ML17262A453: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:RG&E Answers To The NRC's March 21, 4991 Station Blackout Questions Attachment 4 Turbine Driven Auxiliary Feedwater Pump Area Heatup Calculation 9104300406 910422 PDR AGOCK 05000244 PDR QA LPETjME 900606-0 z 1 Devonrue Calculation Cover Sheet Project No.$-fgggy//Subject st 7P/Pl/F'f-knht T.r~Description n&reefPrepared by+Reviewed Approved by Number of pages/~>2 5/s4gCd 4 Appendices Attaciunents g tt/os~/t7//
{{#Wiki_filter:RG&E Answers To The NRC's March 21, 4991 Station Blackout Questions Attachment 4 Turbine Driven Auxiliary Feedwater Pump Area Heatup Calculation 9104300406 910422 PDR AGOCK 05000244 PDR
Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 1 of 12  
 
QA LPETjME 900606-0   z 1 Devonrue Calculation Cover Sheet Project No. $ - fgggy//
Subject st 7P / Pl/ F'f-               knht         T   . r~
Description                                             n &reef Prepared  by+
Reviewed Approved by Number of pages /~>2     5/s4gCd 4 Appendices Attaciunents g tt/os~ /t7//
 
Devonrue Calculation                                             Project No.8-9025.00 Date: 5/28/90 Page 1 of 12


==Subject:==
==Subject:==
No computer calculations have been utilized in this analysis.1.The perimeter of the Intermediate Building is assumed to be as shown on Ginna Station Drawing 33013-2113, Rev.0 2.The normal maximum ambient temperature in the Intermediate Building is assumed to be 104oF 3.The normal maximum ambient temperature of the Containment Structure just adjacent to the south wall of the Intermediate Building is assumed to be 120'F as stated in Ginna FSAR Table 3.11-1.4.The south wall of the TDAFW pump Area is assumed to be pouted concrete as shown on Ginna Station Drawing 33013-2113, Rev.0.The North, East, and West walls of the TDAPV pump area (the north portion of the Intermediate Building, el.253)are solid concrete block as shown on Ginna Station Drawing 33013-2113, Rev.0.These walls are assumed to behave in a similar manner to poured concrete walls and will be treated similarly in this calculation.
 
5.The initial wall temperatures are assumed to be in equilibrium with the initial air temperature.
No computer calculations have been utilized in this analysis.
6.Thermal insulation on piping and equipment is assumed to be of the type and thickness defined in RGB'echnical Specification ME-269, Revision 0.7.Heating Steam piping and equipment is conservatively assumed to have a normal operating temperature of 220'F.Additional assumptions are stated throughout the body of this calculation.
: 1. The perimeter   of the Intermediate Building is assumed to be as shown on Ginna Station Drawing 33013-2113, Rev. 0
Devonrue Calculation
: 2. The normal maximum ambient temperature in the Intermediate Building is assumed to be 104oF
: 3. The normal maximum ambient temperature of the Containment Structure just adjacent to the south wall of the Intermediate Building is assumed to be 120'F as stated in Ginna FSAR Table 3.11-1.
: 4. The south wall of the TDAFW pump Area is assumed to be pouted concrete as shown on Ginna Station Drawing 33013-2113, Rev.0. The North, East, and West walls of the TDAPV pump area (the north portion of the Intermediate Building, el. 253) are solid concrete block as shown on Ginna Station Drawing 33013-2113, Rev.0. These walls are assumed to behave in a similar manner to poured concrete walls and will be treated similarly in this calculation.
: 5. The initial wall temperatures are assumed to be in equilibrium with the initial air temperature.
: 6. Thermal insulation on piping and equipment is assumed to be of the type and thickness defined in RGB'echnical Specification ME-269, Revision 0.
: 7. Heating Steam piping and equipment is conservatively assumed to have     a normal operating temperature of 220'F.
Additional assumptions are stated throughout the body of this calculation.
 
Devonrue Calculation                                             Project No.8-9025.00 Date: 5/28/90 Page 2  of 12


==Subject:==
==Subject:==
Project No.8-9025.00 Date: 5/28/90 Page 2 of 12 1.NUMARC 87-00,"Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors," including Appendix E, Appendix F, and the Appendix F Topical Report, November 1987.2.RG&E Technical Specification, ME-269,"Pipe, Duct and Equipment Insulation, Ginna Station," draft issue Revision 0, dated January 30, 1989.3.Ginna Station Plant Arrangement Drawing No.33013-2113, Rev.0, Cont.Struct.&Intermediate Bldg.Plan-Oper.Flr.E1.253'-3".
: 1. NUMARC 87-00, "Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors," including Appendix E, Appendix F, and the Appendix F Topical Report, November 1987.
5.Ginna Station P&ID Drawing No.33013-1231, Rev.13, Main Steam.6.Ginna Station P&ID Drawing No.33013-1915, Rev.4, Heating Steam.7.Marks Standard Handbook for Mechanical Engineers, Ninth Edition, 1987.r 8.Ginna/UFSAR Table 3.11-1,"Environmental Service Conditions for Equipment Designed to Mitigate Design-Basis Events." 9.Vendor Drawing, LD-111347, Worthington, Corp., Outline drawing of Auxiliary Feedwater Pump Turbine 10.Gilbert Associates, Bill of Materials, for Steam Driven Auxiliary Feedwater pump and Steam Turbine Drive.
: 2. RG&E Technical Specification, ME-269, "Pipe, Duct and Equipment Insulation, Ginna Station," draft issue Revision 0, dated January 30, 1989.
Devonrue Calculation
: 3. Ginna Station Plant Arrangement Drawing No. 33013-2113, Rev. 0, Cont. Struct.       &
Intermediate Bldg. Plan - Oper. Flr. E1.253'-3".
: 5. Ginna Station P&ID Drawing No. 33013-1231, Rev. 13, Main Steam.
: 6. Ginna Station P&ID Drawing No. 33013-1915, Rev. 4, Heating Steam.
: 7. Marks Standard Handbook for Mechanical Engineers, Ninth Edition, 1987.
r
: 8. Ginna/UFSAR Table 3.11-1, "Environmental Service Conditions for Equipment Designed to Mitigate Design-Basis Events."
: 9. Vendor Drawing, LD-111347, Worthington, Corp., Outline drawing of Auxiliary Feedwater Pump Turbine
: 10. Gilbert Associates, Bill of Materials, for Steam Driven Auxiliary Feedwater pump and Steam Turbine Drive.
 
Devonrue Calculation                                                 Project No.8-9025.00 Date: 5/28/90 Page 3 of 12


==Subject:==
==Subject:==
Project No.8-9025.00 Date: 5/28/90 Page 3 of 12 The objective of this calculation is to determine the ambient temperature rise in the TDAPYV pump area of the Intermediate Building during a 4 hour SBO-induced loss of ventilation.
 
Because the Ginna Station Blackout coping duration is 4 hours, the simplified methodology provided in NUMARC 87-00, Section 7 will be applied.The Section 7 methodology is based on the fact poured concrete walls act as heat sinks and that their surface temperatures will remain essentially constant over the course of the 4 hour loss of ventilation.
The objective   of this calculation is to determine the ambient temperature rise in the TDAPYV pump area   of the Intermediate Building during a 4 hour SBO-induced       loss of ventilation.
As stated in the previous section, the surface temperature of the solid concrete block walls will also be assumed to remain constant.Section 7 of NUMARC 87-00 presents the following simplified equation for use in evaluatin'g a four hour loss of ventilation:
Because the Ginna Station Blackout coping duration is 4 hours, the simplified methodology provided in NUMARC 87-00, Section 7           will be applied. The Section 7 methodology is based on the fact poured concrete walls act as heat sinks and that their surface temperatures willremain essentially constant over the course of the 4 hour loss of ventilation. As stated in the previous section, the surface temperature of the solid concrete block walls will also be assumed to remain constant.
Tait-Tw+[QIA]3~4 where: Tair is the resultant ambient air temperature in the TDAPV pump area(the north portion of el.253'-3" of the Intermediate Building}after 4 hours;Tw is the wall temperature; Q is the heat generation rate fthm hot piping, equipment, and electrical devices;and A is the surface area of the walls and ceiling acting as heat sinks.The effects of opening doors to allow removal of heat through natural circulation are evaluated as defined in Section 7, p.7-15, of NUMARC 87-00: Tair-Tw+(Q3~4l[A3~"+16.18 F 0 6 3]}where F is the"door factor" and is equal to H3<W;where H and W are the height and width of the door, respectively.
Section 7 of NUMARC 87-00 presents the following simplified equation for use in evaluatin'g a four hour loss of ventilation:
Devonrue Calculation Project No.8-9025.00 Date: 598/90 Page 4 of 12  
Tait Tw+ [QIA]3~4 where:
Tair is the resultant ambient air temperature in the TDAPV pump area(the north portion         of el. 253'-3" of the Intermediate Building}after 4 hours; Tw is the wall temperature; Q is the heat generation rate fthm hot piping, equipment, and electrical devices; and A is the surface area of the walls and ceiling acting as heat sinks.
The effects of opening doors to allow removal of heat through natural circulation are evaluated as defined in Section 7, p. 7-15, of NUMARC 87-00:
Tair   Tw+ (Q3~4l[A3~" + 16.18 F 0               6 3]} where F is the "door factor" and is equal to H3< W; where H and W are the height and width of the door, respectively.
 
Devonrue Calculation                                                   Project No.8-9025.00 Date: 598/90 Page 4 of 12


==Subject:==
==Subject:==
The following steps shall be performed to accomplish the described method for determining the TDAFW pump an:a ambient temperature:
 
1.Sum the wall surface areas to obtain A in square meters.For conservatism, the surface ama of the ceiling will be neglected as it is constructed of corrugated metal attached to the pouted concrete floor slab of the elevation above.2.Determine the initial wall temperature.
The following steps shall be performed to accomplish the described method for determining the TDAFW pump an:a ambient temperature:
The effects of the higher temperature of the south waH which is exposed on its outer surface to the Containment Structure ambient temperatuie will be considered.
: 1. Sum the wall surface areas to obtain A in square meters. For conservatism, the surface ama of the ceiling will be neglected as it is constructed of corrugated metal attached   to the pouted concrete floor slab of the elevation above.
3.Conservatively estimate the heat generation rate, Q, in the TDAFW pump area.This will be done by considering heat rejected by hot piping and equipment using the equations given on p.7-19 of NUMARC 87-00.Heat rejected by operating electrical equipment will also be considered.
: 2. Determine the initial wall temperature. The effects of the higher temperature of the south waH which is exposed on its outer surface to the Containment Structure ambient temperatuie   will be considered.
4.Apply the results of the above and calculate the resultant ambient temperature.
: 3. Conservatively estimate the heat generation rate, Q, in the TDAFW pump area. This will be done by considering heat rejected by hot piping and equipment using the equations given on p. 7-19 of NUMARC 87-00. Heat rejected by operating electrical equipment will also be considered.
5.Evaluate the effects of opening doors.Step 1: Sum wall surface areas to obtain A, in sq.meters This step is accomplished using the referenced drawing, 33013-2113.
: 4. Apply the results of the above and calculate the resultant ambient temperature.
As previously identified in the Assumptions Section, the solid'concrete block walls bordering the North, East, and West sides of the Intermediate building will be considered in this evaluation.
: 5. Evaluate the effects of opening doors.
The South wall borders the Containment Structure and is constructed from poured concrete.The ceiling surface area has been neglected as a heat sink since it consists of corrugated metal.
Step 1: Sum wall surface areas to obtain A, in sq. meters This step is accomplished using the referenced drawing, 33013-2113.               As previously identified in the Assumptions Section, the solid'concrete block walls bordering the North, East, and West sides of the Intermediate building will be considered in this evaluation.
Devonrue Calculation
The South wall borders the Containment Structure and is constructed from poured concrete. The ceiling surface area has been neglected as a heat sink since it consists of corrugated metal.
 
Devonrue Calculation                                                                 Project No.8-9025.00 Date: 5/28/90 Page 5  of 12


==Subject:==
==Subject:==
Project No.8-9025.00 Date: 5/28/90 Page 5 of 12 The straight walls are simply scaled directly from the reference drawing (see Figure 2)while the curved wall length is determined using analytic geometry.Using Figure 1, ($1+g2)/360*(x D)=length of curved wall$1=tan-1 (4 7/8/4)=50.63'2=tan-1 (5 13/16/3)=62.70'1+g2=113.33'herefore, length=(113.33/360) m (33.68)=33.33 m;where 33.68 is the measured diameter of the containment from the referenced drawing 1 2 CL Figure 1 Calculation of curved wall length Devonrue Calculation
 
The straight walls are simply scaled directly from the reference drawing (see Figure 2) while the curved wall length is determined using analytic geometry. Using Figure 1,
($ 1+ g2 )/360 (x D) = length of curved wall
                                $ 1 = tan -1 (4 7/8 /4) =           50.63'2
                                  = tan -1 (5 13/16/3) =                   62.70'1+
g2 =
length = (113.33/360) m (33.68) = 33.33 m; 113.33'herefore, where 33.68 is the measured diameter of the containment from the referenced drawing 1   2 CL Figure 1 Calculation of curved wall length
 
Devonrue Calculation                                             Project No.8-9025.00 Date: 5/28/90 Page 6  of 12


==Subject:==
==Subject:==
Project No.8-9025.00 Date: 5/28/90 Page 6 of 12 3.35 3.05 3.04 28.04 10.06 7.92 33.33 6.40 Figure 2 North Portion of Intermediate Building, El 278'-4" (note: all dimensions are in meters)Using the dimensions in Figure 2, the perimeter of the room is calculated by summing these lengths.ZI.=97.93 meters=Perimeter The Surface Area, A, is computed by multiplying the perimeter by the height of the walls.Review of the referenced drawing and the drawing for the elevation above (33013-2129), show that the height, h, is: h=el 278'-4"-253'-6"=24'-10"=7.57 meters therefore, A=97.93*7.57=741.33 sq.meters Devonrue Calculation
 
3.04 28.04 3.35 3.05 10.06 7.92 33.33 6.40 Figure 2 North Portion of Intermediate Building, El 278'-4" (note: all dimensions are in meters)
Using the dimensions in Figure 2, the perimeter of the room is calculated by summing these lengths.
ZI. = 97.93 meters = Perimeter The Surface Area, A, is computed by multiplying the perimeter by the height of the walls.
Review of the referenced drawing and the drawing for the elevation above (33013-2129),
show that the height, h, is:
h = el 278'-4" - 253'-6" = 24'-10" = 7.57 meters therefore, A = 97.93
* 7.57 = 741.33 sq. meters
 
Devonrue Calculation                                                 Project No.8-9025.00 Date; 5/28/90 Page 7  of 12


==Subject:==
==Subject:==
Project No.8-9025.00 Date;5/28/90 Page 7 of 12 Step 2: Determine the initial wall temperature, T;in'C The initial wall temperature will be calculated by means of a weighted average of Surface area between the South wall, adjacent to the Containment Structure and all other walls, The initial temperature of all other walls is assumed to be 104'F, which is the stated FSAR value for the normal maximum ambient temperature in the Intermediate Building.The South wall surface temperature is calculated as an average between the Containment maximum normal ambient of 120'F and the 104'F Intermediate Building ambient temperature, Therefore, T (South wall)=(120'F+104'F)/2=112'F the initial temperature computed by weighted average on the basis of area is: Ti=(33.33/97.93)*112
 
+(64.6/97.93)
Step 2: Determine the initial wall temperature, T; in             'C The initial wall temperature will be calculated by means of a weighted average of Surface area between the South wall, adjacent to the Containment Structure and all other walls, The initial temperature of all other walls is assumed to be 104'F, which is the stated FSAR value for the normal maximum ambient temperature in the Intermediate Building. The South wall surface temperature is calculated as an average between the Containment maximum normal ambient of 120'F and the 104'F Intermediate Building ambient temperature, Therefore, T (South wall) = (120'F + 104'F)/2 = 112'F the initial temperature computed by weighted average on the basis     of area is:
*104=107'F=41.7 C Step 3: Estimate heat generation rate, Q, in watts The major source of heat in the TDAFW pump area is hot piping and equipment.
Ti = (33.33/97.93)*112       + (64.6/97.93)
A physical inspection of the area revealed the following soutces: (1)1/2" diam.Tb.Steam supply line (insulated), 15 ft.long (1)6" diam.Tb.Steam supply line (insulated) 110 ft.long (1)1/2" diam.Tb.exhaust line (uninsulated), 100 ft.long (1)3/4" Tb.exhaust line(uninsulated), 20 ft.long (1)4" diam.Tb.Exhaust line (insulated), 14 ft.long (1)4" diam.Tb.Exhaust line (uninsulated), 60 ft.long (1)8" diam Tb.exhaust line (insulated), 7 ft.long (1)8" diam.Tb Exhaust line (uninsulated), 20 ft.long (1)1-1/2" diam.Heating Steam line (insulated), 89 ft.long (1)8" diam.Heating Steam line (insulated), 52.4 ft.long (1)2-1/2" diam.Heating Steam line (insulated), 69.4 ft.long (1)28" Diam.Stm.Turbine (insulated)
* 104 = 107'F = 41.7 C Step 3: Estimate heat generation rate, Q, in watts The major source of heat in the TDAFW pump area is hot piping and equipment.             A physical inspection of the area revealed the following soutces:
Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 8 of 12  
(1) 1/2" diam. Tb. Steam supply line (insulated), 15 ft. long (1) 6" diam. Tb. Steam supply line (insulated) 110 ft. long (1) 1/2" diam. Tb. exhaust line (uninsulated), 100 ft. long (1) 3/4" Tb. exhaust line(uninsulated), 20 ft. long (1) 4" diam. Tb. Exhaust line (insulated), 14 ft. long (1) 4" diam. Tb. Exhaust line (uninsulated), 60 ft. long (1) 8" diam Tb. exhaust line (insulated), 7 ft. long (1) 8" diam. Tb Exhaust line (uninsulated), 20 ft. long (1) 1-1/2 diam. Heating Steam line (insulated), 89 ft. long (1) 8" diam. Heating Steam line (insulated), 52.4 ft. long (1) 2-1/2" diam. Heating Steam line (insulated), 69.4 ft. long (1) 28" Diam. Stm. Turbine (insulated)
 
Devonrue Calculation                                                 Project No.8-9025.00 Date: 5/28/90 Page 8 of 12


==Subject:==
==Subject:==
(1)2" diam T+T valve (uninsulated), 1.25 ft.long (1)12" diam Governor valve (uninsulated), 1.7 ft.long In order to calculate the heat generated from the above listed sources, the surface temperature of insulated components must be determined.
 
