 1/4T Location Reactor Vessel MatI.

ent Heat Numer A 50.2 EFPY, n/cm 2

Chema. Fluence R Initial I RT.sT, a, I 0

e I RTNr Shift, r, 1/4T Beltllne Region Location Ident. Number Type Cu Ni IS 1/4T Factor Factor F J F Margin ART Re*ulatory Guide 1.99, Revision 2, Position 1.1 Lower Nozzle Belt Forging (LNB) ARY 59 123S454 SA-508 CI2 0.08 0.72 1.32E+19 7.698E+18 51.0 0.927 3 31 17 47.3 70.7 121.0 Upper ShellPlate (US) C2789-1 C2789-1 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 8.575E+18 58.0 0.957 1 26.9 17 55.5 63.6 120.1 Upper Shell Plate (US) C2789-2 C2789-2 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 8.575E+18 58.0 0.957 1 26.9 17 55.5 63.6 120.1 Lower Shell Plate (LS) C3307-1 C3307-1 SA-302 Gr B Mod. 0.12 0.55 1.47E+19 6.575E+18 82.0 0.957 1 26.9 17 78.5 63.6 143.1 Lower Shell Plate (LS) C3251-1 C3251-1 SA-302 Gr B Mod. 0.11 0.5 1.47E+19 8.575E+18 73.0 0.957 1 26.9 17 69.9 63.6 134.5 LNB to US Circ. Weld (100%) WF-70 72105 Linde 80 Flux 0.32 0.58 1.32E+19 7.698E+18 199.3 0.927 -31.1 13.7 28 184.8 62.3 [216.0]

US Longit. Weld (Both 100%) WF-8 8T1762 Linde 80 Flux 0.19 0.57 1.31E+19 7.662E+18 167.0 0.925 -47.6 17.2 28 154.5 65.7 172.6 US to LS Circ. Weld (100%) WF-25 299L44 Linde 80 Flux 0.34 0.68 1.43E+19 8.335E+18 220.6 0.949 -74.3 12.8 28 209.3 61.6 196.6 LS Longit. Weld (100%) SA-1526 299L44 Linde 80 Flux 0.34 0.66 1.16E+19 6.778E÷18 220.6 0.891 -74.3 12.8 28 196.6 61.6 {183.9)

LS Longit. Weld (ID 37%) SA-1526 299L44 Linde 80 Flux 0.34 0.68 1.15E+19 6.755E+18 220.6 0.890 -74.3 12.8 28 196.3 61.6 183.6 LS Longit. Weld (OD 63%) SA-1494 8T1554 Linde 80 Flux 0.16 0.57 1.15E+19 N/A 167.0 N/A -47.6 17.2 28 N/A N/A N/A

- Highest values of the adjusted reference temperature for circumferential welds.

- Highest values of the adjusted reference temperature for base metal or longitudinal welds.

Page 3 A

ARIEVA

A ANP-3102, Rev. 3 AR EVA Table 2: Adjusted Reference Temperature Evaluation for the TMI -1 Reactor Vessel Beltline Materials at the  %-

Thickness Locations Applicable Through 50.2 EFPY with MUR Estimated Fluence Adusted Reference Temperature Evaluation at 3/4T Location Reactor Vessel Matt Heat C 50.2 EFPY, n/cm 2

Chem. (Fluence Initial Jo. RTNoT 3/4T Beltilne Region Location Ident. Number Type CU Ni IS 3/4T Factor Factor F ' F Margin ART Regulatory Guide 1.99, Revision 2, Position 1.1 Lower Nozzle Belt Forging (LNB) ARY 59 123S454 SA-508 C02 0.08 0.72 1.32E-19 2.80E+18 51.0 0.652 3 31 17 33.3 70.4 106.7 Upper Shell Plate (US) C2789-1 C2789-1 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 3.12E+18 58.0 0.680 1 26.9 17 39.4 63.6 104,0 Upper Shell Plate(US) C2789-2 C2789-2 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 3.12E+18 58.0 0.680 1 26.9 17 39.4 63.6 104.0 Lower Shell Plate(LS) C3307-1 C3307-1 SA-302 Gr B Mod. 0.12 0.55 1.47E+19 3.12E+18 82.0 0.680 1 26.9 17 55.8 63.6 120.4 Lower Shell Plate (LS) C3251-1 C3251-1 SA-302 Gr 8 Mod. 0.11 0.50 1.47E+19 3.12E+18 73.0 0.680 1 26.9 17 49.6 63.6 114.2 LNB to US Circ. Weld (100%) WF-70 72105 Linde 80 Flux 0.32 0.58 1.32E+19 2.80E+18 199.3 0.652 -31.1 13.7 28 129.9 62.3 [161.1]

US Longit. Weld (Both 100%) WF-8 8T1762 Linde 80 Flux 0.19 0.57 1.31E-19 2.78E+18 167.0 0.651 -47.6 17.2 28 108.7 65.7 {126.8J US to LS Circ. Weld (100%) WF-25 299L44 Linde 80 Flux 0.34 0.68 1.43E+19 3.03E+18 220.6 0.673 -74.3 12.8 28 148.5 61.6 135.8 LS Longit. Weld (100%) SA-1526 299L44 Linde 80 Flux 0.34 0.68 1.16E+19 2.46E+18 220.6 0.620 -74.3 12.8 28 136.8 61.6 124.1 LS Longit. Weld (ID 37%) SA-1526 299144 Linde 80 Flux 0.34 0.68 1.15E+19 N/A 220.6 N/A -74.3 12.8 28 N/A N/A N/A LS Longit. Weld (OD 63%) SA-1494 8T1554 Linde 80 Flux 0.16 0.57 1.15E+19 2.45E+18 167.0 0.619 -47.6 17.2 28 103.4 65.7 121.5 3- Highest values of the adjusted reference temperature for circumferential welds.

- Highest values of the adjusted reference temperature for base metal or longitudinal welds.

Page 4 A

AREVA

A ANP-3102, Rev. 3 AREVA 4.0 DESIGN BASIS FOR PRESSURE/TEMPERATURE LIMITS Essential geometric data and analytical parameters used in the preparation of TMI-1 P-T limits are described below.

4.1 Material Properties Table 3 describes the material properties used in the development of the P-T limits for the TMI-1.

