ML063310450: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(One intermediate revision by the same user not shown)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Attachment 3 to PLA-6124 EC-RADN-1128, Revision I NUCLEAR ENGINEERING CALCULATION COVER SHEET NEPM-QA-0221-1
{{#Wiki_filter:Attachment 3 to PLA-6124 EC-RADN-1128, Revision I
: 1. Page 1 of 86 Total Pages 88-2. TYPE: CALC J3. NUMBER: EC-RADN-1128  
 
-4. REVISION:*5 UNIT 3 *-6 QUALITY CLASS: Q;7. DESCRIPTION:
NUCLEAR ENGINEERING CALCULATION COVER SHEET NEPM-QA-0221-1                                             1. Page 1 of 86 Total Pages 88
Steam Line Break Accident CRHE and Off Site Doses -AST 1 8. SUPERSEDED BY: 9. Alternate Number: 10. Cycle:.11. Computer Code/Model used: RADTRAD V3.03 12. Discipline:
    -2. TYPE:       CALC       J3. NUMBER:           EC-RADN-1128                   -4. REVISION:       1
R-13. Are any results of this calculation described in the Licensing Documents?
*5       UNIT             3         *-6   QUALITY CLASS:               Q
  ;7. DESCRIPTION:             Steam Line Break Accident CRHE and Off Site Doses - AST
: 8. SUPERSEDED BY:
: 9. Alternate Number:                                                         10. Cycle:.
: 11. Computer Code/Model used:             RADTRAD V3.03                     12. Discipline:     R
    -13. Are any results of this calculation described in the Licensing Documents?
Z
Z
* Yes, Refer to NDAP-QA-0730 and NDAP-QA-0731 El No ,14. Is this calculation changing any method of evaluation described in the FSAR and using the results to support or change the FSAR? (Refer to PPL Resource Manual for Definition of FSAR)* Yes, 50.59 screen or evaluation required.
* Yes, Refer to NDAP-QA-0730 and NDAP-QA-0731                     El No
[] No'15. Is this calculation Prepared by an External Organization?
  ,14. Is this calculation changing any method of evaluation described in the FSAR and using the results to support or change the FSAR? (Refer to PPL Resource Manual for Definition of FSAR)
EYes IlNo EG771 Qualifications may not be required for individuals from external orgnizations (see Section 7.4.3)..-16. Prepared by: , 17. Reviewed by: I p18. Verified by: ,-19. Approved by: ,-20. Accepted by: K. Weise)Print Name(EG 771 Qualification Requireal , Signature Date P. L. Bunker .Print Name(EG771 Qualification Required)
* Yes, 50.59 screen or evaluationrequired.                 [] No
Signature Date P. L. Bunker Print Name(EG771 Qualification Required)
  '15. Is this calculation Prepared by an External Organization?
Signature Date M. M. Waseluse/-
EYes                                             IlNo EG771 Qualifications may not be required for individuals from external orgnizations (see Section 7.4.3).
e dperNEPM,---02414, Sigte Print Name(Qualified per NEPM-QA-0241 and -Signature comply with Section 7.8 of NEPM-QA-0221)
.- 16. Prepared                                         K. Weise) by:
Date Print Name(EG771 Qualification Required) and comely with Section 7.9 of NEPM-OA -0221 Signature 0 Date TO BE COMPLETED BY DCS DCS SIGNATURE/DATE ADD A NEW COVER PAGE FOR EACH REVISION FORM NEPM-QA-0221-1, Revision 8, Page 1 of 1, ELECTRONIC FORM* Verified Fields-REQUIRED FIELDS Page la CALCULATION REVISION DESCRIPTION SHEET NEPM-QA-0221-2 REVISION NO: 1 CALCULATION NUMBER: EC-RADN- 1128 SFULL REVISION III SUPERSEDED FII PAGE FOR PAGE E-- VOIDED A R R Revised d P m Description Pages d 1 v of Revision on the Listed Pages All D Calculation reprinted in entirety.la, lb E- D Air intake location on reactor building at Elev. 810'-3".1,2, 16, 17, 18, 20, Tables 1, 6, 7, & E E 0 Air intake location on reactor building at Elev. 810'-3" with 8 corresponding changes in dispersion characteristics and CRHE doses.11, Table 3 D 0 E Minor editorial Attachments 5 & 6 E F 1 RADTRAD output for CRHE doses__ F-1 ___ _ _ _ _ l Eli El_ _ _ _ _ l Eli El_ _ _ _ _ W El_ _ _ _ _ _ W ElD_-1 IEl1 EI E-I I-! E-I__ [El __ _ _ _ _ _ lI El E_ _ _ _ _ _ LIDI ___ __ __DD] r]______ DDD3 FORM NEPM-OA-0221-2.
Print Name(EG 771 Qualification Requireal,               Signature               Date
Revision 5, Page I of 1 ELECTRONIC FORM Page lb TECHNICAL CHANGE  
  , 17. Reviewed by:                          P. L. Bunker                       .
Print Name(EG771 Qualification Required)                 Signature               Date Ip18. Verified by:                        P. L. Bunker Print Name(EG771 Qualification Required)                 Signature               Date
  ,-19. Approved by:                        M. eM.
dperNEPM,---02414, Waseluse/-                    *a*n Sigte Print Name(Qualifiedper NEPM-QA-0241 and v.*2          -   Signature               Date comply with Section 7.8 of NEPM-QA-0221)
  ,-20. Accepted by:
Print Name(EG771 Qualification Required) and               Signature  0            Date comely with Section 7.9 of NEPM-OA -0221 TO BE COMPLETED BY DCS DCS SIGNATURE/DATE ADD A NEW COVER PAGE FOR EACH REVISION
* Verified Fields FORM NEPM-QA-0221-1, Revision 8, Page 1 of 1, ELECTRONIC FORM                                             - REQUIRED FIELDS
 
Page la CALCULATION REVISION DESCRIPTION SHEET NEPM-QA-0221-2 REVISION NO:                     1     CALCULATION NUMBER:                   EC-RADN- 1128 SFULL REVISION               III     SUPERSEDED FII     PAGE FOR PAGE             E--     VOIDED A     R       R Revised                     d     P     m                         Description Pages                     d       1     v           of Revision on the Listed Pages All                                     D                 Calculation reprinted in entirety.
la, lb                                           E-     D   Air intake location on reactor building at Elev. 810'-3".
1,2, 16, 17, 18, 20, Tables 1, 6, 7, &   E       E     0   Air intake location on reactor building at Elev. 810'-3" with 8                                                           corresponding changes in dispersion characteristics and CRHE doses.
11, Table 3                             D       0     E   Minor editorial Attachments 5 & 6                                 E     F1  RADTRAD output for CRHE doses
__      F-1         __
_    _ _             _     _     l     Eli   El
_    _ _             _     _     l     Eli   El
_     __    _       _             W       El E-IW    I-!ElD E-I
_-1  IEl1    EI
__            [El   _
_    _ _   _       _     _     lI   El     E
_   _ _     _       _     _    LIDI               ___                     __                 __
DD]DDD3 r]
FORM NEPM-OA-0221-2. Revision 5, Page I of 1 ELECTRONIC FORM
 
Page lb TECHNICAL CHANGE  


==SUMMARY==
==SUMMARY==
PAGE NEPM-QA-0221-5 Calculation Number: EC-RADN-1128 Revision No. 1 This form shall be used to (1) record the Technical Scope of the revision and (2) record the scope of verification if the calculation was verified.
PAGE NEPM-QA-0221-5 Calculation Number:       EC-RADN-1128                       Revision No. 1 This form shall be used to (1) record the Technical Scope of the revision and (2) record the scope of verification if the calculation was verified. It should not be more than one page. Its purpose is to provide summary information to the reviewer, verifier, approver, and acceptor about the technical purpose of the change. For non-technical revisions, state the purpose or reason for the revision.
It should not be more than one page. Its purpose is to provide summary information to the reviewer, verifier, approver, and acceptor about the technical purpose of the change. For non-technical revisions, state the purpose or reason for the revision.Scope of Revision:
Scope of Revision: Revision 1 re-calculates the CRHE accident doses for the air intake on the reactor building south wall at Elev 810'-3" near the intersection of column lines U and 37.4. The calculation does not credit an elevation difference between the blowout panel release and air intake locations. With zero difference in elevations, the calculated exposures at the intake are maximized for the steam line break "puff' release. The zero elevation difference is consistent with Regulatory Guide 1.194 guidance and supports the SSES response to AST RAI #3, dated October 18, 2006.
Revision 1 re-calculates the CRHE accident doses for the air intake on the reactor building south wall at Elev 810'-3" near the intersection of column lines U and 37.4. The calculation does not credit an elevation difference between the blowout panel release and air intake locations.
Scope of Verification (If verification applies): Verify changes in design input, assumptions, methodology, arithmetic, computer code input/output, results and conclusions.
With zero difference in elevations, the calculated exposures at the intake are maximized for the steam line break "puff' release. The zero elevation difference is consistent with Regulatory Guide 1.194 guidance and supports the SSES response to AST RAI #3, dated October 18, 2006.Scope of Verification (If verification applies):
NEPM-QA-0221-5, Revision 0 Page 1 of 1 ELECTRONIC FORM
Verify changes in design input, assumptions, methodology, arithmetic, computer code input/output, results and conclusions.
 
NEPM-QA-0221-5, Revision 0 Page 1 of 1 ELECTRONIC FORM PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 2 Checked By P. L. Bunker TABLE OF CONTENTS 1.0 PU R P O SE ...................................................................................................  
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech                 PROJECT:
......................  
Date     November 9, 2006                     Steam Line Break Accident CRHE                                               Calc. No. EC-RADN- 1128 Designed By K Weise                           and Offsite Doses - AST                                                       Sh. No.               2 Checked By P. L. Bunker TABLE OF CONTENTS 1.0   PU RP O SE ...................................................................................................               ...................... .................... 3
....................
3  


==2.0 CONCLUSION==
==2.0   CONCLUSION==
S AND RECOMMENDATIONS  
S AND RECOMMENDATIONS ............................................................................                                                             3 3.0   INPUT and ASSUMPTIONS .......................................................................................................                                             4 3.1   Reactor Core and Coolant Source Parameters ....................................................................................                                           4 3.2   Accident Scenario Parameters .........................................................................................................                                   5 3.3   Control Room Habitability Design Parameters ....................................................                                       .................................. 6 3.4   D ose P arameters .......................................................................................................................................                 6 3.5   D ispersion Param eters ..................................................................                   ........................................................ 6 4.0   METHOD ...................................................................................................                                                     ....... 8 4 .1   N oble Gas A ctivity ..................................................................................................................................                   8 4.2   Iodine Activity in Reactor Coolant ..................................................................................................                                     9 4.3   Iodine Activity Released in Steam Line Break ..............................................................................                                             11 4.4   Effective Relative Concentration at the CRHE Air Intake ...............................................................                                                 13 4.5   Puff Expansion and Initial Standard Deviation ...............................................................................                                           15 4.6   Calculation of CRHE Relative Concentration x/Q ..........................                                                                                               15 4.7   Radiological and Transport Model ...................................................................................................                                     17 5.0   RE SU LT S ............................................................................................................................................                 18 6.0   REFEREN C E S ............................................................................................................                       ....................... 19 RADTRAD Control File Release Fraction and Timing SLB.rft ............................................                                                             21 RADTRAD Control File Dose Conversion File SLB_Phase 2.inp ......................................                                                                   23 RADTRAD Control File Inventory File SLB_4mc.nif ........................................................                                                           27 RADTRAD Control File Inventory File SLBpt2mc.nif ....................................................                                                             31 RADTRAD Output TBMST_500cfm_4mcDE_1 128.out ..................................................                                                                     35 RADTRAD Output TBMST_500cfin2ptmcDE_1 128.out ...............................................                                                                     61
............................................................................
3 3.0 INPUT and ASSUMPTIONS  
.......................................................................................................
4 3.1 Reactor Core and Coolant Source Parameters  
....................................................................................
4 3.2 Accident Scenario Parameters  
.........................................................................................................
5 3.3 Control Room Habitability Design Parameters  
....................................................  
..................................
6 3.4 D ose P aram eters .......................................................................................................................................
6 3.5 D ispersion Param eters ..................................................................  
........................................................
6 4.0 METHOD ...................................................................................................  
....... 8 4 .1 N oble G as A ctivity ..................................................................................................................................
8 4.2 Iodine Activity in Reactor Coolant ..................................................................................................
9 4.3 Iodine Activity Released in Steam Line Break ..............................................................................
11 4.4 Effective Relative Concentration at the CRHE Air Intake ...............................................................
13 4.5 Puff Expansion and Initial Standard Deviation  
...............................................................................
15 4.6 Calculation of CRHE Relative Concentration x/Q ..........................
15 4.7 Radiological and Transport Model ...................................................................................................
17 5.0 R E SU L T S ............................................................................................................................................
18 6.0 R E FE R EN C E S ............................................................................................................  
.......................
19 Attachment 1 RADTRAD Control File Release Fraction and Timing SLB.rft ............................................
21 Attachment 2 RADTRAD Control File Dose Conversion File SLB_Phase 2.inp ......................................
23 Attachment 3 RADTRAD Control File Inventory File SLB_4mc.nif  
........................................................
27 Attachment 4 RADTRAD Control File Inventory File SLBpt2mc.nif  
....................................................
31 Attachment 5 RADTRAD Output TBMST_500cfm_4mcDE_1 128.out ..................................................
35 Attachment 6 RADTRAD Output TBMST_500cfin2ptmcDE_1 128.out ...............................................
61 PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 3 Checked By P. L. Bunker STEAM LINE BREAK ACCIDENT CRHE and OFFSITE DOSES -AST 1.0 PURPOSE This calculation documents the design basis evaluation of the Control Room Habitability Envelope (CRHE) and offsite radiological doses at the exclusion area boundary and the low population zone following a postulated steam line break using the Alternate Source Term (AST)methodology described in USNRC Regulatory Guide 1.183 (Reference 1). The break is assumed to occur in the main steam tunnel and be released to the environment via a turbine or reactor building steam tunnel blowout panel. Reactor water and steam iodine specific activities are specified using dose equivalent 1-131 (DE 1-131) based on the TEDE dose conversion.
The doses are calculated using the RADTRAD computer code (Reference 7).


==2.0 CONCLUSION==
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech    PROJECT:
Date    November 9, 2006        Steam Line Break Accident CRHE            Calc. No. EC-RADN- 1128 Designed By K Weise              and Offsite Doses - AST                  Sh. No.      3 Checked By P. L. Bunker STEAM LINE BREAK ACCIDENT CRHE and OFFSITE DOSES - AST 1.0    PURPOSE This calculation documents the design basis evaluation of the Control Room Habitability Envelope (CRHE) and offsite radiological doses at the exclusion area boundary and the low population zone following a postulated steam line break using the Alternate Source Term (AST) methodology described in USNRC Regulatory Guide 1.183 (Reference 1). The break is assumed to occur in the main steam tunnel and be released to the environment via a turbine or reactor building steam tunnel blowout panel. Reactor water and steam iodine specific activities are specified using dose equivalent 1-131 (DE 1-131) based on the TEDE dose conversion. The doses are calculated using the RADTRAD computer code (Reference 7).
 
==2.0     CONCLUSION==
S AND RECOMMENDATIONS The offsite dose acceptance criterion for the steam line break is provided in Regulatory Guide 1.183, Table 6. The CRHE dose acceptance criterion for the main steam line accident is provided in 10CFR50.67, Accident Source Term, subsection 10CRF50.67(b)(2)(iii).
S AND RECOMMENDATIONS The offsite dose acceptance criterion for the steam line break is provided in Regulatory Guide 1.183, Table 6. The CRHE dose acceptance criterion for the main steam line accident is provided in 10CFR50.67, Accident Source Term, subsection 10CRF50.67(b)(2)(iii).
The offsite dose acceptance criteria at the exclusion area boundary (EAB) and the low population zone (LPZ) are 25 Rem TEDE for a steam line break with fuel damage or pre-accident iodine spike and 2.5 Rem TEDE for a steam line break with maximum equilibrium iodine activity.
The offsite dose acceptance criteria at the exclusion         area boundary (EAB) and the low population zone (LPZ) are 25 Rem TEDE for a steam             line break with fuel damage or pre-accident iodine spike and 2.5 Rem TEDE for a steam           line break with maximum equilibrium iodine activity. The CRHE dose acceptance criterion is 5     Rem TEDE.
The CRHE dose acceptance criterion is 5 Rem TEDE.The reported steam line break doses using AST methodology are: Dose Summary for Steam Line Break Accident Acceptance Criterion
The reported steam line break doses using AST methodology are:
-Offsite EAB LPZ Acceptance Criterion
Dose Summary for Steam Line Break Accident Maximum Equilibrium Pre-accident Spike             Iodine Activity 4 jtCi/gm DE 1-131,         0.2 jtCi/gm DE 1-131, TEDE, Rem                     TEDE, Rem Acceptance Criterion - Offsite              25                            2.5 EAB                            2.0                          0.10 LPZ                          0.12                        0.006 Acceptance Criterion - CRHE                5.0                         '5.0 CRHE                            0.93                          0.05
-CRHE CRHE Pre-accident Spike 4 jtCi/gm DE 1-131, TEDE, Rem 25 2.0 0.12 Maximum Equilibrium Iodine Activity 0.2 jtCi/gm DE 1-131, TEDE, Rem 2.5 0.10 0.006 5.0 0.93'5.0 0.05 PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1128 Designed By K Weise and Offsite Doses -AST Sh. No. 4 Checked By P. L. Bunker 3.0 INPUT and ASSUMPTIONS.The input data and assumptions used in this analysis are summarized in Table 1.3.1 Reactor Core and Coolant Source Parameters
 
