ML17156A688: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:PL-NF-87-001-AB)z~~~PennsylvaniaPower8LightCompany88072S0374880719PDRAGQCK05000387'*-,PPDC IIIgE~4  
{{#Wiki_filter:PL-NF-87-001-A B)z~~~Pennsylvania Power8LightCompany88072S0374 880719PDRAGQCK05000387'*-,PPDC IIIgE~4  
~Cgp,R~ECy(Wp+,0ypC~I~It)(0"~3Vl30/~UNITEDSTATESNUCLEARREGULATORYCOMMISSIONWASHINGTON,O.C.20555April28'988DocketNos.50-387/388Nr.HaroldW.KeiserSeniorVicePresident-NuclearPennsylvaniaPowerandLightCdIIpany2NorthNinthStreetAllentown,Pennsylvania18101
~Cgp,R~ECy(Wp+,0ypC~I~It)(0"~3Vl30/~UNITEDSTATESNUCLEARREGULATORY COMMISSION WASHINGTON, O.C.20555April28'988DocketNos.50-387/388 Nr.HaroldW.KeiserSeniorVicePresident-Nuclear Pennsylvania PowerandLightCdIIpany2NorthNinthStreetAllentown,Pennsylvania18101


==DearMr.Keiser:==
==DearMr.Keiser:==


==SUBJECT:==
==SUBJECT:==
TOPICALPEPORTPL-NF-87-001,"OUALIFICATIONOFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSIS"(TACNOS.65171AND65172)RE:SUSQUEHANNASTEAMELECTRICSTATION,UNITS1AND2ThestaffhascompletedactiononyourMarch31,1987requestforreviewofTopicalReportPL-NF-87-001relatedtoBWRSteady-StateCorePhysicsMethods.Ourconsultant,BrookhavenNationalLaboratory(BNL)reviewedyourreportandprovidedaTechnicalEvaluationPeport(TER)outliningitsreviewsandconclusions.ThestaffhasreviewedtheRNLTERandhaspreparedtheenclosedsafetyevaluation.Basednnourreview,wehaveconcludedthatthesub.jectTopicalReportisacceptableforthepurposeoflicersingactionsonSusquehannaSteamElectricStation,Units1and2.Sincerely,
TOPICALPEPORTPL-NF-87-001, "OUALIFICATION OFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSIS" (TACNOS.65171AND65172)RE:SUSQUEHANNA STEAMELECTRICSTATION,UNITS1AND2Thestaffhascompleted actiononyourMarch31,1987requestforreviewofTopicalReportPL-NF-87-001 relatedtoBWRSteady-State CorePhysicsMethods.Ourconsultant, Brookhaven NationalLaboratory (BNL)reviewedyourreportandprovidedaTechnical Evaluation Peport(TER)outlining itsreviewsandconclusions.
ThestaffhasreviewedtheRNLTERandhaspreparedtheenclosedsafetyevaluation.
Basednnourreview,wehaveconcluded thatthesub.jectTopicalReportisacceptable forthepurposeoflicersingactionsonSusquehanna SteamElectricStation,Units1and2.Sincerely,


==Enclosure:==
==Enclosure:==
SafetyEvaluationccw/enclosureSeenextpageWIa1terR.Butler,DirectorPro.',ectDirectorate.I-2DivisionofReactorPro,iectsI/IIOfficeofNuclearPeactorRegulation\
 
Mr.HaroldW.Keiser'ennsylvaniaPower5LightCompanySusquehannaSteamElectricStationUnits152CC:JaySilberg,Fsq.Shaw,Pittman,PottsATrowbridge2300NStreetN.W.Washington,D.C.20037BryanA.Snapp,Esq.AssistantCorporateCounselPennsylvaniaPower5LightCompany2NorthNinthStreetAllentown,Pennsylvania18101Mr.E.A.HeckmanLicensingGroupSupervisorPennsylvania'Power8LightCompany2NorthNinthStreetAllentown,Pennsylvania18101Mr.F.I.YoungResidentInspectorP.O.Box52Shickshinny,Pennsylvania18655Mr.R.J.BenichServicesProjectManagerGeneralElectricCompany1000FirstAvenueKingofPrussia,Pennsylvania19406Mr.ThomasM.Gerusky,DirectorBureauofRadiationPrntectionResourcesCommonwealthofPennsylvaniaP.0.Box2063Harrisburg,Pennsylvania17120Mr.JesseC.Tilton,III'AlleghenyElec.Coorperative,Inc.212LocustStreetP.O.Box1266Harrisburg,Pennsylvania17108-1266Mr.W.H.Hirst,ManagerJointGenerationProjectsDepartmentAtlanticElectricP.O.Box15001199BlackHorsePikePleasantville,Newlersey08232Regiona1'dministrator,ReoionIU.S.NuclearRegulatoryCommission475AllendaleRoadKingofPrussia,Pennsylvania19406
SafetyEvaluation ccw/enclosure SeenextpageWIa1terR.Butler,DirectorPro.',ect Directorate.
~p,gREgyIp0y*p%UNITEDSTATESNUCLEARREGULATORYCOMMISSIONWASHINGTON,D.C.20555ENCLOSURESAFETYEVALUATIONBYTHEOFFICEOFNUCLEARREACTORREGllLATIONRELATINGTOLICENSINGTOPICALREPORTPL-NF-87-001,REV.O"UALIFICATIONOFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSIS"PENNSYLVANIAPOWER8ILIGHTCOMPANYSUSUEHANNA,UNITS1AND2DOCKETNOS.50-387AND50-38
I-2DivisionofReactorPro,iects I/IIOfficeofNuclearPeactorRegulation
\
Mr.HaroldW.Keiser'ennsylvania Power5LightCompanySusquehanna SteamElectricStationUnits152CC:JaySilberg,Fsq.Shaw,Pittman,PottsATrowbridge 2300NStreetN.W.Washington, D.C.20037BryanA.Snapp,Esq.Assistant Corporate CounselPennsylvania Power5LightCompany2NorthNinthStreetAllentown, Pennsylvania18101Mr.E.A.HeckmanLicensing GroupSupervisor Pennsylvania'Power 8LightCompany2NorthNinthStreetAllentown, Pennsylvania 18101Mr.F.I.YoungResidentInspector P.O.Box52Shickshinny, Pennsylvania 18655Mr.R.J.BenichServicesProjectManagerGeneralElectricCompany1000FirstAvenueKingofPrussia,Pennsylvania 19406Mr.ThomasM.Gerusky,DirectorBureauofRadiation Prntection Resources Commonwealth ofPennsylvania P.0.Box2063Harrisburg, Pennsylvania 17120Mr.JesseC.Tilton,III'Allegheny Elec.Coorperative, Inc.212LocustStreetP.O.Box1266Harrisburg, Pennsylvania 17108-1266 Mr.W.H.Hirst,ManagerJointGeneration ProjectsDepartment AtlanticElectricP.O.Box15001199BlackHorsePikePleasantville, Newlersey08232Regiona1'dministrator,ReoionIU.S.NuclearRegulatory Commission 475Allendale RoadKingofPrussia,Pennsylvania 19406
~p,gREgyIp0y*p%UNITEDSTATESNUCLEARREGULATORY COMMISSION WASHINGTON, D.C.20555ENCLOSURE SAFETYEVALUATION BYTHEOFFICEOFNUCLEARREACTORREGllLATION RELATINGTOLICENSING TOPICALREPORTPL-NF-87-001, REV.O"UALIFICATION OFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSIS" PENNSYLVANIA POWER8ILIGHTCOMPANYSUSUEHANNA,UNITS1AND2DOCKETNOS.50-387AND50-38


==81.0INTRODUCTION==
==81.0INTRODUCTION==
ByletterdatedMarch31,1987,thePennsylvaniaPowerandLightCompany(thelicensee)requestedapprovalofTopicalReportPL-NF-87-001,Rev.0,forthepurposeofitsuseinlicensingactionsfortheSusquehannaSteamElectricStation(SSES)Units1and,2.~ThereportdescribesthequaliIicationoftheCPM-2latticephysicsandSIMULATE-Ethree-dimensionalnodalcoresimulatorprogramsforthesteadystatedesignandanalysisofboilingwaterreactors(BWRs).TheseprogramsarepartoftheAdvancedRecycleMethodologyProgram(ARMP)developedbytheElectricPowerResearchInstitute(EPRI)forsteadystateanalysesoflightwaterreactors.BriefdescriptionsoftheCPM-2andSIMULATE-EprogramsarepresentedalongwithcomparisonstomeasurementsfromoperatingBWRsandexperimentalcriticals.TheresultsofselectedPD07calculationsforuniformlatticecriticalsandsinglefuelbundlesarealsopresented.Theseprogramsandassociatedmethodologiesareusedbythelicenseeforplantoperationssupport,variousfuelcycleandsafetyrelatedcalculations,andtoprovidenecessaryneutronicsinputdatatotransient'analysesforthetwounitSusquehannaSteamElectricStation.2.0SUMMARYOFTOPICALREPORTTheSIMULATE-Ethree-dimensionalcodeisusedbythelicenseetomodelthecoupledneutronicandthermal-hydraulicbehavioroftheSusquehannaUnit1and2BWR cores.TherequirednucleardataaregeneratedbytheCPN-2programwhichmodelstheBWRfuelbundleanditsenvironment(by-passchannel,cruciformcontrolrod,etc.)intwo-dimensions.2.1DescritionoftheCPN-2ProramCPN-2isamodifiedversionoftheCPM(CollisionProbabilityModule)codedevelopedinSwedenbyABAtomenergi/StudsvikfortheanalysisofPWRandBWRfuelassemblies.Themodelingcombinesfinegroupspectrumcalculationsforsub-regionsoftheassembly(e.g.fuelpin-cells),withamultigrouptransportcalculationforapartiallyhomogenized,hetrogeneousassemblyintwo-dimensional(xy)geometry.ThecodeisdistributedbyEPRI,ardisidenticaltotheoriginalCPNexceptfortheinputmodulewhichhasbeenimprovedtomaketheprogrammore"userfriendly."Sincethesemodifications('aswellasthosemadebythelicenseeintheirimplementationanduseofCPM-2)didnotaffecttheneutronicscalculations,alltheoriginalbenchmarkingofCPNbyEPP1/StudsvikisapplicabletoCPN-2aswell.ThecalculationalsequenceforatypicalBWRassemblyinvolvesthreebasicsteps,withthespatialandenergydetailbecomingsuccessivelycoarseraslargerregionsoftheassemblyareconsidered.Thesestepsaretermedthemicro-group,macro-group,andtwo-dimensionalassemblycalculations.Cruciformcontrolrodsaretreatedviaaspecialsubroutine,andthedepletionofgado-liniabearingfuelpinsrequiresanauxiliarycalculationwiththeNiCBURNcode.2.2CPN-2uglificationTheaccuracy/adequacyofvariousaspectsofCPM-2anditsmodels(e.g.nucleardata,treatmentofcontrolrodsandgadolinia)isdemonstratedbycomparisonstomeasuredresultsfrompowerreactorsandexperimentalconfigurations.Comparisonsofeigenvalues(kff),pinpower/fissionratedistributions,and'eff'sotopicconcentrationsversusburnuparepresented.Someoftheseresultswere  generatedbythelicensee,whileothersweretakenfromtheEPRI/StudsvikbenchmarkingoftheoriginalversionofCPM.Pin-cellcalculationssimulating14roomtemperatureuniformlatticecriticalexperimentswereperformedbyPPP~LtoassesstheaccuracyoftheCPM-2reactivitycalculation(basedonthemeasuredbuckling).EightoftheconfigurationscontainedU02fuelandthefuelfortheremaining6contained2.0weightpercentPuO>innaturaluranium.CPM-2slightlyunderpredicted(byabout0.5>k)thekfffortheU02criticals,andoverpredictedtheeffmultiplicationfactorfortheremainingcriticals,resultinginanaveraqekffofI.COOSwithastandarddeviationof0.0072consideringallcriticals.effTheaccuracyoftheCPN-2calculationoftherod-wisepowerdistributionwasevaluatedbycomparisonstothegamma-scanmeasurementsperformedatsquadCitiesUnit1attheendofCycle2.Two7x7M02andthreeU02bundles(one8x8andtwo7x7)wereconsideredinthecomparisons.Burnupandvoidoperatinghistorydatawereobtainedforeachbundle-elevationfromaSIMULATE-Esimulation.ThesedatawereusedinCPN-2bundlecalculationstoarriveattheCPM-2/SIMULATE-Epredictedstatepointscorrespondingtothemeasureddata.Thecomparisonsshowedgenerallygoodagreementbetweenmeasurementandprediction(average=4.0l)withCPM-2tendingtooverpredictthepeakrodpower.TheresultsoftheEPRI/StudsvikbenchmarkingoftheoriginalCPMcodetouniformlatticecriticals,smallcorecriticalexperimentsperformedattheKRITZfacility,and-measuredconcentrationsofuraniumandplutoniumisotopesfromYankeeandSaxtonspentfuelarealsopresented.ThesecomparisonsshowgenerallyreasonableagreementbetweenCPMpredictedandmeasuredquantities.,".3DescritionofSINULATE-ETheEPRIdistributedSIMULATE-Ethree-dimensionalcoupledneutronics/thermal-hydraulicscoresimulatorprogramisusedbyPPALintheirsteadystatecoreanalyses.Thethermal-hydraulicscalculationsuseanEPRIdevelopedvoidcorrelationandtheFIBMRmethodologydevelopedbyYankeeAtomicElectric Company.Themethodologyemployedfortheneutronicscalculationsmaybeselectedbytheuserfromseveralavailableoptions;PPSLusestheModifiedCoarseMeshDiffusionTheory(PRESTO)option.Two-groupmacroscopiccrosssectionsforeachfueltypearedeterm'.nedbyCPM-2asafunctionoffuelexposure,voidhistory,moderator,fuelandcontrolconditions,andxenonconcentration.AfterprocessingbyNORGE-B2,theyareinputtoSIMULATE-Ealongwithradialandaxialalbedosappliedatthecore-reflectorinterfaces.Normal'izationofthemodeltomatchplantoperatingdataisperformedviaadjustmentofseveralinputdataparameters.Separatemndelsarecreatedathotoperatingandcoldconditions.Thelicenseehasmadeanumberofchargestothecode,includingtheabilitytocalculatetheCriticalPowerRatio(basedontheAdvancedNuclearFuelsCorporation,formerlyEXXONNuclear,XN-3criticalheatfluxcorrelation),andlinearheatgenerationrateandaverageplanarheatgenerationratethermallimitsevaluations.Thesechangeshavenotresultedinanychangestothebasicneutronicsorthermal-hydraulicscalculations.2.4.SIMULATE-E(}uglificationThequalificationoftheSIMULATE-Eprogramisbasedonsimulationsofthefirsttwocyclesof(juadCitiesUnit-1(gC-1)andPeachBottomUnit-2(PB-2),andofthefirsttwo-plusandone-pluscycles(i.e.,fromBOLtoapproximatelyearly1987)ofSusquehannaUnits1and2,respectively.ComparisonsofSIMULATE-Epredictedvaluesweremadetohotandcoldmultiplicationfactors(kff)andpowerandflowdistributions.TheaccuracyofthepredictedpowerdistributionswasevaluatedbasedoncomparisonstoTIPdetectorreadings,andtoresultsfromgamma-scans.Powerandflowdistributionswerecomparedto.resultsfrom.theon-linecoremonitoringsystem.ThekffcomparisonsfortheSusquehannaunitsconsidered257hotoperatingconditionsteady-statestatepoints,and39(3localand36in-sequence)coldcriticalstatepoints.ThesecomparisonsindicatedthattheabilityofthePPSLSIMULATE-Ehotandcoldmodelstopredictkffdependsonthecoreaverageeffexposureandthegadolinialoading.Thereisanearlyconstantbiasbetweenthehotandcoldpredictions,withthehotkffconsistentlylower.Usingthis  data,thelicenseegenerateshotandcoldcycle-dependenttargetcriticalcorekffcurvesforuseinthecorefollow,andshutdownmarginandcontrolrodeffworthanalysesofindividualcycles.ThepowerdistributioncomparisonsutilizedallavailableTIPsetsfrombothSusquehannaunitsandconsiderednodalandaxiallyaveraged(radial)quantities.AsymmetriesinthemeasureddatawerequantifiedbyconsideringsymmetricnodalorradialTIPreadingstoprovideanestimateofthemeasurementuncertaintiesassociatedwitheachTIPset.NodalRMSerrorstendtobeinthe4-6$range,withdifferencesnearthemiddleofcycleandendofcyclepowercoastdowninthe6-95range.TheaveragenodalandradialRMSerrorsconsideringall82TIPsetsare5.74and2.58percent,respectively.Thecorrespondingaverageasymmetriesbasedon44TIPsetsare5.22and2.55percent,respectively.Fourcoreaverageaxialpowerdistributionandthree-bundleflowcomparisonsarealsopresented,consideringonestatepointperSusquehannaunit/cycle.These.comparisonsaremadetodataproducedbytheon-lineCoreMonitoringSystem(CMS)todemonstrateconsistencyoftheresults.(ThebF.processcomputerPlprogramwasusedforthefirstcycleofbothunits,withtheANFPOMERPLEXCMSusedinallsubsequentcycles).ThesecomparisonsshowedgoodagreementbetweentheSIMULATE-EandCYSresults.ComparisonstnmeasureddatafromthefirsttwocyclesofsquadCitiesUnitI(gC-1)werealsoperformed.InadditiontohotreactivityandTIPdatasimilartothatfromtheSusquehannaunits,theOC-Imeasurementsincluded33coldcriticalconfigurations(22local)fromCycle-l,andbundlegammascanmeasurementsfromtheendofcycles(EOC)oneandtwo.ThegC-Ihotcriticalcomparisonsshowedasimilartrendversusexposuretothatobservedearlier;however,therelativelylowgadolinialoadingingC-1resultedintheabsenceofthebowl-shapedgadoliniacomponentinthevariation.Thelargecoldcriticaldatabaseservedtoaugmenttheearlieranalyses.ThegC-1coldcriticalcomparisonswereusedtoconfirmthatthere isnosignificantbiasbetweenSIMULATE-Epredictionsofkf<forin-sequenceeffandlocalcriticalconfigurations.ThegC-Ibasedpowerdistributioncomparisonsconsidered15TIPsetsfromCycleIand13setsfromCycle2,alongwithgammascandatafrom31and89bundlesatEOClandEOC2,respectively.ThenodalandradialRNSdifferencesfromtheTIPcomparisonsareroughlytwiceaslargeasthoseobserved~orthpSusquehannacomparisons.TheEOCIgammascandataconsistedofmeasuringtheaxialpeaktobundleaverageLa-140activitiesandservedtobenchmarktheSIMULATE-Ecalculationoftheaxialpeakingfactor.Theresultingdifferencewas1";(=25)withtheagreementforcontrolledbundlesconsiderablvbetterthanforuncontrolled.TheEOC2gammascar.dataismuchmoreextensiveandpermitscomparisonsofindividualbundleaxialLa-140activitydistributions,aswellasradial,nodalandpeaktoaveragecomparisons.Peripheralandmixedoxidebundleswerenotincludedintheradialandnodalcomparisonsandthetopandbottomsixincheswereeliminatedfromthenodalcorn'parisors.Thepeak-toaveragecomparisonsresultedinanaveraqedierenceo.about0.2~(=1.5f)withamaximumdifferenceofabout4%.Theaveragestandarddeviationfromtheindividualbundlegammascanswas6.3Xwithmorethan85>o<theindividualbundle'sinthe5-8~range.Thestandarddeviationfromtheradialandnodalgammascancomparisonswereabout2'Aand5.5',respectively.Theouot~dmeasurementuncertaintyfortheqammascanswas31,.ThefinalqualificationofSIMULATE-EpresentedinthereportconsistsofpowerdistributioncomoarisonstoTIPmeasurementsanddatafromtheGEPlprocesscomputerforPeachSottomUnit2{PB-2)cycles1and/or2.ThelevelnfagreementwithmeasuredTIPdatafromthesecnmparisonsisreasonableandconsistentwiththatobservedearlier.ThepurposeofthePB-2simulationswastngenerateinputfortheanalysisoftheturbinetriptestsperformedneartheendofCycle2,includinganaccuraterepresentationoftheinitialconditions.Thenon-steadystateoperationthatprecededthesetestsrequiredanaccuratemodelingofnon-equilibriumxenondistributionsandconcentrations.Comparisonsofthepredictedcoreaverageaxialpowerdistributionsjustpriortothe threetests(toppeaked,middlepeakedandslightlybottompeaked)todatafromtheprocesscomputershowedgoodagreement.2.5DescritionofPD7ThegeometryintheCPM-2latticephysicscodeislimitedtorepresentinganindividualfuelassembly.Insomeapplications,however,amultipleassemblycalculationisrequired,andfortheseapplicationsPPSLusesthegeneralpurpose.PD(7code.Theprogramsolvesthefewgroupdiffusion.theoryequationbasedonthefinitedifferencespatialapproximationinone,two,orthreedimensions.Whileuptofiveenergygroupsarepermitted(includingtwooverlapping)thermalenergygroups,thelicenseegenerallyutilizesfourgroupswithasinglethermalgroup.Microscopicormacroscopiccrosssectiondatamaybeemployed;PP8LtypicallyusesmacroscopicdatafromCPM-2andprocessedwiththeCOPHINcode..66II6ThePP5LqualificationofPD(7consistedofanalyzingthesameuriformlatticecriticalsusedinthebenchmarkingofCPM-2,alongwithcomparisonstoCPM-2assemblycalculationsfortypicalcontrolledanduncontrolledBWRfuelbundles.Theuniformlatticecalculationsmodelledthecriticalcoreconfigurationsinone-dimensionalcylindricalgeometrywithanexplicitaccountingoftheradialreflectorandabucllingcorrectiontoaccountforaxialleakage.ReasonableagreementwasobtainedwiththeCPM-Pcalculatedk+fs,0.9972effversus0.9951and1.0076versus1.0144fortheUOandmixedoxidelattices,respectively.ThePD07singlefuelassemblycalculationsmodelledeachpin-cellexplicitly,andusedshieldingfactorsderivedbycomparisontoCPM-2results,forgadoliniabearingfuelpinsandcontrolrods.TwoseparatefuelbundlesfromtheinitialcoreloadingoftheSusquehannaunitswereselectedfnrthe.comparisons.TheresultsshowedgenerallygoodagreementbetweenCPM-2and PD(7forthebundlek'sandrod-wisepowerdistributionswithmaximumerrorsofabout4$and?,.foruncontrolledandcontrolledbundles,respectively.3.0EVALUAITONTheCPM-2andSIMULATE-EprogramsweredevelopedbyEPRIforthesteadystateanalysesofLWRs.Thelicenseeplanstousethesecodesforplantoperationssupport,variousfuelcycleandsafetyrelatedcalculations,andtoprovidenecessaryneutronicsinputdatatotransientanalysesforthetwoBWRunitsattheSusquehannaSteamElectricStation.ThepresentreviewconsideredtheinformationpresentedinthetopicalreportandadditionalinformationprovidedbythelicenseeinaletterdatedFebruary17,1988.ThereviewconsideredthequalificationoftheFIBWRthermal-hydraulicsmethodologyonlyinitsroleasanintegralpartoftheSIMULATE-Eprogram.TheperformanceofFIBWRasastand-alonethermal-hydraulicscode,andthevalidity/applicabilityoftheANFXN-3CHFcorre1ationwereconsideredtobeoutsidethescopeofthisreview.Themethodologies(notincludingthequalificationpresentedinthisreport)embodiedintheCPN-2andSIMULATE-EprogramshavebeenpreviouslyreviewedandfoundacceptableforsteadystatenuclearcoredesignanalysesofplantsotherthanSusquehanna,andarerepresentativeofcurrentpractice.TheprimaryroleofCPN-2withinthePPSLcalculationalsequenceforBWRanalysesistoprovidenucleardata(basicallytwo-groupcrosssections)totheSIMULATE-Ecoresimulatorprogram.ThebenchmarkingofSIMULATE-FviacomparisonstomeasurementsfromoperatingBWRsthereforeservesastheultimate,thoughsomewhatindirect,qualificationofCPM-2.However,PP8LandEPRI/StudsvikhaveperformedanumberofcomparisonstomeasureddatafromexperimentalconfigurationsandoperatingBWRstotestvariousaspectsoftheCPM/CPh1-2neutronicscalculationmethodologyandnucleardata.
 
ComparisonstouniformlatticecoldcriticalsandKRITZsmallcorecriticalsprovideanintegraltestoftheabilityofCPM-24opredictreactivity(multiplicationfactors).Comparisonstomeasuredrod-wisegammascandataforselectedassembliesfromanoperatingBWR,andtomeasuredrod-wisefissionratedistributionsfromKRITZexperiments,serveas.aqualificationofthetreatmentofneutrontransportandotheraspectsofthemodellinginthehiqhlyheterogeneousenvironmentsofrealRWRfuelbundlesandreactorcores.Finally,comparisonsofcalculateduraniumandplutoniumisotopicconcentrationsweremadetodatafromthedestructiveanalysisofspentfuelromtheYankeeandSaxtonreactors.ThelevelofagreementbetweenCPM-2calculatedandmeasuredquantitiesisreasonable,andtypicalofthatobservedwithcurrentlyacceptedmethods.Inaddition,CPM-2tendstooverestimatethelocalpeakingfactorinanassembly,implyingagenerallyconservativepredictionofthelinearheatgenerationrate.ThebenchmarkingoftheSIMULATE-EprogramconsistedofsimulationsofseveralcyclesofoperationofthreeBWRsincludingallavailabledatafromPPAL'sSusquehannaunitsstartingatbeginningofCycle-1(BOCI).Thehotreactivitycomparisonsinvolvedmorethanfiveop~ratingcycles(almost300statepoints)forcorescontainingavarietyofBWRfuelbundledesigns.Thecalculatedhotkffexhibitedabiasrelativetothemeasuredcriticaleffkffwhichwasconsistentinmagnitudewiththatobservedforaccentedeffthree-dimensionalcoresimulatorcodes.Theobservedvariationledtothedevelopmentofacorrelationwhichisabowlshapedfunctionofgadolinialoadingandaroughlylinearfunctionofexposure.This"target"kf<isusedef<topredictthecriticalcorekffforaparticularunit-cycle.effThecoldcriticalcomparisonsconsidered47insequenceand25localconfigurations.Theresultsshowedasimilarvariationinthepredictedcoldcriticalkfftothatobservedforhotconditions;thecoldcriticalkeffeff"target"forusewithSIMULATE-Eisthereforeobtainedbvaddingaconstantbiastothehotcorrelation.Inaddition,theresultsshowednosignificantdifferencesbetweenthekffforlocalandin-sequencecriticals,thereby 10demonstratingtheabilityofSIMULATE-Etoperformshut-downmarginca1culations.ThebenchmarkingoftheSIMULATE-EcalculationofpowerdistributionsconsideredmeasuredTIPdetectorreadingsandgammascans,anddatafromplantcoremonitoringsystems.ThealbedosandotheradiustableparametersweredetermineddurinqmodelnormalizationtooperatingdatafromSusquehannaUnitlCycles1and2,andremainedunchangedforallsubsequentsimulations.Thecomparisonsforthe82TIPsetscoveringmorethanthreecyclesofoperationofthetwoSusquehannaunitsyieldedaveragenodalandradialRMSdifferencesof5.7and2.6percent,respectively.TheestimatederrorsintheTIPmeasurementsweredeterminedbyconsideringsymmetricdetectorreadings,andwereofthesameorder.TheTIPcomparisonsforDuadCitiesandPeachBottomyieldedhigherdifferences,i.e.,nodalandradialRNSerrorsconsideringallTIPsetsofabout10andabout5percent,respectively,forOutedCities,andsomewhatlowerforPeachBottom.hThecomparisonstothesquadCitiesqammascanmeasurementsatEOClandEOC2furtherdemonstratedtheabilityofSIMULATF.-Etocalculatepowerdistributions.Theaxialpeaktoaveragewaspredictedtowithinabout11withastandarddeviationof1-2%,andthestandarddeviationsfromtheradialandnodalcomparisonswereabout2andabout5percent,respectively.Theperipheralbundleswerenotincludedinthesecomparisons,andinadditionthetopandbottomsixincheswerenotconsideredinthenodalcomparisons.Thequoteduncertaintyforthegammascanmeasurementis3.0X.ComparisonsofcoreaverageaxialpowerdistributionstoresultsfromtheAEP1orANFPOl<ERPLEXcoremonitoringsystemsfortheSusquehannaunitsandPeachBottomUnit-2(PB-2)nearEOC2,thoughlimited,showedgoodagreement.ThePB-2comparisonsconsideredtheeffectsofnon-equilibriumxenonandincludedtop,middleandbottompeakedaxialpowerdistributions.ThreebundleflowdistributionsfromtheSusquehannacoremonitoringsystemswerealsocomparedtoresultsgeneratedbySIMULATE-Ewithgenerallygoodagreement.The  powerdistributioncomparisonsofSIMULATE-Etomeasureddatashowedgenerallyreasonableagreementandwereconsistentwith,thelevelsofagreementobservedwithacceptedmethods.ThelargerdifferencesobservedinthePuadCitiesandPeachBottomcomparisonsarepartiallyduetotheSIMULATE-Emodelsnotbeingspecificallynormalizedforthesesimulations.Thegenerallygoodagreement,however,providesreasonableconfidencethatSIMULATE-EcanbeusedforpredictivecalculationsfortheSusquehannaunits.ThelimitedcomparisonsofPD(7toresultsfromuniformlatticecriticalsandCPM-2singleassemblycalculationsshowedreasonableagreement.Thccomparisonswerebasedontheuseof4energygroupcrosssectionsfromCPM-2.Thelicenseenotesthatwhileitdoesnotintendtoperformthree-dimensionalcalculationswithPDg7,itmayusetheprogramforvarioustwo-dimensionalanalysesincludingindependentverificationofcalculations,calculationsofnon-standardconfigurationssuchaspartiallyloadedcores,andinthedevelopmentoffuturemodelimprovementsforSIMULATE-E.AppropriatequalificationbythelicenseeoftheuseofPDg7forconfigurationslargerthanmultiplebundlearraysisrecommended.
ByletterdatedMarch31,1987,thePennsylvania PowerandLightCompany(thelicensee) requested approvalofTopicalReportPL-NF-87-001, Rev.0,forthepurposeofitsuseinlicensing actionsfortheSusquehanna SteamElectricStation(SSES)Units1and,2.~Thereportdescribes thequaliIication oftheCPM-2latticephysicsandSIMULATE-E three-dimensional nodalcoresimulator programsforthesteadystatedesignandanalysisofboilingwaterreactors(BWRs).TheseprogramsarepartoftheAdvancedRecycleMethodology Program(ARMP)developed bytheElectricPowerResearchInstitute (EPRI)forsteadystateanalysesoflightwaterreactors.
Briefdescriptions oftheCPM-2andSIMULATE-E programsarepresented alongwithcomparisons tomeasurements fromoperating BWRsandexperimental criticals.
TheresultsofselectedPD07calculations foruniformlatticecriticals andsinglefuelbundlesarealsopresented.
Theseprogramsandassociated methodologies areusedbythelicenseeforplantoperations support,variousfuelcycleandsafetyrelatedcalculations, andtoprovidenecessary neutronics inputdatatotransient
'analyses forthetwounitSusquehanna SteamElectricStation.2.0SUMMARYOFTOPICALREPORTTheSIMULATE-E three-dimensional codeisusedbythelicenseetomodelthecoupledneutronic andthermal-hydraulic behavioroftheSusquehanna Unit1and2BWR cores.Therequirednucleardataaregenerated bytheCPN-2programwhichmodelstheBWRfuelbundleanditsenvironment (by-passchannel,cruciform controlrod,etc.)intwo-dimensions.
2.1DescritionoftheCPN-2ProramCPN-2isamodifiedversionoftheCPM(Collision Probability Module)codedeveloped inSwedenbyABAtomenergi/Studsvik fortheanalysisofPWRandBWRfuelassemblies.
Themodelingcombinesfinegroupspectrumcalculations forsub-regions oftheassembly(e.g.fuelpin-cells),
withamultigroup transport calculation forapartially homogenized, hetrogeneous assemblyintwo-dimensional (xy)geometry.
Thecodeisdistributed byEPRI,ardisidentical totheoriginalCPNexceptfortheinputmodulewhichhasbeenimprovedtomaketheprogrammore"userfriendly."
Sincethesemodifications
('aswellasthosemadebythelicenseeintheirimplementation anduseofCPM-2)didnotaffecttheneutronics calculations, alltheoriginalbenchmarking ofCPNbyEPP1/Studsvi kisapplicable toCPN-2aswell.Thecalculational sequenceforatypicalBWRassemblyinvolvesthreebasicsteps,withthespatialandenergydetailbecomingsuccessively coarseraslargerregionsoftheassemblyareconsidered.
Thesestepsaretermedthemicro-group, macro-group, andtwo-dimensional assemblycalculations.
Cruciform controlrodsaretreatedviaaspecialsubroutine, andthedepletion ofgado-liniabearingfuelpinsrequiresanauxiliary calculation withtheNiCBURNcode.2.2CPN-2uglification Theaccuracy/adequacy ofvariousaspectsofCPM-2anditsmodels(e.g.nucleardata,treatment ofcontrolrodsandgadolinia) isdemonstrated bycomparisons tomeasuredresultsfrompowerreactorsandexperimental configurations.
Comparisons ofeigenvalues (kff),pinpower/fission ratedistributions, and'eff'sotopicconcentrations versusburnuparepresented.
Someoftheseresultswere  generated bythelicensee, whileothersweretakenfromtheEPRI/Studsvik benchmarking oftheoriginalversionofCPM.Pin-cellcalculations simulating 14roomtemperature uniformlatticecriticalexperiments wereperformed byPPP~LtoassesstheaccuracyoftheCPM-2reactivity calculation (basedonthemeasuredbuckling).
Eightoftheconfigurations contained U02fuelandthefuelfortheremaining 6contained 2.0weightpercentPuO>innaturaluranium.CPM-2slightlyunderpredicted (byabout0.5>k)thekfffortheU02criticals, andoverpredicted theeffmultiplication factorfortheremaining criticals, resulting inanaveraqekffofI.COOSwithastandarddeviation of0.0072considering allcriticals.
effTheaccuracyoftheCPN-2calculation oftherod-wisepowerdistribution wasevaluated bycomparisons tothegamma-scan measurements performed atsquadCitiesUnit1attheendofCycle2.Two7x7M02andthreeU02bundles(one8x8andtwo7x7)wereconsidered inthecomparisons.
Burnupandvoidoperating historydatawereobtainedforeachbundle-elevation fromaSIMULATE-E simulation.
ThesedatawereusedinCPN-2bundlecalculations toarriveattheCPM-2/SIMULATE-E predicted statepoints corresponding tothemeasureddata.Thecomparisons showedgenerally goodagreement betweenmeasurement andprediction (average=4.0l)withCPM-2tendingtooverpredict thepeakrodpower.TheresultsoftheEPRI/Studsvik benchmarking oftheoriginalCPMcodetouniformlatticecriticals, smallcorecriticalexperiments performed attheKRITZfacility, and-measured concentrations ofuraniumandplutonium isotopesfromYankeeandSaxtonspentfuelarealsopresented.
Thesecomparisons showgenerally reasonable agreement betweenCPMpredicted andmeasuredquantities.
,".3DescritionofSINULATE-E TheEPRIdistributed SIMULATE-E three-dimensional coupledneutronics/
thermal-hydraulics coresimulator programisusedbyPPALintheirsteadystatecoreanalyses.
Thethermal-hydraulics calculations useanEPRIdeveloped voidcorrelation andtheFIBMRmethodology developed byYankeeAtomicElectric Company.Themethodology employedfortheneutronics calculations maybeselectedbytheuserfromseveralavailable options;PPSLusestheModifiedCoarseMeshDiffusion Theory(PRESTO)option.Two-group macroscopic crosssectionsforeachfueltypearedeterm'.ned byCPM-2asafunctionoffuelexposure, voidhistory,moderator, fuelandcontrolconditions, andxenonconcentration.
Afterprocessing byNORGE-B2, theyareinputtoSIMULATE-E alongwithradialandaxialalbedosappliedatthecore-reflector interfaces.
Normal'ization ofthemodeltomatchplantoperating dataisperformed viaadjustment ofseveralinputdataparameters.
Separatemndelsarecreatedathotoperating andcoldconditions.
Thelicenseehasmadeanumberofchargestothecode,including theabilitytocalculate theCriticalPowerRatio(basedontheAdvancedNuclearFuelsCorporation, formerlyEXXONNuclear,XN-3criticalheatfluxcorrelation),
andlinearheatgeneration rateandaverageplanarheatgeneration ratethermallimitsevaluations.
Thesechangeshavenotresultedinanychangestothebasicneutronics orthermal-hydraulics calculations.
2.4.SIMULATE-E
(}uglification Thequalification oftheSIMULATE-E programisbasedonsimulations ofthefirsttwocyclesof(juadCitiesUnit-1(gC-1)andPeachBottomUnit-2(PB-2),andofthefirsttwo-plusandone-pluscycles(i.e.,fromBOLtoapproximately early1987)ofSusquehanna Units1and2,respectively.
Comparisons ofSIMULATE-E predicted valuesweremadetohotandcoldmultiplication factors(kff)andpowerandflowdistributions.
Theaccuracyofthepredicted powerdistributions wasevaluated basedoncomparisons toTIPdetectorreadings, andtoresultsfromgamma-scans.
Powerandflowdistributions werecomparedto.resultsfrom.theon-linecoremonitoring system.Thekffcomparisons fortheSusquehanna unitsconsidered 257hotoperating condition steady-state statepoints, and39(3localand36in-sequence) coldcriticalstatepoints.
Thesecomparisons indicated thattheabilityofthePPSLSIMULATE-E hotandcoldmodelstopredictkffdependsonthecoreaverageeffexposureandthegadolinia loading.Thereisanearlyconstantbiasbetweenthehotandcoldpredictions, withthehotkffconsistently lower.Usingthis  data,thelicenseegenerates hotandcoldcycle-dependent targetcriticalcorekffcurvesforuseinthecorefollow,andshutdownmarginandcontrolrodeffworthanalysesofindividual cycles.Thepowerdistribution comparisons utilizedallavailable TIPsetsfrombothSusquehanna unitsandconsidered nodalandaxiallyaveraged(radial)quantities.
Asymmetries inthemeasureddatawerequantified byconsidering symmetric nodalorradialTIPreadingstoprovideanestimateofthemeasurement uncertainties associated witheachTIPset.NodalRMSerrorstendtobeinthe4-6$range,withdifferences nearthemiddleofcycleandendofcyclepowercoastdown inthe6-95range.TheaveragenodalandradialRMSerrorsconsidering all82TIPsetsare5.74and2.58percent,respectively.
Thecorresponding averageasymmetries basedon44TIPsetsare5.22and2.55percent,respectively.
Fourcoreaverageaxialpowerdistribution andthree-bundle flowcomparisons arealsopresented, considering onestatepoint perSusquehanna unit/cycle.
These.comparisons aremadetodataproducedbytheon-lineCoreMonitoring System(CMS)todemonstrate consistency oftheresults.(ThebF.processcomputerPlprogramwasusedforthefirstcycleofbothunits,withtheANFPOMERPLEX CMSusedinallsubsequent cycles).Thesecomparisons showedgoodagreement betweentheSIMULATE-E andCYSresults.Comparisons tnmeasureddatafromthefirsttwocyclesofsquadCitiesUnitI(gC-1)werealsoperformed.
Inadditiontohotreactivity andTIPdatasimilartothatfromtheSusquehanna units,theOC-Imeasurements included33coldcriticalconfigurations (22local)fromCycle-l,andbundlegammascanmeasurements fromtheendofcycles(EOC)oneandtwo.ThegC-Ihotcriticalcomparisons showedasimilartrendversusexposuretothatobservedearlier;however,therelatively lowgadolinia loadingingC-1resultedintheabsenceofthebowl-shaped gadolinia component inthevariation.
Thelargecoldcriticaldatabaseservedtoaugmenttheearlieranalyses.
ThegC-1coldcriticalcomparisons wereusedtoconfirmthatthere isnosignificant biasbetweenSIMULATE-E predictions ofkf<forin-sequence effandlocalcriticalconfigurations.
ThegC-Ibasedpowerdistribution comparisons considered 15TIPsetsfromCycleIand13setsfromCycle2,alongwithgammascandatafrom31and89bundlesatEOClandEOC2,respectively.
ThenodalandradialRNSdifferences fromtheTIPcomparisons areroughlytwiceaslargeasthoseobserved~orthpSusquehanna comparisons.
TheEOCIgammascandataconsisted ofmeasuring theaxialpeaktobundleaverageLa-140activities andservedtobenchmark theSIMULATE-E calculation oftheaxialpeakingfactor.Theresulting difference was1";(=25)withtheagreement forcontrolled bundlesconsiderablv betterthanforuncontrolled.
TheEOC2gammascar.dataismuchmoreextensive andpermitscomparisons ofindividual bundleaxialLa-140activitydistributions, aswellasradial,nodalandpeaktoaveragecomparisons.
Peripheral andmixedoxidebundleswerenotincludedintheradialandnodalcomparisons andthetopandbottomsixincheswereeliminated fromthenodalcorn'parisors.
Thepeak-toaveragecomparisons resultedinanaveraqedierenceo.about0.2~(=1.5f)withamaximumdifference ofabout4%.Theaveragestandarddeviation fromtheindividual bundlegammascanswas6.3Xwithmorethan85>o<theindividual bundle'sinthe5-8~range.Thestandarddeviation fromtheradialandnodalgammascancomparisons wereabout2'Aand5.5',respectively.
Theouot~dmeasurement uncertainty fortheqammascanswas31,.Thefinalqualification ofSIMULATE-E presented inthereportconsistsofpowerdistribution comoarisons toTIPmeasurements anddatafromtheGEPlprocesscomputerforPeachSottomUnit2{PB-2)cycles1and/or2.Thelevelnfagreement withmeasuredTIPdatafromthesecnmparisons isreasonable andconsistent withthatobservedearlier.ThepurposeofthePB-2simulations wastngenerateinputfortheanalysisoftheturbinetriptestsperformed neartheendofCycle2,including anaccuraterepresentation oftheinitialconditions.
Thenon-steady stateoperation thatprecededthesetestsrequiredanaccuratemodelingofnon-equilibriumxenondistributions andconcentrations.
Comparisons ofthepredicted coreaverageaxialpowerdistributions justpriortothe threetests(toppeaked,middlepeakedandslightlybottompeaked)todatafromtheprocesscomputershowedgoodagreement.
2.5DescritionofPD7ThegeometryintheCPM-2latticephysicscodeislimitedtorepresenting anindividual fuelassembly.
Insomeapplications, however,amultipleassemblycalculation isrequired, andfortheseapplications PPSLusesthegeneralpurpose.PD(7 code.Theprogramsolvesthefewgroupdiffusion
.theoryequationbasedonthefinitedifference spatialapproximation inone,two,orthreedimensions.
Whileuptofiveenergygroupsarepermitted (including twooverlapping) thermalenergygroups,thelicenseegenerally utilizesfourgroupswithasinglethermalgroup.Microscopic ormacroscopic crosssectiondatamaybeemployed; PP8Ltypically usesmacroscopic datafromCPM-2andprocessed withtheCOPHINcode..66II6ThePP5Lqualification ofPD(7consisted ofanalyzing thesameuriformlatticecriticals usedinthebenchmarking ofCPM-2,alongwithcomparisons toCPM-2assemblycalculations fortypicalcontrolled anduncontrolled BWRfuelbundles.Theuniformlatticecalculations modelledthecriticalcoreconfigurations inone-dimensional cylindrical geometrywithanexplicitaccounting oftheradialreflector andabucllingcorrection toaccountforaxialleakage.Reasonable agreement wasobtainedwiththeCPM-Pcalculated k+fs,0.9972effversus0.9951and1.0076versus1.0144fortheUOandmixedoxidelattices, respectively.
ThePD07singlefuelassemblycalculations modelledeachpin-cellexplicitly, andusedshielding factorsderivedbycomparison toCPM-2results,forgadolinia bearingfuelpinsandcontrolrods.TwoseparatefuelbundlesfromtheinitialcoreloadingoftheSusquehanna unitswereselectedfnrthe.comparisons.
Theresultsshowedgenerally goodagreement betweenCPM-2and PD(7forthebundlek'sandrod-wisepowerdistributions withmaximumerrorsofabout4$and?,.foruncontrolled andcontrolled bundles,respectively.
 
==3.0 EVALUAITON==
TheCPM-2andSIMULATE-E programsweredeveloped byEPRIforthesteadystateanalysesofLWRs.Thelicenseeplanstousethesecodesforplantoperations support,variousfuelcycleandsafetyrelatedcalculations, andtoprovidenecessary neutronics inputdatatotransient analysesforthetwoBWRunitsattheSusquehanna SteamElectricStation.Thepresentreviewconsidered theinformation presented inthetopicalreportandadditional information providedbythelicenseeinaletterdatedFebruary17,1988.Thereviewconsidered thequalification oftheFIBWRthermal-hydraulics methodology onlyinitsroleasanintegralpartoftheSIMULATE-E program.Theperformance ofFIBWRasastand-alone thermal-hydraulics code,andthevalidity/applicability oftheANFXN-3CHFcorre1ation wereconsidered tobeoutsidethescopeofthisreview.Themethodologies (notincluding thequalification presented inthisreport)embodiedintheCPN-2andSIMULATE-E programshavebeenpreviously reviewedandfoundacceptable forsteadystatenuclearcoredesignanalysesofplantsotherthanSusquehanna, andarerepresentative ofcurrentpractice.
TheprimaryroleofCPN-2withinthePPSLcalculational sequenceforBWRanalysesistoprovidenucleardata(basically two-group crosssections) totheSIMULATE-E coresimulator program.Thebenchmarking ofSIMULATE-F viacomparisons tomeasurements fromoperating BWRstherefore servesastheultimate, thoughsomewhatindirect, qualification ofCPM-2.However,PP8LandEPRI/Studsvik haveperformed anumberofcomparisons tomeasureddatafromexperimental configurations andoperating BWRstotestvariousaspectsoftheCPM/CPh1-2 neutronics calculation methodology andnucleardata.
Comparisons touniformlatticecoldcriticals andKRITZsmallcorecriticals provideanintegraltestoftheabilityofCPM-24opredictreactivity (multiplication factors).
Comparisons tomeasuredrod-wisegammascandataforselectedassemblies fromanoperating BWR,andtomeasuredrod-wisefissionratedistributions fromKRITZexperiments, serveas.aqualification ofthetreatment ofneutrontransport andotheraspectsofthemodelling inthehiqhlyheterogeneous environments ofrealRWRfuelbundlesandreactorcores.Finally,comparisons ofcalculated uraniumandplutonium isotopicconcentrations weremadetodatafromthedestructive analysisofspentfuelromtheYankeeandSaxtonreactors.
Thelevelofagreement betweenCPM-2calculated andmeasuredquantities isreasonable, andtypicalofthatobservedwithcurrently acceptedmethods.Inaddition, CPM-2tendstooverestimate thelocalpeakingfactorinanassembly, implyingagenerally conservative prediction ofthelinearheatgeneration rate.Thebenchmarking oftheSIMULATE-E programconsisted ofsimulations ofseveralcyclesofoperation ofthreeBWRsincluding allavailable datafromPPAL'sSusquehanna unitsstartingatbeginning ofCycle-1(BOCI).Thehotreactivity comparisons involvedmorethanfiveop~rating cycles(almost300statepoints) forcorescontaining avarietyofBWRfuelbundledesigns.Thecalculated hotkffexhibited abiasrelativetothemeasuredcriticaleffkffwhichwasconsistent inmagnitude withthatobservedforaccentedeffthree-dimensional coresimulator codes.Theobservedvariation ledtothedevelopment ofacorrelation whichisabowlshapedfunctionofgadolinia loadingandaroughlylinearfunctionofexposure.
This"target"kf<isusedef<topredictthecriticalcorekffforaparticular unit-cycle.
effThecoldcriticalcomparisons considered 47insequence and25localconfigurations.
Theresultsshowedasimilarvariation inthepredicted coldcriticalkfftothatobservedforhotconditions; thecoldcriticalkeffeff"target"forusewithSIMULATE-E istherefore obtainedbvaddingaconstantbiastothehotcorrelation.
Inaddition, theresultsshowednosignificant differences betweenthekffforlocalandin-sequence criticals, thereby 10demonstrating theabilityofSIMULATE-E toperformshut-down marginca1culations.Thebenchmarking oftheSIMULATE-E calculation ofpowerdistributions considered measuredTIPdetectorreadingsandgammascans,anddatafromplantcoremonitoring systems.Thealbedosandotheradiustable parameters weredetermined durinqmodelnormalization tooperating datafromSusquehanna UnitlCycles1and2,andremainedunchanged forallsubsequent simulations.
Thecomparisons forthe82TIPsetscoveringmorethanthreecyclesofoperation ofthetwoSusquehanna unitsyieldedaveragenodalandradialRMSdifferences of5.7and2.6percent,respectively.
Theestimated errorsintheTIPmeasurements weredetermined byconsidering symmetric detectorreadings, andwereofthesameorder.TheTIPcomparisons forDuadCitiesandPeachBottomyieldedhigherdifferences, i.e.,nodalandradialRNSerrorsconsidering allTIPsetsofabout10andabout5percent,respectively, forOutedCities,andsomewhatlowerforPeachBottom.hThecomparisons tothesquadCitiesqammascanmeasurements atEOClandEOC2furtherdemonstrated theabilityofSIMULATF.-E tocalculate powerdistributions.
Theaxialpeaktoaveragewaspredicted towithinabout11withastandarddeviation of1-2%,andthestandarddeviations fromtheradialandnodalcomparisons wereabout2andabout5percent,respectively.
Theperipheral bundleswerenotincludedinthesecomparisons, andinadditionthetopandbottomsixincheswerenotconsidered inthenodalcomparisons.
Thequoteduncertainty forthegammascanmeasurement is3.0X.Comparisons ofcoreaverageaxialpowerdistributions toresultsfromtheAEP1orANFPOl<ERPLEX coremonitoring systemsfortheSusquehanna unitsandPeachBottomUnit-2(PB-2)nearEOC2,thoughlimited,showedgoodagreement.
ThePB-2comparisons considered theeffectsofnon-equilibrium xenonandincludedtop,middleandbottompeakedaxialpowerdistributions.
Threebundleflowdistributions fromtheSusquehanna coremonitoring systemswerealsocomparedtoresultsgenerated bySIMULATE-E withgenerally goodagreement.
The  powerdistribution comparisons ofSIMULATE-E tomeasureddatashowedgenerally reasonable agreement andwereconsistent with,thelevelsofagreement observedwithacceptedmethods.Thelargerdifferences observedinthePuadCitiesandPeachBottomcomparisons arepartially duetotheSIMULATE-E modelsnotbeingspecifically normalized forthesesimulations.
Thegenerally goodagreement, however,providesreasonable confidence thatSIMULATE-E canbeusedforpredictive calculations fortheSusquehanna units.Thelimitedcomparisons ofPD(7toresultsfromuniformlatticecriticals andCPM-2singleassemblycalculations showedreasonable agreement.
Thccomparisons werebasedontheuseof4energygroupcrosssectionsfromCPM-2.Thelicenseenotesthatwhileitdoesnotintendtoperformthree-dimensional calculations withPDg7,itmayusetheprogramforvarioustwo-dimensional analysesincluding independent verification ofcalculations, calculations ofnon-standard configurations suchaspartially loadedcores,andinthedevelopment offuturemodelimprovements forSIMULATE-E.
Appropriate qualification bythelicenseeoftheuseofPDg7forconfigurations largerthanmultiplebundlearraysisrecommended.


