ML17156A688: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 31: Line 31:


==81.0INTRODUCTION==
==81.0INTRODUCTION==
ByletterdatedMarch31,1987,thePennsylvaniaPowerandLightCompany(thelicensee)requestedapprovalofTopicalReportPL-NF-87-001,Rev.0,forthepurposeofitsuseinlicensingactionsfortheSusquehannaSteamElectricStation(SSES)Units1and,2.~ThereportdescribesthequaliIicationoftheCPM-2latticephysicsandSIMULATE-Ethree-dimensionalnodalcoresimulatorprogramsforthesteadystatedesignandanalysisofboilingwaterreactors(BWRs).TheseprogramsarepartoftheAdvancedRecycleMethodologyProgram(ARMP)developedbytheElectricPowerResearchInstitute(EPRI)forsteadystateanalysesoflightwaterreactors.BriefdescriptionsoftheCPM-2andSIMULATE-EprogramsarepresentedalongwithcomparisonstomeasurementsfromoperatingBWRsandexperimentalcriticals.TheresultsofselectedPD07calculationsforuniformlatticecriticalsandsinglefuelbundlesarealsopresented.Theseprogramsandassociatedmethodologiesareusedbythelicenseeforplantoperationssupport,variousfuelcycleandsafetyrelatedcalculations,andtoprovidenecessaryneutronicsinputdatatotransient'analysesforthetwounitSusquehannaSteamElectricStation.2.0SUMMARYOFTOPICALREPORTTheSIMULATE-Ethree-dimensionalcodeisusedbythelicenseetomodelthecoupledneutronicandthermal-hydraulicbehavioroftheSusquehannaUnit1and2BWR cores.TherequirednucleardataaregeneratedbytheCPN-2programwhichmodelstheBWRfuelbundleanditsenvironment(by-passchannel,cruciformcontrolrod,etc.)intwo-dimensions.2.1DescritionoftheCPN-2ProramCPN-2isamodifiedversionoftheCPM(CollisionProbabilityModule)codedevelopedinSwedenbyABAtomenergi/StudsvikfortheanalysisofPWRandBWRfuelassemblies.Themodelingcombinesfinegroupspectrumcalculationsforsub-regionsoftheassembly(e.g.fuelpin-cells),withamultigrouptransportcalculationforapartiallyhomogenized,hetrogeneousassemblyintwo-dimensional(xy)geometry.ThecodeisdistributedbyEPRI,ardisidenticaltotheoriginalCPNexceptfortheinputmodulewhichhasbeenimprovedtomaketheprogrammore"userfriendly."Sincethesemodifications('aswellasthosemadebythelicenseeintheirimplementationanduseofCPM-2)didnotaffecttheneutronicscalculations,alltheoriginalbenchmarkingofCPNbyEPP1/StudsvikisapplicabletoCPN-2aswell.ThecalculationalsequenceforatypicalBWRassemblyinvolvesthreebasicsteps,withthespatialandenergydetailbecomingsuccessivelycoarseraslargerregionsoftheassemblyareconsidered.Thesestepsaretermedthemicro-group,macro-group,andtwo-dimensionalassemblycalculations.Cruciformcontrolrodsaretreatedviaaspecialsubroutine,andthedepletionofgado-liniabearingfuelpinsrequiresanauxiliarycalculationwiththeNiCBURNcode.2.2CPN-2uglificationTheaccuracy/adequacyofvariousaspectsofCPM-2anditsmodels(e.g.nucleardata,treatmentofcontrolrodsandgadolinia)isdemonstratedbycomparisonstomeasuredresultsfrompowerreactorsandexperimentalconfigurations.Comparisonsofeigenvalues(kff),pinpower/fissionratedistributions,and'eff'sotopicconcentrationsversusburnuparepresented.Someoftheseresultswere generatedbythelicensee,whileothersweretakenfromtheEPRI/StudsvikbenchmarkingoftheoriginalversionofCPM.Pin-cellcalculationssimulating14roomtemperatureuniformlatticecriticalexperimentswereperformedbyPPP~LtoassesstheaccuracyoftheCPM-2reactivitycalculation(basedonthemeasuredbuckling).EightoftheconfigurationscontainedU02fuelandthefuelfortheremaining6contained2.0weightpercentPuO>innaturaluranium.CPM-2slightlyunderpredicted(byabout0.5>k)thekfffortheU02criticals,andoverpredictedtheeffmultiplicationfactorfortheremainingcriticals,resultinginanaveraqekffofI.COOSwithastandarddeviationof0.0072consideringallcriticals.effTheaccuracyoftheCPN-2calculationoftherod-wisepowerdistributionwasevaluatedbycomparisonstothegamma-scanmeasurementsperformedatsquadCitiesUnit1attheendofCycle2.Two7x7M02andthreeU02bundles(one8x8andtwo7x7)wereconsideredinthecomparisons.Burnupandvoidoperatinghistorydatawereobtainedforeachbundle-elevationfromaSIMULATE-Esimulation.ThesedatawereusedinCPN-2bundlecalculationstoarriveattheCPM-2/SIMULATE-Epredictedstatepointscorrespondingtothemeasureddata.Thecomparisonsshowedgenerallygoodagreementbetweenmeasurementandprediction(average=4.0l)withCPM-2tendingtooverpredictthepeakrodpower.TheresultsoftheEPRI/StudsvikbenchmarkingoftheoriginalCPMcodetouniformlatticecriticals,smallcorecriticalexperimentsperformedattheKRITZfacility,and-measuredconcentrationsofuraniumandplutoniumisotopesfromYankeeandSaxtonspentfuelarealsopresented.ThesecomparisonsshowgenerallyreasonableagreementbetweenCPMpredictedandmeasuredquantities.,".3DescritionofSINULATE-ETheEPRIdistributedSIMULATE-Ethree-dimensionalcoupledneutronics/thermal-hydraulicscoresimulatorprogramisusedbyPPALintheirsteadystatecoreanalyses.Thethermal-hydraulicscalculationsuseanEPRIdevelopedvoidcorrelationandtheFIBMRmethodologydevelopedbyYankeeAtomicElectric Company.Themethodologyemployedfortheneutronicscalculationsmaybeselectedbytheuserfromseveralavailableoptions;PPSLusestheModifiedCoarseMeshDiffusionTheory(PRESTO)option.Two-groupmacroscopiccrosssectionsforeachfueltypearedeterm'.nedbyCPM-2asafunctionoffuelexposure,voidhistory,moderator,fuelandcontrolconditions,andxenonconcentration.AfterprocessingbyNORGE-B2,theyareinputtoSIMULATE-Ealongwithradialandaxialalbedosappliedatthecore-reflectorinterfaces.Normal'izationofthemodeltomatchplantoperatingdataisperformedviaadjustmentofseveralinputdataparameters.Separatemndelsarecreatedathotoperatingandcoldconditions.Thelicenseehasmadeanumberofchargestothecode,includingtheabilitytocalculatetheCriticalPowerRatio(basedontheAdvancedNuclearFuelsCorporation,formerlyEXXONNuclear,XN-3criticalheatfluxcorrelation),andlinearheatgenerationrateandaverageplanarheatgenerationratethermallimitsevaluations.Thesechangeshavenotresultedinanychangestothebasicneutronicsorthermal-hydraulicscalculations.2.4.SIMULATE-E(}uglificationThequalificationoftheSIMULATE-Eprogramisbasedonsimulationsofthefirsttwocyclesof(juadCitiesUnit-1(gC-1)andPeachBottomUnit-2(PB-2),andofthefirsttwo-plusandone-pluscycles(i.e.,fromBOLtoapproximatelyearly1987)ofSusquehannaUnits1and2,respectively.ComparisonsofSIMULATE-Epredictedvaluesweremadetohotandcoldmultiplicationfactors(kff)andpowerandflowdistributions.TheaccuracyofthepredictedpowerdistributionswasevaluatedbasedoncomparisonstoTIPdetectorreadings,andtoresultsfromgamma-scans.Powerandflowdistributionswerecomparedto.resultsfrom.theon-linecoremonitoringsystem.ThekffcomparisonsfortheSusquehannaunitsconsidered257hotoperatingconditionsteady-statestatepoints,and39(3localand36in-sequence)coldcriticalstatepoints.ThesecomparisonsindicatedthattheabilityofthePPSLSIMULATE-Ehotandcoldmodelstopredictkffdependsonthecoreaverageeffexposureandthegadolinialoading.Thereisanearlyconstantbiasbetweenthehotandcoldpredictions,withthehotkffconsistentlylower.Usingthis data,thelicenseegenerateshotandcoldcycle-dependenttargetcriticalcorekffcurvesforuseinthecorefollow,andshutdownmarginandcontrolrodeffworthanalysesofindividualcycles.ThepowerdistributioncomparisonsutilizedallavailableTIPsetsfrombothSusquehannaunitsandconsiderednodalandaxiallyaveraged(radial)quantities.AsymmetriesinthemeasureddatawerequantifiedbyconsideringsymmetricnodalorradialTIPreadingstoprovideanestimateofthemeasurementuncertaintiesassociatedwitheachTIPset.NodalRMSerrorstendtobeinthe4-6$range,withdifferencesnearthemiddleofcycleandendofcyclepowercoastdowninthe6-95range.TheaveragenodalandradialRMSerrorsconsideringall82TIPsetsare5.74and2.58percent,respectively.Thecorrespondingaverageasymmetriesbasedon44TIPsetsare5.22and2.55percent,respectively.Fourcoreaverageaxialpowerdistributionandthree-bundleflowcomparisonsarealsopresented,consideringonestatepointperSusquehannaunit/cycle.These.comparisonsaremadetodataproducedbytheon-lineCoreMonitoringSystem(CMS)todemonstrateconsistencyoftheresults.(ThebF.processcomputerPlprogramwasusedforthefirstcycleofbothunits,withtheANFPOMERPLEXCMSusedinallsubsequentcycles).ThesecomparisonsshowedgoodagreementbetweentheSIMULATE-EandCYSresults.ComparisonstnmeasureddatafromthefirsttwocyclesofsquadCitiesUnitI(gC-1)werealsoperformed.InadditiontohotreactivityandTIPdatasimilartothatfromtheSusquehannaunits,theOC-Imeasurementsincluded33coldcriticalconfigurations(22local)fromCycle-l,andbundlegammascanmeasurementsfromtheendofcycles(EOC)oneandtwo.ThegC-Ihotcriticalcomparisonsshowedasimilartrendversusexposuretothatobservedearlier;however,therelativelylowgadolinialoadingingC-1resultedintheabsenceofthebowl-shapedgadoliniacomponentinthevariation.Thelargecoldcriticaldatabaseservedtoaugmenttheearlieranalyses.ThegC-1coldcriticalcomparisonswereusedtoconfirmthatthere isnosignificantbiasbetweenSIMULATE-Epredictionsofkf<forin-sequenceeffandlocalcriticalconfigurations.ThegC-Ibasedpowerdistributioncomparisonsconsidered15TIPsetsfromCycleIand13setsfromCycle2,alongwithgammascandatafrom31and89bundlesatEOClandEOC2,respectively.ThenodalandradialRNSdifferencesfromtheTIPcomparisonsareroughlytwiceaslargeasthoseobserved~orthpSusquehannacomparisons.TheEOCIgammascandataconsistedofmeasuringtheaxialpeaktobundleaverageLa-140activitiesandservedtobenchmarktheSIMULATE-Ecalculationoftheaxialpeakingfactor.Theresultingdifferencewas1";(=25)withtheagreementforcontrolledbundlesconsiderablvbetterthanforuncontrolled.TheEOC2gammascar.dataismuchmoreextensiveandpermitscomparisonsofindividualbundleaxialLa-140activitydistributions,aswellasradial,nodalandpeaktoaveragecomparisons.Peripheralandmixedoxidebundleswerenotincludedintheradialandnodalcomparisonsandthetopandbottomsixincheswereeliminatedfromthenodalcorn'parisors.Thepeak-toaveragecomparisonsresultedinanaveraqedierenceo.about0.2~(=1.5f)withamaximumdifferenceofabout4%.Theaveragestandarddeviationfromtheindividualbundlegammascanswas6.3Xwithmorethan85>o<theindividualbundle'sinthe5-8~range.Thestandarddeviationfromtheradialandnodalgammascancomparisonswereabout2'Aand5.5',respectively.Theouot~dmeasurementuncertaintyfortheqammascanswas31,.ThefinalqualificationofSIMULATE-EpresentedinthereportconsistsofpowerdistributioncomoarisonstoTIPmeasurementsanddatafromtheGEPlprocesscomputerforPeachSottomUnit2{PB-2)cycles1and/or2.ThelevelnfagreementwithmeasuredTIPdatafromthesecnmparisonsisreasonableandconsistentwiththatobservedearlier.ThepurposeofthePB-2simulationswastngenerateinputfortheanalysisoftheturbinetriptestsperformedneartheendofCycle2,includinganaccuraterepresentationoftheinitialconditions.Thenon-steadystateoperationthatprecededthesetestsrequiredanaccuratemodelingofnon-equilibriumxenondistributionsandconcentrations.Comparisonsofthepredictedcoreaverageaxialpowerdistributionsjustpriortothe threetests(toppeaked,middlepeakedandslightlybottompeaked)todatafromtheprocesscomputershowedgoodagreement.2.5DescritionofPD7ThegeometryintheCPM-2latticephysicscodeislimitedtorepresentinganindividualfuelassembly.Insomeapplications,however,amultipleassemblycalculationisrequired,andfortheseapplicationsPPSLusesthegeneralpurpose.PD(7code.Theprogramsolvesthefewgroupdiffusion.theoryequationbasedonthefinitedifferencespatialapproximationinone,two,orthreedimensions.Whileuptofiveenergygroupsarepermitted(includingtwooverlapping)thermalenergygroups,thelicenseegenerallyutilizesfourgroupswithasinglethermalgroup.Microscopicormacroscopiccrosssectiondatamaybeemployed;PP8LtypicallyusesmacroscopicdatafromCPM-2andprocessedwiththeCOPHINcode..66II6ThePP5LqualificationofPD(7consistedofanalyzingthesameuriformlatticecriticalsusedinthebenchmarkingofCPM-2,alongwithcomparisonstoCPM-2assemblycalculationsfortypicalcontrolledanduncontrolledBWRfuelbundles.Theuniformlatticecalculationsmodelledthecriticalcoreconfigurationsinone-dimensionalcylindricalgeometrywithanexplicitaccountingoftheradialreflectorandabucllingcorrectiontoaccountforaxialleakage.ReasonableagreementwasobtainedwiththeCPM-Pcalculatedk+fs,0.9972effversus0.9951and1.0076versus1.0144fortheUOandmixedoxidelattices,respectively.ThePD07singlefuelassemblycalculationsmodelledeachpin-cellexplicitly,andusedshieldingfactorsderivedbycomparisontoCPM-2results,forgadoliniabearingfuelpinsandcontrolrods.TwoseparatefuelbundlesfromtheinitialcoreloadingoftheSusquehannaunitswereselectedfnrthe.comparisons.TheresultsshowedgenerallygoodagreementbetweenCPM-2and PD(7forthebundlek'sandrod-wisepowerdistributionswithmaximumerrorsofabout4$and?,.foruncontrolledandcontrolledbundles,respectively.3.0EVALUAITONTheCPM-2andSIMULATE-EprogramsweredevelopedbyEPRIforthesteadystateanalysesofLWRs.Thelicenseeplanstousethesecodesforplantoperationssupport,variousfuelcycleandsafetyrelatedcalculations,andtoprovidenecessaryneutronicsinputdatatotransientanalysesforthetwoBWRunitsattheSusquehannaSteamElectricStation.ThepresentreviewconsideredtheinformationpresentedinthetopicalreportandadditionalinformationprovidedbythelicenseeinaletterdatedFebruary17,1988.ThereviewconsideredthequalificationoftheFIBWRthermal-hydraulicsmethodologyonlyinitsroleasanintegralpartoftheSIMULATE-Eprogram.TheperformanceofFIBWRasastand-alonethermal-hydraulicscode,andthevalidity/applicabilityoftheANFXN-3CHFcorre1ationwereconsideredtobeoutsidethescopeofthisreview.Themethodologies(notincludingthequalificationpresentedinthisreport)embodiedintheCPN-2andSIMULATE-EprogramshavebeenpreviouslyreviewedandfoundacceptableforsteadystatenuclearcoredesignanalysesofplantsotherthanSusquehanna,andarerepresentativeofcurrentpractice.TheprimaryroleofCPN-2withinthePPSLcalculationalsequenceforBWRanalysesistoprovidenucleardata(basicallytwo-groupcrosssections)totheSIMULATE-Ecoresimulatorprogram.ThebenchmarkingofSIMULATE-FviacomparisonstomeasurementsfromoperatingBWRsthereforeservesastheultimate,thoughsomewhatindirect,qualificationofCPM-2.However,PP8LandEPRI/StudsvikhaveperformedanumberofcomparisonstomeasureddatafromexperimentalconfigurationsandoperatingBWRstotestvariousaspectsoftheCPM/CPh1-2neutronicscalculationmethodologyandnucleardata.
ByletterdatedMarch31,1987,thePennsylvaniaPowerandLightCompany(thelicensee)requestedapprovalofTopicalReportPL-NF-87-001,Rev.0,forthepurposeofitsuseinlicensingactionsfortheSusquehannaSteamElectricStation(SSES)Units1and,2.~ThereportdescribesthequaliIicationoftheCPM-2latticephysicsandSIMULATE-Ethree-dimensionalnodalcoresimulatorprogramsforthesteadystatedesignandanalysisofboilingwaterreactors(BWRs).TheseprogramsarepartoftheAdvancedRecycleMethodologyProgram(ARMP)developedbytheElectricPowerResearchInstitute(EPRI)forsteadystateanalysesoflightwaterreactors.BriefdescriptionsoftheCPM-2andSIMULATE-EprogramsarepresentedalongwithcomparisonstomeasurementsfromoperatingBWRsandexperimentalcriticals.TheresultsofselectedPD07calculationsforuniformlatticecriticalsandsinglefuelbundlesarealsopresented.Theseprogramsandassociatedmethodologiesareusedbythelicenseeforplantoperationssupport,variousfuelcycleandsafetyrelatedcalculations,andtoprovidenecessaryneutronicsinputdatatotransient'analysesforthetwounitSusquehannaSteamElectricStation.2.0SUMMARYOFTOPICALREPORTTheSIMULATE-Ethree-dimensionalcodeisusedbythelicenseetomodelthecoupledneutronicandthermal-hydraulicbehavioroftheSusquehannaUnit1and2BWR cores.TherequirednucleardataaregeneratedbytheCPN-2programwhichmodelstheBWRfuelbundleanditsenvironment(by-passchannel,cruciformcontrolrod,etc.)intwo-dimensions.2.1DescritionoftheCPN-2ProramCPN-2isamodifiedversionoftheCPM(CollisionProbabilityModule)codedevelopedinSwedenbyABAtomenergi/StudsvikfortheanalysisofPWRandBWRfuelassemblies.Themodelingcombinesfinegroupspectrumcalculationsforsub-regionsoftheassembly(e.g.fuelpin-cells),withamultigrouptransportcalculationforapartiallyhomogenized,hetrogeneousassemblyintwo-dimensional(xy)geometry.ThecodeisdistributedbyEPRI,ardisidenticaltotheoriginalCPNexceptfortheinputmodulewhichhasbeenimprovedtomaketheprogrammore"userfriendly."Sincethesemodifications('aswellasthosemadebythelicenseeintheirimplementationanduseofCPM-2)didnotaffecttheneutronicscalculations,alltheoriginalbenchmarkingofCPNbyEPP1/StudsvikisapplicabletoCPN-2aswell.ThecalculationalsequenceforatypicalBWRassemblyinvolvesthreebasicsteps,withthespatialandenergydetailbecomingsuccessivelycoarseraslargerregionsoftheassemblyareconsidered.Thesestepsaretermedthemicro-group,macro-group,andtwo-dimensionalassemblycalculations.Cruciformcontrolrodsaretreatedviaaspecialsubroutine,andthedepletionofgado-liniabearingfuelpinsrequiresanauxiliarycalculationwiththeNiCBURNcode.2.2CPN-2uglificationTheaccuracy/adequacyofvariousaspectsofCPM-2anditsmodels(e.g.nucleardata,treatmentofcontrolrodsandgadolinia)isdemonstratedbycomparisonstomeasuredresultsfrompowerreactorsandexperimentalconfigurations.Comparisonsofeigenvalues(kff),pinpower/fissionratedistributions,and'eff'sotopicconcentrationsversusburnuparepresented.Someoftheseresultswere  
-3-generatedbythelicensee,whileothersweretakenfromtheEPRI/StudsvikbenchmarkingoftheoriginalversionofCPM.Pin-cellcalculationssimulating14roomtemperatureuniformlatticecriticalexperimentswereperformedbyPPP~LtoassesstheaccuracyoftheCPM-2reactivitycalculation(basedonthemeasuredbuckling).EightoftheconfigurationscontainedU02fuelandthefuelfortheremaining6contained2.0weightpercentPuO>innaturaluranium.CPM-2slightlyunderpredicted(byabout0.5>k)thekfffortheU02criticals,andoverpredictedtheeffmultiplicationfactorfortheremainingcriticals,resultinginanaveraqekffofI.COOSwithastandarddeviationof0.0072consideringallcriticals.effTheaccuracyoftheCPN-2calculationoftherod-wisepowerdistributionwasevaluatedbycomparisonstothegamma-scanmeasurementsperformedatsquadCitiesUnit1attheendofCycle2.Two7x7M02andthreeU02bundles(one8x8andtwo7x7)wereconsideredinthecomparisons.Burnupandvoidoperatinghistorydatawereobtainedforeachbundle-elevationfromaSIMULATE-Esimulation.ThesedatawereusedinCPN-2bundlecalculationstoarriveattheCPM-2/SIMULATE-Epredictedstatepointscorrespondingtothemeasureddata.Thecomparisonsshowedgenerallygoodagreementbetweenmeasurementandprediction(average=4.0l)withCPM-2tendingtooverpredictthepeakrodpower.TheresultsoftheEPRI/StudsvikbenchmarkingoftheoriginalCPMcodetouniformlatticecriticals,smallcorecriticalexperimentsperformedattheKRITZfacility,and-measuredconcentrationsofuraniumandplutoniumisotopesfromYankeeandSaxtonspentfuelarealsopresented.ThesecomparisonsshowgenerallyreasonableagreementbetweenCPMpredictedandmeasuredquantities.,".3DescritionofSINULATE-ETheEPRIdistributedSIMULATE-Ethree-dimensionalcoupledneutronics/thermal-hydraulicscoresimulatorprogramisusedbyPPALintheirsteadystatecoreanalyses.Thethermal-hydraulicscalculationsuseanEPRIdevelopedvoidcorrelationandtheFIBMRmethodologydevelopedbyYankeeAtomicElectric Company.Themethodologyemployedfortheneutronicscalculationsmaybeselectedbytheuserfromseveralavailableoptions;PPSLusestheModifiedCoarseMeshDiffusionTheory(PRESTO)option.Two-groupmacroscopiccrosssectionsforeachfueltypearedeterm'.nedbyCPM-2asafunctionoffuelexposure,voidhistory,moderator,fuelandcontrolconditions,andxenonconcentration.AfterprocessingbyNORGE-B2,theyareinputtoSIMULATE-Ealongwithradialandaxialalbedosappliedatthecore-reflectorinterfaces.Normal'izationofthemodeltomatchplantoperatingdataisperformedviaadjustmentofseveralinputdataparameters.Separatemndelsarecreatedathotoperatingandcoldconditions.Thelicenseehasmadeanumberofchargestothecode,includingtheabilitytocalculatetheCriticalPowerRatio(basedontheAdvancedNuclearFuelsCorporation,formerlyEXXONNuclear,XN-3criticalheatfluxcorrelation),andlinearheatgenerationrateandaverageplanarheatgenerationratethermallimitsevaluations.Thesechangeshavenotresultedinanychangestothebasicneutronicsorthermal-hydraulicscalculations.2.4.SIMULATE-E(}uglificationThequalificationoftheSIMULATE-Eprogramisbasedonsimulationsofthefirsttwocyclesof(juadCitiesUnit-1(gC-1)andPeachBottomUnit-2(PB-2),andofthefirsttwo-plusandone-pluscycles(i.e.,fromBOLtoapproximatelyearly1987)ofSusquehannaUnits1and2,respectively.ComparisonsofSIMULATE-Epredictedvaluesweremadetohotandcoldmultiplicationfactors(kff)andpowerandflowdistributions.TheaccuracyofthepredictedpowerdistributionswasevaluatedbasedoncomparisonstoTIPdetectorreadings,andtoresultsfromgamma-scans.Powerandflowdistributionswerecomparedto.resultsfrom.theon-linecoremonitoringsystem.ThekffcomparisonsfortheSusquehannaunitsconsidered257hotoperatingconditionsteady-statestatepoints,and39(3localand36in-sequence)coldcriticalstatepoints.ThesecomparisonsindicatedthattheabilityofthePPSLSIMULATE-Ehotandcoldmodelstopredictkffdependsonthecoreaverageeffexposureandthegadolinialoading.Thereisanearlyconstantbiasbetweenthehotandcoldpredictions,withthehotkffconsistentlylower.Usingthis  
-5-data,thelicenseegenerateshotandcoldcycle-dependenttargetcriticalcorekffcurvesforuseinthecorefollow,andshutdownmarginandcontrolrodeffworthanalysesofindividualcycles.ThepowerdistributioncomparisonsutilizedallavailableTIPsetsfrombothSusquehannaunitsandconsiderednodalandaxiallyaveraged(radial)quantities.AsymmetriesinthemeasureddatawerequantifiedbyconsideringsymmetricnodalorradialTIPreadingstoprovideanestimateofthemeasurementuncertaintiesassociatedwitheachTIPset.NodalRMSerrorstendtobeinthe4-6$range,withdifferencesnearthemiddleofcycleandendofcyclepowercoastdowninthe6-95range.TheaveragenodalandradialRMSerrorsconsideringall82TIPsetsare5.74and2.58percent,respectively.Thecorrespondingaverageasymmetriesbasedon44TIPsetsare5.22and2.55percent,respectively.Fourcoreaverageaxialpowerdistributionandthree-bundleflowcomparisonsarealsopresented,consideringonestatepointperSusquehannaunit/cycle.These.comparisonsaremadetodataproducedbytheon-lineCoreMonitoringSystem(CMS)todemonstrateconsistencyoftheresults.(ThebF.processcomputerPlprogramwasusedforthefirstcycleofbothunits,withtheANFPOMERPLEXCMSusedinallsubsequentcycles).ThesecomparisonsshowedgoodagreementbetweentheSIMULATE-EandCYSresults.ComparisonstnmeasureddatafromthefirsttwocyclesofsquadCitiesUnitI(gC-1)werealsoperformed.InadditiontohotreactivityandTIPdatasimilartothatfromtheSusquehannaunits,theOC-Imeasurementsincluded33coldcriticalconfigurations(22local)fromCycle-l,andbundlegammascanmeasurementsfromtheendofcycles(EOC)oneandtwo.ThegC-Ihotcriticalcomparisonsshowedasimilartrendversusexposuretothatobservedearlier;however,therelativelylowgadolinialoadingingC-1resultedintheabsenceofthebowl-shapedgadoliniacomponentinthevariation.Thelargecoldcriticaldatabaseservedtoaugmenttheearlieranalyses.ThegC-1coldcriticalcomparisonswereusedtoconfirmthatthere isnosignificantbiasbetweenSIMULATE-Epredictionsofkf<forin-sequenceeffandlocalcriticalconfigurations.ThegC-Ibasedpowerdistributioncomparisonsconsidered15TIPsetsfromCycleIand13setsfromCycle2,alongwithgammascandatafrom31and89bundlesatEOClandEOC2,respectively.ThenodalandradialRNSdifferencesfromtheTIPcomparisonsareroughlytwiceaslargeasthoseobserved~orthpSusquehannacomparisons.TheEOCIgammascandataconsistedofmeasuringtheaxialpeaktobundleaverageLa-140activitiesandservedtobenchmarktheSIMULATE-Ecalculationoftheaxialpeakingfactor.Theresultingdifferencewas1";(=25)withtheagreementforcontrolledbundlesconsiderablvbetterthanforuncontrolled.TheEOC2gammascar.dataismuchmoreextensiveandpermitscomparisonsofindividualbundleaxialLa-140activitydistributions,aswellasradial,nodalandpeaktoaveragecomparisons.Peripheralandmixedoxidebundleswerenotincludedintheradialandnodalcomparisonsandthetopandbottomsixincheswereeliminatedfromthenodalcorn'parisors.Thepeak-toaveragecomparisonsresultedinanaveraqedierenceo.about0.2~(=1.5f)withamaximumdifferenceofabout4%.Theaveragestandarddeviationfromtheindividualbundlegammascanswas6.3Xwithmorethan85>o<theindividualbundle'sinthe5-8~range.Thestandarddeviationfromtheradialandnodalgammascancomparisonswereabout2'Aand5.5',respectively.Theouot~dmeasurementuncertaintyfortheqammascanswas31,.ThefinalqualificationofSIMULATE-EpresentedinthereportconsistsofpowerdistributioncomoarisonstoTIPmeasurementsanddatafromtheGEPlprocesscomputerforPeachSottomUnit2{PB-2)cycles1and/or2.ThelevelnfagreementwithmeasuredTIPdatafromthesecnmparisonsisreasonableandconsistentwiththatobservedearlier.ThepurposeofthePB-2simulationswastngenerateinputfortheanalysisoftheturbinetriptestsperformedneartheendofCycle2,includinganaccuraterepresentationoftheinitialconditions.Thenon-steadystateoperationthatprecededthesetestsrequiredanaccuratemodelingofnon-equilibriumxenondistributionsandconcentrations.Comparisonsofthepredictedcoreaverageaxialpowerdistributionsjustpriortothe threetests(toppeaked,middlepeakedandslightlybottompeaked)todatafromtheprocesscomputershowedgoodagreement.2.5DescritionofPD7ThegeometryintheCPM-2latticephysicscodeislimitedtorepresentinganindividualfuelassembly.Insomeapplications,however,amultipleassemblycalculationisrequired,andfortheseapplicationsPPSLusesthegeneralpurpose.PD(7code.Theprogramsolvesthefewgroupdiffusion.theoryequationbasedonthefinitedifferencespatialapproximationinone,two,orthreedimensions.Whileuptofiveenergygroupsarepermitted(includingtwooverlapping)thermalenergygroups,thelicenseegenerallyutilizesfourgroupswithasinglethermalgroup.Microscopicormacroscopiccrosssectiondatamaybeemployed;PP8LtypicallyusesmacroscopicdatafromCPM-2andprocessedwiththeCOPHINcode..66II6ThePP5LqualificationofPD(7consistedofanalyzingthesameuriformlatticecriticalsusedinthebenchmarkingofCPM-2,alongwithcomparisonstoCPM-2assemblycalculationsfortypicalcontrolledanduncontrolledBWRfuelbundles.Theuniformlatticecalculationsmodelledthecriticalcoreconfigurationsinone-dimensionalcylindricalgeometrywithanexplicitaccountingoftheradialreflectorandabucllingcorrectiontoaccountforaxialleakage.ReasonableagreementwasobtainedwiththeCPM-Pcalculatedk+fs,0.9972effversus0.9951and1.0076versus1.0144fortheUOandmixedoxidelattices,respectively.ThePD07singlefuelassemblycalculationsmodelledeachpin-cellexplicitly,andusedshieldingfactorsderivedbycomparisontoCPM-2results,forgadoliniabearingfuelpinsandcontrolrods.TwoseparatefuelbundlesfromtheinitialcoreloadingoftheSusquehannaunitswereselectedfnrthe.comparisons.TheresultsshowedgenerallygoodagreementbetweenCPM-2and PD(7forthebundlek'sandrod-wisepowerdistributionswithmaximumerrorsofabout4$and?,.foruncontrolledandcontrolledbundles,respectively.3.0EVALUAITONTheCPM-2andSIMULATE-EprogramsweredevelopedbyEPRIforthesteadystateanalysesofLWRs.Thelicenseeplanstousethesecodesforplantoperationssupport,variousfuelcycleandsafetyrelatedcalculations,andtoprovidenecessaryneutronicsinputdatatotransientanalysesforthetwoBWRunitsattheSusquehannaSteamElectricStation.ThepresentreviewconsideredtheinformationpresentedinthetopicalreportandadditionalinformationprovidedbythelicenseeinaletterdatedFebruary17,1988.ThereviewconsideredthequalificationoftheFIBWRthermal-hydraulicsmethodologyonlyinitsroleasanintegralpartoftheSIMULATE-Eprogram.TheperformanceofFIBWRasastand-alonethermal-hydraulicscode,andthevalidity/applicabilityoftheANFXN-3CHFcorre1ationwereconsideredtobeoutsidethescopeofthisreview.Themethodologies(notincludingthequalificationpresentedinthisreport)embodiedintheCPN-2andSIMULATE-EprogramshavebeenpreviouslyreviewedandfoundacceptableforsteadystatenuclearcoredesignanalysesofplantsotherthanSusquehanna,andarerepresentativeofcurrentpractice.TheprimaryroleofCPN-2withinthePPSLcalculationalsequenceforBWRanalysesistoprovidenucleardata(basicallytwo-groupcrosssections)totheSIMULATE-Ecoresimulatorprogram.ThebenchmarkingofSIMULATE-FviacomparisonstomeasurementsfromoperatingBWRsthereforeservesastheultimate,thoughsomewhatindirect,qualificationofCPM-2.However,PP8LandEPRI/StudsvikhaveperformedanumberofcomparisonstomeasureddatafromexperimentalconfigurationsandoperatingBWRstotestvariousaspectsoftheCPM/CPh1-2neutronicscalculationmethodologyandnucleardata.
ComparisonstouniformlatticecoldcriticalsandKRITZsmallcorecriticalsprovideanintegraltestoftheabilityofCPM-24opredictreactivity(multiplicationfactors).Comparisonstomeasuredrod-wisegammascandataforselectedassembliesfromanoperatingBWR,andtomeasuredrod-wisefissionratedistributionsfromKRITZexperiments,serveas.aqualificationofthetreatmentofneutrontransportandotheraspectsofthemodellinginthehiqhlyheterogeneousenvironmentsofrealRWRfuelbundlesandreactorcores.Finally,comparisonsofcalculateduraniumandplutoniumisotopicconcentrationsweremadetodatafromthedestructiveanalysisofspentfuelromtheYankeeandSaxtonreactors.ThelevelofagreementbetweenCPM-2calculatedandmeasuredquantitiesisreasonable,andtypicalofthatobservedwithcurrentlyacceptedmethods.Inaddition,CPM-2tendstooverestimatethelocalpeakingfactorinanassembly,implyingagenerallyconservativepredictionofthelinearheatgenerationrate.ThebenchmarkingoftheSIMULATE-EprogramconsistedofsimulationsofseveralcyclesofoperationofthreeBWRsincludingallavailabledatafromPPAL'sSusquehannaunitsstartingatbeginningofCycle-1(BOCI).Thehotreactivitycomparisonsinvolvedmorethanfiveop~ratingcycles(almost300statepoints)forcorescontainingavarietyofBWRfuelbundledesigns.Thecalculatedhotkffexhibitedabiasrelativetothemeasuredcriticaleffkffwhichwasconsistentinmagnitudewiththatobservedforaccentedeffthree-dimensionalcoresimulatorcodes.Theobservedvariationledtothedevelopmentofacorrelationwhichisabowlshapedfunctionofgadolinialoadingandaroughlylinearfunctionofexposure.This"target"kf<isusedef<topredictthecriticalcorekffforaparticularunit-cycle.effThecoldcriticalcomparisonsconsidered47insequenceand25localconfigurations.Theresultsshowedasimilarvariationinthepredictedcoldcriticalkfftothatobservedforhotconditions;thecoldcriticalkeffeff"target"forusewithSIMULATE-Eisthereforeobtainedbvaddingaconstantbiastothehotcorrelation.Inaddition,theresultsshowednosignificantdifferencesbetweenthekffforlocalandin-sequencecriticals,thereby 10demonstratingtheabilityofSIMULATE-Etoperformshut-downmarginca1culations.ThebenchmarkingoftheSIMULATE-EcalculationofpowerdistributionsconsideredmeasuredTIPdetectorreadingsandgammascans,anddatafromplantcoremonitoringsystems.ThealbedosandotheradiustableparametersweredetermineddurinqmodelnormalizationtooperatingdatafromSusquehannaUnitlCycles1and2,andremainedunchangedforallsubsequentsimulations.Thecomparisonsforthe82TIPsetscoveringmorethanthreecyclesofoperationofthetwoSusquehannaunitsyieldedaveragenodalandradialRMSdifferencesof5.7and2.6percent,respectively.TheestimatederrorsintheTIPmeasurementsweredeterminedbyconsideringsymmetricdetectorreadings,andwereofthesameorder.TheTIPcomparisonsforDuadCitiesandPeachBottomyieldedhigherdifferences,i.e.,nodalandradialRNSerrorsconsideringallTIPsetsofabout10andabout5percent,respectively,forOutedCities,andsomewhatlowerforPeachBottom.hThecomparisonstothesquadCitiesqammascanmeasurementsatEOClandEOC2furtherdemonstratedtheabilityofSIMULATF.-Etocalculatepowerdistributions.Theaxialpeaktoaveragewaspredictedtowithinabout11withastandarddeviationof1-2%,andthestandarddeviationsfromtheradialandnodalcomparisonswereabout2andabout5percent,respectively.Theperipheralbundleswerenotincludedinthesecomparisons,andinadditionthetopandbottomsixincheswerenotconsideredinthenodalcomparisons.Thequoteduncertaintyforthegammascanmeasurementis3.0X.ComparisonsofcoreaverageaxialpowerdistributionstoresultsfromtheAEP1orANFPOl<ERPLEXcoremonitoringsystemsfortheSusquehannaunitsandPeachBottomUnit-2(PB-2)nearEOC2,thoughlimited,showedgoodagreement.ThePB-2comparisonsconsideredtheeffectsofnon-equilibriumxenonandincludedtop,middleandbottompeakedaxialpowerdistributions.ThreebundleflowdistributionsfromtheSusquehannacoremonitoringsystemswerealsocomparedtoresultsgeneratedbySIMULATE-Ewithgenerallygoodagreement.The  
ComparisonstouniformlatticecoldcriticalsandKRITZsmallcorecriticalsprovideanintegraltestoftheabilityofCPM-24opredictreactivity(multiplicationfactors).Comparisonstomeasuredrod-wisegammascandataforselectedassembliesfromanoperatingBWR,andtomeasuredrod-wisefissionratedistributionsfromKRITZexperiments,serveas.aqualificationofthetreatmentofneutrontransportandotheraspectsofthemodellinginthehiqhlyheterogeneousenvironmentsofrealRWRfuelbundlesandreactorcores.Finally,comparisonsofcalculateduraniumandplutoniumisotopicconcentrationsweremadetodatafromthedestructiveanalysisofspentfuelromtheYankeeandSaxtonreactors.ThelevelofagreementbetweenCPM-2calculatedandmeasuredquantitiesisreasonable,andtypicalofthatobservedwithcurrentlyacceptedmethods.Inaddition,CPM-2tendstooverestimatethelocalpeakingfactorinanassembly,implyingagenerallyconservativepredictionofthelinearheatgenerationrate.ThebenchmarkingoftheSIMULATE-EprogramconsistedofsimulationsofseveralcyclesofoperationofthreeBWRsincludingallavailabledatafromPPAL'sSusquehannaunitsstartingatbeginningofCycle-1(BOCI).Thehotreactivitycomparisonsinvolvedmorethanfiveop~ratingcycles(almost300statepoints)forcorescontainingavarietyofBWRfuelbundledesigns.Thecalculatedhotkffexhibitedabiasrelativetothemeasuredcriticaleffkffwhichwasconsistentinmagnitudewiththatobservedforaccentedeffthree-dimensionalcoresimulatorcodes.Theobservedvariationledtothedevelopmentofacorrelationwhichisabowlshapedfunctionofgadolinialoadingandaroughlylinearfunctionofexposure.This"target"kf<isusedef<topredictthecriticalcorekffforaparticularunit-cycle.effThecoldcriticalcomparisonsconsidered47insequenceand25localconfigurations.Theresultsshowedasimilarvariationinthepredictedcoldcriticalkfftothatobservedforhotconditions;thecoldcriticalkeffeff"target"forusewithSIMULATE-Eisthereforeobtainedbvaddingaconstantbiastothehotcorrelation.Inaddition,theresultsshowednosignificantdifferencesbetweenthekffforlocalandin-sequencecriticals,thereby 10demonstratingtheabilityofSIMULATE-Etoperformshut-downmarginca1culations.ThebenchmarkingoftheSIMULATE-EcalculationofpowerdistributionsconsideredmeasuredTIPdetectorreadingsandgammascans,anddatafromplantcoremonitoringsystems.ThealbedosandotheradiustableparametersweredetermineddurinqmodelnormalizationtooperatingdatafromSusquehannaUnitlCycles1and2,andremainedunchangedforallsubsequentsimulations.Thecomparisonsforthe82TIPsetscoveringmorethanthreecyclesofoperationofthetwoSusquehannaunitsyieldedaveragenodalandradialRMSdifferencesof5.7and2.6percent,respectively.TheestimatederrorsintheTIPmeasurementsweredeterminedbyconsideringsymmetricdetectorreadings,andwereofthesameorder.TheTIPcomparisonsforDuadCitiesandPeachBottomyieldedhigherdifferences,i.e.,nodalandradialRNSerrorsconsideringallTIPsetsofabout10andabout5percent,respectively,forOutedCities,andsomewhatlowerforPeachBottom.hThecomparisonstothesquadCitiesqammascanmeasurementsatEOClandEOC2furtherdemonstratedtheabilityofSIMULATF.-Etocalculatepowerdistributions.Theaxialpeaktoaveragewaspredictedtowithinabout11withastandarddeviationof1-2%,andthestandarddeviationsfromtheradialandnodalcomparisonswereabout2andabout5percent,respectively.Theperipheralbundleswerenotincludedinthesecomparisons,andinadditionthetopandbottomsixincheswerenotconsideredinthenodalcomparisons.Thequoteduncertaintyforthegammascanmeasurementis3.0X.ComparisonsofcoreaverageaxialpowerdistributionstoresultsfromtheAEP1orANFPOl<ERPLEXcoremonitoringsystemsfortheSusquehannaunitsandPeachBottomUnit-2(PB-2)nearEOC2,thoughlimited,showedgoodagreement.ThePB-2comparisonsconsideredtheeffectsofnon-equilibriumxenonandincludedtop,middleandbottompeakedaxialpowerdistributions.ThreebundleflowdistributionsfromtheSusquehannacoremonitoringsystemswerealsocomparedtoresultsgeneratedbySIMULATE-Ewithgenerallygoodagreement.The  
-11-powerdistributioncomparisonsofSIMULATE-Etomeasureddatashowedgenerallyreasonableagreementandwereconsistentwith,thelevelsofagreementobservedwithacceptedmethods.ThelargerdifferencesobservedinthePuadCitiesandPeachBottomcomparisonsarepartiallyduetotheSIMULATE-Emodelsnotbeingspecificallynormalizedforthesesimulations.Thegenerallygoodagreement,however,providesreasonableconfidencethatSIMULATE-EcanbeusedforpredictivecalculationsfortheSusquehannaunits.ThelimitedcomparisonsofPD(7toresultsfromuniformlatticecriticalsandCPM-2singleassemblycalculationsshowedreasonableagreement.Thccomparisonswerebasedontheuseof4energygroupcrosssectionsfromCPM-2.Thelicenseenotesthatwhileitdoesnotintendtoperformthree-dimensionalcalculationswithPDg7,itmayusetheprogramforvarioustwo-dimensionalanalysesincludingindependentverificationofcalculations,calculationsofnon-standardconfigurationssuchaspartiallyloadedcores,andinthedevelopmentoffuturemodelimprovementsforSIMULATE-E.AppropriatequalificationbythelicenseeoftheuseofPDg7forconfigurationslargerthanmultiplebundlearraysisrecommended.
-11-powerdistributioncomparisonsofSIMULATE-Etomeasureddatashowedgenerallyreasonableagreementandwereconsistentwith,thelevelsofagreementobservedwithacceptedmethods.ThelargerdifferencesobservedinthePuadCitiesandPeachBottomcomparisonsarepartiallyduetotheSIMULATE-Emodelsnotbeingspecificallynormalizedforthesesimulations.Thegenerallygoodagreement,however,providesreasonableconfidencethatSIMULATE-EcanbeusedforpredictivecalculationsfortheSusquehannaunits.ThelimitedcomparisonsofPD(7toresultsfromuniformlatticecriticalsandCPM-2singleassemblycalculationsshowedreasonableagreement.Thccomparisonswerebasedontheuseof4energygroupcrosssectionsfromCPM-2.Thelicenseenotesthatwhileitdoesnotintendtoperformthree-dimensionalcalculationswithPDg7,itmayusetheprogramforvarioustwo-dimensionalanalysesincludingindependentverificationofcalculations,calculationsofnon-standardconfigurationssuchaspartiallyloadedcores,andinthedevelopmentoffuturemodelimprovementsforSIMULATE-E.AppropriatequalificationbythelicenseeoftheuseofPDg7forconfigurationslargerthanmultiplebundlearraysisrecommended.
Line 49: Line 51:
FIGURE2.4.5EPRI-CPMCOMPARISONTOYANKEEPU-240/PU-241ISOTOPICRATIOS8.0~~~t0cvtL4.0~~~~~0.010.015.020.0F.P.vol.wgtnumberdensity~1025.030.00.102030MWd/kgU~MeasuredData-EPRI-CPMResultsSource:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.-47-FIGURE2..4.6EPRI-CPMCOMPARISONTOYANKEEPU-241/PU-242ISOTOPICRATIOS10.0~Oy9.0~y~~8.0O4c4ILcv07.06.0~0~~~~5.04.00.05.010.015.020.0F.P.vol.wgt.numberdensityx10530.0102030MWd/kgU~MeasuredData-EPRI-CPMResultsSource:E.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.48-3.0CORESIMULATIONMETHODSThethree-dimensionalnodalsimulationcodeusedbyPPGListheSIMULATE-E(Reference15)computerprogramdistributedbyEPRI.ThiscodehasbeenusedtoprovidethesteadystateoperationssupportatPPGLandwillbeutilizedforreloadcoredesignandlicensing,analyses.Thecodeisusedtocalculatecorereactivity,powerandflowdistributions,thermallimits,andTraversingIn-coreProbe(TIP)response.A'ulldescriptionoftheSIMULATE-EmethodologyiscontainedinReference15.AbriefsummaryispresentedinSection3.1.SIMULATE-EhasbeenbenchmarkedbyPPsLagainstextensivereactoroperatingdata.TheSusquehannaSESbenchmarkingincludescomparisonstohotandcoldcriticaldata,TIPmeasurements,andcoremonitoringsystemcalculations.ThesecomparisonsarepresentedinSection3.2.ComparisonshavealsobeenmadetotheQuadCitiesUnit1hotandcoldcriticaldata,TIPmeasurements,andendofCycles1and2gammascandata.TheQuadCitiescomparisonsarepresentedinSection3.3.ComparisonswerealsomadetoPeachBottomUnit2Cycles1and2data.ThePeachBottomUnit2reactorwasmodeledprimarilytoprepareinputtothetransientanalysisofthethreeturbinetriptests.Section3.4presentscomparisonstoseveralTIPsetsthroughbothcyclesandtothecoremonitoringsystempowerdistributionstakenpriortoeachturbinetriptest.-49-3.1DescritionofSIMULATE-ETheSIMULATE-Ecomputerprogramwaswrittentoperformthree-dimensionalanalysesoflightwaterreactors.Thecodecombinesbothneutronicsandthermalhydraulicscalculations.TheneutronbalanceequationissolvedusingresponsematrixtechniquesdevelopedbyAncona(Reference16).TheresponsematrixparametersaredeterminedusingthePRESTOoption(Reference17).ThethermalhydraulicsmodulecontainstheEPRIvoidcorrelation(Reference18)andtheFIBWR(Reference19)codetodetermineaxialvoidingandflowdistribution.Theneutronicsandthermalhydraulicsaresolvediterativelyuntilaconsistentsolutionisachieved.Thereactorcoreismodeledasanarrayofcubicnodeseachcontainingahomogenizedportionofafuelassembly.FortheSusquehannaSESBWRs,eachfuelassemblyismodeledusing25axialnodes,thusresultinginsixinchnodesdescribingthe150inchactivefuelregion.Albedoboundaryconditionsareusedtoaccountforthereflectorzones,thuseliminatingtheneedtoexplicitlymodelthereflector.Theneutronicscalculationrequiresthesolutionoftheneutronbalanceequationforeachnode.Thisbalanceequationisfirstrecastintermsofresponsematrixparameterswhichdescribehowaneutroninteractswithadjacentnodes.SeveraloptionsexistinSIMULATE-Ewhichcanbeusedfordeterminationoftheresponsematrixparameters.TheoptionusedbyPPGListheModifiedCoarseMeshDiffusionTheory(MCMDT)alsoreferredtoasthePRESTOoption(Reference17).Thisoptioncalculatesthevarioustransmissionprobabilitiesusingnodeaveragefluxes.TheMCMDToptioncalculatesthenodecenterandnodesurfacefluxesusingFick'sLaw.Thenodeaveragefluxisthendeterminedasaweightedaverageofthesurfaceandcenterfluxes.Theweightingfactorsweredevelopedthroughmodelnormalization.Oncethenodeaveragefluxesaredetermined,thevarioustransmissionprobabilitiescanbeevaluatedandtheneutronbalanceequationissolved.NodalcrosssectiondataareinputtoSIMULATE-Eintwogroupsforeachdifferentlatticetype.Ifaxialzoningoffuelispresent(eitherduetoenrichmentorgadoliniacontent),separatelatticetypesareassigned.-50-Crosssectiondependenciesinclude:fuelexposurevoidhistory(i.e.,exposure-weightedrelativemoderatordensity)relativemoderatordensity(hotonly)controlrodpresencefueltemperature(hotonly)controlrodhistoryxenonconcentrationmoderatortemperature(coldonly)IITheeffectofeachdependencyiscalculatedutilizingCPM-2.ThefinalcrosssectiondatatablesarepreparedforSIMULATE-EusingNORGE-B2(Reference20).Theradial,top,and'bottomreflectorregionsarenotmodeledexplicitly.Instead,theseregionsaretakenintoaccountbyuseofalbedoboundaryconditions.RadialalbedosarecalculatedusingtheABLE(Reference21)programdevelopedbyScienceApplicationsInternationalforEPRI.Thetopandbottomalbedosweredeterminedbasedoncomparisontoplantdataduringmodelnormalization.Differentalbedoboundaryconditionsareusedforcoldandhotconditions.SeveraloftheinputdataparametersusedbySIMULATE-Erequireadjustmenttomatchplantoperatingdata.ThisnormalizationprocesswasperformedusingSusquehannaSESUnit1Cycles1and2data.AllparameterschangedinthisfashionwereheldconstantforallothercalculationsincludingtheQuadCitiesandPeachBottomcalculations.ThethermalhydraulicscalculationsusetheFIBWRmethodology(Reference19)developedbyYankeeAtomic,ElectricCompany.Thiscalculationdeterminestotalcorepressuredropandcorebypassflow.Thepressuredropcalculationdeterminesthefrictionalpressuredrop,local(i.e.,form)losses,acceleration(i.e.,momentumchange)pressuredrop,andelevationhead.ThecorebypassflowcalculationallowsformodelingtheflowpathsshowninFigure3.1.1.FIBWRasastand-alonecodehasbeenbpnchmarkedbyYankeeAtomicElectricCompanyagainst.datafromVermontYankeeandtheFriggLooptests(seeReference22).-51 DuringinstallationatPPGLminorcodemodificationshavebeenmadetoadapttheSIMULATE-EcodetoPPGLcomputeroperationalrequirements.Inaddition,codechangesweremadebyPPGLwhichinclude:CriticalPowerRatio(CPR)evaluationsutilizingtheAdvancedNuclear'uelsCorporation(formerlyExxonNuclearCompany)XN-3criticalheatfluxcorrelation(Reference23)LinearHeatGenerationRate(LHGR)andAveragePlanarLinearHeatGenerationRate(APLHGR)thermallimitsevaluationscalculationofAxialExposureRatioerrorcorrectionsprovidedbyEPRIThesechanges,withtheexceptionoferrorcorrections,havenotresultedinanychangetotheneutronicsorthermalhydraulicscalculations'.-52-FIGURE3.1.1BWRFUELASSEMBLYBYPASSFLOWPATHSTOPOFCORE2CHISpacerheight~HFSGw2HETHFSG1HFSGnNote:Bottrxrrentryperipheralfue'Isupportsareweldedintothecoresupportplate.Forthesebundles,pathnumbers1,2,5and7donotexist.BottonofcoreZUHB2GEOLowertieplateChannel8SpringpluggCore6supportla2In-coreFuelSupport,guidetubeControlrodguidetubeShroudCorelength<2CHI+fuellength+2GEOFuellength~2UHA+2HET+2UHB71.Controlrodguidetube-fuelsupport2.Controlrodguidetube-coresupportplate3.Coresupportplate-in-coreguidetube4.Coresupportplate-shroud5.Controlrodguidetube--drivehousing6.Fuelsupport--lowertieplate7.Controlroddrivecoolingwate~drivehousingBChannel-lowertieplate9.Lowertieplateholes10.Sp~ingplug-coresupportSource:B.J.Gitnick,"FIBWRrASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors;ComputerCodeUser'sManual,"EPRINP1924CCMrJulyr198153 3.2SusuehannaSESUnits1and2BenchmarkComparisonsofSIMULATE-EcalculationstoobserveddatafromtheSusquehannaSESoperatingreactorsprovideadirectmeansofqualifyingtheaccuracyofSIMULATE-E.TwodirectlymeasurablesetsofparametersagainstwhichcomparisonscanbemadeforSusquehannaSESconsistofthecorecriticalK-effectivestatepointdata(hotandcold)andtheTraversingIn-coreProbe(TIP)neutronfluxmeasurements.ThistypeofbenchmarkingvalidatestheoverallBWRanalysisprocessfromlatticephysicstothree-dimensionalsimulation.ForcorecriticalK-effectivecomparisons,themeasuredsteadystatecoreoperatingparameter'slistedinTable3.2.1providethenecessaryinputforaSIMULATE-Ecalculation.Thisdataisalsousedtomodeltheaccumulationofcorehistorythroughmultipledepletions(i.e.,corefollow).Thesecalculationsassumeconstantcoreconditionsduringashorttimeperiod,usuallylessthanoneweek.ThecozecriticalcalculationsatsteadystateconditionsareusedtoqualifySIMULATE-E'scapabilitytopredictcorereactivitythroughoutacycle.Designanalyses,suchascyclelength,shutdownmargin,hotexcessreactivity,rodwithdrawalerror,misloadedbundle,standbyliquidcontrolsystemworth,andcontrolroddrop,requirethepredictionofthecorereactivitythroughoutacycle.BecausetheSIMULATE-Ehotandcoldmodelsdiffer,separatehotandcoldcriticalK-effectivecomparisonsareperformedtodeterminetheindividualuncertaintiesfortheaboveanalyses.ForthehotcriticalcoreK-effectivecomparisons,reactivitycalculationsrelyonthestatepointparameterslistedinTable3.2.1.Thecoldcriticalcorereactivitybenchmarkinvolvesreactiv'itycalculationsforallcoldxenon-freecriticalsfortheSusquehannaSEScores.ThehotandcoldK-effectivecomparisonsareusedtoestablishthetargetcriticalcoreK-effectiveandtoassesstheuncertaintyinreactivitypredictions.TIPcomparisonstesttheabilityofSIMULATE-Etocalculatetheneutronfluxinalocal'regionbetweenfourfuelassemblies.TheTIPmeasurementsusedinthecomparisonsaresix-inchcollapseddetectorsignals.Theseare-54  
FIGURE2.4.5EPRI-CPMCOMPARISONTOYANKEEPU-240/PU-241ISOTOPICRATIOS8.0~~~t0cvtL4.0~~~~~0.010.015.020.0F.P.vol.wgtnumberdensity~1025.030.00.102030MWd/kgU~MeasuredData-EPRI-CPMResultsSource:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.-47-FIGURE2..4.6EPRI-CPMCOMPARISONTOYANKEEPU-241/PU-242ISOTOPICRATIOS10.0~Oy9.0~y~~8.0O4c4ILcv07.06.0~0~~~~5.04.00.05.010.015.020.0F.P.vol.wgt.numberdensityx10530.0102030MWd/kgU~MeasuredData-EPRI-CPMResultsSource:E.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.48-3.0CORESIMULATIONMETHODSThethree-dimensionalnodalsimulationcodeusedbyPPGListheSIMULATE-E(Reference15)computerprogramdistributedbyEPRI.ThiscodehasbeenusedtoprovidethesteadystateoperationssupportatPPGLandwillbeutilizedforreloadcoredesignandlicensing,analyses.Thecodeisusedtocalculatecorereactivity,powerandflowdistributions,thermallimits,andTraversingIn-coreProbe(TIP)response.A'ulldescriptionoftheSIMULATE-EmethodologyiscontainedinReference15.AbriefsummaryispresentedinSection3.1.SIMULATE-EhasbeenbenchmarkedbyPPsLagainstextensivereactoroperatingdata.TheSusquehannaSESbenchmarkingincludescomparisonstohotandcoldcriticaldata,TIPmeasurements,andcoremonitoringsystemcalculations.ThesecomparisonsarepresentedinSection3.2.ComparisonshavealsobeenmadetotheQuadCitiesUnit1hotandcoldcriticaldata,TIPmeasurements,andendofCycles1and2gammascandata.TheQuadCitiescomparisonsarepresentedinSection3.3.ComparisonswerealsomadetoPeachBottomUnit2Cycles1and2data.ThePeachBottomUnit2reactorwasmodeledprimarilytoprepareinputtothetransientanalysisofthethreeturbinetriptests.Section3.4presentscomparisonstoseveralTIPsetsthroughbothcyclesandtothecoremonitoringsystempowerdistributionstakenpriortoeachturbinetriptest.-49-3.1DescritionofSIMULATE-ETheSIMULATE-Ecomputerprogramwaswrittentoperformthree-dimensionalanalysesoflightwaterreactors.Thecodecombinesbothneutronicsandthermalhydraulicscalculations.TheneutronbalanceequationissolvedusingresponsematrixtechniquesdevelopedbyAncona(Reference16).TheresponsematrixparametersaredeterminedusingthePRESTOoption(Reference17).ThethermalhydraulicsmodulecontainstheEPRIvoidcorrelation(Reference18)andtheFIBWR(Reference19)codetodetermineaxialvoidingandflowdistribution.Theneutronicsandthermalhydraulicsaresolvediterativelyuntilaconsistentsolutionisachieved.Thereactorcoreismodeledasanarrayofcubicnodeseachcontainingahomogenizedportionofafuelassembly.FortheSusquehannaSESBWRs,eachfuelassemblyismodeledusing25axialnodes,thusresultinginsixinchnodesdescribingthe150inchactivefuelregion.Albedoboundaryconditionsareusedtoaccountforthereflectorzones,thuseliminatingtheneedtoexplicitlymodelthereflector.Theneutronicscalculationrequiresthesolutionoftheneutronbalanceequationforeachnode.Thisbalanceequationisfirstrecastintermsofresponsematrixparameterswhichdescribehowaneutroninteractswithadjacentnodes.SeveraloptionsexistinSIMULATE-Ewhichcanbeusedfordeterminationoftheresponsematrixparameters.TheoptionusedbyPPGListheModifiedCoarseMeshDiffusionTheory(MCMDT)alsoreferredtoasthePRESTOoption(Reference17).Thisoptioncalculatesthevarioustransmissionprobabilitiesusingnodeaveragefluxes.TheMCMDToptioncalculatesthenodecenterandnodesurfacefluxesusingFick'sLaw.Thenodeaveragefluxisthendeterminedasaweightedaverageofthesurfaceandcenterfluxes.Theweightingfactorsweredevelopedthroughmodelnormalization.Oncethenodeaveragefluxesaredetermined,thevarioustransmissionprobabilitiescanbeevaluatedandtheneutronbalanceequationissolved.NodalcrosssectiondataareinputtoSIMULATE-Eintwogroupsforeachdifferentlatticetype.Ifaxialzoningoffuelispresent(eitherduetoenrichmentorgadoliniacontent),separatelatticetypesareassigned.-50-Crosssectiondependenciesinclude:fuelexposurevoidhistory(i.e.,exposure-weightedrelativemoderatordensity)relativemoderatordensity(hotonly)controlrodpresencefueltemperature(hotonly)controlrodhistoryxenonconcentrationmoderatortemperature(coldonly)IITheeffectofeachdependencyiscalculatedutilizingCPM-2.ThefinalcrosssectiondatatablesarepreparedforSIMULATE-EusingNORGE-B2(Reference20).Theradial,top,and'bottomreflectorregionsarenotmodeledexplicitly.Instead,theseregionsaretakenintoaccountbyuseofalbedoboundaryconditions.RadialalbedosarecalculatedusingtheABLE(Reference21)programdevelopedbyScienceApplicationsInternationalforEPRI.Thetopandbottomalbedosweredeterminedbasedoncomparisontoplantdataduringmodelnormalization.Differentalbedoboundaryconditionsareusedforcoldandhotconditions.SeveraloftheinputdataparametersusedbySIMULATE-Erequireadjustmenttomatchplantoperatingdata.ThisnormalizationprocesswasperformedusingSusquehannaSESUnit1Cycles1and2data.AllparameterschangedinthisfashionwereheldconstantforallothercalculationsincludingtheQuadCitiesandPeachBottomcalculations.ThethermalhydraulicscalculationsusetheFIBWRmethodology(Reference19)developedbyYankeeAtomic,ElectricCompany.Thiscalculationdeterminestotalcorepressuredropandcorebypassflow.Thepressuredropcalculationdeterminesthefrictionalpressuredrop,local(i.e.,form)losses,acceleration(i.e.,momentumchange)pressuredrop,andelevationhead.ThecorebypassflowcalculationallowsformodelingtheflowpathsshowninFigure3.1.1.FIBWRasastand-alonecodehasbeenbpnchmarkedbyYankeeAtomicElectricCompanyagainst.datafromVermontYankeeandtheFriggLooptests(seeReference22).-51 DuringinstallationatPPGLminorcodemodificationshavebeenmadetoadapttheSIMULATE-EcodetoPPGLcomputeroperationalrequirements.Inaddition,codechangesweremadebyPPGLwhichinclude:CriticalPowerRatio(CPR)evaluationsutilizingtheAdvancedNuclear'uelsCorporation(formerlyExxonNuclearCompany)XN-3criticalheatfluxcorrelation(Reference23)LinearHeatGenerationRate(LHGR)andAveragePlanarLinearHeatGenerationRate(APLHGR)thermallimitsevaluationscalculationofAxialExposureRatioerrorcorrectionsprovidedbyEPRIThesechanges,withtheexceptionoferrorcorrections,havenotresultedinanychangetotheneutronicsorthermalhydraulicscalculations'.-52-FIGURE3.1.1BWRFUELASSEMBLYBYPASSFLOWPATHSTOPOFCORE2CHISpacerheight~HFSGw2HETHFSG1HFSGnNote:Bottrxrrentryperipheralfue'Isupportsareweldedintothecoresupportplate.Forthesebundles,pathnumbers1,2,5and7donotexist.BottonofcoreZUHB2GEOLowertieplateChannel8SpringpluggCore6supportla2In-coreFuelSupport,guidetubeControlrodguidetubeShroudCorelength<2CHI+fuellength+2GEOFuellength~2UHA+2HET+2UHB71.Controlrodguidetube-fuelsupport2.Controlrodguidetube-coresupportplate3.Coresupportplate-in-coreguidetube4.Coresupportplate-shroud5.Controlrodguidetube--drivehousing6.Fuelsupport--lowertieplate7.Controlroddrivecoolingwate~drivehousingBChannel-lowertieplate9.Lowertieplateholes10.Sp~ingplug-coresupportSource:B.J.Gitnick,"FIBWRrASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors;ComputerCodeUser'sManual,"EPRINP1924CCMrJulyr198153 3.2SusuehannaSESUnits1and2BenchmarkComparisonsofSIMULATE-EcalculationstoobserveddatafromtheSusquehannaSESoperatingreactorsprovideadirectmeansofqualifyingtheaccuracyofSIMULATE-E.TwodirectlymeasurablesetsofparametersagainstwhichcomparisonscanbemadeforSusquehannaSESconsistofthecorecriticalK-effectivestatepointdata(hotandcold)andtheTraversingIn-coreProbe(TIP)neutronfluxmeasurements.ThistypeofbenchmarkingvalidatestheoverallBWRanalysisprocessfromlatticephysicstothree-dimensionalsimulation.ForcorecriticalK-effectivecomparisons,themeasuredsteadystatecoreoperatingparameter'slistedinTable3.2.1providethenecessaryinputforaSIMULATE-Ecalculation.Thisdataisalsousedtomodeltheaccumulationofcorehistorythroughmultipledepletions(i.e.,corefollow).Thesecalculationsassumeconstantcoreconditionsduringashorttimeperiod,usuallylessthanoneweek.ThecozecriticalcalculationsatsteadystateconditionsareusedtoqualifySIMULATE-E'scapabilitytopredictcorereactivitythroughoutacycle.Designanalyses,suchascyclelength,shutdownmargin,hotexcessreactivity,rodwithdrawalerror,misloadedbundle,standbyliquidcontrolsystemworth,andcontrolroddrop,requirethepredictionofthecorereactivitythroughoutacycle.BecausetheSIMULATE-Ehotandcoldmodelsdiffer,separatehotandcoldcriticalK-effectivecomparisonsareperformedtodeterminetheindividualuncertaintiesfortheaboveanalyses.ForthehotcriticalcoreK-effectivecomparisons,reactivitycalculationsrelyonthestatepointparameterslistedinTable3.2.1.Thecoldcriticalcorereactivitybenchmarkinvolvesreactiv'itycalculationsforallcoldxenon-freecriticalsfortheSusquehannaSEScores.ThehotandcoldK-effectivecomparisonsareusedtoestablishthetargetcriticalcoreK-effectiveandtoassesstheuncertaintyinreactivitypredictions.TIPcomparisonstesttheabilityofSIMULATE-Etocalculatetheneutronfluxinalocal'regionbetweenfourfuelassemblies.TheTIPmeasurementsusedinthecomparisonsaresix-inchcollapseddetectorsignals.Theseare-54  
\synthesizedfromone-inchaxialdatathatareaveragedbythecoremonitoringsystemthroughatrapezoidalaveragingtechnique.ForCycle2andbeyondofbothunits,thecoremonitoringsystem,POWERPLEX(Reference24),alsocorrectstheTIPmeasurementsforanyaxialshiftinthemeasurements.AGaussiansmoothingprocedurecomparesmeasuredneutronfluxdipstotheexpecteddiplocations,basedonfixedLPRMandspacerlocations,andcorrectstheaxialalignmentoftheone-inchdata.TheSusquehannaSEScoreoperatinghistoriesfromUnit1Cycles1,2,andpartofCycle3andUnit2Cycle1andpartofCycle2arecontainedinthebenchmarkdatabase.Thetwounitsshareidenticalcoregeometryandratedcoreconditions.TheCycle1operatingcoresofbothunitscontainthesameGeneralElectricSx8fueldesignandcoreloadingpatt'em.Znaddition,bothCycle1operatingstrategieshaveextendedcycleoperationviabottomburnspectralshiftandcoastdown.Cycle2ofUnit1operatedwithasmall192ExxonSx8bundlereloadcorethatexperiencedacyclelengthlessthanhalfofCycle1andlessthananyplannedfuturecycle.Cycle3ofUnit1wasloadedwith296ExxonSx8bundlesandCycle2ofUnit2wasloadedwith324Exxon9x9bundles.Theanticipatedequilibriumbatchsizefortheplannedeighteenmonthcyclesis240Exxon9x9bundles.Atthetimethisreportwasprepared,Unit1wasinitsthirdcycleofoperationandUnit2wasinitssecondcycleofoperation.Therefore,thebenchmarkdatabaseonlyincludesthefirstthirdofUnit1Cycle3operationandtheearlyportionofUnit2Cycle2operation.Table3.2.2summarizesthetotalSusquehannaSESbenchmarkingdatabaseincludedinthisreport.ForallSusquehannaSEShotcomparisons,unlysteadystatedatahavebeenused.Thisrequirescoreconditionstoremainconstantoveraperiodoftimetoallowthexenonconcentrationtoequilibriate.Thisrequiresnorodpullsorsignificantchangeincorethermalpower,flow,orfeedwatertemperaturewithinapproximatelythreedayspriortothedatapoint.Forthecoldcomparisons,sufficienttimeatzeropowerisrequiredtoallowforxenondecay.1naddition,areactivityadjustmentismadeforthereactorperiod.-55 3.2.1HotCriticalCoreReactivitComarisonsTheresultsoftheSIMULATE-EcorefollowcalculationsthatarebasedonmeasuredcoreoperatingdatafortheSuscpxehannaSEScoresformthehotcriticalcorereactivitydatabase.Thesecalculationsresulti:natotalof257steadystatecoreK-effectivecomparisonsforvariouscoreoperatingconditions.Table3.2.3showsacompletelistofthesteadystatecoredataanditscorrespondingcalculatedhotcriticalcoreK-effectivetabulatedbyunitandcycle.Figures3.2.1through3.2.6showplotsofhotcriticalcoreK-effectiveversuscoreaverageexposure,corethermalpower,totalcoreflow,coreinletsubcooling,domepressure,andcriticalcontrolroddensity,respectively.ThesefiguresprovideinformationonthedependenciesandbiasesinherentinSIMULATE-E.ItisapparentthatthecriticalK-effectivevarieswithcoreaverageexposure.TheK-effectivefromCycle1ofbothunitsexhibitsabowl-shapedtrendupto7000MWD/MTUcycleexposure,atwhichpointgadoliniacontentissubstantiallydepleted.TheavailabledatafromCycle3alsoexhibitsthesametrend.Forthiscycle,theinitialcoreaveragegadoliniacontentwasalmostthesameasfortheCycle1cores.UnlikeCycles1and3,theK-effectivefromCycle2ofUnit1exhibitsaveryflattrendthroughouttheentirecycle.Cycle2ofUnit1containsapproximatelyone-fourththeinitialgadoliniacontentofeitherCycle1orCycle3ofUnit1.Thesetrendssuggestadependencyongadolinialoading.AfterthegadoliniahasessentiallyburnedoutinCycle1,thecriticalcoreK-effectiveincreasesslightlywithexposure.Therefore,thehotcriticalcoreK-effectiveexhibitsalineardependenceonexposurecoupledwithabowl-shapedtrendduetogadoliniadepletion.PPGLhasdevelopedamethodwhichcorrelatesthehotcriticalcoreK-effectivedatatothecoreaverageexposureandgadoliniacontent.Usingthiscorrelation,targetcriticalcoreK-effectivecurvesaregeneratedforeachcycle.Figure3.2.7showsthecomparisonofthetargetcriticalcoreK-effectivecurvesandtheSIMULATE-EcalculatedcoreK-effectiveforeachunitandcycle.Table3.2.4showsthemeandifferenceandstandarddeviationbetweenthetargetandSIMULATE-EcalculatedcriticalcoreK-effectivefor eachunitandcycle.TheoverallresultsshowverygoodagreementwiththetargetK-effective.ForUnit2Cycle2onlythreedatapointsareincludedinthedatabase.Thesedatayieldameandifferenceof0.00186~Kfromthetargetwhichislargerthantwotimesthestandarddeviationofthedatabase(i.e.,2ais0.001224K).ItisanticipatedthattheUnit2Cycle2SIMULATE-EcalculatedcoreK-effectivewillfollowthetargetbutwillbeoffsetbyaconstantbias.Morerecentcorefollowcalculations,whicharenotincludedinthisreport,supportthisexpectedtrend.TheoffsetislikelyduetodifferencesbetweenSx8and9x9fueldesigns.PPaLcontinuestoperformhotcriticalcoreK-effectivecalculationsaspartoftheroutinecorefollowanalyses,andtheresultsareusedtofurtherimprovetheaccuracyofthetargetcriticalcoreK-effective.Onawhole,theuseofthecorrelationprovidesagoodassessmentofcriticalcorereactivityandcanbeusedfordesignandanalysisoffuture.cycles.Animportantconsiderationinevaluatingreactivityresultsisthemeasurementuncertaintyinthecoreoperatingconditions.Becausemeasuredcoreoperatingdata(i.e.,theparameterslistedinTable3.2.1)areenteredintoSIMULATE-E,thecalculatedcorereactivityisaffectedbyanyerrorsinthemeasuredinputs.Thechangesincorereactivityfrommeasurementuncertaintyprimarilydependontwocoremodelingphenomena,thevoidandDopplercoefficientsofreactivity.Asthesecoefficientschangewithcorelifeanddesigns,thesensitivityofSIMULATE-Etomeasurementuncertaintieschanges.Table3.2.5showsmeasurementuncertaintiesbasedonReference25andtheireffectsoncorereactivityforSusquehannaSESUnit2Cycle2.ThetotalK-effectivesensitivityduetothemeasurementuncertaintiesis0.00151bK.SIMULATE-EcalculationsofhotcriticalcoreK-effectiveforthe257datapointsanalyzedbyPPGLresultinastandarddeviationwhichislessthanthissensitivity.3.2.2ColdCriticalCoreReactivitComarisonsTheaccuracyoftheSIMULATE-Ecalculationofcoreshutdownmarginandcontrolrodworthsatcoldconditionsdependsonitsabilitytopredictcoldcorereactivityfordifferentcoredesigns,coreaverageexposures,andcontrolrodconfigurations.Shutdownmargincalculationsalsorelyontheaccuracyofthemodifiedcoarsemeshdiffusiontheorypredictionoflargeneutronflux-57 gradientscharacteristicofone-rod-outconfigurations.LocalCriticaltestsexhibitfluxgradientssimila'rtoshutdownmargincalculations.Therefore,thequalificationoftheSIMULATE-Ecoderequiresbenchmarkingtobothlocalandin-sequencecoldxenon-freecriticals.TheSusquehannaSESbenchmarkingdatabasecontainsthreelocaland36in-sequencecriticalsasshowninTable3.2.2.InadditiontotheSusquehannaSEScoldcriticalbenchmarkingcalculations,comparisonstotheQuadCitiesUnit1Cycle1localandin-sequencecriticalswereperformedtofurthersupportthevalidation.Section3.3.2describestheQuadCitiesUnit1Cycle1benchmarkinganalyses.Table3.2.6containsresultsoftheSusquehannaSEScoldxenon-freecriticals.Asshown,thecriticalswereperformedattemperaturesbetween100and212F0andatvariouscoreaverageexposures.ThecoreK-effectiveinTable3.2.6includesareactorperiodcorrectionwhichistypicallylessthan0.001.Figure3.2.1showstheseresultstogetherwiththoseofthehotbenchmark.ThecalculatedcoldcriticalcoreK-effectivesconsistentlyfollowthehot,criticalcoreK-effectivewithaconstantbiasthroughoutexposure.Thistrendindicatesthatthecoldmethodsandmodelsalsodependoncoreavexageexposureandgadoliniacontent.AbiasbetweencoldandhotcoreK-effectiveshasbeenreportedbyothersandhasbeeninvestigatedinReference26.Amethodthataccountsforthecoreaverageexposureandgadoliniacontentdependenciesresultsinanaccurateassessmentofthecoldxenon-freecriticalcoreK-effectiveanditsuncertainty.Figure3.2.1indicatesthatabiasexistsbetweenthehotandcoldSIMULATE-EcalculatedcorecriticalK-effectives.Reference26supportsthisobservation.Thisbiasisconstantandisnotexposureorgadoliniadependent.Therefore,thetargetcoldcriticalcoreK-effectiveisdeterminedbyaddingabiastothehotcriticalcoreK-effective.Table3.2.7showstheresultsfortheSusquehannaSESin-sequenceandlocalcoldcriticals.ThemeandifferencebetweentheSIMULATE-EhotandcoldcalculatedcoreK-effectiveforall39criticalsis0.00671andthestandarddeviationis0.00111.ThemeandifferencebetweenthehottargetcoreK-effectivecurveandtheSIMULATE-EcoldcalculatedcoreK-effectiveforall39criticalsis0.00659andthestandarddeviationis0.00137.Thesetwo-58-standarddeviationsaresmallandaretypicalofthecalculatedcoreK-effectivevariationforcriticalsatagivenexposure.Forexample,thestandarddeviationoftheUnit2Cycle1zeroexposurecalculatedcoldcriticalK-effectivesis0.00099.Table3.2.7alsoshowsthatthecoldtohotK-effectivebiasforthelocalcriticaltestsisnotsignificantlydifferentthanthebiasforthein-sequencecriticals.Asinthehotreactivitybenchmark,PPSLwillcontinuetoperformcoldcriticalcoreK-effectivecomparisonstobeusedforperiodicupdatingofthetargetcoldcriticalcoreK-effective.TheuseofthistargetcoldcriticalcoreK-effectiveprovidesagoodassessmentofcriticalcorereactivityandcanbeusedfordesignandanalysisoffuturecycles.3.2.3TraversingIn-coreProbeDataComparisonsComparisonstomeasuredTIPdataprovideanassessmentofhowwellSIMULATE-Ecalculatesthecorepowerdistribution.TheTIPdetectorsarelocatedinthewatergapcorneroppositethecontrolrodbetweenfourfuelassembliesasshowninFigure3.2.8.SIMULATE-EcalculatesaTIPresponseforeachsix-inchaxialsegmentateachradialTIPlocationbypowerweightinginputdetectorresponsefunctionsasfollows:MER=-QR.P.whereM=thenumberofbundlesaroundaTIPdetector(forallplantsmodeled,M=4),R,=thedetectorresponsefunction,jP.=theSIMULATE-Ecalculatednodalpower.jThedetectorresponse,R.,isafunctionalrelationshipwhichcanbeexpandedj'o:jUNCCTCTEVU-59-whereF=thebasecomponentofthedetectorresponseforanuncontrollednode,G=thefractionofthenodewhichiscontrolled,G=0nodeisuncontrolled,G=lnodeisfullycontrolled,F=thecorrectiontothebasecomponentforafullycontrollednode,FF=thecorrectiontothebaseresponsetoaccountformoderatordensity.F,FandFarefunctionsofexposureandvoidhistory(i.e.,exposure-weightedrelativemoderatordensity).FisafunctionoftheUrelativemoderator.densityandvoidhistory.ThedetectormodelinSIMULATE-Eassumesthatthedetectorresponsefromeachassemblyisnotaffectedbytheotherthree.ThedetectorresponsefunctionsaregeneratedusingcalculateddatafromCPM-2.InCPM-2,asmallamountofU-235isplacedinthewatergapcorneroppositethecontrolblade.Thelocalfissionrateiscalculatedinthisregionfordifferentconditionsofexposure,voidhistory,controlstateandrelativemoderatorlevel.Thisdataisformulatedintoapolynomialfitdeterminedforeachseparatelatticetype.Bothnodalandradial(i.e.,axiallyintegrated)TIPcomparisonshavebeenmadetotheSusquehannaSESTIPdata.Forthenodalcomparisons,thesix-inchaveragedmeasureddataiscomparedtothecalculatednodalTIPresponse.ThisprovidesanassessmentoftheaccuracyofthenodalpowerdistributionwhichaffectscalculatedmargintooperatinglimitssuchastheLinearHeatGenerationRate(LHGR)limit.Fortheradialcomparisons,theaverageofallTIPmeasurementsataradiallocationiscomparedtotheaverageofthecalculatedvaluesatthatradiallocation.Thisprovidesanassessmentoftheaccuracyoftheradial(i.e.,bundleaverage)powerdistributionwhichaffectscalculatedmargintooperatinglimitssuchasCriticalPowerRatio(CPR).-60-Priortomakingthecomparisons,thecalculateddataisnormalizedtothemeasureddata.Eachofthecalculatednodaldetectorresponsesismultipliedbyanormalizationfactor.Thefactoriscalculatedas:TNF=T/ERwhereT=theaverageofallmeasuredTIPresponsesinagivenTIPset,ER=theaverageofallcalculatedTIPresponsesinagivenTIPset.ATIPsetisdefinedasacompletesetofTIPmeasurementsfromtheentirecore.ForSusquehannaSESaTIPsetconsistsof24measurementsateachofthe43radiallocationsinthecoreforatotalof1032measurements.Ineachofthecomparisonspresentedinthissection,allradialTIPlocationsandallaxialelevationshavebeenincluded.Forthenodalcomparisons,thedifferencebetweencalculatedandmeasureddataisdeterminedas:wheree=ER-Tk,mk,mk,mER=thecalculatedTIPresponseforaxialelevation,k,andradiallocation,m,Tk=themeasuredTIPresponseforaxialelevation,k,andradialk,mlocation,m.TheRootMeanSquare(RMS)ofthedifferencesforeachradialTIPlocationiscalculatedas:K2RNSZ'k,mK-1~whereK=thenumberofaxialTIPmeasurements(i.e.,24)ataradialTIPlocation.-61-TherelativeRMSofthedifferencesfor,eachTIPsetiscalculatedas:gRMSRMSnod100whereM=thenumberofradialTIPlocations(i.e.,43forSusquehannaSES).Fortheradialcomparisons,asimilarRMSiscalculated.First,thecalculatedandmeasuredindividualTIPreadingsareaxiallyaveragedasfollows:ERmTmKQER/KKQT/KwhereER=theaverageofthecalculatedTIPresponsesatagivenradialmlocation,m,T=theaverageofthemeasuredTIPresponsesatagivenradialmlocation,m.ThedifferencebetweenthecalculatedandmeasuredradialTIPresponseinpercentis:(ER-T)eminx100TTheRMSofthedifferencesforallTIPsforagivenTIPsetiscalculatedas:Z'.'MSradialM-1AnestimateoftheTIPmeasurementuncertaintycanbedeterminedbycalculatingthenodalandradialTIPresponseasymmetries.DuringA-sequencesandall-rods-outcoreconfigurations,thecontrolrodpatterniseighth-core-62-mirrorsymmetric.Inaddition,thefuelloadingpatternsforalloftheSusquehannaSEScycleshavebeendesignedtobeeighth-coresymmetric.Undertheseconditions,alineofsymmetryexistsalongtheTIPlocationsasshowninFigure3.2.8.FortheTIPsnotlocateddirectlyonthissymmetryline,therewillbeasymmetricTIPhavingnearlythesameneutronfluxconditions.ThesesymmetricTIPpairsshouldgivethesamemeasurementsexceptforexposureasymmetrieswhichcanaddapproximately1%nodalasymmetry.Tocalculatethenodalasymmetry,thenodaldifferenceforeachsymmetricTIPpair,n,iscalculatedas:wheree=TTk,nk,mlk,m2TkandTk=thesix-inchdetectormeasurementsataxiallocation,k,k,mlk,m2andsymmetricTIPlocationsm1andm2.TheRMSofthenodaldifferencesinpercentis:ASYnK-1100x1(T+T2)m1m2whereTandT=theaveragemeasuredTIPresponseforsymmetricTIPmlm2locationsmlandm2.Theaveragenodalasymmetryiscalculatedasthearithmeticaverageofthesymmetricpairasymmetries:QASYnodNwhereN=thenumberofsymmetricTIPpairs(i.e.,19forSusquehannaSES).-63 TheradialTIPresponseasymmetryiscalculatedusingtherelativedifferencebetweentheaxially-averaged.TIPmeasurementsforeachsymmetricpair,n.Thisdifferenceiscalculatedas:DnT-Tmlm2(T+T)mlm2x100The.meanabsoluteasymmetryiscalculatedas:TheresultsoftheTIPresponsecomparisonsseparatedbyunitandcyclearereportedinTables3.2.8through3.2.11.TheseincludecomparisonstoallavailablesteadystateTIPsets.NoTIPdatahavebeenexcludedfromthecomparison.AnoverallsummaryoftheresultsfromthecomparisonsisgiveninTable3.2.12.Asummaryoftheasymmetriesaveragedbyunitandcycleis,giveninTable3.2.13whichshowsthenodalandradialasymmetriesforUnit2Cycle1areapproximately2%worsethantheasymmetriesforUnit1Cycle1.ThislargerTIPresponseasymmetryindicateslargermeasurementuncertaintyforUnit2Cycle1andalsoexplainswhytheTIPresponsecomparisonsforUnit2Cycle1tendtobeworsethanforUnit1Cycle1eventhoughthecoreloadingswereidentical.ThenodalresultsfromtheTIPresponsecomparisonsarealsodisplayedversuscoreaverageexposureinFigure3.2.9a.Nodefinitetrendswithexposureareevident.WhenthedataisdisplayedversusfractionofcyclelengthasinFigure3.2.9b,atrendisapparent.Theresultsinthemiddleofthecycletendtobeworsethanatthebeginningofthecycleorendoffullpower.Fortheend-of-cyclepowercoastdown,therelativeRMSfromtheTIPresponsecomparisonsincreases.Thisisexpectedbecausecoreoperatingparametermeasurementuncertaintiesincreaseforlowerpowerconditions.Inaddition,theSIMULATE-Emodelisdevelopedprimarilybasedonfullpoweroperatingconditions.Whenthecrosssectiontablesaredeveloped,dependenciesareincludedtocorrectforDopplerandinstantaneousrelativemoderatordensity.-64 Theuncertaintiesinthesecorrectionsincreaseasconditionsdeviatefromfullpower.Therefore,thecorrespondingRMSfromtheTIPresponsecomparisonswillalsoincrease.Theresultsevenfortheendofcyclepowercoastdowncomparisonsarestillgood.TheUnit,1endofCycle1RMSwasjustover6%atapproximately81%ofratedpower,andtheUnit2endofCycle1RMSwaslessthan8%atapproximately71%ofratedpower.SeveralofthecomparisonsforthemiddleandendofUnit2Cycle1exhibitapproximately8%RMSwhichislargerthanexpected.DuringtheseTIPmeasurements,thereweresuspectedproblemswithsomeoftheTIPmachines;thisissupportedbythelargernodalasymmetriesexperiencedfortheseTIPsets.Overall,theresultsfromthenodalTIPresponsecomparisonsarequitegoodwithanaverageRMSof5.75%.GraphicalresultsoftheTIPresponsecomparisonsareincludedforeachunitandcycle.DuetothelargenumberofTIPsetsandTIPlocationswithinaTIPset,figuresofTIPresponsecomparisonsarepresentedforbeginning,middle,andendofcycle.Foreachexposurepoint,coreaverageaxial,radial,andfourindividualTIPresponsecomparisonsareincluded.TheindividualTIPresponsecomparisonsinthefigureswereselectedalongalinefromthecoreperipherytothecenterasshowninFigure3.2.8.ThesamefourTIPlocationsarealwaysshown.ThesecomparisonsareshowninFigures3.2.10throughFigure3.2.42.3.2.4CoreMonitoringSystemComarisonsTheabilityofSIMULATE-EtoaccuratelycalculatepowerdistributionsisdemonstratedinSections3.2.3,3.3.3,and3.3.4.ThepurposeofthissectionistoprovideacomparisonoftheSIMULATE-Ecalculatedpowerandflowdistributionstothoseoftheon-lineCoreMonitoringSystems(CMS).Fouraxialpowercomparisonsandthreebundleflowcomparisonsarepresented.ThedataweretakenfromonepointintheSusquehannaSESUnit1Cycles1,2,and3,and'Unit2Cycle2.Thisselectionprovidesagoodmixregardingthermalhydraulicandneutronicdifferencesindesign.AlthoughthesecomparisonsdonotrepresentavalidationoftheSIMULATE-Emodels,theydemonstrateconsistencywiththesystemsusedtomonitorthecore.TheCMSforCycle1ofbothunitsistheGeneralElectricCompanyProcessComputerP1program;for-65 thereloadcyclesofbothunits,theCMSistheANF(formerlyExxonNuclearCompany)POWERPLEXCMS.Figures3.2.43through3.2.46showthecoreaverageaxialpower.distributioncomparisons.Thesefiguresshowgoodagreement,andindicateconsistencybetweentheindependentcoreanalysismethodsforaxialpowerdistributiondetermination.Figures3.2.47through3.2.49shOwthecoreflowdistributioncomparisons.ThesefiguresshowexcellentagreementbetweentheSIMULATE<<EandCMScalculatedbundleflowsforthethreecomparisons.TheeffectsofperipheralandcentralorificingforthecorecombinationsofGESxSandExxonSxS,GESxSandExxon9x9,andallGESxSareaccuratelymodeled.-66-TABLE321MEASUREDCOREOPERATINGPARAMETERSFORSIMULATE-ECOREREACTIVITYCALCtKATIONSHotCoreOperatingConditionCoreThermalPowerTotalCoreFlowCoreInletSubcoolingCorePressureControlRodPatternColdCoreConditionCoreModeratorTemperatureReactorPeriodControlRodPattern67 TABLE3.22SUMMARYOFTHESUSQUEHANNASESBENCEBQLRKINGDATABASEUnitacleNumberofTIPCoarisonsNumberofCoreCriticalsNumberofColdCoreCriticalsU1C13187U1C247U1C32310U2C1329713*U2C2NoneAll8225739*Includesthreelocalcriticals.68-TABLE3.2.3BUSEHANMASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE-"1-CASE12345678~910ll1213141516171819202122232425262728293031323334353637383940CYCLEEXPOSURE(GWD/MTU)0.2210.8361.4901.5961.7361.758l.7991.9082.0702.7062.9062.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.31S4.5064.5175.0615.0705.3475.4105.4635;5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723COREAVERAGEEXPOSURElGWD/WTU)0.2210.8361.4901.5961.7361.7581.7991.9082.0702.7062.9062.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.716.6.723POWER(WTH)143232503280327832913296329132933293328132S932913291329232893292329032933298329032903296328832893290328832813294329132943295328732933289328632883265328632833290PERCENTPOWERl%)439910010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010099100100100TOTALCOREFLOW(%)549810088979899989794989796989896969598979698969799999798999999999998969896999898SUB-COOLINGIBTU/LBH)23.823.723.623.624.324.223.824.024.225.024.224.424.724.224.224.524.624.S24.024.324.524.224.524.423.823.924.324.023.823.723.923.823'24.124.323.924'23.824.124.0DONEPRESSURE(PSIA)9741001100510021001100110011000994100099999999910041002100210011003100010031002100310031004100510051002100210021002100210021001100110001001999999999999CONTROLROODENSITYl%)20.412.613.913.614,014.114.114.114.114.815.015.015,015.915.915.915.915.916.016.016.016.116.116.117.617.618.017.917.917,817.817.817.016.716.416.416.316.315.015.0CALCULATEDCOREK-EFFECTIVE0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580.990610.990800.991000.991160.991380.991630.991760.992540.992420.992190.992670.992940.993500.993580.993670.993620.993620.994300.994370.994540.994630.994600.99460 TABLE3.2.3(CONTINUED)SUSQJEHAWASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT"-1CYCLE=lCASE414R434546474S4950515253545556575859606162636465666768697071727374757677787980CYCLEEXPOSURE(GHD/HTU)6.8937.0007.1557.2357.3657.6387.6707.'8407.8998.0138.1648.3088.3418.4818.51S8.5878.60R8.6588.9688.9929.1169.2879.7969.9099.97910.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02211.083COREAVERAGEEXPOSURE(GHD/HTU)6.8937.0007.1557.2357.3657.6387.6707.84io7.8998.013S.1648.3088.3418.4818.5188.5878.60R8.6588.9688.9929.1169.2879.7969,9099.97910.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02R11.083POWERIWfH)328232853291327632853R733288328432883289330132903293328832863286328432873283328332873285326932793284328832823278328132873285329332943290329132843235320231123060PERCENTPOHER(%)10010010099100991001001001001001001001001001001001001001001001009910010010010010010010010010010010010010098979493TOTALCORE-FLOW(/)96999794969596979694949796969899999998989996999699939496979899939597100100100100100100SUBCOOLING(BTU/LBH)24.423.724.525.124.524.724'24.324.724.924.8R4.224.524.023.523.523.724.424.423.724.323.624.423.725.5R5.024.424.324.123.825.525.023.6R3.623.323.1RR.622.2DONEPRESSURE(PSIA)9989981008100710069939939929929929879919919909909909909911005100599399010021002100210021002100110011002100110021002100110011001999999996993CO)(TROLRODDENSITY.(%)14.614.614.514.714.313.013.012.612.412.0ll.711.411.310.410.410.410.410.28.68.6S.R7.55.44.64.6R.7R.72.42.42.42.31.10.00.00.00.00.00.00.00.0CALCULATEDCOREK-EFFECTIVE0.994720.995160.994710.993960.994900.994100.994110~994940.994900.995020.994840.995370.995360.995440.995500.995610.995530.995500.996140.995910.995690.995520.996280.996500.996650.996960.997080.997120.997070.996950.997000.996850.997240.997320.997520.997460.997450.996750.99713,0.99712 TABLE3.2.3(CONTI)i)ED)SUSQUEHA))NASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=lCASE818283'4858687CYCLEEXPOSURE(Gtl0/Nll111.15311.21711.25911.33211.46411.54211.617COREAVERAGEEXPOSURE(GHD/HTU)ll.15311.21711.25911.33211.46411.54211.617POHERlHHTH)2991294328972834277627142669PERCENTPOHER(%)91898886848281TOTALCOREFLOH(%)100100100999999100SUB-COOLING(BTU/LBN)21.821.621.321.020.820.620.6OOHEPRESSURE(PSIA)9929909889869879921014CONTROLRODOE))SITY)%)0.00.00.00.00.00.00.0CALCULATEDCOREK-EFFECTIVE0.997490'97420.997610'97700'97180.997460.99806 TABLE3.2.3(CONTINJED)SUSQUEHA)4'JASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=RCAGE888990919293949596979899100101102103104105106107108109110ill112113114115116117118119120121122123124125126127CYCLEEXPOSURE(Q1D/HTU)0.2000.2680.3450.4060.5590.7250.7890.9150.9621.R481.3311.4511.5281.6611.8031.8661.9312.0662.2272.3812.4152.500'.5872.642R.7842.9033.0393'973.3233.4393.6053.6883.7273.8773.9024.0144.0754.4034.5134.598COREAVERAGEEXPOSUREtQID/t1lU)9.634'J.70R9.7809.8419.99410.16010.22410.350,10.39810.68410.76710.8S710.96511.0981124io11.30311.36811.50411.66511.81911.85411.93912.02612.08112.22412.34312.4791Z.53812.76412.88013.04713.13013.16913.32013.34513.45713>51813.84713.95714.042POWER(tl4lH)327132863285328932923296329532903294329232913R95329332923293329332943R913R9332913291328832913290328632923299329032943292-3288329232923289329332913285329032913286PERCENTPOWER(%)99100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOWl%)9697100979695949397969498979594979795969596969696969796979999999998999999979698SUB-COOLINGtBTU/LBH)25.0R4.424.2R3.524.124.424.825.3R5.424.324.625.124.024.424.925.224.424.525.024.824.9Z4.624.724.7R4.624.724.524.524.523.823.923.923.724.023.923.823.724.424.824.2DONEPRESSURE(PSIA)9989989969969969961002100R10021001100010001001100110011001100110011001100010001000100010001000100010009991000999999999998100110011001100010001000999CONTROLRODDENSITYl%)4.24.24.34.34.14~14.14.14.14.14.04.17.27.27.27.R7.46.66.66.76.76.86.86.86.86.86.86.87.57.57.37.R7.R7.17.16.8'6.74.22.22'CALCULATEDCOREK-EFFECTIVE0.996540.996880.996500.997250.997260.997270.997330.997320.9972R0.997120.997580.997070.996690.996880.997030.996960.997070.997330.997340.997330.997270.997330.997230.997210.9973R0.997100.997020.996950.996030.996360.996830.996740.996880.996360.996260.996510.996790.996970.997080.99711 TABLE3~2.3lCONTINUED)SUSQUEHA)QASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=2CASE128129130131132133134CYCLEEXPOSURElG)l0/MTU)4.6384.7754.8814.9535.0385.1285.175COREAVERAGEEXPOSURElGll0/HTU)14.08214.22014.32614.39814.48414.57414.621POWERltklTH)3290328632233290320632923285PERCENTPOllERl%)10010098100100100100TOTALCOREFLOWl%)9910010098959899SUB-COOLINGlBTU/LBH)23;923.523.224.224.824.023.7DONEPRESSURElPSIA)1000999996999999999999CONTROLRODDENSITYl/)2.21.91.92.00.20.20.2CALCULATEDCOREK-EFFECTIVE0.997130.997170.997210.99'7260.997180.997220.99716 TABLE3.2.3lCOtlTINUED)SUSqUEHA)t)ASESHOTCRITICAL'OREK-EFFECTIVEDATA"------"--UNIT>>lCYCLE=3CASE135136137138139140141142143144145146147148149150151152153154155156157CYCLEEXPOSURElGHD/HTlJ)0.1780.2860.4230.5430.7710.8670.9250.9671.0841.1801.2901.4101.4421.6021.7221.8671.9672.0632.2282.3342.4312.5672.782COREAVERAGEEXPOSURE~lGHD/tlTU)B.1608.2688.4058.5258.7538.849.8.9078.9499.0669.1629.2729.3929.4249.5849.7049.8499.94910.04510.21010.31610.41310.54910.764PONERlHNTH)32943290328832933292329232933288329132883291329132923292329232933287329332933292328932943295PERCENTPOHERl%)100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOHl%)979898979597999895949694949493939896979696SUB-COOLINGlBTU/LBH)24.424.124.224.424.924.323.824.225.125.424.825.225.325.425.325.525.524.124.624.524.825.224.8DONEPRESSURElPSIA)10021001100010001001100010001000100410031003100310031002100210021001100210011001100110011000CONTROLRODDENSITYl/)7.77.77.77.77.'88.08.48.47.77.78.08.08.08.18.28.38.49.89.89.99.99.910.7CALCULATEDCOREK-EFFECTIVE0.993680.993770.993740.993780.993020.993130.993070.992860.992850.992830.992700.992720.992720.992580.992520.992510.992560.993150.993310.993240.993400.993430.99344 TABLE3.2.3(CONTIQJED)SUSQUEMAttlASESMOTCRITICALCOREK-EFFECTIVEDATAUNIT=2CYCLE=lCASE158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197CYCLEEXPOSURE(GHO/HTU)0.1310.3870.4870.7590.9761.1171.2841.4461.5491.641l.7681.8631.9332,0042.0922.1682.2632.3912.6152.7172.78S2.8682.9062.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.2495.357COREAVERAGEEXPOSURE(GHD/NTlJ)0.1310.3870.4870.7590.9761.1171.2841.4461.5491.6411.7681.8631.9332.0042.0922.1682.2632.3912.6152.7172.7882.8682.9062.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.2495.357POHERJHWTM)12782347234131703282328826543290329732933292329032883293329332923293329332943288328632883289329432953290328632863285328S3284329032913286329132893291329232933288PERCENTPOWER(%)3971719610010081100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOWL%)439898999893729596969796979697969698989797969696959596939494969796959698999997QS-COOLING(BTlJ/LBN)26.818.218.223.223.925.628.425.224.724.624424.624.324.824.324.724.S25.224.224.224.424.524.624.824.725.124.824.625.425.225.224.524424.524.724.724.123.823.624.3DONEPRESSUREtPSIA)947972971999100010069851020100410041004100210021002100210021002100210031002100210021002100210021002999997100010009999989991002100110011001100210011001CONTROLRODDENSITYl%)21.816.816.813.413.613.114.713.213.213.213.413.413.513.513.713.713.913~915.015.015.015.015.015.015.215.015.015.815.S15.815.816.416.416.416.816.817.717.817.817.6CALCULATEDCOREK-EFFECTIVE0.991060.990400.990820.989690.989140.988930.988460.988950.988920.988990.989020.989020.989170.988920.988850.988870.988830.988810.988310.98S760.988920.989050.989130.989240.989350.989120.989700.990040.990120.990530.990990.991540.991850.992030.992240.992450.992800'92890.993000.99328 TABLE3.2.3(CONTINUED)SUSQUEHA)t8LSESHOTCRITICALCOREK-EFFECTIVEDATAUNIT-"2CYCLE1--<<-------CASE198199200201202R03204205206207208209210211212213214215216217218219RRO221222223224RR5226227228229230231232233234235236237CYCLEEXPOSURE(GHD/HTll)5.5235.6165.7265.8325.9356.'0286.1226.2166.3186.4946.5'756.7526.8176.8936.9247.0477.1407.3137.3967.5617.70R7'797.8427.98R8.1008,1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.98610.06710.192COREAVERAGEEXPOSURE(GHD/HTU)5.5235.6165.7265.8325.9356.0286.1226.2166.3186.4946.5756.7526.8176.8936.9247.0477.1407.3137.3967.5617.70R7.7797.8427.9828.1008.1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.98610.06710.192POWER(tSTH)3292329032.923284329132913RSB32863287328832943295329232943292328732873R943293"267132883293328932923293328332873293328832923292329532903289329332853288329032623284PERCENTPOWER(%)1001001001001001001001001001001001001001001001001001001008110010010010010010010010010010010010010010010010010010099100TOTALCOREFLOH(%)979899999899979899989699979898979397997198969898959798959994979996'99699949899100SUB-COOLING(BTU/LBH)R4.324.123.923.824.123.924.3R4.023.924.R24.824.024.324.124.024.225.424.323.8R9.924.124.7R4.124.2R4.924.4R4.124.823.725.123.824.523.824.523.625.124.0R3.523.6DONEPRESSURE(PSIA)1005100R10021002100410041003100410031008100910091001100R1002100110011001100197810051004100410041003100310051002100310031002100310021002100210011001100210011003CONTROLRODDENSITY(%)17.617.617.617.617~117.116.816.816.816.816.416.416.116.116.114.914.414.414.414.713.613.213.212.812.612.61R.712.312.0S.7-8.78.67.47.36'6.14.53.6CALCULATEDCOREK-EFFECTIVE0.993570.9936R0.993760.993940.993710.993830.993930.994120.994070.994000.993850.994400.994160.994360.994290.994330.994010.994480,994560.993310.993960.993850~99I4180.994590.994430.994590.994540.993800.994510.995010.994980.995340~995110.995010.995150.995240.995290.995250.995250.995R7 TABLE3.2+3(CONTI)NEO)SUSQUEHANSESHOTCRITICALCOREK-EFFECTIVEDATAlNIT=RCYCLE=lCASE23823924IO24124224324424524624724S249250251252253254CYCLEEXPORJRE)GHO/t)TU)10.35110.46710.63510.67510.78910.85111.00711.10911.28R11.33311.43611.51711.64211.82411.91511.98412.050COREAVERAGEEXPOSURE)GHD/HTU)10.35110.46710.63510.67510.78910.85111.00711.10911.28211.33311.43611.51711.64211.82411.91511.98412.050POHER)NPH)329332903279328032883285316330853016R9792858R7SS26852575247824042350PERCEt)TPOHER)%)1001001001001001009694929087858278757371TOTALCOREFLOHt%)9710097939799100100100100100100100100100100100SUB-COOLINGtBTlJ/LBH)24.323.524.225.4R4~223.722.822.322.32R.O21.421.020.419.819.118.718.3OOt)EPRESSURE(PSIA)100410031002100210031002998995100710071006100610051001998996994CONTROLROODENSITYt%)R.92.7R.R0.00.00.00.00.01.71.71.71.71.73.43.43.434CALCULATEDCOREK-EFFECTIVE0.995370.995430.996010.996130.996010.995810.996070.99622-.0.995550.995530+996250.996530.996710.996210.996670.997070.99706 TABLE3.2.3)CONTINUED)SUSQUEHARSLSESHOTCRITICALCOREK-EFFECTIDATA---l5IT=2CYCLE=2CASE255256257CYCLEEXPOSURElGND/HTU)0.3100.4300.583COREAVERAGEEXPOSURElGHO/))TU)8.0038'1238.276POHERltOITN)329032923294PERCENTPO)lERUZI100100100TOTALCOREFLOH)%)969696SUBCOOLINGlBTU/LB)l)24.424.4DONEPRESSURE[PSZAI100010001000CONTROLRODDENSITYl/)8.38.38.3CALCULATEDCOREK-EFFECTIVE0.995630.995580.99525 TABLE3.2.4SUSQUEHANNASESTARGETVSSIMULATE-ECALCULATEDCRITICALCOREK-EFFECTIVESTATISTICSNumberofObservationsMeanDifference*StandardDeviationUjclU2C1U1C2U2C2Ulc3All879747232570.00035-0.00026-0.000200.001860.000150.000020.000590.000500.000460.000230.000320.00061*MeanDifferenceistheaveragedifferenceoftheSIMULATE-EcalculatedK-effectiveminusthetargetK-effective.-79-TABLE325SUSQUEHANNASESUNIT2CYCLE2COREK-EFFECTIVESENSITIVITYTOMEASUREDCOREOPERATINGDATAUNCERTAINTIESInitialConditionsCoreThermalPowerTotalCoreFlowCoreInletSubcoolingPressure3293MW100x10ibm/hr624Btu/ibm1000psiaMeasuredParameterCoreThermalPowerTotalCoreFlowCoreInletSubcoolingPressureMeasurementStandardDeviation*(*)1.82.55.20.5CoreK-effectiveSensitivity(ax)0.00097P0.00098f0.000610.00006presTotal4b,+E+pfDHS+pres1/20.00151<K*Source:"GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,CorrelationandDesignApplication,"NED0-10958-A,January,1977.80-TABLE326SUSQUEHANNASESC2KCULATEDCOLDXENON-FREECRITICALCOREK-EI."FECTIVESUNIT1CYCLE1CoreAverageExposure.Case(GWD/MTU)CycleExposure(Gm/mo)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-Effective0.0000.0000.0000.0000.0000.9581.4905.1105.1850.0000.0000.0000.0000.0000.9581.4905.1105.185747474737472737474101.8105.9122.5141.0120.0200.0186.0182.5164.01.000451.000270.999140.999851.000400.996980.996740.998770.99821UNIT1CYCLE2CaseCoreAverageExposure(GWD/NTU)CycleExposure(GND/NTU)ControlRodDensity(~)CoreTemperature(DEGF)CalculatedCoreK-effective10ll1213149.4349.4349.4349.4349.4340.0000.0000.0000.0000.0007371716868157.1158.1180.4205.8211.11.005121.004981.OO4661.003591.00341UNIT1CYCLE3-CoreAverageExposureCase(GWD/MTU)CycleExposure(GWD/mv)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-effective151617181920212223247.9827.9827.9827.9827.9827.9827.9828.6128.61210.6010.0000.0000.0000.0000.0000.0000.0000.6300.6302.6197575757474747474747481174.2175.8190.3189.9195.4202.2206.2170.5156.3209.41.001101.001121.000671.000861.000671.000461.000291.001281.001710.99950 TABLE:3.2.6(continued)SUSQUEHANNASESCALCULATEDCOLDXENON-PREECRITICALCOREK-EPI.ECTIVESUNIT2CYCLE1CoreAverage.ExposureCase(GWD/RZtJ)CycleExposure(GWO/mV)ControlRodDensity(*)CoreTemperatures(DEGF)CalculatedCoreK-effective2526*27*28*2930313233343536370.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.2080.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.20874989898747574737473737458111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.00.998270.997060.996960.998350.997560.995690.998060.996390.997460.996880.994261.002721.00429UNIT2CYCLE2CaseCoreAverageExposure(cwo/mu)CycleExposure(cd/mo)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-effective38397.6937.6930.0000.0007575133.0139.51.000841.00083*LocalCriticals-82-TABLE3.27SUSUEHANNASESCOLDMINUSHOTCRITICALCOREK-EFFECTIVEUNIT1CYCLE1CoreAverageExposure(CWO/MTU)CycleExposure(GWD/MTU)CoreTemperature(DEGF)KK.coldhotcalccalcKcoldhotcalctarget0.0000.0000.0000.0000.0000.9581.4905.1105.1850.0000.0000.0000.0000.0000.9581.4905.1105.185101.8105.9120.0122.5141.0200.0186.0182.5164.00.008020.007840.007970.006710.007420.006560.007410.006120.005470.007650.007470.007600.006340.007050.007690.007960.006310.00567UlC1Average:U1C1StandardDeviation:0.007060.000900.007080.00079UNIT1CYCLE2CoreAverageExposure(GWD/MTU)CycleExposure(CWO/MTU)CoreTemperature(DEGF)KK-Kcoldhotcoldhotcalccalccalctarget9.4349.4349.4349.4349.4340.0000.0000.0000.0000.000157.1158.1180.4205.8211.10.008110.007970.007650.006580.006400.007860.007720.007400.006330.00615U1C2Average:U1C2StandardDeviation:0.007340.000800.007100.00080UNIT1CYCLE3CoreAverageExposure(CWO/MTU)CycleExposure(MWO/MTU)CoreTemperature(DEGF)KcoldhotcalccalcKKcoldhotcalctarget7.9827.9827.9827.9827.9827.9827.9828.6128.61210.6010.0000.0000.0000.0000.0000.0000.0000.6300.6302.619174.2175.8189.9190.3195.4202.2206.2156.3170.5209.40.006720.006740.006480.006290.006290.006080.005910.008430.008000.006100.006650.006670.006410.006220.006220.006010.005840.009610.009180.00766U1C3Average:UlC3StandardDeviation:0.006700.000840.007050.00134-83 TABLE3.2.7(continued)SUSUEKLNNASESCOLDMINUSHOTCRITICALCOREK-EFFECTIVEUNIT2CYCLE1CoreAverageExposure(MWD/MTU)CycleExposure(MWD/MTU)CoreTemperature(DEGF)Kcoldhot.calccalcKcoldhotcalctarget0.0000.000*0.000*0.000*0.0000.0000.1580.8470.9760.9762.3918.39011.2080.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.208111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.00.006590.005380.005280.006670.005880.004010.006920.006870.008120.007540.005390.008020.008190.005470.004260.004160.005550.004760.002890.006150.006890.008200.007620.005110.007440.00782U2C1Average:U2C1StandardDeviation:0.006530.001290.005870.00164UNIT2CYCLE2CoreAverageExposure(MWD/MTU)CycleExposure(MWD/MTU)CoreTemperature(DEGF)K1CKcoldhotcold'hotcalccalccalctarget7.6937.9630.0000.000133.0139.50.004720;004710.005480.00547U2C2Average:,U2C2Standard,Deviation:0.004720.000010.005470.00001OverallAverage:OverallStandardDeviation:0.006710.001110.006590.00137*LocalCriticals-84-32.8SUSUKQLNNASESUNIT1CYCLE1TIPRESPONSECOMPARISONSDate12/16/8202/07/8304/04/8306/09/8308/10/8308/19/8309/13/8310/03/8310/18/8311/01/8312/01/8304/03/8404/12/8404/26/8405/24/8405/31/8406/08/8406/25/8407/24/8408/02/8408/16/8408/24/8408/30/8409/04/8411/30/8412/13/8412/16/8412/21/84**01/10/85**02/01/85**02/08/85**CycleExposure(CWO/MTU)0.2210.8361.4901.7992.7062.9063.3673.8364.1934.5175.0705.4105.6145.9186.5636.7166.8937.2357.6387.8408.1648.3418.4818.60210.28810.58910.65310.77011.08311.46411.617ControlRodSequenceB2A2B2B2A1A1BlB1B1B1A2A2A2B2B2AlA1AlBlBlB1A2A2A2B2B2AROAROAROAROARO5.094.035.044.975.125.215.625.465.625.605.936.126.145.725.805.825.385.004.754.614.534.534.574.524.734.804.684.965.936.076.032.604.264.264.724.965.164.895.024.604.734.844.834.454.564.724.80NodalNodalTIPRMSAsymmetry(~)(~)RadialRMS(~)2.781.581.701.791.621.631.711.741.911.911.811.961.851.981.971.891.881.941.851.871.692.132.142.221.911.701.671.721.731.621.76RadialTIPAsymmetry(*)1.181.581.581.601.741.631.471.751.631.601.771.931.571.621.641.74*ReactorconditionsforthisTIPset:60%ofratedflow40%ofratedpower**Endofcyclepowercoastdowndata85-TABLE329SUUEEGLNNASES.UNIT1CYCLE2TIPRESPONSECOMPARISONSDate06/24/8507/03/8507/19/8508/08/8508/20/8509/06/8509/12/8509/27/8510/04/8510/23/8511/15/8512/12/8501/14/86CycleExposure(CWO/MTU)0.2000.406.0.7891.2481.5281.9312.0662.4152.5873.0393.3233.8774.638ControlRod~eeenceAlAlAlB1B1BlA2A2A2A2B2AlA1NodalRMS(e14.794.894.765.785.175.976.425.585.484.555.044.754.99NodalTIPAsymmetry(*)3.643.673.573.753.803.744.37RadialRMS(e)2.522.723.282.862.702.752.572.732.722.703.093.022.64RadialTIPAsymmetxy(4)2.242.402.402.552.562.512.4986-TABLE3.210SUSUEMHNAUNITSES1CYCLE3TIPRESPONSECOMPARISONSDate's/os/8607/03/8607/10/8608/20/8608/27/8609/10/86CycleExposure(GWD/MTU)0.1780.9251.0842.0632.2282.567ContxolRod~eeenceA1AlB1A2A2A2NodalRMS(a)5.166.065.688.128.719.03NodalTIPAsymmetxy(~)3.414.343.583.846.28RadialRMS(*)2.744.142.802.822.893.75RadialTIPAsymmetxy(~)2.473.582.552.695.1387-SUVEZGLNNASESUNIT2CYCLE1TIPRESPONSECOMPARISONSDate07/23/8409/12/8410/08/8401/16/8502/07/8503/07/8503/20/8504/04/8504/15/8505/15/8506/10/8506/20/8508/01/8508/12/8508/20/8509/09/8510/01/8510/18/8510/28/8511/19/8512/17/8501/30/8602/19/8603/06/8603/12/8603/25/8604/04/8604/29/8605/15/8606/23/8607/11/8608/08/86CycleExposure(GWO/MTU)0.1310.3870.7591.1171.4462.0922.3912.6152.8683.3923.8824.1144.8695.0665.2495.7266.2166.5756.8177.3137.7798.5969.0539.4129.5399.83510.06710.63511.007*11.282*11.642*12.050*ControlRodSequenceA2A2A2A2B2B2B2AlAlAlB1BlA2A2A2A2B2B2'2AlBlA2A2A2B2B2B2B2AROB2B2B2NodalRMS(a)7.055.374.734.765.515.435.585.655.755.935.795.796.617.837.807.707.815.845.517.554.924.945.756.995.125.565.926.027.216.566.817.81NodalTIPAsymmetry(*)5.245.095.135.715.796.357.306.566.187.788.539.046.307.839.585.78RadialRMS(~)2.822.582.302.202.582.642.682.312.582.752.442.602.762.593.823.995.183.042.685.963.082.994.566.352.372.552.682.362.462.382.453.44RadialTIPAsymmetry(~)1.342.232.182.342.512.872.882.612.233.584.035.962.865.126.762.91*Endofcyclepowercoastdowndata.-88 TABLE3.2.12SUMMARYOFSUUEHANNASESTIPRESPONSECOMPARISONSUnitacle,NumberofTIPSetsAverageNodalRMS(*)AverageRadial.RMS(~)Ulcl315.241.86U1C2135.242.79U1C37.133.19U2C1326.173.07OverallAverage825.742.5889 TABLE3213SUMMARYOPSUSUEHANNASESTIPRESPONSEASYMMETRIESUnitacleNumberofTIPsetsAverageAverageNodalRadialAsymmetryAsymmetry(~)(~)Ulcl164.591.63U1C23.792.45U1C34.293.28U2C1166.763.28OverallAverage445.222.5590-1.01FIGURE3.2.ISIMULATE-EHOTANDCOLDCRITICALCOREK-EFFECTIVESVSCOREAVERAGEEXPOSURE1.00-I-O0:9SIlCOO0.98--0;""':mi..'i7U2C2HOTU1C3HOTU1C1COLDU2C1COLDU1C2COLD"U2C2COLD+U1C3COLDk:vj+,~o::..:LegendoU1C1HOTcIU2C1HOTU1C2HOT01234567S91011.12131415COBEAVERAGEEXPOSURE(GWD/MTU) 1.01FIGURE3.2.2SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSCORETHERMALPOWER1.00LLIII-OlLIU0.99-IUJLL&#x17d;0O0.98..~.........Legend~--.".-0U1C1""""cIU2C1U1C2U2C2U1C300.975060667076808690CORETHERMALPOWER(%OFRATED)100106 1.01-FIGURE3.2.3SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSTOTALGOREFLOW1000I-O0.99ICC0O0Legend...':,.......IP00;--"0"--:--"-"-.-0U1C10.98..""""'0U2C1U1C2""vU2C2oU1C30.97-4050607080TOTALCOREFLOW(%OFRATED)90100 1.01FIGURE3.2.4SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSCOREINLETSUBCOOLING1.00LUI-C3UJ099-IhCCC0O0.98-.....Legend,--.-"oUlC10U2C1U1C2U2C2oU1C3oo.:.Booooo:.ooC3.,O...CI.....:.80.9715161718192021222324252627.282930COREINLETSUBCOOLING(BTU/LBM) 1.01FIGURE3.2.5SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSDOMEPRESSURE1.00-I-OLIJ0.99IUJCCOC30.98-.......LegendI~-"-oU1C1"-.aU2C1U1C2U2C20U1C3od'oze,"jjjo"~I"---.02..:...;.D:00.97940950960970.9809901000DOMEPRESSURE{PSIA)101010201030 1.01FIGURE3.2.6SIMULATE-EHOTCRITICALCOREK-EFFECTIYEVSCRITICALCONTROLRODDENSITY1.00LLI0I-OIJJ0.99-IIJJCC0O0.98-~C1~I~~aPen,:j4k~:,@'P,0I?Ip:gg:QjjPQ::c5:cD~cl"HD'lf."--gg'..Q...........,........~.........:O:::I.::.:.:.O...,.;:.:....Legend::...-....::....:...:,.....,:...:s~--:-""oUlC1""i"""0U2C1UlC2U2C2oU1C3200.97-024681012141618CRITICALCONTROLRODDENSITY(%)hag~aeeRl22 FIGURE3.2.7TARGETANDSIMULATE-ECALCULATEDHOTCRITICALCOREK-EFFECTIVESVSCOREAVERAGEEXPOSURE1.01-1.00-.--'---'-.-.:.----'---.'-U1C2TARGET:""'---.'-.--.'"-'"-.:.LIJI-O0.9S-IUJCC0.O0U1C1andU2C1TARGET'.-.-.:---:----.--:"--'-.:U2C2TARGET:."-.:-----:.-.--'.-"--:r~U1C3TARGETI\rLegend..,:.....~~0.C~--oU1C10U2C1U1C2U2C2oU1C30.97.03456789101112131415COREAVERAGEEXPOSURE(GWD/MTU)
\synthesizedfromone-inchaxialdatathatareaveragedbythecoremonitoringsystemthroughatrapezoidalaveragingtechnique.ForCycle2andbeyondofbothunits,thecoremonitoringsystem,POWERPLEX(Reference24),alsocorrectstheTIPmeasurementsforanyaxialshiftinthemeasurements.AGaussiansmoothingprocedurecomparesmeasuredneutronfluxdipstotheexpecteddiplocations,basedonfixedLPRMandspacerlocations,andcorrectstheaxialalignmentoftheone-inchdata.TheSusquehannaSEScoreoperatinghistoriesfromUnit1Cycles1,2,andpartofCycle3andUnit2Cycle1andpartofCycle2arecontainedinthebenchmarkdatabase.Thetwounitsshareidenticalcoregeometryandratedcoreconditions.TheCycle1operatingcoresofbothunitscontainthesameGeneralElectricSx8fueldesignandcoreloadingpatt'em.Znaddition,bothCycle1operatingstrategieshaveextendedcycleoperationviabottomburnspectralshiftandcoastdown.Cycle2ofUnit1operatedwithasmall192ExxonSx8bundlereloadcorethatexperiencedacyclelengthlessthanhalfofCycle1andlessthananyplannedfuturecycle.Cycle3ofUnit1wasloadedwith296ExxonSx8bundlesandCycle2ofUnit2wasloadedwith324Exxon9x9bundles.Theanticipatedequilibriumbatchsizefortheplannedeighteenmonthcyclesis240Exxon9x9bundles.Atthetimethisreportwasprepared,Unit1wasinitsthirdcycleofoperationandUnit2wasinitssecondcycleofoperation.Therefore,thebenchmarkdatabaseonlyincludesthefirstthirdofUnit1Cycle3operationandtheearlyportionofUnit2Cycle2operation.Table3.2.2summarizesthetotalSusquehannaSESbenchmarkingdatabaseincludedinthisreport.ForallSusquehannaSEShotcomparisons,unlysteadystatedatahavebeenused.Thisrequirescoreconditionstoremainconstantoveraperiodoftimetoallowthexenonconcentrationtoequilibriate.Thisrequiresnorodpullsorsignificantchangeincorethermalpower,flow,orfeedwatertemperaturewithinapproximatelythreedayspriortothedatapoint.Forthecoldcomparisons,sufficienttimeatzeropowerisrequiredtoallowforxenondecay.1naddition,areactivityadjustmentismadeforthereactorperiod.-55 3.2.1HotCriticalCoreReactivitComarisonsTheresultsoftheSIMULATE-EcorefollowcalculationsthatarebasedonmeasuredcoreoperatingdatafortheSuscpxehannaSEScoresformthehotcriticalcorereactivitydatabase.Thesecalculationsresulti:natotalof257steadystatecoreK-effectivecomparisonsforvariouscoreoperatingconditions.Table3.2.3showsacompletelistofthesteadystatecoredataanditscorrespondingcalculatedhotcriticalcoreK-effectivetabulatedbyunitandcycle.Figures3.2.1through3.2.6showplotsofhotcriticalcoreK-effectiveversuscoreaverageexposure,corethermalpower,totalcoreflow,coreinletsubcooling,domepressure,andcriticalcontrolroddensity,respectively.ThesefiguresprovideinformationonthedependenciesandbiasesinherentinSIMULATE-E.ItisapparentthatthecriticalK-effectivevarieswithcoreaverageexposure.TheK-effectivefromCycle1ofbothunitsexhibitsabowl-shapedtrendupto7000MWD/MTUcycleexposure,atwhichpointgadoliniacontentissubstantiallydepleted.TheavailabledatafromCycle3alsoexhibitsthesametrend.Forthiscycle,theinitialcoreaveragegadoliniacontentwasalmostthesameasfortheCycle1cores.UnlikeCycles1and3,theK-effectivefromCycle2ofUnit1exhibitsaveryflattrendthroughouttheentirecycle.Cycle2ofUnit1containsapproximatelyone-fourththeinitialgadoliniacontentofeitherCycle1orCycle3ofUnit1.Thesetrendssuggestadependencyongadolinialoading.AfterthegadoliniahasessentiallyburnedoutinCycle1,thecriticalcoreK-effectiveincreasesslightlywithexposure.Therefore,thehotcriticalcoreK-effectiveexhibitsalineardependenceonexposurecoupledwithabowl-shapedtrendduetogadoliniadepletion.PPGLhasdevelopedamethodwhichcorrelatesthehotcriticalcoreK-effectivedatatothecoreaverageexposureandgadoliniacontent.Usingthiscorrelation,targetcriticalcoreK-effectivecurvesaregeneratedforeachcycle.Figure3.2.7showsthecomparisonofthetargetcriticalcoreK-effectivecurvesandtheSIMULATE-EcalculatedcoreK-effectiveforeachunitandcycle.Table3.2.4showsthemeandifferenceandstandarddeviationbetweenthetargetandSIMULATE-EcalculatedcriticalcoreK-effectivefor eachunitandcycle.TheoverallresultsshowverygoodagreementwiththetargetK-effective.ForUnit2Cycle2onlythreedatapointsareincludedinthedatabase.Thesedatayieldameandifferenceof0.00186~Kfromthetargetwhichislargerthantwotimesthestandarddeviationofthedatabase(i.e.,2ais0.001224K).ItisanticipatedthattheUnit2Cycle2SIMULATE-EcalculatedcoreK-effectivewillfollowthetargetbutwillbeoffsetbyaconstantbias.Morerecentcorefollowcalculations,whicharenotincludedinthisreport,supportthisexpectedtrend.TheoffsetislikelyduetodifferencesbetweenSx8and9x9fueldesigns.PPaLcontinuestoperformhotcriticalcoreK-effectivecalculationsaspartoftheroutinecorefollowanalyses,andtheresultsareusedtofurtherimprovetheaccuracyofthetargetcriticalcoreK-effective.Onawhole,theuseofthecorrelationprovidesagoodassessmentofcriticalcorereactivityandcanbeusedfordesignandanalysisoffuture.cycles.Animportantconsiderationinevaluatingreactivityresultsisthemeasurementuncertaintyinthecoreoperatingconditions.Becausemeasuredcoreoperatingdata(i.e.,theparameterslistedinTable3.2.1)areenteredintoSIMULATE-E,thecalculatedcorereactivityisaffectedbyanyerrorsinthemeasuredinputs.Thechangesincorereactivityfrommeasurementuncertaintyprimarilydependontwocoremodelingphenomena,thevoidandDopplercoefficientsofreactivity.Asthesecoefficientschangewithcorelifeanddesigns,thesensitivityofSIMULATE-Etomeasurementuncertaintieschanges.Table3.2.5showsmeasurementuncertaintiesbasedonReference25andtheireffectsoncorereactivityforSusquehannaSESUnit2Cycle2.ThetotalK-effectivesensitivityduetothemeasurementuncertaintiesis0.00151bK.SIMULATE-EcalculationsofhotcriticalcoreK-effectiveforthe257datapointsanalyzedbyPPGLresultinastandarddeviationwhichislessthanthissensitivity.3.2.2ColdCriticalCoreReactivitComarisonsTheaccuracyoftheSIMULATE-Ecalculationofcoreshutdownmarginandcontrolrodworthsatcoldconditionsdependsonitsabilitytopredictcoldcorereactivityfordifferentcoredesigns,coreaverageexposures,andcontrolrodconfigurations.Shutdownmargincalculationsalsorelyontheaccuracyofthemodifiedcoarsemeshdiffusiontheorypredictionoflargeneutronflux-57 gradientscharacteristicofone-rod-outconfigurations.LocalCriticaltestsexhibitfluxgradientssimila'rtoshutdownmargincalculations.Therefore,thequalificationoftheSIMULATE-Ecoderequiresbenchmarkingtobothlocalandin-sequencecoldxenon-freecriticals.TheSusquehannaSESbenchmarkingdatabasecontainsthreelocaland36in-sequencecriticalsasshowninTable3.2.2.InadditiontotheSusquehannaSEScoldcriticalbenchmarkingcalculations,comparisonstotheQuadCitiesUnit1Cycle1localandin-sequencecriticalswereperformedtofurthersupportthevalidation.Section3.3.2describestheQuadCitiesUnit1Cycle1benchmarkinganalyses.Table3.2.6containsresultsoftheSusquehannaSEScoldxenon-freecriticals.Asshown,thecriticalswereperformedattemperaturesbetween100and212F0andatvariouscoreaverageexposures.ThecoreK-effectiveinTable3.2.6includesareactorperiodcorrectionwhichistypicallylessthan0.001.Figure3.2.1showstheseresultstogetherwiththoseofthehotbenchmark.ThecalculatedcoldcriticalcoreK-effectivesconsistentlyfollowthehot,criticalcoreK-effectivewithaconstantbiasthroughoutexposure.Thistrendindicatesthatthecoldmethodsandmodelsalsodependoncoreavexageexposureandgadoliniacontent.AbiasbetweencoldandhotcoreK-effectiveshasbeenreportedbyothersandhasbeeninvestigatedinReference26.Amethodthataccountsforthecoreaverageexposureandgadoliniacontentdependenciesresultsinanaccurateassessmentofthecoldxenon-freecriticalcoreK-effectiveanditsuncertainty.Figure3.2.1indicatesthatabiasexistsbetweenthehotandcoldSIMULATE-EcalculatedcorecriticalK-effectives.Reference26supportsthisobservation.Thisbiasisconstantandisnotexposureorgadoliniadependent.Therefore,thetargetcoldcriticalcoreK-effectiveisdeterminedbyaddingabiastothehotcriticalcoreK-effective.Table3.2.7showstheresultsfortheSusquehannaSESin-sequenceandlocalcoldcriticals.ThemeandifferencebetweentheSIMULATE-EhotandcoldcalculatedcoreK-effectiveforall39criticalsis0.00671andthestandarddeviationis0.00111.ThemeandifferencebetweenthehottargetcoreK-effectivecurveandtheSIMULATE-EcoldcalculatedcoreK-effectiveforall39criticalsis0.00659andthestandarddeviationis0.00137.Thesetwo-58-standarddeviationsaresmallandaretypicalofthecalculatedcoreK-effectivevariationforcriticalsatagivenexposure.Forexample,thestandarddeviationoftheUnit2Cycle1zeroexposurecalculatedcoldcriticalK-effectivesis0.00099.Table3.2.7alsoshowsthatthecoldtohotK-effectivebiasforthelocalcriticaltestsisnotsignificantlydifferentthanthebiasforthein-sequencecriticals.Asinthehotreactivitybenchmark,PPSLwillcontinuetoperformcoldcriticalcoreK-effectivecomparisonstobeusedforperiodicupdatingofthetargetcoldcriticalcoreK-effective.TheuseofthistargetcoldcriticalcoreK-effectiveprovidesagoodassessmentofcriticalcorereactivityandcanbeusedfordesignandanalysisoffuturecycles.3.2.3TraversingIn-coreProbeDataComparisonsComparisonstomeasuredTIPdataprovideanassessmentofhowwellSIMULATE-Ecalculatesthecorepowerdistribution.TheTIPdetectorsarelocatedinthewatergapcorneroppositethecontrolrodbetweenfourfuelassembliesasshowninFigure3.2.8.SIMULATE-EcalculatesaTIPresponseforeachsix-inchaxialsegmentateachradialTIPlocationbypowerweightinginputdetectorresponsefunctionsasfollows:MER=-QR.P.whereM=thenumberofbundlesaroundaTIPdetector(forallplantsmodeled,M=4),R,=thedetectorresponsefunction,jP.=theSIMULATE-Ecalculatednodalpower.jThedetectorresponse,R.,isafunctionalrelationshipwhichcanbeexpandedj'o:jUNCCTCTEVU-59-whereF=thebasecomponentofthedetectorresponseforanuncontrollednode,G=thefractionofthenodewhichiscontrolled,G=0nodeisuncontrolled,G=lnodeisfullycontrolled,F=thecorrectiontothebasecomponentforafullycontrollednode,FF=thecorrectiontothebaseresponsetoaccountformoderatordensity.F,FandFarefunctionsofexposureandvoidhistory(i.e.,exposure-weightedrelativemoderatordensity).FisafunctionoftheUrelativemoderator.densityandvoidhistory.ThedetectormodelinSIMULATE-Eassumesthatthedetectorresponsefromeachassemblyisnotaffectedbytheotherthree.ThedetectorresponsefunctionsaregeneratedusingcalculateddatafromCPM-2.InCPM-2,asmallamountofU-235isplacedinthewatergapcorneroppositethecontrolblade.Thelocalfissionrateiscalculatedinthisregionfordifferentconditionsofexposure,voidhistory,controlstateandrelativemoderatorlevel.Thisdataisformulatedintoapolynomialfitdeterminedforeachseparatelatticetype.Bothnodalandradial(i.e.,axiallyintegrated)TIPcomparisonshavebeenmadetotheSusquehannaSESTIPdata.Forthenodalcomparisons,thesix-inchaveragedmeasureddataiscomparedtothecalculatednodalTIPresponse.ThisprovidesanassessmentoftheaccuracyofthenodalpowerdistributionwhichaffectscalculatedmargintooperatinglimitssuchastheLinearHeatGenerationRate(LHGR)limit.Fortheradialcomparisons,theaverageofallTIPmeasurementsataradiallocationiscomparedtotheaverageofthecalculatedvaluesatthatradiallocation.Thisprovidesanassessmentoftheaccuracyoftheradial(i.e.,bundleaverage)powerdistributionwhichaffectscalculatedmargintooperatinglimitssuchasCriticalPowerRatio(CPR).-60-Priortomakingthecomparisons,thecalculateddataisnormalizedtothemeasureddata.Eachofthecalculatednodaldetectorresponsesismultipliedbyanormalizationfactor.Thefactoriscalculatedas:TNF=T/ERwhereT=theaverageofallmeasuredTIPresponsesinagivenTIPset,ER=theaverageofallcalculatedTIPresponsesinagivenTIPset.ATIPsetisdefinedasacompletesetofTIPmeasurementsfromtheentirecore.ForSusquehannaSESaTIPsetconsistsof24measurementsateachofthe43radiallocationsinthecoreforatotalof1032measurements.Ineachofthecomparisonspresentedinthissection,allradialTIPlocationsandallaxialelevationshavebeenincluded.Forthenodalcomparisons,thedifferencebetweencalculatedandmeasureddataisdeterminedas:wheree=ER-Tk,mk,mk,mER=thecalculatedTIPresponseforaxialelevation,k,andradiallocation,m,Tk=themeasuredTIPresponseforaxialelevation,k,andradialk,mlocation,m.TheRootMeanSquare(RMS)ofthedifferencesforeachradialTIPlocationiscalculatedas:K2RNSZ'k,mK-1~whereK=thenumberofaxialTIPmeasurements(i.e.,24)ataradialTIPlocation.-61-TherelativeRMSofthedifferencesfor,eachTIPsetiscalculatedas:gRMSRMSnod100whereM=thenumberofradialTIPlocations(i.e.,43forSusquehannaSES).Fortheradialcomparisons,asimilarRMSiscalculated.First,thecalculatedandmeasuredindividualTIPreadingsareaxiallyaveragedasfollows:ERmTmKQER/KKQT/KwhereER=theaverageofthecalculatedTIPresponsesatagivenradialmlocation,m,T=theaverageofthemeasuredTIPresponsesatagivenradialmlocation,m.ThedifferencebetweenthecalculatedandmeasuredradialTIPresponseinpercentis:(ER-T)eminx100TTheRMSofthedifferencesforallTIPsforagivenTIPsetiscalculatedas:Z'.'MSradialM-1AnestimateoftheTIPmeasurementuncertaintycanbedeterminedbycalculatingthenodalandradialTIPresponseasymmetries.DuringA-sequencesandall-rods-outcoreconfigurations,thecontrolrodpatterniseighth-core-62-mirrorsymmetric.Inaddition,thefuelloadingpatternsforalloftheSusquehannaSEScycleshavebeendesignedtobeeighth-coresymmetric.Undertheseconditions,alineofsymmetryexistsalongtheTIPlocationsasshowninFigure3.2.8.FortheTIPsnotlocateddirectlyonthissymmetryline,therewillbeasymmetricTIPhavingnearlythesameneutronfluxconditions.ThesesymmetricTIPpairsshouldgivethesamemeasurementsexceptforexposureasymmetrieswhichcanaddapproximately1%nodalasymmetry.Tocalculatethenodalasymmetry,thenodaldifferenceforeachsymmetricTIPpair,n,iscalculatedas:wheree=TTk,nk,mlk,m2TkandTk=thesix-inchdetectormeasurementsataxiallocation,k,k,mlk,m2andsymmetricTIPlocationsm1andm2.TheRMSofthenodaldifferencesinpercentis:ASYnK-1100x1(T+T2)m1m2whereTandT=theaveragemeasuredTIPresponseforsymmetricTIPmlm2locationsmlandm2.Theaveragenodalasymmetryiscalculatedasthearithmeticaverageofthesymmetricpairasymmetries:QASYnodNwhereN=thenumberofsymmetricTIPpairs(i.e.,19forSusquehannaSES).-63 TheradialTIPresponseasymmetryiscalculatedusingtherelativedifferencebetweentheaxially-averaged.TIPmeasurementsforeachsymmetricpair,n.Thisdifferenceiscalculatedas:DnT-Tmlm2(T+T)mlm2x100The.meanabsoluteasymmetryiscalculatedas:TheresultsoftheTIPresponsecomparisonsseparatedbyunitandcyclearereportedinTables3.2.8through3.2.11.TheseincludecomparisonstoallavailablesteadystateTIPsets.NoTIPdatahavebeenexcludedfromthecomparison.AnoverallsummaryoftheresultsfromthecomparisonsisgiveninTable3.2.12.Asummaryoftheasymmetriesaveragedbyunitandcycleis,giveninTable3.2.13whichshowsthenodalandradialasymmetriesforUnit2Cycle1areapproximately2%worsethantheasymmetriesforUnit1Cycle1.ThislargerTIPresponseasymmetryindicateslargermeasurementuncertaintyforUnit2Cycle1andalsoexplainswhytheTIPresponsecomparisonsforUnit2Cycle1tendtobeworsethanforUnit1Cycle1eventhoughthecoreloadingswereidentical.ThenodalresultsfromtheTIPresponsecomparisonsarealsodisplayedversuscoreaverageexposureinFigure3.2.9a.Nodefinitetrendswithexposureareevident.WhenthedataisdisplayedversusfractionofcyclelengthasinFigure3.2.9b,atrendisapparent.Theresultsinthemiddleofthecycletendtobeworsethanatthebeginningofthecycleorendoffullpower.Fortheend-of-cyclepowercoastdown,therelativeRMSfromtheTIPresponsecomparisonsincreases.Thisisexpectedbecausecoreoperatingparametermeasurementuncertaintiesincreaseforlowerpowerconditions.Inaddition,theSIMULATE-Emodelisdevelopedprimarilybasedonfullpoweroperatingconditions.Whenthecrosssectiontablesaredeveloped,dependenciesareincludedtocorrectforDopplerandinstantaneousrelativemoderatordensity.-64 Theuncertaintiesinthesecorrectionsincreaseasconditionsdeviatefromfullpower.Therefore,thecorrespondingRMSfromtheTIPresponsecomparisonswillalsoincrease.Theresultsevenfortheendofcyclepowercoastdowncomparisonsarestillgood.TheUnit,1endofCycle1RMSwasjustover6%atapproximately81%ofratedpower,andtheUnit2endofCycle1RMSwaslessthan8%atapproximately71%ofratedpower.SeveralofthecomparisonsforthemiddleandendofUnit2Cycle1exhibitapproximately8%RMSwhichislargerthanexpected.DuringtheseTIPmeasurements,thereweresuspectedproblemswithsomeoftheTIPmachines;thisissupportedbythelargernodalasymmetriesexperiencedfortheseTIPsets.Overall,theresultsfromthenodalTIPresponsecomparisonsarequitegoodwithanaverageRMSof5.75%.GraphicalresultsoftheTIPresponsecomparisonsareincludedforeachunitandcycle.DuetothelargenumberofTIPsetsandTIPlocationswithinaTIPset,figuresofTIPresponsecomparisonsarepresentedforbeginning,middle,andendofcycle.Foreachexposurepoint,coreaverageaxial,radial,andfourindividualTIPresponsecomparisonsareincluded.TheindividualTIPresponsecomparisonsinthefigureswereselectedalongalinefromthecoreperipherytothecenterasshowninFigure3.2.8.ThesamefourTIPlocationsarealwaysshown.ThesecomparisonsareshowninFigures3.2.10throughFigure3.2.42.3.2.4CoreMonitoringSystemComarisonsTheabilityofSIMULATE-EtoaccuratelycalculatepowerdistributionsisdemonstratedinSections3.2.3,3.3.3,and3.3.4.ThepurposeofthissectionistoprovideacomparisonoftheSIMULATE-Ecalculatedpowerandflowdistributionstothoseoftheon-lineCoreMonitoringSystems(CMS).Fouraxialpowercomparisonsandthreebundleflowcomparisonsarepresented.ThedataweretakenfromonepointintheSusquehannaSESUnit1Cycles1,2,and3,and'Unit2Cycle2.Thisselectionprovidesagoodmixregardingthermalhydraulicandneutronicdifferencesindesign.AlthoughthesecomparisonsdonotrepresentavalidationoftheSIMULATE-Emodels,theydemonstrateconsistencywiththesystemsusedtomonitorthecore.TheCMSforCycle1ofbothunitsistheGeneralElectricCompanyProcessComputerP1program;for-65 thereloadcyclesofbothunits,theCMSistheANF(formerlyExxonNuclearCompany)POWERPLEXCMS.Figures3.2.43through3.2.46showthecoreaverageaxialpower.distributioncomparisons.Thesefiguresshowgoodagreement,andindicateconsistencybetweentheindependentcoreanalysismethodsforaxialpowerdistributiondetermination.Figures3.2.47through3.2.49shOwthecoreflowdistributioncomparisons.ThesefiguresshowexcellentagreementbetweentheSIMULATE<<EandCMScalculatedbundleflowsforthethreecomparisons.TheeffectsofperipheralandcentralorificingforthecorecombinationsofGESxSandExxonSxS,GESxSandExxon9x9,andallGESxSareaccuratelymodeled.-66-TABLE321MEASUREDCOREOPERATINGPARAMETERSFORSIMULATE-ECOREREACTIVITYCALCtKATIONSHotCoreOperatingConditionCoreThermalPowerTotalCoreFlowCoreInletSubcoolingCorePressureControlRodPatternColdCoreConditionCoreModeratorTemperatureReactorPeriodControlRodPattern67 TABLE3.22SUMMARYOFTHESUSQUEHANNASESBENCEBQLRKINGDATABASEUnitacleNumberofTIPCoarisonsNumberofCoreCriticalsNumberofColdCoreCriticalsU1C13187U1C247U1C32310U2C1329713*U2C2NoneAll8225739*Includesthreelocalcriticals.68-TABLE3.2.3BUSEHANMASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE-"1-CASE12345678~910ll1213141516171819202122232425262728293031323334353637383940CYCLEEXPOSURE(GWD/MTU)0.2210.8361.4901.5961.7361.758l.7991.9082.0702.7062.9062.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.31S4.5064.5175.0615.0705.3475.4105.4635;5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723COREAVERAGEEXPOSURElGWD/WTU)0.2210.8361.4901.5961.7361.7581.7991.9082.0702.7062.9062.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.716.6.723POWER(WTH)143232503280327832913296329132933293328132S932913291329232893292329032933298329032903296328832893290328832813294329132943295328732933289328632883265328632833290PERCENTPOWERl%)439910010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010099100100100TOTALCOREFLOW(%)549810088979899989794989796989896969598979698969799999798999999999998969896999898SUB-COOLINGIBTU/LBH)23.823.723.623.624.324.223.824.024.225.024.224.424.724.224.224.524.624.S24.024.324.524.224.524.423.823.924.324.023.823.723.923.823'24.124.323.924'23.824.124.0DONEPRESSURE(PSIA)9741001100510021001100110011000994100099999999910041002100210011003100010031002100310031004100510051002100210021002100210021001100110001001999999999999CONTROLROODENSITYl%)20.412.613.913.614,014.114.114.114.114.815.015.015,015.915.915.915.915.916.016.016.016.116.116.117.617.618.017.917.917,817.817.817.016.716.416.416.316.315.015.0CALCULATEDCOREK-EFFECTIVE0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580.990610.990800.991000.991160.991380.991630.991760.992540.992420.992190.992670.992940.993500.993580.993670.993620.993620.994300.994370.994540.994630.994600.99460 TABLE3.2.3(CONTINUED)SUSQJEHAWASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT"-1CYCLE=lCASE414R434546474S4950515253545556575859606162636465666768697071727374757677787980CYCLEEXPOSURE(GHD/HTU)6.8937.0007.1557.2357.3657.6387.6707.'8407.8998.0138.1648.3088.3418.4818.51S8.5878.60R8.6588.9688.9929.1169.2879.7969.9099.97910.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02211.083COREAVERAGEEXPOSURE(GHD/HTU)6.8937.0007.1557.2357.3657.6387.6707.84io7.8998.013S.1648.3088.3418.4818.5188.5878.60R8.6588.9688.9929.1169.2879.7969,9099.97910.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02R11.083POWERIWfH)328232853291327632853R733288328432883289330132903293328832863286328432873283328332873285326932793284328832823278328132873285329332943290329132843235320231123060PERCENTPOHER(%)10010010099100991001001001001001001001001001001001001001001001009910010010010010010010010010010010010010098979493TOTALCORE-FLOW(/)96999794969596979694949796969899999998989996999699939496979899939597100100100100100100SUBCOOLING(BTU/LBH)24.423.724.525.124.524.724'24.324.724.924.8R4.224.524.023.523.523.724.424.423.724.323.624.423.725.5R5.024.424.324.123.825.525.023.6R3.623.323.1RR.622.2DONEPRESSURE(PSIA)9989981008100710069939939929929929879919919909909909909911005100599399010021002100210021002100110011002100110021002100110011001999999996993CO)(TROLRODDENSITY.(%)14.614.614.514.714.313.013.012.612.412.0ll.711.411.310.410.410.410.410.28.68.6S.R7.55.44.64.6R.7R.72.42.42.42.31.10.00.00.00.00.00.00.00.0CALCULATEDCOREK-EFFECTIVE0.994720.995160.994710.993960.994900.994100.994110~994940.994900.995020.994840.995370.995360.995440.995500.995610.995530.995500.996140.995910.995690.995520.996280.996500.996650.996960.997080.997120.997070.996950.997000.996850.997240.997320.997520.997460.997450.996750.99713,0.99712 TABLE3.2.3(CONTI)i)ED)SUSQUEHA))NASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=lCASE818283'4858687CYCLEEXPOSURE(Gtl0/Nll111.15311.21711.25911.33211.46411.54211.617COREAVERAGEEXPOSURE(GHD/HTU)ll.15311.21711.25911.33211.46411.54211.617POHERlHHTH)2991294328972834277627142669PERCENTPOHER(%)91898886848281TOTALCOREFLOH(%)100100100999999100SUB-COOLING(BTU/LBN)21.821.621.321.020.820.620.6OOHEPRESSURE(PSIA)9929909889869879921014CONTROLRODOE))SITY)%)0.00.00.00.00.00.00.0CALCULATEDCOREK-EFFECTIVE0.997490'97420.997610'97700'97180.997460.99806 TABLE3.2.3(CONTINJED)SUSQUEHA)4'JASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=RCAGE888990919293949596979899100101102103104105106107108109110ill112113114115116117118119120121122123124125126127CYCLEEXPOSURE(Q1D/HTU)0.2000.2680.3450.4060.5590.7250.7890.9150.9621.R481.3311.4511.5281.6611.8031.8661.9312.0662.2272.3812.4152.500'.5872.642R.7842.9033.0393'973.3233.4393.6053.6883.7273.8773.9024.0144.0754.4034.5134.598COREAVERAGEEXPOSUREtQID/t1lU)9.634'J.70R9.7809.8419.99410.16010.22410.350,10.39810.68410.76710.8S710.96511.0981124io11.30311.36811.50411.66511.81911.85411.93912.02612.08112.22412.34312.4791Z.53812.76412.88013.04713.13013.16913.32013.34513.45713>51813.84713.95714.042POWER(tl4lH)327132863285328932923296329532903294329232913R95329332923293329332943R913R9332913291328832913290328632923299329032943292-3288329232923289329332913285329032913286PERCENTPOWER(%)99100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOWl%)9697100979695949397969498979594979795969596969696969796979999999998999999979698SUB-COOLINGtBTU/LBH)25.0R4.424.2R3.524.124.424.825.3R5.424.324.625.124.024.424.925.224.424.525.024.824.9Z4.624.724.7R4.624.724.524.524.523.823.923.923.724.023.923.823.724.424.824.2DONEPRESSURE(PSIA)9989989969969969961002100R10021001100010001001100110011001100110011001100010001000100010001000100010009991000999999999998100110011001100010001000999CONTROLRODDENSITYl%)4.24.24.34.34.14~14.14.14.14.14.04.17.27.27.27.R7.46.66.66.76.76.86.86.86.86.86.86.87.57.57.37.R7.R7.17.16.8'6.74.22.22'CALCULATEDCOREK-EFFECTIVE0.996540.996880.996500.997250.997260.997270.997330.997320.9972R0.997120.997580.997070.996690.996880.997030.996960.997070.997330.997340.997330.997270.997330.997230.997210.9973R0.997100.997020.996950.996030.996360.996830.996740.996880.996360.996260.996510.996790.996970.997080.99711 TABLE3~2.3lCONTINUED)SUSQUEHA)QASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=2CASE128129130131132133134CYCLEEXPOSURElG)l0/MTU)4.6384.7754.8814.9535.0385.1285.175COREAVERAGEEXPOSURElGll0/HTU)14.08214.22014.32614.39814.48414.57414.621POWERltklTH)3290328632233290320632923285PERCENTPOllERl%)10010098100100100100TOTALCOREFLOWl%)9910010098959899SUB-COOLINGlBTU/LBH)23;923.523.224.224.824.023.7DONEPRESSURElPSIA)1000999996999999999999CONTROLRODDENSITYl/)2.21.91.92.00.20.20.2CALCULATEDCOREK-EFFECTIVE0.997130.997170.997210.99'7260.997180.997220.99716 TABLE3.2.3lCOtlTINUED)SUSqUEHA)t)ASESHOTCRITICAL'OREK-EFFECTIVEDATA"------"--UNIT>>lCYCLE=3CASE135136137138139140141142143144145146147148149150151152153154155156157CYCLEEXPOSURElGHD/HTlJ)0.1780.2860.4230.5430.7710.8670.9250.9671.0841.1801.2901.4101.4421.6021.7221.8671.9672.0632.2282.3342.4312.5672.782COREAVERAGEEXPOSURE~lGHD/tlTU)B.1608.2688.4058.5258.7538.849.8.9078.9499.0669.1629.2729.3929.4249.5849.7049.8499.94910.04510.21010.31610.41310.54910.764PONERlHNTH)32943290328832933292329232933288329132883291329132923292329232933287329332933292328932943295PERCENTPOHERl%)100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOHl%)979898979597999895949694949493939896979696SUB-COOLINGlBTU/LBH)24.424.124.224.424.924.323.824.225.125.424.825.225.325.425.325.525.524.124.624.524.825.224.8DONEPRESSURElPSIA)10021001100010001001100010001000100410031003100310031002100210021001100210011001100110011000CONTROLRODDENSITYl/)7.77.77.77.77.'88.08.48.47.77.78.08.08.08.18.28.38.49.89.89.99.99.910.7CALCULATEDCOREK-EFFECTIVE0.993680.993770.993740.993780.993020.993130.993070.992860.992850.992830.992700.992720.992720.992580.992520.992510.992560.993150.993310.993240.993400.993430.99344 TABLE3.2.3(CONTIQJED)SUSQUEMAttlASESMOTCRITICALCOREK-EFFECTIVEDATAUNIT=2CYCLE=lCASE158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197CYCLEEXPOSURE(GHO/HTU)0.1310.3870.4870.7590.9761.1171.2841.4461.5491.641l.7681.8631.9332,0042.0922.1682.2632.3912.6152.7172.78S2.8682.9062.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.2495.357COREAVERAGEEXPOSURE(GHD/NTlJ)0.1310.3870.4870.7590.9761.1171.2841.4461.5491.6411.7681.8631.9332.0042.0922.1682.2632.3912.6152.7172.7882.8682.9062.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.2495.357POHERJHWTM)12782347234131703282328826543290329732933292329032883293329332923293329332943288328632883289329432953290328632863285328S3284329032913286329132893291329232933288PERCENTPOWER(%)3971719610010081100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOWL%)439898999893729596969796979697969698989797969696959596939494969796959698999997QS-COOLING(BTlJ/LBN)26.818.218.223.223.925.628.425.224.724.624424.624.324.824.324.724.S25.224.224.224.424.524.624.824.725.124.824.625.425.225.224.524424.524.724.724.123.823.624.3DONEPRESSUREtPSIA)947972971999100010069851020100410041004100210021002100210021002100210031002100210021002100210021002999997100010009999989991002100110011001100210011001CONTROLRODDENSITYl%)21.816.816.813.413.613.114.713.213.213.213.413.413.513.513.713.713.913~915.015.015.015.015.015.015.215.015.015.815.S15.815.816.416.416.416.816.817.717.817.817.6CALCULATEDCOREK-EFFECTIVE0.991060.990400.990820.989690.989140.988930.988460.988950.988920.988990.989020.989020.989170.988920.988850.988870.988830.988810.988310.98S760.988920.989050.989130.989240.989350.989120.989700.990040.990120.990530.990990.991540.991850.992030.992240.992450.992800'92890.993000.99328 TABLE3.2.3(CONTINUED)SUSQUEHA)t8LSESHOTCRITICALCOREK-EFFECTIVEDATAUNIT-"2CYCLE1--<<-------CASE198199200201202R03204205206207208209210211212213214215216217218219RRO221222223224RR5226227228229230231232233234235236237CYCLEEXPOSURE(GHD/HTll)5.5235.6165.7265.8325.9356.'0286.1226.2166.3186.4946.5'756.7526.8176.8936.9247.0477.1407.3137.3967.5617.70R7'797.8427.98R8.1008,1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.98610.06710.192COREAVERAGEEXPOSURE(GHD/HTU)5.5235.6165.7265.8325.9356.0286.1226.2166.3186.4946.5756.7526.8176.8936.9247.0477.1407.3137.3967.5617.70R7.7797.8427.9828.1008.1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.98610.06710.192POWER(tSTH)3292329032.923284329132913RSB32863287328832943295329232943292328732873R943293"267132883293328932923293328332873293328832923292329532903289329332853288329032623284PERCENTPOWER(%)1001001001001001001001001001001001001001001001001001001008110010010010010010010010010010010010010010010010010010099100TOTALCOREFLOH(%)979899999899979899989699979898979397997198969898959798959994979996'99699949899100SUB-COOLING(BTU/LBH)R4.324.123.923.824.123.924.3R4.023.924.R24.824.024.324.124.024.225.424.323.8R9.924.124.7R4.124.2R4.924.4R4.124.823.725.123.824.523.824.523.625.124.0R3.523.6DONEPRESSURE(PSIA)1005100R10021002100410041003100410031008100910091001100R1002100110011001100197810051004100410041003100310051002100310031002100310021002100210011001100210011003CONTROLRODDENSITY(%)17.617.617.617.617~117.116.816.816.816.816.416.416.116.116.114.914.414.414.414.713.613.213.212.812.612.61R.712.312.0S.7-8.78.67.47.36'6.14.53.6CALCULATEDCOREK-EFFECTIVE0.993570.9936R0.993760.993940.993710.993830.993930.994120.994070.994000.993850.994400.994160.994360.994290.994330.994010.994480,994560.993310.993960.993850~99I4180.994590.994430.994590.994540.993800.994510.995010.994980.995340~995110.995010.995150.995240.995290.995250.995250.995R7 TABLE3.2+3(CONTI)NEO)SUSQUEHANSESHOTCRITICALCOREK-EFFECTIVEDATAlNIT=RCYCLE=lCASE23823924IO24124224324424524624724S249250251252253254CYCLEEXPORJRE)GHO/t)TU)10.35110.46710.63510.67510.78910.85111.00711.10911.28R11.33311.43611.51711.64211.82411.91511.98412.050COREAVERAGEEXPOSURE)GHD/HTU)10.35110.46710.63510.67510.78910.85111.00711.10911.28211.33311.43611.51711.64211.82411.91511.98412.050POHER)NPH)329332903279328032883285316330853016R9792858R7SS26852575247824042350PERCEt)TPOHER)%)1001001001001001009694929087858278757371TOTALCOREFLOHt%)9710097939799100100100100100100100100100100100SUB-COOLINGtBTlJ/LBH)24.323.524.225.4R4~223.722.822.322.32R.O21.421.020.419.819.118.718.3OOt)EPRESSURE(PSIA)100410031002100210031002998995100710071006100610051001998996994CONTROLROODENSITYt%)R.92.7R.R0.00.00.00.00.01.71.71.71.71.73.43.43.434CALCULATEDCOREK-EFFECTIVE0.995370.995430.996010.996130.996010.995810.996070.99622-.0.995550.995530+996250.996530.996710.996210.996670.997070.99706 TABLE3.2.3)CONTINUED)SUSQUEHARSLSESHOTCRITICALCOREK-EFFECTIDATA---l5IT=2CYCLE=2CASE255256257CYCLEEXPOSURElGND/HTU)0.3100.4300.583COREAVERAGEEXPOSURElGHO/))TU)8.0038'1238.276POHERltOITN)329032923294PERCENTPO)lERUZI100100100TOTALCOREFLOH)%)969696SUBCOOLINGlBTU/LB)l)24.424.4DONEPRESSURE[PSZAI100010001000CONTROLRODDENSITYl/)8.38.38.3CALCULATEDCOREK-EFFECTIVE0.995630.995580.99525 TABLE3.2.4SUSQUEHANNASESTARGETVSSIMULATE-ECALCULATEDCRITICALCOREK-EFFECTIVESTATISTICSNumberofObservationsMeanDifference*StandardDeviationUjclU2C1U1C2U2C2Ulc3All879747232570.00035-0.00026-0.000200.001860.000150.000020.000590.000500.000460.000230.000320.00061*MeanDifferenceistheaveragedifferenceoftheSIMULATE-EcalculatedK-effectiveminusthetargetK-effective.-79-TABLE325SUSQUEHANNASESUNIT2CYCLE2COREK-EFFECTIVESENSITIVITYTOMEASUREDCOREOPERATINGDATAUNCERTAINTIESInitialConditionsCoreThermalPowerTotalCoreFlowCoreInletSubcoolingPressure3293MW100x10ibm/hr624Btu/ibm1000psiaMeasuredParameterCoreThermalPowerTotalCoreFlowCoreInletSubcoolingPressureMeasurementStandardDeviation*(*)1.82.55.20.5CoreK-effectiveSensitivity(ax)0.00097P0.00098f0.000610.00006presTotal4b,+E+pfDHS+pres1/20.00151<K*Source:"GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,CorrelationandDesignApplication,"NED0-10958-A,January,1977.80-TABLE326SUSQUEHANNASESC2KCULATEDCOLDXENON-FREECRITICALCOREK-EI."FECTIVESUNIT1CYCLE1CoreAverageExposure.Case(GWD/MTU)CycleExposure(Gm/mo)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-Effective0.0000.0000.0000.0000.0000.9581.4905.1105.1850.0000.0000.0000.0000.0000.9581.4905.1105.185747474737472737474101.8105.9122.5141.0120.0200.0186.0182.5164.01.000451.000270.999140.999851.000400.996980.996740.998770.99821UNIT1CYCLE2CaseCoreAverageExposure(GWD/NTU)CycleExposure(GND/NTU)ControlRodDensity(~)CoreTemperature(DEGF)CalculatedCoreK-effective10ll1213149.4349.4349.4349.4349.4340.0000.0000.0000.0000.0007371716868157.1158.1180.4205.8211.11.005121.004981.OO4661.003591.00341UNIT1CYCLE3-CoreAverageExposureCase(GWD/MTU)CycleExposure(GWD/mv)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-effective151617181920212223247.9827.9827.9827.9827.9827.9827.9828.6128.61210.6010.0000.0000.0000.0000.0000.0000.0000.6300.6302.6197575757474747474747481174.2175.8190.3189.9195.4202.2206.2170.5156.3209.41.001101.001121.000671.000861.000671.000461.000291.001281.001710.99950 TABLE:3.2.6(continued)SUSQUEHANNASESCALCULATEDCOLDXENON-PREECRITICALCOREK-EPI.ECTIVESUNIT2CYCLE1CoreAverage.ExposureCase(GWD/RZtJ)CycleExposure(GWO/mV)ControlRodDensity(*)CoreTemperatures(DEGF)CalculatedCoreK-effective2526*27*28*2930313233343536370.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.2080.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.20874989898747574737473737458111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.00.998270.997060.996960.998350.997560.995690.998060.996390.997460.996880.994261.002721.00429UNIT2CYCLE2CaseCoreAverageExposure(cwo/mu)CycleExposure(cd/mo)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-effective38397.6937.6930.0000.0007575133.0139.51.000841.00083*LocalCriticals-82-TABLE3.27SUSUEHANNASESCOLDMINUSHOTCRITICALCOREK-EFFECTIVEUNIT1CYCLE1CoreAverageExposure(CWO/MTU)CycleExposure(GWD/MTU)CoreTemperature(DEGF)KK.coldhotcalccalcKcoldhotcalctarget0.0000.0000.0000.0000.0000.9581.4905.1105.1850.0000.0000.0000.0000.0000.9581.4905.1105.185101.8105.9120.0122.5141.0200.0186.0182.5164.00.008020.007840.007970.006710.007420.006560.007410.006120.005470.007650.007470.007600.006340.007050.007690.007960.006310.00567UlC1Average:U1C1StandardDeviation:0.007060.000900.007080.00079UNIT1CYCLE2CoreAverageExposure(GWD/MTU)CycleExposure(CWO/MTU)CoreTemperature(DEGF)KK-Kcoldhotcoldhotcalccalccalctarget9.4349.4349.4349.4349.4340.0000.0000.0000.0000.000157.1158.1180.4205.8211.10.008110.007970.007650.006580.006400.007860.007720.007400.006330.00615U1C2Average:U1C2StandardDeviation:0.007340.000800.007100.00080UNIT1CYCLE3CoreAverageExposure(CWO/MTU)CycleExposure(MWO/MTU)CoreTemperature(DEGF)KcoldhotcalccalcKKcoldhotcalctarget7.9827.9827.9827.9827.9827.9827.9828.6128.61210.6010.0000.0000.0000.0000.0000.0000.0000.6300.6302.619174.2175.8189.9190.3195.4202.2206.2156.3170.5209.40.006720.006740.006480.006290.006290.006080.005910.008430.008000.006100.006650.006670.006410.006220.006220.006010.005840.009610.009180.00766U1C3Average:UlC3StandardDeviation:0.006700.000840.007050.00134-83 TABLE3.2.7(continued)SUSUEKLNNASESCOLDMINUSHOTCRITICALCOREK-EFFECTIVEUNIT2CYCLE1CoreAverageExposure(MWD/MTU)CycleExposure(MWD/MTU)CoreTemperature(DEGF)Kcoldhot.calccalcKcoldhotcalctarget0.0000.000*0.000*0.000*0.0000.0000.1580.8470.9760.9762.3918.39011.2080.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.208111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.00.006590.005380.005280.006670.005880.004010.006920.006870.008120.007540.005390.008020.008190.005470.004260.004160.005550.004760.002890.006150.006890.008200.007620.005110.007440.00782U2C1Average:U2C1StandardDeviation:0.006530.001290.005870.00164UNIT2CYCLE2CoreAverageExposure(MWD/MTU)CycleExposure(MWD/MTU)CoreTemperature(DEGF)K1CKcoldhotcold'hotcalccalccalctarget7.6937.9630.0000.000133.0139.50.004720;004710.005480.00547U2C2Average:,U2C2Standard,Deviation:0.004720.000010.005470.00001OverallAverage:OverallStandardDeviation:0.006710.001110.006590.00137*LocalCriticals-84-32.8SUSUKQLNNASESUNIT1CYCLE1TIPRESPONSECOMPARISONSDate12/16/8202/07/8304/04/8306/09/8308/10/8308/19/8309/13/8310/03/8310/18/8311/01/8312/01/8304/03/8404/12/8404/26/8405/24/8405/31/8406/08/8406/25/8407/24/8408/02/8408/16/8408/24/8408/30/8409/04/8411/30/8412/13/8412/16/8412/21/84**01/10/85**02/01/85**02/08/85**CycleExposure(CWO/MTU)0.2210.8361.4901.7992.7062.9063.3673.8364.1934.5175.0705.4105.6145.9186.5636.7166.8937.2357.6387.8408.1648.3418.4818.60210.28810.58910.65310.77011.08311.46411.617ControlRodSequenceB2A2B2B2A1A1BlB1B1B1A2A2A2B2B2AlA1AlBlBlB1A2A2A2B2B2AROAROAROAROARO5.094.035.044.975.125.215.625.465.625.605.936.126.145.725.805.825.385.004.754.614.534.534.574.524.734.804.684.965.936.076.032.604.264.264.724.965.164.895.024.604.734.844.834.454.564.724.80NodalNodalTIPRMSAsymmetry(~)(~)RadialRMS(~)2.781.581.701.791.621.631.711.741.911.911.811.961.851.981.971.891.881.941.851.871.692.132.142.221.911.701.671.721.731.621.76RadialTIPAsymmetry(*)1.181.581.581.601.741.631.471.751.631.601.771.931.571.621.641.74*ReactorconditionsforthisTIPset:60%ofratedflow40%ofratedpower**Endofcyclepowercoastdowndata85-TABLE329SUUEEGLNNASES.UNIT1CYCLE2TIPRESPONSECOMPARISONSDate06/24/8507/03/8507/19/8508/08/8508/20/8509/06/8509/12/8509/27/8510/04/8510/23/8511/15/8512/12/8501/14/86CycleExposure(CWO/MTU)0.2000.406.0.7891.2481.5281.9312.0662.4152.5873.0393.3233.8774.638ControlRod~eeenceAlAlAlB1B1BlA2A2A2A2B2AlA1NodalRMS(e14.794.894.765.785.175.976.425.585.484.555.044.754.99NodalTIPAsymmetry(*)3.643.673.573.753.803.744.37RadialRMS(e)2.522.723.282.862.702.752.572.732.722.703.093.022.64RadialTIPAsymmetxy(4)2.242.402.402.552.562.512.4986-TABLE3.210SUSUEMHNAUNITSES1CYCLE3TIPRESPONSECOMPARISONSDate's/os/8607/03/8607/10/8608/20/8608/27/8609/10/86CycleExposure(GWD/MTU)0.1780.9251.0842.0632.2282.567ContxolRod~eeenceA1AlB1A2A2A2NodalRMS(a)5.166.065.688.128.719.03NodalTIPAsymmetxy(~)3.414.343.583.846.28RadialRMS(*)2.744.142.802.822.893.75RadialTIPAsymmetxy(~)2.473.582.552.695.1387-SUVEZGLNNASESUNIT2CYCLE1TIPRESPONSECOMPARISONSDate07/23/8409/12/8410/08/8401/16/8502/07/8503/07/8503/20/8504/04/8504/15/8505/15/8506/10/8506/20/8508/01/8508/12/8508/20/8509/09/8510/01/8510/18/8510/28/8511/19/8512/17/8501/30/8602/19/8603/06/8603/12/8603/25/8604/04/8604/29/8605/15/8606/23/8607/11/8608/08/86CycleExposure(GWO/MTU)0.1310.3870.7591.1171.4462.0922.3912.6152.8683.3923.8824.1144.8695.0665.2495.7266.2166.5756.8177.3137.7798.5969.0539.4129.5399.83510.06710.63511.007*11.282*11.642*12.050*ControlRodSequenceA2A2A2A2B2B2B2AlAlAlB1BlA2A2A2A2B2B2'2AlBlA2A2A2B2B2B2B2AROB2B2B2NodalRMS(a)7.055.374.734.765.515.435.585.655.755.935.795.796.617.837.807.707.815.845.517.554.924.945.756.995.125.565.926.027.216.566.817.81NodalTIPAsymmetry(*)5.245.095.135.715.796.357.306.566.187.788.539.046.307.839.585.78RadialRMS(~)2.822.582.302.202.582.642.682.312.582.752.442.602.762.593.823.995.183.042.685.963.082.994.566.352.372.552.682.362.462.382.453.44RadialTIPAsymmetry(~)1.342.232.182.342.512.872.882.612.233.584.035.962.865.126.762.91*Endofcyclepowercoastdowndata.-88 TABLE3.2.12SUMMARYOFSUUEHANNASESTIPRESPONSECOMPARISONSUnitacle,NumberofTIPSetsAverageNodalRMS(*)AverageRadial.RMS(~)Ulcl315.241.86U1C2135.242.79U1C37.133.19U2C1326.173.07OverallAverage825.742.5889 TABLE3213SUMMARYOPSUSUEHANNASESTIPRESPONSEASYMMETRIESUnitacleNumberofTIPsetsAverageAverageNodalRadialAsymmetryAsymmetry(~)(~)Ulcl164.591.63U1C23.792.45U1C34.293.28U2C1166.763.28OverallAverage445.222.5590-1.01FIGURE3.2.ISIMULATE-EHOTANDCOLDCRITICALCOREK-EFFECTIVESVSCOREAVERAGEEXPOSURE1.00-I-O0:9SIlCOO0.98--0;""':mi..'i7U2C2HOTU1C3HOTU1C1COLDU2C1COLDU1C2COLD"U2C2COLD+U1C3COLDk:vj+,~o::..:LegendoU1C1HOTcIU2C1HOTU1C2HOT01234567S91011.12131415COBEAVERAGEEXPOSURE(GWD/MTU) 1.01FIGURE3.2.2SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSCORETHERMALPOWER1.00LLIII-OlLIU0.99-IUJLL&#x17d;0O0.98..~.........Legend~--.".-0U1C1""""cIU2C1U1C2U2C2U1C300.975060667076808690CORETHERMALPOWER(%OFRATED)100106 1.01-FIGURE3.2.3SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSTOTALGOREFLOW1000I-O0.99ICC0O0Legend...':,.......IP00;--"0"--:--"-"-.-0U1C10.98..""""'0U2C1U1C2""vU2C2oU1C30.97-4050607080TOTALCOREFLOW(%OFRATED)90100 1.01FIGURE3.2.4SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSCOREINLETSUBCOOLING1.00LUI-C3UJ099-IhCCC0O0.98-.....Legend,--.-"oUlC10U2C1U1C2U2C2oU1C3oo.:.Booooo:.ooC3.,O...CI.....:.80.9715161718192021222324252627.282930COREINLETSUBCOOLING(BTU/LBM) 1.01FIGURE3.2.5SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSDOMEPRESSURE1.00-I-OLIJ0.99IUJCCOC30.98-.......LegendI~-"-oU1C1"-.aU2C1U1C2U2C20U1C3od'oze,"jjjo"~I"---.02..:...;.D:00.97940950960970.9809901000DOMEPRESSURE{PSIA)101010201030 1.01FIGURE3.2.6SIMULATE-EHOTCRITICALCOREK-EFFECTIYEVSCRITICALCONTROLRODDENSITY1.00LLI0I-OIJJ0.99-IIJJCC0O0.98-~C1~I~~aPen,:j4k~:,@'P,0I?Ip:gg:QjjPQ::c5:cD~cl"HD'lf."--gg'..Q...........,........~.........:O:::I.::.:.:.O...,.;:.:....Legend::...-....::....:...:,.....,:...:s~--:-""oUlC1""i"""0U2C1UlC2U2C2oU1C3200.97-024681012141618CRITICALCONTROLRODDENSITY(%)hag~aeeRl22 FIGURE3.2.7TARGETANDSIMULATE-ECALCULATEDHOTCRITICALCOREK-EFFECTIVESVSCOREAVERAGEEXPOSURE1.01-1.00-.--'---'-.-.:.----'---.'-U1C2TARGET:""'---.'-.--.'"-'"-.:.LIJI-O0.9S-IUJCC0.O0U1C1andU2C1TARGET'.-.-.:---:----.--:"--'-.:U2C2TARGET:."-.:-----:.-.--'.-"--:r~U1C3TARGETI\rLegend..,:.....~~0.C~--oU1C10U2C1U1C2U2C2oU1C30.97.03456789101112131415COREAVERAGEEXPOSURE(GWD/MTU)