PP&L CALCULATION SHEET Dept.     0341 Rad & Eff Tech   PROJECT:
Date       November 9, 2006     Steam Line Break Accident CRHE       Calc. No. EC-RADN-1128 Designed By K Weise             and Offsite Doses - AST               Sh. No. 4 Checked By P. L. Bunker 3.0     INPUT and ASSUMPTIONS
    .The input data and assumptions used in this analysis are summarized in Table 1.
3.1     Reactor Core and Coolant Source Parameters
: 1. Core thermal power used for this accident is 4032 MWt (Reference 12). The thermal power is taken as 102% of the 3952 MWt uprate power. The core thermal power is not directly used in this analysis since there is no fuel damage postulated for this event. The core power is used to confirm that the reactor coolant and steam activity concentrations are conservative for extended power uprate conditions.
: 1. Core thermal power used for this accident is 4032 MWt (Reference 12). The thermal power is taken as 102% of the 3952 MWt uprate power. The core thermal power is not directly used in this analysis since there is no fuel damage postulated for this event. The core power is used to confirm that the reactor coolant and steam activity concentrations are conservative for extended power uprate conditions.
: 2. The design basis noble gas source term is 100,000 pCi/s after 30 minutes decay and is shown in Table 2. Short lived isotopes (half lives less than one minute) are excluded due to radiological decay. The concentrations shown have been determined to be conservative for extended power uprate with and without hydrogen water chemistry (Reference 14, Appendix E).3. A total off gas release rate of 403,000 pCi/sec after 30 minutes delay is used for the noble gas source with a core power of 4032 MWt. The individual noble gas concentrations are then scaled from the 100,000 pCi/sec rate data in Table 2 by applying a factor of 4.03.The scaling of the 100,000 pCi/sec is similar to the approach in Regulatory Guide 1.98 for analyzing postulated failures in off gas systems. Regulatory Guide 1.98 assumes a release rate of 100 pCi/MWt after 30 minute delay at the steam jet air ejector. For a given fuel design basis defect fraction, the rate of fission product releases through the defects is proportional to the number of fissions or core power. The observed off gas rate is proportional to the fission product release rate (or alternatively core power) assuming no change in cladding defects. Hence, the observed off gas rate may be directly scaled from one power level to another as prescribed in Regulatory Guide 1.98. The same approach is used for setting SSES's main condenser offgas rate in Improved Technical Specification 3.5.7 (Reference 19).4. The main steam flow rate is 1.418E+07 Ibm/h, which corresponds to the flow used to establish the original GE design basis reactor water and steam activities (Reference 14).Reference 14 shows that the activity concentrations at extended power uprate with the anticipated steam flow (1.654E+07 Ibm/h) are bounded by the original design basis concentrations.
: 2. The design basis noble gas source term is 100,000 pCi/s after 30 minutes decay and is shown in Table 2. Short lived isotopes (half lives less than one minute) are excluded due to radiological decay. The concentrations shown have been determined to be conservative for extended power uprate with and without hydrogen water chemistry (Reference 14, Appendix E).
Because the original activity concentrations have been retained for the SSES design basis (Reference 14), this analysis uses the original steam flow rate of 1.418E+07 Ibm/h to determine the noble gas activities released to the environs.
: 3. A total off gas release rate of 403,000 pCi/sec after 30 minutes delay is used for the noble gas source with a core power of 4032 MWt. The individual noble gas concentrations are then scaled from the 100,000 pCi/sec rate data in Table 2 by applying a factor of 4.03.
The approach is consistent with the design basis and covers existing and power uprate steam flows.5. The design basis iodine specific activities are shown in Table 3 for the reactor water and main steam. The water concentrations are maximized by the use of a 2% steam carryover (corresponding to normal water chemistry operation) while the steam concentrations are maximized using an 8% steam carryover (corresponding to operation with hydrogen water PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 5 Checked By P.L. Bunker chemistry).
The scaling of the 100,000 pCi/sec is similar to the approach in Regulatory Guide 1.98 for analyzing postulated failures in off gas systems. Regulatory Guide 1.98 assumes a release rate of 100 pCi/MWt after 30 minute delay at the steam jet air ejector. For a given fuel design basis defect fraction, the rate of fission product releases through the defects is proportional to the number of fissions or core power. The observed off gas rate is proportional to the fission product release rate (or alternatively core power) assuming no change in cladding defects. Hence, the observed off gas rate may be directly scaled from one power level to another as prescribed in Regulatory Guide 1.98. The same approach is used for setting SSES's main condenser offgas rate in Improved Technical Specification 3.5.7 (Reference 19).
This approach bounds normal and hydrogen water chemistry operation (Reference 14).3.2 Accident Scenario Parameters
: 4. The main steam flow rate is 1.418E+07 Ibm/h, which corresponds to the flow used to establish the original GE design basis reactor water and steam activities (Reference 14).
: 1. No fuel damage is postulated for the main steam line break. Therefore, the released activity is based on the maximum coolant activity allowed by Improved Technical Specification 3.4.7 (Reference 18). Two activity cases are analyzed consistent with Regulatory Guide 1.183, Appendix D guidance: 1. Iodine activities based on a pre-accident spike with a concentration of 4 pCi/g DE 1-131.2. Iodine activities based on the maximum equilibrium value for full power operation with a concentration of 0.2 pCi/g DE 1-131.2. For the design basis accident, the reactor is assumed to be in hot standby prior to the break (Reference 13, Task A.28). This condition maximizes the liquid mass release and hence activity releases.3. The mass releases for the design basis (hot standby) cases are (Reference 13, Table A.28-3): Liquid release 84,840 Ibm Steam release from flashed liquid 6,480 Ibm Steam from steam dome 6,650 Ibm From the above, the total amount of coolant as water exiting the vessel is 91,320 Ibm. The total mass release is 97,970 Ibm.4. The above mass releases are increased by 20% to provide additional margin. Evaluations of steam line break masses for other extended power uprate plants determined that the increases in mass releases were small compared to the pre-uprate main steam line break masses while at power.5. Main steam line valves are assumed to start to close at 0.5 seconds on a high flow signal and are fully closed at 5.5 seconds (Reference 20). The closure time ensures that the steam, water and, radioactivity releases to the environs are over a relatively short duration.6. All of the radioactivity in the liquid and steam is assumed to be released instantaneously as a ground level release consistent with Regulatory Guide 1.183, Appendix D. No hold-up or dilution is assumed in the reactor or turbine building steam tunnels.7. The instantaneous release of all the activity within a short period (less than one minute) is modeled as a puff release consistent with the guidance in Regulatory Guide 1.194. This approach is reasonable since the MSIVs rapidly isolate the break and all the activity is immediately assumed to be released into the environment.
Reference 14 shows that the activity concentrations at extended power uprate with the anticipated steam flow (1.654E+07 Ibm/h) are bounded by the original design basis concentrations. Because the original activity concentrations have been retained for the SSES design basis (Reference 14), this analysis uses the original steam flow rate of 1.418E+07 Ibm/h to determine the noble gas activities released to the environs. The approach is consistent with the design basis and covers existing and power uprate steam flows.
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE CaIc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 6 Checked By P. L. Bunker 8. The iodine species released from the main steam line are 95% Csl as aerosol, 4.85% as elemental iodine, and 0.15% as organic iodine in accordance with Regulatory Guide 1.183, Appendix D.3.3 Control Room Habitability Design Parameters
: 5. The design basis iodine specific activities are shown in Table 3 for the reactor water and main steam. The water concentrations are maximized by the use of a 2% steam carryover (corresponding to normal water chemistry operation) while the steam concentrations are maximized using an 8% steam carryover (corresponding to operation with hydrogen water
: 1. No credit is given for filtration of radioiodine in the CRHE. The control room emergency outside air filtration system (CREOAS) does not automatically actuate for this accident.Manual operation is not credited because the accident occurs rapidly with the release moving away from the control room within minutes.2. The CRHE's nominal air intake flow rate is 5810 cfm. This analysis uses 6391 cfm, the maximum value for which the system is in compliance with Technical Specification 5.5.7 (Reference 17). The use of the maximum flow rate results in the greatest uptake of activity during the accident.3. Unfiltered inleakage is 500 cfm. This amount bounds the leakages and error bands from the December 2004 CRHE tracer gas tests. Unfiltered ingress/egress leakage through doors of 10 cfm is assumed based on NUREG-0800, chapter 6.4 (Reference 10).4. The control structure habitability envelope volume is 518,000 cu ft (Reference 16). The control room with volume of 110,000 ft 3 is located within this volume. The CRHE and control room are served by CREOAS.3.4 Dose Parameters
 
: 1. CRHE and offsite breathing rates are 3.5E-04 m 3/s. Both rates are consistent with Regulatory Guide 1.183, section 4.1.2. Control room occupancy is based on a maximum exposed individual.
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech     PROJECT:
The individual is assumed present in the control room 100% of the time during this short duration accident.The occupancy is consistent with Regulatory Guide 1.183, section 4.2, and NUREG-0800, chapter 6.4.3. Doses are calculated in terms of the TEDE as required by Regulatory Guide 1.183, section 4.1. The dose conversion factors for the CEDE are based on Federal Guidance Report 11 and the EDE is based on Federal Guidance Report 12. The dose conversion factors appear in Reference 7, Table 11.4.3.3-2.
Date     November 9, 2006       Steam Line Break Accident CRHE       Calc. No. EC-RADN- 1128 Designed By K Weise               and Offsite Doses - AST               Sh. No. 5 Checked By     P.L. Bunker chemistry).     This approach bounds normal and hydrogen water chemistry operation (Reference 14).
EDEs for additional nuclides were added and included Kr-83m, Kr-85m, Kr-85, Xe-131m, Xe-133m, Xe-135m and Xe-138. The dose conversion factors were compiled into a RADTRAD.inp file for SSES's AST analyses and are included as Attachment 2.3.5 Dispersion Parameters
3.2   Accident Scenario Parameters
: 1. Offsite x/Q values are 8.3E-04 s/m 3 (0 -2 hr) for the EAB and 4.9E-05 s/m 3 <0 -8 hr) for the LPZ (Reference 15, Tables 2.3-92 and 2.3-105).2. The CRHE x/Q is based on Regulatory Guide 1.194 methods for instantaneous releases with duration less than one minute.
: 1. No fuel damage is postulated for the main steam line break. Therefore, the released activity is based on the maximum coolant activity allowed by Improved Technical Specification 3.4.7 (Reference 18). Two activity cases are analyzed consistent with Regulatory Guide 1.183, Appendix D guidance:
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 7 Checked By P. L. Bunker Table I Steam Line Break Analysis Input and Assumptions Summary Description Core Thermal Power Level Noble Gas Design Source Term Design Offgas Release Rate Design Reactor Water and Steam Iodine Specific Activities Design Main Steam Flow Iodine Carryover Fraction Pre-accident Iodine Spike Maximum Equilibrium Iodine Activity Radioiodine Chemical Species Liquid Release Steam Release from Flashed Liquid Steam Release from the Steam Dome MSIV Closure Time Failed Fuel Resulting From MSLB Holdup in TB CRHE Volume CRHE Isolation and CREOAS Start-up CRHE Air Intake Flow CRHE Unfiltered Inleakage CRHE Ingress/egress Flow Operator and Offsite Breathing Rates Operator Occupancy Factors CRHE x/Q Offsite x/Q Value 4032 MWt Table 2 100,000 gtCi/s after 30 minutes 403,000 gCi/s after 30 minutes Table 3 1,418,000 Ibm/h 8%4.0 pCi/gm DE 1-131 0.2 gtCi/gm DE 1-131 95% CsI, 4.85% Elemental 12, 0.15% Organic I 84,840 Ibm 6,480 Ibm 6,650 Ibm 5.5 seconds 0 None 518,000 ft 3 None 6391 cfm (max)500 cfm 10 cfm 3.5E-04 m 3/sec 1.0, 24 hrs 0.6, 1-4 days 0.4, 4-30 days Puff: 6.3E-04 s/m 3 EAB: 8.3E-04 s/m 3 , 0-2 hr LPZ: 4.9E-05 s/m 3 , 0-8 hr Source Reference 12 Reference 6, Table 11.1-1 See section 3.1, item 3 Reference 6, Table 11.1-2 Reference 6, Appendx B Reference 6 Reference 18;RG 1.183 Reference 18, RG1.183 RG 1.183 Reference 13, Task A.28 Reference 13, Task A.28 Reference 13, Task A.28 See section 3.2, item 5 See section 3.2, item 1 RG 1.183 Reference 16 See section 3.3, item 1 Reference 17 See section 3.3, item 3 Reference 6 RG 1.183 Reference 6, RG 1.183 Table 7 Reference 15 PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE CaIc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 8 Checked By P. L. Bunker 4.0 METHOD The offsite and CRHE doses are calculated using the RADTRAD computer code with the input and assumptions listed in Table 1. The activity released to the environment is provided on Tables 3 and 5. The resulting offsite and CRHE doses are provided in Attachments 5 and 6 for the cases of 4 pCi/gm DE 1-131 and 0.2 pCi/gm DE 1-131, respectively.
: 1. Iodine activities based on a pre-accident spike with a concentration of 4 pCi/g DE 1-131.
A maximum unidentified unfiltered inleakage of 500 cfm plus 10 cfm ingress/egress unfiltered inleakage is used in the analysis.4.1 Noble Gas Activity The noble gas activity released to the environment is based on the pre-accident noble gas off gas release rate of 403,000 pCi/sec after 30 minutes delay. The steam's noble gas specific activity (pCi/g) is determined from the off-gas activity source rate accounting for the 30 minute delay. The specific activities are then used to determine the noble gas release to the environment.
: 2. Iodine activities based on the maximum equilibrium value for full power operation with a concentration of 0.2 pCi/g DE 1-131.
The noble gas activity in the reactor water is conservatively taken the same as the steam activity since some water exiting the break will flash to steam. The activities Ai for the noble gases are given by: Ai = 4.03 C Mw) exp (Ai *1800 s)Fs where -C = noble gas nuclide source rate, pCi/s Mr= mass of steam released, Ibm Mw = mass of liquid released, Ibm Fs = steam flow rate used to establish noble gas equilibrium concentration, Ibm/h A 1 = decay rate for noble gas nuclide i, s-1 4.03 = multiplier accounting for the maximum noble gas source rate of 362,000 pCi/s relative to the design basis rate of 100,000 pCi/s used to specify the noble gas source rates.The calculated activities Ai available for release during the accident are shown in Table 2.
: 2. For the design basis accident, the reactor is assumed to be in hot standby prior to the break (Reference 13, Task A.28). This condition maximizes the liquid mass release and hence activity releases.
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1128 Designed By K Weise and Offsite Doses -AST Sh. No. 9 Checked By P. L. Bunker Table 2 Noble Gas Activity Released from MSLB Steam mass (dome) M,, Ibm Liquid mass M,, Ibm Steam flow rate Fs, Ibm/h 30 minute decay, s Conversion
: 3. The mass releases for the design basis (hot standby) cases are (Reference 13, Table A.28-3):
-s-Ci/hr-uCi 403,000 uCi/s rate factor Isotope Kr-83m Kr-85m Kr-85 Kr-87 Kr-88 Kr-89 Xe-131m Xe-133m Xe-133 Xe-135m Xe-135 Xe-137 Xe-138 Half Life, sec 6.840E+03 1.570E+04 3.383E+08 4.680E+03 9.972E+03 1.896E+02 1.036E+06 1.987E+05 4:553E+05 9.360E+02 3.287E+04 2.298E+02 8.478E+02 7980 109584 1.42E+07 1800 3.60E-03 4.03 Source Rate, Ci@T = 30min uCi/sec 2.90E+03 5.60E+03 2.OOE+01 1.50E+04 1.80E+04 1.80E+02 1.50E+01 2.80E+02 8.20E+03 6.90E+03 2.20E+04 6.70E+02 2. 1OE+04 Activity Release Ai,.Ci 4.19E-01 7.29E-01 2.4 1E-03 2.36E+00 2.45E+00 1.56E+01 1.81E-03 3.39E-02 9.89E-01 3. 2.75E+00 1.84E+01 1.1 OE+0 1 Notes: 1. GE "1971" design activity rates for Reference 14, Table 11.1-1.100,000 uCi/s source rate from 2. Noble gas activties are based on 403,000 uCi/s measured at 30 minutes.3. Activity releases are immediate with no hold up in the core or main steam system.4.2 Iodine Activity in Reactor Coolant The design basis equilibrium halogen activity concentrations in the reactor water and main steam are shown in Table 3.
Liquid release                             84,840 Ibm Steam release from flashed liquid           6,480 Ibm Steam from steam dome                       6,650 Ibm From the above, the total amount of coolant as water exiting the vessel is 91,320 Ibm. The total mass release is 97,970 Ibm.
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 10 Checked By P. L. Bunker Table 3 Iodine Specific Activities Isotope 1-131 1-132 1-133 1-134 1-135 Reactor Water Specific Activity uCi/gm 1.30E-02 1.20E-0 1 8.90E-02 2.40E-01 1.30E-01 Reactor Steam Specific Activity uCi/gm 3.40E-04 3.90E-03 2.40E-03 9.70E-03 3.70E-03 Notes: 1. Reference 14, Table 11. 1-2 2. Values bound normal and hydrogen water chemistry operation.
: 4. The above mass releases are increased by 20% to provide additional margin. Evaluations of steam line break masses for other extended power uprate plants determined that the increases in mass releases were small compared to the pre-uprate main steam line break masses while at power.
See Input 3. 1, Item #5.The iodine activity in the reactor coolant is based on the maximum DE 1-131 activity permitted by the technical specifications.
: 5. Main steam line valves are assumed to start to close at 0.5 seconds on a high flow signal and are fully closed at 5.5 seconds (Reference 20). The closure time ensures that the steam, water and, radioactivity releases to the environs are over a relatively short duration.
Concentration limits (TSiim) of 0.2 pCi/g and 4.0 pCi/g DE 1-131 are considered.
: 6. All of the radioactivity in the liquid and steam is assumed to be released instantaneously as a ground level release consistent with Regulatory Guide 1.183, Appendix D. No hold-up or dilution is assumed in the reactor or turbine building steam tunnels.
The specific activities CRc-i of DE 1-131 in the reactor coolant are given by: CRc-i = TSiim
: 7. The instantaneous release of all the activity within a short period (less than one minute) is modeled as a puff release consistent with the guidance in Regulatory Guide 1.194. This approach is reasonable since the MSIVs rapidly isolate the break and all the activity is immediately assumed to be released into the environment.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech     PROJECT:
Date     November 9, 2006       Steam Line Break Accident CRHE       CaIc. No. EC-RADN- 1128 Designed By K Weise             and Offsite Doses - AST               Sh. No. 6 Checked By P. L. Bunker
: 8. The iodine species released from the main steam line are 95% Csl as aerosol, 4.85% as elemental iodine, and 0.15% as organic iodine in accordance with Regulatory Guide 1.183, Appendix D.
3.3   Control Room Habitability Design Parameters
: 1. No credit is given for filtration of radioiodine in the CRHE. The control room emergency outside air filtration system (CREOAS) does not automatically actuate for this accident.
Manual operation is not credited because the accident occurs rapidly with the release moving away from the control room within minutes.
: 2. The CRHE's nominal air intake flow rate is 5810 cfm. This analysis uses 6391 cfm, the maximum value for which the system is in compliance with Technical Specification 5.5.7 (Reference 17). The use of the maximum flow rate results in the greatest uptake of activity during the accident.
: 3. Unfiltered inleakage is 500 cfm. This amount bounds the leakages and error bands from the December 2004 CRHE tracer gas tests. Unfiltered ingress/egress leakage through doors of 10 cfm is assumed based on NUREG-0800, chapter 6.4 (Reference 10).
: 4. The control structure habitability envelope volume is 518,000 cu ft (Reference 16). The control room with volume of 110,000 ft3 is located within this volume. The CRHE and control room are served by CREOAS.
3.4   Dose Parameters
: 1. CRHE and offsite breathing rates are 3.5E-04 m 3/s.           Both rates are consistent with Regulatory Guide 1.183, section 4.1.
: 2. Control room occupancy is based on a maximum exposed individual. The individual is assumed present in the control room 100% of the time during this short duration accident.
The occupancy is consistent with Regulatory Guide 1.183, section 4.2, and NUREG-0800, chapter 6.4.
: 3. Doses are calculated in terms of the TEDE as required by Regulatory Guide 1.183, section 4.1. The dose conversion factors for the CEDE are based on Federal Guidance Report 11 and the EDE is based on Federal Guidance Report 12. The dose conversion factors appear in Reference 7, Table 11.4.3.3-2. EDEs for additional nuclides were added and included Kr-83m, Kr-85m, Kr-85, Xe-131m, Xe-133m, Xe-135m and Xe-138. The dose conversion factors were compiled into a RADTRAD.inp file for SSES's AST analyses and are included as Attachment 2.
3.5   Dispersion Parameters
: 1. Offsite x/Q values are 8.3E-04 s/m 3 (0 - 2 hr) for the EAB and 4.9E-05 s/m 3 <0 - 8 hr) for the LPZ (Reference 15, Tables 2.3-92 and 2.3-105).
: 2. The CRHE x/Q is based on Regulatory Guide 1.194 methods for instantaneous releases with duration less than one minute.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech       PROJECT:
Date     November 9, 2006         Steam Line Break Accident CRHE           Calc. No. EC-RADN- 1128 Designed By K Weise                 and Offsite Doses - AST                   Sh. No.     7 Checked By P. L. Bunker Table I Steam Line Break Analysis Input and Assumptions Summary Description                               Value                        Source Core Thermal Power Level                 4032 MWt                          Reference 12 Noble Gas Design Source Term             Table 2                            Reference 6, Table 11.1-1 100,000 gtCi/s after 30 minutes Design Offgas Release Rate                403,000 gCi/s after 30 minutes    See section 3.1, item 3 Design Reactor Water and Steam           Table 3                            Reference 6, Table 11.1-2 Iodine Specific Activities Design Main Steam Flow                     1,418,000 Ibm/h                  Reference 6, Appendx B Iodine Carryover Fraction                 8%                                Reference 6 Pre-accident Iodine Spike                 4.0 pCi/gm DE 1-131                Reference 18; RG 1.183 Maximum Equilibrium Iodine Activity      0.2 gtCi/gm DE 1-131              Reference 18, RG1.183 Radioiodine Chemical Species             95% CsI, 4.85% Elemental 12,      RG 1.183 0.15% Organic I Liquid Release                            84,840 Ibm                        Reference 13, Task A.28 Steam Release from Flashed Liquid         6,480 Ibm                          Reference 13, Task A.28 Steam Release from the Steam Dome         6,650 Ibm                          Reference 13, Task A.28 MSIV Closure Time                         5.5 seconds                        See section 3.2, item 5 Failed Fuel Resulting From MSLB           0                                  See section 3.2, item 1 Holdup in TB                             None                              RG 1.183 3
CRHE Volume                               518,000 ft                        Reference 16 CRHE Isolation and CREOAS Start-up       None                              See section 3.3, item 1 CRHE Air Intake Flow                     6391 cfm (max)                    Reference 17 CRHE Unfiltered Inleakage                 500 cfm                            See section 3.3, item 3 CRHE Ingress/egress Flow                   10 cfm                            Reference 6 3                      RG 1.183 Operator and Offsite Breathing Rates     3.5E-04 m /sec Operator Occupancy Factors                 1.0, 24 hrs                      Reference 6, RG 1.183 0.6, 1-4 days 0.4, 4-30 days 3
CRHE x/Q                                  Puff:    6.3E-04 s/m              Table 7 3
Offsite x/Q                              EAB:      8.3E-04 s/m , 0-2 hr    Reference 15 LPZ:      4.9E-05 s/m 3, 0-8 hr
 