Table 3: Material Properties Temp. Elastic Thermal Thermal Specific Density Poisson's Modulus Expansion Conductivity Heat Ratio Ref. [6] Ref61 Ref.[6] Ref.[6] (assumed)

(°F) (106 psi) (10- in/in/°F) Btu/hr-ft-°F) (Btu/lb-°F) (lb/ft3 )

70 29.20 7.02 23.3 0.104 490.9 0.3 100 29.04 7.06 23.6 0.107 490.5 0.3 150 28.77 7.16 24.1 0.111 489.9 0.3 200 28.50 7.25 24.4 0.114 489.2 0.3 250 28.25 7.34 24.6 0.117 488.6 0.3 300 28.00 7.43 24.7 0.121 487.9 0.3 350 27.70 7.50 24.7 0.124 487.3 0.3 400 27.40 7.58 24.6 0.127 486.7 0.3 450 27.20 7.63 24.4 0.129 486.0 0.3 500 27.00 7.70 24.2 0.132 485.4 0.3 550 26.70 7.77 23.9 0.135 484.7 0.3 600 26.40 7.83 23.5 0.138 484.1 0.3 650 25.85 7.90 23.2 0.141 483.4 0.3 700 25.30 7.94 22.8 0.144 482.8 0.3 4.2 Postulated Flaws

a. Postulated Reactor Vessel Beltline Flaws Semi-elliptical surface flaws that are '/4t deep and 11/ 2 t long are postulated on the inside and outside surfaces of the reactor vessel beltline region. A longitudinal flaw is postulated in the base metal and the axial seam welds and a circumferential flaw is postulated in the circumferential welds.
b. Postulated Nozzle Comer Flaw A 3" (1/4 tNB) deep comer flaw is postulated on the inside surface of the reactor vessel inlet and outlet nozzles.

4.3 Upper Shelf Toughness A maximum value of 200 ksi'An is used for the upper shelf fracture toughness of the reactor vessel beltline. For the nozzle forging materials, a "no cut-off' limit is used.

Page 5 A

AREVA

A AREVA ANP-3102, Rev. 3 4.4 Uncorrected Reactor Vessel Closure Head Limits Pressure-temperature limits for the reactor vessel head-to-flange closure region for normal operation and ISLH operation were derived for TMI- I reactor vessel closure head region based on the K c fracture toughness curve.

4.5 Convection Film Coefficient A value of 1000 BTU/hr-ft2 -°F is used for an effective convective heat transfer film coefficient at the cladding-to-base metal interface for all times during heatup and cooldown when reactor coolant pumps (RCPs) are in use.

When no reactor coolant pumps are running (i.e., before the first RCP is started during heatup and after the last RCP is shut off during cooldown), a value of 430 BTU/hr-ft 2-°F is used as an effective film coefficient at the cladding-to-base metal interface. This value was developed for flow conditions when no RCPs are running and 40

°F water enters the vessel through the core flood nozzle as the decay heat removal system switches to an idle low pressure injection cooler. The outside surface is always modeled as a perfectly insulated boundary.

4.6 Reactor Coolant Temperature-Time Histories Both ramped and stepped transient definitions are modeled for normal operation heatup and cooldown. The limiting normal heatup and cooldown transients (as determined by the controlling P-T limits) are also used to simulate the reactor coolant transients used for inservice leak and hydrostatic (ISLH) pressure testing.

The following input temperature-time histories are considered:

Normal Ramp Heatup, 50 *F/hr.

Normal Step Heatup, 15 OF/ 18 min. steps.

Normal Ramp Cooldown, 100 °F/hr to 255 'F then 30 0F/hr to 70 'F.

Normal Step Cooldown, 15'F/ 9 min. steps to 255 'F then 15 'F/ 30 min. steps to 70 'F.

4.7 Adjusted Reference Temperatures As discussed in Section 3.0, limiting values of the adjusted reference temperature were evaluated. The limiting ART or RTNDT values that were used for determining the P-T curves are also listed in Table 4 for the l/4t and 3/ 4 t locations of the reactor vessel beltline wall at 50.2 EFPY with MUR. An RTNDT of 60 OF is used for the reactor vessel nozzles.

Page 6 A

ARE VA

A ANP-3102, Rev. 3 AREVA Table 4: Limiting RTNDT'S for TMI-1 Beltline Materials Vessel Wall Limiting RTNDT (OF)

Component Location Material at 50.2 EFPY Beltline 1/ t SA-1526 184.7 4

Axial Weld WF-8 126.8 Beltline 1/4t WF-70 234.5 Circ. Weld _7/_4t

_ WF-70 178.5 Page 7 A

AREVA

A ANP-3102, Rev. 3 AREVA 5.0 TECHNICAL BASIS FOR PRESSURE/TEMPERATURE LIMITS Pressure-temperature limits are developed using an analytical approach that is in accordance with the requirements of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G [2]. Additional requirements are contained in Table 1 of Appendix G to Title 10, Code of Federal Regulations, Part 50 [1]. The analytical techniques used to calculate P-T limits are based on approved linear elastic fracture mechanics methodology described in topical report BAW-10046A [4]. The fundamental equation used to calculate the allowable pressure is Pallow KIR - Krr SFx ki where, Pallow = allowable pressure KI = reference stress intensity factor ( K a or K 1c Srr = thermal stress intensity factor I, = unit pressure stress intensity factor (due to 1 psig)

SF = safety factor For each analyzed transient and steady state condition, the allowable pressure is determined as a function of reactor coolant temperature considering postulated flaws in the reactor vessel beltline, inlet nozzle, outlet nozzle, and closure head. In the beltline region, flaws are postulated to be present at the 1/4t and 3/ 4 t locations of the controlling material (shell forging, or circumferential weld), as defined by the fluence adjusted RTNDT. The reactor vessel nozzle flaws are located at the inside juncture (comer) with the nozzle shell, and the closure head flaw is located near the outside juncture with the head flange. P-T limits for the beltline and nozzle regions are calculated using a safety factor of 2 for normal operation and 1.5 for ISLH operation. The P-T limit curves presented consist of the allowable pressures for the controlling beltline flaw, inlet and outlet nozzles, and closure head, as a function of fluid temperature. These curves have been "smoothed", as necessary, to eliminate irregularities associated with the startup of the first reactor coolant pump during heatup and the initiation of decay heat removal during cooldown. After the initial determination of the P-T limit curves, location specific curves were adjusted for sensor location. No instrument error correction has been applied. The final results include the determination of a minimum/lower bound P-T curve.