FJGURE3.2.8)Q)SUSQUEHANNASESUNITS1AND2CORETIPLOCATIONS5957555351494745434139373533312927252321+++++++++++++++++++++++++++++++++++++LINEOFTIPSYMMETRY+++444464850525456586004220222426283032343638LocationForIndividualTIPResponseComparisons00020406081012141618XControlRodLocation~TraversingIn-coreProbeLocation FIGURE3.2.9SUSQUEHANNASESRELATIVENODALRMSOFTIPRESPONSECOMPARISONS10FIGURE3.2.9aV)lZCl0LLI0l~UJCL"CLI-86420mQ.pQQQg0~".'-"-~-------'.-"--O-"-pQQ0O.0.g,:Q.00::~:0~+pQp~".O-b.'ILegend0U1C1i...b,U1C2oU1C3QU2C102468101214COREAVERAGEEXPOSURE(GWD/MTU)1610FIGURE3.2.9bV)CL"D0ZI~LLICCCLI-86420QLegend0U1C1U1C2UlC3QU2C1>0D(4!Qw~asii!wo-i0I0.20.40.6FRACTIONOFCYCLELENGTH99-0.8QQ'GC"..".""""Cl'"'""b;"""0OOQ.0.:b,QOQQO00QQO~Q00'00~~"--"O.>0'4OwaoLJQ 180FIGURE3.2.10SUSQUEHANNASESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON1.490GWD/MTUCYCLEEXPOSURE180140120I-zD100Illzz80CoQ.80'""""o'"<>"o"g++g"+q()Q00+040200I0123466789101112131415161718192021222324COREAXIALNOOE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-100-FIGURE3.2.11SUSQUEHANNASESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS1.490GWD/MTUCYCLEEXPOSURE615957.5553514.947450.53-1.581.50.73-0.071.56-0.53-2.142.491.15II++43+41ss+37+++333.26+++29+++253.89+++.2119I,II171.7715II1311+97lI.IIIIII000204060810120.8923-0.550.8-0.20-1.65-1.91-0.1516++-0.241821416-0.24-2.46-1.63-0.13-3.470I-1.120.33-0.57IIII234363840424III2628303I0222419I1.63II-0.81-0.810.032.0044648505254565860Diff=[(Calc-Mess)iCoreAvgTIPResponse]X100%101-FIGURE3.2.12SUSQUEHANNASESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS1.490GWD/MTUCYCLEEXPOSUREMONITORLOCAllOH80>30MONITORLOCAllOH4b>bj140140leelee<<0C1404~ee"0I00~~$ILl-.o--->>---4001$0Xls140~4soC40000obbob0I000Tt'44044I~$44014010<<4$1~I41$10ITI414$$$14444$4CORP.AXIALHOORtNCA$VNSOhtSects<<0$OALOVLATCOht$$44ONSS~ooNTNVLsostosmo<<I44~~~'I~~10111414IiI~I~ITIi14$4$14444$4CORKAXIALHODRt<<$$4UNCOTttNseto<<4$0OAIOUMTCDhtNsstoNSS~co<<TNVL$00tosmoNMONITORLOCATIONe0,00MONITORLOCATOH32.801441$0leeIee140>40is~00000~804IITOItto01401$02:~0a0V060IIC.004044I44>>~I4$444T4~14111414141$1411141$$4$14$44$4CORKAXIALNOOKtNCASVIICOTltIlsstONssoOALOVLATCOTllIICsto<<0CNoo<<TNOLAootosmo<<00\~$4~~1~~1441141444>4I~ITILI~4441144414CORKAXIALHOORtNcACUIIcohtscstoNecoOALOVLATCDTltSCetONSS~OO<<hloLsootoshIO<<-102 180FIGURE3.2.13SUSQUEHANNASESUNIT1'CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON6.918GWD/MTUCYCLE'XPOSURE180140120I-D100IIIZZ80V)CL60+050Q.0..00+Q:""0"+0400200l0123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-103 FIGURE3.2.14SUSQUEHANNASESUNITtCYCLE1RADIALTIPRESPONSECOMPARISONS5.918GWD/MTUCYCLEEXPOSURE61595755S351494745434139370.07++++-2.75.232.5-0.93-0.70+++1.22-0.76++++-5.29++++0.60.51.49+4035333129I2.379I2.2-0.010.50272523'7iaI191715132.09I4032.4-1.91-2.67++++-0.2236-0.86.14I9-I78.17-0.76-3.26951-IIII000204060810121416182Q2224262830323436384042444648505254565860Diff=[(Calc-Meas}/CoreAvgTIPResponsejX100%-104-FIGURE3.2.15SUSQUEHANNASESUNIT1CYCLE1INDIYIDUALTIPRESPONSECOMPARISONS5.9'I8GWD/MTUCYCLEEXPOSUREMONITORLOCATIONdIL$$MONITORLOCATION4$,$$ISSISSllsfod,IIS--- 45lg100C000~IttsLrlcLtsNl??00-ILI=seTII004I~0~0tsts~t~l~7~lt11llllltIl1017IS10lellltllltCOfNNAsvasoll~aespoNss0OAIovMTtoTI~aeepoaee~CONTNOLaoepoeITION0~t~4~~7~~1011Il10ltllIS17I~10tstlttllltCOReAXIALNooefNNAsvasoTlpNsspoNse0OALovMTSOllpasepoase~OONTNOLaooposITIONMOHITOALOCATIOH00,$$MONITORLOCATIOH$$,$$ItsltsIseNe~eefseset.h..e400eo0t0e~dvsIteLrlls~00..L0f0]f~04"tsIIIl~t0~7~~10111ll~%101~171~IltetlltllltCOIIeAXIAI.NooeIISAsvaloTI~aeepoaseoCALOVLATSOTIPNSSPONee~ooNTNOLaoopoelsoa0It0~S~'I~~10111tllltll'I~17coeeAxIALNooefvKAsvalolipalspoase0OALOOLATSOTlpasspoase~ooataoLaooposITIVNII70tsIlttllll105-180g~lFlGURE3.2.16SUSQUEHANNASESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON11.617GWD/MTUCYCLEEXPOSURE1BQ140120I-zD100ILl"Z80COQ.eo400+0~+00+00000':000+200012346B789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-106-FIGURE3.2.'17SUSQUEHANNASESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS11.617GWD/MTUCYCLEEXPOSUREI615957555351494743413937-0.4786-1.89-2.182.0-2.880.212.00.840.014.3-2.011.66++++++++-0.363533312920601.82-0,883.641.81++++-0.102725232119.1715130.5-0.39-1.08-0.24.703.4-1.08-2.45-0.80-0.080.29753Y1'2.5745-0.8828-0I00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponsejX100%107-flGURE3.2.18SUSQUEHANNASESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS18.617GWD/MTUCYCLEEXPOSUREMOIKTORLOCATIONKK,KSMONITORLOCATIONCC,SKININrgNlIleee044+o~-K--0IteZIgINjle~w0r0orI~~~~III~I~~14IIISII11le14lfIlletelltttttlCOREAXIALNOOKNIARURROTlo4Reoooeo0OAIOVLAIROIIRRa40aeo~CORIROLROORoemON~I1~~I~I4~1411It1411'N14lfI~IltetltltlIICOILKAXIALNODE4NRARVRIOTIPRSSIONRR0OALOVLATCOTIRRterooeo~coofRVL100toemoNMOIKTORLOCATION40,8KNeII~11~1Nog40J4"re0+0o0lieee~I0otor'-'0'L+000+Z~I4000l.0te~~II~~~I~~1411IIISItlllelfI~lel4llttttltCOREAXIALNOOKrNCASURC0TIRRCSRORSR0OALOVLAfCoTIRRRRSORSR~001TROL100eoemoNI1I~~III~le11111IIItellIfI~1SNIIISIIIICORKAXIALNOOK+NCARURCOTIRRCteoNRR0OALOIRATCOTIRRNtoRSR~CONTROL100ROQllON-108-9OFIGURE3.2.19SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON0.200GWD/MTUCYCLEEXPOSURE,8070BoI-zDeoLQzz40COCL3Oo~+i6~o:..............................+...Q...i........""+:""""'"""':."""""'"""'.""@'"O')0~~~~~~~~~~~~Q~~~~201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-109-FIGURE3.2.20SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS0.200GWD/MTUCYCIEEXPOSURE615957555351494745-1.86-2.6505-2.514.50-2.27-3.40t+++.2043413937I3+-033-1;65-0.8227353331292.88-0.3090582.6.926.5II62725232120542.4I-3.31154.964.49I191715131197II3-0.1341-2.743.7970.4+3-0.7706-0.20I!IIYiI00020<06081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponse]X100%-110-FIGURE3.2.21SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS0.200GWD/MTUCYCLEEXPOSUREI$OIETOALOCATIOII45,$$$IONTOALOCATIOK4'ss$o0+.+4OO~0XssNXXQcs4O~$00~$~$0$ogS~~~TSS'N11lsNN'NNITI~ISSSSlTSSSSICOREAXIALIIOOK+NSASSSKOTltSSSSTNNS0CAIOVLAIKSlitAsstONSO~CONTNOLNOOSOSITlDN0IS~~~T~NIIISNNNNITNI~SsslssssslCORKAXIALNOOK+NSASVASOTltSlstONSS00LCVLATTOlitASStONSC0CONTNOL000tOSITNNIKONITORLOCAtlONOO,$$LIOIIIIORLOCAllOII$$,$$~0SSl~0'0a~.~s+gssXss+)~)4-k~ 0-$~rr-p---00QTS~~SS~~0T~~ISIINNNNNITISISSSSISSSSSICOREAXIALIIOOE0ICKASVAKOTltNKStOINKoCALOVIAIKSlitNsstoNSK~OONTNOLSOOSOSITlCWSISS~~'T~~N~IISISNNNlllsllSOSlSSSlSICOIIKAZALIIOOE0llKASVAKOTNNKStONSKOOAIOVLATKOTltasstONSC~OONTNOL000tONllON 9OFIGURE3.2.22SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON2.587GWD/MTUCYCLEEXPOSUREBo70eoI-z60LLIzzV+4oCO0soQFQCiQ20100012S4667891011121314'I6161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSEQCALCULATEDTIPRESPONSE-112-FIGURE3.2.23595755535149474543413937353331292725-23211917151311975-31SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS2.687GWD/MTUCYCLEEXPOSURE-3.57-1.225.71-1.33I3J-2.611.5I0.5.750.60.092-2.1.17-1.05-0.332.320.8-2.39-3.135.4-2.400.8++++-1.8548-002-2.015.9052.6734.38-0.16-1.79-1.41+-3.15-6.860.7+i!00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Meas)/CoreAvgTIPResponse]X100%113 FIGURE3.2.24SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS2.687GWD]MTUCYCLEEXPOSUR~~IONITOIILOCATIONaL$$MONITORLOCATION4$,$$gaeeeO.Cae000Igse0$o+f0oool4..$.o.L..I'TTIoIIIII~s~~~r0I~11ls>>>>>>>>lr>>>>tetlstaaelCORKAICALNOOK+vsaavasot>>saeaooee4oalNAAtsotiesseaoees~oooteolsooroeNNN~1s~~~~re~>>ntsIe1IIaIetlta>>sastssaeaICORKAXQLNOOK4NeaeoeeotieeteJONet0oslolsstsottoeaaaoees~ooNININ.NooroeltNN$IONITORLOCATION$$.$$eeteQu~ee0seX$I~+0+0lr4~s'Z~40d~Ite~~sr~lail>>la>>>>>>lt>>leaetlssseslCOIIKAICALNOOK+vsAsvstotiesseeoos$oOAIOIAAISOtieSteeooas~ooeteoLaooIoeotoN~Ita~~r~~>>11ts>>11IaIelrIaCOR!AXIALNOOK+vtssvssoliellssroeesoOAIOVLSttotteItaaroees~OoetaoLNooeoalttoN-114-90FIGURE3.2.25SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON4.638GWD/MTUCYCLEEXPOSURE8070g)BOI-zD50illzz40CoQ.~30000q)0C04~b$+++0+201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE115-FIGURE3.2.26SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS4.638GWD/MTUCYCLEEXPOSURE61I595755535149474543413937-2.30++++-3.56.73-2.442.3-2.365.363053-4.00-2.443.68-1.59-1.230;51353331290.832028-1.01-0.86-2.30++++6.5J627252321I~-2.94.73-2.05-0.212.24++++49171513-0.460.8-0.360.30,320.4I5-2.10322.10-4.5600020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Meas)/CoreAvgTIPResponse]X100%-116-FIGURE3.2.27SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS4.638,GWD/MTUCYCLEEXPOSUREMONITORLOCATIONdd,ddMONITORLOCAllONSd,dd~0~0ssggss~SS0OfO'+000004000000SL00~0Qss~0Sogf~~~JI0stsItSSS0T~ls11TSlt11ISltIfISltSSSISSSSSloNSASOSSOTI~PNSPONSS0OALOOLATSOTIPNSSPONSS~CONTSOLNONPOSITION0\~~S~~Tt01011ltIt11lt10lfltltttSlStSSSICOREAXIALNOOK+NSASONSOTIPNSSPONSS0OALOSIAftoTIPNSSPONSS~CONTSOL100POSITIONMONITORLOCATIONsd,ddMONITORLOCATIONdd,dd~S~S~STs5LSgS~0+PLoOOOodogoot0.t.00....0~0~~ssf(-0.,0.0o010JIIIS0001~~ltII.ISISlllsl~flltlttttlSSSSSICORKAXIALHOOKPNSASOSSOTIPIISSPONSSoOuauuSSOTIPNSSPONSS~OONTSOL%00POSNION0I0t~S~T0~ltIIflitllI~ltlfI~I~SttlltlttlCORKAXIALHOOK0ISASSSSOllPSSSPONSSoOALOOIATSOTIPNSSPONSS~OONTNOLSOOPotlflON117 90FIGURE3.2.28SUSQUEHANNASESUNIT1CYCLE3AVERAGEAXIALTIPRESPONSECOMPARISON.0.178GWD/MTUCYCLEEXPOSURE8070BOI-zD50.LLIzz40M030+0"+""00I020100012345678910'1112131415181718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-118-FIGURE3.2.29SUSQUEHANNASESUNIT,1CYCLE3RADIALTIPRESPONSECOMPARISONS0.178GWD/MTUCYCLEEXPOSURE615957555351494745434139373533312927252321-1917151311975-1.48-2.68I010.620.54-2.081.55283.860-0.14-2.40-0.77-0.32-4.95-1.62-2.375.790.64.986.42.225-0.830.383.38363.4992,8-3.25-3.09-3.72290.08++++2.0-0.51II00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Measj/CoreAvgTIPResponse]X100%119-FIGURE3.2.30SUSQUEHANNASESUNIT1CYCLE3INDIVIDUALTIPRESPONSECOMPARISONS0.178GWD/MTUCYCL'EEXPOSUREMONITORLOCAllONdlLddMONITORLOCATIONaa,dd~00000CZtg00IN,4T0Lo+444pt404QI~-~0Se00$00~00LI.~0I0~0~0~I~ttts'I~lt1010tt10100001Ases04CORSAIDALNODS4vaA00000tti000000004OAAOUIAtaott~Naasovea~OovtaOA000000ttvvtI00~0~7~letttalettteteCORS.AXIALNODS+vsA00000tta000000004OAIOUAAtaatto00000000~CoataoL000000IIIONttI~10teSl1~00SIMONITORLOCATION~$00~04...0.4t44o00)te404doo0+"-4"4-d-9'-'4To4ja500O+tele044~~I~I000~~7~~I~11ts10ItIa10ItI~I~testassectCORSAXIALNODS4vaAaaaaaTlaassaovaaoOAIOUIAtaott0aaaroaea~OONINOL000eosttvvlI0~00~0~~letttatsvteteIt10100001tltltlCORSAXIALNODS4VSASUaaalatIICS00000oOAIOUIAtaaItsItaaaoaaa~OONtllOl000000ttION120-9OFIGURE3.2.31SUSQUEHANNASESUNIT1CYCLE3AVERAGEAXIALTIPRESPONSECOMPARISON2.228GWD/MTUCYCLEEXPOSUREeo70BoI-zD50LUzz40Co03O~.:00+0"00+oqooo0+++0'0201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE121-FIGURE3.2.32SUSQUEHANNASESUNIT1CYCLE3RADIALTIPRESPONSECOMPARISONS2.228GWD/MTUCYCLEEXPOSURES9S755I535149474543413937-0.94-2.970.84-3.190.85-0541.586.613.052-1.242.53.23.89-0.100.83353331291.8-2:14-0.064.4-1.022725232119171S1311975310.611.63.3-5.43.44-2.87-2.78-4.290.6-3.9856-1.19-6.42-3.651.99030002040608'1012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponse]X100'/o-122-FIGURE3.2.33SUSQUEHANNASESUNIT1CYCLE3INDIVIDUALTIPRESPONSECOMPARISONS2.228GWD/MTUCYCLEEXPOSUREMONITORLOCATIONSS.SSMONITORLOCATION44SSeeII1eeIITe1j+S0~4oKlTeI-a,II>>VlII5>>'i--r0t0OeeX$>>4g004T440r-"'-24-$>>II1-r--f00Ie4II7IIILIIIIIt~1~~L4~T~4NI11leI~If1414If'I~Ie24N22eeefCORKAXIALNODSveAevheolit0eetohee0CAICOLATeolitNeetoheo~CONlNOL400t041TtON14~~4~2~4Ie1114I~>>leleITleteN212224NCOllhAXIALNOOC+NNAOVNeelltheetONeh0OALOVLATeeTltheetoheh~CONTNOLNOOtOemONMONITORLOCATIONOO,SSMONIIORLOCATIONSWISS~I~~4Te~40C+00000oo400eeQ>>~eeooS~0oCooe0I4Ie+le~144~~~T~~1011IeIe12I~I~\fIe1424111222efCOhKAXIALNODS~I~111$Ie12Ie'I~Il12I~2421222$$414~~44T~COh8AXIALNO1IITAOVheOTI~heetOI>>e0CALOVLATNOlitheetoheh0ooNTNCL100toemoN+tfeAOVNTOlttheetoheaoOALCVLAT!OTltheetoheh~OOKfhOLNOOtoeITION-123 180FIGURE3.2.34SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON0.387GWO/MTVCYCLEEXPOSURE180140co120I-R100'llKX80COL,ea+..o...4......~...............:,....e.+000~+200012345e788101112131415161718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-124 FIGURE3.2.36SUSQUEHANNASESUNIT2CYCLE1RADIALTIPRESPONSECOMPARISONS0.387GWD/MTUCYCLEEXPOSURE615957555351494745434139373533312927252321-1.060.64.5290.094.760.5-0.55-0.403.470.88-0.89-1.333.60.41-5.24-1.98-5.221.231.89-1.56-1.800.71.28-2.47-2.082.20.6291I4.319-1715132022-0.07-0.76-3.68-0~052.9-2.93119753110-009-1.8513-3.2100020406081012141618202224262830323436384042444648505254565860XDiff=[(Calo-Mess)/CoreAvgTIPResponse]X100%125-IFIGURE3.2.36SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS0.387GWD/MTU.CYCLEEXPOSUREMONITORLOCATTON4OPSI~I4~ITT000te01t~~~~10~Te11TeNTeNlelTI~NtetlteteeeCOREAXIALNODE+vtAellteeTN0teoooeeoDAIOOIATteTNatetooea~covleoctootoelTTDOII!~1t~~~010~lt11NNNleleTTNl~tetlttleelCOREAXIALNODE4TNAevoteTNttetovee0OAIOIAATCDTVetetovec~oovleoeeootoeITlo4IMONITORLOCAllON40,5$MONITORLOCAllON02,$3eeJJ.t04&#x17d;Nt]~ee++aJo40+0III~~te0~e1~0NllltltllleNlTIANtetlttteelCOREAXIAI.NODEtVtAeetteTlt1tttOINe0OALDVCATKDMtttKHNO~OOVTDCN.DODtetITloee1te~~~1~~IeCORE+NEAOVACOTleteetOINCoOAIOVCATXD~AettOTNC~oovTDDLtootoeITlov!I11IeltN14le1111Itte11ttteelAXIALNODE-126-180FIGURE3.2.37SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON5.249GWD/MTUCYCLEEXPOSURE1eo140120I-z100LLIz80CoCLeo0+00Q++00+g}Q40200012346e789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE127 FIGURE3.2.38SUSQUEHANNASESUNIT2CYCLE'fRADIALTIPRESPONSECOMPARfSONS5.24SGWD/MTUCYCLEEXPOSURE615957-555351494745-4.77ii-2.630.72.685.031.22-0.95-0.923.39.7343413937--3.29+0.978.3-2.87-0.29-2.33+-30735333129++++I1.2I88~35-0.170.8-0.65.17272523-3.716.3243-2.98++++0.82191715I1311753vI0020.27I5.94.960810121416-0.18-1.78I1.22.8-0.67-6.45-2.98-4.53IIII182022242628303234363840424446485052-4.8754565860Diff=[(Calc-Mess)/CoreAvgTlPResponse]X100%-128-FIGURE3.2;39SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS6.249GWD/MTUCYCLEEXPOSUREMONITORLOCAllON4IL$$MOIQTQRLOCAllON4$,$$100NSNSat~0.T00-IIOIJIIo1IC..44IttCC100g.00~0000.S..+~$$44+,'0I0I0I1.10~0~~0~~a11lta10aaTf'alt00tlttStaCORKA)QALNODC+NSASUSSDTloSSSOONK4AkISSAATSDTI~NSSSONK~CONTSOLSOOSotfAON01t~00~T~~<<TITSISSINNITNISSSSISSS~SICOAQA)QALNODS+NSASUSSOTISIISSSONSS0OAIOULAItoTloNtttot00~CONTSOLNODSOSITIONMONITORLOCAllON40,$$MONITORLOCAllON$$,$$100<<0100~0~000+~I110LZ100~0000o40~4f040004w'$-'f'--0L..0000III0I00~~~10~I~llltlt10<<a111010SttltttttiCOR4ATQALNODEtSNASUSCDTIDSCSSONKoOAIOUIATCDTIDIICSDONK~DONTSOL000SOSNION~00~0~T~~'l01110lt10a%ITN10SttlStttSlCORKNQALNODS4NCASUSCDTltDCSSONK4OAIJUIATCDTIDIICSJONK~OOWIOLNOOSONllON129-180FIGURE3.2.40SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON12.050GVYD/MTUCYCLEEXPOSURE180140120l-zD100Illzz80COILBo+Qj+oooot000J40200+012345B78S1011121314151B1718192021222324COREAXIALNODE+MEASUREDTIPRESPONSEoCALCULATEDTIPRESPONSEj.30-FIGURE3.2.4'fSUSQUEHANNASESUNIT2CYCLE1RADIALTIPRESPONSECOMPARISONS12.050GWD/MTU'CYCLEEXPOSURE61595755535149474543413937353331292725232119171513119753y1II-4.02-4.34-0.18 3.23-3.015068-1.162.8-1.660.892.94.81.45990.34-1.52640.477-0.930.7-2.119.216.26.63.427.42.4-0.713.30-1.88-0.81-2.00-2.08-0.061.46.5100020406081012141618202224262830323436384042444648505254565860XDiff=[(Cele-Meas)/CoreAvgTIPResponse]X100%131-FIGURE3.2.42SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS12.050GWD/MTUCYCLEEXPOSUREleOHITORLOCATIOH4$,$$'14$4$+o44oo,>so~eoe+0+4<<f4Sgee)~tsLD'.Ito~oo<<I7dI~~$~7~TeTlT$1$14leTe11T<<4te$1ttte$4CORKAXIALHOOK4NeoeoeeolitNeetoese0OlIOOLNTODheetetONse~OONTOOLNOOtoelhON~1t~4e~te~TohltltCORKANAL+NeAesetolitTNetooseoOAtowATtohtacetoeee~OONTNOLNOOto&#xb9;hDN141$1<<lt41$tetlttte$4HOOKMOHITORLOCAnOH40,$$IIOHITOllLOCATIOH$$,$$14$1$$40400T+4430~o%$~o~sso)004$0+0~It$~eo1~~lehT<<1$14&41144$<<tlttt$$4CORKAXIALHOOK+lltA$I&#xb9;$0Tl~eeseoeseoOAlleltteslltNestohoe~OONT$0LNOOte&#xb9;llON~It~$~7~IShItll141$1<<IT4Ist<<11tt$$$4CORKAXIALHOOK+NeAtsetOlitNtstoestoOAA004ATtOTltNeetoete~ODNTNOLNDO$0&#xb9;hON132-FIGURE3.2.43SUSQUEHANNASESUNIT1CYCLE1SIMULATE-EVSGEPROCESSCOMPUTERCOREAVERAGEAXIALPOWERDISTRIBUTION1.5+w10O)I0.5SIMULATE-EGEProcessCorn~uter0.023456789101112BOTTOMTOPCycleAverageExposure=1.490GWD/MTUCorePowerLevel=99.6%ofratedTotalCoreFlow=100Mlbm/hrReactorPressure=1005pslaCoreInletSubcooling=23.6Btu/Ibm133 FIGURE3.2A4SUSQUEHANNASESUNITtCYCLE2SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.5CL1.0LIJOCLLIJ)I-LIJ0.5SIMULATE-EPOWERPLEX0.035-7BOTTOM91113151719212325TOPCycleAverageExposure=2.587GWD/MTUCorePowerLevel=99.9%ofratedTotalCoreFlow=95.8Mlbm/hrReactorPressure=1000pslaCoreInletSubcooling=24.7Btu/Ibm-l34-FIGURE3.2.45SUSQUEHANNASESUNIT1CYCLE3SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.51.0LLIOCLLIJCL0.5////SIMULATE-EPOWERPLEX0.0BOTTOM35791113151719212325TOPCycleAverageExposure=0.178GWD/MTUCorePowerLevel=100%ofratedTotalCoreFlow=96.9Mlbm/hrReactorPressure=1002psiaCoreInletSubcooling=24.4Btu/Ibm135-FIGURE3.2.46SUSQUEHANNASESUNIT2CYCLE2SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.51.0LLJO.CLLJI-LJJ0.5/tII//SIMULATE-EPOWERPLEX0.0135791113151719212325BOTTOMTOPCycleAverageExposure=0.583GWD/MTUCorePowerLevel=100%ofratedTotalCoreFlow=96.2Mlbm/hrReactorPressure=1000psiaCoreInletSubcooling=24.4Btu/Ibml36-FIGURE3.2.47SUSQUEHANNASESUNIT1CYCLEISIMULATE-EVSGEPROCESS'OMPUTERBUNDLEFLOWSAT1.490GWD/NITU0.1200.1220.0020.1190.1210.0020.1170.1210.0040.1190.1210.0020.1190.1210.0020.1200.1220.0020.1190.1200.0010.1310:1350.0040.1320.1330.0010.1180.1220.0040.1310.1180.1330.1210.002.0.0030.1300.1180.1350.1190.005-.0.0010.1170.1210.004PROCCOMPSIMULATE-EDIFFERENCEUnitsareMlbrn/hrAverageDifference:0.001StandardDeviation:0.0020.1180.1200.0020.1190.1210.0020.1170.1190.0020.1160.1190.0030.1160.1170.0010.1180.1200.0020.1160.1190.0030.1170.1180.0010.118*0.1170.1160.1200.1170.1190.0020.00.0030.1170.1180.0010.1170.1200.0030.1160.1190.0030.1150.1190.0040.1300.1350.0050.1300.1310.0010.1310.1320.0010.1290.1340.0050.1180.1200.0020.1150.1170.0020.117.0.1170.00.1160.1190.0030.1300.1340.0040.1300.1310.0010.1300.1310.0010.1300.1340.0040.1180.1190.0010.1180.1180.00.1200.119-0.0010.1130.1160.0030.1150.1170.0020.1140.1150.0010.1140.1170.0030.1150.1150.00.1170.1190.1190.1180.002-0.0010.119.0.1220.1190.1220.00.00.1280.127-0.0010.1110.1150.0040.1120.1140.0020.1120.1160.0040.1120.1140.0020.1130.1140.0010.1140.1160.0020.1190.1190.00.1210.1210.00.1310.1360.0700.1260.1350.068-0.005-0.001-0.0020.1140.1180.1150.1180.0010.00.1170.1190.0020.1150.1160.0010.1160.1170.0010.1190.1200.0010.1240.1240.00.1250.1350.0680.1270.1340.0680.002-0.0010.00.1210.1240.1250.1230.1230.1200.1230.1230.1210.122-0.001-0.001-0.002-0.002-0.0010.1260.1350.1380.069.0.0700.1260.1300.1360.0680.0680.0-0.005-0.002-0.001-0.0020.1280.1290.0010.1290.1290.00.1300.1300.00.1300.1300.00.1300.1310.0010.1320.1410.0690.1340.1400.0680.002-0.001-0.0010.0690.0690.0690.0690.0690.0680.0680.0680.0680.068-0.001-0.001-0.001-0.001-0.0011370.0700.0700.0680.068-0.002-0.002 FIGURE3.2.48SUSQUEHANNASES-UNIT'ICYCLE3SIMULATE-EVSPOWERPLEXBUNDLEFLOWSAT0.178GWD/MTU0.1140.1160.0020.1140.1150.0010.1180.1210.0030.1190.1230.0040.1170.1220.0050.1190.1200.001POWERPLEXSIMULATE-EDIFFERENCEUnitsareMlbm/hr0.1160.1170.0010.1190.1220.0030.1200.1180.123.0.1210.0030.0030.1180.1180.00.1210.1230.0020.1190.1220.0030.1170.1210.0040.1200.1200.0AverageDifference:0.001StandardDeviation:0.0020.1210.1210.0.0.1310.1330.0020.1300.1300.00.1220.1210.1300.1240.1200.1320.002-0.0010.0020.1240.1260.0020.1290.1330.0040.1310.1330.0020.1190.1210.0020.1220.1240.0020.1270.1300.0030.1280.1280.00.1190.1190.00.1210.1230.0020.1200.1190.1190.122'0.0010.0030.1180.1180.00.1210.1220.0010.1190.118-0.0010.1190.1220.0030.1190.1210.0020.1150.1190.0040.1180.1210.0030.1140.1180.0040.1170.1200.0030.1150.1190.0040.1190.1210.0020.1160.1200.1190.1190.003-0.0010.1170.1170.00.1230.0030.119-0.0010.120.'0.1200.1170.1170.1200.1190.1160.1220.002-0.0010.0020.1200.1200.00.1200.1220.0020.1210.1210.00.1240.1240.00.1190.1210.0020.1170.1210.0040.1200.1220.0020.1140.1170.0030.1180.1200.0020.1180.1210.0030.1220.1240.0020.1180.1220.0040.1250.1270:0020.1300.1320.0020.0640.063-0.0010.1170.116-0.0010.1190.1200.0010.1180.1180.1190.1170.1200.118-0.0010.002-0.0010.1210.1220.0010.1230.122-0.0010.1260.1270.0010.1290.0640.1310.0630.002-0.0010.1200.1210.0010.1230.1230.00.1170.1180.0010.1260.125-0.0010.1200.1210.0010.1240.1240.00.1170.1190.0020.1270.126-0.0010.1210.1220.0010.1260.1260.00.1200.1220.0020.1280.1280.00.1280.1290.0010.1360.133-0.0030.1310.0640.0650.1320.0630.0640.001-0.001-0.0010.0640.063-0.0010.0640.0640.0620.062-0.002-0.0020.0640.0640.0640.0640.0620.0620.0620.063-0.002-0.002-0.002-0.001-1380.0650.064-0.001 FIGURE3.2.49SUSQUEHANNASESUNIT2CYCLE2SIMULATE-EVSPOWERPLEXBUNDLEFLOWSAT0.583GWD/MTU0.1180.116-0.0020.1190.117-0.0020.1160.1190.0030.1190.118-0.0010.1170.1210.0040.1240.121-0.0030.1190.1230.0040.1230.1210.1220.124-0.0010.0030.1170.1210.1210.1190.004-0.0030.1230.1200.1210.122-0.0020.0020.1300.1330.1330.1320.003-0.0010.1170.1210.0040.1210.120-0.0010.1200.1220.0020.1180.1210.0030.1220.121-0.0010.1260.1290.003POWERPLEXSIMULATE-EDIFFERENCEUnitsareMlbm/hrAverageDifference:0.001StandardDeviation:0.0030.1200.1220.0020.1320.1320.00.1300.1320.0020.1220.120-0.0020.1180.1210.0030.1280.1280.00.124-0.1280.0040.1190.1190.00.1130.1180.0050.1170.1210.1200.1190.003-0.0020.1180.1140.1170.118-0.0010.0040.1150.1190.0040.1160.1160.00.1180.117-0.0010.1120.1170.0050.1150.1190.0040.1160.115-0.0010.1180.117-0.0010.1120.1170.0050.1130.1180.0050.1160.1160.00.1130.1180.0050.1160.1160.00.1120.1160.0040.1150.1200.0050.1180.1180.00.1180.1180.00.1150.1190.0040.1110.1160.0050.1150.1150.00.1150.1150.00.1110.1160.0050.1130.1180.0050.1170.1170.00.1170.1170.00.1150.1200.0050.1130.1180.0050.1190.1190.00.1180.1190.0010.1210.1250.0040.1210.1250.0040.1320.130-0.0020.0640.063-0.001,;0.1170'.116-0.0010.1160.1180.0020.1250.122-0.0030.0640.062-0.0020.1130.1170.1170.1150.004-0.0020.1170.1160.1160.119-0.0010.0030.1230.1260.1240.1230.001-0.0030.0640.0640.0620.062-0.002-0.0020.1120.1170.0050.1180.117-0.0010,1250.1260.0010.0640.062-0.0020.1170.116-0.0010.1170.1210.0040.1280.125-0.0030.0640.063-0.0010.1150.1190.0040.1220.121-0.0010.1290.1300.0010.0650.063-0.0020.1200.1200.00.1240.1270.0030.1370.134-0.0030.0650.064-0.0010.1220.1260.0040.1330.131-0.0020.0650.064-0.0010.1300.129-0.0010.0640.063-0.0010.0640.063-0.0010.0650.064-0.001139-3.3uadCitiesUnit1Cycles1and2BenchmarkAnadditionaldemonstrationoftheSIMULATE-EcalculationalaccuracywasperformedbycomparingSIMULATE-EresultstomeasurementsfromtheQuadCitiesUnit1Cycles1and2cores.AftertheendofCycles1and2,gammascanmeasurementsofselectedfuelbundlesweretaken.Thisprovidesanexcellentmeasurementofthepowerdistributionaveragedoverthelasttwotothreemonthsofeachcycle'soperation.ThistechniqueformeasuringthepowerdistributionisnotpronetothetypesoferrorsthataretypicalofTIPmeasurements.Reportedaccuracyofthegammascanmeasurements,combiningmeasurementuncertaintyandmeasurementmethodbias,isapproximately3%(Reference12),whereasTIPuncertaintyforreloadcoresistypically5.1%(Reference25).AsignificantnumberofcoldcriticaltestswasperformedduringCycle1.Theavailablecolddataincludebothin-sequenceandlocalcriticals.In-sequencecriticalsaretypicalofnormalreactorstartupswithwithdrawncontrolrodsuniformlydispersedthroughoutthecore.Localcriticalsinvolvewithdrawalof'afewcontrolrods(usuallyfromtwotofour)inalocalizedareaofthecoreproducingverypeakedneutronfluxgradients.Inadditiontothegammascanandcoldcriticaldata,hotreactivitystatepointandTIPmeasurementdataarealsopresentedinthissection.TheQuadCitiesUnit1core(Figure3.3.1)isslightlysmallerthantheSusquehannaSEScores(Figure3.2.8),containing724versus764fuelassemblies,anditsratedcorethermalpowerisapproximately25%lessthanthatoftheSusquehannaSESunits.FortheQuadCitiesinitialcycle,theentirecoreconsistedofGeneralElectricCompany(GE)7x7fuelwithalowgadolinialoading.ThiscontraststheSusquehannaSEScoreswherearelativelyhighgadolinialoadingwaspresentinthe8x8fuel.TheQuadCitiesreloadfuelforCycle2consistedofonly23GE7x7fuelassemblies,36GESx8fuelassemblies,andfivemixedoxidetestassemblies.TheGEreloadfuelcontainedasmallgadolinialoading.-140-3.3.1HotCriticalCoreReactivityComarisonsThepurposeforbenchmarkingthehotcriticalcoreK-effectiveforQuadCitiesistodetermineifanymajordifferencesinresultsandtrendsexistbetweenSusquehannaSESandQuadCities.BecausetheQuadCitiescorecontainsmainly7x7fuelandlowergadoliniacontent,thebenchmarkprovidesagoodcontrasttotheSusquehannaSESbenchmarkandatestofthesteadystatemethodology.Figure3.3.2showstheQuadCitiesUnit1Cycles1and2calculatedhotcriticalcoreK-effectiveswiththoseofSusquehannaSES.AlthoughQuadCitiesresultsshowmorevariation,alinearlyincreasingtrendispresent.ThistrendisconsistentwiththeSusquehannaSESresultsandsupportstheexposuredependencyoftheSIMULATE-EcalculatedcriticalcoreK-effective.Nobowl-shapedtrendsareevidentintheQuadCitiesresults.ThistrendisattributedtothelowergadolinialoadinginQuadCitiesversusSusquehannaSES.ThelargevariationinK-effectiveispossiblyduetotheinclusionofdatathatdoesnotmeetthesteadystatecriteriadefinedinSection3.2forSusquehannaSESdata.Themeasuredcoreoperatingparametersused'asinputtoSIMULATE-EarecontainedinReference27.AsevidentfromFigure3.3.2,theSusquehannaSESdataessentiallyformsacontinuouslineofdataasaresultofaverydetailedSIMULATE-Edepletioncalculations;however,theQuadCitiesK-effectivesarequitesparse.3.3.2ColdCriticalCoreReactivityComarisonsThebenchmarkoftheSIMULATE-EcalculatedcoldcriticalK-effectivetotheQuadCitiesUnit1Cycle1coldxenon-freein-sequenceandlocalcriticalsprovidesqualificationofPPaL'scoldmethodologyandmodelstoperformshutdownmargincalculations.Comparisonstothelargelocalcriticaldatabase(22localcriticals)testPPGL'scalculationofrodworthsinlargelocalfluxgradientlocationsthataretypicalofshutdownmargincalculations.PPGL'sapproachinbenchmarkingtotheQuadCitiescoldcriticalsistocomparethecalculatedin-sequencecriticalK-effectives(lltotal)tothelocalcriticalK-effectives.Table3.3.1presentstheQuadCitiesUnit.1Cycle1calculatedcoldcritical.K-effectiveswhichhavebeencorrectedforreactorperiod.Comparinglocaltoin-sequencecriticalresults-141 demonstratesthecapabilityto.calculatethesamecoreK-effectiveforcriticalconditionswithboth;peakedanduniformneutronfluxdistributions.ThelocalcriticalK-effectivesarecomparedtotheaverageofthein-sequencecriticalK-effectivesatthesameexposure.Table3.3.2showstheresultsofthecomparisons.TheaveragedifferencebetweentheK-effectivesis0.00007andthestandarddeviationequals0.00064.BothofthesevaluesarewellwithintheuncertaintyinpredictingtheSusquehannaSEScoldcriticalcoreK-effective(i.e.,standarddeviationequalto0.00137).Thisdemonstratesthatnobiasexistsbetweenin-sequenceandlocalcriticalcalculations.AnadditionaltestofPPGL'smethodsinvolvesdemonstratingthatthesameobservedbiasbetweenhotandcoldcriticalcoreK-effectiveforSusquehannaSESalsoexistsbetweenhotandcoldcriticalcoreK-effectiveforQuadCities.Figure3.3.3showsthehotandcoldcriticalcoreK-effectives.DespitethevariationinandlackofhotcriticalcoreK-effectivedata,thedifferencebetweenthecalculatedhotandcoldK-effectivesissimilartothatoftheSusquehannaSESdata.3.3.3TraversingIn-coreProbeDataComarisonsAlthoughtheprimaryreasonforthedevelopmentoftheQuadCitiesmodelistoperformthegammascancomparisons,someTIPdataisavailableforcomparisonfromReference27and28.Thisincludes15TIPsetsfromCycle1and13TIPsetsfromCycle2.ATIPsetcontains24axialmeasurementstakenateachofthe41radialTIPlocations.RadialTIPdetectorlocationsareshowninFigure3.3.1.TheSIMULATE-EcodewasusedtocalculatetheTIPresponsesforeachofthe28TIPsets.AsdescribedintheSusquehannaSESTIPresponsecomparisonsection,theSIMULATE-EcalculatedTIPresponsesarerenormalizedsothatthecoreaveragecalculatedTIPresponseisthesameasthecoreaveragemeasuredTIPresponse.TheaverageRMSofthedifferencesbetweentheSIMULATE-EcalculatedandmeasuredTIPresponsesforeachTIPresponsecomparisoniscalculatedasdescribedinSection3.2.3.ResultsfromthenodalandradialcomparisonsaregiveninTable3.3.3.ComparisonshavebeenreportedforallTIPsetswiththeexceptionofCase16.CorrectmeasuredTIPresponsedatais-142-unavailableforthiscase.AlthoughseveraloftheotherTIPsetsweretakenbeforethecorehadtimetoreachanequilibriumxenondistributionduetocontrolrodposition,powerorflowchanges,theyhavebeenincludedinthecomparison.Figures3.3.4through3.3.15present.representativeTIPresponsecomparisonsforCycles1and2.Fortwoexposurepointsineachcycle,coreaverageaxial,radial,andfourindividualTIPresponsecomparisonsareincluded.TheindividualTIPresponsecomparisonsinthefigures,wereselectedalongalinefromthecoreperipherytothecorecenterasshowninFigure3.3.1.ThesamefourTIPlocationsarealwaysshown.3.3.4GammaScanComparisonsAttheendofCycles1and2gammascanmeasurementsweretaken.TheavailableCycle1data(Reference29)consistofaxialpeaktobundleaverageLa-140activitiesfor31fuelbundles,individualaxialtracesfromtwofuelbundles,andtheaxialtracefromtheaverageofthe31individualtraces.Useofthisdataisprimarilylimitedtobenchmarkingtheaxialpeakingfactor.TheCycl'e2data(Reference12)aremuchmoreextensive.Atotalof89fuelbundleswerescanned.Ofthese,71werelocatedinoneoctantofthecore,providingmeasurementdataformostofthefuelbundlesinthatoctant.Theremaining18fuelbundleswerechoseninotheroctantstocheckforasymmetries.Seventy-threeofthebundleswerescannedat12axiallocationsatapproximatelytwelve-inchintervals.Theremaining16bundleswerescannedat24axiallocationsatapproximatelysixinchintervals.Thereportedmeasuredactivitywascorrectedtocorrespondtoactivityjustaftershutdown.Thepracticalaccuracyofthereporteddataincludingmeasurementuncertaintyandmeasurementmethodbiasisapproximately3%(Reference12,Section4.3).AspreviouslydiscussedinSection2.3,thegammascandataitselfisameasureofLa-140gammaactivity.Duringreactoroperation,La-140isproducedbothasafissionproductandbyBa<<140decay.Sincethehalf-lifeofBa-140isapproximately13daysandthatofLa-140isapproximately40hours,thedistributionoftheBa-140andLa-140concentrationswillbe-143-representativeofthecorepowerdistributionintegratedoverthelasttwotothreemonthsofreactoroperation.Aftershutdown,theonlysourceofLa-140isfromdecayofBa-140.Becausethehalf-lifeofLa-140isshortwithrespecttoBa-140,afterabouttendaysthedecayrateofLa-140iscontrolledbythedecayofBa-140.Therefore,therelativemeasuredLa-140activitiesarecomparedtotherelativecalculatedBa-140concentrations,andtheLa-140concentrationdoesnotneedtobecalculated.TheSIMULATE-EcodewasusedtocalculatethenodalBa-140concentrationsattheendofbothcycles.AttheendofCycle1,thepeaktoaverageBa-140concentrationwascalculatedforeachofthe31fuelbundles.Ofthese,17wereuncontrolledand14werepartiallycontrolled.ThecalculatedandmeasuredpeaktoaveragedatafortheuncontrolledandcontrolledfuelbundlesisshowninTables3.3.4and3.3.5,respectively.Theaveragedifferenceforall31fuelbundlesis1.2%withastandarddeviationof2.1%.Theseresultsdemonstrateexcellentagreementtothemeasuredaxialpeakingfactor.ThreeaxialtracesfromCycle1arealsoavailablefromReference29.ThemeasuredandcalculatedLa-140activitiesforeachtracearenormalizedto1.0priortothecomparison.Figure3.3.16showsthecomparisonfortheuncontrolledbundle,andFigure3.3.17showsthecomparisonforthecontrolledbundle.Figure3.3.18showsthecomparisonfortheaxial31bundleaverageLa-140activities.ThemeasureddatafortheseplotswereonlyavailableingraphicalformfromReference29.Therefore,nostatisticsarecomputedfromthecomparisons,butthefiguresdemonstratetheabilityofSIMULATE-Etocalculateaxialpowershape.MoreextensivegammascanmeasurementsweretakenattheendofCycle2.ThedatasuppliedinReference12allowforradial,nodal,peaktoaverage,andbundle(axial)comparisons.Fortheradialandnodalcomparisons,theperipheralbundleshavebeeneliminated.Thesebundlesarelowinpowerand,consequently,ofnoconcernfromathermallimitsperspective.Forthenodalcomparisonsthetopandbottomsixincheshavealsobeeneliminated.Thesenodesarelowinpowerandare,consequently,oflittleimportancefromasafetystandpoint.ThemixedoxidebundleshavealsobeeneliminatedfromthenodalandradialcomparisonssincetheyareatypicalofSusquehannaSESreloadfuel.<<144-Priortomakinganycomparison,themeasuredandcalculateddatawerenormalizedsuchthatthecoreaveragerelativeactivitywas1.0.However,forthecalculateddataonlythenodesforwhichthereweremeasureddatawereusedinthenormalizationprocess.ThecomparisonsarebasedonthemeandifferencebetweencalculatedandmeasurednormalizedLa-140activities.Thisdifferenceiscalculatedas:e.=c.-m.ii.iwherec.=thenormalizedcalculatedLa-140activity,~m.=thenormalizedmeasuredLa-140activity.iThesubscriptidenoteseithertheaverageactivityforthebundlefortheradialcomparisonsorthenodalactivityforthenodalcomparison.Thestandarddeviationsforthecomparisonsarecalculatedas:a(s)=NP(e.-e)iN-1100XMwhereM=theaverageofthenormalizedmeasureddataforthecomparison=1.0forallcomparisonsduetonormalization,e=theaveragedifferencebetweenthemeasuredandcalculatednormalizedLa-140activities=0.0forallcomparisonsduetonormalization,N=numberofLa-140activitiesforthecomparison.TheradialcomparisonswereobtainedbyaveragingthenodalLa-140activitiesforeachbundle.TheresultsfromthecomparisonsareshowninFigure3.3.19.Thestandarddeviationof1.82%reportedonthefigurewascalculatedforthosebundlesincludedintheoctantshowninthefigure.Iftheadditional11bundlesfromtheotheroctantsareincludedinthecomparison,thestandarddeviationbecomes1.92%.Basedonthecomparisons,nosignificantdeviation-145 intheradialpowershapeisapparentindicating.SIMULATE-EwillprovideanaccurateassessmentoftheCriticalPowerRatio.Thestandarddeviationfromthenodalcomparisonsis5.45%.Assuminga3.0%measurementuncertainty,thecalculationalstandarddeviationis4.55%.TheSIMULATE-EcalculatedpeaktoaverageLa-140activitywascomparedtothemeasureddata.Thepercentdifferenceforeachassemblyiscalculatedas:c.-m,e.'ix100imwherec=thecalculatedpeaktoaverageLa-140activityforfuelbundlei,m.=themeasuredpeaktoaverageLa-140activityforfuelbundlei.TheresultsofthecomparisonsareshowninTable3.3.6.differenceis-0.2%withastandarddeviationof1.5%.TheaverageThesecomparisonsincludedallassembliesandaccountedforallaxialnodes.TheresultsindicateexcellentagreementfortheaxialpeakingfactorandareconsistentwiththeCycle1results.TheresultsfromtheindividualbundlecomparisonsareshowninTable3.3.7.Thesecomparisonsarealsoreportedforeverybundleandincludedallaxialnodes.Foreachbundle,theaveragedifferencebetweenthecalculatedmeasurednodalactivitiesiscalculatedas:enKZ'>>,.Kwheree=thedifferencebetweenthemeasuredandcalculatednormalizednodalk,nLa-140activitiesforbundlen,andaxialnodek,K=numberofaxialnodesinthebundleforwhichmeasurementsweretaken.-146-Thestandarddeviationforeachfuelbundleis:0nKg(e-e)K-1100Figure3.3.20showsthefuelassemblywiththebestaxialagreement(BundleCX0662).Althoughthisparticularbundleis.locatedonthecoreperiphery,itexhibitsexcellentagreementforallaxiallocations.TheworstcomparisonisshowninFigure3.3.21(BundleCX0399).Thecalculatedaveragedifferenceof12.2%ismostlyduetodifferencesinthetopandbottomnodes.'owever,thecalculatedLa-140activityinthecentersectionofthebundlestillagreeswellwiththemeasureddata.Figures3.3.22through3.3.27showexamplecomparisonswhicharemoretypicaloftherestoftheassemblies.Mostofthecalculateddifferenceisduetonodalcomparisonsatthetopandbottomofthecore.Differenttopandbottomalbedoscouldhaveeliminatedmuchofthiserror.AsdiscussedinSection3.1,thealbedos,whichweredevelopedasaresultoftheSusquehannaSESmodelnormalization,werealsousedintheQuadCitiescalculations.ItisexpectedthatduetodifferentcoreandfueldesignsforQuadCities,thetopandbottomalbedoswoulddifferfromtheSusquehannaSESvalues.AlthoughtheSusquehannaSESalbedoswereutilizedintheQuadCitiescalculations,theSIMULATE-Emodelprovidesanaccuratecalculationofthepowerdistribution,ThissupportstheuseoftheSIMULATE-Emodeltopredictpowerdistributionsforfueldesignsotherthanthoseinthenormalizationdatabase.-147 TABLE3.3.1QUADCITIESUNIT1CYCLE1CALCULATEDCOLDXENON-FREE4CORECRITICALK-EFFECTIVESCoreAverageCoreReactorExposureTemperaturePeriod(GWD/RZU)(DEGF)(sec)NumberofControlledLocal(L)orNotchesIn-secpxence(I)4CalculatedCoreK-effective0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.02.8663.7483.7483.7483.7483.7483.7483.7483.7484.9386.9116.911.152160159159161160159158158159157157160159159160158159158158155163707577108120120'12517812018217918060751601505032789041651256533224538423939169120300.43.747.52805430015714018145100300639084008404634463248404840284028402839284026336631883928392839284168392840283946412669884388428843084267118'37883786830693683946514ILLIILLLLLLIILLLLLLLIILLLLILLIILI0.993140.992890.992070.992880.992840.991920.992090.992810.993240.992570.992700.993040.992780.993660.993530.992470.992470.992520.992680.990820.991710.995900.998470.998400.997600.997180.998180.997900.998120.997300.998291.000261.00041148 TABLE332QUADCITIESUNIT1CYCLE1IN-SEQUENCEVERSUSLOC2LLCRITICALCOMPARISON~CoreAverageExposure(GWD/MTU)ControlRodsWithdrawnandPositionCoreReactorTemperaturePeriodIn-secpxenceMinus(DEGP)(sec)LocalK-efffective0.038,1194842,1184816060-0.000160.038,1138,154844159750.000660.046,1984846,23844160500.000810.046,1984850,19846159320.000640.050,2384850,1984615878-0.00008'.00.046,2384850,2394626,3184826,3584830,3180815815990.41-0.000510.000160.018,1184822,11846157650.000030.026,2784826,3184830,31808159332-0.000930.026,2784830,2784830,31908159245-0.000800.026,2384826,2784830,27808160380.000260.022,3984822,3592426,35808158420.000260.026,3984822,3984826,35808159390.00021-149-TABLE3.3.2(conti.nued)QUADCITIESUNIT1CYCLE1IN-SEQUENCEVERSUSLOCALCRITICALCOMPARISONCoreAverageExposure(GWD/MTU)ControlRodsWithdrawnandPositionCoreReactorTemperaturePeriodIn-secgxenceMinus(DEGP)(sec.)LocalK-effecti.ve0.042,3994842,3593838,35808158390.000050.038,3984838,3594834,359061581690.001913.7483.74826,1193822,1182026,1194822,11920707543.747.5"0.00073-0.000663.7483.74822,1164822,1561850,2764850,2392277108280540.000140.000563.74826,1594822,118.4818,15622120157-0.000163.74814,2794810,23I4814,19822125140-0.000386.91122,15I4822,1164826,118061821000.00015Average=0.00007StandardDeviation=0.00064-150-TABLE333SUMMARYOPQUADCITIESUNIT1CYCLES1AND2TIPRESPONSECOMPARISONSCaseNumberDateCoreAverageNodalExposureRMS(CWO/MTU)(a)RadialRMS(*)Cycle112345678910111213141516*6/29/728/30/729/11/7211/01/7212/26/723/08/735/16/736/06/737/19/738/30/7311/01/7312/11/7312/29/732/13/743/05/743/26/740.27,20.7120.8821.4702.2393.1903.8364.0744.7375.3016.0316.5586.8077.3967.6597.9809.43"8.858.2610.438.389.099.619.879.8410.7213.8411.119.2311.4211.725.435.675.805.725.61.5.796.126.465.915.875.365.805.634.975.58Cycle,lAverage10.125.71Cycle2171819202122232425262728297/26/748/15/749/12/7410/23/7411/18/7412/11/744/03/756/19/758/08/7510/20/7511/13/7512/19/7512/31/757.3037.5327.9648.4238.7899.14110.17311.23811.93512.89613.19813.61113.74112.5510.188.8910.308.087.808.077.928.798.168.5511.6512.734.384.854.254.634.664.804.944.425.005.294.764.545.03Cycle2AverageCombinedAverage9.519.844.735.26*CorrectmeasuredTIPresponsedataisunavailable.-151-TABLE334QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONSUNCONTROLLEDBUNDLESCoreLocationMeasuredPeaktoAverageLa-140ActiviCalculatedPeaktoAverageLa-140ActivityDifference(*)39,5841,5841,5617,4855,4257,4257,4007,3409,3207,2609,2431,2647,1823,1025,0831,1033,081'.2711.2121.2241.287.1.1851.1911.2451.1761.1481.1701.1861.3541.2501.1781.2391.1721.2211.2701.2391.2181.2891.2441.2601.2571.2141.1941.2271.2341.3291.2591.1781.2241.1821.235AvexageDifference=1.7%StandardDeviation=2.3%-0.12.2-0.50.25.05.81.03.24.04.94.0-1.80.70.01~20.91.1-152-TABLE3.3.5QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONSCONTROLLEDBUNDLESCoreLocationMeasuredPeaktoAverageLa-140ActivityCalculatedPeaktoAverageLa-140ActivityDifference(*)39,5617,50'15,4855,4009,3407i3209,2607,2449,1847,1625,1023,0833,1031,081.2821.6091.2801.2691.4181.3221.3661.2311.6021.2831.3581.2511.3851.3691.2841.6311.3071.2791.3941.3321.3981.2561.6251.3051.3421.2471.3501.3730.21.42.10.8-1.70.72.32.01.41.7'1.2-0.3-2.50.3AverageDifference=0.5%StandardDeviation=1.5%-153-TABLE3.3.6QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONSPEAKTOAVERAGELA-140ACI'IVITIESBUNDLEIDLOCATION(XY)PEAKTOAVERAGEMEASUREDCALCDIFFEfKNCE<r.)CX0214GEB159CX0575CX0588CX0420CX0052CX0287CX0378GEH023CX0150CX0440CX0351CX0453CX0723CX0015CX0316CX0498CX0044CX0327CX0106CX0165CX0306CX0660CX0310CX0523CX0093CX0297CX0611CX0024CX0225CX0617CX0231CX0585CX0631CX0186CX0332CX0161CX0100GEH022GEH029CX0281CX0399CX0396CX0198CX0393GEH002,GEB132GEB160(33,34)(31,32)(31,34)(33,32)(7,32)(15,32)(23,34)(17,42)(9,40)(7,42)(9,42)(7,40)(23,32)(17,40)<15,42)(15,40)(25,34)(7,34)(9,34)(9,32)(25,32)(15.34)(17,34)(27,34)(3,36)(13,40)(23,38)(3,40)(15,46)(21.32)(9,46)(15.38)(19.36)(5,38)(19.42)(11,44)(19,38)(13,46)(9,36)(13,44)(21,36)(9,38)(11,40)(5,36)(11,36)(13.36)(17,36)(31,30)1.19231.13791.19371.18421.24201.19901.18711.20891.20081.31081.25861.27141.19751.20281.18941.21731.18921.24451.22851.23411.19321.20061.18561.18661.34681.21871.19821.39241.18721.18641.30861.21811.21031.32631.20391.21691.22371.22251.19441.16601.18441.25481.20541.28751.20281.16511.15891.13531.20041.13651.18811.19731.26201.19661.18561.21201.18871.27331.22001.24171.19451.19791.17761.20011.18691.24571.23031.25111.19911.19361.17451.19031.35091.18391.20081.36741.20231.17681.27621.18891.17641.30511.21061.20931.20321.21701.19211.17591.16881.19781.18251.27981.19831.17891.15461.13600.7-0.1-0.51.11.6-0.2-0.10.3-1.0-2.9-3.12~3-0.2-0.4-1.0-1;4-0.20.10.11.40.5'>>0.6-0.90.30.3-2.90.2-1.81.3-0.8-2.5-2.4-2.8-1.60.5-0.6-1.7-0.4-0.20.9-1.3-4.5-1.9-0.6-0.41.2-0.40.1-154-3.3.6(continued)QUADCITIESUNIT1EOC2GAMMASCAN(X)%'ARISONSPEAKTOAVERAGELA-140ACTIVITIESBUNDLEIDLOCATION(XY)PEAKTOAVERAGEMEASUREDCAIDDIFFERENCE(X)GEB161GEB158CX0494CX0490CX0174CX0683CX0520CX0394CX0137CX0482CX0717CX0682GEH008GEB123GEB149CX0719CX0672CX0362GEB105CX0546CX0553CX0662CX0643CX0397CX0286CX0191CX0057CX0124CX0414CX0412CX0384CX0318CX0401CX0398CX0359CX0711CX0096CX0622CX0445GEB162CX0162(29,32)(29,30)(7,48)(5,46)(7.46)(1,32)(3,32)(11,32)(5,32)(27,32)(19,32)(1,40)(13,48)(17,44)(21,40)(9,50)(15,36)(13.34)(25,36)(9,52)(5,44)(3,42)(1,34)(13,38)(9,48)(11,50)(13,32)(17,10)(47,38)(37,48)(23.14)(13,24)(47,24)(23,48)(37,14)(49,10)(9,18)(47,6)(41,18)(5,48)(17,32)1.13351.13021.34901.34951.33331.33111.31161.22631.27851.18021.15631.41281.21071.16641.18611.33281.19841.21441.16731.35901.35831.38271.33571.21031.32661.29331.22331.21371.14731.18521.19461.15581.21681.19411.16341.29111.20071.31191.20101.35181.17771.13641.13541.35281.34521.33441.35561.34021.23981.28841.18301.16381.43201.20511.17401.18571.32791.18171.20701.14971.37001.31181.39601.36121.18401.29861.28991.22611.21941.18331.19091.19091.18421.18251.18821.18841.31741.24341.35661.20071.35181.16980.30.50.3-0.30.11.82.21.10.80.20.61.4-0.50.6-0.0-0.4-1.4-0.6-1.50.8-3.41.01.92~2-2.1-0.30.20'3.10.5-0.32.5-2.8-0.52.12.03.63.4-0.00.0-0.7AVERAGEDIFFERENCE:STANDARDDEVIATION:-0.2r.1.5r.-155-TABLE3.3.7UADCITIESUNIT1EOC2INDIVIDUALBUNDLEGAMMASCANCOMPARISIONSBUNDLELOCATIONID(XY)STANDARDAVERAGEDEVIATIONDIFFERENCE(X)CX0546CX0719CX0191GEB162CX0494CX0286GEH008CX0398CX0412CX0490CX0174CX0617CX0100CX0024CX0553CX0332GEH029GEB123CX0662CX0150CX0440CX0015CX0378CX0186CX0682CX0611CX0351GEH023CX0396CX0093CX0316CX0723GEB149CX0631CX0399CX0397CX0231CX0161CX0297CX0414CX0523CX0198GEH022CX0393GEH002CX0672GEB132CX0585CX0281(9,52)(9.50)(11,50)(5,48)(7,48)(9,48)(13,48)(23,48)(37,48)(5,46)(7,46)(9,48)(13,46)(15,46)(5,44)(11,44)(13,44)(17.44)(3,42)(7,42)(9,42)(15,42)(17,42)(19,42)(1.40)(3,40)(7,40)(9,40)(11,40)(13,40)(15,40)(17,40)(21,40)(5,38)(9,38)(13,38)(15,38)(19.38)(23.38)(47,38)(3,36)(5,36)(9,36)(11.36)(13,36)(15,36)(17,36)'(19,36)(21,36)0.007,0.0160.0170.0270.0140.032-0.0200.045-0.0070.0380.0210.0330.0290.0130.0360.016-0.0260.0270.0030.0050.0200.005-0.0120.0070.0120.005-0.003-0.054-0.031-0.0100.007-0.016-0.006-0.001-0.0120.008-0.009-0.0030.007-0.0350.0120.008-0.074-0.007-0.045-0'04-0.0330.0070.0094.344.955.374.285.416.117.466.325.745.115.936.307.555.735.876.657.428.733.98.6.687.497.177.926.553.835.226.508.186.757.117.056.927.716.5012.176.176.335.795.785.414.655.967.276.427.706.597.806.646.33-156-TABLE3.3.7(continued)UADCITIESUNIT1EOC2INDIVIDUAl,BUNDLEGAMMASCANCOMPARISIONSBUNDLEIDLOCATION(XY)STANDARDAVERAGEDEVIATIONDIFFERENCE(X)GEB105CX0643CX0044CX0327CX0362CX0306CX0660CX0287CX0498CX0310CX0575CX0214CX0683CX0520CX0137CX0420CX0106CX0394CX0057CX0052CX0162CX0717CX0225CX0453CX0165CX0482GEB161GEB159CX0588GEB158GEB160CX0318CX0401CX0096CX0445CX0384CX0359CX0124CX0711CX0622(25,36)(1,34)(7.34)(9,34)(13,34)(15,34)(17,34)(23,34)(25,34)(27,34)(31,34)(33,34)(1,32)(3,32)(5,32)'(7.32)(9,32)(11.32)(13,32)(15,32)(17,32)(19,32)(21,32)(23,32)(25,32)(27.32)(29,32)(31,32)(33,32)(29,30)(31.30)(13,24)(47,24)(9.18)(41,18)(23,14)(37,14)(17,10)(49,10)(47,6)-0.0230.043-0.002-0.008-0.011-0.0220.005-0.0050.0050.0050.003-0.0040.0450.0160.0120.014.-0.002-0.016-0.007-0.012-0.015-0.003-0.002-0.009-0.006-0.007-0.034-0.0260.015-0.038-0.018-0.023-0.001-0.0200.0180.0040.0340.0130.0300.0337.504.245.776.296.145.97.5.867.416.136.166.805.924.374.905.155.524.995.885.696.435.665.825.316.475.406.568.228.467.377.897.775.566.784.917.706.724.885.625.153.67157 FIGURE3.3.1QUADCITIESUNITICORETlPLOCATIONS5957555351494745434139373533312927252321LINEOFTIPSYMMETRY00020406081012141618202224262830323436384042444648505254565860XControlRodLocationLocationForIndividualTIPResponseComparisons~TraversingIn-coreProbeLocation 1.01FIGURE3.3.2SIMLUATE-EHOTCRITICALCOREK-EFFECTIVEVSCOREAVERAGEEXPOSUREee1.00ss'IssIsee~~~~eOI-UJ099IUJfCOO0.980.97-0l~ee@ee~0'eeer~o~~~::::::~:"0LegendU1C1HOT.---.:-lrl".'"'."".'"0U2C1HOTU1C2'OTU2C2HOToU1C3HOT~QC1C1HOT~QC1C2HOT12345'78'10'112131415COREAVERAGEEXPOSURE(GWD/MTU) 1.0100*~IfI0FIGURE3.3.3QUADCITIESUNIT1CYCLE1SIMULATE-EHOTANDCOLDCRITICALCOREK-EFFECTIVES1.00IJJ0II-oIJJLL0.99-UIhCLLIlC0O0.880......:....0:.0N...:.......',.....x.I~~~~~~o......................:..0...:...O.':..:.:o:'ICLegendoQC1C1HOTxQC1C1COLD""'.970It1234667COREAVERAGEEXPOSURE(GWD/MTU)10 160FIGURE3.3.4QUADCITIESUNIT'I'CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON2-239GWD/MTUCOREAVERAGEEXPOSURE160140120I-KD100tQRUsoCoCLeo0++000~+..0..+e4020001284667S9101112181415161718192021222824COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE>>161-FIGURE3.3.5QUADCITIESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS2.239GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-4.346.34-3.21-0.58-0.23-10.36-2.866.362.264341393735333129-8.33++++2.7++++.61135.414.++++1.3I+++27252321I191715131.682.68++++-4857.8.59-6.6687-1.17-10.58-5.21-3.66.30-0.80-2.415456586Diff=[(Calc-Meas)/CoreAvgTlpResponse]X100%-162-0002040608101214161820222426283032343638404244464850520X FIGURE3.3.6QUADCITIESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS2.239GWD/MTUGOREAVERAGEEXPOSUREIlOHIIORLOCAllOHdd,ddMOHIlORLOCATIOH44,dd'llIOOrr~0OaO.~os'~>';KZVosI0.i.0~Ittttoor~0aC0a..e+000toIlIIot~~~t~1~~ttTl1tI~ltloaTTlolttoolootoRICORKALGALHOOK0VotatttomrRttrONOR0AAICIRATRDmrRotrotot~CoNTRoLRooroamoN~~~~4t~Tt~10mtoItttttIoITltatoatttottCORKAXIALHOOK0taAWMOmrRurORuoINLCOIATtoTI~Ruroutt~coNTRCLRoorottmoNMONITORLOCA1IOH40,5$IIOIKTORLOCATIOHdK,SOIOOtto5aoeooo0oOo0to00toottoL5r~oa0I040g000TOT~~I~o~t~T~~lt11lt'loV1t10ITltltttttttttttCORKAXIALKOOK+vtAtuttomrRttroNotoAALOutATCOTlrRttrouot~CCNTRCLRoorovmoN~I0o~t~T~~10ltloI~1I1~'I~1T1tI~tttlttoottCORKAXIALHOOK0VRAtuttomrRttrouotoCALOutATROmrRttroeuvooNTRDLRootovmoN-163-180RGURE3.3.7QUADCITIESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON7.398GWD/MTUCOREAVERAGEEXPOSURE180140120I-RD100LUK80COQ.60~~~~~~l~~~~~~~o0d'e+q~:g44g~0+0y++0+402000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE164-FIGURE3.3.8QUADCITIESUNIT'fCYCLEtRADIALTIPRESPONSECOMPARISONS7.396GWD/MTUCOREAVERAGEEXPOSURE61595755535149474543-7.61++5.14-5.23++++-1.15.69-1.545;2+++++413937-4995.92-2.00942.906.035333129272523.214.893.42.08++++++++5.39.4+2.6++++-3.54-3.52691917151311975312.5-7.10-3.59-102005-4.545-0.89520.0500020406081012141618202224262830323436384042444648505254565860XDiff=[(Calo-Meas)/CoreAvgTIPResponse]X100%-165-FIGURE3.3.SQUADCITIESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS7.396GWD/MTUCOREAVERAGEEXPOSUREMONITORLOCATIONNL,$$MONITORLOCATTON4$,$$Ito100X~Ito0gQ6+000to~b0TT'o0'LZ0100$0IIS784040~~t00~~T~~TCllltltltlololtlolttotlttCCCICORKAXIALNODE0oclcuotolitoctfootc0OALOQAICOMIICCPOOCC~COOTCOL000tooOIOO~~t~0~~T~0TOll010TIItIOlfIt10totlttttttCORKANALNODE+WAOWCOTltOottouoo0OALOOIATCOTltIlottooK~COCTOOL000totmooMONITORLOCATION41,$$MONTTORLOCATION$$.$$100~10oo400TtoL5IooeoooT+IoooItIIII~1~0~0~T~~1011ltIt11ItIo11It10tttlCttt01COREAXIALNODE~tlcAcuccDllthcotolltc0OALOIAATCO~ICttolltt~ooutcoLcootoolcloN~~00~C~T0~IOIlItItITI~IOItI0COIIKAXIALNOOK+OCACIONDTItIICttoCCCOOALOOLATCOntaaetoaao~OOOTCOL000000OIOOI~Ct~ItlttM166-180FIGURE3.3.10QUADCITIESUNIT1CYCLE2'VERAGEAXIALTIPRESPONSECOMPARISONT.532GWD/MTUCOREAVERAGEEXPOSURE160140120'I-R100ILIz80COCLBO0000+60004020012346B789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-167 FIGURE3.3.11QUADCITIESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS7.532GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-5.985.6-3.46++++++-1.98-5.64-4.090.9434139373533312927252321I19171513.97I1.2120.62\223.043.66.313.3-1.49-1.025.4-0.33-5.894.5++++-0.16-10.22+-5.7697531.1032I3.4++I'I-0.62-4.320002040o"081012X505251416182022242628303234363840424446~84565860Diff=[(Calc-Meas)/CoreAvgTlPResponse]X100%-168-FIGURE3.3.12QUADCITIESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS7.532'GWD/MTUCOREAVERAGEEXPOSUREQONllOflIOCAllON4l,EElee~ceoII0+0IgIesNI~eC~e00++1o+t0I0040oo051$$~e~elL40I00gplIoIb)otII~~l~ie~T~Tell1$1~li1$leIT1$1$le$1$$$$NCOREAXIALNODE0NNAewsoneNeseosssI'ALosMTson~esseosos~CONTNOLNooeoslnON~1sei~~T$~1$111$1$111$141$1~TelelllllsliCOREAXIALNODE+IINAssesonessseosss0OALOOMTCOnelisle~~coNTNoLeooeoetnosIlONIIORLOCAllON40,$Elle0Ies~e~ee+000logeo0~$0eo04~Il~Cl~T~~1~llTl'llli1$I~1$1$Te$$$1$$$$$$COREAXIALNODE+NNAswlsoill'sseoNssoOAIOSLATSOnf$$$$0NSS~OONnCOL000KWTICNI~sei~~T~~Te11Tl1$lillTsTTI~lele~IllllliCOREAXIALNODE+IITAssssone1$$$0Nss0OAICAILATTOne11$$$0~~OONINOL$00eoelnON169-180FIGUAE3.3.13QUADCITIESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON13.1S8GND/MTUCOREAVERAGEEXPOSURE160140120I-ZD100LIZZ&0(0ILeo000O....'...............;.+pQoe009':+o+0402000123466789101112131416181718182021222324COREAXIALNODE+MEASUREDTIPRESPONSEoCALCULATEDTIPRESPONSE-170-FIGURE3.3.14QUADCITIESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS13.198GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-5.458.0+-1.539.14-0.38.15-2.00-2,010.134341393735333129-7.625.0903.8-2.662.64.75.84-1.533072.4727252321-0.16-2.159.3++++++3032-40919-171513'332-6.153.74.130872002.54.40-0933Y100X020406081012141618202224262830323436384042444648505254565860Diff=[(Caic-Mess)/CoreAvgTiPResponse]X100%-171-FIGURE3.3.16rQUADCITIESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS13.198GWD/MTUCOREAVERAGEEXPOSUREMOMTORLOCATIONINL$$MONITORLOCAllON4$,$$laa0~+oooeo0ar+o0lsaes~T~~wTT>>IsTI>>>>IT>>>>asCIaaaaaaCOICAssssoTl~psapopss0OAIOSLATCSllPSCSPOOSS~COSTIIOLSOSPOCITIOO~~s4~~T~~>>TllalsTl'>>lsTPI~'>>eatlaaaaPICOREAXIALNODE+IHAsssaoTlpsaspol>>s0OA>>CSATCOTarSCSPOSPS~cocllKILsooposllasMONITORLOCATION40,$$MONITORLOCAllONEginlalapTasX>>s0PP'll0a>>sLXlle~000os~it.0IaesssT~'>>ll>>lalCI~>>if>>>>asalaaasaCOhEAXIAlNODE+ocACCI>>olipcssposasooauwLATsoTlpssaposss~OOSTCOLOOSPONTlOS1~s~~'p~Is11lslsIIlaIsITIa%as.aIaaaaaaCOE+aacAssssolipacapoces0oAIOoLATCOT>>sasposes~ooslsoLaoopoNTlos-172-1.8FIGURE3.3.16QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITYBUNDLELOCATION23,101.6eI-OOI-CC1.41.21.0-0.8-0.6-0.4~~~/ee////).~.s~-~../.'~e/~/~~eJ~J....:;............:.Legende~'~~v~~eee~~~~~~~~~e~~r~~J~~~I~~~e'ee$e'\\\eGAMMASCAN:0.2-eSIMULATE-EI~~~~~'eeo.o$BOT12345678910111213141516.1718192021222324OMAX1ALNODETOP FIGURE3.3.17QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITYBUNDLELOCATION66,401.8>>1.6>>CONTROL:RQDI:OSITIQN:1.4I-01.2O01.0-0.8LlJO.BLLI0.4>>>>~~~~8~J~~~0~J~~~I~I~~~I~~'~r>>~y~~~>>>>>>''~/~I'>>~>>///~//~/>>~Q~>>Legend>>>>////~/GAMMASCANSIMULATE-E~J~~~~~~~~0.20.02345B789101112131415161718192021222324BOTTOMAXIALNODETOP FIGURE3.3.18QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITY31BUNDLEAVERAGE1.6~'1.4I-1.2rQ01.0I0.8LLI00.6-UJ0.4~~~~~~~~/'///I//I~w.rP~I~tV'~LegendGAMMASCAN:SIMULATE-E~~hr~~r~~~~~~Wh~~~~~I\-%------~~~~1\~l0.2~4~~~~h~~h~h~~0.0123456789101112131415161718192021222324BOTTOMAXIAL-,-NODETOP FIGURE3.3.19QUADCITIESUNIT1EDC2RADIALGJQtSLSCANCOHPARISON52500.6080.75?0.6240.7740.0160.0170.5790.7370.5930.7690.0140.0321.175l.157-0.0180.6740.8170.6950.8490.0210.0321.0151.0571.0441.0700.0290.013X.XXXGAHHASCANX.XXXSIHULATE-EX.XXXDIFFERENCEI420.8280.9490.8340.9690.0060.0201.0001.2911.0161.2670.016-0.024l.2731.3000.0271.0921.1201.0931.0981.1091.1000.006-0.0110.007STANDARDDEVIATION:1.82/400.5730.5780.0050.8901.2151.0701.0581.0621.1420.8881.1651.0421.0491.0701.127-O.OOR-0.050-0.028-0.0090.008-0.015l.2341.229-0.0050.8070.8070.0001.0351+025-0.0101.0491.0641.0571.05?0.008-0.007l.0591.057-0.0021+0261.0340.008360+6800+8390.69R0.8480.0120.0091.2741.0?RI1.2841.0791.2691.0601.0411.2041.06?I1.R421.0761.2381.0691.051-0.070-0.005I-0.042-0.003-0.0310.0090.0101.RRR1.201-0.0210.9421.0150.9421.0080.000-0.0071.0511.0661.0551.0421~0461.060-Oo009-O.ORO0.0051.0281.0351.0391.0241.0411.044"0.0040.0060.0051.0501.0381.0541.0360.004-0.002320~70308310~90409731010101510401044102610051~005102910660.7190.8430.9190.9720.9961.0091.0301.0311.0241.0050.9971.0241.0600~0160.0120.015-0.001-0.014-0.006-0.010-0.013-0.0020.000-0.008-0.005-0.0061.0371.05R0.01530135791113151719212325R7293133 AOlFlGURE3.3.20QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX0662I-~)VC)IOClll!NCC~0Legend~...'-"0=Measuredo=CalculatedIIC)0.012.024.03B.O48.0B0.072.084.09B.O108.0120.0132.0144.0DlSTANCEFROMBOTTOMOFGORE(IN)
FJGURE3.2.8)Q)SUSQUEHANNASESUNITS1AND2CORETIPLOCATIONS5957555351494745434139373533312927252321+++++++++++++++++++++++++++++++++++++LINEOFTIPSYMMETRY+++444464850525456586004220222426283032343638LocationForIndividualTIPResponseComparisons00020406081012141618XControlRodLocation~TraversingIn-coreProbeLocation FIGURE3.2.9SUSQUEHANNASESRELATIVENODALRMSOFTIPRESPONSECOMPARISONS10FIGURE3.2.9aV)lZCl0LLI0l~UJCL"CLI-86420mQ.pQQQg0~".'-"-~-------'.-"--O-"-pQQ0O.0.g,:Q.00::~:0~+pQp~".O-b.'ILegend0U1C1i...b,U1C2oU1C3QU2C102468101214COREAVERAGEEXPOSURE(GWD/MTU)1610FIGURE3.2.9bV)CL"D0ZI~LLICCCLI-86420QLegend0U1C1U1C2UlC3QU2C1>0D(4!Qw~asii!wo-i0I0.20.40.6FRACTIONOFCYCLELENGTH99-0.8QQ'GC"..".""""Cl'"'""b;"""0OOQ.0.:b,QOQQO00QQO~Q00'00~~"--"O.>0'4OwaoLJQ 180FIGURE3.2.10SUSQUEHANNASESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON1.490GWD/MTUCYCLEEXPOSURE180140120I-zD100Illzz80CoQ.80'""""o'"<>"o"g++g"+q()Q00+040200I0123466789101112131415161718192021222324COREAXIALNOOE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-100-FIGURE3.2.11SUSQUEHANNASESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS1.490GWD/MTUCYCLEEXPOSURE615957.5553514.947450.53-1.581.50.73-0.071.56-0.53-2.142.491.15II++43+41ss+37+++333.26+++29+++253.89+++.2119I,II171.7715II1311+97lI.IIIIII000204060810120.8923-0.550.8-0.20-1.65-1.91-0.1516++-0.241821416-0.24-2.46-1.63-0.13-3.470I-1.120.33-0.57IIII234363840424III2628303I0222419I1.63II-0.81-0.810.032.0044648505254565860Diff=[(Calc-Mess)iCoreAvgTIPResponse]X100%101-FIGURE3.2.12SUSQUEHANNASESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS1.490GWD/MTUCYCLEEXPOSUREMONITORLOCAllOH80>30MONITORLOCAllOH4b>bj140140leelee<<0C1404~ee"0I00~~$ILl-.o--->>---4001$0Xls140~4soC40000obbob0I000Tt'44044I~$44014010<<4$1~I41$10ITI414$$$14444$4CORP.AXIALHOORtNCA$VNSOhtSects<<0$OALOVLATCOht$$44ONSS~ooNTNVLsostosmo<<I44~~~'I~~10111414IiI~I~ITIi14$4$14444$4CORKAXIALHODRt<<$$4UNCOTttNseto<<4$0OAIOUMTCDhtNsstoNSS~co<<TNVL$00tosmoNMONITORLOCATIONe0,00MONITORLOCATOH32.801441$0leeIee140>40is~00000~804IITOItto01401$02:~0a0V060IIC.004044I44>>~I4$444T4~14111414141$1411141$$4$14$44$4CORKAXIALNOOKtNCASVIICOTltIlsstONssoOALOVLATCOTllIICsto<<0CNoo<<TNOLAootosmo<<00\~$4~~1~~1441141444>4I~ITILI~4441144414CORKAXIALHOORtNcACUIIcohtscstoNecoOALOVLATCDTltSCetONSS~OO<<hloLsootoshIO<<-102 180FIGURE3.2.13SUSQUEHANNASESUNIT1'CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON6.918GWD/MTUCYCLE'XPOSURE180140120I-D100IIIZZ80V)CL60+050Q.0..00+Q:""0"+0400200l0123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-103 FIGURE3.2.14SUSQUEHANNASESUNITtCYCLE1RADIALTIPRESPONSECOMPARISONS5.918GWD/MTUCYCLEEXPOSURE61595755S351494745434139370.07++++-2.75.232.5-0.93-0.70+++1.22-0.76++++-5.29++++0.60.51.49+4035333129I2.379I2.2-0.010.50272523'7iaI191715132.09I4032.4-1.91-2.67++++-0.2236-0.86.14I9-I78.17-0.76-3.26951-IIII000204060810121416182Q2224262830323436384042444648505254565860Diff=[(Calc-Meas}/CoreAvgTIPResponsejX100%-104-FIGURE3.2.15SUSQUEHANNASESUNIT1CYCLE1INDIYIDUALTIPRESPONSECOMPARISONS5.9'I8GWD/MTUCYCLEEXPOSUREMONITORLOCATIONdIL$$MONITORLOCATION4$,$$ISSISSllsfod,IIS----4-45lg100C000~IttsLrlcLtsNl??00-ILI=seTII004I~0~0tsts~t~l~7~lt11llllltIl1017IS10lellltllltCOfNNAsvasoll~aespoNss0OAIovMTtoTI~aeepoaee~CONTNOLaoepoeITION0~t~4~~7~~1011Il10ltllIS17I~10tstlttllltCOReAXIALNooefNNAsvasoTlpNsspoNse0OALovMTSOllpasepoase~OONTNOLaooposITIONMOHITOALOCATIOH00,$$MONITORLOCATIOH$$,$$ItsltsIseNe~eefseset.h..e400eo0t0e~dvsIteLrlls~00..L0f0]f~04"tsIIIl~t0~7~~10111ll~%101~171~IltetlltllltCOIIeAXIAI.NooeIISAsvaloTI~aeepoaseoCALOVLATSOTIPNSSPONee~ooNTNOLaoopoelsoa0It0~S~'I~~10111tllltll'I~17coeeAxIALNooefvKAsvalolipalspoase0OALOOLATSOTlpasspoase~ooataoLaooposITIVNII70tsIlttllll105-180g~lFlGURE3.2.16SUSQUEHANNASESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON11.617GWD/MTUCYCLEEXPOSURE1BQ140120I-zD100ILl"Z80COQ.eo400+0~+00+00000':000+200012346B789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-106-FIGURE3.2.'17SUSQUEHANNASESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS11.617GWD/MTUCYCLEEXPOSUREI615957555351494743413937-0.4786-1.89-2.182.0-2.880.212.00.840.014.3-2.011.66++++++++-0.363533312920601.82-0,883.641.81++++-0.102725232119.1715130.5-0.39-1.08-0.24.703.4-1.08-2.45-0.80-0.080.29753Y1'2.5745-0.8828-0I00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponsejX100%107-flGURE3.2.18SUSQUEHANNASESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS18.617GWD/MTUCYCLEEXPOSUREMOIKTORLOCATIONKK,KSMONITORLOCATIONCC,SKININrgNlIleee044+o~-K--0IteZIgINjle~w0r0orI~~~~III~I~~14IIISII11le14lfIlletelltttttlCOREAXIALNOOKNIARURROTlo4Reoooeo0OAIOVLAIROIIRRa40aeo~CORIROLROORoemON~I1~~I~I4~1411It1411'N14lfI~IltetltltlIICOILKAXIALNODE4NRARVRIOTIPRSSIONRR0OALOVLATCOTIRRterooeo~coofRVL100toemoNMOIKTORLOCATION40,8KNeII~11~1Nog40J4"re0+0o0lieee~I0otor'-'0'L+000+Z~I4000l.0te~~II~~~I~~1411IIISItlllelfI~lel4llttttltCOREAXIALNOOKrNCASURC0TIRRCSRORSR0OALOVLAfCoTIRRRRSORSR~001TROL100eoemoNI1I~~III~le11111IIItellIfI~1SNIIISIIIICORKAXIALNOOK+NCARURCOTIRRCteoNRR0OALOIRATCOTIRRNtoRSR~CONTROL100ROQllON-108-9OFIGURE3.2.19SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON0.200GWD/MTUCYCLEEXPOSURE,8070BoI-zDeoLQzz40COCL3Oo~+i6~o:..............................+...Q...i........""+:""""'"""':."""""'"""'.""@'"O')0~~~~~~~~~~~~Q~~~~201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-109-FIGURE3.2.20SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS0.200GWD/MTUCYCIEEXPOSURE615957555351494745-1.86-2.6505-2.514.50-2.27-3.40t+++.2043413937I3+-033-1;65-0.8227353331292.88-0.3090582.6.926.5II62725232120542.4I-3.31154.964.49I191715131197II3-0.1341-2.743.7970.4+3-0.7706-0.20I!IIYiI00020<06081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponse]X100%-110-FIGURE3.2.21SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS0.200GWD/MTUCYCLEEXPOSUREI$OIETOALOCATIOII45,$$$IONTOALOCATIOK4'ss$o0+.+4OO~0XssNXXQcs4O~$00~$~$0$ogS~~~TSS'N11lsNN'NNITI~ISSSSlTSSSSICOREAXIALIIOOK+NSASSSKOTltSSSSTNNS0CAIOVLAIKSlitAsstONSO~CONTNOLNOOSOSITlDN0IS~~~T~NIIISNNNNITNI~SsslssssslCORKAXIALNOOK+NSASVASOTltSlstONSS00LCVLATTOlitASStONSC0CONTNOL000tOSITNNIKONITORLOCAtlONOO,$$LIOIIIIORLOCAllOII$$,$$~0SSl~0'0a~.~s+gssXss+)~)4-k~-4-0-$~rr-p---00QTS~~SS~~0T~~ISIINNNNNITISISSSSISSSSSICOREAXIALIIOOE0ICKASVAKOTltNKStOINKoCALOVIAIKSlitNsstoNSK~OONTNOLSOOSOSITlCWSISS~~'T~~N~IISISNNNlllsllSOSlSSSlSICOIIKAZALIIOOE0llKASVAKOTNNKStONSKOOAIOVLATKOTltasstONSC~OONTNOL000tONllON 9OFIGURE3.2.22SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON2.587GWD/MTUCYCLEEXPOSUREBo70eoI-z60LLIzzV+4oCO0soQFQCiQ20100012S4667891011121314'I6161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSEQCALCULATEDTIPRESPONSE-112-FIGURE3.2.23595755535149474543413937353331292725-23211917151311975-31SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS2.687GWD/MTUCYCLEEXPOSURE-3.57-1.225.71-1.33I3J-2.611.5I0.5.750.60.092-2.1.17-1.05-0.332.320.8-2.39-3.135.4-2.400.8++++-1.8548-002-2.015.9052.6734.38-0.16-1.79-1.41+-3.15-6.860.7+i!00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Meas)/CoreAvgTIPResponse]X100%113 FIGURE3.2.24SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS2.687GWD]MTUCYCLEEXPOSUR~~IONITOIILOCATIONaL$$MONITORLOCATION4$,$$gaeeeO.Cae000Igse0$o+f0oool4..$.o.L..I'TTIoIIIII~s~~~r0I~11ls>>>>>>>>lr>>>>tetlstaaelCORKAICALNOOK+vsaavasot>>saeaooee4oalNAAtsotiesseaoees~oooteolsooroeNNN~1s~~~~re~>>ntsIe1IIaIetlta>>sastssaeaICORKAXQLNOOK4NeaeoeeotieeteJONet0oslolsstsottoeaaaoees~ooNININ.NooroeltNN$IONITORLOCATION$$.$$eeteQu~ee0seX$I~+0+0lr4~s'Z~40d~Ite~~sr~lail>>la>>>>>>lt>>leaetlssseslCOIIKAICALNOOK+vsAsvstotiesseeoos$oOAIOIAAISOtieSteeooas~ooeteoLaooIoeotoN~Ita~~r~~>>11ts>>11IaIelrIaCOR!AXIALNOOK+vtssvssoliellssroeesoOAIOVLSttotteItaaroees~OoetaoLNooeoalttoN-114-90FIGURE3.2.25SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON4.638GWD/MTUCYCLEEXPOSURE8070g)BOI-zD50illzz40CoQ.~30000q)0C04~b$+++0+201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE115-FIGURE3.2.26SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS4.638GWD/MTUCYCLEEXPOSURE61I595755535149474543413937-2.30++++-3.56.73-2.442.3-2.365.363053-4.00-2.443.68-1.59-1.230;51353331290.832028-1.01-0.86-2.30++++6.5J627252321I~-2.94.73-2.05-0.212.24++++49171513-0.460.8-0.360.30,320.4I5-2.10322.10-4.5600020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Meas)/CoreAvgTIPResponse]X100%-116-FIGURE3.2.27SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS4.638,GWD/MTUCYCLEEXPOSUREMONITORLOCATIONdd,ddMONITORLOCAllONSd,dd~0~0ssggss~SS0OfO'+000004000000SL00~0Qss~0Sogf~~~JI0stsItSSS0T~ls11TSlt11ISltIfISltSSSISSSSSloNSASOSSOTI~PNSPONSS0OALOOLATSOTIPNSSPONSS~CONTSOLNONPOSITION0\~~S~~Tt01011ltIt11lt10lfltltttSlStSSSICOREAXIALNOOK+NSASONSOTIPNSSPONSS0OALOSIAftoTIPNSSPONSS~CONTSOL100POSITIONMONITORLOCATIONsd,ddMONITORLOCATIONdd,dd~S~S~STs5LSgS~0+PLoOOOodogoot0.t.00....0~0~~ssf(-0.,0.0o010JIIIS0001~~ltII.ISISlllsl~flltlttttlSSSSSICORKAXIALHOOKPNSASOSSOTIPIISSPONSSoOuauuSSOTIPNSSPONSS~OONTSOL%00POSNION0I0t~S~T0~ltIIflitllI~ltlfI~I~SttlltlttlCORKAXIALHOOK0ISASSSSOllPSSSPONSSoOALOOIATSOTIPNSSPONSS~OONTNOLSOOPotlflON117 90FIGURE3.2.28SUSQUEHANNASESUNIT1CYCLE3AVERAGEAXIALTIPRESPONSECOMPARISON.0.178GWD/MTUCYCLEEXPOSURE8070BOI-zD50.LLIzz40M030+0"+""00I020100012345678910'1112131415181718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-118-FIGURE3.2.29SUSQUEHANNASESUNIT,1CYCLE3RADIALTIPRESPONSECOMPARISONS0.178GWD/MTUCYCLEEXPOSURE615957555351494745434139373533312927252321-1917151311975-1.48-2.68I010.620.54-2.081.55283.860-0.14-2.40-0.77-0.32-4.95-1.62-2.375.790.64.986.42.225-0.830.383.38363.4992,8-3.25-3.09-3.72290.08++++2.0-0.51II00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Measj/CoreAvgTIPResponse]X100%119-FIGURE3.2.30SUSQUEHANNASESUNIT1CYCLE3INDIVIDUALTIPRESPONSECOMPARISONS0.178GWD/MTUCYCL'EEXPOSUREMONITORLOCAllONdlLddMONITORLOCATIONaa,dd~00000CZtg00IN,4T0Lo+444pt404QI~-~0Se00$00~00LI.~0I0~0~0~I~ttts'I~lt1010tt10100001Ases04CORSAIDALNODS4vaA00000tti000000004OAAOUIAtaott~Naasovea~OovtaOA000000ttvvtI00~0~7~letttalettteteCORS.AXIALNODS+vsA00000tta000000004OAIOUAAtaatto00000000~CoataoL000000IIIONttI~10teSl1~00SIMONITORLOCATION~$00~04...0.4t44o00)te404doo0+"-4"4-d-9'-'4To4ja500O+tele044~~I~I000~~7~~I~11ts10ItIa10ItI~I~testassectCORSAXIALNODS4vaAaaaaaTlaassaovaaoOAIOUIAtaott0aaaroaea~OONINOL000eosttvvlI0~00~0~~letttatsvteteIt10100001tltltlCORSAXIALNODS4VSASUaaalatIICS00000oOAIOUIAtaaItsItaaaoaaa~OONtllOl000000ttION120-9OFIGURE3.2.31SUSQUEHANNASESUNIT1CYCLE3AVERAGEAXIALTIPRESPONSECOMPARISON2.228GWD/MTUCYCLEEXPOSUREeo70BoI-zD50LUzz40Co03O~.:00+0"00+oqooo0+++0'0201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE121-FIGURE3.2.32SUSQUEHANNASESUNIT1CYCLE3RADIALTIPRESPONSECOMPARISONS2.228GWD/MTUCYCLEEXPOSURES9S755I535149474543413937-0.94-2.970.84-3.190.85-0541.586.613.052-1.242.53.23.89-0.100.83353331291.8-2:14-0.064.4-1.022725232119171S1311975310.611.63.3-5.43.44-2.87-2.78-4.290.6-3.9856-1.19-6.42-3.651.99030002040608'1012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponse]X100'/o-122-FIGURE3.2.33SUSQUEHANNASESUNIT1CYCLE3INDIVIDUALTIPRESPONSECOMPARISONS2.228GWD/MTUCYCLEEXPOSUREMONITORLOCATIONSS.SSMONITORLOCATION44SSeeII1eeIITe1j+S0~4oKlTeI-a,II>>VlII5>>'i--r0t0OeeX$>>4g004T440r-"'-24-$>>II1-r--f00Ie4II7IIILIIIIIt~1~~L4~T~4NI11leI~If1414If'I~Ie24N22eeefCORKAXIALNODSveAevheolit0eetohee0CAICOLATeolitNeetoheo~CONlNOL400t041TtON14~~4~2~4Ie1114I~>>leleITleteN212224NCOllhAXIALNOOC+NNAOVNeelltheetONeh0OALOVLATeeTltheetoheh~CONTNOLNOOtOemONMONITORLOCATIONOO,SSMONIIORLOCATIONSWISS~I~~4Te~40C+00000oo400eeQ>>~eeooS~0oCooe0I4Ie+le~144~~~T~~1011IeIe12I~I~\fIe1424111222efCOhKAXIALNODS~I~111$Ie12Ie'I~Il12I~2421222$$414~~44T~COh8AXIALNO1IITAOVheOTI~heetOI>>e0CALOVLATNOlitheetoheh0ooNTNCL100toemoN+tfeAOVNTOlttheetoheaoOALCVLAT!OTltheetoheh~OOKfhOLNOOtoeITION-123 180FIGURE3.2.34SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON0.387GWO/MTVCYCLEEXPOSURE180140co120I-R100'llKX80COL,ea+..o...4......~...............:,....e.+000~+200012345e788101112131415161718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-124 FIGURE3.2.36SUSQUEHANNASESUNIT2CYCLE1RADIALTIPRESPONSECOMPARISONS0.387GWD/MTUCYCLEEXPOSURE615957555351494745434139373533312927252321-1.060.64.5290.094.760.5-0.55-0.403.470.88-0.89-1.333.60.41-5.24-1.98-5.221.231.89-1.56-1.800.71.28-2.47-2.082.20.6291I4.319-1715132022-0.07-0.76-3.68-0~052.9-2.93119753110-009-1.8513-3.2100020406081012141618202224262830323436384042444648505254565860XDiff=[(Calo-Mess)/CoreAvgTIPResponse]X100%125-IFIGURE3.2.36SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS0.387GWD/MTU.CYCLEEXPOSUREMONITORLOCATTON4OPSI~I4~ITT000te01t~~~~10~Te11TeNTeNlelTI~NtetlteteeeCOREAXIALNODE+vtAellteeTN0teoooeeoDAIOOIATteTNatetooea~covleoctootoelTTDOII!~1t~~~010~lt11NNNleleTTNl~tetlttleelCOREAXIALNODE4TNAevoteTNttetovee0OAIOIAATCDTVetetovec~oovleoeeootoeITlo4IMONITORLOCAllON40,5$MONITORLOCAllON02,$3eeJJ.t04&#x17d;Nt]~ee++aJo40+0III~~te0~e1~0NllltltllleNlTIANtetlttteelCOREAXIAI.NODEtVtAeetteTlt1tttOINe0OALDVCATKDMtttKHNO~OOVTDCN.DODtetITloee1te~~~1~~IeCORE+NEAOVACOTleteetOINCoOAIOVCATXD~AettOTNC~oovTDDLtootoeITlov!I11IeltN14le1111Itte11ttteelAXIALNODE-126-180FIGURE3.2.37SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON5.249GWD/MTUCYCLEEXPOSURE1eo140120I-z100LLIz80CoCLeo0+00Q++00+g}Q40200012346e789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE127 FIGURE3.2.38SUSQUEHANNASESUNIT2CYCLE'fRADIALTIPRESPONSECOMPARfSONS5.24SGWD/MTUCYCLEEXPOSURE615957-555351494745-4.77ii-2.630.72.685.031.22-0.95-0.923.39.7343413937--3.29+0.978.3-2.87-0.29-2.33+-30735333129++++I1.2I88~35-0.170.8-0.65.17272523-3.716.3243-2.98++++0.82191715I1311753vI0020.27I5.94.960810121416-0.18-1.78I1.22.8-0.67-6.45-2.98-4.53IIII182022242628303234363840424446485052-4.8754565860Diff=[(Calc-Mess)/CoreAvgTlPResponse]X100%-128-FIGURE3.2;39SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS6.249GWD/MTUCYCLEEXPOSUREMONITORLOCAllON4IL$$MOIQTQRLOCAllON4$,$$100NSNSat~0.T00-IIOIJIIo1IC..44IttCC100g.00~0000.S..+~$$44+,'0I0I0I1.10~0~~0~~a11lta10aaTf'alt00tlttStaCORKA)QALNODC+NSASUSSDTloSSSOONK4AkISSAATSDTI~NSSSONK~CONTSOLSOOSotfAON01t~00~T~~<<TITSISSINNITNISSSSISSS~SICOAQA)QALNODS+NSASUSSOTISIISSSONSS0OAIOULAItoTloNtttot00~CONTSOLNODSOSITIONMONITORLOCAllON40,$$MONITORLOCAllON$$,$$100<<0100~0~000+~I110LZ100~0000o40~4f040004w'$-'f'--0L..0000III0I00~~~10~I~llltlt10<<a111010SttltttttiCOR4ATQALNODEtSNASUSCDTIDSCSSONKoOAIOUIATCDTIDIICSDONK~DONTSOL000SOSNION~00~0~T~~'l01110lt10a%ITN10SttlStttSlCORKNQALNODS4NCASUSCDTltDCSSONK4OAIJUIATCDTIDIICSJONK~OOWIOLNOOSONllON129-180FIGURE3.2.40SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON12.050GVYD/MTUCYCLEEXPOSURE180140120l-zD100Illzz80COILBo+Qj+oooot000J40200+012345B78S1011121314151B1718192021222324COREAXIALNODE+MEASUREDTIPRESPONSEoCALCULATEDTIPRESPONSEj.30-FIGURE3.2.4'fSUSQUEHANNASESUNIT2CYCLE1RADIALTIPRESPONSECOMPARISONS12.050GWD/MTU'CYCLEEXPOSURE61595755535149474543413937353331292725232119171513119753y1II-4.02-4.34-0.18-7-3.23-3.015068-1.162.8-1.660.892.94.81.45990.34-1.52640.477-0.930.7-2.119.216.26.63.427.42.4-0.713.30-1.88-0.81-2.00-2.08-0.061.46.5100020406081012141618202224262830323436384042444648505254565860XDiff=[(Cele-Meas)/CoreAvgTIPResponse]X100%131-FIGURE3.2.42SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS12.050GWD/MTUCYCLEEXPOSUREleOHITORLOCATIOH4$,$$'14$4$+o44oo,>so~eoe+0+4<<f4Sgee)~tsLD'.Ito~oo<<I7dI~~$~7~TeTlT$1$14leTe11T<<4te$1ttte$4CORKAXIALHOOK4NeoeoeeolitNeetoese0OlIOOLNTODheetetONse~OONTOOLNOOtoelhON~1t~4e~te~TohltltCORKANAL+NeAesetolitTNetooseoOAtowATtohtacetoeee~OONTNOLNOOto&#xb9;hDN141$1<<lt41$tetlttte$4HOOKMOHITORLOCAnOH40,$$IIOHITOllLOCATIOH$$,$$14$1$$40400T+4430~o%$~o~sso)004$0+0~It$~eo1~~lehT<<1$14&41144$<<tlttt$$4CORKAXIALHOOK+lltA$I&#xb9;$0Tl~eeseoeseoOAlleltteslltNestohoe~OONT$0LNOOte&#xb9;llON~It~$~7~IShItll141$1<<IT4Ist<<11tt$$$4CORKAXIALHOOK+NeAtsetOlitNtstoestoOAA004ATtOTltNeetoete~ODNTNOLNDO$0&#xb9;hON132-FIGURE3.2.43SUSQUEHANNASESUNIT1CYCLE1SIMULATE-EVSGEPROCESSCOMPUTERCOREAVERAGEAXIALPOWERDISTRIBUTION1.5+w10O)I0.5SIMULATE-EGEProcessCorn~uter0.023456789101112BOTTOMTOPCycleAverageExposure=1.490GWD/MTUCorePowerLevel=99.6%ofratedTotalCoreFlow=100Mlbm/hrReactorPressure=1005pslaCoreInletSubcooling=23.6Btu/Ibm133 FIGURE3.2A4SUSQUEHANNASESUNITtCYCLE2SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.5CL1.0LIJOCLLIJ)I-LIJ0.5SIMULATE-EPOWERPLEX0.035-7BOTTOM91113151719212325TOPCycleAverageExposure=2.587GWD/MTUCorePowerLevel=99.9%ofratedTotalCoreFlow=95.8Mlbm/hrReactorPressure=1000pslaCoreInletSubcooling=24.7Btu/Ibm-l34-FIGURE3.2.45SUSQUEHANNASESUNIT1CYCLE3SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.51.0LLIOCLLIJCL0.5////SIMULATE-EPOWERPLEX0.0BOTTOM35791113151719212325TOPCycleAverageExposure=0.178GWD/MTUCorePowerLevel=100%ofratedTotalCoreFlow=96.9Mlbm/hrReactorPressure=1002psiaCoreInletSubcooling=24.4Btu/Ibm135-FIGURE3.2.46SUSQUEHANNASESUNIT2CYCLE2SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.51.0LLJO.CLLJI-LJJ0.5/tII//SIMULATE-EPOWERPLEX0.0135791113151719212325BOTTOMTOPCycleAverageExposure=0.583GWD/MTUCorePowerLevel=100%ofratedTotalCoreFlow=96.2Mlbm/hrReactorPressure=1000psiaCoreInletSubcooling=24.4Btu/Ibml36-FIGURE3.2.47SUSQUEHANNASESUNIT1CYCLEISIMULATE-EVSGEPROCESS'OMPUTERBUNDLEFLOWSAT1.490GWD/NITU0.1200.1220.0020.1190.1210.0020.1170.1210.0040.1190.1210.0020.1190.1210.0020.1200.1220.0020.1190.1200.0010.1310:1350.0040.1320.1330.0010.1180.1220.0040.1310.1180.1330.1210.002.0.0030.1300.1180.1350.1190.005-.0.0010.1170.1210.004PROCCOMPSIMULATE-EDIFFERENCEUnitsareMlbrn/hrAverageDifference:0.001StandardDeviation:0.0020.1180.1200.0020.1190.1210.0020.1170.1190.0020.1160.1190.0030.1160.1170.0010.1180.1200.0020.1160.1190.0030.1170.1180.0010.118*0.1170.1160.1200.1170.1190.0020.00.0030.1170.1180.0010.1170.1200.0030.1160.1190.0030.1150.1190.0040.1300.1350.0050.1300.1310.0010.1310.1320.0010.1290.1340.0050.1180.1200.0020.1150.1170.0020.117.0.1170.00.1160.1190.0030.1300.1340.0040.1300.1310.0010.1300.1310.0010.1300.1340.0040.1180.1190.0010.1180.1180.00.1200.119-0.0010.1130.1160.0030.1150.1170.0020.1140.1150.0010.1140.1170.0030.1150.1150.00.1170.1190.1190.1180.002-0.0010.119.0.1220.1190.1220.00.00.1280.127-0.0010.1110.1150.0040.1120.1140.0020.1120.1160.0040.1120.1140.0020.1130.1140.0010.1140.1160.0020.1190.1190.00.1210.1210.00.1310.1360.0700.1260.1350.068-0.005-0.001-0.0020.1140.1180.1150.1180.0010.00.1170.1190.0020.1150.1160.0010.1160.1170.0010.1190.1200.0010.1240.1240.00.1250.1350.0680.1270.1340.0680.002-0.0010.00.1210.1240.1250.1230.1230.1200.1230.1230.1210.122-0.001-0.001-0.002-0.002-0.0010.1260.1350.1380.069.0.0700.1260.1300.1360.0680.0680.0-0.005-0.002-0.001-0.0020.1280.1290.0010.1290.1290.00.1300.1300.00.1300.1300.00.1300.1310.0010.1320.1410.0690.1340.1400.0680.002-0.001-0.0010.0690.0690.0690.0690.0690.0680.0680.0680.0680.068-0.001-0.001-0.001-0.001-0.0011370.0700.0700.0680.068-0.002-0.002 FIGURE3.2.48SUSQUEHANNASES-UNIT'ICYCLE3SIMULATE-EVSPOWERPLEXBUNDLEFLOWSAT0.178GWD/MTU0.1140.1160.0020.1140.1150.0010.1180.1210.0030.1190.1230.0040.1170.1220.0050.1190.1200.001POWERPLEXSIMULATE-EDIFFERENCEUnitsareMlbm/hr0.1160.1170.0010.1190.1220.0030.1200.1180.123.0.1210.0030.0030.1180.1180.00.1210.1230.0020.1190.1220.0030.1170.1210.0040.1200.1200.0AverageDifference:0.001StandardDeviation:0.0020.1210.1210.0.0.1310.1330.0020.1300.1300.00.1220.1210.1300.1240.1200.1320.002-0.0010.0020.1240.1260.0020.1290.1330.0040.1310.1330.0020.1190.1210.0020.1220.1240.0020.1270.1300.0030.1280.1280.00.1190.1190.00.1210.1230.0020.1200.1190.1190.122'0.0010.0030.1180.1180.00.1210.1220.0010.1190.118-0.0010.1190.1220.0030.1190.1210.0020.1150.1190.0040.1180.1210.0030.1140.1180.0040.1170.1200.0030.1150.1190.0040.1190.1210.0020.1160.1200.1190.1190.003-0.0010.1170.1170.00.1230.0030.119-0.0010.120.'0.1200.1170.1170.1200.1190.1160.1220.002-0.0010.0020.1200.1200.00.1200.1220.0020.1210.1210.00.1240.1240.00.1190.1210.0020.1170.1210.0040.1200.1220.0020.1140.1170.0030.1180.1200.0020.1180.1210.0030.1220.1240.0020.1180.1220.0040.1250.1270:0020.1300.1320.0020.0640.063-0.0010.1170.116-0.0010.1190.1200.0010.1180.1180.1190.1170.1200.118-0.0010.002-0.0010.1210.1220.0010.1230.122-0.0010.1260.1270.0010.1290.0640.1310.0630.002-0.0010.1200.1210.0010.1230.1230.00.1170.1180.0010.1260.125-0.0010.1200.1210.0010.1240.1240.00.1170.1190.0020.1270.126-0.0010.1210.1220.0010.1260.1260.00.1200.1220.0020.1280.1280.00.1280.1290.0010.1360.133-0.0030.1310.0640.0650.1320.0630.0640.001-0.001-0.0010.0640.063-0.0010.0640.0640.0620.062-0.002-0.0020.0640.0640.0640.0640.0620.0620.0620.063-0.002-0.002-0.002-0.001-1380.0650.064-0.001 FIGURE3.2.49SUSQUEHANNASESUNIT2CYCLE2SIMULATE-EVSPOWERPLEXBUNDLEFLOWSAT0.583GWD/MTU0.1180.116-0.0020.1190.117-0.0020.1160.1190.0030.1190.118-0.0010.1170.1210.0040.1240.121-0.0030.1190.1230.0040.1230.1210.1220.124-0.0010.0030.1170.1210.1210.1190.004-0.0030.1230.1200.1210.122-0.0020.0020.1300.1330.1330.1320.003-0.0010.1170.1210.0040.1210.120-0.0010.1200.1220.0020.1180.1210.0030.1220.121-0.0010.1260.1290.003POWERPLEXSIMULATE-EDIFFERENCEUnitsareMlbm/hrAverageDifference:0.001StandardDeviation:0.0030.1200.1220.0020.1320.1320.00.1300.1320.0020.1220.120-0.0020.1180.1210.0030.1280.1280.00.124-0.1280.0040.1190.1190.00.1130.1180.0050.1170.1210.1200.1190.003-0.0020.1180.1140.1170.118-0.0010.0040.1150.1190.0040.1160.1160.00.1180.117-0.0010.1120.1170.0050.1150.1190.0040.1160.115-0.0010.1180.117-0.0010.1120.1170.0050.1130.1180.0050.1160.1160.00.1130.1180.0050.1160.1160.00.1120.1160.0040.1150.1200.0050.1180.1180.00.1180.1180.00.1150.1190.0040.1110.1160.0050.1150.1150.00.1150.1150.00.1110.1160.0050.1130.1180.0050.1170.1170.00.1170.1170.00.1150.1200.0050.1130.1180.0050.1190.1190.00.1180.1190.0010.1210.1250.0040.1210.1250.0040.1320.130-0.0020.0640.063-0.001,;0.1170'.116-0.0010.1160.1180.0020.1250.122-0.0030.0640.062-0.0020.1130.1170.1170.1150.004-0.0020.1170.1160.1160.119-0.0010.0030.1230.1260.1240.1230.001-0.0030.0640.0640.0620.062-0.002-0.0020.1120.1170.0050.1180.117-0.0010,1250.1260.0010.0640.062-0.0020.1170.116-0.0010.1170.1210.0040.1280.125-0.0030.0640.063-0.0010.1150.1190.0040.1220.121-0.0010.1290.1300.0010.0650.063-0.0020.1200.1200.00.1240.1270.0030.1370.134-0.0030.0650.064-0.0010.1220.1260.0040.1330.131-0.0020.0650.064-0.0010.1300.129-0.0010.0640.063-0.0010.0640.063-0.0010.0650.064-0.001139-3.3uadCitiesUnit1Cycles1and2BenchmarkAnadditionaldemonstrationoftheSIMULATE-EcalculationalaccuracywasperformedbycomparingSIMULATE-EresultstomeasurementsfromtheQuadCitiesUnit1Cycles1and2cores.AftertheendofCycles1and2,gammascanmeasurementsofselectedfuelbundlesweretaken.Thisprovidesanexcellentmeasurementofthepowerdistributionaveragedoverthelasttwotothreemonthsofeachcycle'soperation.ThistechniqueformeasuringthepowerdistributionisnotpronetothetypesoferrorsthataretypicalofTIPmeasurements.Reportedaccuracyofthegammascanmeasurements,combiningmeasurementuncertaintyandmeasurementmethodbias,isapproximately3%(Reference12),whereasTIPuncertaintyforreloadcoresistypically5.1%(Reference25).AsignificantnumberofcoldcriticaltestswasperformedduringCycle1.Theavailablecolddataincludebothin-sequenceandlocalcriticals.In-sequencecriticalsaretypicalofnormalreactorstartupswithwithdrawncontrolrodsuniformlydispersedthroughoutthecore.Localcriticalsinvolvewithdrawalof'afewcontrolrods(usuallyfromtwotofour)inalocalizedareaofthecoreproducingverypeakedneutronfluxgradients.Inadditiontothegammascanandcoldcriticaldata,hotreactivitystatepointandTIPmeasurementdataarealsopresentedinthissection.TheQuadCitiesUnit1core(Figure3.3.1)isslightlysmallerthantheSusquehannaSEScores(Figure3.2.8),containing724versus764fuelassemblies,anditsratedcorethermalpowerisapproximately25%lessthanthatoftheSusquehannaSESunits.FortheQuadCitiesinitialcycle,theentirecoreconsistedofGeneralElectricCompany(GE)7x7fuelwithalowgadolinialoading.ThiscontraststheSusquehannaSEScoreswherearelativelyhighgadolinialoadingwaspresentinthe8x8fuel.TheQuadCitiesreloadfuelforCycle2consistedofonly23GE7x7fuelassemblies,36GESx8fuelassemblies,andfivemixedoxidetestassemblies.TheGEreloadfuelcontainedasmallgadolinialoading.-140-3.3.1HotCriticalCoreReactivityComarisonsThepurposeforbenchmarkingthehotcriticalcoreK-effectiveforQuadCitiesistodetermineifanymajordifferencesinresultsandtrendsexistbetweenSusquehannaSESandQuadCities.BecausetheQuadCitiescorecontainsmainly7x7fuelandlowergadoliniacontent,thebenchmarkprovidesagoodcontrasttotheSusquehannaSESbenchmarkandatestofthesteadystatemethodology.Figure3.3.2showstheQuadCitiesUnit1Cycles1and2calculatedhotcriticalcoreK-effectiveswiththoseofSusquehannaSES.AlthoughQuadCitiesresultsshowmorevariation,alinearlyincreasingtrendispresent.ThistrendisconsistentwiththeSusquehannaSESresultsandsupportstheexposuredependencyoftheSIMULATE-EcalculatedcriticalcoreK-effective.Nobowl-shapedtrendsareevidentintheQuadCitiesresults.ThistrendisattributedtothelowergadolinialoadinginQuadCitiesversusSusquehannaSES.ThelargevariationinK-effectiveispossiblyduetotheinclusionofdatathatdoesnotmeetthesteadystatecriteriadefinedinSection3.2forSusquehannaSESdata.Themeasuredcoreoperatingparametersused'asinputtoSIMULATE-EarecontainedinReference27.AsevidentfromFigure3.3.2,theSusquehannaSESdataessentiallyformsacontinuouslineofdataasaresultofaverydetailedSIMULATE-Edepletioncalculations;however,theQuadCitiesK-effectivesarequitesparse.3.3.2ColdCriticalCoreReactivityComarisonsThebenchmarkoftheSIMULATE-EcalculatedcoldcriticalK-effectivetotheQuadCitiesUnit1Cycle1coldxenon-freein-sequenceandlocalcriticalsprovidesqualificationofPPaL'scoldmethodologyandmodelstoperformshutdownmargincalculations.Comparisonstothelargelocalcriticaldatabase(22localcriticals)testPPGL'scalculationofrodworthsinlargelocalfluxgradientlocationsthataretypicalofshutdownmargincalculations.PPGL'sapproachinbenchmarkingtotheQuadCitiescoldcriticalsistocomparethecalculatedin-sequencecriticalK-effectives(lltotal)tothelocalcriticalK-effectives.Table3.3.1presentstheQuadCitiesUnit.1Cycle1calculatedcoldcritical.K-effectiveswhichhavebeencorrectedforreactorperiod.Comparinglocaltoin-sequencecriticalresults-141 demonstratesthecapabilityto.calculatethesamecoreK-effectiveforcriticalconditionswithboth;peakedanduniformneutronfluxdistributions.ThelocalcriticalK-effectivesarecomparedtotheaverageofthein-sequencecriticalK-effectivesatthesameexposure.Table3.3.2showstheresultsofthecomparisons.TheaveragedifferencebetweentheK-effectivesis0.00007andthestandarddeviationequals0.00064.BothofthesevaluesarewellwithintheuncertaintyinpredictingtheSusquehannaSEScoldcriticalcoreK-effective(i.e.,standarddeviationequalto0.00137).Thisdemonstratesthatnobiasexistsbetweenin-sequenceandlocalcriticalcalculations.AnadditionaltestofPPGL'smethodsinvolvesdemonstratingthatthesameobservedbiasbetweenhotandcoldcriticalcoreK-effectiveforSusquehannaSESalsoexistsbetweenhotandcoldcriticalcoreK-effectiveforQuadCities.Figure3.3.3showsthehotandcoldcriticalcoreK-effectives.DespitethevariationinandlackofhotcriticalcoreK-effectivedata,thedifferencebetweenthecalculatedhotandcoldK-effectivesissimilartothatoftheSusquehannaSESdata.3.3.3TraversingIn-coreProbeDataComarisonsAlthoughtheprimaryreasonforthedevelopmentoftheQuadCitiesmodelistoperformthegammascancomparisons,someTIPdataisavailableforcomparisonfromReference27and28.Thisincludes15TIPsetsfromCycle1and13TIPsetsfromCycle2.ATIPsetcontains24axialmeasurementstakenateachofthe41radialTIPlocations.RadialTIPdetectorlocationsareshowninFigure3.3.1.TheSIMULATE-EcodewasusedtocalculatetheTIPresponsesforeachofthe28TIPsets.AsdescribedintheSusquehannaSESTIPresponsecomparisonsection,theSIMULATE-EcalculatedTIPresponsesarerenormalizedsothatthecoreaveragecalculatedTIPresponseisthesameasthecoreaveragemeasuredTIPresponse.TheaverageRMSofthedifferencesbetweentheSIMULATE-EcalculatedandmeasuredTIPresponsesforeachTIPresponsecomparisoniscalculatedasdescribedinSection3.2.3.ResultsfromthenodalandradialcomparisonsaregiveninTable3.3.3.ComparisonshavebeenreportedforallTIPsetswiththeexceptionofCase16.CorrectmeasuredTIPresponsedatais-142-unavailableforthiscase.AlthoughseveraloftheotherTIPsetsweretakenbeforethecorehadtimetoreachanequilibriumxenondistributionduetocontrolrodposition,powerorflowchanges,theyhavebeenincludedinthecomparison.Figures3.3.4through3.3.15present.representativeTIPresponsecomparisonsforCycles1and2.Fortwoexposurepointsineachcycle,coreaverageaxial,radial,andfourindividualTIPresponsecomparisonsareincluded.TheindividualTIPresponsecomparisonsinthefigures,wereselectedalongalinefromthecoreperipherytothecorecenterasshowninFigure3.3.1.ThesamefourTIPlocationsarealwaysshown.3.3.4GammaScanComparisonsAttheendofCycles1and2gammascanmeasurementsweretaken.TheavailableCycle1data(Reference29)consistofaxialpeaktobundleaverageLa-140activitiesfor31fuelbundles,individualaxialtracesfromtwofuelbundles,andtheaxialtracefromtheaverageofthe31individualtraces.Useofthisdataisprimarilylimitedtobenchmarkingtheaxialpeakingfactor.TheCycl'e2data(Reference12)aremuchmoreextensive.Atotalof89fuelbundleswerescanned.Ofthese,71werelocatedinoneoctantofthecore,providingmeasurementdataformostofthefuelbundlesinthatoctant.Theremaining18fuelbundleswerechoseninotheroctantstocheckforasymmetries.Seventy-threeofthebundleswerescannedat12axiallocationsatapproximatelytwelve-inchintervals.Theremaining16bundleswerescannedat24axiallocationsatapproximatelysixinchintervals.Thereportedmeasuredactivitywascorrectedtocorrespondtoactivityjustaftershutdown.Thepracticalaccuracyofthereporteddataincludingmeasurementuncertaintyandmeasurementmethodbiasisapproximately3%(Reference12,Section4.3).AspreviouslydiscussedinSection2.3,thegammascandataitselfisameasureofLa-140gammaactivity.Duringreactoroperation,La-140isproducedbothasafissionproductandbyBa<<140decay.Sincethehalf-lifeofBa-140isapproximately13daysandthatofLa-140isapproximately40hours,thedistributionoftheBa-140andLa-140concentrationswillbe-143-representativeofthecorepowerdistributionintegratedoverthelasttwotothreemonthsofreactoroperation.Aftershutdown,theonlysourceofLa-140isfromdecayofBa-140.Becausethehalf-lifeofLa-140isshortwithrespecttoBa-140,afterabouttendaysthedecayrateofLa-140iscontrolledbythedecayofBa-140.Therefore,therelativemeasuredLa-140activitiesarecomparedtotherelativecalculatedBa-140concentrations,andtheLa-140concentrationdoesnotneedtobecalculated.TheSIMULATE-EcodewasusedtocalculatethenodalBa-140concentrationsattheendofbothcycles.AttheendofCycle1,thepeaktoaverageBa-140concentrationwascalculatedforeachofthe31fuelbundles.Ofthese,17wereuncontrolledand14werepartiallycontrolled.ThecalculatedandmeasuredpeaktoaveragedatafortheuncontrolledandcontrolledfuelbundlesisshowninTables3.3.4and3.3.5,respectively.Theaveragedifferenceforall31fuelbundlesis1.2%withastandarddeviationof2.1%.Theseresultsdemonstrateexcellentagreementtothemeasuredaxialpeakingfactor.ThreeaxialtracesfromCycle1arealsoavailablefromReference29.ThemeasuredandcalculatedLa-140activitiesforeachtracearenormalizedto1.0priortothecomparison.Figure3.3.16showsthecomparisonfortheuncontrolledbundle,andFigure3.3.17showsthecomparisonforthecontrolledbundle.Figure3.3.18showsthecomparisonfortheaxial31bundleaverageLa-140activities.ThemeasureddatafortheseplotswereonlyavailableingraphicalformfromReference29.Therefore,nostatisticsarecomputedfromthecomparisons,butthefiguresdemonstratetheabilityofSIMULATE-Etocalculateaxialpowershape.MoreextensivegammascanmeasurementsweretakenattheendofCycle2.ThedatasuppliedinReference12allowforradial,nodal,peaktoaverage,andbundle(axial)comparisons.Fortheradialandnodalcomparisons,theperipheralbundleshavebeeneliminated.Thesebundlesarelowinpowerand,consequently,ofnoconcernfromathermallimitsperspective.Forthenodalcomparisonsthetopandbottomsixincheshavealsobeeneliminated.Thesenodesarelowinpowerandare,consequently,oflittleimportancefromasafetystandpoint.ThemixedoxidebundleshavealsobeeneliminatedfromthenodalandradialcomparisonssincetheyareatypicalofSusquehannaSESreloadfuel.<<144-Priortomakinganycomparison,themeasuredandcalculateddatawerenormalizedsuchthatthecoreaveragerelativeactivitywas1.0.However,forthecalculateddataonlythenodesforwhichthereweremeasureddatawereusedinthenormalizationprocess.ThecomparisonsarebasedonthemeandifferencebetweencalculatedandmeasurednormalizedLa-140activities.Thisdifferenceiscalculatedas:e.=c.-m.ii.iwherec.=thenormalizedcalculatedLa-140activity,~m.=thenormalizedmeasuredLa-140activity.iThesubscriptidenoteseithertheaverageactivityforthebundlefortheradialcomparisonsorthenodalactivityforthenodalcomparison.Thestandarddeviationsforthecomparisonsarecalculatedas:a(s)=NP(e.-e)iN-1100XMwhereM=theaverageofthenormalizedmeasureddataforthecomparison=1.0forallcomparisonsduetonormalization,e=theaveragedifferencebetweenthemeasuredandcalculatednormalizedLa-140activities=0.0forallcomparisonsduetonormalization,N=numberofLa-140activitiesforthecomparison.TheradialcomparisonswereobtainedbyaveragingthenodalLa-140activitiesforeachbundle.TheresultsfromthecomparisonsareshowninFigure3.3.19.Thestandarddeviationof1.82%reportedonthefigurewascalculatedforthosebundlesincludedintheoctantshowninthefigure.Iftheadditional11bundlesfromtheotheroctantsareincludedinthecomparison,thestandarddeviationbecomes1.92%.Basedonthecomparisons,nosignificantdeviation-145 intheradialpowershapeisapparentindicating.SIMULATE-EwillprovideanaccurateassessmentoftheCriticalPowerRatio.Thestandarddeviationfromthenodalcomparisonsis5.45%.Assuminga3.0%measurementuncertainty,thecalculationalstandarddeviationis4.55%.TheSIMULATE-EcalculatedpeaktoaverageLa-140activitywascomparedtothemeasureddata.Thepercentdifferenceforeachassemblyiscalculatedas:c.-m,e.'ix100imwherec=thecalculatedpeaktoaverageLa-140activityforfuelbundlei,m.=themeasuredpeaktoaverageLa-140activityforfuelbundlei.TheresultsofthecomparisonsareshowninTable3.3.6.differenceis-0.2%withastandarddeviationof1.5%.TheaverageThesecomparisonsincludedallassembliesandaccountedforallaxialnodes.TheresultsindicateexcellentagreementfortheaxialpeakingfactorandareconsistentwiththeCycle1results.TheresultsfromtheindividualbundlecomparisonsareshowninTable3.3.7.Thesecomparisonsarealsoreportedforeverybundleandincludedallaxialnodes.Foreachbundle,theaveragedifferencebetweenthecalculatedmeasurednodalactivitiesiscalculatedas:enKZ'>>,.Kwheree=thedifferencebetweenthemeasuredandcalculatednormalizednodalk,nLa-140activitiesforbundlen,andaxialnodek,K=numberofaxialnodesinthebundleforwhichmeasurementsweretaken.-146-Thestandarddeviationforeachfuelbundleis:0nKg(e-e)K-1100Figure3.3.20showsthefuelassemblywiththebestaxialagreement(BundleCX0662).Althoughthisparticularbundleis.locatedonthecoreperiphery,itexhibitsexcellentagreementforallaxiallocations.TheworstcomparisonisshowninFigure3.3.21(BundleCX0399).Thecalculatedaveragedifferenceof12.2%ismostlyduetodifferencesinthetopandbottomnodes.'owever,thecalculatedLa-140activityinthecentersectionofthebundlestillagreeswellwiththemeasureddata.Figures3.3.22through3.3.27showexamplecomparisonswhicharemoretypicaloftherestoftheassemblies.Mostofthecalculateddifferenceisduetonodalcomparisonsatthetopandbottomofthecore.Differenttopandbottomalbedoscouldhaveeliminatedmuchofthiserror.AsdiscussedinSection3.1,thealbedos,whichweredevelopedasaresultoftheSusquehannaSESmodelnormalization,werealsousedintheQuadCitiescalculations.ItisexpectedthatduetodifferentcoreandfueldesignsforQuadCities,thetopandbottomalbedoswoulddifferfromtheSusquehannaSESvalues.AlthoughtheSusquehannaSESalbedoswereutilizedintheQuadCitiescalculations,theSIMULATE-Emodelprovidesanaccuratecalculationofthepowerdistribution,ThissupportstheuseoftheSIMULATE-Emodeltopredictpowerdistributionsforfueldesignsotherthanthoseinthenormalizationdatabase.-147 TABLE3.3.1QUADCITIESUNIT1CYCLE1CALCULATEDCOLDXENON-FREE4CORECRITICALK-EFFECTIVESCoreAverageCoreReactorExposureTemperaturePeriod(GWD/RZU)(DEGF)(sec)NumberofControlledLocal(L)orNotchesIn-secpxence(I)4CalculatedCoreK-effective0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.02.8663.7483.7483.7483.7483.7483.7483.7483.7484.9386.9116.911.152160159159161160159158158159157157160159159160158159158158155163707577108120120'12517812018217918060751601505032789041651256533224538423939169120300.43.747.52805430015714018145100300639084008404634463248404840284028402839284026336631883928392839284168392840283946412669884388428843084267118'37883786830693683946514ILLIILLLLLLIILLLLLLLIILLLLILLIILI0.993140.992890.992070.992880.992840.991920.992090.992810.993240.992570.992700.993040.992780.993660.993530.992470.992470.992520.992680.990820.991710.995900.998470.998400.997600.997180.998180.997900.998120.997300.998291.000261.00041148 TABLE332QUADCITIESUNIT1CYCLE1IN-SEQUENCEVERSUSLOC2LLCRITICALCOMPARISON~CoreAverageExposure(GWD/MTU)ControlRodsWithdrawnandPositionCoreReactorTemperaturePeriodIn-secpxenceMinus(DEGP)(sec)LocalK-efffective0.038,1194842,1184816060-0.000160.038,1138,154844159750.000660.046,1984846,23844160500.000810.046,1984850,19846159320.000640.050,2384850,1984615878-0.00008'.00.046,2384850,2394626,3184826,3584830,3180815815990.41-0.000510.000160.018,1184822,11846157650.000030.026,2784826,3184830,31808159332-0.000930.026,2784830,2784830,31908159245-0.000800.026,2384826,2784830,27808160380.000260.022,3984822,3592426,35808158420.000260.026,3984822,3984826,35808159390.00021-149-TABLE3.3.2(conti.nued)QUADCITIESUNIT1CYCLE1IN-SEQUENCEVERSUSLOCALCRITICALCOMPARISONCoreAverageExposure(GWD/MTU)ControlRodsWithdrawnandPositionCoreReactorTemperaturePeriodIn-secgxenceMinus(DEGP)(sec.)LocalK-effecti.ve0.042,3994842,3593838,35808158390.000050.038,3984838,3594834,359061581690.001913.7483.74826,1193822,1182026,1194822,11920707543.747.5"0.00073-0.000663.7483.74822,1164822,1561850,2764850,2392277108280540.000140.000563.74826,1594822,118.4818,15622120157-0.000163.74814,2794810,23I4814,19822125140-0.000386.91122,15I4822,1164826,118061821000.00015Average=0.00007StandardDeviation=0.00064-150-TABLE333SUMMARYOPQUADCITIESUNIT1CYCLES1AND2TIPRESPONSECOMPARISONSCaseNumberDateCoreAverageNodalExposureRMS(CWO/MTU)(a)RadialRMS(*)Cycle112345678910111213141516*6/29/728/30/729/11/7211/01/7212/26/723/08/735/16/736/06/737/19/738/30/7311/01/7312/11/7312/29/732/13/743/05/743/26/740.27,20.7120.8821.4702.2393.1903.8364.0744.7375.3016.0316.5586.8077.3967.6597.9809.43"8.858.2610.438.389.099.619.879.8410.7213.8411.119.2311.4211.725.435.675.805.725.61.5.796.126.465.915.875.365.805.634.975.58Cycle,lAverage10.125.71Cycle2171819202122232425262728297/26/748/15/749/12/7410/23/7411/18/7412/11/744/03/756/19/758/08/7510/20/7511/13/7512/19/7512/31/757.3037.5327.9648.4238.7899.14110.17311.23811.93512.89613.19813.61113.74112.5510.188.8910.308.087.808.077.928.798.168.5511.6512.734.384.854.254.634.664.804.944.425.005.294.764.545.03Cycle2AverageCombinedAverage9.519.844.735.26*CorrectmeasuredTIPresponsedataisunavailable.-151-TABLE334QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONSUNCONTROLLEDBUNDLESCoreLocationMeasuredPeaktoAverageLa-140ActiviCalculatedPeaktoAverageLa-140ActivityDifference(*)39,5841,5841,5617,4855,4257,4257,4007,3409,3207,2609,2431,2647,1823,1025,0831,1033,081'.2711.2121.2241.287.1.1851.1911.2451.1761.1481.1701.1861.3541.2501.1781.2391.1721.2211.2701.2391.2181.2891.2441.2601.2571.2141.1941.2271.2341.3291.2591.1781.2241.1821.235AvexageDifference=1.7%StandardDeviation=2.3%-0.12.2-0.50.25.05.81.03.24.04.94.0-1.80.70.01~20.91.1-152-TABLE3.3.5QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONSCONTROLLEDBUNDLESCoreLocationMeasuredPeaktoAverageLa-140ActivityCalculatedPeaktoAverageLa-140ActivityDifference(*)39,5617,50'15,4855,4009,3407i3209,2607,2449,1847,1625,1023,0833,1031,081.2821.6091.2801.2691.4181.3221.3661.2311.6021.2831.3581.2511.3851.3691.2841.6311.3071.2791.3941.3321.3981.2561.6251.3051.3421.2471.3501.3730.21.42.10.8-1.70.72.32.01.41.7'1.2-0.3-2.50.3AverageDifference=0.5%StandardDeviation=1.5%-153-TABLE3.3.6QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONSPEAKTOAVERAGELA-140ACI'IVITIESBUNDLEIDLOCATION(XY)PEAKTOAVERAGEMEASUREDCALCDIFFEfKNCE<r.)CX0214GEB159CX0575CX0588CX0420CX0052CX0287CX0378GEH023CX0150CX0440CX0351CX0453CX0723CX0015CX0316CX0498CX0044CX0327CX0106CX0165CX0306CX0660CX0310CX0523CX0093CX0297CX0611CX0024CX0225CX0617CX0231CX0585CX0631CX0186CX0332CX0161CX0100GEH022GEH029CX0281CX0399CX0396CX0198CX0393GEH002,GEB132GEB160(33,34)(31,32)(31,34)(33,32)(7,32)(15,32)(23,34)(17,42)(9,40)(7,42)(9,42)(7,40)(23,32)(17,40)<15,42)(15,40)(25,34)(7,34)(9,34)(9,32)(25,32)(15.34)(17,34)(27,34)(3,36)(13,40)(23,38)(3,40)(15,46)(21.32)(9,46)(15.38)(19.36)(5,38)(19.42)(11,44)(19,38)(13,46)(9,36)(13,44)(21,36)(9,38)(11,40)(5,36)(11,36)(13.36)(17,36)(31,30)1.19231.13791.19371.18421.24201.19901.18711.20891.20081.31081.25861.27141.19751.20281.18941.21731.18921.24451.22851.23411.19321.20061.18561.18661.34681.21871.19821.39241.18721.18641.30861.21811.21031.32631.20391.21691.22371.22251.19441.16601.18441.25481.20541.28751.20281.16511.15891.13531.20041.13651.18811.19731.26201.19661.18561.21201.18871.27331.22001.24171.19451.19791.17761.20011.18691.24571.23031.25111.19911.19361.17451.19031.35091.18391.20081.36741.20231.17681.27621.18891.17641.30511.21061.20931.20321.21701.19211.17591.16881.19781.18251.27981.19831.17891.15461.13600.7-0.1-0.51.11.6-0.2-0.10.3-1.0-2.9-3.12~3-0.2-0.4-1.0-1;4-0.20.10.11.40.5'>>0.6-0.90.30.3-2.90.2-1.81.3-0.8-2.5-2.4-2.8-1.60.5-0.6-1.7-0.4-0.20.9-1.3-4.5-1.9-0.6-0.41.2-0.40.1-154-3.3.6(continued)QUADCITIESUNIT1EOC2GAMMASCAN(X)%'ARISONSPEAKTOAVERAGELA-140ACTIVITIESBUNDLEIDLOCATION(XY)PEAKTOAVERAGEMEASUREDCAIDDIFFERENCE(X)GEB161GEB158CX0494CX0490CX0174CX0683CX0520CX0394CX0137CX0482CX0717CX0682GEH008GEB123GEB149CX0719CX0672CX0362GEB105CX0546CX0553CX0662CX0643CX0397CX0286CX0191CX0057CX0124CX0414CX0412CX0384CX0318CX0401CX0398CX0359CX0711CX0096CX0622CX0445GEB162CX0162(29,32)(29,30)(7,48)(5,46)(7.46)(1,32)(3,32)(11,32)(5,32)(27,32)(19,32)(1,40)(13,48)(17,44)(21,40)(9,50)(15,36)(13.34)(25,36)(9,52)(5,44)(3,42)(1,34)(13,38)(9,48)(11,50)(13,32)(17,10)(47,38)(37,48)(23.14)(13,24)(47,24)(23,48)(37,14)(49,10)(9,18)(47,6)(41,18)(5,48)(17,32)1.13351.13021.34901.34951.33331.33111.31161.22631.27851.18021.15631.41281.21071.16641.18611.33281.19841.21441.16731.35901.35831.38271.33571.21031.32661.29331.22331.21371.14731.18521.19461.15581.21681.19411.16341.29111.20071.31191.20101.35181.17771.13641.13541.35281.34521.33441.35561.34021.23981.28841.18301.16381.43201.20511.17401.18571.32791.18171.20701.14971.37001.31181.39601.36121.18401.29861.28991.22611.21941.18331.19091.19091.18421.18251.18821.18841.31741.24341.35661.20071.35181.16980.30.50.3-0.30.11.82.21.10.80.20.61.4-0.50.6-0.0-0.4-1.4-0.6-1.50.8-3.41.01.92~2-2.1-0.30.20'3.10.5-0.32.5-2.8-0.52.12.03.63.4-0.00.0-0.7AVERAGEDIFFERENCE:STANDARDDEVIATION:-0.2r.1.5r.-155-TABLE3.3.7UADCITIESUNIT1EOC2INDIVIDUALBUNDLEGAMMASCANCOMPARISIONSBUNDLELOCATIONID(XY)STANDARDAVERAGEDEVIATIONDIFFERENCE(X)CX0546CX0719CX0191GEB162CX0494CX0286GEH008CX0398CX0412CX0490CX0174CX0617CX0100CX0024CX0553CX0332GEH029GEB123CX0662CX0150CX0440CX0015CX0378CX0186CX0682CX0611CX0351GEH023CX0396CX0093CX0316CX0723GEB149CX0631CX0399CX0397CX0231CX0161CX0297CX0414CX0523CX0198GEH022CX0393GEH002CX0672GEB132CX0585CX0281(9,52)(9.50)(11,50)(5,48)(7,48)(9,48)(13,48)(23,48)(37,48)(5,46)(7,46)(9,48)(13,46)(15,46)(5,44)(11,44)(13,44)(17.44)(3,42)(7,42)(9,42)(15,42)(17,42)(19,42)(1.40)(3,40)(7,40)(9,40)(11,40)(13,40)(15,40)(17,40)(21,40)(5,38)(9,38)(13,38)(15,38)(19.38)(23.38)(47,38)(3,36)(5,36)(9,36)(11.36)(13,36)(15,36)(17,36)'(19,36)(21,36)0.007,0.0160.0170.0270.0140.032-0.0200.045-0.0070.0380.0210.0330.0290.0130.0360.016-0.0260.0270.0030.0050.0200.005-0.0120.0070.0120.005-0.003-0.054-0.031-0.0100.007-0.016-0.006-0.001-0.0120.008-0.009-0.0030.007-0.0350.0120.008-0.074-0.007-0.045-0'04-0.0330.0070.0094.344.955.374.285.416.117.466.325.745.115.936.307.555.735.876.657.428.733.98.6.687.497.177.926.553.835.226.508.186.757.117.056.927.716.5012.176.176.335.795.785.414.655.967.276.427.706.597.806.646.33-156-TABLE3.3.7(continued)UADCITIESUNIT1EOC2INDIVIDUAl,BUNDLEGAMMASCANCOMPARISIONSBUNDLEIDLOCATION(XY)STANDARDAVERAGEDEVIATIONDIFFERENCE(X)GEB105CX0643CX0044CX0327CX0362CX0306CX0660CX0287CX0498CX0310CX0575CX0214CX0683CX0520CX0137CX0420CX0106CX0394CX0057CX0052CX0162CX0717CX0225CX0453CX0165CX0482GEB161GEB159CX0588GEB158GEB160CX0318CX0401CX0096CX0445CX0384CX0359CX0124CX0711CX0622(25,36)(1,34)(7.34)(9,34)(13,34)(15,34)(17,34)(23,34)(25,34)(27,34)(31,34)(33,34)(1,32)(3,32)(5,32)'(7.32)(9,32)(11.32)(13,32)(15,32)(17,32)(19,32)(21,32)(23,32)(25,32)(27.32)(29,32)(31,32)(33,32)(29,30)(31.30)(13,24)(47,24)(9.18)(41,18)(23,14)(37,14)(17,10)(49,10)(47,6)-0.0230.043-0.002-0.008-0.011-0.0220.005-0.0050.0050.0050.003-0.0040.0450.0160.0120.014.-0.002-0.016-0.007-0.012-0.015-0.003-0.002-0.009-0.006-0.007-0.034-0.0260.015-0.038-0.018-0.023-0.001-0.0200.0180.0040.0340.0130.0300.0337.504.245.776.296.145.97.5.867.416.136.166.805.924.374.905.155.524.995.885.696.435.665.825.316.475.406.568.228.467.377.897.775.566.784.917.706.724.885.625.153.67157 FIGURE3.3.1QUADCITIESUNITICORETlPLOCATIONS5957555351494745434139373533312927252321LINEOFTIPSYMMETRY00020406081012141618202224262830323436384042444648505254565860XControlRodLocationLocationForIndividualTIPResponseComparisons~TraversingIn-coreProbeLocation 1.01FIGURE3.3.2SIMLUATE-EHOTCRITICALCOREK-EFFECTIVEVSCOREAVERAGEEXPOSUREee1.00ss'IssIsee~~~~eOI-UJ099IUJfCOO0.980.97-0l~ee@ee~0'eeer~o~~~::::::~:"0LegendU1C1HOT.---.:-lrl".'"'."".'"0U2C1HOTU1C2'OTU2C2HOToU1C3HOT~QC1C1HOT~QC1C2HOT12345'78'10'112131415COREAVERAGEEXPOSURE(GWD/MTU) 1.0100*~IfI0FIGURE3.3.3QUADCITIESUNIT1CYCLE1SIMULATE-EHOTANDCOLDCRITICALCOREK-EFFECTIVES1.00IJJ0II-oIJJLL0.99-UIhCLLIlC0O0.880......:....0:.0N...:.......',.....x.I~~~~~~o......................:..0...:...O.':..:.:o:'ICLegendoQC1C1HOTxQC1C1COLD""'.970It1234667COREAVERAGEEXPOSURE(GWD/MTU)10 160FIGURE3.3.4QUADCITIESUNIT'I'CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON2-239GWD/MTUCOREAVERAGEEXPOSURE160140120I-KD100tQRUsoCoCLeo0++000~+..0..+e4020001284667S9101112181415161718192021222824COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE>>161-FIGURE3.3.5QUADCITIESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS2.239GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-4.346.34-3.21-0.58-0.23-10.36-2.866.362.264341393735333129-8.33++++2.7++++.61135.414.++++1.3I+++27252321I191715131.682.68++++-4857.8.59-6.6687-1.17-10.58-5.21-3.66.30-0.80-2.415456586Diff=[(Calc-Meas)/CoreAvgTlpResponse]X100%-162-0002040608101214161820222426283032343638404244464850520X FIGURE3.3.6QUADCITIESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS2.239GWD/MTUGOREAVERAGEEXPOSUREIlOHIIORLOCAllOHdd,ddMOHIlORLOCATIOH44,dd'llIOOrr~0OaO.~os'~>';KZVosI0.i.0~Ittttoor~0aC0a..e+000toIlIIot~~~t~1~~ttTl1tI~ltloaTTlolttoolootoRICORKALGALHOOK0VotatttomrRttrONOR0AAICIRATRDmrRotrotot~CoNTRoLRooroamoN~~~~4t~Tt~10mtoItttttIoITltatoatttottCORKAXIALHOOK0taAWMOmrRurORuoINLCOIATtoTI~Ruroutt~coNTRCLRoorottmoNMONITORLOCA1IOH40,5$IIOIKTORLOCATIOHdK,SOIOOtto5aoeooo0oOo0to00toottoL5r~oa0I040g000TOT~~I~o~t~T~~lt11lt'loV1t10ITltltttttttttttCORKAXIALKOOK+vtAtuttomrRttroNotoAALOutATCOTlrRttrouot~CCNTRCLRoorovmoN~I0o~t~T~~10ltloI~1I1~'I~1T1tI~tttlttoottCORKAXIALHOOK0VRAtuttomrRttrouotoCALOutATROmrRttroeuvooNTRDLRootovmoN-163-180RGURE3.3.7QUADCITIESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON7.398GWD/MTUCOREAVERAGEEXPOSURE180140120I-RD100LUK80COQ.60~~~~~~l~~~~~~~o0d'e+q~:g44g~0+0y++0+402000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE164-FIGURE3.3.8QUADCITIESUNIT'fCYCLEtRADIALTIPRESPONSECOMPARISONS7.396GWD/MTUCOREAVERAGEEXPOSURE61595755535149474543-7.61++5.14-5.23++++-1.15.69-1.545;2+++++413937-4995.92-2.00942.906.035333129272523.214.893.42.08++++++++5.39.4+2.6++++-3.54-3.52691917151311975312.5-7.10-3.59-102005-4.545-0.89520.0500020406081012141618202224262830323436384042444648505254565860XDiff=[(Calo-Meas)/CoreAvgTIPResponse]X100%-165-FIGURE3.3.SQUADCITIESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS7.396GWD/MTUCOREAVERAGEEXPOSUREMONITORLOCATIONNL,$$MONITORLOCATTON4$,$$Ito100X~Ito0gQ6+000to~b0TT'o0'LZ0100$0IIS784040~~t00~~T~~TCllltltltlololtlolttotlttCCCICORKAXIALNODE0oclcuotolitoctfootc0OALOQAICOMIICCPOOCC~COOTCOL000tooOIOO~~t~0~~T~0TOll010TIItIOlfIt10totlttttttCORKANALNODE+WAOWCOTltOottouoo0OALOOIATCOTltIlottooK~COCTOOL000totmooMONITORLOCATION41,$$MONTTORLOCATION$$.$$100~10oo400TtoL5IooeoooT+IoooItIIII~1~0~0~T~~1011ltIt11ItIo11It10tttlCttt01COREAXIALNODE~tlcAcuccDllthcotolltc0OALOIAATCO~ICttolltt~ooutcoLcootoolcloN~~00~C~T0~IOIlItItITI~IOItI0COIIKAXIALNOOK+OCACIONDTItIICttoCCCOOALOOLATCOntaaetoaao~OOOTCOL000000OIOOI~Ct~ItlttM166-180FIGURE3.3.10QUADCITIESUNIT1CYCLE2'VERAGEAXIALTIPRESPONSECOMPARISONT.532GWD/MTUCOREAVERAGEEXPOSURE160140120'I-R100ILIz80COCLBO0000+60004020012346B789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-167 FIGURE3.3.11QUADCITIESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS7.532GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-5.985.6-3.46++++++-1.98-5.64-4.090.9434139373533312927252321I19171513.97I1.2120.62\223.043.66.313.3-1.49-1.025.4-0.33-5.894.5++++-0.16-10.22+-5.7697531.1032I3.4++I'I-0.62-4.320002040o"081012X505251416182022242628303234363840424446~84565860Diff=[(Calc-Meas)/CoreAvgTlPResponse]X100%-168-FIGURE3.3.12QUADCITIESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS7.532'GWD/MTUCOREAVERAGEEXPOSUREQONllOflIOCAllON4l,EElee~ceoII0+0IgIesNI~eC~e00++1o+t0I0040oo051$$~e~elL40I00gplIoIb)otII~~l~ie~T~Tell1$1~li1$leIT1$1$le$1$$$$NCOREAXIALNODE0NNAewsoneNeseosssI'ALosMTson~esseosos~CONTNOLNooeoslnON~1sei~~T$~1$111$1$111$141$1~TelelllllsliCOREAXIALNODE+IINAssesonessseosss0OALOOMTCOnelisle~~coNTNoLeooeoetnosIlONIIORLOCAllON40,$Elle0Ies~e~ee+000logeo0~$0eo04~Il~Cl~T~~1~llTl'llli1$I~1$1$Te$$$1$$$$$$COREAXIALNODE+NNAswlsoill'sseoNssoOAIOSLATSOnf$$$$0NSS~OONnCOL000KWTICNI~sei~~T~~Te11Tl1$lillTsTTI~lele~IllllliCOREAXIALNODE+IITAssssone1$$$0Nss0OAICAILATTOne11$$$0~~OONINOL$00eoelnON169-180FIGUAE3.3.13QUADCITIESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON13.1S8GND/MTUCOREAVERAGEEXPOSURE160140120I-ZD100LIZZ&0(0ILeo000O....'...............;.+pQoe009':+o+0402000123466789101112131416181718182021222324COREAXIALNODE+MEASUREDTIPRESPONSEoCALCULATEDTIPRESPONSE-170-FIGURE3.3.14QUADCITIESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS13.198GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-5.458.0+-1.539.14-0.38.15-2.00-2,010.134341393735333129-7.625.0903.8-2.662.64.75.84-1.533072.4727252321-0.16-2.159.3++++++3032-40919-171513'332-6.153.74.130872002.54.40-0933Y100X020406081012141618202224262830323436384042444648505254565860Diff=[(Caic-Mess)/CoreAvgTiPResponse]X100%-171-FIGURE3.3.16rQUADCITIESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS13.198GWD/MTUCOREAVERAGEEXPOSUREMOMTORLOCATIONINL$$MONITORLOCAllON4$,$$laa0~+oooeo0ar+o0lsaes~T~~wTT>>IsTI>>>>IT>>>>asCIaaaaaaCOICAssssoTl~psapopss0OAIOSLATCSllPSCSPOOSS~COSTIIOLSOSPOCITIOO~~s4~~T~~>>TllalsTl'>>lsTPI~'>>eatlaaaaPICOREAXIALNODE+IHAsssaoTlpsaspol>>s0OA>>CSATCOTarSCSPOSPS~cocllKILsooposllasMONITORLOCATION40,$$MONITORLOCAllONEginlalapTasX>>s0PP'll0a>>sLXlle~000os~it.0IaesssT~'>>ll>>lalCI~>>if>>>>asalaaasaCOhEAXIAlNODE+ocACCI>>olipcssposasooauwLATsoTlpssaposss~OOSTCOLOOSPONTlOS1~s~~'p~Is11lslsIIlaIsITIa%as.aIaaaaaaCOE+aacAssssolipacapoces0oAIOoLATCOT>>sasposes~ooslsoLaoopoNTlos-172-1.8FIGURE3.3.16QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITYBUNDLELOCATION23,101.6eI-OOI-CC1.41.21.0-0.8-0.6-0.4~~~/ee////).~.s~-~../.'~e/~/~~eJ~J....:;............:.Legende~'~~v~~eee~~~~~~~~~e~~r~~J~~~I~~~e'ee$e'\\\eGAMMASCAN:0.2-eSIMULATE-EI~~~~~'eeo.o$BOT12345678910111213141516.1718192021222324OMAX1ALNODETOP FIGURE3.3.17QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITYBUNDLELOCATION66,401.8>>1.6>>CONTROL:RQDI:OSITIQN:1.4I-01.2O01.0-0.8LlJO.BLLI0.4>>>>~~~~8~J~~~0~J~~~I~I~~~I~~'~r>>~y~~~>>>>>>''~/~I'>>~>>///~//~/>>~Q~>>Legend>>>>////~/GAMMASCANSIMULATE-E~J~~~~~~~~0.20.02345B789101112131415161718192021222324BOTTOMAXIALNODETOP FIGURE3.3.18QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITY31BUNDLEAVERAGE1.6~'1.4I-1.2rQ01.0I0.8LLI00.6-UJ0.4~~~~~~~~/'///I//I~w.rP~I~tV'~LegendGAMMASCAN:SIMULATE-E~~hr~~r~~~~~~Wh~~~~~I\-%------~~~~1\~l0.2~4~~~~h~~h~h~~0.0123456789101112131415161718192021222324BOTTOMAXIAL-,-NODETOP FIGURE3.3.19QUADCITIESUNIT1EDC2RADIALGJQtSLSCANCOHPARISON52500.6080.75?0.6240.7740.0160.0170.5790.7370.5930.7690.0140.0321.175l.157-0.0180.6740.8170.6950.8490.0210.0321.0151.0571.0441.0700.0290.013X.XXXGAHHASCANX.XXXSIHULATE-EX.XXXDIFFERENCEI420.8280.9490.8340.9690.0060.0201.0001.2911.0161.2670.016-0.024l.2731.3000.0271.0921.1201.0931.0981.1091.1000.006-0.0110.007STANDARDDEVIATION:1.82/400.5730.5780.0050.8901.2151.0701.0581.0621.1420.8881.1651.0421.0491.0701.127-O.OOR-0.050-0.028-0.0090.008-0.015l.2341.229-0.0050.8070.8070.0001.0351+025-0.0101.0491.0641.0571.05?0.008-0.007l.0591.057-0.0021+0261.0340.008360+6800+8390.69R0.8480.0120.0091.2741.0?RI1.2841.0791.2691.0601.0411.2041.06?I1.R421.0761.2381.0691.051-0.070-0.005I-0.042-0.003-0.0310.0090.0101.RRR1.201-0.0210.9421.0150.9421.0080.000-0.0071.0511.0661.0551.0421~0461.060-Oo009-O.ORO0.0051.0281.0351.0391.0241.0411.044"0.0040.0060.0051.0501.0381.0541.0360.004-0.002320~70308310~90409731010101510401044102610051~005102910660.7190.8430.9190.9720.9961.0091.0301.0311.0241.0050.9971.0241.0600~0160.0120.015-0.001-0.014-0.006-0.010-0.013-0.0020.000-0.008-0.005-0.0061.0371.05R0.01530135791113151719212325R7293133 AOlFlGURE3.3.20QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX0662I-~)VC)IOClll!NCC~0Legend~...'-"0=Measuredo=CalculatedIIC)0.012.024.03B.O48.0B0.072.084.09B.O108.0120.0132.0144.0DlSTANCEFROMBOTTOMOFGORE(IN)
FIGURE3.3.21QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX03990-pv-I-0CDIQQLQN<o0~~~Legend~-..'--.0=Measuredo=CalculatedI\Q0.012.024.036.048.0BO.O72.084.0SB.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)
FIGURE3.3.21QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX03990-pv-I-0CDIQQLQN<o0~~~Legend~-..'--.0=Measuredo=CalculatedI\Q0.012.024.036.048.0BO.O72.084.0SB.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)
FIGURE3.3.22QUADCITIESUNIT1EQC2GAMMASCANCQMPARISQNBUNDLEID:CX0231I-~)QC)IgOOluN0Z0Legend~...'--.oMeasuredoCalculatedC)O0.012.024.03B.O48.0BO.O72.084.09B.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)
FIGURE3.3.22QUADCITIESUNIT1EQC2GAMMASCANCQMPARISQNBUNDLEID:CX0231I-~)QC)IgOOluN0Z0Legend~...'--.oMeasuredoCalculatedC)O0.012.024.03B.O48.0BO.O72.084.09B.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)
Line 58: Line 60:
FIGURE3.3.27QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:GEH029I-~)r'COIOT0Ult4Kg)0ZLegend~.""'.-"CIMeasured0CalculatedII0.012.024.03e.o48.0B0.072.084.088.0108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN) 3.4PeachBottomUnit2Ccles1and2ComarisonsOnespecificapplicationofPPGL'ssteadystatecorephysicsmethodsandmodelsistoprovideinputto'thetransientanalysisbenchmarkingofthePeachBottomUnit2endofCycle2turbinetriptests.Inordertoprovidethenecessaryinput,SIMULATE-EmodelsofthePeachBottomUnit2Cycles1and2coresweredeveloped.ThesemodelswerethenusedtosimulatethePeachBottomUnit2coredepletionthroughCycles1and2.ComparisonstoTIPmeasurementstakenduringCycles1and2andtoGeneralElectricCompany(GE)processcomputerPlpowerdistributionstakenprior'totheturbinetriptestsassesstheaccuracyofthecoredepletioncalculations.PeachBottomUnit2isaGeneralElectricBWR-4corethatconsistsof764fuelassemblieswithanactivecoreheightof144inches.Theinitialcyclecontained764GeneralElectric7x7fuelassembliesgCycle2contained576initial-corefuelassembliesand1888x8freshfuelassemblies.AlthoughreactordesignandratedconditionsarequitesimilartoSusquehannaSES,thePeachBottomUnit2coreloadingpattern,fuelbundledesign,inletfloworifices,andcoresupportplatebypassflowpathsaresignificantlydifferent.ThesedesigndifferencesweretakenintoaccountindevelopmentofthePeachBottomUnit2SIMULATE-Emodel.AmoredetaileddescriptionofthePeachBottomUnit2coreisfoundinReference30.TheaverageRMSofthedifferencesbetweentheSIMULATE-EcalculatedandmeasuredTIPresponsesforeachPeachBottomUnit2TIPresponsecomparisoniscalculatedasdescribedinSection3.2.3.Figure3.4.1showstheRMSoftheTIPresponsecomparisonsforPeachBottomUnit2Cycles,land2.ThesecomparisonsareslightlyworsethanSusquehannaSESresultsbutarestillquitegood.ThePeachBottomUnit2coreoperatingdata(Reference30)usedformodelingthecoredepletionwaslessdetailedthanthedatausedforSusquehannaSES.Thislackofdetaileddatamaybethecauseoftheseslightlyworseresults.Figures3.4.2through3.4.4showtheendofCycle1coreaverageaxial,radial,andfourindividualTIPresponsecomparisons,respectively.Figures3.4.5through3.4.7presentthesamecomparisonsforendofCycle2.Asshown-185-inthesefigures,thecalculatedTIPresponseagreeswellwiththemeasureddata.TheseresultsthereforeindicatethattheSIMULATE-Emodelsaccurately'alculatethree-dimensionalcoreexposure,voidhistory,andcontrolhistoryarraysfortheendofeachcycle.Aspreviouslystated,theprimarypurposefordevelopingthePeachBottomUnit2modelswastogeneratethenecessarytransientanalysisinputs(e.g.,crosssectionsandkineticsparameters).TheendofCycle2TIPresponsecomparisonindicatesthatthecorehistoryarrayshavebeenaccuratelycalculated.Becausetheturbinetriptestswereperformedoveraspanofafewweekswithacorepowerhistoryplaguedbynonsteadystateoperation,carefulanalysisofpowermaneuverswasrequiredtoadequatelycalculatetheactualxenonconcentrationatthetimeofthetests.TheaccuracyofthecalculatedxenonconcentrationimmediatelypriortoeachturbinetriptestcanbeassessedbycomparingtheSIMULATE-EcalculatedpowerdistributiontotheavailableGEprocesscomputerPlpowerdistribution(Reference31).Figure3.4.8showseachaxialpowerdistributioncomparison.TheSIMULATE-EcalculatedpowerdistributionsarebasedonactualcoreconditionspriortothetestsasreportedinReference31.Thefigureshowsthethreedifferentpowerdistributions(i.e.,toppeaked,middlepeaked,andslightlybottomI'eaked)thatexistedatthetimeofthethreeturbinetriptests.Thisindicatesthatthecoreconditionswereconsiderablydifferentforeachtest,andthattheSIMULATE-Emodeliscapableofcalculatingthesedifferences.Typicalreloaddesignandlicensingapplicationsdonotrequiremodelingthecomplexityofnonequilibriumxenon.Therefore,thisbenchmarkprovidesagoodtestofPPGL'ssteadystatephysicsmodelsandmethodsinanapplicationwhichismoredifficultthanthenormalreloadanalyses.-186-FIGLIRESA.1PEACHBOTTOMUNIT2CYCLES1AND2RELATIVENODALRMSOFTIPRESPONSECOMPARISONS12.011.0~~~10.0-9.0-"-CO&.0-fL"7.0-D0Z60-.UJ5.04.0-".CC0I-3.0-".2.0-IILegend"PB2C1PB2C2.'~~J~1.0-0.0-0345678'10COREAVERAGEEXPOSURE(GWD/MTUj11121314 80FIGURE3.4.2PEACHBOTTOMUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON11.133GWD/MTUGOREAVERAGEEXPOSURE8070BoI-z50IUzU4oMCLso0+00+++++000+0+00+0J20100I012S4567881011121S1416161718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE188-FIGORE3.4.3PEACHBOTTOMUNIT2CYCLE1'ADIALTIPRESPONSECOMPARISONS1l.I33GWD/MTUCOREAVERAGEEXPOSURE61595755535149474543413937-3.30-4.93-3.03-4.36-0.201.670.129.53.81-1.273.4-6.440.06-5.06-0.433533312927252321++++-0.5611.533.50.16-0.65-1.27-3.11-3.791.04.719171513-0.89-3.092.27++++++++-4663.I++++-0.09-0.11-547Y1IIII'II00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTiPResponsejX100%189-FIGURE3.4.4IPEACHBOTTOMUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS11.133GWD/MTUCOREAVERAGEEXPOSURE~IOHITOALOCAllOHdIL$$$IOHIIORLOCATIOH$$,$$leetseteeIISgIee0+404TesL~?ggIee~sl's0~4gf00+04P0~~s~~s0r~~tettTetstttstetresvsestssesstCORKAXIALHOOKpNRAsvesolitNespoNss0OAIOVIATRD11PRssPONesNCONTROlROOPOSITION~~S0~0r~~tenteteetteteCORKAXIALHOOK+NAstpteoTltNssposss0INSOVIATSOTl~RSSPONSS~CONTROLOOOtoelllONtrlelsleeleeeesliMONTOllLOCAllOH40,$$IIOHITORLOCATIOH$$.$$teeleetee??0eseeP004P0~?~0I~0IIlgl0o04~1~s~s~rs~le11tele11tslelrtetseeelsessslCORKAmALHOOK+NaASVRmTttRSSPO<<SS0CAlovlysoTltRsspoNes~CONTROLROOPON110N~1~s~~~'I~elelttslell1~tetrleleeeeleeeeslCORKAXIALHOOK+NSASVRSOTttIleetONSSoOASOVlAISOTltRSPPONSS~CCNTttoeRootoNTICN190-180FIGURE3.4.5PEACHBOTTOMUNIT2CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON13.812GWD/MTUCOREAVERAGEEXPOSURE160140120I-KD100lUK80COCLeo~~tb0..+.'P.g.00Q.............040+02000123456788101112131415161718182021222324COREAXIALNODE+'MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE191-FlGURE3.4.6PEACHBOTTOMUNIT2CYCLE2RADIALTIPRESPONSECOMPARISONS13.812GWD/MTUCOREAYERAGEEXPOSURE615957555351494745-8.41-3.026.893.936.04-3.78-9.963.245.3443413937-5.200.4-0.35-0.36-0.93-2.68-7.99353331292.01++++++-2.70-3.902.65.I27252321.19++++3.6-3.213.9-4.07-0.0219-1715132\12-1.85-0.130.45-0.21++++++++-3.26-11.21-2.56II28303234363840424446485052502224260002040608101214161824X565860Diff=[(Calc-Meas)/CoreAvgTIPResponse]X100%-192-FIGURE3.4.7PEACHBOTTOMUNIT2CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS43.812GWD/MTUCOREAVERAGEEXPOSUREMONITORLOCATION50T$$MONITORLOCATION4$T$$IWNa$o0441WZatIW0+o+o0Iaa~a0r~~>>11ala11>>>><<>>>>aealassaaiCOREAXIALNODE+1>>saoa>>InrNaaroosa4OAONLITciaonrIltaroNot~CONTNOLNooroaNTON~a~4~~r~~>>11IsI~%>>>>Tr>>>>wslasasssCOREAXIALNODE+1>>saoo>>IntNaarooaaoossouultanrNtaroooa~CONTNOLIiootoainONMOMTORLOCATION40,$$MONITORLOCATION$$,$$IW'll4r4044IJ.T+iog444aaLXIW~04+440~0~I~s~a~ra~ls11lslsN>>>>itlsiassslasssaiCOREAXIALNODE4WruuaaunrNaarONSa4CIIoosssaoTltNaaroNaa~CONTROLIioorOWloNsa~a~r~>>nTsisNisI~ir>>asssisssssiCOllEAXNLNODE4NahaislaonroasroNsooossoosslaontNcarooaa~OONTIIOLNOOtoainoN193 FIGURE3.4.8PEACHBOTTOMUNIT2ENDOFCYCLE2COREAVERAGEAXIALPOWERDISTRIBUTIONS1.5CLLLIOCLLIJI-LIJCY1.00.5LegendPIDataSIMULATE-E0.01.5131215182124OLIJ')I-LLICL1.00.5LegendPfDataSIMULATE-E0.01.51312151821I24CLOCLLIJ)CL1.00.5LegendPIDafaSIMULATE-E0.03BOTTOMI912'15AXIALNODE-194-182124TOP 4.0SPECIALAPPLICATIONSWITHPD7Occasionally,applicationsrequiremultipleassemblycalculations.ThelatticephysicscodeCPM-2isasingleassemblycodewhichisnotcapableofperformingmultiplebundlecalculations.Forthesecases,thePDQ7programisused.PDQ7hasbeenusedforcriticalityanalysesandtoprovideinputtothethree-dimensionalnodalsimulationcodes.TodemonstratePPsL'sabilitytousePDQ7,twosetsofproblemsarepresented.ThefirstsetcontainscalculationsoftheuniformlatticecriticalspresentedinSection2.2whichwereanalyzedwithCPM-2.ThesecondsetcontainssinglefuelbundlecalculationswithbothCPM-2andPDQ7.Forthesecases,pinpowerdistributionsandassemblyreactivitiesarecompared.-195 4.1DescritionofPD7ThePDQ7computerprogram(Reference32)wasdevelopedf'rfinemeshfewgroupdiffusiontheoryanalysis.Theprogramsolvestheneutrondiffusionequationinone,twoorthreedimensions.Availableoptionsincluderectangular,hexagonal,cylindricalorsphericalgeometries.Amaximumoffiveenergygroupsarepermitted.Themeshspacingisflexibleallowingtheusertodefineasmuchgeometricdetailasappropriateforthespecificproblem.CrosssectionsforeachproblemmaybeinputtoPDQ7aseithermacroscopicormicroscopicdata.AtPPGL,thisdatawouldtypicallybeCPM-2generatedmacroscopiccrosssections.Formostapplications,fourgroupcrosssectionsareusedwithenergyboundariesasdefinedinTable4.1.1.-196-TABLE4.1.1ENERGYGROUPSTRUCTUREUSEDINPDQ7CALCULATIONS~GzouEnergyBoundaries(eV)1.0x10-8.21x107528.21x10-5.53x105'5.53x10-0.62530.625-0.0197-4.2UniformLatticeCriticalsThesameuniformlatticecriticalsevaluatedwithCPM-2inSection2.2werealsoanalyzedwithPDQ7.One>>dimensionalcylindricalgeometrywasusedtomodeleachuniformlatticecritical.Thecriticalradiuswasdefinedtoconservethecorecrosssectionalareaandwasdeterminedfromthecriticalnumberofpins.PDQ7crosssectionsforthecoreregionwereobtainedfromCPM-2pincellcalculations.Thereflectorcrosssectionswere'obtainedfromReference33.BecausearadialreflectorregionwasincludedinthePDQ-7model,onlyanaxialbucklingtermwasrequiredtoaccountfortheleakage.AswiththeCPM-2uniformlatticecriticalcalculationspresentedinSection2.2,theTRXandESADAexperimentsweremodeledwithPDQ7.Tables4.2.1and4.2.2showtheresultsofthePDQ7calculations.TheCPM-2resultsfromSection2.2arealsoincludedforcomparison.TheresultsfromtheTRXandESADAcalculationsyieldsimilarK-effectives.-198-TABLE42.1P7RESULTSFORTRXCRITICALSExperimentIdentificationCPM-2K-effectiveExperimentalAxialMaterialguckling(m)PDQ7K-effectiveTRX1TRX2TRX3TRX5TRX6TRX7TRX80.99340.99580.99420.99390.99340.99740.99700.9960''5.045.125.325.115.265.255.255.310.99690.99730.99540.99610.99500.99960.99960.9978AverageK-effectiveStandardDeviation0.99510.00160.99720.0017199-TABLE422P7RESULTSFORESADACRITICALSExperimentIdentificationCPM-2K-effective*ExperimentalAxialMaterialchuckling(m)PDQ7K-effective*ESADA1ESADA3ESADA4ESADA6ESADA12ESADA131.00261.00041.01291.01161.01011.00778.568.9679.4669.4719.4369.6391.01221.01581.01521.01331.01621.0140AverageK-effectiveStandardDeviation1.00760.00501.01440.0016*AllCPM-2andPDQ7calculatedK-effectiveshavebeenadjustedby-0.4%~Ktoaccountforspacerworth.200 4.3ComarisonstoCPM-2AsecondqualificationoftheuseofPDQ7atPPaListhroughcomparisontosingleassemblyCPM-2latticephysicscalculations.TofacilitategenerationofthePDQ7crosssectiondata,theCOPHIN(Reference34)codewasused.Separateplanarregionsaredefinedfordifferentfuelpintypes,waterrodsandotherregions(i.e.,controlrod,watergap,etc.).Fuelpinregionsaregroupedaccordingtofuelpinenrichmentandlocation.Themeshdescriptionisdefinedtoexplicitlymodeleachpinandtoconservethevolumesofeachregion.Whenthefuelassemblybeingmodeledcontainsgadoliniaoracontrolrod,theneutronfluxdepressioncausedbythepresenceofthestrongabsorbercanbereproducedusingdiffusiontheorywithashieldingfactor.Withoutashieldingfactordiffusiontheoryresultsinanoverestimationoftheneutronfluxintheabsorberregionandacorrespondingoverestimationoftheabsorberworth.ShieldingfactorsaredevelopedandappliedtotheGroup4(thermal)absorptionandfissioncrosssectionsforgadoliniabearingfuelpinsandtheGroup3and4absorptioncrosssectionsforcontrolrods.ThesefactorsarederivedbyconservingtheCPM-2calculatedabsorptionrateintheabsorber.ThefuelassemblieschosenforthecomparisonaretheSusquehannaSESinitialcorebundledesigns.Twoseparatefueldesignswerechosenfortheanalysis.TheresultsareshowninFigures4.3.1through4.3.4.Theagreementinpowerdistributionforasingleassemblyisverygood.Theassemblyeigenvalues(K-infinities)alsoagreewellbetweenthetwocodes,differingbylessthan1mk(or0.1%bk).ThisdemonstratesthatPPGLcanperformaccuratePDQ7assemblycalculations.201-FIGURE4.3.1CPM-2VSPDQ7PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREHIGHENRICHEDFUELTYPEUNCONTROLLEDWIDEGAPWIDEGAP1.0271.0652.71.1041.1130.81.1171.116-0.21.1471.140-0.61.1241~1260.20.9800.969>>1.11.0470.9651.0290.966-1.7-0.91.0760.8601.0600.875-1.61.71.0220.8421.0220.8620.02.40.1140.1160.90.S931.0010.8CPM-2PDQ7%DIFFERENCE1.0741.0810.71.0661.0811.60.9971.0333.61.0290.1101.0370.1090.8-0.90.9881.0400.9871.046-0.10.51.0691.0861.0841.0891.40.40.8930.9920.9010.9730.9-1.91.0671.0121.0490.992-0.8-2.01.1461.1791.1431.166-0.3<<1.10.9480.923-2.61.0991.0131.0690.994-2.7-1.91.1481.1321.1401.134-0.70.21.0601.0732.2LINEOFSYMMETRYCPM-2K-INFINITY=1.1428PDQ7K-INFINITY=1.1426202-FlGURE4.3.2CPM-2VSPDQ7PINPO'tN'ERDISTRIBUTIONCOMPARISONGEINITlALCOREHIGHENRICHEDFUELTYPECONTROLLEDWIDEGAPWIDEGAP0.3800.4005.30.4860.5910.5230.6127.63.60.5490.7400.5780.7865.36.20.6070.8370.6320.8764.14.70.645O.8550.6660.8983.35.00.8260.8533.30.8240.8776.40.8770.9245.40.1290.1333.11.2321.2390.6CPM-2PDQ7%DIFFERENCE0.6900.9240.7030.96619450.8240.9890.8320.9951.00.6.0.9521.1660.9731.1732.20.60.1280.1301.61.2101.196-1.21.3001.288-O.S1.1011.2761.2601.1031.2361.2140.2-3.1-3.71.3341.3351.4931.2931.2841.420-3.1-3.8-4.91.4651.5731.5771.4331.5191.524-22-34-3A1.4041.353-3.61.5861.539-3.01.4871.465-1.5LINEOFSYMMETRYCPM-2K-INFINITY=0.9623PDQ7K-INFINITY=0.9615203 FIGURE4.3.3CPM-2VSPDQ7PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREMEDIUMENRICHEDFUELTYPEUNCONTROLLEDWIDEGAPWIDEGAP1.0641.0963.01.1040.9881.1160.9791.1-0.91.1201.0840.9211.1211.0670.9150.1-1.6-0.71.0821.0320.8471.0781.0180.854-0.4-1.40.81.0801.0390.9071.0791.0260.908-0.1-1.30.10.1390.1390.00.1240.1261.6CPM-2PDQ7%DIFFERENCE1.1221.0960.9621.1221.0780.9520.0-1.6-1.01.1060.9931.0911.1160.9821.0740.9-1.1-1.61.0601.1041.1171.0941.1161.1183.21.00.10.8850.7940.9000.8890.8090.8980.51.9-0.21.0281.0210.8751.0181.0110.863-1.0-1.0-1.41.0721.0751.1161.0731.0731.1200.1-0.20.40.9890.985-0.41.0971.0541.1121.0881A3.2LINEOFSYMMETRYCPM-2K-INFINITY=1.1107PDQ7K-INFINITY=1.1100204-FIGURE4.3.4CPM-2VSPDQ?PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREMEDIUMENRICHEDFUELTYPECONTROLLEDWIDEGAPWIDEGAP0.3990.4195.00.4950.6040.6310.6257.33.60.5620.7760.7940.6880.8010.8214.63.23.40.5880.8140.8130.1670.6100.8360.8660.1B23.72.66.23.20.6400.8900.946O.B640.8970.9692.20.82.50.7421.0141.0611.0760.7431.0281.0BO1.0760.11.4-0.10.00.1660.1692.61.0281.2081.0331.1920.5-1.3CPM-2PDQ7%DIFFERENCE0.8691.0061.2661.2900.8680.9981.2441.266-0.1-0.7-1.7-1.91.0191.2111.3421.3731.0341.2121.3261.3481.60.1-1.2-1.81.3611.1S71.3131.163-2.8-2.81A401.6431.40B1.609-2.4-2.21.3811.349-2.31.6481.5211071.6061.600-0.4LINEOFSYMMETRYCPM-2K-INFINITY=0.9230PDQ7K-INFINITY=0.9238205-l 5.0SUMMARYANDCONCLUSIONSTheanalysespresentedinthistopicalreportdemonstratethevalidityofPPaL'sanalyticalmethodsaswellasPPGL'squalificationstoperformsteadystatecorephysicscalculationsforreloaddesignandlicensinganalysisapplications.ThelatticephysicsqualificationhasbeenaccomplishedthroughcomparisonoftheCPM-2computercoderesultstovariousmeasurementdata.Comparisonsto14uniformlatticecriticalexperimentsyieldsanaverageK-effectiveof1.0005withastandarddeviationof0.0072.TheaverageK-effectivefortheUOcriticalsis0.9951andtheaverageK-effectivefortheplutoniumcriticalsis1.0076.Thepinpowerdistributionandhencelocalpeakingfactorcalculation,hasbeenbenchmarkedtothegammascandatafromQuadCitiesUnit1whichwastakenattheendofCycle2.Theaveragestandarddeviationfromallofthecomparisonsis4.0%.IfonlytheUObundlesareconsidered,theaveragestandarddeviationreducesto3.37%.thisisclosetothereported3.0%practicalaccuracyofthedata.ThequalificationofthelatticephysicsmethodsalsoreliesontheoriginalbenchmarkingofEPRI-CPMprovidedbyEPRI.BecausetheneutronicsmethodsinCPM-2areidenticaltothoseinEPRI-CPM,thisbenchmarkingremainsvalidforCPM-2.SomeoftheuniformlatticecriticalsanalyzedintheEPRIbenchmarkingarethesameexperimentsa'sthoseanalyzedbyPPGL.AftercompensationwasmadeforthecorrectionfactorsappliedtotheEPRI-CPMresults,theresultsfromEPRI-CPMagreedverywellwiththosefromCPM-2.ThequalificationofthecoresimulationmethodsnotonlydemonstratestheaccuracyofSIMULATE-Ebutalsoprovidesademonstrationoftheentiresteadystatecorephysicsmethodology.ThebenchmarkingresultsshowthatthecalculatedhotcriticalcoreK-effectivesfromSIMULATE-Ecanbeaccuratelypredictedbyacorrelationwhichconsidersbothcoregadoliniacontentandcoreaverageexposure.ThemeandifferencebetweentheSIMULATE-EcalculatedcoreK-effectiveandthecorrelationisonly0.00002akwithastandarddeviationof0.00061rlk.ThecoldcriticalcoreK-effectivefromSIMULATE-Ecanbeaccuratelypredictedbyaddingaconstantbiasof0.00659bktothehotcriticalK-effectivecorrelation.Comparisonsofcoldcriticalcalculations206-tothetargetresultsinastandarddeviationof0.00137~k.Inaddition,thereisnosignificantdifferencebetweenthecoldin-sequenceandlocalcriticalcalculations.ComparisonsofpredictedTIPresponsestomeasuredTIPresponsedatawereperformedasameansofassessingtheaccuracyoftheSIMULATE-Epowerdistributioncalculation.SusquehannaSESnodalTIPresponsecomparisons,whichdemonstratetheaccuracyofthedetailedpowerdistribution,showanaver'ageRMSof5.74%.RadialTIPresponsecomparisonswerealsoperformedinordertodemonstratetheaccuracyofthebundlepowerdistribution,andtheaverageRMSforSusquehannaSESis2.58%.ThesametypesofTIPresponsecomparisonswerealsomadeforthefirsttwocyclesofQuadCities.TheaveragenodalTIPRMSis9.84%andtheaverageradialRMSis5.26%.Additionally,theSIMULATE-EpowerdistributioncalculationshavebeencomparedtothegammascanmeasurementstakenattheendofthefirstandsecondcyclesofQuadCitiesUnit1.Thesemeasurementsarerepresentativeofthecorepowerdistributionaveragedoverthelasttwotothreemonthsofoperation.SIMULATE-EwasusedtocalculatethenodalLa-140concentrationsforcomparisontothemeasureddata.Theresultsofthenodalcomparisons,neglectingperipheralandaxialendnodes,yieldanRMSof5.45%.Fortheradialcomparison,neglectingperipheralbundles,anRMSof1.92%wasobtained.Theaxialpeakingfactor(onanodalbasis)wasalsocomparedtothemeasuredgammascandata.Theaveragedifferenceintheaxialpeakingfactorwas1.2%withastandarddeviationof2.1%forCycle1and-0.2$withastandarddeviationof1.5%forCycle2.ThisreportalsoincludedSIMULATE-EcalculationsforCycles1and2ofPeachBottomUnit2.ThesecalculationswereperformedinordertogeneratetheneutronicsinputtoPPGL'stransientanalysismethodsbenchmarkingagainstthePeachBottomendofCycle2turbinetriptests.Thepredictedpowerdistributionsforeachofthethreeturbinetriptestsshowexcellentagreementtoreportedplantprocesscomputerdata.ThePDQ7computerprogramisusedforspecialapplicationstoperformmul+iplebundlecriticalityanalysesandtoaugmentnodalsimulationcodeinput.AdemonstrationofPPGL'suseofthePDQ7programincludescomparisonsto207-uniformlatticecriticalexperimentsandpinpowerdistributioncalculations'withCPM-2.Xnconclusion,'heanalysisresultscontainedinthistopicalreportdemonstratePP&L'squalificationstoperformsteadystatecorephysicscalculations.ExtensivecomparisonstomeasureddatafromSusquehannaSES,QuadCities.Unitl,andPeachBottomUnit2demonstratethevalidityoftheanalyticalmethodsaswellasPPGL'scapabilitytosetupandproperlyapplythemodels.ComparisonstoreactordesignsotherthanPPGL'sSusquehannaSESdemonstratePPGL'sabilitytoextendthecoremodelingtechniquesdevelopedforSusquehannaSEStootherfuelandcoredesigns.PPGLiscommittedtomaintainingastrongin-housecoreanalysiscapabilityandaspartofthatcommitment,wecontinuallyevaluatetheaccuracyofourcoresimulationmethodsandmakemodelingimprovementswhenappropriate.AlthoughPPGL'sday-to-daycorefollowanalysesareaimedprimarilyatplantoperationssupport,thecomparisonsof*SIMULATE-Ecalculations(e.g.,TXPresponse,K-effective,thermalmargins)totheplantdataalsoserveasacontinuingmethodsbenchmarkingeffort.-208-  
FIGURE3.3.27QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:GEH029I-~)r'COIOT0Ult4Kg)0ZLegend~.""'.-"CIMeasured0CalculatedII0.012.024.03e.o48.0B0.072.084.088.0108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN) 3.4PeachBottomUnit2Ccles1and2ComarisonsOnespecificapplicationofPPGL'ssteadystatecorephysicsmethodsandmodelsistoprovideinputto'thetransientanalysisbenchmarkingofthePeachBottomUnit2endofCycle2turbinetriptests.Inordertoprovidethenecessaryinput,SIMULATE-EmodelsofthePeachBottomUnit2Cycles1and2coresweredeveloped.ThesemodelswerethenusedtosimulatethePeachBottomUnit2coredepletionthroughCycles1and2.ComparisonstoTIPmeasurementstakenduringCycles1and2andtoGeneralElectricCompany(GE)processcomputerPlpowerdistributionstakenprior'totheturbinetriptestsassesstheaccuracyofthecoredepletioncalculations.PeachBottomUnit2isaGeneralElectricBWR-4corethatconsistsof764fuelassemblieswithanactivecoreheightof144inches.Theinitialcyclecontained764GeneralElectric7x7fuelassembliesgCycle2contained576initial-corefuelassembliesand1888x8freshfuelassemblies.AlthoughreactordesignandratedconditionsarequitesimilartoSusquehannaSES,thePeachBottomUnit2coreloadingpattern,fuelbundledesign,inletfloworifices,andcoresupportplatebypassflowpathsaresignificantlydifferent.ThesedesigndifferencesweretakenintoaccountindevelopmentofthePeachBottomUnit2SIMULATE-Emodel.AmoredetaileddescriptionofthePeachBottomUnit2coreisfoundinReference30.TheaverageRMSofthedifferencesbetweentheSIMULATE-EcalculatedandmeasuredTIPresponsesforeachPeachBottomUnit2TIPresponsecomparisoniscalculatedasdescribedinSection3.2.3.Figure3.4.1showstheRMSoftheTIPresponsecomparisonsforPeachBottomUnit2Cycles,land2.ThesecomparisonsareslightlyworsethanSusquehannaSESresultsbutarestillquitegood.ThePeachBottomUnit2coreoperatingdata(Reference30)usedformodelingthecoredepletionwaslessdetailedthanthedatausedforSusquehannaSES.Thislackofdetaileddatamaybethecauseoftheseslightlyworseresults.Figures3.4.2through3.4.4showtheendofCycle1coreaverageaxial,radial,andfourindividualTIPresponsecomparisons,respectively.Figures3.4.5through3.4.7presentthesamecomparisonsforendofCycle2.Asshown-185-inthesefigures,thecalculatedTIPresponseagreeswellwiththemeasureddata.TheseresultsthereforeindicatethattheSIMULATE-Emodelsaccurately'alculatethree-dimensionalcoreexposure,voidhistory,andcontrolhistoryarraysfortheendofeachcycle.Aspreviouslystated,theprimarypurposefordevelopingthePeachBottomUnit2modelswastogeneratethenecessarytransientanalysisinputs(e.g.,crosssectionsandkineticsparameters).TheendofCycle2TIPresponsecomparisonindicatesthatthecorehistoryarrayshavebeenaccuratelycalculated.Becausetheturbinetriptestswereperformedoveraspanofafewweekswithacorepowerhistoryplaguedbynonsteadystateoperation,carefulanalysisofpowermaneuverswasrequiredtoadequatelycalculatetheactualxenonconcentrationatthetimeofthetests.TheaccuracyofthecalculatedxenonconcentrationimmediatelypriortoeachturbinetriptestcanbeassessedbycomparingtheSIMULATE-EcalculatedpowerdistributiontotheavailableGEprocesscomputerPlpowerdistribution(Reference31).Figure3.4.8showseachaxialpowerdistributioncomparison.TheSIMULATE-EcalculatedpowerdistributionsarebasedonactualcoreconditionspriortothetestsasreportedinReference31.Thefigureshowsthethreedifferentpowerdistributions(i.e.,toppeaked,middlepeaked,andslightlybottomI'eaked)thatexistedatthetimeofthethreeturbinetriptests.Thisindicatesthatthecoreconditionswereconsiderablydifferentforeachtest,andthattheSIMULATE-Emodeliscapableofcalculatingthesedifferences.Typicalreloaddesignandlicensingapplicationsdonotrequiremodelingthecomplexityofnonequilibriumxenon.Therefore,thisbenchmarkprovidesagoodtestofPPGL'ssteadystatephysicsmodelsandmethodsinanapplicationwhichismoredifficultthanthenormalreloadanalyses.-186-FIGLIRESA.1PEACHBOTTOMUNIT2CYCLES1AND2RELATIVENODALRMSOFTIPRESPONSECOMPARISONS12.011.0~~~10.0-9.0-"-CO&.0-fL"7.0-D0Z60-.UJ5.04.0-".CC0I-3.0-".2.0-IILegend"PB2C1PB2C2.'~~J~1.0-0.0-0345678'10COREAVERAGEEXPOSURE(GWD/MTUj11121314 80FIGURE3.4.2PEACHBOTTOMUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON11.133GWD/MTUGOREAVERAGEEXPOSURE8070BoI-z50IUzU4oMCLso0+00+++++000+0+00+0J20100I012S4567881011121S1416161718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE188-FIGORE3.4.3PEACHBOTTOMUNIT2CYCLE1'ADIALTIPRESPONSECOMPARISONS1l.I33GWD/MTUCOREAVERAGEEXPOSURE61595755535149474543413937-3.30-4.93-3.03-4.36-0.201.670.129.53.81-1.273.4-6.440.06-5.06-0.433533312927252321++++-0.5611.533.50.16-0.65-1.27-3.11-3.791.04.719171513-0.89-3.092.27++++++++-4663.I++++-0.09-0.11-547Y1IIII'II00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTiPResponsejX100%189-FIGURE3.4.4IPEACHBOTTOMUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS11.133GWD/MTUCOREAVERAGEEXPOSURE~IOHITOALOCAllOHdIL$$$IOHIIORLOCATIOH$$,$$leetseteeIISgIee0+404TesL~?ggIee~sl's0~4gf00+04P0~~s~~s0r~~tettTetstttstetresvsestssesstCORKAXIALHOOKpNRAsvesolitNespoNss0OAIOVIATRD11PRssPONesNCONTROlROOPOSITION~~S0~0r~~tenteteetteteCORKAXIALHOOK+NAstpteoTltNssposss0INSOVIATSOTl~RSSPONSS~CONTROLOOOtoelllONtrlelsleeleeeesliMONTOllLOCAllOH40,$$IIOHITORLOCATIOH$$.$$teeleetee??0eseeP004P0~?~0I~0IIlgl0o04~1~s~s~rs~le11tele11tslelrtetseeelsessslCORKAmALHOOK+NaASVRmTttRSSPO<<SS0CAlovlysoTltRsspoNes~CONTROLROOPON110N~1~s~~~'I~elelttslell1~tetrleleeeeleeeeslCORKAXIALHOOK+NSASVRSOTttIleetONSSoOASOVlAISOTltRSPPONSS~CCNTttoeRootoNTICN190-180FIGURE3.4.5PEACHBOTTOMUNIT2CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON13.812GWD/MTUCOREAVERAGEEXPOSURE160140120I-KD100lUK80COCLeo~~tb0..+.'P.g.00Q.............040+02000123456788101112131415161718182021222324COREAXIALNODE+'MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE191-FlGURE3.4.6PEACHBOTTOMUNIT2CYCLE2RADIALTIPRESPONSECOMPARISONS13.812GWD/MTUCOREAYERAGEEXPOSURE615957555351494745-8.41-3.026.893.936.04-3.78-9.963.245.3443413937-5.200.4-0.35-0.36-0.93-2.68-7.99353331292.01++++++-2.70-3.902.65.I27252321.19++++3.6-3.213.9-4.07-0.0219-1715132\12-1.85-0.130.45-0.21++++++++-3.26-11.21-2.56II28303234363840424446485052502224260002040608101214161824X565860Diff=[(Calc-Meas)/CoreAvgTIPResponse]X100%-192-FIGURE3.4.7PEACHBOTTOMUNIT2CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS43.812GWD/MTUCOREAVERAGEEXPOSUREMONITORLOCATION50T$$MONITORLOCATION4$T$$IWNa$o0441WZatIW0+o+o0Iaa~a0r~~>>11ala11>>>><<>>>>aealassaaiCOREAXIALNODE+1>>saoa>>InrNaaroosa4OAONLITciaonrIltaroNot~CONTNOLNooroaNTON~a~4~~r~~>>11IsI~%>>>>Tr>>>>wslasasssCOREAXIALNODE+1>>saoo>>IntNaarooaaoossouultanrNtaroooa~CONTNOLIiootoainONMOMTORLOCATION40,$$MONITORLOCATION$$,$$IW'll4r4044IJ.T+iog444aaLXIW~04+440~0~I~s~a~ra~ls11lslsN>>>>itlsiassslasssaiCOREAXIALNODE4WruuaaunrNaarONSa4CIIoosssaoTltNaaroNaa~CONTROLIioorOWloNsa~a~r~>>nTsisNisI~ir>>asssisssssiCOllEAXNLNODE4NahaislaonroasroNsooossoosslaontNcarooaa~OONTIIOLNOOtoainoN193 FIGURE3.4.8PEACHBOTTOMUNIT2ENDOFCYCLE2COREAVERAGEAXIALPOWERDISTRIBUTIONS1.5CLLLIOCLLIJI-LIJCY1.00.5LegendPIDataSIMULATE-E0.01.5131215182124OLIJ')I-LLICL1.00.5LegendPfDataSIMULATE-E0.01.51312151821I24CLOCLLIJ)CL1.00.5LegendPIDafaSIMULATE-E0.03BOTTOMI912'15AXIALNODE-194-182124TOP 4.0SPECIALAPPLICATIONSWITHPD7Occasionally,applicationsrequiremultipleassemblycalculations.ThelatticephysicscodeCPM-2isasingleassemblycodewhichisnotcapableofperformingmultiplebundlecalculations.Forthesecases,thePDQ7programisused.PDQ7hasbeenusedforcriticalityanalysesandtoprovideinputtothethree-dimensionalnodalsimulationcodes.TodemonstratePPsL'sabilitytousePDQ7,twosetsofproblemsarepresented.ThefirstsetcontainscalculationsoftheuniformlatticecriticalspresentedinSection2.2whichwereanalyzedwithCPM-2.ThesecondsetcontainssinglefuelbundlecalculationswithbothCPM-2andPDQ7.Forthesecases,pinpowerdistributionsandassemblyreactivitiesarecompared.-195 4.1DescritionofPD7ThePDQ7computerprogram(Reference32)wasdevelopedf'rfinemeshfewgroupdiffusiontheoryanalysis.Theprogramsolvestheneutrondiffusionequationinone,twoorthreedimensions.Availableoptionsincluderectangular,hexagonal,cylindricalorsphericalgeometries.Amaximumoffiveenergygroupsarepermitted.Themeshspacingisflexibleallowingtheusertodefineasmuchgeometricdetailasappropriateforthespecificproblem.CrosssectionsforeachproblemmaybeinputtoPDQ7aseithermacroscopicormicroscopicdata.AtPPGL,thisdatawouldtypicallybeCPM-2generatedmacroscopiccrosssections.Formostapplications,fourgroupcrosssectionsareusedwithenergyboundariesasdefinedinTable4.1.1.-196-TABLE4.1.1ENERGYGROUPSTRUCTUREUSEDINPDQ7CALCULATIONS~GzouEnergyBoundaries(eV)1.0x10-8.21x107528.21x10-5.53x105'5.53x10-0.62530.625-0.0197-4.2UniformLatticeCriticalsThesameuniformlatticecriticalsevaluatedwithCPM-2inSection2.2werealsoanalyzedwithPDQ7.One>>dimensionalcylindricalgeometrywasusedtomodeleachuniformlatticecritical.Thecriticalradiuswasdefinedtoconservethecorecrosssectionalareaandwasdeterminedfromthecriticalnumberofpins.PDQ7crosssectionsforthecoreregionwereobtainedfromCPM-2pincellcalculations.Thereflectorcrosssectionswere'obtainedfromReference33.BecausearadialreflectorregionwasincludedinthePDQ-7model,onlyanaxialbucklingtermwasrequiredtoaccountfortheleakage.AswiththeCPM-2uniformlatticecriticalcalculationspresentedinSection2.2,theTRXandESADAexperimentsweremodeledwithPDQ7.Tables4.2.1and4.2.2showtheresultsofthePDQ7calculations.TheCPM-2resultsfromSection2.2arealsoincludedforcomparison.TheresultsfromtheTRXandESADAcalculationsyieldsimilarK-effectives.-198-TABLE42.1P7RESULTSFORTRXCRITICALSExperimentIdentificationCPM-2K-effectiveExperimentalAxialMaterialguckling(m)PDQ7K-effectiveTRX1TRX2TRX3TRX5TRX6TRX7TRX80.99340.99580.99420.99390.99340.99740.99700.9960''5.045.125.325.115.265.255.255.310.99690.99730.99540.99610.99500.99960.99960.9978AverageK-effectiveStandardDeviation0.99510.00160.99720.0017199-TABLE422P7RESULTSFORESADACRITICALSExperimentIdentificationCPM-2K-effective*ExperimentalAxialMaterialchuckling(m)PDQ7K-effective*ESADA1ESADA3ESADA4ESADA6ESADA12ESADA131.00261.00041.01291.01161.01011.00778.568.9679.4669.4719.4369.6391.01221.01581.01521.01331.01621.0140AverageK-effectiveStandardDeviation1.00760.00501.01440.0016*AllCPM-2andPDQ7calculatedK-effectiveshavebeenadjustedby-0.4%~Ktoaccountforspacerworth.200 4.3ComarisonstoCPM-2AsecondqualificationoftheuseofPDQ7atPPaListhroughcomparisontosingleassemblyCPM-2latticephysicscalculations.TofacilitategenerationofthePDQ7crosssectiondata,theCOPHIN(Reference34)codewasused.Separateplanarregionsaredefinedfordifferentfuelpintypes,waterrodsandotherregions(i.e.,controlrod,watergap,etc.).Fuelpinregionsaregroupedaccordingtofuelpinenrichmentandlocation.Themeshdescriptionisdefinedtoexplicitlymodeleachpinandtoconservethevolumesofeachregion.Whenthefuelassemblybeingmodeledcontainsgadoliniaoracontrolrod,theneutronfluxdepressioncausedbythepresenceofthestrongabsorbercanbereproducedusingdiffusiontheorywithashieldingfactor.Withoutashieldingfactordiffusiontheoryresultsinanoverestimationoftheneutronfluxintheabsorberregionandacorrespondingoverestimationoftheabsorberworth.ShieldingfactorsaredevelopedandappliedtotheGroup4(thermal)absorptionandfissioncrosssectionsforgadoliniabearingfuelpinsandtheGroup3and4absorptioncrosssectionsforcontrolrods.ThesefactorsarederivedbyconservingtheCPM-2calculatedabsorptionrateintheabsorber.ThefuelassemblieschosenforthecomparisonaretheSusquehannaSESinitialcorebundledesigns.Twoseparatefueldesignswerechosenfortheanalysis.TheresultsareshowninFigures4.3.1through4.3.4.Theagreementinpowerdistributionforasingleassemblyisverygood.Theassemblyeigenvalues(K-infinities)alsoagreewellbetweenthetwocodes,differingbylessthan1mk(or0.1%bk).ThisdemonstratesthatPPGLcanperformaccuratePDQ7assemblycalculations.201-FIGURE4.3.1CPM-2VSPDQ7PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREHIGHENRICHEDFUELTYPEUNCONTROLLEDWIDEGAPWIDEGAP1.0271.0652.71.1041.1130.81.1171.116-0.21.1471.140-0.61.1241~1260.20.9800.969>>1.11.0470.9651.0290.966-1.7-0.91.0760.8601.0600.875-1.61.71.0220.8421.0220.8620.02.40.1140.1160.90.S931.0010.8CPM-2PDQ7%DIFFERENCE1.0741.0810.71.0661.0811.60.9971.0333.61.0290.1101.0370.1090.8-0.90.9881.0400.9871.046-0.10.51.0691.0861.0841.0891.40.40.8930.9920.9010.9730.9-1.91.0671.0121.0490.992-0.8-2.01.1461.1791.1431.166-0.3<<1.10.9480.923-2.61.0991.0131.0690.994-2.7-1.91.1481.1321.1401.134-0.70.21.0601.0732.2LINEOFSYMMETRYCPM-2K-INFINITY=1.1428PDQ7K-INFINITY=1.1426202-FlGURE4.3.2CPM-2VSPDQ7PINPO'tN'ERDISTRIBUTIONCOMPARISONGEINITlALCOREHIGHENRICHEDFUELTYPECONTROLLEDWIDEGAPWIDEGAP0.3800.4005.30.4860.5910.5230.6127.63.60.5490.7400.5780.7865.36.20.6070.8370.6320.8764.14.70.645O.8550.6660.8983.35.00.8260.8533.30.8240.8776.40.8770.9245.40.1290.1333.11.2321.2390.6CPM-2PDQ7%DIFFERENCE0.6900.9240.7030.96619450.8240.9890.8320.9951.00.6.0.9521.1660.9731.1732.20.60.1280.1301.61.2101.196-1.21.3001.288-O.S1.1011.2761.2601.1031.2361.2140.2-3.1-3.71.3341.3351.4931.2931.2841.420-3.1-3.8-4.91.4651.5731.5771.4331.5191.524-22-34-3A1.4041.353-3.61.5861.539-3.01.4871.465-1.5LINEOFSYMMETRYCPM-2K-INFINITY=0.9623PDQ7K-INFINITY=0.9615203 FIGURE4.3.3CPM-2VSPDQ7PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREMEDIUMENRICHEDFUELTYPEUNCONTROLLEDWIDEGAPWIDEGAP1.0641.0963.01.1040.9881.1160.9791.1-0.91.1201.0840.9211.1211.0670.9150.1-1.6-0.71.0821.0320.8471.0781.0180.854-0.4-1.40.81.0801.0390.9071.0791.0260.908-0.1-1.30.10.1390.1390.00.1240.1261.6CPM-2PDQ7%DIFFERENCE1.1221.0960.9621.1221.0780.9520.0-1.6-1.01.1060.9931.0911.1160.9821.0740.9-1.1-1.61.0601.1041.1171.0941.1161.1183.21.00.10.8850.7940.9000.8890.8090.8980.51.9-0.21.0281.0210.8751.0181.0110.863-1.0-1.0-1.41.0721.0751.1161.0731.0731.1200.1-0.20.40.9890.985-0.41.0971.0541.1121.0881A3.2LINEOFSYMMETRYCPM-2K-INFINITY=1.1107PDQ7K-INFINITY=1.1100204-FIGURE4.3.4CPM-2VSPDQ?PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREMEDIUMENRICHEDFUELTYPECONTROLLEDWIDEGAPWIDEGAP0.3990.4195.00.4950.6040.6310.6257.33.60.5620.7760.7940.6880.8010.8214.63.23.40.5880.8140.8130.1670.6100.8360.8660.1B23.72.66.23.20.6400.8900.946O.B640.8970.9692.20.82.50.7421.0141.0611.0760.7431.0281.0BO1.0760.11.4-0.10.00.1660.1692.61.0281.2081.0331.1920.5-1.3CPM-2PDQ7%DIFFERENCE0.8691.0061.2661.2900.8680.9981.2441.266-0.1-0.7-1.7-1.91.0191.2111.3421.3731.0341.2121.3261.3481.60.1-1.2-1.81.3611.1S71.3131.163-2.8-2.81A401.6431.40B1.609-2.4-2.21.3811.349-2.31.6481.5211071.6061.600-0.4LINEOFSYMMETRYCPM-2K-INFINITY=0.9230PDQ7K-INFINITY=0.9238205-l 5.0SUMMARYANDCONCLUSIONSTheanalysespresentedinthistopicalreportdemonstratethevalidityofPPaL'sanalyticalmethodsaswellasPPGL'squalificationstoperformsteadystatecorephysicscalculationsforreloaddesignandlicensinganalysisapplications.ThelatticephysicsqualificationhasbeenaccomplishedthroughcomparisonoftheCPM-2computercoderesultstovariousmeasurementdata.Comparisonsto14uniformlatticecriticalexperimentsyieldsanaverageK-effectiveof1.0005withastandarddeviationof0.0072.TheaverageK-effectivefortheUOcriticalsis0.9951andtheaverageK-effectivefortheplutoniumcriticalsis1.0076.Thepinpowerdistributionandhencelocalpeakingfactorcalculation,hasbeenbenchmarkedtothegammascandatafromQuadCitiesUnit1whichwastakenattheendofCycle2.Theaveragestandarddeviationfromallofthecomparisonsis4.0%.IfonlytheUObundlesareconsidered,theaveragestandarddeviationreducesto3.37%.thisisclosetothereported3.0%practicalaccuracyofthedata.ThequalificationofthelatticephysicsmethodsalsoreliesontheoriginalbenchmarkingofEPRI-CPMprovidedbyEPRI.BecausetheneutronicsmethodsinCPM-2areidenticaltothoseinEPRI-CPM,thisbenchmarkingremainsvalidforCPM-2.SomeoftheuniformlatticecriticalsanalyzedintheEPRIbenchmarkingarethesameexperimentsa'sthoseanalyzedbyPPGL.AftercompensationwasmadeforthecorrectionfactorsappliedtotheEPRI-CPMresults,theresultsfromEPRI-CPMagreedverywellwiththosefromCPM-2.ThequalificationofthecoresimulationmethodsnotonlydemonstratestheaccuracyofSIMULATE-Ebutalsoprovidesademonstrationoftheentiresteadystatecorephysicsmethodology.ThebenchmarkingresultsshowthatthecalculatedhotcriticalcoreK-effectivesfromSIMULATE-Ecanbeaccuratelypredictedbyacorrelationwhichconsidersbothcoregadoliniacontentandcoreaverageexposure.ThemeandifferencebetweentheSIMULATE-EcalculatedcoreK-effectiveandthecorrelationisonly0.00002akwithastandarddeviationof0.00061rlk.ThecoldcriticalcoreK-effectivefromSIMULATE-Ecanbeaccuratelypredictedbyaddingaconstantbiasof0.00659bktothehotcriticalK-effectivecorrelation.Comparisonsofcoldcriticalcalculations206-tothetargetresultsinastandarddeviationof0.00137~k.Inaddition,thereisnosignificantdifferencebetweenthecoldin-sequenceandlocalcriticalcalculations.ComparisonsofpredictedTIPresponsestomeasuredTIPresponsedatawereperformedasameansofassessingtheaccuracyoftheSIMULATE-Epowerdistributioncalculation.SusquehannaSESnodalTIPresponsecomparisons,whichdemonstratetheaccuracyofthedetailedpowerdistribution,showanaver'ageRMSof5.74%.RadialTIPresponsecomparisonswerealsoperformedinordertodemonstratetheaccuracyofthebundlepowerdistribution,andtheaverageRMSforSusquehannaSESis2.58%.ThesametypesofTIPresponsecomparisonswerealsomadeforthefirsttwocyclesofQuadCities.TheaveragenodalTIPRMSis9.84%andtheaverageradialRMSis5.26%.Additionally,theSIMULATE-EpowerdistributioncalculationshavebeencomparedtothegammascanmeasurementstakenattheendofthefirstandsecondcyclesofQuadCitiesUnit1.Thesemeasurementsarerepresentativeofthecorepowerdistributionaveragedoverthelasttwotothreemonthsofoperation.SIMULATE-EwasusedtocalculatethenodalLa-140concentrationsforcomparisontothemeasureddata.Theresultsofthenodalcomparisons,neglectingperipheralandaxialendnodes,yieldanRMSof5.45%.Fortheradialcomparison,neglectingperipheralbundles,anRMSof1.92%wasobtained.Theaxialpeakingfactor(onanodalbasis)wasalsocomparedtothemeasuredgammascandata.Theaveragedifferenceintheaxialpeakingfactorwas1.2%withastandarddeviationof2.1%forCycle1and-0.2$withastandarddeviationof1.5%forCycle2.ThisreportalsoincludedSIMULATE-EcalculationsforCycles1and2ofPeachBottomUnit2.ThesecalculationswereperformedinordertogeneratetheneutronicsinputtoPPGL'stransientanalysismethodsbenchmarkingagainstthePeachBottomendofCycle2turbinetriptests.Thepredictedpowerdistributionsforeachofthethreeturbinetriptestsshowexcellentagreementtoreportedplantprocesscomputerdata.ThePDQ7computerprogramisusedforspecialapplicationstoperformmul+iplebundlecriticalityanalysesandtoaugmentnodalsimulationcodeinput.AdemonstrationofPPGL'suseofthePDQ7programincludescomparisonsto207-uniformlatticecriticalexperimentsandpinpowerdistributioncalculations'withCPM-2.Xnconclusion,'heanalysisresultscontainedinthistopicalreportdemonstratePP&L'squalificationstoperformsteadystatecorephysicscalculations.ExtensivecomparisonstomeasureddatafromSusquehannaSES,QuadCities.Unitl,andPeachBottomUnit2demonstratethevalidityoftheanalyticalmethodsaswellasPPGL'scapabilitytosetupandproperlyapplythemodels.ComparisonstoreactordesignsotherthanPPGL'sSusquehannaSESdemonstratePPGL'sabilitytoextendthecoremodelingtechniquesdevelopedforSusquehannaSEStootherfuelandcoredesigns.PPGLiscommittedtomaintainingastrongin-housecoreanalysiscapabilityandaspartofthatcommitment,wecontinuallyevaluatetheaccuracyofourcoresimulationmethodsandmakemodelingimprovementswhenappropriate.AlthoughPPGL'sday-to-daycorefollowanalysesareaimedprimarilyatplantoperationssupport,thecomparisonsof*SIMULATE-Ecalculations(e.g.,TXPresponse,K-effective,thermalmargins)totheplantdataalsoserveasacontinuingmethodsbenchmarkingeffort.-208-  