==4.0CONCLUSION==
==4.0CONCLUSION==
STheCPM-2andSIMULATE-EcodesweredevelopedunderthesponsorshipoftheElectricPowerResearchInstituteandarepartofthepresentlyrecommendedproceduresforBWRanalysessimilartothoseintendedforapplicationtoSusquehannaUnits1and2.Thebenchmarkingofthecodesbythelicenseerelativetomeasurementsfromoperatingreactorsandexperimentalconfigurationsresultedinagreementtypicalofthatobservedwithacceptedmethods.ThecomparisonsofPD(7toresultsfromuniformlatticecriticalsandCPM-2singleassemblycalculationsalsoshowedreasonableagreement.ThestaffthereforeconcludesthattheCPM-2/SIMULATE-Emethodology,andtheuseofPDg7forauxiliarycalculationsrepresentanacceptableapproachforanalysesperformedbythelicenseeinsupportoflicenseapplicationsandoperationofthetwoBWRreactorsattheSusquehannaSteamElectricStation. ThestaffrecommendsthatappropriatequalificationbemadebythelicenseeoftheuseofPO(7forconfigurationslargerthanmultiplebundlearrays,ifsuchconfigurationsareconsideredforcalculationbyPDg7.Thestaffalsorecommendscontinuedcomparisonsofcalculatedphysicsparameterswithmeasureddatafromfuturephysicsstartuptestsandreactorfuelcycles.PrincipalContributor:D.Fieno PL-NF-87-001-AIssueDate:July,1988QUALIFICATIONOFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSISPL-NF-87-001Revision0March1987PrincipalEngineersAndrewDyszelKennethC.KnollContributingEngineersJohnH.EmmettEricR.JebsenChesterR.LehmannAnthonyJ.RoscioliRobertM.RoseJohnP.SpadaroWilliamJ.WeadonApproved:JoM.KulickDate:3/31/87Supervisor-NuclearFuelsEngineeringJeeS.Stefanko.-NuclearFuelsastemsEngineeringDate:3/31/87 I1lI LEGALNOTICEThistopicalreportrepresentstheeffortsofPennsylvaniaPowerGLightCompany(PPsL)andreflects.thetechnicalcapabilitiesofitsnuclearfuelmanagementpersonnel.TheinformationcontainedhereiniscompletelytrueandaccuratetothebestoftheCompany'sknowledge.ThesoleintendedpurposeofthisreportandtheinformationcontainedhereinistoprovideatechnicalbasisforPPGL'squalificationtoperformsteadystatecorephysicsanalysesoftheSusquehannaSESreactors.AnyuseofthisreportortheinformationbyanyoneotherthanPP&LortheU.S.NuclearRegulatoryCommissionisunauthorized.With'regardtoanyunauthorizeduse,PennsylvaniaPowersLightCompanyanditsofficers,directors,agents,andemployeesmakenowarranty,eitherexpressedorimplied,astotheaccuracy,completeness,orusefulnessofthisreportortheinformation,andassumenoliabilitywithrespecttoitsuse.  
S TheCPM-2andSIMULATE-E codesweredeveloped underthesponsorship oftheElectricPowerResearchInstitute andarepartofthepresently recommended procedures forBWRanalysessimilartothoseintendedforapplication toSusquehanna Units1and2.Thebenchmarking ofthecodesbythelicenseerelativetomeasurements fromoperating reactorsandexperimental configurations resultedinagreement typicalofthatobservedwithacceptedmethods.Thecomparisons ofPD(7toresultsfromuniformlatticecriticals andCPM-2singleassemblycalculations alsoshowedreasonable agreement.
~~l ABSTRACTThistopicalreportpresentsthebenchmarkinganalyseswhichdemonstratethevalidityofPennsylvaniaPower6LightCompany's(PPGL's)analyticalmethodsaswellasPPaL'squalificationtoperformsteadystatecorephysicscalculationsforreloaddesignandlicensinganalysisapplications.PPGL'ssteadystatecorephysicsmethodsarebasedmainlyonthecomputercodesprovidedbytheElectricPowerResearchInstitute.Thesecodesinclude:theMICBURNgadoliniafuelpindepletioncode;theCPM-2assemblylatticedepletioncode;andtheSIMULATE-Ethree-dimensionalcoresimulationcode.ThebenchmarkinganalysescontainedinthistopicalreportincludecomparisonsofPPsL'sCPM-'2fuelpinandassemblycalculationstouniformlatticecriticalexperimentsandtogammascanmeasurementstakenfromtheQuadCitiesUnit1reactor.ExtensivebenchmarkingofPPGL'sSIMULATE-Emodelsisalsopresented,includingcomparisonstomeasuredneutronfluxdata(i.e.,TraversingIn-coreProbedata)andcriticalsfromallavailableSusquehannaSEScycles,twocyclesofQuadCitiesUnit1,andtwocyclesofPeachBottomUnit2;theSIMULATE-Emodelsarealsobenchmarkedagainst,gammascanmeasurementsfromQuadCitiesUnit1.PPGL'scalculationswiththeindustrystandarddiffusiontheorycodePDQ7arealsoincludedinthistopicalreport.Intotal,thebenchmarkingresultscompareveryfavorablytothemeasureddata,andthusdemonstratePPGL'squalificationstoperformsteadystatecorephysicscalculationsforreloaddesign'ndlicensinganalysisapplications.
Thestafftherefore concludes thattheCPM-2/SIMULATE-E methodology, andtheuseofPDg7forauxiliary calculations represent anacceptable approachforanalysesperformed bythelicenseeinsupportoflicenseapplications andoperation ofthetwoBWRreactorsattheSusquehanna SteamElectricStation. Thestaffrecommends thatappropriate qualification bemadebythelicenseeoftheuseofPO(7forconfigurations largerthanmultiplebundlearrays,ifsuchconfigurations areconsidered forcalculation byPDg7.Thestaffalsorecommends continued comparisons ofcalculated physicsparameters withmeasureddatafromfuturephysicsstartuptestsandreactorfuelcycles.Principal Contributor:
II ACKNOWLEDGEMENTSTheauthorsgratefullyacknowledgetheexpertstenographicworkprovidedbyMs.EvelynLugoandMs.SandraK.Lines,andtheexcellentgraphicspreparedbyMr.FrancisE.GrimandMs.DeniseS.Showalter,allofwhoseeffortshavecontributedtothequalityandtimelycompletionofthistopicalreport.TheauthorsalsoacknowledgetheeffortsofMr.RoccoR.SgarroforhislicensingreviewsandcoordinationwiththeNRC.Inaddition,theconsultingreviewsandrecommendationsprovidedbyDr.JackR.FisherandMr.RodneyL.GrowofUtilityResourceAssociates,andMr.EdwardD.Kendrick,Dr.AntonioAncona,andMr.DemitriosT.GournelosofUtilityAssociatesInternationalaregreatlyappreciated.
D.Fieno PL-NF-87-001-A IssueDate:July,1988QUALIFICATION OFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSISPL-NF-87-001 Revision0March1987Principal Engineers AndrewDyszelKennethC.KnollContributing Engineers JohnH.EmmettEricR.JebsenChesterR.LehmannAnthonyJ.RoscioliRobertM.RoseJohnP.SpadaroWilliamJ.WeadonApproved:
I QUALIFICATIONOFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSISTABLEOFCONTENTSSectionPage1.0Introduction2.0LatticePhysicsMethods2.1DescriptionofCPM-22.2UniformLatticeCriticals2.3QuadCitiesPinPowerDistributionComparisons2.4EPRIBenchmarkEvaluations81924383.0CoreSimulationMethods493.1DescriptionofSIMULATE-E3.2SusquehannaSESUnits1and2Benchmark3.2.1HotCriticalCoreReactivityComparisons3.2.2ColdCriticalCoreReactivityComparisons3.2.3TraversingIn-coreProbeDataComparisons3.2.4CoreMonitoringSystemComparisons3.3QuadCitiesUnit1Cycles1and2Benchmark3.3.1HotCriticalCoreReactivityComparisons3.3.2ColdCriticalCozeReactivityComparisons3.3.3TraversingIn-coreProbeDataComparisons3.3.4GammaScanComparisons3.4PeachBottomUnit2Cycles1and2Comparisons4.0SpecialApplicationswithPDQ74.1DescriptionofPDQ74.2UniformLatticeCriticals4.3-ComparisonstoCPM-25.0SummaryandConclusions6.0ReferencesAmendments5054565759651401411411421431851951961982012062091.ResponsetoNRCRequestForAdditionalInformation213
JoM.KulickDate:3/31/87Supervisor-Nuclear FuelsEngineering JeeS.Stefanko.-Nuclear FuelsastemsEngineering Date:3/31/87 I1lI LEGALNOTICEThistopicalreportrepresents theeffortsofPennsylvania PowerGLightCompany(PPsL)andreflects.thetechnical capabilities ofitsnuclearfuelmanagement personnel.
~II LISTOFTABLESTableNumberTitlePageGeneralDesignandOperatingFeaturesoftheSusquehannaSESReactors2.1.1Sixty-nineGroupEnergyBoundariesfortheCPMandMICBURNCrossSectionLibrary122.1.2EnergyGroupStructurefor"Macro-GroupandTwo-DimensionalCalculations.132.1.32.1.4HeavyNuclideChainsFissionProductChains14l52.1.5ModificationstoENDF-B/IIIDataforCPM-2CrossSectionLibrary162.2.1TRXUniformLatticeCriticalTestData202.2.2ESADAUniformLatticeCriticalTestData212.2.32.2.42.3.1CPM-2ResultsforTRXCriticalsCPM-2ResultsforESADACriticalsAssembliesUsedinRodtoRodGammaScan2223272.3.2QuadCitiesUnit1EndofCycle2--SummaryofNormalizedLA-140ActivityPinComparisons282.3.3QuadCitiesUnit.1EndofCycle2PeakLa-140ActivityComparisons292.4.1EPRI-CPMResultsfromtheTRXCriticalBenchmarking2.4.22.4.3EPRI-CPMResultsfromtheESADACriticalBenchmarkingEPRIIsotopicComparisonstoSaxtonData413.2.1MeasuredCoreOperatingParametersforSIMULATE-ECoreReactivityCalculations673.2.23.2.33.2.4SummaryoftheSusquehannaSESBenchmarkingDataBaseSusquehannaSESHotCriticalCoreK-effectiveData'ISusquehannaSESTargetvs.SIMULATE-ECalculatedCriticalCoreK-effectiveStatistics69793.2.5SusquehannaSESUnit2Cycle2CoreK-effectiveSensitivitytoMeasuredCoreOperatingData80 LISTOFTABLES(continued)TableNumberTitle~Pae3.2.6SusquehannaSESCalculatedColdXenon-FreeCriticalCoreK-effectives3.2.7SusquehannaSESColdMinusHotCriticalCoreK-effective833.2.8SusquehannaSESUnit1Cycle1TIPResponseComparisons853.2.9SusquehannaSESUnit1Cycle2TIPResponseComparisons863.2.10SusquehannaSESUnit1Cycle3TIPResponseComparisons3.2.11SusquehannaSESUnit2Cycle1TIPResponseComparisons3.2.12SummaryofSusquehannaSESTIPResponseComparisons3.2.13SummaryofSusquehannaSESTIPResponseAsymmetries878889903.3.1EQuadCitiesUnit1Cycle1CalculatedColdXenon-FreeCoreCriticalK-effectives1483.3.2QuadCitiesUnit1Cycle1In-SequenceVersusLocalCriticalComparison14933.3,SummaryofQuadCitiesUnit1Cycles1and2TIPResponseComparisons1513.3.4QuadCitiesUnit1EOC1GammaScanComparisons--UncontrolledBundles1523.3.5QuadCitiesUnit1EOC1GammaScanComparisons-ControlledBundles1533.3.6QuadCitiesUnit1EOC2GammaScanComparisons-PeaktoAverageLa-140Activities154-3.3.74.1.14.2.14.2.2QuadCitiesUnit1EOC2IndividualBundleComparisonsEnergyGroupStructureUsedinPDQ7CalculationsPDQ7ResultsforTRXCriticalsPDQ7ResultsforESADACriticals156197199200 LISTOFFIGURESFigureNumberTitlePage1.2SusquehannaSESUnits1and2CoreTypicalCorePowervs.CoreFlow1.3PPaLSteadyStateCorePhysicsMethodsComputerCodeFlowchart2.1.12.1.2CalculationalFlowinCPM-2ExampleofBWRCellGeometryinthe2-DCalculation17182~3.-1QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities--AssemblyID:GEB159--93InchesfromBottomofCore302.3.2QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:GEB16156InchesfromBottomofCore312.3.3QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:GEH00221InchesfromBottomofCore322.3.4QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:GEH002-93InchesfromBottomofCore332.3.5QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:CX067221InchesfromBottomofCore342.3.6QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities--AssemblyID:CX067287InchesfromBottomofCore352.3.7QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:CX0214--51InchesfromBottomofCore362.3.8QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:CX0214129InchesfromBottomofCore372.4.1FissionRateComparisonforanSx8BWRAssemblyofthePlutoniumIslandType-T=245Co2.4.2FissionRateComparisonfora15x15PWRMixedOxideAssemblywithWaterHolesandAbsorberRods-T=245C044 LISTOFFIGURES(continued)FigureNumberTitlePage2.4.32.4.4FissionRateComparisonfora14x14PWRMixedOxide0AssemblySurroundedByUOAssemblies-T=240C2EPRI-CPMComparisontoYankeePU-239/PU-240IsotopicRatios45462.4.5EPRI-CPMComparisontoYankeePU-240/PU-241IsotopicRatios472.4.6EPRI-CPMComparisontoYankeePU-241/PU-242IsotopicRatios483.1.1BWRFuelAssemblyBypassFlowPaths533.2.1SIMULATE-EHotandColdCriticalCoreK-effectivesvs.CoreAverageExposure913.2.2SIMULATE-EHotCriticalCoreK-effectivevsCoreThermalPower923.2.3SIMULATE-EHotCriticalCoreK-effectivevsTotalCoreFlow933.2.4SIMULATE-EHotCriticalCoreK-effectivevsCoreInletSubcooling943.2.5SIMULATE-EHotCriticalCoreK-effectivevsDomePressure953.2.6SIMULATE-EHotCriticalCoreK-effectivevsCriticalControlRodDensity963.2.7TargetandSIMULATE-ECalculatedHotCriticalCoreK-effectivesvs.CoreAverageExposure973.2.8SusquehannaSESUnits1and2CoreTIPLocations983.2.9SusquehannaSESRelativeNodalRMSofTIPResponseComparisons993.2.10SusquehannaSESUnit1Cycle1AverageAxialTIPResponseComparison-1.490GWD/MTUCycleExposure3.003.2.11SusquehannaSESUnit1Cycle1RadialTIPResponseComparisons--1.490GWD/MTUCycleExposure1013.2.12'usquehannaSESUnit1Cycle1IndividualTIPResponseComparisons-1.490GWD/MTUCycleExposure102 LISTOFFIGURES(continued)FigureNumberTitlePage3.2.13SusquehannaSESUnit1Cycle1AverageAxial,TIPResponseComparison-5.918GWD/MTUCycleExposure1033.2.14SusquehannaSESUnit1Cycle1RadialTIPResponseComparisons-5.918GWD/MTUCycleExposure1043.2.15SusquehannaSESUnit1Cycle1IndividualTIPResponseComparisons--5.918GWD/MTUCycleExposure1053.2.16SusquehannaSESUnit1Cycle1AverageAxialTIPResponseComparison-11.617GWD/MTUCycleExposure1063.2.17SusquehannaSESUnit1Cycle1RadialTIPResponse-Comparisons-11.617GWD/MTUCycleExposure1073.2.18SusquehannaSESUnit1Cycle1IndividualTIPResponseComparisons-11.617GWD/MTUCycleExposure1083.2.19,SusquehannaSESUnit1Cycle2AverageAxialTIPResponseComparison--0.200GWD/MTUCycleExposure1093.2.20SusquehannaSESUnit1Cycle2RadialTIPResponseComparisons-0.200GWD/MTUCycleExposure1103.2.21SusquehannaSESUnit1Cycle2IndividualTIPResponseComparisons--0'00GWD/MTUCycleExposure3.2.22SusquehannaSESUnit1Cycle2AverageAxialTIPResponseComparison-2.587GWD/MTUCycleExposure1123.2.23SusquehannaSESUnit1Cycle2RadialTIPResponseComparisons-2.587GWD/MTUCycleExposure1133.2.24SusquehannaSESUnit1Cycle2IndividualTIPResponseComparisons-2.587GWD/MTUCycleExposure1143.2.25SusquehannaSESUnit1Cycle2AverageAxialTIPResponseComparison-4.638GWD/MTUCycleExposure1153.2.26SusquehannaSESUnit1Cycle2,RadialTIPResponseComparisons-4.638GWD/MTUCycleExposure1163.2.27SusquehannaSESUnit1Cycle2IndividualTIPResponseComparisons-4.638GWD/MTUCycleExposure1173.2.28SusquehannaSESUnit1Cycle3AverageAxialTIPResponseComparison--0.178GWD/MTUCycleExposure118 LISTOFFIGURES(continued)FigureNumberTitlePage3.2.29SusquehannaSESUnit1Cycle3RadialTIPResponseComparisons-0.178GWD/MTUCycleExposure1193.2.30SusquehannaSESUnit1Cycle3-IndividualTIPResponseComparisons<<-.0.178GWD/MTUCycleExposure1203.2.31SusquehannaSESUnit1Cycle3AverageAxialTIPResponseComparison-2.228GWD/MTUCycleExposure1213.2.32SusquehannaSESUnit1Cycle3RadialTIPResponseComparisons--2.228GWD/MTUCycleExposure1223.2.33SusquehannaSESUnit1Cycle3IndividualTIPResponseComparisons--2.228GWD/MTUCycle'xposure1233.2.34SusquehannaSESUnit2Cycle1AverageAxialTIPResponseComparison--0.387GWD/MTUCycleExposure1243.2.35SusquehannaSESUnit2Cycle1RadialTIPResponseComparisons-0.387GWD/MTUCycleExposure1253.2.36SusquehannaSESUnit2Cycle1IndividualTIPResponse,Comparisons-0.387GWD/MTUCycleExposure1263.2.37SusquehannaSESUnit2Cycle1AverageAxialTIPResponseComparison-5.249GWD/MTUCycleExposure1273.2.38SusquehannaSESUnit2Cycle1RadialTIPResponseComparisons--5.249GWD/MTUCycleExposure1283.2.39SusquehannaSESUnit2Cycle1IndividualTIPResponseComparisons-5.249GWD/MTU'CycleExposure1293.2.40SusquehannaSESUnit.2Cycle1AverageAxialTIPResponseComparison-12.050GWD/MTUCycleExposure1303.2.41SusquehannaSESUnit2Cycle1RadialTIPResponseComparisons--12.050GWD/MTUCycleExposure1313.2.42SusquehannaSESUnit2Cycle1IndividualTIPResponseComparisons-12.050GWD/MTUCycleExposure1323.2.43SusquehannaSESUnit1Cycle1SIMULATE-Evs.GEProcessComputerCoreAverageAxialPowerDistribution.1333.2.44SusquehannaSESUnit1Cycle2SIMULATE-Evs.POWERPLEXCoreAverageAxialPowerDistribution~134 LISTOFFIGURES(continued)FigureNumberTitlePage3.2.45SusquehannaSESUnit1Cycle3SIMULATE-Evs.POWERPLEXCoreAverageAxialPowerDistribution1353.2.46SusquehannaSESUnit2Cycle2SIMULATE-Evs.POWERPLEXCoreAverageAxialPowerDistribution1363.2.47SusquehannaSESUnit1Cycle1SIMULATE-Evs.GEProcessComputerBundleFlowsat1.490GwD/MTU1373.2.48SusquehannaSESUnit1Cycle3SIMULATE-Evs.POWERPLEXBundleFlowsat0.178GWD/MTU1383.2.49SusquehannaSESUnit2Cycle2SIMULATE-Evs.POWERPLEXBundleFlowsat0.583GWD/MTU1393.3.1QuadCitiesUnit1CoreTIPLocations1583.3.2SIMULATE-EHotCriticalCore.K-effectivevs.CoreAverageExposure1593.3.3QuadCitiesUnit1Cycle1SIMULATE-EHotandColdCriticalCoreK-effectives1603.3.4QuadCitiesUnit1Cycle1AverageAxialTIPResponseComparison-2.239GWD/MTUCoreAverageExposure1613.3.5QuadCitiesUnit1Cycle1RadialTIPResponseComparisons-2.239GWD/MTUCoreAverageExposure1623.3.6QuadCitiesUnit1Cycle1IndividualTIPResponseComparisons<<-2.239GWD/MTUCoreAverageExposure1633''QuadCitiesUnit1Cycle1AverageAxialTIPResponseComparison-7.396GWD/MTUCoreAverageExposure1643.3.8QuadCitiesUnit1Cycle1RadialTIPResponseComparisons--7.396GWD/MTUCoreAverageExposure1653.3.9QuadCitiesUnit1Cycle1IndividualTIPResponseComparisons-7.396GWD/MTUCoreAverageExposure3.6'63.3.10QuadCitiesUnit1Cycle2AverageAxialTIPResponseComparison-7.532GWD/MTUCoreAverageExposure1673.3.11QuadCitiesUnit1Cycle2RadialTIPResponseComparisons-7.532GWD/MTUCoreAverageExposure168 LISTOFFIGURES(continued)FigureNumberTitle~Pae3.3.12QuadCitiesUnit1Cycle2IndividualTIPResponseComparisons-7.532GWD/MTUCoreAverageExposure1693.3.13QuadCitiesUnit1Cycle2AverageAxialTIPResponseComparison-13.198GWD/MTUCore-Average.Exposure1703.3.14QuadCitiesUnit1Cycle2RadialTIPResponseComparisons-13.198GWD/MTUCoreAverageExposure1713.3.15QuadCitiesUnit1Cycle2IndividualTIPResponseComparisons-13.198GWD/MTUCoreAverageExposure1723.3.16QuadCitiesUnit1EOC1GammaScanComparison-NormalizedAxialLa-140Activity-BundleLocation23,101733.3.17'uadCitiesUnit1EOC1GammaScanComparison-NormalizedAxialLa-140Activity-BundleLocation55,401743.3.18QuadCitiesUnit1EOC1GammaScanComparison-NormalizedAxialLa-140Activity-31BundleAverage1753.3.19QuadCitiesUnit1EOC2RadialGammaScanComparison1763.3.20QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX06621773.3.21QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX03991783.3.22QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX02311793.3.23QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX0297.1803.3.24QuadCitiesUnit1EOC2GammaScanComparison--BundleID:CX07171813.3.25QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX03781823.3.26QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX01501833.3.27QuadCitiesUnit1EOC2GammaScanComparison--BundleID:GEH029184 LISTOFFIGURES(continued)FigureNumberTitlePage3.4.1PeachBottomUnit2Cycles1and2RelativeNodalRMSofTIPResponseComparisons1873.4.2PeachBottomUnit2Cycle1-AverageAxialTIPResponseComparison-11.133GWD/MTUCoreAverageExposure1883.4.3PeachBottomUnit2Cycle1-RadialTIPResponseComparisons-11.133GWD/MTUCoreAverageExposure1893.4.4PeachBottomUnit2Cycle1-IndividualTIPResponseComparisons-11.133GWD/MTUCoreAverageExposure1903.4.5PeachBottomUnit2Cycle2--AverageAxialTIPResponseComparison--13.812GWD/MTUCoreAverageExposure1913.4.6PeachBottomUnit2Cycle2-RadialTIPResponseComparisons-13.812GWD/MTUCoreAverageExposure1923.4.7PeachBottomUnit2Cycle2-IndividualTIPResponseComparisons-13.812GWD/MTUCoreAverageExposure1933.4.8PeachBottomUnit2EndofCycle2CoreAverageAxialPowerDistributions1944.3.1CPM-2vs.PDQ7PinPowerDistributionComparison-GEInitialCoreHighEnrichedFuelType-Uncontrolled2024.3.2CPM-2vs.PDQ7PinPowerDistributionComparison--GEInitialCoreHighEnrichedFuelType-Controlled2034.3.3CPM-2vs.PDQ7PinPowerDistributionComparison-GEInitialCoreMediumEnrichedFuelType-Uncontrolled2044.3.4CPM-2vs.PDQ7PinPowerDistributionComparison-GEInitialCoreMediumEnrichedFuelType--Controlled205 IIl  
Theinformation contained hereiniscompletely trueandaccuratetothebestoftheCompany's knowledge.
Thesoleintendedpurposeofthisreportandtheinformation contained hereinistoprovideatechnical basisforPPGL'squalification toperformsteadystatecorephysicsanalysesoftheSusquehanna SESreactors.
Anyuseofthisreportortheinformation byanyoneotherthanPP&LortheU.S.NuclearRegulatory Commission isunauthorized.
With'regard toanyunauthorized use,Pennsylvania PowersLightCompanyanditsofficers, directors, agents,andemployees makenowarranty, eitherexpressed orimplied,astotheaccuracy, completeness, orusefulness ofthisreportortheinformation, andassumenoliability withrespecttoitsuse.  
~~l ABSTRACTThistopicalreportpresentsthebenchmarking analyseswhichdemonstrate thevalidityofPennsylvania Power6LightCompany's (PPGL's)analytical methodsaswellasPPaL'squalification toperformsteadystatecorephysicscalculations forreloaddesignandlicensing analysisapplications.
PPGL'ssteadystatecorephysicsmethodsarebasedmainlyonthecomputercodesprovidedbytheElectricPowerResearchInstitute.
Thesecodesinclude:theMICBURNgadolinia fuelpindepletion code;theCPM-2assemblylatticedepletion code;andtheSIMULATE-E three-dimensional coresimulation code.Thebenchmarking analysescontained inthistopicalreportincludecomparisons ofPPsL'sCPM-'2fuelpinandassemblycalculations touniformlatticecriticalexperiments andtogammascanmeasurements takenfromtheQuadCitiesUnit1reactor.Extensive benchmarking ofPPGL'sSIMULATE-E modelsisalsopresented, including comparisons tomeasuredneutronfluxdata(i.e.,Traversing In-coreProbedata)andcriticals fromallavailable Susquehanna SEScycles,twocyclesofQuadCitiesUnit1,andtwocyclesofPeachBottomUnit2;theSIMULATE-E modelsarealsobenchmarked against,gammascanmeasurements fromQuadCitiesUnit1.PPGL'scalculations withtheindustrystandarddiffusion theorycodePDQ7arealsoincludedinthistopicalreport.Intotal,thebenchmarking resultscompareveryfavorably tothemeasureddata,andthusdemonstrate PPGL'squalifications toperformsteadystatecorephysicscalculations forreloaddesign'nd licensing analysisapplications.
II ACKNOWLEDGEMENTS Theauthorsgratefully acknowledge theexpertstenographic workprovidedbyMs.EvelynLugoandMs.SandraK.Lines,andtheexcellent graphicspreparedbyMr.FrancisE.GrimandMs.DeniseS.Showalter, allofwhoseeffortshavecontributed tothequalityandtimelycompletion ofthistopicalreport.Theauthorsalsoacknowledge theeffortsofMr.RoccoR.Sgarroforhislicensing reviewsandcoordination withtheNRC.Inaddition, theconsulting reviewsandrecommendations providedbyDr.JackR.FisherandMr.RodneyL.GrowofUtilityResourceAssociates, andMr.EdwardD.Kendrick, Dr.AntonioAncona,andMr.Demitrios T.Gournelos ofUtilityAssociates International aregreatlyappreciated.
I QUALIFICATION OFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSISTABLEOFCONTENTSSectionPage1.0Introduction 2.0LatticePhysicsMethods2.1Description ofCPM-22.2UniformLatticeCriticals 2.3QuadCitiesPinPowerDistribution Comparisons 2.4EPRIBenchmark Evaluations 81924383.0CoreSimulation Methods493.1Description ofSIMULATE-E 3.2Susquehanna SESUnits1and2Benchmark 3.2.1HotCriticalCoreReactivity Comparisons 3.2.2ColdCriticalCoreReactivity Comparisons 3.2.3Traversing In-coreProbeDataComparisons 3.2.4CoreMonitoring SystemComparisons 3.3QuadCitiesUnit1Cycles1and2Benchmark 3.3.1HotCriticalCoreReactivity Comparisons 3.3.2ColdCriticalCozeReactivity Comparisons 3.3.3Traversing In-coreProbeDataComparisons 3.3.4GammaScanComparisons 3.4PeachBottomUnit2Cycles1and2Comparisons
 
==4.0 SpecialApplications==
withPDQ74.1Description ofPDQ74.2UniformLatticeCriticals 4.3-Comparisons toCPM-25.0SummaryandConclusions
 
==6.0 References==
Amendments 5054565759651401411411421431851951961982012062091.ResponsetoNRCRequestForAdditional Information 213
~II LISTOFTABLESTableNumberTitlePageGeneralDesignandOperating FeaturesoftheSusquehanna SESReactors2.1.1Sixty-nine GroupEnergyBoundaries fortheCPMandMICBURNCrossSectionLibrary122.1.2EnergyGroupStructure for"Macro-Group andTwo-Dimensional Calculations
.132.1.32.1.4HeavyNuclideChainsFissionProductChains14l52.1.5Modifications toENDF-B/III DataforCPM-2CrossSectionLibrary162.2.1TRXUniformLatticeCriticalTestData202.2.2ESADAUniformLatticeCriticalTestData212.2.32.2.42.3.1CPM-2ResultsforTRXCriticals CPM-2ResultsforESADACriticals Assemblies UsedinRodtoRodGammaScan2223272.3.2QuadCitiesUnit1EndofCycle2--SummaryofNormalized LA-140ActivityPinComparisons 282.3.3QuadCitiesUnit.1EndofCycle2PeakLa-140ActivityComparisons 292.4.1EPRI-CPMResultsfromtheTRXCriticalBenchmarking 2.4.22.4.3EPRI-CPMResultsfromtheESADACriticalBenchmarking EPRIIsotopicComparisons toSaxtonData413.2.1MeasuredCoreOperating Parameters forSIMULATE-E CoreReactivity Calculations 673.2.23.2.33.2.4SummaryoftheSusquehanna SESBenchmarking DataBaseSusquehanna SESHotCriticalCoreK-effective Data'ISusquehanna SESTargetvs.SIMULATE-E Calculated CriticalCoreK-effective Statistics 69793.2.5Susquehanna SESUnit2Cycle2CoreK-effective Sensitivity toMeasuredCoreOperating Data80 LISTOFTABLES(continued)
TableNumberTitle~Pae3.2.6Susquehanna SESCalculated ColdXenon-Free CriticalCoreK-effectives 3.2.7Susquehanna SESColdMinusHotCriticalCoreK-effective 833.2.8Susquehanna SESUnit1Cycle1TIPResponseComparisons 853.2.9Susquehanna SESUnit1Cycle2TIPResponseComparisons 863.2.10Susquehanna SESUnit1Cycle3TIPResponseComparisons 3.2.11Susquehanna SESUnit2Cycle1TIPResponseComparisons 3.2.12SummaryofSusquehanna SESTIPResponseComparisons 3.2.13SummaryofSusquehanna SESTIPResponseAsymmetries 878889903.3.1EQuadCitiesUnit1Cycle1Calculated ColdXenon-Free CoreCriticalK-effectives 1483.3.2QuadCitiesUnit1Cycle1In-Sequence VersusLocalCriticalComparison 14933.3,SummaryofQuadCitiesUnit1Cycles1and2TIPResponseComparisons 1513.3.4QuadCitiesUnit1EOC1GammaScanComparisons--
Uncontrolled Bundles1523.3.5QuadCitiesUnit1EOC1GammaScanComparisons-Controlled Bundles1533.3.6QuadCitiesUnit1EOC2GammaScanComparisons-PeaktoAverageLa-140Activities 154-3.3.74.1.14.2.14.2.2QuadCitiesUnit1EOC2Individual BundleComparisons EnergyGroupStructure UsedinPDQ7Calculations PDQ7ResultsforTRXCriticals PDQ7ResultsforESADACriticals 156197199200 LISTOFFIGURESFigureNumberTitlePage1.2Susquehanna SESUnits1and2CoreTypicalCorePowervs.CoreFlow1.3PPaLSteadyStateCorePhysicsMethodsComputerCodeFlowchart 2.1.12.1.2Calculational FlowinCPM-2ExampleofBWRCellGeometryinthe2-DCalculation 17182~3.-1QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities
--AssemblyID:GEB159--93InchesfromBottomofCore302.3.2QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities
-AssemblyID:GEB16156InchesfromBottomofCore312.3.3QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities
-AssemblyID:GEH00221InchesfromBottomofCore322.3.4QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities
-AssemblyID:GEH002-93InchesfromBottomofCore332.3.5QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities
-AssemblyID:CX067221InchesfromBottomofCore342.3.6QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities
--AssemblyID:CX067287InchesfromBottomofCore352.3.7QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities
-AssemblyID:CX0214--51InchesfromBottomofCore362.3.8QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities
-AssemblyID:CX0214129InchesfromBottomofCore372.4.1FissionRateComparison foranSx8BWRAssemblyofthePlutonium IslandType-T=245Co2.4.2FissionRateComparison fora15x15PWRMixedOxideAssemblywithWaterHolesandAbsorberRods-T=245C044 LISTOFFIGURES(continued)
FigureNumberTitlePage2.4.32.4.4FissionRateComparison fora14x14PWRMixedOxide0AssemblySurrounded ByUOAssemblies
-T=240C2EPRI-CPMComparison toYankeePU-239/PU-240 IsotopicRatios45462.4.5EPRI-CPMComparison toYankeePU-240/PU-241 IsotopicRatios472.4.6EPRI-CPMComparison toYankeePU-241/PU-242 IsotopicRatios483.1.1BWRFuelAssemblyBypassFlowPaths533.2.1SIMULATE-E HotandColdCriticalCoreK-effectives vs.CoreAverageExposure913.2.2SIMULATE-E HotCriticalCoreK-effective vsCoreThermalPower923.2.3SIMULATE-E HotCriticalCoreK-effective vsTotalCoreFlow933.2.4SIMULATE-E HotCriticalCoreK-effective vsCoreInletSubcooling 943.2.5SIMULATE-E HotCriticalCoreK-effective vsDomePressure953.2.6SIMULATE-E HotCriticalCoreK-effective vsCriticalControlRodDensity963.2.7TargetandSIMULATE-E Calculated HotCriticalCoreK-effectives vs.CoreAverageExposure973.2.8Susquehanna SESUnits1and2CoreTIPLocations 983.2.9Susquehanna SESRelativeNodalRMSofTIPResponseComparisons 993.2.10Susquehanna SESUnit1Cycle1AverageAxialTIPResponseComparison
-1.490GWD/MTUCycleExposure3.003.2.11Susquehanna SESUnit1Cycle1RadialTIPResponseComparisons
--1.490GWD/MTUCycleExposure1013.2.12'usquehanna SESUnit1Cycle1Individual TIPResponseComparisons
-1.490GWD/MTUCycleExposure102 LISTOFFIGURES(continued)
FigureNumberTitlePage3.2.13Susquehanna SESUnit1Cycle1AverageAxial,TIPResponseComparison
-5.918GWD/MTUCycleExposure1033.2.14Susquehanna SESUnit1Cycle1RadialTIPResponseComparisons
-5.918GWD/MTUCycleExposure1043.2.15Susquehanna SESUnit1Cycle1Individual TIPResponseComparisons
--5.918GWD/MTUCycleExposure1053.2.16Susquehanna SESUnit1Cycle1AverageAxialTIPResponseComparison
-11.617GWD/MTUCycleExposure1063.2.17Susquehanna SESUnit1Cycle1RadialTIPResponse-Comparisons
-11.617GWD/MTUCycleExposure1073.2.18Susquehanna SESUnit1Cycle1Individual TIPResponseComparisons
-11.617GWD/MTUCycleExposure1083.2.19,Susquehanna SESUnit1Cycle2AverageAxialTIPResponseComparison
--0.200GWD/MTUCycleExposure1093.2.20Susquehanna SESUnit1Cycle2RadialTIPResponseComparisons
-0.200GWD/MTUCycleExposure1103.2.21Susquehanna SESUnit1Cycle2Individual TIPResponseComparisons
--0'00GWD/MTUCycleExposure3.2.22Susquehanna SESUnit1Cycle2AverageAxialTIPResponseComparison
-2.587GWD/MTUCycleExposure1123.2.23Susquehanna SESUnit1Cycle2RadialTIPResponseComparisons
-2.587GWD/MTUCycleExposure1133.2.24Susquehanna SESUnit1Cycle2Individual TIPResponseComparisons
-2.587GWD/MTUCycleExposure1143.2.25Susquehanna SESUnit1Cycle2AverageAxialTIPResponseComparison
-4.638GWD/MTUCycleExposure1153.2.26Susquehanna SESUnit1Cycle2,RadialTIPResponseComparisons
-4.638GWD/MTUCycleExposure1163.2.27Susquehanna SESUnit1Cycle2Individual TIPResponseComparisons
-4.638GWD/MTUCycleExposure1173.2.28Susquehanna SESUnit1Cycle3AverageAxialTIPResponseComparison
--0.178GWD/MTUCycleExposure118 LISTOFFIGURES(continued)
FigureNumberTitlePage3.2.29Susquehanna SESUnit1Cycle3RadialTIPResponseComparisons
-0.178GWD/MTUCycleExposure1193.2.30Susquehanna SESUnit1Cycle3-Individual TIPResponseComparisons
<<-.0.178GWD/MTUCycleExposure1203.2.31Susquehanna SESUnit1Cycle3AverageAxialTIPResponseComparison
-2.228GWD/MTUCycleExposure1213.2.32Susquehanna SESUnit1Cycle3RadialTIPResponseComparisons
--2.228GWD/MTUCycleExposure1223.2.33Susquehanna SESUnit1Cycle3Individual TIPResponseComparisons
--2.228GWD/MTUCycle'xposure 1233.2.34Susquehanna SESUnit2Cycle1AverageAxialTIPResponseComparison
--0.387GWD/MTUCycleExposure1243.2.35Susquehanna SESUnit2Cycle1RadialTIPResponseComparisons
-0.387GWD/MTUCycleExposure1253.2.36Susquehanna SESUnit2Cycle1Individual TIPResponse,Comparisons
-0.387GWD/MTUCycleExposure1263.2.37Susquehanna SESUnit2Cycle1AverageAxialTIPResponseComparison
-5.249GWD/MTUCycleExposure1273.2.38Susquehanna SESUnit2Cycle1RadialTIPResponseComparisons
--5.249GWD/MTUCycleExposure1283.2.39Susquehanna SESUnit2Cycle1Individual TIPResponseComparisons
-5.249GWD/MTU'CycleExposure1293.2.40Susquehanna SESUnit.2Cycle1AverageAxialTIPResponseComparison
-12.050GWD/MTUCycleExposure1303.2.41Susquehanna SESUnit2Cycle1RadialTIPResponseComparisons
--12.050GWD/MTUCycleExposure1313.2.42Susquehanna SESUnit2Cycle1Individual TIPResponseComparisons
-12.050GWD/MTUCycleExposure1323.2.43Susquehanna SESUnit1Cycle1SIMULATE-E vs.GEProcessComputerCoreAverageAxialPowerDistribution
.1333.2.44Susquehanna SESUnit1Cycle2SIMULATE-E vs.POWERPLEX CoreAverageAxialPowerDistribution
~134 LISTOFFIGURES(continued)
FigureNumberTitlePage3.2.45Susquehanna SESUnit1Cycle3SIMULATE-E vs.POWERPLEX CoreAverageAxialPowerDistribution 1353.2.46Susquehanna SESUnit2Cycle2SIMULATE-E vs.POWERPLEX CoreAverageAxialPowerDistribution 1363.2.47Susquehanna SESUnit1Cycle1SIMULATE-E vs.GEProcessComputerBundleFlowsat1.490GwD/MTU1373.2.48Susquehanna SESUnit1Cycle3SIMULATE-E vs.POWERPLEX BundleFlowsat0.178GWD/MTU1383.2.49Susquehanna SESUnit2Cycle2SIMULATE-E vs.POWERPLEX BundleFlowsat0.583GWD/MTU1393.3.1QuadCitiesUnit1CoreTIPLocations 1583.3.2SIMULATE-E HotCriticalCore.K-effective vs.CoreAverageExposure1593.3.3QuadCitiesUnit1Cycle1SIMULATE-E HotandColdCriticalCoreK-effectives 1603.3.4QuadCitiesUnit1Cycle1AverageAxialTIPResponseComparison
-2.239GWD/MTUCoreAverageExposure1613.3.5QuadCitiesUnit1Cycle1RadialTIPResponseComparisons
-2.239GWD/MTUCoreAverageExposure1623.3.6QuadCitiesUnit1Cycle1Individual TIPResponseComparisons
<<-2.239GWD/MTUCoreAverageExposure1633''QuadCitiesUnit1Cycle1AverageAxialTIPResponseComparison
-7.396GWD/MTUCoreAverageExposure1643.3.8QuadCitiesUnit1Cycle1RadialTIPResponseComparisons
--7.396GWD/MTUCoreAverageExposure1653.3.9QuadCitiesUnit1Cycle1Individual TIPResponseComparisons
-7.396GWD/MTUCoreAverageExposure3.6'63.3.10QuadCitiesUnit1Cycle2AverageAxialTIPResponseComparison
-7.532GWD/MTUCoreAverageExposure1673.3.11QuadCitiesUnit1Cycle2RadialTIPResponseComparisons
-7.532GWD/MTUCoreAverageExposure168 LISTOFFIGURES(continued)
FigureNumberTitle~Pae3.3.12QuadCitiesUnit1Cycle2Individual TIPResponseComparisons
-7.532GWD/MTUCoreAverageExposure1693.3.13QuadCitiesUnit1Cycle2AverageAxialTIPResponseComparison
-13.198GWD/MTUCore-Average.
Exposure1703.3.14QuadCitiesUnit1Cycle2RadialTIPResponseComparisons
-13.198GWD/MTUCoreAverageExposure1713.3.15QuadCitiesUnit1Cycle2Individual TIPResponseComparisons
-13.198GWD/MTUCoreAverageExposure1723.3.16QuadCitiesUnit1EOC1GammaScanComparison-Normalized AxialLa-140Activity-BundleLocation23,101733.3.17'uadCitiesUnit1EOC1GammaScanComparison-Normalized AxialLa-140Activity-BundleLocation55,401743.3.18QuadCitiesUnit1EOC1GammaScanComparison-Normalized AxialLa-140Activity-31BundleAverage1753.3.19QuadCitiesUnit1EOC2RadialGammaScanComparison 1763.3.20QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX06621773.3.21QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX03991783.3.22QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX02311793.3.23QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX0297.1803.3.24QuadCitiesUnit1EOC2GammaScanComparison--
BundleID:CX07171813.3.25QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX03781823.3.26QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX01501833.3.27QuadCitiesUnit1EOC2GammaScanComparison--
BundleID:GEH029184 LISTOFFIGURES(continued)
FigureNumberTitlePage3.4.1PeachBottomUnit2Cycles1and2RelativeNodalRMSofTIPResponseComparisons 1873.4.2PeachBottomUnit2Cycle1-AverageAxialTIPResponseComparison
-11.133GWD/MTUCoreAverageExposure1883.4.3PeachBottomUnit2Cycle1-RadialTIPResponseComparisons
-11.133GWD/MTUCoreAverageExposure1893.4.4PeachBottomUnit2Cycle1-Individual TIPResponseComparisons
-11.133GWD/MTUCoreAverageExposure1903.4.5PeachBottomUnit2Cycle2--AverageAxialTIPResponseComparison
--13.812GWD/MTUCoreAverageExposure1913.4.6PeachBottomUnit2Cycle2-RadialTIPResponseComparisons
-13.812GWD/MTUCoreAverageExposure1923.4.7PeachBottomUnit2Cycle2-Individual TIPResponseComparisons
-13.812GWD/MTUCoreAverageExposure1933.4.8PeachBottomUnit2EndofCycle2CoreAverageAxialPowerDistributions 1944.3.1CPM-2vs.PDQ7PinPowerDistribution Comparison
-GEInitialCoreHighEnrichedFuelType-Uncontrolled 2024.3.2CPM-2vs.PDQ7PinPowerDistribution Comparison
--GEInitialCoreHighEnrichedFuelType-Controlled 2034.3.3CPM-2vs.PDQ7PinPowerDistribution Comparison
-GEInitialCoreMediumEnrichedFuelType-Uncontrolled 2044.3.4CPM-2vs.PDQ7PinPowerDistribution Comparison
-GEInitialCoreMediumEnrichedFuelType--Controlled 205 IIl  


==1.0INTRODUCTION==
==1.0INTRODUCTION==
PennsylvaniaPower&LightCompany(PP&L)operatesthetwounitSusquehannaSteamElectricStation(SES)nearBerwick,Pennsylvania.BothoftheSusquehannaSESreactorsareGeneralElectricCompanyBoilingWaterReactor(BWR)-4productlinereactorsystems;eachhasaratedthermalpoweroutputof3293Megawatts.ThegeneralcoredesignandoperatingfeaturesaregiveninTable1
 
Pennsylvania Power&LightCompany(PP&L)operatesthetwounitSusquehanna SteamElectricStation(SES)nearBerwick,Pennsylvania.
BothoftheSusquehanna SESreactorsareGeneralElectricCompanyBoilingWaterReactor(BWR)-4productlinereactorsystems;eachhasaratedthermalpoweroutputof3293Megawatts.
Thegeneralcoredesignandoperating featuresaregiveninTable1.1,Figure1.1,andFigure1.2.ThepurposeofthisreportistodescribethesteadystatecorephysicsmethodsusedbyPP&LforBWRcoreanalysisandtoprovidequalification oftheanalytical methodologies whichwillbeusedtoperformsafetyrelatedanalysesinsupportoflicensing actions.Thisreportwillsatisfytheguidelines inReference l.PP&L'ssteadystatecorephysicsmethodsarebasedontheElectricPowerResearchInstitute (EPRI)codepackage(Reference 2),asdepictedintheflowchart contained inFigure1.3.ThemaincomputercodesaretheCPM-2/PP&L (hereafter referredtoasCPM-2)fuelbundlelatticephysicsdepletion codeandtheSIMULATE-E/PP&L (hereafter referredtoasSIMULATE-E) three-dimensional coresimulation code.Bothofthesecodesrepresent state-of-the-art techniques forreactoranalysisandaredescribed furtherinSections2.1and3.1,respectively.
TheMICBURN/PP&L code(hereafter referredtoasMICBURN)providesadetailedrepresentation ofthedepletion ofasinglegadolinia (Gd0)bearingfuelpin;theNORGE-B2/PP&L code(hereafter referredtoasNORGE-B2) providesanuclearcrosssectiondatalinkfromCPM-2intoSIMULATE-E aswellasthePOWERPLEX coremonitoring system.ThePDQ7code,linkedtoCPM-2viatheCOPHINprogram,isanindustrystandarddiffusion theorysimulation usedbyPP&Lforspecialapplications.
TIPPLOTprovides.plotting andstatistical analysiscapabilities.
TheRODDK-E/PP&L codeisusedtodetermine controlrodworthforshutdownmarginanalysesandtoestimatecoreshutdownmargin.PP&Lutilizestheabovementioned cOdesandassociated methodologies forplantoperations supportapplications (e.g.,corefollowanalyses, development of targetcontrolrodpatterns, predictions ofstartupcriticalrodpatterns, operating strategyevaluations, etc.),independent designverification calculations, reloadfuel/core designanalyses, safetyanalyses, andcoremonitoring systemdatabankupdates.Thesteadystatecorephysicsmethodsdescribed inthisreportarealsousedtodevelopthenecessary neutronics datainputtoPPGL'stransient analyses.
Thequalification ofPPGL'ssteadystatecorephysicsmethodsisbasedlargelyoncomparisons ofcalculated coreparameters tomeasureddatafromtheSusquehanna SESUnitsland2,PeachBottomUnit2,andQuadCitiesUnit1reactors.
Allofthemodelpreparation andbenchmarking calculations represent workperformed byPPGL.Thecomputercodesandthecalculations supporting thisworkaredocumented,
: reviewed, andcontrolled byformalprocedures whichareencompassed withinPPGL'snuclearqualityassurance program.
TABLE11GENERtGDESIGNANDOPERATING FEATURESOFTHESUSUEZGQlNASESREACTORSReactorType/Configuration:
BWR-4/2LoopJetPumpRecirculation SystemRatedCorePower:3,293HWThermalRatedCoreFlow:100x10ibm/hr6ReactorPressureatRatedConditions:
1020psiaNumberofFuelAssemblies:
764NumberofControlRods:185NumberofTraversing Zn-coreProbeLocations:
43 FIGURE1.1SUSQUEHANNA SESUNlTS1AND2CORE59575553++++++++++++++++434139373533'27252321++++++++++++++++++++++++++++++++31000204060810 12141618202224262830323436384042444648505254565860 X+ControlRodLocation~Traversing In-coreProbelocation FIGURE1.2TYPICALGOREPOWERVSCOREFLOW1201101009080'5I-7oVOl6oO50OO40APRMRODBLOCK///II~'IIIII//APRMSORY~:100%XeRODLINEr'rRODBLOCKMONITOR////~T302010~~NATCIRC2-PUMPMINFLOW!001020III3040506070TOTALCOREFLOW,5RATED8090,;00 FIGURE1.3PP&LSTEADYSTATECOREPHYSICSMETHODSCOMPUTERCODEFLOWCHART MICBURNGdDepletion POWERPLEXCoreMonitoring SystemCPM-2LatticePhysicsNORGE-B2DataLinkSIMULATE-E 3-DSimulation COPHINDateLinkPDQDiffusion TheoryTIPPLOTStatistical AnalysisTRANSIENT ANALYSISRODDK-EShutdownMargin 2.0LATTICEPHYSICSMETHODSThelatticephysicsmethodscurrently inuseatPPGLarebasedontheCPM-2andMICBURNcomputercodeswhichwereoriginally developed byEPRIaspartoftheAdvancedRecycleMethodology Program(Reference 2).CPM-2isusedatPPGLtocalculate thetwoenergygroupcrosssectionsforinputtoSIMULATE-E andPOWERPLEX.
ThecodeisalsousedtoprovidedetectormodelresponsedatawhichisusedbySIMULATE-E todetermine calculated Traversing In-coreProbe(TIP)responses.
Thecalculated TIPresponses areroutinely comparedtomeasuredTIPdatatoassessnodalmodelaccuracyandtoprovidetheRodBlockMonitor(RBM)simulation employedforcertainsafetyanalyses(e.g.,RodWithdrawal Error).Afulldescription ofCPM-2isprovidedinReference 3butisalsosummarized inSection2.1.Sections2.2and2.3providecomparisons tobothuniformlatticecriticalandreactoroperating data


==6.0REFERENCES==
==6.0REFERENCES==
1.NRCGenericLetterNumber83-11,"LicenseeQualificationforPerformingSafetyAnalysesinSupportofLicensingActions,"February8,1983.2."AdvancedRecycleMethodologyProgram,"EPRZCCM-3,September,1977.3.D.B.Jones,"CPM-2ComputerCodeUser'sManual,"PartII,Chapter6ofEPRINP-4574-CCM,February,1987.4.M.Edenius,"EPRI-CPMBenchmarking,"Part1,Chapter5ofEPRICCM-3,November,1975.5.A.Ahlin,et.al.,"TheCollisionProbabilityModuleEPRI-CPM,"PartII,Chapter6ofEPRZCCM-3,November,1975.6.R.Stamm'ler,et.al.,"EquivalenceRelationsForResonanceIntegralCalculations,"JournalofNuclearEnergy,Volume27,page885,1973.7.M.Edenius,A.Ahlin,"MICBURN:MicroscopicBurnupZnGadoliniaFuelPins,"PartZI,Chapter7ofEPRZCCM-3,November,1975.8.M.Edenius,et.al.,"TheEPRI-CPMDataLibrary,"PartII,Chapter4ofEPRICCM-3,November,1975.9.L.Hellstrand,"MeasurementsofResonanceIntegralsReactorPhysicsintheResonanceandThermalRegions,"ProceedingsoftheNationalTopicalMeeting,SanDiego,CA,VolumeII,page157,February,1966.10.J.R.Brown,et.al.,"KineticandBucklingMeasurementsonLatticesofSlightlyEnrichedUraniumorUORodsInLightWater,"WAPD-176,January,1958.11.R.D.Learner,et.al.,"PuO-UOFueledCriticalExperiments,"WCAP-3726-1,July,1967.209-i'l12.M.B.CutroneandG.F.Valby,"GammaScanMeasurementsatQuadCitiesNuclearPowerStationUnit1FollowingCycle2,"EPRINP-214,July,1976.13.R.J.Nodvik,"SupplementaryReport.onEvaluationofMassSpectrometricandRadiochemicalAnalysisofYankeeCoreISpentFuel,IncludingIsotopesofElementsThoriumThroughCurium,"WCAP-6086,1969.14.R.J.Nodvik,"SaxtonCoreIIFuelPerformanceEvaluation,"PartIIWCAP-3385-56.15.D.M.VerPlanck,"SIMULATE-E:ANodalCoreAnalysisProgramforLightWaterReactors,"EPRINP-2792-CCM,March,1983.16.A.Ancona,"ReactorNodalMethodUsingResponseMatrixParameters,"Ph.D.ThesisRensselaerPolytechnicalInstitute,1977.17.S.Borresen,"ASimplified,CoarseMesh,Three-DimensionalDiffusionSchemeforCalculatingtheGrossPowerDistributioninaBoilingWaterReactor,"NuclearScienceandEngineering,Volume44,pages37-43,1971.18.G.S.LelloucheandB.A.Zolotar,"MechanisticModelForPredictingTwo-PhaseVoidFractionForWaterinVerticalTubes,"EPRINP-2246-SR,February,1982.19.B.J.Gitnick,"FIBWR:ASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors;ComputerCodeUser'sManual,"EPRINP-1924-CCM,July,1981.20.D.B.JonesandM.J.Anderson,"ARMP-02Documentation:PartII,Chapter12-NORGE-B2ComputerCodeManual,"EPRINP-4574-CCM,PartII-,Chapter12,December,1986.21.B.L.Darnell,et.al.,"SIMULATE-E:ANodalCoreAnalysisProgramforLightWaterReactors,"EPRINP-2792-CCM(DraftRevision),AppendixD,May,1986.-210-22..A.F.Ansari,et.al.,"FIBWR:ASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors,"EPRINP-1923,July,1981.23.R.B.MacduffandT.W.Patten,"XN-3CriticalPowerCorrelation,"XN-NF-512(P)(A)Revision1andSupplement1,Revision1,October21,1982.24.S.W.Jones,et.al.,"POWERPLEXCoreMonitoringSoftwareSystemSoftwareSpecificationfortheSusquehannaSteamElectricStationSusquehannaUnits1and2,"XN-NF-83-35(P),Revision1,August,1986.25."GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,CorrelationandDesignApplication,"NED0-10958-A,January,1977.26.M.Edenius,"StudiesoftheReactivityTemperatureCoefficientinLightWaterReactors,"AE-RF-76-3160,A.B.Atomenergi,1976.27.N.H.Larsen,et.al.,"CoreDesignandOperatingDataforCycles1and2ofQuadCities1,"EPRINP-240,November,1976.28.N.H.Larsen,"CoreDesignandOperatingDataforQuadCities1Cycle3,"EPRINP-552,March,1983.29.G.R.Parkos,"BWRSimulatorMethodsVerification,"NED0-20946A,January,1977.30.N.H.Larsen,"CoreDesignandOperatingDataForCycles1and2ofPeachBottom2,"EPRINP-563,June,1978.31.L.A.CarmichaelandR.D.Niemi,"TransientandStabilityTestsatPeachBottomAtomicPowerStationUnit2attheEndofCycle2,"EPRINP-564,June,1978.32.W.R.Cadwell,"PDQ7ReferenceManual,"WAPD-TM-678,January,1967.211-33.W.J.Eich,et.al.,"FewGroupBaffleand/orReflectorConstantsforDiffusionCalculationApplication,"EPRINP-3642-SR,August,1984.34.R.D.MostellerandR.S.Borland,"COPHINCodeDescription,"EPRINP-1385,April,1980.-212-RESPONSETONRCREQUESTFORADDITIONALINFORMATION-213-


PennsylvaniaPower8LightCompanyTWONOrthNinthStreet~AllentOWn.PA18101~215I7705151HaroldW.KeiserVicePresident-NuclearOperations215/770-7502pEB>7$88DirectorofNuclearReactorRegulationAttention:Dr.W.R.Butler,~ProjectDirectorProjectDirectorateI-2DivisionofReactorPrdjectsU.S.NuclearRegulatoryCommissionWashington,D.C.20555SUSQUEHANNASTEAMELECTRICSTATIONRESPONSETORAIONCOREPHYSICSTOPICALPLA-2983FILESA7-8A,R41-2'eference:Letter,M.C.ThadanitoH.W.Keiser,"RequestforAdditionalInformation",datedJanuary11,1988.
1.NRCGenericLetterNumber83-11,"Licensee Qualification forPerforming SafetyAnalysesinSupportofLicensing Actions,"
February8,1983.2."Advanced RecycleMethodology Program,"
EPRZCCM-3,September, 1977.3.D.B.Jones,"CPM-2ComputerCodeUser'sManual,"PartII,Chapter6ofEPRINP-4574-CCM,
: February, 1987.4.M.Edenius,"EPRI-CPM Benchmarking,"
Part1,Chapter5ofEPRICCM-3,November, 1975.5.A.Ahlin,et.al.,"TheCollision Probability ModuleEPRI-CPM,"
PartII,Chapter6ofEPRZCCM-3,November, 1975.6.R.Stamm'ler, et.al.,"Equivalence Relations ForResonance IntegralCalculations,"
JournalofNuclearEnergy,Volume27,page885,1973.7.M.Edenius,A.Ahlin,"MICBURN:
Microscopic BurnupZnGadolinia FuelPins,"PartZI,Chapter7ofEPRZCCM-3,November, 1975.8.M.Edenius,et.al.,"TheEPRI-CPMDataLibrary,"
PartII,Chapter4ofEPRICCM-3,November, 1975.9.L.Hellstrand, "Measurements ofResonance Integrals ReactorPhysicsintheResonance andThermalRegions,"
Proceedings oftheNationalTopicalMeeting,SanDiego,CA,VolumeII,page157,February, 1966.10.J.R.Brown,et.al.,"KineticandBucklingMeasurements onLatticesofSlightlyEnrichedUraniumorUORodsInLightWater,"WAPD-176, January,1958.11.R.D.Learner,et.al.,"PuO-UOFueledCriticalExperiments,"
WCAP-3726-1, July,1967.209-i'l12.M.B.CutroneandG.F.Valby,"GammaScanMeasurements atQuadCitiesNuclearPowerStationUnit1Following Cycle2,"EPRINP-214,July,1976.13.R.J.Nodvik,"Supplementary Report.onEvaluation ofMassSpectrometric andRadiochemical AnalysisofYankeeCoreISpentFuel,Including IsotopesofElementsThoriumThroughCurium,"WCAP-6086, 1969.14.R.J.Nodvik,"SaxtonCoreIIFuelPerformance Evaluation,"
PartIIWCAP-3385-56.
15.D.M.VerPlanck, "SIMULATE-E:
ANodalCoreAnalysisProgramforLightWaterReactors,"
EPRINP-2792-CCM, March,1983.16.A.Ancona,"ReactorNodalMethodUsingResponseMatrixParameters,"
Ph.D.ThesisRensselaer Polytechnical Institute, 1977.17.S.Borresen, "ASimplified, CoarseMesh,Three-Dimensional Diffusion SchemeforCalculating theGrossPowerDistribution inaBoilingWaterReactor,"
NuclearScienceandEngineering, Volume44,pages37-43,1971.18.G.S.Lellouche andB.A.Zolotar,"Mechanistic ModelForPredicting Two-Phase VoidFractionForWaterinVerticalTubes,"EPRINP-2246-SR,
: February, 1982.19.B.J.Gitnick,"FIBWR:ASteady-State CoreFlowDistribution CodeforBoilingWaterReactors; ComputerCodeUser'sManual,"EPRINP-1924-CCM, July,1981.20.D.B.JonesandM.J.Anderson, "ARMP-02Documentation:
PartII,Chapter12-NORGE-B2 ComputerCodeManual,"EPRINP-4574-CCM, PartII-,Chapter12,December, 1986.21.B.L.Darnell,et.al.,"SIMULATE-E:
ANodalCoreAnalysisProgramforLightWaterReactors,"
EPRINP-2792-CCM (DraftRevision),
AppendixD,May,1986.-210-22..A.F.Ansari,et.al.,"FIBWR:ASteady-State CoreFlowDistribution CodeforBoilingWaterReactors,"
EPRINP-1923,July,1981.23.R.B.MacduffandT.W.Patten,"XN-3CriticalPowerCorrelation,"
XN-NF-512(P)(A)
Revision1andSupplement 1,Revision1,October21,1982.24.S.W.Jones,et.al.,"POWERPLEX CoreMonitoring SoftwareSystemSoftwareSpecification fortheSusquehanna SteamElectricStationSusquehanna Units1and2,"XN-NF-83-35(P),
Revision1,August,1986.25."GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,Correlation andDesignApplication,"
NED0-10958-A, January,1977.26.M.Edenius,"StudiesoftheReactivity Temperature Coefficient inLightWaterReactors,"
AE-RF-76-3160, A.B.Atomenergi, 1976.27.N.H.Larsen,et.al.,"CoreDesignandOperating DataforCycles1and2ofQuadCities1,"EPRINP-240,November, 1976.28.N.H.Larsen,"CoreDesignandOperating DataforQuadCities1Cycle3,"EPRINP-552,March,1983.29.G.R.Parkos,"BWRSimulator MethodsVerification,"
NED0-20946A, January,1977.30.N.H.Larsen,"CoreDesignandOperating DataForCycles1and2ofPeachBottom2,"EPRINP-563,June,1978.31.L.A.Carmichael andR.D.Niemi,"Transient andStability TestsatPeachBottomAtomicPowerStationUnit2attheEndofCycle2,"EPRINP-564,June,1978.32.W.R.Cadwell,"PDQ7Reference Manual,"WAPD-TM-678, January,1967.211-33.W.J.Eich,et.al.,"FewGroupBaffleand/orReflector Constants forDiffusion Calculation Application,"
EPRINP-3642-SR, August,1984.34.R.D.Mosteller andR.S.Borland,"COPHINCodeDescription,"
EPRINP-1385,April,1980.-212-RESPONSETONRCREQUESTFORADDITIONAL INFORMATION
-213-
 
Pennsylvania Power8LightCompanyTWONOrthNinthStreet~AllentOWn.
PA18101~215I7705151HaroldW.KeiserVicePresident-Nuclear Operations 215/770-7502 pEB>7$88DirectorofNuclearReactorRegulation Attention:
Dr.W.R.Butler,~ProjectDirectorProjectDirectorate I-2DivisionofReactorPrdjectsU.S.NuclearRegulatory Commission Washington, D.C.20555SUSQUEHANNA STEAMELECTRICSTATIONRESPONSETORAIONCOREPHYSICSTOPICALPLA-2983FILESA7-8A,R41-2'eference:
Letter,M.C.ThadanitoH.W.Keiser,"RequestforAdditional Information",
datedJanuary11,1988.