PP&L CALCULATION SHEET Dept.     0341 Rad & Eff Tech      PROJECT:
Date      November 9, 2006        Steam Line Break Accident CRHE      CaIc. No. EC-RADN- 1128 Designed By K Weise                and Offsite Doses - AST              Sh. No. 8 Checked By P. L. Bunker 4.0     METHOD The offsite and CRHE doses are calculated using the RADTRAD computer code with the input and assumptions listed in Table 1. The activity released to the environment is provided on Tables 3 and 5. The resulting offsite and CRHE doses are provided in Attachments 5 and 6 for the cases of 4 pCi/gm DE 1-131 and 0.2 pCi/gm DE 1-131, respectively. A maximum unidentified unfiltered inleakage of 500 cfm plus 10 cfm ingress/egress unfiltered inleakage is used in the analysis.
4.1     Noble Gas Activity The noble gas activity released to the environment is based on the pre-accident noble gas off gas release rate of 403,000 pCi/sec after 30 minutes delay. The steam's noble gas specific activity (pCi/g) is determined from the off-gas activity source rate accounting for the 30 minute delay. The specific activities are then used to determine the noble gas release to the environment. The noble gas activity in the reactor water is conservatively taken the same as the steam activity since some water exiting the break will flash to steam. The activities Ai for the noble gases are given by:
Ai = 4.03 C (M*s+  Mw) exp (Ai *1800 s)
Fs where    -
C = noble gas nuclide source rate, pCi/s Mr= mass of steam released, Ibm Mw = mass of liquid released, Ibm Fs = steam flow rate used to establish noble gas equilibrium concentration, Ibm/h A1 = decay rate for noble gas nuclide i, s-1 4.03 = multiplier accounting for the maximum noble gas source rate of 362,000 pCi/s relative to the design basis rate of 100,000 pCi/s used to specify the noble gas source rates.
The calculated activities Ai available for release during the accident are shown in Table 2.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech        PROJECT:
Date    November 9, 2006            Steam Line Break Accident CRHE                      Calc. No. EC-RADN-1128 Designed By K Weise                  and Offsite Doses - AST                            Sh. No. 9 Checked By    P. L. Bunker Table 2 Noble Gas Activity Released from MSLB Steam mass (dome) M,, Ibm                    7980 Liquid mass M,, Ibm                        109584 Steam flow rate Fs, Ibm/h                  1.42E+07 30 minute decay, s                          1800 Conversion - s-Ci/hr-uCi                  3.60E-03 403,000 uCi/s rate factor                    4.03 Source Rate, Ci          Activity Half Life,         @T = 30min            Release Ai, Isotope              sec                uCi/sec                . Ci Kr-83m              6.840E+03             2.90E+03              4.19E-01 Kr-85m              1.570E+04            5.60E+03              7.29E-01 Kr-85                3.383E+08            2.OOE+01              2.4 1E-03 Kr-87                4.680E+03            1.50E+04            2.36E+00 Kr-88                9.972E+03            1.80E+04            2.45E+00 Kr-89                1.896E+02            1.80E+02              1.56E+01 Xe-131m             1.036E+06            1.50E+01              1.81E-03 Xe-133m              1.987E+05            2.80E+02              3.39E-02 Xe-133              4:553E+05            8.20E+03             9.89E-01 Xe-135m              9.360E+02            6.90E+03             3. *5E+00 Xe-135              3.287E+04            2.20E+04            2.75E+00 Xe-137              2.298E+02             6.70E+02              1.84E+01 Xe-138              8.478E+02             2. 1OE+04            1.1 OE+0 1 Notes:
: 1. GE "1971" design activity rates for 100,000 uCi/s source rate from Reference 14, Table 11.1-1.
: 2. Noble gas activties are based on 403,000 uCi/s measured at 30 minutes.
: 3. Activity releases are immediate with no hold up in the core or main steam system.
4.2     Iodine Activity in Reactor Coolant The design basis equilibrium halogen activity concentrations in the reactor water and main steam are shown in Table 3.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech      PROJECT:
Date    November 9, 2006        Steam Line Break Accident CRHE                    Calc. No. EC-RADN- 1128 Designed By K Weise              and Offsite Doses - AST                          Sh. No. 10 Checked By P. L. Bunker Table 3 Iodine Specific Activities Reactor Water        Reactor Steam Specific Activity    Specific Activity Isotope          uCi/gm                uCi/gm 1-131                1.30E-02            3.40E-04 1-132                1.20E-0 1            3.90E-03 1-133              8.90E-02              2.40E-03 1-134              2.40E-01             9.70E-03 1-135                1.30E-01            3.70E-03 Notes:
: 1. Reference 14, Table 11. 1-2
: 2. Values bound normal and hydrogen water chemistry operation. See Input 3. 1, Item #5.
The iodine activity in the reactor coolant is based on the maximum DE 1-131 activity permitted by the technical specifications. Concentration limits (TSiim) of 0.2 pCi/g and 4.0 pCi/g DE 1-131 are considered.
The specific activities CRc-i of DE 1-131 in the reactor coolant are given by:
CRc-i = TSiim
* CDB-i
* CDB-i
* DCFI-131 I (CDB-i
* DCFI-131 I   (CDB-i
* DCFi)where -TSijm = the technical specification limiting concentrations 0.2 pCi/g and 4.0 pCi/g DE 1-131 CDB-i = design basis reactor coolant iodine specific activities in Table 3 DCFi = total effective dose equivalent (TEDE) dose conversion factors for iodine isotopes.The DCFj are derived from the CEDE (from FGR 11, Reference
* DCFi) where -
: 8) and EDE (from FGR 12, Reference
TSijm = the technical specification limiting concentrations 0.2 pCi/g and 4.0 pCi/g DE 1-131 CDB-i = design basis reactor coolant iodine specific activities in Table 3 DCFi = total effective dose equivalent (TEDE) dose conversion factors for iodine isotopes.
: 9) dose conversion factors. A breathing rate of 3.5E-04 m 3/s (Input 3.4, item #1), applicable to control room personnel and workers, is used with the CEDE. The TEDE's DCFj for the iodine isotopes are given by: DCFi = DCFcEDE,i
The DCFj are derived from the CEDE (from FGR 11, Reference 8) and EDE (from FGR 12, Reference 9) dose conversion factors. A breathing rate of 3.5E-04 m 3/s (Input 3.4, item #1),
* BR + DCF.EDE, i PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1128 Designed By K Weise and Offsite Doses -AST Sh. No. 11 Checked By P. L. Bunker Observe that the DCFO are given on a per Bq basis whereas the reactor water and steam concentrations are specified using pCi. No unit conversions are needed since the DCFj are used only as weighting factors, which dimensionally cancel out in the normalization process.The calculated DCFj and specific activities for the reactor coolant are shown in Table 4: Table 4 Reactor Water Iodine Specific Activities at Technical Specification Limits DE 1-131 Limit TSlim, uCi/g DE 1-131 Limit TSlim, uCi/g Breathing Rate, m 3/s 4 0.2 3.5E-04 Isotope 1-131 1-132 1-133 1-134 1-135 Design Basis Reactor Water Concentration CD_i (uCi/gm)1.30E-02 1.20E-01 8.90E-02 2.40E-01 1.30E-01 (Sv/Bq)8.89E-09 1.03E-10 1.58E-09 3.55E-1 1 3.32E-10 CEDE EDE Dose Conversion Dose Conversion (Sv/Bq-s/m 3)1.82E-14 1.12E-13 2.94E-14 1.30E-13 7.98E-14 TEDE Dose Conversion DCFi (Sv/Bq-s/m 3)3.13E-12 1.48E-13 5.82E-13 1.42E-13 1.96E-13 Concentration
applicable to control room personnel and workers, is used with the CEDE. The TEDE's DCFj for the iodine isotopes are given by:
@ 4 uCi/gm DE 1-131 Ci (uCi/gm)0.96 8.84 6.56 17.68 9.58 Concentration
DCFi = DCFcEDE,i
@ 0.2 uCi/gm DE 1-131 Ci (uCi/gm)0.048 0.442 0.328 0.884 0.479 Notes: 1. Design reactor water specific activities from Table 3.2. CEDE h Effective from FGR 11 and EDE h E from FGR 12.4.3 Iodine Activity Released in Steam Line Break The iodine releases are based on the reactor coolant activity, carryover to steam, and the coolant and steam masses released from the break. Coolant concentrations are set by the allowable activity limits in accordance with the technical specifications.
* BR + DCF.EDE, i
The iodine activity Ai released from the steam line break for a coolant to steam carryover fraction of 0.08 is Ai = CRC-i * (Mw + 0.08*Ms)where -CRC-i = iodine specific activity of the reactor coolant Mw= mass of liquid released from the reactor, Ibm Ms= mass of steam released from the reactor dome, Ibm PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1 128 Designed By K Weise and Offsite Doses -AST Sh. No. 12 Checked By P. L. Bunker The calculated iodine activity released is summarized in Table 5. Observe that the 8%carryover to the steam results in much greater concentrations than the steam's design basis activities in Table 3. Because of the large water inventory exiting the break at hot standby, the iodine available for release to the environment is dominated by the reactor water concentrations as shown in Table 5.Table 5 Iodine Released from Steam Line Break Steam mass (dome) M,, Ibm Liquid mass M,, Ibm Carryover to steam fraction Conversion, gm-Ci/(lbm-uCi) 7980 109584 0.08 4.54E-04 Iodine Activity Release with Reactor Coolant at 4 uCi/am DE 1-131 Isotope 1-131 1-132 1-133 1-134 1-135 DE 1-131 RC Concentration, uCi/gm 0.96 8.84 6.56 17.68 9.58 Steam Concentration, uCi/gm 0.08 0.71 0.52 1.41 0.77 Iodine Activity Release, Ci 4.79E+01 4.42E+02 3.28E+02 8.85E+02 4.79E+02 Iodine Activity Release with Reactor Coolant at 0.2 uCi/gm DE 1-131 Isotope 1-131 1-132 1-133 1-134 1-135 DE 1-131 RC Concentration, uCi/gm 0.048 0.442 0.328 0.884 0.479 Steam Concentration, uCi/gm 0.00 0.04 0.03 0.07 0.04 Iodine Activity Release, Ci 2.40E+00 2.2 1E+01 1.64E+01 4.42E+01 2.40E+0 1 Notes: 1. DE 1-131 specific activities from Table 4.2. Steam concentration is based on DE 1- 131 concentration with 8%carryover.
 
PP&L CALCULATION SHEET Dept.       0341 Rad & Eff Tech           PROJECT:
Date       November 9, 2006               Steam Line Break Accident CRHE                 Calc. No. EC-RADN-1128 Designed By K Weise                       and Offsite Doses - AST                       Sh. No.         11 Checked By         P. L. Bunker Observe that the DCFO are given on a per Bq basis whereas the reactor water and steam concentrations are specified using pCi. No unit conversions are needed since the DCFj are used only as weighting factors, which dimensionally cancel out in the normalization process.
The calculated DCFj and specific activities for the reactor coolant are shown in Table 4:
Table 4 Reactor Water Iodine Specific Activities at Technical Specification Limits DE 1-131 Limit TSlim, uCi/g                   4 DE 1-131 Limit TSlim, uCi/g                 0.2 Breathing Rate, m 3/s                     3.5E-04 Design Basis                                                TEDE          Concentration Concentration Reactor Water            CEDE              EDE      Dose Conversion      @ 4 uCi/gm  @ 0.2 uCi/gm Concentration      Dose Conversion    Dose Conversion      DCFi              DE 1-131     DE 1-131 3
Isotope          CD_i (uCi/gm)            (Sv/Bq)        (Sv/Bq-s/m )    (Sv/Bq-s/m 3)      Ci (uCi/gm)  Ci (uCi/gm) 1-131                1.30E-02             8.89E-09          1.82E-14        3.13E-12              0.96        0.048 1-132                1.20E-01             1.03E-10           1.12E-13        1.48E-13              8.84        0.442 1-133              8.90E-02              1.58E-09          2.94E-14       5.82E-13             6.56        0.328 1-134              2.40E-01              3.55E-1 1          1.30E-13       1.42E-13             17.68       0.884 1-135                1.30E-01            3.32E-10          7.98E-14        1.96E-13              9.58        0.479 Notes:
: 1. Design reactor water specific activities from Table 3.
: 2. CEDE h Effective from FGR 11 and EDE h E from FGR 12.
4.3     Iodine Activity Released in Steam Line Break The iodine releases are based on the reactor coolant activity, carryover to steam, and the coolant and steam masses released from the break. Coolant concentrations are set by the allowable activity limits in accordance with the technical specifications.
The iodine activity Ai released from the steam line break for a coolant to steam carryover fraction of 0.08 is Ai   = CRC-i * (Mw + 0.08*Ms) where -
CRC-i =   iodine specific activity of the reactor coolant Mw= mass of liquid released from the reactor, Ibm Ms= mass of steam released from the reactor dome, Ibm
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech         PROJECT:
Date     November 9, 2006           Steam Line Break Accident CRHE                     Calc. No. EC-RADN-1 128 Designed By K Weise                 and Offsite Doses - AST                           Sh. No. 12 Checked By P. L. Bunker The calculated iodine activity released is summarized in Table 5. Observe that the 8%
carryover to the steam results in much greater concentrations than the steam's design basis activities in Table 3. Because of the large water inventory exiting the break at hot standby, the iodine available for release to the environment is dominated by the reactor water concentrations as shown in Table 5.
Table 5 Iodine Released from Steam Line Break Steam mass (dome) M,, Ibm                   7980 Liquid mass M,, Ibm                       109584 Carryover to steam fraction                 0.08 Conversion, gm-Ci/(lbm-uCi)             4.54E-04 Iodine Activity Release with Reactor Coolant at 4 uCi/am DE 1-131 DE 1-131               Steam        Iodine Activity RC Concentration,       Concentration,        Release, Isotope            uCi/gm               uCi/gm               Ci 1-131                0.96                  0.08          4.79E+01 1-132                8.84                  0.71          4.42E+02 1-133                6.56                  0.52          3.28E+02 1-134                17.68                  1.41          8.85E+02 1-135                9.58                  0.77          4.79E+02 Iodine Activity Release with Reactor Coolant at 0.2 uCi/gm DE 1-131 DE 1-131               Steam        Iodine Activity RC Concentration,       Concentration,        Release, Isotope            uCi/gm               uCi/gm               Ci 1-131                0.048                  0.00          2.40E+00 1-132                0.442                  0.04           2.2 1E+01 1-133                0.328                  0.03          1.64E+01 1-134                0.884                  0.07          4.42E+01 1-135                0.479                  0.04          2.40E+0 1 Notes:
: 1. DE 1-131 specific activities from Table 4.
: 2. Steam concentration is based on DE 1-131 concentration with 8%
carryover.
: 3. Steam and liquid masses include 20% margin.
: 3. Steam and liquid masses include 20% margin.
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Caic. No. EC-RADN-1128 Designed By K Weise and Offsite Doses -AST Sh. No. 13 Checked By P. L. Bunker 4.4 Effective Relative Concentration at the CRHE Air Intake The main steam line break is a double ended break in the steam tunnel. The release of steam and activity occurs over a very short time until closure of the MSIVs. The MSIV signal plus closing time is 5.5 seconds. All the activity is assumed released to the atmosphere instantaneously as a ground level release without holdup or dilution in the steam tunnel. The duration is short enough (less than one minute) to consider the release as an instantaneous puff release in accordance with Regulatory Guide 1.194.SSES does not have an automatic CRHE intake isolation or start-up of the CREOAS for a main steam line break. CRHE intake flow is taken as the normal service flow. No credit is taken for isolation of the CRHE intake or filtration of the radioiodine, especially in view of the short duration of the exposure.
 