6.0REFERENCES1.NRCGenericLetterNumber83-11,"LicenseeQualificationforPerformingSafetyAnalysesinSupportofLicensingActions,"February8,1983.2."AdvancedRecycleMethodologyProgram,"EPRZCCM-3,September,1977.3.D.B.Jones,"CPM-2ComputerCodeUser'sManual,"PartII,Chapter6ofEPRINP-4574-CCM,February,1987.4.M.Edenius,"EPRI-CPMBenchmarking,"Part1,Chapter5ofEPRICCM-3,November,1975.5.A.Ahlin,et.al.,"TheCollisionProbabilityModuleEPRI-CPM,"PartII,Chapter6ofEPRZCCM-3,November,1975.6.R.Stamm'ler,et.al.,"EquivalenceRelationsForResonanceIntegralCalculations,"JournalofNuclearEnergy,Volume27,page885,1973.7.M.Edenius,A.Ahlin,"MICBURN:MicroscopicBurnupZnGadoliniaFuelPins,"PartZI,Chapter7ofEPRZCCM-3,November,1975.8.M.Edenius,et.al.,"TheEPRI-CPMDataLibrary,"PartII,Chapter4ofEPRICCM-3,November,1975.9.L.Hellstrand,"MeasurementsofResonanceIntegralsReactorPhysicsintheResonanceandThermalRegions,"ProceedingsoftheNationalTopicalMeeting,SanDiego,CA,VolumeII,page157,February,1966.10.J.R.Brown,et.al.,"KineticandBucklingMeasurementsonLatticesofSlightlyEnrichedUraniumorUORodsInLightWater,"WAPD-176,January,1958.11.R.D.Learner,et.al.,"PuO-UOFueledCriticalExperiments,"WCAP-3726-1,July,1967.209-i'l12.M.B.CutroneandG.F.Valby,"GammaScanMeasurementsatQuadCitiesNuclearPowerStationUnit1FollowingCycle2,"EPRINP-214,July,1976.13.R.J.Nodvik,"SupplementaryReport.onEvaluationofMassSpectrometricandRadiochemicalAnalysisofYankeeCoreISpentFuel,IncludingIsotopesofElementsThoriumThroughCurium,"WCAP-6086,1969.14.R.J.Nodvik,"SaxtonCoreIIFuelPerformanceEvaluation,"PartIIWCAP-3385-56.15.D.M.VerPlanck,"SIMULATE-E:ANodalCoreAnalysisProgramforLightWaterReactors,"EPRINP-2792-CCM,March,1983.16.A.Ancona,"ReactorNodalMethodUsingResponseMatrixParameters,"Ph.D.ThesisRensselaerPolytechnicalInstitute,1977.17.S.Borresen,"ASimplified,CoarseMesh,Three-DimensionalDiffusionSchemeforCalculatingtheGrossPowerDistributioninaBoilingWaterReactor,"NuclearScienceandEngineering,Volume44,pages37-43,1971.18.G.S.LelloucheandB.A.Zolotar,"MechanisticModelForPredictingTwo-PhaseVoidFractionForWaterinVerticalTubes,"EPRINP-2246-SR,February,1982.19.B.J.Gitnick,"FIBWR:ASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors;ComputerCodeUser'sManual,"EPRINP-1924-CCM,July,1981.20.D.B.JonesandM.J.Anderson,"ARMP-02Documentation:PartII,Chapter12-NORGE-B2ComputerCodeManual,"EPRINP-4574-CCM,PartII-,Chapter12,December,1986.21.B.L.Darnell,et.al.,"SIMULATE-E:ANodalCoreAnalysisProgramforLightWaterReactors,"EPRINP-2792-CCM(DraftRevision),AppendixD,May,1986.-210-22..A.F.Ansari,et.al.,"FIBWR:ASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors,"EPRINP-1923,July,1981.23.R.B.MacduffandT.W.Patten,"XN-3CriticalPowerCorrelation,"XN-NF-512(P)(A)Revision1andSupplement1,Revision1,October21,1982.24.S.W.Jones,et.al.,"POWERPLEXCoreMonitoringSoftwareSystemSoftwareSpecificationfortheSusquehannaSteamElectricStationSusquehannaUnits1and2,"XN-NF-83-35(P),Revision1,August,1986.25."GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,CorrelationandDesignApplication,"NED0-10958-A,January,1977.26.M.Edenius,"StudiesoftheReactivityTemperatureCoefficientinLightWaterReactors,"AE-RF-76-3160,A.B.Atomenergi,1976.27.N.H.Larsen,et.al.,"CoreDesignandOperatingDataforCycles1and2ofQuadCities1,"EPRINP-240,November,1976.28.N.H.Larsen,"CoreDesignandOperatingDataforQuadCities1Cycle3,"EPRINP-552,March,1983.29.G.R.Parkos,"BWRSimulatorMethodsVerification,"NED0-20946A,January,1977.30.N.H.Larsen,"CoreDesignandOperatingDataForCycles1and2ofPeachBottom2,"EPRINP-563,June,1978.31.L.A.CarmichaelandR.D.Niemi,"TransientandStabilityTestsatPeachBottomAtomicPowerStationUnit2attheEndofCycle2,"EPRINP-564,June,1978.32.W.R.Cadwell,"PDQ7ReferenceManual,"WAPD-TM-678,January,1967.211-33.W.J.Eich,et.al.,"FewGroupBaffleand/orReflectorConstantsforDiffusionCalculationApplication,"EPRINP-3642-SR,August,1984.34.R.D.MostellerandR.S.Borland,"COPHINCodeDescription,"EPRINP-1385,April,1980.-212-RESPONSETONRCREQUESTFORADDITIONALINFORMATION-213-  
==6.0REFERENCES==
1.NRCGenericLetterNumber83-11,"LicenseeQualificationforPerformingSafetyAnalysesinSupportofLicensingActions,"February8,1983.2."AdvancedRecycleMethodologyProgram,"EPRZCCM-3,September,1977.3.D.B.Jones,"CPM-2ComputerCodeUser'sManual,"PartII,Chapter6ofEPRINP-4574-CCM,February,1987.4.M.Edenius,"EPRI-CPMBenchmarking,"Part1,Chapter5ofEPRICCM-3,November,1975.5.A.Ahlin,et.al.,"TheCollisionProbabilityModuleEPRI-CPM,"PartII,Chapter6ofEPRZCCM-3,November,1975.6.R.Stamm'ler,et.al.,"EquivalenceRelationsForResonanceIntegralCalculations,"JournalofNuclearEnergy,Volume27,page885,1973.7.M.Edenius,A.Ahlin,"MICBURN:MicroscopicBurnupZnGadoliniaFuelPins,"PartZI,Chapter7ofEPRZCCM-3,November,1975.8.M.Edenius,et.al.,"TheEPRI-CPMDataLibrary,"PartII,Chapter4ofEPRICCM-3,November,1975.9.L.Hellstrand,"MeasurementsofResonanceIntegralsReactorPhysicsintheResonanceandThermalRegions,"ProceedingsoftheNationalTopicalMeeting,SanDiego,CA,VolumeII,page157,February,1966.10.J.R.Brown,et.al.,"KineticandBucklingMeasurementsonLatticesofSlightlyEnrichedUraniumorUORodsInLightWater,"WAPD-176,January,1958.11.R.D.Learner,et.al.,"PuO-UOFueledCriticalExperiments,"WCAP-3726-1,July,1967.209-i'l12.M.B.CutroneandG.F.Valby,"GammaScanMeasurementsatQuadCitiesNuclearPowerStationUnit1FollowingCycle2,"EPRINP-214,July,1976.13.R.J.Nodvik,"SupplementaryReport.onEvaluationofMassSpectrometricandRadiochemicalAnalysisofYankeeCoreISpentFuel,IncludingIsotopesofElementsThoriumThroughCurium,"WCAP-6086,1969.14.R.J.Nodvik,"SaxtonCoreIIFuelPerformanceEvaluation,"PartIIWCAP-3385-56.15.D.M.VerPlanck,"SIMULATE-E:ANodalCoreAnalysisProgramforLightWaterReactors,"EPRINP-2792-CCM,March,1983.16.A.Ancona,"ReactorNodalMethodUsingResponseMatrixParameters,"Ph.D.ThesisRensselaerPolytechnicalInstitute,1977.17.S.Borresen,"ASimplified,CoarseMesh,Three-DimensionalDiffusionSchemeforCalculatingtheGrossPowerDistributioninaBoilingWaterReactor,"NuclearScienceandEngineering,Volume44,pages37-43,1971.18.G.S.LelloucheandB.A.Zolotar,"MechanisticModelForPredictingTwo-PhaseVoidFractionForWaterinVerticalTubes,"EPRINP-2246-SR,February,1982.19.B.J.Gitnick,"FIBWR:ASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors;ComputerCodeUser'sManual,"EPRINP-1924-CCM,July,1981.20.D.B.JonesandM.J.Anderson,"ARMP-02Documentation:PartII,Chapter12-NORGE-B2ComputerCodeManual,"EPRINP-4574-CCM,PartII-,Chapter12,December,1986.21.B.L.Darnell,et.al.,"SIMULATE-E:ANodalCoreAnalysisProgramforLightWaterReactors,"EPRINP-2792-CCM(DraftRevision),AppendixD,May,1986.-210-22..A.F.Ansari,et.al.,"FIBWR:ASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors,"EPRINP-1923,July,1981.23.R.B.MacduffandT.W.Patten,"XN-3CriticalPowerCorrelation,"XN-NF-512(P)(A)Revision1andSupplement1,Revision1,October21,1982.24.S.W.Jones,et.al.,"POWERPLEXCoreMonitoringSoftwareSystemSoftwareSpecificationfortheSusquehannaSteamElectricStationSusquehannaUnits1and2,"XN-NF-83-35(P),Revision1,August,1986.25."GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,CorrelationandDesignApplication,"NED0-10958-A,January,1977.26.M.Edenius,"StudiesoftheReactivityTemperatureCoefficientinLightWaterReactors,"AE-RF-76-3160,A.B.Atomenergi,1976.27.N.H.Larsen,et.al.,"CoreDesignandOperatingDataforCycles1and2ofQuadCities1,"EPRINP-240,November,1976.28.N.H.Larsen,"CoreDesignandOperatingDataforQuadCities1Cycle3,"EPRINP-552,March,1983.29.G.R.Parkos,"BWRSimulatorMethodsVerification,"NED0-20946A,January,1977.30.N.H.Larsen,"CoreDesignandOperatingDataForCycles1and2ofPeachBottom2,"EPRINP-563,June,1978.31.L.A.CarmichaelandR.D.Niemi,"TransientandStabilityTestsatPeachBottomAtomicPowerStationUnit2attheEndofCycle2,"EPRINP-564,June,1978.32.W.R.Cadwell,"PDQ7ReferenceManual,"WAPD-TM-678,January,1967.211-33.W.J.Eich,et.al.,"FewGroupBaffleand/orReflectorConstantsforDiffusionCalculationApplication,"EPRINP-3642-SR,August,1984.34.R.D.MostellerandR.S.Borland,"COPHINCodeDescription,"EPRINP-1385,April,1980.-212-RESPONSETONRCREQUESTFORADDITIONALINFORMATION-213-  