==DearDr.Butler:==
==DearDr.Butler:==
AttachedpleasefindPP&L'sresponsestothereferencedstaffquestionsonourtopicalreportPL-NF>>87.-001,"QualificationofSteadyStateCorePhysicsMethodsforBWRDesignandAnalysis."Pleasebeadvised.thatthescheduleforthesubmittalofourremainingtopicalreportshasbeenrevisedasfollows:QualificationofTransientAnalysisMethodsforBWRDesignandAnalysisApplicationofReactorAnalysisMethodsforBWR,DesignandAnalysisJuly,1988November,1988Duetothesedelaysinourplannedcompletiondates,PP&Lhasalsorevisedthefirstreloadapplicationofourin-housemethodsfromSusquehannaSESUnit1Cycle5toSusquehannaSESUnit2Cycle4(plannedstartup:November10,1989).Accordingly,wearerevisingourrequestforyourapprovalofPL-NF-87-001fromMarch,1988toJuly5,1988.
AttachedpleasefindPP&L'sresponses tothereferenced staffquestions onourtopicalreportPL-NF>>87.-001, "Qualification ofSteadyStateCorePhysicsMethodsforBWRDesignandAnalysis."
FILESA7-8A,R4)-2PLA-2983Dr.W.R.ButlerAlsoattachedforinsertionintoPL-NF-87-001arereplacementpages51and208,whichcorrectminortypographicalerrors,andreplacementpage69(Table3.2.3),whichprovidescorrectedcycleandcoreaverageexposurevaluesforCase16,andthecorrectedcycleexposurevalueforCase22.AnyquestionsonthissubmittalshouldbedirectedtoMr.R.Sgarroat(215)770-7916.Verytrlyyours,H.W.Keiser.VicePresident-NuclearOperationsAttachmentcc:NRCDocumentControlDesk(original)NRCRegionIMr.F.I.Young,NRCResidentInspector-SSES@fr~~>>H~C;-Thadani,NRCProspect,Manager-Bethesda Crosssectiondependenciesinclude:fuelexposurevoidhistory(i.e.,exposure-weightedrelativemoderatordensity)relativemoderatordensity(hotonly)controlrodpresencefueltemperature(hotonly)controlrodhistoryxenonconcentrationmoderatortemperature(coldonly)TheeffectofeachdependencyiscalculatedutilizingCPM-2.ThefinalcrosssectiondatatablesarepreparedforSIMULATE-EusingNORGE-B2(Reference20).Theradial,top,andbottomreflectorregionsarenotmodeledexplicitly.Instead,theseregionsaretakenintoaccountbyuseofalbedoboundaryconditions.RadialalbedosarecalculatedusingtheABLE(Reference21)programdevelopedbyScienceApplicationsInternationalforEPRI.Thetopandbottomalbedosweredeterminedbasedoncomparisontoplantdataduringmodelnormalization.Differentalbedoboundaryconditionsareusedforcold'andhotconditions.SeveraloftheinputdataparametersusedbySIMULATE-Erequireadjustmenttomatchplantoperatingdata.ThisnormalizationprocesswasperformedusingSusquehannaSESUnit1Cycles1and2data.AllparameterschangedinthisfashionwereheldconstantforallothercalculationsincludingtheQuadCitiesandPeachBottomcalculations.ThethermalhydraulicscalculationsusetheFIBWRmethodology(Reference19)developedbyYankeeAtomicElectricCompany.Thiscalculationdeterminestotalcorepressuredropandcorebypassflow.Thepressuredropcalculationdeterminesthefrictionalpressuredrop,local(i.e.,form)losses,acceleration(i.e.,momentumchange)pressuredrop,andelevationhead.ThecorebypassflowcalculationallowsformodelingtheflowpathsshowninFigure3.1.1.FIBWRasastand-alonecodehasbeenbenchmarkedbyYankeeAtomicElectricCompanyagainstdatafromVermontYankeeandtheFriggLooptests(seeReference22).-51" I
Pleasebeadvised.thatthescheduleforthesubmittal ofourremaining topicalreportshasbeenrevisedasfollows:Qualification ofTransient AnalysisMethodsforBWRDesignandAnalysisApplication ofReactorAnalysisMethodsforBWR,Design andAnalysisJuly,1988November, 1988Duetothesedelaysinourplannedcompletion dates,PP&Lhasalsorevisedthefirstreloadapplication ofourin-housemethodsfromSusquehanna SESUnit1Cycle5toSusquehanna SESUnit2Cycle4(plannedstartup:November10,1989).Accordingly, wearerevisingourrequestforyourapprovalofPL-NF-87-001 fromMarch,1988toJuly5,1988.
TABLE3.2.3EHAWASSHOTCRIICALCOREK-EFFECTIVEDATAUNIT*1CYCLE=1CASE1235678910ll1R1314151617181920Zl22R3R4R5262728293031323334353637383940CYCLEEXPOSURE(GHD/NTU)O.ZRl0.8361,4901.5961.7361.7581~7991.9082.0702.7062.906R.9753.1163'673.5173.6633.7763.8363.9184.0364.1934.31S4.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366,5636.7166.723COREAVERAGEEXPOSUREtGHD/HTU)O.R210.8361.4901.5961,7361.7581.7991.9082.0702.7062.906R.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723POWER(t%PH)143232503280327832913296329132933293328132893291329132923289329232903293329832903R903296328832893290328832813Z94329132943295328732933289328632883265328632833290PERCENTPOHER(%)439910010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010099100100100TOTALCOREFLOW(%)5498100~889798999897989796989896969598979698969799999798999999999998969896999898SUB-COOLINGlBTU/LBN)23.823.723.623.624.324.R23.824.024.225.024.224.724.2R4.R24.524.624.824.024.324.524.224.523.823.924.324.023.S23.723.923.823.724.124.323.924.323.8R4.1Z4.0OOHEPRESSURE(PSIA)974100110051002100110011001100099410009999999991009100210021001100310001003100210031003100410051005100R100210021002100210021001100110001001999999999999CONTROLRODOENSITY0%)20.412.613.913.614.014.114,114.114.114.815.015.015.015.9,.15.915.915.915.916.016.016.016.116.116.117.617.618.017.917.917.817'17.817.016.716.416.416.316.315.015.0CALCULATEDCOREK-EFFECTIVE0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580.99061Oo990800.991000.991160.991380.991630.991760.992540.992420.992190.992670.992940.993500.993580.993670.9936R0.993620.994300.994370.994540.994630.994600.99460 EI uniformlatticecriticalexperimentsandpinpowerdistributioncalculationswithCPM-2.Inconclusion,theanalysisresultscontainedinthistopicalreportdemonstratePPGL'squalificationstoperformsteadystatecorephysicscalculations.ExtensivecomparisonstomeasureddatafromSusquehannaSES,QuadCitiesUnit1,andPeachBottomUnit2demonstratethevalidityoftheanalyticalmethodsaswellasPPaL'scapabilitytosetupandproperlyapplythemodels.ComparisonstoreactordesignsotherthanPP&L'sSusquehannaSESdemonstratePPaL'sabilitytoextendthecoremodelingtechniquesdevelopedforSusquehannaSEStootherfuelandcoredesigns.PP&Liscommittedtomaintainingastrongin-housecoreanalysiscapabilityandaspartofthatcommitmentwecontinuallyevaluatetheaccuracyofourcoresimulationmethodsandmakemodelingimprovementswhenappropriate.AlthoughPPaL'sday-to-daycorefollowanalysesareaimedprimarilyatplantoperationssupport,thecomparisonsofSIMULATE-Ecalculations(e.g.,TIPresponse,K-effective,thermalmargins)totheplantdataalsoserveasacontinuingmethodsbenchmarkingeffort.208-Il CPM-2Question1Whatarethebasesforthedepletionsteps,spatialmesh,energygroups(macroand2-D),convergenceandotherparametersusedinproductioncalculationswithCPM-2/MICBURN?~ResenseTherearecurrentlynospecificEPRIguidelinesavailablefordevelopmentofMICBURNandCPM-2input.Thecomputercodes,however,havecertaindefaultsettingswithregardtoiterationcontrol,convergenceaccuracy,andenergygroupstructurewhichweresetbyEPRIduringthecodedevelopment.ThesedefaultvalueswereusedbyPP&LforallcalculationspresentedinPL-NF-87-001.Noproblemsresultedfromtheuseofthedefaultiterationcontrolinputs;theconvergencecriteriaonthefundamentalmodecalculation-5is1.0x10whichissufficienttoprovideconsistentandaccurateresults.InformationontheenergygroupstructureispresentedintheresponsetoQuestion2.ThedepletionstepsizeusedfortheMICBURNcalculationsissetaccordingtoEPRIrecommendations.Thesestepsizeshavebeendesignedtolimitthemaximumgadoliniadepletiontolessthan4%oftheinitialamountforanygivendepletioninterval.Thedepletioncalculationsareperformedusing66to72depletionsteps.ThedepletionstepsizeinCPM-2issettoprovidesmoothlyvaryingcrosssectioncurvesandlatticereactivity(seeFiguresC1.1andC1.2forexamples).ThetimestepstructurewhichisusuallyusedforCPM-2depletioncalculationsis:0~OR01R0SR1~OR1SR2~OR2SR3~OR3~SR4~OR4SR5~OR5SR6.OR6~5R7~OR7~5R8~OR8~SR9~OR9SR10OR12~Sg15~OR17~Sg20~OR22~SR25~OR27~SR30~OR35~OR40~OR45ORSO.OR55.0GWD/MTU Forassemblieswherethe.gadoliniaconcentrationishigherthan4w/oadditionalCPM-2timestepsareplacedbetween10.0and12.5GWD/MTU.Toevaluatetheeffectsofthecontrolrodpresence,relativemoderatordensity,fueltemperature,etc.,restartcalculationsareperformedatcertainexposurepoints.Thesepointsarechosensothatthechangeinthecrosssectionduetothechangeintheindependentparameter(i.e.controlrodpresence,etc.)issmoothlyvarying(seeFigureC1.3foranexample).Thischangeincrosssection,nottheabsolute'crosssection,isusedbySIMULATE-E.SensitivitycalculationshavealsobeenperformedbyPPGLtodeterminetheeffectofmuchfinertimestepsontheCPM-2results.Thelatticereactivityfromthesesensitivitystudiesdifferedfromtheproductioncalculations(coarsertimesteps)bylessthan0.001~K.ThespatialmeshusedinMICBURNissomewhatfinerthanthoserecommendedbythecodedeveloper.Atotalof20burnup(micro)regionsand10flux(macro)regionsare.usedintheburnableabsorbercell.Amicro-regionisdefinedasahomogenizedmaterialzone.Amacro-regioniscomposedofoneormoremicro-regionsandisusedforcalculationoftheflux.FigureC1.4showsanexample.Thisdefinitionofzoneswithinthefuelpinprovidessufficientdetailtoaccuratelymodelthe"onionskin"typedepletionofagadoliniapin.ThemeshspacingusedinCPM-2fortheXandYdirectionsincludestwomeshesperpincell,onemeshinthefuelchannelwall,andtwomeshesinthewatergap(bypassregion).SensitivitystudieshavebeenperformedbyPPsLinwhichthenumberofmeshesinthepincellhasbeenincreasedfromtwotothree.Thisincreaseresultedinamaximumchangeinlatticereactivityof0.005~K;typically,differencesaremuchless.Using.thiscrosssectiondataintheS1MULATE-EmodelhasshownverylittleeffectonthecorepowerdistributionandcoreK-effective.AdditionalworksponsoredbyEPRXhasalsoexamineddifferencesbetweenuseoftwoversusthreemeshpointsperpincell.Althoughthesecaseswerelimitedtosub-assemblies(i.e.,3x3fuelrodarrays),theresultingdifferenceswerequitesmall(i.e.,lessthan0.005~K)forvaryinggadolinialoadingandvoidcontentandsupporttheuseoftwomeshpointsperpincell.Thesensitivitystudiesdiscussedabovehavebeenruntodeterminetheeffectsofselectedcodeinputs.ThetopicalreportPL-NF-87-001providesabenchmarkoftheCPM-2codewiththeSusquehannaSESmodelinputsandconsequentlyanestimateofthecode/modeluncertainty.
FILESA7-8A,R4)-2PLA-2983Dr.W.R.ButlerAlsoattachedforinsertion intoPL-NF-87-001 arereplacement pages51and208,whichcorrectminortypographical errors,andreplacement page69(Table3.2.3),whichprovidescorrected cycleandcoreaverageexposurevaluesforCase16,andthecorrected cycleexposurevalueforCase22.Anyquestions onthissubmittal shouldbedirectedtoMr.R.Sgarroat(215)770-7916.
0.068FIGUREC1.1THERMALABSORPTIONCROSSSECTIONBUNDLEENRICHMENT:2.19W/04GD50.0640.0620.060tI0.0480.0480.044----:-.Legend0%VOIDHISTORY-.-.'p42.:X40%VOIDHISTORY070/oVOIDHISTORY0.0400101520253035.EXPOSURE(GWD/MTU)404550 1.2FIGURECi.2FUELK-INFINITYVSEXPOSUREBUNDLEENRICHMENT:2.19W/04GD5I-O.SzII0~~~a~~~0.80.7Legend0%VOIDHISTORY"":"X40%VOIDHISTORYCI70%VOIDHISTORY10O.B0616202630364046EXPOSURE{Gwl3/MTU)60 FIGUREC1.3CHANGEINSIGMAA-2DUETOCONTROLPRESENCEBUNDLEENRICHMENT:2.19W/04GD50.0160.014::--::"--":,---:,---',-Legend0%VOIDHISTORYX40%VOIDHISTORY070%VOIDHISTORY0.0130.0120.0110.010010152026303640EXPOSURE(GWD/MTU)50 FigureCl.4Definitionofmacroregions.Thefigure:showsacasewith20microregionsand6macroregionsintheBA-pin.N~g5+N~57BA-fuelCanModeratorBufferzoneQNopQNophNopIBNopIIBNqpIIIIIII20MicroregionsIII(IIIl!I6Macroregions(+4macroregionsoutsidetheBA-pin.)rIIrbSource:E.EdeniusandA.Ahlin,"MZCBURNMicroscopicBurnupinGadoliniaFuelPins,"PartIZChapter7ofEPRICCM-3,Septemberl977.
Verytrlyyours,H.W.Keiser.VicePresident
uestion2The5energygroupsusedforthe2-Dcalculationsaresomewhatcoarse.Pleasecomment.~ResenseTheuseoffiveenergygroupsintheCPM-2calculationissufficienttoaccuratelyperformthetwo-dimensionalcalculationprincipallyduetothemethodusedtodeterminethefivegroupcrosssections.TheCPM-2calculationstartswitha69energygroupcrosssectionlibrarywhichwasdevelopedforgeneralLWRanalysis.Foreachtwo-dimensionalcalculationperformedbyCPM-2,micro-groupand.macro-groupcalculationsareperformedwhichaccountforboththefluxspectrumandthematerialpresentintheassembly.The'Imicro-groupcalculationisperformedin69energygroupsforeachuniquetypeofpincell.Uptosixseparatecalculationsarepermitted.Ifmorethansixuniquepintypesexistwithinafuellattice,similarpinsmustbeaveragedtogether.Thismicro-groupcalculationprovidesadetailedfluxspectrumbutdoesnotaccountforthespecificlocationofthepin.Anextraregionisusedaroundeachpincellwhichdoesaccountfortheeffectsofthepresenceofthebypassregionandchannelwall.Thedetailedenergyspectrumisusedtocollapsethecrosssectiondatato25energygroups.Themacro-groupcalculationisperformedin25energygroupsandisaone-dimensionalradialcalculationforaregionallyhomogenizedassembly(SeeFigureC2.1).Eachrowoffuelpins/waterrodsoccupiesaseparateannularregionstartingatthecenteroftheassemblyproceedingoutward.Thechannelwall,outerwatergap,andcontrolrod(ifpresent)occupyseparateregions.Thiscalculation,therefore,accountsforthe.relativelocationofeachmaterialwithintheassembly.Thisisparticularlyimportantforfuelpinsadjacenttothewatergap.The25energygroupfluxescalculatedforeachregionareusedtocollapsethe25groupcrosssectionsdowntofiveforuseinthefinaltwo-dimensionalcalculation.Sincethefluxspectrumusedforthiscollapsingcalculationalreadyhasthegeometriceffectsfactoredintoit,thesefivegroupsprovideanaccuratebasisforthetwo-dimensionalcalculationwhereasfivegroupcrosssectiondatacollapseddirectlyfrompincellcasesmightnot.
-NuclearOperations Attachment cc:NRCDocumentControlDesk(original)
FigureC2.1Exampleofgeometryinmacrogroupcalculation000000000000000000000000000000000000000000UQ>-pin8PuO>-pinWidewatergapNarrowwatergaphomogenizedcontrolrodouterwatergapboxinnerwatergapUOPu022homogenizedfuellayersouterwatergapboxUQ2PuO>homogenizedfuellayersinnerwatergapSource:A.AhlinandM.Edenius,"TheCollisionProbabilityModuleEPRl-CPM,"PartIZChapter6ofEPRZCCM-3,September1977.
NRCRegionIMr.F.I.Young,NRCResidentInspector
uestion3HowwastheconversionfromcalculatedpowertoBa-140concentrationsperformedfortheCPM<<2rod-wisecomparisonstotheQuadCitiesgamma-scanresults?~ResenseUsingthedecay/productionequation,theBa-140concentrationcanbecalculatedas:NB(t)=<fn[SB(t)-XNB(t)1dttn-1whereN(t)=theBa-140concentrationattimet,BS(t)=theBa-140productionrateattimet,B=theBa-140decayconstant.IntegratingandassumingS(t)isconstantovereachtimestepgives:N(t)=Bn+N(t)-BnBn-Bn1-X<Te(2)wheret=theendoftimestepn,nt=thebeginningoftimestepn.n-1Assumingthattheaverageenergyperfissionisrelativelyconstantoverthetimeinterval,S(t)canbeapproximatedas:nS(t)=CYP(t)(3)whereC=aunitconversionconstant,Y=theeffectiveBa-140yield,eP=thepowerdensity.
-SSES@fr~~>>H~C;-Thadani,NRCProspect, Manager-Bethesda Crosssectiondependencies include:fuelexposurevoidhistory(i.e.,exposure-weighted relativemoderator density)relativemoderator density(hotonly)controlrodpresencefueltemperature (hotonly)controlrodhistoryxenonconcentration moderator temperature (coldonly)Theeffectofeachdependency iscalculated utilizing CPM-2.ThefinalcrosssectiondatatablesarepreparedforSIMULATE-E usingNORGE-B2(Reference 20).Theradial,top,andbottomreflector regionsarenotmodeledexplicitly.
TheBa-140concentrationsarecalculatedbysubstitutingEquation(3)intoEquation(2)toobtain:CYP(t)en+CYP(t)en-X<Te(4)Sincethefinalcomparisonsaremadeonarelativebasis,relativeBa-140concentrationsarecalculatedasfollows:Rel.N(t)=en+1CYP(t)CYP(t)Btn-1en-X~Te(5)whereN(t)=theaverageoftheBa-140concentrationsattheendoftimestepn.BnThepower,P(t),isbasedontheCPM-2relativepinpower.TheeffectivenYield,Y,iscalculatedforeachpinasfollows:e'=MY.F.i=U-235,U-238'u-239@Pu241e~iiwhereY=theBa-140yieldforisotopei,F.=thefractionoffissionsfromisotopei.iThefissionratesandhencethefractionoffissionsfromeachisotopeiscalculatedateachtimetbyCPM-2.Equation(5)issolvedtocalculatenrelativeN(t)foreachrodbymarchingthroughtheexposurepointsforeachnrelativemoderatordensitycorrespondingto0%,40%,and70%voidlevel.TheSIMULME-Emodelcalculationprovidestheexposureandvoidhistoryforeachaxialplaneforwhichmeasureddataexists.ThesedataareusedtointerpolatefromtheCPM-2calculateddatatodeterminethecalculatedrelativeBa-140distributioncorrespondingtothevoidhistoryandexposureconditionsatthelocationofinterest.
Instead,theseregionsaretakenintoaccountbyuseofalbedoboundaryconditions.
guestion4ThediscussioninSection2.3needsmoreconsistency,inreferencestomeasuredandcalculatedvaluesofpower,andBa-140andLa-140activitiesintermsofwhatquantitiesarecomparedandtheirbases.~ResooseThemeasureddatausedinthecomparisonsaretherelativeLa-140activitiesasreportedinEPRINP-214"GammaScanMeasurementsatQuadCitiesNuclearPowerStationUnit1FollowingCycle2"(Reference12inPL-NF-87-001).ThecalculateddatausedinthecomparisonsaretherelativeBa-140concentrations.ThesearederivedfromtheCPM-2calculatedrelativepinpowersaspresentedinthe,responsetoQuestion3.TheBa-140concentrationsandactivitiesareproportionaltotheLa-140concentrationsandactivitiesatanygiventimefollowingshutdownfromsteady-stateoperation.Thefactorofproportionalitysignificantlyvarieswithtimeforthefirstweekaftershutdown,butaftertendays,itremainsessentiallyconstant.Becauseallgammascanmeasurementsweretakenfollowingashutdownperiodgreaterthantendays,therelativemeasuredLa-140activitiesarecomparedtothecalculatedBa-140concentrations.  
Radialalbedosarecalculated usingtheABLE(Reference 21)programdeveloped byScienceApplications International forEPRI.Thetopandbottomalbedosweredetermined basedoncomparison toplantdataduringmodelnormalization.
~nestion5ArethepresentlydemonstratedaccuracyandbiasesofCPM-2calculationsexpectedtoholdfor9x9andotheradvancedBWRbundledesigns?HaveanycomparisonsbeenmadeofCPM-2toMonteCarlocalculationsfor9x9bundlesofthetypeusedinSusquehannaUnit2?~~nesonseTheaccuracyandbiasespresentedinPL-NF-87-001areexpectedtoholdfor9x9andotheradvancedBWRbundledesignsthat.aresimilartothe7x7,8x8,and9x9fueldesigns.ComparisonstotheTRX,Kritz,andESADAcriticalsshowcriticalevaluationsforawidevarietyoffuelarrangements(i.e.varyingpellet'diameters,pelletdensities,watertometalratios,andfuelrodpitches).ComparisonsofCPM-2toMonteCarlocalculationshavenotbeenmade;however,thebenchmarkingpresentedinPL-NF-87-001stronglysupportstheuseofCPM-2tomodel9x9fuelandotheradvancedBWRbundledesignssimilartothosepresented.
Different albedoboundaryconditions areusedforcold'andhotconditions.
uestion6Haveanytrends(biases)beenobservedintheaccuracyofpin-powerandLPFpredictionsvs.elevation,voidhistory,exposure,control,etc.7~ResenseTheaccuracyofthepinpowerdistributionandlocalpeakingfactordoesnotappeartobecorrelatedtoexposure,voidhistory,orelevation.ThiscanbeseenbyexaminingthedatafromtheQuadCitiesgammascancomparisonssummarized.inTables2.3.2and2.3.3ofPL-NF-87-001.ThesedatahavebeenplottedinFiguresC6.1throughC6.6.Overall,theredoesnotappeartobeanytrendinthestandarddeviationsofthepincomparisonsrelativetoexposure,voidhistory,orelevation.Theinteriormixedoxidebundles,GEB159andGEB161,doshowslightlyincreasedstandarddeviationswithincreasedelevations(i.e.,voidhistory).ThesebundledesignsarenottypicalofexpectedfueldesignscurrentlyplannedforuseinSusquehannaSES.Itshouldalsobenotedthatthecalculatedpeakactivityisnormallyhighprovidingaconservativeestimationofthelocalpeakingfactor.InadditiontothegammascancomparisonsperformedatPPGL,EPRIsponsoredbenchmarkingoftheoriginalEPRI-CPM.TheresultsfromthesecomparisonsareconsistentwiththeQuadCitiescomparisonsindicatingCPM-2calculationsprovidesimilaraccuracyfordifferentbundledesigns.MeasuredgammascandatadonotexistforanyoftheSusquehannaSESspecificbundledesignswhichwouldpermitdirectcomparisontopinpowers.However,theTIPresponsecomparisonspresentedinSection3ofPL-NF-87-001canbeusedtoinfertheaccuracyofCPM-2.TheTIPresponsemodelusedinSIMULATE-EisdevelopedbasedonCPM-2calculations.ThesecalculationsrequireCPM-2topredictalocalfissionrateatthedetectorlocationinthebypassregion.IfCPM-2wasunabletocalculateaccuratelocalpeakingfactors,itwouldalsobeunabletocalculateaccurateTIPresponsefactors.ThiswouldshowupintheTIPresponsecomparisons.TheindividualTIPresponsecomparisonsinSection3donotappeartocontainanytrendswithcontrolrodpresence,exposure,voidhistory(i.e.,exposure-weightedrelativemoderatordensity),orrelativemoderatordensity.Thisagreeswiththeconclusionsdrawnfromthecomparisonstogammascandata.
Severaloftheinputdataparameters usedbySIMULATE-E requireadjustment tomatchplantoperating data.Thisnormalization processwasperformed usingSusquehanna SESUnit1Cycles1and2data.Allparameters changedinthisfashionwereheldconstantforallothercalculations including theQuadCitiesandPeachBottomcalculations.
FIGUREC6.1QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONS60I~QUJClCCCIZ4V)0cI0":'egend0GEB169GEB161~GEH002SCX0672'"~CX0214a~4681012141618CALCULATEDBURNUP.(GWD/MTU)2022 mmmmmmmmmmwmwmmwmFIGUREC6.2QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONSZ60l~aWClCCCIZ4I-LegendPGEB169GEB161~GEH002~CX0672~CX0214p'3""~~.:01020.304060CALCULATEDVOIDHISTORY(%)6070 FIGUREC6.3QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONSZ80l~5DCLDZ4(DLegend0GEB159GEB161~GEH002~CX0672....~CX02140gI0002040~~6080100ELEVATION(INCH)W.:~~120140 10~o60c(40Q2OZm.FIGUREC6.4QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONSLegend0GEB159GE8161~GEH002~"-.'-""~CX0672CX0214.~........:,-2-4-61012141618CALCULATEDBURNUP(GWD/MTU)2022 10FIGUREC6.5QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONSLegend0GEB159GEB161~GEH002~o60c(40UJQOOZg)0-r~~~rCX0872~CX0214~'..:..~.............:r<<2-4106020304050mmmmmmSPY'lYLJiiWekimmmmmmm 10FIGUREC6.6.QUADCITIESUNITIENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS~o604ClClCIZg)0-2-4Legend0GEB159GEB161----"-"~GEH002~CX0672CX0214~~0I~~~~~00020406080ELEVATION(INCH)100120140 Question7HowdothemodificationstotheENDF/B-IIInucleardataotherthanthosenotedforU-238comparetotheuncertaintiesinthebasicdata?~ResenseThemodificationtothePu-240microscopicabsorptioncrosssectionsistheonlymodificationmadetotheENDF/B-IIIcrosssectiondataotherthanthosenotedforU-238.Thismodification,asstatedinSection2.1ofPL-NF-87-001anddocumentedinPartII,Chapter4ofEPRICCM-3,"TheEPRI-CPMDataLibrary,"isa50%reductioninthecrosssection,intheresonanceenergyregion(i.e.,energygroups16through27).AlthoughtheaccuraciesoftheENDF/B-IIIdata'renotpresentedintheEPRIdocumentation,itislikelythatthismodificationexceedstheuncertaintiesofthebasicnucleardata.Themodification,however,isrequiredtocompensateforthefactthatPu-240isnottreatedasaresonancenuclideinCPM-2.Theunmodifiedcrosssectionwouldsignificantlyoverpredicttheabsorptionintheresonanceregion.AnymodificationtothePu-240microscopicabsorptioncrosssectionswouldaffecttheheavynuclideconcentrationbuildupwithexposure.Table2.1.3ofPL-NF-87-001presentstheheavynuclidechainsthatincludePu-240.IfthePu-240crosssectionswereinappropriatelyadjusted,thePu-240,Pu-241,andPu-242concentrationswouldimproperlyaccumulatewithexposure.Table2.4.3andFigures2.4.4through2.4.6showcomparisonsofmeasuredandcalculatedisotopicparameters.Allcalculations,whichincludetheeffectofthemodifiedENDF/B-IIIcrosssections,showgoodagreementwithmeasureddataandprovideindicationthattheconcentrationsareproperlyaccumulatingwithexposure.ThisagreementthereforesupportstheacceptabilityofthemodifiedPu-240microscopicabsorptioncrosssections.  
Thethermalhydraulics calculations usetheFIBWRmethodology (Reference 19)developed byYankeeAtomicElectricCompany.Thiscalculation determines totalcorepressuredropandcorebypassflow.Thepressuredropcalculation determines thefrictional pressuredrop,local(i.e.,form)losses,acceleration (i.e.,momentumchange)pressuredrop,andelevation head.Thecorebypassflowcalculation allowsformodelingtheflowpathsshowninFigure3.1.1.FIBWRasastand-alone codehasbeenbenchmarked byYankeeAtomicElectricCompanyagainstdatafromVermontYankeeandtheFriggLooptests(seeReference 22).-51" I
~tention8TheQuadCities-1EOC2gammascandataareessentiallyrepresentativeofallrodsoutoperation.WhataretheimplicationsrelativetotheaccuracywithwhichCPM-2calculatesindividualrodpowersfornormalroddedconditions,andwhatassuranceistherethatanypresentlyobservedconservativetrends(biases)areuniversal,andbounding?~ResenseWhenperformingsafetyanalyses,generallyonlythelimitingbundlesareaconcern.Therefore,itisnormallyonlynecessarytodeterminetheuncertaintyforuncontrolledconditions.TheuncertaintyiscalculatedfromtheQuadCitiesUnit1endofCycle2gammascancomparisons.Thisuncertainty,however,canalsobeextendedtocoverthecontrolledconfiguration.Section3ofPL-NF-87-001containscomparisonsmadetooperatingdatausingtheSIMULATE-Ecode.ThecrosssectiondataandTIPresponsemodelarederivedfromCPM-2calculateddata.TheresultsinSection3,particularlytheindividualTIPresponse,donotshowanyincreaseinthestandarddeviationassociatedwiththepresenceofacontrolrod(seePL-NF-87-001,Figures3.2.15and3.2.36forexamples).ReactivitycomparisonsfromSusquehannaSESandQuadCitiescoldcriticalevaluationsalsosupporttheseobservations.ThecoldK-effectivesfromthelocalcriticalsandtheK-effectivesfromthein-sequencecriticalsatthesameexposurearenotsignificantlydifferenteventhoughthecontrolroddensityis98%forthelocalcriticalsand74%to75%forthein-sequencecriticals.TheSusquehannaSESandQuadCitiescoldcriticaldataiscontainedinTable3.2.6andTable3.3.1ofPL-NF-87-001,respectively.
TABLE3.2.3EHAWASSHOTCRIICALCOREK-EFFECTIVE DATAUNIT*1CYCLE=1CASE1235678910ll1R1314151617181920Zl22R3R4R5262728293031323334353637383940CYCLEEXPOSURE(GHD/NTU)O.ZRl0.8361,4901.5961.7361.7581~7991.9082.0702.7062.906R.9753.1163'673.5173.6633.7763.8363.9184.0364.1934.31S4.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366,5636.7166.723COREAVERAGEEXPOSUREtGHD/HTU)
uestion9TheCPM-2comparisonstothe7-scandataareinfluencedbytheaccuracyoftheSIMULATE-Epredictionsoflocaleffects(e.g.burnup,void,controlhistory)forthescannedbundles/elevations.HavetheSIMULATE-ElocalerrorsbeenconsideredtoassurethattheCPM-2resultsarerepresentative?~ResenseWhenperforminglicensingcalculationswithSIMULATE-E,thelocalpeakingfactorwhichwillbeusedforcalculationofMCPRorLHGRwilldependontheability.ofSIMULATE-Etopredictnodalconditions.Ifthepredictedconditionsareincorrect,thecalculatedlocalpeakingfactorwillbeaffected.ThecomparisonsreportedinPL-NF-87-001includeanyadditionaluncertaintiescausedbythemispredictionoftheburnuporvoidhistoryattheelevationofinterest.TheseuncertaintieswillbetakenintoaccountinanalyseswhichuseSIMULATE-Etodeterminelocalpeakingfactor.Theapplicationofmodeluncertaintieswillbepresentedindetailinatopicalreportentitled"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis".
O.R210.8361.4901.5961,7361.7581.7991.9082.0702.7062.906R.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723POWER(t%PH)143232503280327832913296329132933293328132893291329132923289329232903293329832903R903296328832893290328832813Z94329132943295328732933289328632883265328632833290PERCENTPOHER(%)439910010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010099100100100TOTALCOREFLOW(%)5498100~889798999897989796989896969598979698969799999798999999999998969896999898SUB-COOLINGlBTU/LBN)23.823.723.623.624.324.R23.824.024.225.024.224.724.2R4.R24.524.624.824.024.324.524.224.523.823.924.324.023.S23.723.923.823.724.124.323.924.323.8R4.1Z4.0OOHEPRESSURE(PSIA)974100110051002100110011001100099410009999999991009100210021001100310001003100210031003100410051005100R100210021002100210021001100110001001999999999999CONTROLRODOENSITY0%)20.412.613.913.614.014.114,114.114.114.815.015.015.015.9,.15.915.915.915.916.016.016.016.116.116.117.617.618.017.917.917.817'17.817.016.716.416.416.316.315.015.0CALCULATED COREK-EFFECTIVE 0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580.99061Oo990800.991000.991160.991380.991630.991760.992540.992420.992190.992670.992940.993500.993580.993670.9936R0.993620.994300.994370.994540.994630.994600.99460 EI uniformlatticecriticalexperiments andpinpowerdistribution calculations withCPM-2.Inconclusion, theanalysisresultscontained inthistopicalreportdemonstrate PPGL'squalifications toperformsteadystatecorephysicscalculations.
SIMULATE-EQuestion1Doesthedataforassemblypowerpeakingthatisusedinthecalculationoffuelperformanceparameters(e.g.MLHGR,CPR)includeallCPM-2calculatedstatepoints(e.g.everyburnuppointandeverynominalandoff-nominalcondition)oronlyasubset?Ifthelatter,howaretheyselectedtoensureconservatism?~ResenseTheCPM-2basedlocalandsecondarypeakingfactors,whicharerequiredfortheXN-3criticalpowercorrelation,areusedintheSIMULATE-Efuelthermalmargincalculations.ThesepeakingfactorsinSIMULATE-Earefunctionsofvoidhistory(i.e.,exposure-weightedrelativemoderatordensity),controlrodpresence,andfuelexposure.AlthoughthesepeakingfactorsdonotincludesomeoftheCPM-2exposurestatepointsanddonotincludearelativemoderatordensityorcontrolrodhistorydependence,thepeakingfactorsareaccuratelyrepresentedinSIMULATE-Eforallexpectedconditions.Thepeakingfactorsarenotsensitivetotheseexclusions.FigureSl.l'howsthelocalpeakingfactorvaluesat0%voidhistoryforthreerelativemoderatordensities(correspondingto0%,40%,and70%voidlevels)andcontrolrodhistory.TheSIMULATE-EdataagreewellwithalltheCPM-2dataexceptforcontrolrodhistoriespast5.0GWD/MTU.Fuelassemblieswithcontrolrodhistoriesapproaching5.0GWD/MTUwouldhaverelativelylowreactivityandwouldhavesignificantmargintothermallimits.SincerelativemoderatordensitynegligiblyaffectsthelocalpeakingfactorsasshowninFigureSl.landcontrolrodhistoriesforlimitingbundlesarelessthan5.0GWD/MTU,theeffectofnotconsideringthesedependenciesisinsignificant.
Extensive comparisons tomeasureddatafromSusquehanna SES,QuadCitiesUnit1,andPeachBottomUnit2demonstrate thevalidityoftheanalytical methodsaswellasPPaL'scapability tosetupandproperlyapplythemodels.Comparisons toreactordesignsotherthanPP&L'sSusquehanna SESdemonstrate PPaL'sabilitytoextendthecoremodelingtechniques developed forSusquehanna SEStootherfuelandcoredesigns.PP&Liscommitted tomaintaining astrongin-housecoreanalysiscapability andaspartofthatcommitment wecontinually evaluatetheaccuracyofourcoresimulation methodsandmakemodelingimprovements whenappropriate.
1.7FIGURE81.1UNCONTROLLEDLOCALPEAKINGFACTORDATAFOR9XQLATTICEAT0'/0VOIDHISTORY1.61.5OI-O1.4zhC13C301.2LegendSIMULATE-EXCPM-20%VH0CPM-20%VHTO40V0CPM-20%VHTO70VCPM-2CONTROLHISTORY101e20263040 uestion2a.Whatisthe"flag"whichsignalstheneedfornewnormalizationofthemodeladjustableinputdataparametersand/orradialandaxialalbedos?b.Howoftenarealbedo/normalizationparameterchangestypicallymade?c.Whatisthebasisforperformingthenormalizationwhenthecodeisusedinapredictivemodeforcoreswhichdiffersignificantlyfromthosepreviouslymodeled?~Resoesea.Threemajorchangescanaffectthenormalizationparameters.Asignificantchangeinfueldesign,coredesign,and/orcalculationaluncertaintywillindicatethatanewnormalizationshouldbeperformed.Inbenchmarkingthe7x7,8x8,and9x9fuelbundledesignsandtheQuadCities,PeachBottom,andSusquehannacoredesigns,PPGLusedthesamesetofnormalizationparametersforthevariousfuelandcoredesigns.Thebenchmarkingcalculationscompletedtodateshowsimilarresultsbetweenmeasuredandcalculatedparametersand,therefore,supporttheuseofthesamenormalizationparametersforfutureSusquehannaSESfuelandcoredesigns.b.Theadjustablealbedo/normalizationparametershavemaintainedconsistencyforallfuelandcoredesignsasstatedinresponsetoQuestion2a.Changeshavenotbeenmadeandarenotplannedorexpectedtooccurfrequently.Futuremodelenhancementsmayinvolveachange(s)inalbedo/normalizationparameters.Forchangesinmodelslikethis,benchmarkingcalculationswouldbeperformedtorequalifyorupdatetheuncertaintiesincorereactivityandpowerdistribution.c.ThepresentedTIPinstrumentresponseandcorereactivitycomparisonsinPL-NF-87-001arebasedonaconsistentsetofnormalizationparameters.Usingthesecomprehensivedatathatincludeawidevarietyoffuelandcoredesigns,PPGLdevelopedastrongstatisticaldatabasetodetermineconservativemarginsforapplicationtonewcoredesigns.Thereport entitled"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis"willpresenttheuseofthesemarginsinSusquehannaSESsafetyanalyses.  
AlthoughPPaL'sday-to-day corefollowanalysesareaimedprimarily atplantoperations support,thecomparisons ofSIMULATE-E calculations (e.g.,TIPresponse, K-effective, thermalmargins)totheplantdataalsoserveasacontinuing methodsbenchmarking effort.208-Il CPM-2Question1Whatarethebasesforthedepletion steps,spatialmesh,energygroups(macroand2-D),convergence andotherparameters usedinproduction calculations withCPM-2/MICBURN?
~uestion3IstheXN-3correlationvalidfor9x9andotheradvanceddesignBWRbundles?~ResonseTheXN-3correlation,developedbyAdvancedNuclearFuelsCorporation(ANF),formerlyExxonNuclearCompany,isvalidforSx8and9x9fuelfortherangesofapplicabilityspecifiedintheassociatedNuclearRegulatoryCommissionsafetyevaluations.LicensingTopicalReport,XN-NF-734(P)(A),"ConfirmationoftheXN-3CriticalPowerCorrelationfor9x9FuelAssemblies"describestheconfirmationofXN-3forthe9x9fuelbundledesignandisapprovedbythe.NuclearRegulatoryCommission.TheoriginalapprovaloftheXN-3CriticalPowerCorrelationisprovidedinXN-NF-512(P)(A),"XN-3CriticalPowerCorrelation".ThisXN-3correlationisusedintheSIMULATE-Efuelperformanceevaluations.SampleSIMULATE-Etestcaseshavebeenperformedanddocumentedtoverifythecorrectimplementationofthecorrelation.TheXN-3correlationisvalidforthefuelbundledesignscurrentlyscheduledfor.loadingintofutureSusquehannaSEScycles(i.e.,8x8and9x9fuelbundledesigns).
~ResenseTherearecurrently nospecificEPRIguidelines available fordevelopment ofMICBURNandCPM-2input.Thecomputercodes,however,havecertaindefaultsettingswithregardtoiteration control,convergence
uestion4TheTIPdetectormodelinSIMULATEassumesthattheresponsefromeachassemblyisnotaffectedbythepresenceoftheother3surroundingtheTIP.Hasthisassumptionbeentested;isitadequate'ResensePL-NF-87-001statesthatthedetectorresponsefromeachassembly(i.e.,R.)jisnotaffectedbytheotherthree.However,thetotaldetectorresponseconsiderstheeffectofeachsupportingassemblypowerasfollows:MER=-R.P.Mjj(Section3.2.3ofPL-NF-87-001)whereER=totaldetectorresponse,M=numberofbundlesaroundaTIPdetector(i.e.M=4),R.=detectorresponsecontributionfromassembly,j,jP.=SIMULATE-Ecalculatednodalpowerfromassembly,j.Eachassemblypower,P.,isaffectedbytheothersthroughneutroniccouplingj'ntheneutronbalanceequation.Therefore,thetotaldetectorresponse1contributionfromanassembly,-R.P.,implicitlytakesintoaccountthejj'therassemblypowers.ThismethodologyisvalidatedthroughtheTIPresponsecomparisonspresentedinSection3ofPL-NF-87-001.Forexample,Figures3.2.12and3.2.15inPL-NF-87-001showthreecontrolledandoneuncontrolledTIPresponsecomparisons.Thecontrolledcomparisonscontainaggravatedconditionsofwhichonebundleislowinpowerandtheotherthreearehighinpower.MajordiscrepancieswouldexistiftheTIPresponsemethodologyisinadequate.Asthefiguresshow,excellentagreementforallthreecontrolledTIPresponsesexist,andtheresultsareverysimilartotheuncontrolledTIPresponsecomparisons.ThisexcellentagreementsupportstheTIPresponsemodelusedinSIMULATE-E.
: accuracy, andenergygroupstructure whichweresetbyEPRIduringthecodedevelopment.
question5Whileitistruethatperipheralassembliesandtopandbottomaxialnodesaregenerallylowpowerandhencenotofsafetyconcern,eliminatingthemfromthescancomparisonsseemstoremoveapotentiallyvaluablesourceofinformationontheaccuracy/adequacyofalbedoandreflectorboundaryconditiondependencies.Pleasecomment.~ResonseThegammascandatainEPRINP-214allowforradial,nodal,peaktoaverage,andbundle(axial)comparisons.Peaktoaverageandindividualbundle(axial)comparisonsutilizealltheavailablegammascandata.Theradialcomparisonsutilizeallthedatawiththeexceptionofthemixedoxideandperipheralassemblydata.Forthenodalcomparisons,themixedoxideandperipheralassemblyandtopandbottomnodedataareeliminated.Table3.3.7ofPL-NF-87-001presentstheindividualbundlegammascancomparisonsforallbundlesandnodes.Theperipheralbundlesinthistableare:CX0546gGEB162gCX0490gCX0553fCX0662gCX0682gCX0643gCX0683~Figure3'.20ofPL-NF-87-001showsanaxialcomparisonofaperipheralbundle.ItisrecognizedthatthesecomparisonsdirectlyassesstheaccuracyofthealbedosusedinSIMULATE-E.Comparisonsoftheperipheralassembliesandtopandbottomaxialnodegammascanresultsareslightlyworsethantheinteriorbundlegammascancomparisonsbutarestillquitegood.ThetopandbottomalbedoswhicharebasedontheSusquehannaSESdatawereusedintheQuadCitiesmodel.Duetodifferentfuelandcoredesigns,thetopandbottomalbedoswoulddifferfromtheSusquehannaSESvalues.AlthoughtheSusquehannaSESalbedoswereutilizedintheQuadCitiescalculations,theSIMULATE-Emodelstillprovidesanaccuratecalculationofthepowerdistribution.Therefore,sincethePPGLmodelswerenotnormalizedtotheQuadCitiesdataandsincethetopandbottomnodesandperipheralbundlesarelowpowerregionsofthecore,theperipheralbundleswerenotincludedinthestandarddeviationcalculationfortheradialcomparisons,andtheperipheralbundlesandtopandbottomnodeswerenotincludedinthestandarddeviationcalculationforthenodalcomparisons.
ThesedefaultvalueswereusedbyPP&Lforallcalculations presented inPL-NF-87-001.
uestion6Pleaseexplainwhynon-conventionaldefinitionsareusedintheTIPandg-scancomparisons.Forexample,itisnotobviouswhyTisusedinthedenominatorfordeterminingthedifferencesintheradialTIPcomparisons.~ResoeseInPL-NF-87-001,thedifferencesandstandarddeviationsfortheTIPresponseandgammascancomparisonsarenormalizedwiththeaveragemeasuredvalue,T,toexpressthemintermsofapercentageofthecoreaverage.Thisapproachresultsinastandarddeviationexpressedinunitsofpercent.However,theresultofthecalculationisastandarddeviationoftheabsolutedifferences.Anothermethodthatcouldhavebeenusedinvolvesconversionofthedifferencestoapercentageofthemeasuredvalue(i.e.,bydividingbyT),andthencalculatethestandarddeviationofthesepercentagedifferences.Thissecondmethod,however,weightsthedifferencesforthedetectorlocationswithlowreadings(i.e.,lowpowerregions)moreandthedifferencesfordetectorlocationswithhighreadings(i.e.,highpowerregions)lessthanthefirstmethod.SincetheaccuracyoftheSIMULATE-Ecalculationsinthehighpowerregionsismoreimportantforthermalmargincalculations,thefirstmethodismoreappropriate.AnexampleisshownforaradialTIPresponsecomparisontodemonstratethedifferencesintheaboveapproaches.TheattachedFigureS6.1showsaradialTIPresponsecomparisonusingthesecondmethodandFigure3.2.29ofPL-NF-87-001showstheradialTIPresponsecomparisonofthesamedatausingthefirstmethod.FigureS6.2showstheaverageofthemeasuredTIPresponsesateachradiallocation(i.e.,T).Notethattheuseofthefirstmethodresultsinahigher0differenceforthehighmeasuredvalues(e.g.,TIPresponseatlocation32-33:6e48%vs.5.96%),andalower%differenceforthelowmeasuredvalues(e.g.,TIPresponseatlocation32-57:5.79%vs.6.36%).ForalltheTIPresponseandgammascancomparisonsbasedonthefirstmethod,thelocationoftheworseprediction(i.e.largestabsolutedifference)canbeeasilydeterminedbyfindingthehighestpercentdifference.Usingthesecondmethod,theworsepredictionisnotnecessarilyatthelocationofhighestpercentdifference.Thisisindicatedinthe examplewheretheTIPresponsecalculationat32-33(i.e.,ahighpowerregion)exhibitstheworseabsolutedifference.ThesecondmethodsuggeststhattheTIPresponsecalculationat32-57(i.e.alowpowerregion)isworse.
Noproblemsresultedfromtheuseofthedefaultiteration controlinputs;theconvergence criteriaonthefundamental modecalculation
FIGURES6.1SUSQUEHANNASESUNIT1CYCLE3RADIALTIPRESPONSECOMPARISONS0.178GWD/MTUCYCLEEXPOSURE6159575553514947454341393735333129-2.03-2.501.900.82-1.95++++-0.28-0.14~14-0.75-0.296.360.65.96-0.940.353.43.0-2.90-2.800.00.4327252321++++3.88++-4.331.26++.18-3.292.2191715131.0-1.49+++++-1.53.132.33-1.143.39-1.86-4.82-0.7731Y00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/Measured]X100%
-5is1.0x10whichissufficient toprovideconsistent andaccurateresults.Information ontheenergygroupstructure ispresented intheresponsetoQuestion2.Thedepletion stepsizeusedfortheMICBURNcalculations issetaccording toEPRIrecommendations.
FIGURES6.2SUSQUEHANNASESUNIT1CYCLE3MEASUREDRADIALTIPRESPONSE0.178GWD/MTUCYCLEEXPOSURE61595755,535149474543413937353331292725232119171513119753150.194049.50.4843.8234.24499448.0646.8946.7250.2243.6230.7744.6052.4748.3051".7153.6149.3452.1242.5845.2750.87509045.511950.2241.5750.9246.6546.6749.5147.2050.0152.5551.7752.9251.4134.9343.7940.9744,7443.191400020406081012141618202224262830323436384042444648505254565860XCoreAverageTIPResponse=46.82 uestion7DoesPPaLintendtousePDQ-7forapplicationssignificantlydifferentfromthoseforwhichbenchmarkingisprovidedinthereport(e.g.corecalculations)7~ResensePPaLdoesnotintendtoperformthree-dimensionalcorestatepointordepletioncalculationswithPDQ-7.PPGL'sprimaryintenti:stousePDQ-7fortwo-dimensionalcalculationstocomplementCPM-2and/orSIMULATE-Eforspecialapplications(e.g.,partiallyloadedcoreconfigurationsandlocalcriticalitycalculations).Insomeinstances,PDQ-7willbeusedasanindependentverificationofcalculations.Inaddition,PPSLbelievesthatfutureSIMULATE-EmodelimprovementsmaybedevelopedwiththeuseofPDQ-7.
Thesestepsizeshavebeendesignedtolimitthemaximumgadolinia depletion tolessthan4%oftheinitialamountforanygivendepletion interval.
question8DoEPRIguidelinesexistfortheCPM-2(crosssection)-COPHIN-PDQ-7calculationalpath7AretheyfollowedbyPPaL'?~ResenseNoEPRIguidelinescurrentlyexistfortheCPM-2/COPHIN/PDQ-7calculationalpath.ThemethodusedatPPGListousetheCPM-2macroscopiccrosssectiondataforfuelpinsintheassembliesofinterest.COPHINassemblesthisdataintocrosssectiontableswhicharethenusedinPDQ-7.PPGLonlyusesPDQ-7forspecialanalysesthatcannotbeperformedwithCPM-2and/orSIMULATE-E.EachspecificanalysiswilldeterminetheparticularmannerinwhichthePDQ-7modelisdeveloped.
Thedepletion calculations areperformed using66to72depletion steps.Thedepletion stepsizeinCPM-2issettoprovidesmoothlyvaryingcrosssectioncurvesandlatticereactivity (seeFiguresC1.1andC1.2forexamples).
GENERAL/egestionHavetheCPM-2/MICBURN,SIMULATE-E,FIBWRandtheXN-3correlationbeenreviewedandapprovedbytheU.S.NuclearRegulatoryCommission?~nesenseTheneutronicmethodologyinCPM-2/MICBURNandSIMULATE-E,thethermalhydraulicmethodologyinSIMULATE-E(i.e.,FIBWR),andthecriticalpowermethodologyinSIMULATE-E(i.e.,XN-3)havebeenreviewedandapprovedbytheU.S.NuclearRegulatoryCommissionaspartofothertopicalreports.TheneutronicmethodologyinCPM-2/MICBURNhasbeenrecentlyapprovedintheGeneralPublicUtilitiesNuclearCorporationsubmittaloftheirlatticephysicstopicalreport.TheSIMULATE-Emethodologyfortheneutroniccalculations,hasalsobeenapprovedinYankeeAtomicElectricCompany'ssubmittalofSIMULATE.TheSIMULATEandSIMULATE-Eneutronicmethodologiesareidentical.Withregardtothethermal-hydraulicmethodologyinSIMULATE-E(1e.,FIBWR),theFIBWRmethodologyhasbeenapprovedforYankeeAtomicElectricCompany.ForXN-3,theU.S.NRChasapprovedtheExxonNuclearCompany(currentlyAdvancedNuclearFuels)submittalsXN-NF-512(P)(A)andXN-NF-734(P)(A)-
Thetimestepstructure whichisusuallyusedforCPM-2depletion calculations is:0~OR01R0SR1~OR1SR2~OR2SR3~OR3~SR4~OR4SR5~OR5SR6.OR6~5R7~OR7~5R8~OR8~SR9~OR9SR10OR12~Sg15~OR17~Sg20~OR22~SR25~OR27~SR30~OR35~OR40~OR45ORSO.OR55.0GWD/MTU Forassemblies wherethe.gadolinia concentration ishigherthan4w/oadditional CPM-2timesteps areplacedbetween10.0and12.5GWD/MTU.Toevaluatetheeffectsofthecontrolrodpresence, relativemoderator density,fueltemperature, etc.,restartcalculations areperformed atcertainexposurepoints.Thesepointsarechosensothatthechangeinthecrosssectionduetothechangeintheindependent parameter (i.e.controlrodpresence, etc.)issmoothlyvarying(seeFigureC1.3foranexample).
Thischangeincrosssection,nottheabsolute'crosssection,isusedbySIMULATE-E.
Sensitivity calculations havealsobeenperformed byPPGLtodetermine theeffectofmuchfinertimesteps ontheCPM-2results.Thelatticereactivity fromthesesensitivity studiesdifferedfromtheproduction calculations (coarsertimesteps) bylessthan0.001~K.ThespatialmeshusedinMICBURNissomewhatfinerthanthoserecommended bythecodedeveloper.
Atotalof20burnup(micro)regionsand10flux(macro)regionsare.usedintheburnableabsorbercell.Amicro-region isdefinedasahomogenized materialzone.Amacro-region iscomposedofoneormoremicro-regions andisusedforcalculation oftheflux.FigureC1.4showsanexample.Thisdefinition ofzoneswithinthefuelpinprovidessufficient detailtoaccurately modelthe"onionskin"typedepletion ofagadolinia pin.ThemeshspacingusedinCPM-2fortheXandYdirections includestwomeshesperpincell,onemeshinthefuelchannelwall,andtwomeshesinthewatergap(bypassregion).Sensitivity studieshavebeenperformed byPPsLinwhichthenumberofmeshesinthepincellhasbeenincreased fromtwotothree.Thisincreaseresultedinamaximumchangeinlatticereactivity of0.005~K;typically, differences aremuchless.Using.thiscrosssectiondataintheS1MULATE-E modelhasshownverylittleeffectonthecorepowerdistribution andcoreK-effective.
Additional worksponsored byEPRXhasalsoexamineddifferences betweenuseoftwoversusthreemeshpointsperpincell.Althoughthesecaseswerelimitedtosub-assemblies (i.e.,3x3fuelrodarrays),theresulting differences werequitesmall(i.e.,lessthan0.005~K)forvaryinggadolinia loadingandvoidcontentandsupporttheuseoftwomeshpointsperpincell.Thesensitivity studiesdiscussed abovehavebeenruntodetermine theeffectsofselectedcodeinputs.ThetopicalreportPL-NF-87-001 providesabenchmark oftheCPM-2codewiththeSusquehanna SESmodelinputsandconsequently anestimateofthecode/model uncertainty.
0.068FIGUREC1.1THERMALABSORPTION CROSSSECTIONBUNDLEENRICHMENT:
2.19W/04GD50.0640.0620.060tI0.0480.0480.044----:-.Legend0%VOIDHISTORY-.-.'p42.:X40%VOIDHISTORY070/oVOIDHISTORY0.0400101520253035.EXPOSURE(GWD/MTU) 404550 1.2FIGURECi.2FUELK-INFINITY VSEXPOSUREBUNDLEENRICHMENT:
2.19W/04GD5I-O.SzII0~~~a~~~0.80.7Legend0%VOIDHISTORY"":"X40%VOIDHISTORYCI70%VOIDHISTORY10O.B0616202630364046EXPOSURE{Gwl3/MTU) 60 FIGUREC1.3CHANGEINSIGMAA-2DUETOCONTROLPRESENCEBUNDLEENRICHMENT:
2.19W/04GD50.0160.014::--::"--":,---:,---',-
Legend0%VOIDHISTORYX40%VOIDHISTORY070%VOIDHISTORY0.0130.0120.0110.010010152026303640EXPOSURE(GWD/MTU) 50 FigureCl.4Definition ofmacroregions.Thefigure:shows acasewith20microregionsand6macroregionsintheBA-pin.N~g5+N~57BA-fuelCanModerator BufferzoneQNopQNophNopIBNopIIBNqpIIIIIII20MicroregionsIII(IIIl!I6Macroregions(+4macroregionsoutsidetheBA-pin.)rIIrbSource:E.EdeniusandA.Ahlin,"MZCBURNMicroscopic BurnupinGadolinia FuelPins,"PartIZChapter7ofEPRICCM-3,September l977.
uestion2The5energygroupsusedforthe2-Dcalculations aresomewhatcoarse.Pleasecomment.~ResenseTheuseoffiveenergygroupsintheCPM-2calculation issufficient toaccurately performthetwo-dimensional calculation principally duetothemethodusedtodetermine thefivegroupcrosssections.
TheCPM-2calculation startswitha69energygroupcrosssectionlibrarywhichwasdeveloped forgeneralLWRanalysis.
Foreachtwo-dimensional calculation performed byCPM-2,micro-group and.macro-group calculations areperformed whichaccountforboththefluxspectrumandthematerialpresentintheassembly.
The'Imicro-group calculation isperformed in69energygroupsforeachuniquetypeofpincell.Uptosixseparatecalculations arepermitted.
Ifmorethansixuniquepintypesexistwithinafuellattice,similarpinsmustbeaveragedtogether.
Thismicro-group calculation providesadetailedfluxspectrumbutdoesnotaccountforthespecificlocationofthepin.Anextraregionisusedaroundeachpincellwhichdoesaccountfortheeffectsofthepresenceofthebypassregionandchannelwall.Thedetailedenergyspectrumisusedtocollapsethecrosssectiondatato25energygroups.Themacro-group calculation isperformed in25energygroupsandisaone-dimensional radialcalculation foraregionally homogenized assembly(SeeFigureC2.1).Eachrowoffuelpins/water rodsoccupiesaseparateannularregionstartingatthecenteroftheassemblyproceeding outward.Thechannelwall,outerwatergap,andcontrolrod(ifpresent)occupyseparateregions.Thiscalculation, therefore, accountsforthe.relativelocationofeachmaterialwithintheassembly.
Thisisparticularly important forfuelpinsadjacenttothewatergap.The25energygroupfluxescalculated foreachregionareusedtocollapsethe25groupcrosssectionsdowntofiveforuseinthefinaltwo-dimensional calculation.
Sincethefluxspectrumusedforthiscollapsing calculation alreadyhasthegeometric effectsfactoredintoit,thesefivegroupsprovideanaccuratebasisforthetwo-dimensional calculation whereasfivegroupcrosssectiondatacollapsed directlyfrompincellcasesmightnot.
FigureC2.1Exampleofgeometryinmacrogroupcalculation 000000000000000000000000000000000000000000UQ>-pin8PuO>-pinWidewatergapNarrowwatergaphomogenized controlrodouterwatergapboxinnerwatergapUOPu022homogenized fuellayersouterwatergapboxUQ2PuO>homogenized fuellayersinnerwatergapSource:A.AhlinandM.Edenius,"TheCollision Probability ModuleEPRl-CPM,"
PartIZChapter6ofEPRZCCM-3,September 1977.
uestion3Howwastheconversion fromcalculated powertoBa-140concentrations performed fortheCPM<<2rod-wisecomparisons totheQuadCitiesgamma-scan results?~ResenseUsingthedecay/production
: equation, theBa-140concentration canbecalculated as:NB(t)=<fn[SB(t)-XNB(t)1dttn-1whereN(t)=theBa-140concentration attimet,BS(t)=theBa-140production rateattimet,B=theBa-140decayconstant.
Integrating andassumingS(t)isconstantovereachtimestepgives:N(t)=Bn+N(t)-BnBn-Bn1-X<Te(2)wheret=theendoftimestepn,nt=thebeginning oftimestepn.n-1Assumingthattheaverageenergyperfissionisrelatively constantoverthetimeinterval, S(t)canbeapproximated as:nS(t)=CYP(t)(3)whereC=aunitconversion
: constant, Y=theeffective Ba-140yield,eP=thepowerdensity.
TheBa-140concentrations arecalculated bysubstituting Equation(3)intoEquation(2)toobtain:CYP(t)en+CYP(t)en-X<Te(4)Sincethefinalcomparisons aremadeonarelativebasis,relativeBa-140concentrations arecalculated asfollows:Rel.N(t)=en+1CYP(t)CYP(t)Btn-1en-X~Te(5)whereN(t)=theaverageoftheBa-140concentrations attheendoftimestepn.BnThepower,P(t),isbasedontheCPM-2relativepinpower.Theeffective nYield,Y,iscalculated foreachpinasfollows:e'=MY.F.i=U-235,U-238'u-239@
Pu241e~iiwhereY=theBa-140yieldforisotopei,F.=thefractionoffissionsfromisotopei.iThefissionratesandhencethefractionoffissionsfromeachisotopeiscalculated ateachtimetbyCPM-2.Equation(5)issolvedtocalculate nrelativeN(t)foreachrodbymarchingthroughtheexposurepointsforeachnrelativemoderator densitycorresponding to0%,40%,and70%voidlevel.TheSIMULME-E modelcalculation providestheexposureandvoidhistoryforeachaxialplaneforwhichmeasureddataexists.Thesedataareusedtointerpolate fromtheCPM-2calculated datatodetermine thecalculated relativeBa-140distribution corresponding tothevoidhistoryandexposureconditions atthelocationofinterest.
guestion4Thediscussion inSection2.3needsmoreconsistency, inreferences tomeasuredandcalculated valuesofpower,andBa-140andLa-140activities intermsofwhatquantities arecomparedandtheirbases.~ResooseThemeasureddatausedinthecomparisons aretherelativeLa-140activities asreportedinEPRINP-214"GammaScanMeasurements atQuadCitiesNuclearPowerStationUnit1Following Cycle2"(Reference 12inPL-NF-87-001).
Thecalculated datausedinthecomparisons aretherelativeBa-140concentrations.
ThesearederivedfromtheCPM-2calculated relativepinpowersaspresented inthe,responsetoQuestion3.TheBa-140concentrations andactivities areproportional totheLa-140concentrations andactivities atanygiventimefollowing shutdownfromsteady-state operation.
Thefactorofproportionality significantly varieswithtimeforthefirstweekaftershutdown, butaftertendays,itremainsessentially constant.
Becauseallgammascanmeasurements weretakenfollowing ashutdownperiodgreaterthantendays,therelativemeasuredLa-140activities arecomparedtothecalculated Ba-140concentrations.  
~nestion5Arethepresently demonstrated accuracyandbiasesofCPM-2calculations expectedtoholdfor9x9andotheradvancedBWRbundledesigns?Haveanycomparisons beenmadeofCPM-2toMonteCarlocalculations for9x9bundlesofthetypeusedinSusquehanna Unit2?~~nesonseTheaccuracyandbiasespresented inPL-NF-87-001 areexpectedtoholdfor9x9andotheradvancedBWRbundledesignsthat.aresimilartothe7x7,8x8,and9x9fueldesigns.Comparisons totheTRX,Kritz,andESADAcriticals showcriticalevaluations forawidevarietyoffuelarrangements (i.e.varyingpellet'diameters, pelletdensities, watertometalratios,andfuelrodpitches).
Comparisons ofCPM-2toMonteCarlocalculations havenotbeenmade;however,thebenchmarking presented inPL-NF-87-001 stronglysupportstheuseofCPM-2tomodel9x9fuelandotheradvancedBWRbundledesignssimilartothosepresented.
uestion6Haveanytrends(biases)beenobservedintheaccuracyofpin-power andLPFpredictions vs.elevation, voidhistory,exposure, control,etc.7~ResenseTheaccuracyofthepinpowerdistribution andlocalpeakingfactordoesnotappeartobecorrelated toexposure, voidhistory,orelevation.
Thiscanbeseenbyexamining thedatafromtheQuadCitiesgammascancomparisons summarized
.inTables2.3.2and2.3.3ofPL-NF-87-001.
ThesedatahavebeenplottedinFiguresC6.1throughC6.6.Overall,theredoesnotappeartobeanytrendinthestandarddeviations ofthepincomparisons relativetoexposure, voidhistory,orelevation.
Theinteriormixedoxidebundles,GEB159andGEB161,doshowslightlyincreased standarddeviations withincreased elevations (i.e.,voidhistory).
Thesebundledesignsarenottypicalofexpectedfueldesignscurrently plannedforuseinSusquehanna SES.Itshouldalsobenotedthatthecalculated peakactivityisnormallyhighproviding aconservative estimation ofthelocalpeakingfactor.Inadditiontothegammascancomparisons performed atPPGL,EPRIsponsored benchmarking oftheoriginalEPRI-CPM.
Theresultsfromthesecomparisons areconsistent withtheQuadCitiescomparisons indicating CPM-2calculations providesimilaraccuracyfordifferent bundledesigns.MeasuredgammascandatadonotexistforanyoftheSusquehanna SESspecificbundledesignswhichwouldpermitdirectcomparison topinpowers.However,theTIPresponsecomparisons presented inSection3ofPL-NF-87-001 canbeusedtoinfertheaccuracyofCPM-2.TheTIPresponsemodelusedinSIMULATE-E isdeveloped basedonCPM-2calculations.
Thesecalculations requireCPM-2topredictalocalfissionrateatthedetectorlocationinthebypassregion.IfCPM-2wasunabletocalculate accuratelocalpeakingfactors,itwouldalsobeunabletocalculate accurateTIPresponsefactors.ThiswouldshowupintheTIPresponsecomparisons.
Theindividual TIPresponsecomparisons inSection3donotappeartocontainanytrendswithcontrolrodpresence,
: exposure, voidhistory(i.e.,exposure-weighted relativemoderator density),
orrelativemoderator density.Thisagreeswiththeconclusions drawnfromthecomparisons togammascandata.
FIGUREC6.1QUADCITIESUNIT1ENDOFCYCLE2NORMALIZED La-140ACTIVITYPINCOMPARISONS 60I~QUJClCCCIZ4V)0cI0":'egend 0GEB169GEB161~GEH002SCX0672'"~CX0214a~4681012141618CALCULATED BURNUP.(GWD/MTU) 2022 mmmmmmmmmmwmwmmwm FIGUREC6.2QUADCITIESUNIT1ENDOFCYCLE2NORMALIZED La-140ACTIVITYPINCOMPARISONS Z60l~aWClCCCIZ4I-LegendPGEB169GEB161~GEH002~CX0672~CX0214p'3""~~.:01020.304060CALCULATED VOIDHISTORY(%)6070 FIGUREC6.3QUADCITIESUNIT1ENDOFCYCLE2NORMALIZED La-140ACTIVITYPINCOMPARISONS Z80l~5DCLDZ4(DLegend0GEB159GEB161~GEH002~CX0672....~CX02140gI0002040~~6080100ELEVATION (INCH)W.:~~120140 10~o60c(40Q2OZm.FIGUREC6.4QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS Legend0GEB159GE8161~GEH002~"-.'-""~CX0672CX0214.~........:, 4-61012141618CALCULATED BURNUP(GWD/MTU) 2022 10FIGUREC6.5QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS Legend0GEB159GEB161~GEH002~o60c(40UJQOOZg)0-r~~~rCX0872~CX0214~'..:..~............
.:r<<2-4106020304050mmmmmmSPY'lYLJiiWekimmmmmmm 10FIGUREC6.6.QUADCITIESUNITIENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS
~o604ClClCIZg)0-2-4Legend0GEB159GEB161----"-"~GEH002~CX0672CX0214~~0I~~~~~00020406080ELEVATION (INCH)100120140 Question7Howdothemodifications totheENDF/B-III nucleardataotherthanthosenotedforU-238comparetotheuncertainties inthebasicdata?~ResenseThemodification tothePu-240microscopic absorption crosssectionsistheonlymodification madetotheENDF/B-III crosssectiondataotherthanthosenotedforU-238.Thismodification, asstatedinSection2.1ofPL-NF-87-001 anddocumented inPartII,Chapter4ofEPRICCM-3,"TheEPRI-CPMDataLibrary,"
isa50%reduction inthecrosssection,intheresonance energyregion(i.e.,energygroups16through27).Althoughtheaccuracies oftheENDF/B-III data'renotpresented intheEPRIdocumentation, itislikelythatthismodification exceedstheuncertainties ofthebasicnucleardata.Themodification, however,isrequiredtocompensate forthefactthatPu-240isnottreatedasaresonance nuclideinCPM-2.Theunmodified crosssectionwouldsignificantly overpredict theabsorption intheresonance region.Anymodification tothePu-240microscopic absorption crosssectionswouldaffecttheheavynuclideconcentration buildupwithexposure.
Table2.1.3ofPL-NF-87-001 presentstheheavynuclidechainsthatincludePu-240.IfthePu-240crosssectionswereinappropriately
: adjusted, thePu-240,Pu-241,andPu-242concentrations wouldimproperly accumulate withexposure.
Table2.4.3andFigures2.4.4through2.4.6showcomparisons ofmeasuredandcalculated isotopicparameters.
Allcalculations, whichincludetheeffectofthemodifiedENDF/B-III crosssections, showgoodagreement withmeasureddataandprovideindication thattheconcentrations areproperlyaccumulating withexposure.
Thisagreement therefore supportstheacceptability ofthemodifiedPu-240microscopic absorption crosssections.  
~tention8TheQuadCities-1EOC2gammascandataareessentially representative ofallrodsoutoperation.
Whataretheimplications relativetotheaccuracywithwhichCPM-2calculates individual rodpowersfornormalroddedconditions, andwhatassurance istherethatanypresently observedconservative trends(biases)areuniversal, andbounding?
~ResenseWhenperforming safetyanalyses, generally onlythelimitingbundlesareaconcern.Therefore, itisnormallyonlynecessary todetermine theuncertainty foruncontrolled conditions.
Theuncertainty iscalculated fromtheQuadCitiesUnit1endofCycle2gammascancomparisons.
Thisuncertainty, however,canalsobeextendedtocoverthecontrolled configuration.
Section3ofPL-NF-87-001 containscomparisons madetooperating datausingtheSIMULATE-E code.ThecrosssectiondataandTIPresponsemodelarederivedfromCPM-2calculated data.TheresultsinSection3,particularly theindividual TIPresponse, donotshowanyincreaseinthestandarddeviation associated withthepresenceofacontrolrod(seePL-NF-87-001, Figures3.2.15and3.2.36forexamples).
Reactivity comparisons fromSusquehanna SESandQuadCitiescoldcriticalevaluations alsosupporttheseobservations.
ThecoldK-effectives fromthelocalcriticals andtheK-effectives fromthein-sequence criticals atthesameexposurearenotsignificantly different eventhoughthecontrolroddensityis98%forthelocalcriticals and74%to75%forthein-sequence criticals.
TheSusquehanna SESandQuadCitiescoldcriticaldataiscontained inTable3.2.6andTable3.3.1ofPL-NF-87-001, respectively.
uestion9TheCPM-2comparisons tothe7-scandataareinfluenced bytheaccuracyoftheSIMULATE-E predictions oflocaleffects(e.g.burnup,void,controlhistory)forthescannedbundles/elevations.
HavetheSIMULATE-E localerrorsbeenconsidered toassurethattheCPM-2resultsarerepresentative?
~ResenseWhenperforming licensing calculations withSIMULATE-E, thelocalpeakingfactorwhichwillbeusedforcalculation ofMCPRorLHGRwilldependontheability.ofSIMULATE-E topredictnodalconditions.
Ifthepredicted conditions areincorrect, thecalculated localpeakingfactorwillbeaffected.
Thecomparisons reportedinPL-NF-87-001 includeanyadditional uncertainties causedbythemisprediction oftheburnuporvoidhistoryattheelevation ofinterest.
Theseuncertainties willbetakenintoaccountinanalyseswhichuseSIMULATE-E todetermine localpeakingfactor.Theapplication ofmodeluncertainties willbepresented indetailinatopicalreportentitled"Application ofReactorAnalysisMethodsforBWRDesignandAnalysis".
SIMULATE-E Question1Doesthedataforassemblypowerpeakingthatisusedinthecalculation offuelperformance parameters (e.g.MLHGR,CPR)includeallCPM-2calculated statepoints (e.g.everyburnuppointandeverynominalandoff-nominal condition) oronlyasubset?Ifthelatter,howaretheyselectedtoensureconservatism?
~ResenseTheCPM-2basedlocalandsecondary peakingfactors,whicharerequiredfortheXN-3criticalpowercorrelation, areusedintheSIMULATE-E fuelthermalmargincalculations.
ThesepeakingfactorsinSIMULATE-E arefunctions ofvoidhistory(i.e.,exposure-weighted relativemoderator density),
controlrodpresence, andfuelexposure.
AlthoughthesepeakingfactorsdonotincludesomeoftheCPM-2exposurestatepointsanddonotincludearelativemoderator densityorcontrolrodhistorydependence, thepeakingfactorsareaccurately represented inSIMULATE-E forallexpectedconditions.
Thepeakingfactorsarenotsensitive totheseexclusions.
FigureSl.l'hows thelocalpeakingfactorvaluesat0%voidhistoryforthreerelativemoderator densities (corresponding to0%,40%,and70%voidlevels)andcontrolrodhistory.TheSIMULATE-E dataagreewellwithalltheCPM-2dataexceptforcontrolrodhistories past5.0GWD/MTU.Fuelassemblies withcontrolrodhistories approaching 5.0GWD/MTUwouldhaverelatively lowreactivity andwouldhavesignificant margintothermallimits.Sincerelativemoderator densitynegligibly affectsthelocalpeakingfactorsasshowninFigureSl.landcontrolrodhistories forlimitingbundlesarelessthan5.0GWD/MTU,theeffectofnotconsidering thesedependencies isinsignificant.
1.7FIGURE81.1UNCONTROLLED LOCALPEAKINGFACTORDATAFOR9XQLATTICEAT0'/0VOIDHISTORY1.61.5OI-O1.4zhC13C301.2LegendSIMULATE-EXCPM-20%VH0CPM-20%VHTO40V0CPM-20%VHTO70VCPM-2CONTROLHISTORY101e20263040 uestion2a.Whatisthe"flag"whichsignalstheneedfornewnormalization ofthemodeladjustable inputdataparameters and/orradialandaxialalbedos?b.Howoftenarealbedo/normalization parameter changestypically made?c.Whatisthebasisforperforming thenormalization whenthecodeisusedinapredictive modeforcoreswhichdiffersignificantly fromthosepreviously modeled?~Resoesea.Threemajorchangescanaffectthenormalization parameters.
Asignificant changeinfueldesign,coredesign,and/orcalculational uncertainty willindicatethatanewnormalization shouldbeperformed.
Inbenchmarking the7x7,8x8,and9x9fuelbundledesignsandtheQuadCities,PeachBottom,andSusquehanna coredesigns,PPGLusedthesamesetofnormalization parameters forthevariousfuelandcoredesigns.Thebenchmarking calculations completed todateshowsimilarresultsbetweenmeasuredandcalculated parameters and,therefore, supporttheuseofthesamenormalization parameters forfutureSusquehanna SESfuelandcoredesigns.b.Theadjustable albedo/normalization parameters havemaintained consistency forallfuelandcoredesignsasstatedinresponsetoQuestion2a.Changeshavenotbeenmadeandarenotplannedorexpectedtooccurfrequently.
Futuremodelenhancements mayinvolveachange(s) inalbedo/normalization parameters.
Forchangesinmodelslikethis,benchmarking calculations wouldbeperformed torequalify orupdatetheuncertainties incorereactivity andpowerdistribution.
c.Thepresented TIPinstrument responseandcorereactivity comparisons inPL-NF-87-001 arebasedonaconsistent setofnormalization parameters.
Usingthesecomprehensive datathatincludeawidevarietyoffuelandcoredesigns,PPGLdeveloped astrongstatistical databasetodetermine conservative marginsforapplication tonewcoredesigns.Thereport entitled"Application ofReactorAnalysisMethodsforBWRDesignandAnalysis" willpresenttheuseofthesemarginsinSusquehanna SESsafetyanalyses.  
~uestion3IstheXN-3correlation validfor9x9andotheradvanceddesignBWRbundles?~ResonseTheXN-3correlation, developed byAdvancedNuclearFuelsCorporation (ANF),formerlyExxonNuclearCompany,isvalidforSx8and9x9fuelfortherangesofapplicability specified intheassociated NuclearRegulatory Commission safetyevaluations.
Licensing TopicalReport,XN-NF-734 (P)(A),"Confirmation oftheXN-3CriticalPowerCorrelation for9x9FuelAssemblies" describes theconfirmation ofXN-3forthe9x9fuelbundledesignandisapprovedbythe.NuclearRegulatory Commission.
TheoriginalapprovaloftheXN-3CriticalPowerCorrelation isprovidedinXN-NF-512(P)(A),
"XN-3CriticalPowerCorrelation".
ThisXN-3correlation isusedintheSIMULATE-E fuelperformance evaluations.
SampleSIMULATE-E testcaseshavebeenperformed anddocumented toverifythecorrectimplementation ofthecorrelation.
TheXN-3correlation isvalidforthefuelbundledesignscurrently scheduled for.loadingintofutureSusquehanna SEScycles(i.e.,8x8and9x9fuelbundledesigns).
uestion4TheTIPdetectormodelinSIMULATEassumesthattheresponsefromeachassemblyisnotaffectedbythepresenceoftheother3surrounding theTIP.Hasthisassumption beentested;isitadequate'Res ensePL-NF-87-001 statesthatthedetectorresponsefromeachassembly(i.e.,R.)jisnotaffectedbytheotherthree.However,thetotaldetectorresponseconsiders theeffectofeachsupporting assemblypowerasfollows:MER=-R.P.Mjj(Section3.2.3ofPL-NF-87-001) whereER=totaldetectorresponse, M=numberofbundlesaroundaTIPdetector(i.e.M=4),R.=detectorresponsecontribution fromassembly, j,jP.=SIMULATE-E calculated nodalpowerfromassembly, j.Eachassemblypower,P.,isaffectedbytheothersthroughneutronic couplingj'ntheneutronbalanceequation.
Therefore, thetotaldetectorresponse1contribution fromanassembly,
-R.P.,implicitly takesintoaccountthejj'therassemblypowers.Thismethodology isvalidated throughtheTIPresponsecomparisons presented inSection3ofPL-NF-87-001.
Forexample,Figures3.2.12and3.2.15inPL-NF-87-001 showthreecontrolled andoneuncontrolled TIPresponsecomparisons.
Thecontrolled comparisons containaggravated conditions ofwhichonebundleislowinpowerandtheotherthreearehighinpower.Majordiscrepancies wouldexistiftheTIPresponsemethodology isinadequate.
Asthefiguresshow,excellent agreement forallthreecontrolled TIPresponses exist,andtheresultsareverysimilartotheuncontrolled TIPresponsecomparisons.
Thisexcellent agreement supportstheTIPresponsemodelusedinSIMULATE-E.
question5Whileitistruethatperipheral assemblies andtopandbottomaxialnodesaregenerally lowpowerandhencenotofsafetyconcern,eliminating themfromthescancomparisons seemstoremoveapotentially valuablesourceofinformation ontheaccuracy/adequacy ofalbedoandreflector boundarycondition dependencies.
Pleasecomment.~ResonseThegammascandatainEPRINP-214allowforradial,nodal,peaktoaverage,andbundle(axial)comparisons.
Peaktoaverageandindividual bundle(axial)comparisons utilizealltheavailable gammascandata.Theradialcomparisons utilizeallthedatawiththeexception ofthemixedoxideandperipheral assemblydata.Forthenodalcomparisons, themixedoxideandperipheral assemblyandtopandbottomnodedataareeliminated.
Table3.3.7ofPL-NF-87-001 presentstheindividual bundlegammascancomparisons forallbundlesandnodes.Theperipheral bundlesinthistableare:CX0546gGEB162gCX0490gCX0553fCX0662gCX0682gCX0643gCX0683~Figure3'.20ofPL-NF-87-001 showsanaxialcomparison ofaperipheral bundle.Itisrecognized thatthesecomparisons directlyassesstheaccuracyofthealbedosusedinSIMULATE-E.
Comparisons oftheperipheral assemblies andtopandbottomaxialnodegammascanresultsareslightlyworsethantheinteriorbundlegammascancomparisons butarestillquitegood.ThetopandbottomalbedoswhicharebasedontheSusquehanna SESdatawereusedintheQuadCitiesmodel.Duetodifferent fuelandcoredesigns,thetopandbottomalbedoswoulddifferfromtheSusquehanna SESvalues.AlthoughtheSusquehanna SESalbedoswereutilizedintheQuadCitiescalculations, theSIMULATE-E modelstillprovidesanaccuratecalculation ofthepowerdistribution.
Therefore, sincethePPGLmodelswerenotnormalized totheQuadCitiesdataandsincethetopandbottomnodesandperipheral bundlesarelowpowerregionsofthecore,theperipheral bundleswerenotincludedinthestandarddeviation calculation fortheradialcomparisons, andtheperipheral bundlesandtopandbottomnodeswerenotincludedinthestandarddeviation calculation forthenodalcomparisons.
uestion6Pleaseexplainwhynon-conventional definitions areusedintheTIPandg-scancomparisons.
Forexample,itisnotobviouswhyTisusedinthedenominator fordetermining thedifferences intheradialTIPcomparisons.
~ResoeseInPL-NF-87-001, thedifferences andstandarddeviations fortheTIPresponseandgammascancomparisons arenormalized withtheaveragemeasuredvalue,T,toexpressthemintermsofapercentage ofthecoreaverage.Thisapproachresultsinastandarddeviation expressed inunitsofpercent.However,theresultofthecalculation isastandarddeviation oftheabsolutedifferences.
Anothermethodthatcouldhavebeenusedinvolvesconversion ofthedifferences toapercentage ofthemeasuredvalue(i.e.,bydividingbyT),andthencalculate thestandarddeviation ofthesepercentage differences.
Thissecondmethod,however,weightsthedifferences forthedetectorlocations withlowreadings(i.e.,lowpowerregions)moreandthedifferences fordetectorlocations withhighreadings(i.e.,highpowerregions)lessthanthefirstmethod.SincetheaccuracyoftheSIMULATE-E calculations inthehighpowerregionsismoreimportant forthermalmargincalculations, thefirstmethodismoreappropriate.
AnexampleisshownforaradialTIPresponsecomparison todemonstrate thedifferences intheaboveapproaches.
TheattachedFigureS6.1showsaradialTIPresponsecomparison usingthesecondmethodandFigure3.2.29ofPL-NF-87-001 showstheradialTIPresponsecomparison ofthesamedatausingthefirstmethod.FigureS6.2showstheaverageofthemeasuredTIPresponses ateachradiallocation(i.e.,T).Notethattheuseofthefirstmethodresultsinahigher0difference forthehighmeasuredvalues(e.g.,TIPresponseatlocation32-33:6e48%vs.5.96%),andalower%difference forthelowmeasuredvalues(e.g.,TIPresponseatlocation32-57:5.79%vs.6.36%).ForalltheTIPresponseandgammascancomparisons basedonthefirstmethod,thelocationoftheworseprediction (i.e.largestabsolutedifference) canbeeasilydetermined byfindingthehighestpercentdifference.
Usingthesecondmethod,theworseprediction isnotnecessarily atthelocationofhighestpercentdifference.
Thisisindicated inthe examplewheretheTIPresponsecalculation at32-33(i.e.,ahighpowerregion)exhibitstheworseabsolutedifference.
ThesecondmethodsuggeststhattheTIPresponsecalculation at32-57(i.e.alowpowerregion)isworse.
FIGURES6.1SUSQUEHANNA SESUNIT1CYCLE3RADIALTIPRESPONSECOMPARISONS 0.178GWD/MTUCYCLEEXPOSURE6159575553514947454341393735333129-2.03-2.501.900.82-1.95++++-0.28-0.14~14-0.75-0.296.360.65.96-0.940.353.43.0-2.90-2.800.00.4327252321++++3.88++-4.331.26++.18-3.292.2191715131.0-1.49+++++-1.53.132.33-1.143.39-1.86-4.82-0.7731Y00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/Measured]
X100%
FIGURES6.2SUSQUEHANNA SESUNIT1CYCLE3MEASUREDRADIALTIPRESPONSE0.178GWD/MTUCYCLEEXPOSURE61595755,535149474543413937353331292725232119171513119753150.194049.50.4843.8234.24499448.0646.8946.7250.2243.6230.7744.6052.4748.3051".7153.6149.3452.1242.5845.2750.87509045.511950.2241.5750.9246.6546.6749.5147.2050.0152.5551.7752.9251.4134.9343.7940.9744,7443.19140002040608 1012141618202224262830323436384042 444648505254565860XCoreAverageTIPResponse=46.82 uestion7DoesPPaLintendtousePDQ-7forapplications significantly different fromthoseforwhichbenchmarking isprovidedinthereport(e.g.corecalculations)7
~ResensePPaLdoesnotintendtoperformthree-dimensional corestatepoint ordepletion calculations withPDQ-7.PPGL'sprimaryintenti:stousePDQ-7fortwo-dimensional calculations tocomplement CPM-2and/orSIMULATE-E forspecialapplications (e.g.,partially loadedcoreconfigurations andlocalcriticality calculations).
Insomeinstances, PDQ-7willbeusedasanindependent verification ofcalculations.
Inaddition, PPSLbelievesthatfutureSIMULATE-E modelimprovements maybedeveloped withtheuseofPDQ-7.
question8DoEPRIguidelines existfortheCPM-2(crosssection)-COPHIN-PDQ-7calculational path7AretheyfollowedbyPPaL'?~ResenseNoEPRIguidelines currently existfortheCPM-2/COPHIN/PDQ-7 calculational path.ThemethodusedatPPGListousetheCPM-2macroscopic crosssectiondataforfuelpinsintheassemblies ofinterest.
COPHINassembles thisdataintocrosssectiontableswhicharethenusedinPDQ-7.PPGLonlyusesPDQ-7forspecialanalysesthatcannotbeperformed withCPM-2and/orSIMULATE-E.
Eachspecificanalysiswilldetermine theparticular mannerinwhichthePDQ-7modelisdeveloped.
GENERAL/egestion HavetheCPM-2/MICBURN, SIMULATE-E, FIBWRandtheXN-3correlation beenreviewedandapprovedbytheU.S.NuclearRegulatory Commission?
~nesenseTheneutronic methodology inCPM-2/MICBURN andSIMULATE-E, thethermalhydraulic methodology inSIMULATE-E (i.e.,FIBWR),andthecriticalpowermethodology inSIMULATE-E (i.e.,XN-3)havebeenreviewedandapprovedbytheU.S.NuclearRegulatory Commission aspartofothertopicalreports.Theneutronic methodology inCPM-2/MICBURN hasbeenrecentlyapprovedintheGeneralPublicUtilities NuclearCorporation submittal oftheirlatticephysicstopicalreport.TheSIMULATE-E methodology fortheneutronic calculations, hasalsobeenapprovedinYankeeAtomicElectricCompany's submittal ofSIMULATE.
TheSIMULATEandSIMULATE-E neutronic methodologies areidentical.
Withregardtothethermal-hydraulic methodology inSIMULATE-E (1e.,FIBWR),theFIBWRmethodology hasbeenapprovedforYankeeAtomicElectricCompany.ForXN-3,theU.S.NRChasapprovedtheExxonNuclearCompany(currently AdvancedNuclearFuels)submittals XN-NF-512(P)(A) andXN-NF-734(P)(A)-
IIII}}
IIII}}

Revision as of 19:48, 29 June 2018

Qualification of Steady-State Core Physics Methods for BWR Design & Analysis.
ML17156A688
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 07/31/1988
From:
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17156A689 List:
References
PL-NF-87-001-A, PL-NF-87-1-A, NUDOCS 8807280374
Download: ML17156A688 (297)


Text

PL-NF-87-001-A B)z~~~Pennsylvania Power8LightCompany88072S0374 880719PDRAGQCK05000387'*-,PPDC IIIgE~4

~Cgp,R~ECy(Wp+,0ypC~I~It)(0"~3Vl30/~UNITEDSTATESNUCLEARREGULATORY COMMISSION WASHINGTON, O.C.20555April28'988DocketNos.50-387/388 Nr.HaroldW.KeiserSeniorVicePresident-Nuclear Pennsylvania PowerandLightCdIIpany2NorthNinthStreetAllentown,Pennsylvania18101

DearMr.Keiser:

SUBJECT:

TOPICALPEPORTPL-NF-87-001, "OUALIFICATION OFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSIS" (TACNOS.65171AND65172)RE:SUSQUEHANNA STEAMELECTRICSTATION,UNITS1AND2Thestaffhascompleted actiononyourMarch31,1987requestforreviewofTopicalReportPL-NF-87-001 relatedtoBWRSteady-State CorePhysicsMethods.Ourconsultant, Brookhaven NationalLaboratory (BNL)reviewedyourreportandprovidedaTechnical Evaluation Peport(TER)outlining itsreviewsandconclusions.