As stated in the Assumptions section, insulation type and thickness is assumed to be as specified in RGB'hermal Insulation Spec ME-269, Table I, except in the case of AFW Turbine where the insulation thickness was scaled from the outline drawing.In accordance with paragraph 2.01 of ME-269, all insulation is assumed to be calcium silicate.The surface temperature is calculated by considering the convective heat transfer between the insulated surface and the air;q=hAdT=h(Ts T)2x rsl where h is the unit thermal surface conductance in Btu/hr.sq ft'F, rs is the radius of the insulated surface in ft., 1 is the unit length, Ts is the insulated surface temperature,'nd T~is the ambient air temperature the conductive heat transfer from the pipe surface through the insulation; q=(Ti-T~)*1/(fin (rs/ri)/2zkl]
(1) 2" diam T+T valve (uninsulated), 1.25 ft. long (1) 12" diam Governor valve (uninsulated), 1.7 ft. long In order to calculate the heat generated from the above listed sources, the surface temperature of insulated components must be determined. As stated in the Assumptions section, insulation type and thickness is assumed to be as specified in RGB'hermal Insulation Spec ME-269, Table I, except in the case of AFW Turbine where the insulation thickness was scaled from the outline drawing. In accordance with paragraph 2.01 of ME-269, all insulation is assumed to be calcium silicate.
+V 2zrs 1 h};where Ti is the pipe surface temperature and ri is the pipe radius Combining the two equations yields;Ts=[Vhrs*(Ti-T~)}/[[In(rs/ri)/k
The surface temperature is calculated by considering the convective heat transfer between the insulated surface and the air; q=hAdT=h(Ts               T   )2x rsl where h is the unit thermal surface conductance in Btu/hr. sq ft 'F, rs is the radius of the insulated surface in ft., 1 is the unit length, Ts is the insulated surface temperature,'nd T~
]+1/rs h}+T~
is the ambient air temperature the conductive heat transfer from the pipe surface through the insulation; q = (Ti -   T~)
Devonrue Calculation
* 1/(fin (rs/ri)/2zkl] + V 2zrs           1 h};
where   Ti is the pipe surface temperature and ri is the pipe radius Combining the two equations yields; Ts = [Vhrs *(Ti -       T~)}/((In(rs/ri)/k]+       1/rs h } +   T~
 
Devonrue Calculation                                               Project No.8-9025.00 Date: 5/28/90 Page 9  of 12


==Subject:==
==Subject:==
Project No.8-9025.00 Date: 5/28/90 Page 9 of 12 A similar development is applied to the AFW Turbine which is basically treated as an insulated sphere.The final equation is: Ts=T+[(TI.T)+(I/h rs2)~/{[(rs-ri)/(krsri)]
 
+(I/h+rs2))In this evaluation, the following constant values are applied: T~=107'F (see p.7 of this calc.)h=1.6 Btu/hr sq ft'F (Table 4.4.11 of Marks Handbook)k=0.045 Btu/hr ft'F (Table 4.4.6 of Marks Handbook)Note that the Tb.exhaust lines were considered to have a surface temperature of 240'F.This value is based upon the information in the AFW Steam Turbine Bill of Materials, previously referenced, which gives exit steam conditions.
A similar development is applied to the AFW Turbine which is basically treated         as an insulated sphere. The final equation is:
The results obtained when applying the above equation are summarized in Table 1.TABLE I CALCULATION OF INSULATED SURFACE TEMPERATURE (Ts)Description Ti ('F)ri Ins.(t t)thk.(tt)rs In(rs/ri)Ts(F)(tt)1/2" Tb.Stm sup.550 6"Tb.Stm sup.550 0.02 0.125 0.145 0.276 0.2083 0.484 1.981001 0.562304 4" Tb.Exh.240 0.188,0.125 0,313 0.509761 146~51 148.47 126.93 8" Tb.Exh.240 0.36 0.125 0.485 0.298045 128.66 1-1/2" Htg.Stm.220 0.08 0.083 0.163 0.711724 129.05 8" Htg.Stm.220 0.36 0.125 0.485 0.298045 125.41 2-1/2" Htg.stm.220 0.12 Stm Turbine 550 1.17 0.083 0.203 0.292 1.462 0.52571 4 N/A 1 30.57 139 Devonrue Calculation
Ts = T       +   [(TI.T )+(I/h     rs2)~/   {[(rs-ri)/(krsri)]+ (I/h   + rs2))
In this evaluation, the following constant values are applied:
T~ = 107'F   (see p. 7 of this calc.)
h = 1.6 Btu/hr sq ft 'F (Table 4.4.11 of Marks Handbook) k = 0.045 Btu/hr ft 'F (Table 4.4.6 of Marks Handbook)
Note that the Tb. exhaust lines were considered to have a surface temperature of 240'F.
This value is based upon the information in the AFW Steam Turbine Bill of Materials, previously referenced, which gives exit steam conditions.
The results obtained when applying the above equation are summarized in Table 1.
TABLE I CALCULATION OF INSULATED SURFACE TEMPERATURE (Ts)
Description       Ti ('F)     ri         Ins.       rs   In(rs/ri)     Ts( F)
( t t)  thk.    (tt)  (tt) 1/2" Tb. Stm sup.       550       0.02       0.125     0.145   1.981001      146 51
                                                                                  ~
6"Tb. Stm sup.        550      0.276     0.2083     0.484   0.562304       148.47 4" Tb. Exh.         240     0.188,0.125           0,313   0.509761     126.93 8" Tb. Exh.         240     0.36       0.125     0.485   0.298045     128.66 1-1/2" Htg. Stm.       220     0.08       0.083     0.163   0.711724     129.05 8" Htg. Stm.         220     0.36       0.125     0.485   0.298045     125.41 2-1/2" Htg. stm.       220     0.12       0.083      0.203  0.52571 4    1 30.57 Stm Turbine         550       1.17       0.292       1.462       N/A         139
 
Devonrue Calculation                                                 Project No.8-9025.00 Date: 5/28/90 Page 10 of 12


==Subject:==
==Subject:==
Project No.8-9025.00 Date: 5/28/90 Page 10 of 12 Using the results of Table 1, the heat generation, Q, can be calculated from the following equation found in Section 7 of NUMARC 87-00: Q=(0.1[0.4+15.7(Ts-Ta)l/6Dl/2
 
+170.3(Ts-Ta)1/3D](Ts
Using the results of Table     1, the heat generation, Q, can be calculated from the following equation found in Section 7 of NUMARC 87-00:
-Ta)+1.4E-7D(T4s
Q = (0.1[0.4 + 15.7(Ts -         Ta)l/6Dl/2     + 170.3(Ts - Ta)1/3D](Ts - Ta)
-T4w)}L and in the case of the spherical Turbine, Q=(0.1[2+370(Ts-Ta)1/4D3/4I*D(Ts
                                  + 1.4E-7D(T4s - T4w)}L and in the case   of the spherical Turbine, Q = (0.1[2 + 370(Ts - Ta)1/4D3/4I*D(Ts - Ta)
-Ta)+1.4E-7D (T4s-T4a)}Table 2 summarizes the inputs and results based on the above equations.
                                  + 1.4E-7D (T4s - T4a)}
TABLE 2 CALCULATION OF HEAT GENERATED by HOT PIPING&EQUIPMENT Description Ts('F)Ts('K)L(ft)L(m)Do(ft)Do(m)Ts-Ta Ts4-Tw4 Q (watts)1/2" Stm sup.6" Stm.sup.1/2" Tb.exh 3/4" Tb.Exh.4" Tb.Exh 4" Tb.Exh.8" Tb.Exh 8" Tb.Exh.1 1/2 Htg.Stm 8 Htg.Stm.2-1/2" Htg Stm 28" Stm TB.T+T valve Governor Vlv 146.5 148.5 240 240 1 26.9 240 128.7 240 1 29.1 125.4 130.6 139 550 550 336.767 337.856 388.706 388.706 325.889 388.706 326.85 388.706 327.067 325.044 327.911 332.594 560.928 560.928 1 5 4.57 0.29 11 0 33.5 0.968 1 00 30.5 0.042 20 6.1 0.063 1 4 4.27 0.626 60 1 8.3 0.333 7 2.13 0.97 20 6.1 0.667 8 9 27.1 0.326 52.4 1 6 0.97 69.4 21.2 0.406 NA NA 3.05 1.25 0.38 0.167 1.7 0.52 1 0.09 21.95 0.3 23.04 0.01 73.89 0.02 73.89 0.19 11.07 0.1 73.89 0.3 12.03 0.2 73.89 0.1 12.25 0.3 10.22 0.12 13.09 0.93 17~77 0.05 246.1 0.3 246.1 3.042E+09 3.209E+09 1.301E+to 1.301E+10 1.459E+09 1.301E+10 1.593E+o9 1.301E+10 1.623E+09 1.343E+09 1.742E+09 2.417E+09 8.918E+10 8.918E+10 677.39 16629 3680.4 1042.6 558.62 14620 470.98 9471.8 2171.2 2884.2 2259.6 400 838.4 6401.8 Total Q(watts)=62105 Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 11 of 12  
Table 2 summarizes the inputs and results based on the above equations.
TABLE 2 CALCULATION OF HEAT GENERATED by HOT PIPING & EQUIPMENT Description     Ts('F) Ts('K) L(ft) L(m) Do(ft)Do(m)Ts-Ta Ts4-Tw4                     Q (watts) 1/2" Stm sup. 146.5  336.767 1 5 4.57        0.29 0. 09  21. 95  3. 042E+09 677.39 6" Stm. sup. 148.5  337.856 11 0 33.5      0.968 0.3    23.04  3.209E+09 16629 1/2" Tb. exh      240  388.706 1 00 30.5       0.042 0. 01  73.89    1.301E+to 3680.4 3/4" Tb. Exh.       240  388.706 20        6.1  0.063 0. 02  73.89    1.301E+10 1042.6 4" Tb. Exh    1 26.9  325.889 1 4 4.27        0.626 0.19    11.07  1.459E+09 558.62 4" Tb. Exh.     240    388. 706 60 1 8.3       0.333 0.1    73.89  1.301E+10 14620 8" Tb. Exh      128.7    326.85      7  2.13    0.97   0.3   12.03  1.593E+o9 470.98 8" Tb. Exh.     240    388.706 20        6.1   0.667 0.2    73.89   1.301E+10 9471.8 1 1/2    Htg. Stm  1 29.1 327.067 8 9 27.1        0.326 0.1     12.25   1.623E+09 2171.2 8 Htg. Stm.     125.4 325.044 52.4        1 6    0.97  0.3   10.22  1.343E+09 2884.2 2-1/2" Htg Stm      130.6 327.911 69.4 21.2        0.406 0.12    13.09   1.742E+09 2259. 6 28" Stm TB.        139 332.594 NA          NA    3.05 0.93    17 77  2.417E+09
                                                                    ~                  400 T+T valve        550 560.928 1.25 0.38          0.167 0. 05  246. 8.918E+10 838.4 Governor Vlv      550 560.928 1.7 0.52              1    0.3  246.8.918E+10 6401.8 Total Q(watts)= 62105
 
Devonrue Calculation                                                 Project No.8-9025.00 Date: 5/28/90 Page 11   of 12


==Subject:==
==Subject:==
Review of Table 2 shows that the uninsulated Tb.exhaust lines were considered to have a surface temperature of 240'F.This value is based upon the information in the AFW Steam Turbine Bill of Materials, previously referenced, which gives exit steam conditions.
 
In addition to the 62,105 watts generated by hot piping and equipment, an additional 1,000 watts will be added to account for heat generated by emergency lighting, operating solenoids, etc.Therefore, the total heat generated in the TDAPV pump atea is: Q=62,105+1,000=63,105 watts Step 4: Calculate the ambient temperature This step is accomplished by applying the NUMARC 87-00 correlation:
Review of Table 2 shows that the uninsulated Tb. exhaust lines were considered to have a surface temperature   of 240'F. This value is based upon the information in the AFW Steam Turbine Bill of Materials, previously referenced, which gives exit steam conditions.
Tair=Ti+[Q/A]T-=41.7+[63,105/741.33]3/4
In addition to the 62,105 watts generated by hot piping and equipment, an additional 1,000 watts will be added to account for heat generated by emergency lighting, operating solenoids, etc.
=41.7+28=697 C=1575 OF Step 5: Evaluate the effect of opening doors This step is performed using the NUMARC 87-00 correlation for considering free convection through vertical openings.Arrangement drawing 33013-2121 shows double doors on the west side of the North wall which open to the Turbine Bldg.The'Turbine bldg area adjacent to these doors is assumed to remain at 104'F during the 4 hour blackout duration due to its configuration and the lack of significant heat sources in the area.The effects of opening doors to allow removal of heat through natural circulation are evaluated as defined in Section 7, p.7-15, of NUMARC 87-00: Tair-Tw+(Q3/4/[A3/4
Therefore, the total heat generated in the TDAPV pump     atea is:
+16.18 F 0 8653))where; Devonrue Calculation
Q = 62,105 + 1,000 = 63,105 watts Step 4: Calculate the ambient temperature This step is accomplished by applying the NUMARC 87-00 correlation:
Tair = Ti + [Q/A]
T -   = 41.7 + [63,105/741.33]3/4
                          = 41.7 + 28 = 697 C = 1575             OF Step 5: Evaluate the effect of opening doors This step is performed using the NUMARC 87-00 correlation for considering free convection through vertical openings. Arrangement drawing 33013-2121 shows double doors on the west side   of the North wall which     open to the Turbine Bldg. The'Turbine bldg area adjacent to these doors is assumed to remain at 104'F during the 4 hour blackout duration due to its configuration and the lack of significant heat sources in the area.
The effects of opening   doors to allow removal     of heat through natural circulation are evaluated as defined in Section 7, p. 7-15, of NUMARC 87-00:
Tair   Tw+ (Q3/4/[A3/4 + 16.18 F 0 8653)) where;
 
Devonrue Calculation                                             Project No.8-9025.00 Date: 5/28/90 Page 12 of 12


==Subject:==
==Subject:==
Project No.8-9025.00 Date: 5/28/90 Page 12 of 12 F is the"door factor" and is equal to H3/2W;where H and W are the height and width of the door, respectively.
 
As measured from the layout drawing, W is 8 ft.(2.44m)and H is assumed to be 7ft., the standard industrial door height.Applying these relationships to the double doors yields an F of: F=(2.13)/2*(2.44)=7.58 therefore, Tair=4+41.7+((63,105)3/4
F is the "door factor" and is equal to H3/2W; where H and W are the height and width of the door, respectively.
/[(741.33)3/4
As measured from the layout drawing, W is 8 ft. (2.44m) and H is assumed to be 7ft., the standard industrial door height.
+16.18*(7.58).8653])
Applying these relationships to the double doors yields an F of:
Tair=4+41.7+16.91=62.61'C=145'F GINNa/vpsaR f+~s py gg G+Q)Pf FbtJ/~Table 3.11-1 ff&kAGae&Z P lg/ENVIRONMENTAL SERVICE CONDITIONS FOR EQUIPMENT DESIGNED TO MITIGATE DESIGN-BASIS EVENTS INSIDE CONTAINMENT Normal 0 erationr Temperature Pressure Humidity Radiation 60'F to 120'F 0 psig 50X (nominal)Less than 1 radlhr general.Can be higher or lower near specific components.
F = (2.13) /2 * (2.44) = 7.58 therefore, Tair = 4 + 41.7 + ((63,105)3/4 / [(741.33)3/4 + 16.18 *
Accident Conditions LOCA S+c~-M vu.~~Temperature Pressure Humidity Figure 6.1-2 (286'F maximum)Figur e 6.1-1 (60 ps ig design)100l 40 PSlg Radiation Tables 3.11-2 and 3.11-3;1.43 x 10 rads gamma 7 2.07 x 10 rads beta Chemical, spray Solution of boric acid (2000 to 3000 ppm boron)plus NaOH in water.Solution pH between 8 and 10.Flooding 7-ft (approximately) maximum submergence elevation is 242 ft 8 in., AUXILIARY BUILDING Normal 0 eration: Temperature Pressure Humidity Radiation 50 F to 104 F 0 psig 60X (nominal)Less than 10 mradlhr general, with areas near residual heat removal piping less than 100 mradthr during shutdown operation.
(7.58).8653])
Accident Conditions includin sum recirculation LOCA one train of ESF coolin o eratin Temperature Pressure Humidity 50F to 104 F 0 psig 601 (nominal)3~11-19 REV 4 12/88 1~lI: " V jl 4-90 TRANSMISSiON OF HEAT BY CONDUCTION AND CONVECTION
Tair = 4 + 41.7 + 16.91 = 62.61'C = 145'F
//~//~d>>~/~appears to be the best available.
 
Zubcr also performed an anal-obtained at an overall temperature differcncc of 60 F.I-0 ysis for subcoolcd liquids arid PfoPosed a modification which is" this Point, the coefficient a Aux dccrcasedraPid}y, a~ud also in cxcel1cnt agreement with cxperimcnt:, ing the values obtained in superheating vapor, scc Eq cats 1/I Add (q/A)c m Ktp,p+Cyg,-/))[f crgtgAPc-Pn)1/Pt Pa Pl Pv>c 1+5.33(pcC jk,)'/'(t,-t/)[gt(pc-p,)p,]Zuber's hydrodynamic analysis of the Leidenfrost point yields 1/a (q/A)m K~" 0.144<Ka<0.17?l ega'hc-P.).(4A.I4d)gi PP O.4 i%3 D.l 0 Berenson finds bcltcr agrcemcnt with thc data if K, m 0.09.For very small wires, thc heat flux will cxcccd that predicted by this flat plate formula.A reliable prcdiction of thc critical tempcraturc is not available.
GINNa/vpsaR f+   ~ s py gg           G+
For nuc1eatc boiling accompanied by forced convection, the heat flux may bc approximated by thc sum of the heat Aux for pool boiling alone and the heat Aux for forced convection alone.This proecdurc will not be satisfactory at high qualities.
Table 3.11-1 Q)Pf FbtJ ff&kAGae&
and no satisfactory correlation exists for thc maximum heat Aux.For a given liquid and boiling pressure, thc nature of Ihc surface may substantial1y inAucnec the flux at a given (At), Table 4.4.10.Thcsc data may bc used as rough approximations for a bank of submerged tubes.Film coefficients for scaic deposits arc given in Tab1e 4.4.g.For forced~clou eva poratoct, vapor binding is also encoun.tered.Thus with liquid benzene cntcring a 4.pass stcam jack.cled pipe at 0.9 fps, up to thc point where 60 pcrccnt by weight was vaporized, thc maximum flux of 60,000 Btu/h/ft'as For comparison, in a natural convection evaporator, a In~.mum Aux of 73,000 Btu/h/ft was obtained at (ht),of 100 F~cotnblned convection and Radiation coetticlentb in m"@sottte,'ases of heat loss, such as that from bare and insulated p p"@where loss is by convection to the air and radiation to the teafhg>>of lhe cnclo ing sp cc it is convenient to usc a combined'".r.
                                                                    /~        Z P lg/
vection and radiation coeAicient (h,+h,).The rate of h'ca}nu'oss thus becomes q m (h,+h,)A(dt), (4A.IS)j."-wherc (c)t), is the temperature difference, deg F, between tfte~surface of thc hot body and lhe walls of thc space.fn evaiuat: '".ing (h,+h,), h, should bc calculated by the appropriate con vection formula[see Eqs.(4A.llc)to(4A.llg))
ENVIRONMENTAL SERVICE CONDITIONS FOR EQUIPMENT DESIGNED TO MITIGATE DESIGN-BASIS EVENTS INSIDE CONTAINMENT Normal 0   erationr Temperature             60'F to 120'F Pressure                0 psig Humidity                50X (nominal)
and h, from the ui equation h, m 0.00685c(7/100)''
Radiation                Less than 1 radlhr general.       Can be   higher or lower near specific components.
T Va: of ias v i>>ii 540.4)d, enc}ostng i mttfj,+kI'i'at~~1, II I~I~)~~~i}~tI~~~I Table 4.4.10 Maximum Flux and Corresponding Overall Temperature Difterence tor Uquidb Boiled at 1 atm with a Submerged Horizontal Steam.Heated Tube Uqutd Aluminum Chrumiom-1>lated c opt>cr I Smt I>>>>.9'A>/!A 1000 (1000 ttit).9/A Ethyl acetate....
Accident Conditions       LOCA                                     S+c~     - M vu.   ~~
Temperature             Figure 6.1-2 (286'F maximum)
Pressure                Figur e 6. 1-1 ( 60 ps ig design)                 40 PSlg Humidity                100l 7
Radiation               Tables 3.11-2 and 3.11-3; 1.43 x       10   rads gamma 2.07 x 10     rads beta Chemical, spray         Solution of boric acid (2000 to 3000 ppm boron) plus NaOH   in water. Solution pH between 8 and 10.
Flooding                 7-ft (approximately)     maximum submergence       elevation is 242   ft 8 in.
, AUXILIARY BUILDING Normal 0   eration:
Temperature             50 F   to 104 F Pressure                0 psig Humidity                60X (nominal)
Radiation              Less than 10 mradlhr general, with areas near residual heat removal piping less than 100 mradthr during shutdown operation.
Accident Conditions       includin sum recirculation           LOCA one train of   ESF coolin o eratin Temperature             50F to 104 F Pressure                0   psig Humidity                601 (nominal) 3 ~ 11-19                             REV 4   12/88
 