PennsylvaniaPower8LightCompanyTWONOrthNinthStreet~AllentOWn.PA18101~215I7705151HaroldW.KeiserVicePresident-NuclearOperations215/770-7502pEB>7$88DirectorofNuclearReactorRegulationAttention:Dr.W.R.Butler,~ProjectDirectorProjectDirectorateI-2DivisionofReactorPrdjectsU.S.NuclearRegulatoryCommissionWashington,D.C.20555SUSQUEHANNASTEAMELECTRICSTATIONRESPONSETORAIONCOREPHYSICSTOPICALPLA-2983FILESA7-8A,R41-2'eference:Letter,M.C.ThadanitoH.W.Keiser,"RequestforAdditionalInformation",datedJanuary11,1988.
PennsylvaniaPower8LightCompanyTWONOrthNinthStreet~AllentOWn.PA18101~215I7705151HaroldW.KeiserVicePresident-NuclearOperations215/770-7502pEB>7$88DirectorofNuclearReactorRegulationAttention:Dr.W.R.Butler,~ProjectDirectorProjectDirectorateI-2DivisionofReactorPrdjectsU.S.NuclearRegulatoryCommissionWashington,D.C.20555SUSQUEHANNASTEAMELECTRICSTATIONRESPONSETORAIONCOREPHYSICSTOPICALPLA-2983FILESA7-8A,R41-2'eference:Letter,M.C.ThadanitoH.W.Keiser,"RequestforAdditionalInformation",datedJanuary11,1988.
Line 74: Line 77:
~nestion5ArethepresentlydemonstratedaccuracyandbiasesofCPM-2calculationsexpectedtoholdfor9x9andotheradvancedBWRbundledesigns?HaveanycomparisonsbeenmadeofCPM-2toMonteCarlocalculationsfor9x9bundlesofthetypeusedinSusquehannaUnit2?~~nesonseTheaccuracyandbiasespresentedinPL-NF-87-001areexpectedtoholdfor9x9andotheradvancedBWRbundledesignsthat.aresimilartothe7x7,8x8,and9x9fueldesigns.ComparisonstotheTRX,Kritz,andESADAcriticalsshowcriticalevaluationsforawidevarietyoffuelarrangements(i.e.varyingpellet'diameters,pelletdensities,watertometalratios,andfuelrodpitches).ComparisonsofCPM-2toMonteCarlocalculationshavenotbeenmade;however,thebenchmarkingpresentedinPL-NF-87-001stronglysupportstheuseofCPM-2tomodel9x9fuelandotheradvancedBWRbundledesignssimilartothosepresented.
~nestion5ArethepresentlydemonstratedaccuracyandbiasesofCPM-2calculationsexpectedtoholdfor9x9andotheradvancedBWRbundledesigns?HaveanycomparisonsbeenmadeofCPM-2toMonteCarlocalculationsfor9x9bundlesofthetypeusedinSusquehannaUnit2?~~nesonseTheaccuracyandbiasespresentedinPL-NF-87-001areexpectedtoholdfor9x9andotheradvancedBWRbundledesignsthat.aresimilartothe7x7,8x8,and9x9fueldesigns.ComparisonstotheTRX,Kritz,andESADAcriticalsshowcriticalevaluationsforawidevarietyoffuelarrangements(i.e.varyingpellet'diameters,pelletdensities,watertometalratios,andfuelrodpitches).ComparisonsofCPM-2toMonteCarlocalculationshavenotbeenmade;however,thebenchmarkingpresentedinPL-NF-87-001stronglysupportstheuseofCPM-2tomodel9x9fuelandotheradvancedBWRbundledesignssimilartothosepresented.
uestion6Haveanytrends(biases)beenobservedintheaccuracyofpin-powerandLPFpredictionsvs.elevation,voidhistory,exposure,control,etc.7~ResenseTheaccuracyofthepinpowerdistributionandlocalpeakingfactordoesnotappeartobecorrelatedtoexposure,voidhistory,orelevation.ThiscanbeseenbyexaminingthedatafromtheQuadCitiesgammascancomparisonssummarized.inTables2.3.2and2.3.3ofPL-NF-87-001.ThesedatahavebeenplottedinFiguresC6.1throughC6.6.Overall,theredoesnotappeartobeanytrendinthestandarddeviationsofthepincomparisonsrelativetoexposure,voidhistory,orelevation.Theinteriormixedoxidebundles,GEB159andGEB161,doshowslightlyincreasedstandarddeviationswithincreasedelevations(i.e.,voidhistory).ThesebundledesignsarenottypicalofexpectedfueldesignscurrentlyplannedforuseinSusquehannaSES.Itshouldalsobenotedthatthecalculatedpeakactivityisnormallyhighprovidingaconservativeestimationofthelocalpeakingfactor.InadditiontothegammascancomparisonsperformedatPPGL,EPRIsponsoredbenchmarkingoftheoriginalEPRI-CPM.TheresultsfromthesecomparisonsareconsistentwiththeQuadCitiescomparisonsindicatingCPM-2calculationsprovidesimilaraccuracyfordifferentbundledesigns.MeasuredgammascandatadonotexistforanyoftheSusquehannaSESspecificbundledesignswhichwouldpermitdirectcomparisontopinpowers.However,theTIPresponsecomparisonspresentedinSection3ofPL-NF-87-001canbeusedtoinfertheaccuracyofCPM-2.TheTIPresponsemodelusedinSIMULATE-EisdevelopedbasedonCPM-2calculations.ThesecalculationsrequireCPM-2topredictalocalfissionrateatthedetectorlocationinthebypassregion.IfCPM-2wasunabletocalculateaccuratelocalpeakingfactors,itwouldalsobeunabletocalculateaccurateTIPresponsefactors.ThiswouldshowupintheTIPresponsecomparisons.TheindividualTIPresponsecomparisonsinSection3donotappeartocontainanytrendswithcontrolrodpresence,exposure,voidhistory(i.e.,exposure-weightedrelativemoderatordensity),orrelativemoderatordensity.Thisagreeswiththeconclusionsdrawnfromthecomparisonstogammascandata.
uestion6Haveanytrends(biases)beenobservedintheaccuracyofpin-powerandLPFpredictionsvs.elevation,voidhistory,exposure,control,etc.7~ResenseTheaccuracyofthepinpowerdistributionandlocalpeakingfactordoesnotappeartobecorrelatedtoexposure,voidhistory,orelevation.ThiscanbeseenbyexaminingthedatafromtheQuadCitiesgammascancomparisonssummarized.inTables2.3.2and2.3.3ofPL-NF-87-001.ThesedatahavebeenplottedinFiguresC6.1throughC6.6.Overall,theredoesnotappeartobeanytrendinthestandarddeviationsofthepincomparisonsrelativetoexposure,voidhistory,orelevation.Theinteriormixedoxidebundles,GEB159andGEB161,doshowslightlyincreasedstandarddeviationswithincreasedelevations(i.e.,voidhistory).ThesebundledesignsarenottypicalofexpectedfueldesignscurrentlyplannedforuseinSusquehannaSES.Itshouldalsobenotedthatthecalculatedpeakactivityisnormallyhighprovidingaconservativeestimationofthelocalpeakingfactor.InadditiontothegammascancomparisonsperformedatPPGL,EPRIsponsoredbenchmarkingoftheoriginalEPRI-CPM.TheresultsfromthesecomparisonsareconsistentwiththeQuadCitiescomparisonsindicatingCPM-2calculationsprovidesimilaraccuracyfordifferentbundledesigns.MeasuredgammascandatadonotexistforanyoftheSusquehannaSESspecificbundledesignswhichwouldpermitdirectcomparisontopinpowers.However,theTIPresponsecomparisonspresentedinSection3ofPL-NF-87-001canbeusedtoinfertheaccuracyofCPM-2.TheTIPresponsemodelusedinSIMULATE-EisdevelopedbasedonCPM-2calculations.ThesecalculationsrequireCPM-2topredictalocalfissionrateatthedetectorlocationinthebypassregion.IfCPM-2wasunabletocalculateaccuratelocalpeakingfactors,itwouldalsobeunabletocalculateaccurateTIPresponsefactors.ThiswouldshowupintheTIPresponsecomparisons.TheindividualTIPresponsecomparisonsinSection3donotappeartocontainanytrendswithcontrolrodpresence,exposure,voidhistory(i.e.,exposure-weightedrelativemoderatordensity),orrelativemoderatordensity.Thisagreeswiththeconclusionsdrawnfromthecomparisonstogammascandata.
FIGUREC6.1QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONS60I~QUJClCCCIZ4V)0cI0":'egend0GEB169GEB161~GEH002SCX0672'"~CX0214a~4681012141618CALCULATEDBURNUP.(GWD/MTU)2022 mmmmmmmmmmwmwmmwmFIGUREC6.2QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONSZ60l~aWClCCCIZ4I-LegendPGEB169GEB161~GEH002~CX0672~CX0214p'3""~~.:01020.304060CALCULATEDVOIDHISTORY(%)6070 FIGUREC6.3QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONSZ80l~5DCLDZ4(DLegend0GEB159GEB161~GEH002~CX0672....~CX02140gI0002040~~6080100ELEVATION(INCH)W.:~~120140 10~o60c(40Q2OZm.FIGUREC6.4QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONSLegend0GEB159GE8161~GEH002~"-.'-""~CX0672CX0214.~........:, 4-61012141618CALCULATEDBURNUP(GWD/MTU)2022 10FIGUREC6.5QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONSLegend0GEB159GEB161~GEH002~o60c(40UJQOOZg)0-r~~~rCX0872~CX0214~'..:..~.............:r<<2-4106020304050mmmmmmSPY'lYLJiiWekimmmmmmm 10FIGUREC6.6.QUADCITIESUNITIENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS~o604ClClCIZg)0 4Legend0GEB159GEB161----"-"~GEH002~CX0672CX0214~~0I~~~~~00020406080ELEVATION(INCH)100120140 Question7HowdothemodificationstotheENDF/B-IIInucleardataotherthanthosenotedforU-238comparetotheuncertaintiesinthebasicdata?~ResenseThemodificationtothePu-240microscopicabsorptioncrosssectionsistheonlymodificationmadetotheENDF/B-IIIcrosssectiondataotherthanthosenotedforU-238.Thismodification,asstatedinSection2.1ofPL-NF-87-001anddocumentedinPartII,Chapter4ofEPRICCM-3,"TheEPRI-CPMDataLibrary,"isa50%reductioninthecrosssection,intheresonanceenergyregion(i.e.,energygroups16through27).AlthoughtheaccuraciesoftheENDF/B-IIIdata'renotpresentedintheEPRIdocumentation,itislikelythatthismodificationexceedstheuncertaintiesofthebasicnucleardata.Themodification,however,isrequiredtocompensateforthefactthatPu-240isnottreatedasaresonancenuclideinCPM-2.Theunmodifiedcrosssectionwouldsignificantlyoverpredicttheabsorptionintheresonanceregion.AnymodificationtothePu-240microscopicabsorptioncrosssectionswouldaffecttheheavynuclideconcentrationbuildupwithexposure.Table2.1.3ofPL-NF-87-001presentstheheavynuclidechainsthatincludePu-240.IfthePu-240crosssectionswereinappropriatelyadjusted,thePu-240,Pu-241,andPu-242concentrationswouldimproperlyaccumulatewithexposure.Table2.4.3andFigures2.4.4through2.4.6showcomparisonsofmeasuredandcalculatedisotopicparameters.Allcalculations,whichincludetheeffectofthemodifiedENDF/B-IIIcrosssections,showgoodagreementwithmeasureddataandprovideindicationthattheconcentrationsareproperlyaccumulatingwithexposure.ThisagreementthereforesupportstheacceptabilityofthemodifiedPu-240microscopicabsorptioncrosssections.  
FIGUREC6.1QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONS60I~QUJClCCCIZ4V)0cI0":'egend0GEB169GEB161~GEH002SCX0672'"~CX0214a~4681012141618CALCULATEDBURNUP.(GWD/MTU)2022 mmmmmmmmmmwmwmmwmFIGUREC6.2QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONSZ60l~aWClCCCIZ4I-LegendPGEB169GEB161~GEH002~CX0672~CX0214p'3""~~.:01020.304060CALCULATEDVOIDHISTORY(%)6070 FIGUREC6.3QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONSZ80l~5DCLDZ4(DLegend0GEB159GEB161~GEH002~CX0672....~CX02140gI0002040~~6080100ELEVATION(INCH)W.:~~120140 10~o60c(40Q2OZm.FIGUREC6.4QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONSLegend0GEB159GE8161~GEH002~"-.'-""~CX0672CX0214.~........:,-2-4-61012141618CALCULATEDBURNUP(GWD/MTU)2022 10FIGUREC6.5QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONSLegend0GEB159GEB161~GEH002~o60c(40UJQOOZg)0-r~~~rCX0872~CX0214~'..:..~.............:r<<2-4106020304050mmmmmmSPY'lYLJiiWekimmmmmmm 10FIGUREC6.6.QUADCITIESUNITIENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS~o604ClClCIZg)0-2-4Legend0GEB159GEB161----"-"~GEH002~CX0672CX0214~~0I~~~~~00020406080ELEVATION(INCH)100120140 Question7HowdothemodificationstotheENDF/B-IIInucleardataotherthanthosenotedforU-238comparetotheuncertaintiesinthebasicdata?~ResenseThemodificationtothePu-240microscopicabsorptioncrosssectionsistheonlymodificationmadetotheENDF/B-IIIcrosssectiondataotherthanthosenotedforU-238.Thismodification,asstatedinSection2.1ofPL-NF-87-001anddocumentedinPartII,Chapter4ofEPRICCM-3,"TheEPRI-CPMDataLibrary,"isa50%reductioninthecrosssection,intheresonanceenergyregion(i.e.,energygroups16through27).AlthoughtheaccuraciesoftheENDF/B-IIIdata'renotpresentedintheEPRIdocumentation,itislikelythatthismodificationexceedstheuncertaintiesofthebasicnucleardata.Themodification,however,isrequiredtocompensateforthefactthatPu-240isnottreatedasaresonancenuclideinCPM-2.Theunmodifiedcrosssectionwouldsignificantlyoverpredicttheabsorptionintheresonanceregion.AnymodificationtothePu-240microscopicabsorptioncrosssectionswouldaffecttheheavynuclideconcentrationbuildupwithexposure.Table2.1.3ofPL-NF-87-001presentstheheavynuclidechainsthatincludePu-240.IfthePu-240crosssectionswereinappropriatelyadjusted,thePu-240,Pu-241,andPu-242concentrationswouldimproperlyaccumulatewithexposure.Table2.4.3andFigures2.4.4through2.4.6showcomparisonsofmeasuredandcalculatedisotopicparameters.Allcalculations,whichincludetheeffectofthemodifiedENDF/B-IIIcrosssections,showgoodagreementwithmeasureddataandprovideindicationthattheconcentrationsareproperlyaccumulatingwithexposure.ThisagreementthereforesupportstheacceptabilityofthemodifiedPu-240microscopicabsorptioncrosssections.  
~tention8TheQuadCities-1EOC2gammascandataareessentiallyrepresentativeofallrodsoutoperation.WhataretheimplicationsrelativetotheaccuracywithwhichCPM-2calculatesindividualrodpowersfornormalroddedconditions,andwhatassuranceistherethatanypresentlyobservedconservativetrends(biases)areuniversal,andbounding?~ResenseWhenperformingsafetyanalyses,generallyonlythelimitingbundlesareaconcern.Therefore,itisnormallyonlynecessarytodeterminetheuncertaintyforuncontrolledconditions.TheuncertaintyiscalculatedfromtheQuadCitiesUnit1endofCycle2gammascancomparisons.Thisuncertainty,however,canalsobeextendedtocoverthecontrolledconfiguration.Section3ofPL-NF-87-001containscomparisonsmadetooperatingdatausingtheSIMULATE-Ecode.ThecrosssectiondataandTIPresponsemodelarederivedfromCPM-2calculateddata.TheresultsinSection3,particularlytheindividualTIPresponse,donotshowanyincreaseinthestandarddeviationassociatedwiththepresenceofacontrolrod(seePL-NF-87-001,Figures3.2.15and3.2.36forexamples).ReactivitycomparisonsfromSusquehannaSESandQuadCitiescoldcriticalevaluationsalsosupporttheseobservations.ThecoldK-effectivesfromthelocalcriticalsandtheK-effectivesfromthein-sequencecriticalsatthesameexposurearenotsignificantlydifferenteventhoughthecontrolroddensityis98%forthelocalcriticalsand74%to75%forthein-sequencecriticals.TheSusquehannaSESandQuadCitiescoldcriticaldataiscontainedinTable3.2.6andTable3.3.1ofPL-NF-87-001,respectively.
~tention8TheQuadCities-1EOC2gammascandataareessentiallyrepresentativeofallrodsoutoperation.WhataretheimplicationsrelativetotheaccuracywithwhichCPM-2calculatesindividualrodpowersfornormalroddedconditions,andwhatassuranceistherethatanypresentlyobservedconservativetrends(biases)areuniversal,andbounding?~ResenseWhenperformingsafetyanalyses,generallyonlythelimitingbundlesareaconcern.Therefore,itisnormallyonlynecessarytodeterminetheuncertaintyforuncontrolledconditions.TheuncertaintyiscalculatedfromtheQuadCitiesUnit1endofCycle2gammascancomparisons.Thisuncertainty,however,canalsobeextendedtocoverthecontrolledconfiguration.Section3ofPL-NF-87-001containscomparisonsmadetooperatingdatausingtheSIMULATE-Ecode.ThecrosssectiondataandTIPresponsemodelarederivedfromCPM-2calculateddata.TheresultsinSection3,particularlytheindividualTIPresponse,donotshowanyincreaseinthestandarddeviationassociatedwiththepresenceofacontrolrod(seePL-NF-87-001,Figures3.2.15and3.2.36forexamples).ReactivitycomparisonsfromSusquehannaSESandQuadCitiescoldcriticalevaluationsalsosupporttheseobservations.ThecoldK-effectivesfromthelocalcriticalsandtheK-effectivesfromthein-sequencecriticalsatthesameexposurearenotsignificantlydifferenteventhoughthecontrolroddensityis98%forthelocalcriticalsand74%to75%forthein-sequencecriticals.TheSusquehannaSESandQuadCitiescoldcriticaldataiscontainedinTable3.2.6andTable3.3.1ofPL-NF-87-001,respectively.
uestion9TheCPM-2comparisonstothe7-scandataareinfluencedbytheaccuracyoftheSIMULATE-Epredictionsoflocaleffects(e.g.burnup,void,controlhistory)forthescannedbundles/elevations.HavetheSIMULATE-ElocalerrorsbeenconsideredtoassurethattheCPM-2resultsarerepresentative?~ResenseWhenperforminglicensingcalculationswithSIMULATE-E,thelocalpeakingfactorwhichwillbeusedforcalculationofMCPRorLHGRwilldependontheability.ofSIMULATE-Etopredictnodalconditions.Ifthepredictedconditionsareincorrect,thecalculatedlocalpeakingfactorwillbeaffected.ThecomparisonsreportedinPL-NF-87-001includeanyadditionaluncertaintiescausedbythemispredictionoftheburnuporvoidhistoryattheelevationofinterest.TheseuncertaintieswillbetakenintoaccountinanalyseswhichuseSIMULATE-Etodeterminelocalpeakingfactor.Theapplicationofmodeluncertaintieswillbepresentedindetailinatopicalreportentitled"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis".
uestion9TheCPM-2comparisonstothe7-scandataareinfluencedbytheaccuracyoftheSIMULATE-Epredictionsoflocaleffects(e.g.burnup,void,controlhistory)forthescannedbundles/elevations.HavetheSIMULATE-ElocalerrorsbeenconsideredtoassurethattheCPM-2resultsarerepresentative?~ResenseWhenperforminglicensingcalculationswithSIMULATE-E,thelocalpeakingfactorwhichwillbeusedforcalculationofMCPRorLHGRwilldependontheability.ofSIMULATE-Etopredictnodalconditions.Ifthepredictedconditionsareincorrect,thecalculatedlocalpeakingfactorwillbeaffected.ThecomparisonsreportedinPL-NF-87-001includeanyadditionaluncertaintiescausedbythemispredictionoftheburnuporvoidhistoryattheelevationofinterest.TheseuncertaintieswillbetakenintoaccountinanalyseswhichuseSIMULATE-Etodeterminelocalpeakingfactor.Theapplicationofmodeluncertaintieswillbepresentedindetailinatopicalreportentitled"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis".