ThestaffhasreviewedtheRNLTERandhaspreparedtheenclosedsafetyevaluation.

Basednnourreview,wehaveconcluded thatthesub.jectTopicalReportisacceptable forthepurposeoflicersingactionsonSusquehanna SteamElectricStation,Units1and2.Sincerely,

Enclosure:

SafetyEvaluation ccw/enclosure SeenextpageWIa1terR.Butler,DirectorPro.',ect Directorate.

I-2DivisionofReactorPro,iects I/IIOfficeofNuclearPeactorRegulation

\

Mr.HaroldW.Keiser'ennsylvania Power5LightCompanySusquehanna SteamElectricStationUnits152CC:JaySilberg,Fsq.Shaw,Pittman,PottsATrowbridge 2300NStreetN.W.Washington, D.C.20037BryanA.Snapp,Esq.Assistant Corporate CounselPennsylvania Power5LightCompany2NorthNinthStreetAllentown, Pennsylvania18101Mr.E.A.HeckmanLicensing GroupSupervisor Pennsylvania'Power 8LightCompany2NorthNinthStreetAllentown, Pennsylvania 18101Mr.F.I.YoungResidentInspector P.O.Box52Shickshinny, Pennsylvania 18655Mr.R.J.BenichServicesProjectManagerGeneralElectricCompany1000FirstAvenueKingofPrussia,Pennsylvania 19406Mr.ThomasM.Gerusky,DirectorBureauofRadiation Prntection Resources Commonwealth ofPennsylvania P.0.Box2063Harrisburg, Pennsylvania 17120Mr.JesseC.Tilton,III'Allegheny Elec.Coorperative, Inc.212LocustStreetP.O.Box1266Harrisburg, Pennsylvania 17108-1266 Mr.W.H.Hirst,ManagerJointGeneration ProjectsDepartment AtlanticElectricP.O.Box15001199BlackHorsePikePleasantville, Newlersey08232Regiona1'dministrator,ReoionIU.S.NuclearRegulatory Commission 475Allendale RoadKingofPrussia,Pennsylvania 19406

~p,gREgyIp0y*p%UNITEDSTATESNUCLEARREGULATORY COMMISSION WASHINGTON, D.C.20555ENCLOSURE SAFETYEVALUATION BYTHEOFFICEOFNUCLEARREACTORREGllLATION RELATINGTOLICENSING TOPICALREPORTPL-NF-87-001, REV.O"UALIFICATION OFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSIS" PENNSYLVANIA POWER8ILIGHTCOMPANYSUSUEHANNA,UNITS1AND2DOCKETNOS.50-387AND50-38

81.0INTRODUCTION

ByletterdatedMarch31,1987,thePennsylvania PowerandLightCompany(thelicensee) requested approvalofTopicalReportPL-NF-87-001, Rev.0,forthepurposeofitsuseinlicensing actionsfortheSusquehanna SteamElectricStation(SSES)Units1and,2.~Thereportdescribes thequaliIication oftheCPM-2latticephysicsandSIMULATE-E three-dimensional nodalcoresimulator programsforthesteadystatedesignandanalysisofboilingwaterreactors(BWRs).TheseprogramsarepartoftheAdvancedRecycleMethodology Program(ARMP)developed bytheElectricPowerResearchInstitute (EPRI)forsteadystateanalysesoflightwaterreactors.

Briefdescriptions oftheCPM-2andSIMULATE-E programsarepresented alongwithcomparisons tomeasurements fromoperating BWRsandexperimental criticals.

TheresultsofselectedPD07calculations foruniformlatticecriticals andsinglefuelbundlesarealsopresented.

Theseprogramsandassociated methodologies areusedbythelicenseeforplantoperations support,variousfuelcycleandsafetyrelatedcalculations, andtoprovidenecessary neutronics inputdatatotransient

'analyses forthetwounitSusquehanna SteamElectricStation.2.0SUMMARYOFTOPICALREPORTTheSIMULATE-E three-dimensional codeisusedbythelicenseetomodelthecoupledneutronic andthermal-hydraulic behavioroftheSusquehanna Unit1and2BWR cores.Therequirednucleardataaregenerated bytheCPN-2programwhichmodelstheBWRfuelbundleanditsenvironment (by-passchannel,cruciform controlrod,etc.)intwo-dimensions.

2.1DescritionoftheCPN-2ProramCPN-2isamodifiedversionoftheCPM(Collision Probability Module)codedeveloped inSwedenbyABAtomenergi/Studsvik fortheanalysisofPWRandBWRfuelassemblies.

Themodelingcombinesfinegroupspectrumcalculations forsub-regions oftheassembly(e.g.fuelpin-cells),

withamultigroup transport calculation forapartially homogenized, hetrogeneous assemblyintwo-dimensional (xy)geometry.

Thecodeisdistributed byEPRI,ardisidentical totheoriginalCPNexceptfortheinputmodulewhichhasbeenimprovedtomaketheprogrammore"userfriendly."

Sincethesemodifications

('aswellasthosemadebythelicenseeintheirimplementation anduseofCPM-2)didnotaffecttheneutronics calculations, alltheoriginalbenchmarking ofCPNbyEPP1/Studsvi kisapplicable toCPN-2aswell.Thecalculational sequenceforatypicalBWRassemblyinvolvesthreebasicsteps,withthespatialandenergydetailbecomingsuccessively coarseraslargerregionsoftheassemblyareconsidered.

Thesestepsaretermedthemicro-group, macro-group, andtwo-dimensional assemblycalculations.

Cruciform controlrodsaretreatedviaaspecialsubroutine, andthedepletion ofgado-liniabearingfuelpinsrequiresanauxiliary calculation withtheNiCBURNcode.2.2CPN-2uglification Theaccuracy/adequacy ofvariousaspectsofCPM-2anditsmodels(e.g.nucleardata,treatment ofcontrolrodsandgadolinia) isdemonstrated bycomparisons tomeasuredresultsfrompowerreactorsandexperimental configurations.

Comparisons ofeigenvalues (kff),pinpower/fission ratedistributions, and'eff'sotopicconcentrations versusburnuparepresented.

Someoftheseresultswere generated bythelicensee, whileothersweretakenfromtheEPRI/Studsvik benchmarking oftheoriginalversionofCPM.Pin-cellcalculations simulating 14roomtemperature uniformlatticecriticalexperiments wereperformed byPPP~LtoassesstheaccuracyoftheCPM-2reactivity calculation (basedonthemeasuredbuckling).

Eightoftheconfigurations contained U02fuelandthefuelfortheremaining 6contained 2.0weightpercentPuO>innaturaluranium.CPM-2slightlyunderpredicted (byabout0.5>k)thekfffortheU02criticals, andoverpredicted theeffmultiplication factorfortheremaining criticals, resulting inanaveraqekffofI.COOSwithastandarddeviation of0.0072considering allcriticals.

effTheaccuracyoftheCPN-2calculation oftherod-wisepowerdistribution wasevaluated bycomparisons tothegamma-scan measurements performed atsquadCitiesUnit1attheendofCycle2.Two7x7M02andthreeU02bundles(one8x8andtwo7x7)wereconsidered inthecomparisons.

Burnupandvoidoperating historydatawereobtainedforeachbundle-elevation fromaSIMULATE-E simulation.

ThesedatawereusedinCPN-2bundlecalculations toarriveattheCPM-2/SIMULATE-E predicted statepoints corresponding tothemeasureddata.Thecomparisons showedgenerally goodagreement betweenmeasurement andprediction (average=4.0l)withCPM-2tendingtooverpredict thepeakrodpower.TheresultsoftheEPRI/Studsvik benchmarking oftheoriginalCPMcodetouniformlatticecriticals, smallcorecriticalexperiments performed attheKRITZfacility, and-measured concentrations ofuraniumandplutonium isotopesfromYankeeandSaxtonspentfuelarealsopresented.

Thesecomparisons showgenerally reasonable agreement betweenCPMpredicted andmeasuredquantities.

,".3DescritionofSINULATE-E TheEPRIdistributed SIMULATE-E three-dimensional coupledneutronics/

thermal-hydraulics coresimulator programisusedbyPPALintheirsteadystatecoreanalyses.

Thethermal-hydraulics calculations useanEPRIdeveloped voidcorrelation andtheFIBMRmethodology developed byYankeeAtomicElectric Company.Themethodology employedfortheneutronics calculations maybeselectedbytheuserfromseveralavailable options;PPSLusestheModifiedCoarseMeshDiffusion Theory(PRESTO)option.Two-group macroscopic crosssectionsforeachfueltypearedeterm'.ned byCPM-2asafunctionoffuelexposure, voidhistory,moderator, fuelandcontrolconditions, andxenonconcentration.

Afterprocessing byNORGE-B2, theyareinputtoSIMULATE-E alongwithradialandaxialalbedosappliedatthecore-reflector interfaces.

Normal'ization ofthemodeltomatchplantoperating dataisperformed viaadjustment ofseveralinputdataparameters.

Separatemndelsarecreatedathotoperating andcoldconditions.

Thelicenseehasmadeanumberofchargestothecode,including theabilitytocalculate theCriticalPowerRatio(basedontheAdvancedNuclearFuelsCorporation, formerlyEXXONNuclear,XN-3criticalheatfluxcorrelation),

andlinearheatgeneration rateandaverageplanarheatgeneration ratethermallimitsevaluations.

Thesechangeshavenotresultedinanychangestothebasicneutronics orthermal-hydraulics calculations.

2.4.SIMULATE-E

(}uglification Thequalification oftheSIMULATE-E programisbasedonsimulations ofthefirsttwocyclesof(juadCitiesUnit-1(gC-1)andPeachBottomUnit-2(PB-2),andofthefirsttwo-plusandone-pluscycles(i.e.,fromBOLtoapproximately early1987)ofSusquehanna Units1and2,respectively.

Comparisons ofSIMULATE-E predicted valuesweremadetohotandcoldmultiplication factors(kff)andpowerandflowdistributions.

Theaccuracyofthepredicted powerdistributions wasevaluated basedoncomparisons toTIPdetectorreadings, andtoresultsfromgamma-scans.

Powerandflowdistributions werecomparedto.resultsfrom.theon-linecoremonitoring system.Thekffcomparisons fortheSusquehanna unitsconsidered 257hotoperating condition steady-state statepoints, and39(3localand36in-sequence) coldcriticalstatepoints.

Thesecomparisons indicated thattheabilityofthePPSLSIMULATE-E hotandcoldmodelstopredictkffdependsonthecoreaverageeffexposureandthegadolinia loading.Thereisanearlyconstantbiasbetweenthehotandcoldpredictions, withthehotkffconsistently lower.Usingthis data,thelicenseegenerates hotandcoldcycle-dependent targetcriticalcorekffcurvesforuseinthecorefollow,andshutdownmarginandcontrolrodeffworthanalysesofindividual cycles.Thepowerdistribution comparisons utilizedallavailable TIPsetsfrombothSusquehanna unitsandconsidered nodalandaxiallyaveraged(radial)quantities.

Asymmetries inthemeasureddatawerequantified byconsidering symmetric nodalorradialTIPreadingstoprovideanestimateofthemeasurement uncertainties associated witheachTIPset.NodalRMSerrorstendtobeinthe4-6$range,withdifferences nearthemiddleofcycleandendofcyclepowercoastdown inthe6-95range.TheaveragenodalandradialRMSerrorsconsidering all82TIPsetsare5.74and2.58percent,respectively.

Thecorresponding averageasymmetries basedon44TIPsetsare5.22and2.55percent,respectively.

Fourcoreaverageaxialpowerdistribution andthree-bundle flowcomparisons arealsopresented, considering onestatepoint perSusquehanna unit/cycle.

These.comparisons aremadetodataproducedbytheon-lineCoreMonitoring System(CMS)todemonstrate consistency oftheresults.(ThebF.processcomputerPlprogramwasusedforthefirstcycleofbothunits,withtheANFPOMERPLEX CMSusedinallsubsequent cycles).Thesecomparisons showedgoodagreement betweentheSIMULATE-E andCYSresults.Comparisons tnmeasureddatafromthefirsttwocyclesofsquadCitiesUnitI(gC-1)werealsoperformed.

Inadditiontohotreactivity andTIPdatasimilartothatfromtheSusquehanna units,theOC-Imeasurements included33coldcriticalconfigurations (22local)fromCycle-l,andbundlegammascanmeasurements fromtheendofcycles(EOC)oneandtwo.ThegC-Ihotcriticalcomparisons showedasimilartrendversusexposuretothatobservedearlier;however,therelatively lowgadolinia loadingingC-1resultedintheabsenceofthebowl-shaped gadolinia component inthevariation.

Thelargecoldcriticaldatabaseservedtoaugmenttheearlieranalyses.

ThegC-1coldcriticalcomparisons wereusedtoconfirmthatthere isnosignificant biasbetweenSIMULATE-E predictions ofkf<forin-sequence effandlocalcriticalconfigurations.

ThegC-Ibasedpowerdistribution comparisons considered 15TIPsetsfromCycleIand13setsfromCycle2,alongwithgammascandatafrom31and89bundlesatEOClandEOC2,respectively.

ThenodalandradialRNSdifferences fromtheTIPcomparisons areroughlytwiceaslargeasthoseobserved~orthpSusquehanna comparisons.

TheEOCIgammascandataconsisted ofmeasuring theaxialpeaktobundleaverageLa-140activities andservedtobenchmark theSIMULATE-E calculation oftheaxialpeakingfactor.Theresulting difference was1";(=25)withtheagreement forcontrolled bundlesconsiderablv betterthanforuncontrolled.

TheEOC2gammascar.dataismuchmoreextensive andpermitscomparisons ofindividual bundleaxialLa-140activitydistributions, aswellasradial,nodalandpeaktoaveragecomparisons.

Peripheral andmixedoxidebundleswerenotincludedintheradialandnodalcomparisons andthetopandbottomsixincheswereeliminated fromthenodalcorn'parisors.

Thepeak-toaveragecomparisons resultedinanaveraqedierenceo.about0.2~(=1.5f)withamaximumdifference ofabout4%.Theaveragestandarddeviation fromtheindividual bundlegammascanswas6.3Xwithmorethan85>o<theindividual bundle'sinthe5-8~range.Thestandarddeviation fromtheradialandnodalgammascancomparisons wereabout2'Aand5.5',respectively.

Theouot~dmeasurement uncertainty fortheqammascanswas31,.Thefinalqualification ofSIMULATE-E presented inthereportconsistsofpowerdistribution comoarisons toTIPmeasurements anddatafromtheGEPlprocesscomputerforPeachSottomUnit2{PB-2)cycles1and/or2.Thelevelnfagreement withmeasuredTIPdatafromthesecnmparisons isreasonable andconsistent withthatobservedearlier.ThepurposeofthePB-2simulations wastngenerateinputfortheanalysisoftheturbinetriptestsperformed neartheendofCycle2,including anaccuraterepresentation oftheinitialconditions.

Thenon-steady stateoperation thatprecededthesetestsrequiredanaccuratemodelingofnon-equilibriumxenondistributions andconcentrations.

Comparisons ofthepredicted coreaverageaxialpowerdistributions justpriortothe threetests(toppeaked,middlepeakedandslightlybottompeaked)todatafromtheprocesscomputershowedgoodagreement.

2.5DescritionofPD7ThegeometryintheCPM-2latticephysicscodeislimitedtorepresenting anindividual fuelassembly.

Insomeapplications, however,amultipleassemblycalculation isrequired, andfortheseapplications PPSLusesthegeneralpurpose.PD(7 code.Theprogramsolvesthefewgroupdiffusion

.theoryequationbasedonthefinitedifference spatialapproximation inone,two,orthreedimensions.

Whileuptofiveenergygroupsarepermitted (including twooverlapping) thermalenergygroups,thelicenseegenerally utilizesfourgroupswithasinglethermalgroup.Microscopic ormacroscopic crosssectiondatamaybeemployed; PP8Ltypically usesmacroscopic datafromCPM-2andprocessed withtheCOPHINcode..66II6ThePP5Lqualification ofPD(7consisted ofanalyzing thesameuriformlatticecriticals usedinthebenchmarking ofCPM-2,alongwithcomparisons toCPM-2assemblycalculations fortypicalcontrolled anduncontrolled BWRfuelbundles.Theuniformlatticecalculations modelledthecriticalcoreconfigurations inone-dimensional cylindrical geometrywithanexplicitaccounting oftheradialreflector andabucllingcorrection toaccountforaxialleakage.Reasonable agreement wasobtainedwiththeCPM-Pcalculated k+fs,0.9972effversus0.9951and1.0076versus1.0144fortheUOandmixedoxidelattices, respectively.

ThePD07singlefuelassemblycalculations modelledeachpin-cellexplicitly, andusedshielding factorsderivedbycomparison toCPM-2results,forgadolinia bearingfuelpinsandcontrolrods.TwoseparatefuelbundlesfromtheinitialcoreloadingoftheSusquehanna unitswereselectedfnrthe.comparisons.

Theresultsshowedgenerally goodagreement betweenCPM-2and PD(7forthebundlek'sandrod-wisepowerdistributions withmaximumerrorsofabout4$and?,.foruncontrolled andcontrolled bundles,respectively.

3.0 EVALUAITON

TheCPM-2andSIMULATE-E programsweredeveloped byEPRIforthesteadystateanalysesofLWRs.Thelicenseeplanstousethesecodesforplantoperations support,variousfuelcycleandsafetyrelatedcalculations, andtoprovidenecessary neutronics inputdatatotransient analysesforthetwoBWRunitsattheSusquehanna SteamElectricStation.Thepresentreviewconsidered theinformation presented inthetopicalreportandadditional information providedbythelicenseeinaletterdatedFebruary17,1988.Thereviewconsidered thequalification oftheFIBWRthermal-hydraulics methodology onlyinitsroleasanintegralpartoftheSIMULATE-E program.Theperformance ofFIBWRasastand-alone thermal-hydraulics code,andthevalidity/applicability oftheANFXN-3CHFcorre1ation wereconsidered tobeoutsidethescopeofthisreview.Themethodologies (notincluding thequalification presented inthisreport)embodiedintheCPN-2andSIMULATE-E programshavebeenpreviously reviewedandfoundacceptable forsteadystatenuclearcoredesignanalysesofplantsotherthanSusquehanna, andarerepresentative ofcurrentpractice.

TheprimaryroleofCPN-2withinthePPSLcalculational sequenceforBWRanalysesistoprovidenucleardata(basically two-group crosssections) totheSIMULATE-E coresimulator program.Thebenchmarking ofSIMULATE-F viacomparisons tomeasurements fromoperating BWRstherefore servesastheultimate, thoughsomewhatindirect, qualification ofCPM-2.However,PP8LandEPRI/Studsvik haveperformed anumberofcomparisons tomeasureddatafromexperimental configurations andoperating BWRstotestvariousaspectsoftheCPM/CPh1-2 neutronics calculation methodology andnucleardata.

Comparisons touniformlatticecoldcriticals andKRITZsmallcorecriticals provideanintegraltestoftheabilityofCPM-24opredictreactivity (multiplication factors).

Comparisons tomeasuredrod-wisegammascandataforselectedassemblies fromanoperating BWR,andtomeasuredrod-wisefissionratedistributions fromKRITZexperiments, serveas.aqualification ofthetreatment ofneutrontransport andotheraspectsofthemodelling inthehiqhlyheterogeneous environments ofrealRWRfuelbundlesandreactorcores.Finally,comparisons ofcalculated uraniumandplutonium isotopicconcentrations weremadetodatafromthedestructive analysisofspentfuelromtheYankeeandSaxtonreactors.

Thelevelofagreement betweenCPM-2calculated andmeasuredquantities isreasonable, andtypicalofthatobservedwithcurrently acceptedmethods.Inaddition, CPM-2tendstooverestimate thelocalpeakingfactorinanassembly, implyingagenerally conservative prediction ofthelinearheatgeneration rate.Thebenchmarking oftheSIMULATE-E programconsisted ofsimulations ofseveralcyclesofoperation ofthreeBWRsincluding allavailable datafromPPAL'sSusquehanna unitsstartingatbeginning ofCycle-1(BOCI).Thehotreactivity comparisons involvedmorethanfiveop~rating cycles(almost300statepoints) forcorescontaining avarietyofBWRfuelbundledesigns.Thecalculated hotkffexhibited abiasrelativetothemeasuredcriticaleffkffwhichwasconsistent inmagnitude withthatobservedforaccentedeffthree-dimensional coresimulator codes.Theobservedvariation ledtothedevelopment ofacorrelation whichisabowlshapedfunctionofgadolinia loadingandaroughlylinearfunctionofexposure.

This"target"kf<isusedef<topredictthecriticalcorekffforaparticular unit-cycle.

effThecoldcriticalcomparisons considered 47insequence and25localconfigurations.

Theresultsshowedasimilarvariation inthepredicted coldcriticalkfftothatobservedforhotconditions; thecoldcriticalkeffeff"target"forusewithSIMULATE-E istherefore obtainedbvaddingaconstantbiastothehotcorrelation.

Inaddition, theresultsshowednosignificant differences betweenthekffforlocalandin-sequence criticals, thereby 10demonstrating theabilityofSIMULATE-E toperformshut-down marginca1culations.Thebenchmarking oftheSIMULATE-E calculation ofpowerdistributions considered measuredTIPdetectorreadingsandgammascans,anddatafromplantcoremonitoring systems.Thealbedosandotheradiustable parameters weredetermined durinqmodelnormalization tooperating datafromSusquehanna UnitlCycles1and2,andremainedunchanged forallsubsequent simulations.

Thecomparisons forthe82TIPsetscoveringmorethanthreecyclesofoperation ofthetwoSusquehanna unitsyieldedaveragenodalandradialRMSdifferences of5.7and2.6percent,respectively.

Theestimated errorsintheTIPmeasurements weredetermined byconsidering symmetric detectorreadings, andwereofthesameorder.TheTIPcomparisons forDuadCitiesandPeachBottomyieldedhigherdifferences, i.e.,nodalandradialRNSerrorsconsidering allTIPsetsofabout10andabout5percent,respectively, forOutedCities,andsomewhatlowerforPeachBottom.hThecomparisons tothesquadCitiesqammascanmeasurements atEOClandEOC2furtherdemonstrated theabilityofSIMULATF.-E tocalculate powerdistributions.

Theaxialpeaktoaveragewaspredicted towithinabout11withastandarddeviation of1-2%,andthestandarddeviations fromtheradialandnodalcomparisons wereabout2andabout5percent,respectively.

Theperipheral bundleswerenotincludedinthesecomparisons, andinadditionthetopandbottomsixincheswerenotconsidered inthenodalcomparisons.

Thequoteduncertainty forthegammascanmeasurement is3.0X.Comparisons ofcoreaverageaxialpowerdistributions toresultsfromtheAEP1orANFPOl<ERPLEX coremonitoring systemsfortheSusquehanna unitsandPeachBottomUnit-2(PB-2)nearEOC2,thoughlimited,showedgoodagreement.

ThePB-2comparisons considered theeffectsofnon-equilibrium xenonandincludedtop,middleandbottompeakedaxialpowerdistributions.

Threebundleflowdistributions fromtheSusquehanna coremonitoring systemswerealsocomparedtoresultsgenerated bySIMULATE-E withgenerally goodagreement.

The powerdistribution comparisons ofSIMULATE-E tomeasureddatashowedgenerally reasonable agreement andwereconsistent with,thelevelsofagreement observedwithacceptedmethods.Thelargerdifferences observedinthePuadCitiesandPeachBottomcomparisons arepartially duetotheSIMULATE-E modelsnotbeingspecifically normalized forthesesimulations.

Thegenerally goodagreement, however,providesreasonable confidence thatSIMULATE-E canbeusedforpredictive calculations fortheSusquehanna units.Thelimitedcomparisons ofPD(7toresultsfromuniformlatticecriticals andCPM-2singleassemblycalculations showedreasonable agreement.

Thccomparisons werebasedontheuseof4energygroupcrosssectionsfromCPM-2.Thelicenseenotesthatwhileitdoesnotintendtoperformthree-dimensional calculations withPDg7,itmayusetheprogramforvarioustwo-dimensional analysesincluding independent verification ofcalculations, calculations ofnon-standard configurations suchaspartially loadedcores,andinthedevelopment offuturemodelimprovements forSIMULATE-E.

Appropriate qualification bythelicenseeoftheuseofPDg7forconfigurations largerthanmultiplebundlearraysisrecommended.

4.0CONCLUSION

S TheCPM-2andSIMULATE-E codesweredeveloped underthesponsorship oftheElectricPowerResearchInstitute andarepartofthepresently recommended procedures forBWRanalysessimilartothoseintendedforapplication toSusquehanna Units1and2.Thebenchmarking ofthecodesbythelicenseerelativetomeasurements fromoperating reactorsandexperimental configurations resultedinagreement typicalofthatobservedwithacceptedmethods.Thecomparisons ofPD(7toresultsfromuniformlatticecriticals andCPM-2singleassemblycalculations alsoshowedreasonable agreement.

Thestafftherefore concludes thattheCPM-2/SIMULATE-E methodology, andtheuseofPDg7forauxiliary calculations represent anacceptable approachforanalysesperformed bythelicenseeinsupportoflicenseapplications andoperation ofthetwoBWRreactorsattheSusquehanna SteamElectricStation. Thestaffrecommends thatappropriate qualification bemadebythelicenseeoftheuseofPO(7forconfigurations largerthanmultiplebundlearrays,ifsuchconfigurations areconsidered forcalculation byPDg7.Thestaffalsorecommends continued comparisons ofcalculated physicsparameters withmeasureddatafromfuturephysicsstartuptestsandreactorfuelcycles.Principal Contributor:

D.Fieno PL-NF-87-001-A IssueDate:July,1988QUALIFICATION OFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSISPL-NF-87-001 Revision0March1987Principal Engineers AndrewDyszelKennethC.KnollContributing Engineers JohnH.EmmettEricR.JebsenChesterR.LehmannAnthonyJ.RoscioliRobertM.RoseJohnP.SpadaroWilliamJ.WeadonApproved:

JoM.KulickDate:3/31/87Supervisor-Nuclear FuelsEngineering JeeS.Stefanko.-Nuclear FuelsastemsEngineering Date:3/31/87 I1lI LEGALNOTICEThistopicalreportrepresents theeffortsofPennsylvania PowerGLightCompany(PPsL)andreflects.thetechnical capabilities ofitsnuclearfuelmanagement personnel.

Theinformation contained hereiniscompletely trueandaccuratetothebestoftheCompany's knowledge.

Thesoleintendedpurposeofthisreportandtheinformation contained hereinistoprovideatechnical basisforPPGL'squalification toperformsteadystatecorephysicsanalysesoftheSusquehanna SESreactors.

Anyuseofthisreportortheinformation byanyoneotherthanPP&LortheU.S.NuclearRegulatory Commission isunauthorized.

With'regard toanyunauthorized use,Pennsylvania PowersLightCompanyanditsofficers, directors, agents,andemployees makenowarranty, eitherexpressed orimplied,astotheaccuracy, completeness, orusefulness ofthisreportortheinformation, andassumenoliability withrespecttoitsuse.

~~l ABSTRACTThistopicalreportpresentsthebenchmarking analyseswhichdemonstrate thevalidityofPennsylvania Power6LightCompany's (PPGL's)analytical methodsaswellasPPaL'squalification toperformsteadystatecorephysicscalculations forreloaddesignandlicensing analysisapplications.

PPGL'ssteadystatecorephysicsmethodsarebasedmainlyonthecomputercodesprovidedbytheElectricPowerResearchInstitute.

Thesecodesinclude:theMICBURNgadolinia fuelpindepletion code;theCPM-2assemblylatticedepletion code;andtheSIMULATE-E three-dimensional coresimulation code.Thebenchmarking analysescontained inthistopicalreportincludecomparisons ofPPsL'sCPM-'2fuelpinandassemblycalculations touniformlatticecriticalexperiments andtogammascanmeasurements takenfromtheQuadCitiesUnit1reactor.Extensive benchmarking ofPPGL'sSIMULATE-E modelsisalsopresented, including comparisons tomeasuredneutronfluxdata(i.e.,Traversing In-coreProbedata)andcriticals fromallavailable Susquehanna SEScycles,twocyclesofQuadCitiesUnit1,andtwocyclesofPeachBottomUnit2;theSIMULATE-E modelsarealsobenchmarked against,gammascanmeasurements fromQuadCitiesUnit1.PPGL'scalculations withtheindustrystandarddiffusion theorycodePDQ7arealsoincludedinthistopicalreport.Intotal,thebenchmarking resultscompareveryfavorably tothemeasureddata,andthusdemonstrate PPGL'squalifications toperformsteadystatecorephysicscalculations forreloaddesign'nd licensing analysisapplications.

II ACKNOWLEDGEMENTS Theauthorsgratefully acknowledge theexpertstenographic workprovidedbyMs.EvelynLugoandMs.SandraK.Lines,andtheexcellent graphicspreparedbyMr.FrancisE.GrimandMs.DeniseS.Showalter, allofwhoseeffortshavecontributed tothequalityandtimelycompletion ofthistopicalreport.Theauthorsalsoacknowledge theeffortsofMr.RoccoR.Sgarroforhislicensing reviewsandcoordination withtheNRC.Inaddition, theconsulting reviewsandrecommendations providedbyDr.JackR.FisherandMr.RodneyL.GrowofUtilityResourceAssociates, andMr.EdwardD.Kendrick, Dr.AntonioAncona,andMr.Demitrios T.Gournelos ofUtilityAssociates International aregreatlyappreciated.

I QUALIFICATION OFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSISTABLEOFCONTENTSSectionPage1.0Introduction 2.0LatticePhysicsMethods2.1Description ofCPM-22.2UniformLatticeCriticals 2.3QuadCitiesPinPowerDistribution Comparisons 2.4EPRIBenchmark Evaluations 81924383.0CoreSimulation Methods493.1Description ofSIMULATE-E 3.2Susquehanna SESUnits1and2Benchmark 3.2.1HotCriticalCoreReactivity Comparisons 3.2.2ColdCriticalCoreReactivity Comparisons 3.2.3Traversing In-coreProbeDataComparisons 3.2.4CoreMonitoring SystemComparisons 3.3QuadCitiesUnit1Cycles1and2Benchmark 3.3.1HotCriticalCoreReactivity Comparisons 3.3.2ColdCriticalCozeReactivity Comparisons 3.3.3Traversing In-coreProbeDataComparisons 3.3.4GammaScanComparisons 3.4PeachBottomUnit2Cycles1and2Comparisons

4.0 SpecialApplications

withPDQ74.1Description ofPDQ74.2UniformLatticeCriticals 4.3-Comparisons toCPM-25.0SummaryandConclusions

6.0 References

Amendments 5054565759651401411411421431851951961982012062091.ResponsetoNRCRequestForAdditional Information 213

~II LISTOFTABLESTableNumberTitlePageGeneralDesignandOperating FeaturesoftheSusquehanna SESReactors2.1.1Sixty-nine GroupEnergyBoundaries fortheCPMandMICBURNCrossSectionLibrary122.1.2EnergyGroupStructure for"Macro-Group andTwo-Dimensional Calculations

.132.1.32.1.4HeavyNuclideChainsFissionProductChains14l52.1.5Modifications toENDF-B/III DataforCPM-2CrossSectionLibrary162.2.1TRXUniformLatticeCriticalTestData202.2.2ESADAUniformLatticeCriticalTestData212.2.32.2.42.3.1CPM-2ResultsforTRXCriticals CPM-2ResultsforESADACriticals Assemblies UsedinRodtoRodGammaScan2223272.3.2QuadCitiesUnit1EndofCycle2--SummaryofNormalized LA-140ActivityPinComparisons 282.3.3QuadCitiesUnit.1EndofCycle2PeakLa-140ActivityComparisons 292.4.1EPRI-CPMResultsfromtheTRXCriticalBenchmarking 2.4.22.4.3EPRI-CPMResultsfromtheESADACriticalBenchmarking EPRIIsotopicComparisons toSaxtonData413.2.1MeasuredCoreOperating Parameters forSIMULATE-E CoreReactivity Calculations 673.2.23.2.33.2.4SummaryoftheSusquehanna SESBenchmarking DataBaseSusquehanna SESHotCriticalCoreK-effective Data'ISusquehanna SESTargetvs.SIMULATE-E Calculated CriticalCoreK-effective Statistics 69793.2.5Susquehanna SESUnit2Cycle2CoreK-effective Sensitivity toMeasuredCoreOperating Data80 LISTOFTABLES(continued)

TableNumberTitle~Pae3.2.6Susquehanna SESCalculated ColdXenon-Free CriticalCoreK-effectives 3.2.7Susquehanna SESColdMinusHotCriticalCoreK-effective 833.2.8Susquehanna SESUnit1Cycle1TIPResponseComparisons 853.2.9Susquehanna SESUnit1Cycle2TIPResponseComparisons 863.2.10Susquehanna SESUnit1Cycle3TIPResponseComparisons 3.2.11Susquehanna SESUnit2Cycle1TIPResponseComparisons 3.2.12SummaryofSusquehanna SESTIPResponseComparisons 3.2.13SummaryofSusquehanna SESTIPResponseAsymmetries 878889903.3.1EQuadCitiesUnit1Cycle1Calculated ColdXenon-Free CoreCriticalK-effectives 1483.3.2QuadCitiesUnit1Cycle1In-Sequence VersusLocalCriticalComparison 14933.3,SummaryofQuadCitiesUnit1Cycles1and2TIPResponseComparisons 1513.3.4QuadCitiesUnit1EOC1GammaScanComparisons--

Uncontrolled Bundles1523.3.5QuadCitiesUnit1EOC1GammaScanComparisons-Controlled Bundles1533.3.6QuadCitiesUnit1EOC2GammaScanComparisons-PeaktoAverageLa-140Activities 154-3.3.74.1.14.2.14.2.2QuadCitiesUnit1EOC2Individual BundleComparisons EnergyGroupStructure UsedinPDQ7Calculations PDQ7ResultsforTRXCriticals PDQ7ResultsforESADACriticals 156197199200 LISTOFFIGURESFigureNumberTitlePage1.2Susquehanna SESUnits1and2CoreTypicalCorePowervs.CoreFlow1.3PPaLSteadyStateCorePhysicsMethodsComputerCodeFlowchart 2.1.12.1.2Calculational FlowinCPM-2ExampleofBWRCellGeometryinthe2-DCalculation 17182~3.-1QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities

--AssemblyID:GEB159--93InchesfromBottomofCore302.3.2QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities

-AssemblyID:GEB16156InchesfromBottomofCore312.3.3QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities

-AssemblyID:GEH00221InchesfromBottomofCore322.3.4QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities

-AssemblyID:GEH002-93InchesfromBottomofCore332.3.5QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities

-AssemblyID:CX067221InchesfromBottomofCore342.3.6QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities

--AssemblyID:CX067287InchesfromBottomofCore352.3.7QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities

-AssemblyID:CX0214--51InchesfromBottomofCore362.3.8QuadCitiesUnit1EOC2GammaScanComparisons-Normalized LA-140PinActivities

-AssemblyID:CX0214129InchesfromBottomofCore372.4.1FissionRateComparison foranSx8BWRAssemblyofthePlutonium IslandType-T=245Co2.4.2FissionRateComparison fora15x15PWRMixedOxideAssemblywithWaterHolesandAbsorberRods-T=245C044 LISTOFFIGURES(continued)

FigureNumberTitlePage2.4.32.4.4FissionRateComparison fora14x14PWRMixedOxide0AssemblySurrounded ByUOAssemblies

-T=240C2EPRI-CPMComparison toYankeePU-239/PU-240 IsotopicRatios45462.4.5EPRI-CPMComparison toYankeePU-240/PU-241 IsotopicRatios472.4.6EPRI-CPMComparison toYankeePU-241/PU-242 IsotopicRatios483.1.1BWRFuelAssemblyBypassFlowPaths533.2.1SIMULATE-E HotandColdCriticalCoreK-effectives vs.CoreAverageExposure913.2.2SIMULATE-E HotCriticalCoreK-effective vsCoreThermalPower923.2.3SIMULATE-E HotCriticalCoreK-effective vsTotalCoreFlow933.2.4SIMULATE-E HotCriticalCoreK-effective vsCoreInletSubcooling 943.2.5SIMULATE-E HotCriticalCoreK-effective vsDomePressure953.2.6SIMULATE-E HotCriticalCoreK-effective vsCriticalControlRodDensity963.2.7TargetandSIMULATE-E Calculated HotCriticalCoreK-effectives vs.CoreAverageExposure973.2.8Susquehanna SESUnits1and2CoreTIPLocations 983.2.9Susquehanna SESRelativeNodalRMSofTIPResponseComparisons 993.2.10Susquehanna SESUnit1Cycle1AverageAxialTIPResponseComparison

-1.490GWD/MTUCycleExposure3.003.2.11Susquehanna SESUnit1Cycle1RadialTIPResponseComparisons

--1.490GWD/MTUCycleExposure1013.2.12'usquehanna SESUnit1Cycle1Individual TIPResponseComparisons

-1.490GWD/MTUCycleExposure102 LISTOFFIGURES(continued)

FigureNumberTitlePage3.2.13Susquehanna SESUnit1Cycle1AverageAxial,TIPResponseComparison

-5.918GWD/MTUCycleExposure1033.2.14Susquehanna SESUnit1Cycle1RadialTIPResponseComparisons

-5.918GWD/MTUCycleExposure1043.2.15Susquehanna SESUnit1Cycle1Individual TIPResponseComparisons

--5.918GWD/MTUCycleExposure1053.2.16Susquehanna SESUnit1Cycle1AverageAxialTIPResponseComparison

-11.617GWD/MTUCycleExposure1063.2.17Susquehanna SESUnit1Cycle1RadialTIPResponse-Comparisons

-11.617GWD/MTUCycleExposure1073.2.18Susquehanna SESUnit1Cycle1Individual TIPResponseComparisons

-11.617GWD/MTUCycleExposure1083.2.19,Susquehanna SESUnit1Cycle2AverageAxialTIPResponseComparison

--0.200GWD/MTUCycleExposure1093.2.20Susquehanna SESUnit1Cycle2RadialTIPResponseComparisons

-0.200GWD/MTUCycleExposure1103.2.21Susquehanna SESUnit1Cycle2Individual TIPResponseComparisons

--0'00GWD/MTUCycleExposure3.2.22Susquehanna SESUnit1Cycle2AverageAxialTIPResponseComparison

-2.587GWD/MTUCycleExposure1123.2.23Susquehanna SESUnit1Cycle2RadialTIPResponseComparisons

-2.587GWD/MTUCycleExposure1133.2.24Susquehanna SESUnit1Cycle2Individual TIPResponseComparisons

-2.587GWD/MTUCycleExposure1143.2.25Susquehanna SESUnit1Cycle2AverageAxialTIPResponseComparison

-4.638GWD/MTUCycleExposure1153.2.26Susquehanna SESUnit1Cycle2,RadialTIPResponseComparisons

-4.638GWD/MTUCycleExposure1163.2.27Susquehanna SESUnit1Cycle2Individual TIPResponseComparisons

-4.638GWD/MTUCycleExposure1173.2.28Susquehanna SESUnit1Cycle3AverageAxialTIPResponseComparison

--0.178GWD/MTUCycleExposure118 LISTOFFIGURES(continued)

FigureNumberTitlePage3.2.29Susquehanna SESUnit1Cycle3RadialTIPResponseComparisons

-0.178GWD/MTUCycleExposure1193.2.30Susquehanna SESUnit1Cycle3-Individual TIPResponseComparisons

<<-.0.178GWD/MTUCycleExposure1203.2.31Susquehanna SESUnit1Cycle3AverageAxialTIPResponseComparison

-2.228GWD/MTUCycleExposure1213.2.32Susquehanna SESUnit1Cycle3RadialTIPResponseComparisons

--2.228GWD/MTUCycleExposure1223.2.33Susquehanna SESUnit1Cycle3Individual TIPResponseComparisons

--2.228GWD/MTUCycle'xposure 1233.2.34Susquehanna SESUnit2Cycle1AverageAxialTIPResponseComparison

--0.387GWD/MTUCycleExposure1243.2.35Susquehanna SESUnit2Cycle1RadialTIPResponseComparisons

-0.387GWD/MTUCycleExposure1253.2.36Susquehanna SESUnit2Cycle1Individual TIPResponse,Comparisons

-0.387GWD/MTUCycleExposure1263.2.37Susquehanna SESUnit2Cycle1AverageAxialTIPResponseComparison

-5.249GWD/MTUCycleExposure1273.2.38Susquehanna SESUnit2Cycle1RadialTIPResponseComparisons

--5.249GWD/MTUCycleExposure1283.2.39Susquehanna SESUnit2Cycle1Individual TIPResponseComparisons

-5.249GWD/MTU'CycleExposure1293.2.40Susquehanna SESUnit.2Cycle1AverageAxialTIPResponseComparison

-12.050GWD/MTUCycleExposure1303.2.41Susquehanna SESUnit2Cycle1RadialTIPResponseComparisons

--12.050GWD/MTUCycleExposure1313.2.42Susquehanna SESUnit2Cycle1Individual TIPResponseComparisons

-12.050GWD/MTUCycleExposure1323.2.43Susquehanna SESUnit1Cycle1SIMULATE-E vs.GEProcessComputerCoreAverageAxialPowerDistribution

.1333.2.44Susquehanna SESUnit1Cycle2SIMULATE-E vs.POWERPLEX CoreAverageAxialPowerDistribution

~134 LISTOFFIGURES(continued)

FigureNumberTitlePage3.2.45Susquehanna SESUnit1Cycle3SIMULATE-E vs.POWERPLEX CoreAverageAxialPowerDistribution 1353.2.46Susquehanna SESUnit2Cycle2SIMULATE-E vs.POWERPLEX CoreAverageAxialPowerDistribution 1363.2.47Susquehanna SESUnit1Cycle1SIMULATE-E vs.GEProcessComputerBundleFlowsat1.490GwD/MTU1373.2.48Susquehanna SESUnit1Cycle3SIMULATE-E vs.POWERPLEX BundleFlowsat0.178GWD/MTU1383.2.49Susquehanna SESUnit2Cycle2SIMULATE-E vs.POWERPLEX BundleFlowsat0.583GWD/MTU1393.3.1QuadCitiesUnit1CoreTIPLocations 1583.3.2SIMULATE-E HotCriticalCore.K-effective vs.CoreAverageExposure1593.3.3QuadCitiesUnit1Cycle1SIMULATE-E HotandColdCriticalCoreK-effectives 1603.3.4QuadCitiesUnit1Cycle1AverageAxialTIPResponseComparison

-2.239GWD/MTUCoreAverageExposure1613.3.5QuadCitiesUnit1Cycle1RadialTIPResponseComparisons

-2.239GWD/MTUCoreAverageExposure1623.3.6QuadCitiesUnit1Cycle1Individual TIPResponseComparisons

<<-2.239GWD/MTUCoreAverageExposure1633QuadCitiesUnit1Cycle1AverageAxialTIPResponseComparison

-7.396GWD/MTUCoreAverageExposure1643.3.8QuadCitiesUnit1Cycle1RadialTIPResponseComparisons

--7.396GWD/MTUCoreAverageExposure1653.3.9QuadCitiesUnit1Cycle1Individual TIPResponseComparisons

-7.396GWD/MTUCoreAverageExposure3.6'63.3.10QuadCitiesUnit1Cycle2AverageAxialTIPResponseComparison

-7.532GWD/MTUCoreAverageExposure1673.3.11QuadCitiesUnit1Cycle2RadialTIPResponseComparisons

-7.532GWD/MTUCoreAverageExposure168 LISTOFFIGURES(continued)

FigureNumberTitle~Pae3.3.12QuadCitiesUnit1Cycle2Individual TIPResponseComparisons

-7.532GWD/MTUCoreAverageExposure1693.3.13QuadCitiesUnit1Cycle2AverageAxialTIPResponseComparison

-13.198GWD/MTUCore-Average.

Exposure1703.3.14QuadCitiesUnit1Cycle2RadialTIPResponseComparisons

-13.198GWD/MTUCoreAverageExposure1713.3.15QuadCitiesUnit1Cycle2Individual TIPResponseComparisons

-13.198GWD/MTUCoreAverageExposure1723.3.16QuadCitiesUnit1EOC1GammaScanComparison-Normalized AxialLa-140Activity-BundleLocation23,101733.3.17'uadCitiesUnit1EOC1GammaScanComparison-Normalized AxialLa-140Activity-BundleLocation55,401743.3.18QuadCitiesUnit1EOC1GammaScanComparison-Normalized AxialLa-140Activity-31BundleAverage1753.3.19QuadCitiesUnit1EOC2RadialGammaScanComparison 1763.3.20QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX06621773.3.21QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX03991783.3.22QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX02311793.3.23QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX0297.1803.3.24QuadCitiesUnit1EOC2GammaScanComparison--

BundleID:CX07171813.3.25QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX03781823.3.26QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX01501833.3.27QuadCitiesUnit1EOC2GammaScanComparison--

BundleID:GEH029184 LISTOFFIGURES(continued)

FigureNumberTitlePage3.4.1PeachBottomUnit2Cycles1and2RelativeNodalRMSofTIPResponseComparisons 1873.4.2PeachBottomUnit2Cycle1-AverageAxialTIPResponseComparison

-11.133GWD/MTUCoreAverageExposure1883.4.3PeachBottomUnit2Cycle1-RadialTIPResponseComparisons

-11.133GWD/MTUCoreAverageExposure1893.4.4PeachBottomUnit2Cycle1-Individual TIPResponseComparisons

-11.133GWD/MTUCoreAverageExposure1903.4.5PeachBottomUnit2Cycle2--AverageAxialTIPResponseComparison

--13.812GWD/MTUCoreAverageExposure1913.4.6PeachBottomUnit2Cycle2-RadialTIPResponseComparisons

-13.812GWD/MTUCoreAverageExposure1923.4.7PeachBottomUnit2Cycle2-Individual TIPResponseComparisons

-13.812GWD/MTUCoreAverageExposure1933.4.8PeachBottomUnit2EndofCycle2CoreAverageAxialPowerDistributions 1944.3.1CPM-2vs.PDQ7PinPowerDistribution Comparison

-GEInitialCoreHighEnrichedFuelType-Uncontrolled 2024.3.2CPM-2vs.PDQ7PinPowerDistribution Comparison

--GEInitialCoreHighEnrichedFuelType-Controlled 2034.3.3CPM-2vs.PDQ7PinPowerDistribution Comparison

-GEInitialCoreMediumEnrichedFuelType-Uncontrolled 2044.3.4CPM-2vs.PDQ7PinPowerDistribution Comparison

-GEInitialCoreMediumEnrichedFuelType--Controlled 205 IIl

1.0INTRODUCTION

Pennsylvania Power&LightCompany(PP&L)operatesthetwounitSusquehanna SteamElectricStation(SES)nearBerwick,Pennsylvania.

BothoftheSusquehanna SESreactorsareGeneralElectricCompanyBoilingWaterReactor(BWR)-4productlinereactorsystems;eachhasaratedthermalpoweroutputof3293Megawatts.

Thegeneralcoredesignandoperating featuresaregiveninTable1.1,Figure1.1,andFigure1.2.ThepurposeofthisreportistodescribethesteadystatecorephysicsmethodsusedbyPP&LforBWRcoreanalysisandtoprovidequalification oftheanalytical methodologies whichwillbeusedtoperformsafetyrelatedanalysesinsupportoflicensing actions.Thisreportwillsatisfytheguidelines inReference l.PP&L'ssteadystatecorephysicsmethodsarebasedontheElectricPowerResearchInstitute (EPRI)codepackage(Reference 2),asdepictedintheflowchart contained inFigure1.3.ThemaincomputercodesaretheCPM-2/PP&L (hereafter referredtoasCPM-2)fuelbundlelatticephysicsdepletion codeandtheSIMULATE-E/PP&L (hereafter referredtoasSIMULATE-E) three-dimensional coresimulation code.Bothofthesecodesrepresent state-of-the-art techniques forreactoranalysisandaredescribed furtherinSections2.1and3.1,respectively.

TheMICBURN/PP&L code(hereafter referredtoasMICBURN)providesadetailedrepresentation ofthedepletion ofasinglegadolinia (Gd0)bearingfuelpin;theNORGE-B2/PP&L code(hereafter referredtoasNORGE-B2) providesanuclearcrosssectiondatalinkfromCPM-2intoSIMULATE-E aswellasthePOWERPLEX coremonitoring system.ThePDQ7code,linkedtoCPM-2viatheCOPHINprogram,isanindustrystandarddiffusion theorysimulation usedbyPP&Lforspecialapplications.

TIPPLOTprovides.plotting andstatistical analysiscapabilities.

TheRODDK-E/PP&L codeisusedtodetermine controlrodworthforshutdownmarginanalysesandtoestimatecoreshutdownmargin.PP&Lutilizestheabovementioned cOdesandassociated methodologies forplantoperations supportapplications (e.g.,corefollowanalyses, development of targetcontrolrodpatterns, predictions ofstartupcriticalrodpatterns, operating strategyevaluations, etc.),independent designverification calculations, reloadfuel/core designanalyses, safetyanalyses, andcoremonitoring systemdatabankupdates.Thesteadystatecorephysicsmethodsdescribed inthisreportarealsousedtodevelopthenecessary neutronics datainputtoPPGL'stransient analyses.

Thequalification ofPPGL'ssteadystatecorephysicsmethodsisbasedlargelyoncomparisons ofcalculated coreparameters tomeasureddatafromtheSusquehanna SESUnitsland2,PeachBottomUnit2,andQuadCitiesUnit1reactors.

Allofthemodelpreparation andbenchmarking calculations represent workperformed byPPGL.Thecomputercodesandthecalculations supporting thisworkaredocumented,

reviewed, andcontrolled byformalprocedures whichareencompassed withinPPGL'snuclearqualityassurance program.

TABLE11GENERtGDESIGNANDOPERATING FEATURESOFTHESUSUEZGQlNASESREACTORSReactorType/Configuration:

BWR-4/2LoopJetPumpRecirculation SystemRatedCorePower:3,293HWThermalRatedCoreFlow:100x10ibm/hr6ReactorPressureatRatedConditions:

1020psiaNumberofFuelAssemblies:

764NumberofControlRods:185NumberofTraversing Zn-coreProbeLocations:

43 FIGURE1.1SUSQUEHANNA SESUNlTS1AND2CORE59575553++++++++++++++++434139373533'27252321++++++++++++++++++++++++++++++++31000204060810 12141618202224262830323436384042444648505254565860 X+ControlRodLocation~Traversing In-coreProbelocation FIGURE1.2TYPICALGOREPOWERVSCOREFLOW1201101009080'5I-7oVOl6oO50OO40APRMRODBLOCK///II~'IIIII//APRMSORY~:100%XeRODLINEr'rRODBLOCKMONITOR////~T302010~~NATCIRC2-PUMPMINFLOW!001020III3040506070TOTALCOREFLOW,5RATED8090,;00 FIGURE1.3PP&LSTEADYSTATECOREPHYSICSMETHODSCOMPUTERCODEFLOWCHART MICBURNGdDepletion POWERPLEXCoreMonitoring SystemCPM-2LatticePhysicsNORGE-B2DataLinkSIMULATE-E 3-DSimulation COPHINDateLinkPDQDiffusion TheoryTIPPLOTStatistical AnalysisTRANSIENT ANALYSISRODDK-EShutdownMargin 2.0LATTICEPHYSICSMETHODSThelatticephysicsmethodscurrently inuseatPPGLarebasedontheCPM-2andMICBURNcomputercodeswhichwereoriginally developed byEPRIaspartoftheAdvancedRecycleMethodology Program(Reference 2).CPM-2isusedatPPGLtocalculate thetwoenergygroupcrosssectionsforinputtoSIMULATE-E andPOWERPLEX.

ThecodeisalsousedtoprovidedetectormodelresponsedatawhichisusedbySIMULATE-E todetermine calculated Traversing In-coreProbe(TIP)responses.

Thecalculated TIPresponses areroutinely comparedtomeasuredTIPdatatoassessnodalmodelaccuracyandtoprovidetheRodBlockMonitor(RBM)simulation employedforcertainsafetyanalyses(e.g.,RodWithdrawal Error).Afulldescription ofCPM-2isprovidedinReference 3butisalsosummarized inSection2.1.Sections2.2and2.3providecomparisons tobothuniformlatticecriticalandreactoroperating data.Severaluniformlatticecriticalcalculations wereperformed atPPGLtodetermine theaccuracyofthereactivity calculation.

Additional comparisons havebeenmadetopingammascanmeasurements fromtheQuadCitiesUnit1reactortobenchmark thepinpowerdistribution.

InadditiontoPPGLcalculations, EPRIsponsored extensive benchmarking ofthecode(Reference 4)whichwasperformed duringtheoriginaldevelopment ofEPRI-CPM(Reference 5).Furtherdevelopment atS.Levy(underEPRIcontract) vastlysimplified therequireduserinput.Thismodifiedversionofthecomputerprogramisdistributed byEPRIasCPM-2.Theimprovements intheinputmodulegreatlyreducethepossibility ofinputerrorssinceonlyphysicaldimensions anddesignvaluesarerequiredforinput.CPM-2generates allrequirednumberdensities anddetermines appropriate thermalexpansions.

Onlytheinputmodulewaschangedleavingtheneutronics calculations identical totheoriginalEPRI-CPM.

Furthermodifications havebeenmadeatPPGLtohavethecodeconformtoourcomputersystemoperational requirements aswellastoprovideadditional calculational outputs.Thesemodifications havenotresultedinanychangestotheneutronics calculation.

Therefore, allEPRIbenchmarking ontheoriginalEPRI-CPMremainsapplicable totheversionofCPM-2usedatPPGL.Section2.4summarizes theEPRIbenchmarking results.

2.1DescritionofCPM-2TheCPM-2computercodewasdeveloped foranalysisofbothBWRandPWRfuelassemblies.

Thecodeperformsatwo-dimensional calculation whichpermitsexplicitmodelingoffuelpins,waterrods,afuelchannel,wideandnarrowwatergaps,controlelements, andin-coreinstrumentation tubes.Theneutronics calculation solvestheintegralneutrontransport theoryequationbythemethodofcollision probabilities.

Figure2.1.1presentsthenormalcalculational flowforaBWRfuelassembly.

Thecalculation consistsoffourbasicparts.Theresonance calculation isperformed firsttodetermine effective microscopic crosssectionsintheresonance region.Themicro-group calculation isperformed nextforeachdifferent typeofpincellandtheresulting detailedenergygroupspectraarethenusedtocollapsethe69energygroupcrosssectionsintoseveralbroadgroups.Themacro-group calculation usesthesebroadgroupcrosssectionstodetermine theneutronspectraacrossanassemblyconverted toone-dimensional cylindrical geometry.

ThisspectraisusedtofurtherreducethenumberofIenergygroupstobeusedinthefinaltwo-dimensional calculation.

Theresonance calculation isusedtoprovideeffective crosssectiondataintheresonance regionbetween4eVand9118eV.Allresonance absorption abovethislimitistreatedasunshielded.

Thelargeresonances inPu-240at1.0eVandinPu-239at0.3eVareadequately treatedinthedetailedthermalspectracalculation bythelargernumberofthermalgroupsaroundeachoftheseresonances.

Thenuclidestreatedintheresonance calculations areU-235,U-236,U-238andPu-239.Theresonance calculation makesuseoftabulated resonance integrals forahomogeneous mixture.Theseareconverted tocorrespond totheheterogeneous geometrythroughuseoftheequivalence theorem.Thenucleardatalibrarycontainstablesofthehomogeneous integrals fortheresonance nuclidesasafunctionoffueltemperature andpotential scattering crosssection.Thefueltemperature usedistheeffective Dopplertemperature forthemixture.Fuelcollision probabilities usedduringtheresonance integralevaluation areapproximated usingtheCarlvikapproximation (Reference 6).Onceeffective resonance crosssectionsarecalculated forabsorption andfission,theyaremodifiedtocorrectforresonance overlap.Dancoffcorrection factorsarethencalculated foreachpinandusedtocorrecttheeffective crosssectionstoaccountfortheeffectsofrodshadowing.

Themicro-group calculation isperformed in69energygroupsshowninTable2.1.1foreachdifferent typeofpinintheassemblybeingmodeled.Pinsaredifferentiated bytype(i.e.,waterrod,fuelrod,absorberrod,etc.).Fuelrodsarefurtherdifferentiated byfuelmaterial, enrichment, pelletorroddimensions, etc.Eachmicro-group calculation modelsasinglepininone-dimensional cylindrical geometry.

Forfuelpins,separateregionsareusedforfuel,cladding, andmoderator.

Anextraregionisplacedaroundthepincellandisusedtoaccountforthefuelchannelwallandthewatergaps.Forabsorberandwaterrods,separateregionsareincludedfor'theabsorberorwaterregion,cladding, andmoderator.