The criticality limit temperature is obtained by determining the maximum required ISLH test temperature at a pressure of 2500 psig (approximately 10% above the normal operating pressure). The ISLH analysis considers the most limiting heatup and cooldown transients. The approach satisfies the requirement of Item 2.d in Table 1 of 10 CFR 50, Appendix G [1]. It requires the minimum temperature to be the larger of minimum permissible temperature for inservice system hydrostatic pressure test or the RTNDT of the closure flange material + 160 OF.

Various aspects of the calculation procedures utilized in the development of P-T limits are discussed below.

Page 8 A AREVA

A ANP-3102, Rev. 3 AREVA 5.1 Fracture Toughness The fracture toughness of reactor vessel steels is expressed as a function of crack-tip temperature, T, indexed to the adjusted reference temperature of the material, RTNDT. Pressure-Temperature limits developed in accordance with ASME Code,Section XI, Appendix G, as permitted by RIS 2004-04 [7] , utilize the crack initiation fracture toughness, Kic = 33.2 + 2.806 exp [0.02 ( T - RTNDT + 100 'F)]

The upper shelf fracture toughness is limited to an upper bound value of 200 ksi'lin for the reactor vessel welds and base metal and 250 ksi x/in for the inlet and outlet nozzles. The crack-tip temperature needed for these fracture toughness equations is obtained from the results of a transient thermal analysis, described below.

5.2 Thermal Analysis and Thermal Stress Intensity Factor Through-wall temperature distributions are determined by solving the one-dimensional transient axisymmetric heat conduction equation, O

PCP" _ .c2T 1 aT.

P a Or2 r Or subject to the following boundary conditions:

at the inside surface, where r = Ri,

- k = h(Tw - Tb)

Or at the outside surface, where r = Ro, agr-0 where, p density CP = specific heat k = thermal conductivity T = temperature r= radial coordinate t= time h = convection heat transfer coefficient Page 9 A

AREVA

A ANP-3102, Rev. 3 AREVA Tw= wall temperature Tb = bulk coolant temperature R= inside radius of vessel Ro = outside radius of vessel The above equation is solved numerically using a finite difference technique to determine the temperature at 17 points through the wall as a function of time for prescribed changes in the bulk fluid temperature, such as multi-rate ramp and step changes for heatup and cooldown transients.

An equivalent linear thermal bending stresses (based on AT through the wall) is derived from the through-wall temperature distribution at each solution time point. Through-wall thermal stress distributions are determined by trapezoidal integration of the following expression:

Thermal hoop stresses:

o()=Ea I r2 + Ri2f'Tr&dr+fr TrdrTr2~ [8, Eqn (255)]

1- ý R' ,R Expressing the thermal stress distributions by cr(x) = Co + C, (x/a) + C2 (x/a) 2 + C3 (x/a) 3 ,

where, x= is a dummy variable that represents the radial distance from the appropriate (i.e., inside or outside) surface, in.

a= the flaw depth, in.

The thermal stress intensity factors are defined by the following relationships:

For a 1/4 t inside surface flaw during cooldown, Kit = (1.0359 Co + 0.6322 C, + 0.4753 C2 + 0.3855 C 3),r-a4 For a 1/4 t outside surface flaw during heatup, Kt= (1.043 Co + 0.630 CI + 0.481 C2 + 0.401 C3)O a 5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region The membrane stress intensity factor in the reactor vessel shell due to a unit pressure load is Kjm = Mm x Ri/t where Ri = vessel inner radius, in.

Page 10 A

AREVA

AREVA ANP-3102, Rev. 3 t= vessel wall thickness, in.

For a longitudinal '/4 -thickness x 3 -thickness semi-elliptical surface flaw:

at the inside surface, Mm. 1.85 for 4t < 2 0.926 4t for 2 _<4t _< 3.464 3.21 for 4t > 3.464 at the outside surface, Mm = 1.77 for 4t < 2

= 0.893 4/t for 2 _<4It _<3.464

= 3.09 for 4t > 3.464 5.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles Considering a nozzle as a hole in a shell, WRC Bulletin 175 [9] presents the following method for estimating stress intensity factors for a nozzle comer flaw:

Klm = o'r/-'i F(a/rn) where

(= Ri/t R= nozzle belt shell inner radius, in.

t = nozzle belt shell wall thickness, in.

a = flaw depth, in.

r,= apparent radius of nozzle, in.

= ri + 0.29rc r= inner radius of nozzle, in.

rc= nozzle comer radius, in.

and F(a/r,) = 2.5 - 6.108(a/rn) + 12(a/r,) 2 - 9.1664(a/r,)3 Page 11 A

AR EVA

A ANP-3102, Rev. 3 AREVA 6.0 PRESSURE CORRECTIONS The uncorrected P-T limits are calculated at the required locations or components in the RCS. However, the plant uses only two instruments locations for indicated pressure, the pressurizer low range tap and the hot leg wide range tap. Therefore, the uncorrected P-T limits may be corrected to one or both of these locations. These location corrections were calculated using a TMI-1 Cycle 19 RCS hydraulics model with 0% steam generator tube plugging, and analyzing it for various temperatures and pump combinations.

The location corrections are based on 0/0 pumps operating up to 100 OF (the conservative start temperature for the first two pumps) and then based on 2/0 pumps up to - 200 OF, and 2/1 pumps up to - 350 OF. The low range corrections (taken from the pressurizer) are conservatively estimated to be a constant 10 psi less than the wide range corrections (taken from the hot leg tap). Thus the limiting location corrections are from hot leg (wide range) tap and are applied to the P-T limits. The hot leg (wide range) tap pressure corrections are presented below in Table 5.

Table 5: Limiting Location Corrections Factors for Pressure Temperature 70-100 101-199 200-349 350-499 500-5321 Range, °F Component AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP Beltline 22 (WR) 0/0 90 (WR) 2/0 104 (WR) 2/1 111 2/2 99 2/2 Outlet Nozzle 17 (WR) 0/0 74 (WR) 2/0 74 (WR) 2/0 67 2/0 51 2/1 RVCH 13 (WR) 0/0 70 (WR) N/A N/A N/A The correction factor was used for 601F as well, since the rounded correction factors are found to be bounding The correction factor is used for temperatures above 532°F since the values are bounding for higher temperature 7.0

SUMMARY

OF RESULTS The following is a summary of results for the TMI-l P-T limits at 50.2 EFPY with MUR analysis corrected for location only. No correction due to instrument uncertainty is applied.