Therefore, calculations of the CRHE X/Qs are amenable to the closed form solution given below. If CRHE isolation or filtration occurs, then numerical methods would be required to determine appropriate X/Qs.The concentration X (x, u, t) for a puff ground level release with the center of the puff passing directly over the intake air location is X(x, u, h, t) = 2 Q
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech         PROJECT:
* exp {-0.5(x -ut)2 + -0.5 h 2 }(2Tr)3/2 (Crz2 + 02)1/2 (ox 2 + 0v2) (Ox2 + uv 2) (Oz2 + Yv2)where -Q activity release, Ci x = release point to receptor (air intake) distance, m u -windspeed, m/s h = difference in elevation between release point and control room intake, m=x- standard deviation of the puff in the horizontal along the wind direction and cross-wind direction at the CRHE intake location, m uz = standard deviation of the vertical cross wind direction at the intake location, m cv = initial standard deviation of the volumetric expansion of the puff, m The above diffusion equation follows from Reference 5, Eq 10 and Reference 10, Eq 3.154.The units of X(x, u, h, t) are Ci/m 3.The total exposure during passage of the puff is obtained by integrating over the time of the puff's passage. The total exposure XT is XT = f X(X, u, h, t) dt for 0 < t < T PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE CaIc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 14 Checked By P. L. Bunker Regulatory Guide 1.194 advises that the integration be carried out to the time T that it takes the trailing edge to pass the CRHE intake.The puff is a Gaussian distribution.
Date     November 9, 2006           Steam Line Break Accident CRHE           Caic. No. EC-RADN-1128 Designed By K Weise                   and Offsite Doses - AST                 Sh. No.     13 Checked By P. L. Bunker 4.4     Effective Relative Concentration at the CRHE Air Intake The main steam line break is a double ended break in the steam tunnel. The release of steam and activity occurs over a very short time until closure of the MSIVs. The MSIV signal plus closing time is 5.5 seconds. All the activity is assumed released to the atmosphere instantaneously as a ground level release without holdup or dilution in the steam tunnel. The duration is short enough (less than one minute) to consider the release as an instantaneous puff release in accordance with Regulatory Guide 1.194.
The exposure time is typically the time that it takes about 99.8% of the puff distribution to pass beyond the horizontal distance x0 to the air intake.Approximately 99.8% of the distribution passes the intake when the center of puff travels downwind of the intake by a distance of three standard deviations in the horizontal direction.
SSES does not have an automatic CRHE intake isolation or start-up of the CREOAS for a main steam line break. CRHE intake flow is taken as the normal service flow. No credit is taken for isolation of the CRHE intake or filtration of the radioiodine, especially in view of the short duration of the exposure. Therefore, calculations of the CRHE X/Qs are amenable to the closed form solution given below. If CRHE isolation or filtration occurs, then numerical methods would be required to determine appropriate X/Qs.
The time T at which the puff has passed the intake is then given by: T = x + 3 (0x2 + Y2j/u where -x0 = horizontal distance in x direction to intake location, m u = windspeed, m/s ax = standard deviation of the puff in the horizontal along the wind direction at the CRHE control intake location, m a= initial standard deviation of the volumetric expansion of the puff, m A simplification is made by considering the entire tail of the puff. The above equation for XT is integrated over all time (i.e., T -o ) instead of up to T 1.The total exposure XT then follows directly from Reference 10, Eq 3.158 in that X(x, u, h) =Q*exp{ -0.5h 2 }(01 + av 2)Tr u (cy, 2+ cv 2) 1/2 (ic), 2+ T21/Thus, the equation has the same form as the equation for a continuous plum concentration.
The concentration X (x, u, t) for a puff ground level release with the center of the puff passing directly over the intake air location is X(x, u, h, t) =                     2Q
For example, the above equation can be compared to Reference 10, Eq 3.116 or Reference 4, Eq 1. Observe that oz and ax are functions of the distance x to the intake.The x/Q for the duration of the puff passage T is then taken as X/Q = X(x, u, h)/Q where Q and X(x, u, h) are defined above.1 The difference in exposures is negligible since 99.8% of the puff's distribution is considered.
* exp {-0.5(x - ut) 2 +   -0.5 h2  }
The specification of T, however, is beneficial since it can provide insight into the air intake exposure time.
(2Tr)3/2 (Crz2 + 02)1/2 (ox2 + 0v2)         (Ox2 + uv2)     (Oz2 + Yv2) where -
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 15 Checked By P. L. Bunker 4.5 Puff Expansion and Initial Standard Deviation The activity released from the steam line break is assumed uniformly distributed in a puff volume expanded to atmospheric pressure.
Q     activity release, Ci x = release point to receptor (air intake) distance, m u - windspeed, m/s h = difference in elevation between release point and control room intake, m
The size of the puff is set by the fluid mass released during the steam line break.The volume V of the puff is V = (MS +Mw) *Vsp where -Ms = mass of steam released, Ibm Mw= mass of liquid released, Ibm/s Vsp= specific volume of saturated steam at 14.7 psia, 26.8 ft 3/lbm The standard deviation of the puff av is obtained by setting the initial ground level concentration X(O, u, 0, 0) equal to the puff's concentration after expansion, QN. The resulting equation is (Reference 5, p. 19):=Y 2 V " 1/3 where V is the initial volume of the puff after expansion.
                  =x- standard deviation of the puff in the horizontal along the wind direction and cross-wind direction at the CRHE intake location, m uz = standard deviation of the vertical cross wind direction at the intake location, m cv = initial standard deviation of the volumetric expansion of the puff, m The above diffusion equation follows   3 from Reference 5, Eq 10 and Reference 10, Eq 3.154.
In determining the volume, the entire mass of fluid from the break is used consistent with the assumption of instantaneously releasing the entire inventory of noble gas and iodine. The masses from section 3.2, items #3 and #4, are used to maximize the release of water and hence available radioiodine.
The units of X(x, u, h, t) are Ci/m .
At power, a greater amount of steam and flashing can be expected than in hot standby. Therefore, the use of entire fluid inventory is reasonable.
The total exposure during passage of the puff is obtained by integrating over the time of the puff's passage. The total exposure XT is XT = f X(X, u, h, t) dt                     for 0 < t < T
Calculated results are shown in Table 6.4.6 Calculation of CRHE Relative Concentration xlQ The CRHE x/Qs associated with a release from each blowout panel are calculated and shown in Tables 6 and 7. x/Qs are calculated in accordance with Sections 4.4 and 4.5 above.Table 6 identifies the main steam blowout panel locations, elevations, horizontal distances to CRHE air intake, and relative heights to the intake. The normal standard deviations ax and az of the puff are functions of horizontal distance to the intake and are also shown. These values are determined from Regulatory Guide 1.194, Figures 4 and 5.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 16 Checked By P. L. Bunker Table 6 MST Blowout Panel Locations, Distances and Dispersion Coefficients Elevation, Distance, Aheight, sigmax, -sigma z, Release Point .ft m m m Im RB Unit 2 Air Intake 810.3 n/a n/a n/a n/a TB Unit 1MST blowout panel 717.5 115 28 5.2 2.5 TB Unit 2 MST blowout panel 717.5 41 28 2.1 1.1 RB Unit 1 MST blowout panel 802.5 88 2 4.1 2.0 RB Unit 2 MST blowout panel 802.5 52 2 2.6 1.3 Notes: 1. Aheight is the difference between intake and blowout panel elevations.
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech     PROJECT:
Date     November 9, 2006       Steam Line Break Accident CRHE             CaIc. No. EC-RADN- 1128 Designed By K Weise               and Offsite Doses - AST                     Sh. No. 14 Checked By P. L. Bunker Regulatory Guide 1.194 advises that the integration be carried out to the time T that it takes the trailing edge to pass the CRHE intake.
The puff is a Gaussian distribution. The exposure time is typically the time that it takes about 99.8% of the puff distribution to pass beyond the horizontal distance x0 to the air intake.
Approximately 99.8% of the distribution passes the intake when the center of puff travels downwind of the intake by a distance of three standard deviations in the horizontal direction.
The time T at which the puff has passed the intake is then given by:
T = x + 3 (0x2     + Y2j/
u where -
x0 = horizontal distance in x direction to intake location, m u = windspeed, m/s ax = standard deviation of the puff in the horizontal along the wind direction at the CRHE control intake location, m a= initial standard deviation of the volumetric expansion of the puff, m A simplification is made by considering the entire tail of the puff. The above equation for XT is integrated over all time (i.e., T   -o     ) instead of up to T 1 . The total exposure XT then follows directly from Reference 10, Eq 3.158 in that X(x, u, h) =                     Q                 *exp{   -0.5h 2   }
Tr u (cy, 2 + cv2)1/2 (ic),2 + T21/         (01 + av2 )
Thus, the equation has the same form as the equation for a continuous plum concentration.
For example, the above equation can be compared to Reference 10, Eq 3.116 or Reference 4, Eq 1. Observe that oz and ax are functions of the distance x to the intake.
The x/Q for the duration of the puff passage T is then taken as X/Q = X(x, u, h)/Q where Q and X(x, u, h) are defined above.
1 The   difference in exposures is negligible since 99.8% of the puff's distribution is considered. The specification of T, however, is beneficial since itcan provide insight into the air intake exposure time.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech   PROJECT:
Date     November 9, 2006       Steam Line Break Accident CRHE         Calc. No. EC-RADN- 1128 Designed By K Weise             and Offsite Doses - AST                 Sh. No. 15 Checked By P. L. Bunker 4.5     Puff Expansion and Initial Standard Deviation The activity released from the steam line break is assumed uniformly distributed in a puff volume expanded to atmospheric pressure. The size of the puff is set by the fluid mass released during the steam line break.
The volume V of the puff is V = (MS +Mw)   *Vsp where   -
Ms = mass of steam released, Ibm Mw= mass of liquid released, Ibm/s Vsp= specific volume of saturated steam at 14.7 psia, 26.8 ft 3/lbm The standard deviation of the puff av is obtained by setting the initial ground level concentration X(O, u, 0, 0) equal to the puff's concentration after expansion, QN. The resulting equation is (Reference 5, p. 19):
                                        =Y 2 V " 1/3 where V is the initial volume of the puff after expansion.
In determining the volume, the entire mass of fluid from the break is used consistent with the assumption of instantaneously releasing the entire inventory of noble gas and iodine. The masses from section 3.2, items #3 and #4, are used to maximize the release of water and hence available radioiodine. At power, a greater amount of steam and flashing can be expected than in hot standby. Therefore, the use of entire fluid inventory is reasonable.
Calculated results are shown in Table 6.
4.6     Calculation of CRHE Relative Concentration xlQ The CRHE x/Qs associated with a release from each blowout panel are calculated and shown in Tables 6 and 7. x/Qs are calculated in accordance with Sections 4.4 and 4.5 above.
Table 6 identifies the main steam blowout panel locations, elevations, horizontal distances to CRHE air intake, and relative heights to the intake. The normal standard deviations ax and az of the puff are functions of horizontal distance to the intake and are also shown. These values are determined from Regulatory Guide 1.194, Figures 4 and 5.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech           PROJECT:
Date     November 9, 2006             Steam Line Break Accident CRHE                     Calc. No. EC-RADN- 1128 Designed By K Weise                   and Offsite Doses - AST                           Sh. No.     16 Checked By P. L. Bunker Table 6 MST Blowout Panel Locations, Distances and Dispersion Coefficients Elevation,   Distance,   Aheight,     sigmax,   -sigma z, Release Point                 .ft         m           m             m         Im RB Unit 2 Air Intake                   810.3         n/a         n/a         n/a       n/a TB Unit 1MST blowout panel             717.5         115         28           5.2       2.5 TB Unit 2 MST blowout panel           717.5         41         28           2.1       1.1 RB Unit 1 MST blowout panel           802.5         88           2           4.1       2.0 RB Unit 2 MST blowout panel           802.5         52           2           2.6       1.3 Notes:
: 1. Aheight is the difference between intake and blowout panel elevations.
: 2. sigmax and sigma z are from Reg Guide 1.194, Figures 4 and 5, for class F stability.
: 2. sigmax and sigma z are from Reg Guide 1.194, Figures 4 and 5, for class F stability.
: 3. Reference drawings: E-105004, Sh. 3; E-105004, Sh. 6; E-105618; E-105670; E296155, Shs. l and 3.Several release masses are shown in Table 7 to ensure a bounding exposure is used to determine doses at the CRHE. The time integrated exposures X(x, u, h) at the CRHE inlet are calculated using the equation developed in Section 4.4 with the distances tabulated in Table 6.The exposures were determined for a wind speed of 1 m/s with class F stability.
: 3. Reference drawings:
The difference in elevation between intake and release locations (shown in Table 6 for information) is taken as zero in Table 7. This practice essentially maximizes the exposure at the air intake 2.Table 7 shows that the maximum exposures at the CRHE air intake occur for the case (d) mass release. The corresponding x/Q value for use in the dose calculation is x/Q 73.8 Ibm-s/mi 3 /(117,654 Ibm) = 6.3E-04 s/m 3 Table 7 also shows the maximum X/Qs for cases (a) to (c). In general, these cases have greater X/Qs than case (d); however, the exposures (which also consider the size of the steam releases) are less. Case (d) will yield the greatest CRHE doses since the combined activity (or mass) and dispersion gives the largest exposures.
E-105004, Sh. 3; E-105004, Sh. 6; E-105618; E-105670; E296155, Shs. l and 3.
Case (d) will also give the largest offsite doses for continuous releases assumed for the EAB and LPZ analyses.Inspection of Table 7 reveals that dispersion is dominated by the initial expansion of the puff rather than the normal dispersion.
Several release masses are shown in Table 7 to ensure a bounding exposure is used to determine doses at the CRHE. The time integrated exposures X(x, u, h) at the CRHE inlet are calculated using the equation developed in Section 4.4 with the distances tabulated in Table 6.
The dispersion is relatively insensitive to horizontal distance for each release case because the puff's radius is smaller than the distance to the intake. After 2 The exposure is maximized because the puff equations in Section 4.4 and RG 1.194 are for neutrally buoyant gases. The exposure is maximized when the source and receiver are at the same elevation.
The exposures were determined for a wind speed of 1 m/s with class F stability. The difference in elevation between intake and release locations (shown in Table 6 for information) is taken as zero in Table 7. This practice essentially maximizes the exposure at the air intake 2 .
Steam puffs are buoyant. The concentrations at the receiver location are typically less than the neutrally buoyant releases near the source because the center of the puff has moved above the receiver elevation as it passes by.
Table 7 shows that the maximum exposures at the CRHE air intake occur for the case (d) mass release. The corresponding x/Q value for use in the dose calculation is 3
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE CaIc. No. EC-RADN-1 128 Designed By K Weise and Offsite Doses -AST Sh. No. 17 Checked By P. L. Bunker initial expansion, the exposure at the intake is due to the entire puff as it travels by. The times T for the puff releases to have moved beyond the intake are also shown. Three minutes is a typical exposure duration.Table 7 CRHE Effective X/Qs For Steam Line Breaks Windspeed, m/s Vapor sp. volume, f1 3/lbm Aheight, m 1.0 26.8 0 Puff Mass and Expansion (a) (b) (c)13,130 35,000 97,970 (d)117,564 Puff mass, Ibm 3 Volume, m Sigmapuff, m Release Point TB Unit 1 MST blowout panel TB Unit 2 MST blowout panel RB Unit I MST blowout panel RB Unit 2 MST blowout panel Maximum Effective x/Qs, s/m 3 Time T, s 9,964 26,561 74,349 89,218 10.8 15.0 21.1 22.5 Exnosure v(x. I m/s. 0 m). ibm-s/m 3 31.4 34.9 32.9 34.5 46.2 49.0 47.4 48.7 67.4 69.4 68.3 69.2 71.9 73.8 72.7 73.6 2.7E-03 1.4E-03 7.1E-04 6.3E-04 151 163 180 184 Notes: 1. Puff masses based on the following: (a) steam mass release at hot standby, (b) steam plus flashed liquid similar to FSAR Table 3.6A MST analysis, (c) total steam plus liquid mass release at hot standby, (d) 20% margin added to case (c).2. X /Qs are for ground level release and intake ( Ah = 0 m).3. T is the time for >99.8% of the puff to pass the intake for each case.4.7 Radiological and Transport Model RADTRAD 3.03 is used for the dose models and calculations.
x/Q       73.8 Ibm-s/mi3 /(117,654 Ibm) = 6.3E-04 s/m Table 7 also shows the maximum X/Qs for cases (a) to (c). In general, these cases have greater X/Qs than case (d); however, the exposures (which also consider the size of the steam releases) are less. Case (d) will yield the greatest CRHE doses since the combined activity (or mass) and dispersion gives the largest exposures. Case (d) will also give the largest offsite doses for continuous releases assumed for the EAB and LPZ analyses.
The model consists of steam tunnel, CRHE and environment nodes with four interconnecting pathways.All the steam activity from the line break is released in 5.5 seconds into the tunnel. The activity is purged from the tunnel to the environment within seconds using an arbitrarily high flow rate pathway. Offsite and CRHE doses are calculated using the parameters described in sections 3.3, 3.4 and 3.5.
Inspection of Table 7 reveals that dispersion is dominated by the initial expansion of the puff rather than the normal dispersion. The dispersion is relatively insensitive to horizontal distance for each release case because the puff's radius is smaller than the distance to the intake. After 2 The exposure is maximized because the puff equations in Section 4.4 and RG 1.194 are for neutrally buoyant gases. The exposure is maximized when the source and receiver are at the same elevation. Steam puffs are buoyant. The concentrations at the receiver location are typically less than the neutrally buoyant releases near the source because the center of the puff has moved above the receiver elevation as it passes by.
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise
* and Offsite Doses -AST Sh. No. 18 Checked By P. L. Bunker The CRHE dose calculation uses case (d)'s worst case x/Q from Table 7 with the activities from Tables 2 and 5 corresponding to a hot standby mass release (with 20% margin). The total CRHE unfiltered inleakage is 510 cfm. The air intake is 6391 cfm throughout the accident with CREOAS not credited.Nuclide release and dose conversion factor files are shown in Attachments 1 and 2. Nuclide inventories are developed from Tables 3 and 5. Two files corresponding to the 4 pCi/gm and 0.2 pCi/gm DE 1-131 cases are shown in Attachments 3 and 4, respectively.
The physical and flow models are shown as part of the RADTRAD input in Attachments 5 and 6.5.0 RESULTS The reported offsite and CRHE doses based on the results of the RADTRAD calculations are listed in Table 8.Table 8 Offsite and CRHE Dose Results -Steam Line Break Pre-existing Iodine Spike 4 pCi/gm DE 1-131 TEDE, Rem Acceptance Criterion
-Offsite EAB LPZ Acceptance Criterion
-CRHE CRHE 25 2.0 0.12 5.0 0.93 Maximum Equilibrium Activity 0.2 pCi/gm DE 1-131 TEDE, Rem 2.5 0.10 0.006 5.0 0.05 I Notes: 1. RADTRAD output files are in Attachments 5 and 6.2. CRHE dose includes 30 day exposure in building after puff passage.The EDE doses included in the TEDE are based on the CRHE volume of 518,000 ft 3 used in RADTRAD. No additional finite cloud reduction for the actual control room volume of 110,000 ft 3 is applied since the EDE contribution is an insignificant contributor to the reported CRHE TEDE dose.
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses -AST Sh. No. 19 Checked By P. L. Bunker