Revision as of 05:10, 2 May 2018

Qualification of Steady-State Core Physics Methods for BWR Design & Analysis.
ML17156A688
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 07/31/1988
From:
PENNSYLVANIA POWER & LIGHT CO.
To:
Shared Package
ML17156A689 List:
References
PL-NF-87-001-A, PL-NF-87-1-A, NUDOCS 8807280374
Download: ML17156A688 (297)


Text

PL-NF-87-001-AB)z~~~PennsylvaniaPower8LightCompany88072S0374880719PDRAGQCK05000387'*-,PPDC IIIgE~4

~Cgp,R~ECy(Wp+,0ypC~I~It)(0"~3Vl30/~UNITEDSTATESNUCLEARREGULATORYCOMMISSIONWASHINGTON,O.C.20555April28'988DocketNos.50-387/388Nr.HaroldW.KeiserSeniorVicePresident-NuclearPennsylvaniaPowerandLightCdIIpany2NorthNinthStreetAllentown,Pennsylvania18101

DearMr.Keiser:

SUBJECT:

TOPICALPEPORTPL-NF-87-001,"OUALIFICATIONOFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSIS"(TACNOS.65171AND65172)RE:SUSQUEHANNASTEAMELECTRICSTATION,UNITS1AND2ThestaffhascompletedactiononyourMarch31,1987requestforreviewofTopicalReportPL-NF-87-001relatedtoBWRSteady-StateCorePhysicsMethods.Ourconsultant,BrookhavenNationalLaboratory(BNL)reviewedyourreportandprovidedaTechnicalEvaluationPeport(TER)outliningitsreviewsandconclusions.ThestaffhasreviewedtheRNLTERandhaspreparedtheenclosedsafetyevaluation.Basednnourreview,wehaveconcludedthatthesub.jectTopicalReportisacceptableforthepurposeoflicersingactionsonSusquehannaSteamElectricStation,Units1and2.Sincerely,

Enclosure:

SafetyEvaluationccw/enclosureSeenextpageWIa1terR.Butler,DirectorPro.',ectDirectorate.I-2DivisionofReactorPro,iectsI/IIOfficeofNuclearPeactorRegulation\

Mr.HaroldW.Keiser'ennsylvaniaPower5LightCompanySusquehannaSteamElectricStationUnits152CC:JaySilberg,Fsq.Shaw,Pittman,PottsATrowbridge2300NStreetN.W.Washington,D.C.20037BryanA.Snapp,Esq.AssistantCorporateCounselPennsylvaniaPower5LightCompany2NorthNinthStreetAllentown,Pennsylvania18101Mr.E.A.HeckmanLicensingGroupSupervisorPennsylvania'Power8LightCompany2NorthNinthStreetAllentown,Pennsylvania18101Mr.F.I.YoungResidentInspectorP.O.Box52Shickshinny,Pennsylvania18655Mr.R.J.BenichServicesProjectManagerGeneralElectricCompany1000FirstAvenueKingofPrussia,Pennsylvania19406Mr.ThomasM.Gerusky,DirectorBureauofRadiationPrntectionResourcesCommonwealthofPennsylvaniaP.0.Box2063Harrisburg,Pennsylvania17120Mr.JesseC.Tilton,III'AlleghenyElec.Coorperative,Inc.212LocustStreetP.O.Box1266Harrisburg,Pennsylvania17108-1266Mr.W.H.Hirst,ManagerJointGenerationProjectsDepartmentAtlanticElectricP.O.Box15001199BlackHorsePikePleasantville,Newlersey08232Regiona1'dministrator,ReoionIU.S.NuclearRegulatoryCommission475AllendaleRoadKingofPrussia,Pennsylvania19406

~p,gREgyIp0y*p%UNITEDSTATESNUCLEARREGULATORYCOMMISSIONWASHINGTON,D.C.20555ENCLOSURESAFETYEVALUATIONBYTHEOFFICEOFNUCLEARREACTORREGllLATIONRELATINGTOLICENSINGTOPICALREPORTPL-NF-87-001,REV.O"UALIFICATIONOFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSIS"PENNSYLVANIAPOWER8ILIGHTCOMPANYSUSUEHANNA,UNITS1AND2DOCKETNOS.50-387AND50-38

81.0INTRODUCTION

ByletterdatedMarch31,1987,thePennsylvaniaPowerandLightCompany(thelicensee)requestedapprovalofTopicalReportPL-NF-87-001,Rev.0,forthepurposeofitsuseinlicensingactionsfortheSusquehannaSteamElectricStation(SSES)Units1and,2.~ThereportdescribesthequaliIicationoftheCPM-2latticephysicsandSIMULATE-Ethree-dimensionalnodalcoresimulatorprogramsforthesteadystatedesignandanalysisofboilingwaterreactors(BWRs).TheseprogramsarepartoftheAdvancedRecycleMethodologyProgram(ARMP)developedbytheElectricPowerResearchInstitute(EPRI)forsteadystateanalysesoflightwaterreactors.BriefdescriptionsoftheCPM-2andSIMULATE-EprogramsarepresentedalongwithcomparisonstomeasurementsfromoperatingBWRsandexperimentalcriticals.TheresultsofselectedPD07calculationsforuniformlatticecriticalsandsinglefuelbundlesarealsopresented.Theseprogramsandassociatedmethodologiesareusedbythelicenseeforplantoperationssupport,variousfuelcycleandsafetyrelatedcalculations,andtoprovidenecessaryneutronicsinputdatatotransient'analysesforthetwounitSusquehannaSteamElectricStation.2.0SUMMARYOFTOPICALREPORTTheSIMULATE-Ethree-dimensionalcodeisusedbythelicenseetomodelthecoupledneutronicandthermal-hydraulicbehavioroftheSusquehannaUnit1and2BWR cores.TherequirednucleardataaregeneratedbytheCPN-2programwhichmodelstheBWRfuelbundleanditsenvironment(by-passchannel,cruciformcontrolrod,etc.)intwo-dimensions.2.1DescritionoftheCPN-2ProramCPN-2isamodifiedversionoftheCPM(CollisionProbabilityModule)codedevelopedinSwedenbyABAtomenergi/StudsvikfortheanalysisofPWRandBWRfuelassemblies.Themodelingcombinesfinegroupspectrumcalculationsforsub-regionsoftheassembly(e.g.fuelpin-cells),withamultigrouptransportcalculationforapartiallyhomogenized,hetrogeneousassemblyintwo-dimensional(xy)geometry.ThecodeisdistributedbyEPRI,ardisidenticaltotheoriginalCPNexceptfortheinputmodulewhichhasbeenimprovedtomaketheprogrammore"userfriendly."Sincethesemodifications('aswellasthosemadebythelicenseeintheirimplementationanduseofCPM-2)didnotaffecttheneutronicscalculations,alltheoriginalbenchmarkingofCPNbyEPP1/StudsvikisapplicabletoCPN-2aswell.ThecalculationalsequenceforatypicalBWRassemblyinvolvesthreebasicsteps,withthespatialandenergydetailbecomingsuccessivelycoarseraslargerregionsoftheassemblyareconsidered.Thesestepsaretermedthemicro-group,macro-group,andtwo-dimensionalassemblycalculations.Cruciformcontrolrodsaretreatedviaaspecialsubroutine,andthedepletionofgado-liniabearingfuelpinsrequiresanauxiliarycalculationwiththeNiCBURNcode.2.2CPN-2uglificationTheaccuracy/adequacyofvariousaspectsofCPM-2anditsmodels(e.g.nucleardata,treatmentofcontrolrodsandgadolinia)isdemonstratedbycomparisonstomeasuredresultsfrompowerreactorsandexperimentalconfigurations.Comparisonsofeigenvalues(kff),pinpower/fissionratedistributions,and'eff'sotopicconcentrationsversusburnuparepresented.Someoftheseresultswere

-3-generatedbythelicensee,whileothersweretakenfromtheEPRI/StudsvikbenchmarkingoftheoriginalversionofCPM.Pin-cellcalculationssimulating14roomtemperatureuniformlatticecriticalexperimentswereperformedbyPPP~LtoassesstheaccuracyoftheCPM-2reactivitycalculation(basedonthemeasuredbuckling).EightoftheconfigurationscontainedU02fuelandthefuelfortheremaining6contained2.0weightpercentPuO>innaturaluranium.CPM-2slightlyunderpredicted(byabout0.5>k)thekfffortheU02criticals,andoverpredictedtheeffmultiplicationfactorfortheremainingcriticals,resultinginanaveraqekffofI.COOSwithastandarddeviationof0.0072consideringallcriticals.effTheaccuracyoftheCPN-2calculationoftherod-wisepowerdistributionwasevaluatedbycomparisonstothegamma-scanmeasurementsperformedatsquadCitiesUnit1attheendofCycle2.Two7x7M02andthreeU02bundles(one8x8andtwo7x7)wereconsideredinthecomparisons.Burnupandvoidoperatinghistorydatawereobtainedforeachbundle-elevationfromaSIMULATE-Esimulation.ThesedatawereusedinCPN-2bundlecalculationstoarriveattheCPM-2/SIMULATE-Epredictedstatepointscorrespondingtothemeasureddata.Thecomparisonsshowedgenerallygoodagreementbetweenmeasurementandprediction(average=4.0l)withCPM-2tendingtooverpredictthepeakrodpower.TheresultsoftheEPRI/StudsvikbenchmarkingoftheoriginalCPMcodetouniformlatticecriticals,smallcorecriticalexperimentsperformedattheKRITZfacility,and-measuredconcentrationsofuraniumandplutoniumisotopesfromYankeeandSaxtonspentfuelarealsopresented.ThesecomparisonsshowgenerallyreasonableagreementbetweenCPMpredictedandmeasuredquantities.,".3DescritionofSINULATE-ETheEPRIdistributedSIMULATE-Ethree-dimensionalcoupledneutronics/thermal-hydraulicscoresimulatorprogramisusedbyPPALintheirsteadystatecoreanalyses.Thethermal-hydraulicscalculationsuseanEPRIdevelopedvoidcorrelationandtheFIBMRmethodologydevelopedbyYankeeAtomicElectric Company.Themethodologyemployedfortheneutronicscalculationsmaybeselectedbytheuserfromseveralavailableoptions;PPSLusestheModifiedCoarseMeshDiffusionTheory(PRESTO)option.Two-groupmacroscopiccrosssectionsforeachfueltypearedeterm'.nedbyCPM-2asafunctionoffuelexposure,voidhistory,moderator,fuelandcontrolconditions,andxenonconcentration.AfterprocessingbyNORGE-B2,theyareinputtoSIMULATE-Ealongwithradialandaxialalbedosappliedatthecore-reflectorinterfaces.Normal'izationofthemodeltomatchplantoperatingdataisperformedviaadjustmentofseveralinputdataparameters.Separatemndelsarecreatedathotoperatingandcoldconditions.Thelicenseehasmadeanumberofchargestothecode,includingtheabilitytocalculatetheCriticalPowerRatio(basedontheAdvancedNuclearFuelsCorporation,formerlyEXXONNuclear,XN-3criticalheatfluxcorrelation),andlinearheatgenerationrateandaverageplanarheatgenerationratethermallimitsevaluations.Thesechangeshavenotresultedinanychangestothebasicneutronicsorthermal-hydraulicscalculations.2.4.SIMULATE-E(}uglificationThequalificationoftheSIMULATE-Eprogramisbasedonsimulationsofthefirsttwocyclesof(juadCitiesUnit-1(gC-1)andPeachBottomUnit-2(PB-2),andofthefirsttwo-plusandone-pluscycles(i.e.,fromBOLtoapproximatelyearly1987)ofSusquehannaUnits1and2,respectively.ComparisonsofSIMULATE-Epredictedvaluesweremadetohotandcoldmultiplicationfactors(kff)andpowerandflowdistributions.TheaccuracyofthepredictedpowerdistributionswasevaluatedbasedoncomparisonstoTIPdetectorreadings,andtoresultsfromgamma-scans.Powerandflowdistributionswerecomparedto.resultsfrom.theon-linecoremonitoringsystem.ThekffcomparisonsfortheSusquehannaunitsconsidered257hotoperatingconditionsteady-statestatepoints,and39(3localand36in-sequence)coldcriticalstatepoints.ThesecomparisonsindicatedthattheabilityofthePPSLSIMULATE-Ehotandcoldmodelstopredictkffdependsonthecoreaverageeffexposureandthegadolinialoading.Thereisanearlyconstantbiasbetweenthehotandcoldpredictions,withthehotkffconsistentlylower.Usingthis

-5-data,thelicenseegenerateshotandcoldcycle-dependenttargetcriticalcorekffcurvesforuseinthecorefollow,andshutdownmarginandcontrolrodeffworthanalysesofindividualcycles.ThepowerdistributioncomparisonsutilizedallavailableTIPsetsfrombothSusquehannaunitsandconsiderednodalandaxiallyaveraged(radial)quantities.AsymmetriesinthemeasureddatawerequantifiedbyconsideringsymmetricnodalorradialTIPreadingstoprovideanestimateofthemeasurementuncertaintiesassociatedwitheachTIPset.NodalRMSerrorstendtobeinthe4-6$range,withdifferencesnearthemiddleofcycleandendofcyclepowercoastdowninthe6-95range.TheaveragenodalandradialRMSerrorsconsideringall82TIPsetsare5.74and2.58percent,respectively.Thecorrespondingaverageasymmetriesbasedon44TIPsetsare5.22and2.55percent,respectively.Fourcoreaverageaxialpowerdistributionandthree-bundleflowcomparisonsarealsopresented,consideringonestatepointperSusquehannaunit/cycle.These.comparisonsaremadetodataproducedbytheon-lineCoreMonitoringSystem(CMS)todemonstrateconsistencyoftheresults.(ThebF.processcomputerPlprogramwasusedforthefirstcycleofbothunits,withtheANFPOMERPLEXCMSusedinallsubsequentcycles).ThesecomparisonsshowedgoodagreementbetweentheSIMULATE-EandCYSresults.ComparisonstnmeasureddatafromthefirsttwocyclesofsquadCitiesUnitI(gC-1)werealsoperformed.InadditiontohotreactivityandTIPdatasimilartothatfromtheSusquehannaunits,theOC-Imeasurementsincluded33coldcriticalconfigurations(22local)fromCycle-l,andbundlegammascanmeasurementsfromtheendofcycles(EOC)oneandtwo.ThegC-Ihotcriticalcomparisonsshowedasimilartrendversusexposuretothatobservedearlier;however,therelativelylowgadolinialoadingingC-1resultedintheabsenceofthebowl-shapedgadoliniacomponentinthevariation.Thelargecoldcriticaldatabaseservedtoaugmenttheearlieranalyses.ThegC-1coldcriticalcomparisonswereusedtoconfirmthatthere isnosignificantbiasbetweenSIMULATE-Epredictionsofkf<forin-sequenceeffandlocalcriticalconfigurations.ThegC-Ibasedpowerdistributioncomparisonsconsidered15TIPsetsfromCycleIand13setsfromCycle2,alongwithgammascandatafrom31and89bundlesatEOClandEOC2,respectively.ThenodalandradialRNSdifferencesfromtheTIPcomparisonsareroughlytwiceaslargeasthoseobserved~orthpSusquehannacomparisons.TheEOCIgammascandataconsistedofmeasuringtheaxialpeaktobundleaverageLa-140activitiesandservedtobenchmarktheSIMULATE-Ecalculationoftheaxialpeakingfactor.Theresultingdifferencewas1";(=25)withtheagreementforcontrolledbundlesconsiderablvbetterthanforuncontrolled.TheEOC2gammascar.dataismuchmoreextensiveandpermitscomparisonsofindividualbundleaxialLa-140activitydistributions,aswellasradial,nodalandpeaktoaveragecomparisons.Peripheralandmixedoxidebundleswerenotincludedintheradialandnodalcomparisonsandthetopandbottomsixincheswereeliminatedfromthenodalcorn'parisors.Thepeak-toaveragecomparisonsresultedinanaveraqedierenceo.about0.2~(=1.5f)withamaximumdifferenceofabout4%.Theaveragestandarddeviationfromtheindividualbundlegammascanswas6.3Xwithmorethan85>o<theindividualbundle'sinthe5-8~range.Thestandarddeviationfromtheradialandnodalgammascancomparisonswereabout2'Aand5.5',respectively.Theouot~dmeasurementuncertaintyfortheqammascanswas31,.ThefinalqualificationofSIMULATE-EpresentedinthereportconsistsofpowerdistributioncomoarisonstoTIPmeasurementsanddatafromtheGEPlprocesscomputerforPeachSottomUnit2{PB-2)cycles1and/or2.ThelevelnfagreementwithmeasuredTIPdatafromthesecnmparisonsisreasonableandconsistentwiththatobservedearlier.ThepurposeofthePB-2simulationswastngenerateinputfortheanalysisoftheturbinetriptestsperformedneartheendofCycle2,includinganaccuraterepresentationoftheinitialconditions.Thenon-steadystateoperationthatprecededthesetestsrequiredanaccuratemodelingofnon-equilibriumxenondistributionsandconcentrations.Comparisonsofthepredictedcoreaverageaxialpowerdistributionsjustpriortothe threetests(toppeaked,middlepeakedandslightlybottompeaked)todatafromtheprocesscomputershowedgoodagreement.2.5DescritionofPD7ThegeometryintheCPM-2latticephysicscodeislimitedtorepresentinganindividualfuelassembly.Insomeapplications,however,amultipleassemblycalculationisrequired,andfortheseapplicationsPPSLusesthegeneralpurpose.PD(7code.Theprogramsolvesthefewgroupdiffusion.theoryequationbasedonthefinitedifferencespatialapproximationinone,two,orthreedimensions.Whileuptofiveenergygroupsarepermitted(includingtwooverlapping)thermalenergygroups,thelicenseegenerallyutilizesfourgroupswithasinglethermalgroup.Microscopicormacroscopiccrosssectiondatamaybeemployed;PP8LtypicallyusesmacroscopicdatafromCPM-2andprocessedwiththeCOPHINcode..66II6ThePP5LqualificationofPD(7consistedofanalyzingthesameuriformlatticecriticalsusedinthebenchmarkingofCPM-2,alongwithcomparisonstoCPM-2assemblycalculationsfortypicalcontrolledanduncontrolledBWRfuelbundles.Theuniformlatticecalculationsmodelledthecriticalcoreconfigurationsinone-dimensionalcylindricalgeometrywithanexplicitaccountingoftheradialreflectorandabucllingcorrectiontoaccountforaxialleakage.ReasonableagreementwasobtainedwiththeCPM-Pcalculatedk+fs,0.9972effversus0.9951and1.0076versus1.0144fortheUOandmixedoxidelattices,respectively.ThePD07singlefuelassemblycalculationsmodelledeachpin-cellexplicitly,andusedshieldingfactorsderivedbycomparisontoCPM-2results,forgadoliniabearingfuelpinsandcontrolrods.TwoseparatefuelbundlesfromtheinitialcoreloadingoftheSusquehannaunitswereselectedfnrthe.comparisons.TheresultsshowedgenerallygoodagreementbetweenCPM-2and PD(7forthebundlek'sandrod-wisepowerdistributionswithmaximumerrorsofabout4$and?,.foruncontrolledandcontrolledbundles,respectively.3.0EVALUAITONTheCPM-2andSIMULATE-EprogramsweredevelopedbyEPRIforthesteadystateanalysesofLWRs.Thelicenseeplanstousethesecodesforplantoperationssupport,variousfuelcycleandsafetyrelatedcalculations,andtoprovidenecessaryneutronicsinputdatatotransientanalysesforthetwoBWRunitsattheSusquehannaSteamElectricStation.ThepresentreviewconsideredtheinformationpresentedinthetopicalreportandadditionalinformationprovidedbythelicenseeinaletterdatedFebruary17,1988.ThereviewconsideredthequalificationoftheFIBWRthermal-hydraulicsmethodologyonlyinitsroleasanintegralpartoftheSIMULATE-Eprogram.TheperformanceofFIBWRasastand-alonethermal-hydraulicscode,andthevalidity/applicabilityoftheANFXN-3CHFcorre1ationwereconsideredtobeoutsidethescopeofthisreview.Themethodologies(notincludingthequalificationpresentedinthisreport)embodiedintheCPN-2andSIMULATE-EprogramshavebeenpreviouslyreviewedandfoundacceptableforsteadystatenuclearcoredesignanalysesofplantsotherthanSusquehanna,andarerepresentativeofcurrentpractice.TheprimaryroleofCPN-2withinthePPSLcalculationalsequenceforBWRanalysesistoprovidenucleardata(basicallytwo-groupcrosssections)totheSIMULATE-Ecoresimulatorprogram.ThebenchmarkingofSIMULATE-FviacomparisonstomeasurementsfromoperatingBWRsthereforeservesastheultimate,thoughsomewhatindirect,qualificationofCPM-2.However,PP8LandEPRI/StudsvikhaveperformedanumberofcomparisonstomeasureddatafromexperimentalconfigurationsandoperatingBWRstotestvariousaspectsoftheCPM/CPh1-2neutronicscalculationmethodologyandnucleardata.

ComparisonstouniformlatticecoldcriticalsandKRITZsmallcorecriticalsprovideanintegraltestoftheabilityofCPM-24opredictreactivity(multiplicationfactors).Comparisonstomeasuredrod-wisegammascandataforselectedassembliesfromanoperatingBWR,andtomeasuredrod-wisefissionratedistributionsfromKRITZexperiments,serveas.aqualificationofthetreatmentofneutrontransportandotheraspectsofthemodellinginthehiqhlyheterogeneousenvironmentsofrealRWRfuelbundlesandreactorcores.Finally,comparisonsofcalculateduraniumandplutoniumisotopicconcentrationsweremadetodatafromthedestructiveanalysisofspentfuelromtheYankeeandSaxtonreactors.ThelevelofagreementbetweenCPM-2calculatedandmeasuredquantitiesisreasonable,andtypicalofthatobservedwithcurrentlyacceptedmethods.Inaddition,CPM-2tendstooverestimatethelocalpeakingfactorinanassembly,implyingagenerallyconservativepredictionofthelinearheatgenerationrate.ThebenchmarkingoftheSIMULATE-EprogramconsistedofsimulationsofseveralcyclesofoperationofthreeBWRsincludingallavailabledatafromPPAL'sSusquehannaunitsstartingatbeginningofCycle-1(BOCI).Thehotreactivitycomparisonsinvolvedmorethanfiveop~ratingcycles(almost300statepoints)forcorescontainingavarietyofBWRfuelbundledesigns.Thecalculatedhotkffexhibitedabiasrelativetothemeasuredcriticaleffkffwhichwasconsistentinmagnitudewiththatobservedforaccentedeffthree-dimensionalcoresimulatorcodes.Theobservedvariationledtothedevelopmentofacorrelationwhichisabowlshapedfunctionofgadolinialoadingandaroughlylinearfunctionofexposure.This"target"kf<isusedef<topredictthecriticalcorekffforaparticularunit-cycle.effThecoldcriticalcomparisonsconsidered47insequenceand25localconfigurations.Theresultsshowedasimilarvariationinthepredictedcoldcriticalkfftothatobservedforhotconditions;thecoldcriticalkeffeff"target"forusewithSIMULATE-Eisthereforeobtainedbvaddingaconstantbiastothehotcorrelation.Inaddition,theresultsshowednosignificantdifferencesbetweenthekffforlocalandin-sequencecriticals,thereby 10demonstratingtheabilityofSIMULATE-Etoperformshut-downmarginca1culations.ThebenchmarkingoftheSIMULATE-EcalculationofpowerdistributionsconsideredmeasuredTIPdetectorreadingsandgammascans,anddatafromplantcoremonitoringsystems.ThealbedosandotheradiustableparametersweredetermineddurinqmodelnormalizationtooperatingdatafromSusquehannaUnitlCycles1and2,andremainedunchangedforallsubsequentsimulations.Thecomparisonsforthe82TIPsetscoveringmorethanthreecyclesofoperationofthetwoSusquehannaunitsyieldedaveragenodalandradialRMSdifferencesof5.7and2.6percent,respectively.TheestimatederrorsintheTIPmeasurementsweredeterminedbyconsideringsymmetricdetectorreadings,andwereofthesameorder.TheTIPcomparisonsforDuadCitiesandPeachBottomyieldedhigherdifferences,i.e.,nodalandradialRNSerrorsconsideringallTIPsetsofabout10andabout5percent,respectively,forOutedCities,andsomewhatlowerforPeachBottom.hThecomparisonstothesquadCitiesqammascanmeasurementsatEOClandEOC2furtherdemonstratedtheabilityofSIMULATF.-Etocalculatepowerdistributions.Theaxialpeaktoaveragewaspredictedtowithinabout11withastandarddeviationof1-2%,andthestandarddeviationsfromtheradialandnodalcomparisonswereabout2andabout5percent,respectively.Theperipheralbundleswerenotincludedinthesecomparisons,andinadditionthetopandbottomsixincheswerenotconsideredinthenodalcomparisons.Thequoteduncertaintyforthegammascanmeasurementis3.0X.ComparisonsofcoreaverageaxialpowerdistributionstoresultsfromtheAEP1orANFPOl<ERPLEXcoremonitoringsystemsfortheSusquehannaunitsandPeachBottomUnit-2(PB-2)nearEOC2,thoughlimited,showedgoodagreement.ThePB-2comparisonsconsideredtheeffectsofnon-equilibriumxenonandincludedtop,middleandbottompeakedaxialpowerdistributions.ThreebundleflowdistributionsfromtheSusquehannacoremonitoringsystemswerealsocomparedtoresultsgeneratedbySIMULATE-Ewithgenerallygoodagreement.The

-11-powerdistributioncomparisonsofSIMULATE-Etomeasureddatashowedgenerallyreasonableagreementandwereconsistentwith,thelevelsofagreementobservedwithacceptedmethods.ThelargerdifferencesobservedinthePuadCitiesandPeachBottomcomparisonsarepartiallyduetotheSIMULATE-Emodelsnotbeingspecificallynormalizedforthesesimulations.Thegenerallygoodagreement,however,providesreasonableconfidencethatSIMULATE-EcanbeusedforpredictivecalculationsfortheSusquehannaunits.ThelimitedcomparisonsofPD(7toresultsfromuniformlatticecriticalsandCPM-2singleassemblycalculationsshowedreasonableagreement.Thccomparisonswerebasedontheuseof4energygroupcrosssectionsfromCPM-2.Thelicenseenotesthatwhileitdoesnotintendtoperformthree-dimensionalcalculationswithPDg7,itmayusetheprogramforvarioustwo-dimensionalanalysesincludingindependentverificationofcalculations,calculationsofnon-standardconfigurationssuchaspartiallyloadedcores,andinthedevelopmentoffuturemodelimprovementsforSIMULATE-E.AppropriatequalificationbythelicenseeoftheuseofPDg7forconfigurationslargerthanmultiplebundlearraysisrecommended.

4.0CONCLUSION

STheCPM-2andSIMULATE-EcodesweredevelopedunderthesponsorshipoftheElectricPowerResearchInstituteandarepartofthepresentlyrecommendedproceduresforBWRanalysessimilartothoseintendedforapplicationtoSusquehannaUnits1and2.Thebenchmarkingofthecodesbythelicenseerelativetomeasurementsfromoperatingreactorsandexperimentalconfigurationsresultedinagreementtypicalofthatobservedwithacceptedmethods.ThecomparisonsofPD(7toresultsfromuniformlatticecriticalsandCPM-2singleassemblycalculationsalsoshowedreasonableagreement.ThestaffthereforeconcludesthattheCPM-2/SIMULATE-Emethodology,andtheuseofPDg7forauxiliarycalculationsrepresentanacceptableapproachforanalysesperformedbythelicenseeinsupportoflicenseapplicationsandoperationofthetwoBWRreactorsattheSusquehannaSteamElectricStation.

-12-ThestaffrecommendsthatappropriatequalificationbemadebythelicenseeoftheuseofPO(7forconfigurationslargerthanmultiplebundlearrays,ifsuchconfigurationsareconsideredforcalculationbyPDg7.Thestaffalsorecommendscontinuedcomparisonsofcalculatedphysicsparameterswithmeasureddatafromfuturephysicsstartuptestsandreactorfuelcycles.PrincipalContributor:D.Fieno PL-NF-87-001-AIssueDate:July,1988QUALIFICATIONOFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSISPL-NF-87-001Revision0March1987PrincipalEngineersAndrewDyszelKennethC.KnollContributingEngineersJohnH.EmmettEricR.JebsenChesterR.LehmannAnthonyJ.RoscioliRobertM.RoseJohnP.SpadaroWilliamJ.WeadonApproved:JoM.KulickDate:3/31/87Supervisor-NuclearFuelsEngineeringJeeS.Stefanko.-NuclearFuelsastemsEngineeringDate:3/31/87 I1lI LEGALNOTICEThistopicalreportrepresentstheeffortsofPennsylvaniaPowerGLightCompany(PPsL)andreflects.thetechnicalcapabilitiesofitsnuclearfuelmanagementpersonnel.TheinformationcontainedhereiniscompletelytrueandaccuratetothebestoftheCompany'sknowledge.ThesoleintendedpurposeofthisreportandtheinformationcontainedhereinistoprovideatechnicalbasisforPPGL'squalificationtoperformsteadystatecorephysicsanalysesoftheSusquehannaSESreactors.AnyuseofthisreportortheinformationbyanyoneotherthanPP&LortheU.S.NuclearRegulatoryCommissionisunauthorized.With'regardtoanyunauthorizeduse,PennsylvaniaPowersLightCompanyanditsofficers,directors,agents,andemployeesmakenowarranty,eitherexpressedorimplied,astotheaccuracy,completeness,orusefulnessofthisreportortheinformation,andassumenoliabilitywithrespecttoitsuse.

~~l ABSTRACTThistopicalreportpresentsthebenchmarkinganalyseswhichdemonstratethevalidityofPennsylvaniaPower6LightCompany's(PPGL's)analyticalmethodsaswellasPPaL'squalificationtoperformsteadystatecorephysicscalculationsforreloaddesignandlicensinganalysisapplications.PPGL'ssteadystatecorephysicsmethodsarebasedmainlyonthecomputercodesprovidedbytheElectricPowerResearchInstitute.Thesecodesinclude:theMICBURNgadoliniafuelpindepletioncode;theCPM-2assemblylatticedepletioncode;andtheSIMULATE-Ethree-dimensionalcoresimulationcode.ThebenchmarkinganalysescontainedinthistopicalreportincludecomparisonsofPPsL'sCPM-'2fuelpinandassemblycalculationstouniformlatticecriticalexperimentsandtogammascanmeasurementstakenfromtheQuadCitiesUnit1reactor.ExtensivebenchmarkingofPPGL'sSIMULATE-Emodelsisalsopresented,includingcomparisonstomeasuredneutronfluxdata(i.e.,TraversingIn-coreProbedata)andcriticalsfromallavailableSusquehannaSEScycles,twocyclesofQuadCitiesUnit1,andtwocyclesofPeachBottomUnit2;theSIMULATE-Emodelsarealsobenchmarkedagainst,gammascanmeasurementsfromQuadCitiesUnit1.PPGL'scalculationswiththeindustrystandarddiffusiontheorycodePDQ7arealsoincludedinthistopicalreport.Intotal,thebenchmarkingresultscompareveryfavorablytothemeasureddata,andthusdemonstratePPGL'squalificationstoperformsteadystatecorephysicscalculationsforreloaddesign'ndlicensinganalysisapplications.

II ACKNOWLEDGEMENTSTheauthorsgratefullyacknowledgetheexpertstenographicworkprovidedbyMs.EvelynLugoandMs.SandraK.Lines,andtheexcellentgraphicspreparedbyMr.FrancisE.GrimandMs.DeniseS.Showalter,allofwhoseeffortshavecontributedtothequalityandtimelycompletionofthistopicalreport.TheauthorsalsoacknowledgetheeffortsofMr.RoccoR.SgarroforhislicensingreviewsandcoordinationwiththeNRC.Inaddition,theconsultingreviewsandrecommendationsprovidedbyDr.JackR.FisherandMr.RodneyL.GrowofUtilityResourceAssociates,andMr.EdwardD.Kendrick,Dr.AntonioAncona,andMr.DemitriosT.GournelosofUtilityAssociatesInternationalaregreatlyappreciated.

I QUALIFICATIONOFSTEADYSTATECOREPHYSICSMETHODSFORBWRDESIGNANDANALYSISTABLEOFCONTENTSSectionPage1.0Introduction2.0LatticePhysicsMethods2.1DescriptionofCPM-22.2UniformLatticeCriticals2.3QuadCitiesPinPowerDistributionComparisons2.4EPRIBenchmarkEvaluations81924383.0CoreSimulationMethods493.1DescriptionofSIMULATE-E3.2SusquehannaSESUnits1and2Benchmark3.2.1HotCriticalCoreReactivityComparisons3.2.2ColdCriticalCoreReactivityComparisons3.2.3TraversingIn-coreProbeDataComparisons3.2.4CoreMonitoringSystemComparisons3.3QuadCitiesUnit1Cycles1and2Benchmark3.3.1HotCriticalCoreReactivityComparisons3.3.2ColdCriticalCozeReactivityComparisons3.3.3TraversingIn-coreProbeDataComparisons3.3.4GammaScanComparisons3.4PeachBottomUnit2Cycles1and2Comparisons4.0SpecialApplicationswithPDQ74.1DescriptionofPDQ74.2UniformLatticeCriticals4.3-ComparisonstoCPM-25.0SummaryandConclusions6.0ReferencesAmendments5054565759651401411411421431851951961982012062091.ResponsetoNRCRequestForAdditionalInformation213

~II LISTOFTABLESTableNumberTitlePageGeneralDesignandOperatingFeaturesoftheSusquehannaSESReactors2.1.1Sixty-nineGroupEnergyBoundariesfortheCPMandMICBURNCrossSectionLibrary122.1.2EnergyGroupStructurefor"Macro-GroupandTwo-DimensionalCalculations.132.1.32.1.4HeavyNuclideChainsFissionProductChains14l52.1.5ModificationstoENDF-B/IIIDataforCPM-2CrossSectionLibrary162.2.1TRXUniformLatticeCriticalTestData202.2.2ESADAUniformLatticeCriticalTestData212.2.32.2.42.3.1CPM-2ResultsforTRXCriticalsCPM-2ResultsforESADACriticalsAssembliesUsedinRodtoRodGammaScan2223272.3.2QuadCitiesUnit1EndofCycle2--SummaryofNormalizedLA-140ActivityPinComparisons282.3.3QuadCitiesUnit.1EndofCycle2PeakLa-140ActivityComparisons292.4.1EPRI-CPMResultsfromtheTRXCriticalBenchmarking2.4.22.4.3EPRI-CPMResultsfromtheESADACriticalBenchmarkingEPRIIsotopicComparisonstoSaxtonData413.2.1MeasuredCoreOperatingParametersforSIMULATE-ECoreReactivityCalculations673.2.23.2.33.2.4SummaryoftheSusquehannaSESBenchmarkingDataBaseSusquehannaSESHotCriticalCoreK-effectiveData'ISusquehannaSESTargetvs.SIMULATE-ECalculatedCriticalCoreK-effectiveStatistics69793.2.5SusquehannaSESUnit2Cycle2CoreK-effectiveSensitivitytoMeasuredCoreOperatingData80 LISTOFTABLES(continued)TableNumberTitle~Pae3.2.6SusquehannaSESCalculatedColdXenon-FreeCriticalCoreK-effectives3.2.7SusquehannaSESColdMinusHotCriticalCoreK-effective833.2.8SusquehannaSESUnit1Cycle1TIPResponseComparisons853.2.9SusquehannaSESUnit1Cycle2TIPResponseComparisons863.2.10SusquehannaSESUnit1Cycle3TIPResponseComparisons3.2.11SusquehannaSESUnit2Cycle1TIPResponseComparisons3.2.12SummaryofSusquehannaSESTIPResponseComparisons3.2.13SummaryofSusquehannaSESTIPResponseAsymmetries878889903.3.1EQuadCitiesUnit1Cycle1CalculatedColdXenon-FreeCoreCriticalK-effectives1483.3.2QuadCitiesUnit1Cycle1In-SequenceVersusLocalCriticalComparison14933.3,SummaryofQuadCitiesUnit1Cycles1and2TIPResponseComparisons1513.3.4QuadCitiesUnit1EOC1GammaScanComparisons--UncontrolledBundles1523.3.5QuadCitiesUnit1EOC1GammaScanComparisons-ControlledBundles1533.3.6QuadCitiesUnit1EOC2GammaScanComparisons-PeaktoAverageLa-140Activities154-3.3.74.1.14.2.14.2.2QuadCitiesUnit1EOC2IndividualBundleComparisonsEnergyGroupStructureUsedinPDQ7CalculationsPDQ7ResultsforTRXCriticalsPDQ7ResultsforESADACriticals156197199200 LISTOFFIGURESFigureNumberTitlePage1.2SusquehannaSESUnits1and2CoreTypicalCorePowervs.CoreFlow1.3PPaLSteadyStateCorePhysicsMethodsComputerCodeFlowchart2.1.12.1.2CalculationalFlowinCPM-2ExampleofBWRCellGeometryinthe2-DCalculation17182~3.-1QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities--AssemblyID:GEB159--93InchesfromBottomofCore302.3.2QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:GEB16156InchesfromBottomofCore312.3.3QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:GEH00221InchesfromBottomofCore322.3.4QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:GEH002-93InchesfromBottomofCore332.3.5QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:CX067221InchesfromBottomofCore342.3.6QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities--AssemblyID:CX067287InchesfromBottomofCore352.3.7QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:CX0214--51InchesfromBottomofCore362.3.8QuadCitiesUnit1EOC2GammaScanComparisons-NormalizedLA-140PinActivities-AssemblyID:CX0214129InchesfromBottomofCore372.4.1FissionRateComparisonforanSx8BWRAssemblyofthePlutoniumIslandType-T=245Co2.4.2FissionRateComparisonfora15x15PWRMixedOxideAssemblywithWaterHolesandAbsorberRods-T=245C044 LISTOFFIGURES(continued)FigureNumberTitlePage2.4.32.4.4FissionRateComparisonfora14x14PWRMixedOxide0AssemblySurroundedByUOAssemblies-T=240C2EPRI-CPMComparisontoYankeePU-239/PU-240IsotopicRatios45462.4.5EPRI-CPMComparisontoYankeePU-240/PU-241IsotopicRatios472.4.6EPRI-CPMComparisontoYankeePU-241/PU-242IsotopicRatios483.1.1BWRFuelAssemblyBypassFlowPaths533.2.1SIMULATE-EHotandColdCriticalCoreK-effectivesvs.CoreAverageExposure913.2.2SIMULATE-EHotCriticalCoreK-effectivevsCoreThermalPower923.2.3SIMULATE-EHotCriticalCoreK-effectivevsTotalCoreFlow933.2.4SIMULATE-EHotCriticalCoreK-effectivevsCoreInletSubcooling943.2.5SIMULATE-EHotCriticalCoreK-effectivevsDomePressure953.2.6SIMULATE-EHotCriticalCoreK-effectivevsCriticalControlRodDensity963.2.7TargetandSIMULATE-ECalculatedHotCriticalCoreK-effectivesvs.CoreAverageExposure973.2.8SusquehannaSESUnits1and2CoreTIPLocations983.2.9SusquehannaSESRelativeNodalRMSofTIPResponseComparisons993.2.10SusquehannaSESUnit1Cycle1AverageAxialTIPResponseComparison-1.490GWD/MTUCycleExposure3.003.2.11SusquehannaSESUnit1Cycle1RadialTIPResponseComparisons--1.490GWD/MTUCycleExposure1013.2.12'usquehannaSESUnit1Cycle1IndividualTIPResponseComparisons-1.490GWD/MTUCycleExposure102 LISTOFFIGURES(continued)FigureNumberTitlePage3.2.13SusquehannaSESUnit1Cycle1AverageAxial,TIPResponseComparison-5.918GWD/MTUCycleExposure1033.2.14SusquehannaSESUnit1Cycle1RadialTIPResponseComparisons-5.918GWD/MTUCycleExposure1043.2.15SusquehannaSESUnit1Cycle1IndividualTIPResponseComparisons--5.918GWD/MTUCycleExposure1053.2.16SusquehannaSESUnit1Cycle1AverageAxialTIPResponseComparison-11.617GWD/MTUCycleExposure1063.2.17SusquehannaSESUnit1Cycle1RadialTIPResponse-Comparisons-11.617GWD/MTUCycleExposure1073.2.18SusquehannaSESUnit1Cycle1IndividualTIPResponseComparisons-11.617GWD/MTUCycleExposure1083.2.19,SusquehannaSESUnit1Cycle2AverageAxialTIPResponseComparison--0.200GWD/MTUCycleExposure1093.2.20SusquehannaSESUnit1Cycle2RadialTIPResponseComparisons-0.200GWD/MTUCycleExposure1103.2.21SusquehannaSESUnit1Cycle2IndividualTIPResponseComparisons--0'00GWD/MTUCycleExposure3.2.22SusquehannaSESUnit1Cycle2AverageAxialTIPResponseComparison-2.587GWD/MTUCycleExposure1123.2.23SusquehannaSESUnit1Cycle2RadialTIPResponseComparisons-2.587GWD/MTUCycleExposure1133.2.24SusquehannaSESUnit1Cycle2IndividualTIPResponseComparisons-2.587GWD/MTUCycleExposure1143.2.25SusquehannaSESUnit1Cycle2AverageAxialTIPResponseComparison-4.638GWD/MTUCycleExposure1153.2.26SusquehannaSESUnit1Cycle2,RadialTIPResponseComparisons-4.638GWD/MTUCycleExposure1163.2.27SusquehannaSESUnit1Cycle2IndividualTIPResponseComparisons-4.638GWD/MTUCycleExposure1173.2.28SusquehannaSESUnit1Cycle3AverageAxialTIPResponseComparison--0.178GWD/MTUCycleExposure118 LISTOFFIGURES(continued)FigureNumberTitlePage3.2.29SusquehannaSESUnit1Cycle3RadialTIPResponseComparisons-0.178GWD/MTUCycleExposure1193.2.30SusquehannaSESUnit1Cycle3-IndividualTIPResponseComparisons<<-.0.178GWD/MTUCycleExposure1203.2.31SusquehannaSESUnit1Cycle3AverageAxialTIPResponseComparison-2.228GWD/MTUCycleExposure1213.2.32SusquehannaSESUnit1Cycle3RadialTIPResponseComparisons--2.228GWD/MTUCycleExposure1223.2.33SusquehannaSESUnit1Cycle3IndividualTIPResponseComparisons--2.228GWD/MTUCycle'xposure1233.2.34SusquehannaSESUnit2Cycle1AverageAxialTIPResponseComparison--0.387GWD/MTUCycleExposure1243.2.35SusquehannaSESUnit2Cycle1RadialTIPResponseComparisons-0.387GWD/MTUCycleExposure1253.2.36SusquehannaSESUnit2Cycle1IndividualTIPResponse,Comparisons-0.387GWD/MTUCycleExposure1263.2.37SusquehannaSESUnit2Cycle1AverageAxialTIPResponseComparison-5.249GWD/MTUCycleExposure1273.2.38SusquehannaSESUnit2Cycle1RadialTIPResponseComparisons--5.249GWD/MTUCycleExposure1283.2.39SusquehannaSESUnit2Cycle1IndividualTIPResponseComparisons-5.249GWD/MTU'CycleExposure1293.2.40SusquehannaSESUnit.2Cycle1AverageAxialTIPResponseComparison-12.050GWD/MTUCycleExposure1303.2.41SusquehannaSESUnit2Cycle1RadialTIPResponseComparisons--12.050GWD/MTUCycleExposure1313.2.42SusquehannaSESUnit2Cycle1IndividualTIPResponseComparisons-12.050GWD/MTUCycleExposure1323.2.43SusquehannaSESUnit1Cycle1SIMULATE-Evs.GEProcessComputerCoreAverageAxialPowerDistribution.1333.2.44SusquehannaSESUnit1Cycle2SIMULATE-Evs.POWERPLEXCoreAverageAxialPowerDistribution~134 LISTOFFIGURES(continued)FigureNumberTitlePage3.2.45SusquehannaSESUnit1Cycle3SIMULATE-Evs.POWERPLEXCoreAverageAxialPowerDistribution1353.2.46SusquehannaSESUnit2Cycle2SIMULATE-Evs.POWERPLEXCoreAverageAxialPowerDistribution1363.2.47SusquehannaSESUnit1Cycle1SIMULATE-Evs.GEProcessComputerBundleFlowsat1.490GwD/MTU1373.2.48SusquehannaSESUnit1Cycle3SIMULATE-Evs.POWERPLEXBundleFlowsat0.178GWD/MTU1383.2.49SusquehannaSESUnit2Cycle2SIMULATE-Evs.POWERPLEXBundleFlowsat0.583GWD/MTU1393.3.1QuadCitiesUnit1CoreTIPLocations1583.3.2SIMULATE-EHotCriticalCore.K-effectivevs.CoreAverageExposure1593.3.3QuadCitiesUnit1Cycle1SIMULATE-EHotandColdCriticalCoreK-effectives1603.3.4QuadCitiesUnit1Cycle1AverageAxialTIPResponseComparison-2.239GWD/MTUCoreAverageExposure1613.3.5QuadCitiesUnit1Cycle1RadialTIPResponseComparisons-2.239GWD/MTUCoreAverageExposure1623.3.6QuadCitiesUnit1Cycle1IndividualTIPResponseComparisons<<-2.239GWD/MTUCoreAverageExposure1633QuadCitiesUnit1Cycle1AverageAxialTIPResponseComparison-7.396GWD/MTUCoreAverageExposure1643.3.8QuadCitiesUnit1Cycle1RadialTIPResponseComparisons--7.396GWD/MTUCoreAverageExposure1653.3.9QuadCitiesUnit1Cycle1IndividualTIPResponseComparisons-7.396GWD/MTUCoreAverageExposure3.6'63.3.10QuadCitiesUnit1Cycle2AverageAxialTIPResponseComparison-7.532GWD/MTUCoreAverageExposure1673.3.11QuadCitiesUnit1Cycle2RadialTIPResponseComparisons-7.532GWD/MTUCoreAverageExposure168 LISTOFFIGURES(continued)FigureNumberTitle~Pae3.3.12QuadCitiesUnit1Cycle2IndividualTIPResponseComparisons-7.532GWD/MTUCoreAverageExposure1693.3.13QuadCitiesUnit1Cycle2AverageAxialTIPResponseComparison-13.198GWD/MTUCore-Average.Exposure1703.3.14QuadCitiesUnit1Cycle2RadialTIPResponseComparisons-13.198GWD/MTUCoreAverageExposure1713.3.15QuadCitiesUnit1Cycle2IndividualTIPResponseComparisons-13.198GWD/MTUCoreAverageExposure1723.3.16QuadCitiesUnit1EOC1GammaScanComparison-NormalizedAxialLa-140Activity-BundleLocation23,101733.3.17'uadCitiesUnit1EOC1GammaScanComparison-NormalizedAxialLa-140Activity-BundleLocation55,401743.3.18QuadCitiesUnit1EOC1GammaScanComparison-NormalizedAxialLa-140Activity-31BundleAverage1753.3.19QuadCitiesUnit1EOC2RadialGammaScanComparison1763.3.20QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX06621773.3.21QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX03991783.3.22QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX02311793.3.23QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX0297.1803.3.24QuadCitiesUnit1EOC2GammaScanComparison--BundleID:CX07171813.3.25QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX03781823.3.26QuadCitiesUnit1EOC2GammaScanComparison-BundleID:CX01501833.3.27QuadCitiesUnit1EOC2GammaScanComparison--BundleID:GEH029184 LISTOFFIGURES(continued)FigureNumberTitlePage3.4.1PeachBottomUnit2Cycles1and2RelativeNodalRMSofTIPResponseComparisons1873.4.2PeachBottomUnit2Cycle1-AverageAxialTIPResponseComparison-11.133GWD/MTUCoreAverageExposure1883.4.3PeachBottomUnit2Cycle1-RadialTIPResponseComparisons-11.133GWD/MTUCoreAverageExposure1893.4.4PeachBottomUnit2Cycle1-IndividualTIPResponseComparisons-11.133GWD/MTUCoreAverageExposure1903.4.5PeachBottomUnit2Cycle2--AverageAxialTIPResponseComparison--13.812GWD/MTUCoreAverageExposure1913.4.6PeachBottomUnit2Cycle2-RadialTIPResponseComparisons-13.812GWD/MTUCoreAverageExposure1923.4.7PeachBottomUnit2Cycle2-IndividualTIPResponseComparisons-13.812GWD/MTUCoreAverageExposure1933.4.8PeachBottomUnit2EndofCycle2CoreAverageAxialPowerDistributions1944.3.1CPM-2vs.PDQ7PinPowerDistributionComparison-GEInitialCoreHighEnrichedFuelType-Uncontrolled2024.3.2CPM-2vs.PDQ7PinPowerDistributionComparison--GEInitialCoreHighEnrichedFuelType-Controlled2034.3.3CPM-2vs.PDQ7PinPowerDistributionComparison-GEInitialCoreMediumEnrichedFuelType-Uncontrolled2044.3.4CPM-2vs.PDQ7PinPowerDistributionComparison-GEInitialCoreMediumEnrichedFuelType--Controlled205 IIl

1.0INTRODUCTION

PennsylvaniaPower&LightCompany(PP&L)operatesthetwounitSusquehannaSteamElectricStation(SES)nearBerwick,Pennsylvania.BothoftheSusquehannaSESreactorsareGeneralElectricCompanyBoilingWaterReactor(BWR)-4productlinereactorsystems;eachhasaratedthermalpoweroutputof3293Megawatts.ThegeneralcoredesignandoperatingfeaturesaregiveninTable1.1,Figure1.1,andFigure1.2.ThepurposeofthisreportistodescribethesteadystatecorephysicsmethodsusedbyPP&LforBWRcoreanalysisandtoprovidequalificationoftheanalyticalmethodologieswhichwillbeusedtoperformsafetyrelatedanalysesinsupportoflicensingactions.ThisreportwillsatisfytheguidelinesinReferencel.PP&L'ssteadystatecorephysicsmethodsarebasedontheElectricPowerResearchInstitute(EPRI)codepackage(Reference2),asdepictedintheflowchartcontainedinFigure1.3.ThemaincomputercodesaretheCPM-2/PP&L(hereafterreferredtoasCPM-2)fuelbundlelatticephysicsdepletioncodeandtheSIMULATE-E/PP&L(hereafterreferredtoasSIMULATE-E)three-dimensionalcoresimulationcode.Bothofthesecodesrepresentstate-of-the-arttechniquesforreactoranalysisandaredescribedfurtherinSections2.1and3.1,respectively.TheMICBURN/PP&Lcode(hereafterreferredtoasMICBURN)providesadetailedrepresentationofthedepletionofasinglegadolinia(Gd0)bearingfuelpin;theNORGE-B2/PP&Lcode(hereafterreferredtoasNORGE-B2)providesanuclearcrosssectiondatalinkfromCPM-2intoSIMULATE-EaswellasthePOWERPLEXcoremonitoringsystem.ThePDQ7code,linkedtoCPM-2viatheCOPHINprogram,isanindustrystandarddiffusiontheorysimulationusedbyPP&Lforspecialapplications.TIPPLOTprovides.plottingandstatisticalanalysiscapabilities.TheRODDK-E/PP&Lcodeisusedtodeterminecontrolrodworthforshutdownmarginanalysesandtoestimatecoreshutdownmargin.PP&LutilizestheabovementionedcOdesandassociatedmethodologiesforplantoperationssupportapplications(e.g.,corefollowanalyses,developmentof targetcontrolrodpatterns,predictionsofstartupcriticalrodpatterns,operatingstrategyevaluations,etc.),independentdesignverificationcalculations,reloadfuel/coredesignanalyses,safetyanalyses,andcoremonitoringsystemdatabankupdates.ThesteadystatecorephysicsmethodsdescribedinthisreportarealsousedtodevelopthenecessaryneutronicsdatainputtoPPGL'stransientanalyses.ThequalificationofPPGL'ssteadystatecorephysicsmethodsisbasedlargelyoncomparisonsofcalculatedcoreparameterstomeasureddatafromtheSusquehannaSESUnitsland2,PeachBottomUnit2,andQuadCitiesUnit1reactors.AllofthemodelpreparationandbenchmarkingcalculationsrepresentworkperformedbyPPGL.Thecomputercodesandthecalculationssupportingthisworkaredocumented,reviewed,andcontrolledbyformalprocedureswhichareencompassedwithinPPGL'snuclearqualityassuranceprogram.