4-90     TRANSMISSiON OF HEAT BY CONDUCTION AND CONVECTION                                                             // ~ /
                                                                                                                                                ~d>>~/           ~
                                                                                                                                                                                        /
appears to be the best available. Zubcr also performed an anal-                                 obtained at an coefficient overall temperature differcncc of 60 F.           I     -0 ysis for subcoolcd liquids arid PfoPosed a modification which is also in cxcel1cnt agreement with          cxperimcnt:,
this Point, the                           a Aux dccrcasedraPid}y, ing the values obtained in superheating vapor, scc Eq a~      ud Add cats                   1/I f crgtgAPc Pn) 1              /    Pt (q/A)     c m Ktp,p + Cyg         , /))
[         Pa                   Pl       Pv>
5.33(pcC       jk,)'/'(t, t/) [ gt(pc p,)p,]                                                     O.4
  ~                                                                                                          1    +
1 i%3 lI:          "                                                                                                                                                                                        c Zuber's hydrodynamic analysis of the Leidenfrost point yields 1/a ega'hc-            "
P.)
V jl                                            (q/A)         m   K~l                  PP 0.144     < Ka < 0.17?                                 . (4A.I4d) gi D.l 0
Berenson finds   bcltcr agrcemcnt with thc data if K, m 0.09.                                   For comparison, in a natural convection evaporator, a In~.
mum Aux of 73,000 Btu/h/ft was obtained at (ht),of 100 F For very small wires, thc heat flux will cxcccd that predicted by this flat plate formula. A reliable prcdiction of thc critical                                  cotnblned convection and Radiation coetticlentb in sottte,
                                                                                                                                                                                                          ~                T Va:
m "@
tempcraturc is not available.                                                                            of heat loss, such as that from bare and insulated p p" @                           'ases          of ias For nuc1eatc boiling accompanied by forced convection, the                                  where loss is by convection to the air and radiation to the teafhg>>
heat flux may bc approximated by thc sum of the heat Aux for pool boiling alone and the heat Aux for forced convection alone.
of lhe cnclo ing sp cc it is convenient to usc a combined'".r.
vection and radiation coeAicient (h, + h,). The rate of h'ca}
v        i>>ii 540.4) nu'oss This proecdurc will not be satisfactory at high qualities. and                                        thus becomes                                                                                   d, enc}ostng kI i
no satisfactory correlation exists for thc maximum heat Aux.                                                                                                                                        mttfj,+
For a given liquid and boiling pressure, thc nature of Ihc                                                                  q m (h,       + h,)A(dt),                   (4A.IS) j."-
surface may substantial1y inAucnec the flux at a given (At),
Table 4.4.10. Thcsc data may bc used as rough approximations                                  wherc (c) t), is the temperature difference, deg F, between tfte ~
for a bank of submerged tubes. Film coefficients for scaic                                    surface of thc hot body and lhe walls of thc space. fn evaiuat:
deposits arc given in Tab1e 4.4.g.                                                             ing (h, + h,), h, should bc calculated by the appropriate con
                                                                                                                                                                                                                            'i 'at For forced~clou eva poratoct, vapor binding is also encoun.                                vection formula [see Eqs. (4A.llc) to(4A.llg)) and h, from the ui tered. Thus with liquid benzene cntcring a 4.pass stcam jack.                                  equation cled pipe at 0.9 fps, up to thc point where 60 pcrccnt by weight was vaporized, thc maximum flux of 60,000 Btu/h/ft'as                                                                        h, m   0.00685c(7/100)''
                                                                                                                                                                                                                                ~ ~
Table 4.4.10 Maximum Flux and Corresponding Overall Temperature Difterence tor Uquidb Boiled at 1 atm with a Submerged Horizontal Steam.Heated Tube Chrumiom-Aluminum                                                            opt>cr                 Smt I
1>lated  c            I                                                            ...~re Uqutd 1,                                                                                                    9'A                             >/!A                         9/A                                                                '
1000                           1000
                                                                                                                                                    >>>>.                          ttit).                                   ,,V>>.Cibt
(
II                              Ethyl acetate....
Bet>acne........
Bet>acne........
Ethyl alcohol....
Ethyl alcohol....
h'l ethyl alcohol..Distilled icatcr..41$1 5$80'b I 10'1 73 124 I I 0 3$0$$100 45 I IO 7$82 1$$410 100 I IO 1$0 Nominal I ipe diam in.(a/I>.tenipccatuce dill<<cence.
41
deja F, ttoo>autiaee to room so}100, Iso 200 2so 300'00'00 e00 ,'700'00 1900 I 1000 f 1100 1200 I 2.12 2.48 2.76 3.10 3.41 3.1$4.47 S.30 6.2117.25 d.40 9.7S}11.20 12.81'14.6$
                                                                            $1 5$
2.03'2.3d 2.6$'2.98 3.29 3.62 4.33,$.16 6.0717.11'8.2$
80'b                   I 10'1             73 124 100 45 82           100
9.57111.04 12.6514,48 I.93 2.27 2.$2 2.8$3.14 3.47 4.18 4.99 S.89>6.92 8.07,'I.38 10.85 12.44 14.2d I.dd 2.Ie 2.41 2.12 3.01 3.33 4.02 4.83 5.7216.75 7.89 9.21,10.eb 12.27 14.09 1.76 2.06 2,29 2.60 2.89 3.20 3.88 4.68$.57 b.eo 7.73 9.05>10.50 12.10 IS.93 1.71 2.01 2.24 2.$4 2.d2 3.13 3.d3 4.411$.50;6.52 7.6S 8.96'10.42 12.03 13.dc 1,64 1.93 2.IS 2.4$2.72 3 03 3.10 4.48$.31'6~39 7~52 bvbS'10.28
                                                                                                                                                                                                                              >'Jp,
)1.90 13.70}}}t (}I}I.dz 2.13 2.40'2.70 2.99 3.30 4.00 4.79$.70 6.12 7.86 9.18'lb.64'12.2S.I4.06 2.00 2.35 2.4$2.91 3.26 3.$9 4.31 5.12 6.04 7.07 8.21 9.54 11.01 12.e3'14.45 1.$d 1.8$2.09 2.36 2.63 2.93 3.61 4.38 5.21 6.27 1.40 8.7110.16 11.76 13.57 I 2 8 12 24 FLAT Pa>>Tea vertical......
              ~
~.~.~." HFU.........."""~}HFD..........
        ~
~.."", IIFU, ho>>i><>nial, (>>ting up>v aid;I IF D, hodaoniit, Acing do>>>n>>ar>L Table 4v4 1 0 Valued ol (hc+hp)For horizontal bare or insubted star>dard steel pipe of various site:s and for fiat plates in a room at 80'F...~re ,,V>>.Cibt'>'Jp, 1~I~
I       ~                      h'l ethyl alcohol ..                                                                        I I0          I IO          1$ $         I IO I~) ~                                Distilled icatcr..                                                                         3$ 0            7$            410          1$ 0 tI~~
4-86 TRANSh(ISSIOX OF HEAT BY CONDUCTION AND CONVECTION 5-9'dg.o~HF'M/~~A m i~P, 2.+~Table 4A.6 Thermal Conductlvltles of Insutatlng Materials for High Temperatures hfaterial Bulk density.Ib per eu fs hfaa recap, deg F 100 F 300 F 500 F 1000 F ISOO F 1000 F Asbestos paper, lacninated.......
1 0 Valued ol (hc + hp)
Asbestos payer.corrugated......
          ~i}
Diatomaceous earth.silica, po)edec,....................
Table 4v4
Diatocnseeous earth, asbestos and bonding material.........
          ~
Fiberglas block.PF612.........
For horizontal bare or insubted star>dard steel pipe              of various      site:s and    for fiat plates in a room     at  80'F I                                                                              (a/I>. tenipccatuce dill<<cence. deja F, ttoo> autiaee to room Nominal I ipe diam in.                so   }
Fiberglas block.PF614..~~~~~~.Fiberglas block.PF617..........
100, Iso 200 2so           300     '00 '00         e00 ,'700   '00 I1900      I 1000 f
Fiberglas, metal caesh blanket, f900........
1100   1200 2.12 2.48     2.76 3.10 3.41 3.1$           4.47 S.30 6.2117.25 d.40 9.7S}11.20                 12.81'14.6$
~..~..~~.~.~....Cellubr gbss blocks, sve, vainest'~.~~~~~~..~~.~~.~Ifydrous calcium silicate."ffaylo"..........
I                2.03'2.3d     2.6$ '2.98 3.29 3.62           4.33,$ .16 6.0717.11'8.2$ 9.57111.04                 12.6514,48 2                I. 93 2.27   2. $ 2 2. 8$ 3.14 3. 47       4. 18 4.99 S. 89>6.92 8.07,'I. 38 10.85             12. 44 14. 2d I.dd 2. Ie   2.41 2.12 3.01 3.33           4.02 4.83 5.7216.75 7.89 9.21,10.eb                 12.27 14.09 8                1.76 2.06     2,29 2.60 2.89 3.20           3.88 4.68 $ .57 b.eo 7.73 9.05>10.50                 12.10 IS.93 12                1.71 2.01 2.24 2.$ 4 2.d2 3.13               3.d3 4.411$ .50;6.52 7.6S 8.96'10.42                 12.03 13.dc 24                1,64 1.93 2. IS 2.4$ 2.72 3 03               3.10 4.48 $ .31'6 ~ 39 7 ~ 52 bvbS'10.28             )1.90 13.70 FLAT Pa>>Tea vertical......     ~ .~.~.
~...~...~.85 ra cnagnesia.......
HFU..........""" }2.00 2.35
~..~~.~~~~hffec~uacrs 6her, blanket...., Potassiura titanate.fihecs...~..~Roe'k wool,)oose................
                                                                    " I.dz 2.13 2.40'2.70 2.99 3.30 4.00 4.79 2.4$ 2.91 3.26 3.$ 9 4.31
22.16.400 0.038 0.041 300 0.031 0.042 I I.11.3.71.5 8-11 113.3000 3000 0.031 0.029 O.ol I 0.027 0.038 0.035 0.028 0.022 0.038 0.045 t 0.042 0.024 0.049 0.108 0.075 0.030 0.ON 0.119 I b.7 1500 0.037 0.045 0.053 0.074 lb.1600 0.045 0.049 0.053 0.065 2.S 500 0.025 0.039 4.25 500 0.021 0.033 9), SOO 0.010 0.033 1000 0.020 0.030 0.040 0.033 0.045 0.062 O.Iolf 0.142 0.163 0.117 Table 4,4.7 Thermal Conductance across Air Spaces Brul(h)(fr)-ReAective insulsuon Aic spare.in Direetioa of heat Oow Temp ditf, deg F hf san temp, deg F Aluminum~urfaees,~~0.05 Ordinary~urlaeee, non.metallic,~~0.90 Hohsontat, I(4 across.Vertical, sl"4 across.........
                                                                                                                    }      }      }
Hocicontal.)f across...~.....
t      (      }      I      }
Hocisontat, 4 aecoss..........
                                                                                                                                        .70 6.12 7.86 9.18'lb.64'12.2S.I4.06 5.12 6.04 7.07 8.21 9.54 11.01 12.e3'14.45 HFD..........        ~ .."",1.$
Upward Across Downs)acd Downward lb.20.20.lb.80.80.75.80.0.60 0.49 0.30 0.19 1.35 l.I'9 I.08 0.93 Values of K for N Rows Deep h)'2 K 024 025 3 4 0.17 0.29 5 6 7 10 0.30 0,31 0.31 0,33 h, 150(F/D)cis (4A.9)Oss Flew Normal to a Single Tube, D,G/frl from 1000 to 50.000: 030CiG s/(D)o (4A.ya)Fluid Flow Normal to a Bank of Staggered Tubes, D,G~/frl from 2000 to 40.000: 'lrs Os'~K~-'4AJ0 Water Flow Normal to a Bank of Staggered Tubes, D,G~/frl from 2000 to 40,000 h370(l+0.0067rl)V,'s/(D)os for bafllcd cxchangers, to allow for Icakagc of fluids around thc bafllcs, usc 60 percent of the values of hfrom Eq.(4A2I);for tubes in linc, deduct 25 percent from Ihe values of hgiven by Eq.(4.4.8).Water Row in Layer Form over Horfzontat Tubes, 4P/Ir (2100 I'or I'ranging from100to 1,0001bof water perh per f1 (each side).Water Row In Layer down Vertical Tubes, w/xD)500 h 120F)fs (4A.9s)Heat Transfer to Oases Fiowing st Very High Velocities If a nonrcactivc gas.stream is brought to rest adiabatically, as at thc true stagnation point of a blunt body, the tcmperaturc risc will bc I,-r w V'/2g+Cr (4.4.9b)where I, is thc stagnation temperature and r is the tempera.turc of the free stream moving at velocity V.At every other point on thc body, the gas is brought to rest partly by prcssure changes and partly by viscous effects in thc boundary layer.In general, this process is not adiabatic, cvcn though the body transfers no heat.Thc thermal conductivity of thc gas will transfer heat from onc layer of gas to anolher.At an insulated surface, thc gas tempcraturc will therefore bc ncithcr thc frcc-strcam tcmperaturc nor thc stagnation tempcralurc.
                                                                      ~
In gcn.eral, thc risc in gas tcmpcraturc will be given by thc equation
d  1.8$  2.09 2.36 2.63 2.93           3.61   4.38 5.21 6.27 1.40 8.7110.16 11.76 13.57 IIFU, ho>>i><>nial, (>>ting up>v aid; I IF D, hodaoniit, Acing do>>> n>> ar>L 1
~~~~  
      ~             I ~
~v~>>>>>>55~aJ<<VL I A)@bed)P-V<A5~<~BILL OF MATERIALS:.='-;::7 er-4l'~-<<','V 5 gestinghcu~e Atonic Po'e'er D'nisi"n~CIL)SN T)(noches.ver Gas c)Elc" iric Corgor.vion)Peed.Vc~te>>SJ'st~i 3oberT Et'~"-tt G~~F-'clear Po;;ed 3'i:a<ion<<r 8 al SY)58OL LPa>>051)CCI)
 
)5C SIIEf.T HO, LocATloN: Pi<<sburgh
5- 9'dg. o ~
)Pa,~oAI w.o.4155 cLIEN T w.o.En-33COO'ni''.o.
4-86      TRANSh(ISSIOX OF HEAT BY CONDUCTION AND CONVECTION HF'M i~P, 2.+~
1 OI)A)5 f I T Y OCSCRIPTION OS QATKRIAl ISSU OROKR NO P Q s Hewing r'"."s 1"-;>c'nrc=stc'3~>chrc-sie 1 2lfi026 slensres 1>-,>chr~~~P, 5~<<~~eg r.~r.r I0~%.~~~0<<~>>~~~~~Diffu"Q s Pea>><<pgs Dj.~char5 Q f~<<Q Suction flmgQ 5+p)chro e svreel Oil lv"ric tQR b~b em~in"-s 3"-1 0 AHA 4N-COO)";A~C lv>>5<<5 P p she>>be furni>>h o, 4Q:vh i'he folio Qng'5 St'LLL..O''ve bio"}'~g on T ye S s j ngl cnxlJ.rcauxre cern a'~29.7 lb"/i:pzhr
                                                                                                                                                /~~              Am Table 4A.6 Thermal Conductlvltles of Insutatlng Materials for High Temperatures Bulk density. hfaa hfaterial                                    Ib per recap,F          100  F    300  F    500 F      1000  F  ISOO  F 1000 F eu fs      deg Asbestos paper, lacninated.......                           22.           400    0.038    0.041 Asbestos payer. corrugated......                             16.           300    0.031    0.042 Diatomaceous earth. silica, po)edec,....................                              I b. 7        1500    0. 037    0. 045    0. 053      0. 074 Diatocnseeous earth, asbestos vainest' material.........
"+f)60))si, 10 p':"aus"".d 5C"o..""b"nc sh;.3 bc r"."'450 hg at 4575 rm.TG ul binQ$h b su""Q.b fo=quick ster7~>~5.'5'~<<5~>><<~TL'ine chal~bQ i ann she.I t'ul a Uooidfard oil r~1y ac"'ag cons-an'I.
and bonding                                                lb.          1600    0.045      0.049      0.053      0.065 Fiberglas  block. PF612.........                             2.S          500    0.025      0.039 Fiberglas  block. PF614.. ~ ~ ~ ~ ~ ~ .                      4.25        500    0.021      0.033 Fiberglas  block. PF617..........                             9)       , SOO    0.010      0.033 Fiberglas,  metal caesh blanket, f900........ .. .. ~ ~ . ~ . ~....
",." I governor, go;-e"or vM-;~inte~M stc stra>>ncr b"".".c'.-, insu)='-.on c.u gacI'for'n")casey, i"ch-0 r u ted h~f co'Qli)gp tw (2)4 i]2 v&#x17d;T cssurQ gauges,""d.tr'p ar." i"""'-tie va':c l~t sritc'~.Tu>>bi"c Co" i"zc"ion:~r'5 Casing PmfV Bucket.@heel" Blade" Cerbon stQQ A3>o'J s'uee l Pored.si~QQ1 Stress S.eel<<>>~~..~'5,~he<<5>>>>V>>&,~Al le?Acv S 5))
                                        ~      ~                                            1000    0.020      0.030      0.040 Cellubr gbss blocks, sve,            .   ~ ~ ~ ~ ~ ~  .. . .
RG&E Answers To The NRC's March 21, 1991 Station Blackout Questions Attachment 5 Containment Isolation Valves Table 7-2-Containment IsolationlPage 1 of 6]Penelrstlon Number Description Valve Number Posttbn At Normal Operatbn Containment Isolatbn Maintained JustNc ation]Per 874XI]Steam Generator Inspectbn/Malntenaree 101 Fuel Transbr Tbbe Charglrg Une To 8 Loop Safety fn]ectbn Pump 18 0'echarge Alternate Charging To A CoM Leg Constructbn Fire Servloe Water Bird Range 3708 8708 8898 0 Yes Locked dosed vkr bind gangs Check valve.80th camper>>nts sre check valve Locked dosed vh bind flange.107 Containment Spray Pump 1A Reactor Coolant Punp A Seal Water Inlet Sump A Dischuge To Waste Hddup Tank Reactor Coolant Punp Seal Water Return Une snd Excess LeMown To VCT U 1723 1728 313 0 0 0 0 Check valve.Check valve.Both components fal dosed on loss of power.Valve less than 3'bmeter.Valve dosed by ECA.O.O, Step 8 110a]top)Containment Spray Pump 18 Reactor Coohnt Punp 8 Seal Water Inlet 8828 0 Check valve.Check valve.110b (bottom)Safety In]ectbn Test Line ResMual Heat Removal To 8 Cold Leg 879 LC 0 0 Locked dosed.MOV 720 locked dosed[breaker locked open], 958 fs not considered a CIV.112 LeMown To NonregeneraUve Heat Exchanger 20CA 2008 202 371 427 OiC OjC C 0 0 All vabes except 427 fal dosed on foes of power.Valve 427 Is not considered a CIV.113 Safety In]ectbn Pump 1A Discharge 870A 889A C 0 Both components sre check valve@119 Standby Auxltary Feedwater Une To Steam Ger>>rator 1A 9704A 9705A Containment boundary b SG seoondary sMe and tubes.No contahment Isobtbn Is required Nlrogen To Accundators 0 OJC AOV448 fels dosed on bss ol power.VaNe 8823 Is a check valve.121 a Pressurizer Relief Tank To Gas Analyzer Nlrogen To Pressurizer ReBel Tank 0 0 0 LC Yes AOV439 lais dosed onbss ol power.Manual valve 548 b not rrxtured to hotate.Valve 528 b a check valve.Manual valve 547 b bcked cbsed.
                                                            ~ ~  ~ ~    ~                            0.033      0.045      0.062 Ifydrous calcium silicate.
Table 7-2-Containment tsolation[Page 2 of 6J Penetration Number Description Valve Number PosMon At Normal Operation Contalnmsnt hohtlon Maintained JustiOcatfon
                      "ffaylo".......... ~... ~... .                 ~        I I.                 0. 031    0. 038    0.045 85 ra cnagnesia.......             ~ .. .