==6.0 REFERENCES==
PP&L CALCULATION SHEET Dept.      0341 Rad & Eff Tech        PROJECT:
: 1. USNRC Regulatory Guide 1.183, "Alternative Radiological Source Terms For Evaluating Design Basis Accidents At Nuclear Power Reactors", July 2000.2. USNRC Regulatory Guide 1.5, "Assumptions Used For Evaluating the Potential Radiological Consequences of a Steam Line Break Accident for Boiling Water Reactors", 3/71.3. USNRC Regulatory Guide 1.98, "Assumptions Used For Evaluating The Potential Radiological Consequences Of A Radioactive Offgas System Failure In A Boiling Water Reactor", March 1976.4. USNRC Regulatory Guide 1.145, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants", February 1983.5. USNRC Regulatory Guide 1.194, "Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants", June 2003.6. NUREG-0800, USNRC Standard Review Plan Section 6.4, Control Room Habitability System, Revision 2.7. NUREG/CR-6604, RADTRAD: A Simplified Model for RADionuclide Transport and Removal And Dose Estimation, and Supplement 1, 6/8/99.8. Federal Guidance Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion", 1988.9. Federal Guidance Report No. 12, "External Exposures to Radionuclides in Air; Water; and Soil Based on the 1987 Federal Radiation Protection Guidance", 1993.10. USAEC, Meteorology and Atomic Energy 1968.11 .ASME Steam Properties for Industrial Use, Version 1.0.1.12. EPUMELLLA+
Date      November 9, 2006            Steam Line Break Accident CRHE                      CaIc. No. EC-RADN-1 128 Designed By K Weise                    and Offsite Doses - AST                              Sh. No.        17 Checked By P. L. Bunker initial expansion, the exposure at the intake is due to the entire puff as it travels by. The times T for the puff releases to have moved beyond the intake are also shown. Three minutes is a typical exposure duration.
Design Input Request T0200Core Design, Rev. 0.13. PPL Calculation EC-PUPC-1001, NEDC-32161 P, General Electric Power Uprate Engineering Report For Susquehanna Steam Electric Station, Revision 6, 5/24/04.14. PPL Calculation EC-RADN-1 038, Radioactive Material Source Term Evaluation for Normal Conditions with Hydrogen Water Chemistry, Revision 1.15. PPL Calculation EC-ENVR-1 057, Offsite X/Q Values for SSES Based on 1999 -2003 Meteorological Data, Revision 0, April 4, 2005.16. PPL Calculation EC-030-502, Control Structure Bldg. Volume, Revision 0, 12/17/93.17. SSES Improved Technical Specification 5.5.7, "Ventilation Filter Testing Program", Amendments 178 and 186.18. SSES Improved Technical Specification 3.4.7, "Reactor Coolant System, Specific Activity";
Table 7 CRHE Effective X/Qs For Steam Line Breaks Windspeed, m/s                            1.0 Vapor sp. volume, f13/lbm              26.8 Aheight, m                                0 Puff Mass and Expansion (a)          (b)        (c)          (d)
Amendments 178 and 195. Bases for Improved Technical Specifications B 3.4.7.19. SSES Improved Technical Specification 3.7.5, "Main Condenser Off Gas", Amendments 151 and 178. Bases for Improved Specification B 37.5.
Puff mass, Ibm                        13,130      35,000      97,970      117,564 3
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT: Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1 128.Designed By K Weise and Offsite Doses -AST Sh. No. 20 Checked By P. L. Bunker 20. SSES Improved Technical Specification 3.6.1.3, "Primary Containment Valves (PCIVs)", SR 3.6.1.3.7, Amendments 193 and 168.21. Reference SSES Drawings: E-105004, Sh. 3, Rev 26.-E-105004, Sh. 6, Rev 22.E-105618, Rev 1.E-105670, Rev 8.E-296155, Sh. 1, 10/26/2006.
Volume, m                              9,964      26,561      74,349      89,218 Sigmapuff, m                            10.8        15.0        21.1        22.5 3
Release Point                  Exnosure v(x. I m/s. 0 m). ibm-s/m TB Unit 1MST blowout panel              31.4        46.2        67.4        71.9 TB Unit 2 MST blowout panel              34.9        49.0        69.4        73.8 RB Unit I MST blowout panel            32.9          47.4        68.3        72.7 RB Unit 2 MST blowout panel            34.5          48.7        69.2        73.6 3
Maximum Effective x/Qs,    s/m      2.7E-03      1.4E-03    7.1E-04      6.3E-04 Time T, s                                151        163          180          184 Notes:
: 1. Puff masses based on the following:
(a) steam mass release at hot standby, (b) steam plus flashed liquid similar to FSAR Table 3.6A MST analysis, (c) total steam plus liquid mass release at hot standby, (d) 20% margin added to case (c).
: 2. X/Qs are for ground level release and intake ( Ah = 0 m).
: 3. T is the time for >99.8% of the puff to pass the intake for each case.
4.7      Radiological and Transport Model RADTRAD 3.03 is used for the dose models and calculations. The model consists of steam tunnel, CRHE and environment nodes with four interconnecting pathways.
All the steam activity from the line break is released in 5.5 seconds into the tunnel. The activity is purged from the tunnel to the environment within seconds using an arbitrarily high flow rate pathway. Offsite and CRHE doses are calculated using the parameters described in sections 3.3, 3.4 and 3.5.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech        PROJECT:
Date    November 9, 2006          Steam Line Break Accident CRHE              Calc. No. EC-RADN- 1128 Designed By K Weise
* and Offsite Doses - AST                      Sh. No.        18 Checked By P. L. Bunker The CRHE dose calculation uses case (d)'s worst case x/Q from Table 7 with the activities from Tables 2 and 5 corresponding to a hot standby mass release (with 20% margin). The total CRHE unfiltered inleakage is 510 cfm. The air intake is 6391 cfm throughout the accident with CREOAS not credited.
Nuclide release and dose conversion factor files are shown in Attachments 1 and 2. Nuclide inventories are developed from Tables 3 and 5. Two files corresponding to the 4 pCi/gm and 0.2 pCi/gm DE 1-131 cases are shown in Attachments 3 and 4, respectively. The physical and flow models are shown as part of the RADTRAD input in Attachments 5 and 6.
5.0    RESULTS The reported offsite and CRHE doses based on the results of the RADTRAD calculations are listed in Table 8.
Table 8 Offsite and CRHE Dose Results - Steam Line Break Pre-existing Iodine Spike        Maximum Equilibrium 4 pCi/gm DE 1-131                    Activity TEDE, Rem                  0.2 pCi/gm DE 1-131 TEDE, Rem Acceptance Criterion - Offsite                25                            2.5 EAB                              2.0                            0.10 LPZ                              0.12                          0.006 Acceptance Criterion - CRHE                    5.0                            5.0 Notes:
CRHE                                0.93
: 1. RADTRAD output files are in Attachments 5 and 6.
: 2. CRHE dose includes 30 day exposure in building after puff passage.
0.05 I
The EDE doses included in the TEDE are based on the CRHE volume of 518,000 ft3 used in RADTRAD. No additional finite cloud reduction for the actual control room volume of 110,000 ft3 is applied since the EDE contribution is an insignificant contributor to the reported CRHE TEDE dose.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech    PROJECT:
Date    November 9, 2006        Steam Line Break Accident CRHE      Calc. No. EC-RADN- 1128 Designed By K Weise              and Offsite Doses - AST              Sh. No. 19 Checked By    P. L. Bunker
 
==6.0     REFERENCES==
: 1. USNRC Regulatory Guide 1.183, "Alternative Radiological Source Terms For Evaluating Design Basis Accidents At Nuclear Power Reactors", July 2000.
: 2. USNRC Regulatory Guide 1.5, "Assumptions Used For Evaluating the Potential Radiological Consequences of a Steam Line Break Accident for Boiling Water Reactors", 3/71.
: 3. USNRC Regulatory Guide 1.98, "Assumptions Used For Evaluating The Potential Radiological Consequences Of A Radioactive Offgas System Failure In A Boiling Water Reactor", March 1976.
: 4. USNRC Regulatory Guide 1.145, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants", February 1983.
: 5. USNRC Regulatory Guide 1.194, "Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants", June 2003.
: 6. NUREG-0800, USNRC Standard Review Plan Section 6.4, Control Room Habitability System, Revision 2.
: 7. NUREG/CR-6604, RADTRAD: A Simplified Model for RADionuclide Transport and Removal And Dose Estimation, and Supplement 1, 6/8/99.
: 8. Federal Guidance Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion",
1988.
: 9. Federal Guidance Report No. 12, "External Exposures to Radionuclides in Air; Water; and Soil Based on the 1987 Federal Radiation Protection Guidance", 1993.
: 10. USAEC, Meteorology and Atomic Energy 1968.
11 .ASME Steam Properties for Industrial Use, Version 1.0.1.
: 12. EPUMELLLA+ Design Input Request T0200Core Design, Rev. 0.
: 13. PPL Calculation EC-PUPC-1001, NEDC-32161 P, General Electric Power Uprate Engineering Report For Susquehanna Steam Electric Station, Revision 6, 5/24/04.
: 14. PPL Calculation EC-RADN-1 038, Radioactive Material Source Term Evaluation for Normal Conditions with Hydrogen Water Chemistry, Revision 1.
: 15. PPL Calculation EC-ENVR-1 057, Offsite X/Q Values for SSES Based on 1999 - 2003 Meteorological Data, Revision 0, April 4, 2005.
: 16. PPL Calculation EC-030-502, Control Structure Bldg. Volume, Revision 0, 12/17/93.
: 17. SSES Improved Technical Specification 5.5.7, "Ventilation Filter Testing Program",
Amendments 178 and 186.
: 18. SSES Improved Technical Specification 3.4.7, "Reactor Coolant System, Specific Activity";
Amendments 178 and 195. Bases for Improved Technical Specifications B 3.4.7.
: 19. SSES Improved Technical Specification 3.7.5, "Main Condenser Off Gas", Amendments 151 and 178. Bases for Improved Specification B 37.5.
 
PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:
Date     November 9, 2006     Steam Line Break Accident CRHE     Calc. No. EC-RADN-1 128.
Designed By K Weise           and Offsite Doses - AST             Sh. No. 20 Checked By P. L. Bunker
: 20. SSES Improved Technical Specification 3.6.1.3, "Primary Containment Valves (PCIVs)", SR 3.6.1.3.7, Amendments 193 and 168.
: 21. Reference SSES Drawings:
E-105004, Sh. 3, Rev 26.
      -E-105004, Sh. 6, Rev 22.
E-105618, Rev 1.
E-105670, Rev 8.
E-296155, Sh. 1, 10/26/2006.
E-296155, Sh. 3, 10/26/2006.
E-296155, Sh. 3, 10/26/2006.
EC-RADN-1 128 Attachment 1 Page 21 Attachment 1 RADTRAD Control File Release Fraction and Timing SLB.rft EC-RADN-1 128 Attachment 1 Page 22
 
EC-RADN-1 128                            Attachment 1                            Page 21 Attachment 1 RADTRAD Control File Release Fraction and Timing SLB.rft
 
EC-RADN-1 128                                    Attachment 1                    Page 22 Release Fraction and Timing Name: SSES MSLB - Release Break Activity In 5.5 Secs Sources Duration (h):    Design Basis Accident
: 0. 1528E-06  O.OOOOE+00  O.OOOOE+00 0.0000E+00 Noble Gases:
1.fOOOE+00  o.OOOOE+00 0o.OOOOE+00 0.0000E+00 Iodine:
1.OOOOE+00  o.OOOOE+00 o.OOOOE+00 0.OOOOE+00 Cesium:
o.OOOOE+00  o.OOOOE+00  o.OOOOE+00  o.OOOOE+00 Tellurium:
o.OOOOE+00  o.OOOOE+00  o.OOOOE+00  o.OOOOE+00 Strontium:
o.OOOOE+00  o.OOOOE+00  o.OOOOE+00  o.OOOOE+00 Barium:
o.OOOOE+00  o.OOOOE+00  o.OOOOE+00  0.OOOOE+00 Ruthenium:
o.OOOOE+00  o.OOOOE+00  o.OOOOE+00  o.OOOOE+00 Cerium:
o.OOOOE+00  o.OOOOE+00  o.OOOOE+00  0.OOOOE+00 Lanthanum:
o.OOOOE+00  o.OOOOE+00  o.OOOOE+00  0.OOOOE+00 Non-Radioactive Aerosols  (kg):
O.OOOOE+00  O.OOOOE+0O  0.OOOOE+00  O.OOOOE+00 End of Release File
 
EC-RADN-l 128                            Attachment 2                        Page 23 Attachment 2 RADTRAD Control File Dose Conversion File SLBPhase 2.inp
 
EC-RADN-1 128                                        Attachment 2                      Page 24 FGR11&12 edited+TID 30.inp Kr83m Xel31m 133m 135m 138 beta-test      version 1.10 Implicit daughter halflives      (m) less than  90 and less than 0.100 of parent 9 ORGANS DEFINED IN THIS FILE:      ICRP-30 GONADS BREAST LUNGS RED MARR BONE SUR THYROID REMAINDER EFFECTIVE SKIN(FGR) 1E NUCLIDES DEFINED IN THIS FILE:
1-131      D 1-132      D 1-133      D 1-134      D 1-135      D      Including:Xe-135m Xe-131m Xe-133m Xe-133 Xe-135m Xe-135 Kr-83m Kr-85m Kr-87 Kr-88 Kr-85 Xe-138 CLOUDSHINE .GROUND        GROUND    GROUND    INHALED  INHALED  INGESTION SHINE
Scenario Description
Scenario Description
######################################################
######################################################4#################
#################
Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP            EARLY IN-VESSEL        LATE RELEASE        RELEASE MASS 0.000000 hr            0.0000.hrs          0.0000 hrs                (gm)
Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP EARLY IN-VESSEL 0.000000 hr 0.0000 hrs NOBLES 1.OOOOE+00 0.OOOOE+00 IODINE 1.0000E+00 0.OOOOE+00 CESIUM 0.OOOOE+00 0.OOOOE+00 TELLURIUM 0.OOOOE+00 0.OOOOE+00 STRONTIUM 0.OOOOE+00 0.OOOOE+00 BARIUM 0.OOOOE+00 0.OOOOE+00 RUTHENIUM 0.OOOOE+00 0.OOOOE+00 CERIUM 0.OOOOE+00 0.OOOOE+00 LANTHANUM 0.OOOOE+00 0.OOOOE+00 LATE RELEASE 0.0000 hrs 0. 0000E+00 0. OOE+00 0 .OOOOE+00 0 .OOOOE+00 0 OOOOE+00 0 .OOOOE+00 0 OOOOE+00 0 OOOOE+00 0. O00OE+00 RELEASE MASS (gm)1.322E-05 8. 936E-04 0.OOOE+00 0.OOOE+00 0.OOOE+00 0.OOOE+00 0. OOOE+00 0. OOOE+00 0. OOOE+00 Inventory Power =1. MWt Nuclide Name 1-131 1-132 1-133 1-134 1-135 Xe-131m Xe-133m Xe-133 Xe-135m Xe-135 Kr-83m Kr-85m Kr-87 Kr-88 Kr-85 Xe-138 Nuclide 1-131 i-133 1-135 Xe-133m Xe-135m Xe-135 Kr-85m Kr-87 Kr-88 Xe-138 Group Specific Inventory (Ci/MWt)2 4.790E+01 2 4.420E+02 2 3.280E+02 2 8.850E+02 2 4.790E+02.
NOBLES        1.OOOOE+00 .          0.OOOOE+00          0.OOOOE+00            1.322E-05 IODINE        1.OOOOE+00            0.OOOOE+00          0.OOOOE+00            4.473E-05 CESIUM        0.OOOOE+00            0.OOOOE+
1 1.810E-03 1 3.390E-02 1 9

Latest revision as of 23:06, 13 March 2020

Calculation EC-RADN-1128, Rev 1, Steam Line Break Accident Crhe & Off-Site Doses - Ast.
ML063310450
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 11/10/2006
From: Weise K
Susquehanna
To:
Office of Nuclear Reactor Regulation
References
EC-RADN-1128, Rev 1
Download: ML063310450 (92)


Text

Attachment 3 to PLA-6124 EC-RADN-1128, Revision I

NUCLEAR ENGINEERING CALCULATION COVER SHEET NEPM-QA-0221-1 1. Page 1 of 86 Total Pages 88

-2. TYPE: CALC J3. NUMBER: EC-RADN-1128 -4. REVISION: 1

  • 5 UNIT 3 *-6 QUALITY CLASS: Q
7. DESCRIPTION
Steam Line Break Accident CRHE and Off Site Doses - AST
8. SUPERSEDED BY:
9. Alternate Number: 10. Cycle:.
11. Computer Code/Model used: RADTRAD V3.03 12. Discipline: R

-13. Are any results of this calculation described in the Licensing Documents?

Z

  • Yes, Refer to NDAP-QA-0730 and NDAP-QA-0731 El No

,14. Is this calculation changing any method of evaluation described in the FSAR and using the results to support or change the FSAR? (Refer to PPL Resource Manual for Definition of FSAR)

  • Yes, 50.59 screen or evaluationrequired. [] No

'15. Is this calculation Prepared by an External Organization?

EYes IlNo EG771 Qualifications may not be required for individuals from external orgnizations (see Section 7.4.3).

.- 16. Prepared K. Weise) by:

Print Name(EG 771 Qualification Requireal, Signature Date

, 17. Reviewed by: P. L. Bunker .

Print Name(EG771 Qualification Required) Signature Date Ip18. Verified by: P. L. Bunker Print Name(EG771 Qualification Required) Signature Date

,-19. Approved by: M. eM.

dperNEPM,---02414, Waseluse/- *a*n Sigte Print Name(Qualifiedper NEPM-QA-0241 and v.*2 - Signature Date comply with Section 7.8 of NEPM-QA-0221)

,-20. Accepted by:

Print Name(EG771 Qualification Required) and Signature 0 Date comely with Section 7.9 of NEPM-OA -0221 TO BE COMPLETED BY DCS DCS SIGNATURE/DATE ADD A NEW COVER PAGE FOR EACH REVISION

  • Verified Fields FORM NEPM-QA-0221-1, Revision 8, Page 1 of 1, ELECTRONIC FORM - REQUIRED FIELDS

Page la CALCULATION REVISION DESCRIPTION SHEET NEPM-QA-0221-2 REVISION NO: 1 CALCULATION NUMBER: EC-RADN- 1128 SFULL REVISION III SUPERSEDED FII PAGE FOR PAGE E-- VOIDED A R R Revised d P m Description Pages d 1 v of Revision on the Listed Pages All D Calculation reprinted in entirety.

la, lb E- D Air intake location on reactor building at Elev. 810'-3".

1,2, 16, 17, 18, 20, Tables 1, 6, 7, & E E 0 Air intake location on reactor building at Elev. 810'-3" with 8 corresponding changes in dispersion characteristics and CRHE doses.

11, Table 3 D 0 E Minor editorial Attachments 5 & 6 E F1 RADTRAD output for CRHE doses

__ F-1 __

_ _ _ _ _ l Eli El

_ _ _ _ _ l Eli El

_ __ _ _ W El E-IW I-!ElD E-I

_-1 IEl1 EI

__ [El _

_ _ _ _ _ _ lI El E

_ _ _ _ _ _ LIDI ___ __ __

DD]DDD3 r]

FORM NEPM-OA-0221-2. Revision 5, Page I of 1 ELECTRONIC FORM

Page lb TECHNICAL CHANGE

SUMMARY

PAGE NEPM-QA-0221-5 Calculation Number: EC-RADN-1128 Revision No. 1 This form shall be used to (1) record the Technical Scope of the revision and (2) record the scope of verification if the calculation was verified. It should not be more than one page. Its purpose is to provide summary information to the reviewer, verifier, approver, and acceptor about the technical purpose of the change. For non-technical revisions, state the purpose or reason for the revision.

Scope of Revision: Revision 1 re-calculates the CRHE accident doses for the air intake on the reactor building south wall at Elev 810'-3" near the intersection of column lines U and 37.4. The calculation does not credit an elevation difference between the blowout panel release and air intake locations. With zero difference in elevations, the calculated exposures at the intake are maximized for the steam line break "puff' release. The zero elevation difference is consistent with Regulatory Guide 1.194 guidance and supports the SSES response to AST RAI #3, dated October 18, 2006.

Scope of Verification (If verification applies): Verify changes in design input, assumptions, methodology, arithmetic, computer code input/output, results and conclusions.

NEPM-QA-0221-5, Revision 0 Page 1 of 1 ELECTRONIC FORM

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 2 Checked By P. L. Bunker TABLE OF CONTENTS 1.0 PU RP O SE ................................................................................................... ...................... .................... 3

2.0 CONCLUSION

S AND RECOMMENDATIONS ............................................................................ 3 3.0 INPUT and ASSUMPTIONS ....................................................................................................... 4 3.1 Reactor Core and Coolant Source Parameters .................................................................................... 4 3.2 Accident Scenario Parameters ......................................................................................................... 5 3.3 Control Room Habitability Design Parameters .................................................... .................................. 6 3.4 D ose P arameters ....................................................................................................................................... 6 3.5 D ispersion Param eters .................................................................. ........................................................ 6 4.0 METHOD ................................................................................................... ....... 8 4 .1 N oble Gas A ctivity .................................................................................................................................. 8 4.2 Iodine Activity in Reactor Coolant .................................................................................................. 9 4.3 Iodine Activity Released in Steam Line Break .............................................................................. 11 4.4 Effective Relative Concentration at the CRHE Air Intake ............................................................... 13 4.5 Puff Expansion and Initial Standard Deviation ............................................................................... 15 4.6 Calculation of CRHE Relative Concentration x/Q .......................... 15 4.7 Radiological and Transport Model ................................................................................................... 17 5.0 RE SU LT S ............................................................................................................................................ 18 6.0 REFEREN C E S ............................................................................................................ ....................... 19 RADTRAD Control File Release Fraction and Timing SLB.rft ............................................ 21 RADTRAD Control File Dose Conversion File SLB_Phase 2.inp ...................................... 23 RADTRAD Control File Inventory File SLB_4mc.nif ........................................................ 27 RADTRAD Control File Inventory File SLBpt2mc.nif .................................................... 31 RADTRAD Output TBMST_500cfm_4mcDE_1 128.out .................................................. 35 RADTRAD Output TBMST_500cfin2ptmcDE_1 128.out ............................................... 61

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 3 Checked By P. L. Bunker STEAM LINE BREAK ACCIDENT CRHE and OFFSITE DOSES - AST 1.0 PURPOSE This calculation documents the design basis evaluation of the Control Room Habitability Envelope (CRHE) and offsite radiological doses at the exclusion area boundary and the low population zone following a postulated steam line break using the Alternate Source Term (AST) methodology described in USNRC Regulatory Guide 1.183 (Reference 1). The break is assumed to occur in the main steam tunnel and be released to the environment via a turbine or reactor building steam tunnel blowout panel. Reactor water and steam iodine specific activities are specified using dose equivalent 1-131 (DE 1-131) based on the TEDE dose conversion. The doses are calculated using the RADTRAD computer code (Reference 7).