Abufferregionconsisting ofhomogenized averagefuelcellswithathickness of2.5meanfreepathsisplacedaroundtheabsorbercell.Thisisusedtoprovideareasonable neutronspectrumincidentonthenon-fuelcell.Themicro-group calculation isusedtoprovideadetailedenergyspectrumwhichisusedtocollapsethe69groupcrosssectionstofewergroupsaveragedovereachpincell.Thisisnecessary sinceatwo-dimensional calculation in69energygroupsisnotpractical.

Whenhomogenizing crosssectionsoverapincellforanabsorberpin,theaveragecrosssectionswillresultinanoverestimation ofthethermalfluxinsubsequent homogeneous calculations.

Thiswillcauseacorresponding overestimation oftheabsorberworth.Forabsorberpincells,twocalculations areperformed.

Thefirstcalculation usestheheterogeneous geometryaspreviously discussed.

Thesecondcalculation isforahomogenized absorberpincell.Correction factorsarecalculated foreachenergygroupastheratiooftheheterogeneous problemfluxtothatofthehomogeneous problem.Thesefactorsareusedtocorrectthetwo-dimensional fluxesinthefinalcalculation sothatreactionratesandreactivity areconserved.

Following themicro-group calculation, amacro-group calculation isperformed.

Inthiscalculation, thefuelassemblyisconverted toone-dimensional cylindrical geometry.

Eachconcentric rowofpins,startingfromtheassembly centerandproceeding outward,occupiesonecylindrical shell.Thefuelchannelwall,watergapandcontrolrod(ifpresent)alsooccupyoneshelleach.Thiscalculation isperformed in25energygroupsusingthecollapsed crosssectiondatafromthemicro-group calculation.

Theenergygroupstructure isgiveninTable2.1.2.Thiscalculation isusedtodetermine theenergyspectraineachregiontofurthercollapsethecrosssectiondata.Byperforming thiscalculation, fewerenergygroupsarenecessary inthetwo-dimensional calculation becausetheeffectsofthewatergapsaretakenintoaccount.Thefinaltwo-dimensional calculation inCPM-2solvestheintegraltransport equationinX-YCartesian coordinates usingthemethodofcollision probabilities.

Thiscalculation isusedtodetermine themultigroup fluxacrosstheassembly, localpinpowerdistribution, andtheassemblyeigenvalue.

Thepincells,channelwall,watergapsandcontrolrodarerepresented.

DiagonalsymmetryisassumedasshowninFigure2.1.2.Thecalculation isperformed inthefiveenergygroupsshowninTable2.1.2usingcrosssectiondatacollapsed fromthemacro-group calculation.

Collapsed twogroupcrosssectiondataaveragedoverthefuelassemblyarethenusedinSIMULATE-E andPOHERPLEX.

Fewgroupcrosssectiondatacanalsobedetermined overspecified regionstoprovideinputtoPDQ7.Forfuelrodsthatcontaingadolinia, specialcalculations areperformed withMICBURN(Reference 7)toaccountforthespatialshielding oftheabsorber.

Thiscalculation isusedtoprovideeffective microscopic crosssectionsforgadolinia in69energygroupsforuseinCPM-2.MICBURNmodelsonlytheburnableabsorberpincell.Thegadolinia fuelrodisusuallymodeledusingtenmeshpointstoprovidesufficient detailtocalculate theradialfluxdistribution.

Thesefluxesareexpandedto20radialzonesfortheactualgadolinia depletion.

Fromthecalculation, effective gadolinia crosssectionsareobtainedforuseinCPM-2.Thesearetabulated asafunctionofthefractionofGd-155plusGd-157remaining inthepin.Thefueldepletion algorithm inCPM-2utilizesapredictor-corrector methodology.

Inthepredictor step,thefluxesfromthetwo-dimensional calculation fromtimesteptareusedtodepletethenuclideinventories ton1 timestept.Anewfluxcalculation attimesteptisperformed usingthennpredicted nuclideinventory.

Oncethesefluxesareknown,thedepletion chainsarereevaluated fromtimestepttot(i.e.,corrector step).Then1nfinalnumberdensities usedattimesteptaretheaverageoftheresultsfromnthepredictor andcorrector steps.Theprimaryheavynuclidesplus22fissionproductsareexplicitly tracked.Theremaining fissionproductsaretrackedusingtwopseudo-isotopes whichareusedtorepresent non-saturating andslowlysaturating fissionproducts.

ThelistofheavynuclidestrackedinCPM-2isprovidedinTable2.1.3andthefissionproductsareshowninTable2.1.4.Thenucleardatalibrary(Reference 8)usedinCPM-2wasdeveloped andbenchmarked withtheoriginalEPRI-CPMprogram(Reference 4).Thedatalibrarywasgenerated fromENDF/B-III datawithmodifications basedonbenchmarking studies.Thesixty-six elementsshowninTables2.1.3and2.1.4arerepresented in69energygroups.Thesearedividedinto27fastand42thermalgroups.Theenergygroupstructure wasdefinedwithasignificant numberofenergygroupsaroundthe0.3eVPu-239and1.0eVPu-240resonances.

Thispermitstreatment oftheseresonances duringthethermalgroupcalculation withouttheneedforaspecificresonance calculation.

Severalmodifications weremadetotheENDF/B-III datalibrarybasedonextensive EPRIbenchmarking (Reference 8).Theprincipal modification tothelibraryisauniformreduction oftheU-238microscopic absorption crosssectionsintheresonance regionbasedonHellstrand's measurements onisolatedrods(Reference 9).Thismodification forU-238iswithinthedatauncertainties intheENDF-B/III data.Othermodifications arelistedinTable2.1.5.Thereduction ofthePu-240absorption crosssectionwasnecessary toaccountforshielding ofthehigherenergyresonances whichisnottreatedintheresonance calculations.

11 TABLE211SIXTY-NINE GROUPENERGYBOUNDARIES FORTHECPM&MICBURNCROSSSECTIONLIBRARYGroupEnergyBoundary-MeV-~GZOUEnergyBoundary-eV-~GUOUEnergyBo~dazar-eV-12345678910ll12131415161718192021222310.006.06553.6792.2311.3530.8210.5000.30250.1830.11100.067340.040850.024780.01503--eV-9118.05530.0.3519.12239.451425.1906.898367.262148.72875.5012425262728293031323334353637383940414243444546474849505148.05227.70015.9689.8774.003.302.602.101.501.301.151.1231.0971.071'.0451.0200.9960.9720.9500.9100.8500.7800.6250.5000.4000.3500.3200.3005253545556575859606162636465666768690.2800.2500.2200.1800.1400.1000.0800.0670.0580.0500.0420.0350.0300.0250.0200.0150.0100.0050.0Resonance regionconsistsofgroups15through27.Source:M.Edenius,et.al.,"TheEPRI-CPMDataLibrary,"

PartII,Chapter4ofEPRICCM-3,November,

.1975.

TABLE2.1.2ENERGYGROUPSTRUCTURE FORMACRO-GROUP ANDTWO-DIMENSIONAL CALCULATIONS Macro-Group Calculation 2-DGroupCalculation Fine~Grou$$1-23-4567-89-1011-1213-15EnergyBoundaries

-MeV-10.0-3.6793.679-1.3531.353-0.8210.821-0.5000.500-0.1830.183-0.067340.06734-0.024780.02478-0.005530Group'12345Macro~Grou$1-89-1718-2021-2223-25EnergyBoundaries

--eV--10.0x10-5.530X10635.530x10-6.25x106.25x101-1.80x1021.80x10-5.00x105.00x10-0.0'-eV--II-'8i1921r25I16-1819-2122-25262728-3132-3536-3839-4546-4849-5152-5455-5758-6061-6364-6667-6955301425.1148.72815.968-9.8774.001.501.0971.0200.6250.3500.2800.1800.080-0.0500.030-0.0151425.1148.72815.9689.8774.001.501.0971.0200.6250.3500.2800.1800.0800.0500.0300.0150.013 TABLE2.1.3HeavyNuclideChains1.U235~U236~Np237~Pu2382.U238~Pu239~Pu240~Pu241~Pu242~Am243~Cm244(25%)3.U238~Pu239~Pu240~Pu241~Am241~Am242m~Am243~Cm244(75%)4.U238~Pu239~Pu240~Pu241~Am241~Cm242~Pu238(n,2n)5.U238~Np237~Pu238Source:A.Ahlin,et.al,"TheCollision Probability ModuleEPRI-CPM,"

PartII,Chapter6ofEPRICCM-3,November, 1975.

TABLE21.4FISSIONPRODUCTCHAINS1.Kr832.Rhl033.Rh1054.Ag1095.Xe1316.Cs133~Cs1347.Xe135~Cs1358.Nd1439.Nd145(52.77%)10.Pm147~Pm148~Sm149~Sm150~Sm151~Sm152~Eu153~Eu154~Eu155(47.23%)11.Pm147~Pm148m.~Sm149~Sm150~Sml51~Sm152~Eu153~Eu154~Eu15512.Pm147~Sm14714.Slowly-Saturating FissionProductsSource:A.Ahlin,et.al,"TheCollision Probability ModuleEPRI-CPM,"

PartII,Chapter6ofEPRICCM-3,November, 1975.15-TABLE2.'1.5MODIFICATIONS TOENDF-B/III DATAFORCPM-2CROSSSECTIONLIBRARYNuclideCrossSectionModification U-238Increased by8%forgroups1through5crandvEIncreased by4.5%forgroups1through5a,g'ga,g'+gRIReducedby30%forgroup4Reducedby20%forgroup5Resonance integralreducedby0.3where1RITOpTaRIgRIthegrouplethargywidththegrouppotential scattering crosssectionResonance integralfromENDF-B/III dataeffective groupresonance integralinCPMlibraryPG-240aaReducedby50%for.groups16through27 FIGURE2.1.1CALCULATIONAL FLOWINCPM-2INPUTRESTARTFILERESONANCE CALCULATION DATALIBRARYCALCMACROSCOPIC CROSSSECTIONSM!CHURNIMICROGROUPCALC69ENERGYGROUPSCONDENSETO25MACROGROUPSHOMOGENIZE TOMACROREGIONSMACROGROUP,CALCINANNULARGEOMETRYCONDENSE.TO 5GROUPSCALCCROSSSECTFOR2-0REGIONS2-DASSEMBLYCALCULATION CALCFEWGROUPCONSTANTS ANDREACTIONRATESBURNUPCORRECTOR BURNUPPREDICTO8ZEROBURNUPEND17 FIGURE2.1.2EXAMPLEOFBWRCELLGEOMETRYINTHE2-DCALCULATION STEELCONTROLRODWIDEWATERGAPFUELPINCELLINNERWATERGAPCHANNELNARROWWATERGAPIN-COREDETECTOR 2.2UniformLatter.ce Criticals Onemethodtodetermine theaccuracyofthereactivity calculation inCPM-2isthroughcomparison touniformlatticecriticalmeasurements.

Thetestassemblycontainsfuelpinswithasingleenrichment moderated bywateratroomtemperature andatmospheric pressure.

Asufficient numberoffuelpinsisaddedtotheassemblyuntil.criticality isachieved.

Radialandaxialbuckling, whichareinputtotheCPM-2analyses, aredetermined fromthemeasureddata.Theuniformlatticecriticalexperiments chosenforanalysiswereobtainedfromtheWestinghouse TRX(Reference 10)andESADA(Reference 11)criticals.

TheTRXcriticals thatwereanalyzedbyPP&LwithCPM-2aretheeightUO2experiments.

Therodenrichment foralleightexperiments was1.3weightpercentU-235withUOpelletdensities of7.52g/cmfortwomeasurements, 37.53g/cmforthreemeasurements, and10.53g/cmfortheremaining three.33Water-to-metal ratiosvariedfrom3.0to5.0.Theconditions aresummarized inTable2.2.1.SixoftheESADAcriticals wereanalyzedbyPPGL.Allofthesecontained 2.0weightpercentPuOinnaturaluranium.Znfourexperiments, eight.percent(byweight)oftheplutonium wasPu-240;intheremaining two,twenty-four percent(byweight)oftheplutonium wasPu-240.Asummaryoftheconditions isgiveninTable2.2.2.TheCPM-2calculated assemblyK-effectives areprovidedinTables2.2.3and2.2.4fortheTRXandESADAcriticals, respectively.

TheCPM-2calculated K-effectives fortheESADAcriticals havebeencorrected by-0.4%aktoaccountforthepresenceofspacersinthecore.Anadditional correction forself-shielding oftheplutonium grainshasnotbeenincluded.

Thiscorrection variesfrom-0.05%to-0.45%~k.Thecalculated averageK-effective fromallcriticals is1.0005withastandarddeviation of,0.0072.

TABLE2.2.1TRXUNIFORMLATTICECRITICALTESTDATAExperiment Identification U-235(wt.4)Densi)y(g/cm)PelletDiameter(in.)WatertoCriticalNumberMetalRatioofFuelRodsTRX1TRX2TRX3TRX4TRX5TRX6TRX7TRX81.31.31.31.31.31.31.37.537.537.537.527.5210.5310.531.310.530.6010.6010.6010.3880.3880.3830.3830.3833.61269+31027+3987+33045+32784+32173+31755+31575+3Source:J.R.Brown,et.al.,"KineticandBucklingMeasurements onLatticesofSlightlyEnrichedUraniumorUORodsInLightWater,"WAPD-176, January,1958.20-TABLE2.2.2ESADAUNIFORMLATTICECRITICALTESTDATAExperiment Identification Pu-240(wt:.%)LatticePitch(in)CriticalNumberofRodsESADA1ESADA3ESADA4ESADA6ESADA12ESADA1324240.690.750.97581.06070.97581.0607514321160152247243Source:R.D.Learner,et.al."PuO-UOFueledCriticalExperiments,"

WCAP-3726-1, July,1967.21-Table2.2.3CPM-2RESULTSFORTRXCRITICALS Experiment Identification Experimental Materialchuckling (m).CPM-2K-effective TRX1TRX2TRX3TRX4TRX5TRX6TRX7TRX828.3730.1729.0625.2825.2132.5935.4732.220.99340.99580.99420.99390.99340.99740.99700.9960AverageK-effective

=0.9951StandardDeviation

=0.001622-TABLE224CPM-2RESULTSFORESADACRITICALS Experiment Identification Pu-240(wt.4)Experimental MaterialBuckling(m)CPM-2K-effective*

ESADA1ESADA3ESADA4ESADA6ESADA12ESADA1388242469.690.0104.7298.479.573.31.00261.00041.01291.01161.01011.0077AverageK-effective

=1.0076StandardDeviation

=0.0050*AllCPM-2calculated K-effectives havebeenadjustedby-0.4%~ktoaccountforspacerworth.23 2.3uadCitiesPinPowerDistribution ComarisonsAdditional verification ofCPM-2performed byPP&Lincludescomparisons tothepingammascanmeasurements fromQuadCitiesUnit1attheendofCycle2(Reference 12).In1976underEPRIsponsorship, GeneralElectricperformed detailedgammascanmeasurements atQuadCities.Thesemeasurements includedpin-by-pin gammascanmeasurements forsixseparateassemblies whichincludedthreemixedoxide(MO)andthreeUObundles(seeTable2.3.1).Eachbundlewas.disassembled andscannedateightseparateaxiallocations.

NotierodsorspacercapturerodsfromanybundlewerescannedandonlyninerodsfrombundleGEB161werescanned.ThemeasuredLa-140intensities werecorrected tocorrespond toactivity.

atshutdown.

Thepractical accuracyofthereporteddataincluding measurement uncertainty andmeasurement methodbiasisapproximately 3.0$(Reference 12,Section4.3).ThegammascandataitselfisameasureofLa-140gammaactivity.

Duringreactoroperation, La-140isproducedbothasafissionproductandbyBa-140decay.Sincethehalf-life ofBa-140isapproximately 13daysandthat,ofLa-140isapproximately 40hours,thedistribution oftheBa-140andLa-140concentrations willberepresentative ofthepowerdistribution integrated overthelasttwotothreemonthsofreactoroperation.

Aftershutdown, theonlysourceofLa-140isfromdecayofBa-140.Becausethehalf-life ofLa-140isshortwithrespecttoBa-140,afterabouttendaysthedecayrateofLa-140iscontrolled bythedecayofBa-140.Therefore, therelativemeasuredLa-140activities arecomparedtotherelativecalculated Ba-140concentrations, andtheLa-140concentration doesnotneedtobecalculated.

Thelocalpowerdistributions calculated byCPM-2wereconverted torelativeBa-140concentrations priortothecomparison.

TheSIMULATE-E codewasusedtocalculate theexposureandvoidhistoryconditions foreachbundleandaxialelevation forwhichmeasurement dataexisted.TheCPM-2calculated relativeBa-140concentrations foreachpinwerethendetermined foreachoftheseconditions.

BundleGEB162waslocatedonthecoreperiphery.

Consequently, asteepneutronfluxgradientexistedacrossthebundle.InCPM-2,azerocurrent24-boundarycondition isassumedtoexist.Thisisreasonable forinteriorbundlesbutwillcauselargeerrorsforperipheral bundles,particularly forthosepinsadjacenttothereflector region.Becauseperipheral bundlesarelowpowerbundlesanddonotoperateclosetothermallimits,highaccuracyisnotnecessary.

Therefore, comparisons totheGEB162bundlearenotincludedintheresults.Apincomparison isdefinedasacomparison betweentherelativemeasuredandcalculated La-140activities forallscannedpinsataspecificaxiallocationwithinagivenbundle.Foreachcomparison, thecalculated andmeasuredLa-140activities arenormalized to1.0basedonthenumberofpinsforwhichthereweremeasurements.

Samplesofthesepincomparisons arepresented inFigures2.3.1through2.3.8.Adifference betweenthemeasuredandcalculated normalized La-140activities foreachpiniscalculated as:wheree.=c.-m.iiim.=thenormalized measuredLa-140activityforfuelpini,ic.=thenormalized calculated La-140activityforfuelpini.Thestandarddeviation foreachpincomparison iscalculated as:whereNg(e.-e)N-1100xMM=theaverageofthenormalized measureddataforthecomparison

=1.0forallcomparisons duetonormalization, e=theaveragedifference betweenthemeasuredandcalculated normalized La-140activities

=0.0forallcomparisons duetonormalization, N=thenumberofpinsinthecomparison.

Asummaryofthestandarddeviations foreachofthecomparisons isgiveninTable2.3.2.Theaveragestandarddeviation forallcomparisons is4.00%.ZfonlyUObundlesarecompared, theaveragestandarddeviation isonly3.37%.25 Assumingthestandarddeviations areduetoacombination ofindependent.

measurement andcalculational uncertainties, thecalculational standarddeviation canbedetermined fromthefollowing equation:

where22260+ctotalcalcmeasc1=totalstandarddeviation fromthecomparisons total6=calculational standarddeviation, andcalca=measurement standarddeviation measAssumingameasurement accuracyof3.0%,thecalculational standarddeviation is2.6%forallbundlesor1.5%forUObundlesonly.TheCPM-2codeisalsousedtocalculate theLocalPeakingFactor(LPF)foreachlatticetype.TheLPFistheratioofthe'maximum pinpowerinasix-inchsegmenttotheaveragepinpowerinthesamesix-inchsegment,ofafuelassembly.

Anaccuratecalculation isimportant becausethelocalpeakingfactorisinputtothecoremonitoring systemandSIMULATE-E andisusedtodetermine thelinearheat.generation rate.BecauseLa-140activityisproportional tothepinpowerdistribution, anestimateoftheLPFcanbemadefromthegammascanmeasurements.

Acomparison betweenthemeasuredandcalculated ratiosofthepeakpinLa-140activitytoaveragepinLa-140activityispresented inTable2.3.3.Theaveragedifference fromallofthecomparisons is2.49%.IfonlytheUOfuelbundlesareincluded, theaveragedifference becomes0.98%.AsshowninTable2.3.3,mostoftheCPM-2calculations resultinanoverestimation ofpeakLa-140activity, and,therefore, conservatively estimatethelinearheatgeneration rate.26-TABLE2.3.1ASSEMBLIES USEDINRODTORODGAMMASCANAssemblyIdentification BundleLocation~(x.)NumberofRodsScannedGEB1597x7MOCenterDesign31/3240GEB1627x7M02Peripheral Design5,4840GEB1617x7M02CenterDesign29,329GEH0028x8UOReloadCoreDesign13,3655CX06727x7UOInitialCoreDesign15,3640CX02147x7UOInitialCoreDesign33,344027 Table2.3.2QUADCITIESUNIT1ENDOFCYCLE2SUMMARYOFNORMALIZED LA-140ACTIVITYPINCOMPARISIONS ASSEMBLYIDAXIAlCALCULATED VOIDCALCULATED STANDARDELEVATION (IN)HISTORY(X)BURNUP(GWD/MTU)

DEV(X)GEB159GEB159GEB159GEB159GEB159GEB159GEB159GEB159GEB161GEB161GEB161GEB161GEB161GEB161GEB161GEB161GEH002GEH002GEH002GEH002GEH002GEH002GEH002GEH002CX0672CX0672CX0672CX0672CX0672CX0672CX()672CX0672CX0214CX0214CX0214CX0214.CX0214CX0214CX0214CX021415215156879312312915215156879312312915215156879312312915215156879312312915,21515687931231292.98.039.143.558.760.767.968.82.98.'139.343.658.760.868.068.92.87.737.441.757.059.166.767.90.33.426.031:050.553.061.161.91.84.329.334.051.153.763.464.211.5311.8910.2410.169.889.867.796.4311.5911.9410.2510.179.899.877.796.4310.7411.09.9.889.759.509.467.536.2715.8617.4220.2519.5619.0718.9014.9712.6516.0117.5019.5419.4719.4519.0914.7812.583.944.213.794.424.384.775.895.902.612.444.484.815.816.247.537.842.972.382.452.272.592.682.152.255.245~023,513.623.413.763.543.554.085.042.873.602.903.833.613.54OVERALLAVERAGE:4.00STANDARDDEVIATION:

1.40U02BUNDLEAVG:3.37STANDARDDEVIATION:

0.88M02BUNDLEAVG:4.94STANDARDDEVIATION:

1.5228-TABLE233QUADCITIESUNIT1ENDOFCYCLE2PEAKLA-140ACTIVITYCOMPARISONS AssemblyIdentification AxialElevation (IN)MeasuredPeakLa-140Activity*

Calculated PeakLa-140Activity*

Difference

(@)GEB159GEB161GEH002CXO672CX021415215156879312312915215156879312312915215156'7931231291521515687931231291521515687931231291.137.,1.1151.1161.0991.1031.1021.1341.1591.1151.1101.1071.0891.0941.1101.1311.1721.1031.0991.1101.1001.1181.1191.1351.1351.1061.0801.0971.0981.0961.0711.0881.1011.1081.0781.0911.0661.1261.1231.1311.1141.2491.1861.1661.1561.1361.1351.1721.2021.1391.1371.1581.1601.1701.1711.1941.2121.1331.1291.1241.1161.1131.1201.1391.1471.1241.1191.0961.1001.0941.0921.1111.1191.1251.1151.1031.0971.0931.0921.1191.1279.856.374.485.192.992.993.353.712.152.434.616.526.955.505.573.412.722.731.261.45"0.450.090.351.061.633.61-0.090.18-0.181.962.11'.631.533.431.102.91-2.93-2.76-1.061.17AverageDifference:

2.49%AverageDifference (UOAverageDifference (M02BundlesOnly):BundlesOnly):0.98%4.75%*PeakLa-140Activity=ratioofthepeakpinLa-140activitytotheaveragepinLa-140activityinanaxialsegmentofafuelbundle.29-FIGURE2.3.1QUADCITIESUNIT1EOC2GANESASCANCOhPARISION NORhMIZEDLA-140PINACTIVITIES ASSEhSLYID:GEB15993IN.FROMBOTTOMOFCOREWideWideGap1.0751.1110.0361.0501.1010.0511.0211.0630.0421.0641.0900.0261.1021.1040.0021.0681.1010.033.9680.9940.026l.0141.0400.0261.0791.1220.0431,0601.1100.050.9931.0120.0191.0061.005.0011.0421.040.002.8600.822.038.9510.875.076.9250.888.037.8210.786.0351.0171.0630.0461.0931.1220.029.9290.875.0541.0020'09.0931.0450.980.0651'641.0880.0241.0821.1100.028.9380.888.050.9760.909.067.5040.5640.0601.0631.024.0391.0531.0900.0371.0031.0120.009.8480.786.0621.0900.980.110.1.0711.024.047.7400.726.0141.0561.1350.0791.0931.1040.0111.0101.005.0051.0861.0880.0021.0921.1350.0431.0481.1190.071h/easCalcCa1c-MeasVOIDLEVEL(X):60.7BURNUP(GWD/hKU):

9.86STANDARDDEVIATION:

4.77Ã(40PINS)Xindicates eithertierodorspacercapturerod(notmeasured) 30-FIGURE2.3.2QUADCITIESUNIT1EOC2GNMSCANCOMPARISION NORMALIZED LA-140PINACTIVITIES ASSEMBLYID:'EB161 56IN.FROMBOTTOMOFCOREWideWideGap1.0161.0680.0521.0771.1020.025MeasCalcCalc-Meas 1.0311.0550.0241.0891.1600.071.9800.913.067.9550.933.0221.0040.978.0261.0400.978.062-FCO404Q~~c+Q7gcQ.8080.8120.004VOIDLEVEL(K):43.6BURNUP(GWD/MTU):

10.17STANDARDDEVIATION:

4.81K(9PINS)Xindicates eithertierodorspacercapturerod(notmeasured) 31-FIGURE2.3.3QUADCITIESUNIT1EOC2GAhMSCANCOMPARISION NORMIZEDLA-140PINACI'IVITIES ASSEMBLYID:GEH00221IN.FROMEYZIQMOFCOREWideWideGap0.9960.969.0271.0331.011,0221.0271.013.0141.0261.007,0191.0541.049.0051.0281.0360.0081.0321.011.0210.9950.969.0261.0741.,068.0061.0261.0270.0011.0391.018.0211.0471.036.0111.0791.0810.0020.9951.0080.0131.0781.068.0101.0110.955.0560.9480.943.0050.9340.9340.0000.9570.951.0060.9920.975.0171.0531.013.0401.0381.027.0110.9560.943.0130.9160.9220.0060'490.931.0180.9270.927.0000.9550.9630.0081.0341.0740.0401.0301.007.0231.0201.018.0020.9360.934.0020.9400.931.0090.9310.9370.0060.9320.9540.0221.0111.0640'531.0321'360.0040.9610.951.0100.9290.927.0020.9350.9370.0020.9180.9360.0180.9390.9720.033:r>rOCO81.0701.049.0211.0991.081.0180.9940.975.0190.9690.963.0060.9370.9540.0170.9610.9720.0110.9790.9900.0111.072'.129 0.0571.0451.036.0091.0131~,008.0051.0611.0740.0131.0381.0640.0261.0881.1290.0410.9601~0390.079MeasCalcC-MVOIDLEVEL(X):7.7BURNUP(GWD/MHJ):

11.09STANDARDDEVIATION:

2.38/(55PINS)Xindicates eithertierodorspacercapturerod(notmeasured)

Windicates waterrod32 FIGURE2.3.4QUADCITIESUNIT1EOC2GAhMASCANCOhPARISION NORhMIZEDLA-140PINACTIVITIES ASSEMBLYID:GEH00293IN.FROMBOTTOMOFCOREWideWideGap1.0851.1040.0191.1011.1120.0111.0791.077.0021.0631.062.0011'981.1120.0141.0141.0220.0081.1051.102.0031.0601.043.0171.0091.0230.0141.1191.102.0171.0150.961.0540.9450.933.0120.9130.913.0001.1061.077.0291.0701.043.0270.9670.933.0340.9150.895.0200.9020.891.0111.0481.0620.0141.0481.023.0250.9340.913.0210.9200.891.0291.0611.036.0250.9340.924.0100.9120.882.0300.9020.880.0221.1171.109.0081.0831.0830.0000.9790.946.0330.937.0.917.0200.9150.897.0181.1061.1200.0141.0291.0400.0111.0621.052.0101'191.0310.012MeasCalcC-M1.0401.036.0040.9240.9240.0000.8970.882.0150.9130.880.0330.8760.874.0020.9100.9100.0001.0921.1090.0171.0751.0830.0080.9690.946.0230.8980.9170.0190.8890.8970.008'.8950.9100.0150.9130.9290.0161.0391.1000.0611.0901.1200.0301.0001.0400.0401.0151.0520.0371.0021.0310.029ee4~c~egcQQQ>f+1.0351.1000.0650.9541.0460'92VOIDLEVIK(X):59.1BURNUP(GWD/hKU):

9.46STANDARDDEVIATION:

2.68/(55PINS)Xindicates eithertierodorspacercapturerod(notmeasured)

Windicates waterrod33 FIGURE2.3'QUADCITIESUNIT1EOC2GAhQlASCANCOMPARISION NORhMIZEDIA-140PINACTIVITIES ASSEMBfYID:CX067221.IN.FROMBOTTOMOFCOREWideWideGap1.0490.958.0910.9710.909.0621.0010.909.0921.0070.932.0750.9460.902.0440.9110.902.0091.0531.006.0471.0120.977.0351.0661.039.0270.9910.987.0041.0591.046.0130.9860.9940.0081.0320.997.0351.0501.0710.0211.0091.0340.0250.9380.9400.0020.9810.979.002MeasCalcCa1c-Meas1.0310.977.0541.0741.039.0351.0020.987.0150.9810.977.0041.0320.991.0411.0011.0980.0971.0240.997.0271.0801.046.0341.0781.071.0070.9840.9940.0101'291.0340.0050.9710.9770.0060.9900.9910.0010.9140.9810.0670.9961.0200.0241.0101.0200.0100.9831.0460.0631'171.1190.1020.9050.9400.0350.9400.9790.0391.0201.1190.0990.9051.0110.106VOIDlKVEf(X):3.4BURNUP(GWD/hfZU):

17.42STANDARDDEVIATION:

5.02K(39PINS)Xindicates eithertierodorspacercapturerod(notmeasured) 34 FIGURE2.3.6QUADCITIESUNIT1EOC2GAhMASCANCOMPARISION NORhMIZEDIA-140PINACTIVITIES ASSEMBIYIDCX067287IN.FROMBOTlQMOFCOREWideWideGap1.0671.0770.0100.992O.S980.0061.0000.998.0020.9830.966.0170.9190.9230.0040.9721.0330.0611.0621.028.0341'621.028.0341.0401.0510.0111.0351.0530.0180.9931.0260.0330.9811.0130.032h/easCalcCalc-h1eas1.0161.0330.0170.9360.923.0131.0541.028.0261.0290.986.0430'760.953.0230.9940.953.0410.9820.953.0290.9560.918.0381.0180.992.0260.9810.926.0551.0551.0720.0171.0751.028.0470.9420.9530.0110.948'.918.0300.9090.9140.0050.9920.956.0361.0121.0510.0391.036.0.9901.0530.9920.0170.0020.9690.926.0430.9380.9560.0180.9850.985.0001.0961.094.0020.9841.0260.0420.9321.0130.0811.0491.0720.0231.0071.0940.0871.0361.038.0.002VOIDIZVEI(/):50.5BURNUP(GWD/hfQJ):

19.07STANDARDDEVIATION:

3.41K(40PINS)Xindicates eithertierodorspacercapturerod(notmeasured) 35-FIGURE2.3.7QUADCITIESUNIT-'-1EOC2GAhMASCANCOhPARISION NORhNLIZED LA-140PINACTIVITIES ASSEMBLYID:CX021451IN.FROMBOTTOMOFCOREWideWideGap1.0511.021.0300.9600.959.0010.9930.959.0340.9840,950.0340.9330.918.0151~0221.005.0171.0541.033.0211.0541.036.0181.0571.0590.0020.9710.9890.0180.9570.9980.041habeasCalcCalc-Meas 0.9991.0050.0060.9841.0230.0390.9670.9890.0220.9410.918.0231.0541.033.0211.0301.0360.0060.9340.9980.0641.0240.974.0500.9850.973.012'.9930.976.0170.9881.0140.0261.0010.973.0280.9800.951.0290.9920.961.0311.0841.083.0010.9840.976.0080.9480.9510.0030.9480.9520.0040.9510.9910.0401.0021.0140.0121.0100.961.0490.9580.9910.0331.0271.018.0091.0731.1030.0301.0351.0830.0481.0911.1030.0120.9821.0270.045VOIDLEVEL(X):29.3BURNUP(GWD/hKU):

19.54STANDARDDEVIATION:

2.87K(38PINS)Xindicates eithertierodorspacercapturerod(notmeasured) 36-FIGURE2.3.8QUADCITIESUNIT1EOC2GAhMASCANCOMPARISION NORhM,IZED EA-140PINACTIVITIES ASSEMBLYID:CX0214129IN.FROMBOP%MOFCOREWideWideGap1.1141.1270.0131.0261.021.0051.0361.021.0151.0340.990.0440.9600.922.038.1.0641.0640.0001.0581.044.0141.0541.040.0141.0561.0870.0311.0601.0730.0130.9961.0390.0431.0091.0220.013MeasCalcCalc-Meas 0.9690.922.0471.0050.988.0170.9380.9270.9370.931.0010.0040.9700.9760.0061,0931.064.0291.0621.044.0181.0461.040~0060.9390.937.0020.9560.931.0250.9060.882.0240.8900.882.0080.8910.874.0170.9570.894.0630.9190.9210.0021.0201.0670.0471.0501'870.0371.0621.039.0231.0471.0730.0260.9911.0220.0310.9560.9760.0200.9670.894.0731.0921.067.0250.9310.921.0100.9690.957.0121.0301.0960.0661.0061.0960.0900.9461.0320.086VOIDIZVEL(X):64.2BURNUP(GWD/hfQJ):

12.58STANDARDDEVIATION:

3.54/(40PINS)Xindicates eithertierodorspacercapturerod(notmeasured) 37 2.4EPRIBenchmark Evaluations Duringtheoriginaldevelopment ofEPRI-CPM, benchmarking calculations wereperformed againstbothuniformlatticecriticaltestsandpowerreactoroperating data.Theseinclude:-hotcriticaldatafromtheKritzreactor,-colduniformlatticecriticaldatafromtheTRXandESADAcriticals, and-isotopiccomparisons basedonthepostirradiation analysisofYankeeandSaxtonspentfuel.Allcalculations weremadeusingthecurrentversionoftheCPMcrosssectionlibraryandaredocumented inReference 4.Theresultsofthosebenchmarking comparisons arereportedinthissection.Fourexperiments fromthehightemperature KritzfacilityweremodeledwithEPRI-CPMtocomparefissionrates.Thefirstthreeexperiments involvedoneBNRandtwoPNRfuellattices.

Allthreelatticescontained bothmixedoxideanduraniumoxidepins.Thesystemtemperature forthesethreeexperiments was245C(473F).Thefourthexperiment wasauniformlatticecritical00utilizing 1.35%enrichedUOrods.Criticaldatawastakenat20Cand210C0000(68Fand410F).Detailsconcerning theexperiments andcalculations aregiveninReference 4.Measuredandcalculated fissionratesforthefirstthreeKritzexperiments arereproduced fromReference 4andshowninFigures2.4.1through2.4.3.Thefissionrateswerenormalized sothattheaverage'ofallmeasuredpinswas1.0.Inthethirdexperiment, theUOandmixedoxideassemblies werenormalized separately.

Therespective eigenvalues foreachlatticeareshownontheappropriate figures.TheonlyresultsfromtheKritzuniformlatticecriticals weretheeigenvalues.

Thecalculated eigenvalues were0.997and0.993forthe20Candthe210Ccriticals, respectively.

0038-PartoftheEPRI-CPMbenchmarking alsoincludedcalculations ofuniformlatticecriticals fromboththeTRXandESADAcriticalexperiments.

Theresultsfromthesecalculations arepresented inTables2.4.1and2.4.2.TheresultsreportedbyEPRIfortheTRXcriticals includeacorrection factorbasedoncomparisons oftheEPRI-CPMresultstofivegroupradialPDQcalculations.

Thiscorrection isontheorderof0.003to0.004dk.Removingthisadjustment fromtheEPRI-CPMresultswouldprovideexcellent agreement betweentheoriginalEPRI-CPMbenchmarking andthePPSLCPM-2calculations presented inSection2.2.TheresultsreportedbyEPRIfortheESADAcriticals includecorrection factorstoaccountforthepresenceofthespacersandtheself-shielding oftheplutonium grains.Thespacercorrection usedwas-0.4%~kforallcases.Thisadjustment wasalsomadetotheCPM-2calculations presented inSection2.2.Theshielding correction appliedintheEPRI-CPMresultsvariedbetween-0.05%bkto-0.45%bk.Specificdetailsconcerning theexactcorrection foreachexperiment wasnotavailable.

Themagnitude ofthiscorrection isconsistent withthedifference betweentheEPRI-CPMandthePP&LCPM-2calculations.

Isotopiccomparisons werealsoperformed usingbothYankee(Reference 13)andSaxton(Reference 14)isotopicdata.TheresultsfromtheYankeecomparisons areshowninFigures2.4.4through2.4.6.Allcalculations showgoodagreement betweenthecalculated ratiosandmeasureddata.ThePu-241/Pu-242 ratioisslightlyoverpredicted (approximately 3%)atendoflife(30GWD/MTU).

TheresultsfromtheSaxtoncomparisons aregiveninTable2.4.3.

TABLE24.1EPRI~MRESULTSFROMTHETRXCRITICALBENCHMARKING Experiment Identification Hexagonal LatticePitch(in)PelletDiameterB(experyental)

(in)(m)EPRI~MK-effective TRX1TRX2TRX3TRX4TRX5TRX6TRX7TRX80.8680.9290.9890.6130.6500.6130.6500.7110.6010.6010.6010.3880.3880.3830.3830.38328.430.229.125.325.232.635.534.20.9970.9990.9980.9980.9971.0001.0001.000AverageK-effective

=0.999+0.001Source:M.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.40-TABLE242EPRI~MRESULTSFROMESADACRITICALBENCEiMARKING ESADA3ESADA4,5ESADA6ESADA78%Pu-2400.758%Pu-2408%Pu-2408%Pu-2400.97581.06071.380ESADA8ESADA9ESADA10ESADA11ESADA12ESADA138%Pu-2400.698%Pu-2408%Pu-2408%Pu-2400.97580.690.975824%Pu-2400.975824%Pu-2401.0607261261526526LatticeBoronExperiment PitchConcentration

-IH8%Pu-2400.690ESADA1,2B(experimental) 2(m)69.190.0105.998.450.362.683.758.363.179.573.3EPRI-CPMK-effective 0.9991.0001.0081.0100.9971.0041.0021.0020.999'.0041.002AverageK-effective

=1.002+0;004Source:M.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.41-TABLE2.43EPRIISOTOPICCOMPARISONS TOSAXTONDATANuclideMeasuredNuclideConcentration (Atom4)Measurement Uncertaint

(%)PercentDifference*

(*)U-234U-235U-236U-2380.004650.5740.035599.38628.70.95.615.9-0.32.8Pu-238Pu-239PU-240Pu-241Pu-2420.10973.7719.256.290.5792.20.20.30.9-11.4-0.31.60.4-16.0*PercentDifference

=calc-measx100measSource:M.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.

FIGURE2.4.1FISSIONRATECOMPARISON FORANSx8BWRASSEMBLYOFTHEPLUTONIUM ISLANDTYPET=245C0WIDEGAP0UO,RODS+1.9+0.7+0.1-0.5~+~.0+2.0MO,RODSI+0.6+2.9l(+0.1I-0.6-1.6+0.9+0.6IJOz-0.5-0,5i+0.8+0.6i+0.5-1.1-2.8-0.6-1.3-1.0~2o7NARROWGAPThisfigureshowsCPMexPexpx100forallmeasuredrodpositions.

Experimental Uncertainty (la)inMOrods:+1.4%Experimental Uncertainty (lc)inUOrods:+0.7%2FissionRateinMOrodsrelativetoUOrods:+1.6%Calculated kff1.001effSource:M.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.-43 FIGURE2'.4.2FISSIONRATECOMPARISON FORA15xl5PWRMIXEDOXIDEASSEMBLY0WITHWATERHOLESANDABSORBERRODST~245C"CENTRALWATERHOLEABSORBERROD+1.0MO,RODSI+3.1-0.1+1.2303-1.3-0.6+2.2-0.4-0.8-0.4+1.1-2.2+1.4-3.3+3.7-2.0+1.7+0.3-39-1.6+0.7+2.3-0.7+0.2Thisfigureshowsx100forallmeasuredrodpositions.

CPMexPexpExperimental Uncertainty (lc):+1.4%*Calculated,k ff=0.999eff*Notinc3,uding geometric uncertainties.

Source:M.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.44 FIGURE2.4.3FISSIONRATECOMPARISON FORA14xl4PWRMIXEDOXIDEASSEMBLYSURROUNDED BYUOASSEMBLIES T=240C02CENTER+1~8HIGHENRICHED~MO,RODS-0.3+2.1+1.0WATERHOLES+0.9CLOX-1.7+1.2+0.7I-1.6-0.6+0.9+O.BLOWENRICHEDMO,RODSENRUO,RODS<<37-0.8+1.4-0.4-O.BP-PThisfigureshowsCPMexpx100forallmeasuredrodpositions.

expThefissionratewasnormalized separately foreachtypeofassembly.

TheaveragefissionrateineachMOassembly'elative totherateintheUOassemblies predicted byDIXPwas1.9%lowerthanthemeasuredratio.Experimental uncertainty (la)foreachtypeoffuelseparately:

+0.8%Experimental uncertainty (la)fortheaveragefissionrateinMOrodsrelativetoUOrods:+1.4%Calculated kff=0.997effSource:M.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.45-FIGURE2.4.4EPRI-CPMCOMPARISON TOYANKEEPU-239/PU-240 ISOTOPICRATIOS9.0~~~w~~7.0OCIDPslLCOmcvn..04.0~l~~~~t3.00.05.010.015.020.0F.P.vol.wgt.numberdensityx105.0102030MWd/kgUoMeasuredData-EPRI-CPMResultsSource:M'.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.

FIGURE2.4.5EPRI-CPMCOMPARISON TOYANKEEPU-240/PU-241 ISOTOPICRATIOS8.0~~~t0cvtL4.0~~~~~0.010.015.020.0F.P.vol.wgtnumberdensity~1025.030.00.102030MWd/kgU~MeasuredData-EPRI-CPMResultsSource:M.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.

FIGURE2..4.6EPRI-CPMCOMPARISON TOYANKEEPU-241/PU-242 ISOTOPICRATIOS10.0~Oy9.0~y~~8.0O4c4ILcv07.06.0~0~~~~5.04.00.05.010.015.020.0F.P.vol.wgt.number densityx10530.0102030MWd/kgU~MeasuredData-EPRI-CPMResultsSource:E.Edenius,"EPRI-CPM Benchmarking,"

PartI,Chapter5ofEPRICCM-3,November, 1975.48-

3.0 CORESIMULATION

METHODSThethree-dimensional nodalsimulation codeusedbyPPGListheSIMULATE-E (Reference 15)computerprogramdistributed byEPRI.Thiscodehasbeenusedtoprovidethesteadystateoperations supportatPPGLandwillbeutilizedforreloadcoredesignandlicensing, analyses.

Thecodeisusedtocalculate corereactivity, powerandflowdistributions, thermallimits,andTraversing In-coreProbe(TIP)response.

A'ulldescription oftheSIMULATE-E methodology iscontained inReference 15.Abriefsummaryispresented inSection3.1.SIMULATE-E hasbeenbenchmarked byPPsLagainstextensive reactoroperating data.TheSusquehanna SESbenchmarking includescomparisons tohotandcoldcriticaldata,TIPmeasurements, andcoremonitoring systemcalculations.

Thesecomparisons arepresented inSection3.2.Comparisons havealsobeenmadetotheQuadCitiesUnit1hotandcoldcriticaldata,TIPmeasurements, andendofCycles1and2gammascandata.TheQuadCitiescomparisons arepresented inSection3.3.Comparisons werealsomadetoPeachBottomUnit2Cycles1and2data.ThePeachBottomUnit2reactorwasmodeledprimarily toprepareinputtothetransient analysisofthethreeturbinetriptests.Section3.4presentscomparisons toseveralTIPsetsthroughbothcyclesandtothecoremonitoring systempowerdistributions takenpriortoeachturbinetriptest.

3.1DescritionofSIMULATE-E TheSIMULATE-E computerprogramwaswrittentoperformthree-dimensional analysesoflightwaterreactors.

Thecodecombinesbothneutronics andthermalhydraulics calculations.

Theneutronbalanceequationissolvedusingresponsematrixtechniques developed byAncona(Reference 16).Theresponsematrixparameters aredetermined usingthePRESTOoption(Reference 17).Thethermalhydraulics modulecontainstheEPRIvoidcorrelation (Reference 18)andtheFIBWR(Reference 19)codetodetermine axialvoidingandflowdistribution.

Theneutronics andthermalhydraulics aresolvediteratively untilaconsistent solutionisachieved.

Thereactorcoreismodeledasanarrayofcubicnodeseachcontaining ahomogenized portionofafuelassembly.

FortheSusquehanna SESBWRs,eachfuelassemblyismodeledusing25axialnodes,thusresulting insixinchnodesdescribing the150inchactivefuelregion.Albedoboundaryconditions areusedtoaccountforthereflector zones,thuseliminating theneedtoexplicitly modelthereflector.

Theneutronics calculation requiresthesolutionoftheneutronbalanceequationforeachnode.Thisbalanceequationisfirstrecastintermsofresponsematrixparameters whichdescribehowaneutroninteracts withadjacentnodes.SeveraloptionsexistinSIMULATE-E whichcanbeusedfordetermination oftheresponsematrixparameters.

TheoptionusedbyPPGListheModifiedCoarseMeshDiffusion Theory(MCMDT)alsoreferredtoasthePRESTOoption(Reference 17).Thisoptioncalculates thevarioustransmission probabilities usingnodeaveragefluxes.TheMCMDToptioncalculates thenodecenterandnodesurfacefluxesusingFick'sLaw.Thenodeaveragefluxisthendetermined asaweightedaverageofthesurfaceandcenterfluxes.Theweighting factorsweredeveloped throughmodelnormalization.

Oncethenodeaveragefluxesaredetermined, thevarioustransmission probabilities canbeevaluated andtheneutronbalanceequationissolved.NodalcrosssectiondataareinputtoSIMULATE-E intwogroupsforeachdifferent latticetype.Ifaxialzoningoffuelispresent(eitherduetoenrichment orgadolinia content),

separatelatticetypesareassigned.

Crosssectiondependencies include:fuelexposurevoidhistory(i.e.,exposure-weighted relativemoderator density)relativemoderator density(hotonly)controlrodpresencefueltemperature (hotonly)controlrodhistoryxenonconcentration moderator temperature (coldonly)IITheeffectofeachdependency iscalculated utilizing CPM-2.ThefinalcrosssectiondatatablesarepreparedforSIMULATE-E usingNORGE-B2(Reference 20).Theradial,top,and'bottomreflector regionsarenotmodeledexplicitly.

Instead,theseregionsaretakenintoaccountbyuseofalbedoboundaryconditions.

Radialalbedosarecalculated usingtheABLE(Reference 21)programdeveloped byScienceApplications International forEPRI.Thetopandbottomalbedosweredetermined basedoncomparison toplantdataduringmodelnormalization.

Different albedoboundaryconditions areusedforcoldandhotconditions.

Severaloftheinputdataparameters usedbySIMULATE-E requireadjustment tomatchplantoperating data.Thisnormalization processwasperformed usingSusquehanna SESUnit1Cycles1and2data.Allparameters changedinthisfashionwereheldconstantforallothercalculations including theQuadCitiesandPeachBottomcalculations.

Thethermalhydraulics calculations usetheFIBWRmethodology (Reference 19)developed byYankeeAtomic,ElectricCompany.Thiscalculation determines totalcorepressuredropandcorebypassflow.Thepressuredropcalculation determines thefrictional pressuredrop,local(i.e.,form)losses,acceleration (i.e.,momentumchange)pressuredrop,andelevation head.Thecorebypassflowcalculation allowsformodelingtheflowpathsshowninFigure3.1.1.FIBWRasastand-alone codehasbeenbpnchmarked byYankeeAtomicElectricCompanyagainst.datafromVermontYankeeandtheFriggLooptests(seeReference 22).-51 Duringinstallation atPPGLminorcodemodifications havebeenmadetoadapttheSIMULATE-E codetoPPGLcomputeroperational requirements.

Inaddition, codechangesweremadebyPPGLwhichinclude:CriticalPowerRatio(CPR)evaluations utilizing theAdvancedNuclear'uelsCorporation (formerly ExxonNuclearCompany)XN-3criticalheatfluxcorrelation (Reference 23)LinearHeatGeneration Rate(LHGR)andAveragePlanarLinearHeatGeneration Rate(APLHGR)thermallimitsevaluations calculation ofAxialExposureRatioerrorcorrections providedbyEPRIThesechanges,withtheexception oferrorcorrections, havenotresultedinanychangetotheneutronics orthermalhydraulics calculations'.

FIGURE3.1.1BWRFUELASSEMBLYBYPASSFLOWPATHSTOPOFCORE2CHISpacerheight~HFSGw2HET HFSG1HFSGnNote:Bottrxrrentryperipheral fue'Isupportsareweldedintothecoresupportplate.Forthesebundles,pathnumbers1,2,5and7donotexist.BottonofcoreZUHB2GEOLowertieplateChannel8SpringpluggCore6supportla2In-coreFuelSupport,guidetubeControlrodguidetubeShroudCorelength<2CHI+fuellength+2GEOFuellength~2UHA+2HET+2UHB71.Controlrodguidetube-fuelsupport2.Controlrodguidetube-core supportplate3.Coresupportplate-in-coreguidetube4.Coresupportplate-shroud 5.Controlrodguidetube--drive housing6.Fuelsupport--lower tieplate7.Controlroddrivecoolingwate~drivehousingBChannel-lowertieplate9.Lowertieplateholes10.Sp~ingplug-core supportSource:B.J.Gitnick,"FIBWRrASteady-State CoreFlowDistribution CodeforBoilingWaterReactors; ComputerCodeUser'sManual,"EPRINP1924CCMrJulyr198153 3.2SusuehannaSESUnits1and2Benchmark Comparisons ofSIMULATE-E calculations toobserveddatafromtheSusquehanna SESoperating reactorsprovideadirectmeansofqualifying theaccuracyofSIMULATE-E.

Twodirectlymeasurable setsofparameters againstwhichcomparisons canbemadeforSusquehanna SESconsistofthecorecriticalK-effective statepointdata(hotandcold)andtheTraversing In-coreProbe(TIP)neutronfluxmeasurements.

Thistypeofbenchmarking validates theoverallBWRanalysisprocessfromlatticephysicstothree-dimensional simulation.

ForcorecriticalK-effective comparisons, themeasuredsteadystatecoreoperating parameter's listedinTable3.2.1providethenecessary inputforaSIMULATE-E calculation.

Thisdataisalsousedtomodeltheaccumulation ofcorehistorythroughmultipledepletions (i.e.,corefollow).Thesecalculations assumeconstantcoreconditions duringashorttimeperiod,usuallylessthanoneweek.Thecozecriticalcalculations atsteadystateconditions areusedtoqualifySIMULATE-E's capability topredictcorereactivity throughout acycle.Designanalyses, suchascyclelength,shutdownmargin,hotexcessreactivity, rodwithdrawal error,misloaded bundle,standbyliquidcontrolsystemworth,andcontrolroddrop,requiretheprediction ofthecorereactivity throughout acycle.BecausetheSIMULATE-E hotandcoldmodelsdiffer,separatehotandcoldcriticalK-effective comparisons areperformed todetermine theindividual uncertainties fortheaboveanalyses.

ForthehotcriticalcoreK-effective comparisons, reactivity calculations relyonthestatepoint parameters listedinTable3.2.1.Thecoldcriticalcorereactivity benchmark involvesreactiv'ity calculations forallcoldxenon-free criticals fortheSusquehanna SEScores.ThehotandcoldK-effective comparisons areusedtoestablish thetargetcriticalcoreK-effective andtoassesstheuncertainty inreactivity predictions.

TIPcomparisons testtheabilityofSIMULATE-E tocalculate theneutronfluxinalocal'regionbetweenfourfuelassemblies.

TheTIPmeasurements usedinthecomparisons aresix-inchcollapsed detectorsignals.Theseare-54

\synthesized fromone-inchaxialdatathatareaveragedbythecoremonitoring systemthroughatrapezoidal averaging technique.

ForCycle2andbeyondofbothunits,thecoremonitoring system,POWERPLEX (Reference 24),alsocorrectstheTIPmeasurements foranyaxialshiftinthemeasurements.

AGaussiansmoothing procedure comparesmeasuredneutronfluxdipstotheexpecteddiplocations, basedonfixedLPRMandspacerlocations, andcorrectstheaxialalignment oftheone-inchdata.TheSusquehanna SEScoreoperating histories fromUnit1Cycles1,2,andpartofCycle3andUnit2Cycle1andpartofCycle2arecontained inthebenchmark database.Thetwounitsshareidentical coregeometryandratedcoreconditions.

TheCycle1operating coresofbothunitscontainthesameGeneralElectricSx8fueldesignandcoreloadingpatt'em.Znaddition, bothCycle1operating strategies haveextendedcycleoperation viabottomburnspectralshiftandcoastdown.

Cycle2ofUnit1operatedwithasmall192ExxonSx8bundlereloadcorethatexperienced acyclelengthlessthanhalfofCycle1andlessthananyplannedfuturecycle.Cycle3ofUnit1wasloadedwith296ExxonSx8bundlesandCycle2ofUnit2wasloadedwith324Exxon9x9bundles.Theanticipated equilibrium batchsizefortheplannedeighteenmonthcyclesis240Exxon9x9bundles.Atthetimethisreportwasprepared, Unit1wasinitsthirdcycleofoperation andUnit2wasinitssecondcycleofoperation.

Therefore, thebenchmark databaseonlyincludesthefirstthirdofUnit1Cycle3operation andtheearlyportionofUnit2Cycle2operation.

Table3.2.2summarizes thetotalSusquehanna SESbenchmarking databaseincludedinthisreport.ForallSusquehanna SEShotcomparisons, unlysteadystatedatahavebeenused.Thisrequirescoreconditions toremainconstantoveraperiodoftimetoallowthexenonconcentration toequilibriate.

Thisrequiresnorodpullsorsignificant changeincorethermalpower,flow,orfeedwater temperature withinapproximately threedayspriortothedatapoint.Forthecoldcomparisons, sufficient timeatzeropowerisrequiredtoallowforxenondecay.1naddition, areactivity adjustment ismadeforthereactorperiod.-55 3.2.1HotCriticalCoreReactivit ComarisonsTheresultsoftheSIMULATE-E corefollowcalculations thatarebasedonmeasuredcoreoperating datafortheSuscpxehanna SEScoresformthehotcriticalcorereactivity database.Thesecalculations resulti:natotalof257steadystatecoreK-effective comparisons forvariouscoreoperating conditions.

Table3.2.3showsacompletelistofthesteadystatecoredataanditscorresponding calculated hotcriticalcoreK-effective tabulated byunitandcycle.Figures3.2.1through3.2.6showplotsofhotcriticalcoreK-effective versuscoreaverageexposure, corethermalpower,totalcoreflow,coreinletsubcooling, domepressure, andcriticalcontrolroddensity,respectively.

Thesefiguresprovideinformation onthedependencies andbiasesinherentinSIMULATE-E.

ItisapparentthatthecriticalK-effective varieswithcoreaverageexposure.

TheK-effective fromCycle1ofbothunitsexhibitsabowl-shaped trendupto7000MWD/MTUcycleexposure, atwhichpointgadolinia contentissubstantially depleted.

Theavailable datafromCycle3alsoexhibitsthesametrend.Forthiscycle,theinitialcoreaveragegadolinia contentwasalmostthesameasfortheCycle1cores.UnlikeCycles1and3,theK-effective fromCycle2ofUnit1exhibitsaveryflattrendthroughout theentirecycle.Cycle2ofUnit1containsapproximately one-fourth theinitialgadolinia contentofeitherCycle1orCycle3ofUnit1.Thesetrendssuggestadependency ongadolinia loading.Afterthegadolinia hasessentially burnedoutinCycle1,thecriticalcoreK-effective increases slightlywithexposure.

Therefore, thehotcriticalcoreK-effective exhibitsalineardependence onexposurecoupledwithabowl-shaped trendduetogadolinia depletion.

PPGLhasdeveloped amethodwhichcorrelates thehotcriticalcoreK-effective datatothecoreaverageexposureandgadolinia content.Usingthiscorrelation, targetcriticalcoreK-effective curvesaregenerated foreachcycle.Figure3.2.7showsthecomparison ofthetargetcriticalcoreK-effective curvesandtheSIMULATE-E calculated coreK-effective foreachunitandcycle.Table3.2.4showsthemeandifference andstandarddeviation betweenthetargetandSIMULATE-E calculated criticalcoreK-effective for eachunitandcycle.Theoverallresultsshowverygoodagreement withthetargetK-effective.

ForUnit2Cycle2onlythreedatapointsareincludedinthedatabase.Thesedatayieldameandifference of0.00186~Kfromthetargetwhichislargerthantwotimesthestandarddeviation ofthedatabase(i.e.,2ais0.001224K).Itisanticipated thattheUnit2Cycle2SIMULATE-E calculated coreK-effective willfollowthetargetbutwillbeoffsetbyaconstantbias.Morerecentcorefollowcalculations, whicharenotincludedinthisreport,supportthisexpectedtrend.Theoffsetislikelyduetodifferences betweenSx8and9x9fueldesigns.PPaLcontinues toperformhotcriticalcoreK-effective calculations aspartoftheroutinecorefollowanalyses, andtheresultsareusedtofurtherimprovetheaccuracyofthetargetcriticalcoreK-effective.

Onawhole,theuseofthecorrelation providesagoodassessment ofcriticalcorereactivity andcanbeusedfordesignandanalysisoffuture.cycles.Animportant consideration inevaluating reactivity resultsisthemeasurement uncertainty inthecoreoperating conditions.

Becausemeasuredcoreoperating data(i.e.,theparameters listedinTable3.2.1)areenteredintoSIMULATE-E, thecalculated corereactivity isaffectedbyanyerrorsinthemeasuredinputs.Thechangesincorereactivity frommeasurement uncertainty primarily dependontwocoremodelingphenomena, thevoidandDopplercoefficients ofreactivity.

Asthesecoefficients changewithcorelifeanddesigns,thesensitivity ofSIMULATE-E tomeasurement uncertainties changes.Table3.2.5showsmeasurement uncertainties basedonReference 25andtheireffectsoncorereactivity forSusquehanna SESUnit2Cycle2.ThetotalK-effective sensitivity duetothemeasurement uncertainties is0.00151bK.SIMULATE-E calculations ofhotcriticalcoreK-effective forthe257datapointsanalyzedbyPPGLresultinastandarddeviation whichislessthanthissensitivity.

3.2.2ColdCriticalCoreReactivit ComarisonsTheaccuracyoftheSIMULATE-E calculation ofcoreshutdownmarginandcontrolrodworthsatcoldconditions dependsonitsabilitytopredictcoldcorereactivity fordifferent coredesigns,coreaverageexposures, andcontrolrodconfigurations.

Shutdownmargincalculations alsorelyontheaccuracyofthemodifiedcoarsemeshdiffusion theoryprediction oflargeneutronflux-57 gradients characteristic ofone-rod-out configurations.

LocalCriticaltestsexhibitfluxgradients simila'rtoshutdownmargincalculations.

Therefore, thequalification oftheSIMULATE-E coderequiresbenchmarking tobothlocalandin-sequence coldxenon-free criticals.

TheSusquehanna SESbenchmarking databasecontainsthreelocaland36in-sequence criticals asshowninTable3.2.2.InadditiontotheSusquehanna SEScoldcriticalbenchmarking calculations, comparisons totheQuadCitiesUnit1Cycle1localandin-sequence criticals wereperformed tofurthersupportthevalidation.

Section3.3.2describes theQuadCitiesUnit1Cycle1benchmarking analyses.

Table3.2.6containsresultsoftheSusquehanna SEScoldxenon-free criticals.

Asshown,thecriticals wereperformed attemperatures between100and212F0andatvariouscoreaverageexposures.

ThecoreK-effective inTable3.2.6includesareactorperiodcorrection whichistypically lessthan0.001.Figure3.2.1showstheseresultstogetherwiththoseofthehotbenchmark.

Thecalculated coldcriticalcoreK-effectives consistently followthehot,criticalcoreK-effective withaconstantbiasthroughout exposure.

Thistrendindicates thatthecoldmethodsandmodelsalsodependoncoreavexageexposureandgadolinia content.AbiasbetweencoldandhotcoreK-effectives hasbeenreportedbyothersandhasbeeninvestigated inReference 26.Amethodthataccountsforthecoreaverageexposureandgadolinia contentdependencies resultsinanaccurateassessment ofthecoldxenon-free criticalcoreK-effective anditsuncertainty.

Figure3.2.1indicates thatabiasexistsbetweenthehotandcoldSIMULATE-E calculated corecriticalK-effectives.

Reference 26supportsthisobservation.

Thisbiasisconstantandisnotexposureorgadolinia dependent.

Therefore, thetargetcoldcriticalcoreK-effective isdetermined byaddingabiastothehotcriticalcoreK-effective.

Table3.2.7showstheresultsfortheSusquehanna SESin-sequence andlocalcoldcriticals.

Themeandifference betweentheSIMULATE-E hotandcoldcalculated coreK-effective forall39criticals is0.00671andthestandarddeviation is0.00111.Themeandifference betweenthehottargetcoreK-effective curveandtheSIMULATE-E coldcalculated coreK-effective forall39criticals is0.00659andthestandarddeviation is0.00137.Thesetwo standarddeviations aresmallandaretypicalofthecalculated coreK-effective variation forcriticals atagivenexposure.

Forexample,thestandarddeviation oftheUnit2Cycle1zeroexposurecalculated coldcriticalK-effectives is0.00099.Table3.2.7alsoshowsthatthecoldtohotK-effective biasforthelocalcriticaltestsisnotsignificantly different thanthebiasforthein-sequence criticals.

Asinthehotreactivity benchmark, PPSLwillcontinuetoperformcoldcriticalcoreK-effective comparisons tobeusedforperiodicupdatingofthetargetcoldcriticalcoreK-effective.

TheuseofthistargetcoldcriticalcoreK-effective providesagoodassessment ofcriticalcorereactivity andcanbeusedfordesignandanalysisoffuturecycles.3.2.3Traversing In-coreProbeDataComparisons Comparisons tomeasuredTIPdataprovideanassessment ofhowwellSIMULATE-E calculates thecorepowerdistribution.

TheTIPdetectors arelocatedinthewatergapcorneroppositethecontrolrodbetweenfourfuelassemblies asshowninFigure3.2.8.SIMULATE-E calculates aTIPresponseforeachsix-inchaxialsegmentateachradialTIPlocationbypowerweighting inputdetectorresponsefunctions asfollows:MER=-QR.P.whereM=thenumberofbundlesaroundaTIPdetector(forallplantsmodeled,M=4),R,=thedetectorresponsefunction, jP.=theSIMULATE-E calculated nodalpower.jThedetectorresponse, R.,isafunctional relationship whichcanbeexpandedj'o:jUNCCTCTEVU whereF=thebasecomponentof thedetectorresponseforanuncontrolled node,G=thefractionofthenodewhichiscontrolled, G=0nodeisuncontrolled, G=lnodeisfullycontrolled, F=thecorrection tothebasecomponent forafullycontrolled node,FF=thecorrection tothebaseresponsetoaccountformoderator density.F,FandFarefunctions ofexposureandvoidhistory(i.e.,exposure-weighted relativemoderator density).

FisafunctionoftheUrelativemoderator

.densityandvoidhistory.ThedetectormodelinSIMULATE-E assumesthatthedetectorresponsefromeachassemblyisnotaffectedbytheotherthree.Thedetectorresponsefunctions aregenerated usingcalculated datafromCPM-2.InCPM-2,asmallamountofU-235isplacedinthewatergapcorneroppositethecontrolblade.Thelocalfissionrateiscalculated inthisregionfordifferent conditions ofexposure, voidhistory,controlstateandrelativemoderator level.Thisdataisformulated intoapolynomial fitdetermined foreachseparatelatticetype.Bothnodalandradial(i.e.,axiallyintegrated)

TIPcomparisons havebeenmadetotheSusquehanna SESTIPdata.Forthenodalcomparisons, thesix-inchaveragedmeasureddataiscomparedtothecalculated nodalTIPresponse.

Thisprovidesanassessment oftheaccuracyofthenodalpowerdistribution whichaffectscalculated margintooperating limitssuchastheLinearHeatGeneration Rate(LHGR)limit.Fortheradialcomparisons, theaverageofallTIPmeasurements ataradiallocationiscomparedtotheaverageofthecalculated valuesatthatradiallocation.

Thisprovidesanassessment oftheaccuracyoftheradial(i.e.,bundleaverage)powerdistribution whichaffectscalculated margintooperating limitssuchasCriticalPowerRatio(CPR).

Priortomakingthecomparisons, thecalculated dataisnormalized tothemeasureddata.Eachofthecalculated nodaldetectorresponses ismultiplied byanormalization factor.Thefactoriscalculated as:TNF=T/ERwhereT=theaverageofallmeasuredTIPresponses inagivenTIPset,ER=theaverageofallcalculated TIPresponses inagivenTIPset.ATIPsetisdefinedasacompletesetofTIPmeasurements fromtheentirecore.ForSusquehanna SESaTIPsetconsistsof24measurements ateachofthe43radiallocations inthecoreforatotalof1032measurements.