[Per 87~I 121b Makeup Water To Pressurizer Relief Tank 0 OJC ACV40B fels dosed on k&#xb9;s of power.Vahre 529 Is a check valve.121c 121d Containment Presscxe Transmkter PT-945 Containment Pressure Transmkter PT-948 PTAS 1819A PT446 1819B NA 0 NA 0 Valve is k&#xb9;s than 3'hmeter.Valve h less than 3'hmeter.123 (top)Standby Auxihry Feedwater Line To Steam Gcrnera'tof 1 B 9704B 9705B 0 0 Containment boNxfsry b SC secondary side and tubes.No contahment Isolation req&ecL Reactor Coohra Drain Tank To Gas Analyzer Line 1600A 1655 1789 0 0 0 ACV 160OA b not cor&#xb9;kfered a CIV, but hh dosed on hss of power.Manual valve 1655 h not requked to bohte.Valve 1789 fels dosed on k&#xb9;s of power, 124a Excess Letdown Heat Exchanger Cooing Wahr Supply&Return 743 745 0 0 Valve 743 h a check valve.AOV.745 fags dosed on loss of power, 124b Pc&#xb9;t Accident Alr Sarnph To 0 Fan Component Cooling Water From Reactor Coohnt Pcznp 1B 1569 1571 1572 1574 LC LC LC LC 0 Yes All four manual valves are locked cfoscKL Norvradkactive, dosed4cop system.Vahre b dosed by ECA4.0, Step 8.127 Component Cooikql Water Rom Reactor Coohnt Pcznp 1A Component Cooing Water To Reactor Coohnt Pump 1A Component Cooling Water To Reactor Coohnt Pump 1B 749A 75CA 749B 750B 0 0 0 0 0 Non radioactive, ck&#xb9;sd4oop system Vahe b dosed by ECA41.0, Step 8.Norvradk&#xb9;ctlve, dosed4oop system Non radioactive, dosed.loop system Reactor Coohnt Drain Tank And Pressurizer Relief Tank To Containment Vent Header 1713 1786 1787 1793 0 0 0 LC Yes Valve 1713 h a check valve.ACVs 1788 and 1787 hg dosed on kes of power.Manual valve 1793 b hoked ckeeci Component Cooling Water From Reactor Support Coofkvg 814 0 Non.radioactive, dosed.hop system Valve b dosed by ECA41.0, Step 8.131 Component Cooling Water To Reactor Support Coo0ng 813 0 Non.radloacUve, dosed4oop system Valve h dosed by ECA41.0, Step 8.  
                                                            ~ ~ ~ ~ ~ ~       11.                   0. 029    0.035            t hffec~uacrs 6her, blanket....,                                3.       3000      O.ol I    0.028      0.042      0.075    O. Iolf 0.142 Potassiura titanate. fihecs... ..             ~       ~    71. 5                          0.022      0.024      0.030 Roe'k wool,  )oose................                           8-11                0. 027    0.038      0.049      0. ON 113.         3000                            0. 108      0. 119    0. 163    0.117 Table 4,4.7 Thermal Conductance across Air Spaces Brul(h) (fr )-ReAective insulsuon Direetioa            Temp              hf san        Aluminum          Ordinary
                                                                                                                                                        ~ urlaeee, Aic spare. in                                      of                ditf,            temp,            ~ urfaees, non.metallic, heat Oow              deg F            deg F            ~ ~ 0.05
                                                                                                                                                        ~ ~ 0.90 Hohsontat, I( 4 across.                                 Upward                  lb.               80.               0.60            1. 35 Vertical, sl"4 across.........                         Across                  20.               80.               0.49            l. I '9 Hocicontal. )f across...~.....                           Downs)acd                20.               75.               0.30            I. 08 Hocisontat, 4 aecoss..........                         Downward                lb.               80.              0. 19            0. 93 Values of K for N Rows Deep h)'                              2                3          4          5          6          7          10 K              024            025              0.17        0. 29      0.30      0,31      0.31        0,33 Oss Flew Normal to a Single Tube,                      D,G/frl from 1000 to                          I'or I'ranging from100to 1,0001bof water perh per f1 (each side).
50.000:
030CiG s/(D)o                                              (4A.ya)
Water Row In Layer down Vertical Tubes, w/xD            )  500 h       120F)fs                  (4A.9s)
Fluid Flow Normal to a Bank of Staggered Tubes,                               D,G~/frl from 2000 to 40.000:
                      '~   K    ~         'lrs
                                                      '4AJ0      Os Heat Transfer to Oases Fiowing st Very High Velocities If a nonrcactivc gas. stream is brought to rest adiabatically, as at thc true stagnation point of a blunt body, the tcmperaturc risc will bc r
Water Flow Normal to a Bank of Staggered Tubes,                              D,G~/frl                                          I,          w V'/2g+Cr                (4.4.9b) from 2000 to 40,000 where I, is thc stagnation temperature and r is the tempera.
h370(l + 0.0067rl) V,'s/(D )os                                                        turc of the free stream moving at velocity V. At every other for bafllcd cxchangers, to allow for Icakagc of fluids around                                        point on thc body, the gas is brought to rest partly by prcssure thc bafllcs, usc 60 percent of the values of h from Eq. (4A2I);                                        changes and partly by viscous effects in thc boundary layer. In for tubes in linc, deduct 25 percent from Ihe values of hgiven                                        general, this process is not adiabatic, cvcn though the body transfers no heat. Thc thermal conductivity of thc gas will by Eq. (4.4.8).
Water Row in Layer Form over Horfzontat Tubes, 4P/Ir 2100
(          transfer heat from onc layer of gas to anolher. At an insulated surface, thc gas tempcraturc will therefore bc ncithcr thc frcc-strcam tcmperaturc nor thc stagnation tempcralurc. In gcn.
h,        150(F/D ) cis                                          (4A.9)         eral, thc risc in gas tcmpcraturc will be given by thc equation
 
    ~~
~ ~
 
                                                                    ~ v ~ >>>>>>55  ~ aJ<<VL    I A ) @bed  )                                  8 al SY)58OL    LPa>>051)CCI) )5C
        <<','V
            ='-;::7                er-4l'~-
P-V<A5 <~ BILL OF MATERIALS 5
                                                            ~
gestinghcu~e Atonic Po'e'er D'nisi "n LocATloN:
SIIEf.T HO, Pi<<sburgh                  ) Pa, ~
                ~  CIL)SN T)               (noches.ver Gas c) Elc" iric Corgor .vion)                                                     oAI w. o.        4155 Peed. Vc~te>> SJ'st~i                                                                          cLIEN T w. o.
3oberT Et'~"-tt G~~ F-'clear Po;;ed 3'i:a<ion                          <<
En-33COO'ni''.o.
1 r
OCSCRIPTION OS QATKRIAl                                                                      ISSU      OROKR NO f
OI) A)5 I T Y Q  s                                              1"-;>  c'nrc=        stc                                                  2lfi026 P
Hewing r'"."s                                                        chrc        sie 1 '3~>
slensres                                          1 >-,>  chr
  ~  ~          ~
Diffu"Q s                                                    5+p)  chro    e    svreel P,
  ~  <<
5
              ~
                        ~ >>~
Pea>><<pgs                                                    Oil lv"ric tQR              b~
  ~
: r. eg
          ~                                                                                          b em~in"-s r.r                                  Dj.~char5    Q  f~<<Q                                      3" - 1 0              AHA I0 ~                ~  ~
Suction flmgQ                                              4N      -  COO)";  A~C
    ~       ~
                ~
0<<        ~   ~
P  p  she>> be furni>>h              o, 4Q:vh  i'he  folio Qng'5 St        'LLL ..      O'' ve    bio  "}'~g on T ye S s j ngl lv>>                            cnxlJ. rcauxre            cern  a'~ 29.7    lb"/i:pzhr "+ f)60 ))si,                 10 p 5<<
                                                        "".d 5C"o..       ""b"nc      sh;.3    bc r"."'         450 hg      at  4575    ':"aus rm.
5 TG      ul binQ $ h          b    su" "Q.b      fo= quick ster7~>           ~  5.
TL'ine        chal~ bQ i ann she. I t' ul a Uooidfard oil r~1y ac" 'ag cons-an'I. ",." I governor, go;-e "or vM-;~ inte~M stc stra>>ncr b"".".c'.-, insu)='-.on c .u gacI'                      for 'n") casey, i"ch-r  u ted h ~f co'Qli) gp          tw    (2) 4 i]2 v                'T        cssurQ
                                  ~
                                    <<5 ~
                                        ~
0 gauges, ""d.        tr'p  ar." i"""'-tie va':c          l~t          sritc'~.
5 Tu>>bi"c Co"          i "zc"ion:
Casing                                                    Cerbon stQQ
      ~  r
          '  5 PmfV                                                      A3>o'J s'uee l
Bucket. @heel"                                            Pored.       si~QQ1 Blade"                                                   Stress              S.eel Al le? Acv S 5))
                          ~  ~
                              .. '5,~
                                    ~
he <<5>>
                                >> V>>
                            &,      ~
 
RG&E Answers To The NRC's March 21, 1991 Station Blackout Questions Attachment 5 Containment Isolation Valves
 
Table 7-2          Containment        Isolation lPage 1  of 6]
Posttbn At Containment Penelrstlon                                        Valve      Normal      Isolatbn  JustNc ation Number    Description                          Number      Operatbn    Maintained ]Per 874XI]
Steam Generator Inspectbn    /
Malntenaree Fuel Transbr Tbbe                    Bird                              Locked dosed vkr Range                              bind gangs Charglrg Une To 8 Loop                3708            0                Check valve.
101      Safety fn]ectbn Pump 18 0'echarge    8708                              80th camper>>nts sre 8898                              check valve Alternate Charging To A CoM Leg Constructbn Fire Servloe Water                                  Yes    Locked dosed    vh bind flange.
Containment Spray Pump 1A                                              Check valve.
Reactor Coolant Punp A Seal Water                    0                 Check valve.
Inlet 107      Sump A Dischuge To Waste Hddup        1723            0                Both components fal Tank                                  1728            0                dosed on loss of power.
Reactor Coolant Punp Seal Water        313            0                Valve less than Return Une snd Excess LeMown To                                                    Valve3'bmeter.
VCT                                                                    dosed by ECA.O.O, U
Step 8 Containment Spray Pump 18            8828                              Check valve.
110a ]top)  Reactor Coohnt Punp    8 Seal Water                0                  Check valve.
Inlet 110b (bottom) Safety In]ectbn Test Line              879          LC                Locked dosed.
ResMual Heat Removal To 8 Cold Leg                    0                MOV 720 locked 0                dosed [breaker locked open], 958 fs not considered a CIV.
112      LeMown To NonregeneraUve Heat        20CA          OiC                All vabes except 427 Exchanger                            2008          OjC                fal dosed on foes of 202            C                power. Valve 427 Is 371          0                  not considered a CIV.
427          0 113      Safety In]ectbn Pump 1A Discharge    870A            C                Both components sre 889A          0                 check valve@
119      Standby Auxltary Feedwater Une To   9704A                              Containment boundary Steam Ger>>rator 1A                  9705A                              b SG seoondary sMe and tubes. No contahment Isobtbn Is required Nlrogen To Accundators                              0                  AOV448 fels dosed OJC                on bss ol power.
VaNe 8823 Is a check valve.
Pressurizer Relief Tank To Gas                      0                  AOV439 lais dosed Analyzer                                            0                  onbss ol power.
Manual valve 548 b not rrxtured to hotate.
121 a    Nlrogen To Pressurizer ReBel Tank                   0          Yes    Valve 528 b a check LC                valve. Manual valve 547 b bcked cbsed.
 
Table 7-2          Containment        tsolation [Page 2 of 6J PosMon At  Contalnmsnt Penetration                                      Valve       Normal    hohtlon  JustiOcatfon Number    Description                        Number      Operation  Maintained [Per 87~I 121b    Makeup Water To Pressurizer Relief                  0                  ACV40B fels dosed Tank                                              OJC                on k&#xb9;s of power.
Vahre 529 Is a check valve.
121c    Containment Presscxe Transmkter PT- PTAS          NA                  Valve is k&#xb9;s  than 945                                  1819A          0                                     3'hmeter.
121d    Containment Pressure Transmkter PT- PT446          NA                  Valve  h less than 948                                  1819B          0                                    3'hmeter.
123 (top) Standby Auxihry Feedwater Line To   9704B          0                 Containment boNxfsry Steam Gcrnera'tof 1 B              9705B          0                 b SC secondary side and tubes. No contahment Isolation req&ecL Reactor Coohra Drain Tank To Gas    1600A          0                  ACV 160OA b not Analyzer Line                        1655          0                  cor&#xb9;kfered a CIV, but 1789          0                  hh dosed on hss of power. Manual valve 1655 h not requked to bohte. Valve 1789 fels dosed on k&#xb9;s of power, 124a    Excess Letdown Heat Exchanger          743          0                  Valve 743 h a check Cooing Wahr Supply & Return          745          0                 valve. AOV.745 fags dosed on loss of power, 124b    Pc&#xb9;t Accident Alr Sarnph To 0 Fan    1569        LC          Yes    All four manual valves 1571        LC                  are locked cfoscKL 1572        LC 1574        LC Component Cooling Water From                        0                  Norvradkactive, Reactor Coohnt Pcznp 1B                                                dosed4cop system.
Vahre b dosed by ECA4.0, Step 8.
Component Cooikql Water Rom                        0                 Non radioactive, Reactor Coohnt Pcznp 1A                                                ck&#xb9;sd4oop system Vahe b dosed by ECA41.0, Step 8.
127    Component Cooing Water To Reactor    749A          0                 Norvradk&#xb9;ctlve, Coohnt Pump 1A                      75CA          0                  dosed4oop system Component Cooling Water To Reactor  749B          0                  Non radioactive, Coohnt Pump 1B                      750B          0                  dosed. loop system Reactor Coohnt Drain Tank And        1713          0          Yes    Valve 1713 h a check Pressurizer Relief Tank To            1786          0                  valve. ACVs 1788 Containment Vent Header              1787          0                 and 1787 hg dosed 1793        LC                  on kes of power.
Manual valve 1793 b hoked ckeeci Component Cooling Water From          814          0                  Non.radioactive, Reactor Support Coofkvg                                                dosed.hop system Valve b dosed by ECA41.0, Step 8.
131    Component Cooling Water To Reactor    813          0                 Non.radloacUve, Support Coo0ng                                                        dosed4oop system Valve h dosed by ECA41.0, Step 8.
 
Table 7-2          Containment          Isolation [Page 3 of 6]
PosNon At  Containment Penetration                                        Valve         Normal    IsoMon    JusNlcatlon Number    Description                          Number        Operation  Maintained [Per 874N)
Containment Mht-Prsge Exhaust          7970          OQ                  Both AOVs fal cbsed 7971            0                 on k>>s ot power.
Residual Hest Removal Pump Suctbn      701                              MOV 701 bcked From A Hot Leg                                                            closed vb breaker behg locked open 141    Residual Heat Removal Pump 1A          850A            0         Yes     MOV 850A b used for Suctbn From Srsrp 8                  181 3A          0                  bng.term coot ng and b normally dosed.
Valve poskbn ls vertded every sNII vb 0.1LI 3, Step 5.9.71; therefore, valve kr considered locked dosed by adnfnbtrative cortroL MOV 181 3A Is bcked dosed vh Ihe breaker behg locked o pea 142    Reskfual Heat Removal Pump 18          8508            0                 MOV 8508 Is used for Suctbn From Sump 8                    18138            0                 bng.term cooing and Is normaly dosed.
Valve poskion Is verified every shift vh 0-ttt 3, Step valve b 5.9.72,'herefore, oonsldered locked dosed by adninistratlve cortroL MOV.18138 ts bcked dosed vh the breaker behg bcked opea 143    Reactor Coolant Drain Tank Discharge  1003A            0         Yes    AII three AOVs fail Lhe                                  10038            0                 dosed on k>>s ol 1721            0                  power.
201 (top)  Reactor Comparbnent Cooling Urete A    4757            0                 Non-radbactive, 201 (bottom) And 8                                  4636            0                  dosed.bop system 8 Hydrogen Recomblner (Rbt And        10768            LC                Manual Valves 10768 Mrdn)                                10848            LC                snd 10848 are bcked 10211SI          0                 dosed. Solenokl 1021 3SI          0                 valves 10211SI and 1021 3SI fa1 cbsed on loss of power.
Containment Pressure Transrnkters    PT-947          NA                All valves less than PT4I47 And PT~S                      PT4I48          NA                                                  3'bmeter.
18190            0 1819D            0 Rost-Acckfent Air Sarrpte To 8 Fan    1563            LC                Ail four manual valves 1565            LC                afe locked closed.
IMS            LC 1568            LC Purge Supply Duct                      Bind                      Yes    Locked dosed vb Fhrele                              bfrd Ssnge. AOV-5S69 falIs ck>>ed on k>>s of power.
Hot Leg Loop Sample                                    0          Yes    AOV4I65 b not 0                  consklered a CIV.
0                  Manual valve 9560 b not required to hobte.
AOV~        fats dosed on bss of power.
 
Table 7-2        Containment            Isolation lPage 4 of 6]