2.0 CONCLUSION

S AND RECOMMENDATIONS The offsite dose acceptance criterion for the steam line break is provided in Regulatory Guide 1.183, Table 6. The CRHE dose acceptance criterion for the main steam line accident is provided in 10CFR50.67, Accident Source Term, subsection 10CRF50.67(b)(2)(iii).

The offsite dose acceptance criteria at the exclusion area boundary (EAB) and the low population zone (LPZ) are 25 Rem TEDE for a steam line break with fuel damage or pre-accident iodine spike and 2.5 Rem TEDE for a steam line break with maximum equilibrium iodine activity. The CRHE dose acceptance criterion is 5 Rem TEDE.

The reported steam line break doses using AST methodology are:

Dose Summary for Steam Line Break Accident Maximum Equilibrium Pre-accident Spike Iodine Activity 4 jtCi/gm DE 1-131, 0.2 jtCi/gm DE 1-131, TEDE, Rem TEDE, Rem Acceptance Criterion - Offsite 25 2.5 EAB 2.0 0.10 LPZ 0.12 0.006 Acceptance Criterion - CRHE 5.0 '5.0 CRHE 0.93 0.05

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1128 Designed By K Weise and Offsite Doses - AST Sh. No. 4 Checked By P. L. Bunker 3.0 INPUT and ASSUMPTIONS

.The input data and assumptions used in this analysis are summarized in Table 1.

3.1 Reactor Core and Coolant Source Parameters

1. Core thermal power used for this accident is 4032 MWt (Reference 12). The thermal power is taken as 102% of the 3952 MWt uprate power. The core thermal power is not directly used in this analysis since there is no fuel damage postulated for this event. The core power is used to confirm that the reactor coolant and steam activity concentrations are conservative for extended power uprate conditions.
2. The design basis noble gas source term is 100,000 pCi/s after 30 minutes decay and is shown in Table 2. Short lived isotopes (half lives less than one minute) are excluded due to radiological decay. The concentrations shown have been determined to be conservative for extended power uprate with and without hydrogen water chemistry (Reference 14, Appendix E).
3. A total off gas release rate of 403,000 pCi/sec after 30 minutes delay is used for the noble gas source with a core power of 4032 MWt. The individual noble gas concentrations are then scaled from the 100,000 pCi/sec rate data in Table 2 by applying a factor of 4.03.

The scaling of the 100,000 pCi/sec is similar to the approach in Regulatory Guide 1.98 for analyzing postulated failures in off gas systems. Regulatory Guide 1.98 assumes a release rate of 100 pCi/MWt after 30 minute delay at the steam jet air ejector. For a given fuel design basis defect fraction, the rate of fission product releases through the defects is proportional to the number of fissions or core power. The observed off gas rate is proportional to the fission product release rate (or alternatively core power) assuming no change in cladding defects. Hence, the observed off gas rate may be directly scaled from one power level to another as prescribed in Regulatory Guide 1.98. The same approach is used for setting SSES's main condenser offgas rate in Improved Technical Specification 3.5.7 (Reference 19).

4. The main steam flow rate is 1.418E+07 Ibm/h, which corresponds to the flow used to establish the original GE design basis reactor water and steam activities (Reference 14).

Reference 14 shows that the activity concentrations at extended power uprate with the anticipated steam flow (1.654E+07 Ibm/h) are bounded by the original design basis concentrations. Because the original activity concentrations have been retained for the SSES design basis (Reference 14), this analysis uses the original steam flow rate of 1.418E+07 Ibm/h to determine the noble gas activities released to the environs. The approach is consistent with the design basis and covers existing and power uprate steam flows.

5. The design basis iodine specific activities are shown in Table 3 for the reactor water and main steam. The water concentrations are maximized by the use of a 2% steam carryover (corresponding to normal water chemistry operation) while the steam concentrations are maximized using an 8% steam carryover (corresponding to operation with hydrogen water

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 5 Checked By P.L. Bunker chemistry). This approach bounds normal and hydrogen water chemistry operation (Reference 14).

3.2 Accident Scenario Parameters

1. No fuel damage is postulated for the main steam line break. Therefore, the released activity is based on the maximum coolant activity allowed by Improved Technical Specification 3.4.7 (Reference 18). Two activity cases are analyzed consistent with Regulatory Guide 1.183, Appendix D guidance:
1. Iodine activities based on a pre-accident spike with a concentration of 4 pCi/g DE 1-131.
2. Iodine activities based on the maximum equilibrium value for full power operation with a concentration of 0.2 pCi/g DE 1-131.
2. For the design basis accident, the reactor is assumed to be in hot standby prior to the break (Reference 13, Task A.28). This condition maximizes the liquid mass release and hence activity releases.
3. The mass releases for the design basis (hot standby) cases are (Reference 13, Table A.28-3):

Liquid release 84,840 Ibm Steam release from flashed liquid 6,480 Ibm Steam from steam dome 6,650 Ibm From the above, the total amount of coolant as water exiting the vessel is 91,320 Ibm. The total mass release is 97,970 Ibm.

4. The above mass releases are increased by 20% to provide additional margin. Evaluations of steam line break masses for other extended power uprate plants determined that the increases in mass releases were small compared to the pre-uprate main steam line break masses while at power.
5. Main steam line valves are assumed to start to close at 0.5 seconds on a high flow signal and are fully closed at 5.5 seconds (Reference 20). The closure time ensures that the steam, water and, radioactivity releases to the environs are over a relatively short duration.
6. All of the radioactivity in the liquid and steam is assumed to be released instantaneously as a ground level release consistent with Regulatory Guide 1.183, Appendix D. No hold-up or dilution is assumed in the reactor or turbine building steam tunnels.
7. The instantaneous release of all the activity within a short period (less than one minute) is modeled as a puff release consistent with the guidance in Regulatory Guide 1.194. This approach is reasonable since the MSIVs rapidly isolate the break and all the activity is immediately assumed to be released into the environment.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE CaIc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 6 Checked By P. L. Bunker

8. The iodine species released from the main steam line are 95% Csl as aerosol, 4.85% as elemental iodine, and 0.15% as organic iodine in accordance with Regulatory Guide 1.183, Appendix D.

3.3 Control Room Habitability Design Parameters

1. No credit is given for filtration of radioiodine in the CRHE. The control room emergency outside air filtration system (CREOAS) does not automatically actuate for this accident.

Manual operation is not credited because the accident occurs rapidly with the release moving away from the control room within minutes.

2. The CRHE's nominal air intake flow rate is 5810 cfm. This analysis uses 6391 cfm, the maximum value for which the system is in compliance with Technical Specification 5.5.7 (Reference 17). The use of the maximum flow rate results in the greatest uptake of activity during the accident.
3. Unfiltered inleakage is 500 cfm. This amount bounds the leakages and error bands from the December 2004 CRHE tracer gas tests. Unfiltered ingress/egress leakage through doors of 10 cfm is assumed based on NUREG-0800, chapter 6.4 (Reference 10).
4. The control structure habitability envelope volume is 518,000 cu ft (Reference 16). The control room with volume of 110,000 ft3 is located within this volume. The CRHE and control room are served by CREOAS.

3.4 Dose Parameters

1. CRHE and offsite breathing rates are 3.5E-04 m 3/s. Both rates are consistent with Regulatory Guide 1.183, section 4.1.
2. Control room occupancy is based on a maximum exposed individual. The individual is assumed present in the control room 100% of the time during this short duration accident.

The occupancy is consistent with Regulatory Guide 1.183, section 4.2, and NUREG-0800, chapter 6.4.

3. Doses are calculated in terms of the TEDE as required by Regulatory Guide 1.183, section 4.1. The dose conversion factors for the CEDE are based on Federal Guidance Report 11 and the EDE is based on Federal Guidance Report 12. The dose conversion factors appear in Reference 7, Table 11.4.3.3-2. EDEs for additional nuclides were added and included Kr-83m, Kr-85m, Kr-85, Xe-131m, Xe-133m, Xe-135m and Xe-138. The dose conversion factors were compiled into a RADTRAD.inp file for SSES's AST analyses and are included as Attachment 2.

3.5 Dispersion Parameters

1. Offsite x/Q values are 8.3E-04 s/m 3 (0 - 2 hr) for the EAB and 4.9E-05 s/m 3 <0 - 8 hr) for the LPZ (Reference 15, Tables 2.3-92 and 2.3-105).
2. The CRHE x/Q is based on Regulatory Guide 1.194 methods for instantaneous releases with duration less than one minute.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 7 Checked By P. L. Bunker Table I Steam Line Break Analysis Input and Assumptions Summary Description Value Source Core Thermal Power Level 4032 MWt Reference 12 Noble Gas Design Source Term Table 2 Reference 6, Table 11.1-1 100,000 gtCi/s after 30 minutes Design Offgas Release Rate 403,000 gCi/s after 30 minutes See section 3.1, item 3 Design Reactor Water and Steam Table 3 Reference 6, Table 11.1-2 Iodine Specific Activities Design Main Steam Flow 1,418,000 Ibm/h Reference 6, Appendx B Iodine Carryover Fraction 8% Reference 6 Pre-accident Iodine Spike 4.0 pCi/gm DE 1-131 Reference 18; RG 1.183 Maximum Equilibrium Iodine Activity 0.2 gtCi/gm DE 1-131 Reference 18, RG1.183 Radioiodine Chemical Species 95% CsI, 4.85% Elemental 12, RG 1.183 0.15% Organic I Liquid Release 84,840 Ibm Reference 13, Task A.28 Steam Release from Flashed Liquid 6,480 Ibm Reference 13, Task A.28 Steam Release from the Steam Dome 6,650 Ibm Reference 13, Task A.28 MSIV Closure Time 5.5 seconds See section 3.2, item 5 Failed Fuel Resulting From MSLB 0 See section 3.2, item 1 Holdup in TB None RG 1.183 3

CRHE Volume 518,000 ft Reference 16 CRHE Isolation and CREOAS Start-up None See section 3.3, item 1 CRHE Air Intake Flow 6391 cfm (max) Reference 17 CRHE Unfiltered Inleakage 500 cfm See section 3.3, item 3 CRHE Ingress/egress Flow 10 cfm Reference 6 3 RG 1.183 Operator and Offsite Breathing Rates 3.5E-04 m /sec Operator Occupancy Factors 1.0, 24 hrs Reference 6, RG 1.183 0.6, 1-4 days 0.4, 4-30 days 3

CRHE x/Q Puff: 6.3E-04 s/m Table 7 3

Offsite x/Q EAB: 8.3E-04 s/m , 0-2 hr Reference 15 LPZ: 4.9E-05 s/m 3, 0-8 hr

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE CaIc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 8 Checked By P. L. Bunker 4.0 METHOD The offsite and CRHE doses are calculated using the RADTRAD computer code with the input and assumptions listed in Table 1. The activity released to the environment is provided on Tables 3 and 5. The resulting offsite and CRHE doses are provided in Attachments 5 and 6 for the cases of 4 pCi/gm DE 1-131 and 0.2 pCi/gm DE 1-131, respectively. A maximum unidentified unfiltered inleakage of 500 cfm plus 10 cfm ingress/egress unfiltered inleakage is used in the analysis.

4.1 Noble Gas Activity The noble gas activity released to the environment is based on the pre-accident noble gas off gas release rate of 403,000 pCi/sec after 30 minutes delay. The steam's noble gas specific activity (pCi/g) is determined from the off-gas activity source rate accounting for the 30 minute delay. The specific activities are then used to determine the noble gas release to the environment. The noble gas activity in the reactor water is conservatively taken the same as the steam activity since some water exiting the break will flash to steam. The activities Ai for the noble gases are given by:

Ai = 4.03 C (M*s+ Mw) exp (Ai *1800 s)

Fs where -

C = noble gas nuclide source rate, pCi/s Mr= mass of steam released, Ibm Mw = mass of liquid released, Ibm Fs = steam flow rate used to establish noble gas equilibrium concentration, Ibm/h A1 = decay rate for noble gas nuclide i, s-1 4.03 = multiplier accounting for the maximum noble gas source rate of 362,000 pCi/s relative to the design basis rate of 100,000 pCi/s used to specify the noble gas source rates.

The calculated activities Ai available for release during the accident are shown in Table 2.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1128 Designed By K Weise and Offsite Doses - AST Sh. No. 9 Checked By P. L. Bunker Table 2 Noble Gas Activity Released from MSLB Steam mass (dome) M,, Ibm 7980 Liquid mass M,, Ibm 109584 Steam flow rate Fs, Ibm/h 1.42E+07 30 minute decay, s 1800 Conversion - s-Ci/hr-uCi 3.60E-03 403,000 uCi/s rate factor 4.03 Source Rate, Ci Activity Half Life, @T = 30min Release Ai, Isotope sec uCi/sec . Ci Kr-83m 6.840E+03 2.90E+03 4.19E-01 Kr-85m 1.570E+04 5.60E+03 7.29E-01 Kr-85 3.383E+08 2.OOE+01 2.4 1E-03 Kr-87 4.680E+03 1.50E+04 2.36E+00 Kr-88 9.972E+03 1.80E+04 2.45E+00 Kr-89 1.896E+02 1.80E+02 1.56E+01 Xe-131m 1.036E+06 1.50E+01 1.81E-03 Xe-133m 1.987E+05 2.80E+02 3.39E-02 Xe-133 4:553E+05 8.20E+03 9.89E-01 Xe-135m 9.360E+02 6.90E+03 3. *5E+00 Xe-135 3.287E+04 2.20E+04 2.75E+00 Xe-137 2.298E+02 6.70E+02 1.84E+01 Xe-138 8.478E+02 2. 1OE+04 1.1 OE+0 1 Notes:

1. GE "1971" design activity rates for 100,000 uCi/s source rate from Reference 14, Table 11.1-1.
2. Noble gas activties are based on 403,000 uCi/s measured at 30 minutes.
3. Activity releases are immediate with no hold up in the core or main steam system.

4.2 Iodine Activity in Reactor Coolant The design basis equilibrium halogen activity concentrations in the reactor water and main steam are shown in Table 3.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 10 Checked By P. L. Bunker Table 3 Iodine Specific Activities Reactor Water Reactor Steam Specific Activity Specific Activity Isotope uCi/gm uCi/gm 1-131 1.30E-02 3.40E-04 1-132 1.20E-0 1 3.90E-03 1-133 8.90E-02 2.40E-03 1-134 2.40E-01 9.70E-03 1-135 1.30E-01 3.70E-03 Notes:

1. Reference 14, Table 11. 1-2
2. Values bound normal and hydrogen water chemistry operation. See Input 3. 1, Item #5.

The iodine activity in the reactor coolant is based on the maximum DE 1-131 activity permitted by the technical specifications. Concentration limits (TSiim) of 0.2 pCi/g and 4.0 pCi/g DE 1-131 are considered.

The specific activities CRc-i of DE 1-131 in the reactor coolant are given by:

CRc-i = TSiim

  • CDB-i
  • DCFI-131 I (CDB-i
  • DCFi) where -

TSijm = the technical specification limiting concentrations 0.2 pCi/g and 4.0 pCi/g DE 1-131 CDB-i = design basis reactor coolant iodine specific activities in Table 3 DCFi = total effective dose equivalent (TEDE) dose conversion factors for iodine isotopes.

The DCFj are derived from the CEDE (from FGR 11, Reference 8) and EDE (from FGR 12, Reference 9) dose conversion factors. A breathing rate of 3.5E-04 m 3/s (Input 3.4, item #1),

applicable to control room personnel and workers, is used with the CEDE. The TEDE's DCFj for the iodine isotopes are given by:

DCFi = DCFcEDE,i

  • BR + DCF.EDE, i

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1128 Designed By K Weise and Offsite Doses - AST Sh. No. 11 Checked By P. L. Bunker Observe that the DCFO are given on a per Bq basis whereas the reactor water and steam concentrations are specified using pCi. No unit conversions are needed since the DCFj are used only as weighting factors, which dimensionally cancel out in the normalization process.

The calculated DCFj and specific activities for the reactor coolant are shown in Table 4:

Table 4 Reactor Water Iodine Specific Activities at Technical Specification Limits DE 1-131 Limit TSlim, uCi/g 4 DE 1-131 Limit TSlim, uCi/g 0.2 Breathing Rate, m 3/s 3.5E-04 Design Basis TEDE Concentration Concentration Reactor Water CEDE EDE Dose Conversion @ 4 uCi/gm @ 0.2 uCi/gm Concentration Dose Conversion Dose Conversion DCFi DE 1-131 DE 1-131 3

Isotope CD_i (uCi/gm) (Sv/Bq) (Sv/Bq-s/m ) (Sv/Bq-s/m 3) Ci (uCi/gm) Ci (uCi/gm) 1-131 1.30E-02 8.89E-09 1.82E-14 3.13E-12 0.96 0.048 1-132 1.20E-01 1.03E-10 1.12E-13 1.48E-13 8.84 0.442 1-133 8.90E-02 1.58E-09 2.94E-14 5.82E-13 6.56 0.328 1-134 2.40E-01 3.55E-1 1 1.30E-13 1.42E-13 17.68 0.884 1-135 1.30E-01 3.32E-10 7.98E-14 1.96E-13 9.58 0.479 Notes:

1. Design reactor water specific activities from Table 3.
2. CEDE h Effective from FGR 11 and EDE h E from FGR 12.

4.3 Iodine Activity Released in Steam Line Break The iodine releases are based on the reactor coolant activity, carryover to steam, and the coolant and steam masses released from the break. Coolant concentrations are set by the allowable activity limits in accordance with the technical specifications.

The iodine activity Ai released from the steam line break for a coolant to steam carryover fraction of 0.08 is Ai = CRC-i * (Mw + 0.08*Ms) where -

CRC-i = iodine specific activity of the reactor coolant Mw= mass of liquid released from the reactor, Ibm Ms= mass of steam released from the reactor dome, Ibm

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1 128 Designed By K Weise and Offsite Doses - AST Sh. No. 12 Checked By P. L. Bunker The calculated iodine activity released is summarized in Table 5. Observe that the 8%

carryover to the steam results in much greater concentrations than the steam's design basis activities in Table 3. Because of the large water inventory exiting the break at hot standby, the iodine available for release to the environment is dominated by the reactor water concentrations as shown in Table 5.

Table 5 Iodine Released from Steam Line Break Steam mass (dome) M,, Ibm 7980 Liquid mass M,, Ibm 109584 Carryover to steam fraction 0.08 Conversion, gm-Ci/(lbm-uCi) 4.54E-04 Iodine Activity Release with Reactor Coolant at 4 uCi/am DE 1-131 DE 1-131 Steam Iodine Activity RC Concentration, Concentration, Release, Isotope uCi/gm uCi/gm Ci 1-131 0.96 0.08 4.79E+01 1-132 8.84 0.71 4.42E+02 1-133 6.56 0.52 3.28E+02 1-134 17.68 1.41 8.85E+02 1-135 9.58 0.77 4.79E+02 Iodine Activity Release with Reactor Coolant at 0.2 uCi/gm DE 1-131 DE 1-131 Steam Iodine Activity RC Concentration, Concentration, Release, Isotope uCi/gm uCi/gm Ci 1-131 0.048 0.00 2.40E+00 1-132 0.442 0.04 2.2 1E+01 1-133 0.328 0.03 1.64E+01 1-134 0.884 0.07 4.42E+01 1-135 0.479 0.04 2.40E+0 1 Notes:

1. DE 1-131 specific activities from Table 4.
2. Steam concentration is based on DE 1-131 concentration with 8%

carryover.

3. Steam and liquid masses include 20% margin.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Caic. No. EC-RADN-1128 Designed By K Weise and Offsite Doses - AST Sh. No. 13 Checked By P. L. Bunker 4.4 Effective Relative Concentration at the CRHE Air Intake The main steam line break is a double ended break in the steam tunnel. The release of steam and activity occurs over a very short time until closure of the MSIVs. The MSIV signal plus closing time is 5.5 seconds. All the activity is assumed released to the atmosphere instantaneously as a ground level release without holdup or dilution in the steam tunnel. The duration is short enough (less than one minute) to consider the release as an instantaneous puff release in accordance with Regulatory Guide 1.194.