Ineachofthecomparisons presented inthissection,allradialTIPlocations andallaxialelevations havebeenincluded.

Forthenodalcomparisons, thedifference betweencalculated andmeasureddataisdetermined as:wheree=ER-Tk,mk,mk,mER=thecalculated TIPresponseforaxialelevation, k,andradiallocation, m,Tk=themeasuredTIPresponseforaxialelevation, k,andradialk,mlocation, m.TheRootMeanSquare(RMS)ofthedifferences foreachradialTIPlocationiscalculated as:K2RNSZ'k,mK-1~whereK=thenumberofaxialTIPmeasurements (i.e.,24)ataradialTIPlocation.

TherelativeRMSofthedifferences for,eachTIPsetiscalculated as:gRMSRMSnod100whereM=thenumberofradialTIPlocations (i.e.,43forSusquehanna SES).Fortheradialcomparisons, asimilarRMSiscalculated.

First,thecalculated andmeasuredindividual TIPreadingsareaxiallyaveragedasfollows:ERmTmKQER/KKQT/KwhereER=theaverageofthecalculated TIPresponses atagivenradialmlocation, m,T=theaverageofthemeasuredTIPresponses atagivenradialmlocation, m.Thedifference betweenthecalculated andmeasuredradialTIPresponseinpercentis:(ER-T)eminx100TTheRMSofthedifferences forallTIPsforagivenTIPsetiscalculated as:Z'.'MSradialM-1AnestimateoftheTIPmeasurement uncertainty canbedetermined bycalculating thenodalandradialTIPresponseasymmetries.

DuringA-sequences andall-rods-out coreconfigurations, thecontrolrodpatterniseighth-core mirrorsymmetric.

Inaddition, thefuelloadingpatternsforalloftheSusquehanna SEScycleshavebeendesignedtobeeighth-core symmetric.

Undertheseconditions, alineofsymmetryexistsalongtheTIPlocations asshowninFigure3.2.8.FortheTIPsnotlocateddirectlyonthissymmetryline,therewillbeasymmetric TIPhavingnearlythesameneutronfluxconditions.

Thesesymmetric TIPpairsshouldgivethesamemeasurements exceptforexposureasymmetries whichcanaddapproximately 1%nodalasymmetry.

Tocalculate thenodalasymmetry, thenodaldifference foreachsymmetric TIPpair,n,iscalculated as:wheree=TTk,nk,mlk,m2TkandTk=thesix-inchdetectormeasurements ataxiallocation, k,k,mlk,m2andsymmetric TIPlocations m1andm2.TheRMSofthenodaldifferences inpercentis:ASYnK-1100x1(T+T2)m1m2whereTandT=theaveragemeasuredTIPresponseforsymmetric TIPmlm2locations mlandm2.Theaveragenodalasymmetry iscalculated asthearithmetic averageofthesymmetric pairasymmetries:

QASYnodNwhereN=thenumberofsymmetric TIPpairs(i.e.,19forSusquehanna SES).-63 TheradialTIPresponseasymmetry iscalculated usingtherelativedifference betweentheaxially-averaged

.TIPmeasurements foreachsymmetric pair,n.Thisdifference iscalculated as:DnT-Tmlm2(T+T)mlm2x100The.meanabsoluteasymmetry iscalculated as:TheresultsoftheTIPresponsecomparisons separated byunitandcyclearereportedinTables3.2.8through3.2.11.Theseincludecomparisons toallavailable steadystateTIPsets.NoTIPdatahavebeenexcludedfromthecomparison.

Anoverallsummaryoftheresultsfromthecomparisons isgiveninTable3.2.12.Asummaryoftheasymmetries averagedbyunitandcycleis,giveninTable3.2.13whichshowsthenodalandradialasymmetries forUnit2Cycle1areapproximately 2%worsethantheasymmetries forUnit1Cycle1.ThislargerTIPresponseasymmetry indicates largermeasurement uncertainty forUnit2Cycle1andalsoexplainswhytheTIPresponsecomparisons forUnit2Cycle1tendtobeworsethanforUnit1Cycle1eventhoughthecoreloadingswereidentical.

ThenodalresultsfromtheTIPresponsecomparisons arealsodisplayed versuscoreaverageexposureinFigure3.2.9a.Nodefinitetrendswithexposureareevident.Whenthedataisdisplayed versusfractionofcyclelengthasinFigure3.2.9b,atrendisapparent.

Theresultsinthemiddleofthecycletendtobeworsethanatthebeginning ofthecycleorendoffullpower.Fortheend-of-cycle powercoastdown, therelativeRMSfromtheTIPresponsecomparisons increases.

Thisisexpectedbecausecoreoperating parameter measurement uncertainties increaseforlowerpowerconditions.

Inaddition, theSIMULATE-E modelisdeveloped primarily basedonfullpoweroperating conditions.

Whenthecrosssectiontablesaredeveloped, dependencies areincludedtocorrectforDopplerandinstantaneous relativemoderator density.-64 Theuncertainties inthesecorrections increaseasconditions deviatefromfullpower.Therefore, thecorresponding RMSfromtheTIPresponsecomparisons willalsoincrease.

Theresultsevenfortheendofcyclepowercoastdown comparisons arestillgood.TheUnit,1endofCycle1RMSwasjustover6%atapproximately 81%ofratedpower,andtheUnit2endofCycle1RMSwaslessthan8%atapproximately 71%ofratedpower.Severalofthecomparisons forthemiddleandendofUnit2Cycle1exhibitapproximately 8%RMSwhichislargerthanexpected.

DuringtheseTIPmeasurements, thereweresuspected problemswithsomeoftheTIPmachines; thisissupported bythelargernodalasymmetries experienced fortheseTIPsets.Overall,theresultsfromthenodalTIPresponsecomparisons arequitegoodwithanaverageRMSof5.75%.Graphical resultsoftheTIPresponsecomparisons areincludedforeachunitandcycle.DuetothelargenumberofTIPsetsandTIPlocations withinaTIPset,figuresofTIPresponsecomparisons arepresented forbeginning, middle,andendofcycle.Foreachexposurepoint,coreaverageaxial,radial,andfourindividual TIPresponsecomparisons areincluded.

Theindividual TIPresponsecomparisons inthefigureswereselectedalongalinefromthecoreperiphery tothecenterasshowninFigure3.2.8.ThesamefourTIPlocations arealwaysshown.Thesecomparisons areshowninFigures3.2.10throughFigure3.2.42.3.2.4CoreMonitoring SystemComarisonsTheabilityofSIMULATE-E toaccurately calculate powerdistributions isdemonstrated inSections3.2.3,3.3.3,and3.3.4.Thepurposeofthissectionistoprovideacomparison oftheSIMULATE-E calculated powerandflowdistributions tothoseoftheon-lineCoreMonitoring Systems(CMS).Fouraxialpowercomparisons andthreebundleflowcomparisons arepresented.

ThedataweretakenfromonepointintheSusquehanna SESUnit1Cycles1,2,and3,and'Unit2Cycle2.Thisselection providesagoodmixregarding thermalhydraulic andneutronic differences indesign.Althoughthesecomparisons donotrepresent avalidation oftheSIMULATE-E models,theydemonstrate consistency withthesystemsusedtomonitorthecore.TheCMSforCycle1ofbothunitsistheGeneralElectricCompanyProcessComputerP1program;for-65 thereloadcyclesofbothunits,theCMSistheANF(formerly ExxonNuclearCompany)POWERPLEX CMS.Figures3.2.43through3.2.46showthecoreaverageaxialpower.distribution comparisons.

Thesefiguresshowgoodagreement, andindicateconsistency betweentheindependent coreanalysismethodsforaxialpowerdistribution determination.

Figures3.2.47through3.2.49shOwthecoreflowdistribution comparisons.

Thesefiguresshowexcellent agreement betweentheSIMULATE<<E andCMScalculated bundleflowsforthethreecomparisons.

Theeffectsofperipheral andcentralorificing forthecorecombinations ofGESxSandExxonSxS,GESxSandExxon9x9,andallGESxSareaccurately modeled.

TABLE321MEASUREDCOREOPERATING PARAMETERS FORSIMULATE-E COREREACTIVITY CALCtKATIONS HotCoreOperating Condition CoreThermalPowerTotalCoreFlowCoreInletSubcooling CorePressureControlRodPatternColdCoreCondition CoreModerator Temperature ReactorPeriodControlRodPattern67 TABLE3.22SUMMARYOFTHESUSQUEHANNA SESBENCEBQLRKING DATABASEUnitacleNumberofTIPCoarisonsNumberofCoreCriticals NumberofColdCoreCriticals U1C13187U1C247U1C32310U2C1329713*U2C2NoneAll8225739*Includes threelocalcriticals.

68-TABLE3.2.3BUSEHANMASESHOTCRITICALCOREK-EFFECTIVE DATAUNIT=1CYCLE-"1-CASE12345678~910ll1213141516171819202122232425262728293031323334353637383940CYCLEEXPOSURE(GWD/MTU)0.2210.8361.4901.5961.7361.758l.7991.9082.0702.7062.9062.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.31S4.5064.5175.0615.0705.3475.4105.4635;5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723COREAVERAGEEXPOSURElGWD/WTU) 0.2210.8361.4901.5961.7361.7581.7991.9082.0702.7062.9062.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.716.6.723POWER(WTH)143232503280327832913296329132933293328132S932913291329232893292329032933298329032903296328832893290328832813294329132943295328732933289328632883265328632833290PERCENTPOWERl%)439910010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010099100100100TOTALCOREFLOW(%)549810088979899989794989796989896969598979698969799999798999999999998969896999898SUB-COOLINGIBTU/LBH)23.823.723.623.624.324.223.824.024.225.024.224.424.724.224.224.524.624.S24.024.324.524.224.524.423.823.924.324.023.823.723.923.823'24.124.323.924'23.824.124.0DONEPRESSURE(PSIA)9741001100510021001100110011000994100099999999910041002100210011003100010031002100310031004100510051002100210021002100210021001100110001001999999999999CONTROLROODENSITYl%)20.412.613.913.614,014.114.114.114.114.815.015.015,015.915.915.915.915.916.016.016.016.116.116.117.617.618.017.917.917,817.817.817.016.716.416.416.316.315.015.0CALCULATED COREK-EFFECTIVE 0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580.990610.990800.991000.991160.991380.991630.991760.992540.992420.992190.992670.992940.993500.993580.993670.993620.993620.994300.994370.994540.994630.994600.99460 TABLE3.2.3(CONTINUED)SUSQJEHAWA SESHOTCRITICALCOREK-EFFECTIVE DATAUNIT"-1CYCLE=lCASE414R434546474S4950515253545556575859606162636465666768697071727374757677787980CYCLEEXPOSURE(GHD/HTU) 6.8937.0007.1557.2357.3657.6387.6707.'8407.8998.0138.1648.3088.3418.4818.51S8.5878.60R8.6588.9688.9929.1169.2879.7969.9099.97910.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02211.083COREAVERAGEEXPOSURE(GHD/HTU) 6.8937.0007.1557.2357.3657.6387.6707.84io7.8998.013S.1648.3088.3418.4818.5188.5878.60R8.6588.9688.9929.1169.2879.7969,9099.97910.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02R11.083POWERIWfH)328232853291327632853R733288328432883289330132903293328832863286328432873283328332873285326932793284328832823278328132873285329332943290329132843235320231123060PERCENTPOHER(%)10010010099100991001001001001001001001001001001001001001001001009910010010010010010010010010010010010010098979493TOTALCORE-FLOW(/)96999794969596979694949796969899999998989996999699939496979899939597100100100100100100SUBCOOLING(BTU/LBH)24.423.724.525.124.524.724'24.324.724.924.8R4.224.524.023.523.523.724.424.423.724.323.624.423.725.5R5.024.424.324.123.825.525.023.6R3.623.323.1RR.622.2DONEPRESSURE(PSIA)9989981008100710069939939929929929879919919909909909909911005100599399010021002100210021002100110011002100110021002100110011001999999996993CO)(TROLRODDENSITY.(%)14.614.614.514.714.313.013.012.612.412.0ll.711.411.310.410.410.410.410.28.68.6S.R7.55.44.64.6R.7R.72.42.42.42.31.10.00.00.00.00.00.00.00.0CALCULATED COREK-EFFECTIVE 0.994720.995160.994710.993960.994900.994100.994110~994940.994900.995020.994840.995370.995360.995440.995500.995610.995530.995500.996140.995910.995690.995520.996280.996500.996650.996960.997080.997120.997070.996950.997000.996850.997240.997320.997520.997460.997450.996750.99713,0.99712 TABLE3.2.3(CONTI)i)ED)

SUSQUEHA))NA SESHOTCRITICALCOREK-EFFECTIVE DATAUNIT=1CYCLE=lCASE818283'4858687CYCLEEXPOSURE(Gtl0/Nll111.15311.21711.25911.33211.46411.54211.617COREAVERAGEEXPOSURE(GHD/HTU) ll.15311.21711.25911.33211.46411.54211.617POHERlHHTH)2991294328972834277627142669PERCENTPOHER(%)91898886848281TOTALCOREFLOH(%)100100100999999100SUB-COOLING(BTU/LBN)21.821.621.321.020.820.620.6OOHEPRESSURE(PSIA)9929909889869879921014CONTROLRODOE))SITY)%)0.00.00.00.00.00.00.0CALCULATED COREK-EFFECTIVE 0.997490'97420.997610'97700'97180.997460.99806 TABLE3.2.3(CONTINJED)

SUSQUEHA)4'JA SESHOTCRITICALCOREK-EFFECTIVE DATAUNIT=1CYCLE=RCAGE888990919293949596979899100101102103104105106107108109110ill112113114115116117118119120121122123124125126127CYCLEEXPOSURE(Q1D/HTU)0.2000.2680.3450.4060.5590.7250.7890.9150.9621.R481.3311.4511.5281.6611.8031.8661.9312.0662.2272.3812.4152.500'.587 2.642R.7842.9033.0393'973.3233.4393.6053.6883.7273.8773.9024.0144.0754.4034.5134.598COREAVERAGEEXPOSUREtQID/t1lU)9.634'J.70R9.7809.8419.99410.16010.22410.350,10.39810.68410.76710.8S710.96511.0981124io11.30311.36811.50411.66511.81911.85411.93912.02612.08112.22412.34312.4791Z.53812.76412.88013.04713.13013.16913.32013.34513.45713>51813.84713.95714.042POWER(tl4lH)327132863285328932923296329532903294329232913R95329332923293329332943R913R9332913291328832913290328632923299329032943292-3288329232923289329332913285329032913286PERCENTPOWER(%)99100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOWl%)9697100979695949397969498979594979795969596969696969796979999999998999999979698SUB-COOLINGtBTU/LBH)25.0R4.424.2R3.524.124.424.825.3R5.424.324.625.124.024.424.925.224.424.525.024.824.9Z4.624.724.7R4.624.724.524.524.523.823.923.923.724.023.923.823.724.424.824.2DONEPRESSURE(PSIA)9989989969969969961002100R10021001100010001001100110011001100110011001100010001000100010001000100010009991000999999999998100110011001100010001000999CONTROLRODDENSITYl%)4.24.24.34.34.14~14.14.14.14.14.04.17.27.27.27.R7.46.66.66.76.76.86.86.86.86.86.86.87.57.57.37.R7.R7.17.16.8'6.74.22.22'CALCULATED COREK-EFFECTIVE 0.996540.996880.996500.997250.997260.997270.997330.997320.9972R0.997120.997580.997070.996690.996880.997030.996960.997070.997330.997340.997330.997270.997330.997230.997210.9973R0.997100.997020.996950.996030.996360.996830.996740.996880.996360.996260.996510.996790.996970.997080.99711 TABLE3~2.3lCONTINUED

)SUSQUEHA)QA SESHOTCRITICALCOREK-EFFECTIVE DATAUNIT=1CYCLE=2CASE128129130131132133134CYCLEEXPOSURElG)l0/MTU) 4.6384.7754.8814.9535.0385.1285.175COREAVERAGEEXPOSURElGll0/HTU) 14.08214.22014.32614.39814.48414.57414.621POWERltklTH)3290328632233290320632923285PERCENTPOllERl%)10010098100100100100TOTALCOREFLOWl%)9910010098959899SUB-COOLINGlBTU/LBH)23;923.523.224.224.824.023.7DONEPRESSURElPSIA)1000999996999999999999CONTROLRODDENSITYl/)2.21.91.92.00.20.20.2CALCULATED COREK-EFFECTIVE 0.997130.997170.997210.99'7260.997180.997220.99716 TABLE3.2.3lCOtlTINUED)

SUSqUEHA)t)A SESHOTCRITICAL'ORE K-EFFECTIVE DATA"------"--UNIT>>lCYCLE=3CASE135136137138139140141142143144145146147148149150151152153154155156157CYCLEEXPOSURElGHD/HTlJ)0.1780.2860.4230.5430.7710.8670.9250.9671.0841.1801.2901.4101.4421.6021.7221.8671.9672.0632.2282.3342.4312.5672.782COREAVERAGEEXPOSURE~lGHD/tlTU)B.1608.2688.4058.5258.7538.849.8.9078.9499.0669.1629.2729.3929.4249.5849.7049.8499.94910.04510.21010.31610.41310.54910.764PONERlHNTH)32943290328832933292329232933288329132883291329132923292329232933287329332933292328932943295PERCENTPOHERl%)100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOHl%)979898979597999895949694949493939896979696SUB-COOLINGlBTU/LBH)24.424.124.224.424.924.323.824.225.125.424.825.225.325.425.325.525.524.124.624.524.825.224.8DONEPRESSURElPSIA)10021001100010001001100010001000100410031003100310031002100210021001100210011001100110011000CONTROLRODDENSITYl/)7.77.77.77.77.'88.08.48.47.77.78.08.08.08.18.28.38.49.89.89.99.99.910.7CALCULATED COREK-EFFECTIVE 0.993680.993770.993740.993780.993020.993130.993070.992860.992850.992830.992700.992720.992720.992580.992520.992510.992560.993150.993310.993240.993400.993430.99344 TABLE3.2.3(CONTIQJED

)SUSQUEMAttlA SESMOTCRITICALCOREK-EFFECTIVE DATAUNIT=2CYCLE=lCASE158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197CYCLEEXPOSURE(GHO/HTU) 0.1310.3870.4870.7590.9761.1171.2841.4461.5491.641l.7681.8631.9332,0042.0922.1682.2632.3912.6152.7172.78S2.8682.9062.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.2495.357COREAVERAGEEXPOSURE(GHD/NTlJ) 0.1310.3870.4870.7590.9761.1171.2841.4461.5491.6411.7681.8631.9332.0042.0922.1682.2632.3912.6152.7172.7882.8682.9062.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.2495.357POHERJHWTM)12782347234131703282328826543290329732933292329032883293329332923293329332943288328632883289329432953290328632863285328S3284329032913286329132893291329232933288PERCENTPOWER(%)3971719610010081100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOWL%)439898999893729596969796979697969698989797969696959596939494969796959698999997QS-COOLING(BTlJ/LBN)26.818.218.223.223.925.628.425.224.724.624424.624.324.824.324.724.S25.224.224.224.424.524.624.824.725.124.824.625.425.225.224.524424.524.724.724.123.823.624.3DONEPRESSUREtPSIA)947972971999100010069851020100410041004100210021002100210021002100210031002100210021002100210021002999997100010009999989991002100110011001100210011001CONTROLRODDENSITYl%)21.816.816.813.413.613.114.713.213.213.213.413.413.513.513.713.713.913~915.015.015.015.015.015.015.215.015.015.815.S15.815.816.416.416.416.816.817.717.817.817.6CALCULATED COREK-EFFECTIVE 0.991060.990400.990820.989690.989140.988930.988460.988950.988920.988990.989020.989020.989170.988920.988850.988870.988830.988810.988310.98S760.988920.989050.989130.989240.989350.989120.989700.990040.990120.990530.990990.991540.991850.992030.992240.992450.992800'92890.993000.99328 TABLE3.2.3(CONTINUED

)SUSQUEHA)t8L SESHOTCRITICALCOREK-EFFECTIVE DATAUNIT-"2CYCLE1--<<-------CASE198199200201202R03204205206207208209210211212213214215216217218219RRO221222223224RR5226227228229230231232233234235236237CYCLEEXPOSURE(GHD/HTll) 5.5235.6165.7265.8325.9356.'0286.1226.2166.3186.4946.5'756.7526.8176.8936.9247.0477.1407.3137.3967.5617.70R7'797.8427.98R8.1008,1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.98610.06710.192COREAVERAGEEXPOSURE(GHD/HTU) 5.5235.6165.7265.8325.9356.0286.1226.2166.3186.4946.5756.7526.8176.8936.9247.0477.1407.3137.3967.5617.70R7.7797.8427.9828.1008.1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.98610.06710.192POWER(tSTH)3292329032.923284329132913RSB32863287328832943295329232943292328732873R943293"267132883293328932923293328332873293328832923292329532903289329332853288329032623284PERCENTPOWER(%)1001001001001001001001001001001001001001001001001001001008110010010010010010010010010010010010010010010010010010099100TOTALCOREFLOH(%)979899999899979899989699979898979397997198969898959798959994979996'99699949899100SUB-COOLING(BTU/LBH)R4.324.123.923.824.123.924.3R4.023.924.R24.824.024.324.124.024.225.424.323.8R9.924.124.7R4.124.2R4.924.4R4.124.823.725.123.824.523.824.523.625.124.0R3.523.6DONEPRESSURE(PSIA)1005100R10021002100410041003100410031008100910091001100R1002100110011001100197810051004100410041003100310051002100310031002100310021002100210011001100210011003CONTROLRODDENSITY(%)17.617.617.617.617~117.116.816.816.816.816.416.416.116.116.114.914.414.414.414.713.613.213.212.812.612.61R.712.312.0S.7-8.78.67.47.36'6.14.53.6CALCULATED COREK-EFFECTIVE 0.993570.9936R0.993760.993940.993710.993830.993930.994120.994070.994000.993850.994400.994160.994360.994290.994330.994010.994480,994560.993310.993960.993850~99I4180.994590.994430.994590.994540.993800.994510.995010.994980.995340~995110.995010.995150.995240.995290.995250.995250.995R7 TABLE3.2+3(CONTI)NEO)

SUSQUEHAN SESHOTCRITICALCOREK-EFFECTIVE DATAlNIT=RCYCLE=lCASE23823924IO24124224324424524624724S249250251252253254CYCLEEXPORJRE)GHO/t)TU) 10.35110.46710.63510.67510.78910.85111.00711.10911.28R11.33311.43611.51711.64211.82411.91511.98412.050COREAVERAGEEXPOSURE)GHD/HTU) 10.35110.46710.63510.67510.78910.85111.00711.10911.28211.33311.43611.51711.64211.82411.91511.98412.050POHER)NPH)329332903279328032883285316330853016R9792858R7SS26852575247824042350PERCEt)TPOHER)%)1001001001001001009694929087858278757371TOTALCOREFLOHt%)9710097939799100100100100100100100100100100100SUB-COOLINGtBTlJ/LBH)24.323.524.225.4R4~223.722.822.322.32R.O21.421.020.419.819.118.718.3OOt)EPRESSURE(PSIA)100410031002100210031002998995100710071006100610051001998996994CONTROLROODENSITYt%)R.92.7R.R0.00.00.00.00.01.71.71.71.71.73.43.43.434CALCULATED COREK-EFFECTIVE 0.995370.995430.996010.996130.996010.995810.996070.99622-.0.995550.995530+996250.996530.996710.996210.996670.997070.99706 TABLE3.2.3)CONTINUED)

SUSQUEHARSL SESHOTCRITICALCOREK-EFFECTI DATA---l5IT=2CYCLE=2CASE255256257CYCLEEXPOSURElGND/HTU) 0.3100.4300.583COREAVERAGEEXPOSURElGHO/))TU) 8.0038'1238.276POHERltOITN)329032923294PERCENTPO)lERUZI100100100TOTALCOREFLOH)%)969696SUBCOOLINGlBTU/LB)l)24.424.4DONEPRESSURE[PSZAI100010001000CONTROLRODDENSITYl/)8.38.38.3CALCULATED COREK-EFFECTIVE 0.995630.995580.99525 TABLE3.2.4SUSQUEHANNA SESTARGETVSSIMULATE-E CALCULATED CRITICALCOREK-EFFECTIVE STATISTICS NumberofObservations MeanDifference*

StandardDeviation UjclU2C1U1C2U2C2Ulc3All879747232570.00035-0.00026-0.000200.001860.000150.000020.000590.000500.000460.000230.000320.00061*MeanDifference istheaveragedifference oftheSIMULATE-E calculated K-effective minusthetargetK-effective.

TABLE325SUSQUEHANNA SESUNIT2CYCLE2COREK-EFFECTIVE SENSITIVITY TOMEASUREDCOREOPERATING DATAUNCERTAINTIES InitialConditions CoreThermalPowerTotalCoreFlowCoreInletSubcooling Pressure3293MW100x10ibm/hr624Btu/ibm1000psiaMeasuredParameter CoreThermalPowerTotalCoreFlowCoreInletSubcooling PressureMeasurement StandardDeviation*

(*)1.82.55.20.5CoreK-effective Sensitivity (ax)0.00097P0.00098f0.000610.00006presTotal4b,+E+pfDHS+pres1/20.00151<K*Source:"GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,Correlation andDesignApplication,"

NED0-10958-A, January,1977.80-TABLE326SUSQUEHANNA SESC2KCULATED COLDXENON-FREE CRITICALCOREK-EI."FECTIVES UNIT1CYCLE1CoreAverageExposure.Case(GWD/MTU)

CycleExposure(Gm/mo)ControlRodDensity(*)CoreTemperature (DEGF)Calculated CoreK-Effective 0.0000.0000.0000.0000.0000.9581.4905.1105.1850.0000.0000.0000.0000.0000.9581.4905.1105.185747474737472737474101.8105.9122.5141.0120.0200.0186.0182.5164.01.000451.000270.999140.999851.000400.996980.996740.998770.99821UNIT1CYCLE2CaseCoreAverageExposure(GWD/NTU)

CycleExposure(GND/NTU)

ControlRodDensity(~)CoreTemperature (DEGF)Calculated CoreK-effective 10ll1213149.4349.4349.4349.4349.4340.0000.0000.0000.0000.0007371716868157.1158.1180.4205.8211.11.005121.004981.OO4661.003591.00341UNIT1CYCLE3-CoreAverageExposureCase(GWD/MTU)

CycleExposure(GWD/mv)ControlRodDensity(*)CoreTemperature (DEGF)Calculated CoreK-effective 151617181920212223247.9827.9827.9827.9827.9827.9827.9828.6128.61210.6010.0000.0000.0000.0000.0000.0000.0000.6300.6302.6197575757474747474747481174.2175.8190.3189.9195.4202.2206.2170.5156.3209.41.001101.001121.000671.000861.000671.000461.000291.001281.001710.99950 TABLE:3.2.6 (continued)

SUSQUEHANNA SESCALCULATED COLDXENON-PREE CRITICALCOREK-EPI.ECTIVESUNIT2CYCLE1CoreAverage.ExposureCase(GWD/RZtJ)

CycleExposure(GWO/mV)ControlRodDensity(*)CoreTemperatures (DEGF)Calculated CoreK-effective2526*27*28*2930313233343536370.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.2080.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.20874989898747574737473737458111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.00.998270.997060.996960.998350.997560.995690.998060.996390.997460.996880.994261.002721.00429UNIT2CYCLE2CaseCoreAverageExposure(cwo/mu)CycleExposure(cd/mo)ControlRodDensity(*)CoreTemperature (DEGF)Calculated CoreK-effective 38397.6937.6930.0000.0007575133.0139.51.000841.00083*LocalCriticals TABLE3.27SUSUEHANNASESCOLDMINUSHOTCRITICALCOREK-EFFECTIVE UNIT1CYCLE1CoreAverageExposure(CWO/MTU)

CycleExposure(GWD/MTU)

CoreTemperature (DEGF)KK.coldhotcalccalcKcoldhotcalctarget0.0000.0000.0000.0000.0000.9581.4905.1105.1850.0000.0000.0000.0000.0000.9581.4905.1105.185101.8105.9120.0122.5141.0200.0186.0182.5164.00.008020.007840.007970.006710.007420.006560.007410.006120.005470.007650.007470.007600.006340.007050.007690.007960.006310.00567UlC1Average:U1C1StandardDeviation:

0.007060.000900.007080.00079UNIT1CYCLE2CoreAverageExposure(GWD/MTU)

CycleExposure(CWO/MTU)

CoreTemperature (DEGF)KK-Kcoldhotcoldhotcalccalccalctarget9.4349.4349.4349.4349.4340.0000.0000.0000.0000.000157.1158.1180.4205.8211.10.008110.007970.007650.006580.006400.007860.007720.007400.006330.00615U1C2Average:U1C2StandardDeviation:

0.007340.000800.007100.00080UNIT1CYCLE3CoreAverageExposure(CWO/MTU)

CycleExposure(MWO/MTU)

CoreTemperature (DEGF)KcoldhotcalccalcKKcoldhotcalctarget7.9827.9827.9827.9827.9827.9827.9828.6128.61210.6010.0000.0000.0000.0000.0000.0000.0000.6300.6302.619174.2175.8189.9190.3195.4202.2206.2156.3170.5209.40.006720.006740.006480.006290.006290.006080.005910.008430.008000.006100.006650.006670.006410.006220.006220.006010.005840.009610.009180.00766U1C3Average:UlC3StandardDeviation:

0.006700.000840.007050.00134-83 TABLE3.2.7(continued)

SUSUEKLNNASESCOLDMINUSHOTCRITICALCOREK-EFFECTIVE UNIT2CYCLE1CoreAverageExposure(MWD/MTU)

CycleExposure(MWD/MTU)

CoreTemperature (DEGF)Kcoldhot.calccalcKcoldhotcalctarget0.0000.000*0.000*0.000*0.0000.0000.1580.8470.9760.9762.3918.39011.2080.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.208111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.00.006590.005380.005280.006670.005880.004010.006920.006870.008120.007540.005390.008020.008190.005470.004260.004160.005550.004760.002890.006150.006890.008200.007620.005110.007440.00782U2C1Average:U2C1StandardDeviation:

0.006530.001290.005870.00164UNIT2CYCLE2CoreAverageExposure(MWD/MTU)

CycleExposure(MWD/MTU)

CoreTemperature (DEGF)K1CKcoldhotcold'hotcalccalccalctarget7.6937.9630.0000.000133.0139.50.004720;004710.005480.00547U2C2Average:,

U2C2Standard, Deviation:

0.004720.000010.005470.00001OverallAverage:OverallStandardDeviation:

0.006710.001110.006590.00137*LocalCriticals 32.8SUSUKQLNNASESUNIT1CYCLE1TIPRESPONSECOMPARISONS Date12/16/8202/07/8304/04/8306/09/8308/10/8308/19/8309/13/8310/03/8310/18/8311/01/8312/01/8304/03/8404/12/8404/26/8405/24/8405/31/8406/08/8406/25/8407/24/8408/02/8408/16/8408/24/8408/30/8409/04/8411/30/8412/13/8412/16/8412/21/84**

01/10/85**

02/01/85**

02/08/85**

CycleExposure(CWO/MTU) 0.2210.8361.4901.7992.7062.9063.3673.8364.1934.5175.0705.4105.6145.9186.5636.7166.8937.2357.6387.8408.1648.3418.4818.60210.28810.58910.65310.77011.08311.46411.617ControlRodSequenceB2A2B2B2A1A1BlB1B1B1A2A2A2B2B2AlA1AlBlBlB1A2A2A2B2B2AROAROAROAROARO5.094.035.044.975.125.215.625.465.625.605.936.126.145.725.805.825.385.004.754.614.534.534.574.524.734.804.684.965.936.076.032.604.264.264.724.965.164.895.024.604.734.844.834.454.564.724.80NodalNodalTIPRMSAsymmetry

(~)(~)RadialRMS(~)2.781.581.701.791.621.631.711.741.911.911.811.961.851.981.971.891.881.941.851.871.692.132.142.221.911.701.671.721.731.621.76RadialTIPAsymmetry

(*)1.181.581.581.601.741.631.471.751.631.601.771.931.571.621.641.74*Reactorconditions forthisTIPset:60%ofratedflow40%ofratedpower**Endofcyclepowercoastdown data85-TABLE329SUUEEGLNNASES.UNIT1CYCLE2TIPRESPONSECOMPARISONS Date06/24/8507/03/8507/19/8508/08/8508/20/8509/06/8509/12/8509/27/8510/04/8510/23/8511/15/8512/12/8501/14/86CycleExposure(CWO/MTU) 0.2000.406.0.7891.2481.5281.9312.0662.4152.5873.0393.3233.8774.638ControlRod~eeenceAlAlAlB1B1BlA2A2A2A2B2AlA1NodalRMS(e14.794.894.765.785.175.976.425.585.484.555.044.754.99NodalTIPAsymmetry

(*)3.643.673.573.753.803.744.37RadialRMS(e)2.522.723.282.862.702.752.572.732.722.703.093.022.64RadialTIPAsymmetxy (4)2.242.402.402.552.562.512.4986-TABLE3.210SUSUEMHNAUNITSES1CYCLE3TIPRESPONSECOMPARISONS Date's/os/8607/03/8607/10/8608/20/8608/27/8609/10/86CycleExposure(GWD/MTU) 0.1780.9251.0842.0632.2282.567ContxolRod~eeenceA1AlB1A2A2A2NodalRMS(a)5.166.065.688.128.719.03NodalTIPAsymmetxy

(~)3.414.343.583.846.28RadialRMS(*)2.744.142.802.822.893.75RadialTIPAsymmetxy

(~)2.473.582.552.695.1387-SUVEZGLNNASESUNIT2CYCLE1TIPRESPONSECOMPARISONS Date07/23/8409/12/8410/08/8401/16/8502/07/8503/07/8503/20/8504/04/8504/15/8505/15/8506/10/8506/20/8508/01/8508/12/8508/20/8509/09/8510/01/8510/18/8510/28/8511/19/8512/17/8501/30/8602/19/8603/06/8603/12/8603/25/8604/04/8604/29/8605/15/8606/23/8607/11/8608/08/86CycleExposure(GWO/MTU) 0.1310.3870.7591.1171.4462.0922.3912.6152.8683.3923.8824.1144.8695.0665.2495.7266.2166.5756.8177.3137.7798.5969.0539.4129.5399.83510.06710.63511.007*11.282*11.642*12.050*ControlRodSequenceA2A2A2A2B2B2B2AlAlAlB1BlA2A2A2A2B2B2'2AlBlA2A2A2B2B2B2B2AROB2B2B2NodalRMS(a)7.055.374.734.765.515.435.585.655.755.935.795.796.617.837.807.707.815.845.517.554.924.945.756.995.125.565.926.027.216.566.817.81NodalTIPAsymmetry

(*)5.245.095.135.715.796.357.306.566.187.788.539.046.307.839.585.78RadialRMS(~)2.822.582.302.202.582.642.682.312.582.752.442.602.762.593.823.995.183.042.685.963.082.994.566.352.372.552.682.362.462.382.453.44RadialTIPAsymmetry

(~)1.342.232.182.342.512.872.882.612.233.584.035.962.865.126.762.91*Endofcyclepowercoastdown data.-88 TABLE3.2.12SUMMARYOFSUUEHANNASESTIPRESPONSECOMPARISONS Unitacle,NumberofTIPSetsAverageNodalRMS(*)AverageRadial.RMS(~)Ulcl315.241.86U1C2135.242.79U1C37.133.19U2C1326.173.07OverallAverage825.742.5889 TABLE3213SUMMARYOPSUSUEHANNASESTIPRESPONSEASYMMETRIES UnitacleNumberofTIPsetsAverageAverageNodalRadialAsymmetry Asymmetry

(~)(~)Ulcl164.591.63U1C23.792.45U1C34.293.28U2C1166.763.28OverallAverage445.222.5590-1.01FIGURE3.2.ISIMULATE-E HOTANDCOLDCRITICALCOREK-EFFECTIVES VSCOREAVERAGEEXPOSURE1.00-I-O0:9SIlCOO0.98--0;""':mi..'i7U2C2HOTU1C3HOTU1C1COLDU2C1COLDU1C2COLD"U2C2COLD+U1C3COLDk:vj+,~o::..:LegendoU1C1HOTcIU2C1HOTU1C2HOT01234567S91011.12131415COBEAVERAGEEXPOSURE(GWD/MTU) 1.01FIGURE3.2.2SIMULATE-E HOTCRITICALCOREK-EFFECTIVE VSCORETHERMALPOWER1.00LLIII-OlLIU0.99-IUJLLŽ0O0.98..~.........

Legend~--.".-0U1C1""""cIU2C1U1C2U2C2U1C300.975060667076808690CORETHERMALPOWER(%OFRATED)100106 1.01-FIGURE3.2.3SIMULATE-E HOTCRITICALCOREK-EFFECTIVE VSTOTALGOREFLOW1000I-O0.99ICC0O0Legend...':,.......

IP00;--"0"--:--"-"-.-0U1C10.98..""""'0U2C1U1C2""vU2C2oU1C30.97-4050607080TOTALCOREFLOW(%OFRATED)90100 1.01FIGURE3.2.4SIMULATE-E HOTCRITICALCOREK-EFFECTIVE VSCOREINLETSUBCOOLING 1.00LUI-C3UJ099-IhCCC0O0.98-.....Legend,--.-"oUlC10U2C1U1C2U2C2oU1C3oo.:.Booooo:.o oC3.,O...CI.....:.

80.9715161718192021222324252627.282930COREINLETSUBCOOLING (BTU/LBM) 1.01FIGURE3.2.5SIMULATE-E HOTCRITICALCOREK-EFFECTIVE VSDOMEPRESSURE1.00-I-OLIJ0.99IUJCCOC30.98-.......LegendI~-"-oU1C1"-.aU2C1U1C2U2C20U1C3od'oze,"jjjo"~I"---.02..:...;.

D:00.97940950960970.9809901000DOMEPRESSURE{PSIA)101010201030 1.01FIGURE3.2.6SIMULATE-E HOTCRITICALCOREK-EFFECTIYE VSCRITICALCONTROLRODDENSITY1.00LLI0I-OIJJ0.99-IIJJCC0O0.98-~C1~I~~aPen,:j4k~:,@'P,0I?Ip:gg:QjjPQ::c5:cD~cl"HD'lf."--

gg'..Q...........,........~.........

O:::I.::.:.:.

O...,.;:.:....

Legend::...-....::....:...:,

.....,:..

.:s~--:-""oUlC1""i"""0U2C1UlC2U2C2oU1C3200.97-024681012141618CRITICALCONTROLRODDENSITY(%)hag~aeeRl22 FIGURE3.2.7TARGETANDSIMULATE-E CALCULATED HOTCRITICALCOREK-EFFECTIVES VSCOREAVERAGEEXPOSURE1.01-1.00-.--'---'-.-.:.----'---.'-

U1C2TARGET:""'---.'-.--.'"

-'"-.:.LIJI-O0.9S-IUJCC0.O0U1C1andU2C1TARGET'.-.-.:---:----.

--:"--'-.:

U2C2TARGET:."-.:-----:.-.--'.-"--:

r~U1C3TARGETI\rLegend..,:.....

~~0.C~--oU1C10U2C1U1C2U2C2oU1C30.97.03456789101112131415COREAVERAGEEXPOSURE(GWD/MTU)

FJGURE3.2.8)Q)SUSQUEHANNA SESUNITS1AND2CORETIPLOCATIONS 5957555351494745434139373533312927252321+++++++++++++++++++++++++++++++++++++LINEOFTIPSYMMETRY+++4444648505254565860 04220222426283032343638LocationForIndividual TIPResponseComparisons 00020406081012141618XControlRodLocation~Traversing In-coreProbeLocation FIGURE3.2.9SUSQUEHANNA SESRELATIVENODALRMSOFTIPRESPONSECOMPARISONS 10FIGURE3.2.9aV)lZCl0LLI0l~UJCL"CLI-86420mQ.pQQQg0~".'-"-~---


'.-"--O

-"-pQQ0O.0.g,:Q.00::~:0~+pQp~".O-b.'ILegend0U1C1i...b,U1C2oU1C3QU2C102468101214COREAVERAGEEXPOSURE(GWD/MTU) 1610FIGURE3.2.9bV)CL"D0ZI~LLICCCLI-86420QLegend0U1C1U1C2UlC3QU2C1>0D(4!Qw~asii!wo-i0I0.20.40.6FRACTIONOFCYCLELENGTH99-0.8QQ'GC"..".""""Cl'"'""b;"""

0OOQ.0.:b,QOQQO00QQO~Q00'00~~"--"O.>0'4OwaoLJQ 180FIGURE3.2.10SUSQUEHANNA SESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 1.490GWD/MTUCYCLEEXPOSURE180140120I-zD100Illzz80CoQ.80'""""o'"<>"o"g++g"+q()Q00+040200I0123466789101112131415161718192021222324 COREAXIALNOOE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE-100-FIGURE3.2.11SUSQUEHANNA SESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS 1.490GWD/MTUCYCLEEXPOSURE615957.5553514.947450.53-1.581.50.73-0.071.56-0.53-2.142.491.15II++43+41ss+37+++333.26+++29+++253.89+++.2119I,II171.7715II1311+97lI.IIIIII000204060810 120.8923-0.550.8-0.20-1.65-1.91-0.1516++-0.241821416-0.24-2.46-1.63-0.13-3.470I-1.120.33-0.57IIII234363840 424III2628303I0222419I1.63II-0.81-0.810.032.0044648505254565860Diff=[(Calc-Mess)iCore AvgTIPResponse]

X100%101-FIGURE3.2.12SUSQUEHANNA SESUNIT1CYCLE1INDIVIDUAL TIPRESPONSECOMPARISONS 1.490GWD/MTUCYCLEEXPOSUREMONITORLOCAllOH80>30MONITORLOCAllOH4b>bj140140leelee<<0C1404~ee"0I00~~$ILl-.o--->>---4001$0Xls140~4soC40000obbob0I000Tt'44044I~$44014010<<4$1~I41$10ITI414$

$$14444$4CORP.AXIALHOORtNCA$VNSOhtSects<<0$OALOVLATCO ht$$44ONSS~ooNTNVLsostosmo<<I44~~~'I~~10111414IiI~I~ITIi14$4$14444$4CORKAXIALHODRt<<$$4UNCOTttNseto<<4$0OAIOUMTCD htNsstoNSS~co<<TNVL$00tosmoNMONITORLOCATIONe0,00MONITORLOCATOH32.801441$0leeIee140>40is~00000~804IITOItto01401$02:~0a0V060IIC.004044I44>>~I4$444T4~14111414141$

1411141$$4$14$44$4CORKAXIALNOOKtNCASVIICO TltIlsstONss oOALOVLATCO TllIICsto<<0C Noo<<TNOLAootosmo<<00\~$4~~1~~1441141444>4 I~ITILI~4441144414 CORKAXIALHOORtNcACUIIco htscstoNecoOALOVLATCD TltSCetONSS~OO<<hloLsootoshIO<<-102 180FIGURE3.2.13SUSQUEHANNA SESUNIT1'CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 6.918GWD/MTUCYCLE'XPOSURE 180140120I-D100IIIZZ80V)CL60+050Q.0..00+Q:""0"+0400200l0123456789101112131415161718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE-103 FIGURE3.2.14SUSQUEHANNA SESUNITtCYCLE1RADIALTIPRESPONSECOMPARISONS 5.918GWD/MTUCYCLEEXPOSURE61595755S351494745434139370.07++++-2.75.232.5-0.93-0.70+++1.22-0.76++++-5.29++++0.60.51.49+4035333129I2.379I2.2-0.010.50272523'7iaI191715132.09I4032.4-1.91-2.67++++-0.2236-0.86.14I9-I78.17-0.76-3.26951-IIII000204060810121416182Q2224262830323436384042444648505254565860Diff=[(Calc-Meas}/Core AvgTIPResponsej X100%-104-FIGURE3.2.15SUSQUEHANNA SESUNIT1CYCLE1INDIYIDUAL TIPRESPONSECOMPARISONS 5.9'I8GWD/MTUCYCLEEXPOSUREMONITORLOCATIONdIL$$MONITORLOCATION4$,$$ISSISSllsfod,IIS----4-45lg100C000~IttsLrlcLtsNl??00-ILI=seTII004I~0~0tsts~t~l~7~lt11llllltIl1017IS10lellltllltCOfNNAsvasoll~aespoNss0OAIovMTto TI~aeepoaee~CONTNOLaoepoeITION0~t~4~~7~~1011Il10ltllIS17I~10tstlttllltCOReAXIALNooefNNAsvasoTlpNsspoNse0OALovMTSO llpasepoase~OONTNOLaooposITIONMOHITOALOCATIOH00,$$MONITORLOCATIOH$$,$$ItsltsIseNe~eefseset.h..e400eo0t0e~dvsIteLrlls~00..L0f0]f~04"tsIIIl~t0~7~~10111ll~%101~171~Iltetlltlllt COIIeAXIAI.NooeIISAsvalo TI~aeepoaseoCALOVLATSO TIPNSSPONee~ooNTNOLaoopoelsoa0It0~S~'I~~10111tllltll'I

~17coeeAxIALNooefvKAsvalolipalspoase0OALOOLATSO Tlpasspoase~ooataoLaooposITIVNII70tsIlttllll105-180g~lFlGURE3.2.16SUSQUEHANNA SESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 11.617GWD/MTUCYCLEEXPOSURE1BQ140120I-zD100ILl"Z80COQ.eo400+0~+00+00000':000+200012346B789101112131416161718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE-106-FIGURE3.2.'17SUSQUEHANNA SESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS 11.617GWD/MTUCYCLEEXPOSUREI615957555351494743413937-0.4786-1.89-2.182.0-2.880.212.00.840.014.3-2.011.66++++++++-0.363533312920601.82-0,883.641.81++++-0.102725232119.1715130.5-0.39-1.08-0.24.703.4-1.08-2.45-0.80-0.080.29753Y1'2.5745-0.8828-0I00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/Core AvgTIPResponsej X100%107-flGURE3.2.18SUSQUEHANNA SESUNIT1CYCLE1INDIVIDUAL TIPRESPONSECOMPARISONS 18.617GWD/MTUCYCLEEXPOSUREMOIKTORLOCATIONKK,KSMONITORLOCATIONCC,SKININrgNlIleee044+o~-K--0IteZIgINjle~w0r0orI~~~~III~I~~14IIISII11le14lfIlletelltttttlCOREAXIALNOOKNIARURROTlo4Reoooeo0OAIOVLAIRO IIRRa40aeo~CORIROLROORoemON~I1~~I~I4~1411It1411'N14lfI~IltetltltlIICOILKAXIALNODE4NRARVRIOTIP RSSIONRR0OALOVLATCO TIRRterooeo~coofRVL100toemoNMOIKTORLOCATION40,8KNeII~11~1Nog40J4"re0+0o0lieee~I0otor'-'0'L+000+Z~I4000l.0te~~II~~~I~~1411IIISItlllelfI~lel4llttttlt COREAXIALNOOKrNCASURC0TIRRCSRORSR0OALOVLAfCoTIRRRRSORSR~001TROL100eoemoNI1I~~III~le11111IIItellIfI~1SNIIISIIII CORKAXIALNOOK+NCARURCOTIRRCteoNRR 0OALOIRATCO TIRRNtoRSR~CONTROL100ROQllON-108-9OFIGURE3.2.19SUSQUEHANNA SESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON 0.200GWD/MTUCYCLEEXPOSURE,8070BoI-zDeoLQzz40COCL3Oo~+i6~o:....................

..........+

...Q...i........""+:""""'""

"':."""""'""

"'.""@'"O')

0~~~~~~~~~~~~Q~~~~201000123456789101112131415161718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE-109-FIGURE3.2.20SUSQUEHANNA SESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS 0.200GWD/MTUCYCIEEXPOSURE615957555351494745-1.86-2.6505-2.514.50-2.27-3.40t+++.2043413937I3+-033-1;65-0.8227353331292.88-0.3090582.6.926.5II62725232120542.4I-3.31154.964.49I191715131197II3-0.1341-2.743.7970.4+3-0.7706-0.20I!IIYiI00020<06081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/Core AvgTIPResponse]

X100%-110-FIGURE3.2.21SUSQUEHANNA SESUNIT1CYCLE2INDIVIDUAL TIPRESPONSECOMPARISONS 0.200GWD/MTUCYCLEEXPOSUREI$OIETOALOCATIOII 45,$$$IONTOALOCATIOK4'ss$o0+.+4OO~0XssNXXQcs4O~$00~$~$0$ogS~~~TSS'N11lsNN'NNITI~ISSSSlTSSSSICOREAXIALIIOOK+NSASSSKOTlt SSSSTNNS0CAIOVLAIKS litAsstONSO~CONTNOLNOOSOSITlDN0IS~~~T~NIIISNNNNIT NI~Ssslsssssl CORKAXIALNOOK+NSASVASOTltSlstONSS00LCVLATTOlitASStONSC0CONTNOL000tOSITNNIKONITORLOCAtlONOO,$$LIOIIIIOR LOCAllOII

$$,$$~0SSl~0'0a~.~s+gssXss+)~)4-k~-4-0-$

~rr-p---00QTS~~SS~~0T~~ISIINNNNNITISISSSSISSSSSI COREAXIALIIOOE0ICKASVAKO TltNKStOINKoCALOVIAIKS litNsstoNSK~OONTNOLSOOSOSITlCWSISS~~'T~~N~IISISNNNlllsllSOSlSSSlSICOIIKAZALIIOOE0llKASVAKO TNNKStONSKOOAIOVLATKOTltasstONSC~OONTNOL000tONllON 9OFIGURE3.2.22SUSQUEHANNA SESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON 2.587GWD/MTUCYCLEEXPOSUREBo70eoI-z60LLIzzV+4oCO0soQFQCiQ20100012S4667891011121314'I6161718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSEQCALCULATED TIPRESPONSE-112-FIGURE3.2.23595755535149474543413937353331292725-23211917151311975-31SUSQUEHANNA SESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS 2.687GWD/MTUCYCLEEXPOSURE-3.57-1.225.71-1.33I3J-2.611.5I0.5.750.60.092-2.1.17-1.05-0.332.320.8-2.39-3.135.4-2.400.8++++-1.8548-002-2.015.9052.6734.38-0.16-1.79-1.41+-3.15-6.860.7+i!00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Meas)/Core AvgTIPResponse]

X100%113 FIGURE3.2.24SUSQUEHANNA SESUNIT1CYCLE2INDIVIDUAL TIPRESPONSECOMPARISONS 2.687GWD]MTUCYCLEEXPOSUR~~IONITOIILOCATIONaL$$MONITORLOCATION4$,$$gaeeeO.Cae000Igse0$o+f0oool4..$.o.L..I'TTIoIIIII~s~~~r0I~11ls>>>>>>>>lr>>>>tetlstaaelCORKAICALNOOK+vsaavasot>>saeaooee4oalNAAtso tiesseaoees~oooteolsooroeNNN~1s~~~~re~>>ntsIe1IIaIetlta>>sastssaeaICORKAXQLNOOK4NeaeoeeotieeteJONet0oslolsstso ttoeaaaoees~ooNININ.NooroeltNN$IONITORLOCATION$$.$$eeteQu~ee0seX$I~+0+0lr4~s'Z~40d~Ite~~sr~lail>>la>>>>>>lt>>leaetlsssesl COIIKAICALNOOK+vsAsvstotiesseeoos$oOAIOIAAISO tieSteeooas~ooeteoLaooIoeotoN~Ita~~r~~>>11ts>>11IaIelrIaCOR!AXIALNOOK+vtssvssoliellssroees oOAIOVLStto tteItaaroees

~OoetaoLNooeoalttoN-114-90FIGURE3.2.25SUSQUEHANNA SESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON 4.638GWD/MTUCYCLEEXPOSURE8070g)BOI-zD50illzz40CoQ.~30000q)0C04~b$+++0+201000123456789101112131415161718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE115-FIGURE3.2.26SUSQUEHANNA SESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS 4.638GWD/MTUCYCLEEXPOSURE61I595755535149474543413937-2.30++++-3.56.73-2.442.3-2.365.363053-4.00-2.443.68-1.59-1.230;51353331290.832028-1.01-0.86-2.30++++6.5J627252321I~-2.94.73-2.05-0.212.24++++49171513-0.460.8-0.360.30,320.4I5-2.10322.10-4.56000204060810 1214161820222426283032343638 4042444648505254565860 XDiff=[(Calc-Meas)/Core AvgTIPResponse]

X100%-116-FIGURE3.2.27SUSQUEHANNA SESUNIT1CYCLE2INDIVIDUAL TIPRESPONSECOMPARISONS 4.638,GWD/MTUCYCLEEXPOSUREMONITORLOCATIONdd,ddMONITORLOCAllONSd,dd~0~0ssggss~SS0OfO'+000004000000SL00~0Qss~0Sogf~~~JI0stsItSSS0T~ls11TSlt11ISltIfISltSSSISSSSSloNSASOSSOTI~PNSPONSS0OALOOLATSO TIPNSSPONSS~CONTSOLNONPOSITION0\~~S~~Tt01011ltIt11lt10lfltltttSlStSSSICOREAXIALNOOK+NSASONSOTIPNSSPONSS0OALOSIAfto TIPNSSPONSS~CONTSOL100POSITIONMONITORLOCATIONsd,ddMONITORLOCATIONdd,dd~S~S~STs5LSgS~0+PLoOOOodogoot0.t.00....0~0~~ssf(-0.,0.0o010JIIIS0001~~ltII.ISISll lsl~flltlttttlSSSSSI CORKAXIALHOOKPNSASOSSOTIPIISSPONSS oOuauuSSOTIPNSSPONSS~OONTSOL%00POSNION0I0t~S~T0~ltIIflitllI~ltlfI~I~SttlltlttlCORKAXIALHOOK0ISASSSSOllPSSSPONSSoOALOOIATSO TIPNSSPONSS~OONTNOLSOOPotlflON117 90FIGURE3.2.28SUSQUEHANNA SESUNIT1CYCLE3AVERAGEAXIALTIPRESPONSECOMPARISON

.0.178GWD/MTUCYCLEEXPOSURE8070BOI-zD50.LLIzz40M030+0"+""00I020100012345678910'11121314151817 18182021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE-118-FIGURE3.2.29SUSQUEHANNA SESUNIT,1CYCLE3RADIALTIPRESPONSECOMPARISONS 0.178GWD/MTUCYCLEEXPOSURE615957555351494745434139373533312927252321-1917151311975-1.48-2.68I010.620.54-2.081.55283.860-0.14-2.40-0.77-0.32-4.95-1.62-2.375.790.64.986.42.225-0.830.383.38363.4992,8-3.25-3.09-3.72290.08++++2.0-0.51II0002040608 1012141618202224262830323436384042 444648505254565860XDiff=[(Calc-Measj/Core AvgTIPResponse]

X100%119-FIGURE3.2.30SUSQUEHANNA SESUNIT1CYCLE3INDIVIDUAL TIPRESPONSECOMPARISONS 0.178GWD/MTUCYCL'EEXPOSUREMONITORLOCAllONdlLddMONITORLOCATIONaa,dd~00000CZtg00IN,4T0Lo+444pt404QI~-~0Se00$00~00LI.~0I0~0~0~I~ttts'I~lt1010tt10100001Ases04CORSAIDALNODS4vaA00000tti000000004OAAOUIAtao tt~Naasovea~OovtaOA000000ttvvtI00~0~7~letttalettteteCORS.AXIAL NODS+vsA00000tta000000004OAIOUAAtaa tto00000000~CoataoL000000IIIONttI~10teSl1~00SIMONITORLOCATION~$00~04...0.4t44o00)te404doo0+"-4"4-d-9'

-'4To4ja500O+tele044~~I~I000~~7~~I~11ts10ItIa10ItI~I~testassectCORSAXIALNODS4vaAaaaaaTlaassaovaaoOAIOUIAtao tt0aaaroaea~OONINOL000eosttvvlI0~00~0~~letttatsvteteIt10100001tltltl CORSAXIALNODS4VSASUaaalatIICS00000 oOAIOUIAtaa ItsItaaaoaaa

~OONtllOl000000ttION120-9OFIGURE3.2.31SUSQUEHANNA SESUNIT1CYCLE3AVERAGEAXIALTIPRESPONSECOMPARISON 2.228GWD/MTUCYCLEEXPOSUREeo70BoI-zD50LUzz40Co03O~.:00+0"00+oqooo0+++0'0201000123456789101112131415161718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE121-FIGURE3.2.32SUSQUEHANNA SESUNIT1CYCLE3RADIALTIPRESPONSECOMPARISONS 2.228GWD/MTUCYCLEEXPOSURES9S755I535149474543413937-0.94-2.970.84-3.190.85-0541.586.613.052-1.242.53.23.89-0.100.83353331291.8-2:14-0.064.4-1.022725232119171S1311975310.611.63.3-5.43.44-2.87-2.78-4.290.6-3.9856-1.19-6.42-3.651.99030002040608'1012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/Core AvgTIPResponse]

X100'/o-122-FIGURE3.2.33SUSQUEHANNA SESUNIT1CYCLE3INDIVIDUAL TIPRESPONSECOMPARISONS 2.228GWD/MTUCYCLEEXPOSUREMONITORLOCATIONSS.SSMONITORLOCATION44SSeeII1eeIITe1j+S0~4oKlTeI-a,II>>VlII5>>'i--r0t0OeeX$>>4g004T440r-"'-24-$>>II1-r--f00Ie4II7IIILIIIIIt~1~~L4~T~4NI11leI~If1414If'I~Ie24N22eeefCORKAXIALNODSveAevheolit0eetohee0CAICOLATeo litNeetoheo~CONlNOL400t041TtON14~~4~2~4Ie1114I~>>leleITleteN212224NCOllhAXIALNOOC+NNAOVNeellt heetONeh0OALOVLATee Tltheetoheh~CONTNOLNOOtOemONMONITORLOCATIONOO,SSMONIIORLOCATIONSWISS~I~~4Te~40C+00000oo400eeQ>>~eeooS~0oCooe0I4Ie+le~144~~~T~~1011IeIe12I~I~\fIe1424111222efCOhKAXIALNODS~I~111$Ie12Ie'I~Il12I~2421222$$414~~44T~COh8AXIALNO1IITAOVheOTI

~heetOI>>e0CALOVLATNO litheetoheh0ooNTNCL100toemoN+tfeAOVNTO lttheetoheaoOALCVLAT!O Tltheetoheh~OOKfhOLNOOtoeITION-123 180FIGURE3.2.34SUSQUEHANNA SESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 0.387GWO/MTVCYCLEEXPOSURE180140co120I-R100'llKX80COL,ea+..o...4......~...............:,....e.