TABLE11GENERtGDESIGNANDOPERATINGFEATURESOFTHESUSUEZGQlNASESREACTORSReactorType/Configuration:BWR-4/2LoopJetPumpRecirculationSystemRatedCorePower:3,293HWThermalRatedCoreFlow:100x10ibm/hr6ReactorPressureatRatedConditions:1020psiaNumberofFuelAssemblies:764NumberofControlRods:185NumberofTraversingZn-coreProbeLocations:43 FIGURE1.1SUSQUEHANNASESUNlTS1AND2CORE59575553++++++++++++++++434139373533'27252321++++++++++++++++++++++++++++++++3100020406081012141618202224262830323436384042444648505254565860X+ControlRodLocation~TraversingIn-coreProbelocation FIGURE1.2TYPICALGOREPOWERVSCOREFLOW1201101009080'5I-7oVOl6oO50OO40APRMRODBLOCK///II~'IIIII//APRMSORY~:100%XeRODLINEr'rRODBLOCKMONITOR////~T302010~~NATCIRC2-PUMPMINFLOW!001020III3040506070TOTALCOREFLOW,5RATED8090,;00 FIGURE1.3PP&LSTEADYSTATECOREPHYSICSMETHODSCOMPUTERCODEFLOWCHARTMICBURNGdDepletionPOWERPLEXCoreMonitoringSystemCPM-2LatticePhysicsNORGE-B2DataLinkSIMULATE-E3-DSimulationCOPHINDateLinkPDQDiffusionTheoryTIPPLOTStatisticalAnalysisTRANSIENTANALYSISRODDK-EShutdownMargin 2.0LATTICEPHYSICSMETHODSThelatticephysicsmethodscurrentlyinuseatPPGLarebasedontheCPM-2andMICBURNcomputercodeswhichwereoriginallydevelopedbyEPRIaspartoftheAdvancedRecycleMethodologyProgram(Reference2).CPM-2isusedatPPGLtocalculatethetwoenergygroupcrosssectionsforinputtoSIMULATE-EandPOWERPLEX.ThecodeisalsousedtoprovidedetectormodelresponsedatawhichisusedbySIMULATE-EtodeterminecalculatedTraversingIn-coreProbe(TIP)responses.ThecalculatedTIPresponsesareroutinelycomparedtomeasuredTIPdatatoassessnodalmodelaccuracyandtoprovidetheRodBlockMonitor(RBM)simulationemployedforcertainsafetyanalyses(e.g.,RodWithdrawalError).AfulldescriptionofCPM-2isprovidedinReference3butisalsosummarizedinSection2.1.Sections2.2and2.3providecomparisonstobothuniformlatticecriticalandreactoroperatingdata.SeveraluniformlatticecriticalcalculationswereperformedatPPGLtodeterminetheaccuracyofthereactivitycalculation.AdditionalcomparisonshavebeenmadetopingammascanmeasurementsfromtheQuadCitiesUnit1reactortobenchmarkthepinpowerdistribution.InadditiontoPPGLcalculations,EPRIsponsoredextensivebenchmarkingofthecode(Reference4)whichwasperformedduringtheoriginaldevelopmentofEPRI-CPM(Reference5).FurtherdevelopmentatS.Levy(underEPRIcontract)vastlysimplifiedtherequireduserinput.ThismodifiedversionofthecomputerprogramisdistributedbyEPRIasCPM-2.Theimprovementsintheinputmodulegreatlyreducethepossibilityofinputerrorssinceonlyphysicaldimensionsanddesignvaluesarerequiredforinput.CPM-2generatesallrequirednumberdensitiesanddeterminesappropriatethermalexpansions.OnlytheinputmodulewaschangedleavingtheneutronicscalculationsidenticaltotheoriginalEPRI-CPM.FurthermodificationshavebeenmadeatPPGLtohavethecodeconformtoourcomputersystemoperationalrequirementsaswellastoprovideadditionalcalculationaloutputs.Thesemodificationshavenotresultedinanychangestotheneutronicscalculation.Therefore,allEPRIbenchmarkingontheoriginalEPRI-CPMremainsapplicabletotheversionofCPM-2usedatPPGL.Section2.4summarizestheEPRIbenchmarkingresults.

2.1DescritionofCPM-2TheCPM-2computercodewasdevelopedforanalysisofbothBWRandPWRfuelassemblies.Thecodeperformsatwo-dimensionalcalculationwhichpermitsexplicitmodelingoffuelpins,waterrods,afuelchannel,wideandnarrowwatergaps,controlelements,andin-coreinstrumentationtubes.Theneutronicscalculationsolvestheintegralneutrontransporttheoryequationbythemethodofcollisionprobabilities.Figure2.1.1presentsthenormalcalculationalflowforaBWRfuelassembly.Thecalculationconsistsoffourbasicparts.Theresonancecalculationisperformedfirsttodetermineeffectivemicroscopiccrosssectionsintheresonanceregion.Themicro-groupcalculationisperformednextforeachdifferenttypeofpincellandtheresultingdetailedenergygroupspectraarethenusedtocollapsethe69energygroupcrosssectionsintoseveralbroadgroups.Themacro-groupcalculationusesthesebroadgroupcrosssectionstodeterminetheneutronspectraacrossanassemblyconvertedtoone-dimensionalcylindricalgeometry.ThisspectraisusedtofurtherreducethenumberofIenergygroupstobeusedinthefinaltwo-dimensionalcalculation.Theresonancecalculationisusedtoprovideeffectivecrosssectiondataintheresonanceregionbetween4eVand9118eV.Allresonanceabsorptionabovethislimitistreatedasunshielded.ThelargeresonancesinPu-240at1.0eVandinPu-239at0.3eVareadequatelytreatedinthedetailedthermalspectracalculationbythelargernumberofthermalgroupsaroundeachoftheseresonances.ThenuclidestreatedintheresonancecalculationsareU-235,U-236,U-238andPu-239.Theresonancecalculationmakesuseoftabulatedresonanceintegralsforahomogeneousmixture.Theseareconvertedtocorrespondtotheheterogeneousgeometrythroughuseoftheequivalencetheorem.Thenucleardatalibrarycontainstablesofthehomogeneousintegralsfortheresonancenuclidesasafunctionoffueltemperatureandpotentialscatteringcrosssection.ThefueltemperatureusedistheeffectiveDopplertemperatureforthemixture.FuelcollisionprobabilitiesusedduringtheresonanceintegralevaluationareapproximatedusingtheCarlvikapproximation(Reference6).Onceeffective resonancecrosssectionsarecalculatedforabsorptionandfission,theyaremodifiedtocorrectforresonanceoverlap.Dancoffcorrectionfactorsarethencalculatedforeachpinandusedtocorrecttheeffectivecrosssectionstoaccountfortheeffectsofrodshadowing.Themicro-groupcalculationisperformedin69energygroupsshowninTable2.1.1foreachdifferenttypeofpinintheassemblybeingmodeled.Pinsaredifferentiatedbytype(i.e.,waterrod,fuelrod,absorberrod,etc.).Fuelrodsarefurtherdifferentiatedbyfuelmaterial,enrichment,pelletorroddimensions,etc.Eachmicro-groupcalculationmodelsasinglepininone-dimensionalcylindricalgeometry.Forfuelpins,separateregionsareusedforfuel,cladding,andmoderator.Anextraregionisplacedaroundthepincellandisusedtoaccountforthefuelchannelwallandthewatergaps.Forabsorberandwaterrods,separateregionsareincludedfor'theabsorberorwaterregion,cladding,andmoderator.Abufferregionconsistingofhomogenizedaveragefuelcellswithathicknessof2.5meanfreepathsisplacedaroundtheabsorbercell.Thisisusedtoprovideareasonableneutronspectrumincidentonthenon-fuelcell.Themicro-groupcalculationisusedtoprovideadetailedenergyspectrumwhichisusedtocollapsethe69groupcrosssectionstofewergroupsaveragedovereachpincell.Thisisnecessarysinceatwo-dimensionalcalculationin69energygroupsisnotpractical.Whenhomogenizingcrosssectionsoverapincellforanabsorberpin,theaveragecrosssectionswillresultinanoverestimationofthethermalfluxinsubsequenthomogeneouscalculations.Thiswillcauseacorrespondingoverestimationoftheabsorberworth.Forabsorberpincells,twocalculationsareperformed.Thefirstcalculationusestheheterogeneousgeometryaspreviouslydiscussed.Thesecondcalculationisforahomogenizedabsorberpincell.Correctionfactorsarecalculatedforeachenergygroupastheratiooftheheterogeneousproblemfluxtothatofthehomogeneousproblem.Thesefactorsareusedtocorrectthetwo-dimensionalfluxesinthefinalcalculationsothatreactionratesandreactivityareconserved.Followingthemicro-groupcalculation,amacro-groupcalculationisperformed.Inthiscalculation,thefuelassemblyisconvertedtoone-dimensionalcylindricalgeometry.Eachconcentricrowofpins,startingfromtheassembly centerandproceedingoutward,occupiesonecylindricalshell.Thefuelchannelwall,watergapandcontrolrod(ifpresent)alsooccupyoneshelleach.Thiscalculationisperformedin25energygroupsusingthecollapsedcrosssectiondatafromthemicro-groupcalculation.TheenergygroupstructureisgiveninTable2.1.2.Thiscalculationisusedtodeterminetheenergyspectraineachregiontofurthercollapsethecrosssectiondata.Byperformingthiscalculation,fewerenergygroupsarenecessaryinthetwo-dimensionalcalculationbecausetheeffectsofthewatergapsaretakenintoaccount.Thefinaltwo-dimensionalcalculationinCPM-2solvestheintegraltransportequationinX-YCartesiancoordinatesusingthemethodofcollisionprobabilities.Thiscalculationisusedtodeterminethemultigroupfluxacrosstheassembly,localpinpowerdistribution,andtheassemblyeigenvalue.Thepincells,channelwall,watergapsandcontrolrodarerepresented.DiagonalsymmetryisassumedasshowninFigure2.1.2.ThecalculationisperformedinthefiveenergygroupsshowninTable2.1.2usingcrosssectiondatacollapsedfromthemacro-groupcalculation.CollapsedtwogroupcrosssectiondataaveragedoverthefuelassemblyarethenusedinSIMULATE-EandPOHERPLEX.FewgroupcrosssectiondatacanalsobedeterminedoverspecifiedregionstoprovideinputtoPDQ7.Forfuelrodsthatcontaingadolinia,specialcalculationsareperformedwithMICBURN(Reference7)toaccountforthespatialshieldingoftheabsorber.Thiscalculationisusedtoprovideeffectivemicroscopiccrosssectionsforgadoliniain69energygroupsforuseinCPM-2.MICBURNmodelsonlytheburnableabsorberpincell.Thegadoliniafuelrodisusuallymodeledusingtenmeshpointstoprovidesufficientdetailtocalculatetheradialfluxdistribution.Thesefluxesareexpandedto20radialzonesfortheactualgadoliniadepletion.Fromthecalculation,effectivegadoliniacrosssectionsareobtainedforuseinCPM-2.ThesearetabulatedasafunctionofthefractionofGd-155plusGd-157remaininginthepin.ThefueldepletionalgorithminCPM-2utilizesapredictor-correctormethodology.Inthepredictorstep,thefluxesfromthetwo-dimensionalcalculationfromtimesteptareusedtodepletethenuclideinventorieston1-10-timestept.Anewfluxcalculationattimesteptisperformedusingthennpredictednuclideinventory.Oncethesefluxesareknown,thedepletionchainsarereevaluatedfromtimestepttot(i.e.,correctorstep).Then1nfinalnumberdensitiesusedattimesteptaretheaverageoftheresultsfromnthepredictorandcorrectorsteps.Theprimaryheavynuclidesplus22fissionproductsareexplicitlytracked.Theremainingfissionproductsaretrackedusingtwopseudo-isotopeswhichareusedtorepresentnon-saturatingandslowlysaturatingfissionproducts.ThelistofheavynuclidestrackedinCPM-2isprovidedinTable2.1.3andthefissionproductsareshowninTable2.1.4.Thenucleardatalibrary(Reference8)usedinCPM-2wasdevelopedandbenchmarkedwiththeoriginalEPRI-CPMprogram(Reference4).ThedatalibrarywasgeneratedfromENDF/B-IIIdatawithmodificationsbasedonbenchmarkingstudies.Thesixty-sixelementsshowninTables2.1.3and2.1.4arerepresentedin69energygroups.Thesearedividedinto27fastand42thermalgroups.Theenergygroupstructurewasdefinedwithasignificantnumberofenergygroupsaroundthe0.3eVPu-239and1.0eVPu-240resonances.Thispermitstreatmentoftheseresonancesduringthethermalgroupcalculationwithouttheneedforaspecificresonancecalculation.SeveralmodificationsweremadetotheENDF/B-IIIdatalibrarybasedonextensiveEPRIbenchmarking(Reference8).TheprincipalmodificationtothelibraryisauniformreductionoftheU-238microscopicabsorptioncrosssectionsintheresonanceregionbasedonHellstrand'smeasurementsonisolatedrods(Reference9).ThismodificationforU-238iswithinthedatauncertaintiesintheENDF-B/IIIdata.OthermodificationsarelistedinTable2.1.5.ThereductionofthePu-240absorptioncrosssectionwasnecessarytoaccountforshieldingofthehigherenergyresonanceswhichisnottreatedintheresonancecalculations.11 TABLE211SIXTY-NINEGROUPENERGYBOUNDARIESFORTHECPM&MICBURNCROSSSECTIONLIBRARYGroupEnergyBoundary-MeV-~GZOUEnergyBoundary-eV-~GUOUEnergyBo~dazar-eV-12345678910ll12131415161718192021222310.006.06553.6792.2311.3530.8210.5000.30250.1830.11100.067340.040850.024780.01503--eV-9118.05530.0.3519.12239.451425.1906.898367.262148.72875.5012425262728293031323334353637383940414243444546474849505148.05227.70015.9689.8774.003.302.602.101.501.301.151.1231.0971.071'.0451.0200.9960.9720.9500.9100.8500.7800.6250.5000.4000.3500.3200.3005253545556575859606162636465666768690.2800.2500.2200.1800.1400.1000.0800.0670.0580.0500.0420.0350.0300.0250.0200.0150.0100.0050.0Resonanceregionconsistsofgroups15through27.Source:M.Edenius,et.al.,"TheEPRI-CPMDataLibrary,"PartII,Chapter4ofEPRICCM-3,November,.1975.-12-TABLE2.1.2ENERGYGROUPSTRUCTUREFORMACRO-GROUPANDTWO-DIMENSIONALCALCULATIONSMacro-GroupCalculation2-DGroupCalculationFine~Grou$$1-23-4567-89-1011-1213-15EnergyBoundaries-MeV-10.0-3.6793.679-1.3531.353-0.8210.821-0.5000.500-0.1830.183-0.067340.06734-0.024780.02478-0.005530Group'12345Macro~Grou$1-89-1718-2021-2223-25EnergyBoundaries--eV--10.0x10-5.530X10635.530x10-6.25x106.25x101-1.80x1021.80x10-5.00x105.00x10-0.0'-eV--II-'8i1921r25I16-1819-2122-25262728-3132-3536-3839-4546-4849-5152-5455-5758-6061-6364-6667-6955301425.1148.72815.968-9.8774.001.501.0971.0200.6250.3500.2800.1800.080-0.0500.030-0.0151425.1148.72815.9689.8774.001.501.0971.0200.6250.3500.2800.1800.0800.0500.0300.0150.013 TABLE2.1.3HeavyNuclideChains1.U235~U236~Np237~Pu2382.U238~Pu239~Pu240~Pu241~Pu242~Am243~Cm244(25%)3.U238~Pu239~Pu240~Pu241~Am241~Am242m~Am243~Cm244(75%)4.U238~Pu239~Pu240~Pu241~Am241~Cm242~Pu238(n,2n)5.U238~Np237~Pu238Source:A.Ahlin,et.al,"TheCollisionProbabilityModuleEPRI-CPM,"PartII,Chapter6ofEPRICCM-3,November,1975.-14-TABLE21.4FISSIONPRODUCTCHAINS1.Kr832.Rhl033.Rh1054.Ag1095.Xe1316.Cs133~Cs1347.Xe135~Cs1358.Nd1439.Nd145(52.77%)10.Pm147~Pm148~Sm149~Sm150~Sm151~Sm152~Eu153~Eu154~Eu155(47.23%)11.Pm147~Pm148m.~Sm149~Sm150~Sml51~Sm152~Eu153~Eu154~Eu15512.Pm147~Sm14714.Slowly-SaturatingFissionProductsSource:A.Ahlin,et.al,"TheCollisionProbabilityModuleEPRI-CPM,"PartII,Chapter6ofEPRICCM-3,November,1975.15-TABLE2.'1.5MODIFICATIONSTOENDF-B/IIIDATAFORCPM-2CROSSSECTIONLIBRARYNuclideCrossSectionModificationU-238Increasedby8%forgroups1through5crandvEIncreasedby4.5%forgroups1through5a,g'ga,g'+gRIReducedby30%forgroup4Reducedby20%forgroup5Resonanceintegralreducedby0.3where1RITOpTaRIgRIthegrouplethargywidththegrouppotentialscatteringcrosssectionResonanceintegralfromENDF-B/IIIdataeffectivegroupresonanceintegralinCPMlibraryPG-240aaReducedby50%for.groups16through27 FIGURE2.1.1CALCULATIONALFLOWINCPM-2INPUTRESTARTFILERESONANCECALCULATIONDATALIBRARYCALCMACROSCOPICCROSSSECTIONSM!CHURNIMICROGROUPCALC69ENERGYGROUPSCONDENSETO25MACROGROUPSHOMOGENIZETOMACROREGIONSMACROGROUP,CALCINANNULARGEOMETRYCONDENSE.TO5GROUPSCALCCROSSSECTFOR2-0REGIONS2-DASSEMBLYCALCULATIONCALCFEWGROUPCONSTANTSANDREACTIONRATESBURNUPCORRECTORBURNUPPREDICTO8ZEROBURNUPEND17 FIGURE2.1.2EXAMPLEOFBWRCELLGEOMETRYINTHE2-DCALCULATIONSTEELCONTROLRODWIDEWATERGAPFUELPINCELLINNERWATERGAPCHANNELNARROWWATERGAPIN-COREDETECTOR 2.2UniformLatter.ceCriticalsOnemethodtodeterminetheaccuracyofthereactivitycalculationinCPM-2isthroughcomparisontouniformlatticecriticalmeasurements.Thetestassemblycontainsfuelpinswithasingleenrichmentmoderatedbywateratroomtemperatureandatmosphericpressure.Asufficientnumberoffuelpinsisaddedtotheassemblyuntil.criticalityisachieved.Radialandaxialbuckling,whichareinputtotheCPM-2analyses,aredeterminedfromthemeasureddata.TheuniformlatticecriticalexperimentschosenforanalysiswereobtainedfromtheWestinghouseTRX(Reference10)andESADA(Reference11)criticals.TheTRXcriticalsthatwereanalyzedbyPP&LwithCPM-2aretheeightUO2experiments.Therodenrichmentforalleightexperimentswas1.3weightpercentU-235withUOpelletdensitiesof7.52g/cmfortwomeasurements,37.53g/cmforthreemeasurements,and10.53g/cmfortheremainingthree.33Water-to-metalratiosvariedfrom3.0to5.0.TheconditionsaresummarizedinTable2.2.1.SixoftheESADAcriticalswereanalyzedbyPPGL.Allofthesecontained2.0weightpercentPuOinnaturaluranium.Znfourexperiments,eight.percent(byweight)oftheplutoniumwasPu-240;intheremainingtwo,twenty-fourpercent(byweight)oftheplutoniumwasPu-240.AsummaryoftheconditionsisgiveninTable2.2.2.TheCPM-2calculatedassemblyK-effectivesareprovidedinTables2.2.3and2.2.4fortheTRXandESADAcriticals,respectively.TheCPM-2calculatedK-effectivesfortheESADAcriticalshavebeencorrectedby-0.4%aktoaccountforthepresenceofspacersinthecore.Anadditionalcorrectionforself-shieldingoftheplutoniumgrainshasnotbeenincluded.Thiscorrectionvariesfrom-0.05%to-0.45%~k.ThecalculatedaverageK-effectivefromallcriticalsis1.0005withastandarddeviationof,0.0072.-19-TABLE2.2.1TRXUNIFORMLATTICECRITICALTESTDATAExperimentIdentificationU-235(wt.4)Densi)y(g/cm)PelletDiameter(in.)WatertoCriticalNumberMetalRatioofFuelRodsTRX1TRX2TRX3TRX4TRX5TRX6TRX7TRX81.31.31.31.31.31.31.37.537.537.537.527.5210.5310.531.310.530.6010.6010.6010.3880.3880.3830.3830.3833.61269+31027+3987+33045+32784+32173+31755+31575+3Source:J.R.Brown,et.al.,"KineticandBucklingMeasurementsonLatticesofSlightlyEnrichedUraniumorUORodsInLightWater,"WAPD-176,January,1958.20-TABLE2.2.2ESADAUNIFORMLATTICECRITICALTESTDATAExperimentIdentificationPu-240(wt:.%)LatticePitch(in)CriticalNumberofRodsESADA1ESADA3ESADA4ESADA6ESADA12ESADA1324240.690.750.97581.06070.97581.0607514321160152247243Source:R.D.Learner,et.al."PuO-UOFueledCriticalExperiments,"WCAP-3726-1,July,1967.21-Table2.2.3CPM-2RESULTSFORTRXCRITICALSExperimentIdentificationExperimentalMaterialchuckling(m).CPM-2K-effectiveTRX1TRX2TRX3TRX4TRX5TRX6TRX7TRX828.3730.1729.0625.2825.2132.5935.4732.220.99340.99580.99420.99390.99340.99740.99700.9960AverageK-effective=0.9951StandardDeviation=0.001622-TABLE224CPM-2RESULTSFORESADACRITICALSExperimentIdentificationPu-240(wt.4)ExperimentalMaterialBuckling(m)CPM-2K-effective*ESADA1ESADA3ESADA4ESADA6ESADA12ESADA1388242469.690.0104.7298.479.573.31.00261.00041.01291.01161.01011.0077AverageK-effective=1.0076StandardDeviation=0.0050*AllCPM-2calculatedK-effectiveshavebeenadjustedby-0.4%~ktoaccountforspacerworth.23 2.3uadCitiesPinPowerDistributionComarisonsAdditionalverificationofCPM-2performedbyPP&LincludescomparisonstothepingammascanmeasurementsfromQuadCitiesUnit1attheendofCycle2(Reference12).In1976underEPRIsponsorship,GeneralElectricperformeddetailedgammascanmeasurementsatQuadCities.Thesemeasurementsincludedpin-by-pingammascanmeasurementsforsixseparateassemblieswhichincludedthreemixedoxide(MO)andthreeUObundles(seeTable2.3.1).Eachbundlewas.disassembledandscannedateightseparateaxiallocations.NotierodsorspacercapturerodsfromanybundlewerescannedandonlyninerodsfrombundleGEB161werescanned.ThemeasuredLa-140intensitieswerecorrectedtocorrespondtoactivity.atshutdown.Thepracticalaccuracyofthereporteddataincludingmeasurementuncertaintyandmeasurementmethodbiasisapproximately3.0$(Reference12,Section4.3).ThegammascandataitselfisameasureofLa-140gammaactivity.Duringreactoroperation,La-140isproducedbothasafissionproductandbyBa-140decay.Sincethehalf-lifeofBa-140isapproximately13daysandthat,ofLa-140isapproximately40hours,thedistributionoftheBa-140andLa-140concentrationswillberepresentativeofthepowerdistributionintegratedoverthelasttwotothreemonthsofreactoroperation.Aftershutdown,theonlysourceofLa-140isfromdecayofBa-140.Becausethehalf-lifeofLa-140isshortwithrespecttoBa-140,afterabouttendaysthedecayrateofLa-140iscontrolledbythedecayofBa-140.Therefore,therelativemeasuredLa-140activitiesarecomparedtotherelativecalculatedBa-140concentrations,andtheLa-140concentrationdoesnotneedtobecalculated.ThelocalpowerdistributionscalculatedbyCPM-2wereconvertedtorelativeBa-140concentrationspriortothecomparison.TheSIMULATE-Ecodewasusedtocalculatetheexposureandvoidhistoryconditionsforeachbundleandaxialelevationforwhichmeasurementdataexisted.TheCPM-2calculatedrelativeBa-140concentrationsforeachpinwerethendeterminedforeachoftheseconditions.BundleGEB162waslocatedonthecoreperiphery.Consequently,asteepneutronfluxgradientexistedacrossthebundle.InCPM-2,azerocurrent24-boundaryconditionisassumedtoexist.Thisisreasonableforinteriorbundlesbutwillcauselargeerrorsforperipheralbundles,particularlyforthosepinsadjacenttothereflectorregion.Becauseperipheralbundlesarelowpowerbundlesanddonotoperateclosetothermallimits,highaccuracyisnotnecessary.Therefore,comparisonstotheGEB162bundlearenotincludedintheresults.ApincomparisonisdefinedasacomparisonbetweentherelativemeasuredandcalculatedLa-140activitiesforallscannedpinsataspecificaxiallocationwithinagivenbundle.Foreachcomparison,thecalculatedandmeasuredLa-140activitiesarenormalizedto1.0basedonthenumberofpinsforwhichthereweremeasurements.SamplesofthesepincomparisonsarepresentedinFigures2.3.1through2.3.8.AdifferencebetweenthemeasuredandcalculatednormalizedLa-140activitiesforeachpiniscalculatedas:wheree.=c.-m.iiim.=thenormalizedmeasuredLa-140activityforfuelpini,ic.=thenormalizedcalculatedLa-140activityforfuelpini.Thestandarddeviationforeachpincomparisoniscalculatedas:whereNg(e.-e)N-1100xMM=theaverageofthenormalizedmeasureddataforthecomparison=1.0forallcomparisonsduetonormalization,e=theaveragedifferencebetweenthemeasuredandcalculatednormalizedLa-140activities=0.0forallcomparisonsduetonormalization,N=thenumberofpinsinthecomparison.AsummaryofthestandarddeviationsforeachofthecomparisonsisgiveninTable2.3.2.Theaveragestandarddeviationforallcomparisonsis4.00%.ZfonlyUObundlesarecompared,theaveragestandarddeviationisonly3.37%.25 Assumingthestandarddeviationsareduetoacombinationofindependent.measurementandcalculationaluncertainties,thecalculationalstandarddeviationcanbedeterminedfromthefollowingequation:where22260+ctotalcalcmeasc1=totalstandarddeviationfromthecomparisonstotal6=calculationalstandarddeviation,andcalca=measurementstandarddeviationmeasAssumingameasurementaccuracyof3.0%,thecalculationalstandarddeviationis2.6%forallbundlesor1.5%forUObundlesonly.TheCPM-2codeisalsousedtocalculatetheLocalPeakingFactor(LPF)foreachlatticetype.TheLPFistheratioofthe'maximumpinpowerinasix-inchsegmenttotheaveragepinpowerinthesamesix-inchsegment,ofafuelassembly.AnaccuratecalculationisimportantbecausethelocalpeakingfactorisinputtothecoremonitoringsystemandSIMULATE-Eandisusedtodeterminethelinearheat.generationrate.BecauseLa-140activityisproportionaltothepinpowerdistribution,anestimateoftheLPFcanbemadefromthegammascanmeasurements.AcomparisonbetweenthemeasuredandcalculatedratiosofthepeakpinLa-140activitytoaveragepinLa-140activityispresentedinTable2.3.3.Theaveragedifferencefromallofthecomparisonsis2.49%.IfonlytheUOfuelbundlesareincluded,theaveragedifferencebecomes0.98%.AsshowninTable2.3.3,mostoftheCPM-2calculationsresultinanoverestimationofpeakLa-140activity,and,therefore,conservativelyestimatethelinearheatgenerationrate.26-TABLE2.3.1ASSEMBLIESUSEDINRODTORODGAMMASCANAssemblyIdentificationBundleLocation~(x.)NumberofRodsScannedGEB1597x7MOCenterDesign31/3240GEB1627x7M02PeripheralDesign5,4840GEB1617x7M02CenterDesign29,329GEH0028x8UOReloadCoreDesign13,3655CX06727x7UOInitialCoreDesign15,3640CX02147x7UOInitialCoreDesign33,344027 Table2.3.2QUADCITIESUNIT1ENDOFCYCLE2SUMMARYOFNORMALIZEDLA-140ACTIVITYPINCOMPARISIONSASSEMBLYIDAXIAlCALCULATEDVOIDCALCULATEDSTANDARDELEVATION(IN)HISTORY(X)BURNUP(GWD/MTU)DEV(X)GEB159GEB159GEB159GEB159GEB159GEB159GEB159GEB159GEB161GEB161GEB161GEB161GEB161GEB161GEB161GEB161GEH002GEH002GEH002GEH002GEH002GEH002GEH002GEH002CX0672CX0672CX0672CX0672CX0672CX0672CX()672CX0672CX0214CX0214CX0214CX0214.CX0214CX0214CX0214CX021415215156879312312915215156879312312915215156879312312915215156879312312915,21515687931231292.98.039.143.558.760.767.968.82.98.'139.343.658.760.868.068.92.87.737.441.757.059.166.767.90.33.426.031:050.553.061.161.91.84.329.334.051.153.763.464.211.5311.8910.2410.169.889.867.796.4311.5911.9410.2510.179.899.877.796.4310.7411.09.9.889.759.509.467.536.2715.8617.4220.2519.5619.0718.9014.9712.6516.0117.5019.5419.4719.4519.0914.7812.583.944.213.794.424.384.775.895.902.612.444.484.815.816.247.537.842.972.382.452.272.592.682.152.255.245~023,513.623.413.763.543.554.085.042.873.602.903.833.613.54OVERALLAVERAGE:4.00STANDARDDEVIATION:1.40U02BUNDLEAVG:3.37STANDARDDEVIATION:0.88M02BUNDLEAVG:4.94STANDARDDEVIATION:1.5228-TABLE233QUADCITIESUNIT1ENDOFCYCLE2PEAKLA-140ACTIVITYCOMPARISONSAssemblyIdentificationAxialElevation(IN)MeasuredPeakLa-140Activity*CalculatedPeakLa-140Activity*Difference(@)GEB159GEB161GEH002CXO672CX021415215156879312312915215156879312312915215156'7931231291521515687931231291521515687931231291.137.,1.1151.1161.0991.1031.1021.1341.1591.1151.1101.1071.0891.0941.1101.1311.1721.1031.0991.1101.1001.1181.1191.1351.1351.1061.0801.0971.0981.0961.0711.0881.1011.1081.0781.0911.0661.1261.1231.1311.1141.2491.1861.1661.1561.1361.1351.1721.2021.1391.1371.1581.1601.1701.1711.1941.2121.1331.1291.1241.1161.1131.1201.1391.1471.1241.1191.0961.1001.0941.0921.1111.1191.1251.1151.1031.0971.0931.0921.1191.1279.856.374.485.192.992.993.353.712.152.434.616.526.955.505.573.412.722.731.261.45"0.450.090.351.061.633.61-0.090.18-0.181.962.11'.631.533.431.102.91-2.93-2.76-1.061.17AverageDifference:2.49%AverageDifference(UOAverageDifference(M02BundlesOnly):BundlesOnly):0.98%4.75%*PeakLa-140Activity=ratioofthepeakpinLa-140activitytotheaveragepinLa-140activityinanaxialsegmentofafuelbundle.29-FIGURE2.3.1QUADCITIESUNIT1EOC2GANESASCANCOhPARISIONNORhMIZEDLA-140PINACTIVITIESASSEhSLYID:GEB15993IN.FROMBOTTOMOFCOREWideWideGap1.0751.1110.0361.0501.1010.0511.0211.0630.0421.0641.0900.0261.1021.1040.0021.0681.1010.033.9680.9940.026l.0141.0400.0261.0791.1220.0431,0601.1100.050.9931.0120.0191.0061.005.0011.0421.040.002.8600.822.038.9510.875.076.9250.888.037.8210.786.0351.0171.0630.0461.0931.1220.029.9290.875.0541.0020'09.0931.0450.980.0651'641.0880.0241.0821.1100.028.9380.888.050.9760.909.067.5040.5640.0601.0631.024.0391.0531.0900.0371.0031.0120.009.8480.786.0621.0900.980.110.1.0711.024.047.7400.726.0141.0561.1350.0791.0931.1040.0111.0101.005.0051.0861.0880.0021.0921.1350.0431.0481.1190.071h/easCalcCa1c-MeasVOIDLEVEL(X):60.7BURNUP(GWD/hKU):9.86STANDARDDEVIATION:4.77Ã(40PINS)Xindicateseithertierodorspacercapturerod(notmeasured)30-FIGURE2.3.2QUADCITIESUNIT1EOC2GNMSCANCOMPARISIONNORMALIZEDLA-140PINACTIVITIESASSEMBLYID:'EB16156IN.FROMBOTTOMOFCOREWideWideGap1.0161.0680.0521.0771.1020.025MeasCalcCalc-Meas1.0311.0550.0241.0891.1600.071.9800.913.067.9550.933.0221.0040.978.0261.0400.978.062-FCO404Q~~c+Q7gcQ.8080.8120.004VOIDLEVEL(K):43.6BURNUP(GWD/MTU):10.17STANDARDDEVIATION:4.81K(9PINS)Xindicateseithertierodorspacercapturerod(notmeasured)31-FIGURE2.3.3QUADCITIESUNIT1EOC2GAhMSCANCOMPARISIONNORMIZEDLA-140PINACI'IVITIESASSEMBLYID:GEH00221IN.FROMEYZIQMOFCOREWideWideGap0.9960.969.0271.0331.011,0221.0271.013.0141.0261.007,0191.0541.049.0051.0281.0360.0081.0321.011.0210.9950.969.0261.0741.,068.0061.0261.0270.0011.0391.018.0211.0471.036.0111.0791.0810.0020.9951.0080.0131.0781.068.0101.0110.955.0560.9480.943.0050.9340.9340.0000.9570.951.0060.9920.975.0171.0531.013.0401.0381.027.0110.9560.943.0130.9160.9220.0060'490.931.0180.9270.927.0000.9550.9630.0081.0341.0740.0401.0301.007.0231.0201.018.0020.9360.934.0020.9400.931.0090.9310.9370.0060.9320.9540.0221.0111.0640'531.0321'360.0040.9610.951.0100.9290.927.0020.9350.9370.0020.9180.9360.0180.9390.9720.033:r>rOCO81.0701.049.0211.0991.081.0180.9940.975.0190.9690.963.0060.9370.9540.0170.9610.9720.0110.9790.9900.0111.072'.1290.0571.0451.036.0091.0131~,008.0051.0611.0740.0131.0381.0640.0261.0881.1290.0410.9601~0390.079MeasCalcC-MVOIDLEVEL(X):7.7BURNUP(GWD/MHJ):11.09STANDARDDEVIATION:2.38/(55PINS)Xindicateseithertierodorspacercapturerod(notmeasured)Windicateswaterrod32 FIGURE2.3.4QUADCITIESUNIT1EOC2GAhMASCANCOhPARISIONNORhMIZEDLA-140PINACTIVITIESASSEMBLYID:GEH00293IN.FROMBOTTOMOFCOREWideWideGap1.0851.1040.0191.1011.1120.0111.0791.077.0021.0631.062.0011'981.1120.0141.0141.0220.0081.1051.102.0031.0601.043.0171.0091.0230.0141.1191.102.0171.0150.961.0540.9450.933.0120.9130.913.0001.1061.077.0291.0701.043.0270.9670.933.0340.9150.895.0200.9020.891.0111.0481.0620.0141.0481.023.0250.9340.913.0210.9200.891.0291.0611.036.0250.9340.924.0100.9120.882.0300.9020.880.0221.1171.109.0081.0831.0830.0000.9790.946.0330.937.0.917.0200.9150.897.0181.1061.1200.0141.0291.0400.0111.0621.052.0101'191.0310.012MeasCalcC-M1.0401.036.0040.9240.9240.0000.8970.882.0150.9130.880.0330.8760.874.0020.9100.9100.0001.0921.1090.0171.0751.0830.0080.9690.946.0230.8980.9170.0190.8890.8970.008'.8950.9100.0150.9130.9290.0161.0391.1000.0611.0901.1200.0301.0001.0400.0401.0151.0520.0371.0021.0310.029ee4~c~egcQQQ>f+1.0351.1000.0650.9541.0460'92VOIDLEVIK(X):59.1BURNUP(GWD/hKU):9.46STANDARDDEVIATION:2.68/(55PINS)Xindicateseithertierodorspacercapturerod(notmeasured)Windicateswaterrod33 FIGURE2.3'QUADCITIESUNIT1EOC2GAhQlASCANCOMPARISIONNORhMIZEDIA-140PINACTIVITIESASSEMBfYID:CX067221.IN.FROMBOTTOMOFCOREWideWideGap1.0490.958.0910.9710.909.0621.0010.909.0921.0070.932.0750.9460.902.0440.9110.902.0091.0531.006.0471.0120.977.0351.0661.039.0270.9910.987.0041.0591.046.0130.9860.9940.0081.0320.997.0351.0501.0710.0211.0091.0340.0250.9380.9400.0020.9810.979.002MeasCalcCa1c-Meas1.0310.977.0541.0741.039.0351.0020.987.0150.9810.977.0041.0320.991.0411.0011.0980.0971.0240.997.0271.0801.046.0341.0781.071.0070.9840.9940.0101'291.0340.0050.9710.9770.0060.9900.9910.0010.9140.9810.0670.9961.0200.0241.0101.0200.0100.9831.0460.0631'171.1190.1020.9050.9400.0350.9400.9790.0391.0201.1190.0990.9051.0110.106VOIDlKVEf(X):3.4BURNUP(GWD/hfZU):17.42STANDARDDEVIATION:5.02K(39PINS)Xindicateseithertierodorspacercapturerod(notmeasured)34 FIGURE2.3.6QUADCITIESUNIT1EOC2GAhMASCANCOMPARISIONNORhMIZEDIA-140PINACTIVITIESASSEMBIYIDCX067287IN.FROMBOTlQMOFCOREWideWideGap1.0671.0770.0100.992O.S980.0061.0000.998.0020.9830.966.0170.9190.9230.0040.9721.0330.0611.0621.028.0341'621.028.0341.0401.0510.0111.0351.0530.0180.9931.0260.0330.9811.0130.032h/easCalcCalc-h1eas1.0161.0330.0170.9360.923.0131.0541.028.0261.0290.986.0430'760.953.0230.9940.953.0410.9820.953.0290.9560.918.0381.0180.992.0260.9810.926.0551.0551.0720.0171.0751.028.0470.9420.9530.0110.948'.918.0300.9090.9140.0050.9920.956.0361.0121.0510.0391.036.0.9901.0530.9920.0170.0020.9690.926.0430.9380.9560.0180.9850.985.0001.0961.094.0020.9841.0260.0420.9321.0130.0811.0491.0720.0231.0071.0940.0871.0361.038.0.002VOIDIZVEI(/):50.5BURNUP(GWD/hfQJ):19.07STANDARDDEVIATION:3.41K(40PINS)Xindicateseithertierodorspacercapturerod(notmeasured)35-FIGURE2.3.7QUADCITIESUNIT-'-1EOC2GAhMASCANCOhPARISIONNORhNLIZEDLA-140PINACTIVITIESASSEMBLYID:CX021451IN.FROMBOTTOMOFCOREWideWideGap1.0511.021.0300.9600.959.0010.9930.959.0340.9840,950.0340.9330.918.0151~0221.005.0171.0541.033.0211.0541.036.0181.0571.0590.0020.9710.9890.0180.9570.9980.041habeasCalcCalc-Meas0.9991.0050.0060.9841.0230.0390.9670.9890.0220.9410.918.0231.0541.033.0211.0301.0360.0060.9340.9980.0641.0240.974.0500.9850.973.012'.9930.976.0170.9881.0140.0261.0010.973.0280.9800.951.0290.9920.961.0311.0841.083.0010.9840.976.0080.9480.9510.0030.9480.9520.0040.9510.9910.0401.0021.0140.0121.0100.961.0490.9580.9910.0331.0271.018.0091.0731.1030.0301.0351.0830.0481.0911.1030.0120.9821.0270.045VOIDLEVEL(X):29.3BURNUP(GWD/hKU):19.54STANDARDDEVIATION:2.87K(38PINS)Xindicateseithertierodorspacercapturerod(notmeasured)36-FIGURE2.3.8QUADCITIESUNIT1EOC2GAhMASCANCOMPARISIONNORhM,IZEDEA-140PINACTIVITIESASSEMBLYID:CX0214129IN.FROMBOP%MOFCOREWideWideGap1.1141.1270.0131.0261.021.0051.0361.021.0151.0340.990.0440.9600.922.038.1.0641.0640.0001.0581.044.0141.0541.040.0141.0561.0870.0311.0601.0730.0130.9961.0390.0431.0091.0220.013MeasCalcCalc-Meas0.9690.922.0471.0050.988.0170.9380.9270.9370.931.0010.0040.9700.9760.0061,0931.064.0291.0621.044.0181.0461.040~0060.9390.937.0020.9560.931.0250.9060.882.0240.8900.882.0080.8910.874.0170.9570.894.0630.9190.9210.0021.0201.0670.0471.0501'870.0371.0621.039.0231.0471.0730.0260.9911.0220.0310.9560.9760.0200.9670.894.0731.0921.067.0250.9310.921.0100.9690.957.0121.0301.0960.0661.0061.0960.0900.9461.0320.086VOIDIZVEL(X):64.2BURNUP(GWD/hfQJ):12.58STANDARDDEVIATION:3.54/(40PINS)Xindicateseithertierodorspacercapturerod(notmeasured)37 2.4EPRIBenchmarkEvaluationsDuringtheoriginaldevelopmentofEPRI-CPM,benchmarkingcalculationswereperformedagainstbothuniformlatticecriticaltestsandpowerreactoroperatingdata.Theseinclude:-hotcriticaldatafromtheKritzreactor,-colduniformlatticecriticaldatafromtheTRXandESADAcriticals,and-isotopiccomparisonsbasedonthepostirradiationanalysisofYankeeandSaxtonspentfuel.AllcalculationsweremadeusingthecurrentversionoftheCPMcrosssectionlibraryandaredocumentedinReference4.Theresultsofthosebenchmarkingcomparisonsarereportedinthissection.FourexperimentsfromthehightemperatureKritzfacilityweremodeledwithEPRI-CPMtocomparefissionrates.ThefirstthreeexperimentsinvolvedoneBNRandtwoPNRfuellattices.Allthreelatticescontainedbothmixedoxideanduraniumoxidepins.Thesystemtemperatureforthesethreeexperimentswas245C(473F).Thefourthexperimentwasauniformlatticecritical00utilizing1.35%enrichedUOrods.Criticaldatawastakenat20Cand210C0000(68Fand410F).DetailsconcerningtheexperimentsandcalculationsaregiveninReference4.MeasuredandcalculatedfissionratesforthefirstthreeKritzexperimentsarereproducedfromReference4andshowninFigures2.4.1through2.4.3.Thefissionrateswerenormalizedsothattheaverage'ofallmeasuredpinswas1.0.Inthethirdexperiment,theUOandmixedoxideassemblieswerenormalizedseparately.Therespectiveeigenvaluesforeachlatticeareshownontheappropriatefigures.TheonlyresultsfromtheKritzuniformlatticecriticalsweretheeigenvalues.Thecalculatedeigenvalueswere0.997and0.993forthe20Candthe210Ccriticals,respectively.0038-PartoftheEPRI-CPMbenchmarkingalsoincludedcalculationsofuniformlatticecriticalsfromboththeTRXandESADAcriticalexperiments.TheresultsfromthesecalculationsarepresentedinTables2.4.1and2.4.2.TheresultsreportedbyEPRIfortheTRXcriticalsincludeacorrectionfactorbasedoncomparisonsoftheEPRI-CPMresultstofivegroupradialPDQcalculations.Thiscorrectionisontheorderof0.003to0.004dk.RemovingthisadjustmentfromtheEPRI-CPMresultswouldprovideexcellentagreementbetweentheoriginalEPRI-CPMbenchmarkingandthePPSLCPM-2calculationspresentedinSection2.2.TheresultsreportedbyEPRIfortheESADAcriticalsincludecorrectionfactorstoaccountforthepresenceofthespacersandtheself-shieldingoftheplutoniumgrains.Thespacercorrectionusedwas-0.4%~kforallcases.ThisadjustmentwasalsomadetotheCPM-2calculationspresentedinSection2.2.TheshieldingcorrectionappliedintheEPRI-CPMresultsvariedbetween-0.05%bkto-0.45%bk.Specificdetailsconcerningtheexactcorrectionforeachexperimentwasnotavailable.ThemagnitudeofthiscorrectionisconsistentwiththedifferencebetweentheEPRI-CPMandthePP&LCPM-2calculations.IsotopiccomparisonswerealsoperformedusingbothYankee(Reference13)andSaxton(Reference14)isotopicdata.TheresultsfromtheYankeecomparisonsareshowninFigures2.4.4through2.4.6.Allcalculationsshowgoodagreementbetweenthecalculatedratiosandmeasureddata.ThePu-241/Pu-242ratioisslightlyoverpredicted(approximately3%)atendoflife(30GWD/MTU).TheresultsfromtheSaxtoncomparisonsaregiveninTable2.4.3.-39-TABLE24.1EPRI~MRESULTSFROMTHETRXCRITICALBENCHMARKINGExperimentIdentificationHexagonalLatticePitch(in)PelletDiameterB(experyental)(in)(m)EPRI~MK-effectiveTRX1TRX2TRX3TRX4TRX5TRX6TRX7TRX80.8680.9290.9890.6130.6500.6130.6500.7110.6010.6010.6010.3880.3880.3830.3830.38328.430.229.125.325.232.635.534.20.9970.9990.9980.9980.9971.0001.0001.000AverageK-effective=0.999+0.001Source:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.40-TABLE242EPRI~MRESULTSFROMESADACRITICALBENCEiMARKINGESADA3ESADA4,5ESADA6ESADA78%Pu-2400.758%Pu-2408%Pu-2408%Pu-2400.97581.06071.380ESADA8ESADA9ESADA10ESADA11ESADA12ESADA138%Pu-2400.698%Pu-2408%Pu-2408%Pu-2400.97580.690.975824%Pu-2400.975824%Pu-2401.0607261261526526LatticeBoronExperimentPitchConcentration-IH8%Pu-2400.690ESADA1,2B(experimental)2(m)69.190.0105.998.450.362.683.758.363.179.573.3EPRI-CPMK-effective0.9991.0001.0081.0100.9971.0041.0021.0020.999'.0041.002AverageK-effective=1.002+0;004Source:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.41-TABLE2.43EPRIISOTOPICCOMPARISONSTOSAXTONDATANuclideMeasuredNuclideConcentration(Atom4)MeasurementUncertaint(%)PercentDifference*(*)U-234U-235U-236U-2380.004650.5740.035599.38628.70.95.615.9-0.32.8Pu-238Pu-239PU-240Pu-241Pu-2420.10973.7719.256.290.5792.20.20.30.9-11.4-0.31.60.4-16.0*PercentDifference=calc-measx100measSource:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.-42-FIGURE2.4.1FISSIONRATECOMPARISONFORANSx8BWRASSEMBLYOFTHEPLUTONIUMISLANDTYPET=245C0WIDEGAP0UO,RODS+1.9+0.7+0.1-0.5~+~.0+2.0MO,RODSI+0.6+2.9l(+0.1I-0.6-1.6+0.9+0.6IJOz-0.5-0,5i+0.8+0.6i+0.5-1.1-2.8-0.6-1.3-1.0~2o7NARROWGAPThisfigureshowsCPMexPexpx100forallmeasuredrodpositions.ExperimentalUncertainty(la)inMOrods:+1.4%ExperimentalUncertainty(lc)inUOrods:+0.7%2FissionRateinMOrodsrelativetoUOrods:+1.6%Calculatedkff1.001effSource:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.-43 FIGURE2'.4.2FISSIONRATECOMPARISONFORA15xl5PWRMIXEDOXIDEASSEMBLY0WITHWATERHOLESANDABSORBERRODST~245C"CENTRALWATERHOLEABSORBERROD+1.0MO,RODSI+3.1-0.1+1.2303-1.3-0.6+2.2-0.4-0.8-0.4+1.1-2.2+1.4-3.3+3.7-2.0+1.7+0.3-39-1.6+0.7+2.3-0.7+0.2Thisfigureshowsx100forallmeasuredrodpositions.CPMexPexpExperimentalUncertainty(lc):+1.4%*Calculated,kff=0.999eff*Notinc3,udinggeometricuncertainties.Source:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.44 FIGURE2.4.3FISSIONRATECOMPARISONFORA14xl4PWRMIXEDOXIDEASSEMBLYSURROUNDEDBYUOASSEMBLIEST=240C02CENTER+1~8HIGHENRICHED~MO,RODS-0.3+2.1+1.0WATERHOLES+0.9CLOX-1.7+1.2+0.7I-1.6-0.6+0.9+O.BLOWENRICHEDMO,RODSENRUO,RODS<<37-0.8+1.4-0.4-O.BP-PThisfigureshowsCPMexpx100forallmeasuredrodpositions.expThefissionratewasnormalizedseparatelyforeachtypeofassembly.TheaveragefissionrateineachMOassembly'elativetotherateintheUOassembliespredictedbyDIXPwas1.9%lowerthanthemeasuredratio.Experimentaluncertainty(la)foreachtypeoffuelseparately:+0.8%Experimentaluncertainty(la)fortheaveragefissionrateinMOrodsrelativetoUOrods:+1.4%Calculatedkff=0.997effSource:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.45-FIGURE2.4.4EPRI-CPMCOMPARISONTOYANKEEPU-239/PU-240ISOTOPICRATIOS9.0~~~w~~7.0OCIDPslLCOmcvn..04.0~l~~~~t3.00.05.010.015.020.0F.P.vol.wgt.numberdensityx105.0102030MWd/kgUoMeasuredData-EPRI-CPMResultsSource:M'.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.

FIGURE2.4.5EPRI-CPMCOMPARISONTOYANKEEPU-240/PU-241ISOTOPICRATIOS8.0~~~t0cvtL4.0~~~~~0.010.015.020.0F.P.vol.wgtnumberdensity~1025.030.00.102030MWd/kgU~MeasuredData-EPRI-CPMResultsSource:M.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.-47-FIGURE2..4.6EPRI-CPMCOMPARISONTOYANKEEPU-241/PU-242ISOTOPICRATIOS10.0~Oy9.0~y~~8.0O4c4ILcv07.06.0~0~~~~5.04.00.05.010.015.020.0F.P.vol.wgt.numberdensityx10530.0102030MWd/kgU~MeasuredData-EPRI-CPMResultsSource:E.Edenius,"EPRI-CPMBenchmarking,"PartI,Chapter5ofEPRICCM-3,November,1975.48-3.0CORESIMULATIONMETHODSThethree-dimensionalnodalsimulationcodeusedbyPPGListheSIMULATE-E(Reference15)computerprogramdistributedbyEPRI.ThiscodehasbeenusedtoprovidethesteadystateoperationssupportatPPGLandwillbeutilizedforreloadcoredesignandlicensing,analyses.Thecodeisusedtocalculatecorereactivity,powerandflowdistributions,thermallimits,andTraversingIn-coreProbe(TIP)response.A'ulldescriptionoftheSIMULATE-EmethodologyiscontainedinReference15.AbriefsummaryispresentedinSection3.1.SIMULATE-EhasbeenbenchmarkedbyPPsLagainstextensivereactoroperatingdata.TheSusquehannaSESbenchmarkingincludescomparisonstohotandcoldcriticaldata,TIPmeasurements,andcoremonitoringsystemcalculations.ThesecomparisonsarepresentedinSection3.2.ComparisonshavealsobeenmadetotheQuadCitiesUnit1hotandcoldcriticaldata,TIPmeasurements,andendofCycles1and2gammascandata.TheQuadCitiescomparisonsarepresentedinSection3.3.ComparisonswerealsomadetoPeachBottomUnit2Cycles1and2data.ThePeachBottomUnit2reactorwasmodeledprimarilytoprepareinputtothetransientanalysisofthethreeturbinetriptests.Section3.4presentscomparisonstoseveralTIPsetsthroughbothcyclesandtothecoremonitoringsystempowerdistributionstakenpriortoeachturbinetriptest.-49-3.1DescritionofSIMULATE-ETheSIMULATE-Ecomputerprogramwaswrittentoperformthree-dimensionalanalysesoflightwaterreactors.Thecodecombinesbothneutronicsandthermalhydraulicscalculations.TheneutronbalanceequationissolvedusingresponsematrixtechniquesdevelopedbyAncona(Reference16).TheresponsematrixparametersaredeterminedusingthePRESTOoption(Reference17).ThethermalhydraulicsmodulecontainstheEPRIvoidcorrelation(Reference18)andtheFIBWR(Reference19)codetodetermineaxialvoidingandflowdistribution.Theneutronicsandthermalhydraulicsaresolvediterativelyuntilaconsistentsolutionisachieved.Thereactorcoreismodeledasanarrayofcubicnodeseachcontainingahomogenizedportionofafuelassembly.FortheSusquehannaSESBWRs,eachfuelassemblyismodeledusing25axialnodes,thusresultinginsixinchnodesdescribingthe150inchactivefuelregion.Albedoboundaryconditionsareusedtoaccountforthereflectorzones,thuseliminatingtheneedtoexplicitlymodelthereflector.Theneutronicscalculationrequiresthesolutionoftheneutronbalanceequationforeachnode.Thisbalanceequationisfirstrecastintermsofresponsematrixparameterswhichdescribehowaneutroninteractswithadjacentnodes.SeveraloptionsexistinSIMULATE-Ewhichcanbeusedfordeterminationoftheresponsematrixparameters.TheoptionusedbyPPGListheModifiedCoarseMeshDiffusionTheory(MCMDT)alsoreferredtoasthePRESTOoption(Reference17).Thisoptioncalculatesthevarioustransmissionprobabilitiesusingnodeaveragefluxes.TheMCMDToptioncalculatesthenodecenterandnodesurfacefluxesusingFick'sLaw.Thenodeaveragefluxisthendeterminedasaweightedaverageofthesurfaceandcenterfluxes.Theweightingfactorsweredevelopedthroughmodelnormalization.Oncethenodeaveragefluxesaredetermined,thevarioustransmissionprobabilitiescanbeevaluatedandtheneutronbalanceequationissolved.NodalcrosssectiondataareinputtoSIMULATE-Eintwogroupsforeachdifferentlatticetype.Ifaxialzoningoffuelispresent(eitherduetoenrichmentorgadoliniacontent),separatelatticetypesareassigned.-50-Crosssectiondependenciesinclude:fuelexposurevoidhistory(i.e.,exposure-weightedrelativemoderatordensity)relativemoderatordensity(hotonly)controlrodpresencefueltemperature(hotonly)controlrodhistoryxenonconcentrationmoderatortemperature(coldonly)IITheeffectofeachdependencyiscalculatedutilizingCPM-2.ThefinalcrosssectiondatatablesarepreparedforSIMULATE-EusingNORGE-B2(Reference20).Theradial,top,and'bottomreflectorregionsarenotmodeledexplicitly.Instead,theseregionsaretakenintoaccountbyuseofalbedoboundaryconditions.RadialalbedosarecalculatedusingtheABLE(Reference21)programdevelopedbyScienceApplicationsInternationalforEPRI.Thetopandbottomalbedosweredeterminedbasedoncomparisontoplantdataduringmodelnormalization.Differentalbedoboundaryconditionsareusedforcoldandhotconditions.SeveraloftheinputdataparametersusedbySIMULATE-Erequireadjustmenttomatchplantoperatingdata.ThisnormalizationprocesswasperformedusingSusquehannaSESUnit1Cycles1and2data.AllparameterschangedinthisfashionwereheldconstantforallothercalculationsincludingtheQuadCitiesandPeachBottomcalculations.ThethermalhydraulicscalculationsusetheFIBWRmethodology(Reference19)developedbyYankeeAtomic,ElectricCompany.Thiscalculationdeterminestotalcorepressuredropandcorebypassflow.Thepressuredropcalculationdeterminesthefrictionalpressuredrop,local(i.e.,form)losses,acceleration(i.e.,momentumchange)pressuredrop,andelevationhead.ThecorebypassflowcalculationallowsformodelingtheflowpathsshowninFigure3.1.1.FIBWRasastand-alonecodehasbeenbpnchmarkedbyYankeeAtomicElectricCompanyagainst.datafromVermontYankeeandtheFriggLooptests(seeReference22).-51 DuringinstallationatPPGLminorcodemodificationshavebeenmadetoadapttheSIMULATE-EcodetoPPGLcomputeroperationalrequirements.Inaddition,codechangesweremadebyPPGLwhichinclude:CriticalPowerRatio(CPR)evaluationsutilizingtheAdvancedNuclear'uelsCorporation(formerlyExxonNuclearCompany)XN-3criticalheatfluxcorrelation(Reference23)LinearHeatGenerationRate(LHGR)andAveragePlanarLinearHeatGenerationRate(APLHGR)thermallimitsevaluationscalculationofAxialExposureRatioerrorcorrectionsprovidedbyEPRIThesechanges,withtheexceptionoferrorcorrections,havenotresultedinanychangetotheneutronicsorthermalhydraulicscalculations'.-52-FIGURE3.1.1BWRFUELASSEMBLYBYPASSFLOWPATHSTOPOFCORE2CHISpacerheight~HFSGw2HETHFSG1HFSGnNote:Bottrxrrentryperipheralfue'Isupportsareweldedintothecoresupportplate.Forthesebundles,pathnumbers1,2,5and7donotexist.BottonofcoreZUHB2GEOLowertieplateChannel8SpringpluggCore6supportla2In-coreFuelSupport,guidetubeControlrodguidetubeShroudCorelength<2CHI+fuellength+2GEOFuellength~2UHA+2HET+2UHB71.Controlrodguidetube-fuelsupport2.Controlrodguidetube-coresupportplate3.Coresupportplate-in-coreguidetube4.Coresupportplate-shroud5.Controlrodguidetube--drivehousing6.Fuelsupport--lowertieplate7.Controlroddrivecoolingwate~drivehousingBChannel-lowertieplate9.Lowertieplateholes10.Sp~ingplug-coresupportSource:B.J.Gitnick,"FIBWRrASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors;ComputerCodeUser'sManual,"EPRINP1924CCMrJulyr198153 3.2SusuehannaSESUnits1and2BenchmarkComparisonsofSIMULATE-EcalculationstoobserveddatafromtheSusquehannaSESoperatingreactorsprovideadirectmeansofqualifyingtheaccuracyofSIMULATE-E.TwodirectlymeasurablesetsofparametersagainstwhichcomparisonscanbemadeforSusquehannaSESconsistofthecorecriticalK-effectivestatepointdata(hotandcold)andtheTraversingIn-coreProbe(TIP)neutronfluxmeasurements.ThistypeofbenchmarkingvalidatestheoverallBWRanalysisprocessfromlatticephysicstothree-dimensionalsimulation.ForcorecriticalK-effectivecomparisons,themeasuredsteadystatecoreoperatingparameter'slistedinTable3.2.1providethenecessaryinputforaSIMULATE-Ecalculation.Thisdataisalsousedtomodeltheaccumulationofcorehistorythroughmultipledepletions(i.e.,corefollow).Thesecalculationsassumeconstantcoreconditionsduringashorttimeperiod,usuallylessthanoneweek.ThecozecriticalcalculationsatsteadystateconditionsareusedtoqualifySIMULATE-E'scapabilitytopredictcorereactivitythroughoutacycle.Designanalyses,suchascyclelength,shutdownmargin,hotexcessreactivity,rodwithdrawalerror,misloadedbundle,standbyliquidcontrolsystemworth,andcontrolroddrop,requirethepredictionofthecorereactivitythroughoutacycle.BecausetheSIMULATE-Ehotandcoldmodelsdiffer,separatehotandcoldcriticalK-effectivecomparisonsareperformedtodeterminetheindividualuncertaintiesfortheaboveanalyses.ForthehotcriticalcoreK-effectivecomparisons,reactivitycalculationsrelyonthestatepointparameterslistedinTable3.2.1.Thecoldcriticalcorereactivitybenchmarkinvolvesreactiv'itycalculationsforallcoldxenon-freecriticalsfortheSusquehannaSEScores.ThehotandcoldK-effectivecomparisonsareusedtoestablishthetargetcriticalcoreK-effectiveandtoassesstheuncertaintyinreactivitypredictions.TIPcomparisonstesttheabilityofSIMULATE-Etocalculatetheneutronfluxinalocal'regionbetweenfourfuelassemblies.TheTIPmeasurementsusedinthecomparisonsaresix-inchcollapseddetectorsignals.Theseare-54