SSES does not have an automatic CRHE intake isolation or start-up of the CREOAS for a main steam line break. CRHE intake flow is taken as the normal service flow. No credit is taken for isolation of the CRHE intake or filtration of the radioiodine, especially in view of the short duration of the exposure. Therefore, calculations of the CRHE X/Qs are amenable to the closed form solution given below. If CRHE isolation or filtration occurs, then numerical methods would be required to determine appropriate X/Qs.

The concentration X (x, u, t) for a puff ground level release with the center of the puff passing directly over the intake air location is X(x, u, h, t) = 2Q

  • exp {-0.5(x - ut) 2 + -0.5 h2 }

(2Tr)3/2 (Crz2 + 02)1/2 (ox2 + 0v2) (Ox2 + uv2) (Oz2 + Yv2) where -

Q activity release, Ci x = release point to receptor (air intake) distance, m u - windspeed, m/s h = difference in elevation between release point and control room intake, m

=x- standard deviation of the puff in the horizontal along the wind direction and cross-wind direction at the CRHE intake location, m uz = standard deviation of the vertical cross wind direction at the intake location, m cv = initial standard deviation of the volumetric expansion of the puff, m The above diffusion equation follows 3 from Reference 5, Eq 10 and Reference 10, Eq 3.154.

The units of X(x, u, h, t) are Ci/m .

The total exposure during passage of the puff is obtained by integrating over the time of the puff's passage. The total exposure XT is XT = f X(X, u, h, t) dt for 0 < t < T

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE CaIc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 14 Checked By P. L. Bunker Regulatory Guide 1.194 advises that the integration be carried out to the time T that it takes the trailing edge to pass the CRHE intake.

The puff is a Gaussian distribution. The exposure time is typically the time that it takes about 99.8% of the puff distribution to pass beyond the horizontal distance x0 to the air intake.

Approximately 99.8% of the distribution passes the intake when the center of puff travels downwind of the intake by a distance of three standard deviations in the horizontal direction.

The time T at which the puff has passed the intake is then given by:

T = x + 3 (0x2 + Y2j/

u where -

x0 = horizontal distance in x direction to intake location, m u = windspeed, m/s ax = standard deviation of the puff in the horizontal along the wind direction at the CRHE control intake location, m a= initial standard deviation of the volumetric expansion of the puff, m A simplification is made by considering the entire tail of the puff. The above equation for XT is integrated over all time (i.e., T -o ) instead of up to T 1 . The total exposure XT then follows directly from Reference 10, Eq 3.158 in that X(x, u, h) = Q *exp{ -0.5h 2 }

Tr u (cy, 2 + cv2)1/2 (ic),2 + T21/ (01 + av2 )

Thus, the equation has the same form as the equation for a continuous plum concentration.

For example, the above equation can be compared to Reference 10, Eq 3.116 or Reference 4, Eq 1. Observe that oz and ax are functions of the distance x to the intake.

The x/Q for the duration of the puff passage T is then taken as X/Q = X(x, u, h)/Q where Q and X(x, u, h) are defined above.

1 The difference in exposures is negligible since 99.8% of the puff's distribution is considered. The specification of T, however, is beneficial since itcan provide insight into the air intake exposure time.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 15 Checked By P. L. Bunker 4.5 Puff Expansion and Initial Standard Deviation The activity released from the steam line break is assumed uniformly distributed in a puff volume expanded to atmospheric pressure. The size of the puff is set by the fluid mass released during the steam line break.

The volume V of the puff is V = (MS +Mw) *Vsp where -

Ms = mass of steam released, Ibm Mw= mass of liquid released, Ibm/s Vsp= specific volume of saturated steam at 14.7 psia, 26.8 ft 3/lbm The standard deviation of the puff av is obtained by setting the initial ground level concentration X(O, u, 0, 0) equal to the puff's concentration after expansion, QN. The resulting equation is (Reference 5, p. 19):

=Y 2 V " 1/3 where V is the initial volume of the puff after expansion.

In determining the volume, the entire mass of fluid from the break is used consistent with the assumption of instantaneously releasing the entire inventory of noble gas and iodine. The masses from section 3.2, items #3 and #4, are used to maximize the release of water and hence available radioiodine. At power, a greater amount of steam and flashing can be expected than in hot standby. Therefore, the use of entire fluid inventory is reasonable.

Calculated results are shown in Table 6.

4.6 Calculation of CRHE Relative Concentration xlQ The CRHE x/Qs associated with a release from each blowout panel are calculated and shown in Tables 6 and 7. x/Qs are calculated in accordance with Sections 4.4 and 4.5 above.

Table 6 identifies the main steam blowout panel locations, elevations, horizontal distances to CRHE air intake, and relative heights to the intake. The normal standard deviations ax and az of the puff are functions of horizontal distance to the intake and are also shown. These values are determined from Regulatory Guide 1.194, Figures 4 and 5.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 16 Checked By P. L. Bunker Table 6 MST Blowout Panel Locations, Distances and Dispersion Coefficients Elevation, Distance, Aheight, sigmax, -sigma z, Release Point .ft m m m Im RB Unit 2 Air Intake 810.3 n/a n/a n/a n/a TB Unit 1MST blowout panel 717.5 115 28 5.2 2.5 TB Unit 2 MST blowout panel 717.5 41 28 2.1 1.1 RB Unit 1 MST blowout panel 802.5 88 2 4.1 2.0 RB Unit 2 MST blowout panel 802.5 52 2 2.6 1.3 Notes:

1. Aheight is the difference between intake and blowout panel elevations.
2. sigmax and sigma z are from Reg Guide 1.194, Figures 4 and 5, for class F stability.
3. Reference drawings:

E-105004, Sh. 3; E-105004, Sh. 6; E-105618; E-105670; E296155, Shs. l and 3.

Several release masses are shown in Table 7 to ensure a bounding exposure is used to determine doses at the CRHE. The time integrated exposures X(x, u, h) at the CRHE inlet are calculated using the equation developed in Section 4.4 with the distances tabulated in Table 6.

The exposures were determined for a wind speed of 1 m/s with class F stability. The difference in elevation between intake and release locations (shown in Table 6 for information) is taken as zero in Table 7. This practice essentially maximizes the exposure at the air intake 2 .

Table 7 shows that the maximum exposures at the CRHE air intake occur for the case (d) mass release. The corresponding x/Q value for use in the dose calculation is 3

x/Q 73.8 Ibm-s/mi3 /(117,654 Ibm) = 6.3E-04 s/m Table 7 also shows the maximum X/Qs for cases (a) to (c). In general, these cases have greater X/Qs than case (d); however, the exposures (which also consider the size of the steam releases) are less. Case (d) will yield the greatest CRHE doses since the combined activity (or mass) and dispersion gives the largest exposures. Case (d) will also give the largest offsite doses for continuous releases assumed for the EAB and LPZ analyses.

Inspection of Table 7 reveals that dispersion is dominated by the initial expansion of the puff rather than the normal dispersion. The dispersion is relatively insensitive to horizontal distance for each release case because the puff's radius is smaller than the distance to the intake. After 2 The exposure is maximized because the puff equations in Section 4.4 and RG 1.194 are for neutrally buoyant gases. The exposure is maximized when the source and receiver are at the same elevation. Steam puffs are buoyant. The concentrations at the receiver location are typically less than the neutrally buoyant releases near the source because the center of the puff has moved above the receiver elevation as it passes by.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE CaIc. No. EC-RADN-1 128 Designed By K Weise and Offsite Doses - AST Sh. No. 17 Checked By P. L. Bunker initial expansion, the exposure at the intake is due to the entire puff as it travels by. The times T for the puff releases to have moved beyond the intake are also shown. Three minutes is a typical exposure duration.

Table 7 CRHE Effective X/Qs For Steam Line Breaks Windspeed, m/s 1.0 Vapor sp. volume, f13/lbm 26.8 Aheight, m 0 Puff Mass and Expansion (a) (b) (c) (d)

Puff mass, Ibm 13,130 35,000 97,970 117,564 3

Volume, m 9,964 26,561 74,349 89,218 Sigmapuff, m 10.8 15.0 21.1 22.5 3

Release Point Exnosure v(x. I m/s. 0 m). ibm-s/m TB Unit 1MST blowout panel 31.4 46.2 67.4 71.9 TB Unit 2 MST blowout panel 34.9 49.0 69.4 73.8 RB Unit I MST blowout panel 32.9 47.4 68.3 72.7 RB Unit 2 MST blowout panel 34.5 48.7 69.2 73.6 3

Maximum Effective x/Qs, s/m 2.7E-03 1.4E-03 7.1E-04 6.3E-04 Time T, s 151 163 180 184 Notes:

1. Puff masses based on the following:

(a) steam mass release at hot standby, (b) steam plus flashed liquid similar to FSAR Table 3.6A MST analysis, (c) total steam plus liquid mass release at hot standby, (d) 20% margin added to case (c).

2. X/Qs are for ground level release and intake ( Ah = 0 m).
3. T is the time for >99.8% of the puff to pass the intake for each case.

4.7 Radiological and Transport Model RADTRAD 3.03 is used for the dose models and calculations. The model consists of steam tunnel, CRHE and environment nodes with four interconnecting pathways.

All the steam activity from the line break is released in 5.5 seconds into the tunnel. The activity is purged from the tunnel to the environment within seconds using an arbitrarily high flow rate pathway. Offsite and CRHE doses are calculated using the parameters described in sections 3.3, 3.4 and 3.5.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise

  • and Offsite Doses - AST Sh. No. 18 Checked By P. L. Bunker The CRHE dose calculation uses case (d)'s worst case x/Q from Table 7 with the activities from Tables 2 and 5 corresponding to a hot standby mass release (with 20% margin). The total CRHE unfiltered inleakage is 510 cfm. The air intake is 6391 cfm throughout the accident with CREOAS not credited.

Nuclide release and dose conversion factor files are shown in Attachments 1 and 2. Nuclide inventories are developed from Tables 3 and 5. Two files corresponding to the 4 pCi/gm and 0.2 pCi/gm DE 1-131 cases are shown in Attachments 3 and 4, respectively. The physical and flow models are shown as part of the RADTRAD input in Attachments 5 and 6.

5.0 RESULTS The reported offsite and CRHE doses based on the results of the RADTRAD calculations are listed in Table 8.

Table 8 Offsite and CRHE Dose Results - Steam Line Break Pre-existing Iodine Spike Maximum Equilibrium 4 pCi/gm DE 1-131 Activity TEDE, Rem 0.2 pCi/gm DE 1-131 TEDE, Rem Acceptance Criterion - Offsite 25 2.5 EAB 2.0 0.10 LPZ 0.12 0.006 Acceptance Criterion - CRHE 5.0 5.0 Notes:

CRHE 0.93

1. RADTRAD output files are in Attachments 5 and 6.
2. CRHE dose includes 30 day exposure in building after puff passage.

0.05 I

The EDE doses included in the TEDE are based on the CRHE volume of 518,000 ft3 used in RADTRAD. No additional finite cloud reduction for the actual control room volume of 110,000 ft3 is applied since the EDE contribution is an insignificant contributor to the reported CRHE TEDE dose.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN- 1128 Designed By K Weise and Offsite Doses - AST Sh. No. 19 Checked By P. L. Bunker

6.0 REFERENCES

1. USNRC Regulatory Guide 1.183, "Alternative Radiological Source Terms For Evaluating Design Basis Accidents At Nuclear Power Reactors", July 2000.
2. USNRC Regulatory Guide 1.5, "Assumptions Used For Evaluating the Potential Radiological Consequences of a Steam Line Break Accident for Boiling Water Reactors", 3/71.
3. USNRC Regulatory Guide 1.98, "Assumptions Used For Evaluating The Potential Radiological Consequences Of A Radioactive Offgas System Failure In A Boiling Water Reactor", March 1976.
4. USNRC Regulatory Guide 1.145, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants", February 1983.
5. USNRC Regulatory Guide 1.194, "Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants", June 2003.
6. NUREG-0800, USNRC Standard Review Plan Section 6.4, Control Room Habitability System, Revision 2.
7. NUREG/CR-6604, RADTRAD: A Simplified Model for RADionuclide Transport and Removal And Dose Estimation, and Supplement 1, 6/8/99.
8. Federal Guidance Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion",

1988.

9. Federal Guidance Report No. 12, "External Exposures to Radionuclides in Air; Water; and Soil Based on the 1987 Federal Radiation Protection Guidance", 1993.
10. USAEC, Meteorology and Atomic Energy 1968.

11 .ASME Steam Properties for Industrial Use, Version 1.0.1.

12. EPUMELLLA+ Design Input Request T0200Core Design, Rev. 0.
13. PPL Calculation EC-PUPC-1001, NEDC-32161 P, General Electric Power Uprate Engineering Report For Susquehanna Steam Electric Station, Revision 6, 5/24/04.
14. PPL Calculation EC-RADN-1 038, Radioactive Material Source Term Evaluation for Normal Conditions with Hydrogen Water Chemistry, Revision 1.
15. PPL Calculation EC-ENVR-1 057, Offsite X/Q Values for SSES Based on 1999 - 2003 Meteorological Data, Revision 0, April 4, 2005.
16. PPL Calculation EC-030-502, Control Structure Bldg. Volume, Revision 0, 12/17/93.
17. SSES Improved Technical Specification 5.5.7, "Ventilation Filter Testing Program",

Amendments 178 and 186.

18. SSES Improved Technical Specification 3.4.7, "Reactor Coolant System, Specific Activity";

Amendments 178 and 195. Bases for Improved Technical Specifications B 3.4.7.

19. SSES Improved Technical Specification 3.7.5, "Main Condenser Off Gas", Amendments 151 and 178. Bases for Improved Specification B 37.5.

PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech PROJECT:

Date November 9, 2006 Steam Line Break Accident CRHE Calc. No. EC-RADN-1 128.

Designed By K Weise and Offsite Doses - AST Sh. No. 20 Checked By P. L. Bunker

20. SSES Improved Technical Specification 3.6.1.3, "Primary Containment Valves (PCIVs)", SR 3.6.1.3.7, Amendments 193 and 168.
21. Reference SSES Drawings:

E-105004, Sh. 3, Rev 26.

-E-105004, Sh. 6, Rev 22.

E-105618, Rev 1.

E-105670, Rev 8.

E-296155, Sh. 1, 10/26/2006.

E-296155, Sh. 3, 10/26/2006.

EC-RADN-1 128 Attachment 1 Page 21 Attachment 1 RADTRAD Control File Release Fraction and Timing SLB.rft

EC-RADN-1 128 Attachment 1 Page 22 Release Fraction and Timing Name: SSES MSLB - Release Break Activity In 5.5 Secs Sources Duration (h): Design Basis Accident

0. 1528E-06 O.OOOOE+00 O.OOOOE+00 0.0000E+00 Noble Gases:

1.fOOOE+00 o.OOOOE+00 0o.OOOOE+00 0.0000E+00 Iodine:

1.OOOOE+00 o.OOOOE+00 o.OOOOE+00 0.OOOOE+00 Cesium:

o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 Tellurium:

o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 Strontium:

o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 Barium:

o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 0.OOOOE+00 Ruthenium:

o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 Cerium:

o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 0.OOOOE+00 Lanthanum:

o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 0.OOOOE+00 Non-Radioactive Aerosols (kg):

O.OOOOE+00 O.OOOOE+0O 0.OOOOE+00 O.OOOOE+00 End of Release File

EC-RADN-l 128 Attachment 2 Page 23 Attachment 2 RADTRAD Control File Dose Conversion File SLBPhase 2.inp

EC-RADN-1 128 Attachment 2 Page 24 FGR11&12 edited+TID 30.inp Kr83m Xel31m 133m 135m 138 beta-test version 1.10 Implicit daughter halflives (m) less than 90 and less than 0.100 of parent 9 ORGANS DEFINED IN THIS FILE: ICRP-30 GONADS BREAST LUNGS RED MARR BONE SUR THYROID REMAINDER EFFECTIVE SKIN(FGR) 1E NUCLIDES DEFINED IN THIS FILE:

1-131 D 1-132 D 1-133 D 1-134 D 1-135 D Including:Xe-135m Xe-131m Xe-133m Xe-133 Xe-135m Xe-135 Kr-83m Kr-85m Kr-87 Kr-88 Kr-85 Xe-138 CLOUDSHINE .GROUND GROUND GROUND INHALED INHALED INGESTION SHINE 8HR SHINE .7DAY SHINE RATE ACUTE CHRONIC 1-131 GONADS 1.780E-14 1.119E-11 1. 789E-10 3.940E-16-1.OOOE+00 2.530E-11 4.070E-11 BREAST 2.040E-14 1 .082E-11 1.730E-10 3.810E-16-1.000E+00 7.880E-11 1.210E-10 LUNGS 1.760E-14 1 .016E-11 1.626E-10 3.580E-16-1.OOOE+00 6.570E-10 1.020E-10 RED MARR 1.680E-14 1 .022E-11 1. 635E-10 3.600E-16-1.000E+00 6.260E-11 9.440E-11 BONE SUR 3.450E-14 1 .675E-11 2.679E-10 5.900E-16-1.000E+00 5.730E-11 8.720E-11 THYROID 11.810E-14 1. 053E-11 1.685E-10 3.710E-16-1.000E+00 2.920E-07 4.760E-07 REMAINDER 1.670E-14 9. 908E-12 1.585E-10 3.490E-16-1.000E+00 8.030E-11 1.570E-10 EFFECTIVE 1.820E-14 1. 067E-11 1.707E-10 3.760E-16-1.OOOE+00 8.890E-09 1.440E-08 SKIN(FGR) 2.980E-14 1 .825E-11 2. 920E-10 6.430E-16-1.000E+00 0.000E+00 0.OOOE+00 1-132 GONADS 1.090E-13 2 .523E-11 2.771E-11 2.320E-15-1.000E+00 9.950E-12 2.330E-11 BREAST 1.240E-13 2 .414E-I1 2.652E-11 2.220E-15-1.000E+00 1.410E-11 2.520E-11 LUNGS 1.090E-13 2. 305E-11 2.532E-11 2.120E-15-1.000E+00 2.710E-10 2.640E-11 RED MARR 1.070E-13 2 .360E-11 2.592E-11 2.170E-15-1.000E+00 1.400E-11 2.460E-11 BONE SUR 1.730E-13 3 .327E-11 3.655E-11 3.060E-15-1.000E+00 1.240E-11 2.190E-11 THYROID 1.120E-13 2 .381E-11 2.616E-11 2.190E-15-1.000E+00 1.740E-09 3.870E-09 REMAINDER 1.050E-13 2.283E-11 2.509E-11 2.100E-15-1.OOOE+00 3.780E-11 1.650E-10 EFFECTIVE 1.120E-13 2.403E-11 2.640E-11 2.210E-15-1.000E+00 1.030E-10 1.820E-10 SKIN(FGR) 1.580E-13 8.199E-11 9. 007E-11 7.540E-15-1.OOOE+00 0.OOOE+00 0.OOOE+00 1-133 GONADS 2.870E-14 1 .585E-11 6. 748E-11 6.270E-16-1.OOOE+00 1.950E-11 3.630E-11 BREAST 3.280E-14 1 .519E-11 6.468E-1l 6.010E-16-1.OOOE+00 2.940E-11 4.680E-11 LUNGS 2.860E-14 1 .446E-11 6.156E-11 5.720E-16-1.OOOE+00 8.200E-10 4.530E-11 RED MARR 2.770E-14 1 .466E-11 6.242E-11 5.800E-16-1.000E+00 2.720E-11 4.300E-11 BONE SUR 4.870E-14 2. 161E-11 9.202E-11 8.550E-16-1.000E+00 2.520E-11 4.070E-11 THYROID 2.930E-14 1. 502E-11 6.393E-11 5.940E-16-1.OOOE+00 4.860E-08 9.100E-08 REMAINDER 2.730E-14 1 .418E-11 6.038E-11 5.610E-16-1.OOOE+00 5.OOOE-1I 1.550E-10 EFFECTIVE 2.940E-14 1 .509E-11 6.425E-11 5.970E-16-1.000E+00 1.580E-09 2.800E-09 SKIN (FGR) 5.830E-14 1 .150E-10 4. 897E-10 4.550E-15-1.OOOE+00 0.OOOE+00 0.OOOE+00 1-134 GONADS 1.270E-13 1.200E-11 1.202E-11 2.640E-15-1.OOOE+00 4.250E-12 1.100E-11 BREAST 1.440E-13 1. 145E-11 1. 147E-11 2.520E-15-1.OOOE+00 6.170E-12 1.170E-11 LUNGS 1.270E-13 1.100E-II 1. 102E-11 2.420E-15-1.OOOE+00 1.430E-10 1.260E-11 RED MARR 1.250E-13 1. 127E-11 1. 129E-11 2.480E-15-1.000E+00 6.080E-12 1.090E-11