Page 12 A

AREVA

AREVA ANP-3102, Rev. 3 7.1 P-T Curves for ISLH Heatup / Cooldown The Pressure-Temperature limits are developed for ISLH test operations. For ISLH heatup, adjusted location specific (i.e. on a per component basis) P-T limits are presented in Table 6. The Tech. Spec. basis P-T limits for ISLH heatup are shown in Table 8. The location adjusted P-T limits for ISLH ramp cooldown are presented in Table 9. The location adjusted P-T limits calculated for ISLH step cooldown are shown in Table 10. The Technical specification (Tech. Spec.) basis P-T limits for ISLH cooldown generated as the limiting allowable pressure at every calculated temperature is shown in Table 11. The adjusted P-T limits for ISLH heatup and cooldown are plotted in Figure 1. A limiting composite curve for Tech. Spec. Basis P-T limits for ISLH is developed, the pressure-temperature data is shown in Table 12 and the curve is plotted in Figure 2. The criticality I limit temperature corresponding to a pressure of 2500 psig can be determined through interpolation of ISLH heatup data in Table 6. As shown in Table 7, the criticality limit temperature is 262.7 'F. The criticality limit curve is shown in Figure 3 along with the normal heatup Tech. Spec. basis P-T limit curve.

Page 13 A AREVA

A ANP-3102, Rev. 3 AREVA Table 6: TMI-1 Adjusted Location Specific P-T Limits for ISLH Heatup Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 60 832 873 907 671 65 833 878 912 811 70 835 892 927 953 75 838 912 947 1095 80 841 934 971 1237 85 841 948 985 1435 90 850 991 1030 1633 95 857 1029 1069 1831 100 863 1071 1113 2029 105 802 1059 1102 2170 110 810 1108 1153 115 819 1162 1210 120 828 1222 1272 125 839 1289 1341 130 851 1363 1418 135 864 1444 1503 140 879 1534 1596 145 895 1634 1700 150 913 1744 1814 155 932 1866 1941 160 954 2001 2080 165 978 2149 2235 170 1005 2314 2405 175 1035 2495 2594 180 1067 2696 2802 185 1103 2918 3033 190 1143 3163 3287 195 1187 3433 3568 200 1222 3732 3878 205 1275 4050 4208 210 1335 4050 4208 215 1400 4050 4208 220 1473 4050 4208 225 1553 4050 4208 230 1642 4050 4208 235 1740 4050 4208 240 1848 4050 4208 245 1967 4050 4208 250 2099 4050 4208 255 2244 4050 4208 260 2405 4050 4208 Page 14 A

AREVA

A ANP-3102, Rev. 3 AREVA Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi (psi) 265 2582 4050 4208 270 2777 4050 4208 275 2993 4050 4208 280 3231 4050 4208 285 3494 4050 4208 290 3785 4050 4208 295 4106 4050 4208 300 4460 4050 4208 305 4788 4050 4208 310 4788 4050 4208 315 4788 4050 4208 320 4787 4050 4208 325 4787 4050 4208 330 4787 4050 4208 335 4786 4050 4208 340 4786 .4050 4208 345 4786 4050 4208 350 4778 4057 4215 355 4778 4057 4215 360 4777 4057 4215 365 4777 4057 4215 370 4776 4057 4215 375 4776 4057 4215 380 4775 4057 4215 385 4775 4057 4215 390 4774 4057 4215 395 4774 4057 4215 400 4773 4057 4215 405 4773 4057 4215 410 4772 4057 4215 415 4772 4057 4215 420 4771 4057 4215 425 4771 4057 4215 430 4771 4057 4215 435 4770 4057 4215 440 4770 4057 4215 445 4770 4057 4215 450 4770 4057 4215 455 4769 4057 4215 460 4769 4057 4215 465 4768 4057 4215 470 4768 4057 4215 475 4766 4057 4215 480 4766 4057 4215 485 4766 4057 4215 Page 15 A

ARE VA

A ANP-3102, Rev. 3 AREVA Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (4F) (psi) (psi) (psi) (psi) 490 4765 4057 4215 495 4765 4057 4215 500 4776 4073 4231 505 4776 4073 4231 510 4775 4073 4231 515 4775 4073 4231 520 4774 4073 4231 525 4773 4073 4231 530 4773 4073 4231 535 4772 4073 4231 540 4772 4073 4231 545 4772 4073 4231 550 4771 4073 4231 555 4771 4073 4231 560 4770 4073 4231 565 4769 4073 4231 570 4769 4073 4231 Table 7: TMI-1 Criticality Limit Temperature Determination Criticality Limit Temp. at 500 psig Pressure Temp.

(psig) (OF) 2405 260 2582 265 Interpolating:

2500 262.7 Page 16 A

AREVA

A ANP-3102, Rev. 3 AREVA Table 8: TMI-1 Tech. Spec. Basis P-T Limits for ISLH Heatup Governing Fluid Adjusted Temp. Pressure (OF)

(psi) 60 671 65 802 70 802 75 802 80 802 85 802 90 802 95 802 100 802 105 802 110 810 115 819 120 828 125 839 130 851 135 864 140 879 145 895 150 913 155 932 160 954 165 978 170 1005 175 1035 180 1067 185 1103 190 1143 195 1187 200 1222 205 1275 210 1335 215 1400 220 1473 225 1553 230 1642 235 1740 240 1848 245 1967 250 2099 255 2244 260 2405 Page 17 A

AREVA

A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi) 265 2582 270 2777 275 2993 280 3231 285 3494 290 3785 295 4050 300 4050 305 4050 310 4050 315 4050 320 4050 325 4050 330 4050 335 4050 340 4050 345 4050 350 4057 355 4057 360 4057 365 4057 370 4057 375 4057 380 4057 385 4057 390 4057 395 4057 400 4057 405 4057 410 4057 415 4057 420 4057 425 4057 430 4057 435 4057 440 4057 445 4057 450 4057 455 4057 460 4057 465 4057 470 4057 475 4057 480 4057 485 4057 Page 18 A