PoslUon At Containment P<<netratlon                                          Valve        Normal    IsotsUon  JusUUcatlon Number      Descrf ptbn                          Number        OpefaUon    Maintained (Per 67410) 206a (top)  Steam Generator Inspecton  I                                              Locked Cbsed Via MaIntenance                                                              gt1nd Range Fuel Trar&#xb9;fer Tuba                      Bird                              Locked Cbsed Via Range                              Bgnd Range 207a (top)  Chargkrg Une To B Loop                                  0                Check Valve 207b (bottom)  Safety In(ectbn Pump 1B Discharge      870B            0                Both Components Are 889B            0                Check Valves 209 (top)  Alternate Charging To A Cold Leg                                          Check Valve 209 (bototm) 210      Oxygen Makeup To A 8 B                1080A          LC          Yes    Marwal valve 1080A R~rs                                  1021 4S 1021 481 0
0 bckad dosacL Solenokl valves 1021 SS          C                1021 4S, 1021 4SI ~
1021 SSI          0                1021 5S, and 1021 5S1 fal dosed on loss ol power.
Locked dosed vb bind flange AOV.
5879 fels ck&#xb9;ad on k&#xb9;s of power.
Auxtbry Steam Supply To                8151            LC                Both manual vahes Containment                            81 65          LC                are kxked dosed.
Auxlbry Steam Condensata Retrsn        81 52          LC                Both manual valves 8175            LC                are locked dosecL A Hydrogen Racombiner (Riot 8 Main)    1076A          LC                Mawal valves 1078A 1084A          LC                snd 1084A are bcked 10205SI            0                dosed. Sdenokl 1020981            0                valves 10205SI and 10209SI fai cbsed on bss ol power.
1598            0                Manual valve 1597 b 1597            0                not rrxtukad to bdate.
AOV.1 597 fels ebs ed on bss of power.
305b (top)  Conbdnment Alr Sampb lrtet              1598            0                Both AOVs fal dosed 1599            0                onbss of power.
Contrdnment Alr Sample Post.Accklent    1554          LC                All six manual valves 1556          LC                ara locked dosed.
1557          LC 1559          LC 1560          LC 1562          LC Fire Servke Water                                                        AOV-9227 fels ck&#xb9;ed onbss of power.
Valve 9229 Is a check valve.
Servloe Water To A Fan Coobr                          LO          Yes    Non-radk&#xb9;ctlva, dosed-bop system.
Mkrl.Ptsge Srsrply                    7445            OrC                Both AOVs fal dosed 7478            OrC                on k&#xb9;s of power.
31 Oa (bottom) Service Alr To Corralnment            7141            LC                Msrwal valve 7141 Is 7226            0                bckad cbsrxL Valve 7228 b a check valve.
 
Table 7-2        Containment        Isolation [Page 5 of 6]
Posltfon At Containment Penetration                                    Valve        Normal      Isobrtlon JustNcatlon Number    Description                        Number      Opefathn    Maintained ]Per  87~]
310b (top) I strument Air To Containment                      0                  ADV5392 fels cbred 0                  on loss ol power.
Valve 5393 Is a check valve.
311    Servke Water From B Fan Coohr                      LO                  Non rsdkectlve, dosed 4oop system 312    Servke Water To 0 Fan Cooler                      LO          Yes    Non radlosctire, dosed 4oop system 313    Leakage Test Depressurlzstkn        Bind                              Locked cbsed    vh Range                              bind fbnge.
7444 315    Servk>> Water From  0 Fsn Cooler                  LO                  Non-radhacUve.
cfosed4oop system.
318    Service Water To B Fan Cooler                      LO                  Non radioactive, cbsed4oop systera 317    Le4ulge Test Supply                  Bind                              Locked dosed    vh Range                              bind fhnge.
7443 318    Deadw4gtd Tester                                                      Locked dosed.
Penetrathn  k welded shut.
319    Servke Water From A Fsn Cooler                    LO                  Non-radioactive, chsed4oop system.
Servke Water To C Fan Cooler        4641          LO                  Non-radloacUve, dosed-loop system A Steam Generator  B~              5701 5738 0
0 Manual valve 5701 ls not requLred to Isohtm ADV4738 fels cbsed on bss of power.
B Steam Generator Bhwdown          5702            0                  Manual valve 5702 5737            0                  not requked to Isohte.
AOV4737 fats cbsed on bss ol power.
Servke Water From D Fsn Cooler                    LO                  Non-radhacUve, closed-loop system Demheratked Water To Contahment    8418                              ADV 8418 fals cbsed 8419                              on loss of power.
Valve 8419 kd a check valve.
Cont4nment Pfess lte Trans Intters PT-944          NA                  All valves are less Pl'-944. PT.949, and PT-950        PT-949          NA                  than 3'tsmeter.
PT-950          NA 1819E          0 1819F          0 1819G            0 Hydrogen Manner Instnrnerdatbn      921                              All fora adenoid Lhes                                  922                              valves fsl chsed cn 923                              bss ol power.
924
 
Table 7-2        Containment          Isolation [Page 6 of 6]
Posttkm At Containment Penstratton                                      Valve        Normal    hohrtlon  JustNcaOon Number    Descrlptkm                          Number      Operation  Malnlalned Pre r 97410) 401    Mstn Steam From Steam Generator A  3505A            0                Contr4nment boundary 3507            0                h SG secondary dde 351 7          0                snd tubes. No 351 9          0                contahment holation 3521            0                h requlr<<l, Main Steam From Steam Generator 8  3504A            0                Containment botsvlary 3509            0                h SG secondary side 351 B          0                and tubes. No 351 9          0                contahment Isohtion 3520            0                h required, Feedwster Une To Steam Generator A  3993            0                Containment boundary 3995            0                h SG secondary side 40000            0                snd tubes. No 4003            0                contshment Isolathn 4005            0                h required.
4011            0 Feedwater LIne To Steam Generator 8  3992            0                Containment boundary 3994            0                h SG secondary side 4000D            0                snd tubes. No 4004            0                contahment lsoladon 400B            0                h requtred.
4012            0 Personnel Hatch                                                        Locked dosed.
Penetration ls leak tested.
Equfpment Hatch                                                        Locked dosed.
Penetration h leak tested.
 
RG&E Answers To The NRC's March 21, 1991 Station Blackout Questions Attachment 6 TREAT Analysis of Station Blackout
 
STATION BLACKOUT TREAT SIMULATION Summary    of Signif icant Events and Operator Actions During the Analysis.
Time (sec)                          Event/Action 0.0                      Loss  of  all  AC  resulting in reactor trip,  RCP  coastdown,    loss of main
                          'feedwater, and turbine trip.
500  (8.3 min.)          RCS loop flow reaches NC flow and remains there for duration of the analysis.
1000 (16.7  min.)        Pressurizer empties, RCS pressure decreases to P        of hot leg. SG    NR level returns on scale.
1300 (21.7  min.)        Aux. feedwater reduced, from 400 gpm per SG to 25 lb/sec. (180 gpm) per SG.
2000 (33.3  min.)        RCS pressure reaches P        for T      Aux.
feedwater reduced to 5lb/sec. (36 gpm) per SG. RCS begins heatup and re-pressurization to    ARV  setpoint.
2500  (41.7 min.)        Aux. feedwater reduced, to 0.
3000 (50 min. )          ARVs  open; terminates heatup.      ARVs remain open for duration of the analysis removing decay heat.
3500 (58  min.)          RCS pressure reduced to P          of T Upper Plenum "collapsed"      level decreases  as voids appear.
5000  (1.4 hr.)          Aux. feed  increased to 36    gpm  per SG.
5500 (1.53 hr.)          Aux. feed  increased to 72    gpm per SG.
7200 (2.0 hr.)            Aux. feed  reduced  to  57 gpm per SG.
8000 (2.2 hr.)            Aux. feed  stopped. Upper Head reaches saturation    and. "collapsed" level decreases as voids appear.
14,400 (4.0  hr.)        Analysis terminated by starting of one SI pump.
 
Conclusion Break flow decreases      from 6.6 lbs/sec.    (63  gpm) to 3.45 lbs/sec. at  4  hr. following  changes in RCS  pressure.
Voiding appears  in the upper head and upper plenum. The voids are condensed  in the SG. Natural circulation flow is never lost.
Voiding  in the  upper head is approximately    50.5% by volume after  4 hr. Voiding in the upper plenum      is approximately 46.5% by volume    after 4  hr.
aWa~l74
 
II 2288.8 2888.8 c  1688.8 M
Vl
'V L
N  IN9,8 0.
                              ] ~lt Pfp 1488.8 fi 1289.8 fjo<
1898.8 2888.6        4668.8    666B.S  866B.S      ISSGG.S  12669.9 14668.8 IQS,S TIIK (SEC)
 
PKSTNS - PKSTNm<2) 118e.e 1888.8 iI II we.e I'g I
Il li 1848.8 I
I 1828.8 M
I I
1688.8 I
I I
968.8 I    i I
968.8 948.8 928.8 2668.8    46ee.e      6689.8      6888.8    12866.8 14668.8 TI%  <SEC)
STATIOH ELNXOUT
 
88.8 78.8 N.B n
V J
58.8 48.8 A.B 28.8 Ie.e 2666.8 .
4668.8 - 6668.8      8888.6    12666.8 T1% (KC)
STATION IUlXOUT
 
ERR%. EKQDL(2>
188.8 88.8 N.B 58.8 48.8 KB'8.8 I
I i
18.8 I
I l
2888.8  4888.8    aWB      8888.8    12688.8 TltK (SEC)
STATION IUtXOUT
 
I I
I I
I 5888.8 I
I I
I I
g  ceee.e
'V        I M8.8 1800.8 18 2000.8 4880.0 we.e      8000.0    14880.8 IWB.B TIIIE CKC)
STAT10H ELACKNT
 
RGFL(71)
        @.6 58.8 48.8 if III 0
Pl J
  'V 2
0 KB X
3 C
28.8 18.8 ee 2888.8  4888.8 6888.8      8866.8  12668.8 TIN <SEC)
STATIOH MXOUT
 
I.BOER P- S.BBE@7 C
z'V 0
0  6,BOER?
2.88ER7 Le 2668 8 4888,8 6B68.8      8888.8  12688.8 TIIK (SEC)
STATION EUtm1T
 
  'h 1
 
668.8 648.8 628,8 I
C Vl        I I
I          I I
I A
ae.e 0
x I
588.8 568.8 548.8 528.8 se.e 2888.8 .4888.8 6888.8            12888.8 l4888.8 i6888.8 TIE (SEC)
SATIN ELAMN
 
55.8
'LI'V J  58s8 Id LU J
I blr I
I 8
45.8 J
I A
2 J
48.8 III I
X 3
35.8 X.a zs 2888.8 4888.8      aeee.e    I2888.8 I4ae.e TINE (SEC)
STATION  IU(XOUT
 
r.e IIQFL<BI>
6,5 6.8 5.5 4,5 4.8 3.5 25$ ,8    6888.8      8%8.8  12888.8 16888.8 TIJOU (SEC)
STATIN RNXON
 
58.8 48.8 38.8 28.8 18.8 4688.8      6888.8  16668.8 12668.8 14688.8 Tl/E  (SEC)
STATIOH MXOUT
 
48.8 INfL(55) z.e 58.8 15.8 18.8 5.8 259.8    4668.8 6868.8          8668.8        14NN.e TIE (KC)
STATIOH ELACKGUTlRECKGY
 
1 22M.B c  IS88.8 0
G.
Q t698.8 l488.8 l288.8 M8.8 2888.8 /~ 0
                  *e ~ ~
oaoq 8        ! HN8.0 l2888 8 TltjE (KC)
STATIOH ILACKOUMEN",ElN
 
PKSTAP8 - PKSTNN(2) 1188.8 1888.8 Ia
            )I II IB68.8    I' Is I>
li 1848.8 I
I 1828.8 A
I 0
I 1888.8 I
I I
988.8
              ]
I    i 9N.8 948.8 9f!8. 8 2888.8    4888.8      6%8.8            8888.8  12888.8 14888.8 TINE (SEC)
STATI(jH ELNXM4E(3lW
 
88.8 N.S 948 48.8 A.S 28.8 18.8 ee 2888.8 4888.8 68%.8"          '888.8    IBNN.B neee.e 14888oB 1688B.S TINE (SEC)
STRTION ELNXOUT4ECMP
 
7008.0 6888oB I
I I
I I
58$ .0 I
I I
I I
g  48%.8 Pl 0
0 3008,0 2008.0 1088.0 ee 2008.0 4808.8 awe          8000,0      14888,0 TIIK (SEC)
STATI(N ELNX(NT4EGNERY
 
688.8 648.8 628.8 A
8$ .8 0
x I
588.8 568.8 548.8 528.8 988 2888.8 4888.8 6NN.B          8888.8      14se.e 166M.B TIN (SEC)
STATION ELNXOUT4EISGN


Table 7-2-Containment Isolation[Page 3 of 6]Penetration Number Description Valve Number PosNon At Normal Operation Containment IsoMon Maintained JusNlcatlon
55.8 I
[Per 874N)141 Containment Mht-Prsge Exhaust Residual Hest Removal Pump Suctbn From A Hot Leg Residual Heat Removal Pump 1A Suctbn From Srsrp 8 7970 7971 701 850A 181 3A OQ 0 0 0 Yes Both AOVs fal cbsed on k>>s ot power.MOV 701 bcked closed vb breaker behg locked open MOV 850A b used for bng.term coot ng and b normally dosed.Valve poskbn ls vertded every sNII vb 0.1LI 3, Step 5.9.71;therefore, valve kr considered locked dosed by adnfnbtrative cortroL MOV 181 3A Is bcked dosed vh Ihe breaker behg locked o pea 142 143 Reskfual Heat Removal Pump 18 Suctbn From Sump 8 Reactor Coolant Drain Tank Discharge Lhe 8508 18138 1003A 10038 1721 0 0 0 0 0 Yes MOV 8508 Is used for bng.term cooing and Is normaly dosed.Valve poskion Is verified every shift vh 0-ttt 3, Step 5.9.72,'herefore, valve b oonsldered locked dosed by adninistratlve cortroL MOV.18138 ts bcked dosed vh the breaker behg bcked opea AII three AOVs fail dosed on k>>s ol power.201 (top)201 (bottom)Reactor Comparbnent Cooling Urete A And 8 8 Hydrogen Recomblner (Rbt And Mrdn)4757 4636 10768 10848 10211SI 1021 3SI 0 0 LC LC 0 0 Non-radbactive, dosed.bop system Manual Valves 10768 snd 10848 are bcked dosed.Solenokl valves 10211SI and 1021 3SI fa1 cbsed on loss of power.Containment Pressure Transrnkters PT4I47 And PT~S PT-947 PT4I48 18190 1819D NA NA 0 0 All valves less than 3'bmeter.Rost-Acckfent Air Sarrpte To 8 Fan 1563 1565 IMS 1568 LC LC LC LC Ail four manual valves afe locked closed.Purge Supply Duct Bind Fhrele Yes Locked dosed vb bfrd Ssnge.AOV-5S69 falIs ck>>ed on k>>s of power.Hot Leg Loop Sample 0 0 0 Yes AOV4I65 b not consklered a CIV.Manual valve 9560 b not required to hobte.AOV~fats dosed on bss of power.
U.
Table 7-2-Containment IsolationlPage 4 of 6]P<<netratlon Number Descrf ptbn Valve Number PoslUon At Normal OpefaUon Containment IsotsUon Maintained JusUUcatlon (Per 67410)206a (top)207a (top)207b (bottom)Steam Generator Inspecton I MaIntenance Fuel Trar&#xb9;fer Tuba Chargkrg Une To B Loop Safety In(ectbn Pump 1B Discharge Bird Range 870B 889B 0 0 0 Locked Cbsed Via gt1nd Range Locked Cbsed Via Bgnd Range Check Valve Both Components Are Check Valves 209 (top)209 (bototm)210 Alternate Charging To A Cold Leg Oxygen Makeup To A 8 B R~rs 1080A 1021 4S 1021 481 1021 SS 1021 SSI LC 0 0 C 0 Yes Check Valve Marwal valve 1080A bckad dosacL Solenokl valves 1021 4S, 1021 4SI~1021 5S, and 1021 5S1 fal dosed on loss ol power.Locked dosed vb bind flange AOV.5879 fels ck&#xb9;ad on k&#xb9;s of power.Auxtbry Steam Supply To Containment Auxlbry Steam Condensata Retrsn A Hydrogen Racombiner (Riot 8 Main)8151 81 65 81 52 8175 1076A 1084A 10205SI 1020981 LC LC LC LC LC LC 0 0 Both manual vahes are kxked dosed.Both manual valves are locked dosecL Mawal valves 1078A snd 1084A are bcked dosed.Sdenokl valves 10205SI and 10209SI fai cbsed on bss ol power.305b (top)Conbdnment Alr Sampb lrtet Contrdnment Alr Sample Post.Accklent 1598 1597 1598 1599 1554 1556 1557 1559 1560 1562 0 0 0 0 LC LC LC LC LC LC Manual valve 1597 b not rrxtukad to bdate.AOV.1 597 fels ebs ed on bss of power.Both AOVs fal dosed onbss of power.All six manual valves ara locked dosed.Fire Servke Water AOV-9227 fels ck&#xb9;ed onbss of power.Valve 9229 Is a check valve.Servloe Water To A Fan Coobr LO Yes Non-radk&#xb9;ctlva, dosed-bop system.31 Oa (bottom)Mkrl.Ptsge Srsrply Service Alr To Corralnment 7445 7478 7141 7226 OrC OrC LC 0 Both AOVs fal dosed on k&#xb9;s of power.Msrwal valve 7141 Is bckad cbsrxL Valve 7228 b a check valve.
58.8 Ql J
Table 7-2-Containment Isolation[Page 5 of 6]Penetration Number Description Valve Number Posltfon At Normal Opefathn Containment Isobrtlon Maintained JustNcatlon
I W
]Per 87~]310b (top)I strument Air To Containment 0 0 ADV 5392 fels cbred on loss ol power.Valve 5393 Is a check valve.311 312 313 Servke Water From B Fan Coohr Servke Water To 0 Fan Cooler Leakage Test Depressurlzstkn Bind Range 7444 LO LO Yes Non rsdkectlve, dosed 4oop system Non radlosctire, dosed 4oop system Locked cbsed vh bind fbnge.315 Servk>>Water From 0 Fsn Cooler LO Non-radhacUve.
3 I-I 45.8 J
cfosed4oop system.318 Service Water To B Fan Cooler LO Non radioactive, cbsed4oop systera 317 Le4ulge Test Supply Bind Range 7443 Locked dosed vh bind fhnge.318 Deadw4gtd Tester Locked dosed.Penetrathn k welded shut.319 Servke Water From A Fsn Cooler LO Non-radioactive, chsed4oop system.Servke Water To C Fan Cooler 4641 LO Non-radloacUve, dosed-loop system A Steam Generator B~5701 5738 0 0 Manual valve 5701 ls not requLred to Isohtm ADV4738 fels cbsed on bss of power.B Steam Generator Bhwdown 5702 5737 0 0 Manual valve 5702 not requked to Isohte.AOV4737 fats cbsed on bss ol power.Servke Water From D Fsn Cooler LO Non-radhacUve, closed-loop system Demheratked Water To Contahment 8418 8419 ADV 8418 fals cbsed on loss of power.Valve 8419 kd a check valve.Cont4nment Pfess lte Trans Intters Pl'-944.PT.949, and PT-950 PT-944 PT-949 PT-950 1819E 1819F 1819G NA NA NA 0 0 0 All valves are less than 3'tsmeter.
I 0.
Hydrogen Manner Instnrnerdatbn Lhes 921 922 923 924 All fora adenoid valves fsl chsed cn bss ol power.
3, 48.8 I
Table 7-2-Containment Isolation[Page 6 of 6]Penstratton Number Descrlptkm Valve Number Posttkm At Normal Operation Containment hohrtlon Malnlalned JustNcaOon Pre r 97410)401 Mstn Steam From Steam Generator A 3505A 3507 351 7 351 9 3521 0 0 0 0 0 Contr4nment boundary h SG secondary dde snd tubes.No contahment holation h requlr<<l, Main Steam From Steam Generator 8 3504A 3509 351 B 351 9 3520 0 0 0 0 0 Containment botsvlary h SG secondary side and tubes.No contahment Isohtion h required, Feedwster Une To Steam Generator A 3993 3995 40000 4003 4005 4011 0 0 0 0 0 0 Containment boundary h SG secondary side snd tubes.No contshment Isolathn h required.Feedwater LIne To Steam Generator 8 3992 3994 4000D 4004 400B 4012 0 0 0 0 0 0 Containment boundary h SG secondary side snd tubes.No contahment lsoladon h requtred.Personnel Hatch Locked dosed.Penetration ls leak tested.Equfpment Hatch Locked dosed.Penetration h leak tested.
E 3
RG&E Answers To The NRC's March 21, 1991 Station Blackout Questions Attachment 6 TREAT Analysis of Station Blackout STATION BLACKOUT TREAT SIMULATION Summary of Signif icant Analysis.Events and Operator Actions During the 0.0 Time (sec)Event/Action Loss of all AC resulting in reactor trip, RCP coastdown, loss of main'feedwater, and turbine trip.500 (8.3 min.)1000 (16.7 min.)1300 (21.7 min.)2000 (33.3 min.)2500 (41.7 min.)3000 (50 min.)3500 (58 min.)5000 (1.4 hr.)5500 (1.53 hr.)7200 (2.0 hr.)8000 (2.2 hr.)14,400 (4.0 hr.)RCS loop flow reaches NC flow and remains there for duration of the analysis.Pressurizer empties, RCS pressure decreases to P of hot leg.SG NR level returns on scale.Aux.feedwater reduced, from 400 gpm per SG to 25 lb/sec.(180 gpm)per SG.RCS pressure reaches P for T Aux.feedwater reduced to 5lb/sec.(36 gpm)per SG.RCS begins heatup and re-pressurization to ARV setpoint.Aux.feedwater reduced, to 0.ARVs open;terminates heatup.ARVs remain open for duration of the analysis removing decay heat.RCS pressure reduced to P of T Upper Plenum"collapsed" level decreases as voids appear.Aux.feed increased to 36 gpm per SG.Aux.feed increased to 72 gpm per SG.Aux.feed reduced to 57 gpm per SG.Aux.feed stopped.Upper Head reaches saturation and."collapsed" level decreases as voids appear.Analysis terminated by starting of one SI pump.