+000~+200012345e78810111213141516 1718182021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE-124 FIGURE3.2.36SUSQUEHANNA SESUNIT2CYCLE1RADIALTIPRESPONSECOMPARISONS 0.387GWD/MTUCYCLEEXPOSURE615957555351494745434139373533312927252321-1.060.64.5290.094.760.5-0.55-0.403.470.88-0.89-1.333.60.41-5.24-1.98-5.221.231.89-1.56-1.800.71.28-2.47-2.082.20.6291I4.319-1715132022-0.07-0.76-3.68-0~052.9-2.93119753110-009-1.8513-3.2100020406081012141618202224262830323436384042444648505254565860XDiff=[(Calo-Mess)/Core AvgTIPResponse]

X100%125-IFIGURE3.2.36SUSQUEHANNA SESUNIT2CYCLE1INDIVIDUAL TIPRESPONSECOMPARISONS 0.387GWD/MTU.CYCLE EXPOSUREMONITORLOCATTON4OPSI~I4~ITT000te01t~~~~10~Te11TeNTeNlelTI~NtetlteteeeCOREAXIALNODE+vtAellteeTN0teoooeeoDAIOOIATte TNatetooea~covleoctootoelTTDOII!~1t~~~010~lt11NNNleleTT Nl~tetlttleel COREAXIALNODE4TNAevoteTNttetovee0OAIOIAATCD TVetetovec~oovleoeeootoeITlo4I MONITORLOCAllON40,5$MONITORLOCAllON02,$3eeJJ.t04ŽNt]~ee++aJo40+0III~~te0~e1~0NllltltllleNlTIANtetlttteel COREAXIAI.NODEtVtAeetteTlt1tttOINe0OALDVCATKD MtttKHNO~OOVTDCN.DODtetITloee1te~~~1~~IeCORE+NEAOVACOTleteetOINCoOAIOVCATXD~

AettOTNC~oovTDDLtootoeITlov!I11IeltN14le1111Itte11ttteelAXIALNODE-126-180FIGURE3.2.37SUSQUEHANNA SESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 5.249GWD/MTUCYCLEEXPOSURE1eo140120I-z100LLIz80CoCLeo0+00Q++00+g}Q40200012346e78910111213141616 1718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE127 FIGURE3.2.38SUSQUEHANNA SESUNIT2CYCLE'fRADIALTIPRESPONSECOMPARfSONS 5.24SGWD/MTUCYCLEEXPOSURE615957-555351494745-4.77ii-2.630.72.685.031.22-0.95-0.923.39.7343413937--3.29+0.978.3-2.87-0.29-2.33+-30735333129++++I1.2I88~35-0.170.8-0.65.17272523-3.716.3243-2.98++++0.82191715I1311753vI0020.27I5.94.960810121416-0.18-1.78I1.22.8-0.67-6.45-2.98-4.53IIII182022242628303234363840424446485052-4.8754565860Diff=[(Calc-Mess)/Core AvgTlPResponse]

X100%-128-FIGURE3.2;39SUSQUEHANNA SESUNIT2CYCLE1INDIVIDUAL TIPRESPONSECOMPARISONS 6.249GWD/MTUCYCLEEXPOSUREMONITORLOCAllON4IL$$MOIQTQRLOCAllON4$,$$100NSNSat~0.T00-IIOIJIIo1IC..44IttCC100g.00~0000.S..+~$$44+,'0I0I0I1.10~0~~0~~a11lta10aaTf'alt00tlttStaCORKA)QALNODC+NSASUSSDTloSSSOONK4AkISSAATSDTI

~NSSSONK~CONTSOLSOOSotfAON01t~00~T~~<<TITSISSINNITNISSSSISSS

~SICOAQA)QALNODS+NSASUSSOTISIISSSONSS 0OAIOULAIto TloNtttot00~CONTSOLNODSOSITIONMONITORLOCAllON40,$$MONITORLOCAllON$$,$$100<<0100~0~000+~I110LZ100~0000o40~4f040004w'$-'f'--0L..0000III0I00~~~10~I~llltlt10<<a111010Sttlttttti COR4ATQALNODEtSNASUSCDTIDSCSSONKoOAIOUIATCD TIDIICSDONK~DONTSOL000SOSNION~00~0~T~~'l01110lt10a%ITN10SttlStttSlCORKNQALNODS4NCASUSCDTltDCSSONK4OAIJUIATCD TIDIICSJONK~OOWIOLNOOSONllON129-180FIGURE3.2.40SUSQUEHANNA SESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 12.050GVYD/MTUCYCLEEXPOSURE180140120l-zD100Illzz80COILBo+Qj+oooot000J40200+012345B78S1011121314151B1718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSEoCALCULATED TIPRESPONSEj.30-FIGURE3.2.4'fSUSQUEHANNA SESUNIT2CYCLE1RADIALTIPRESPONSECOMPARISONS 12.050GWD/MTU'CYCLE EXPOSURE61595755535149474543413937353331292725232119171513119753y1II-4.02-4.34-0.18-7-3.23-3.015068-1.162.8-1.660.892.94.81.45990.34-1.52640.477-0.930.7-2.119.216.26.63.427.42.4-0.713.30-1.88-0.81-2.00-2.08-0.061.46.51000204060810 121416182022242628303234363840 42444648505254565860 XDiff=[(Cele-Meas)/Core AvgTIPResponse]

X100%131-FIGURE3.2.42SUSQUEHANNA SESUNIT2CYCLE1INDIVIDUAL TIPRESPONSECOMPARISONS 12.050GWD/MTUCYCLEEXPOSUREleOHITORLOCATIOH4$,$$'14$4$+o44oo,>so~eoe+0+4<<f4Sgee)~tsLD'.Ito~oo<<I7dI~~$~7~TeTlT$1$14leTe11T<<4te$1ttte$4CORKAXIALHOOK4NeoeoeeolitNeetoese0OlIOOLNTOD heetetONse~OONTOOLNOOtoelhON~1t~4e~te~TohltltCORKANAL+NeAesetolitTNetooseoOAtowATto htacetoeee~OONTNOLNOOto¹hDN141$1<<lt41$tetlttte$4HOOKMOHITORLOCAnOH40,$$IIOHITOll LOCATIOH$$,$$14$1$$40400T+4430~o%$~o~sso)004$0+0~It$~eo1~~lehT<<1$14&41144$

<<tlttt$$4CORKAXIALHOOK+lltA$I¹$0Tl~eeseoeseoOAllelttes lltNestohoe~OONT$0LNOOte¹llON~It~$~7~IShItll141$1<<IT4Ist<<11tt$$$4CORKAXIALHOOK+NeAtsetOlitNtstoestoOAA004ATtO TltNeetoete~ODNTNOLNDO$0¹hON132-FIGURE3.2.43SUSQUEHANNA SESUNIT1CYCLE1SIMULATE-E VSGEPROCESSCOMPUTERCOREAVERAGEAXIALPOWERDISTRIBUTION 1.5+w10O)I0.5SIMULATE-EGEProcessCorn~uter 0.023456789101112BOTTOMTOPCycleAverageExposure=1.490GWD/MTUCorePowerLevel=99.6%ofratedTotalCoreFlow=100Mlbm/hrReactorPressure=1005pslaCoreInletSubcooling

=23.6Btu/Ibm133 FIGURE3.2A4SUSQUEHANNA SESUNITtCYCLE2SIMULATE-E VSPOWERPLEX COREAVERAGEAXIALPOWERDISTRIBUTION 1.5CL1.0LIJOCLLIJ)I-LIJ0.5SIMULATE-E POWERPLEX0.035-7BOTTOM91113151719212325TOPCycleAverageExposure=2.587GWD/MTUCorePowerLevel=99.9%ofratedTotalCoreFlow=95.8Mlbm/hrReactorPressure=1000pslaCoreInletSubcooling

=24.7Btu/Ibm-l34-FIGURE3.2.45SUSQUEHANNA SESUNIT1CYCLE3SIMULATE-E VSPOWERPLEX COREAVERAGEAXIALPOWERDISTRIBUTION 1.51.0LLIOCLLIJCL0.5////SIMULATE-EPOWERPLEX0.0BOTTOM35791113151719212325TOPCycleAverageExposure=0.178GWD/MTUCorePowerLevel=100%ofratedTotalCoreFlow=96.9Mlbm/hrReactorPressure=1002psiaCoreInletSubcooling

=24.4Btu/Ibm135-FIGURE3.2.46SUSQUEHANNA SESUNIT2CYCLE2SIMULATE-E VSPOWERPLEX COREAVERAGEAXIALPOWERDISTRIBUTION 1.51.0LLJO.CLLJI-LJJ0.5/tII//SIMULATE-EPOWERPLEX0.0135791113151719212325BOTTOMTOPCycleAverageExposure=0.583GWD/MTUCorePowerLevel=100%ofratedTotalCoreFlow=96.2Mlbm/hrReactorPressure=1000psiaCoreInletSubcooling

=24.4Btu/Ibml36-FIGURE3.2.47SUSQUEHANNA SESUNIT1CYCLEISIMULATE-E VSGEPROCESS'OMPUTERBUNDLEFLOWSAT1.490GWD/NITU0.1200.1220.0020.1190.1210.0020.1170.1210.0040.1190.1210.0020.1190.1210.0020.1200.1220.0020.1190.1200.0010.1310:1350.0040.1320.1330.0010.1180.1220.0040.1310.1180.1330.1210.002.0.0030.1300.1180.1350.1190.005-.0.0010.1170.1210.004PROCCOMPSIMULATE-E DIFFERENCE UnitsareMlbrn/hrAverageDifference:

0.0 01StandardDeviation

0.0020.1180.1200.0020.1190.1210.0020.1170.1190.0020.1160.1190.0030.1160.1170.0010.1180.1200.0020.1160.1190.0030.1170.1180.0010.118*0.1170.1160.1200.1170.1190.0020.00.0030.1170.1180.0010.1170.1200.0030.1160.1190.0030.1150.1190.0040.1300.1350.0050.1300.1310.0010.1310.1320.0010.1290.1340.0050.1180.1200.0020.1150.1170.0020.117.0.1170.00.1160.1190.0030.1300.1340.0040.1300.1310.0010.1300.1310.0010.1300.1340.0040.1180.1190.0010.1180.1180.00.1200.119-0.0010.1130.1160.0030.1150.1170.0020.1140.1150.0010.1140.1170.0030.1150.1150.00.1170.1190.1190.1180.002-0.0010.119.0.1220.1190.1220.00.00.1280.127-0.0010.1110.1150.0040.1120.1140.0020.1120.1160.0040.1120.1140.0020.1130.1140.0010.1140.1160.0020.1190.1190.00.1210.1210.00.1310.1360.0700.1260.1350.068-0.005-0.001-0.0020.1140.1180.1150.1180.0010.00.1170.1190.0020.1150.1160.0010.1160.1170.0010.1190.1200.0010.1240.1240.00.1250.1350.0680.1270.1340.0680.002-0.0010.00.1210.1240.1250.1230.1230.1200.1230.1230.1210.122-0.001-0.001-0.002-0.002-0.0010.1260.1350.1380.069.0.0700.1260.1300.1360.0680.0680.0-0.005-0.002-0.001-0.0020.1280.1290.0010.1290.1290.00.1300.1300.00.1300.1300.00.1300.1310.0010.1320.1410.0690.1340.1400.0680.002-0.001-0.0010.0690.0690.0690.0690.0690.0680.0680.0680.0680.068-0.001-0.001-0.001-0.001-0.0011370.0700.0700.0680.068-0.002-0.002 FIGURE3.2.48SUSQUEHANNA SES-UNIT'ICYCLE3SIMULATE-E VSPOWERPLEX BUNDLEFLOWSAT0.178GWD/MTU0.1140.1160.0020.1140.1150.0010.1180.1210.0030.1190.1230.0040.1170.1220.0050.1190.1200.001POWERPLEXSIMULATE-E DIFFERENCE UnitsareMlbm/hr0.1160.1170.0010.1190.1220.0030.1200.1180.123.0.1210.0030.0030.1180.1180.00.1210.1230.0020.1190.1220.0030.1170.1210.0040.1200.1200.0AverageDifference:

0.0 01StandardDeviation

0.0020.1210.1210.0.0.1310.1330.0020.1300.1300.00.1220.1210.1300.1240.1200.1320.002-0.0010.0020.1240.1260.0020.1290.1330.0040.1310.1330.0020.1190.1210.0020.1220.1240.0020.1270.1300.0030.1280.1280.00.1190.1190.00.1210.1230.0020.1200.1190.1190.122'0.0010.0030.1180.1180.00.1210.1220.0010.1190.118-0.0010.1190.1220.0030.1190.1210.0020.1150.1190.0040.1180.1210.0030.1140.1180.0040.1170.1200.0030.1150.1190.0040.1190.1210.0020.1160.1200.1190.1190.003-0.0010.1170.1170.00.1230.0030.119-0.0010.120.'0.1200.1170.1170.1200.1190.1160.1220.002-0.0010.0020.1200.1200.00.1200.1220.0020.1210.1210.00.1240.1240.00.1190.1210.0020.1170.1210.0040.1200.1220.0020.1140.1170.0030.1180.1200.0020.1180.1210.0030.1220.1240.0020.1180.1220.0040.1250.1270:0020.1300.1320.0020.0640.063-0.0010.1170.116-0.0010.1190.1200.0010.1180.1180.1190.1170.1200.118-0.0010.002-0.0010.1210.1220.0010.1230.122-0.0010.1260.1270.0010.1290.0640.1310.0630.002-0.0010.1200.1210.0010.1230.1230.00.1170.1180.0010.1260.125-0.0010.1200.1210.0010.1240.1240.00.1170.1190.0020.1270.126-0.0010.1210.1220.0010.1260.1260.00.1200.1220.0020.1280.1280.00.1280.1290.0010.1360.133-0.0030.1310.0640.0650.1320.0630.0640.001-0.001-0.0010.0640.063-0.0010.0640.0640.0620.062-0.002-0.0020.0640.0640.0640.0640.0620.0620.0620.063-0.002-0.002-0.002-0.001-1380.0650.064-0.001 FIGURE3.2.49SUSQUEHANNA SESUNIT2CYCLE2SIMULATE-E VSPOWERPLEX BUNDLEFLOWSAT0.583GWD/MTU0.1180.116-0.0020.1190.117-0.0020.1160.1190.0030.1190.118-0.0010.1170.1210.0040.1240.121-0.0030.1190.1230.0040.1230.1210.1220.124-0.0010.0030.1170.1210.1210.1190.004-0.0030.1230.1200.1210.122-0.0020.0020.1300.1330.1330.1320.003-0.0010.1170.1210.0040.1210.120-0.0010.1200.1220.0020.1180.1210.0030.1220.121-0.0010.1260.1290.003POWERPLEXSIMULATE-E DIFFERENCE UnitsareMlbm/hrAverageDifference:

0.0 01StandardDeviation

0.0030.1200.1220.0020.1320.1320.00.1300.1320.0020.1220.120-0.0020.1180.1210.0030.1280.1280.00.124-0.1280.0040.1190.1190.00.1130.1180.0050.1170.1210.1200.1190.003-0.0020.1180.1140.1170.118-0.0010.0040.1150.1190.0040.1160.1160.00.1180.117-0.0010.1120.1170.0050.1150.1190.0040.1160.115-0.0010.1180.117-0.0010.1120.1170.0050.1130.1180.0050.1160.1160.00.1130.1180.0050.1160.1160.00.1120.1160.0040.1150.1200.0050.1180.1180.00.1180.1180.00.1150.1190.0040.1110.1160.0050.1150.1150.00.1150.1150.00.1110.1160.0050.1130.1180.0050.1170.1170.00.1170.1170.00.1150.1200.0050.1130.1180.0050.1190.1190.00.1180.1190.0010.1210.1250.0040.1210.1250.0040.1320.130-0.0020.0640.063-0.001,;0.1170'.116-0.0010.1160.1180.0020.1250.122-0.0030.0640.062-0.0020.1130.1170.1170.1150.004-0.0020.1170.1160.1160.119-0.0010.0030.1230.1260.1240.1230.001-0.0030.0640.0640.0620.062-0.002-0.0020.1120.1170.0050.1180.117-0.0010,1250.1260.0010.0640.062-0.0020.1170.116-0.0010.1170.1210.0040.1280.125-0.0030.0640.063-0.0010.1150.1190.0040.1220.121-0.0010.1290.1300.0010.0650.063-0.0020.1200.1200.00.1240.1270.0030.1370.134-0.0030.0650.064-0.0010.1220.1260.0040.1330.131-0.0020.0650.064-0.0010.1300.129-0.0010.0640.063-0.0010.0640.063-0.0010.0650.064-0.001139-3.3uadCitiesUnit1Cycles1and2Benchmark Anadditional demonstration oftheSIMULATE-E calculational accuracywasperformed bycomparing SIMULATE-E resultstomeasurements fromtheQuadCitiesUnit1Cycles1and2cores.AftertheendofCycles1and2,gammascanmeasurements ofselectedfuelbundlesweretaken.Thisprovidesanexcellent measurement ofthepowerdistribution averagedoverthelasttwotothreemonthsofeachcycle'soperation.

Thistechnique formeasuring thepowerdistribution isnotpronetothetypesoferrorsthataretypicalofTIPmeasurements.

Reportedaccuracyofthegammascanmeasurements, combining measurement uncertainty andmeasurement methodbias,isapproximately 3%(Reference 12),whereasTIPuncertainty forreloadcoresistypically 5.1%(Reference 25).Asignificant numberofcoldcriticaltestswasperformed duringCycle1.Theavailable colddataincludebothin-sequence andlocalcriticals.

In-sequence criticals aretypicalofnormalreactorstartupswithwithdrawn controlrodsuniformly dispersed throughout thecore.Localcriticals involvewithdrawal of'afewcontrolrods(usuallyfromtwotofour)inalocalized areaofthecoreproducing verypeakedneutronfluxgradients.

Inadditiontothegammascanandcoldcriticaldata,hotreactivity statepoint andTIPmeasurement dataarealsopresented inthissection.TheQuadCitiesUnit1core(Figure3.3.1)isslightlysmallerthantheSusquehanna SEScores(Figure3.2.8),containing 724versus764fuelassemblies, anditsratedcorethermalpowerisapproximately 25%lessthanthatoftheSusquehanna SESunits.FortheQuadCitiesinitialcycle,theentirecoreconsisted ofGeneralElectricCompany(GE)7x7fuelwithalowgadolinia loading.Thiscontrasts theSusquehanna SEScoreswherearelatively highgadolinia loadingwaspresentinthe8x8fuel.TheQuadCitiesreloadfuelforCycle2consisted ofonly23GE7x7fuelassemblies, 36GESx8fuelassemblies, andfivemixedoxidetestassemblies.

TheGEreloadfuelcontained asmallgadolinia loading.-140-3.3.1HotCriticalCoreReactivity ComarisonsThepurposeforbenchmarking thehotcriticalcoreK-effective forQuadCitiesistodetermine ifanymajordifferences inresultsandtrendsexistbetweenSusquehanna SESandQuadCities.BecausetheQuadCitiescorecontainsmainly7x7fuelandlowergadolinia content,thebenchmark providesagoodcontrasttotheSusquehanna SESbenchmark andatestofthesteadystatemethodology.

Figure3.3.2showstheQuadCitiesUnit1Cycles1and2calculated hotcriticalcoreK-effectives withthoseofSusquehanna SES.AlthoughQuadCitiesresultsshowmorevariation, alinearlyincreasing trendispresent.Thistrendisconsistent withtheSusquehanna SESresultsandsupportstheexposuredependency oftheSIMULATE-E calculated criticalcoreK-effective.

Nobowl-shaped trendsareevidentintheQuadCitiesresults.Thistrendisattributed tothelowergadolinia loadinginQuadCitiesversusSusquehanna SES.Thelargevariation inK-effective ispossiblyduetotheinclusion ofdatathatdoesnotmeetthesteadystatecriteriadefinedinSection3.2forSusquehanna SESdata.Themeasuredcoreoperating parameters used'asinputtoSIMULATE-E arecontained inReference 27.AsevidentfromFigure3.3.2,theSusquehanna SESdataessentially formsacontinuous lineofdataasaresultofaverydetailedSIMULATE-E depletion calculations; however,theQuadCitiesK-effectives arequitesparse.3.3.2ColdCriticalCoreReactivity ComarisonsThebenchmark oftheSIMULATE-E calculated coldcriticalK-effective totheQuadCitiesUnit1Cycle1coldxenon-free in-sequence andlocalcriticals providesqualification ofPPaL'scoldmethodology andmodelstoperformshutdownmargincalculations.

Comparisons tothelargelocalcriticaldatabase(22localcriticals) testPPGL'scalculation ofrodworthsinlargelocalfluxgradientlocations thataretypicalofshutdownmargincalculations.

PPGL'sapproachinbenchmarking totheQuadCitiescoldcriticals istocomparethecalculated in-sequence criticalK-effectives (lltotal)tothelocalcriticalK-effectives.

Table3.3.1presentstheQuadCitiesUnit.1Cycle1calculated coldcritical.K-effectives whichhavebeencorrected forreactorperiod.Comparing localtoin-sequence criticalresults-141 demonstrates thecapability to.calculate thesamecoreK-effective forcriticalconditions withboth;peakedanduniformneutronfluxdistributions.

ThelocalcriticalK-effectives arecomparedtotheaverageofthein-sequence criticalK-effectives atthesameexposure.

Table3.3.2showstheresultsofthecomparisons.

Theaveragedifference betweentheK-effectives is0.00007andthestandarddeviation equals0.00064.Bothofthesevaluesarewellwithintheuncertainty inpredicting theSusquehanna SEScoldcriticalcoreK-effective (i.e.,standarddeviation equalto0.00137).

Thisdemonstrates thatnobiasexistsbetweenin-sequence andlocalcriticalcalculations.

Anadditional testofPPGL'smethodsinvolvesdemonstrating thatthesameobservedbiasbetweenhotandcoldcriticalcoreK-effective forSusquehanna SESalsoexistsbetweenhotandcoldcriticalcoreK-effective forQuadCities.Figure3.3.3showsthehotandcoldcriticalcoreK-effectives.

Despitethevariation inandlackofhotcriticalcoreK-effective data,thedifference betweenthecalculated hotandcoldK-effectives issimilartothatoftheSusquehanna SESdata.3.3.3Traversing In-coreProbeDataComarisonsAlthoughtheprimaryreasonforthedevelopment oftheQuadCitiesmodelistoperformthegammascancomparisons, someTIPdataisavailable forcomparison fromReference 27and28.Thisincludes15TIPsetsfromCycle1and13TIPsetsfromCycle2.ATIPsetcontains24axialmeasurements takenateachofthe41radialTIPlocations.

RadialTIPdetectorlocations areshowninFigure3.3.1.TheSIMULATE-E codewasusedtocalculate theTIPresponses foreachofthe28TIPsets.Asdescribed intheSusquehanna SESTIPresponsecomparison section,theSIMULATE-E calculated TIPresponses arerenormalized sothatthecoreaveragecalculated TIPresponseisthesameasthecoreaveragemeasuredTIPresponse.

TheaverageRMSofthedifferences betweentheSIMULATE-E calculated andmeasuredTIPresponses foreachTIPresponsecomparison iscalculated asdescribed inSection3.2.3.Resultsfromthenodalandradialcomparisons aregiveninTable3.3.3.Comparisons havebeenreportedforallTIPsetswiththeexception ofCase16.CorrectmeasuredTIPresponsedatais-142-unavailable forthiscase.AlthoughseveraloftheotherTIPsetsweretakenbeforethecorehadtimetoreachanequilibrium xenondistribution duetocontrolrodposition, powerorflowchanges,theyhavebeenincludedinthecomparison.

Figures3.3.4through3.3.15present.representative TIPresponsecomparisons forCycles1and2.Fortwoexposurepointsineachcycle,coreaverageaxial,radial,andfourindividual TIPresponsecomparisons areincluded.

Theindividual TIPresponsecomparisons inthefigures,wereselectedalongalinefromthecoreperiphery tothecorecenterasshowninFigure3.3.1.ThesamefourTIPlocations arealwaysshown.3.3.4GammaScanComparisons AttheendofCycles1and2gammascanmeasurements weretaken.Theavailable Cycle1data(Reference 29)consistofaxialpeaktobundleaverageLa-140activities for31fuelbundles,individual axialtracesfromtwofuelbundles,andtheaxialtracefromtheaverageofthe31individual traces.Useofthisdataisprimarily limitedtobenchmarking theaxialpeakingfactor.TheCycl'e2data(Reference 12)aremuchmoreextensive.

Atotalof89fuelbundleswerescanned.Ofthese,71werelocatedinoneoctantofthecore,providing measurement dataformostofthefuelbundlesinthatoctant.Theremaining 18fuelbundleswerechoseninotheroctantstocheckforasymmetries.

Seventy-three ofthebundleswerescannedat12axiallocations atapproximately twelve-inch intervals.

Theremaining 16bundleswerescannedat24axiallocations atapproximately sixinchintervals.

Thereportedmeasuredactivitywascorrected tocorrespond toactivityjustaftershutdown.

Thepractical accuracyofthereporteddataincluding measurement uncertainty andmeasurement methodbiasisapproximately 3%(Reference 12,Section4.3).Aspreviously discussed inSection2.3,thegammascandataitselfisameasureofLa-140gammaactivity.

Duringreactoroperation, La-140isproducedbothasafissionproductandbyBa<<140decay.Sincethehalf-life ofBa-140isapproximately 13daysandthatofLa-140isapproximately 40hours,thedistribution oftheBa-140andLa-140concentrations willbe-143-representative ofthecorepowerdistribution integrated overthelasttwotothreemonthsofreactoroperation.

Aftershutdown, theonlysourceofLa-140isfromdecayofBa-140.Becausethehalf-life ofLa-140isshortwithrespecttoBa-140,afterabouttendaysthedecayrateofLa-140iscontrolled bythedecayofBa-140.Therefore, therelativemeasuredLa-140activities arecomparedtotherelativecalculated Ba-140concentrations, andtheLa-140concentration doesnotneedtobecalculated.

TheSIMULATE-E codewasusedtocalculate thenodalBa-140concentrations attheendofbothcycles.AttheendofCycle1,thepeaktoaverageBa-140concentration wascalculated foreachofthe31fuelbundles.Ofthese,17wereuncontrolled and14werepartially controlled.

Thecalculated andmeasuredpeaktoaveragedatafortheuncontrolled andcontrolled fuelbundlesisshowninTables3.3.4and3.3.5,respectively.

Theaveragedifference forall31fuelbundlesis1.2%withastandarddeviation of2.1%.Theseresultsdemonstrate excellent agreement tothemeasuredaxialpeakingfactor.ThreeaxialtracesfromCycle1arealsoavailable fromReference 29.Themeasuredandcalculated La-140activities foreachtracearenormalized to1.0priortothecomparison.

Figure3.3.16showsthecomparison fortheuncontrolled bundle,andFigure3.3.17showsthecomparison forthecontrolled bundle.Figure3.3.18showsthecomparison fortheaxial31bundleaverageLa-140activities.

Themeasureddatafortheseplotswereonlyavailable ingraphical formfromReference 29.Therefore, nostatistics arecomputedfromthecomparisons, butthefiguresdemonstrate theabilityofSIMULATE-E tocalculate axialpowershape.Moreextensive gammascanmeasurements weretakenattheendofCycle2.ThedatasuppliedinReference 12allowforradial,nodal,peaktoaverage,andbundle(axial)comparisons.

Fortheradialandnodalcomparisons, theperipheral bundleshavebeeneliminated.

Thesebundlesarelowinpowerand,consequently, ofnoconcernfromathermallimitsperspective.

Forthenodalcomparisons thetopandbottomsixincheshavealsobeeneliminated.

Thesenodesarelowinpowerandare,consequently, oflittleimportance fromasafetystandpoint.

Themixedoxidebundleshavealsobeeneliminated fromthenodalandradialcomparisons sincetheyareatypicalofSusquehanna SESreloadfuel.<<144-Priortomakinganycomparison, themeasuredandcalculated datawerenormalized suchthatthecoreaveragerelativeactivitywas1.0.However,forthecalculated dataonlythenodesforwhichthereweremeasureddatawereusedinthenormalization process.Thecomparisons arebasedonthemeandifference betweencalculated andmeasurednormalized La-140activities.

Thisdifference iscalculated as:e.=c.-m.ii.iwherec.=thenormalized calculated La-140activity,

~m.=thenormalized measuredLa-140activity.

iThesubscript idenoteseithertheaverageactivityforthebundlefortheradialcomparisons orthenodalactivityforthenodalcomparison.

Thestandarddeviations forthecomparisons arecalculated as:a(s)=NP(e.-e)iN-1100XMwhereM=theaverageofthenormalized measureddataforthecomparison

=1.0forallcomparisons duetonormalization, e=theaveragedifference betweenthemeasuredandcalculated normalized La-140activities

=0.0forallcomparisons duetonormalization, N=numberofLa-140activities forthecomparison.

Theradialcomparisons wereobtainedbyaveraging thenodalLa-140activities foreachbundle.Theresultsfromthecomparisons areshowninFigure3.3.19.Thestandarddeviation of1.82%reportedonthefigurewascalculated forthosebundlesincludedintheoctantshowninthefigure.Iftheadditional 11bundlesfromtheotheroctantsareincludedinthecomparison, thestandarddeviation becomes1.92%.Basedonthecomparisons, nosignificant deviation

-145 intheradialpowershapeisapparentindicating

.SIMULATE-E willprovideanaccurateassessment oftheCriticalPowerRatio.Thestandarddeviation fromthenodalcomparisons is5.45%.Assuminga3.0%measurement uncertainty, thecalculational standarddeviation is4.55%.TheSIMULATE-E calculated peaktoaverageLa-140activitywascomparedtothemeasureddata.Thepercentdifference foreachassemblyiscalculated as:c.-m,e.'ix100imwherec=thecalculated peaktoaverageLa-140activityforfuelbundlei,m.=themeasuredpeaktoaverageLa-140activityforfuelbundlei.Theresultsofthecomparisons areshowninTable3.3.6.difference is-0.2%withastandarddeviation of1.5%.TheaverageThesecomparisons includedallassemblies andaccounted forallaxialnodes.Theresultsindicateexcellent agreement fortheaxialpeakingfactorandareconsistent withtheCycle1results.Theresultsfromtheindividual bundlecomparisons areshowninTable3.3.7.Thesecomparisons arealsoreportedforeverybundleandincludedallaxialnodes.Foreachbundle,theaveragedifference betweenthecalculated measurednodalactivities iscalculated as:enKZ'>>,.Kwheree=thedifference betweenthemeasuredandcalculated normalized nodalk,nLa-140activities forbundlen,andaxialnodek,K=numberofaxialnodesinthebundleforwhichmeasurements weretaken.-146-Thestandarddeviation foreachfuelbundleis:0nKg(e-e)K-1100Figure3.3.20showsthefuelassemblywiththebestaxialagreement (BundleCX0662).Althoughthisparticular bundleis.locatedonthecoreperiphery, itexhibitsexcellent agreement forallaxiallocations.

Theworstcomparison isshowninFigure3.3.21(BundleCX0399).Thecalculated averagedifference of12.2%ismostlyduetodifferences inthetopandbottomnodes.'owever, thecalculated La-140activityinthecentersectionofthebundlestillagreeswellwiththemeasureddata.Figures3.3.22through3.3.27showexamplecomparisons whicharemoretypicaloftherestoftheassemblies.

Mostofthecalculated difference isduetonodalcomparisons atthetopandbottomofthecore.Different topandbottomalbedoscouldhaveeliminated muchofthiserror.Asdiscussed inSection3.1,thealbedos,whichweredeveloped asaresultoftheSusquehanna SESmodelnormalization, werealsousedintheQuadCitiescalculations.

Itisexpectedthatduetodifferent coreandfueldesignsforQuadCities,thetopandbottomalbedoswoulddifferfromtheSusquehanna SESvalues.AlthoughtheSusquehanna SESalbedoswereutilizedintheQuadCitiescalculations, theSIMULATE-E modelprovidesanaccuratecalculation ofthepowerdistribution, ThissupportstheuseoftheSIMULATE-E modeltopredictpowerdistributions forfueldesignsotherthanthoseinthenormalization database.

-147 TABLE3.3.1QUADCITIESUNIT1CYCLE1CALCULATED COLDXENON-FREE 4CORECRITICALK-EFFECTIVES CoreAverageCoreReactorExposureTemperature Period(GWD/RZU)

(DEGF)(sec)NumberofControlled Local(L)orNotchesIn-secpxence (I)4Calculated CoreK-effective0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.02.8663.7483.7483.7483.7483.7483.7483.7483.7484.9386.9116.911.152160159159161160159158158159157157160159159160158159158158155163707577108120120'12517812018217918060751601505032789041651256533224538423939169120300.43.747.52805430015714018145100300639084008404634463248404840284028402839284026336631883928392839284168392840283946412669884388428843084267118'37883786830693683946514ILLIILLLLLLIILLLLLLLIILLLLILLIILI0.993140.992890.992070.992880.992840.991920.992090.992810.993240.992570.992700.993040.992780.993660.993530.992470.992470.992520.992680.990820.991710.995900.998470.998400.997600.997180.998180.997900.998120.997300.998291.000261.00041148 TABLE332QUADCITIESUNIT1CYCLE1IN-SEQUENCE VERSUSLOC2LLCRITICALCOMPARISON

~CoreAverageExposure(GWD/MTU)

ControlRodsWithdrawn andPositionCoreReactorTemperature PeriodIn-secpxence Minus(DEGP)(sec)LocalK-efffective0.038,1194842,1184816060-0.000160.038,1138,154844159750.000660.046,1984846,23844160500.000810.046,1984850,19846159320.000640.050,2384850,1984615878-0.00008'.0 0.046,2384850,2394626,3184826,3584830,3180815815990.41-0.000510.000160.018,1184822,11846157650.000030.026,2784826,3184830,31808159332-0.000930.026,2784830,2784830,31908159245-0.000800.026,2384826,2784830,27808160380.000260.022,3984822,3592426,35808158420.000260.026,3984822,3984826,35808159390.00021-149-TABLE3.3.2(conti.nued)

QUADCITIESUNIT1CYCLE1IN-SEQUENCE VERSUSLOCALCRITICALCOMPARISON CoreAverageExposure(GWD/MTU)

ControlRodsWithdrawn andPositionCoreReactorTemperature PeriodIn-secgxence Minus(DEGP)(sec.)LocalK-effecti.ve 0.042,3994842,3593838,35808158390.000050.038,3984838,3594834,359061581690.001913.7483.74826,1193822,1182026,1194822,11920707543.747.5"0.00073-0.000663.7483.74822,1164822,1561850,2764850,2392277108280540.000140.000563.74826,1594822,118.4818,15622120157-0.000163.74814,2794810,23I4814,19822125140-0.000386.91122,15I4822,1164826,118061821000.00015Average=0.00007StandardDeviation

=0.00064-150-TABLE333SUMMARYOPQUADCITIESUNIT1CYCLES1AND2TIPRESPONSECOMPARISONS CaseNumberDateCoreAverageNodalExposureRMS(CWO/MTU)

(a)RadialRMS(*)Cycle112345678910111213141516*6/29/728/30/729/11/7211/01/7212/26/723/08/735/16/736/06/737/19/738/30/7311/01/7312/11/7312/29/732/13/743/05/743/26/740.27,20.7120.8821.4702.2393.1903.8364.0744.7375.3016.0316.5586.8077.3967.6597.9809.43"8.858.2610.438.389.099.619.879.8410.7213.8411.119.2311.4211.725.435.675.805.725.61.5.796.126.465.915.875.365.805.634.975.58Cycle,lAverage10.125.71Cycle2171819202122232425262728297/26/748/15/749/12/7410/23/7411/18/7412/11/744/03/756/19/758/08/7510/20/7511/13/7512/19/7512/31/757.3037.5327.9648.4238.7899.14110.17311.23811.93512.89613.19813.61113.74112.5510.188.8910.308.087.808.077.928.798.168.5511.6512.734.384.854.254.634.664.804.944.425.005.294.764.545.03Cycle2AverageCombinedAverage9.519.844.735.26*CorrectmeasuredTIPresponsedataisunavailable.

-151-TABLE334QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONS UNCONTROLLED BUNDLESCoreLocationMeasuredPeaktoAverageLa-140ActiviCalculated PeaktoAverageLa-140ActivityDifference

(*)39,5841,5841,5617,4855,4257,4257,4007,3409,3207,2609,2431,2647,1823,1025,0831,1033,081'.2711.2121.2241.287.1.1851.1911.2451.1761.1481.1701.1861.3541.2501.1781.2391.1721.2211.2701.2391.2181.2891.2441.2601.2571.2141.1941.2271.2341.3291.2591.1781.2241.1821.235AvexageDifference

=1.7%StandardDeviation

=2.3%-0.12.2-0.50.25.05.81.03.24.04.94.0-1.80.70.01~20.91.1-152-TABLE3.3.5QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONS CONTROLLED BUNDLESCoreLocationMeasuredPeaktoAverageLa-140ActivityCalculated PeaktoAverageLa-140ActivityDifference

(*)39,5617,50'15,4855,4009,3407i3209,2607,2449,1847,1625,1023,0833,1031,081.2821.6091.2801.2691.4181.3221.3661.2311.6021.2831.3581.2511.3851.3691.2841.6311.3071.2791.3941.3321.3981.2561.6251.3051.3421.2471.3501.3730.21.42.10.8-1.70.72.32.01.41.7'1.2-0.3-2.50.3AverageDifference

=0.5%StandardDeviation

=1.5%-153-TABLE3.3.6QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONS PEAKTOAVERAGELA-140ACI'IVITIES BUNDLEIDLOCATION(XY)PEAKTOAVERAGEMEASUREDCALCDIFFEfKNCE

<r.)CX0214GEB159CX0575CX0588CX0420CX0052CX0287CX0378GEH023CX0150CX0440CX0351CX0453CX0723CX0015CX0316CX0498CX0044CX0327CX0106CX0165CX0306CX0660CX0310CX0523CX0093CX0297CX0611CX0024CX0225CX0617CX0231CX0585CX0631CX0186CX0332CX0161CX0100GEH022GEH029CX0281CX0399CX0396CX0198CX0393GEH002,GEB132GEB160(33,34)(31,32)(31,34)(33,32)(7,32)(15,32)(23,34)(17,42)(9,40)(7,42)(9,42)(7,40)(23,32)(17,40)<15,42)(15,40)(25,34)(7,34)(9,34)(9,32)(25,32)(15.34)(17,34)(27,34)(3,36)(13,40)(23,38)(3,40)(15,46)(21.32)(9,46)(15.38)(19.36)(5,38)(19.42)(11,44)(19,38)(13,46)(9,36)(13,44)(21,36)(9,38)(11,40)(5,36)(11,36)(13.36)(17,36)(31,30)1.19231.13791.19371.18421.24201.19901.18711.20891.20081.31081.25861.27141.19751.20281.18941.21731.18921.24451.22851.23411.19321.20061.18561.18661.34681.21871.19821.39241.18721.18641.30861.21811.21031.32631.20391.21691.22371.22251.19441.16601.18441.25481.20541.28751.20281.16511.15891.13531.20041.13651.18811.19731.26201.19661.18561.21201.18871.27331.22001.24171.19451.19791.17761.20011.18691.24571.23031.25111.19911.19361.17451.19031.35091.18391.20081.36741.20231.17681.27621.18891.17641.30511.21061.20931.20321.21701.19211.17591.16881.19781.18251.27981.19831.17891.15461.13600.7-0.1-0.51.11.6-0.2-0.10.3-1.0-2.9-3.12~3-0.2-0.4-1.0-1;4-0.20.10.11.40.5'>>0.6-0.90.30.3-2.90.2-1.81.3-0.8-2.5-2.4-2.8-1.60.5-0.6-1.7-0.4-0.20.9-1.3-4.5-1.9-0.6-0.41.2-0.40.1-154-3.3.6(continued)

QUADCITIESUNIT1EOC2GAMMASCAN(X)%'ARISONS PEAKTOAVERAGELA-140ACTIVITIES BUNDLEIDLOCATION(XY)PEAKTOAVERAGEMEASUREDCAIDDIFFERENCE (X)GEB161GEB158CX0494CX0490CX0174CX0683CX0520CX0394CX0137CX0482CX0717CX0682GEH008GEB123GEB149CX0719CX0672CX0362GEB105CX0546CX0553CX0662CX0643CX0397CX0286CX0191CX0057CX0124CX0414CX0412CX0384CX0318CX0401CX0398CX0359CX0711CX0096CX0622CX0445GEB162CX0162(29,32)(29,30)(7,48)(5,46)(7.46)(1,32)(3,32)(11,32)(5,32)(27,32)(19,32)(1,40)(13,48)(17,44)(21,40)(9,50)(15,36)(13.34)(25,36)(9,52)(5,44)(3,42)(1,34)(13,38)(9,48)(11,50)(13,32)(17,10)(47,38)(37,48)(23.14)(13,24)(47,24)(23,48)(37,14)(49,10)(9,18)(47,6)(41,18)(5,48)(17,32)1.13351.13021.34901.34951.33331.33111.31161.22631.27851.18021.15631.41281.21071.16641.18611.33281.19841.21441.16731.35901.35831.38271.33571.21031.32661.29331.22331.21371.14731.18521.19461.15581.21681.19411.16341.29111.20071.31191.20101.35181.17771.13641.13541.35281.34521.33441.35561.34021.23981.28841.18301.16381.43201.20511.17401.18571.32791.18171.20701.14971.37001.31181.39601.36121.18401.29861.28991.22611.21941.18331.19091.19091.18421.18251.18821.18841.31741.24341.35661.20071.35181.16980.30.50.3-0.30.11.82.21.10.80.20.61.4-0.50.6-0.0-0.4-1.4-0.6-1.50.8-3.41.01.92~2-2.1-0.30.20'3.10.5-0.32.5-2.8-0.52.12.03.63.4-0.00.0-0.7AVERAGEDIFFERENCE:

STANDARDDEVIATION:

-0.2r.1.5r.-155-TABLE3.3.7UADCITIESUNIT1EOC2INDIVIDUAL BUNDLEGAMMASCANCOMPARISIONS BUNDLELOCATIONID(XY)STANDARDAVERAGEDEVIATION DIFFERENCE (X)CX0546CX0719CX0191GEB162CX0494CX0286GEH008CX0398CX0412CX0490CX0174CX0617CX0100CX0024CX0553CX0332GEH029GEB123CX0662CX0150CX0440CX0015CX0378CX0186CX0682CX0611CX0351GEH023CX0396CX0093CX0316CX0723GEB149CX0631CX0399CX0397CX0231CX0161CX0297CX0414CX0523CX0198GEH022CX0393GEH002CX0672GEB132CX0585CX0281(9,52)(9.50)(11,50)(5,48)(7,48)(9,48)(13,48)(23,48)(37,48)(5,46)(7,46)(9,48)(13,46)(15,46)(5,44)(11,44)(13,44)(17.44)(3,42)(7,42)(9,42)(15,42)(17,42)(19,42)(1.40)(3,40)(7,40)(9,40)(11,40)(13,40)(15,40)(17,40)(21,40)(5,38)(9,38)(13,38)(15,38)(19.38)(23.38)(47,38)(3,36)(5,36)(9,36)(11.36)(13,36)(15,36)(17,36)'(19,36)(21,36)0.007,0.0160.0170.0270.0140.032-0.0200.045-0.0070.0380.0210.0330.0290.0130.0360.016-0.0260.0270.0030.0050.0200.005-0.0120.0070.0120.005-0.003-0.054-0.031-0.0100.007-0.016-0.006-0.001-0.0120.008-0.009-0.0030.007-0.0350.0120.008-0.074-0.007-0.045-0'04-0.0330.0070.0094.344.955.374.285.416.117.466.325.745.115.936.307.555.735.876.657.428.733.98.6.687.497.177.926.553.835.226.508.186.757.117.056.927.716.5012.176.176.335.795.785.414.655.967.276.427.706.597.806.646.33-156-TABLE3.3.7(continued)

UADCITIESUNIT1EOC2INDIVIDUAl, BUNDLEGAMMASCANCOMPARISIONS BUNDLEIDLOCATION(XY)STANDARDAVERAGEDEVIATION DIFFERENCE (X)GEB105CX0643CX0044CX0327CX0362CX0306CX0660CX0287CX0498CX0310CX0575CX0214CX0683CX0520CX0137CX0420CX0106CX0394CX0057CX0052CX0162CX0717CX0225CX0453CX0165CX0482GEB161GEB159CX0588GEB158GEB160CX0318CX0401CX0096CX0445CX0384CX0359CX0124CX0711CX0622(25,36)(1,34)(7.34)(9,34)(13,34)(15,34)(17,34)(23,34)(25,34)(27,34)(31,34)(33,34)(1,32)(3,32)(5,32)'(7.32)(9,32)(11.32)(13,32)(15,32)(17,32)(19,32)(21,32)(23,32)(25,32)(27.32)(29,32)(31,32)(33,32)(29,30)(31.30)(13,24)(47,24)(9.18)(41,18)(23,14)(37,14)(17,10)(49,10)(47,6)-0.0230.043-0.002-0.008-0.011-0.0220.005-0.0050.0050.0050.003-0.0040.0450.0160.0120.014.-0.002-0.016-0.007-0.012-0.015-0.003-0.002-0.009-0.006-0.007-0.034-0.0260.015-0.038-0.018-0.023-0.001-0.0200.0180.0040.0340.0130.0300.0337.504.245.776.296.145.97.5.867.416.136.166.805.924.374.905.155.524.995.885.696.435.665.825.316.475.406.568.228.467.377.897.775.566.784.917.706.724.885.625.153.67157 FIGURE3.3.1QUADCITIESUNITICORETlPLOCATIONS 5957555351494745434139373533312927252321LINEOFTIPSYMMETRY00020406081012141618202224262830323436384042444648505254565860XControlRodLocationLocationForIndividual TIPResponseComparisons

~Traversing In-coreProbeLocation 1.01FIGURE3.3.2SIMLUATE-E HOTCRITICALCOREK-EFFECTIVE VSCOREAVERAGEEXPOSUREee1.00ss'IssIsee~~~~eOI-UJ099IUJfCOO0.980.97-0l~ee@ee~0'eeer~o~~~::::::~:"0LegendU1C1HOT.---.:-lrl".'"'."".'"0U2C1HOTU1C2'OTU2C2HOToU1C3HOT~QC1C1HOT~QC1C2HOT12345'78'10'112131415COREAVERAGEEXPOSURE(GWD/MTU) 1.0100*~IfI0FIGURE3.3.3QUADCITIESUNIT1CYCLE1SIMULATE-E HOTANDCOLDCRITICALCOREK-EFFECTIVES 1.00IJJ0II-oIJJLL0.99-UIhCLLIlC0O0.880......:....

0:.0N...:.......',.....

x.I~~~~~~o......................:..0...:...O.

':..:.:o:'ICLegendoQC1C1HOTxQC1C1COLD""'.970It1234667COREAVERAGEEXPOSURE(GWD/MTU) 10 160FIGURE3.3.4QUADCITIESUNIT'I'CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 2-239GWD/MTUCOREAVERAGEEXPOSURE160140120I-KD100tQRUsoCoCLeo0++000~+..0..+e4020001284667S9101112181415161718192021222824 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE>>161-FIGURE3.3.5QUADCITIESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS 2.239GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-4.346.34-3.21-0.58-0.23-10.36-2.866.362.264341393735333129-8.33++++2.7++++.61135.414.++++1.3I+++27252321I191715131.682.68++++-4857.8.59-6.6687-1.17-10.58-5.21-3.66.30-0.80-2.415456586Diff=[(Calc-Meas)/Core AvgTlpResponse]

X100%-162-0002040608101214161820222426283032343638404244464850520X FIGURE3.3.6QUADCITIESUNIT1CYCLE1INDIVIDUAL TIPRESPONSECOMPARISONS 2.239GWD/MTUGOREAVERAGEEXPOSUREIlOHIIORLOCAllOHdd,ddMOHIlORLOCATIOH44,dd'llIOOrr~0OaO.~os'~>';KZVosI0.i.0~Ittttoor~0aC0a..e+000toIlIIot~~~t~1~~ttTl1tI~ltloaTTlolttoolootoRICORKALGALHOOK0Votatttomr RttrONOR0AAICIRATRD mrRotrotot~CoNTRoLRooroamoN~~~~4t~Tt~10mtoItttttIoITltatoatttottCORKAXIALHOOK0taAWMOmrRurORuoINLCOIATto TI~Ruroutt~coNTRCLRoorottmoNMONITORLOCA1IOH40,5$IIOIKTORLOCATIOHdK,SOIOOtto5aoeooo0oOo0to00toottoL5r~oa0I040g000TOT~~I~o~t~T~~lt11lt'loV1t10ITltltttttttttttCORKAXIALKOOK+vtAtuttomrRttroNotoAALOutATCO TlrRttrouot~CCNTRCLRoorovmoN~I0o~t~T~~10ltloI~1I1~'I~1T1tI~tttlttoottCORKAXIALHOOK0VRAtuttomrRttrouotoCALOutATROmr RttroeuvooNTRDLRootovmoN-163-180RGURE3.3.7QUADCITIESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 7.398GWD/MTUCOREAVERAGEEXPOSURE180140120I-RD100LUK80COQ.60~~~~~~l~~~~~~~o0d'e+q~:g44g~0+0y++0+402000123456789101112131415161718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE164-FIGURE3.3.8QUADCITIESUNIT'fCYCLEtRADIALTIPRESPONSECOMPARISONS 7.396GWD/MTUCOREAVERAGEEXPOSURE61595755535149474543-7.61++5.14-5.23++++-1.15.69-1.545;2+++++413937-4995.92-2.00942.906.035333129272523.214.893.42.08++++++++5.39.4+2.6++++-3.54-3.52691917151311975312.5-7.10-3.59-102005-4.545-0.89520.05000204060810 121416182022242628303234363840 42444648505254565860XDiff=[(Calo-Meas)/Core AvgTIPResponse]

X100%-165-FIGURE3.3.SQUADCITIESUNIT1CYCLE1INDIVIDUAL TIPRESPONSECOMPARISONS 7.396GWD/MTUCOREAVERAGEEXPOSUREMONITORLOCATIONNL,$$MONITORLOCATTON4$,$$Ito100X~Ito0gQ6+000to~b0TT'o0'LZ0100$0IIS784040~~t00~~T~~TCllltltltlololtlolttotlttCCCI CORKAXIALNODE0oclcuotolitoctfootc0OALOQAICO MIICCPOOCC

~COOTCOL000tooOIOO~~t~0~~T~0TOll010TIItIOlfIt10totlttttttCORKANALNODE+WAOWCOTltOottouoo0OALOOIATCO TltIlottooK~COCTOOL000totmooMONITORLOCATION41,$$MONTTORLOCATION$$.$$100~10oo400TtoL5IooeoooT+IoooItIIII~1~0~0~T~~1011ltIt11ItIo11It10tttlCttt01COREAXIALNODE~tlcAcuccDllt hcotolltc 0OALOIAATCO

~ICttolltt~ooutcoLcootoolcloN~~00~C~T0~IOIlItItITI~IOItI0COIIKAXIALNOOK+OCACIONDTItIICttoCCC OOALOOLATCOnt aaetoaao~OOOTCOL000000OIOOI~Ct~ItlttM166-180FIGURE3.3.10QUADCITIESUNIT1CYCLE2'VERAGEAXIALTIPRESPONSECOMPARISON T.532GWD/MTUCOREAVERAGEEXPOSURE160140120'I-R100ILIz80COCLBO0000+60004020012346B789101112131416161718192021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE-167 FIGURE3.3.11QUADCITIESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS 7.532GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-5.985.6-3.46++++++-1.98-5.64-4.090.9434139373533312927252321I19171513.97I1.2120.62\223.043.66.313.3-1.49-1.025.4-0.33-5.894.5++++-0.16-10.22+-5.7697531.1032I3.4++I'I-0.62-4.320002040o"081012X505251416182022242628303234363840 424446~84565860Diff=[(Calc-Meas)/Core AvgTlPResponse]

X100%-168-FIGURE3.3.12QUADCITIESUNIT1CYCLE2INDIVIDUAL TIPRESPONSECOMPARISONS 7.532'GWD/MTU COREAVERAGEEXPOSUREQONllOflIOCAllON4l,EElee~ceoII0+0IgIesNI~eC~e00++1o+t0I0040oo051$$~e~elL40I00gplIoIb)otII~~l~ie~T~Tell1$1~li1$leIT1$1$le$1$$$$NCOREAXIALNODE0NNAewsoneNeseosssI'ALosMTso n~esseosos~CONTNOLNooeoslnON~1sei~~T$~1$111$1$111$141$1~Telelllllsli COREAXIALNODE+IINAssesone ssseosss0OALOOMTCO nelisle~~coNTNoLeooeoetnosIlONIIORLOCAllON40,$Elle0Ies~e~ee+000logeo0~$0eo04~Il~Cl~T~~1~llTl'llli1$I~1$1$Te$$$1$$$$$$COREAXIALNODE+NNAswlsoill'sseoNss oOAIOSLATSOnf

$$$$0NSS~OONnCOL000KWTICNI~sei~~T~~Te11Tl1$lillTsTTI~lele~IllllliCOREAXIALNODE+IITAsssso ne1$$$0Nss0OAICAILATTO ne11$$$0~~OONINOL$00eoelnON169-180FIGUAE3.3.13QUADCITIESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON 13.1S8GND/MTUCOREAVERAGEEXPOSURE160140120I-ZD100LIZZ&0(0ILeo000O....'...............;.+pQoe009':+o+0402000123466789101112131416181718182021222324 COREAXIALNODE+MEASUREDTIPRESPONSEoCALCULATED TIPRESPONSE-170-FIGURE3.3.14QUADCITIESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS 13.198GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-5.458.0+-1.539.14-0.38.15-2.00-2,010.134341393735333129-7.625.0903.8-2.662.64.75.84-1.533072.4727252321-0.16-2.159.3++++++3032-40919-171513'332-6.153.74.130872002.54.40-0933Y100X0204060810 121416182022242628303234363840 424446485052 54565860Diff=[(Caic-Mess)/Core AvgTiPResponse]

X100%-171-FIGURE3.3.16rQUADCITIESUNIT1CYCLE2INDIVIDUAL TIPRESPONSECOMPARISONS 13.198GWD/MTUCOREAVERAGEEXPOSUREMOMTORLOCATIONINL$$MONITORLOCAllON4$,$$laa0~+oooeo0ar+o0lsaes~T~~wTT>>IsTI>>>>IT>>>>asCIaaaaaaCOICAssssoTl~psapopss0OAIOSLATCS llPSCSPOOSS~COSTIIOLSOSPOCITIOO~~s4~~T~~>>TllalsTl'>>lsTPI~'>>eatlaaaaPICOREAXIALNODE+IHAsssaoTlpsaspol>>s0OA>>CSATCO TarSCSPOSPS~cocllKILsooposllasMONITORLOCATION40,$$MONITORLOCAllONEginlalapTasX>>s0PP'll0a>>sLXlle~000os~it.0IaesssT~'>>ll>>lalCI

~>>if>>>>asalaaasa COhEAXIAlNODE+ocACCI>>olipcssposasooauwLATso Tlpssaposss~OOSTCOLOOSPONTlOS1~s~~'p~Is11lslsIIlaIsITIa%as.aIaaaaaaCOE+aacAsssso lipacapoces0oAIOoLATCO T>>sasposes~ooslsoLaoopoNTlos-172-1.8FIGURE3.3.16QUADCITIESUNIT1EOC1GAMMASCANCOMPARISON NORMALIZED AXIALLA-140ACTIVITYBUNDLELOCATION23,101.6eI-OOI-CC1.41.21.0-0.8-0.6-0.4~~~/ee////).~.s~-~../.'~e/~/~~eJ~J....:;............:.

Legende~'~~v~~eee~~~~~~~~~e~~r~~J~~~I~~~e'ee$e'\\\eGAMMASCAN:0.2-eSIMULATE-E I~~~~~'eeo.o$BOT12345678910111213141516.1718192021222324OMAX1ALNODETOP FIGURE3.3.17QUADCITIESUNIT1EOC1GAMMASCANCOMPARISON NORMALIZED AXIALLA-140ACTIVITYBUNDLELOCATION66,401.8>>1.6>>CONTROL:RQDI:OSITIQN:1.4I-01.2O01.0-0.8LlJO.BLLI0.4>>>>~~~~8~J~~~0~J~~~I~I~~~I~~'~r>>~y~~~>>>>>>~/~I'>>~>>///~//~/>>~Q~>>Legend>>>>////~/GAMMASCANSIMULATE-E~J~~~~~~~~0.20.02345B789101112131415161718192021222324BOTTOMAXIALNODETOP FIGURE3.3.18QUADCITIESUNIT1EOC1GAMMASCANCOMPARISON NORMALIZED AXIALLA-140ACTIVITY31BUNDLEAVERAGE1.6~'1.4I-1.2rQ01.0I0.8LLI00.6-UJ0.4~~~~~~~~/'///I//I~w.rP~I~tV'~LegendGAMMASCAN:SIMULATE-E

~~hr~~r~~~~~~Wh~~~~~I\-%------~~~~1\~l0.2~4~~~~h~~h~h~~0.0123456789101112131415161718192021222324BOTTOMAXIAL-,-NODETOP FIGURE3.3.19QUADCITIESUNIT1EDC2RADIALGJQtSLSCANCOHPARISON 52500.6080.75?0.6240.7740.0160.0170.5790.7370.5930.7690.0140.0321.175l.157-0.0180.6740.8170.6950.8490.0210.0321.0151.0571.0441.0700.0290.013X.XXXGAHHASCANX.XXXSIHULATE-E X.XXXDIFFERENCE I420.8280.9490.8340.9690.0060.0201.0001.2911.0161.2670.016-0.024l.2731.3000.0271.0921.1201.0931.0981.1091.1000.006-0.0110.007STANDARDDEVIATION:

1.82/400.5730.5780.0050.8901.2151.0701.0581.0621.1420.8881.1651.0421.0491.0701.127-O.OOR-0.050-0.028-0.0090.008-0.015l.2341.229-0.0050.8070.8070.0001.0351+025-0.0101.0491.0641.0571.05?0.008-0.007l.0591.057-0.0021+0261.0340.008360+6800+8390.69R0.8480.0120.0091.2741.0?RI1.2841.0791.2691.0601.0411.2041.06?I1.R421.0761.2381.0691.051-0.070-0.005I-0.042

-0.003-0.0310.0090.0101.RRR1.201-0.0210.9421.0150.9421.0080.000-0.0071.0511.0661.0551.0421~0461.060-Oo009-O.ORO0.0051.0281.0351.0391.0241.0411.044"0.0040.0060.0051.0501.0381.0541.0360.004-0.002320~70308310~90409731010101510401044102610051~005102910660.7190.8430.9190.9720.9961.0091.0301.0311.0241.0050.9971.0241.0600~0160.0120.015-0.001-0.014-0.006-0.010-0.013-0.0020.000-0.008-0.005-0.0061.0371.05R0.01530135791113151719212325R7293133 AOlFlGURE3.3.20QUADCITIESUNIT1EOC2GAMMASCANCOMPARISON BUNDLEID:CX0662I-~)VC)IOClll!NCC~0Legend~...'-"0=Measured o=Calculated IIC)0.012.024.03B.O48.0B0.072.084.09B.O108.0120.0132.0144.0DlSTANCEFROMBOTTOMOFGORE(IN)

FIGURE3.3.21QUADCITIESUNIT1EOC2GAMMASCANCOMPARISON BUNDLEID:CX03990-pv-I-0CDIQQLQN<o0~~~Legend~-..'--.0=Measured o=Calculated I\Q0.012.024.036.048.0BO.O72.084.0SB.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.22QUADCITIESUNIT1EQC2GAMMASCANCQMPARISQN BUNDLEID:CX0231I-~)QC)IgOOluN0Z0Legend~...'--.oMeasuredoCalculated C)O0.012.024.03B.O48.0BO.O72.084.09B.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.23QUADCITIESUNIT1EOC2GAMMASCANCOMPARISON BUNDLEID:CX02970-)~I-OC)lIOnMNEC~0zLegend.-----:-"

o=Measured o=Calculated IP0.012.024.0S6.048.080.072.084.098.0108.0120.0182.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.24QUADCITIESUNIT1EOC2GAMMASCANCOMPARISON BUNDLEID:CX07'I7~~~IOI-)rI-VIO1QUlNK~0xLegend~---.'.--.