AR EVA

A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi) 490 4057 495 4057 500 4073 505 4073 510 4073 515 4073 520 4073 525 4073 530 4073 535 4073 540 4073 545 4073 550 4073 555 4073 560 4073 565 4073 570 4073 Page 19 A AREVA

A ANP-3102, Rev. 3 AREVA Table 9: TMI-1 Adjusted Location Specific P-T Limits for ISLH Ramp Cooldown Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 70 733 937 974 953 75 742 992 1031 1095 80 753 1041 1081 1237 85 765 1094 1137 1435 90 780 1154 1199 1633 95 786 1219 1267 1831 105 724 1295 1347 2170 110 727 1361 1416 115 743 1501 1562 120 759 1609 1674 125 776 1728 1798 130 795 1860 1935 135 816 2006 2086 140 840 2167 2254 145 866 2346 2439 150 894 2542 2643 155 926 2760 2869 160 961 3001 3119 165 999 3266 3395 170 1042 3560 3700 175 1089 3772 3919 180 1141 3761 3908 185 1199 3748 3895 190 1263 3733 3879 195 1334 3716 3862 200 1397 3696 3841 205 1469 3674 3818 210 1549 3646 3789 215 1638 3616 3757 220 1735 3581 3721 225 1844 3540 3679 230 1963 3492 3629 235 2066 3395 3528 240 2193 3462 3598 245 2402 3405 3538 250 2580 3342 3473 255 2777 3293 3423 260 2995 3295 3424 265 3235 3296 3426 270 3501 3298 3428 275 3795 3300 3430 Page 20 A

AR EVA

A ANP-3102, Rev. 3 AREVA Allowable Pressures Limiting Outlet Inlet Closure Fluid Beitline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 280 4119 3302 3432 285 4308 3304 3434 290 4308 3307 3436 295 4307 3309 3439 300 4306 3312 3442 305 4306 3315 3445 310 4305 3318 3448 315 4305 3323 3454 320 4305 3326 3457 325 4304 3330 3461 330 4304 3334 3465 335 4304 3338 3469 340 4304 3342 3473 345 4304 3347 3478 350 4297 3358 3490 355 4298 3363 3495 360 4298 3369 3501 365 4298 3375 3507 370 4298 3378 3511 375 4299 3385 3518 380 4299 3392 3525 385 4300 3399 3533 390 4301 3407 3541 395 4302 3415 3549 400 4304 3424 3558 405 4304 3433 3568 410 4306 3442 3577 415 4308 3452 3588 420 4311 3463 3598 425 4314 3474 3610 430 4318 3485 3622 435 4322 3496 3633 440 4326 3509 3646 445 4331 3522 3660 450 4337 3536 3674 455 4343 3550 3689 460 4349 3565 3705 465 4356 3581 3721 470 4364 3597 3738 475 4373 3614 3756 480 4383 3632 3774 485 4393 3651 3793 490 4405 3670 3814 495 4418 3690 3834 500 4444 3727 3872 Page 21 A

ARE VA

A ANP-3102, Rev. 3 AREVA Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 505 4459 3749 3895 510 4476 3769 3916 515 4494 3793 3941 520 4513 3818 3966 525 4533 3843 3993 530 4556 3870 4020 535 4582 3897 4049 540 4609 3925 4077 545 4638 3953 4107 550 4670 3982 4137 555 4703 4010 4166 560 4738 4037 4194 565 4772 4060 4218 570 4793 4072 4231 Page 22 A

AR EVA

A ANP-3102, Rev. 3 AREVA Table 10: TMI-1 Adjusted Location Specific P-T Limits for ISLH Step Cooldown Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (F) (psi) (psi) (psi) (psi) 70 766 910 945 953 80 781 1038 1078 1237 85 788 1094 1137 1435 100 813 1292 1342 2029 105 757 1324 1377 2170 115 780 1501 1562 130 828 1860 1935 145 893 2346 2439 160 980 3001 3119 175 1098 3811 3960 190 1258 3772 3920 205 1464 3712 3858 220 1735 3619 3761 235 2050 3435 3570 240 2241 3501 3638 255 2777 3314 3444 270 3501 3318 3448 285 4347 3323 3454 300 4345 3330 3461 315 4343 3338 3470 330 4343 3351 3482 345 4342 3362 3495 360 4336 3383 3516 375 4336 3398 3531 390 4337 3418 3552 405 4341 3442 3577 420 4345 3470 3606 435 4353 3502 3639 450 4366 3538 3676 465 4382 3580 3720 480 4405 3628 3770 495 4436 3682 3826 510 4487 3759 3906 525 4539 3827 3976 540 4605 3905 4057 555 4690 3989 4144 Page 23 A

AREVA

A AREVA ANP-3102, Rev. 3 Table 11: TMI-1 Tech Spec. Basis P-T Limits for ISLH Cooldown Governing Fluid Adjusted Temp. Pressure (OF) (psi) 70 724 75 724 80 724 85 724 90 724 95 724 105 724 110 727 115 743 120 759 125 776 130 795 135 816 140 840 145 866 150 894 155 926 160 961 165 999 170 1042 175 1089 180 1141 185 1199 190 1258 195 1334 200 1397 205 1464 210 1549 215 1638 220 1735 225 1844 230 1963 235 2050 240 2193 245 2402 250 2580 255 2777 260 2995 265 3235 270 3298 275 3300 280 3302 285 3304 Page 24 A AREVA

AR ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi) 290 3307 295 3309 300 3312 305 3315 310 3318 315 3323 320 3326 325 3330 330 3334 335 3338 340 3342 345 3347 350 3358 355 3363 360 3369 365 3375 370 3378 375 3385 380 3392 385 3399 390 3407 395 3415 400 3424 405 3433 410 3442 415 3452 420 3463 425 3474 430 3485 435 3496 440 3509 445 3522 450 3536 455 3550 460 3565 465 3580 470 3597 475 3614 480 3628 485 3651 490 3670 495 3682 500 3727 505 3749 510 3759 Page 25 A

A R EVA

A ANP-3102, Rev. 3 AREVA Governing Fluid Adjusted Temp. Pressure (OF) (psi) 515 3793 520 3818 525 3827 530 3870 535 3897 540 3905 545 3953 550 3982 555 3989 560 4037 565 4060 570 4072 Page 26 A

AR EVA

A ANP-3102, Rev. 3 AREVA Table 12: TMI-1 Tech Spec. Basis P-T Limits for ISLH Composite Curve Goveming Fluid Adjusted Temp. Pressure