35.8 x.e 25.9 2666.8 4668.6 NS.B          8688.8      18666.8 12668oB 14888.8 16B8L8 TltK  (SEC)
STATIN MNXNT4ECOVERY


Conclusion Break flow decreases from 6.6 lbs/sec.(63 gpm)to 3.45 lbs/sec.at 4 hr.following changes in RCS pressure.Voiding appears in the upper head and upper plenum.The voids are condensed in the SG.Natural circulation flow is never lost.Voiding in the upper head is approximately 50.5%by volume after 4 hr.Voiding in the upper plenum is approximately 46.5%by volume after 4 hr.aWa~l74 II2288.8 2888.8 c 1688.8 M Vl'V L N IN9,8 0.Pfp]~lt 1488.8 1289.8 fi fjo<1898.8 2888.6 4668.8 666B.S 866B.S TIIK (SEC)ISSGG.S 12669.9 14668.8 IQS,S 118e.e PKSTNS----PKSTNm<2)1888.8 iI II we.e I'g I Illi 1848.8 I I 1828.8 M I I 1688.8 I I I 968.8 I i I 968.8 948.8 928.8 2668.8 46ee.e 6689.8 6888.8 TI%<SEC)STATIOH ELNXOUT 12866.8 14668.8
58.8 n
0 III Pl J
48.8 348 28.8 18.8 I
I I
I 88 2888.8 4888.8                       12888.8 14888.8 16888.8 T1% <SEC)
STATIN TUKKQIT4EN'ERY


88.8 78.8 N.B n V J 58.8 48.8 A.B 28.8 Ie.e 2666.8.4668.8-6668.8 8888.6 T1%(KC)STATION IUlXOUT 12666.8 188.8 ERR%.----EKQDL(2>88.8 N.B 58.8 48.8 KB'8.8 I I 18.8 i I I l 2888.8 4888.8 aWB 8888.8 TltK (SEC)STATION IUtXOUT 12688.8 I I I I I 5888.8 I I I I I g ceee.e'V I M8.8 1800.818 2000.8 4880.0 we.e 8000.0 TIIIE CKC)STAT10H ELACKNT 14880.8 IWB.B
        ~rL(58) 6.5 6.8 5.5 4.5 4.8 3.5 38 14488,8 14688.8 14888,8 INS.S        152M.S      IMS.S 15688.8 15888.8 16888.8 TI%  (SEC)
@.6 RGFL(71)58.8 48.8 if III 0 Pl J'V 2 0 KB X 3 C 28.8 18.8ee 2888.8 4888.8 6888.8 8866.8 TIN<SEC)STATIOH MXOUT 12668.8 I.BOER P-S.BBE@7 C z'V 0 0 6,BOER?2.88ER7Le 2668 8 4888,8 6B68.8 8888.8 TIIK (SEC)STATION EUtm1T 12688.8
STATIN MXOUT4ECOVERY
'h 1 668.8 648.8 628,8 C Vl I I A ae.e I I I I I 0 x I 588.8 568.8 548.8 528.8se.e 2888.8.4888.8 6888.8 TIE (SEC)SATIN ELAMN 12888.8 l4888.8 i6888.8


55.8 I'L'V J 58s8 Id LU J I blr I I 8 45.8 J I A 2 J 48.8 III I X 3 35.8 X.azs 2888.8 4888.8 aeee.e TINE (SEC)STATION IU(XOUT I2888.8 I4ae.e
h RG&E Answers To The NRC's March 24, 1991 Station Blackout Questions Attachment 7 Quality Assurance Classification Of Station Blackout Equipment
-IIQFL<BI>r.e 6,5 6.8 5.5 4,5 4.8 3.5 25$,8 6888.8 8%8.8 TIJOU (SEC)STATIN RNXON 12888.8 16888.8 58.8 48.8 38.8 28.8 18.8 4688.8 6888.8 Tl/E (SEC)STATIOH MXOUT 16668.8 12668.8 14688.8
-INfL(55)48.8 z.e 58.8 15.8 18.8 5.8 259.8 4668.8 6868.8 8668.8 TIE (KC)STATIOH ELACKGUTlRECKGY 14NN.e 1 22M.B c IS88.8 0 G.Q t698.8 l488.8 l288.8 M8.8 2888.8/~0*e~~oaoq 8 TltjE (KC)STATIOH ILACKOUMEN",ElN
!HN8.0 l2888 8


1188.8 PKSTAP8----PKSTNN(2)1888.8 Ia)I II IB68.8 I'Is I>li 1848.8 I I 1828.8 A I 0 I 1888.8 I I I 988.8]I i 9N.8 948.8 9f!8.8 2888.8 4888.8 6%8.8 8888.8 TINE (SEC)STATI(jH ELNXM4E(3lW 12888.8 14888.8 88.8 N.S 948 48.8 A.S 28.8 18.8ee 2888.8 4888.8 68%.8"'888.8 TINE (SEC)STRTION ELNXOUT4ECMP IBNN.B neee.e 14888oB 1688B.S
Station Blackout Coping Equipment QA Status [Page                          1 of 2]
Quality Asswance Equipment ID              Descrlpdon                                    Classtrrcsthn Condense'te Storage    AFW Supply To SGs      Satety Significant Tanks AFW Supply To SGs      Safety Chas 3 PLOI I                   TDAFWP DC Lube Oil    AFW Supply To SGs      Safety Chas 3 Pump MOVs 3504A, 3505A        TDAWFP Steam Supply    AFW Supply To SGs      Safety Chas 2 MOV~                      TDAFWP Discharge      AFW Rcw To SGs          Safety Chas 3 Valve AOVs 4297, 4299          TDAFWP Fhw Control    AFW Fkrw To SGs        Safety Class 3 Valves AOVs 351 6, 3517          hen Steam    Isolation Decay Hest Removal      Safety Chas 2 Valves SVs 3509.351 5            SG Steam Retef Valves  Decay Heat Removal      Safety Chas 2 PCVs 3410, 3411          SG Atmcspherh Relief  Decay Hest Removal      Safety Chas 2 Valves Nr Ihckup To ARVs        Backup Gas Supply To  Decay Heat Removal SG ARVs 3410S, 3411S              ARV Solsnolds          Decay Hest Removal      Safety Signlgcant PCVs 9012, 9013          Nr Supply Presstze    Decay Heat Removal      Safety Slgni6cant Rag tfadng Valves PCVs 3410A, 3411A        Nr Supply Preset!a    Decay Hest Removal      Safety Slgrvgcant Rag tfagng Valves PCVs 15003, 15004        N, Supply Presstze    Decay Heat Removal      Safety Slgn5cant Regrfsgng Valves MORI 3                    RC Pump Seal Return    RC Pump Seal Protection Safety Chas 2 Isolagon Valve Batteries 1A, 18                                Emergency Power Supply  Safety Chas 3 DC Power Distr huthn      125 VDC Power          Emergency Power Supply  Safety Chas 3 Panels IA, 18            Dhtrfbubon Irrverters IA, 18        Inverters              Emergency Power Supply  Safety Chas 3 Instrument Buses 1A, 18  120 VAC Vital Buses    Emergency Power Supply  Safety Chas 3 TEs 409A. 8 and        RCS Hot 5 Cold Leg    Ffark Status Monitoring Safety Class I 4'IOA, 8                 Temperature PT~                      Pressurtzer Presswe                            Safety Chas 2 LTs 426, 433              Pressurizer Level                              Safety Chas 2 LTs 460, 470              SG I A. 18 Level      Rant Status Monkorlng  Safety Chas 2 PTs 469, 479              SG 1A, 18 Pressure    Rant Status Monkofng    Safety Chas 2 NE-31 ~  NM2              Source Range Rux      Pbnt Sbtr>> Monkorlng    Safety Chss 3 Detectors Rara Status Monkorlng  Safety Chas 3 LTs 2022A, 20228          CST Level              Plant Status Monkorfng  Safety Class 3


7008.0 6888oB I I I I I 58$.0 I I I I I g 48%.8 Pl 0 0 3008,0 2008.0 1088.0ee 2008.0 4808.8 awe 8000,0 TIIK (SEC)STATI(N ELNX(NT4EGNERY 14888,0 688.8 648.8 628.8 A8$.8 0 x I 588.8 568.8 548.8 528.8988 2888.8 4888.8 6NN.B 8888.8 TIN (SEC)STATION ELNXOUT4EISGN 14se.e 166M.B 55.8 I U.58.8 Ql J I W 3 I-I 45.8 J I 0.3, 48.8 I E 3 35.8 x.e 25.9 2666.8 4668.6 NS.B 8688.8 TltK (SEC)STATIN MNXNT4ECOVERY 18666.8 12668oB 14888.8 16B8L8 58.8 n 0 III Pl J 48.8 348 28.8 18.888 I I I I 2888.8 4888.8 T1%<SEC)STATIN TUKKQIT4EN'ERY 12888.8 14888.8 16888.8
w Ig.
~rL(58)6.5 6.8 5.5 4.5 4.8 3.5 14488,838 14688.8 14888,8 INS.S 152M.S TI%(SEC)STATIN MXOUT4ECOVERY IMS.S 15688.8 15888.8 16888.8' h
Station Blackout Coping Equipment QA Status tPage 2 of 2]
RG&E Answers To The NRC's March 24, 1991 Station Blackout Questions Attachment 7 Quality Assurance Classification Of Station Blackout Equipment Station Blackout Coping Equipment QA Status[Page 1 of 2]Equipment ID Descrlpdon Quality Asswance Classtrrcsthn Condense'te Storage Tanks AFW Supply To SGs Satety Significant AFW Supply To SGs Safety Chas 3 PLOI I MOVs 3504A, 3505A MOV~TDAFWP DC Lube Oil Pump TDAWFP Steam Supply TDAFWP Discharge Valve AFW Supply To SGs AFW Supply To SGs AFW Rcw To SGs Safety Chas 3 Safety Chas 2 Safety Chas 3 AOVs 4297, 4299 AOVs 351 6, 3517 TDAFWP Fhw Control Valves hen Steam Isolation Valves AFW Fkrw To SGs Decay Hest Removal Safety Class 3 Safety Chas 2 SVs 3509.351 5 PCVs 3410, 3411 SG Steam Retef Valves SG Atmcspherh Relief Valves Decay Heat Removal Decay Hest Removal Safety Chas 2 Safety Chas 2 Nr Ihckup To ARVs 3410S, 3411S PCVs 9012, 9013 PCVs 3410A, 3411A PCVs 15003, 15004 Backup Gas Supply To SG ARVs ARV Solsnolds Nr Supply Presstze Rag tfadng Valves Nr Supply Preset!a Rag tfagng Valves N, Supply Presstze Regrfsgng Valves Decay Heat Removal Decay Hest Removal Decay Heat Removal Decay Hest Removal Decay Heat Removal Safety Signlgcant Safety Slgni6cant Safety Slgrvgcant Safety Slgn5cant MORI 3 RC Pump Seal Return Isolagon Valve RC Pump Seal Protection Safety Chas 2 Batteries 1A, 18 DC Power Distr huthn Panels IA, 18 125 VDC Power Dhtrfbubon Emergency Power Supply Safety Chas 3 Emergency Power Supply Safety Chas 3 Irrverters IA, 18 Instrument Buses 1A, 18 TEs 409A.8 and 4'IOA, 8 PT~LTs 426, 433 Inverters 120 VAC Vital Buses RCS Hot 5 Cold Leg Temperature Pressurtzer Presswe Pressurizer Level Emergency Power Supply Safety Chas 3 Ff ark Status Monitoring Safety Class I Safety Chas 2 Safety Chas 2 Emergency Power Supply Safety Chas 3 LTs 460, 470 PTs 469, 479 NE-31~NM2 LTs 2022A, 20228 SG I A.18 Level SG 1A, 18 Pressure Source Range Rux Detectors CST Level Rant Status Monkorlng Rant Status Monkofng Pbnt Sbtr>>Monkorlng Rara Status Monkorlng Plant Status Monkorfng Safety Chas 2 Safety Chas 2 Safety Chss 3 Safety Chas 3 Safety Class 3 w Ig.
Qualky Asstsar>>e Eqtiprnent ID                                                            Casa@cation PCH01   8               Chargkig Pump 18          Maktn4r To RCS          Safety Cbss 2 R&gfC                    Charging Pump 1C          Makeup To RCS          Safety Cbss 2 Bus 18, Unit 158       Charghg Pump 18          Power To PCH01  8      Safety Cbss 3 Crcuit Breaker Bus 18, Unit 15C         Charging Pump 1C         Power To PCH01C         Safety Cess 3 Croit Breaker Bus 18                   480 V AC Bus              Power To Charging Pump  Safety Cbss 3 Bus 18, Urit 128       Bus 15/Bus 18 Tle       Power To Charging Puirp Safety Casa 3 Clrctit Breaker Bus 15                   480VAC Bus              Power To Charging Pump  Not Nudear Safety Bus 15, Unit 3A         Bus 15/TSC   Ile Crcuft Power To Charging Purrp Not Nudear Safety Breaker Technical Support       Power To Charging Pump   Safety Significant Center Diesel Technical Support       Power To Charging Puny  Safety Slgniscsnt Center Generator TSC1                    TSC Static Transfer     Power To Charging Pump   Safety Significant Switch Diesel Driven Rre Water Alternate Coosng Water   Safety Slgnigcant Pump                    To Tistine Driven AFW Pump Outside Condensate      Alternate AFW Supply To Not Cbssffbd Storage Tank            SGs 957aa,  9573A, 958BA,    PAuwsl Valves            Alternate AFW Sip ply To Not CbssiY>>d 9584A,  9586G, 9584G,                            SGs From TCD03 9510A,  4048, 9509C, 9516D, 9509F, 95098 4078, 4079              Manual Vabes             Alternate AFW Sg>pfy To SGs From Fire Water System 2291, 7310, 4318A, 2313  Manual Valves            Alternate AFW Steeply To SGs From City Water System 2ih'ose(s)              Fire Hoses              Alternate AFW Stpply To SGs From Fire Water System Hydrants, Hose Statlcns  Fire Water Supply Points Alternate AFW Stppfy To SGs From Fire Water System 1'ose                                            Alternate AFW Sis>ply To Appendic R SGs From Ciity Water System}}
Station Blackout Coping Equipment QA Status tPage 2 of 2]Eqtiprnent ID Qualky Asstsar>>e Casa@cation PCH01 8 R&gf C Bus 18, Unit 158 Bus 18, Unit 15C Chargkig Pump 18 Charging Pump 1C Charghg Pump 18 Crcuit Breaker Charging Pump 1C Croit Breaker Maktn4r To RCS Makeup To RCS Power To PCH01 8 Power To PCH01C Safety Cbss 2 Safety Cbss 2 Safety Cbss 3 Safety Cess 3 Bus 18 Bus 18, Urit 128 480 V AC Bus Bus 15/Bus 18 Tle Clrctit Breaker Power To Charging Pump Power To Charging Puirp Safety Cbss 3 Safety Casa 3 Bus 15 Bus 15, Unit 3A 480VAC Bus Bus 15/TSC Ile Crcuft Breaker Power To Charging Pump Power To Charging Purrp Not Nudear Safety Not Nudear Safety Technical Support Center Diesel Power To Charging Pump Safety Significant TSC1 Technical Support Center Generator TSC Static Transfer Switch Power To Charging Puny Power To Charging Pump Safety Slgniscsnt Safety Significant 957aa, 9573A, 958BA, 9584A, 9586G, 9584G, 9510A, 4048, 9509C, 9516D, 9509F, 95098 Diesel Driven Rre Water Pump Outside Condensate Storage Tank PAuwsl Valves Alternate Coosng Water To Tistine Driven AFW Pump Alternate AFW Supply To SGs Alternate AFW Sip ply To SGs From TCD03 Safety Slgnigcant Not Cbssffbd Not CbssiY>>d 4078, 4079 2291, 7310, 4318A, 2313 2ih'ose(s)
Hydrants, Hose Statlcns 1'ose Manual Vabes Manual Valves Fire Hoses Fire Water Supply Points Alternate AFW Sg>pfy To SGs From Fire Water System Alternate AFW Steeply To SGs From City Water System Alternate AFW Stpply To SGs From Fire Water System Alternate AFW Stppfy To SGs From Fire Water System Alternate AFW Sis>ply To SGs From Ciity Water System Appendic R}}

Latest revision as of 11:52, 18 March 2020

Devonrue Calculation Re Plant Turbine Driven Auxiliary Feedwater Pump Area Ambient Temp Rise
ML17262A453
Person / Time
Site: Ginna Constellation icon.png
Issue date: 06/05/1990
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17262A448 List:
References
NUDOCS 9104300406
Download: ML17262A453 (62)


Text

RG&E Answers To The NRC's March 21, 4991 Station Blackout Questions Attachment 4 Turbine Driven Auxiliary Feedwater Pump Area Heatup Calculation 9104300406 910422 PDR AGOCK 05000244 PDR

QA LPETjME 900606-0 z 1 Devonrue Calculation Cover Sheet Project No. $ - fgggy//

Subject st 7P / Pl/ F'f- knht T . r~

Description n &reef Prepared by+

Reviewed Approved by Number of pages /~>2 5/s4gCd 4 Appendices Attaciunents g tt/os~ /t7//

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 1 of 12

Subject:

No computer calculations have been utilized in this analysis.

1. The perimeter of the Intermediate Building is assumed to be as shown on Ginna Station Drawing 33013-2113, Rev. 0
2. The normal maximum ambient temperature in the Intermediate Building is assumed to be 104oF
3. The normal maximum ambient temperature of the Containment Structure just adjacent to the south wall of the Intermediate Building is assumed to be 120'F as stated in Ginna FSAR Table 3.11-1.
4. The south wall of the TDAFW pump Area is assumed to be pouted concrete as shown on Ginna Station Drawing 33013-2113, Rev.0. The North, East, and West walls of the TDAPV pump area (the north portion of the Intermediate Building, el. 253) are solid concrete block as shown on Ginna Station Drawing 33013-2113, Rev.0. These walls are assumed to behave in a similar manner to poured concrete walls and will be treated similarly in this calculation.
5. The initial wall temperatures are assumed to be in equilibrium with the initial air temperature.
6. Thermal insulation on piping and equipment is assumed to be of the type and thickness defined in RGB'echnical Specification ME-269, Revision 0.
7. Heating Steam piping and equipment is conservatively assumed to have a normal operating temperature of 220'F.

Additional assumptions are stated throughout the body of this calculation.

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 2 of 12

Subject:

1. NUMARC 87-00, "Guidelines and Technical Bases for NUMARC Initiatives Addressing Station Blackout at Light Water Reactors," including Appendix E, Appendix F, and the Appendix F Topical Report, November 1987.
2. RG&E Technical Specification, ME-269, "Pipe, Duct and Equipment Insulation, Ginna Station," draft issue Revision 0, dated January 30, 1989.
3. Ginna Station Plant Arrangement Drawing No. 33013-2113, Rev. 0, Cont. Struct. &

Intermediate Bldg. Plan - Oper. Flr. E1.253'-3".

5. Ginna Station P&ID Drawing No. 33013-1231, Rev. 13, Main Steam.
6. Ginna Station P&ID Drawing No. 33013-1915, Rev. 4, Heating Steam.
7. Marks Standard Handbook for Mechanical Engineers, Ninth Edition, 1987.

r

8. Ginna/UFSAR Table 3.11-1, "Environmental Service Conditions for Equipment Designed to Mitigate Design-Basis Events."
9. Vendor Drawing, LD-111347, Worthington, Corp., Outline drawing of Auxiliary Feedwater Pump Turbine
10. Gilbert Associates, Bill of Materials, for Steam Driven Auxiliary Feedwater pump and Steam Turbine Drive.

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 3 of 12

Subject:

The objective of this calculation is to determine the ambient temperature rise in the TDAPYV pump area of the Intermediate Building during a 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> SBO-induced loss of ventilation.

Because the Ginna Station Blackout coping duration is 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, the simplified methodology provided in NUMARC 87-00, Section 7 will be applied. The Section 7 methodology is based on the fact poured concrete walls act as heat sinks and that their surface temperatures willremain essentially constant over the course of the 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> loss of ventilation. As stated in the previous section, the surface temperature of the solid concrete block walls will also be assumed to remain constant.

Section 7 of NUMARC 87-00 presents the following simplified equation for use in evaluatin'g a four hour loss of ventilation:

Tait Tw+ [QIA]3~4 where:

Tair is the resultant ambient air temperature in the TDAPV pump area(the north portion of el. 253'-3" of the Intermediate Building}after 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />; Tw is the wall temperature; Q is the heat generation rate fthm hot piping, equipment, and electrical devices; and A is the surface area of the walls and ceiling acting as heat sinks.

The effects of opening doors to allow removal of heat through natural circulation are evaluated as defined in Section 7, p. 7-15, of NUMARC 87-00:

Tair Tw+ (Q3~4l[A3~" + 16.18 F 0 6 3]} where F is the "door factor" and is equal to H3< W; where H and W are the height and width of the door, respectively.

Devonrue Calculation Project No.8-9025.00 Date: 598/90 Page 4 of 12

Subject:

The following steps shall be performed to accomplish the described method for determining the TDAFW pump an:a ambient temperature:

1. Sum the wall surface areas to obtain A in square meters. For conservatism, the surface ama of the ceiling will be neglected as it is constructed of corrugated metal attached to the pouted concrete floor slab of the elevation above.
2. Determine the initial wall temperature. The effects of the higher temperature of the south waH which is exposed on its outer surface to the Containment Structure ambient temperatuie will be considered.
3. Conservatively estimate the heat generation rate, Q, in the TDAFW pump area. This will be done by considering heat rejected by hot piping and equipment using the equations given on p. 7-19 of NUMARC 87-00. Heat rejected by operating electrical equipment will also be considered.
4. Apply the results of the above and calculate the resultant ambient temperature.
5. Evaluate the effects of opening doors.

Step 1: Sum wall surface areas to obtain A, in sq. meters This step is accomplished using the referenced drawing, 33013-2113. As previously identified in the Assumptions Section, the solid'concrete block walls bordering the North, East, and West sides of the Intermediate building will be considered in this evaluation.

The South wall borders the Containment Structure and is constructed from poured concrete. The ceiling surface area has been neglected as a heat sink since it consists of corrugated metal.

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 5 of 12

Subject:

The straight walls are simply scaled directly from the reference drawing (see Figure 2) while the curved wall length is determined using analytic geometry. Using Figure 1,

($ 1+ g2 )/360 (x D) = length of curved wall

$ 1 = tan -1 (4 7/8 /4) = 50.63'2

= tan -1 (5 13/16/3) = 62.70'1+

g2 =

length = (113.33/360) m (33.68) = 33.33 m; 113.33'herefore, where 33.68 is the measured diameter of the containment from the referenced drawing 1 2 CL Figure 1 Calculation of curved wall length

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 6 of 12

Subject:

3.04 28.04 3.35 3.05 10.06 7.92 33.33 6.40 Figure 2 North Portion of Intermediate Building, El 278'-4" (note: all dimensions are in meters)

Using the dimensions in Figure 2, the perimeter of the room is calculated by summing these lengths.

ZI. = 97.93 meters = Perimeter The Surface Area, A, is computed by multiplying the perimeter by the height of the walls.

Review of the referenced drawing and the drawing for the elevation above (33013-2129),

show that the height, h, is:

h = el 278'-4" - 253'-6" = 24'-10" = 7.57 meters therefore, A = 97.93

  • 7.57 = 741.33 sq. meters

Devonrue Calculation Project No.8-9025.00 Date; 5/28/90 Page 7 of 12

Subject:

Step 2: Determine the initial wall temperature, T; in 'C The initial wall temperature will be calculated by means of a weighted average of Surface area between the South wall, adjacent to the Containment Structure and all other walls, The initial temperature of all other walls is assumed to be 104'F, which is the stated FSAR value for the normal maximum ambient temperature in the Intermediate Building. The South wall surface temperature is calculated as an average between the Containment maximum normal ambient of 120'F and the 104'F Intermediate Building ambient temperature, Therefore, T (South wall) = (120'F + 104'F)/2 = 112'F the initial temperature computed by weighted average on the basis of area is:

Ti = (33.33/97.93)*112 + (64.6/97.93)

  • 104 = 107'F = 41.7 C Step 3: Estimate heat generation rate, Q, in watts The major source of heat in the TDAFW pump area is hot piping and equipment. A physical inspection of the area revealed the following soutces:

(1) 1/2" diam. Tb. Steam supply line (insulated), 15 ft. long (1) 6" diam. Tb. Steam supply line (insulated) 110 ft. long (1) 1/2" diam. Tb. exhaust line (uninsulated), 100 ft. long (1) 3/4" Tb. exhaust line(uninsulated), 20 ft. long (1) 4" diam. Tb. Exhaust line (insulated), 14 ft. long (1) 4" diam. Tb. Exhaust line (uninsulated), 60 ft. long (1) 8" diam Tb. exhaust line (insulated), 7 ft. long (1) 8" diam. Tb Exhaust line (uninsulated), 20 ft. long (1) 1-1/2 diam. Heating Steam line (insulated), 89 ft. long (1) 8" diam. Heating Steam line (insulated), 52.4 ft. long (1) 2-1/2" diam. Heating Steam line (insulated), 69.4 ft. long (1) 28" Diam. Stm. Turbine (insulated)

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 8 of 12

Subject:

(1) 2" diam T+T valve (uninsulated), 1.25 ft. long (1) 12" diam Governor valve (uninsulated), 1.7 ft. long In order to calculate the heat generated from the above listed sources, the surface temperature of insulated components must be determined. As stated in the Assumptions section, insulation type and thickness is assumed to be as specified in RGB'hermal Insulation Spec ME-269, Table I, except in the case of AFW Turbine where the insulation thickness was scaled from the outline drawing. In accordance with paragraph 2.01 of ME-269, all insulation is assumed to be calcium silicate.

The surface temperature is calculated by considering the convective heat transfer between the insulated surface and the air; q=hAdT=h(Ts T )2x rsl where h is the unit thermal surface conductance in Btu/hr. sq ft 'F, rs is the radius of the insulated surface in ft., 1 is the unit length, Ts is the insulated surface temperature,'nd T~

is the ambient air temperature the conductive heat transfer from the pipe surface through the insulation; q = (Ti - T~)

  • 1/(fin (rs/ri)/2zkl] + V 2zrs 1 h};

where Ti is the pipe surface temperature and ri is the pipe radius Combining the two equations yields; Ts = [Vhrs *(Ti - T~)}/((In(rs/ri)/k]+ 1/rs h } + T~

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 9 of 12

Subject:

A similar development is applied to the AFW Turbine which is basically treated as an insulated sphere. The final equation is:

Ts = T + [(TI.T )+(I/h rs2)~/ {[(rs-ri)/(krsri)]+ (I/h + rs2))

In this evaluation, the following constant values are applied:

T~ = 107'F (see p. 7 of this calc.)

h = 1.6 Btu/hr sq ft 'F (Table 4.4.11 of Marks Handbook) k = 0.045 Btu/hr ft 'F (Table 4.4.6 of Marks Handbook)

Note that the Tb. exhaust lines were considered to have a surface temperature of 240'F.

This value is based upon the information in the AFW Steam Turbine Bill of Materials, previously referenced, which gives exit steam conditions.

The results obtained when applying the above equation are summarized in Table 1.

TABLE I CALCULATION OF INSULATED SURFACE TEMPERATURE (Ts)

Description Ti ('F) ri Ins. rs In(rs/ri) Ts( F)

( t t) thk. (tt) (tt) 1/2" Tb. Stm sup. 550 0.02 0.125 0.145 1.981001 146 51

~

6"Tb. Stm sup. 550 0.276 0.2083 0.484 0.562304 148.47 4" Tb. Exh. 240 0.188,0.125 0,313 0.509761 126.93 8" Tb. Exh. 240 0.36 0.125 0.485 0.298045 128.66 1-1/2" Htg. Stm. 220 0.08 0.083 0.163 0.711724 129.05 8" Htg. Stm. 220 0.36 0.125 0.485 0.298045 125.41 2-1/2" Htg. stm. 220 0.12 0.083 0.203 0.52571 4 1 30.57 Stm Turbine 550 1.17 0.292 1.462 N/A 139

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 10 of 12

Subject:

Using the results of Table 1, the heat generation, Q, can be calculated from the following equation found in Section 7 of NUMARC 87-00:

Q = (0.1[0.4 + 15.7(Ts - Ta)l/6Dl/2 + 170.3(Ts - Ta)1/3D](Ts - Ta)

+ 1.4E-7D(T4s - T4w)}L and in the case of the spherical Turbine, Q = (0.1[2 + 370(Ts - Ta)1/4D3/4I*D(Ts - Ta)

+ 1.4E-7D (T4s - T4a)}

Table 2 summarizes the inputs and results based on the above equations.

TABLE 2 CALCULATION OF HEAT GENERATED by HOT PIPING & EQUIPMENT Description Ts('F) Ts('K) L(ft) L(m) Do(ft)Do(m)Ts-Ta Ts4-Tw4 Q (watts) 1/2" Stm sup. 146.5 336.767 1 5 4.57 0.29 0. 09 21. 95 3. 042E+09 677.39 6" Stm. sup. 148.5 337.856 11 0 33.5 0.968 0.3 23.04 3.209E+09 16629 1/2" Tb. exh 240 388.706 1 00 30.5 0.042 0. 01 73.89 1.301E+to 3680.4 3/4" Tb. Exh. 240 388.706 20 6.1 0.063 0. 02 73.89 1.301E+10 1042.6 4" Tb. Exh 1 26.9 325.889 1 4 4.27 0.626 0.19 11.07 1.459E+09 558.62 4" Tb. Exh. 240 388. 706 60 1 8.3 0.333 0.1 73.89 1.301E+10 14620 8" Tb. Exh 128.7 326.85 7 2.13 0.97 0.3 12.03 1.593E+o9 470.98 8" Tb. Exh. 240 388.706 20 6.1 0.667 0.2 73.89 1.301E+10 9471.8 1 1/2 Htg. Stm 1 29.1 327.067 8 9 27.1 0.326 0.1 12.25 1.623E+09 2171.2 8 Htg. Stm. 125.4 325.044 52.4 1 6 0.97 0.3 10.22 1.343E+09 2884.2 2-1/2" Htg Stm 130.6 327.911 69.4 21.2 0.406 0.12 13.09 1.742E+09 2259. 6 28" Stm TB. 139 332.594 NA NA 3.05 0.93 17 77 2.417E+09

~ 400 T+T valve 550 560.928 1.25 0.38 0.167 0. 05 246. 1 8.918E+10 838.4 Governor Vlv 550 560.928 1.7 0.52 1 0.3 246.1 8.918E+10 6401.8 Total Q(watts)= 62105

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 11 of 12

Subject:

Review of Table 2 shows that the uninsulated Tb. exhaust lines were considered to have a surface temperature of 240'F. This value is based upon the information in the AFW Steam Turbine Bill of Materials, previously referenced, which gives exit steam conditions.

In addition to the 62,105 watts generated by hot piping and equipment, an additional 1,000 watts will be added to account for heat generated by emergency lighting, operating solenoids, etc.

Therefore, the total heat generated in the TDAPV pump atea is:

Q = 62,105 + 1,000 = 63,105 watts Step 4: Calculate the ambient temperature This step is accomplished by applying the NUMARC 87-00 correlation:

Tair = Ti + [Q/A]

T - = 41.7 + [63,105/741.33]3/4

= 41.7 + 28 = 697 C = 1575 OF Step 5: Evaluate the effect of opening doors This step is performed using the NUMARC 87-00 correlation for considering free convection through vertical openings. Arrangement drawing 33013-2121 shows double doors on the west side of the North wall which open to the Turbine Bldg. The'Turbine bldg area adjacent to these doors is assumed to remain at 104'F during the 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> blackout duration due to its configuration and the lack of significant heat sources in the area.

The effects of opening doors to allow removal of heat through natural circulation are evaluated as defined in Section 7, p. 7-15, of NUMARC 87-00:

Tair Tw+ (Q3/4/[A3/4 + 16.18 F 0 8653)) where;

Devonrue Calculation Project No.8-9025.00 Date: 5/28/90 Page 12 of 12

Subject:

F is the "door factor" and is equal to H3/2W; where H and W are the height and width of the door, respectively.

As measured from the layout drawing, W is 8 ft. (2.44m) and H is assumed to be 7ft., the standard industrial door height.

Applying these relationships to the double doors yields an F of:

F = (2.13) /2 * (2.44) = 7.58 therefore, Tair = 4 + 41.7 + ((63,105)3/4 / [(741.33)3/4 + 16.18 *

(7.58).8653])

Tair = 4 + 41.7 + 16.91 = 62.61'C = 145'F

GINNa/vpsaR f+ ~ s py gg G+

Table 3.11-1 Q)Pf FbtJ ff&kAGae&

/~ Z P lg/

ENVIRONMENTAL SERVICE CONDITIONS FOR EQUIPMENT DESIGNED TO MITIGATE DESIGN-BASIS EVENTS INSIDE CONTAINMENT Normal 0 erationr Temperature 60'F to 120'F Pressure 0 psig Humidity 50X (nominal)

Radiation Less than 1 radlhr general. Can be higher or lower near specific components.

Accident Conditions LOCA S+c~ - M vu. ~~

Temperature Figure 6.1-2 (286'F maximum)

Pressure Figur e 6. 1-1 ( 60 ps ig design) 40 PSlg Humidity 100l 7

Radiation Tables 3.11-2 and 3.11-3; 1.43 x 10 rads gamma 2.07 x 10 rads beta Chemical, spray Solution of boric acid (2000 to 3000 ppm boron) plus NaOH in water. Solution pH between 8 and 10.

Flooding 7-ft (approximately) maximum submergence elevation is 242 ft 8 in.

, AUXILIARY BUILDING Normal 0 eration:

Temperature 50 F to 104 F Pressure 0 psig Humidity 60X (nominal)

Radiation Less than 10 mradlhr general, with areas near residual heat removal piping less than 100 mradthr during shutdown operation.

Accident Conditions includin sum recirculation LOCA one train of ESF coolin o eratin Temperature 50F to 104 F Pressure 0 psig Humidity 601 (nominal) 3 ~ 11-19 REV 4 12/88

4-90 TRANSMISSiON OF HEAT BY CONDUCTION AND CONVECTION // ~ /

~d>>~/ ~

/

appears to be the best available. Zubcr also performed an anal- obtained at an coefficient overall temperature differcncc of 60 F. I -0 ysis for subcoolcd liquids arid PfoPosed a modification which is also in cxcel1cnt agreement with cxperimcnt:,

this Point, the a Aux dccrcasedraPid}y, ing the values obtained in superheating vapor, scc Eq a~ ud Add cats 1/I f crgtgAPc Pn) 1 / Pt (q/A) c m Ktp,p + Cyg , /))

[ Pa Pl Pv>

5.33(pcC jk,)'/'(t, t/) [ gt(pc p,)p,] O.4

~ 1 +

1 i%3 lI: " c Zuber's hydrodynamic analysis of the Leidenfrost point yields 1/a ega'hc- "

P.)

V jl (q/A) m K~l PP 0.144 < Ka < 0.17? . (4A.I4d) gi D.l 0

Berenson finds bcltcr agrcemcnt with thc data if K, m 0.09. For comparison, in a natural convection evaporator, a In~.

mum Aux of 73,000 Btu/h/ft was obtained at (ht),of 100 F For very small wires, thc heat flux will cxcccd that predicted by this flat plate formula. A reliable prcdiction of thc critical cotnblned convection and Radiation coetticlentb in sottte,

~ T Va:

m "@

tempcraturc is not available. of heat loss, such as that from bare and insulated p p" @ 'ases of ias For nuc1eatc boiling accompanied by forced convection, the where loss is by convection to the air and radiation to the teafhg>>

heat flux may bc approximated by thc sum of the heat Aux for pool boiling alone and the heat Aux for forced convection alone.

of lhe cnclo ing sp cc it is convenient to usc a combined'".r.

vection and radiation coeAicient (h, + h,). The rate of h'ca}

v i>>ii 540.4) nu'oss This proecdurc will not be satisfactory at high qualities. and thus becomes d, enc}ostng kI i

no satisfactory correlation exists for thc maximum heat Aux. mttfj,+

For a given liquid and boiling pressure, thc nature of Ihc q m (h, + h,)A(dt), (4A.IS) j."-

surface may substantial1y inAucnec the flux at a given (At),

Table 4.4.10. Thcsc data may bc used as rough approximations wherc (c) t), is the temperature difference, deg F, between tfte ~

for a bank of submerged tubes. Film coefficients for scaic surface of thc hot body and lhe walls of thc space. fn evaiuat:

deposits arc given in Tab1e 4.4.g. ing (h, + h,), h, should bc calculated by the appropriate con

'i 'at For forced~clou eva poratoct, vapor binding is also encoun. vection formula [see Eqs. (4A.llc) to(4A.llg)) and h, from the ui tered. Thus with liquid benzene cntcring a 4.pass stcam jack. equation cled pipe at 0.9 fps, up to thc point where 60 pcrccnt by weight was vaporized, thc maximum flux of 60,000 Btu/h/ft'as h, m 0.00685c(7/100)

~ ~

Table 4.4.10 Maximum Flux and Corresponding Overall Temperature Difterence tor Uquidb Boiled at 1 atm with a Submerged Horizontal Steam.Heated Tube Chrumiom-Aluminum opt>cr Smt I

1>lated c I ...~re Uqutd 1, 9'A >/!A 9/A '

1000 1000

>>>>. ttit). ,,V>>.Cibt

(

II Ethyl acetate....

Bet>acne........

Ethyl alcohol....

41

$1 5$

80'b I 10'1 73 124 100 45 82 100

>'Jp,

~

~

I ~ h'l ethyl alcohol .. I I0 I IO 1$ $ I IO I~) ~ Distilled icatcr.. 3$ 0 7$ 410 1$ 0 tI~~

1 0 Valued ol (hc + hp)

~i}

Table 4v4

~

For horizontal bare or insubted star>dard steel pipe of various site:s and for fiat plates in a room at 80'F I (a/I>. tenipccatuce dill<<cence. deja F, ttoo> autiaee to room Nominal I ipe diam in. so }

100, Iso 200 2so 300 '00 '00 e00 ,'700 '00 I1900 I 1000 f

1100 1200 2.12 2.48 2.76 3.10 3.41 3.1$ 4.47 S.30 6.2117.25 d.40 9.7S}11.20 12.81'14.6$

I 2.03'2.3d 2.6$ '2.98 3.29 3.62 4.33,$ .16 6.0717.11'8.2$ 9.57111.04 12.6514,48 2 I. 93 2.27 2. $ 2 2. 8$ 3.14 3. 47 4. 18 4.99 S. 89>6.92 8.07,'I. 38 10.85 12. 44 14. 2d I.dd 2. Ie 2.41 2.12 3.01 3.33 4.02 4.83 5.7216.75 7.89 9.21,10.eb 12.27 14.09 8 1.76 2.06 2,29 2.60 2.89 3.20 3.88 4.68 $ .57 b.eo 7.73 9.05>10.50 12.10 IS.93 12 1.71 2.01 2.24 2.$ 4 2.d2 3.13 3.d3 4.411$ .50;6.52 7.6S 8.96'10.42 12.03 13.dc 24 1,64 1.93 2. IS 2.4$ 2.72 3 03 3.10 4.48 $ .31'6 ~ 39 7 ~ 52 bvbS'10.28 )1.90 13.70 FLAT Pa>>Tea vertical...... ~ .~.~.

HFU..........""" }2.00 2.35

" I.dz 2.13 2.40'2.70 2.99 3.30 4.00 4.79 2.4$ 2.91 3.26 3.$ 9 4.31

} } }

t ( } I }

.70 6.12 7.86 9.18'lb.64'12.2S.I4.06 5.12 6.04 7.07 8.21 9.54 11.01 12.e3'14.45 HFD.......... ~ .."",1.$

~

d 1.8$ 2.09 2.36 2.63 2.93 3.61 4.38 5.21 6.27 1.40 8.7110.16 11.76 13.57 IIFU, ho>>i><>nial, (>>ting up>v aid; I IF D, hodaoniit, Acing do>>> n>> ar>L 1

~ I ~

5- 9'dg. o ~

4-86 TRANSh(ISSIOX OF HEAT BY CONDUCTION AND CONVECTION HF'M i~P, 2.+~

/~~ Am Table 4A.6 Thermal Conductlvltles of Insutatlng Materials for High Temperatures Bulk density. hfaa hfaterial Ib per recap,F 100 F 300 F 500 F 1000 F ISOO F 1000 F eu fs deg Asbestos paper, lacninated....... 22. 400 0.038 0.041 Asbestos payer. corrugated...... 16. 300 0.031 0.042 Diatomaceous earth. silica, po)edec,.................... I b. 7 1500 0. 037 0. 045 0. 053 0. 074 Diatocnseeous earth, asbestos vainest' material.........

and bonding lb. 1600 0.045 0.049 0.053 0.065 Fiberglas block. PF612......... 2.S 500 0.025 0.039 Fiberglas block. PF614.. ~ ~ ~ ~ ~ ~ . 4.25 500 0.021 0.033 Fiberglas block. PF617.......... 9) , SOO 0.010 0.033 Fiberglas, metal caesh blanket, f900........ .. .. ~ ~ . ~ . ~....

~ ~ 1000 0.020 0.030 0.040 Cellubr gbss blocks, sve, . ~ ~ ~ ~ ~ ~ .. . .

~ ~ ~ ~ ~ 0.033 0.045 0.062 Ifydrous calcium silicate.

"ffaylo".......... ~... ~... . ~ I I. 0. 031 0. 038 0.045 85 ra cnagnesia....... ~ .. .

~ ~ ~ ~ ~ ~ 11. 0. 029 0.035 t hffec~uacrs 6her, blanket...., 3. 3000 O.ol I 0.028 0.042 0.075 O. Iolf 0.142 Potassiura titanate. fihecs... .. ~ ~ 71. 5 0.022 0.024 0.030 Roe'k wool, )oose................ 8-11 0. 027 0.038 0.049 0. ON 113. 3000 0. 108 0. 119 0. 163 0.117 Table 4,4.7 Thermal Conductance across Air Spaces Brul(h) (fr )-ReAective insulsuon Direetioa Temp hf san Aluminum Ordinary

~ urlaeee, Aic spare. in of ditf, temp, ~ urfaees, non.metallic, heat Oow deg F deg F ~ ~ 0.05

~ ~ 0.90 Hohsontat, I( 4 across. Upward lb. 80. 0.60 1. 35 Vertical, sl"4 across......... Across 20. 80. 0.49 l. I '9 Hocicontal. )f across...~..... Downs)acd 20. 75. 0.30 I. 08 Hocisontat, 4 aecoss.......... Downward lb. 80. 0. 19 0. 93 Values of K for N Rows Deep h)' 2 3 4 5 6 7 10 K 024 025 0.17 0. 29 0.30 0,31 0.31 0,33 Oss Flew Normal to a Single Tube, D,G/frl from 1000 to I'or I'ranging from100to 1,0001bof water perh per f1 (each side).

50.000:

030CiG s/(D)o (4A.ya)

Water Row In Layer down Vertical Tubes, w/xD ) 500 h 120F)fs (4A.9s)

Fluid Flow Normal to a Bank of Staggered Tubes, D,G~/frl from 2000 to 40.000:

'~ K ~ 'lrs

'4AJ0 Os Heat Transfer to Oases Fiowing st Very High Velocities If a nonrcactivc gas. stream is brought to rest adiabatically, as at thc true stagnation point of a blunt body, the tcmperaturc risc will bc r

Water Flow Normal to a Bank of Staggered Tubes, D,G~/frl I, w V'/2g+Cr (4.4.9b) from 2000 to 40,000 where I, is thc stagnation temperature and r is the tempera.

h370(l + 0.0067rl) V,'s/(D )os turc of the free stream moving at velocity V. At every other for bafllcd cxchangers, to allow for Icakagc of fluids around point on thc body, the gas is brought to rest partly by prcssure thc bafllcs, usc 60 percent of the values of h from Eq. (4A2I); changes and partly by viscous effects in thc boundary layer. In for tubes in linc, deduct 25 percent from Ihe values of hgiven general, this process is not adiabatic, cvcn though the body transfers no heat. Thc thermal conductivity of thc gas will by Eq. (4.4.8).

Water Row in Layer Form over Horfzontat Tubes, 4P/Ir 2100

( transfer heat from onc layer of gas to anolher. At an insulated surface, thc gas tempcraturc will therefore bc ncithcr thc frcc-strcam tcmperaturc nor thc stagnation tempcralurc. In gcn.

h, 150(F/D ) cis (4A.9) eral, thc risc in gas tcmpcraturc will be given by thc equation

~~

~ ~

~ v ~ >>>>>>55 ~ aJ<<VL I A ) @bed ) 8 al SY)58OL LPa>>051)CCI) )5C

<<','V

='-;::7 er-4l'~-

P-V<A5 <~ BILL OF MATERIALS 5

~

gestinghcu~e Atonic Po'e'er D'nisi "n LocATloN:

SIIEf.T HO, Pi<<sburgh ) Pa, ~

~ CIL)SN T) (noches.ver Gas c) Elc" iric Corgor .vion) oAI w. o. 4155 Peed. Vc~te>> SJ'st~i cLIEN T w. o.

3oberT Et'~"-tt G~~ F-'clear Po;;ed 3'i:a<ion <<

En-33COO'ni.o.

1 r

OCSCRIPTION OS QATKRIAl ISSU OROKR NO f

OI) A)5 I T Y Q s 1"-;> c'nrc= stc 2lfi026 P

Hewing r'"."s chrc sie 1 '3~>

slensres 1 >-,> chr

~ ~ ~

Diffu"Q s 5+p) chro e svreel P,

~ <<

5

~

~ >>~

Pea>><<pgs Oil lv"ric tQR b~

~

r. eg

~ b em~in"-s r.r Dj.~char5 Q f~<<Q 3" - 1 0 AHA I0 ~ ~ ~

Suction flmgQ 4N - COO)"; A~C

~ ~

~

0<< ~ ~

P p she>> be furni>>h o, 4Q:vh i'he folio Qng'5 St 'LLL .. O ve bio "}'~g on T ye S s j ngl lv>> cnxlJ. rcauxre cern a'~ 29.7 lb"/i:pzhr "+ f)60 ))si, 10 p 5<<

"".d 5C"o.. ""b"nc sh;.3 bc r"."' 450 hg at 4575 ':"aus rm.