0=Measured o=Calculated 0.012.024.036.048.060.072.084.096.0108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.25QUADCITIESUNIT1EOC2GAMMASCANCOMPARISON BUNDLEID:CX0378L-u)I-0C)IOQLUrl<o0Legend~".-'.-"0=Measured o=Calculated 0.012.024.03B.O48.060.072.084.09B.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.2BQUADCITIESUNIT1EOC2GAMMASCANCOMPARISON BUNDLEID:CX0150l-~Qv'-OagOTQLLIN0RLegend~.';"o=Measured0=Calculated

~~~~~~~~00.012.024.036.048.060.072.084.086.0108.0120.0132.0144.0DISTANCEFROMBOTTOMOFGORE(IN)

FIGURE3.3.27QUADCITIESUNIT1EOC2GAMMASCANCOMPARISON BUNDLEID:GEH029I-~)r'COIOT0Ult4Kg)0ZLegend~.""'.-"CIMeasured0Calculated II0.012.024.03e.o48.0B0.072.084.088.0108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN) 3.4PeachBottomUnit2Ccles1and2ComarisonsOnespecificapplication ofPPGL'ssteadystatecorephysicsmethodsandmodelsistoprovideinputto'thetransient analysisbenchmarking ofthePeachBottomUnit2endofCycle2turbinetriptests.Inordertoprovidethenecessary input,SIMULATE-E modelsofthePeachBottomUnit2Cycles1and2coresweredeveloped.

ThesemodelswerethenusedtosimulatethePeachBottomUnit2coredepletion throughCycles1and2.Comparisons toTIPmeasurements takenduringCycles1and2andtoGeneralElectricCompany(GE)processcomputerPlpowerdistributions takenprior'totheturbinetriptestsassesstheaccuracyofthecoredepletion calculations.

PeachBottomUnit2isaGeneralElectricBWR-4corethatconsistsof764fuelassemblies withanactivecoreheightof144inches.Theinitialcyclecontained 764GeneralElectric7x7fuelassembliesg Cycle2contained 576initial-core fuelassemblies and1888x8freshfuelassemblies.

Althoughreactordesignandratedconditions arequitesimilartoSusquehanna SES,thePeachBottomUnit2coreloadingpattern,fuelbundledesign,inletfloworifices, andcoresupportplatebypassflowpathsaresignificantly different.

Thesedesigndifferences weretakenintoaccountindevelopment ofthePeachBottomUnit2SIMULATE-E model.Amoredetaileddescription ofthePeachBottomUnit2coreisfoundinReference 30.TheaverageRMSofthedifferences betweentheSIMULATE-E calculated andmeasuredTIPresponses foreachPeachBottomUnit2TIPresponsecomparison iscalculated asdescribed inSection3.2.3.Figure3.4.1showstheRMSoftheTIPresponsecomparisons forPeachBottomUnit2Cycles,land2.Thesecomparisons areslightlyworsethanSusquehanna SESresultsbutarestillquitegood.ThePeachBottomUnit2coreoperating data(Reference 30)usedformodelingthecoredepletion waslessdetailedthanthedatausedforSusquehanna SES.Thislackofdetaileddatamaybethecauseoftheseslightlyworseresults.Figures3.4.2through3.4.4showtheendofCycle1coreaverageaxial,radial,andfourindividual TIPresponsecomparisons, respectively.

Figures3.4.5through3.4.7presentthesamecomparisons forendofCycle2.Asshown-185-inthesefigures,thecalculated TIPresponseagreeswellwiththemeasureddata.Theseresultstherefore indicatethattheSIMULATE-E modelsaccurately'alculate three-dimensional coreexposure, voidhistory,andcontrolhistoryarraysfortheendofeachcycle.Aspreviously stated,theprimarypurposefordeveloping thePeachBottomUnit2modelswastogeneratethenecessary transient analysisinputs(e.g.,crosssectionsandkineticsparameters)

.TheendofCycle2TIPresponsecomparison indicates thatthecorehistoryarrayshavebeenaccurately calculated.

Becausetheturbinetriptestswereperformed overaspanofafewweekswithacorepowerhistoryplaguedbynonsteady stateoperation, carefulanalysisofpowermaneuvers wasrequiredtoadequately calculate theactualxenonconcentration atthetimeofthetests.Theaccuracyofthecalculated xenonconcentration immediately priortoeachturbinetriptestcanbeassessedbycomparing theSIMULATE-E calculated powerdistribution totheavailable GEprocesscomputerPlpowerdistribution (Reference 31).Figure3.4.8showseachaxialpowerdistribution comparison.

TheSIMULATE-E calculated powerdistributions arebasedonactualcoreconditions priortothetestsasreportedinReference 31.Thefigureshowsthethreedifferent powerdistributions (i.e.,toppeaked,middlepeaked,andslightlybottomI'eaked)thatexistedatthetimeofthethreeturbinetriptests.Thisindicates thatthecoreconditions wereconsiderably different foreachtest,andthattheSIMULATE-E modeliscapableofcalculating thesedifferences.

Typicalreloaddesignandlicensing applications donotrequiremodelingthecomplexity ofnonequilibrium xenon.Therefore, thisbenchmark providesagoodtestofPPGL'ssteadystatephysicsmodelsandmethodsinanapplication whichismoredifficult thanthenormalreloadanalyses.

-186-FIGLIRESA.1PEACHBOTTOMUNIT2CYCLES1AND2RELATIVENODALRMSOFTIPRESPONSECOMPARISONS 12.011.0~~~10.0-9.0-"-CO&.0-fL"7.0-D0Z60-.UJ5.04.0-".CC0I-3.0-".2.0-IILegend"PB2C1PB2C2.'~~J~1.0-0.0-0345678'10COREAVERAGEEXPOSURE(GWD/MTUj 11121314 80FIGURE3.4.2PEACHBOTTOMUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON 11.133GWD/MTUGOREAVERAGEEXPOSURE8070BoI-z50IUzU4oMCLso0+00+++++000+0+00+0J20100I012S4567881011121S1416161718182021222324 COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATED TIPRESPONSE188-FIGORE3.4.3PEACHBOTTOMUNIT2CYCLE1'ADIALTIPRESPONSECOMPARISONS 1l.I33GWD/MTUCOREAVERAGEEXPOSURE61595755535149474543413937-3.30-4.93-3.03-4.36-0.201.670.129.53.81-1.273.4-6.440.06-5.06-0.433533312927252321++++-0.5611.533.50.16-0.65-1.27-3.11-3.791.04.719171513-0.89-3.092.27++++++++-4663.I++++-0.09-0.11-547Y1IIII'II000204060810 121416182022242628303234363840 424446485052 54565860XDiff=[(Calc-Mess)/Core AvgTiPResponsej X100%189-FIGURE3.4.4IPEACHBOTTOMUNIT2CYCLE1INDIVIDUAL TIPRESPONSECOMPARISONS 11.133GWD/MTUCOREAVERAGEEXPOSURE~IOHITOALOCAllOHdIL$$$IOHIIORLOCATIOH$$,$$leetseteeIISgIee0+404TesL~?ggIee~sl's0~4gf00+04P0~~s~~s0r~~tettTetstttstetresvsestssesstCORKAXIALHOOKpNRAsvesolitNespoNss0OAIOVIATRD 11PRssPONesNCONTROlROOPOSITION~~S0~0r~~tenteteettete CORKAXIALHOOK+NAstpteoTltNssposss0INSOVIATSO Tl~RSSPONSS~CONTROLOOOtoelllONtrlelsleeleeeesliMONTOllLOCAllOH40,$$IIOHITORLOCATIOH$$.$$teeleetee??0eseeP004P0~?~0I~0IIlgl0o04~1~s~s~rs~le11tele11tslelrtetseeelsessslCORKAmALHOOK+NaASVRmTttRSSPO<<SS0CAlovlysoTltRsspoNes~CONTROLROOPON110N~1~s~~~'I~elelttslell1~tetrleleeeeleeeeslCORKAXIALHOOK+NSASVRSOTttIleetONSS oOASOVlAISO TltRSPPONSS~CCNTttoeRootoNTICN190-180FIGURE3.4.5PEACHBOTTOMUNIT2CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON 13.812GWD/MTUCOREAVERAGEEXPOSURE160140120I-KD100lUK80COCLeo~~tb0..+.'P.g.00Q.............

040+020001234567881011121314151617 18182021222324 COREAXIALNODE+'MEASURED TIPRESPONSE0CALCULATED TIPRESPONSE191-FlGURE3.4.6PEACHBOTTOMUNIT2CYCLE2RADIALTIPRESPONSECOMPARISONS 13.812GWD/MTUCOREAYERAGEEXPOSURE615957555351494745-8.41-3.026.893.936.04-3.78-9.963.245.3443413937-5.200.4-0.35-0.36-0.93-2.68-7.99353331292.01++++++-2.70-3.902.65.I27252321.19++++3.6-3.213.9-4.07-0.0219-1715132\12-1.85-0.130.45-0.21++++++++-3.26-11.21-2.56II28303234363840424446485052502224260002040608101214161824X565860Diff=[(Calc-Meas)/Core AvgTIPResponse]

X100%-192-FIGURE3.4.7PEACHBOTTOMUNIT2CYCLE2INDIVIDUAL TIPRESPONSECOMPARISONS 43.812GWD/MTUCOREAVERAGEEXPOSUREMONITORLOCATION50T$$MONITORLOCATION4$T$$IWNa$o0441WZatIW0+o+o0Iaa~a0r~~>>11ala11>>>><<>>>>aealassaaiCOREAXIALNODE+1>>saoa>>InrNaaroosa4OAONLITciaonr IltaroNot

~CONTNOLNooroaNTON~a~4~~r~~>>11IsI~%>>>>Tr>>>>wslasasssCOREAXIALNODE+1>>saoo>>IntNaarooaaoossouulta nrNtaroooa~CONTNOLIiootoainONMOMTORLOCATION40,$$MONITORLOCATION$$,$$IW'll4r4044IJ.T+iog444aaLXIW~04+440~0~I~s~a~ra~ls11lslsN>>>>itlsiassslasssaiCOREAXIALNODE4WruuaaunrNaarONSa4CIIoosssao TltNaaroNaa~CONTROLIioorOWloNsa~a~r~>>nTsisNisI~ir>>asssisssssiCOllEAXNLNODE4Nahaislao nroasroNsooossoosslaont Ncarooaa~OONTIIOLNOOtoainoN193 FIGURE3.4.8PEACHBOTTOMUNIT2ENDOFCYCLE2COREAVERAGEAXIALPOWERDISTRIBUTIONS 1.5CLLLIOCLLIJI-LIJCY1.00.5LegendPIDataSIMULATE-E 0.01.5131215182124OLIJ')I-LLICL1.00.5LegendPfDataSIMULATE-E 0.01.51312151821I24CLOCLLIJ)CL1.00.5LegendPIDafaSIMULATE-E0.03BOTTOMI912'15AXIALNODE-194-182124TOP

4.0 SPECIALAPPLICATIONS

WITHPD7Occasionally, applications requiremultipleassemblycalculations.

ThelatticephysicscodeCPM-2isasingleassemblycodewhichisnotcapableofperforming multiplebundlecalculations.

Forthesecases,thePDQ7programisused.PDQ7hasbeenusedforcriticality analysesandtoprovideinputtothethree-dimensional nodalsimulation codes.Todemonstrate PPsL'sabilitytousePDQ7,twosetsofproblemsarepresented.

Thefirstsetcontainscalculations oftheuniformlatticecriticals presented inSection2.2whichwereanalyzedwithCPM-2.Thesecondsetcontainssinglefuelbundlecalculations withbothCPM-2andPDQ7.Forthesecases,pinpowerdistributions andassemblyreactivities arecompared.

-195 4.1DescritionofPD7ThePDQ7computerprogram(Reference 32)wasdeveloped f'rfinemeshfewgroupdiffusion theoryanalysis.

Theprogramsolvestheneutrondiffusion equationinone,twoorthreedimensions.

Available optionsincluderectangular, hexagonal, cylindrical orspherical geometries.

Amaximumoffiveenergygroupsarepermitted.

Themeshspacingisflexibleallowingtheusertodefineasmuchgeometric detailasappropriate forthespecificproblem.CrosssectionsforeachproblemmaybeinputtoPDQ7aseithermacroscopic ormicroscopic data.AtPPGL,thisdatawouldtypically beCPM-2generated macroscopic crosssections.

Formostapplications, fourgroupcrosssectionsareusedwithenergyboundaries asdefinedinTable4.1.1.-196-TABLE4.1.1ENERGYGROUPSTRUCTURE USEDINPDQ7CALCULATIONS

~GzouEnergyBoundaries (eV)1.0x10-8.21x107528.21x10-5.53x105'5.53x10-0.62530.625-0.0197-4.2UniformLatticeCriticals Thesameuniformlatticecriticals evaluated withCPM-2inSection2.2werealsoanalyzedwithPDQ7.One>>dimensional cylindrical geometrywasusedtomodeleachuniformlatticecritical.

Thecriticalradiuswasdefinedtoconservethecorecrosssectional areaandwasdetermined fromthecriticalnumberofpins.PDQ7crosssectionsforthecoreregionwereobtainedfromCPM-2pincellcalculations.

Thereflector crosssectionswere'obtained fromReference 33.Becausearadialreflector regionwasincludedinthePDQ-7model,onlyanaxialbucklingtermwasrequiredtoaccountfortheleakage.AswiththeCPM-2uniformlatticecriticalcalculations presented inSection2.2,theTRXandESADAexperiments weremodeledwithPDQ7.Tables4.2.1and4.2.2showtheresultsofthePDQ7calculations.

TheCPM-2resultsfromSection2.2arealsoincludedforcomparison.

TheresultsfromtheTRXandESADAcalculations yieldsimilarK-effectives.

-198-TABLE42.1P7RESULTSFORTRXCRITICALS Experiment Identification CPM-2K-effective Experimental AxialMaterialguckling(m)PDQ7K-effective TRX1TRX2TRX3TRX5TRX6TRX7TRX80.99340.99580.99420.99390.99340.99740.99700.99605.045.125.325.115.265.255.255.310.99690.99730.99540.99610.99500.99960.99960.9978AverageK-effective StandardDeviation 0.99510.00160.99720.0017199-TABLE422P7RESULTSFORESADACRITICALS Experiment Identification CPM-2K-effective*

Experimental AxialMaterialchuckling (m)PDQ7K-effective*

ESADA1ESADA3ESADA4ESADA6ESADA12ESADA131.00261.00041.01291.01161.01011.00778.568.9679.4669.4719.4369.6391.01221.01581.01521.01331.01621.0140AverageK-effective StandardDeviation 1.00760.00501.01440.0016*AllCPM-2andPDQ7calculated K-effectives havebeenadjustedby-0.4%~Ktoaccountforspacerworth.200 4.3ComarisonstoCPM-2Asecondqualification oftheuseofPDQ7atPPaListhroughcomparison tosingleassemblyCPM-2latticephysicscalculations.

Tofacilitate generation ofthePDQ7crosssectiondata,theCOPHIN(Reference 34)codewasused.Separateplanarregionsaredefinedfordifferent fuelpintypes,waterrodsandotherregions(i.e.,controlrod,watergap,etc.).Fuelpinregionsaregroupedaccording tofuelpinenrichment andlocation.

Themeshdescription isdefinedtoexplicitly modeleachpinandtoconservethevolumesofeachregion.Whenthefuelassemblybeingmodeledcontainsgadolinia oracontrolrod,theneutronfluxdepression causedbythepresenceofthestrongabsorbercanbereproduced usingdiffusion theorywithashielding factor.Withoutashielding factordiffusion theoryresultsinanoverestimation oftheneutronfluxintheabsorberregionandacorresponding overestimation oftheabsorberworth.Shielding factorsaredeveloped andappliedtotheGroup4(thermal) absorption andfissioncrosssectionsforgadolinia bearingfuelpinsandtheGroup3and4absorption crosssectionsforcontrolrods.Thesefactorsarederivedbyconserving theCPM-2calculated absorption rateintheabsorber.

Thefuelassemblies chosenforthecomparison aretheSusquehanna SESinitialcorebundledesigns.Twoseparatefueldesignswerechosenfortheanalysis.

TheresultsareshowninFigures4.3.1through4.3.4.Theagreement inpowerdistribution forasingleassemblyisverygood.Theassemblyeigenvalues (K-infinities) alsoagreewellbetweenthetwocodes,differing bylessthan1mk(or0.1%bk).Thisdemonstrates thatPPGLcanperformaccuratePDQ7assemblycalculations.

201-FIGURE4.3.1CPM-2VSPDQ7PINPOWERDISTRIBUTION COMPARISON GEINITIALCOREHIGHENRICHEDFUELTYPEUNCONTROLLED WIDEGAPWIDEGAP1.0271.0652.71.1041.1130.81.1171.116-0.21.1471.140-0.61.1241~1260.20.9800.969>>1.11.0470.9651.0290.966-1.7-0.91.0760.8601.0600.875-1.61.71.0220.8421.0220.8620.02.40.1140.1160.90.S931.0010.8CPM-2PDQ7%DIFFERENCE 1.0741.0810.71.0661.0811.60.9971.0333.61.0290.1101.0370.1090.8-0.90.9881.0400.9871.046-0.10.51.0691.0861.0841.0891.40.40.8930.9920.9010.9730.9-1.91.0671.0121.0490.992-0.8-2.01.1461.1791.1431.166-0.3<<1.10.9480.923-2.61.0991.0131.0690.994-2.7-1.91.1481.1321.1401.134-0.70.21.0601.0732.2LINEOFSYMMETRYCPM-2K-INFINITY

=1.1428PDQ7K-INFINITY

=1.1426202-FlGURE4.3.2CPM-2VSPDQ7PINPO'tN'ERDISTRIBUTION COMPARISON GEINITlALCOREHIGHENRICHEDFUELTYPECONTROLLED WIDEGAPWIDEGAP0.3800.4005.30.4860.5910.5230.6127.63.60.5490.7400.5780.7865.36.20.6070.8370.6320.8764.14.70.645O.8550.6660.8983.35.00.8260.8533.30.8240.8776.40.8770.9245.40.1290.1333.11.2321.2390.6CPM-2PDQ7%DIFFERENCE 0.6900.9240.7030.96619450.8240.9890.8320.9951.00.6.0.9521.1660.9731.1732.20.60.1280.1301.61.2101.196-1.21.3001.288-O.S1.1011.2761.2601.1031.2361.2140.2-3.1-3.71.3341.3351.4931.2931.2841.420-3.1-3.8-4.91.4651.5731.5771.4331.5191.524-22-34-3A1.4041.353-3.61.5861.539-3.01.4871.465-1.5LINEOFSYMMETRYCPM-2K-INFINITY

=0.9623PDQ7K-INFINITY

=0.9615203 FIGURE4.3.3CPM-2VSPDQ7PINPOWERDISTRIBUTION COMPARISON GEINITIALCOREMEDIUMENRICHEDFUELTYPEUNCONTROLLED WIDEGAPWIDEGAP1.0641.0963.01.1040.9881.1160.9791.1-0.91.1201.0840.9211.1211.0670.9150.1-1.6-0.71.0821.0320.8471.0781.0180.854-0.4-1.40.81.0801.0390.9071.0791.0260.908-0.1-1.30.10.1390.1390.00.1240.1261.6CPM-2PDQ7%DIFFERENCE 1.1221.0960.9621.1221.0780.9520.0-1.6-1.01.1060.9931.0911.1160.9821.0740.9-1.1-1.61.0601.1041.1171.0941.1161.1183.21.00.10.8850.7940.9000.8890.8090.8980.51.9-0.21.0281.0210.8751.0181.0110.863-1.0-1.0-1.41.0721.0751.1161.0731.0731.1200.1-0.20.40.9890.985-0.41.0971.0541.1121.0881A3.2LINEOFSYMMETRYCPM-2K-INFINITY

=1.1107PDQ7K-INFINITY

=1.1100204-FIGURE4.3.4CPM-2VSPDQ?PINPOWERDISTRIBUTION COMPARISON GEINITIALCOREMEDIUMENRICHEDFUELTYPECONTROLLED WIDEGAPWIDEGAP0.3990.4195.00.4950.6040.6310.6257.33.60.5620.7760.7940.6880.8010.8214.63.23.40.5880.8140.8130.1670.6100.8360.8660.1B23.72.66.23.20.6400.8900.946O.B640.8970.9692.20.82.50.7421.0141.0611.0760.7431.0281.0BO1.0760.11.4-0.10.00.1660.1692.61.0281.2081.0331.1920.5-1.3CPM-2PDQ7%DIFFERENCE 0.8691.0061.2661.2900.8680.9981.2441.266-0.1-0.7-1.7-1.91.0191.2111.3421.3731.0341.2121.3261.3481.60.1-1.2-1.81.3611.1S71.3131.163-2.8-2.81A401.6431.40B1.609-2.4-2.21.3811.349-2.31.6481.5211071.6061.600-0.4LINEOFSYMMETRYCPM-2K-INFINITY

=0.9230PDQ7K-INFINITY

=0.9238205-l

5.0 SUMMARYANDCONCLUSIONS

Theanalysespresented inthistopicalreportdemonstrate thevalidityofPPaL'sanalytical methodsaswellasPPGL'squalifications toperformsteadystatecorephysicscalculations forreloaddesignandlicensing analysisapplications.

Thelatticephysicsqualification hasbeenaccomplished throughcomparison oftheCPM-2computercoderesultstovariousmeasurement data.Comparisons to14uniformlatticecriticalexperiments yieldsanaverageK-effective of1.0005withastandarddeviation of0.0072.TheaverageK-effective fortheUOcriticals is0.9951andtheaverageK-effective fortheplutonium criticals is1.0076.Thepinpowerdistribution andhencelocalpeakingfactorcalculation, hasbeenbenchmarked tothegammascandatafromQuadCitiesUnit1whichwastakenattheendofCycle2.Theaveragestandarddeviation fromallofthecomparisons is4.0%.IfonlytheUObundlesareconsidered, theaveragestandarddeviation reducesto3.37%.thisisclosetothereported3.0%practical accuracyofthedata.Thequalification ofthelatticephysicsmethodsalsoreliesontheoriginalbenchmarking ofEPRI-CPMprovidedbyEPRI.Becausetheneutronics methodsinCPM-2areidentical tothoseinEPRI-CPM, thisbenchmarking remainsvalidforCPM-2.Someoftheuniformlatticecriticals analyzedintheEPRIbenchmarking arethesameexperiments a'sthoseanalyzedbyPPGL.Aftercompensation wasmadeforthecorrection factorsappliedtotheEPRI-CPMresults,theresultsfromEPRI-CPMagreedverywellwiththosefromCPM-2.Thequalification ofthecoresimulation methodsnotonlydemonstrates theaccuracyofSIMULATE-E butalsoprovidesademonstration oftheentiresteadystatecorephysicsmethodology.

Thebenchmarking resultsshowthatthecalculated hotcriticalcoreK-effectives fromSIMULATE-E canbeaccurately predicted byacorrelation whichconsiders bothcoregadolinia contentandcoreaverageexposure.

Themeandifference betweentheSIMULATE-E calculated coreK-effective andthecorrelation isonly0.00002akwithastandarddeviation of0.00061rlk.ThecoldcriticalcoreK-effective fromSIMULATE-E canbeaccurately predicted byaddingaconstantbiasof0.00659bktothehotcriticalK-effective correlation.

Comparisons ofcoldcriticalcalculations 206-tothetargetresultsinastandarddeviation of0.00137~k.Inaddition, thereisnosignificant difference betweenthecoldin-sequence andlocalcriticalcalculations.

Comparisons ofpredicted TIPresponses tomeasuredTIPresponsedatawereperformed asameansofassessing theaccuracyoftheSIMULATE-E powerdistribution calculation.

Susquehanna SESnodalTIPresponsecomparisons, whichdemonstrate theaccuracyofthedetailedpowerdistribution, showanaver'ageRMSof5.74%.RadialTIPresponsecomparisons werealsoperformed inordertodemonstrate theaccuracyofthebundlepowerdistribution, andtheaverageRMSforSusquehanna SESis2.58%.ThesametypesofTIPresponsecomparisons werealsomadeforthefirsttwocyclesofQuadCities.TheaveragenodalTIPRMSis9.84%andtheaverageradialRMSis5.26%.Additionally, theSIMULATE-E powerdistribution calculations havebeencomparedtothegammascanmeasurements takenattheendofthefirstandsecondcyclesofQuadCitiesUnit1.Thesemeasurements arerepresentative ofthecorepowerdistribution averagedoverthelasttwotothreemonthsofoperation.

SIMULATE-E wasusedtocalculate thenodalLa-140concentrations forcomparison tothemeasureddata.Theresultsofthenodalcomparisons, neglecting peripheral andaxialendnodes,yieldanRMSof5.45%.Fortheradialcomparison, neglecting peripheral bundles,anRMSof1.92%wasobtained.

Theaxialpeakingfactor(onanodalbasis)wasalsocomparedtothemeasuredgammascandata.Theaveragedifference intheaxialpeakingfactorwas1.2%withastandarddeviation of2.1%forCycle1and-0.2$withastandarddeviation of1.5%forCycle2.ThisreportalsoincludedSIMULATE-E calculations forCycles1and2ofPeachBottomUnit2.Thesecalculations wereperformed inordertogeneratetheneutronics inputtoPPGL'stransient analysismethodsbenchmarking againstthePeachBottomendofCycle2turbinetriptests.Thepredicted powerdistributions foreachofthethreeturbinetriptestsshowexcellent agreement toreportedplantprocesscomputerdata.ThePDQ7computerprogramisusedforspecialapplications toperformmul+iplebundlecriticality analysesandtoaugmentnodalsimulation codeinput.Ademonstration ofPPGL'suseofthePDQ7programincludescomparisons to207-uniformlatticecriticalexperiments andpinpowerdistribution calculations

'withCPM-2.Xnconclusion,'he analysisresultscontained inthistopicalreportdemonstrate PP&L'squalifications toperformsteadystatecorephysicscalculations.

Extensive comparisons tomeasureddatafromSusquehanna SES,QuadCities.Unitl,andPeachBottomUnit2demonstrate thevalidityoftheanalytical methodsaswellasPPGL'scapability tosetupandproperlyapplythemodels.Comparisons toreactordesignsotherthanPPGL'sSusquehanna SESdemonstrate PPGL'sabilitytoextendthecoremodelingtechniques developed forSusquehanna SEStootherfuelandcoredesigns.PPGLiscommitted tomaintaining astrongin-housecoreanalysiscapability andaspartofthatcommitment, wecontinually evaluatetheaccuracyofourcoresimulation methodsandmakemodelingimprovements whenappropriate.

AlthoughPPGL'sday-to-day corefollowanalysesareaimedprimarily atplantoperations support,thecomparisons of*SIMULATE-E calculations (e.g.,TXPresponse, K-effective, thermalmargins)totheplantdataalsoserveasacontinuing methodsbenchmarking effort.-208-

6.0REFERENCES

1.NRCGenericLetterNumber83-11,"Licensee Qualification forPerforming SafetyAnalysesinSupportofLicensing Actions,"

February8,1983.2."Advanced RecycleMethodology Program,"

EPRZCCM-3,September, 1977.3.D.B.Jones,"CPM-2ComputerCodeUser'sManual,"PartII,Chapter6ofEPRINP-4574-CCM,

February, 1987.4.M.Edenius,"EPRI-CPM Benchmarking,"

Part1,Chapter5ofEPRICCM-3,November, 1975.5.A.Ahlin,et.al.,"TheCollision Probability ModuleEPRI-CPM,"

PartII,Chapter6ofEPRZCCM-3,November, 1975.6.R.Stamm'ler, et.al.,"Equivalence Relations ForResonance IntegralCalculations,"

JournalofNuclearEnergy,Volume27,page885,1973.7.M.Edenius,A.Ahlin,"MICBURN:

Microscopic BurnupZnGadolinia FuelPins,"PartZI,Chapter7ofEPRZCCM-3,November, 1975.8.M.Edenius,et.al.,"TheEPRI-CPMDataLibrary,"

PartII,Chapter4ofEPRICCM-3,November, 1975.9.L.Hellstrand, "Measurements ofResonance Integrals ReactorPhysicsintheResonance andThermalRegions,"

Proceedings oftheNationalTopicalMeeting,SanDiego,CA,VolumeII,page157,February, 1966.10.J.R.Brown,et.al.,"KineticandBucklingMeasurements onLatticesofSlightlyEnrichedUraniumorUORodsInLightWater,"WAPD-176, January,1958.11.R.D.Learner,et.al.,"PuO-UOFueledCriticalExperiments,"

WCAP-3726-1, July,1967.209-i'l12.M.B.CutroneandG.F.Valby,"GammaScanMeasurements atQuadCitiesNuclearPowerStationUnit1Following Cycle2,"EPRINP-214,July,1976.13.R.J.Nodvik,"Supplementary Report.onEvaluation ofMassSpectrometric andRadiochemical AnalysisofYankeeCoreISpentFuel,Including IsotopesofElementsThoriumThroughCurium,"WCAP-6086, 1969.14.R.J.Nodvik,"SaxtonCoreIIFuelPerformance Evaluation,"

PartIIWCAP-3385-56.

15.D.M.VerPlanck, "SIMULATE-E:

ANodalCoreAnalysisProgramforLightWaterReactors,"

EPRINP-2792-CCM, March,1983.16.A.Ancona,"ReactorNodalMethodUsingResponseMatrixParameters,"

Ph.D.ThesisRensselaer Polytechnical Institute, 1977.17.S.Borresen, "ASimplified, CoarseMesh,Three-Dimensional Diffusion SchemeforCalculating theGrossPowerDistribution inaBoilingWaterReactor,"

NuclearScienceandEngineering, Volume44,pages37-43,1971.18.G.S.Lellouche andB.A.Zolotar,"Mechanistic ModelForPredicting Two-Phase VoidFractionForWaterinVerticalTubes,"EPRINP-2246-SR,

February, 1982.19.B.J.Gitnick,"FIBWR:ASteady-State CoreFlowDistribution CodeforBoilingWaterReactors; ComputerCodeUser'sManual,"EPRINP-1924-CCM, July,1981.20.D.B.JonesandM.J.Anderson, "ARMP-02Documentation:

PartII,Chapter12-NORGE-B2 ComputerCodeManual,"EPRINP-4574-CCM, PartII-,Chapter12,December, 1986.21.B.L.Darnell,et.al.,"SIMULATE-E:

ANodalCoreAnalysisProgramforLightWaterReactors,"

EPRINP-2792-CCM (DraftRevision),

AppendixD,May,1986.-210-22..A.F.Ansari,et.al.,"FIBWR:ASteady-State CoreFlowDistribution CodeforBoilingWaterReactors,"

EPRINP-1923,July,1981.23.R.B.MacduffandT.W.Patten,"XN-3CriticalPowerCorrelation,"

XN-NF-512(P)(A)

Revision1andSupplement 1,Revision1,October21,1982.24.S.W.Jones,et.al.,"POWERPLEX CoreMonitoring SoftwareSystemSoftwareSpecification fortheSusquehanna SteamElectricStationSusquehanna Units1and2,"XN-NF-83-35(P),

Revision1,August,1986.25."GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,Correlation andDesignApplication,"

NED0-10958-A, January,1977.26.M.Edenius,"StudiesoftheReactivity Temperature Coefficient inLightWaterReactors,"

AE-RF-76-3160, A.B.Atomenergi, 1976.27.N.H.Larsen,et.al.,"CoreDesignandOperating DataforCycles1and2ofQuadCities1,"EPRINP-240,November, 1976.28.N.H.Larsen,"CoreDesignandOperating DataforQuadCities1Cycle3,"EPRINP-552,March,1983.29.G.R.Parkos,"BWRSimulator MethodsVerification,"

NED0-20946A, January,1977.30.N.H.Larsen,"CoreDesignandOperating DataForCycles1and2ofPeachBottom2,"EPRINP-563,June,1978.31.L.A.Carmichael andR.D.Niemi,"Transient andStability TestsatPeachBottomAtomicPowerStationUnit2attheEndofCycle2,"EPRINP-564,June,1978.32.W.R.Cadwell,"PDQ7Reference Manual,"WAPD-TM-678, January,1967.211-33.W.J.Eich,et.al.,"FewGroupBaffleand/orReflector Constants forDiffusion Calculation Application,"

EPRINP-3642-SR, August,1984.34.R.D.Mosteller andR.S.Borland,"COPHINCodeDescription,"

EPRINP-1385,April,1980.-212-RESPONSETONRCREQUESTFORADDITIONAL INFORMATION

-213-

Pennsylvania Power8LightCompanyTWONOrthNinthStreet~AllentOWn.

PA18101~215I7705151HaroldW.KeiserVicePresident-Nuclear Operations 215/770-7502 pEB>7$88DirectorofNuclearReactorRegulation Attention:

Dr.W.R.Butler,~ProjectDirectorProjectDirectorate I-2DivisionofReactorPrdjectsU.S.NuclearRegulatory Commission Washington, D.C.20555SUSQUEHANNA STEAMELECTRICSTATIONRESPONSETORAIONCOREPHYSICSTOPICALPLA-2983FILESA7-8A,R41-2'eference:

Letter,M.C.ThadanitoH.W.Keiser,"RequestforAdditional Information",

datedJanuary11,1988.

DearDr.Butler:

AttachedpleasefindPP&L'sresponses tothereferenced staffquestions onourtopicalreportPL-NF>>87.-001, "Qualification ofSteadyStateCorePhysicsMethodsforBWRDesignandAnalysis."

Pleasebeadvised.thatthescheduleforthesubmittal ofourremaining topicalreportshasbeenrevisedasfollows:Qualification ofTransient AnalysisMethodsforBWRDesignandAnalysisApplication ofReactorAnalysisMethodsforBWR,Design andAnalysisJuly,1988November, 1988Duetothesedelaysinourplannedcompletion dates,PP&Lhasalsorevisedthefirstreloadapplication ofourin-housemethodsfromSusquehanna SESUnit1Cycle5toSusquehanna SESUnit2Cycle4(plannedstartup:November10,1989).Accordingly, wearerevisingourrequestforyourapprovalofPL-NF-87-001 fromMarch,1988toJuly5,1988.

FILESA7-8A,R4)-2PLA-2983Dr.W.R.ButlerAlsoattachedforinsertion intoPL-NF-87-001 arereplacement pages51and208,whichcorrectminortypographical errors,andreplacement page69(Table3.2.3),whichprovidescorrected cycleandcoreaverageexposurevaluesforCase16,andthecorrected cycleexposurevalueforCase22.Anyquestions onthissubmittal shouldbedirectedtoMr.R.Sgarroat(215)770-7916.

Verytrlyyours,H.W.Keiser.VicePresident

-NuclearOperations Attachment cc:NRCDocumentControlDesk(original)

NRCRegionIMr.F.I.Young,NRCResidentInspector

-SSES@fr~~>>H~C;-Thadani,NRCProspect, Manager-Bethesda Crosssectiondependencies include:fuelexposurevoidhistory(i.e.,exposure-weighted relativemoderator density)relativemoderator density(hotonly)controlrodpresencefueltemperature (hotonly)controlrodhistoryxenonconcentration moderator temperature (coldonly)Theeffectofeachdependency iscalculated utilizing CPM-2.ThefinalcrosssectiondatatablesarepreparedforSIMULATE-E usingNORGE-B2(Reference 20).Theradial,top,andbottomreflector regionsarenotmodeledexplicitly.

Instead,theseregionsaretakenintoaccountbyuseofalbedoboundaryconditions.

Radialalbedosarecalculated usingtheABLE(Reference 21)programdeveloped byScienceApplications International forEPRI.Thetopandbottomalbedosweredetermined basedoncomparison toplantdataduringmodelnormalization.

Different albedoboundaryconditions areusedforcold'andhotconditions.

Severaloftheinputdataparameters usedbySIMULATE-E requireadjustment tomatchplantoperating data.Thisnormalization processwasperformed usingSusquehanna SESUnit1Cycles1and2data.Allparameters changedinthisfashionwereheldconstantforallothercalculations including theQuadCitiesandPeachBottomcalculations.

Thethermalhydraulics calculations usetheFIBWRmethodology (Reference 19)developed byYankeeAtomicElectricCompany.Thiscalculation determines totalcorepressuredropandcorebypassflow.Thepressuredropcalculation determines thefrictional pressuredrop,local(i.e.,form)losses,acceleration (i.e.,momentumchange)pressuredrop,andelevation head.Thecorebypassflowcalculation allowsformodelingtheflowpathsshowninFigure3.1.1.FIBWRasastand-alone codehasbeenbenchmarked byYankeeAtomicElectricCompanyagainstdatafromVermontYankeeandtheFriggLooptests(seeReference 22).-51" I

TABLE3.2.3EHAWASSHOTCRIICALCOREK-EFFECTIVE DATAUNIT*1CYCLE=1CASE1235678910ll1R1314151617181920Zl22R3R4R5262728293031323334353637383940CYCLEEXPOSURE(GHD/NTU)O.ZRl0.8361,4901.5961.7361.7581~7991.9082.0702.7062.906R.9753.1163'673.5173.6633.7763.8363.9184.0364.1934.31S4.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366,5636.7166.723COREAVERAGEEXPOSUREtGHD/HTU)

O.R210.8361.4901.5961,7361.7581.7991.9082.0702.7062.906R.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723POWER(t%PH)143232503280327832913296329132933293328132893291329132923289329232903293329832903R903296328832893290328832813Z94329132943295328732933289328632883265328632833290PERCENTPOHER(%)439910010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010099100100100TOTALCOREFLOW(%)5498100~889798999897989796989896969598979698969799999798999999999998969896999898SUB-COOLINGlBTU/LBN)23.823.723.623.624.324.R23.824.024.225.024.224.724.2R4.R24.524.624.824.024.324.524.224.523.823.924.324.023.S23.723.923.823.724.124.323.924.323.8R4.1Z4.0OOHEPRESSURE(PSIA)974100110051002100110011001100099410009999999991009100210021001100310001003100210031003100410051005100R100210021002100210021001100110001001999999999999CONTROLRODOENSITY0%)20.412.613.913.614.014.114,114.114.114.815.015.015.015.9,.15.915.915.915.916.016.016.016.116.116.117.617.618.017.917.917.817'17.817.016.716.416.416.316.315.015.0CALCULATED COREK-EFFECTIVE 0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580.99061Oo990800.991000.991160.991380.991630.991760.992540.992420.992190.992670.992940.993500.993580.993670.9936R0.993620.994300.994370.994540.994630.994600.99460 EI uniformlatticecriticalexperiments andpinpowerdistribution calculations withCPM-2.Inconclusion, theanalysisresultscontained inthistopicalreportdemonstrate PPGL'squalifications toperformsteadystatecorephysicscalculations.

Extensive comparisons tomeasureddatafromSusquehanna SES,QuadCitiesUnit1,andPeachBottomUnit2demonstrate thevalidityoftheanalytical methodsaswellasPPaL'scapability tosetupandproperlyapplythemodels.Comparisons toreactordesignsotherthanPP&L'sSusquehanna SESdemonstrate PPaL'sabilitytoextendthecoremodelingtechniques developed forSusquehanna SEStootherfuelandcoredesigns.PP&Liscommitted tomaintaining astrongin-housecoreanalysiscapability andaspartofthatcommitment wecontinually evaluatetheaccuracyofourcoresimulation methodsandmakemodelingimprovements whenappropriate.

AlthoughPPaL'sday-to-day corefollowanalysesareaimedprimarily atplantoperations support,thecomparisons ofSIMULATE-E calculations (e.g.,TIPresponse, K-effective, thermalmargins)totheplantdataalsoserveasacontinuing methodsbenchmarking effort.208-Il CPM-2Question1Whatarethebasesforthedepletion steps,spatialmesh,energygroups(macroand2-D),convergence andotherparameters usedinproduction calculations withCPM-2/MICBURN?

~ResenseTherearecurrently nospecificEPRIguidelines available fordevelopment ofMICBURNandCPM-2input.Thecomputercodes,however,havecertaindefaultsettingswithregardtoiteration control,convergence

accuracy, andenergygroupstructure whichweresetbyEPRIduringthecodedevelopment.

ThesedefaultvalueswereusedbyPP&Lforallcalculations presented inPL-NF-87-001.

Noproblemsresultedfromtheuseofthedefaultiteration controlinputs;theconvergence criteriaonthefundamental modecalculation

-5is1.0x10whichissufficient toprovideconsistent andaccurateresults.Information ontheenergygroupstructure ispresented intheresponsetoQuestion2.Thedepletion stepsizeusedfortheMICBURNcalculations issetaccording toEPRIrecommendations.

Thesestepsizeshavebeendesignedtolimitthemaximumgadolinia depletion tolessthan4%oftheinitialamountforanygivendepletion interval.

Thedepletion calculations areperformed using66to72depletion steps.Thedepletion stepsizeinCPM-2issettoprovidesmoothlyvaryingcrosssectioncurvesandlatticereactivity (seeFiguresC1.1andC1.2forexamples).

Thetimestepstructure whichisusuallyusedforCPM-2depletion calculations is:0~OR01R0SR1~OR1SR2~OR2SR3~OR3~SR4~OR4SR5~OR5SR6.OR6~5R7~OR7~5R8~OR8~SR9~OR9SR10OR12~Sg15~OR17~Sg20~OR22~SR25~OR27~SR30~OR35~OR40~OR45ORSO.OR55.0GWD/MTU Forassemblies wherethe.gadolinia concentration ishigherthan4w/oadditional CPM-2timesteps areplacedbetween10.0and12.5GWD/MTU.Toevaluatetheeffectsofthecontrolrodpresence, relativemoderator density,fueltemperature, etc.,restartcalculations areperformed atcertainexposurepoints.Thesepointsarechosensothatthechangeinthecrosssectionduetothechangeintheindependent parameter (i.e.controlrodpresence, etc.)issmoothlyvarying(seeFigureC1.3foranexample).

Thischangeincrosssection,nottheabsolute'crosssection,isusedbySIMULATE-E.

Sensitivity calculations havealsobeenperformed byPPGLtodetermine theeffectofmuchfinertimesteps ontheCPM-2results.Thelatticereactivity fromthesesensitivity studiesdifferedfromtheproduction calculations (coarsertimesteps) bylessthan0.001~K.ThespatialmeshusedinMICBURNissomewhatfinerthanthoserecommended bythecodedeveloper.

Atotalof20burnup(micro)regionsand10flux(macro)regionsare.usedintheburnableabsorbercell.Amicro-region isdefinedasahomogenized materialzone.Amacro-region iscomposedofoneormoremicro-regions andisusedforcalculation oftheflux.FigureC1.4showsanexample.Thisdefinition ofzoneswithinthefuelpinprovidessufficient detailtoaccurately modelthe"onionskin"typedepletion ofagadolinia pin.ThemeshspacingusedinCPM-2fortheXandYdirections includestwomeshesperpincell,onemeshinthefuelchannelwall,andtwomeshesinthewatergap(bypassregion).Sensitivity studieshavebeenperformed byPPsLinwhichthenumberofmeshesinthepincellhasbeenincreased fromtwotothree.Thisincreaseresultedinamaximumchangeinlatticereactivity of0.005~K;typically, differences aremuchless.Using.thiscrosssectiondataintheS1MULATE-E modelhasshownverylittleeffectonthecorepowerdistribution andcoreK-effective.

Additional worksponsored byEPRXhasalsoexamineddifferences betweenuseoftwoversusthreemeshpointsperpincell.Althoughthesecaseswerelimitedtosub-assemblies (i.e.,3x3fuelrodarrays),theresulting differences werequitesmall(i.e.,lessthan0.005~K)forvaryinggadolinia loadingandvoidcontentandsupporttheuseoftwomeshpointsperpincell.Thesensitivity studiesdiscussed abovehavebeenruntodetermine theeffectsofselectedcodeinputs.ThetopicalreportPL-NF-87-001 providesabenchmark oftheCPM-2codewiththeSusquehanna SESmodelinputsandconsequently anestimateofthecode/model uncertainty.

0.068FIGUREC1.1THERMALABSORPTION CROSSSECTIONBUNDLEENRICHMENT:

2.19W/04GD50.0640.0620.060tI0.0480.0480.044----:-.Legend0%VOIDHISTORY-.-.'p42.:X40%VOIDHISTORY070/oVOIDHISTORY0.0400101520253035.EXPOSURE(GWD/MTU) 404550 1.2FIGURECi.2FUELK-INFINITY VSEXPOSUREBUNDLEENRICHMENT:

2.19W/04GD5I-O.SzII0~~~a~~~0.80.7Legend0%VOIDHISTORY"":"X40%VOIDHISTORYCI70%VOIDHISTORY10O.B0616202630364046EXPOSURE{Gwl3/MTU) 60 FIGUREC1.3CHANGEINSIGMAA-2DUETOCONTROLPRESENCEBUNDLEENRICHMENT:

2.19W/04GD50.0160.014::--::"--":,---:,---',-

Legend0%VOIDHISTORYX40%VOIDHISTORY070%VOIDHISTORY0.0130.0120.0110.010010152026303640EXPOSURE(GWD/MTU) 50 FigureCl.4Definition ofmacroregions.Thefigure:shows acasewith20microregionsand6macroregionsintheBA-pin.N~g5+N~57BA-fuelCanModerator BufferzoneQNopQNophNopIBNopIIBNqpIIIIIII20MicroregionsIII(IIIl!I6Macroregions(+4macroregionsoutsidetheBA-pin.)rIIrbSource:E.EdeniusandA.Ahlin,"MZCBURNMicroscopic BurnupinGadolinia FuelPins,"PartIZChapter7ofEPRICCM-3,September l977.

uestion2The5energygroupsusedforthe2-Dcalculations aresomewhatcoarse.Pleasecomment.~ResenseTheuseoffiveenergygroupsintheCPM-2calculation issufficient toaccurately performthetwo-dimensional calculation principally duetothemethodusedtodetermine thefivegroupcrosssections.

TheCPM-2calculation startswitha69energygroupcrosssectionlibrarywhichwasdeveloped forgeneralLWRanalysis.

Foreachtwo-dimensional calculation performed byCPM-2,micro-group and.macro-group calculations areperformed whichaccountforboththefluxspectrumandthematerialpresentintheassembly.

The'Imicro-group calculation isperformed in69energygroupsforeachuniquetypeofpincell.Uptosixseparatecalculations arepermitted.

Ifmorethansixuniquepintypesexistwithinafuellattice,similarpinsmustbeaveragedtogether.

Thismicro-group calculation providesadetailedfluxspectrumbutdoesnotaccountforthespecificlocationofthepin.Anextraregionisusedaroundeachpincellwhichdoesaccountfortheeffectsofthepresenceofthebypassregionandchannelwall.Thedetailedenergyspectrumisusedtocollapsethecrosssectiondatato25energygroups.Themacro-group calculation isperformed in25energygroupsandisaone-dimensional radialcalculation foraregionally homogenized assembly(SeeFigureC2.1).Eachrowoffuelpins/water rodsoccupiesaseparateannularregionstartingatthecenteroftheassemblyproceeding outward.Thechannelwall,outerwatergap,andcontrolrod(ifpresent)occupyseparateregions.Thiscalculation, therefore, accountsforthe.relativelocationofeachmaterialwithintheassembly.

Thisisparticularly important forfuelpinsadjacenttothewatergap.The25energygroupfluxescalculated foreachregionareusedtocollapsethe25groupcrosssectionsdowntofiveforuseinthefinaltwo-dimensional calculation.

Sincethefluxspectrumusedforthiscollapsing calculation alreadyhasthegeometric effectsfactoredintoit,thesefivegroupsprovideanaccuratebasisforthetwo-dimensional calculation whereasfivegroupcrosssectiondatacollapsed directlyfrompincellcasesmightnot.

FigureC2.1Exampleofgeometryinmacrogroupcalculation 000000000000000000000000000000000000000000UQ>-pin8PuO>-pinWidewatergapNarrowwatergaphomogenized controlrodouterwatergapboxinnerwatergapUOPu022homogenized fuellayersouterwatergapboxUQ2PuO>homogenized fuellayersinnerwatergapSource:A.AhlinandM.Edenius,"TheCollision Probability ModuleEPRl-CPM,"

PartIZChapter6ofEPRZCCM-3,September 1977.

uestion3Howwastheconversion fromcalculated powertoBa-140concentrations performed fortheCPM<<2rod-wisecomparisons totheQuadCitiesgamma-scan results?~ResenseUsingthedecay/production

equation, theBa-140concentration canbecalculated as:NB(t)=<fn[SB(t)-XNB(t)1dttn-1whereN(t)=theBa-140concentration attimet,BS(t)=theBa-140production rateattimet,B=theBa-140decayconstant.

Integrating andassumingS(t)isconstantovereachtimestepgives:N(t)=Bn+N(t)-BnBn-Bn1-X<Te(2)wheret=theendoftimestepn,nt=thebeginning oftimestepn.n-1Assumingthattheaverageenergyperfissionisrelatively constantoverthetimeinterval, S(t)canbeapproximated as:nS(t)=CYP(t)(3)whereC=aunitconversion

constant, Y=theeffective Ba-140yield,eP=thepowerdensity.

TheBa-140concentrations arecalculated bysubstituting Equation(3)intoEquation(2)toobtain:CYP(t)en+CYP(t)en-X<Te(4)Sincethefinalcomparisons aremadeonarelativebasis,relativeBa-140concentrations arecalculated asfollows:Rel.N(t)=en+1CYP(t)CYP(t)Btn-1en-X~Te(5)whereN(t)=theaverageoftheBa-140concentrations attheendoftimestepn.BnThepower,P(t),isbasedontheCPM-2relativepinpower.Theeffective nYield,Y,iscalculated foreachpinasfollows:e'=MY.F.i=U-235,U-238'u-239@

Pu241e~iiwhereY=theBa-140yieldforisotopei,F.=thefractionoffissionsfromisotopei.iThefissionratesandhencethefractionoffissionsfromeachisotopeiscalculated ateachtimetbyCPM-2.Equation(5)issolvedtocalculate nrelativeN(t)foreachrodbymarchingthroughtheexposurepointsforeachnrelativemoderator densitycorresponding to0%,40%,and70%voidlevel.TheSIMULME-E modelcalculation providestheexposureandvoidhistoryforeachaxialplaneforwhichmeasureddataexists.Thesedataareusedtointerpolate fromtheCPM-2calculated datatodetermine thecalculated relativeBa-140distribution corresponding tothevoidhistoryandexposureconditions atthelocationofinterest.

guestion4Thediscussion inSection2.3needsmoreconsistency, inreferences tomeasuredandcalculated valuesofpower,andBa-140andLa-140activities intermsofwhatquantities arecomparedandtheirbases.~ResooseThemeasureddatausedinthecomparisons aretherelativeLa-140activities asreportedinEPRINP-214"GammaScanMeasurements atQuadCitiesNuclearPowerStationUnit1Following Cycle2"(Reference 12inPL-NF-87-001).

Thecalculated datausedinthecomparisons aretherelativeBa-140concentrations.

ThesearederivedfromtheCPM-2calculated relativepinpowersaspresented inthe,responsetoQuestion3.TheBa-140concentrations andactivities areproportional totheLa-140concentrations andactivities atanygiventimefollowing shutdownfromsteady-state operation.

Thefactorofproportionality significantly varieswithtimeforthefirstweekaftershutdown, butaftertendays,itremainsessentially constant.

Becauseallgammascanmeasurements weretakenfollowing ashutdownperiodgreaterthantendays,therelativemeasuredLa-140activities arecomparedtothecalculated Ba-140concentrations.

~nestion5Arethepresently demonstrated accuracyandbiasesofCPM-2calculations expectedtoholdfor9x9andotheradvancedBWRbundledesigns?Haveanycomparisons beenmadeofCPM-2toMonteCarlocalculations for9x9bundlesofthetypeusedinSusquehanna Unit2?~~nesonseTheaccuracyandbiasespresented inPL-NF-87-001 areexpectedtoholdfor9x9andotheradvancedBWRbundledesignsthat.aresimilartothe7x7,8x8,and9x9fueldesigns.Comparisons totheTRX,Kritz,andESADAcriticals showcriticalevaluations forawidevarietyoffuelarrangements (i.e.varyingpellet'diameters, pelletdensities, watertometalratios,andfuelrodpitches).

Comparisons ofCPM-2toMonteCarlocalculations havenotbeenmade;however,thebenchmarking presented inPL-NF-87-001 stronglysupportstheuseofCPM-2tomodel9x9fuelandotheradvancedBWRbundledesignssimilartothosepresented.

uestion6Haveanytrends(biases)beenobservedintheaccuracyofpin-power andLPFpredictions vs.elevation, voidhistory,exposure, control,etc.7~ResenseTheaccuracyofthepinpowerdistribution andlocalpeakingfactordoesnotappeartobecorrelated toexposure, voidhistory,orelevation.

Thiscanbeseenbyexamining thedatafromtheQuadCitiesgammascancomparisons summarized

.inTables2.3.2and2.3.3ofPL-NF-87-001.

ThesedatahavebeenplottedinFiguresC6.1throughC6.6.Overall,theredoesnotappeartobeanytrendinthestandarddeviations ofthepincomparisons relativetoexposure, voidhistory,orelevation.

Theinteriormixedoxidebundles,GEB159andGEB161,doshowslightlyincreased standarddeviations withincreased elevations (i.e.,voidhistory).

Thesebundledesignsarenottypicalofexpectedfueldesignscurrently plannedforuseinSusquehanna SES.Itshouldalsobenotedthatthecalculated peakactivityisnormallyhighproviding aconservative estimation ofthelocalpeakingfactor.Inadditiontothegammascancomparisons performed atPPGL,EPRIsponsored benchmarking oftheoriginalEPRI-CPM.

Theresultsfromthesecomparisons areconsistent withtheQuadCitiescomparisons indicating CPM-2calculations providesimilaraccuracyfordifferent bundledesigns.MeasuredgammascandatadonotexistforanyoftheSusquehanna SESspecificbundledesignswhichwouldpermitdirectcomparison topinpowers.However,theTIPresponsecomparisons presented inSection3ofPL-NF-87-001 canbeusedtoinfertheaccuracyofCPM-2.TheTIPresponsemodelusedinSIMULATE-E isdeveloped basedonCPM-2calculations.

Thesecalculations requireCPM-2topredictalocalfissionrateatthedetectorlocationinthebypassregion.IfCPM-2wasunabletocalculate accuratelocalpeakingfactors,itwouldalsobeunabletocalculate accurateTIPresponsefactors.ThiswouldshowupintheTIPresponsecomparisons.

Theindividual TIPresponsecomparisons inSection3donotappeartocontainanytrendswithcontrolrodpresence,

exposure, voidhistory(i.e.,exposure-weighted relativemoderator density),

orrelativemoderator density.Thisagreeswiththeconclusions drawnfromthecomparisons togammascandata.

FIGUREC6.1QUADCITIESUNIT1ENDOFCYCLE2NORMALIZED La-140ACTIVITYPINCOMPARISONS 60I~QUJClCCCIZ4V)0cI0":'egend 0GEB169GEB161~GEH002SCX0672'"~CX0214a~4681012141618CALCULATED BURNUP.(GWD/MTU) 2022 mmmmmmmmmmwmwmmwm FIGUREC6.2QUADCITIESUNIT1ENDOFCYCLE2NORMALIZED La-140ACTIVITYPINCOMPARISONS Z60l~aWClCCCIZ4I-LegendPGEB169GEB161~GEH002~CX0672~CX0214p'3""~~.:01020.304060CALCULATED VOIDHISTORY(%)6070 FIGUREC6.3QUADCITIESUNIT1ENDOFCYCLE2NORMALIZED La-140ACTIVITYPINCOMPARISONS Z80l~5DCLDZ4(DLegend0GEB159GEB161~GEH002~CX0672....~CX02140gI0002040~~6080100ELEVATION (INCH)W.:~~120140 10~o60c(40Q2OZm.FIGUREC6.4QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS Legend0GEB159GE8161~GEH002~"-.'-""~CX0672CX0214.~........:, 4-61012141618CALCULATED BURNUP(GWD/MTU) 2022 10FIGUREC6.5QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS Legend0GEB159GEB161~GEH002~o60c(40UJQOOZg)0-r~~~rCX0872~CX0214~'..:..~............

.:r<<2-4106020304050mmmmmmSPY'lYLJiiWekimmmmmmm 10FIGUREC6.6.QUADCITIESUNITIENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS

~o604ClClCIZg)0-2-4Legend0GEB159GEB161----"-"~GEH002~CX0672CX0214~~0I~~~~~00020406080ELEVATION (INCH)100120140 Question7Howdothemodifications totheENDF/B-III nucleardataotherthanthosenotedforU-238comparetotheuncertainties inthebasicdata?~ResenseThemodification tothePu-240microscopic absorption crosssectionsistheonlymodification madetotheENDF/B-III crosssectiondataotherthanthosenotedforU-238.Thismodification, asstatedinSection2.1ofPL-NF-87-001 anddocumented inPartII,Chapter4ofEPRICCM-3,"TheEPRI-CPMDataLibrary,"

isa50%reduction inthecrosssection,intheresonance energyregion(i.e.,energygroups16through27).Althoughtheaccuracies oftheENDF/B-III data'renotpresented intheEPRIdocumentation, itislikelythatthismodification exceedstheuncertainties ofthebasicnucleardata.Themodification, however,isrequiredtocompensate forthefactthatPu-240isnottreatedasaresonance nuclideinCPM-2.Theunmodified crosssectionwouldsignificantly overpredict theabsorption intheresonance region.Anymodification tothePu-240microscopic absorption crosssectionswouldaffecttheheavynuclideconcentration buildupwithexposure.

Table2.1.3ofPL-NF-87-001 presentstheheavynuclidechainsthatincludePu-240.IfthePu-240crosssectionswereinappropriately

adjusted, thePu-240,Pu-241,andPu-242concentrations wouldimproperly accumulate withexposure.

Table2.4.3andFigures2.4.4through2.4.6showcomparisons ofmeasuredandcalculated isotopicparameters.

Allcalculations, whichincludetheeffectofthemodifiedENDF/B-III crosssections, showgoodagreement withmeasureddataandprovideindication thattheconcentrations areproperlyaccumulating withexposure.

Thisagreement therefore supportstheacceptability ofthemodifiedPu-240microscopic absorption crosssections.

~tention8TheQuadCities-1EOC2gammascandataareessentially representative ofallrodsoutoperation.

Whataretheimplications relativetotheaccuracywithwhichCPM-2calculates individual rodpowersfornormalroddedconditions, andwhatassurance istherethatanypresently observedconservative trends(biases)areuniversal, andbounding?

~ResenseWhenperforming safetyanalyses, generally onlythelimitingbundlesareaconcern.Therefore, itisnormallyonlynecessary todetermine theuncertainty foruncontrolled conditions.

Theuncertainty iscalculated fromtheQuadCitiesUnit1endofCycle2gammascancomparisons.

Thisuncertainty, however,canalsobeextendedtocoverthecontrolled configuration.

Section3ofPL-NF-87-001 containscomparisons madetooperating datausingtheSIMULATE-E code.ThecrosssectiondataandTIPresponsemodelarederivedfromCPM-2calculated data.TheresultsinSection3,particularly theindividual TIPresponse, donotshowanyincreaseinthestandarddeviation associated withthepresenceofacontrolrod(seePL-NF-87-001, Figures3.2.15and3.2.36forexamples).

Reactivity comparisons fromSusquehanna SESandQuadCitiescoldcriticalevaluations alsosupporttheseobservations.

ThecoldK-effectives fromthelocalcriticals andtheK-effectives fromthein-sequence criticals atthesameexposurearenotsignificantly different eventhoughthecontrolroddensityis98%forthelocalcriticals and74%to75%forthein-sequence criticals.

TheSusquehanna SESandQuadCitiescoldcriticaldataiscontained inTable3.2.6andTable3.3.1ofPL-NF-87-001, respectively.

uestion9TheCPM-2comparisons tothe7-scandataareinfluenced bytheaccuracyoftheSIMULATE-E predictions oflocaleffects(e.g.burnup,void,controlhistory)forthescannedbundles/elevations.

HavetheSIMULATE-E localerrorsbeenconsidered toassurethattheCPM-2resultsarerepresentative?

~ResenseWhenperforming licensing calculations withSIMULATE-E, thelocalpeakingfactorwhichwillbeusedforcalculation ofMCPRorLHGRwilldependontheability.ofSIMULATE-E topredictnodalconditions.

Ifthepredicted conditions areincorrect, thecalculated localpeakingfactorwillbeaffected.

Thecomparisons reportedinPL-NF-87-001 includeanyadditional uncertainties causedbythemisprediction oftheburnuporvoidhistoryattheelevation ofinterest.

Theseuncertainties willbetakenintoaccountinanalyseswhichuseSIMULATE-E todetermine localpeakingfactor.Theapplication ofmodeluncertainties willbepresented indetailinatopicalreportentitled"Application ofReactorAnalysisMethodsforBWRDesignandAnalysis".

SIMULATE-E Question1Doesthedataforassemblypowerpeakingthatisusedinthecalculation offuelperformance parameters (e.g.MLHGR,CPR)includeallCPM-2calculated statepoints (e.g.everyburnuppointandeverynominalandoff-nominal condition) oronlyasubset?Ifthelatter,howaretheyselectedtoensureconservatism?

~ResenseTheCPM-2basedlocalandsecondary peakingfactors,whicharerequiredfortheXN-3criticalpowercorrelation, areusedintheSIMULATE-E fuelthermalmargincalculations.

ThesepeakingfactorsinSIMULATE-E arefunctions ofvoidhistory(i.e.,exposure-weighted relativemoderator density),

controlrodpresence, andfuelexposure.

AlthoughthesepeakingfactorsdonotincludesomeoftheCPM-2exposurestatepointsanddonotincludearelativemoderator densityorcontrolrodhistorydependence, thepeakingfactorsareaccurately represented inSIMULATE-E forallexpectedconditions.

Thepeakingfactorsarenotsensitive totheseexclusions.

FigureSl.l'hows thelocalpeakingfactorvaluesat0%voidhistoryforthreerelativemoderator densities (corresponding to0%,40%,and70%voidlevels)andcontrolrodhistory.TheSIMULATE-E dataagreewellwithalltheCPM-2dataexceptforcontrolrodhistories past5.0GWD/MTU.Fuelassemblies withcontrolrodhistories approaching 5.0GWD/MTUwouldhaverelatively lowreactivity andwouldhavesignificant margintothermallimits.Sincerelativemoderator densitynegligibly affectsthelocalpeakingfactorsasshowninFigureSl.landcontrolrodhistories forlimitingbundlesarelessthan5.0GWD/MTU,theeffectofnotconsidering thesedependencies isinsignificant.

1.7FIGURE81.1UNCONTROLLED LOCALPEAKINGFACTORDATAFOR9XQLATTICEAT0'/0VOIDHISTORY1.61.5OI-O1.4zhC13C301.2LegendSIMULATE-EXCPM-20%VH0CPM-20%VHTO40V0CPM-20%VHTO70VCPM-2CONTROLHISTORY101e20263040 uestion2a.Whatisthe"flag"whichsignalstheneedfornewnormalization ofthemodeladjustable inputdataparameters and/orradialandaxialalbedos?b.Howoftenarealbedo/normalization parameter changestypically made?c.Whatisthebasisforperforming thenormalization whenthecodeisusedinapredictive modeforcoreswhichdiffersignificantly fromthosepreviously modeled?~Resoesea.Threemajorchangescanaffectthenormalization parameters.

Asignificant changeinfueldesign,coredesign,and/orcalculational uncertainty willindicatethatanewnormalization shouldbeperformed.

Inbenchmarking the7x7,8x8,and9x9fuelbundledesignsandtheQuadCities,PeachBottom,andSusquehanna coredesigns,PPGLusedthesamesetofnormalization parameters forthevariousfuelandcoredesigns.Thebenchmarking calculations completed todateshowsimilarresultsbetweenmeasuredandcalculated parameters and,therefore, supporttheuseofthesamenormalization parameters forfutureSusquehanna SESfuelandcoredesigns.b.Theadjustable albedo/normalization parameters havemaintained consistency forallfuelandcoredesignsasstatedinresponsetoQuestion2a.Changeshavenotbeenmadeandarenotplannedorexpectedtooccurfrequently.

Futuremodelenhancements mayinvolveachange(s) inalbedo/normalization parameters.

Forchangesinmodelslikethis,benchmarking calculations wouldbeperformed torequalify orupdatetheuncertainties incorereactivity andpowerdistribution.

c.Thepresented TIPinstrument responseandcorereactivity comparisons inPL-NF-87-001 arebasedonaconsistent setofnormalization parameters.

Usingthesecomprehensive datathatincludeawidevarietyoffuelandcoredesigns,PPGLdeveloped astrongstatistical databasetodetermine conservative marginsforapplication tonewcoredesigns.Thereport entitled"Application ofReactorAnalysisMethodsforBWRDesignandAnalysis" willpresenttheuseofthesemarginsinSusquehanna SESsafetyanalyses.

~uestion3IstheXN-3correlation validfor9x9andotheradvanceddesignBWRbundles?~ResonseTheXN-3correlation, developed byAdvancedNuclearFuelsCorporation (ANF),formerlyExxonNuclearCompany,isvalidforSx8and9x9fuelfortherangesofapplicability specified intheassociated NuclearRegulatory Commission safetyevaluations.

Licensing TopicalReport,XN-NF-734 (P)(A),"Confirmation oftheXN-3CriticalPowerCorrelation for9x9FuelAssemblies" describes theconfirmation ofXN-3forthe9x9fuelbundledesignandisapprovedbythe.NuclearRegulatory Commission.

TheoriginalapprovaloftheXN-3CriticalPowerCorrelation isprovidedinXN-NF-512(P)(A),

"XN-3CriticalPowerCorrelation".

ThisXN-3correlation isusedintheSIMULATE-E fuelperformance evaluations.

SampleSIMULATE-E testcaseshavebeenperformed anddocumented toverifythecorrectimplementation ofthecorrelation.

TheXN-3correlation isvalidforthefuelbundledesignscurrently scheduled for.loadingintofutureSusquehanna SEScycles(i.e.,8x8and9x9fuelbundledesigns).

uestion4TheTIPdetectormodelinSIMULATEassumesthattheresponsefromeachassemblyisnotaffectedbythepresenceoftheother3surrounding theTIP.Hasthisassumption beentested;isitadequate'Res ensePL-NF-87-001 statesthatthedetectorresponsefromeachassembly(i.e.,R.)jisnotaffectedbytheotherthree.However,thetotaldetectorresponseconsiders theeffectofeachsupporting assemblypowerasfollows:MER=-R.P.Mjj(Section3.2.3ofPL-NF-87-001) whereER=totaldetectorresponse, M=numberofbundlesaroundaTIPdetector(i.e.M=4),R.=detectorresponsecontribution fromassembly, j,jP.=SIMULATE-E calculated nodalpowerfromassembly, j.Eachassemblypower,P.,isaffectedbytheothersthroughneutronic couplingj'ntheneutronbalanceequation.

Therefore, thetotaldetectorresponse1contribution fromanassembly,

-R.P.,implicitly takesintoaccountthejj'therassemblypowers.Thismethodology isvalidated throughtheTIPresponsecomparisons presented inSection3ofPL-NF-87-001.

Forexample,Figures3.2.12and3.2.15inPL-NF-87-001 showthreecontrolled andoneuncontrolled TIPresponsecomparisons.

Thecontrolled comparisons containaggravated conditions ofwhichonebundleislowinpowerandtheotherthreearehighinpower.Majordiscrepancies wouldexistiftheTIPresponsemethodology isinadequate.

Asthefiguresshow,excellent agreement forallthreecontrolled TIPresponses exist,andtheresultsareverysimilartotheuncontrolled TIPresponsecomparisons.

Thisexcellent agreement supportstheTIPresponsemodelusedinSIMULATE-E.

question5Whileitistruethatperipheral assemblies andtopandbottomaxialnodesaregenerally lowpowerandhencenotofsafetyconcern,eliminating themfromthescancomparisons seemstoremoveapotentially valuablesourceofinformation ontheaccuracy/adequacy ofalbedoandreflector boundarycondition dependencies.

Pleasecomment.~ResonseThegammascandatainEPRINP-214allowforradial,nodal,peaktoaverage,andbundle(axial)comparisons.

Peaktoaverageandindividual bundle(axial)comparisons utilizealltheavailable gammascandata.Theradialcomparisons utilizeallthedatawiththeexception ofthemixedoxideandperipheral assemblydata.Forthenodalcomparisons, themixedoxideandperipheral assemblyandtopandbottomnodedataareeliminated.

Table3.3.7ofPL-NF-87-001 presentstheindividual bundlegammascancomparisons forallbundlesandnodes.Theperipheral bundlesinthistableare:CX0546gGEB162gCX0490gCX0553fCX0662gCX0682gCX0643gCX0683~Figure3'.20ofPL-NF-87-001 showsanaxialcomparison ofaperipheral bundle.Itisrecognized thatthesecomparisons directlyassesstheaccuracyofthealbedosusedinSIMULATE-E.

Comparisons oftheperipheral assemblies andtopandbottomaxialnodegammascanresultsareslightlyworsethantheinteriorbundlegammascancomparisons butarestillquitegood.ThetopandbottomalbedoswhicharebasedontheSusquehanna SESdatawereusedintheQuadCitiesmodel.Duetodifferent fuelandcoredesigns,thetopandbottomalbedoswoulddifferfromtheSusquehanna SESvalues.AlthoughtheSusquehanna SESalbedoswereutilizedintheQuadCitiescalculations, theSIMULATE-E modelstillprovidesanaccuratecalculation ofthepowerdistribution.

Therefore, sincethePPGLmodelswerenotnormalized totheQuadCitiesdataandsincethetopandbottomnodesandperipheral bundlesarelowpowerregionsofthecore,theperipheral bundleswerenotincludedinthestandarddeviation calculation fortheradialcomparisons, andtheperipheral bundlesandtopandbottomnodeswerenotincludedinthestandarddeviation calculation forthenodalcomparisons.

uestion6Pleaseexplainwhynon-conventional definitions areusedintheTIPandg-scancomparisons.

Forexample,itisnotobviouswhyTisusedinthedenominator fordetermining thedifferences intheradialTIPcomparisons.

~ResoeseInPL-NF-87-001, thedifferences andstandarddeviations fortheTIPresponseandgammascancomparisons arenormalized withtheaveragemeasuredvalue,T,toexpressthemintermsofapercentage ofthecoreaverage.Thisapproachresultsinastandarddeviation expressed inunitsofpercent.However,theresultofthecalculation isastandarddeviation oftheabsolutedifferences.

Anothermethodthatcouldhavebeenusedinvolvesconversion ofthedifferences toapercentage ofthemeasuredvalue(i.e.,bydividingbyT),andthencalculate thestandarddeviation ofthesepercentage differences.

Thissecondmethod,however,weightsthedifferences forthedetectorlocations withlowreadings(i.e.,lowpowerregions)moreandthedifferences fordetectorlocations withhighreadings(i.e.,highpowerregions)lessthanthefirstmethod.SincetheaccuracyoftheSIMULATE-E calculations inthehighpowerregionsismoreimportant forthermalmargincalculations, thefirstmethodismoreappropriate.

AnexampleisshownforaradialTIPresponsecomparison todemonstrate thedifferences intheaboveapproaches.

TheattachedFigureS6.1showsaradialTIPresponsecomparison usingthesecondmethodandFigure3.2.29ofPL-NF-87-001 showstheradialTIPresponsecomparison ofthesamedatausingthefirstmethod.FigureS6.2showstheaverageofthemeasuredTIPresponses ateachradiallocation(i.e.,T).Notethattheuseofthefirstmethodresultsinahigher0difference forthehighmeasuredvalues(e.g.,TIPresponseatlocation32-33:6e48%vs.5.96%),andalower%difference forthelowmeasuredvalues(e.g.,TIPresponseatlocation32-57:5.79%vs.6.36%).ForalltheTIPresponseandgammascancomparisons basedonthefirstmethod,thelocationoftheworseprediction (i.e.largestabsolutedifference) canbeeasilydetermined byfindingthehighestpercentdifference.

Usingthesecondmethod,theworseprediction isnotnecessarily atthelocationofhighestpercentdifference.

Thisisindicated inthe examplewheretheTIPresponsecalculation at32-33(i.e.,ahighpowerregion)exhibitstheworseabsolutedifference.

ThesecondmethodsuggeststhattheTIPresponsecalculation at32-57(i.e.alowpowerregion)isworse.

FIGURES6.1SUSQUEHANNA SESUNIT1CYCLE3RADIALTIPRESPONSECOMPARISONS 0.178GWD/MTUCYCLEEXPOSURE6159575553514947454341393735333129-2.03-2.501.900.82-1.95++++-0.28-0.14~14-0.75-0.296.360.65.96-0.940.353.43.0-2.90-2.800.00.4327252321++++3.88++-4.331.26++.18-3.292.2191715131.0-1.49+++++-1.53.132.33-1.143.39-1.86-4.82-0.7731Y00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/Measured]

X100%

FIGURES6.2SUSQUEHANNA SESUNIT1CYCLE3MEASUREDRADIALTIPRESPONSE0.178GWD/MTUCYCLEEXPOSURE61595755,535149474543413937353331292725232119171513119753150.194049.50.4843.8234.24499448.0646.8946.7250.2243.6230.7744.6052.4748.3051".7153.6149.3452.1242.5845.2750.87509045.511950.2241.5750.9246.6546.6749.5147.2050.0152.5551.7752.9251.4134.9343.7940.9744,7443.19140002040608 1012141618202224262830323436384042 444648505254565860XCoreAverageTIPResponse=46.82 uestion7DoesPPaLintendtousePDQ-7forapplications significantly different fromthoseforwhichbenchmarking isprovidedinthereport(e.g.corecalculations)7

~ResensePPaLdoesnotintendtoperformthree-dimensional corestatepoint ordepletion calculations withPDQ-7.PPGL'sprimaryintenti:stousePDQ-7fortwo-dimensional calculations tocomplement CPM-2and/orSIMULATE-E forspecialapplications (e.g.,partially loadedcoreconfigurations andlocalcriticality calculations).

Insomeinstances, PDQ-7willbeusedasanindependent verification ofcalculations.

Inaddition, PPSLbelievesthatfutureSIMULATE-E modelimprovements maybedeveloped withtheuseofPDQ-7.

question8DoEPRIguidelines existfortheCPM-2(crosssection)-COPHIN-PDQ-7calculational path7AretheyfollowedbyPPaL'?~ResenseNoEPRIguidelines currently existfortheCPM-2/COPHIN/PDQ-7 calculational path.ThemethodusedatPPGListousetheCPM-2macroscopic crosssectiondataforfuelpinsintheassemblies ofinterest.

COPHINassembles thisdataintocrosssectiontableswhicharethenusedinPDQ-7.PPGLonlyusesPDQ-7forspecialanalysesthatcannotbeperformed withCPM-2and/orSIMULATE-E.

Eachspecificanalysiswilldetermine theparticular mannerinwhichthePDQ-7modelisdeveloped.

GENERAL/egestion HavetheCPM-2/MICBURN, SIMULATE-E, FIBWRandtheXN-3correlation beenreviewedandapprovedbytheU.S.NuclearRegulatory Commission?

~nesenseTheneutronic methodology inCPM-2/MICBURN andSIMULATE-E, thethermalhydraulic methodology inSIMULATE-E (i.e.,FIBWR),andthecriticalpowermethodology inSIMULATE-E (i.e.,XN-3)havebeenreviewedandapprovedbytheU.S.NuclearRegulatory Commission aspartofothertopicalreports.Theneutronic methodology inCPM-2/MICBURN hasbeenrecentlyapprovedintheGeneralPublicUtilities NuclearCorporation submittal oftheirlatticephysicstopicalreport.TheSIMULATE-E methodology fortheneutronic calculations, hasalsobeenapprovedinYankeeAtomicElectricCompany's submittal ofSIMULATE.

TheSIMULATEandSIMULATE-E neutronic methodologies areidentical.

Withregardtothethermal-hydraulic methodology inSIMULATE-E (1e.,FIBWR),theFIBWRmethodology hasbeenapprovedforYankeeAtomicElectricCompany.ForXN-3,theU.S.NRChasapprovedtheExxonNuclearCompany(currently AdvancedNuclearFuels)submittals XN-NF-512(P)(A) andXN-NF-734(P)(A)-

IIII