('F) (psi) 60 671 65 724 70 724 75 724 80 724 85 724 90 724 95 724 100 724 105 724 110 727 115 743 120 759 125 776 130 795 135 816 140 840 145 866 150 894 155 926 160 954 165 978 170 1005 175 1035 180 1067 185 1103 190 1143 195 1187 200 1222 205 1275 210 1335 215 1400 220 1473 225 1553 230 1642 235 1740 240 1848 245 1967 250 2099 255 2244 260 2405 265 2582 Page 27 A

AREVA

A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi) 270 2777 275 2993 280 3231 285 3304 290 3307 295 3309 300 3312 305 3315 310 3318 315 3323 320 3326 325 3330 330 3334 335 3338 340 3342 345 3347 350 3358 355 3363 360 3369 365 3375 370 3378 375 3385 380 3392 385 3399 390 3407 395 3415 400 3424 405 3433 410 3442 415 3452 420 3463 425 3474 430 3485 435 3496 440 3509 445 3522 450 3536 455 3550 460 3565 465 3580 470 3597 475 3614 480 3628 485 3651 490 3670 495 3682 Page 28 A

A R EVA

A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi) 500 3727 505 3749 510 3759 515 3793 520 3818 525 3827 530 3870 535 3897 540 3905 545 3953 550 3982 555 3989 560 4037 565 4060 570 4072 Page 29 A

AR EVA

A ANP-3102, Rev. 3 AREVA Figure 1: TMI-1 Adjusted P-T Limits for ISLH Heatup and Cooldown 2400 2200 2000

.2- 1800 U'

G1600 (A1400 U)

I- 1200 1000 S800 4OO 46000 100 200 0

0 50 100 150 200 250 300 350 400 450 500 Indicated RCS Inlet Temperature, OF Page 30 A

AREVA

A ANP-3102, Rev. 3 AREVA Figure 2: TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve) 2400 2200 2000

.- 1800 G

0.

01600 01400 ID.

a.

U) 1200 1000 j 800 600 400 200 0

0 50 100 150 200 250 300 350 400 450 500 Indicated RCS InletTemperature, IF Page 31 A

AREVA

A ANP-3102, Rev. 3 AREVA 7.2 P-T Curves for Normal Heatup / Cooldown The Pressure-Temperature limits are developed for both normal heatup and cooldown operations. For heatup, location specific adjusted P-T limits are presented in Table 13. The Tech. Spec. basis P-T limits for normal heatup are shown in Table 14. The location specific adjusted P-T limits for ramp cooldown are presented in Table 15. The location adjusted P-T limits calculated for normal step cooldown are shown Table 16. The Technical specification (Tech. Spec.) basis P-T limits for cooldown generated as the limiting pressure at every calculated temperature is shown in Table 17. The Tech. Spec. basis P-T limits for heatup are plotted in Figure 3 and the Tech. Spec. basis cooldown P-T limits are plotted in Figure 4.

Page 32 A

AR EVA

A ANP-3102, Rev. 3 AREVA Table 13: TMI-1 Adjusted Location Specific P-T Limits for Normal Heatup Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 60 618 650 676 612 65 619 654 680 612 70 621 665 691 612 75 623 679 706 612 80 626 696 724 612 85 629 716 744 761 90 632 738 767 910 90 632 738 767 910 90 632 739 768 910 95 637 768 798 1058 100 642 799 830 1207 101 575 749 780 1180 105 579 776 808 1360 110 585 813 847 1585 115 592 853 889 1810 120 599 898 936 2035 123 604 928 967 2170 125 607 948 988 130 616 1004 1045 135 626 1065 1108 140 637 1132 1179 145 649 1207 1256 150 662 1290 1342 155 677 1381 1437 160 693 1482 1542 165 711 1593 1658 170 731 1717 1786 175 753 1853 1927 180 778 2003 2083 185 805 2170 2256 190 835 2353 2447 195 868 2556 2657 200 890 2780 2890 205 931 3019 3138 210 975 3019 3138 215 1024 3019 3138 220 1079 3019 3138 225 1139 3019 3138 230 1205 3019 3138 235 1279 3019 3138 240 1360 3019 3138 Page 33 A

AREVA

A ANP-3102, Rev. 3 AREVA Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 245 1449 3019 3138 250 1548 3019 3138 255 1657 3019 3138 260 1777 3019 3138 265 1910 3019 3138 270 2057 3019 3138 275 2219 3019 3138 280 2398 3019 3138 285 2595 3019 3138 290. 2813 3019 3138 295 3053 3019 3138 300 3319 3019 3138 305 3565 3019 3138 310 3565 3019 3138 315 3565 3019 3138 320 3564 3019 3138 325 3564 3019 3138 330 3564 3019 3138 335 3564 3019 3138 340 3563 3019 3138 345 3563 3019 3138 350 3556 3026 3145 355 3556 3026 3145 360 3555 3026 3145 365 3555 3026 3145 370 3555 3026 3145 375 3554 3026 3145 380 3554 3026 3145 385 3553 3026 3145 390 3553 3026 3145 395 3553 3026 3145 400 3552 3026 3145 405 3552 3026 3145 410 3551 3026 3145 415 3551 3026 3145 420 3551 3026 3145 425 3551 3026 3145 430 3550 3026 3145 435 3550 3026 3145 440 3550 3026 3145 445 3550 3026 3145 450 3549 3026 3145 455 3549 3026 3145 460 3549 3026 3145 465 3548 3026 3145 Page 34 A AREVA

A ANP-3102, Rev. 3 AREVA Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 470 3548 3026 3145 475 3547 3026 3145 480 3547 3026 3145 485 3546 3026 3145 490 3546 3026 3145 495 3546 3026 3145 500 3558 3042 3161 505 3557 3042 3161 510 3557 3042 3161 515 3556 3042 3161 520 3556 3042 3161 525 3555 3042 3161 530 3555 3042 3161 535 3555 3042 3161 540 3554 3042 3161 545 3554 3042 3161 550 3554 3042 3161 555 3553 3042 3161 560 3553 3042 3161 565 3552 3042 3161 570 3552 3042 3161 Page 35 A