5 TG ul binQ $ h b su" "Q.b fo= quick ster7~> ~ 5.

TL'ine chal~ bQ i ann she. I t' ul a Uooidfard oil r~1y ac" 'ag cons-an'I. ",." I governor, go;-e "or vM-;~ inte~M stc stra>>ncr b"".".c'.-, insu)='-.on c .u gacI' for 'n") casey, i"ch-r u ted h ~f co'Qli) gp tw (2) 4 i]2 v 'T cssurQ

~

<<5 ~

~

0 gauges, ""d. tr'p ar." i"""'-tie va':c l~t sritc'~.

5 Tu>>bi"c Co" i "zc"ion:

Casing Cerbon stQQ

~ r

' 5 PmfV A3>o'J s'uee l

Bucket. @heel" Pored. si~QQ1 Blade" Stress S.eel Al le? Acv S 5))

~ ~

.. '5,~

~

he <<5>>

>> V>>

&, ~

RG&E Answers To The NRC's March 21, 1991 Station Blackout Questions Attachment 5 Containment Isolation Valves

Table 7-2 Containment Isolation lPage 1 of 6]

Posttbn At Containment Penelrstlon Valve Normal Isolatbn JustNc ation Number Description Number Operatbn Maintained ]Per 874XI]

Steam Generator Inspectbn /

Malntenaree Fuel Transbr Tbbe Bird Locked dosed vkr Range bind gangs Charglrg Une To 8 Loop 3708 0 Check valve.

101 Safety fn]ectbn Pump 18 0'echarge 8708 80th camper>>nts sre 8898 check valve Alternate Charging To A CoM Leg Constructbn Fire Servloe Water Yes Locked dosed vh bind flange.

Containment Spray Pump 1A Check valve.

Reactor Coolant Punp A Seal Water 0 Check valve.

Inlet 107 Sump A Dischuge To Waste Hddup 1723 0 Both components fal Tank 1728 0 dosed on loss of power.

Reactor Coolant Punp Seal Water 313 0 Valve less than Return Une snd Excess LeMown To Valve3'bmeter.

VCT dosed by ECA.O.O, U

Step 8 Containment Spray Pump 18 8828 Check valve.

110a ]top) Reactor Coohnt Punp 8 Seal Water 0 Check valve.

Inlet 110b (bottom) Safety In]ectbn Test Line 879 LC Locked dosed.

ResMual Heat Removal To 8 Cold Leg 0 MOV 720 locked 0 dosed [breaker locked open], 958 fs not considered a CIV.

112 LeMown To NonregeneraUve Heat 20CA OiC All vabes except 427 Exchanger 2008 OjC fal dosed on foes of 202 C power. Valve 427 Is 371 0 not considered a CIV.

427 0 113 Safety In]ectbn Pump 1A Discharge 870A C Both components sre 889A 0 check valve@

119 Standby Auxltary Feedwater Une To 9704A Containment boundary Steam Ger>>rator 1A 9705A b SG seoondary sMe and tubes. No contahment Isobtbn Is required Nlrogen To Accundators 0 AOV448 fels dosed OJC on bss ol power.

VaNe 8823 Is a check valve.

Pressurizer Relief Tank To Gas 0 AOV439 lais dosed Analyzer 0 onbss ol power.

Manual valve 548 b not rrxtured to hotate.

121 a Nlrogen To Pressurizer ReBel Tank 0 Yes Valve 528 b a check LC valve. Manual valve 547 b bcked cbsed.

Table 7-2 Containment tsolation [Page 2 of 6J PosMon At Contalnmsnt Penetration Valve Normal hohtlon JustiOcatfon Number Description Number Operation Maintained [Per 87~I 121b Makeup Water To Pressurizer Relief 0 ACV40B fels dosed Tank OJC on k¹s of power.

Vahre 529 Is a check valve.

121c Containment Presscxe Transmkter PT- PTAS NA Valve is k¹s than 945 1819A 0 3'hmeter.

121d Containment Pressure Transmkter PT- PT446 NA Valve h less than 948 1819B 0 3'hmeter.

123 (top) Standby Auxihry Feedwater Line To 9704B 0 Containment boNxfsry Steam Gcrnera'tof 1 B 9705B 0 b SC secondary side and tubes. No contahment Isolation req&ecL Reactor Coohra Drain Tank To Gas 1600A 0 ACV 160OA b not Analyzer Line 1655 0 cor¹kfered a CIV, but 1789 0 hh dosed on hss of power. Manual valve 1655 h not requked to bohte. Valve 1789 fels dosed on k¹s of power, 124a Excess Letdown Heat Exchanger 743 0 Valve 743 h a check Cooing Wahr Supply & Return 745 0 valve. AOV.745 fags dosed on loss of power, 124b Pc¹t Accident Alr Sarnph To 0 Fan 1569 LC Yes All four manual valves 1571 LC are locked cfoscKL 1572 LC 1574 LC Component Cooling Water From 0 Norvradkactive, Reactor Coohnt Pcznp 1B dosed4cop system.

Vahre b dosed by ECA4.0, Step 8.

Component Cooikql Water Rom 0 Non radioactive, Reactor Coohnt Pcznp 1A ck¹sd4oop system Vahe b dosed by ECA41.0, Step 8.

127 Component Cooing Water To Reactor 749A 0 Norvradk¹ctlve, Coohnt Pump 1A 75CA 0 dosed4oop system Component Cooling Water To Reactor 749B 0 Non radioactive, Coohnt Pump 1B 750B 0 dosed. loop system Reactor Coohnt Drain Tank And 1713 0 Yes Valve 1713 h a check Pressurizer Relief Tank To 1786 0 valve. ACVs 1788 Containment Vent Header 1787 0 and 1787 hg dosed 1793 LC on kes of power.

Manual valve 1793 b hoked ckeeci Component Cooling Water From 814 0 Non.radioactive, Reactor Support Coofkvg dosed.hop system Valve b dosed by ECA41.0, Step 8.

131 Component Cooling Water To Reactor 813 0 Non.radloacUve, Support Coo0ng dosed4oop system Valve h dosed by ECA41.0, Step 8.

Table 7-2 Containment Isolation [Page 3 of 6]

PosNon At Containment Penetration Valve Normal IsoMon JusNlcatlon Number Description Number Operation Maintained [Per 874N)

Containment Mht-Prsge Exhaust 7970 OQ Both AOVs fal cbsed 7971 0 on k>>s ot power.

Residual Hest Removal Pump Suctbn 701 MOV 701 bcked From A Hot Leg closed vb breaker behg locked open 141 Residual Heat Removal Pump 1A 850A 0 Yes MOV 850A b used for Suctbn From Srsrp 8 181 3A 0 bng.term coot ng and b normally dosed.

Valve poskbn ls vertded every sNII vb 0.1LI 3, Step 5.9.71; therefore, valve kr considered locked dosed by adnfnbtrative cortroL MOV 181 3A Is bcked dosed vh Ihe breaker behg locked o pea 142 Reskfual Heat Removal Pump 18 8508 0 MOV 8508 Is used for Suctbn From Sump 8 18138 0 bng.term cooing and Is normaly dosed.

Valve poskion Is verified every shift vh 0-ttt 3, Step valve b 5.9.72,'herefore, oonsldered locked dosed by adninistratlve cortroL MOV.18138 ts bcked dosed vh the breaker behg bcked opea 143 Reactor Coolant Drain Tank Discharge 1003A 0 Yes AII three AOVs fail Lhe 10038 0 dosed on k>>s ol 1721 0 power.

201 (top) Reactor Comparbnent Cooling Urete A 4757 0 Non-radbactive, 201 (bottom) And 8 4636 0 dosed.bop system 8 Hydrogen Recomblner (Rbt And 10768 LC Manual Valves 10768 Mrdn) 10848 LC snd 10848 are bcked 10211SI 0 dosed. Solenokl 1021 3SI 0 valves 10211SI and 1021 3SI fa1 cbsed on loss of power.

Containment Pressure Transrnkters PT-947 NA All valves less than PT4I47 And PT~S PT4I48 NA 3'bmeter.

18190 0 1819D 0 Rost-Acckfent Air Sarrpte To 8 Fan 1563 LC Ail four manual valves 1565 LC afe locked closed.

IMS LC 1568 LC Purge Supply Duct Bind Yes Locked dosed vb Fhrele bfrd Ssnge. AOV-5S69 falIs ck>>ed on k>>s of power.

Hot Leg Loop Sample 0 Yes AOV4I65 b not 0 consklered a CIV.

0 Manual valve 9560 b not required to hobte.

AOV~ fats dosed on bss of power.

Table 7-2 Containment Isolation lPage 4 of 6]

PoslUon At Containment P<<netratlon Valve Normal IsotsUon JusUUcatlon Number Descrf ptbn Number OpefaUon Maintained (Per 67410) 206a (top) Steam Generator Inspecton I Locked Cbsed Via MaIntenance gt1nd Range Fuel Trar¹fer Tuba Bird Locked Cbsed Via Range Bgnd Range 207a (top) Chargkrg Une To B Loop 0 Check Valve 207b (bottom) Safety In(ectbn Pump 1B Discharge 870B 0 Both Components Are 889B 0 Check Valves 209 (top) Alternate Charging To A Cold Leg Check Valve 209 (bototm) 210 Oxygen Makeup To A 8 B 1080A LC Yes Marwal valve 1080A R~rs 1021 4S 1021 481 0

0 bckad dosacL Solenokl valves 1021 SS C 1021 4S, 1021 4SI ~

1021 SSI 0 1021 5S, and 1021 5S1 fal dosed on loss ol power.

Locked dosed vb bind flange AOV.

5879 fels ck¹ad on k¹s of power.

Auxtbry Steam Supply To 8151 LC Both manual vahes Containment 81 65 LC are kxked dosed.

Auxlbry Steam Condensata Retrsn 81 52 LC Both manual valves 8175 LC are locked dosecL A Hydrogen Racombiner (Riot 8 Main) 1076A LC Mawal valves 1078A 1084A LC snd 1084A are bcked 10205SI 0 dosed. Sdenokl 1020981 0 valves 10205SI and 10209SI fai cbsed on bss ol power.

1598 0 Manual valve 1597 b 1597 0 not rrxtukad to bdate.

AOV.1 597 fels ebs ed on bss of power.

305b (top) Conbdnment Alr Sampb lrtet 1598 0 Both AOVs fal dosed 1599 0 onbss of power.

Contrdnment Alr Sample Post.Accklent 1554 LC All six manual valves 1556 LC ara locked dosed.

1557 LC 1559 LC 1560 LC 1562 LC Fire Servke Water AOV-9227 fels ck¹ed onbss of power.

Valve 9229 Is a check valve.

Servloe Water To A Fan Coobr LO Yes Non-radk¹ctlva, dosed-bop system.

Mkrl.Ptsge Srsrply 7445 OrC Both AOVs fal dosed 7478 OrC on k¹s of power.

31 Oa (bottom) Service Alr To Corralnment 7141 LC Msrwal valve 7141 Is 7226 0 bckad cbsrxL Valve 7228 b a check valve.

Table 7-2 Containment Isolation [Page 5 of 6]

Posltfon At Containment Penetration Valve Normal Isobrtlon JustNcatlon Number Description Number Opefathn Maintained ]Per 87~]

310b (top) I strument Air To Containment 0 ADV5392 fels cbred 0 on loss ol power.

Valve 5393 Is a check valve.

311 Servke Water From B Fan Coohr LO Non rsdkectlve, dosed 4oop system 312 Servke Water To 0 Fan Cooler LO Yes Non radlosctire, dosed 4oop system 313 Leakage Test Depressurlzstkn Bind Locked cbsed vh Range bind fbnge.

7444 315 Servk>> Water From 0 Fsn Cooler LO Non-radhacUve.

cfosed4oop system.

318 Service Water To B Fan Cooler LO Non radioactive, cbsed4oop systera 317 Le4ulge Test Supply Bind Locked dosed vh Range bind fhnge.

7443 318 Deadw4gtd Tester Locked dosed.

Penetrathn k welded shut.

319 Servke Water From A Fsn Cooler LO Non-radioactive, chsed4oop system.

Servke Water To C Fan Cooler 4641 LO Non-radloacUve, dosed-loop system A Steam Generator B~ 5701 5738 0

0 Manual valve 5701 ls not requLred to Isohtm ADV4738 fels cbsed on bss of power.

B Steam Generator Bhwdown 5702 0 Manual valve 5702 5737 0 not requked to Isohte.

AOV4737 fats cbsed on bss ol power.

Servke Water From D Fsn Cooler LO Non-radhacUve, closed-loop system Demheratked Water To Contahment 8418 ADV 8418 fals cbsed 8419 on loss of power.

Valve 8419 kd a check valve.

Cont4nment Pfess lte Trans Intters PT-944 NA All valves are less Pl'-944. PT.949, and PT-950 PT-949 NA than 3'tsmeter.

PT-950 NA 1819E 0 1819F 0 1819G 0 Hydrogen Manner Instnrnerdatbn 921 All fora adenoid Lhes 922 valves fsl chsed cn 923 bss ol power.

924

Table 7-2 Containment Isolation [Page 6 of 6]

Posttkm At Containment Penstratton Valve Normal hohrtlon JustNcaOon Number Descrlptkm Number Operation Malnlalned Pre r 97410) 401 Mstn Steam From Steam Generator A 3505A 0 Contr4nment boundary 3507 0 h SG secondary dde 351 7 0 snd tubes. No 351 9 0 contahment holation 3521 0 h requlr<<l, Main Steam From Steam Generator 8 3504A 0 Containment botsvlary 3509 0 h SG secondary side 351 B 0 and tubes. No 351 9 0 contahment Isohtion 3520 0 h required, Feedwster Une To Steam Generator A 3993 0 Containment boundary 3995 0 h SG secondary side 40000 0 snd tubes. No 4003 0 contshment Isolathn 4005 0 h required.

4011 0 Feedwater LIne To Steam Generator 8 3992 0 Containment boundary 3994 0 h SG secondary side 4000D 0 snd tubes. No 4004 0 contahment lsoladon 400B 0 h requtred.

4012 0 Personnel Hatch Locked dosed.

Penetration ls leak tested.

Equfpment Hatch Locked dosed.

Penetration h leak tested.

RG&E Answers To The NRC's March 21, 1991 Station Blackout Questions Attachment 6 TREAT Analysis of Station Blackout

STATION BLACKOUT TREAT SIMULATION Summary of Signif icant Events and Operator Actions During the Analysis.

Time (sec) Event/Action 0.0 Loss of all AC resulting in reactor trip, RCP coastdown, loss of main

'feedwater, and turbine trip.

500 (8.3 min.) RCS loop flow reaches NC flow and remains there for duration of the analysis.

1000 (16.7 min.) Pressurizer empties, RCS pressure decreases to P of hot leg. SG NR level returns on scale.

1300 (21.7 min.) Aux. feedwater reduced, from 400 gpm per SG to 25 lb/sec. (180 gpm) per SG.

2000 (33.3 min.) RCS pressure reaches P for T Aux.

feedwater reduced to 5lb/sec. (36 gpm) per SG. RCS begins heatup and re-pressurization to ARV setpoint.

2500 (41.7 min.) Aux. feedwater reduced, to 0.

3000 (50 min. ) ARVs open; terminates heatup. ARVs remain open for duration of the analysis removing decay heat.

3500 (58 min.) RCS pressure reduced to P of T Upper Plenum "collapsed" level decreases as voids appear.

5000 (1.4 hr.) Aux. feed increased to 36 gpm per SG.

5500 (1.53 hr.) Aux. feed increased to 72 gpm per SG.

7200 (2.0 hr.) Aux. feed reduced to 57 gpm per SG.

8000 (2.2 hr.) Aux. feed stopped. Upper Head reaches saturation and. "collapsed" level decreases as voids appear.

14,400 (4.0 hr.) Analysis terminated by starting of one SI pump.

Conclusion Break flow decreases from 6.6 lbs/sec. (63 gpm) to 3.45 lbs/sec. at 4 hr. following changes in RCS pressure.

Voiding appears in the upper head and upper plenum. The voids are condensed in the SG. Natural circulation flow is never lost.

Voiding in the upper head is approximately 50.5% by volume after 4 hr. Voiding in the upper plenum is approximately 46.5% by volume after 4 hr.

aWa~l74

II 2288.8 2888.8 c 1688.8 M

Vl

'V L

N IN9,8 0.

] ~lt Pfp 1488.8 fi 1289.8 fjo<

1898.8 2888.6 4668.8 666B.S 866B.S ISSGG.S 12669.9 14668.8 IQS,S TIIK (SEC)

PKSTNS - PKSTNm<2) 118e.e 1888.8 iI II we.e I'g I

Il li 1848.8 I

I 1828.8 M

I I

1688.8 I

I I

968.8 I i I

968.8 948.8 928.8 2668.8 46ee.e 6689.8 6888.8 12866.8 14668.8 TI% <SEC)

STATIOH ELNXOUT

88.8 78.8 N.B n

V J

58.8 48.8 A.B 28.8 Ie.e 2666.8 .

4668.8 - 6668.8 8888.6 12666.8 T1% (KC)

STATION IUlXOUT

ERR%. EKQDL(2>

188.8 88.8 N.B 58.8 48.8 KB'8.8 I

I i

18.8 I

I l

2888.8 4888.8 aWB 8888.8 12688.8 TltK (SEC)

STATION IUtXOUT

I I

I I

I 5888.8 I

I I

I I

g ceee.e

'V I M8.8 1800.8 18 2000.8 4880.0 we.e 8000.0 14880.8 IWB.B TIIIE CKC)

STAT10H ELACKNT

RGFL(71)

@.6 58.8 48.8 if III 0

Pl J

'V 2

0 KB X

3 C

28.8 18.8 ee 2888.8 4888.8 6888.8 8866.8 12668.8 TIN <SEC)

STATIOH MXOUT

I.BOER P- S.BBE@7 C

z'V 0

0 6,BOER?

2.88ER7 Le 2668 8 4888,8 6B68.8 8888.8 12688.8 TIIK (SEC)

STATION EUtm1T

'h 1

668.8 648.8 628,8 I

C Vl I I

I I I

I A

ae.e 0

x I

588.8 568.8 548.8 528.8 se.e 2888.8 .4888.8 6888.8 12888.8 l4888.8 i6888.8 TIE (SEC)

SATIN ELAMN

55.8

'LI'V J 58s8 Id LU J

I blr I

I 8

45.8 J

I A

2 J

48.8 III I

X 3

35.8 X.a zs 2888.8 4888.8 aeee.e I2888.8 I4ae.e TINE (SEC)

STATION IU(XOUT

r.e IIQFL<BI>

6,5 6.8 5.5 4,5 4.8 3.5 25$ ,8 6888.8 8%8.8 12888.8 16888.8 TIJOU (SEC)

STATIN RNXON

58.8 48.8 38.8 28.8 18.8 4688.8 6888.8 16668.8 12668.8 14688.8 Tl/E (SEC)

STATIOH MXOUT

48.8 INfL(55) z.e 58.8 15.8 18.8 5.8 259.8 4668.8 6868.8 8668.8 14NN.e TIE (KC)

STATIOH ELACKGUTlRECKGY

1 22M.B c IS88.8 0

G.

Q t698.8 l488.8 l288.8 M8.8 2888.8 /~ 0

  • e ~ ~

oaoq 8  ! HN8.0 l2888 8 TltjE (KC)

STATIOH ILACKOUMEN",ElN

PKSTAP8 - PKSTNN(2) 1188.8 1888.8 Ia

)I II IB68.8 I' Is I>

li 1848.8 I

I 1828.8 A

I 0

I 1888.8 I

I I

988.8

]

I i 9N.8 948.8 9f!8. 8 2888.8 4888.8 6%8.8 8888.8 12888.8 14888.8 TINE (SEC)

STATI(jH ELNXM4E(3lW

88.8 N.S 948 48.8 A.S 28.8 18.8 ee 2888.8 4888.8 68%.8" '888.8 IBNN.B neee.e 14888oB 1688B.S TINE (SEC)

STRTION ELNXOUT4ECMP

7008.0 6888oB I

I I

I I

58$ .0 I

I I

I I

g 48%.8 Pl 0

0 3008,0 2008.0 1088.0 ee 2008.0 4808.8 awe 8000,0 14888,0 TIIK (SEC)

STATI(N ELNX(NT4EGNERY

688.8 648.8 628.8 A

8$ .8 0

x I

588.8 568.8 548.8 528.8 988 2888.8 4888.8 6NN.B 8888.8 14se.e 166M.B TIN (SEC)

STATION ELNXOUT4EISGN

55.8 I

U.

58.8 Ql J

I W

3 I-I 45.8 J

I 0.

3, 48.8 I

E 3

35.8 x.e 25.9 2666.8 4668.6 NS.B 8688.8 18666.8 12668oB 14888.8 16B8L8 TltK (SEC)

STATIN MNXNT4ECOVERY

58.8 n

0 III Pl J

48.8 348 28.8 18.8 I

I I

I 88 2888.8 4888.8 12888.8 14888.8 16888.8 T1% <SEC)

STATIN TUKKQIT4EN'ERY

~rL(58) 6.5 6.8 5.5 4.5 4.8 3.5 38 14488,8 14688.8 14888,8 INS.S 152M.S IMS.S 15688.8 15888.8 16888.8 TI% (SEC)

STATIN MXOUT4ECOVERY

h RG&E Answers To The NRC's March 24, 1991 Station Blackout Questions Attachment 7 Quality Assurance Classification Of Station Blackout Equipment

Station Blackout Coping Equipment QA Status [Page 1 of 2]

Quality Asswance Equipment ID Descrlpdon Classtrrcsthn Condense'te Storage AFW Supply To SGs Satety Significant Tanks AFW Supply To SGs Safety Chas 3 PLOI I TDAFWP DC Lube Oil AFW Supply To SGs Safety Chas 3 Pump MOVs 3504A, 3505A TDAWFP Steam Supply AFW Supply To SGs Safety Chas 2 MOV~ TDAFWP Discharge AFW Rcw To SGs Safety Chas 3 Valve AOVs 4297, 4299 TDAFWP Fhw Control AFW Fkrw To SGs Safety Class 3 Valves AOVs 351 6, 3517 hen Steam Isolation Decay Hest Removal Safety Chas 2 Valves SVs 3509.351 5 SG Steam Retef Valves Decay Heat Removal Safety Chas 2 PCVs 3410, 3411 SG Atmcspherh Relief Decay Hest Removal Safety Chas 2 Valves Nr Ihckup To ARVs Backup Gas Supply To Decay Heat Removal SG ARVs 3410S, 3411S ARV Solsnolds Decay Hest Removal Safety Signlgcant PCVs 9012, 9013 Nr Supply Presstze Decay Heat Removal Safety Slgni6cant Rag tfadng Valves PCVs 3410A, 3411A Nr Supply Preset!a Decay Hest Removal Safety Slgrvgcant Rag tfagng Valves PCVs 15003, 15004 N, Supply Presstze Decay Heat Removal Safety Slgn5cant Regrfsgng Valves MORI 3 RC Pump Seal Return RC Pump Seal Protection Safety Chas 2 Isolagon Valve Batteries 1A, 18 Emergency Power Supply Safety Chas 3 DC Power Distr huthn 125 VDC Power Emergency Power Supply Safety Chas 3 Panels IA, 18 Dhtrfbubon Irrverters IA, 18 Inverters Emergency Power Supply Safety Chas 3 Instrument Buses 1A, 18 120 VAC Vital Buses Emergency Power Supply Safety Chas 3 TEs 409A. 8 and RCS Hot 5 Cold Leg Ffark Status Monitoring Safety Class I 4'IOA, 8 Temperature PT~ Pressurtzer Presswe Safety Chas 2 LTs 426, 433 Pressurizer Level Safety Chas 2 LTs 460, 470 SG I A. 18 Level Rant Status Monkorlng Safety Chas 2 PTs 469, 479 SG 1A, 18 Pressure Rant Status Monkofng Safety Chas 2 NE-31 ~ NM2 Source Range Rux Pbnt Sbtr>> Monkorlng Safety Chss 3 Detectors Rara Status Monkorlng Safety Chas 3 LTs 2022A, 20228 CST Level Plant Status Monkorfng Safety Class 3

w Ig.

Station Blackout Coping Equipment QA Status tPage 2 of 2]

Qualky Asstsar>>e Eqtiprnent ID Casa@cation PCH01 8 Chargkig Pump 18 Maktn4r To RCS Safety Cbss 2 R&gfC Charging Pump 1C Makeup To RCS Safety Cbss 2 Bus 18, Unit 158 Charghg Pump 18 Power To PCH01 8 Safety Cbss 3 Crcuit Breaker Bus 18, Unit 15C Charging Pump 1C Power To PCH01C Safety Cess 3 Croit Breaker Bus 18 480 V AC Bus Power To Charging Pump Safety Cbss 3 Bus 18, Urit 128 Bus 15/Bus 18 Tle Power To Charging Puirp Safety Casa 3 Clrctit Breaker Bus 15 480VAC Bus Power To Charging Pump Not Nudear Safety Bus 15, Unit 3A Bus 15/TSC Ile Crcuft Power To Charging Purrp Not Nudear Safety Breaker Technical Support Power To Charging Pump Safety Significant Center Diesel Technical Support Power To Charging Puny Safety Slgniscsnt Center Generator TSC1 TSC Static Transfer Power To Charging Pump Safety Significant Switch Diesel Driven Rre Water Alternate Coosng Water Safety Slgnigcant Pump To Tistine Driven AFW Pump Outside Condensate Alternate AFW Supply To Not Cbssffbd Storage Tank SGs 957aa, 9573A, 958BA, PAuwsl Valves Alternate AFW Sip ply To Not CbssiY>>d 9584A, 9586G, 9584G, SGs From TCD03 9510A, 4048, 9509C, 9516D, 9509F, 95098 4078, 4079 Manual Vabes Alternate AFW Sg>pfy To SGs From Fire Water System 2291, 7310, 4318A, 2313 Manual Valves Alternate AFW Steeply To SGs From City Water System 2ih'ose(s) Fire Hoses Alternate AFW Stpply To SGs From Fire Water System Hydrants, Hose Statlcns Fire Water Supply Points Alternate AFW Stppfy To SGs From Fire Water System 1'ose Alternate AFW Sis>ply To Appendic R SGs From Ciity Water System