\synthesizedfromone-inchaxialdatathatareaveragedbythecoremonitoringsystemthroughatrapezoidalaveragingtechnique.ForCycle2andbeyondofbothunits,thecoremonitoringsystem,POWERPLEX(Reference24),alsocorrectstheTIPmeasurementsforanyaxialshiftinthemeasurements.AGaussiansmoothingprocedurecomparesmeasuredneutronfluxdipstotheexpecteddiplocations,basedonfixedLPRMandspacerlocations,andcorrectstheaxialalignmentoftheone-inchdata.TheSusquehannaSEScoreoperatinghistoriesfromUnit1Cycles1,2,andpartofCycle3andUnit2Cycle1andpartofCycle2arecontainedinthebenchmarkdatabase.Thetwounitsshareidenticalcoregeometryandratedcoreconditions.TheCycle1operatingcoresofbothunitscontainthesameGeneralElectricSx8fueldesignandcoreloadingpatt'em.Znaddition,bothCycle1operatingstrategieshaveextendedcycleoperationviabottomburnspectralshiftandcoastdown.Cycle2ofUnit1operatedwithasmall192ExxonSx8bundlereloadcorethatexperiencedacyclelengthlessthanhalfofCycle1andlessthananyplannedfuturecycle.Cycle3ofUnit1wasloadedwith296ExxonSx8bundlesandCycle2ofUnit2wasloadedwith324Exxon9x9bundles.Theanticipatedequilibriumbatchsizefortheplannedeighteenmonthcyclesis240Exxon9x9bundles.Atthetimethisreportwasprepared,Unit1wasinitsthirdcycleofoperationandUnit2wasinitssecondcycleofoperation.Therefore,thebenchmarkdatabaseonlyincludesthefirstthirdofUnit1Cycle3operationandtheearlyportionofUnit2Cycle2operation.Table3.2.2summarizesthetotalSusquehannaSESbenchmarkingdatabaseincludedinthisreport.ForallSusquehannaSEShotcomparisons,unlysteadystatedatahavebeenused.Thisrequirescoreconditionstoremainconstantoveraperiodoftimetoallowthexenonconcentrationtoequilibriate.Thisrequiresnorodpullsorsignificantchangeincorethermalpower,flow,orfeedwatertemperaturewithinapproximatelythreedayspriortothedatapoint.Forthecoldcomparisons,sufficienttimeatzeropowerisrequiredtoallowforxenondecay.1naddition,areactivityadjustmentismadeforthereactorperiod.-55 3.2.1HotCriticalCoreReactivitComarisonsTheresultsoftheSIMULATE-EcorefollowcalculationsthatarebasedonmeasuredcoreoperatingdatafortheSuscpxehannaSEScoresformthehotcriticalcorereactivitydatabase.Thesecalculationsresulti:natotalof257steadystatecoreK-effectivecomparisonsforvariouscoreoperatingconditions.Table3.2.3showsacompletelistofthesteadystatecoredataanditscorrespondingcalculatedhotcriticalcoreK-effectivetabulatedbyunitandcycle.Figures3.2.1through3.2.6showplotsofhotcriticalcoreK-effectiveversuscoreaverageexposure,corethermalpower,totalcoreflow,coreinletsubcooling,domepressure,andcriticalcontrolroddensity,respectively.ThesefiguresprovideinformationonthedependenciesandbiasesinherentinSIMULATE-E.ItisapparentthatthecriticalK-effectivevarieswithcoreaverageexposure.TheK-effectivefromCycle1ofbothunitsexhibitsabowl-shapedtrendupto7000MWD/MTUcycleexposure,atwhichpointgadoliniacontentissubstantiallydepleted.TheavailabledatafromCycle3alsoexhibitsthesametrend.Forthiscycle,theinitialcoreaveragegadoliniacontentwasalmostthesameasfortheCycle1cores.UnlikeCycles1and3,theK-effectivefromCycle2ofUnit1exhibitsaveryflattrendthroughouttheentirecycle.Cycle2ofUnit1containsapproximatelyone-fourththeinitialgadoliniacontentofeitherCycle1orCycle3ofUnit1.Thesetrendssuggestadependencyongadolinialoading.AfterthegadoliniahasessentiallyburnedoutinCycle1,thecriticalcoreK-effectiveincreasesslightlywithexposure.Therefore,thehotcriticalcoreK-effectiveexhibitsalineardependenceonexposurecoupledwithabowl-shapedtrendduetogadoliniadepletion.PPGLhasdevelopedamethodwhichcorrelatesthehotcriticalcoreK-effectivedatatothecoreaverageexposureandgadoliniacontent.Usingthiscorrelation,targetcriticalcoreK-effectivecurvesaregeneratedforeachcycle.Figure3.2.7showsthecomparisonofthetargetcriticalcoreK-effectivecurvesandtheSIMULATE-EcalculatedcoreK-effectiveforeachunitandcycle.Table3.2.4showsthemeandifferenceandstandarddeviationbetweenthetargetandSIMULATE-EcalculatedcriticalcoreK-effectivefor eachunitandcycle.TheoverallresultsshowverygoodagreementwiththetargetK-effective.ForUnit2Cycle2onlythreedatapointsareincludedinthedatabase.Thesedatayieldameandifferenceof0.00186~Kfromthetargetwhichislargerthantwotimesthestandarddeviationofthedatabase(i.e.,2ais0.001224K).ItisanticipatedthattheUnit2Cycle2SIMULATE-EcalculatedcoreK-effectivewillfollowthetargetbutwillbeoffsetbyaconstantbias.Morerecentcorefollowcalculations,whicharenotincludedinthisreport,supportthisexpectedtrend.TheoffsetislikelyduetodifferencesbetweenSx8and9x9fueldesigns.PPaLcontinuestoperformhotcriticalcoreK-effectivecalculationsaspartoftheroutinecorefollowanalyses,andtheresultsareusedtofurtherimprovetheaccuracyofthetargetcriticalcoreK-effective.Onawhole,theuseofthecorrelationprovidesagoodassessmentofcriticalcorereactivityandcanbeusedfordesignandanalysisoffuture.cycles.Animportantconsiderationinevaluatingreactivityresultsisthemeasurementuncertaintyinthecoreoperatingconditions.Becausemeasuredcoreoperatingdata(i.e.,theparameterslistedinTable3.2.1)areenteredintoSIMULATE-E,thecalculatedcorereactivityisaffectedbyanyerrorsinthemeasuredinputs.Thechangesincorereactivityfrommeasurementuncertaintyprimarilydependontwocoremodelingphenomena,thevoidandDopplercoefficientsofreactivity.Asthesecoefficientschangewithcorelifeanddesigns,thesensitivityofSIMULATE-Etomeasurementuncertaintieschanges.Table3.2.5showsmeasurementuncertaintiesbasedonReference25andtheireffectsoncorereactivityforSusquehannaSESUnit2Cycle2.ThetotalK-effectivesensitivityduetothemeasurementuncertaintiesis0.00151bK.SIMULATE-EcalculationsofhotcriticalcoreK-effectiveforthe257datapointsanalyzedbyPPGLresultinastandarddeviationwhichislessthanthissensitivity.3.2.2ColdCriticalCoreReactivitComarisonsTheaccuracyoftheSIMULATE-Ecalculationofcoreshutdownmarginandcontrolrodworthsatcoldconditionsdependsonitsabilitytopredictcoldcorereactivityfordifferentcoredesigns,coreaverageexposures,andcontrolrodconfigurations.Shutdownmargincalculationsalsorelyontheaccuracyofthemodifiedcoarsemeshdiffusiontheorypredictionoflargeneutronflux-57 gradientscharacteristicofone-rod-outconfigurations.LocalCriticaltestsexhibitfluxgradientssimila'rtoshutdownmargincalculations.Therefore,thequalificationoftheSIMULATE-Ecoderequiresbenchmarkingtobothlocalandin-sequencecoldxenon-freecriticals.TheSusquehannaSESbenchmarkingdatabasecontainsthreelocaland36in-sequencecriticalsasshowninTable3.2.2.InadditiontotheSusquehannaSEScoldcriticalbenchmarkingcalculations,comparisonstotheQuadCitiesUnit1Cycle1localandin-sequencecriticalswereperformedtofurthersupportthevalidation.Section3.3.2describestheQuadCitiesUnit1Cycle1benchmarkinganalyses.Table3.2.6containsresultsoftheSusquehannaSEScoldxenon-freecriticals.Asshown,thecriticalswereperformedattemperaturesbetween100and212F0andatvariouscoreaverageexposures.ThecoreK-effectiveinTable3.2.6includesareactorperiodcorrectionwhichistypicallylessthan0.001.Figure3.2.1showstheseresultstogetherwiththoseofthehotbenchmark.ThecalculatedcoldcriticalcoreK-effectivesconsistentlyfollowthehot,criticalcoreK-effectivewithaconstantbiasthroughoutexposure.Thistrendindicatesthatthecoldmethodsandmodelsalsodependoncoreavexageexposureandgadoliniacontent.AbiasbetweencoldandhotcoreK-effectiveshasbeenreportedbyothersandhasbeeninvestigatedinReference26.Amethodthataccountsforthecoreaverageexposureandgadoliniacontentdependenciesresultsinanaccurateassessmentofthecoldxenon-freecriticalcoreK-effectiveanditsuncertainty.Figure3.2.1indicatesthatabiasexistsbetweenthehotandcoldSIMULATE-EcalculatedcorecriticalK-effectives.Reference26supportsthisobservation.Thisbiasisconstantandisnotexposureorgadoliniadependent.Therefore,thetargetcoldcriticalcoreK-effectiveisdeterminedbyaddingabiastothehotcriticalcoreK-effective.Table3.2.7showstheresultsfortheSusquehannaSESin-sequenceandlocalcoldcriticals.ThemeandifferencebetweentheSIMULATE-EhotandcoldcalculatedcoreK-effectiveforall39criticalsis0.00671andthestandarddeviationis0.00111.ThemeandifferencebetweenthehottargetcoreK-effectivecurveandtheSIMULATE-EcoldcalculatedcoreK-effectiveforall39criticalsis0.00659andthestandarddeviationis0.00137.Thesetwo-58-standarddeviationsaresmallandaretypicalofthecalculatedcoreK-effectivevariationforcriticalsatagivenexposure.Forexample,thestandarddeviationoftheUnit2Cycle1zeroexposurecalculatedcoldcriticalK-effectivesis0.00099.Table3.2.7alsoshowsthatthecoldtohotK-effectivebiasforthelocalcriticaltestsisnotsignificantlydifferentthanthebiasforthein-sequencecriticals.Asinthehotreactivitybenchmark,PPSLwillcontinuetoperformcoldcriticalcoreK-effectivecomparisonstobeusedforperiodicupdatingofthetargetcoldcriticalcoreK-effective.TheuseofthistargetcoldcriticalcoreK-effectiveprovidesagoodassessmentofcriticalcorereactivityandcanbeusedfordesignandanalysisoffuturecycles.3.2.3TraversingIn-coreProbeDataComparisonsComparisonstomeasuredTIPdataprovideanassessmentofhowwellSIMULATE-Ecalculatesthecorepowerdistribution.TheTIPdetectorsarelocatedinthewatergapcorneroppositethecontrolrodbetweenfourfuelassembliesasshowninFigure3.2.8.SIMULATE-EcalculatesaTIPresponseforeachsix-inchaxialsegmentateachradialTIPlocationbypowerweightinginputdetectorresponsefunctionsasfollows:MER=-QR.P.whereM=thenumberofbundlesaroundaTIPdetector(forallplantsmodeled,M=4),R,=thedetectorresponsefunction,jP.=theSIMULATE-Ecalculatednodalpower.jThedetectorresponse,R.,isafunctionalrelationshipwhichcanbeexpandedj'o:jUNCCTCTEVU-59-whereF=thebasecomponentofthedetectorresponseforanuncontrollednode,G=thefractionofthenodewhichiscontrolled,G=0nodeisuncontrolled,G=lnodeisfullycontrolled,F=thecorrectiontothebasecomponentforafullycontrollednode,FF=thecorrectiontothebaseresponsetoaccountformoderatordensity.F,FandFarefunctionsofexposureandvoidhistory(i.e.,exposure-weightedrelativemoderatordensity).FisafunctionoftheUrelativemoderator.densityandvoidhistory.ThedetectormodelinSIMULATE-Eassumesthatthedetectorresponsefromeachassemblyisnotaffectedbytheotherthree.ThedetectorresponsefunctionsaregeneratedusingcalculateddatafromCPM-2.InCPM-2,asmallamountofU-235isplacedinthewatergapcorneroppositethecontrolblade.Thelocalfissionrateiscalculatedinthisregionfordifferentconditionsofexposure,voidhistory,controlstateandrelativemoderatorlevel.Thisdataisformulatedintoapolynomialfitdeterminedforeachseparatelatticetype.Bothnodalandradial(i.e.,axiallyintegrated)TIPcomparisonshavebeenmadetotheSusquehannaSESTIPdata.Forthenodalcomparisons,thesix-inchaveragedmeasureddataiscomparedtothecalculatednodalTIPresponse.ThisprovidesanassessmentoftheaccuracyofthenodalpowerdistributionwhichaffectscalculatedmargintooperatinglimitssuchastheLinearHeatGenerationRate(LHGR)limit.Fortheradialcomparisons,theaverageofallTIPmeasurementsataradiallocationiscomparedtotheaverageofthecalculatedvaluesatthatradiallocation.Thisprovidesanassessmentoftheaccuracyoftheradial(i.e.,bundleaverage)powerdistributionwhichaffectscalculatedmargintooperatinglimitssuchasCriticalPowerRatio(CPR).-60-Priortomakingthecomparisons,thecalculateddataisnormalizedtothemeasureddata.Eachofthecalculatednodaldetectorresponsesismultipliedbyanormalizationfactor.Thefactoriscalculatedas:TNF=T/ERwhereT=theaverageofallmeasuredTIPresponsesinagivenTIPset,ER=theaverageofallcalculatedTIPresponsesinagivenTIPset.ATIPsetisdefinedasacompletesetofTIPmeasurementsfromtheentirecore.ForSusquehannaSESaTIPsetconsistsof24measurementsateachofthe43radiallocationsinthecoreforatotalof1032measurements.Ineachofthecomparisonspresentedinthissection,allradialTIPlocationsandallaxialelevationshavebeenincluded.Forthenodalcomparisons,thedifferencebetweencalculatedandmeasureddataisdeterminedas:wheree=ER-Tk,mk,mk,mER=thecalculatedTIPresponseforaxialelevation,k,andradiallocation,m,Tk=themeasuredTIPresponseforaxialelevation,k,andradialk,mlocation,m.TheRootMeanSquare(RMS)ofthedifferencesforeachradialTIPlocationiscalculatedas:K2RNSZ'k,mK-1~whereK=thenumberofaxialTIPmeasurements(i.e.,24)ataradialTIPlocation.-61-TherelativeRMSofthedifferencesfor,eachTIPsetiscalculatedas:gRMSRMSnod100whereM=thenumberofradialTIPlocations(i.e.,43forSusquehannaSES).Fortheradialcomparisons,asimilarRMSiscalculated.First,thecalculatedandmeasuredindividualTIPreadingsareaxiallyaveragedasfollows:ERmTmKQER/KKQT/KwhereER=theaverageofthecalculatedTIPresponsesatagivenradialmlocation,m,T=theaverageofthemeasuredTIPresponsesatagivenradialmlocation,m.ThedifferencebetweenthecalculatedandmeasuredradialTIPresponseinpercentis:(ER-T)eminx100TTheRMSofthedifferencesforallTIPsforagivenTIPsetiscalculatedas:Z'.'MSradialM-1AnestimateoftheTIPmeasurementuncertaintycanbedeterminedbycalculatingthenodalandradialTIPresponseasymmetries.DuringA-sequencesandall-rods-outcoreconfigurations,thecontrolrodpatterniseighth-core-62-mirrorsymmetric.Inaddition,thefuelloadingpatternsforalloftheSusquehannaSEScycleshavebeendesignedtobeeighth-coresymmetric.Undertheseconditions,alineofsymmetryexistsalongtheTIPlocationsasshowninFigure3.2.8.FortheTIPsnotlocateddirectlyonthissymmetryline,therewillbeasymmetricTIPhavingnearlythesameneutronfluxconditions.ThesesymmetricTIPpairsshouldgivethesamemeasurementsexceptforexposureasymmetrieswhichcanaddapproximately1%nodalasymmetry.Tocalculatethenodalasymmetry,thenodaldifferenceforeachsymmetricTIPpair,n,iscalculatedas:wheree=TTk,nk,mlk,m2TkandTk=thesix-inchdetectormeasurementsataxiallocation,k,k,mlk,m2andsymmetricTIPlocationsm1andm2.TheRMSofthenodaldifferencesinpercentis:ASYnK-1100x1(T+T2)m1m2whereTandT=theaveragemeasuredTIPresponseforsymmetricTIPmlm2locationsmlandm2.Theaveragenodalasymmetryiscalculatedasthearithmeticaverageofthesymmetricpairasymmetries:QASYnodNwhereN=thenumberofsymmetricTIPpairs(i.e.,19forSusquehannaSES).-63 TheradialTIPresponseasymmetryiscalculatedusingtherelativedifferencebetweentheaxially-averaged.TIPmeasurementsforeachsymmetricpair,n.Thisdifferenceiscalculatedas:DnT-Tmlm2(T+T)mlm2x100The.meanabsoluteasymmetryiscalculatedas:TheresultsoftheTIPresponsecomparisonsseparatedbyunitandcyclearereportedinTables3.2.8through3.2.11.TheseincludecomparisonstoallavailablesteadystateTIPsets.NoTIPdatahavebeenexcludedfromthecomparison.AnoverallsummaryoftheresultsfromthecomparisonsisgiveninTable3.2.12.Asummaryoftheasymmetriesaveragedbyunitandcycleis,giveninTable3.2.13whichshowsthenodalandradialasymmetriesforUnit2Cycle1areapproximately2%worsethantheasymmetriesforUnit1Cycle1.ThislargerTIPresponseasymmetryindicateslargermeasurementuncertaintyforUnit2Cycle1andalsoexplainswhytheTIPresponsecomparisonsforUnit2Cycle1tendtobeworsethanforUnit1Cycle1eventhoughthecoreloadingswereidentical.ThenodalresultsfromtheTIPresponsecomparisonsarealsodisplayedversuscoreaverageexposureinFigure3.2.9a.Nodefinitetrendswithexposureareevident.WhenthedataisdisplayedversusfractionofcyclelengthasinFigure3.2.9b,atrendisapparent.Theresultsinthemiddleofthecycletendtobeworsethanatthebeginningofthecycleorendoffullpower.Fortheend-of-cyclepowercoastdown,therelativeRMSfromtheTIPresponsecomparisonsincreases.Thisisexpectedbecausecoreoperatingparametermeasurementuncertaintiesincreaseforlowerpowerconditions.Inaddition,theSIMULATE-Emodelisdevelopedprimarilybasedonfullpoweroperatingconditions.Whenthecrosssectiontablesaredeveloped,dependenciesareincludedtocorrectforDopplerandinstantaneousrelativemoderatordensity.-64 Theuncertaintiesinthesecorrectionsincreaseasconditionsdeviatefromfullpower.Therefore,thecorrespondingRMSfromtheTIPresponsecomparisonswillalsoincrease.Theresultsevenfortheendofcyclepowercoastdowncomparisonsarestillgood.TheUnit,1endofCycle1RMSwasjustover6%atapproximately81%ofratedpower,andtheUnit2endofCycle1RMSwaslessthan8%atapproximately71%ofratedpower.SeveralofthecomparisonsforthemiddleandendofUnit2Cycle1exhibitapproximately8%RMSwhichislargerthanexpected.DuringtheseTIPmeasurements,thereweresuspectedproblemswithsomeoftheTIPmachines;thisissupportedbythelargernodalasymmetriesexperiencedfortheseTIPsets.Overall,theresultsfromthenodalTIPresponsecomparisonsarequitegoodwithanaverageRMSof5.75%.GraphicalresultsoftheTIPresponsecomparisonsareincludedforeachunitandcycle.DuetothelargenumberofTIPsetsandTIPlocationswithinaTIPset,figuresofTIPresponsecomparisonsarepresentedforbeginning,middle,andendofcycle.Foreachexposurepoint,coreaverageaxial,radial,andfourindividualTIPresponsecomparisonsareincluded.TheindividualTIPresponsecomparisonsinthefigureswereselectedalongalinefromthecoreperipherytothecenterasshowninFigure3.2.8.ThesamefourTIPlocationsarealwaysshown.ThesecomparisonsareshowninFigures3.2.10throughFigure3.2.42.3.2.4CoreMonitoringSystemComarisonsTheabilityofSIMULATE-EtoaccuratelycalculatepowerdistributionsisdemonstratedinSections3.2.3,3.3.3,and3.3.4.ThepurposeofthissectionistoprovideacomparisonoftheSIMULATE-Ecalculatedpowerandflowdistributionstothoseoftheon-lineCoreMonitoringSystems(CMS).Fouraxialpowercomparisonsandthreebundleflowcomparisonsarepresented.ThedataweretakenfromonepointintheSusquehannaSESUnit1Cycles1,2,and3,and'Unit2Cycle2.Thisselectionprovidesagoodmixregardingthermalhydraulicandneutronicdifferencesindesign.AlthoughthesecomparisonsdonotrepresentavalidationoftheSIMULATE-Emodels,theydemonstrateconsistencywiththesystemsusedtomonitorthecore.TheCMSforCycle1ofbothunitsistheGeneralElectricCompanyProcessComputerP1program;for-65 thereloadcyclesofbothunits,theCMSistheANF(formerlyExxonNuclearCompany)POWERPLEXCMS.Figures3.2.43through3.2.46showthecoreaverageaxialpower.distributioncomparisons.Thesefiguresshowgoodagreement,andindicateconsistencybetweentheindependentcoreanalysismethodsforaxialpowerdistributiondetermination.Figures3.2.47through3.2.49shOwthecoreflowdistributioncomparisons.ThesefiguresshowexcellentagreementbetweentheSIMULATE<<EandCMScalculatedbundleflowsforthethreecomparisons.TheeffectsofperipheralandcentralorificingforthecorecombinationsofGESxSandExxonSxS,GESxSandExxon9x9,andallGESxSareaccuratelymodeled.-66-TABLE321MEASUREDCOREOPERATINGPARAMETERSFORSIMULATE-ECOREREACTIVITYCALCtKATIONSHotCoreOperatingConditionCoreThermalPowerTotalCoreFlowCoreInletSubcoolingCorePressureControlRodPatternColdCoreConditionCoreModeratorTemperatureReactorPeriodControlRodPattern67 TABLE3.22SUMMARYOFTHESUSQUEHANNASESBENCEBQLRKINGDATABASEUnitacleNumberofTIPCoarisonsNumberofCoreCriticalsNumberofColdCoreCriticalsU1C13187U1C247U1C32310U2C1329713*U2C2NoneAll8225739*Includesthreelocalcriticals.68-TABLE3.2.3BUSEHANMASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE-"1-CASE12345678~910ll1213141516171819202122232425262728293031323334353637383940CYCLEEXPOSURE(GWD/MTU)0.2210.8361.4901.5961.7361.758l.7991.9082.0702.7062.9062.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.31S4.5064.5175.0615.0705.3475.4105.4635;5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723COREAVERAGEEXPOSURElGWD/WTU)0.2210.8361.4901.5961.7361.7581.7991.9082.0702.7062.9062.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.716.6.723POWER(WTH)143232503280327832913296329132933293328132S932913291329232893292329032933298329032903296328832893290328832813294329132943295328732933289328632883265328632833290PERCENTPOWERl%)439910010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010099100100100TOTALCOREFLOW(%)549810088979899989794989796989896969598979698969799999798999999999998969896999898SUB-COOLINGIBTU/LBH)23.823.723.623.624.324.223.824.024.225.024.224.424.724.224.224.524.624.S24.024.324.524.224.524.423.823.924.324.023.823.723.923.823'24.124.323.924'23.824.124.0DONEPRESSURE(PSIA)9741001100510021001100110011000994100099999999910041002100210011003100010031002100310031004100510051002100210021002100210021001100110001001999999999999CONTROLROODENSITYl%)20.412.613.913.614,014.114.114.114.114.815.015.015,015.915.915.915.915.916.016.016.016.116.116.117.617.618.017.917.917,817.817.817.016.716.416.416.316.315.015.0CALCULATEDCOREK-EFFECTIVE0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580.990610.990800.991000.991160.991380.991630.991760.992540.992420.992190.992670.992940.993500.993580.993670.993620.993620.994300.994370.994540.994630.994600.99460 TABLE3.2.3(CONTINUED)SUSQJEHAWASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT"-1CYCLE=lCASE414R434546474S4950515253545556575859606162636465666768697071727374757677787980CYCLEEXPOSURE(GHD/HTU)6.8937.0007.1557.2357.3657.6387.6707.'8407.8998.0138.1648.3088.3418.4818.51S8.5878.60R8.6588.9688.9929.1169.2879.7969.9099.97910.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02211.083COREAVERAGEEXPOSURE(GHD/HTU)6.8937.0007.1557.2357.3657.6387.6707.84io7.8998.013S.1648.3088.3418.4818.5188.5878.60R8.6588.9688.9929.1169.2879.7969,9099.97910.09210.13910.28810.30110.32410.46310.58910.65310.68810.75710.77010.82810.93311.02R11.083POWERIWfH)328232853291327632853R733288328432883289330132903293328832863286328432873283328332873285326932793284328832823278328132873285329332943290329132843235320231123060PERCENTPOHER(%)10010010099100991001001001001001001001001001001001001001001001009910010010010010010010010010010010010010098979493TOTALCORE-FLOW(/)96999794969596979694949796969899999998989996999699939496979899939597100100100100100100SUBCOOLING(BTU/LBH)24.423.724.525.124.524.724'24.324.724.924.8R4.224.524.023.523.523.724.424.423.724.323.624.423.725.5R5.024.424.324.123.825.525.023.6R3.623.323.1RR.622.2DONEPRESSURE(PSIA)9989981008100710069939939929929929879919919909909909909911005100599399010021002100210021002100110011002100110021002100110011001999999996993CO)(TROLRODDENSITY.(%)14.614.614.514.714.313.013.012.612.412.0ll.711.411.310.410.410.410.410.28.68.6S.R7.55.44.64.6R.7R.72.42.42.42.31.10.00.00.00.00.00.00.00.0CALCULATEDCOREK-EFFECTIVE0.994720.995160.994710.993960.994900.994100.994110~994940.994900.995020.994840.995370.995360.995440.995500.995610.995530.995500.996140.995910.995690.995520.996280.996500.996650.996960.997080.997120.997070.996950.997000.996850.997240.997320.997520.997460.997450.996750.99713,0.99712 TABLE3.2.3(CONTI)i)ED)SUSQUEHA))NASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=lCASE818283'4858687CYCLEEXPOSURE(Gtl0/Nll111.15311.21711.25911.33211.46411.54211.617COREAVERAGEEXPOSURE(GHD/HTU)ll.15311.21711.25911.33211.46411.54211.617POHERlHHTH)2991294328972834277627142669PERCENTPOHER(%)91898886848281TOTALCOREFLOH(%)100100100999999100SUB-COOLING(BTU/LBN)21.821.621.321.020.820.620.6OOHEPRESSURE(PSIA)9929909889869879921014CONTROLRODOE))SITY)%)0.00.00.00.00.00.00.0CALCULATEDCOREK-EFFECTIVE0.997490'97420.997610'97700'97180.997460.99806 TABLE3.2.3(CONTINJED)SUSQUEHA)4'JASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=RCAGE888990919293949596979899100101102103104105106107108109110ill112113114115116117118119120121122123124125126127CYCLEEXPOSURE(Q1D/HTU)0.2000.2680.3450.4060.5590.7250.7890.9150.9621.R481.3311.4511.5281.6611.8031.8661.9312.0662.2272.3812.4152.500'.5872.642R.7842.9033.0393'973.3233.4393.6053.6883.7273.8773.9024.0144.0754.4034.5134.598COREAVERAGEEXPOSUREtQID/t1lU)9.634'J.70R9.7809.8419.99410.16010.22410.350,10.39810.68410.76710.8S710.96511.0981124io11.30311.36811.50411.66511.81911.85411.93912.02612.08112.22412.34312.4791Z.53812.76412.88013.04713.13013.16913.32013.34513.45713>51813.84713.95714.042POWER(tl4lH)327132863285328932923296329532903294329232913R95329332923293329332943R913R9332913291328832913290328632923299329032943292-3288329232923289329332913285329032913286PERCENTPOWER(%)99100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOWl%)9697100979695949397969498979594979795969596969696969796979999999998999999979698SUB-COOLINGtBTU/LBH)25.0R4.424.2R3.524.124.424.825.3R5.424.324.625.124.024.424.925.224.424.525.024.824.9Z4.624.724.7R4.624.724.524.524.523.823.923.923.724.023.923.823.724.424.824.2DONEPRESSURE(PSIA)9989989969969969961002100R10021001100010001001100110011001100110011001100010001000100010001000100010009991000999999999998100110011001100010001000999CONTROLRODDENSITYl%)4.24.24.34.34.14~14.14.14.14.14.04.17.27.27.27.R7.46.66.66.76.76.86.86.86.86.86.86.87.57.57.37.R7.R7.17.16.8'6.74.22.22'CALCULATEDCOREK-EFFECTIVE0.996540.996880.996500.997250.997260.997270.997330.997320.9972R0.997120.997580.997070.996690.996880.997030.996960.997070.997330.997340.997330.997270.997330.997230.997210.9973R0.997100.997020.996950.996030.996360.996830.996740.996880.996360.996260.996510.996790.996970.997080.99711 TABLE3~2.3lCONTINUED)SUSQUEHA)QASESHOTCRITICALCOREK-EFFECTIVEDATAUNIT=1CYCLE=2CASE128129130131132133134CYCLEEXPOSURElG)l0/MTU)4.6384.7754.8814.9535.0385.1285.175COREAVERAGEEXPOSURElGll0/HTU)14.08214.22014.32614.39814.48414.57414.621POWERltklTH)3290328632233290320632923285PERCENTPOllERl%)10010098100100100100TOTALCOREFLOWl%)9910010098959899SUB-COOLINGlBTU/LBH)23;923.523.224.224.824.023.7DONEPRESSURElPSIA)1000999996999999999999CONTROLRODDENSITYl/)2.21.91.92.00.20.20.2CALCULATEDCOREK-EFFECTIVE0.997130.997170.997210.99'7260.997180.997220.99716 TABLE3.2.3lCOtlTINUED)SUSqUEHA)t)ASESHOTCRITICAL'OREK-EFFECTIVEDATA"------"--UNIT>>lCYCLE=3CASE135136137138139140141142143144145146147148149150151152153154155156157CYCLEEXPOSURElGHD/HTlJ)0.1780.2860.4230.5430.7710.8670.9250.9671.0841.1801.2901.4101.4421.6021.7221.8671.9672.0632.2282.3342.4312.5672.782COREAVERAGEEXPOSURE~lGHD/tlTU)B.1608.2688.4058.5258.7538.849.8.9078.9499.0669.1629.2729.3929.4249.5849.7049.8499.94910.04510.21010.31610.41310.54910.764PONERlHNTH)32943290328832933292329232933288329132883291329132923292329232933287329332933292328932943295PERCENTPOHERl%)100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOHl%)979898979597999895949694949493939896979696SUB-COOLINGlBTU/LBH)24.424.124.224.424.924.323.824.225.125.424.825.225.325.425.325.525.524.124.624.524.825.224.8DONEPRESSURElPSIA)10021001100010001001100010001000100410031003100310031002100210021001100210011001100110011000CONTROLRODDENSITYl/)7.77.77.77.77.'88.08.48.47.77.78.08.08.08.18.28.38.49.89.89.99.99.910.7CALCULATEDCOREK-EFFECTIVE0.993680.993770.993740.993780.993020.993130.993070.992860.992850.992830.992700.992720.992720.992580.992520.992510.992560.993150.993310.993240.993400.993430.99344 TABLE3.2.3(CONTIQJED)SUSQUEMAttlASESMOTCRITICALCOREK-EFFECTIVEDATAUNIT=2CYCLE=lCASE158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197CYCLEEXPOSURE(GHO/HTU)0.1310.3870.4870.7590.9761.1171.2841.4461.5491.641l.7681.8631.9332,0042.0922.1682.2632.3912.6152.7172.78S2.8682.9062.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.2495.357COREAVERAGEEXPOSURE(GHD/NTlJ)0.1310.3870.4870.7590.9761.1171.2841.4461.5491.6411.7681.8631.9332.0042.0922.1682.2632.3912.6152.7172.7882.8682.9062.9993.1173.2643.3923.6613.8823.9834.1144.5754.6684.7594.8694.9635.0665.1935.2495.357POHERJHWTM)12782347234131703282328826543290329732933292329032883293329332923293329332943288328632883289329432953290328632863285328S3284329032913286329132893291329232933288PERCENTPOWER(%)3971719610010081100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100TOTALCOREFLOWL%)439898999893729596969796979697969698989797969696959596939494969796959698999997QS-COOLING(BTlJ/LBN)26.818.218.223.223.925.628.425.224.724.624424.624.324.824.324.724.S25.224.224.224.424.524.624.824.725.124.824.625.425.225.224.524424.524.724.724.123.823.624.3DONEPRESSUREtPSIA)947972971999100010069851020100410041004100210021002100210021002100210031002100210021002100210021002999997100010009999989991002100110011001100210011001CONTROLRODDENSITYl%)21.816.816.813.413.613.114.713.213.213.213.413.413.513.513.713.713.913~915.015.015.015.015.015.015.215.015.015.815.S15.815.816.416.416.416.816.817.717.817.817.6CALCULATEDCOREK-EFFECTIVE0.991060.990400.990820.989690.989140.988930.988460.988950.988920.988990.989020.989020.989170.988920.988850.988870.988830.988810.988310.98S760.988920.989050.989130.989240.989350.989120.989700.990040.990120.990530.990990.991540.991850.992030.992240.992450.992800'92890.993000.99328 TABLE3.2.3(CONTINUED)SUSQUEHA)t8LSESHOTCRITICALCOREK-EFFECTIVEDATAUNIT-"2CYCLE1--<<-------CASE198199200201202R03204205206207208209210211212213214215216217218219RRO221222223224RR5226227228229230231232233234235236237CYCLEEXPOSURE(GHD/HTll)5.5235.6165.7265.8325.9356.'0286.1226.2166.3186.4946.5'756.7526.8176.8936.9247.0477.1407.3137.3967.5617.70R7'797.8427.98R8.1008,1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.98610.06710.192COREAVERAGEEXPOSURE(GHD/HTU)5.5235.6165.7265.8325.9356.0286.1226.2166.3186.4946.5756.7526.8176.8936.9247.0477.1407.3137.3967.5617.70R7.7797.8427.9828.1008.1788.3908.5968.7678.8808.9739.0539.2759.4129.5399.6669.8359.98610.06710.192POWER(tSTH)3292329032.923284329132913RSB32863287328832943295329232943292328732873R943293"267132883293328932923293328332873293328832923292329532903289329332853288329032623284PERCENTPOWER(%)1001001001001001001001001001001001001001001001001001001008110010010010010010010010010010010010010010010010010010099100TOTALCOREFLOH(%)979899999899979899989699979898979397997198969898959798959994979996'99699949899100SUB-COOLING(BTU/LBH)R4.324.123.923.824.123.924.3R4.023.924.R24.824.024.324.124.024.225.424.323.8R9.924.124.7R4.124.2R4.924.4R4.124.823.725.123.824.523.824.523.625.124.0R3.523.6DONEPRESSURE(PSIA)1005100R10021002100410041003100410031008100910091001100R1002100110011001100197810051004100410041003100310051002100310031002100310021002100210011001100210011003CONTROLRODDENSITY(%)17.617.617.617.617~117.116.816.816.816.816.416.416.116.116.114.914.414.414.414.713.613.213.212.812.612.61R.712.312.0S.7-8.78.67.47.36'6.14.53.6CALCULATEDCOREK-EFFECTIVE0.993570.9936R0.993760.993940.993710.993830.993930.994120.994070.994000.993850.994400.994160.994360.994290.994330.994010.994480,994560.993310.993960.993850~99I4180.994590.994430.994590.994540.993800.994510.995010.994980.995340~995110.995010.995150.995240.995290.995250.995250.995R7 TABLE3.2+3(CONTI)NEO)SUSQUEHANSESHOTCRITICALCOREK-EFFECTIVEDATAlNIT=RCYCLE=lCASE23823924IO24124224324424524624724S249250251252253254CYCLEEXPORJRE)GHO/t)TU)10.35110.46710.63510.67510.78910.85111.00711.10911.28R11.33311.43611.51711.64211.82411.91511.98412.050COREAVERAGEEXPOSURE)GHD/HTU)10.35110.46710.63510.67510.78910.85111.00711.10911.28211.33311.43611.51711.64211.82411.91511.98412.050POHER)NPH)329332903279328032883285316330853016R9792858R7SS26852575247824042350PERCEt)TPOHER)%)1001001001001001009694929087858278757371TOTALCOREFLOHt%)9710097939799100100100100100100100100100100100SUB-COOLINGtBTlJ/LBH)24.323.524.225.4R4~223.722.822.322.32R.O21.421.020.419.819.118.718.3OOt)EPRESSURE(PSIA)100410031002100210031002998995100710071006100610051001998996994CONTROLROODENSITYt%)R.92.7R.R0.00.00.00.00.01.71.71.71.71.73.43.43.434CALCULATEDCOREK-EFFECTIVE0.995370.995430.996010.996130.996010.995810.996070.99622-.0.995550.995530+996250.996530.996710.996210.996670.997070.99706 TABLE3.2.3)CONTINUED)SUSQUEHARSLSESHOTCRITICALCOREK-EFFECTIDATA---l5IT=2CYCLE=2CASE255256257CYCLEEXPOSURElGND/HTU)0.3100.4300.583COREAVERAGEEXPOSURElGHO/))TU)8.0038'1238.276POHERltOITN)329032923294PERCENTPO)lERUZI100100100TOTALCOREFLOH)%)969696SUBCOOLINGlBTU/LB)l)24.424.4DONEPRESSURE[PSZAI100010001000CONTROLRODDENSITYl/)8.38.38.3CALCULATEDCOREK-EFFECTIVE0.995630.995580.99525 TABLE3.2.4SUSQUEHANNASESTARGETVSSIMULATE-ECALCULATEDCRITICALCOREK-EFFECTIVESTATISTICSNumberofObservationsMeanDifference*StandardDeviationUjclU2C1U1C2U2C2Ulc3All879747232570.00035-0.00026-0.000200.001860.000150.000020.000590.000500.000460.000230.000320.00061*MeanDifferenceistheaveragedifferenceoftheSIMULATE-EcalculatedK-effectiveminusthetargetK-effective.-79-TABLE325SUSQUEHANNASESUNIT2CYCLE2COREK-EFFECTIVESENSITIVITYTOMEASUREDCOREOPERATINGDATAUNCERTAINTIESInitialConditionsCoreThermalPowerTotalCoreFlowCoreInletSubcoolingPressure3293MW100x10ibm/hr624Btu/ibm1000psiaMeasuredParameterCoreThermalPowerTotalCoreFlowCoreInletSubcoolingPressureMeasurementStandardDeviation*(*)1.82.55.20.5CoreK-effectiveSensitivity(ax)0.00097P0.00098f0.000610.00006presTotal4b,+E+pfDHS+pres1/20.00151<K*Source:"GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,CorrelationandDesignApplication,"NED0-10958-A,January,1977.80-TABLE326SUSQUEHANNASESC2KCULATEDCOLDXENON-FREECRITICALCOREK-EI."FECTIVESUNIT1CYCLE1CoreAverageExposure.Case(GWD/MTU)CycleExposure(Gm/mo)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-Effective0.0000.0000.0000.0000.0000.9581.4905.1105.1850.0000.0000.0000.0000.0000.9581.4905.1105.185747474737472737474101.8105.9122.5141.0120.0200.0186.0182.5164.01.000451.000270.999140.999851.000400.996980.996740.998770.99821UNIT1CYCLE2CaseCoreAverageExposure(GWD/NTU)CycleExposure(GND/NTU)ControlRodDensity(~)CoreTemperature(DEGF)CalculatedCoreK-effective10ll1213149.4349.4349.4349.4349.4340.0000.0000.0000.0000.0007371716868157.1158.1180.4205.8211.11.005121.004981.OO4661.003591.00341UNIT1CYCLE3-CoreAverageExposureCase(GWD/MTU)CycleExposure(GWD/mv)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-effective151617181920212223247.9827.9827.9827.9827.9827.9827.9828.6128.61210.6010.0000.0000.0000.0000.0000.0000.0000.6300.6302.6197575757474747474747481174.2175.8190.3189.9195.4202.2206.2170.5156.3209.41.001101.001121.000671.000861.000671.000461.000291.001281.001710.99950 TABLE:3.2.6(continued)SUSQUEHANNASESCALCULATEDCOLDXENON-PREECRITICALCOREK-EPI.ECTIVESUNIT2CYCLE1CoreAverage.ExposureCase(GWD/RZtJ)CycleExposure(GWO/mV)ControlRodDensity(*)CoreTemperatures(DEGF)CalculatedCoreK-effective2526*27*28*2930313233343536370.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.2080.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.20874989898747574737473737458111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.00.998270.997060.996960.998350.997560.995690.998060.996390.997460.996880.994261.002721.00429UNIT2CYCLE2CaseCoreAverageExposure(cwo/mu)CycleExposure(cd/mo)ControlRodDensity(*)CoreTemperature(DEGF)CalculatedCoreK-effective38397.6937.6930.0000.0007575133.0139.51.000841.00083*LocalCriticals-82-TABLE3.27SUSUEHANNASESCOLDMINUSHOTCRITICALCOREK-EFFECTIVEUNIT1CYCLE1CoreAverageExposure(CWO/MTU)CycleExposure(GWD/MTU)CoreTemperature(DEGF)KK.coldhotcalccalcKcoldhotcalctarget0.0000.0000.0000.0000.0000.9581.4905.1105.1850.0000.0000.0000.0000.0000.9581.4905.1105.185101.8105.9120.0122.5141.0200.0186.0182.5164.00.008020.007840.007970.006710.007420.006560.007410.006120.005470.007650.007470.007600.006340.007050.007690.007960.006310.00567UlC1Average:U1C1StandardDeviation:0.007060.000900.007080.00079UNIT1CYCLE2CoreAverageExposure(GWD/MTU)CycleExposure(CWO/MTU)CoreTemperature(DEGF)KK-Kcoldhotcoldhotcalccalccalctarget9.4349.4349.4349.4349.4340.0000.0000.0000.0000.000157.1158.1180.4205.8211.10.008110.007970.007650.006580.006400.007860.007720.007400.006330.00615U1C2Average:U1C2StandardDeviation:0.007340.000800.007100.00080UNIT1CYCLE3CoreAverageExposure(CWO/MTU)CycleExposure(MWO/MTU)CoreTemperature(DEGF)KcoldhotcalccalcKKcoldhotcalctarget7.9827.9827.9827.9827.9827.9827.9828.6128.61210.6010.0000.0000.0000.0000.0000.0000.0000.6300.6302.619174.2175.8189.9190.3195.4202.2206.2156.3170.5209.40.006720.006740.006480.006290.006290.006080.005910.008430.008000.006100.006650.006670.006410.006220.006220.006010.005840.009610.009180.00766U1C3Average:UlC3StandardDeviation:0.006700.000840.007050.00134-83 TABLE3.2.7(continued)SUSUEKLNNASESCOLDMINUSHOTCRITICALCOREK-EFFECTIVEUNIT2CYCLE1CoreAverageExposure(MWD/MTU)CycleExposure(MWD/MTU)CoreTemperature(DEGF)Kcoldhot.calccalcKcoldhotcalctarget0.0000.000*0.000*0.000*0.0000.0000.1580.8470.9760.9762.3918.39011.2080.0000.0000.0000.0000.0000.0000.1580.8470.9760.9762.3918.39011.208111.4117.0118.8119.7120.7136.0162.0163.0115.0161.5207.0158.0195.00.006590.005380.005280.006670.005880.004010.006920.006870.008120.007540.005390.008020.008190.005470.004260.004160.005550.004760.002890.006150.006890.008200.007620.005110.007440.00782U2C1Average:U2C1StandardDeviation:0.006530.001290.005870.00164UNIT2CYCLE2CoreAverageExposure(MWD/MTU)CycleExposure(MWD/MTU)CoreTemperature(DEGF)K1CKcoldhotcold'hotcalccalccalctarget7.6937.9630.0000.000133.0139.50.004720;004710.005480.00547U2C2Average:,U2C2Standard,Deviation:0.004720.000010.005470.00001OverallAverage:OverallStandardDeviation:0.006710.001110.006590.00137*LocalCriticals-84-32.8SUSUKQLNNASESUNIT1CYCLE1TIPRESPONSECOMPARISONSDate12/16/8202/07/8304/04/8306/09/8308/10/8308/19/8309/13/8310/03/8310/18/8311/01/8312/01/8304/03/8404/12/8404/26/8405/24/8405/31/8406/08/8406/25/8407/24/8408/02/8408/16/8408/24/8408/30/8409/04/8411/30/8412/13/8412/16/8412/21/84**01/10/85**02/01/85**02/08/85**CycleExposure(CWO/MTU)0.2210.8361.4901.7992.7062.9063.3673.8364.1934.5175.0705.4105.6145.9186.5636.7166.8937.2357.6387.8408.1648.3418.4818.60210.28810.58910.65310.77011.08311.46411.617ControlRodSequenceB2A2B2B2A1A1BlB1B1B1A2A2A2B2B2AlA1AlBlBlB1A2A2A2B2B2AROAROAROAROARO5.094.035.044.975.125.215.625.465.625.605.936.126.145.725.805.825.385.004.754.614.534.534.574.524.734.804.684.965.936.076.032.604.264.264.724.965.164.895.024.604.734.844.834.454.564.724.80NodalNodalTIPRMSAsymmetry(~)(~)RadialRMS(~)2.781.581.701.791.621.631.711.741.911.911.811.961.851.981.971.891.881.941.851.871.692.132.142.221.911.701.671.721.731.621.76RadialTIPAsymmetry(*)1.181.581.581.601.741.631.471.751.631.601.771.931.571.621.641.74*ReactorconditionsforthisTIPset:60%ofratedflow40%ofratedpower**Endofcyclepowercoastdowndata85-TABLE329SUUEEGLNNASES.UNIT1CYCLE2TIPRESPONSECOMPARISONSDate06/24/8507/03/8507/19/8508/08/8508/20/8509/06/8509/12/8509/27/8510/04/8510/23/8511/15/8512/12/8501/14/86CycleExposure(CWO/MTU)0.2000.406.0.7891.2481.5281.9312.0662.4152.5873.0393.3233.8774.638ControlRod~eeenceAlAlAlB1B1BlA2A2A2A2B2AlA1NodalRMS(e14.794.894.765.785.175.976.425.585.484.555.044.754.99NodalTIPAsymmetry(*)3.643.673.573.753.803.744.37RadialRMS(e)2.522.723.282.862.702.752.572.732.722.703.093.022.64RadialTIPAsymmetxy(4)2.242.402.402.552.562.512.4986-TABLE3.210SUSUEMHNAUNITSES1CYCLE3TIPRESPONSECOMPARISONSDate's/os/8607/03/8607/10/8608/20/8608/27/8609/10/86CycleExposure(GWD/MTU)0.1780.9251.0842.0632.2282.567ContxolRod~eeenceA1AlB1A2A2A2NodalRMS(a)5.166.065.688.128.719.03NodalTIPAsymmetxy(~)3.414.343.583.846.28RadialRMS(*)2.744.142.802.822.893.75RadialTIPAsymmetxy(~)2.473.582.552.695.1387-SUVEZGLNNASESUNIT2CYCLE1TIPRESPONSECOMPARISONSDate07/23/8409/12/8410/08/8401/16/8502/07/8503/07/8503/20/8504/04/8504/15/8505/15/8506/10/8506/20/8508/01/8508/12/8508/20/8509/09/8510/01/8510/18/8510/28/8511/19/8512/17/8501/30/8602/19/8603/06/8603/12/8603/25/8604/04/8604/29/8605/15/8606/23/8607/11/8608/08/86CycleExposure(GWO/MTU)0.1310.3870.7591.1171.4462.0922.3912.6152.8683.3923.8824.1144.8695.0665.2495.7266.2166.5756.8177.3137.7798.5969.0539.4129.5399.83510.06710.63511.007*11.282*11.642*12.050*ControlRodSequenceA2A2A2A2B2B2B2AlAlAlB1BlA2A2A2A2B2B2'2AlBlA2A2A2B2B2B2B2AROB2B2B2NodalRMS(a)7.055.374.734.765.515.435.585.655.755.935.795.796.617.837.807.707.815.845.517.554.924.945.756.995.125.565.926.027.216.566.817.81NodalTIPAsymmetry(*)5.245.095.135.715.796.357.306.566.187.788.539.046.307.839.585.78RadialRMS(~)2.822.582.302.202.582.642.682.312.582.752.442.602.762.593.823.995.183.042.685.963.082.994.566.352.372.552.682.362.462.382.453.44RadialTIPAsymmetry(~)1.342.232.182.342.512.872.882.612.233.584.035.962.865.126.762.91*Endofcyclepowercoastdowndata.-88 TABLE3.2.12SUMMARYOFSUUEHANNASESTIPRESPONSECOMPARISONSUnitacle,NumberofTIPSetsAverageNodalRMS(*)AverageRadial.RMS(~)Ulcl315.241.86U1C2135.242.79U1C37.133.19U2C1326.173.07OverallAverage825.742.5889 TABLE3213SUMMARYOPSUSUEHANNASESTIPRESPONSEASYMMETRIESUnitacleNumberofTIPsetsAverageAverageNodalRadialAsymmetryAsymmetry(~)(~)Ulcl164.591.63U1C23.792.45U1C34.293.28U2C1166.763.28OverallAverage445.222.5590-1.01FIGURE3.2.ISIMULATE-EHOTANDCOLDCRITICALCOREK-EFFECTIVESVSCOREAVERAGEEXPOSURE1.00-I-O0:9SIlCOO0.98--0;""':mi..'i7U2C2HOTU1C3HOTU1C1COLDU2C1COLDU1C2COLD"U2C2COLD+U1C3COLDk:vj+,~o::..:LegendoU1C1HOTcIU2C1HOTU1C2HOT01234567S91011.12131415COBEAVERAGEEXPOSURE(GWD/MTU) 1.01FIGURE3.2.2SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSCORETHERMALPOWER1.00LLIII-OlLIU0.99-IUJLLŽ0O0.98..~.........Legend~--.".-0U1C1""""cIU2C1U1C2U2C2U1C300.975060667076808690CORETHERMALPOWER(%OFRATED)100106 1.01-FIGURE3.2.3SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSTOTALGOREFLOW1000I-O0.99ICC0O0Legend...':,.......IP00;--"0"--:--"-"-.-0U1C10.98..""""'0U2C1U1C2""vU2C2oU1C30.97-4050607080TOTALCOREFLOW(%OFRATED)90100 1.01FIGURE3.2.4SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSCOREINLETSUBCOOLING1.00LUI-C3UJ099-IhCCC0O0.98-.....Legend,--.-"oUlC10U2C1U1C2U2C2oU1C3oo.:.Booooo:.ooC3.,O...CI.....:.80.9715161718192021222324252627.282930COREINLETSUBCOOLING(BTU/LBM) 1.01FIGURE3.2.5SIMULATE-EHOTCRITICALCOREK-EFFECTIVEVSDOMEPRESSURE1.00-I-OLIJ0.99IUJCCOC30.98-.......LegendI~-"-oU1C1"-.aU2C1U1C2U2C20U1C3od'oze,"jjjo"~I"---.02..:...;.D:00.97940950960970.9809901000DOMEPRESSURE{PSIA)101010201030 1.01FIGURE3.2.6SIMULATE-EHOTCRITICALCOREK-EFFECTIYEVSCRITICALCONTROLRODDENSITY1.00LLI0I-OIJJ0.99-IIJJCC0O0.98-~C1~I~~aPen,:j4k~:,@'P,0I?Ip:gg:QjjPQ::c5:cD~cl"HD'lf."--gg'..Q...........,........~.........:O:::I.::.:.:.O...,.;:.:....Legend::...-....::....:...:,.....,:...:s~--:-""oUlC1""i"""0U2C1UlC2U2C2oU1C3200.97-024681012141618CRITICALCONTROLRODDENSITY(%)hag~aeeRl22 FIGURE3.2.7TARGETANDSIMULATE-ECALCULATEDHOTCRITICALCOREK-EFFECTIVESVSCOREAVERAGEEXPOSURE1.01-1.00-.--'---'-.-.:.----'---.'-U1C2TARGET:""'---.'-.--.'"-'"-.:.LIJI-O0.9S-IUJCC0.O0U1C1andU2C1TARGET'.-.-.:---:----.--:"--'-.:U2C2TARGET:."-.:-----:.-.--'.-"--:r~U1C3TARGETI\rLegend..,:.....~~0.C~--oU1C10U2C1U1C2U2C2oU1C30.97.03456789101112131415COREAVERAGEEXPOSURE(GWD/MTU)

FJGURE3.2.8)Q)SUSQUEHANNASESUNITS1AND2CORETIPLOCATIONS5957555351494745434139373533312927252321+++++++++++++++++++++++++++++++++++++LINEOFTIPSYMMETRY+++444464850525456586004220222426283032343638LocationForIndividualTIPResponseComparisons00020406081012141618XControlRodLocation~TraversingIn-coreProbeLocation FIGURE3.2.9SUSQUEHANNASESRELATIVENODALRMSOFTIPRESPONSECOMPARISONS10FIGURE3.2.9aV)lZCl0LLI0l~UJCL"CLI-86420mQ.pQQQg0~".'-"-~-------'.-"--O-"-pQQ0O.0.g,:Q.00::~:0~+pQp~".O-b.'ILegend0U1C1i...b,U1C2oU1C3QU2C102468101214COREAVERAGEEXPOSURE(GWD/MTU)1610FIGURE3.2.9bV)CL"D0ZI~LLICCCLI-86420QLegend0U1C1U1C2UlC3QU2C1>0D(4!Qw~asii!wo-i0I0.20.40.6FRACTIONOFCYCLELENGTH99-0.8QQ'GC"..".""""Cl'"'""b;"""0OOQ.0.:b,QOQQO00QQO~Q00'00~~"--"O.>0'4OwaoLJQ 180FIGURE3.2.10SUSQUEHANNASESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON1.490GWD/MTUCYCLEEXPOSURE180140120I-zD100Illzz80CoQ.80'""""o'"<>"o"g++g"+q()Q00+040200I0123466789101112131415161718192021222324COREAXIALNOOE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-100-FIGURE3.2.11SUSQUEHANNASESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS1.490GWD/MTUCYCLEEXPOSURE615957.5553514.947450.53-1.581.50.73-0.071.56-0.53-2.142.491.15II++43+41ss+37+++333.26+++29+++253.89+++.2119I,II171.7715II1311+97lI.IIIIII000204060810120.8923-0.550.8-0.20-1.65-1.91-0.1516++-0.241821416-0.24-2.46-1.63-0.13-3.470I-1.120.33-0.57IIII234363840424III2628303I0222419I1.63II-0.81-0.810.032.0044648505254565860Diff=[(Calc-Mess)iCoreAvgTIPResponse]X100%101-FIGURE3.2.12SUSQUEHANNASESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS1.490GWD/MTUCYCLEEXPOSUREMONITORLOCAllOH80>30MONITORLOCAllOH4b>bj140140leelee<<0C1404~ee"0I00~~$ILl-.o--->>---4001$0Xls140~4soC40000obbob0I000Tt'44044I~$44014010<<4$1~I41$10ITI414$$$14444$4CORP.AXIALHOORtNCA$VNSOhtSects<<0$OALOVLATCOht$$44ONSS~ooNTNVLsostosmo<<I44~~~'I~~10111414IiI~I~ITIi14$4$14444$4CORKAXIALHODRt<<$$4UNCOTttNseto<<4$0OAIOUMTCDhtNsstoNSS~co<<TNVL$00tosmoNMONITORLOCATIONe0,00MONITORLOCATOH32.801441$0leeIee140>40is~00000~804IITOItto01401$02:~0a0V060IIC.004044I44>>~I4$444T4~14111414141$1411141$$4$14$44$4CORKAXIALNOOKtNCASVIICOTltIlsstONssoOALOVLATCOTllIICsto<<0CNoo<<TNOLAootosmo<<00\~$4~~1~~1441141444>4I~ITILI~4441144414CORKAXIALHOORtNcACUIIcohtscstoNecoOALOVLATCDTltSCetONSS~OO<<hloLsootoshIO<<-102 180FIGURE3.2.13SUSQUEHANNASESUNIT1'CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON6.918GWD/MTUCYCLE'XPOSURE180140120I-D100IIIZZ80V)CL60+050Q.0..00+Q:""0"+0400200l0123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-103 FIGURE3.2.14SUSQUEHANNASESUNITtCYCLE1RADIALTIPRESPONSECOMPARISONS5.918GWD/MTUCYCLEEXPOSURE61595755S351494745434139370.07++++-2.75.232.5-0.93-0.70+++1.22-0.76++++-5.29++++0.60.51.49+4035333129I2.379I2.2-0.010.50272523'7iaI191715132.09I4032.4-1.91-2.67++++-0.2236-0.86.14I9-I78.17-0.76-3.26951-IIII000204060810121416182Q2224262830323436384042444648505254565860Diff=[(Calc-Meas}/CoreAvgTIPResponsejX100%-104-FIGURE3.2.15SUSQUEHANNASESUNIT1CYCLE1INDIYIDUALTIPRESPONSECOMPARISONS5.9'I8GWD/MTUCYCLEEXPOSUREMONITORLOCATIONdIL$$MONITORLOCATION4$,$$ISSISSllsfod,IIS----4-45lg100C000~IttsLrlcLtsNl??00-ILI=seTII004I~0~0tsts~t~l~7~lt11llllltIl1017IS10lellltllltCOfNNAsvasoll~aespoNss0OAIovMTtoTI~aeepoaee~CONTNOLaoepoeITION0~t~4~~7~~1011Il10ltllIS17I~10tstlttllltCOReAXIALNooefNNAsvasoTlpNsspoNse0OALovMTSOllpasepoase~OONTNOLaooposITIONMOHITOALOCATIOH00,$$MONITORLOCATIOH$$,$$ItsltsIseNe~eefseset.h..e400eo0t0e~dvsIteLrlls~00..L0f0]f~04"tsIIIl~t0~7~~10111ll~%101~171~IltetlltllltCOIIeAXIAI.NooeIISAsvaloTI~aeepoaseoCALOVLATSOTIPNSSPONee~ooNTNOLaoopoelsoa0It0~S~'I~~10111tllltll'I~17coeeAxIALNooefvKAsvalolipalspoase0OALOOLATSOTlpasspoase~ooataoLaooposITIVNII70tsIlttllll105-180g~lFlGURE3.2.16SUSQUEHANNASESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON11.617GWD/MTUCYCLEEXPOSURE1BQ140120I-zD100ILl"Z80COQ.eo400+0~+00+00000':000+200012346B789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-106-FIGURE3.2.'17SUSQUEHANNASESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS11.617GWD/MTUCYCLEEXPOSUREI615957555351494743413937-0.4786-1.89-2.182.0-2.880.212.00.840.014.3-2.011.66++++++++-0.363533312920601.82-0,883.641.81++++-0.102725232119.1715130.5-0.39-1.08-0.24.703.4-1.08-2.45-0.80-0.080.29753Y1'2.5745-0.8828-0I00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponsejX100%107-flGURE3.2.18SUSQUEHANNASESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS18.617GWD/MTUCYCLEEXPOSUREMOIKTORLOCATIONKK,KSMONITORLOCATIONCC,SKININrgNlIleee044+o~-K--0IteZIgINjle~w0r0orI~~~~III~I~~14IIISII11le14lfIlletelltttttlCOREAXIALNOOKNIARURROTlo4Reoooeo0OAIOVLAIROIIRRa40aeo~CORIROLROORoemON~I1~~I~I4~1411It1411'N14lfI~IltetltltlIICOILKAXIALNODE4NRARVRIOTIPRSSIONRR0OALOVLATCOTIRRterooeo~coofRVL100toemoNMOIKTORLOCATION40,8KNeII~11~1Nog40J4"re0+0o0lieee~I0otor'-'0'L+000+Z~I4000l.0te~~II~~~I~~1411IIISItlllelfI~lel4llttttltCOREAXIALNOOKrNCASURC0TIRRCSRORSR0OALOVLAfCoTIRRRRSORSR~001TROL100eoemoNI1I~~III~le11111IIItellIfI~1SNIIISIIIICORKAXIALNOOK+NCARURCOTIRRCteoNRR0OALOIRATCOTIRRNtoRSR~CONTROL100ROQllON-108-9OFIGURE3.2.19SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON0.200GWD/MTUCYCLEEXPOSURE,8070BoI-zDeoLQzz40COCL3Oo~+i6~o:..............................+...Q...i........""+:""""'"""':."""""'"""'.""@'"O')0~~~~~~~~~~~~Q~~~~201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-109-FIGURE3.2.20SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS0.200GWD/MTUCYCIEEXPOSURE615957555351494745-1.86-2.6505-2.514.50-2.27-3.40t+++.2043413937I3+-033-1;65-0.8227353331292.88-0.3090582.6.926.5II62725232120542.4I-3.31154.964.49I191715131197II3-0.1341-2.743.7970.4+3-0.7706-0.20I!IIYiI00020<06081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponse]X100%-110-FIGURE3.2.21SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS0.200GWD/MTUCYCLEEXPOSUREI$OIETOALOCATIOII45,$$$IONTOALOCATIOK4'ss$o0+.+4OO~0XssNXXQcs4O~$00~$~$0$ogS~~~TSS'N11lsNN'NNITI~ISSSSlTSSSSICOREAXIALIIOOK+NSASSSKOTltSSSSTNNS0CAIOVLAIKSlitAsstONSO~CONTNOLNOOSOSITlDN0IS~~~T~NIIISNNNNITNI~SsslssssslCORKAXIALNOOK+NSASVASOTltSlstONSS00LCVLATTOlitASStONSC0CONTNOL000tOSITNNIKONITORLOCAtlONOO,$$LIOIIIIORLOCAllOII$$,$$~0SSl~0'0a~.~s+gssXss+)~)4-k~-4-0-$~rr-p---00QTS~~SS~~0T~~ISIINNNNNITISISSSSISSSSSICOREAXIALIIOOE0ICKASVAKOTltNKStOINKoCALOVIAIKSlitNsstoNSK~OONTNOLSOOSOSITlCWSISS~~'T~~N~IISISNNNlllsllSOSlSSSlSICOIIKAZALIIOOE0llKASVAKOTNNKStONSKOOAIOVLATKOTltasstONSC~OONTNOL000tONllON 9OFIGURE3.2.22SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON2.587GWD/MTUCYCLEEXPOSUREBo70eoI-z60LLIzzV+4oCO0soQFQCiQ20100012S4667891011121314'I6161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSEQCALCULATEDTIPRESPONSE-112-FIGURE3.2.23595755535149474543413937353331292725-23211917151311975-31SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS2.687GWD/MTUCYCLEEXPOSURE-3.57-1.225.71-1.33I3J-2.611.5I0.5.750.60.092-2.1.17-1.05-0.332.320.8-2.39-3.135.4-2.400.8++++-1.8548-002-2.015.9052.6734.38-0.16-1.79-1.41+-3.15-6.860.7+i!00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Meas)/CoreAvgTIPResponse]X100%113 FIGURE3.2.24SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS2.687GWD]MTUCYCLEEXPOSUR~~IONITOIILOCATIONaL$$MONITORLOCATION4$,$$gaeeeO.Cae000Igse0$o+f0oool4..$.o.L..I'TTIoIIIII~s~~~r0I~11ls>>>>>>>>lr>>>>tetlstaaelCORKAICALNOOK+vsaavasot>>saeaooee4oalNAAtsotiesseaoees~oooteolsooroeNNN~1s~~~~re~>>ntsIe1IIaIetlta>>sastssaeaICORKAXQLNOOK4NeaeoeeotieeteJONet0oslolsstsottoeaaaoees~ooNININ.NooroeltNN$IONITORLOCATION$$.$$eeteQu~ee0seX$I~+0+0lr4~s'Z~40d~Ite~~sr~lail>>la>>>>>>lt>>leaetlssseslCOIIKAICALNOOK+vsAsvstotiesseeoos$oOAIOIAAISOtieSteeooas~ooeteoLaooIoeotoN~Ita~~r~~>>11ts>>11IaIelrIaCOR!AXIALNOOK+vtssvssoliellssroeesoOAIOVLSttotteItaaroees~OoetaoLNooeoalttoN-114-90FIGURE3.2.25SUSQUEHANNASESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON4.638GWD/MTUCYCLEEXPOSURE8070g)BOI-zD50illzz40CoQ.~30000q)0C04~b$+++0+201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE115-FIGURE3.2.26SUSQUEHANNASESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS4.638GWD/MTUCYCLEEXPOSURE61I595755535149474543413937-2.30++++-3.56.73-2.442.3-2.365.363053-4.00-2.443.68-1.59-1.230;51353331290.832028-1.01-0.86-2.30++++6.5J627252321I~-2.94.73-2.05-0.212.24++++49171513-0.460.8-0.360.30,320.4I5-2.10322.10-4.5600020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Meas)/CoreAvgTIPResponse]X100%-116-FIGURE3.2.27SUSQUEHANNASESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS4.638,GWD/MTUCYCLEEXPOSUREMONITORLOCATIONdd,ddMONITORLOCAllONSd,dd~0~0ssggss~SS0OfO'+000004000000SL00~0Qss~0Sogf~~~JI0stsItSSS0T~ls11TSlt11ISltIfISltSSSISSSSSloNSASOSSOTI~PNSPONSS0OALOOLATSOTIPNSSPONSS~CONTSOLNONPOSITION0\~~S~~Tt01011ltIt11lt10lfltltttSlStSSSICOREAXIALNOOK+NSASONSOTIPNSSPONSS0OALOSIAftoTIPNSSPONSS~CONTSOL100POSITIONMONITORLOCATIONsd,ddMONITORLOCATIONdd,dd~S~S~STs5LSgS~0+PLoOOOodogoot0.t.00....0~0~~ssf(-0.,0.0o010JIIIS0001~~ltII.ISISlllsl~flltlttttlSSSSSICORKAXIALHOOKPNSASOSSOTIPIISSPONSSoOuauuSSOTIPNSSPONSS~OONTSOL%00POSNION0I0t~S~T0~ltIIflitllI~ltlfI~I~SttlltlttlCORKAXIALHOOK0ISASSSSOllPSSSPONSSoOALOOIATSOTIPNSSPONSS~OONTNOLSOOPotlflON117 90FIGURE3.2.28SUSQUEHANNASESUNIT1CYCLE3AVERAGEAXIALTIPRESPONSECOMPARISON.0.178GWD/MTUCYCLEEXPOSURE8070BOI-zD50.LLIzz40M030+0"+""00I020100012345678910'1112131415181718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-118-FIGURE3.2.29SUSQUEHANNASESUNIT,1CYCLE3RADIALTIPRESPONSECOMPARISONS0.178GWD/MTUCYCLEEXPOSURE615957555351494745434139373533312927252321-1917151311975-1.48-2.68I010.620.54-2.081.55283.860-0.14-2.40-0.77-0.32-4.95-1.62-2.375.790.64.986.42.225-0.830.383.38363.4992,8-3.25-3.09-3.72290.08++++2.0-0.51II00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Measj/CoreAvgTIPResponse]X100%119-FIGURE3.2.30SUSQUEHANNASESUNIT1CYCLE3INDIVIDUALTIPRESPONSECOMPARISONS0.178GWD/MTUCYCL'EEXPOSUREMONITORLOCAllONdlLddMONITORLOCATIONaa,dd~00000CZtg00IN,4T0Lo+444pt404QI~-~0Se00$00~00LI.~0I0~0~0~I~ttts'I~lt1010tt10100001Ases04CORSAIDALNODS4vaA00000tti000000004OAAOUIAtaott~Naasovea~OovtaOA000000ttvvtI00~0~7~letttalettteteCORS.AXIALNODS+vsA00000tta000000004OAIOUAAtaatto00000000~CoataoL000000IIIONttI~10teSl1~00SIMONITORLOCATION~$00~04...0.4t44o00)te404doo0+"-4"4-d-9'-'4To4ja500O+tele044~~I~I000~~7~~I~11ts10ItIa10ItI~I~testassectCORSAXIALNODS4vaAaaaaaTlaassaovaaoOAIOUIAtaott0aaaroaea~OONINOL000eosttvvlI0~00~0~~letttatsvteteIt10100001tltltlCORSAXIALNODS4VSASUaaalatIICS00000oOAIOUIAtaaItsItaaaoaaa~OONtllOl000000ttION120-9OFIGURE3.2.31SUSQUEHANNASESUNIT1CYCLE3AVERAGEAXIALTIPRESPONSECOMPARISON2.228GWD/MTUCYCLEEXPOSUREeo70BoI-zD50LUzz40Co03O~.:00+0"00+oqooo0+++0'0201000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE121-FIGURE3.2.32SUSQUEHANNASESUNIT1CYCLE3RADIALTIPRESPONSECOMPARISONS2.228GWD/MTUCYCLEEXPOSURES9S755I535149474543413937-0.94-2.970.84-3.190.85-0541.586.613.052-1.242.53.23.89-0.100.83353331291.8-2:14-0.064.4-1.022725232119171S1311975310.611.63.3-5.43.44-2.87-2.78-4.290.6-3.9856-1.19-6.42-3.651.99030002040608'1012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTIPResponse]X100'/o-122-FIGURE3.2.33SUSQUEHANNASESUNIT1CYCLE3INDIVIDUALTIPRESPONSECOMPARISONS2.228GWD/MTUCYCLEEXPOSUREMONITORLOCATIONSS.SSMONITORLOCATION44SSeeII1eeIITe1j+S0~4oKlTeI-a,II>>VlII5>>'i--r0t0OeeX$>>4g004T440r-"'-24-$>>II1-r--f00Ie4II7IIILIIIIIt~1~~L4~T~4NI11leI~If1414If'I~Ie24N22eeefCORKAXIALNODSveAevheolit0eetohee0CAICOLATeolitNeetoheo~CONlNOL400t041TtON14~~4~2~4Ie1114I~>>leleITleteN212224NCOllhAXIALNOOC+NNAOVNeelltheetONeh0OALOVLATeeTltheetoheh~CONTNOLNOOtOemONMONITORLOCATIONOO,SSMONIIORLOCATIONSWISS~I~~4Te~40C+00000oo400eeQ>>~eeooS~0oCooe0I4Ie+le~144~~~T~~1011IeIe12I~I~\fIe1424111222efCOhKAXIALNODS~I~111$Ie12Ie'I~Il12I~2421222$$414~~44T~COh8AXIALNO1IITAOVheOTI~heetOI>>e0CALOVLATNOlitheetoheh0ooNTNCL100toemoN+tfeAOVNTOlttheetoheaoOALCVLAT!OTltheetoheh~OOKfhOLNOOtoeITION-123 180FIGURE3.2.34SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON0.387GWO/MTVCYCLEEXPOSURE180140co120I-R100'llKX80COL,ea+..o...4......~...............:,....e.+000~+200012345e788101112131415161718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-124 FIGURE3.2.36SUSQUEHANNASESUNIT2CYCLE1RADIALTIPRESPONSECOMPARISONS0.387GWD/MTUCYCLEEXPOSURE615957555351494745434139373533312927252321-1.060.64.5290.094.760.5-0.55-0.403.470.88-0.89-1.333.60.41-5.24-1.98-5.221.231.89-1.56-1.800.71.28-2.47-2.082.20.6291I4.319-1715132022-0.07-0.76-3.68-0~052.9-2.93119753110-009-1.8513-3.2100020406081012141618202224262830323436384042444648505254565860XDiff=[(Calo-Mess)/CoreAvgTIPResponse]X100%125-IFIGURE3.2.36SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS0.387GWD/MTU.CYCLEEXPOSUREMONITORLOCATTON4OPSI~I4~ITT000te01t~~~~10~Te11TeNTeNlelTI~NtetlteteeeCOREAXIALNODE+vtAellteeTN0teoooeeoDAIOOIATteTNatetooea~covleoctootoelTTDOII!~1t~~~010~lt11NNNleleTTNl~tetlttleelCOREAXIALNODE4TNAevoteTNttetovee0OAIOIAATCDTVetetovec~oovleoeeootoeITlo4IMONITORLOCAllON40,5$MONITORLOCAllON02,$3eeJJ.t04ŽNt]~ee++aJo40+0III~~te0~e1~0NllltltllleNlTIANtetlttteelCOREAXIAI.NODEtVtAeetteTlt1tttOINe0OALDVCATKDMtttKHNO~OOVTDCN.DODtetITloee1te~~~1~~IeCORE+NEAOVACOTleteetOINCoOAIOVCATXD~AettOTNC~oovTDDLtootoeITlov!I11IeltN14le1111Itte11ttteelAXIALNODE-126-180FIGURE3.2.37SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON5.249GWD/MTUCYCLEEXPOSURE1eo140120I-z100LLIz80CoCLeo0+00Q++00+g}Q40200012346e789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE127 FIGURE3.2.38SUSQUEHANNASESUNIT2CYCLE'fRADIALTIPRESPONSECOMPARfSONS5.24SGWD/MTUCYCLEEXPOSURE615957-555351494745-4.77ii-2.630.72.685.031.22-0.95-0.923.39.7343413937--3.29+0.978.3-2.87-0.29-2.33+-30735333129++++I1.2I88~35-0.170.8-0.65.17272523-3.716.3243-2.98++++0.82191715I1311753vI0020.27I5.94.960810121416-0.18-1.78I1.22.8-0.67-6.45-2.98-4.53IIII182022242628303234363840424446485052-4.8754565860Diff=[(Calc-Mess)/CoreAvgTlPResponse]X100%-128-FIGURE3.2;39SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS6.249GWD/MTUCYCLEEXPOSUREMONITORLOCAllON4IL$$MOIQTQRLOCAllON4$,$$100NSNSat~0.T00-IIOIJIIo1IC..44IttCC100g.00~0000.S..+~$$44+,'0I0I0I1.10~0~~0~~a11lta10aaTf'alt00tlttStaCORKA)QALNODC+NSASUSSDTloSSSOONK4AkISSAATSDTI~NSSSONK~CONTSOLSOOSotfAON01t~00~T~~<<TITSISSINNITNISSSSISSS~SICOAQA)QALNODS+NSASUSSOTISIISSSONSS0OAIOULAItoTloNtttot00~CONTSOLNODSOSITIONMONITORLOCAllON40,$$MONITORLOCAllON$$,$$100<<0100~0~000+~I110LZ100~0000o40~4f040004w'$-'f'--0L..0000III0I00~~~10~I~llltlt10<<a111010SttltttttiCOR4ATQALNODEtSNASUSCDTIDSCSSONKoOAIOUIATCDTIDIICSDONK~DONTSOL000SOSNION~00~0~T~~'l01110lt10a%ITN10SttlStttSlCORKNQALNODS4NCASUSCDTltDCSSONK4OAIJUIATCDTIDIICSJONK~OOWIOLNOOSONllON129-180FIGURE3.2.40SUSQUEHANNASESUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON12.050GVYD/MTUCYCLEEXPOSURE180140120l-zD100Illzz80COILBo+Qj+oooot000J40200+012345B78S1011121314151B1718192021222324COREAXIALNODE+MEASUREDTIPRESPONSEoCALCULATEDTIPRESPONSEj.30-FIGURE3.2.4'fSUSQUEHANNASESUNIT2CYCLE1RADIALTIPRESPONSECOMPARISONS12.050GWD/MTU'CYCLEEXPOSURE61595755535149474543413937353331292725232119171513119753y1II-4.02-4.34-0.18-7-3.23-3.015068-1.162.8-1.660.892.94.81.45990.34-1.52640.477-0.930.7-2.119.216.26.63.427.42.4-0.713.30-1.88-0.81-2.00-2.08-0.061.46.5100020406081012141618202224262830323436384042444648505254565860XDiff=[(Cele-Meas)/CoreAvgTIPResponse]X100%131-FIGURE3.2.42SUSQUEHANNASESUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS12.050GWD/MTUCYCLEEXPOSUREleOHITORLOCATIOH4$,$$'14$4$+o44oo,>so~eoe+0+4<<f4Sgee)~tsLD'.Ito~oo<<I7dI~~$~7~TeTlT$1$14leTe11T<<4te$1ttte$4CORKAXIALHOOK4NeoeoeeolitNeetoese0OlIOOLNTODheetetONse~OONTOOLNOOtoelhON~1t~4e~te~TohltltCORKANAL+NeAesetolitTNetooseoOAtowATtohtacetoeee~OONTNOLNOOto¹hDN141$1<<lt41$tetlttte$4HOOKMOHITORLOCAnOH40,$$IIOHITOllLOCATIOH$$,$$14$1$$40400T+4430~o%$~o~sso)004$0+0~It$~eo1~~lehT<<1$14&41144$<<tlttt$$4CORKAXIALHOOK+lltA$I¹$0Tl~eeseoeseoOAlleltteslltNestohoe~OONT$0LNOOte¹llON~It~$~7~IShItll141$1<<IT4Ist<<11tt$$$4CORKAXIALHOOK+NeAtsetOlitNtstoestoOAA004ATtOTltNeetoete~ODNTNOLNDO$0¹hON132-FIGURE3.2.43SUSQUEHANNASESUNIT1CYCLE1SIMULATE-EVSGEPROCESSCOMPUTERCOREAVERAGEAXIALPOWERDISTRIBUTION1.5+w10O)I0.5SIMULATE-EGEProcessCorn~uter0.023456789101112BOTTOMTOPCycleAverageExposure=1.490GWD/MTUCorePowerLevel=99.6%ofratedTotalCoreFlow=100Mlbm/hrReactorPressure=1005pslaCoreInletSubcooling=23.6Btu/Ibm133 FIGURE3.2A4SUSQUEHANNASESUNITtCYCLE2SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.5CL1.0LIJOCLLIJ)I-LIJ0.5SIMULATE-EPOWERPLEX0.035-7BOTTOM91113151719212325TOPCycleAverageExposure=2.587GWD/MTUCorePowerLevel=99.9%ofratedTotalCoreFlow=95.8Mlbm/hrReactorPressure=1000pslaCoreInletSubcooling=24.7Btu/Ibm-l34-FIGURE3.2.45SUSQUEHANNASESUNIT1CYCLE3SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.51.0LLIOCLLIJCL0.5////SIMULATE-EPOWERPLEX0.0BOTTOM35791113151719212325TOPCycleAverageExposure=0.178GWD/MTUCorePowerLevel=100%ofratedTotalCoreFlow=96.9Mlbm/hrReactorPressure=1002psiaCoreInletSubcooling=24.4Btu/Ibm135-FIGURE3.2.46SUSQUEHANNASESUNIT2CYCLE2SIMULATE-EVSPOWERPLEXCOREAVERAGEAXIALPOWERDISTRIBUTION1.51.0LLJO.CLLJI-LJJ0.5/tII//SIMULATE-EPOWERPLEX0.0135791113151719212325BOTTOMTOPCycleAverageExposure=0.583GWD/MTUCorePowerLevel=100%ofratedTotalCoreFlow=96.2Mlbm/hrReactorPressure=1000psiaCoreInletSubcooling=24.4Btu/Ibml36-FIGURE3.2.47SUSQUEHANNASESUNIT1CYCLEISIMULATE-EVSGEPROCESS'OMPUTERBUNDLEFLOWSAT1.490GWD/NITU0.1200.1220.0020.1190.1210.0020.1170.1210.0040.1190.1210.0020.1190.1210.0020.1200.1220.0020.1190.1200.0010.1310:1350.0040.1320.1330.0010.1180.1220.0040.1310.1180.1330.1210.002.0.0030.1300.1180.1350.1190.005-.0.0010.1170.1210.004PROCCOMPSIMULATE-EDIFFERENCEUnitsareMlbrn/hrAverageDifference:0.001StandardDeviation:0.0020.1180.1200.0020.1190.1210.0020.1170.1190.0020.1160.1190.0030.1160.1170.0010.1180.1200.0020.1160.1190.0030.1170.1180.0010.118*0.1170.1160.1200.1170.1190.0020.00.0030.1170.1180.0010.1170.1200.0030.1160.1190.0030.1150.1190.0040.1300.1350.0050.1300.1310.0010.1310.1320.0010.1290.1340.0050.1180.1200.0020.1150.1170.0020.117.0.1170.00.1160.1190.0030.1300.1340.0040.1300.1310.0010.1300.1310.0010.1300.1340.0040.1180.1190.0010.1180.1180.00.1200.119-0.0010.1130.1160.0030.1150.1170.0020.1140.1150.0010.1140.1170.0030.1150.1150.00.1170.1190.1190.1180.002-0.0010.119.0.1220.1190.1220.00.00.1280.127-0.0010.1110.1150.0040.1120.1140.0020.1120.1160.0040.1120.1140.0020.1130.1140.0010.1140.1160.0020.1190.1190.00.1210.1210.00.1310.1360.0700.1260.1350.068-0.005-0.001-0.0020.1140.1180.1150.1180.0010.00.1170.1190.0020.1150.1160.0010.1160.1170.0010.1190.1200.0010.1240.1240.00.1250.1350.0680.1270.1340.0680.002-0.0010.00.1210.1240.1250.1230.1230.1200.1230.1230.1210.122-0.001-0.001-0.002-0.002-0.0010.1260.1350.1380.069.0.0700.1260.1300.1360.0680.0680.0-0.005-0.002-0.001-0.0020.1280.1290.0010.1290.1290.00.1300.1300.00.1300.1300.00.1300.1310.0010.1320.1410.0690.1340.1400.0680.002-0.001-0.0010.0690.0690.0690.0690.0690.0680.0680.0680.0680.068-0.001-0.001-0.001-0.001-0.0011370.0700.0700.0680.068-0.002-0.002 FIGURE3.2.48SUSQUEHANNASES-UNIT'ICYCLE3SIMULATE-EVSPOWERPLEXBUNDLEFLOWSAT0.178GWD/MTU0.1140.1160.0020.1140.1150.0010.1180.1210.0030.1190.1230.0040.1170.1220.0050.1190.1200.001POWERPLEXSIMULATE-EDIFFERENCEUnitsareMlbm/hr0.1160.1170.0010.1190.1220.0030.1200.1180.123.0.1210.0030.0030.1180.1180.00.1210.1230.0020.1190.1220.0030.1170.1210.0040.1200.1200.0AverageDifference:0.001StandardDeviation:0.0020.1210.1210.0.0.1310.1330.0020.1300.1300.00.1220.1210.1300.1240.1200.1320.002-0.0010.0020.1240.1260.0020.1290.1330.0040.1310.1330.0020.1190.1210.0020.1220.1240.0020.1270.1300.0030.1280.1280.00.1190.1190.00.1210.1230.0020.1200.1190.1190.122'0.0010.0030.1180.1180.00.1210.1220.0010.1190.118-0.0010.1190.1220.0030.1190.1210.0020.1150.1190.0040.1180.1210.0030.1140.1180.0040.1170.1200.0030.1150.1190.0040.1190.1210.0020.1160.1200.1190.1190.003-0.0010.1170.1170.00.1230.0030.119-0.0010.120.'0.1200.1170.1170.1200.1190.1160.1220.002-0.0010.0020.1200.1200.00.1200.1220.0020.1210.1210.00.1240.1240.00.1190.1210.0020.1170.1210.0040.1200.1220.0020.1140.1170.0030.1180.1200.0020.1180.1210.0030.1220.1240.0020.1180.1220.0040.1250.1270:0020.1300.1320.0020.0640.063-0.0010.1170.116-0.0010.1190.1200.0010.1180.1180.1190.1170.1200.118-0.0010.002-0.0010.1210.1220.0010.1230.122-0.0010.1260.1270.0010.1290.0640.1310.0630.002-0.0010.1200.1210.0010.1230.1230.00.1170.1180.0010.1260.125-0.0010.1200.1210.0010.1240.1240.00.1170.1190.0020.1270.126-0.0010.1210.1220.0010.1260.1260.00.1200.1220.0020.1280.1280.00.1280.1290.0010.1360.133-0.0030.1310.0640.0650.1320.0630.0640.001-0.001-0.0010.0640.063-0.0010.0640.0640.0620.062-0.002-0.0020.0640.0640.0640.0640.0620.0620.0620.063-0.002-0.002-0.002-0.001-1380.0650.064-0.001 FIGURE3.2.49SUSQUEHANNASESUNIT2CYCLE2SIMULATE-EVSPOWERPLEXBUNDLEFLOWSAT0.583GWD/MTU0.1180.116-0.0020.1190.117-0.0020.1160.1190.0030.1190.118-0.0010.1170.1210.0040.1240.121-0.0030.1190.1230.0040.1230.1210.1220.124-0.0010.0030.1170.1210.1210.1190.004-0.0030.1230.1200.1210.122-0.0020.0020.1300.1330.1330.1320.003-0.0010.1170.1210.0040.1210.120-0.0010.1200.1220.0020.1180.1210.0030.1220.121-0.0010.1260.1290.003POWERPLEXSIMULATE-EDIFFERENCEUnitsareMlbm/hrAverageDifference:0.001StandardDeviation:0.0030.1200.1220.0020.1320.1320.00.1300.1320.0020.1220.120-0.0020.1180.1210.0030.1280.1280.00.124-0.1280.0040.1190.1190.00.1130.1180.0050.1170.1210.1200.1190.003-0.0020.1180.1140.1170.118-0.0010.0040.1150.1190.0040.1160.1160.00.1180.117-0.0010.1120.1170.0050.1150.1190.0040.1160.115-0.0010.1180.117-0.0010.1120.1170.0050.1130.1180.0050.1160.1160.00.1130.1180.0050.1160.1160.00.1120.1160.0040.1150.1200.0050.1180.1180.00.1180.1180.00.1150.1190.0040.1110.1160.0050.1150.1150.00.1150.1150.00.1110.1160.0050.1130.1180.0050.1170.1170.00.1170.1170.00.1150.1200.0050.1130.1180.0050.1190.1190.00.1180.1190.0010.1210.1250.0040.1210.1250.0040.1320.130-0.0020.0640.063-0.001,;0.1170'.116-0.0010.1160.1180.0020.1250.122-0.0030.0640.062-0.0020.1130.1170.1170.1150.004-0.0020.1170.1160.1160.119-0.0010.0030.1230.1260.1240.1230.001-0.0030.0640.0640.0620.062-0.002-0.0020.1120.1170.0050.1180.117-0.0010,1250.1260.0010.0640.062-0.0020.1170.116-0.0010.1170.1210.0040.1280.125-0.0030.0640.063-0.0010.1150.1190.0040.1220.121-0.0010.1290.1300.0010.0650.063-0.0020.1200.1200.00.1240.1270.0030.1370.134-0.0030.0650.064-0.0010.1220.1260.0040.1330.131-0.0020.0650.064-0.0010.1300.129-0.0010.0640.063-0.0010.0640.063-0.0010.0650.064-0.001139-3.3uadCitiesUnit1Cycles1and2BenchmarkAnadditionaldemonstrationoftheSIMULATE-EcalculationalaccuracywasperformedbycomparingSIMULATE-EresultstomeasurementsfromtheQuadCitiesUnit1Cycles1and2cores.AftertheendofCycles1and2,gammascanmeasurementsofselectedfuelbundlesweretaken.Thisprovidesanexcellentmeasurementofthepowerdistributionaveragedoverthelasttwotothreemonthsofeachcycle'soperation.ThistechniqueformeasuringthepowerdistributionisnotpronetothetypesoferrorsthataretypicalofTIPmeasurements.Reportedaccuracyofthegammascanmeasurements,combiningmeasurementuncertaintyandmeasurementmethodbias,isapproximately3%(Reference12),whereasTIPuncertaintyforreloadcoresistypically5.1%(Reference25).AsignificantnumberofcoldcriticaltestswasperformedduringCycle1.Theavailablecolddataincludebothin-sequenceandlocalcriticals.In-sequencecriticalsaretypicalofnormalreactorstartupswithwithdrawncontrolrodsuniformlydispersedthroughoutthecore.Localcriticalsinvolvewithdrawalof'afewcontrolrods(usuallyfromtwotofour)inalocalizedareaofthecoreproducingverypeakedneutronfluxgradients.Inadditiontothegammascanandcoldcriticaldata,hotreactivitystatepointandTIPmeasurementdataarealsopresentedinthissection.TheQuadCitiesUnit1core(Figure3.3.1)isslightlysmallerthantheSusquehannaSEScores(Figure3.2.8),containing724versus764fuelassemblies,anditsratedcorethermalpowerisapproximately25%lessthanthatoftheSusquehannaSESunits.FortheQuadCitiesinitialcycle,theentirecoreconsistedofGeneralElectricCompany(GE)7x7fuelwithalowgadolinialoading.ThiscontraststheSusquehannaSEScoreswherearelativelyhighgadolinialoadingwaspresentinthe8x8fuel.TheQuadCitiesreloadfuelforCycle2consistedofonly23GE7x7fuelassemblies,36GESx8fuelassemblies,andfivemixedoxidetestassemblies.TheGEreloadfuelcontainedasmallgadolinialoading.-140-3.3.1HotCriticalCoreReactivityComarisonsThepurposeforbenchmarkingthehotcriticalcoreK-effectiveforQuadCitiesistodetermineifanymajordifferencesinresultsandtrendsexistbetweenSusquehannaSESandQuadCities.BecausetheQuadCitiescorecontainsmainly7x7fuelandlowergadoliniacontent,thebenchmarkprovidesagoodcontrasttotheSusquehannaSESbenchmarkandatestofthesteadystatemethodology.Figure3.3.2showstheQuadCitiesUnit1Cycles1and2calculatedhotcriticalcoreK-effectiveswiththoseofSusquehannaSES.AlthoughQuadCitiesresultsshowmorevariation,alinearlyincreasingtrendispresent.ThistrendisconsistentwiththeSusquehannaSESresultsandsupportstheexposuredependencyoftheSIMULATE-EcalculatedcriticalcoreK-effective.Nobowl-shapedtrendsareevidentintheQuadCitiesresults.ThistrendisattributedtothelowergadolinialoadinginQuadCitiesversusSusquehannaSES.ThelargevariationinK-effectiveispossiblyduetotheinclusionofdatathatdoesnotmeetthesteadystatecriteriadefinedinSection3.2forSusquehannaSESdata.Themeasuredcoreoperatingparametersused'asinputtoSIMULATE-EarecontainedinReference27.AsevidentfromFigure3.3.2,theSusquehannaSESdataessentiallyformsacontinuouslineofdataasaresultofaverydetailedSIMULATE-Edepletioncalculations;however,theQuadCitiesK-effectivesarequitesparse.3.3.2ColdCriticalCoreReactivityComarisonsThebenchmarkoftheSIMULATE-EcalculatedcoldcriticalK-effectivetotheQuadCitiesUnit1Cycle1coldxenon-freein-sequenceandlocalcriticalsprovidesqualificationofPPaL'scoldmethodologyandmodelstoperformshutdownmargincalculations.Comparisonstothelargelocalcriticaldatabase(22localcriticals)testPPGL'scalculationofrodworthsinlargelocalfluxgradientlocationsthataretypicalofshutdownmargincalculations.PPGL'sapproachinbenchmarkingtotheQuadCitiescoldcriticalsistocomparethecalculatedin-sequencecriticalK-effectives(lltotal)tothelocalcriticalK-effectives.Table3.3.1presentstheQuadCitiesUnit.1Cycle1calculatedcoldcritical.K-effectiveswhichhavebeencorrectedforreactorperiod.Comparinglocaltoin-sequencecriticalresults-141 demonstratesthecapabilityto.calculatethesamecoreK-effectiveforcriticalconditionswithboth;peakedanduniformneutronfluxdistributions.ThelocalcriticalK-effectivesarecomparedtotheaverageofthein-sequencecriticalK-effectivesatthesameexposure.Table3.3.2showstheresultsofthecomparisons.TheaveragedifferencebetweentheK-effectivesis0.00007andthestandarddeviationequals0.00064.BothofthesevaluesarewellwithintheuncertaintyinpredictingtheSusquehannaSEScoldcriticalcoreK-effective(i.e.,standarddeviationequalto0.00137).Thisdemonstratesthatnobiasexistsbetweenin-sequenceandlocalcriticalcalculations.AnadditionaltestofPPGL'smethodsinvolvesdemonstratingthatthesameobservedbiasbetweenhotandcoldcriticalcoreK-effectiveforSusquehannaSESalsoexistsbetweenhotandcoldcriticalcoreK-effectiveforQuadCities.Figure3.3.3showsthehotandcoldcriticalcoreK-effectives.DespitethevariationinandlackofhotcriticalcoreK-effectivedata,thedifferencebetweenthecalculatedhotandcoldK-effectivesissimilartothatoftheSusquehannaSESdata.3.3.3TraversingIn-coreProbeDataComarisonsAlthoughtheprimaryreasonforthedevelopmentoftheQuadCitiesmodelistoperformthegammascancomparisons,someTIPdataisavailableforcomparisonfromReference27and28.Thisincludes15TIPsetsfromCycle1and13TIPsetsfromCycle2.ATIPsetcontains24axialmeasurementstakenateachofthe41radialTIPlocations.RadialTIPdetectorlocationsareshowninFigure3.3.1.TheSIMULATE-EcodewasusedtocalculatetheTIPresponsesforeachofthe28TIPsets.AsdescribedintheSusquehannaSESTIPresponsecomparisonsection,theSIMULATE-EcalculatedTIPresponsesarerenormalizedsothatthecoreaveragecalculatedTIPresponseisthesameasthecoreaveragemeasuredTIPresponse.TheaverageRMSofthedifferencesbetweentheSIMULATE-EcalculatedandmeasuredTIPresponsesforeachTIPresponsecomparisoniscalculatedasdescribedinSection3.2.3.ResultsfromthenodalandradialcomparisonsaregiveninTable3.3.3.ComparisonshavebeenreportedforallTIPsetswiththeexceptionofCase16.CorrectmeasuredTIPresponsedatais-142-unavailableforthiscase.AlthoughseveraloftheotherTIPsetsweretakenbeforethecorehadtimetoreachanequilibriumxenondistributionduetocontrolrodposition,powerorflowchanges,theyhavebeenincludedinthecomparison.Figures3.3.4through3.3.15present.representativeTIPresponsecomparisonsforCycles1and2.Fortwoexposurepointsineachcycle,coreaverageaxial,radial,andfourindividualTIPresponsecomparisonsareincluded.TheindividualTIPresponsecomparisonsinthefigures,wereselectedalongalinefromthecoreperipherytothecorecenterasshowninFigure3.3.1.ThesamefourTIPlocationsarealwaysshown.3.3.4GammaScanComparisonsAttheendofCycles1and2gammascanmeasurementsweretaken.TheavailableCycle1data(Reference29)consistofaxialpeaktobundleaverageLa-140activitiesfor31fuelbundles,individualaxialtracesfromtwofuelbundles,andtheaxialtracefromtheaverageofthe31individualtraces.Useofthisdataisprimarilylimitedtobenchmarkingtheaxialpeakingfactor.TheCycl'e2data(Reference12)aremuchmoreextensive.Atotalof89fuelbundleswerescanned.Ofthese,71werelocatedinoneoctantofthecore,providingmeasurementdataformostofthefuelbundlesinthatoctant.Theremaining18fuelbundleswerechoseninotheroctantstocheckforasymmetries.Seventy-threeofthebundleswerescannedat12axiallocationsatapproximatelytwelve-inchintervals.Theremaining16bundleswerescannedat24axiallocationsatapproximatelysixinchintervals.Thereportedmeasuredactivitywascorrectedtocorrespondtoactivityjustaftershutdown.Thepracticalaccuracyofthereporteddataincludingmeasurementuncertaintyandmeasurementmethodbiasisapproximately3%(Reference12,Section4.3).AspreviouslydiscussedinSection2.3,thegammascandataitselfisameasureofLa-140gammaactivity.Duringreactoroperation,La-140isproducedbothasafissionproductandbyBa<<140decay.Sincethehalf-lifeofBa-140isapproximately13daysandthatofLa-140isapproximately40hours,thedistributionoftheBa-140andLa-140concentrationswillbe-143-representativeofthecorepowerdistributionintegratedoverthelasttwotothreemonthsofreactoroperation.Aftershutdown,theonlysourceofLa-140isfromdecayofBa-140.Becausethehalf-lifeofLa-140isshortwithrespecttoBa-140,afterabouttendaysthedecayrateofLa-140iscontrolledbythedecayofBa-140.Therefore,therelativemeasuredLa-140activitiesarecomparedtotherelativecalculatedBa-140concentrations,andtheLa-140concentrationdoesnotneedtobecalculated.TheSIMULATE-EcodewasusedtocalculatethenodalBa-140concentrationsattheendofbothcycles.AttheendofCycle1,thepeaktoaverageBa-140concentrationwascalculatedforeachofthe31fuelbundles.Ofthese,17wereuncontrolledand14werepartiallycontrolled.ThecalculatedandmeasuredpeaktoaveragedatafortheuncontrolledandcontrolledfuelbundlesisshowninTables3.3.4and3.3.5,respectively.Theaveragedifferenceforall31fuelbundlesis1.2%withastandarddeviationof2.1%.Theseresultsdemonstrateexcellentagreementtothemeasuredaxialpeakingfactor.ThreeaxialtracesfromCycle1arealsoavailablefromReference29.ThemeasuredandcalculatedLa-140activitiesforeachtracearenormalizedto1.0priortothecomparison.Figure3.3.16showsthecomparisonfortheuncontrolledbundle,andFigure3.3.17showsthecomparisonforthecontrolledbundle.Figure3.3.18showsthecomparisonfortheaxial31bundleaverageLa-140activities.ThemeasureddatafortheseplotswereonlyavailableingraphicalformfromReference29.Therefore,nostatisticsarecomputedfromthecomparisons,butthefiguresdemonstratetheabilityofSIMULATE-Etocalculateaxialpowershape.MoreextensivegammascanmeasurementsweretakenattheendofCycle2.ThedatasuppliedinReference12allowforradial,nodal,peaktoaverage,andbundle(axial)comparisons.Fortheradialandnodalcomparisons,theperipheralbundleshavebeeneliminated.Thesebundlesarelowinpowerand,consequently,ofnoconcernfromathermallimitsperspective.Forthenodalcomparisonsthetopandbottomsixincheshavealsobeeneliminated.Thesenodesarelowinpowerandare,consequently,oflittleimportancefromasafetystandpoint.ThemixedoxidebundleshavealsobeeneliminatedfromthenodalandradialcomparisonssincetheyareatypicalofSusquehannaSESreloadfuel.<<144-Priortomakinganycomparison,themeasuredandcalculateddatawerenormalizedsuchthatthecoreaveragerelativeactivitywas1.0.However,forthecalculateddataonlythenodesforwhichthereweremeasureddatawereusedinthenormalizationprocess.ThecomparisonsarebasedonthemeandifferencebetweencalculatedandmeasurednormalizedLa-140activities.Thisdifferenceiscalculatedas:e.=c.-m.ii.iwherec.=thenormalizedcalculatedLa-140activity,~m.=thenormalizedmeasuredLa-140activity.iThesubscriptidenoteseithertheaverageactivityforthebundlefortheradialcomparisonsorthenodalactivityforthenodalcomparison.Thestandarddeviationsforthecomparisonsarecalculatedas:a(s)=NP(e.-e)iN-1100XMwhereM=theaverageofthenormalizedmeasureddataforthecomparison=1.0forallcomparisonsduetonormalization,e=theaveragedifferencebetweenthemeasuredandcalculatednormalizedLa-140activities=0.0forallcomparisonsduetonormalization,N=numberofLa-140activitiesforthecomparison.TheradialcomparisonswereobtainedbyaveragingthenodalLa-140activitiesforeachbundle.TheresultsfromthecomparisonsareshowninFigure3.3.19.Thestandarddeviationof1.82%reportedonthefigurewascalculatedforthosebundlesincludedintheoctantshowninthefigure.Iftheadditional11bundlesfromtheotheroctantsareincludedinthecomparison,thestandarddeviationbecomes1.92%.Basedonthecomparisons,nosignificantdeviation-145 intheradialpowershapeisapparentindicating.SIMULATE-EwillprovideanaccurateassessmentoftheCriticalPowerRatio.Thestandarddeviationfromthenodalcomparisonsis5.45%.Assuminga3.0%measurementuncertainty,thecalculationalstandarddeviationis4.55%.TheSIMULATE-EcalculatedpeaktoaverageLa-140activitywascomparedtothemeasureddata.Thepercentdifferenceforeachassemblyiscalculatedas:c.-m,e.'ix100imwherec=thecalculatedpeaktoaverageLa-140activityforfuelbundlei,m.=themeasuredpeaktoaverageLa-140activityforfuelbundlei.TheresultsofthecomparisonsareshowninTable3.3.6.differenceis-0.2%withastandarddeviationof1.5%.TheaverageThesecomparisonsincludedallassembliesandaccountedforallaxialnodes.TheresultsindicateexcellentagreementfortheaxialpeakingfactorandareconsistentwiththeCycle1results.TheresultsfromtheindividualbundlecomparisonsareshowninTable3.3.7.Thesecomparisonsarealsoreportedforeverybundleandincludedallaxialnodes.Foreachbundle,theaveragedifferencebetweenthecalculatedmeasurednodalactivitiesiscalculatedas:enKZ'>>,.Kwheree=thedifferencebetweenthemeasuredandcalculatednormalizednodalk,nLa-140activitiesforbundlen,andaxialnodek,K=numberofaxialnodesinthebundleforwhichmeasurementsweretaken.-146-Thestandarddeviationforeachfuelbundleis:0nKg(e-e)K-1100Figure3.3.20showsthefuelassemblywiththebestaxialagreement(BundleCX0662).Althoughthisparticularbundleis.locatedonthecoreperiphery,itexhibitsexcellentagreementforallaxiallocations.TheworstcomparisonisshowninFigure3.3.21(BundleCX0399).Thecalculatedaveragedifferenceof12.2%ismostlyduetodifferencesinthetopandbottomnodes.'owever,thecalculatedLa-140activityinthecentersectionofthebundlestillagreeswellwiththemeasureddata.Figures3.3.22through3.3.27showexamplecomparisonswhicharemoretypicaloftherestoftheassemblies.Mostofthecalculateddifferenceisduetonodalcomparisonsatthetopandbottomofthecore.Differenttopandbottomalbedoscouldhaveeliminatedmuchofthiserror.AsdiscussedinSection3.1,thealbedos,whichweredevelopedasaresultoftheSusquehannaSESmodelnormalization,werealsousedintheQuadCitiescalculations.ItisexpectedthatduetodifferentcoreandfueldesignsforQuadCities,thetopandbottomalbedoswoulddifferfromtheSusquehannaSESvalues.AlthoughtheSusquehannaSESalbedoswereutilizedintheQuadCitiescalculations,theSIMULATE-Emodelprovidesanaccuratecalculationofthepowerdistribution,ThissupportstheuseoftheSIMULATE-Emodeltopredictpowerdistributionsforfueldesignsotherthanthoseinthenormalizationdatabase.-147 TABLE3.3.1QUADCITIESUNIT1CYCLE1CALCULATEDCOLDXENON-FREE4CORECRITICALK-EFFECTIVESCoreAverageCoreReactorExposureTemperaturePeriod(GWD/RZU)(DEGF)(sec)NumberofControlledLocal(L)orNotchesIn-secpxence(I)4CalculatedCoreK-effective0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.02.8663.7483.7483.7483.7483.7483.7483.7483.7484.9386.9116.911.152160159159161160159158158159157157160159159160158159158158155163707577108120120'12517812018217918060751601505032789041651256533224538423939169120300.43.747.52805430015714018145100300639084008404634463248404840284028402839284026336631883928392839284168392840283946412669884388428843084267118'37883786830693683946514ILLIILLLLLLIILLLLLLLIILLLLILLIILI0.993140.992890.992070.992880.992840.991920.992090.992810.993240.992570.992700.993040.992780.993660.993530.992470.992470.992520.992680.990820.991710.995900.998470.998400.997600.997180.998180.997900.998120.997300.998291.000261.00041148 TABLE332QUADCITIESUNIT1CYCLE1IN-SEQUENCEVERSUSLOC2LLCRITICALCOMPARISON~CoreAverageExposure(GWD/MTU)ControlRodsWithdrawnandPositionCoreReactorTemperaturePeriodIn-secpxenceMinus(DEGP)(sec)LocalK-efffective0.038,1194842,1184816060-0.000160.038,1138,154844159750.000660.046,1984846,23844160500.000810.046,1984850,19846159320.000640.050,2384850,1984615878-0.00008'.00.046,2384850,2394626,3184826,3584830,3180815815990.41-0.000510.000160.018,1184822,11846157650.000030.026,2784826,3184830,31808159332-0.000930.026,2784830,2784830,31908159245-0.000800.026,2384826,2784830,27808160380.000260.022,3984822,3592426,35808158420.000260.026,3984822,3984826,35808159390.00021-149-TABLE3.3.2(conti.nued)QUADCITIESUNIT1CYCLE1IN-SEQUENCEVERSUSLOCALCRITICALCOMPARISONCoreAverageExposure(GWD/MTU)ControlRodsWithdrawnandPositionCoreReactorTemperaturePeriodIn-secgxenceMinus(DEGP)(sec.)LocalK-effecti.ve0.042,3994842,3593838,35808158390.000050.038,3984838,3594834,359061581690.001913.7483.74826,1193822,1182026,1194822,11920707543.747.5"0.00073-0.000663.7483.74822,1164822,1561850,2764850,2392277108280540.000140.000563.74826,1594822,118.4818,15622120157-0.000163.74814,2794810,23I4814,19822125140-0.000386.91122,15I4822,1164826,118061821000.00015Average=0.00007StandardDeviation=0.00064-150-TABLE333SUMMARYOPQUADCITIESUNIT1CYCLES1AND2TIPRESPONSECOMPARISONSCaseNumberDateCoreAverageNodalExposureRMS(CWO/MTU)(a)RadialRMS(*)Cycle112345678910111213141516*6/29/728/30/729/11/7211/01/7212/26/723/08/735/16/736/06/737/19/738/30/7311/01/7312/11/7312/29/732/13/743/05/743/26/740.27,20.7120.8821.4702.2393.1903.8364.0744.7375.3016.0316.5586.8077.3967.6597.9809.43"8.858.2610.438.389.099.619.879.8410.7213.8411.119.2311.4211.725.435.675.805.725.61.5.796.126.465.915.875.365.805.634.975.58Cycle,lAverage10.125.71Cycle2171819202122232425262728297/26/748/15/749/12/7410/23/7411/18/7412/11/744/03/756/19/758/08/7510/20/7511/13/7512/19/7512/31/757.3037.5327.9648.4238.7899.14110.17311.23811.93512.89613.19813.61113.74112.5510.188.8910.308.087.808.077.928.798.168.5511.6512.734.384.854.254.634.664.804.944.425.005.294.764.545.03Cycle2AverageCombinedAverage9.519.844.735.26*CorrectmeasuredTIPresponsedataisunavailable.-151-TABLE334QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONSUNCONTROLLEDBUNDLESCoreLocationMeasuredPeaktoAverageLa-140ActiviCalculatedPeaktoAverageLa-140ActivityDifference(*)39,5841,5841,5617,4855,4257,4257,4007,3409,3207,2609,2431,2647,1823,1025,0831,1033,081'.2711.2121.2241.287.1.1851.1911.2451.1761.1481.1701.1861.3541.2501.1781.2391.1721.2211.2701.2391.2181.2891.2441.2601.2571.2141.1941.2271.2341.3291.2591.1781.2241.1821.235AvexageDifference=1.7%StandardDeviation=2.3%-0.12.2-0.50.25.05.81.03.24.04.94.0-1.80.70.01~20.91.1-152-TABLE3.3.5QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONSCONTROLLEDBUNDLESCoreLocationMeasuredPeaktoAverageLa-140ActivityCalculatedPeaktoAverageLa-140ActivityDifference(*)39,5617,50'15,4855,4009,3407i3209,2607,2449,1847,1625,1023,0833,1031,081.2821.6091.2801.2691.4181.3221.3661.2311.6021.2831.3581.2511.3851.3691.2841.6311.3071.2791.3941.3321.3981.2561.6251.3051.3421.2471.3501.3730.21.42.10.8-1.70.72.32.01.41.7'1.2-0.3-2.50.3AverageDifference=0.5%StandardDeviation=1.5%-153-TABLE3.3.6QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONSPEAKTOAVERAGELA-140ACI'IVITIESBUNDLEIDLOCATION(XY)PEAKTOAVERAGEMEASUREDCALCDIFFEfKNCE<r.)CX0214GEB159CX0575CX0588CX0420CX0052CX0287CX0378GEH023CX0150CX0440CX0351CX0453CX0723CX0015CX0316CX0498CX0044CX0327CX0106CX0165CX0306CX0660CX0310CX0523CX0093CX0297CX0611CX0024CX0225CX0617CX0231CX0585CX0631CX0186CX0332CX0161CX0100GEH022GEH029CX0281CX0399CX0396CX0198CX0393GEH002,GEB132GEB160(33,34)(31,32)(31,34)(33,32)(7,32)(15,32)(23,34)(17,42)(9,40)(7,42)(9,42)(7,40)(23,32)(17,40)<15,42)(15,40)(25,34)(7,34)(9,34)(9,32)(25,32)(15.34)(17,34)(27,34)(3,36)(13,40)(23,38)(3,40)(15,46)(21.32)(9,46)(15.38)(19.36)(5,38)(19.42)(11,44)(19,38)(13,46)(9,36)(13,44)(21,36)(9,38)(11,40)(5,36)(11,36)(13.36)(17,36)(31,30)1.19231.13791.19371.18421.24201.19901.18711.20891.20081.31081.25861.27141.19751.20281.18941.21731.18921.24451.22851.23411.19321.20061.18561.18661.34681.21871.19821.39241.18721.18641.30861.21811.21031.32631.20391.21691.22371.22251.19441.16601.18441.25481.20541.28751.20281.16511.15891.13531.20041.13651.18811.19731.26201.19661.18561.21201.18871.27331.22001.24171.19451.19791.17761.20011.18691.24571.23031.25111.19911.19361.17451.19031.35091.18391.20081.36741.20231.17681.27621.18891.17641.30511.21061.20931.20321.21701.19211.17591.16881.19781.18251.27981.19831.17891.15461.13600.7-0.1-0.51.11.6-0.2-0.10.3-1.0-2.9-3.12~3-0.2-0.4-1.0-1;4-0.20.10.11.40.5'>>0.6-0.90.30.3-2.90.2-1.81.3-0.8-2.5-2.4-2.8-1.60.5-0.6-1.7-0.4-0.20.9-1.3-4.5-1.9-0.6-0.41.2-0.40.1-154-3.3.6(continued)QUADCITIESUNIT1EOC2GAMMASCAN(X)%'ARISONSPEAKTOAVERAGELA-140ACTIVITIESBUNDLEIDLOCATION(XY)PEAKTOAVERAGEMEASUREDCAIDDIFFERENCE(X)GEB161GEB158CX0494CX0490CX0174CX0683CX0520CX0394CX0137CX0482CX0717CX0682GEH008GEB123GEB149CX0719CX0672CX0362GEB105CX0546CX0553CX0662CX0643CX0397CX0286CX0191CX0057CX0124CX0414CX0412CX0384CX0318CX0401CX0398CX0359CX0711CX0096CX0622CX0445GEB162CX0162(29,32)(29,30)(7,48)(5,46)(7.46)(1,32)(3,32)(11,32)(5,32)(27,32)(19,32)(1,40)(13,48)(17,44)(21,40)(9,50)(15,36)(13.34)(25,36)(9,52)(5,44)(3,42)(1,34)(13,38)(9,48)(11,50)(13,32)(17,10)(47,38)(37,48)(23.14)(13,24)(47,24)(23,48)(37,14)(49,10)(9,18)(47,6)(41,18)(5,48)(17,32)1.13351.13021.34901.34951.33331.33111.31161.22631.27851.18021.15631.41281.21071.16641.18611.33281.19841.21441.16731.35901.35831.38271.33571.21031.32661.29331.22331.21371.14731.18521.19461.15581.21681.19411.16341.29111.20071.31191.20101.35181.17771.13641.13541.35281.34521.33441.35561.34021.23981.28841.18301.16381.43201.20511.17401.18571.32791.18171.20701.14971.37001.31181.39601.36121.18401.29861.28991.22611.21941.18331.19091.19091.18421.18251.18821.18841.31741.24341.35661.20071.35181.16980.30.50.3-0.30.11.82.21.10.80.20.61.4-0.50.6-0.0-0.4-1.4-0.6-1.50.8-3.41.01.92~2-2.1-0.30.20'3.10.5-0.32.5-2.8-0.52.12.03.63.4-0.00.0-0.7AVERAGEDIFFERENCE:STANDARDDEVIATION:-0.2r.1.5r.-155-TABLE3.3.7UADCITIESUNIT1EOC2INDIVIDUALBUNDLEGAMMASCANCOMPARISIONSBUNDLELOCATIONID(XY)STANDARDAVERAGEDEVIATIONDIFFERENCE(X)CX0546CX0719CX0191GEB162CX0494CX0286GEH008CX0398CX0412CX0490CX0174CX0617CX0100CX0024CX0553CX0332GEH029GEB123CX0662CX0150CX0440CX0015CX0378CX0186CX0682CX0611CX0351GEH023CX0396CX0093CX0316CX0723GEB149CX0631CX0399CX0397CX0231CX0161CX0297CX0414CX0523CX0198GEH022CX0393GEH002CX0672GEB132CX0585CX0281(9,52)(9.50)(11,50)(5,48)(7,48)(9,48)(13,48)(23,48)(37,48)(5,46)(7,46)(9,48)(13,46)(15,46)(5,44)(11,44)(13,44)(17.44)(3,42)(7,42)(9,42)(15,42)(17,42)(19,42)(1.40)(3,40)(7,40)(9,40)(11,40)(13,40)(15,40)(17,40)(21,40)(5,38)(9,38)(13,38)(15,38)(19.38)(23.38)(47,38)(3,36)(5,36)(9,36)(11.36)(13,36)(15,36)(17,36)'(19,36)(21,36)0.007,0.0160.0170.0270.0140.032-0.0200.045-0.0070.0380.0210.0330.0290.0130.0360.016-0.0260.0270.0030.0050.0200.005-0.0120.0070.0120.005-0.003-0.054-0.031-0.0100.007-0.016-0.006-0.001-0.0120.008-0.009-0.0030.007-0.0350.0120.008-0.074-0.007-0.045-0'04-0.0330.0070.0094.344.955.374.285.416.117.466.325.745.115.936.307.555.735.876.657.428.733.98.6.687.497.177.926.553.835.226.508.186.757.117.056.927.716.5012.176.176.335.795.785.414.655.967.276.427.706.597.806.646.33-156-TABLE3.3.7(continued)UADCITIESUNIT1EOC2INDIVIDUAl,BUNDLEGAMMASCANCOMPARISIONSBUNDLEIDLOCATION(XY)STANDARDAVERAGEDEVIATIONDIFFERENCE(X)GEB105CX0643CX0044CX0327CX0362CX0306CX0660CX0287CX0498CX0310CX0575CX0214CX0683CX0520CX0137CX0420CX0106CX0394CX0057CX0052CX0162CX0717CX0225CX0453CX0165CX0482GEB161GEB159CX0588GEB158GEB160CX0318CX0401CX0096CX0445CX0384CX0359CX0124CX0711CX0622(25,36)(1,34)(7.34)(9,34)(13,34)(15,34)(17,34)(23,34)(25,34)(27,34)(31,34)(33,34)(1,32)(3,32)(5,32)'(7.32)(9,32)(11.32)(13,32)(15,32)(17,32)(19,32)(21,32)(23,32)(25,32)(27.32)(29,32)(31,32)(33,32)(29,30)(31.30)(13,24)(47,24)(9.18)(41,18)(23,14)(37,14)(17,10)(49,10)(47,6)-0.0230.043-0.002-0.008-0.011-0.0220.005-0.0050.0050.0050.003-0.0040.0450.0160.0120.014.-0.002-0.016-0.007-0.012-0.015-0.003-0.002-0.009-0.006-0.007-0.034-0.0260.015-0.038-0.018-0.023-0.001-0.0200.0180.0040.0340.0130.0300.0337.504.245.776.296.145.97.5.867.416.136.166.805.924.374.905.155.524.995.885.696.435.665.825.316.475.406.568.228.467.377.897.775.566.784.917.706.724.885.625.153.67157 FIGURE3.3.1QUADCITIESUNITICORETlPLOCATIONS5957555351494745434139373533312927252321LINEOFTIPSYMMETRY00020406081012141618202224262830323436384042444648505254565860XControlRodLocationLocationForIndividualTIPResponseComparisons~TraversingIn-coreProbeLocation 1.01FIGURE3.3.2SIMLUATE-EHOTCRITICALCOREK-EFFECTIVEVSCOREAVERAGEEXPOSUREee1.00ss'IssIsee~~~~eOI-UJ099IUJfCOO0.980.97-0l~ee@ee~0'eeer~o~~~::::::~:"0LegendU1C1HOT.---.:-lrl".'"'."".'"0U2C1HOTU1C2'OTU2C2HOToU1C3HOT~QC1C1HOT~QC1C2HOT12345'78'10'112131415COREAVERAGEEXPOSURE(GWD/MTU) 1.0100*~IfI0FIGURE3.3.3QUADCITIESUNIT1CYCLE1SIMULATE-EHOTANDCOLDCRITICALCOREK-EFFECTIVES1.00IJJ0II-oIJJLL0.99-UIhCLLIlC0O0.880......:....0:.0N...:.......',.....x.I~~~~~~o......................:..0...:...O.':..:.:o:'ICLegendoQC1C1HOTxQC1C1COLD""'.970It1234667COREAVERAGEEXPOSURE(GWD/MTU)10 160FIGURE3.3.4QUADCITIESUNIT'I'CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON2-239GWD/MTUCOREAVERAGEEXPOSURE160140120I-KD100tQRUsoCoCLeo0++000~+..0..+e4020001284667S9101112181415161718192021222824COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE>>161-FIGURE3.3.5QUADCITIESUNIT1CYCLE1RADIALTIPRESPONSECOMPARISONS2.239GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-4.346.34-3.21-0.58-0.23-10.36-2.866.362.264341393735333129-8.33++++2.7++++.61135.414.++++1.3I+++27252321I191715131.682.68++++-4857.8.59-6.6687-1.17-10.58-5.21-3.66.30-0.80-2.415456586Diff=[(Calc-Meas)/CoreAvgTlpResponse]X100%-162-0002040608101214161820222426283032343638404244464850520X FIGURE3.3.6QUADCITIESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS2.239GWD/MTUGOREAVERAGEEXPOSUREIlOHIIORLOCAllOHdd,ddMOHIlORLOCATIOH44,dd'llIOOrr~0OaO.~os'~>';KZVosI0.i.0~Ittttoor~0aC0a..e+000toIlIIot~~~t~1~~ttTl1tI~ltloaTTlolttoolootoRICORKALGALHOOK0VotatttomrRttrONOR0AAICIRATRDmrRotrotot~CoNTRoLRooroamoN~~~~4t~Tt~10mtoItttttIoITltatoatttottCORKAXIALHOOK0taAWMOmrRurORuoINLCOIATtoTI~Ruroutt~coNTRCLRoorottmoNMONITORLOCA1IOH40,5$IIOIKTORLOCATIOHdK,SOIOOtto5aoeooo0oOo0to00toottoL5r~oa0I040g000TOT~~I~o~t~T~~lt11lt'loV1t10ITltltttttttttttCORKAXIALKOOK+vtAtuttomrRttroNotoAALOutATCOTlrRttrouot~CCNTRCLRoorovmoN~I0o~t~T~~10ltloI~1I1~'I~1T1tI~tttlttoottCORKAXIALHOOK0VRAtuttomrRttrouotoCALOutATROmrRttroeuvooNTRDLRootovmoN-163-180RGURE3.3.7QUADCITIESUNIT1CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON7.398GWD/MTUCOREAVERAGEEXPOSURE180140120I-RD100LUK80COQ.60~~~~~~l~~~~~~~o0d'e+q~:g44g~0+0y++0+402000123456789101112131415161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE164-FIGURE3.3.8QUADCITIESUNIT'fCYCLEtRADIALTIPRESPONSECOMPARISONS7.396GWD/MTUCOREAVERAGEEXPOSURE61595755535149474543-7.61++5.14-5.23++++-1.15.69-1.545;2+++++413937-4995.92-2.00942.906.035333129272523.214.893.42.08++++++++5.39.4+2.6++++-3.54-3.52691917151311975312.5-7.10-3.59-102005-4.545-0.89520.0500020406081012141618202224262830323436384042444648505254565860XDiff=[(Calo-Meas)/CoreAvgTIPResponse]X100%-165-FIGURE3.3.SQUADCITIESUNIT1CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS7.396GWD/MTUCOREAVERAGEEXPOSUREMONITORLOCATIONNL,$$MONITORLOCATTON4$,$$Ito100X~Ito0gQ6+000to~b0TT'o0'LZ0100$0IIS784040~~t00~~T~~TCllltltltlololtlolttotlttCCCICORKAXIALNODE0oclcuotolitoctfootc0OALOQAICOMIICCPOOCC~COOTCOL000tooOIOO~~t~0~~T~0TOll010TIItIOlfIt10totlttttttCORKANALNODE+WAOWCOTltOottouoo0OALOOIATCOTltIlottooK~COCTOOL000totmooMONITORLOCATION41,$$MONTTORLOCATION$$.$$100~10oo400TtoL5IooeoooT+IoooItIIII~1~0~0~T~~1011ltIt11ItIo11It10tttlCttt01COREAXIALNODE~tlcAcuccDllthcotolltc0OALOIAATCO~ICttolltt~ooutcoLcootoolcloN~~00~C~T0~IOIlItItITI~IOItI0COIIKAXIALNOOK+OCACIONDTItIICttoCCCOOALOOLATCOntaaetoaao~OOOTCOL000000OIOOI~Ct~ItlttM166-180FIGURE3.3.10QUADCITIESUNIT1CYCLE2'VERAGEAXIALTIPRESPONSECOMPARISONT.532GWD/MTUCOREAVERAGEEXPOSURE160140120'I-R100ILIz80COCLBO0000+60004020012346B789101112131416161718192021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE-167 FIGURE3.3.11QUADCITIESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS7.532GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-5.985.6-3.46++++++-1.98-5.64-4.090.9434139373533312927252321I19171513.97I1.2120.62\223.043.66.313.3-1.49-1.025.4-0.33-5.894.5++++-0.16-10.22+-5.7697531.1032I3.4++I'I-0.62-4.320002040o"081012X505251416182022242628303234363840424446~84565860Diff=[(Calc-Meas)/CoreAvgTlPResponse]X100%-168-FIGURE3.3.12QUADCITIESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS7.532'GWD/MTUCOREAVERAGEEXPOSUREQONllOflIOCAllON4l,EElee~ceoII0+0IgIesNI~eC~e00++1o+t0I0040oo051$$~e~elL40I00gplIoIb)otII~~l~ie~T~Tell1$1~li1$leIT1$1$le$1$$$$NCOREAXIALNODE0NNAewsoneNeseosssI'ALosMTson~esseosos~CONTNOLNooeoslnON~1sei~~T$~1$111$1$111$141$1~TelelllllsliCOREAXIALNODE+IINAssesonessseosss0OALOOMTCOnelisle~~coNTNoLeooeoetnosIlONIIORLOCAllON40,$Elle0Ies~e~ee+000logeo0~$0eo04~Il~Cl~T~~1~llTl'llli1$I~1$1$Te$$$1$$$$$$COREAXIALNODE+NNAswlsoill'sseoNssoOAIOSLATSOnf$$$$0NSS~OONnCOL000KWTICNI~sei~~T~~Te11Tl1$lillTsTTI~lele~IllllliCOREAXIALNODE+IITAssssone1$$$0Nss0OAICAILATTOne11$$$0~~OONINOL$00eoelnON169-180FIGUAE3.3.13QUADCITIESUNIT1CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON13.1S8GND/MTUCOREAVERAGEEXPOSURE160140120I-ZD100LIZZ&0(0ILeo000O....'...............;.+pQoe009':+o+0402000123466789101112131416181718182021222324COREAXIALNODE+MEASUREDTIPRESPONSEoCALCULATEDTIPRESPONSE-170-FIGURE3.3.14QUADCITIESUNIT1CYCLE2RADIALTIPRESPONSECOMPARISONS13.198GWD/MTUCOREAVERAGEEXPOSURE615957555351494745-5.458.0+-1.539.14-0.38.15-2.00-2,010.134341393735333129-7.625.0903.8-2.662.64.75.84-1.533072.4727252321-0.16-2.159.3++++++3032-40919-171513'332-6.153.74.130872002.54.40-0933Y100X020406081012141618202224262830323436384042444648505254565860Diff=[(Caic-Mess)/CoreAvgTiPResponse]X100%-171-FIGURE3.3.16rQUADCITIESUNIT1CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS13.198GWD/MTUCOREAVERAGEEXPOSUREMOMTORLOCATIONINL$$MONITORLOCAllON4$,$$laa0~+oooeo0ar+o0lsaes~T~~wTT>>IsTI>>>>IT>>>>asCIaaaaaaCOICAssssoTl~psapopss0OAIOSLATCSllPSCSPOOSS~COSTIIOLSOSPOCITIOO~~s4~~T~~>>TllalsTl'>>lsTPI~'>>eatlaaaaPICOREAXIALNODE+IHAsssaoTlpsaspol>>s0OA>>CSATCOTarSCSPOSPS~cocllKILsooposllasMONITORLOCATION40,$$MONITORLOCAllONEginlalapTasX>>s0PP'll0a>>sLXlle~000os~it.0IaesssT~'>>ll>>lalCI~>>if>>>>asalaaasaCOhEAXIAlNODE+ocACCI>>olipcssposasooauwLATsoTlpssaposss~OOSTCOLOOSPONTlOS1~s~~'p~Is11lslsIIlaIsITIa%as.aIaaaaaaCOE+aacAssssolipacapoces0oAIOoLATCOT>>sasposes~ooslsoLaoopoNTlos-172-1.8FIGURE3.3.16QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITYBUNDLELOCATION23,101.6eI-OOI-CC1.41.21.0-0.8-0.6-0.4~~~/ee////).~.s~-~../.'~e/~/~~eJ~J....:;............:.Legende~'~~v~~eee~~~~~~~~~e~~r~~J~~~I~~~e'ee$e'\\\eGAMMASCAN:0.2-eSIMULATE-EI~~~~~'eeo.o$BOT12345678910111213141516.1718192021222324OMAX1ALNODETOP FIGURE3.3.17QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITYBUNDLELOCATION66,401.8>>1.6>>CONTROL:RQDI:OSITIQN:1.4I-01.2O01.0-0.8LlJO.BLLI0.4>>>>~~~~8~J~~~0~J~~~I~I~~~I~~'~r>>~y~~~>>>>>>~/~I'>>~>>///~//~/>>~Q~>>Legend>>>>////~/GAMMASCANSIMULATE-E~J~~~~~~~~0.20.02345B789101112131415161718192021222324BOTTOMAXIALNODETOP FIGURE3.3.18QUADCITIESUNIT1EOC1GAMMASCANCOMPARISONNORMALIZEDAXIALLA-140ACTIVITY31BUNDLEAVERAGE1.6~'1.4I-1.2rQ01.0I0.8LLI00.6-UJ0.4~~~~~~~~/'///I//I~w.rP~I~tV'~LegendGAMMASCAN:SIMULATE-E~~hr~~r~~~~~~Wh~~~~~I\-%------~~~~1\~l0.2~4~~~~h~~h~h~~0.0123456789101112131415161718192021222324BOTTOMAXIAL-,-NODETOP FIGURE3.3.19QUADCITIESUNIT1EDC2RADIALGJQtSLSCANCOHPARISON52500.6080.75?0.6240.7740.0160.0170.5790.7370.5930.7690.0140.0321.175l.157-0.0180.6740.8170.6950.8490.0210.0321.0151.0571.0441.0700.0290.013X.XXXGAHHASCANX.XXXSIHULATE-EX.XXXDIFFERENCEI420.8280.9490.8340.9690.0060.0201.0001.2911.0161.2670.016-0.024l.2731.3000.0271.0921.1201.0931.0981.1091.1000.006-0.0110.007STANDARDDEVIATION:1.82/400.5730.5780.0050.8901.2151.0701.0581.0621.1420.8881.1651.0421.0491.0701.127-O.OOR-0.050-0.028-0.0090.008-0.015l.2341.229-0.0050.8070.8070.0001.0351+025-0.0101.0491.0641.0571.05?0.008-0.007l.0591.057-0.0021+0261.0340.008360+6800+8390.69R0.8480.0120.0091.2741.0?RI1.2841.0791.2691.0601.0411.2041.06?I1.R421.0761.2381.0691.051-0.070-0.005I-0.042-0.003-0.0310.0090.0101.RRR1.201-0.0210.9421.0150.9421.0080.000-0.0071.0511.0661.0551.0421~0461.060-Oo009-O.ORO0.0051.0281.0351.0391.0241.0411.044"0.0040.0060.0051.0501.0381.0541.0360.004-0.002320~70308310~90409731010101510401044102610051~005102910660.7190.8430.9190.9720.9961.0091.0301.0311.0241.0050.9971.0241.0600~0160.0120.015-0.001-0.014-0.006-0.010-0.013-0.0020.000-0.008-0.005-0.0061.0371.05R0.01530135791113151719212325R7293133 AOlFlGURE3.3.20QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX0662I-~)VC)IOClll!NCC~0Legend~...'-"0=Measuredo=CalculatedIIC)0.012.024.03B.O48.0B0.072.084.09B.O108.0120.0132.0144.0DlSTANCEFROMBOTTOMOFGORE(IN)