AREVA

AREVA ANP-3102, Rev. 3 Table 14: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup Governing Fluid Adjusted Temp. Pressure (OF) (psi) 60 575 65 575 70 575 75 575 80 575 85 575 90 575 90 575 90 575 95 575 100 575 101 575 105 579 110 585 115 592 120 599 123 604 125 607 130 616 135 626 140 637 145 649 150 662 155 677 160 693 165 711 170 731 175 753 180 778 185 805 190 835 195 868 200 890 205 931 210 975 215 1024 220 1079 225 1139 230 1205 235 1279 240 1360 245 1449 250 1548 Page 36 A AR EVA

A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi) 255 1657 260 1777 265 1910 270 2057 275 2219 280 2398 285 2595 290 2813 295 3019 300 3019 305 3019 310 3019 315 3019 320 3019 325 3019 330 3019 335 3019 340 3019 345 3019 350 3026 355 3026 360 3026 365 3026 370 3026 375 3026 380 3026 385 3026 390 3026 395 3026 400 3026 405 3026 410 3026 415 3026 420 3026 425 3026 430 3026 435 3026 440 3026 445 3026 450 3026 455 3026 460 3026 465 3026 470 3026 475 3026 Page 37 A

AR EVA

A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi) 480 3026 485 3026 490 3026 495 3026 500 3042 505 3042 510 3042 515 3042 520 3042 525 3042 530 3042 535 3042 540 3042 545 3042 550 3042 555 3042 560 3042 Page 38 A

A R EVA

A ANP-3102, Rev. 3 AREVA Table 15: TMI-1 Adjusted Location Specific P-T Limits for Normal Ramp Cooldown Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 70 545 699 726 612 75 551 740 769 612 80 559 776 807 612 85 568 817 849 761 90 579 861 895 910 95 584 910 946 1058 101 519 913 951 1180 110 523 1002 1044 1585 115 535 1107 1153 1810 120 547 1188 1237 2035 123 555 1242 1293 2170 125 560 1278 1330 130 574 1377 1433 135 590 1486 1546 140 607 1607 1672 145 627 1741 1810 150 648 1888 1964 155 672 2052 2133 160 698 2232 2321 165 727 2431 2528 170 759 2652 2756 175 794 2810 2921 180 834 2802 2912 185 877 2792 2902 190 925 2781 2891 195 978 2768 2878 200 1022 2754 2862 205 1076 2737 2845 210 1136 2716 2823 215 1202 2693 2799 220 1276 2667 2772 225 1357 2636 2741 230 1446 2600 2703 235 1524 2527 2627 240 1619 2578 2680 245 1775 2535 2635 250 1909 2488 2586 255 2057 2451 2548 260 2220 2453 2550 265 2400 2454 2551 270 2600 2455 2552 275 2820 2456 2554 280 3063 2458 2555 Page 39 A

AREVA

A ANP-3102, Rev. 3 AREVA Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 285 3205 2460 2557 290 3205 2461 2559 295 3204 2463 2561 300 3204 2465 2563 305 3203 2468 2565 310 3203 2470 2568 315 3203 2474 2572 320 3202 2476 2574 325 3202 2479 2577 330 3202 2482 2580 335 3202 2485 2583 340 3202 2488 2586 345 3202 2491 2590 350 3195 2502 2601 355 3196 2506 2605 360 3196 2510 2609 365 3196 2514 2613 370 3196 2517 2616 375 3196 2522 2621 380 3197 2527 2627 385 3197 2533 2633 390 3198 2539 2639 395 3199 2545 2645 400 3200 2551 2652 405 3200 2558 2659 410 3202 2565 2666 415 3203 2573 2674 420 3205 2580 2682 425 3208 2589 2691 430 3210 2597 2699 435 3214 2606 2708 440 3217 2615 2718 445 3221 2625 2728 450 3225 2635 2739 455 3229 2646 2750 460 3234 2657 2762 465 3239 2669 2774 470 3245 2681 2787 475 3252 2694 2800 480 3259 2707 2814 485 3267 2721 2828 490 3276 2736 2843 495 3286 2751 2859 500 3308 2783 2891 505 3320 2799 2908 Page 40 A

AREVA

A ANP-3102, Rev. 3 AREVA Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi) 510 3332 2814 2924 515 3346 2832 2943 520 3360 2850 2962 525 3375 2870 2982 530 3392 2889 3002 535 3411 2910 3024 540 3432 2931 3045 545 3454 2952 3067 550 3478 2973 3090 555 3503 2995 3112 560 3529 3015 3133 565 3554 3032 3151 Page 41 A

AREVA

A ANP-3102, Rev. 3 AREVA Table 16: TMI-1 Adjusted Location Specific P-T Limits for Normal Step Cooldown Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (F) (psi) (psi) (psi) (psi) 70 569 678 705 612 80 580 774 804 612 85 586 817 849 761 100 604 965 1002 1207 101 538 921 959 1180 115 562 1107 1153 1810 123 581 1251 1302 2170 130 598 1377 1433 145 647 1741 1810 160 713 2232 2321 175 801 2839 2951 190 921 2811 2921 205 1072 2766 2875 220 1276 2696 2802 235 1511 2558 2659 240 1655 2607 2710 255 2057 2467 2564 270 2600 2470 2568 285 3234 2474 2572 300 3232 2479 2577 315 3231 2485 2584 330 3231 2495 2593 345 3231 2503 2602 360 3224 2521 2620 375 3224 2531 2631 390 3225 2547 2647 405 3228 2565 2666 420 3231 2586 2687 435 3237 2609 2712 450 3247 2637 2740 465 3259 2668 2773 480 3276 2704 2810 495 3299 2745 2853 510 3341 2807 2917 525 3380 2858 2969 540 3429 2916 3030 555 3493 2979 3096 Page 42 A

AR E VA

A ANP-3102, Rev. 3 AREVA Table 17: Tech Spec. Basis P-T Limits for Normal Limiting Cooldown Governing Fluid Adjusted Temp. Pressure (OF) (psi) 70 519 75 519 80 519 85 519 90 519 95 519 101 519 110 523 115 535 120 547 123 555 125 560 130 574 135 590 140 607 145 627 150 648 155 672 160 698 165 727 170 759 175 794 180 834 185 877 190 921 195 978 200 1022 205 1072 210 1136 215 1202 220 1276 225 1357 230 1446 235 1511 240 1619 245 1775 250 1909 255 2057 260 2220 265 2400 270 2455 Page 43 A

AREVA

AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure

('F) (psi) 275 2456 280 2458 285 2460 290 2461 295 2463 300 2465 305 2468 310 2470 315 2474 320 2476 325 2479 330 2482 335 2485 340 2488 345 2491 350 2502 355 2506 360 2510 365 2514 370 2517 375 2522 380 2527 385 2533 390 2539 395 2545 400 2551 405 2558 410 2565 415 2573 420 2580 425 2589 430 2597 435 2606 440 2615 445 2625 450 2635 455 2646 460 2657 465 2668 470 2681 475 2694 480 2704 485 2721 490 2736 495 2745 Page 44 A

"AR EVA

A ANP-3102, Rev. 3 ARIEVA Governing Fluid Adjusted Temp. Pressure (OF) (psi) 500 2783 505 2799 510 2807 515 2832 520 2850 525 2858 530 2889 535 2910 540 2916 545 2952 550 2973 555 2979 560 3015 565 3032 Page 45 A

AR EVA

A ANP-3102, Rev. 3 AREVA Figure 3: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup and Criticality Limit 2400 2200 2000 -P-T Limits for Normal Heatup 1800 -Criticality Limit P-T Limit Curve 0.

)1600 (A 1400 I.

r/)A14000 1200 U

o)

S800 600 400 200 0

0 50 100 150 200 250 300 350 400 450 500 Indicated RCS InletTemperature, OF Page 46 A

AREVA

A AREVA ANP-3102, Rev. 3 Figure 4: TMI-1 Tech. Spec. Basis P-T Limits for Normal Cooldown 2400 2200 2000

.01800 0.

a1600 U) 1400 S1200

.2 800

- 600 400 200 0

0 50 100 150 200 250 300 350 400 450 500 Indicated RCS Inlet Temperature, OF Page 47 A

AREVA

A AREVA ANP-3102, Rev. 3 8.0

SUMMARY

The Tech. Spec. basis P-T limits for normal operating heatup and cooldown and ISLH operation were reported in the previous section for TMI-1 at 50.2 EFPY with MUR. This section provides summary P-T curves for heatup, cooldown, and ISLH with some key points (P-T limits) indicated on the plot.

Figure 5 shows a summary of the TMI-1 Tech. Spec. basis P-T Limits for normal heatup and criticality limit with some key points noted on the plot. Figure 6 shows a summary of the TMI-1 Tech. Spec. basis P-T Limits for normal cooldown with some key points noted on the plot. Figure 7 shows a summary of TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve).

Page 48 A

AREVA

A ANP-3102, Rev. 3 AREVA Figure 5: TMI-1 Summary Tech Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Heatup and Criticality Limit 2400 2200 2000 1800 0.

01600 W 1400 2!

0.

(/1200 U

-o 1000 u 800 600 400 200 0

0 50 100 150 200 250 300 350 400 450 500 Indicated RCS InletTemperature,OF Page 49 A

AREVA

A AREVA ANP-3102, Rev. 3 Figure 6: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Cooldown 2400 T265, 2400

... - In 2200 2000 250, 1909 1800 1600 240, 1619- -____

U31400 CL i-a- 220, 1276 W 1200 1000

/1 90, 921 u 800

________16069 600 70, 519 13 3 ý 130 '574 400 101. 519 ____ ____ ____

200 0

0 50 100 150 200 250 300 350 400 450 500 Indicated RCS Inlet Temperature, OF Page 50 A

AREVA

A AREVA ANP-3102, Rev. 3 Figure 7: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for ISLH (Composite Curve) 2400 2200 2000 1800 eL

  • 1600 Wfl 1400 h.

(L W* 1200 a) 1000 o 800 600 400 200 0

0 50 100 150 200 250 300 350 400 450 500 Indicated RCS Inlet Temperature, OF Page 51 A

AREVA

A AREVA ANP-3102, Rev. 3 9.0 CERTIFICA71ON Pressure/temperature limits for the TMI-1 reactor vessel have been calculated to satisfy the requirements of 10 CFR Part 50, Appendix 0 using analytical methods and acceptance criteria of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G,1995 Edition.

Samer -L.Malmioud, Principal Engineer Date '

Component Analysis and Fracture Mechanics This report has been reviewed for technical content and accuracy.

Ashok D. Nana, Supervisor Date Component Analysis and Fracture Mechanics Verification of independent review.

c6rPl-'Wirr lkýtw ,I--,

Tim M. W'iger, Manager I Date Component Analysis and Fracture Mechanics This report is approved for release David Skulna, Project Manager Date Page 52 A

AREVA

A AREVA ANP-3102, Rev. 3

10.0 REFERENCES

1. Code of Federal Regulations, Title 10, Part 50 - Domestic Licensing of Production and Utilization Facilities, Appendix G - Fracture Toughness Requirements, Federal Register Vol. 60. No. 243, December 19, 1995.
2. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components," Appendix G, Fracture Toughness Criteria for Protection Against Failure, 1995 Edition with Addenda through 1996.
3. ASTM Standard E 208-81, "Standard Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels," American Society for Testing and Materials, Philadelphia, Pennsylvania.
4. AREVA NP Document BAW-10046A, Rev. 2, "Methods of Compliance with Fracture Toughness and Operational Requirements of 10CFR50, Appendix G," by H. W. Behnke et al., June 1986.
5. AREVA NP Document BAW-2308, Rev. IA and Rev. 2A, "Initial RTNDT of LINDE 80 Weld Materials,"

by K. K. Yoon., August 2005 and March 2008.

6. ASME Boiler and Pressure Vessel Code,Section III, Rules for Construction of Nuclear Power Plant Components, Division 1 - Appendices, 1995 Edition with Addenda through the 1996 Edition.
7. NRC Regulatory Issue Summary 2004-04: Use of Code Cases N-588, N-640, and N-641 in developing Pressure-Temperature Operating Limits, Dated April 5, 2004.
8. Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity, Third Edition, McGraw-Hill Book Company, 1970.
9. PVRC Ad Hoc Group on Toughness Requirements, "PVRC Recommendations on Toughness Requirements for Ferritic Materials," Bulletin No. 175, Welding Research Council, August 1972.
10. U. S. Nuclear Regulatory Commission, "RadiationEmbrittlement of Reactor Vessel Materials,"

Regulatory Guide 1.99, Revision 2, May 1988.

Page 53 A

AR EVA