FIGURE3.3.21QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX03990-pv-I-0CDIQQLQN<o0~~~Legend~-..'--.0=Measuredo=CalculatedI\Q0.012.024.036.048.0BO.O72.084.0SB.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.22QUADCITIESUNIT1EQC2GAMMASCANCQMPARISQNBUNDLEID:CX0231I-~)QC)IgOOluN0Z0Legend~...'--.oMeasuredoCalculatedC)O0.012.024.03B.O48.0BO.O72.084.09B.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.23QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX02970-)~I-OC)lIOnMNEC~0zLegend.-----:-"o=Measuredo=CalculatedIP0.012.024.0S6.048.080.072.084.098.0108.0120.0182.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.24QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX07'I7~~~IOI-)rI-VIO1QUlNK~0xLegend~---.'.--.0=Measuredo=Calculated0.012.024.036.048.060.072.084.096.0108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.25QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX0378L-u)I-0C)IOQLUrl<o0Legend~".-'.-"0=Measuredo=Calculated0.012.024.03B.O48.060.072.084.09B.O108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN)

FIGURE3.3.2BQUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:CX0150l-~Qv'-OagOTQLLIN0RLegend~.';"o=Measured0=Calculated~~~~~~~~00.012.024.036.048.060.072.084.086.0108.0120.0132.0144.0DISTANCEFROMBOTTOMOFGORE(IN)

FIGURE3.3.27QUADCITIESUNIT1EOC2GAMMASCANCOMPARISONBUNDLEID:GEH029I-~)r'COIOT0Ult4Kg)0ZLegend~.""'.-"CIMeasured0CalculatedII0.012.024.03e.o48.0B0.072.084.088.0108.0120.0132.0144.0DISTANCEFROMBOTTOMOFCORE(IN) 3.4PeachBottomUnit2Ccles1and2ComarisonsOnespecificapplicationofPPGL'ssteadystatecorephysicsmethodsandmodelsistoprovideinputto'thetransientanalysisbenchmarkingofthePeachBottomUnit2endofCycle2turbinetriptests.Inordertoprovidethenecessaryinput,SIMULATE-EmodelsofthePeachBottomUnit2Cycles1and2coresweredeveloped.ThesemodelswerethenusedtosimulatethePeachBottomUnit2coredepletionthroughCycles1and2.ComparisonstoTIPmeasurementstakenduringCycles1and2andtoGeneralElectricCompany(GE)processcomputerPlpowerdistributionstakenprior'totheturbinetriptestsassesstheaccuracyofthecoredepletioncalculations.PeachBottomUnit2isaGeneralElectricBWR-4corethatconsistsof764fuelassemblieswithanactivecoreheightof144inches.Theinitialcyclecontained764GeneralElectric7x7fuelassembliesgCycle2contained576initial-corefuelassembliesand1888x8freshfuelassemblies.AlthoughreactordesignandratedconditionsarequitesimilartoSusquehannaSES,thePeachBottomUnit2coreloadingpattern,fuelbundledesign,inletfloworifices,andcoresupportplatebypassflowpathsaresignificantlydifferent.ThesedesigndifferencesweretakenintoaccountindevelopmentofthePeachBottomUnit2SIMULATE-Emodel.AmoredetaileddescriptionofthePeachBottomUnit2coreisfoundinReference30.TheaverageRMSofthedifferencesbetweentheSIMULATE-EcalculatedandmeasuredTIPresponsesforeachPeachBottomUnit2TIPresponsecomparisoniscalculatedasdescribedinSection3.2.3.Figure3.4.1showstheRMSoftheTIPresponsecomparisonsforPeachBottomUnit2Cycles,land2.ThesecomparisonsareslightlyworsethanSusquehannaSESresultsbutarestillquitegood.ThePeachBottomUnit2coreoperatingdata(Reference30)usedformodelingthecoredepletionwaslessdetailedthanthedatausedforSusquehannaSES.Thislackofdetaileddatamaybethecauseoftheseslightlyworseresults.Figures3.4.2through3.4.4showtheendofCycle1coreaverageaxial,radial,andfourindividualTIPresponsecomparisons,respectively.Figures3.4.5through3.4.7presentthesamecomparisonsforendofCycle2.Asshown-185-inthesefigures,thecalculatedTIPresponseagreeswellwiththemeasureddata.TheseresultsthereforeindicatethattheSIMULATE-Emodelsaccurately'alculatethree-dimensionalcoreexposure,voidhistory,andcontrolhistoryarraysfortheendofeachcycle.Aspreviouslystated,theprimarypurposefordevelopingthePeachBottomUnit2modelswastogeneratethenecessarytransientanalysisinputs(e.g.,crosssectionsandkineticsparameters).TheendofCycle2TIPresponsecomparisonindicatesthatthecorehistoryarrayshavebeenaccuratelycalculated.Becausetheturbinetriptestswereperformedoveraspanofafewweekswithacorepowerhistoryplaguedbynonsteadystateoperation,carefulanalysisofpowermaneuverswasrequiredtoadequatelycalculatetheactualxenonconcentrationatthetimeofthetests.TheaccuracyofthecalculatedxenonconcentrationimmediatelypriortoeachturbinetriptestcanbeassessedbycomparingtheSIMULATE-EcalculatedpowerdistributiontotheavailableGEprocesscomputerPlpowerdistribution(Reference31).Figure3.4.8showseachaxialpowerdistributioncomparison.TheSIMULATE-EcalculatedpowerdistributionsarebasedonactualcoreconditionspriortothetestsasreportedinReference31.Thefigureshowsthethreedifferentpowerdistributions(i.e.,toppeaked,middlepeaked,andslightlybottomI'eaked)thatexistedatthetimeofthethreeturbinetriptests.Thisindicatesthatthecoreconditionswereconsiderablydifferentforeachtest,andthattheSIMULATE-Emodeliscapableofcalculatingthesedifferences.Typicalreloaddesignandlicensingapplicationsdonotrequiremodelingthecomplexityofnonequilibriumxenon.Therefore,thisbenchmarkprovidesagoodtestofPPGL'ssteadystatephysicsmodelsandmethodsinanapplicationwhichismoredifficultthanthenormalreloadanalyses.-186-FIGLIRESA.1PEACHBOTTOMUNIT2CYCLES1AND2RELATIVENODALRMSOFTIPRESPONSECOMPARISONS12.011.0~~~10.0-9.0-"-CO&.0-fL"7.0-D0Z60-.UJ5.04.0-".CC0I-3.0-".2.0-IILegend"PB2C1PB2C2.'~~J~1.0-0.0-0345678'10COREAVERAGEEXPOSURE(GWD/MTUj11121314 80FIGURE3.4.2PEACHBOTTOMUNIT2CYCLE1AVERAGEAXIALTIPRESPONSECOMPARISON11.133GWD/MTUGOREAVERAGEEXPOSURE8070BoI-z50IUzU4oMCLso0+00+++++000+0+00+0J20100I012S4567881011121S1416161718182021222324COREAXIALNODE+MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE188-FIGORE3.4.3PEACHBOTTOMUNIT2CYCLE1'ADIALTIPRESPONSECOMPARISONS1l.I33GWD/MTUCOREAVERAGEEXPOSURE61595755535149474543413937-3.30-4.93-3.03-4.36-0.201.670.129.53.81-1.273.4-6.440.06-5.06-0.433533312927252321++++-0.5611.533.50.16-0.65-1.27-3.11-3.791.04.719171513-0.89-3.092.27++++++++-4663.I++++-0.09-0.11-547Y1IIII'II00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/CoreAvgTiPResponsejX100%189-FIGURE3.4.4IPEACHBOTTOMUNIT2CYCLE1INDIVIDUALTIPRESPONSECOMPARISONS11.133GWD/MTUCOREAVERAGEEXPOSURE~IOHITOALOCAllOHdIL$$$IOHIIORLOCATIOH$$,$$leetseteeIISgIee0+404TesL~?ggIee~sl's0~4gf00+04P0~~s~~s0r~~tettTetstttstetresvsestssesstCORKAXIALHOOKpNRAsvesolitNespoNss0OAIOVIATRD11PRssPONesNCONTROlROOPOSITION~~S0~0r~~tenteteetteteCORKAXIALHOOK+NAstpteoTltNssposss0INSOVIATSOTl~RSSPONSS~CONTROLOOOtoelllONtrlelsleeleeeesliMONTOllLOCAllOH40,$$IIOHITORLOCATIOH$$.$$teeleetee??0eseeP004P0~?~0I~0IIlgl0o04~1~s~s~rs~le11tele11tslelrtetseeelsessslCORKAmALHOOK+NaASVRmTttRSSPO<<SS0CAlovlysoTltRsspoNes~CONTROLROOPON110N~1~s~~~'I~elelttslell1~tetrleleeeeleeeeslCORKAXIALHOOK+NSASVRSOTttIleetONSSoOASOVlAISOTltRSPPONSS~CCNTttoeRootoNTICN190-180FIGURE3.4.5PEACHBOTTOMUNIT2CYCLE2AVERAGEAXIALTIPRESPONSECOMPARISON13.812GWD/MTUCOREAVERAGEEXPOSURE160140120I-KD100lUK80COCLeo~~tb0..+.'P.g.00Q.............040+02000123456788101112131415161718182021222324COREAXIALNODE+'MEASUREDTIPRESPONSE0CALCULATEDTIPRESPONSE191-FlGURE3.4.6PEACHBOTTOMUNIT2CYCLE2RADIALTIPRESPONSECOMPARISONS13.812GWD/MTUCOREAYERAGEEXPOSURE615957555351494745-8.41-3.026.893.936.04-3.78-9.963.245.3443413937-5.200.4-0.35-0.36-0.93-2.68-7.99353331292.01++++++-2.70-3.902.65.I27252321.19++++3.6-3.213.9-4.07-0.0219-1715132\12-1.85-0.130.45-0.21++++++++-3.26-11.21-2.56II28303234363840424446485052502224260002040608101214161824X565860Diff=[(Calc-Meas)/CoreAvgTIPResponse]X100%-192-FIGURE3.4.7PEACHBOTTOMUNIT2CYCLE2INDIVIDUALTIPRESPONSECOMPARISONS43.812GWD/MTUCOREAVERAGEEXPOSUREMONITORLOCATION50T$$MONITORLOCATION4$T$$IWNa$o0441WZatIW0+o+o0Iaa~a0r~~>>11ala11>>>><<>>>>aealassaaiCOREAXIALNODE+1>>saoa>>InrNaaroosa4OAONLITciaonrIltaroNot~CONTNOLNooroaNTON~a~4~~r~~>>11IsI~%>>>>Tr>>>>wslasasssCOREAXIALNODE+1>>saoo>>IntNaarooaaoossouultanrNtaroooa~CONTNOLIiootoainONMOMTORLOCATION40,$$MONITORLOCATION$$,$$IW'll4r4044IJ.T+iog444aaLXIW~04+440~0~I~s~a~ra~ls11lslsN>>>>itlsiassslasssaiCOREAXIALNODE4WruuaaunrNaarONSa4CIIoosssaoTltNaaroNaa~CONTROLIioorOWloNsa~a~r~>>nTsisNisI~ir>>asssisssssiCOllEAXNLNODE4NahaislaonroasroNsooossoosslaontNcarooaa~OONTIIOLNOOtoainoN193 FIGURE3.4.8PEACHBOTTOMUNIT2ENDOFCYCLE2COREAVERAGEAXIALPOWERDISTRIBUTIONS1.5CLLLIOCLLIJI-LIJCY1.00.5LegendPIDataSIMULATE-E0.01.5131215182124OLIJ')I-LLICL1.00.5LegendPfDataSIMULATE-E0.01.51312151821I24CLOCLLIJ)CL1.00.5LegendPIDafaSIMULATE-E0.03BOTTOMI912'15AXIALNODE-194-182124TOP 4.0SPECIALAPPLICATIONSWITHPD7Occasionally,applicationsrequiremultipleassemblycalculations.ThelatticephysicscodeCPM-2isasingleassemblycodewhichisnotcapableofperformingmultiplebundlecalculations.Forthesecases,thePDQ7programisused.PDQ7hasbeenusedforcriticalityanalysesandtoprovideinputtothethree-dimensionalnodalsimulationcodes.TodemonstratePPsL'sabilitytousePDQ7,twosetsofproblemsarepresented.ThefirstsetcontainscalculationsoftheuniformlatticecriticalspresentedinSection2.2whichwereanalyzedwithCPM-2.ThesecondsetcontainssinglefuelbundlecalculationswithbothCPM-2andPDQ7.Forthesecases,pinpowerdistributionsandassemblyreactivitiesarecompared.-195 4.1DescritionofPD7ThePDQ7computerprogram(Reference32)wasdevelopedf'rfinemeshfewgroupdiffusiontheoryanalysis.Theprogramsolvestheneutrondiffusionequationinone,twoorthreedimensions.Availableoptionsincluderectangular,hexagonal,cylindricalorsphericalgeometries.Amaximumoffiveenergygroupsarepermitted.Themeshspacingisflexibleallowingtheusertodefineasmuchgeometricdetailasappropriateforthespecificproblem.CrosssectionsforeachproblemmaybeinputtoPDQ7aseithermacroscopicormicroscopicdata.AtPPGL,thisdatawouldtypicallybeCPM-2generatedmacroscopiccrosssections.Formostapplications,fourgroupcrosssectionsareusedwithenergyboundariesasdefinedinTable4.1.1.-196-TABLE4.1.1ENERGYGROUPSTRUCTUREUSEDINPDQ7CALCULATIONS~GzouEnergyBoundaries(eV)1.0x10-8.21x107528.21x10-5.53x105'5.53x10-0.62530.625-0.0197-4.2UniformLatticeCriticalsThesameuniformlatticecriticalsevaluatedwithCPM-2inSection2.2werealsoanalyzedwithPDQ7.One>>dimensionalcylindricalgeometrywasusedtomodeleachuniformlatticecritical.Thecriticalradiuswasdefinedtoconservethecorecrosssectionalareaandwasdeterminedfromthecriticalnumberofpins.PDQ7crosssectionsforthecoreregionwereobtainedfromCPM-2pincellcalculations.Thereflectorcrosssectionswere'obtainedfromReference33.BecausearadialreflectorregionwasincludedinthePDQ-7model,onlyanaxialbucklingtermwasrequiredtoaccountfortheleakage.AswiththeCPM-2uniformlatticecriticalcalculationspresentedinSection2.2,theTRXandESADAexperimentsweremodeledwithPDQ7.Tables4.2.1and4.2.2showtheresultsofthePDQ7calculations.TheCPM-2resultsfromSection2.2arealsoincludedforcomparison.TheresultsfromtheTRXandESADAcalculationsyieldsimilarK-effectives.-198-TABLE42.1P7RESULTSFORTRXCRITICALSExperimentIdentificationCPM-2K-effectiveExperimentalAxialMaterialguckling(m)PDQ7K-effectiveTRX1TRX2TRX3TRX5TRX6TRX7TRX80.99340.99580.99420.99390.99340.99740.99700.99605.045.125.325.115.265.255.255.310.99690.99730.99540.99610.99500.99960.99960.9978AverageK-effectiveStandardDeviation0.99510.00160.99720.0017199-TABLE422P7RESULTSFORESADACRITICALSExperimentIdentificationCPM-2K-effective*ExperimentalAxialMaterialchuckling(m)PDQ7K-effective*ESADA1ESADA3ESADA4ESADA6ESADA12ESADA131.00261.00041.01291.01161.01011.00778.568.9679.4669.4719.4369.6391.01221.01581.01521.01331.01621.0140AverageK-effectiveStandardDeviation1.00760.00501.01440.0016*AllCPM-2andPDQ7calculatedK-effectiveshavebeenadjustedby-0.4%~Ktoaccountforspacerworth.200 4.3ComarisonstoCPM-2AsecondqualificationoftheuseofPDQ7atPPaListhroughcomparisontosingleassemblyCPM-2latticephysicscalculations.TofacilitategenerationofthePDQ7crosssectiondata,theCOPHIN(Reference34)codewasused.Separateplanarregionsaredefinedfordifferentfuelpintypes,waterrodsandotherregions(i.e.,controlrod,watergap,etc.).Fuelpinregionsaregroupedaccordingtofuelpinenrichmentandlocation.Themeshdescriptionisdefinedtoexplicitlymodeleachpinandtoconservethevolumesofeachregion.Whenthefuelassemblybeingmodeledcontainsgadoliniaoracontrolrod,theneutronfluxdepressioncausedbythepresenceofthestrongabsorbercanbereproducedusingdiffusiontheorywithashieldingfactor.Withoutashieldingfactordiffusiontheoryresultsinanoverestimationoftheneutronfluxintheabsorberregionandacorrespondingoverestimationoftheabsorberworth.ShieldingfactorsaredevelopedandappliedtotheGroup4(thermal)absorptionandfissioncrosssectionsforgadoliniabearingfuelpinsandtheGroup3and4absorptioncrosssectionsforcontrolrods.ThesefactorsarederivedbyconservingtheCPM-2calculatedabsorptionrateintheabsorber.ThefuelassemblieschosenforthecomparisonaretheSusquehannaSESinitialcorebundledesigns.Twoseparatefueldesignswerechosenfortheanalysis.TheresultsareshowninFigures4.3.1through4.3.4.Theagreementinpowerdistributionforasingleassemblyisverygood.Theassemblyeigenvalues(K-infinities)alsoagreewellbetweenthetwocodes,differingbylessthan1mk(or0.1%bk).ThisdemonstratesthatPPGLcanperformaccuratePDQ7assemblycalculations.201-FIGURE4.3.1CPM-2VSPDQ7PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREHIGHENRICHEDFUELTYPEUNCONTROLLEDWIDEGAPWIDEGAP1.0271.0652.71.1041.1130.81.1171.116-0.21.1471.140-0.61.1241~1260.20.9800.969>>1.11.0470.9651.0290.966-1.7-0.91.0760.8601.0600.875-1.61.71.0220.8421.0220.8620.02.40.1140.1160.90.S931.0010.8CPM-2PDQ7%DIFFERENCE1.0741.0810.71.0661.0811.60.9971.0333.61.0290.1101.0370.1090.8-0.90.9881.0400.9871.046-0.10.51.0691.0861.0841.0891.40.40.8930.9920.9010.9730.9-1.91.0671.0121.0490.992-0.8-2.01.1461.1791.1431.166-0.3<<1.10.9480.923-2.61.0991.0131.0690.994-2.7-1.91.1481.1321.1401.134-0.70.21.0601.0732.2LINEOFSYMMETRYCPM-2K-INFINITY=1.1428PDQ7K-INFINITY=1.1426202-FlGURE4.3.2CPM-2VSPDQ7PINPO'tN'ERDISTRIBUTIONCOMPARISONGEINITlALCOREHIGHENRICHEDFUELTYPECONTROLLEDWIDEGAPWIDEGAP0.3800.4005.30.4860.5910.5230.6127.63.60.5490.7400.5780.7865.36.20.6070.8370.6320.8764.14.70.645O.8550.6660.8983.35.00.8260.8533.30.8240.8776.40.8770.9245.40.1290.1333.11.2321.2390.6CPM-2PDQ7%DIFFERENCE0.6900.9240.7030.96619450.8240.9890.8320.9951.00.6.0.9521.1660.9731.1732.20.60.1280.1301.61.2101.196-1.21.3001.288-O.S1.1011.2761.2601.1031.2361.2140.2-3.1-3.71.3341.3351.4931.2931.2841.420-3.1-3.8-4.91.4651.5731.5771.4331.5191.524-22-34-3A1.4041.353-3.61.5861.539-3.01.4871.465-1.5LINEOFSYMMETRYCPM-2K-INFINITY=0.9623PDQ7K-INFINITY=0.9615203 FIGURE4.3.3CPM-2VSPDQ7PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREMEDIUMENRICHEDFUELTYPEUNCONTROLLEDWIDEGAPWIDEGAP1.0641.0963.01.1040.9881.1160.9791.1-0.91.1201.0840.9211.1211.0670.9150.1-1.6-0.71.0821.0320.8471.0781.0180.854-0.4-1.40.81.0801.0390.9071.0791.0260.908-0.1-1.30.10.1390.1390.00.1240.1261.6CPM-2PDQ7%DIFFERENCE1.1221.0960.9621.1221.0780.9520.0-1.6-1.01.1060.9931.0911.1160.9821.0740.9-1.1-1.61.0601.1041.1171.0941.1161.1183.21.00.10.8850.7940.9000.8890.8090.8980.51.9-0.21.0281.0210.8751.0181.0110.863-1.0-1.0-1.41.0721.0751.1161.0731.0731.1200.1-0.20.40.9890.985-0.41.0971.0541.1121.0881A3.2LINEOFSYMMETRYCPM-2K-INFINITY=1.1107PDQ7K-INFINITY=1.1100204-FIGURE4.3.4CPM-2VSPDQ?PINPOWERDISTRIBUTIONCOMPARISONGEINITIALCOREMEDIUMENRICHEDFUELTYPECONTROLLEDWIDEGAPWIDEGAP0.3990.4195.00.4950.6040.6310.6257.33.60.5620.7760.7940.6880.8010.8214.63.23.40.5880.8140.8130.1670.6100.8360.8660.1B23.72.66.23.20.6400.8900.946O.B640.8970.9692.20.82.50.7421.0141.0611.0760.7431.0281.0BO1.0760.11.4-0.10.00.1660.1692.61.0281.2081.0331.1920.5-1.3CPM-2PDQ7%DIFFERENCE0.8691.0061.2661.2900.8680.9981.2441.266-0.1-0.7-1.7-1.91.0191.2111.3421.3731.0341.2121.3261.3481.60.1-1.2-1.81.3611.1S71.3131.163-2.8-2.81A401.6431.40B1.609-2.4-2.21.3811.349-2.31.6481.5211071.6061.600-0.4LINEOFSYMMETRYCPM-2K-INFINITY=0.9230PDQ7K-INFINITY=0.9238205-l 5.0SUMMARYANDCONCLUSIONSTheanalysespresentedinthistopicalreportdemonstratethevalidityofPPaL'sanalyticalmethodsaswellasPPGL'squalificationstoperformsteadystatecorephysicscalculationsforreloaddesignandlicensinganalysisapplications.ThelatticephysicsqualificationhasbeenaccomplishedthroughcomparisonoftheCPM-2computercoderesultstovariousmeasurementdata.Comparisonsto14uniformlatticecriticalexperimentsyieldsanaverageK-effectiveof1.0005withastandarddeviationof0.0072.TheaverageK-effectivefortheUOcriticalsis0.9951andtheaverageK-effectivefortheplutoniumcriticalsis1.0076.Thepinpowerdistributionandhencelocalpeakingfactorcalculation,hasbeenbenchmarkedtothegammascandatafromQuadCitiesUnit1whichwastakenattheendofCycle2.Theaveragestandarddeviationfromallofthecomparisonsis4.0%.IfonlytheUObundlesareconsidered,theaveragestandarddeviationreducesto3.37%.thisisclosetothereported3.0%practicalaccuracyofthedata.ThequalificationofthelatticephysicsmethodsalsoreliesontheoriginalbenchmarkingofEPRI-CPMprovidedbyEPRI.BecausetheneutronicsmethodsinCPM-2areidenticaltothoseinEPRI-CPM,thisbenchmarkingremainsvalidforCPM-2.SomeoftheuniformlatticecriticalsanalyzedintheEPRIbenchmarkingarethesameexperimentsa'sthoseanalyzedbyPPGL.AftercompensationwasmadeforthecorrectionfactorsappliedtotheEPRI-CPMresults,theresultsfromEPRI-CPMagreedverywellwiththosefromCPM-2.ThequalificationofthecoresimulationmethodsnotonlydemonstratestheaccuracyofSIMULATE-Ebutalsoprovidesademonstrationoftheentiresteadystatecorephysicsmethodology.ThebenchmarkingresultsshowthatthecalculatedhotcriticalcoreK-effectivesfromSIMULATE-Ecanbeaccuratelypredictedbyacorrelationwhichconsidersbothcoregadoliniacontentandcoreaverageexposure.ThemeandifferencebetweentheSIMULATE-EcalculatedcoreK-effectiveandthecorrelationisonly0.00002akwithastandarddeviationof0.00061rlk.ThecoldcriticalcoreK-effectivefromSIMULATE-Ecanbeaccuratelypredictedbyaddingaconstantbiasof0.00659bktothehotcriticalK-effectivecorrelation.Comparisonsofcoldcriticalcalculations206-tothetargetresultsinastandarddeviationof0.00137~k.Inaddition,thereisnosignificantdifferencebetweenthecoldin-sequenceandlocalcriticalcalculations.ComparisonsofpredictedTIPresponsestomeasuredTIPresponsedatawereperformedasameansofassessingtheaccuracyoftheSIMULATE-Epowerdistributioncalculation.SusquehannaSESnodalTIPresponsecomparisons,whichdemonstratetheaccuracyofthedetailedpowerdistribution,showanaver'ageRMSof5.74%.RadialTIPresponsecomparisonswerealsoperformedinordertodemonstratetheaccuracyofthebundlepowerdistribution,andtheaverageRMSforSusquehannaSESis2.58%.ThesametypesofTIPresponsecomparisonswerealsomadeforthefirsttwocyclesofQuadCities.TheaveragenodalTIPRMSis9.84%andtheaverageradialRMSis5.26%.Additionally,theSIMULATE-EpowerdistributioncalculationshavebeencomparedtothegammascanmeasurementstakenattheendofthefirstandsecondcyclesofQuadCitiesUnit1.Thesemeasurementsarerepresentativeofthecorepowerdistributionaveragedoverthelasttwotothreemonthsofoperation.SIMULATE-EwasusedtocalculatethenodalLa-140concentrationsforcomparisontothemeasureddata.Theresultsofthenodalcomparisons,neglectingperipheralandaxialendnodes,yieldanRMSof5.45%.Fortheradialcomparison,neglectingperipheralbundles,anRMSof1.92%wasobtained.Theaxialpeakingfactor(onanodalbasis)wasalsocomparedtothemeasuredgammascandata.Theaveragedifferenceintheaxialpeakingfactorwas1.2%withastandarddeviationof2.1%forCycle1and-0.2$withastandarddeviationof1.5%forCycle2.ThisreportalsoincludedSIMULATE-EcalculationsforCycles1and2ofPeachBottomUnit2.ThesecalculationswereperformedinordertogeneratetheneutronicsinputtoPPGL'stransientanalysismethodsbenchmarkingagainstthePeachBottomendofCycle2turbinetriptests.Thepredictedpowerdistributionsforeachofthethreeturbinetriptestsshowexcellentagreementtoreportedplantprocesscomputerdata.ThePDQ7computerprogramisusedforspecialapplicationstoperformmul+iplebundlecriticalityanalysesandtoaugmentnodalsimulationcodeinput.AdemonstrationofPPGL'suseofthePDQ7programincludescomparisonsto207-uniformlatticecriticalexperimentsandpinpowerdistributioncalculations'withCPM-2.Xnconclusion,'heanalysisresultscontainedinthistopicalreportdemonstratePP&L'squalificationstoperformsteadystatecorephysicscalculations.ExtensivecomparisonstomeasureddatafromSusquehannaSES,QuadCities.Unitl,andPeachBottomUnit2demonstratethevalidityoftheanalyticalmethodsaswellasPPGL'scapabilitytosetupandproperlyapplythemodels.ComparisonstoreactordesignsotherthanPPGL'sSusquehannaSESdemonstratePPGL'sabilitytoextendthecoremodelingtechniquesdevelopedforSusquehannaSEStootherfuelandcoredesigns.PPGLiscommittedtomaintainingastrongin-housecoreanalysiscapabilityandaspartofthatcommitment,wecontinuallyevaluatetheaccuracyofourcoresimulationmethodsandmakemodelingimprovementswhenappropriate.AlthoughPPGL'sday-to-daycorefollowanalysesareaimedprimarilyatplantoperationssupport,thecomparisonsof*SIMULATE-Ecalculations(e.g.,TXPresponse,K-effective,thermalmargins)totheplantdataalsoserveasacontinuingmethodsbenchmarkingeffort.-208-

6.0REFERENCES

1.NRCGenericLetterNumber83-11,"LicenseeQualificationforPerformingSafetyAnalysesinSupportofLicensingActions,"February8,1983.2."AdvancedRecycleMethodologyProgram,"EPRZCCM-3,September,1977.3.D.B.Jones,"CPM-2ComputerCodeUser'sManual,"PartII,Chapter6ofEPRINP-4574-CCM,February,1987.4.M.Edenius,"EPRI-CPMBenchmarking,"Part1,Chapter5ofEPRICCM-3,November,1975.5.A.Ahlin,et.al.,"TheCollisionProbabilityModuleEPRI-CPM,"PartII,Chapter6ofEPRZCCM-3,November,1975.6.R.Stamm'ler,et.al.,"EquivalenceRelationsForResonanceIntegralCalculations,"JournalofNuclearEnergy,Volume27,page885,1973.7.M.Edenius,A.Ahlin,"MICBURN:MicroscopicBurnupZnGadoliniaFuelPins,"PartZI,Chapter7ofEPRZCCM-3,November,1975.8.M.Edenius,et.al.,"TheEPRI-CPMDataLibrary,"PartII,Chapter4ofEPRICCM-3,November,1975.9.L.Hellstrand,"MeasurementsofResonanceIntegralsReactorPhysicsintheResonanceandThermalRegions,"ProceedingsoftheNationalTopicalMeeting,SanDiego,CA,VolumeII,page157,February,1966.10.J.R.Brown,et.al.,"KineticandBucklingMeasurementsonLatticesofSlightlyEnrichedUraniumorUORodsInLightWater,"WAPD-176,January,1958.11.R.D.Learner,et.al.,"PuO-UOFueledCriticalExperiments,"WCAP-3726-1,July,1967.209-i'l12.M.B.CutroneandG.F.Valby,"GammaScanMeasurementsatQuadCitiesNuclearPowerStationUnit1FollowingCycle2,"EPRINP-214,July,1976.13.R.J.Nodvik,"SupplementaryReport.onEvaluationofMassSpectrometricandRadiochemicalAnalysisofYankeeCoreISpentFuel,IncludingIsotopesofElementsThoriumThroughCurium,"WCAP-6086,1969.14.R.J.Nodvik,"SaxtonCoreIIFuelPerformanceEvaluation,"PartIIWCAP-3385-56.15.D.M.VerPlanck,"SIMULATE-E:ANodalCoreAnalysisProgramforLightWaterReactors,"EPRINP-2792-CCM,March,1983.16.A.Ancona,"ReactorNodalMethodUsingResponseMatrixParameters,"Ph.D.ThesisRensselaerPolytechnicalInstitute,1977.17.S.Borresen,"ASimplified,CoarseMesh,Three-DimensionalDiffusionSchemeforCalculatingtheGrossPowerDistributioninaBoilingWaterReactor,"NuclearScienceandEngineering,Volume44,pages37-43,1971.18.G.S.LelloucheandB.A.Zolotar,"MechanisticModelForPredictingTwo-PhaseVoidFractionForWaterinVerticalTubes,"EPRINP-2246-SR,February,1982.19.B.J.Gitnick,"FIBWR:ASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors;ComputerCodeUser'sManual,"EPRINP-1924-CCM,July,1981.20.D.B.JonesandM.J.Anderson,"ARMP-02Documentation:PartII,Chapter12-NORGE-B2ComputerCodeManual,"EPRINP-4574-CCM,PartII-,Chapter12,December,1986.21.B.L.Darnell,et.al.,"SIMULATE-E:ANodalCoreAnalysisProgramforLightWaterReactors,"EPRINP-2792-CCM(DraftRevision),AppendixD,May,1986.-210-22..A.F.Ansari,et.al.,"FIBWR:ASteady-StateCoreFlowDistributionCodeforBoilingWaterReactors,"EPRINP-1923,July,1981.23.R.B.MacduffandT.W.Patten,"XN-3CriticalPowerCorrelation,"XN-NF-512(P)(A)Revision1andSupplement1,Revision1,October21,1982.24.S.W.Jones,et.al.,"POWERPLEXCoreMonitoringSoftwareSystemSoftwareSpecificationfortheSusquehannaSteamElectricStationSusquehannaUnits1and2,"XN-NF-83-35(P),Revision1,August,1986.25."GeneralElectricBWRThermalAnalysisBasis(GETAB):Data,CorrelationandDesignApplication,"NED0-10958-A,January,1977.26.M.Edenius,"StudiesoftheReactivityTemperatureCoefficientinLightWaterReactors,"AE-RF-76-3160,A.B.Atomenergi,1976.27.N.H.Larsen,et.al.,"CoreDesignandOperatingDataforCycles1and2ofQuadCities1,"EPRINP-240,November,1976.28.N.H.Larsen,"CoreDesignandOperatingDataforQuadCities1Cycle3,"EPRINP-552,March,1983.29.G.R.Parkos,"BWRSimulatorMethodsVerification,"NED0-20946A,January,1977.30.N.H.Larsen,"CoreDesignandOperatingDataForCycles1and2ofPeachBottom2,"EPRINP-563,June,1978.31.L.A.CarmichaelandR.D.Niemi,"TransientandStabilityTestsatPeachBottomAtomicPowerStationUnit2attheEndofCycle2,"EPRINP-564,June,1978.32.W.R.Cadwell,"PDQ7ReferenceManual,"WAPD-TM-678,January,1967.211-33.W.J.Eich,et.al.,"FewGroupBaffleand/orReflectorConstantsforDiffusionCalculationApplication,"EPRINP-3642-SR,August,1984.34.R.D.MostellerandR.S.Borland,"COPHINCodeDescription,"EPRINP-1385,April,1980.-212-RESPONSETONRCREQUESTFORADDITIONALINFORMATION-213-

PennsylvaniaPower8LightCompanyTWONOrthNinthStreet~AllentOWn.PA18101~215I7705151HaroldW.KeiserVicePresident-NuclearOperations215/770-7502pEB>7$88DirectorofNuclearReactorRegulationAttention:Dr.W.R.Butler,~ProjectDirectorProjectDirectorateI-2DivisionofReactorPrdjectsU.S.NuclearRegulatoryCommissionWashington,D.C.20555SUSQUEHANNASTEAMELECTRICSTATIONRESPONSETORAIONCOREPHYSICSTOPICALPLA-2983FILESA7-8A,R41-2'eference:Letter,M.C.ThadanitoH.W.Keiser,"RequestforAdditionalInformation",datedJanuary11,1988.

DearDr.Butler:

AttachedpleasefindPP&L'sresponsestothereferencedstaffquestionsonourtopicalreportPL-NF>>87.-001,"QualificationofSteadyStateCorePhysicsMethodsforBWRDesignandAnalysis."Pleasebeadvised.thatthescheduleforthesubmittalofourremainingtopicalreportshasbeenrevisedasfollows:QualificationofTransientAnalysisMethodsforBWRDesignandAnalysisApplicationofReactorAnalysisMethodsforBWR,DesignandAnalysisJuly,1988November,1988Duetothesedelaysinourplannedcompletiondates,PP&Lhasalsorevisedthefirstreloadapplicationofourin-housemethodsfromSusquehannaSESUnit1Cycle5toSusquehannaSESUnit2Cycle4(plannedstartup:November10,1989).Accordingly,wearerevisingourrequestforyourapprovalofPL-NF-87-001fromMarch,1988toJuly5,1988.

FILESA7-8A,R4)-2PLA-2983Dr.W.R.ButlerAlsoattachedforinsertionintoPL-NF-87-001arereplacementpages51and208,whichcorrectminortypographicalerrors,andreplacementpage69(Table3.2.3),whichprovidescorrectedcycleandcoreaverageexposurevaluesforCase16,andthecorrectedcycleexposurevalueforCase22.AnyquestionsonthissubmittalshouldbedirectedtoMr.R.Sgarroat(215)770-7916.Verytrlyyours,H.W.Keiser.VicePresident-NuclearOperationsAttachmentcc:NRCDocumentControlDesk(original)NRCRegionIMr.F.I.Young,NRCResidentInspector-SSES@fr~~>>H~C;-Thadani,NRCProspect,Manager-Bethesda Crosssectiondependenciesinclude:fuelexposurevoidhistory(i.e.,exposure-weightedrelativemoderatordensity)relativemoderatordensity(hotonly)controlrodpresencefueltemperature(hotonly)controlrodhistoryxenonconcentrationmoderatortemperature(coldonly)TheeffectofeachdependencyiscalculatedutilizingCPM-2.ThefinalcrosssectiondatatablesarepreparedforSIMULATE-EusingNORGE-B2(Reference20).Theradial,top,andbottomreflectorregionsarenotmodeledexplicitly.Instead,theseregionsaretakenintoaccountbyuseofalbedoboundaryconditions.RadialalbedosarecalculatedusingtheABLE(Reference21)programdevelopedbyScienceApplicationsInternationalforEPRI.Thetopandbottomalbedosweredeterminedbasedoncomparisontoplantdataduringmodelnormalization.Differentalbedoboundaryconditionsareusedforcold'andhotconditions.SeveraloftheinputdataparametersusedbySIMULATE-Erequireadjustmenttomatchplantoperatingdata.ThisnormalizationprocesswasperformedusingSusquehannaSESUnit1Cycles1and2data.AllparameterschangedinthisfashionwereheldconstantforallothercalculationsincludingtheQuadCitiesandPeachBottomcalculations.ThethermalhydraulicscalculationsusetheFIBWRmethodology(Reference19)developedbyYankeeAtomicElectricCompany.Thiscalculationdeterminestotalcorepressuredropandcorebypassflow.Thepressuredropcalculationdeterminesthefrictionalpressuredrop,local(i.e.,form)losses,acceleration(i.e.,momentumchange)pressuredrop,andelevationhead.ThecorebypassflowcalculationallowsformodelingtheflowpathsshowninFigure3.1.1.FIBWRasastand-alonecodehasbeenbenchmarkedbyYankeeAtomicElectricCompanyagainstdatafromVermontYankeeandtheFriggLooptests(seeReference22).-51" I

TABLE3.2.3EHAWASSHOTCRIICALCOREK-EFFECTIVEDATAUNIT*1CYCLE=1CASE1235678910ll1R1314151617181920Zl22R3R4R5262728293031323334353637383940CYCLEEXPOSURE(GHD/NTU)O.ZRl0.8361,4901.5961.7361.7581~7991.9082.0702.7062.906R.9753.1163'673.5173.6633.7763.8363.9184.0364.1934.31S4.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366,5636.7166.723COREAVERAGEEXPOSUREtGHD/HTU)O.R210.8361.4901.5961,7361.7581.7991.9082.0702.7062.906R.9753.1163.3673.5173.6633.7763.8363.9184.0364.1934.3184.5064.5175.0615.0705.3475.4105.4635.5805.6145.6505.8555.9186.0876.2416.4366.5636.7166.723POWER(t%PH)143232503280327832913296329132933293328132893291329132923289329232903293329832903R903296328832893290328832813Z94329132943295328732933289328632883265328632833290PERCENTPOHER(%)439910010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010010099100100100TOTALCOREFLOW(%)5498100~889798999897989796989896969598979698969799999798999999999998969896999898SUB-COOLINGlBTU/LBN)23.823.723.623.624.324.R23.824.024.225.024.224.724.2R4.R24.524.624.824.024.324.524.224.523.823.924.324.023.S23.723.923.823.724.124.323.924.323.8R4.1Z4.0OOHEPRESSURE(PSIA)974100110051002100110011001100099410009999999991009100210021001100310001003100210031003100410051005100R100210021002100210021001100110001001999999999999CONTROLRODOENSITY0%)20.412.613.913.614.014.114,114.114.114.815.015.015.015.9,.15.915.915.915.916.016.016.016.116.116.117.617.618.017.917.917.817'17.817.016.716.416.416.316.315.015.0CALCULATEDCOREK-EFFECTIVE0.991840.991420.989870.986650.989190.988860.989380.989600.988840.989370.989900.989880.990090.989710.990200.990420.990580.99061Oo990800.991000.991160.991380.991630.991760.992540.992420.992190.992670.992940.993500.993580.993670.9936R0.993620.994300.994370.994540.994630.994600.99460 EI uniformlatticecriticalexperimentsandpinpowerdistributioncalculationswithCPM-2.Inconclusion,theanalysisresultscontainedinthistopicalreportdemonstratePPGL'squalificationstoperformsteadystatecorephysicscalculations.ExtensivecomparisonstomeasureddatafromSusquehannaSES,QuadCitiesUnit1,andPeachBottomUnit2demonstratethevalidityoftheanalyticalmethodsaswellasPPaL'scapabilitytosetupandproperlyapplythemodels.ComparisonstoreactordesignsotherthanPP&L'sSusquehannaSESdemonstratePPaL'sabilitytoextendthecoremodelingtechniquesdevelopedforSusquehannaSEStootherfuelandcoredesigns.PP&Liscommittedtomaintainingastrongin-housecoreanalysiscapabilityandaspartofthatcommitmentwecontinuallyevaluatetheaccuracyofourcoresimulationmethodsandmakemodelingimprovementswhenappropriate.AlthoughPPaL'sday-to-daycorefollowanalysesareaimedprimarilyatplantoperationssupport,thecomparisonsofSIMULATE-Ecalculations(e.g.,TIPresponse,K-effective,thermalmargins)totheplantdataalsoserveasacontinuingmethodsbenchmarkingeffort.208-Il CPM-2Question1Whatarethebasesforthedepletionsteps,spatialmesh,energygroups(macroand2-D),convergenceandotherparametersusedinproductioncalculationswithCPM-2/MICBURN?~ResenseTherearecurrentlynospecificEPRIguidelinesavailablefordevelopmentofMICBURNandCPM-2input.Thecomputercodes,however,havecertaindefaultsettingswithregardtoiterationcontrol,convergenceaccuracy,andenergygroupstructurewhichweresetbyEPRIduringthecodedevelopment.ThesedefaultvalueswereusedbyPP&LforallcalculationspresentedinPL-NF-87-001.Noproblemsresultedfromtheuseofthedefaultiterationcontrolinputs;theconvergencecriteriaonthefundamentalmodecalculation-5is1.0x10whichissufficienttoprovideconsistentandaccurateresults.InformationontheenergygroupstructureispresentedintheresponsetoQuestion2.ThedepletionstepsizeusedfortheMICBURNcalculationsissetaccordingtoEPRIrecommendations.Thesestepsizeshavebeendesignedtolimitthemaximumgadoliniadepletiontolessthan4%oftheinitialamountforanygivendepletioninterval.Thedepletioncalculationsareperformedusing66to72depletionsteps.ThedepletionstepsizeinCPM-2issettoprovidesmoothlyvaryingcrosssectioncurvesandlatticereactivity(seeFiguresC1.1andC1.2forexamples).ThetimestepstructurewhichisusuallyusedforCPM-2depletioncalculationsis:0~OR01R0SR1~OR1SR2~OR2SR3~OR3~SR4~OR4SR5~OR5SR6.OR6~5R7~OR7~5R8~OR8~SR9~OR9SR10OR12~Sg15~OR17~Sg20~OR22~SR25~OR27~SR30~OR35~OR40~OR45ORSO.OR55.0GWD/MTU Forassemblieswherethe.gadoliniaconcentrationishigherthan4w/oadditionalCPM-2timestepsareplacedbetween10.0and12.5GWD/MTU.Toevaluatetheeffectsofthecontrolrodpresence,relativemoderatordensity,fueltemperature,etc.,restartcalculationsareperformedatcertainexposurepoints.Thesepointsarechosensothatthechangeinthecrosssectionduetothechangeintheindependentparameter(i.e.controlrodpresence,etc.)issmoothlyvarying(seeFigureC1.3foranexample).Thischangeincrosssection,nottheabsolute'crosssection,isusedbySIMULATE-E.SensitivitycalculationshavealsobeenperformedbyPPGLtodeterminetheeffectofmuchfinertimestepsontheCPM-2results.Thelatticereactivityfromthesesensitivitystudiesdifferedfromtheproductioncalculations(coarsertimesteps)bylessthan0.001~K.ThespatialmeshusedinMICBURNissomewhatfinerthanthoserecommendedbythecodedeveloper.Atotalof20burnup(micro)regionsand10flux(macro)regionsare.usedintheburnableabsorbercell.Amicro-regionisdefinedasahomogenizedmaterialzone.Amacro-regioniscomposedofoneormoremicro-regionsandisusedforcalculationoftheflux.FigureC1.4showsanexample.Thisdefinitionofzoneswithinthefuelpinprovidessufficientdetailtoaccuratelymodelthe"onionskin"typedepletionofagadoliniapin.ThemeshspacingusedinCPM-2fortheXandYdirectionsincludestwomeshesperpincell,onemeshinthefuelchannelwall,andtwomeshesinthewatergap(bypassregion).SensitivitystudieshavebeenperformedbyPPsLinwhichthenumberofmeshesinthepincellhasbeenincreasedfromtwotothree.Thisincreaseresultedinamaximumchangeinlatticereactivityof0.005~K;typically,differencesaremuchless.Using.thiscrosssectiondataintheS1MULATE-EmodelhasshownverylittleeffectonthecorepowerdistributionandcoreK-effective.AdditionalworksponsoredbyEPRXhasalsoexamineddifferencesbetweenuseoftwoversusthreemeshpointsperpincell.Althoughthesecaseswerelimitedtosub-assemblies(i.e.,3x3fuelrodarrays),theresultingdifferenceswerequitesmall(i.e.,lessthan0.005~K)forvaryinggadolinialoadingandvoidcontentandsupporttheuseoftwomeshpointsperpincell.Thesensitivitystudiesdiscussedabovehavebeenruntodeterminetheeffectsofselectedcodeinputs.ThetopicalreportPL-NF-87-001providesabenchmarkoftheCPM-2codewiththeSusquehannaSESmodelinputsandconsequentlyanestimateofthecode/modeluncertainty.

0.068FIGUREC1.1THERMALABSORPTIONCROSSSECTIONBUNDLEENRICHMENT:2.19W/04GD50.0640.0620.060tI0.0480.0480.044----:-.Legend0%VOIDHISTORY-.-.'p42.:X40%VOIDHISTORY070/oVOIDHISTORY0.0400101520253035.EXPOSURE(GWD/MTU)404550 1.2FIGURECi.2FUELK-INFINITYVSEXPOSUREBUNDLEENRICHMENT:2.19W/04GD5I-O.SzII0~~~a~~~0.80.7Legend0%VOIDHISTORY"":"X40%VOIDHISTORYCI70%VOIDHISTORY10O.B0616202630364046EXPOSURE{Gwl3/MTU)60 FIGUREC1.3CHANGEINSIGMAA-2DUETOCONTROLPRESENCEBUNDLEENRICHMENT:2.19W/04GD50.0160.014::--::"--":,---:,---',-Legend0%VOIDHISTORYX40%VOIDHISTORY070%VOIDHISTORY0.0130.0120.0110.010010152026303640EXPOSURE(GWD/MTU)50 FigureCl.4Definitionofmacroregions.Thefigure:showsacasewith20microregionsand6macroregionsintheBA-pin.N~g5+N~57BA-fuelCanModeratorBufferzoneQNopQNophNopIBNopIIBNqpIIIIIII20MicroregionsIII(IIIl!I6Macroregions(+4macroregionsoutsidetheBA-pin.)rIIrbSource:E.EdeniusandA.Ahlin,"MZCBURNMicroscopicBurnupinGadoliniaFuelPins,"PartIZChapter7ofEPRICCM-3,Septemberl977.

uestion2The5energygroupsusedforthe2-Dcalculationsaresomewhatcoarse.Pleasecomment.~ResenseTheuseoffiveenergygroupsintheCPM-2calculationissufficienttoaccuratelyperformthetwo-dimensionalcalculationprincipallyduetothemethodusedtodeterminethefivegroupcrosssections.TheCPM-2calculationstartswitha69energygroupcrosssectionlibrarywhichwasdevelopedforgeneralLWRanalysis.Foreachtwo-dimensionalcalculationperformedbyCPM-2,micro-groupand.macro-groupcalculationsareperformedwhichaccountforboththefluxspectrumandthematerialpresentintheassembly.The'Imicro-groupcalculationisperformedin69energygroupsforeachuniquetypeofpincell.Uptosixseparatecalculationsarepermitted.Ifmorethansixuniquepintypesexistwithinafuellattice,similarpinsmustbeaveragedtogether.Thismicro-groupcalculationprovidesadetailedfluxspectrumbutdoesnotaccountforthespecificlocationofthepin.Anextraregionisusedaroundeachpincellwhichdoesaccountfortheeffectsofthepresenceofthebypassregionandchannelwall.Thedetailedenergyspectrumisusedtocollapsethecrosssectiondatato25energygroups.Themacro-groupcalculationisperformedin25energygroupsandisaone-dimensionalradialcalculationforaregionallyhomogenizedassembly(SeeFigureC2.1).Eachrowoffuelpins/waterrodsoccupiesaseparateannularregionstartingatthecenteroftheassemblyproceedingoutward.Thechannelwall,outerwatergap,andcontrolrod(ifpresent)occupyseparateregions.Thiscalculation,therefore,accountsforthe.relativelocationofeachmaterialwithintheassembly.Thisisparticularlyimportantforfuelpinsadjacenttothewatergap.The25energygroupfluxescalculatedforeachregionareusedtocollapsethe25groupcrosssectionsdowntofiveforuseinthefinaltwo-dimensionalcalculation.Sincethefluxspectrumusedforthiscollapsingcalculationalreadyhasthegeometriceffectsfactoredintoit,thesefivegroupsprovideanaccuratebasisforthetwo-dimensionalcalculationwhereasfivegroupcrosssectiondatacollapseddirectlyfrompincellcasesmightnot.

FigureC2.1Exampleofgeometryinmacrogroupcalculation000000000000000000000000000000000000000000UQ>-pin8PuO>-pinWidewatergapNarrowwatergaphomogenizedcontrolrodouterwatergapboxinnerwatergapUOPu022homogenizedfuellayersouterwatergapboxUQ2PuO>homogenizedfuellayersinnerwatergapSource:A.AhlinandM.Edenius,"TheCollisionProbabilityModuleEPRl-CPM,"PartIZChapter6ofEPRZCCM-3,September1977.

uestion3HowwastheconversionfromcalculatedpowertoBa-140concentrationsperformedfortheCPM<<2rod-wisecomparisonstotheQuadCitiesgamma-scanresults?~ResenseUsingthedecay/productionequation,theBa-140concentrationcanbecalculatedas:NB(t)=<fn[SB(t)-XNB(t)1dttn-1whereN(t)=theBa-140concentrationattimet,BS(t)=theBa-140productionrateattimet,B=theBa-140decayconstant.IntegratingandassumingS(t)isconstantovereachtimestepgives:N(t)=Bn+N(t)-BnBn-Bn1-X<Te(2)wheret=theendoftimestepn,nt=thebeginningoftimestepn.n-1Assumingthattheaverageenergyperfissionisrelativelyconstantoverthetimeinterval,S(t)canbeapproximatedas:nS(t)=CYP(t)(3)whereC=aunitconversionconstant,Y=theeffectiveBa-140yield,eP=thepowerdensity.

TheBa-140concentrationsarecalculatedbysubstitutingEquation(3)intoEquation(2)toobtain:CYP(t)en+CYP(t)en-X<Te(4)Sincethefinalcomparisonsaremadeonarelativebasis,relativeBa-140concentrationsarecalculatedasfollows:Rel.N(t)=en+1CYP(t)CYP(t)Btn-1en-X~Te(5)whereN(t)=theaverageoftheBa-140concentrationsattheendoftimestepn.BnThepower,P(t),isbasedontheCPM-2relativepinpower.TheeffectivenYield,Y,iscalculatedforeachpinasfollows:e'=MY.F.i=U-235,U-238'u-239@Pu241e~iiwhereY=theBa-140yieldforisotopei,F.=thefractionoffissionsfromisotopei.iThefissionratesandhencethefractionoffissionsfromeachisotopeiscalculatedateachtimetbyCPM-2.Equation(5)issolvedtocalculatenrelativeN(t)foreachrodbymarchingthroughtheexposurepointsforeachnrelativemoderatordensitycorrespondingto0%,40%,and70%voidlevel.TheSIMULME-Emodelcalculationprovidestheexposureandvoidhistoryforeachaxialplaneforwhichmeasureddataexists.ThesedataareusedtointerpolatefromtheCPM-2calculateddatatodeterminethecalculatedrelativeBa-140distributioncorrespondingtothevoidhistoryandexposureconditionsatthelocationofinterest.

guestion4ThediscussioninSection2.3needsmoreconsistency,inreferencestomeasuredandcalculatedvaluesofpower,andBa-140andLa-140activitiesintermsofwhatquantitiesarecomparedandtheirbases.~ResooseThemeasureddatausedinthecomparisonsaretherelativeLa-140activitiesasreportedinEPRINP-214"GammaScanMeasurementsatQuadCitiesNuclearPowerStationUnit1FollowingCycle2"(Reference12inPL-NF-87-001).ThecalculateddatausedinthecomparisonsaretherelativeBa-140concentrations.ThesearederivedfromtheCPM-2calculatedrelativepinpowersaspresentedinthe,responsetoQuestion3.TheBa-140concentrationsandactivitiesareproportionaltotheLa-140concentrationsandactivitiesatanygiventimefollowingshutdownfromsteady-stateoperation.Thefactorofproportionalitysignificantlyvarieswithtimeforthefirstweekaftershutdown,butaftertendays,itremainsessentiallyconstant.Becauseallgammascanmeasurementsweretakenfollowingashutdownperiodgreaterthantendays,therelativemeasuredLa-140activitiesarecomparedtothecalculatedBa-140concentrations.

~nestion5ArethepresentlydemonstratedaccuracyandbiasesofCPM-2calculationsexpectedtoholdfor9x9andotheradvancedBWRbundledesigns?HaveanycomparisonsbeenmadeofCPM-2toMonteCarlocalculationsfor9x9bundlesofthetypeusedinSusquehannaUnit2?~~nesonseTheaccuracyandbiasespresentedinPL-NF-87-001areexpectedtoholdfor9x9andotheradvancedBWRbundledesignsthat.aresimilartothe7x7,8x8,and9x9fueldesigns.ComparisonstotheTRX,Kritz,andESADAcriticalsshowcriticalevaluationsforawidevarietyoffuelarrangements(i.e.varyingpellet'diameters,pelletdensities,watertometalratios,andfuelrodpitches).ComparisonsofCPM-2toMonteCarlocalculationshavenotbeenmade;however,thebenchmarkingpresentedinPL-NF-87-001stronglysupportstheuseofCPM-2tomodel9x9fuelandotheradvancedBWRbundledesignssimilartothosepresented.

uestion6Haveanytrends(biases)beenobservedintheaccuracyofpin-powerandLPFpredictionsvs.elevation,voidhistory,exposure,control,etc.7~ResenseTheaccuracyofthepinpowerdistributionandlocalpeakingfactordoesnotappeartobecorrelatedtoexposure,voidhistory,orelevation.ThiscanbeseenbyexaminingthedatafromtheQuadCitiesgammascancomparisonssummarized.inTables2.3.2and2.3.3ofPL-NF-87-001.ThesedatahavebeenplottedinFiguresC6.1throughC6.6.Overall,theredoesnotappeartobeanytrendinthestandarddeviationsofthepincomparisonsrelativetoexposure,voidhistory,orelevation.Theinteriormixedoxidebundles,GEB159andGEB161,doshowslightlyincreasedstandarddeviationswithincreasedelevations(i.e.,voidhistory).ThesebundledesignsarenottypicalofexpectedfueldesignscurrentlyplannedforuseinSusquehannaSES.Itshouldalsobenotedthatthecalculatedpeakactivityisnormallyhighprovidingaconservativeestimationofthelocalpeakingfactor.InadditiontothegammascancomparisonsperformedatPPGL,EPRIsponsoredbenchmarkingoftheoriginalEPRI-CPM.TheresultsfromthesecomparisonsareconsistentwiththeQuadCitiescomparisonsindicatingCPM-2calculationsprovidesimilaraccuracyfordifferentbundledesigns.MeasuredgammascandatadonotexistforanyoftheSusquehannaSESspecificbundledesignswhichwouldpermitdirectcomparisontopinpowers.However,theTIPresponsecomparisonspresentedinSection3ofPL-NF-87-001canbeusedtoinfertheaccuracyofCPM-2.TheTIPresponsemodelusedinSIMULATE-EisdevelopedbasedonCPM-2calculations.ThesecalculationsrequireCPM-2topredictalocalfissionrateatthedetectorlocationinthebypassregion.IfCPM-2wasunabletocalculateaccuratelocalpeakingfactors,itwouldalsobeunabletocalculateaccurateTIPresponsefactors.ThiswouldshowupintheTIPresponsecomparisons.TheindividualTIPresponsecomparisonsinSection3donotappeartocontainanytrendswithcontrolrodpresence,exposure,voidhistory(i.e.,exposure-weightedrelativemoderatordensity),orrelativemoderatordensity.Thisagreeswiththeconclusionsdrawnfromthecomparisonstogammascandata.

FIGUREC6.1QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONS60I~QUJClCCCIZ4V)0cI0":'egend0GEB169GEB161~GEH002SCX0672'"~CX0214a~4681012141618CALCULATEDBURNUP.(GWD/MTU)2022 mmmmmmmmmmwmwmmwmFIGUREC6.2QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONSZ60l~aWClCCCIZ4I-LegendPGEB169GEB161~GEH002~CX0672~CX0214p'3""~~.:01020.304060CALCULATEDVOIDHISTORY(%)6070 FIGUREC6.3QUADCITIESUNIT1ENDOFCYCLE2NORMALIZEDLa-140ACTIVITYPINCOMPARISONSZ80l~5DCLDZ4(DLegend0GEB159GEB161~GEH002~CX0672....~CX02140gI0002040~~6080100ELEVATION(INCH)W.:~~120140 10~o60c(40Q2OZm.FIGUREC6.4QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONSLegend0GEB159GE8161~GEH002~"-.'-""~CX0672CX0214.~........:,-2-4-61012141618CALCULATEDBURNUP(GWD/MTU)2022 10FIGUREC6.5QUADCITIESUNIT1ENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONSLegend0GEB159GEB161~GEH002~o60c(40UJQOOZg)0-r~~~rCX0872~CX0214~'..:..~.............:r<<2-4106020304050mmmmmmSPY'lYLJiiWekimmmmmmm 10FIGUREC6.6.QUADCITIESUNITIENDOFCYCLE2PEAKLa-140ACTIVITYCOMPARISONS~o604ClClCIZg)0-2-4Legend0GEB159GEB161----"-"~GEH002~CX0672CX0214~~0I~~~~~00020406080ELEVATION(INCH)100120140 Question7HowdothemodificationstotheENDF/B-IIInucleardataotherthanthosenotedforU-238comparetotheuncertaintiesinthebasicdata?~ResenseThemodificationtothePu-240microscopicabsorptioncrosssectionsistheonlymodificationmadetotheENDF/B-IIIcrosssectiondataotherthanthosenotedforU-238.Thismodification,asstatedinSection2.1ofPL-NF-87-001anddocumentedinPartII,Chapter4ofEPRICCM-3,"TheEPRI-CPMDataLibrary,"isa50%reductioninthecrosssection,intheresonanceenergyregion(i.e.,energygroups16through27).AlthoughtheaccuraciesoftheENDF/B-IIIdata'renotpresentedintheEPRIdocumentation,itislikelythatthismodificationexceedstheuncertaintiesofthebasicnucleardata.Themodification,however,isrequiredtocompensateforthefactthatPu-240isnottreatedasaresonancenuclideinCPM-2.Theunmodifiedcrosssectionwouldsignificantlyoverpredicttheabsorptionintheresonanceregion.AnymodificationtothePu-240microscopicabsorptioncrosssectionswouldaffecttheheavynuclideconcentrationbuildupwithexposure.Table2.1.3ofPL-NF-87-001presentstheheavynuclidechainsthatincludePu-240.IfthePu-240crosssectionswereinappropriatelyadjusted,thePu-240,Pu-241,andPu-242concentrationswouldimproperlyaccumulatewithexposure.Table2.4.3andFigures2.4.4through2.4.6showcomparisonsofmeasuredandcalculatedisotopicparameters.Allcalculations,whichincludetheeffectofthemodifiedENDF/B-IIIcrosssections,showgoodagreementwithmeasureddataandprovideindicationthattheconcentrationsareproperlyaccumulatingwithexposure.ThisagreementthereforesupportstheacceptabilityofthemodifiedPu-240microscopicabsorptioncrosssections.

~tention8TheQuadCities-1EOC2gammascandataareessentiallyrepresentativeofallrodsoutoperation.WhataretheimplicationsrelativetotheaccuracywithwhichCPM-2calculatesindividualrodpowersfornormalroddedconditions,andwhatassuranceistherethatanypresentlyobservedconservativetrends(biases)areuniversal,andbounding?~ResenseWhenperformingsafetyanalyses,generallyonlythelimitingbundlesareaconcern.Therefore,itisnormallyonlynecessarytodeterminetheuncertaintyforuncontrolledconditions.TheuncertaintyiscalculatedfromtheQuadCitiesUnit1endofCycle2gammascancomparisons.Thisuncertainty,however,canalsobeextendedtocoverthecontrolledconfiguration.Section3ofPL-NF-87-001containscomparisonsmadetooperatingdatausingtheSIMULATE-Ecode.ThecrosssectiondataandTIPresponsemodelarederivedfromCPM-2calculateddata.TheresultsinSection3,particularlytheindividualTIPresponse,donotshowanyincreaseinthestandarddeviationassociatedwiththepresenceofacontrolrod(seePL-NF-87-001,Figures3.2.15and3.2.36forexamples).ReactivitycomparisonsfromSusquehannaSESandQuadCitiescoldcriticalevaluationsalsosupporttheseobservations.ThecoldK-effectivesfromthelocalcriticalsandtheK-effectivesfromthein-sequencecriticalsatthesameexposurearenotsignificantlydifferenteventhoughthecontrolroddensityis98%forthelocalcriticalsand74%to75%forthein-sequencecriticals.TheSusquehannaSESandQuadCitiescoldcriticaldataiscontainedinTable3.2.6andTable3.3.1ofPL-NF-87-001,respectively.

uestion9TheCPM-2comparisonstothe7-scandataareinfluencedbytheaccuracyoftheSIMULATE-Epredictionsoflocaleffects(e.g.burnup,void,controlhistory)forthescannedbundles/elevations.HavetheSIMULATE-ElocalerrorsbeenconsideredtoassurethattheCPM-2resultsarerepresentative?~ResenseWhenperforminglicensingcalculationswithSIMULATE-E,thelocalpeakingfactorwhichwillbeusedforcalculationofMCPRorLHGRwilldependontheability.ofSIMULATE-Etopredictnodalconditions.Ifthepredictedconditionsareincorrect,thecalculatedlocalpeakingfactorwillbeaffected.ThecomparisonsreportedinPL-NF-87-001includeanyadditionaluncertaintiescausedbythemispredictionoftheburnuporvoidhistoryattheelevationofinterest.TheseuncertaintieswillbetakenintoaccountinanalyseswhichuseSIMULATE-Etodeterminelocalpeakingfactor.Theapplicationofmodeluncertaintieswillbepresentedindetailinatopicalreportentitled"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis".

SIMULATE-EQuestion1Doesthedataforassemblypowerpeakingthatisusedinthecalculationoffuelperformanceparameters(e.g.MLHGR,CPR)includeallCPM-2calculatedstatepoints(e.g.everyburnuppointandeverynominalandoff-nominalcondition)oronlyasubset?Ifthelatter,howaretheyselectedtoensureconservatism?~ResenseTheCPM-2basedlocalandsecondarypeakingfactors,whicharerequiredfortheXN-3criticalpowercorrelation,areusedintheSIMULATE-Efuelthermalmargincalculations.ThesepeakingfactorsinSIMULATE-Earefunctionsofvoidhistory(i.e.,exposure-weightedrelativemoderatordensity),controlrodpresence,andfuelexposure.AlthoughthesepeakingfactorsdonotincludesomeoftheCPM-2exposurestatepointsanddonotincludearelativemoderatordensityorcontrolrodhistorydependence,thepeakingfactorsareaccuratelyrepresentedinSIMULATE-Eforallexpectedconditions.Thepeakingfactorsarenotsensitivetotheseexclusions.FigureSl.l'howsthelocalpeakingfactorvaluesat0%voidhistoryforthreerelativemoderatordensities(correspondingto0%,40%,and70%voidlevels)andcontrolrodhistory.TheSIMULATE-EdataagreewellwithalltheCPM-2dataexceptforcontrolrodhistoriespast5.0GWD/MTU.Fuelassemblieswithcontrolrodhistoriesapproaching5.0GWD/MTUwouldhaverelativelylowreactivityandwouldhavesignificantmargintothermallimits.SincerelativemoderatordensitynegligiblyaffectsthelocalpeakingfactorsasshowninFigureSl.landcontrolrodhistoriesforlimitingbundlesarelessthan5.0GWD/MTU,theeffectofnotconsideringthesedependenciesisinsignificant.

1.7FIGURE81.1UNCONTROLLEDLOCALPEAKINGFACTORDATAFOR9XQLATTICEAT0'/0VOIDHISTORY1.61.5OI-O1.4zhC13C301.2LegendSIMULATE-EXCPM-20%VH0CPM-20%VHTO40V0CPM-20%VHTO70VCPM-2CONTROLHISTORY101e20263040 uestion2a.Whatisthe"flag"whichsignalstheneedfornewnormalizationofthemodeladjustableinputdataparametersand/orradialandaxialalbedos?b.Howoftenarealbedo/normalizationparameterchangestypicallymade?c.Whatisthebasisforperformingthenormalizationwhenthecodeisusedinapredictivemodeforcoreswhichdiffersignificantlyfromthosepreviouslymodeled?~Resoesea.Threemajorchangescanaffectthenormalizationparameters.Asignificantchangeinfueldesign,coredesign,and/orcalculationaluncertaintywillindicatethatanewnormalizationshouldbeperformed.Inbenchmarkingthe7x7,8x8,and9x9fuelbundledesignsandtheQuadCities,PeachBottom,andSusquehannacoredesigns,PPGLusedthesamesetofnormalizationparametersforthevariousfuelandcoredesigns.Thebenchmarkingcalculationscompletedtodateshowsimilarresultsbetweenmeasuredandcalculatedparametersand,therefore,supporttheuseofthesamenormalizationparametersforfutureSusquehannaSESfuelandcoredesigns.b.Theadjustablealbedo/normalizationparametershavemaintainedconsistencyforallfuelandcoredesignsasstatedinresponsetoQuestion2a.Changeshavenotbeenmadeandarenotplannedorexpectedtooccurfrequently.Futuremodelenhancementsmayinvolveachange(s)inalbedo/normalizationparameters.Forchangesinmodelslikethis,benchmarkingcalculationswouldbeperformedtorequalifyorupdatetheuncertaintiesincorereactivityandpowerdistribution.c.ThepresentedTIPinstrumentresponseandcorereactivitycomparisonsinPL-NF-87-001arebasedonaconsistentsetofnormalizationparameters.Usingthesecomprehensivedatathatincludeawidevarietyoffuelandcoredesigns,PPGLdevelopedastrongstatisticaldatabasetodetermineconservativemarginsforapplicationtonewcoredesigns.Thereport entitled"ApplicationofReactorAnalysisMethodsforBWRDesignandAnalysis"willpresenttheuseofthesemarginsinSusquehannaSESsafetyanalyses.

~uestion3IstheXN-3correlationvalidfor9x9andotheradvanceddesignBWRbundles?~ResonseTheXN-3correlation,developedbyAdvancedNuclearFuelsCorporation(ANF),formerlyExxonNuclearCompany,isvalidforSx8and9x9fuelfortherangesofapplicabilityspecifiedintheassociatedNuclearRegulatoryCommissionsafetyevaluations.LicensingTopicalReport,XN-NF-734(P)(A),"ConfirmationoftheXN-3CriticalPowerCorrelationfor9x9FuelAssemblies"describestheconfirmationofXN-3forthe9x9fuelbundledesignandisapprovedbythe.NuclearRegulatoryCommission.TheoriginalapprovaloftheXN-3CriticalPowerCorrelationisprovidedinXN-NF-512(P)(A),"XN-3CriticalPowerCorrelation".ThisXN-3correlationisusedintheSIMULATE-Efuelperformanceevaluations.SampleSIMULATE-Etestcaseshavebeenperformedanddocumentedtoverifythecorrectimplementationofthecorrelation.TheXN-3correlationisvalidforthefuelbundledesignscurrentlyscheduledfor.loadingintofutureSusquehannaSEScycles(i.e.,8x8and9x9fuelbundledesigns).

uestion4TheTIPdetectormodelinSIMULATEassumesthattheresponsefromeachassemblyisnotaffectedbythepresenceoftheother3surroundingtheTIP.Hasthisassumptionbeentested;isitadequate'ResensePL-NF-87-001statesthatthedetectorresponsefromeachassembly(i.e.,R.)jisnotaffectedbytheotherthree.However,thetotaldetectorresponseconsiderstheeffectofeachsupportingassemblypowerasfollows:MER=-R.P.Mjj(Section3.2.3ofPL-NF-87-001)whereER=totaldetectorresponse,M=numberofbundlesaroundaTIPdetector(i.e.M=4),R.=detectorresponsecontributionfromassembly,j,jP.=SIMULATE-Ecalculatednodalpowerfromassembly,j.Eachassemblypower,P.,isaffectedbytheothersthroughneutroniccouplingj'ntheneutronbalanceequation.Therefore,thetotaldetectorresponse1contributionfromanassembly,-R.P.,implicitlytakesintoaccountthejj'therassemblypowers.ThismethodologyisvalidatedthroughtheTIPresponsecomparisonspresentedinSection3ofPL-NF-87-001.Forexample,Figures3.2.12and3.2.15inPL-NF-87-001showthreecontrolledandoneuncontrolledTIPresponsecomparisons.Thecontrolledcomparisonscontainaggravatedconditionsofwhichonebundleislowinpowerandtheotherthreearehighinpower.MajordiscrepancieswouldexistiftheTIPresponsemethodologyisinadequate.Asthefiguresshow,excellentagreementforallthreecontrolledTIPresponsesexist,andtheresultsareverysimilartotheuncontrolledTIPresponsecomparisons.ThisexcellentagreementsupportstheTIPresponsemodelusedinSIMULATE-E.

question5Whileitistruethatperipheralassembliesandtopandbottomaxialnodesaregenerallylowpowerandhencenotofsafetyconcern,eliminatingthemfromthescancomparisonsseemstoremoveapotentiallyvaluablesourceofinformationontheaccuracy/adequacyofalbedoandreflectorboundaryconditiondependencies.Pleasecomment.~ResonseThegammascandatainEPRINP-214allowforradial,nodal,peaktoaverage,andbundle(axial)comparisons.Peaktoaverageandindividualbundle(axial)comparisonsutilizealltheavailablegammascandata.Theradialcomparisonsutilizeallthedatawiththeexceptionofthemixedoxideandperipheralassemblydata.Forthenodalcomparisons,themixedoxideandperipheralassemblyandtopandbottomnodedataareeliminated.Table3.3.7ofPL-NF-87-001presentstheindividualbundlegammascancomparisonsforallbundlesandnodes.Theperipheralbundlesinthistableare:CX0546gGEB162gCX0490gCX0553fCX0662gCX0682gCX0643gCX0683~Figure3'.20ofPL-NF-87-001showsanaxialcomparisonofaperipheralbundle.ItisrecognizedthatthesecomparisonsdirectlyassesstheaccuracyofthealbedosusedinSIMULATE-E.Comparisonsoftheperipheralassembliesandtopandbottomaxialnodegammascanresultsareslightlyworsethantheinteriorbundlegammascancomparisonsbutarestillquitegood.ThetopandbottomalbedoswhicharebasedontheSusquehannaSESdatawereusedintheQuadCitiesmodel.Duetodifferentfuelandcoredesigns,thetopandbottomalbedoswoulddifferfromtheSusquehannaSESvalues.AlthoughtheSusquehannaSESalbedoswereutilizedintheQuadCitiescalculations,theSIMULATE-Emodelstillprovidesanaccuratecalculationofthepowerdistribution.Therefore,sincethePPGLmodelswerenotnormalizedtotheQuadCitiesdataandsincethetopandbottomnodesandperipheralbundlesarelowpowerregionsofthecore,theperipheralbundleswerenotincludedinthestandarddeviationcalculationfortheradialcomparisons,andtheperipheralbundlesandtopandbottomnodeswerenotincludedinthestandarddeviationcalculationforthenodalcomparisons.

uestion6Pleaseexplainwhynon-conventionaldefinitionsareusedintheTIPandg-scancomparisons.Forexample,itisnotobviouswhyTisusedinthedenominatorfordeterminingthedifferencesintheradialTIPcomparisons.~ResoeseInPL-NF-87-001,thedifferencesandstandarddeviationsfortheTIPresponseandgammascancomparisonsarenormalizedwiththeaveragemeasuredvalue,T,toexpressthemintermsofapercentageofthecoreaverage.Thisapproachresultsinastandarddeviationexpressedinunitsofpercent.However,theresultofthecalculationisastandarddeviationoftheabsolutedifferences.Anothermethodthatcouldhavebeenusedinvolvesconversionofthedifferencestoapercentageofthemeasuredvalue(i.e.,bydividingbyT),andthencalculatethestandarddeviationofthesepercentagedifferences.Thissecondmethod,however,weightsthedifferencesforthedetectorlocationswithlowreadings(i.e.,lowpowerregions)moreandthedifferencesfordetectorlocationswithhighreadings(i.e.,highpowerregions)lessthanthefirstmethod.SincetheaccuracyoftheSIMULATE-Ecalculationsinthehighpowerregionsismoreimportantforthermalmargincalculations,thefirstmethodismoreappropriate.AnexampleisshownforaradialTIPresponsecomparisontodemonstratethedifferencesintheaboveapproaches.TheattachedFigureS6.1showsaradialTIPresponsecomparisonusingthesecondmethodandFigure3.2.29ofPL-NF-87-001showstheradialTIPresponsecomparisonofthesamedatausingthefirstmethod.FigureS6.2showstheaverageofthemeasuredTIPresponsesateachradiallocation(i.e.,T).Notethattheuseofthefirstmethodresultsinahigher0differenceforthehighmeasuredvalues(e.g.,TIPresponseatlocation32-33:6e48%vs.5.96%),andalower%differenceforthelowmeasuredvalues(e.g.,TIPresponseatlocation32-57:5.79%vs.6.36%).ForalltheTIPresponseandgammascancomparisonsbasedonthefirstmethod,thelocationoftheworseprediction(i.e.largestabsolutedifference)canbeeasilydeterminedbyfindingthehighestpercentdifference.Usingthesecondmethod,theworsepredictionisnotnecessarilyatthelocationofhighestpercentdifference.Thisisindicatedinthe examplewheretheTIPresponsecalculationat32-33(i.e.,ahighpowerregion)exhibitstheworseabsolutedifference.ThesecondmethodsuggeststhattheTIPresponsecalculationat32-57(i.e.alowpowerregion)isworse.

FIGURES6.1SUSQUEHANNASESUNIT1CYCLE3RADIALTIPRESPONSECOMPARISONS0.178GWD/MTUCYCLEEXPOSURE6159575553514947454341393735333129-2.03-2.501.900.82-1.95++++-0.28-0.14~14-0.75-0.296.360.65.96-0.940.353.43.0-2.90-2.800.00.4327252321++++3.88++-4.331.26++.18-3.292.2191715131.0-1.49+++++-1.53.132.33-1.143.39-1.86-4.82-0.7731Y00020406081012141618202224262830323436384042444648505254565860XDiff=[(Calc-Mess)/Measured]X100%

FIGURES6.2SUSQUEHANNASESUNIT1CYCLE3MEASUREDRADIALTIPRESPONSE0.178GWD/MTUCYCLEEXPOSURE61595755,535149474543413937353331292725232119171513119753150.194049.50.4843.8234.24499448.0646.8946.7250.2243.6230.7744.6052.4748.3051".7153.6149.3452.1242.5845.2750.87509045.511950.2241.5750.9246.6546.6749.5147.2050.0152.5551.7752.9251.4134.9343.7940.9744,7443.191400020406081012141618202224262830323436384042444648505254565860XCoreAverageTIPResponse=46.82 uestion7DoesPPaLintendtousePDQ-7forapplicationssignificantlydifferentfromthoseforwhichbenchmarkingisprovidedinthereport(e.g.corecalculations)7~ResensePPaLdoesnotintendtoperformthree-dimensionalcorestatepointordepletioncalculationswithPDQ-7.PPGL'sprimaryintenti:stousePDQ-7fortwo-dimensionalcalculationstocomplementCPM-2and/orSIMULATE-Eforspecialapplications(e.g.,partiallyloadedcoreconfigurationsandlocalcriticalitycalculations).Insomeinstances,PDQ-7willbeusedasanindependentverificationofcalculations.Inaddition,PPSLbelievesthatfutureSIMULATE-EmodelimprovementsmaybedevelopedwiththeuseofPDQ-7.

question8DoEPRIguidelinesexistfortheCPM-2(crosssection)-COPHIN-PDQ-7calculationalpath7AretheyfollowedbyPPaL'?~ResenseNoEPRIguidelinescurrentlyexistfortheCPM-2/COPHIN/PDQ-7calculationalpath.ThemethodusedatPPGListousetheCPM-2macroscopiccrosssectiondataforfuelpinsintheassembliesofinterest.COPHINassemblesthisdataintocrosssectiontableswhicharethenusedinPDQ-7.PPGLonlyusesPDQ-7forspecialanalysesthatcannotbeperformedwithCPM-2and/orSIMULATE-E.EachspecificanalysiswilldeterminetheparticularmannerinwhichthePDQ-7modelisdeveloped.

GENERAL/egestionHavetheCPM-2/MICBURN,SIMULATE-E,FIBWRandtheXN-3correlationbeenreviewedandapprovedbytheU.S.NuclearRegulatoryCommission?~nesenseTheneutronicmethodologyinCPM-2/MICBURNandSIMULATE-E,thethermalhydraulicmethodologyinSIMULATE-E(i.e.,FIBWR),andthecriticalpowermethodologyinSIMULATE-E(i.e.,XN-3)havebeenreviewedandapprovedbytheU.S.NuclearRegulatoryCommissionaspartofothertopicalreports.TheneutronicmethodologyinCPM-2/MICBURNhasbeenrecentlyapprovedintheGeneralPublicUtilitiesNuclearCorporationsubmittaloftheirlatticephysicstopicalreport.TheSIMULATE-Emethodologyfortheneutroniccalculations,hasalsobeenapprovedinYankeeAtomicElectricCompany'ssubmittalofSIMULATE.TheSIMULATEandSIMULATE-Eneutronicmethodologiesareidentical.Withregardtothethermal-hydraulicmethodologyinSIMULATE-E(1e.,FIBWR),theFIBWRmethodologyhasbeenapprovedforYankeeAtomicElectricCompany.ForXN-3,theU.S.NRChasapprovedtheExxonNuclearCompany(currentlyAdvancedNuclearFuels)submittalsXN-NF-512(P)(A)andXN-NF-734(P)(A)-

IIII