EC-RADN-1 128 Attachment 2 Page 25 BONE SUR 1 ;960E-13 1.568E-11 1.571E-11 3.450E-15-1.OOOE+00 5.310E-12 9. 320E-12 THYROID 1.300E-13 -1.127E-11 1.129E-11 2.480E-15-1.OOOE+0o 2.880E-10 6.210E-10 REMAINDER 1.220E-13 1.091E-11 1.093E-11 2.400E-15-1.OOOE+00 2.270E-11 1.340E-10 EFFECTIVE 1.300E-13 1.150E-11 1.152E-11 2.530E-15-1.000E+00 3.550E-11 6.660E-11 SKIN (FGR) 1. 870E-13 4 .477E-11 4.485E-11 9.8'50E-15-1.000E+00 O.OOOE+00 o.O0OE+00 1-135 GONADS 8.078E-14 .3.113E-11 5.489E-11 1.599E-15-1.OOE+00 1. 700E-11 3 .610E-11 BREAST 9. 143E-14 2.971E-11 5.240E-11 1.526E-15-1.000E+00 2.340E-11 3.850E-11 LUNGS 8.145E-14 2.886E-11 5..089E-11 1.482E-15-1.OOOE+00 4.410E-10 3. 750E-11 RED MARR 8.054E-14 2. 965E-11 5 .228E-11 1.523E-15-1.OOOE+00 2.240E-11 3.650E-11 BONE SUR 1. 184E- 13 3.983E-11 7 .024E-11 2.046E-15-1.OOOE+00 2.01OE-11 3.360E-11 THYROID 8.324E-14 2. 852E-11 5. 030E-11 1.465E-15-1.OOOE+00 8.460E-09 1.790E-08 REMAINDER 7. 861E-14 2.883E-11 5 .084E-11 1.481E-15-1.OOOE+00 4. 700E-11 1.540E-10 EFFECTIVE 8.294E-14 2. 989E-11 5 .271E-11 1.535E-15-1.OOOE+00 3.320E-10 6.080E-10 SKIN(FGR) 1.156E-13 9.826E-11 1. 733E-10 5.047E-15-1.OOOE+00 o.OOOE+00 o.OOOE+00 Xe-131m GONADS 4.570E-16 7. 872E-13 1.371E-11 2.760E-17-1.OOOE+00 o.OOOE+00 o.000E+00 BREAST 6 .020E-16 8.471E-13 1 .475E-11 2.970E-17-1.OOOE+00 o.OOOE+00 o.OOOE+00 LUNGS 2. 670E- 16 3.565E-13 6 .209E-12 1.250E-17-1.000E+00 0. OOOE+00 o.OOOE+00 RED MARR 2 .270E-16 2. 792E-13 4. 863E-12 9.790E-18-1.OOOE+00 0. OOOE+00 o.OOOE+00 BONE SUR 1.060E-15 1.677E-12 2. 920E-11 5.880E-17-1OOOE+00 0. OOOE+00 o.OOOE+00 THYROID 3. 910E-16 5.220E-13 9. 089E-12 1.830E-17-1.OOOE+00 o.OOOE+00 o.OOOE+00 1

REMAINDER 2 .710E 16 3. 993E-13 6. 954E-12 1.400E-17-1.OOOE+00 0 . OOOE+00 0. OOOE+00 3 .378E-16 5.876E-13 1. 023E-11 2.060E-17-1.OOOE+00 0. OOOE+00 0. OOOE+00 EFFECTIVE SKIN (FGR) 4. 820E-15 1.266E-12 2 .205E-11 4.440E-17-1.OOOE+00 0 . OOOE+00 0. OOOE+00 Xe-133m GONADS 1. 420E-15 1.337E-12 1.188E-11 4.890E-17-1.OOOE+00 0. OOOE+00 0. OOOE+00 BREAST 1. 700E-15 1.383E-12 1.230E-11 5.060E-17-1.OOOE+00 0. OOOE+00 0.OOOE+00 LUNGS 1. 190E-15 8.609E-13 7.656E-12 3.150E-17-1.OOOE+00 0. OOOE+00 0. OOOE+00 RED MARR 1. 100E-15 7. 844E-13 6. 975E-12 2.870E-17-1.OOOE+00 o.OOOE+00 0. OOOE+00 BONE SUR 3 .230E-15 2.599E-12 2.311E-11 9.510E-17-1.OOOE+00 0. OOOE+00 0. 000E+00 THYROID 1. 360E-15 1. 028E-12 9. 138E-12 3.760E-17-1.OOOE+00 0 . OOOE+00 0 . OOOE+00 REMAINDER 1. 150E-15 8.855E-13 7. 874E-12 3.240E-17-1.OOOE+00 0. OOOE+00 0. OOOE+00 EFFECTIVE 1.370E-15 1. 112E- 12 9. 892E-12 4.070E-17-1.OOOE+00 0. OOOE+00 0. OOOE+00 SKIN (FGR) 1.040E-14 1. 894E-12 1.684E-11 6.930E-17-1.OOOE+00 0 . OOOE+00 o.OOOE+00 Xe-133 GONADS 610E-15

  • 1. 1.465E-12 2. 052E-11 5.200E-17-1.OOOE+00 o.OOOE+00 0. OOOE+00 BREAST 1. 960E-15 1.505E-12 2. 107E-11 5.340E-17-1.OOOE+00 o.OOOE+00 o.OOOE+00 LUNGS 1.320E-15 1. 045E-12 1 .464E-11 3.710E-17-1.OOOE+00 0 . OOOE+00 o.OOOE+00 RED MARR 1. 070E-15 8. 791E-13 1. 231E-11 3.120E-17-1.000E+00 o.OOOE+00 0. OOOE+00 BONE SUR 5. 130E-15 4 .254E-12 5. 958E-11 1.510E-16-1.OOOE+00 o.OOOE+00 o.OOOE+00 THYROID 1.510E-15 1. 181E-12 1 .653E-11 4.190E-17-1.OOOE+00 o.OOOE+00 o.OOOE+00 REMAINDER 1.240E-15 1. 042E-12 1 .460E-11 3.700E-17-1.000E+00 o.OOOE+00 o.OOOE+00 EFFECTIVE 1. 560E-15 1. 299E-12 1 .819E-11 4.610E-17-1.OOOE+00 o.OOOE+00 o.OOOE+00 SKIN(FGR) 4. 970E-15 1. 953E-12 2 .734E-11 6.930E-17-1.OOOE+00 o.OOOE+00 o.000E+00 Xe-135m GONADS 2 . OOOE-14 5. 929E-13 5. 929E-13 4.480E-16-1.OOOE+00 o.OOOE+00 o.OOOE+00 BREAST 2.290E-14 5.691E-13 5 .691E-13 4.300E-16-1.OOOE+00 o.OOOE+00 o.OOOE+00 LUNGS 1. 980E-14 5.347E-13 5. 347E-13 4.040E-16-1.OOOE+00 o.OOOE+00 O0000E+O0 RED MARR 1. 910E-14 5 .400E-13 5 .400E-13 4.080E-16-1.OOOE+00 o.OOOE+00 o.OOOE+00 BONE SUR 3. 500E-14 8.246E-13 8 .246E-13 6.230E-16-1.OOOE+00 o.OOOE+00 0. 000E+00 THYROID 2. 040E-14 5.612E-13 5. 612E-13 4.240E-16-1.OOOE+00 o.OOOE+00 0. OOOE+00 REMAINDER 1.890E-14 5 .241E-13 5 .241E-13 3.960E-16-1.00OE+00 o.OOOE+00 0. OOOE+00 EFFECTIVE 2.040E-14 5.612E-13 5. 612E-13 4.240E-16-1.OOOE+00 o.OOOE+00 0. OOOE+00

'SKIN (FGR) 2. 970E-14 1.866E-12 1. 866E-12 1.410E-15-1.OOOE+00 o.OOOE+00 o..OOOE+00 Xe-135 GONADS 1.170E-14 5 .455E-12 1.194E-11 2.530E-16-1.OOOE+00 o.OOOE+00 0. OOOE+00 BREAST 1.330E-14 5. 325E-12 1. 166E-11 2.470E-16-1.000E+00 0. OOOE+00 o.OOOE+00 LUNGS 1.130E-14 4. 959E-12 1.086E-11 2.300E-16-1.OOOE+00 0. OOOE+00 0 . OOOE+00 RED MARR 1.070E-14 4. 959E-12 1.086E-11 2.300E-16-1.OOOE+00 0. OOOE+00 o.OOOE+00 BONE SUR 2.570E-14 9. 120E-12 1.997E-11 4.230E-16-1.000E+00 0. OOOE+00 o.OOOE+00 THYROID 1.180E-14 5 .023E-12 1.100E-11 2.330E-16-1.OOOE+00 0. OOOE+00 o.OOOE+00 REMAINDER 1.080E-14 4 .829E-12 1.058E-11 2.240E-16-1.OOOE+00 o.OOOE+00 o.OOOE+00 EFFECTIVE 1.190E-14 5 .217E-12 1.142E-11 2.420E-16-1.OOOE+00 0. OOOE+00 o.OOOE+00 SKIN (FGR) 3.12OE-14 4 .506E-11 9.867E-11 2.090E-15-1.OOOE+00 0. OOOE+00 0 . OOOE+00 Kr-83m

EC-RADN-1 128 Attachment 2 Page 26 GONADS 1.710E-18 5.572E-15 5.855E-15 6.160E-19-1.OOOE+00 O.OOOE+00 O.OOOE+00 BREAST 5.050E-18 9.498E-15 9.980E-15 1.050E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 1.640E-19 1.266E-16 1.331E-16 1.400E-20-1.OOOE+00 O.OOOE+00 O.OOE+00 RED MARR 3.830E-19 5.617E-16 5.902E-16 6.210E-20-1.OOOE+00 0.OOOE+00 O.OQOE+00 BONE SUR 2.250E-18 3.437E-15 3.612E-15 3.800E-19-1.000E+00 O.OOOE+00 O.OOOE+00 THYROID 6.430E-19 7.698E-16 8.088E-16 8.510E-20-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 5.300E-19 1.393E-15 1.464E-15 1.540E-19-1.OOOE+00 O.OOQE+00 O.OOOE+00 EFFECTIVE 1.500E-18 3.437E-15 3.612E-15 3.800E-19-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 3.560E-17 1.167E-13 1.226E-13 1.290E-17-1.OOOE+00 O.OOOE+00 O.OOOE+00 Kr-85m GONADS 7.310E-15 2.594E-12 3.653E-12 1.570E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 BREAST 8.410E-15 2.527E-12 3.560E-12 1.530E-16-1.OOOE+00 0.OOOE+00 O.OOOE+00 LUNGS 7.040E-15 2.379E-12 3.351E-12 1.440E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 6.430E-15 2.346E-12 3.304E-12 1.420E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 1.880E-14 5.286E-12 7.446E-12 3.200E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 7.330E-15 2.395E-12 3.374E-12 1.450E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 6.640E-15 2.313E-12 3.257E-12 1.400E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 7.480E-15 2.511E-12 3.537E-12 1.520E-16-1.OOOE+Oo 0.OOOE+00 O.OOOE+00 SKIN(FGR) 2.240E-14 2.247E-11 3.164E-11 1.360E-15-1.000E+00 O.OOOE+00 O.OOOE+00 Kr-87 GONADS 4.OOOE-14 4.962E-12 5.026E-12 7.610E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 BREAST 4.500E-14 4.740E-12 4.802E-12 7.270E-16-1.OOOE+00 O.OOE+00 O.OOOE+00 LUNGS 4.040E-14 4.603E-12 4.663E-12 7.060E-16-1.O0OE+00 O.OOOE+00 O.OOOE+00 RED MARR 4.OOOE-14 4.708E-12 4.769E-12 7.220E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 6.020E-14 6.514E-12 6.598E-12 9.990E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 4.130E-14 4.473E-12 4.531E-12 6.860E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 3.910E-14 4.590E-12 4.650E-12 7.040E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 4.120E-14 4.773E-12 4.835E-12 7.320E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 1.370E-13 8.802E-11 8.916E-11 1.350E-14-1.OOOE+00 O.OOOE+00 O.OOOE+00 Kr-88 GONADS 9.900E-14 2.278E-11 2.655E-11 1.800E-15-1.000E+00 O.OOOE+00 O.OOOE+00 BREAST 1.110E-13 2.177E-11 2.537E-11 1.720E-15-1.OOOE+00 0.000E+oo O.OOOE+00 LUNGS 1.010E-13 2.139E-11 2.493E-1I 1.690E-15-1.OOOE+00 0.000E+00 O.OOOE+00 RED MARR 1.OOOE-13 2.190E-11 2.552E-1I 1.730E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 1.390E-13 2.886E-11 3.363E-11 2.280E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 1.030E-13 2.012E-11 2.345E-11 1.590E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 9.790E-14 2.139E-11 2.493E-11 1.690E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 1.020E-13 2.202E-11 2.567E-11 1.740E-15-1.OOOE+00 O.OQOE+00 O.OOOE+00 SKIN(FGR) 1.350E-13 5.607E-11 6.534E-11 4.430E-15-1.OOOE+00 O.OOOE+00 O.OOE+00 Kr-85 GONADS 1.170E-16 8.121E-14 1.704E-12 2.820E-18-1.OOOE+00 O.OOOE+00 O.OOE+00 BREAST 1.340E-16 7.891E-14 1.656E-12 2.740E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 1.140E-16 7.056E-14 1.481E-12 2.450E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 1.090E-16 6.998E-14 1.469E-12 2.430E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 2.200E-16 1.287E-13 2.702E-12 4.470E-18-1.OOOE+00 O.OOE+00 O.OOOE+00 THYROID 1.180E-16 7.459E-14 1'565E-12 2.590E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 1.090E-16 6.941E-14 1.457E-12 2.410E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE .1.190E-16 7.603E-14 1.596E-12 2.640E-18-1.OOOE+00 O.OOOE+00 0.000E+00 SKIN(FGR) 1.320E-14 2.304E-11 4.835E-10 8.000E-16-1.000E+00 O.OOE+00 O.OOE+00 xe-138 GONADS 5.590E-14 O.OOOE-14 O.OOOE-12 1.070E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 BREAST 6.320E-14 O.OOOE-14 0.OOOE-12 1.020E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 5.660E-14 O.OOOE-14 0.OOOE-12 9.970E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 5.600E-14 O.OOOE-14 0.OOOE-12 1.020E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 8.460E-14 O.OOOE-13 0.OOOE-12 1.410E-15-1.OOOE+00 O.OOOE+00 O.OQOE+00 THYROID 5.770E-14 O.OOOE-14 O.OOOE-12 9.550E-16-1.OOOE+00 0.000E+00 O.OOOE+00 REMAINDER 5.490E-14 O.OOOE-14 O.OOOE-12 9.940E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 5.770E-14 O.OOOE-14 O.OOOE-12 1.030E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 1.070E-13 O.OOOE-11 O.OOOE-10 7.650E-15-1.OOOE+00 O.OQOE+00 O.OOOE+00

EC-RADN- 1128 Attachment 3 Page 27 Attachment 3 RADTRAD Control File Inventory File SLB_4mc.nif

EC-RADN-1 128 Attachment 3 Page 2,8 Nuclide Inventory Name:SSESSLB 4mc.nif SSES SLB Power Level:4032 0.1000E+01 Nuclides:

16 Nuclide 001:

1-131 2

0.6956000000E+06 0.1310E+03 0.4790E+02 Xe-131m 0.1100E-01 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 002:

1-132 2

0.8390000000E+04 0.1320E+03 0.4420E+03 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 003:

1-133 2

0.7533000000E+05 0.1330E+03 0.3280E+03 Xe-133m 0.2900E-01 Xe-133 0.9700E+00 none 0.OOOOE+00 Nuclide 004:

1-134 2

0.3150000000E+04 0.1340E+03 0.8850E+03 none 0.OOOOE+00 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 005:

1-135 2

0.2423100000E+05 0.1350E+03 0.4790E+03 Xe-135m 0.1500E+00 Xe-135 0.8500E+00 none 0.OOOOE+00 Nuclide 006:

Xe-131m 1

0.1036000000E+07 0.1310E+03 0.1810E-02 none 0.OOOOE+00 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 007:

Xe-133m 1

0.1987032000E+06 0.1330E+03 0.3390E-01

EC-RADN-1 128 Attachment 3 Page 29 Xe-133 0. 1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 008:

Xe-133 1

0. 4 5 5 3380000E+06 0.1330E+03

'0.9890E+00

.none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 009:

Xe-135m 1

0. 9 3 6 0 000000E+03
0. 1350E+03 0.3150E+01 Xe-135 0.1000E+01 Cs-135 0.4500E-04 none 0.0000E+00 Nuclide 010:

Xe-135 1

0. 3 2 8 6 800000E+05 0.1350E+03 0.2750E+01 Cs-135 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 011:

Kr-83m 1

0.68 4 0 000000E+04 0.8300E+02 0.4190E+00 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 012:

Kr-85m 1

0.1 5 6 9 600000E+05 0.8500E+02 0.7290E+00 Kr-85 0.2100E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 013:

Kr-87 1

0. 4 6 8 0 000000E+04 0.8700E+02 0.2360E+01 Rb-87 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 014:

Kr-88 1

0. 9 9 7 2 400000E+04 0.8800E+02 O.02450E+01 Rb-,88 0.1000E+01 none 0.0000E+00 none 0.-000E+0,

EC-RADN-1 128. Attachment 3 Page 30 Nuclide 015:

Kr-85 1

0.3382974720E+09 0.8500E+02 0.2430E-02 none O.OOOOE+00 none O.OOOOE+00 none 0.OOOOE+00 Nuclide 016:

Xe-138 1

0.8490000000E+03 0.1380E+03 0.1100E+02 Cs-138 0.1000E+01 none 0.0000E+00 none 0.OOOOE+00.

End of Nuclear Inventory File

EC-RADN-1 128 Attachment 4 Page 31 Attachment 4 RADTRAD Control File Inventory File SLBpt2mc.nif

EC-RADN- 1128 Attachment 4 Page 32 Nuclide Inventory Name:SSESSLBpt2mc.nif SSES SLB Power Level:4032 0.1000E+01 Nuclides:

16 Nuclide 001:

1-131 2

0.6956000000E+06 0.1310E+03 0.2400E+01 Xe-131m 0.1100E-01 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 002:

1-132 2

0.8390000000E+04 0.1320E+03 0.2210E+02 none 0.0000E+00 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 003:

1-133 2

0.7533000000E+05 0.1330E+03 0.1640E+02 Xe-133m 0.2900E-01 Xe-133 0.9700E+00 none 0.OOOOE+00 Nuclide 004:

1-134 2

0.3150000000E+04 0.1340E+03 0.4420E+02 none 0.OOOOE+00 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 005:

1-135 2

0.2423100000E+05 0.1350E+03 0.2400E+02 Xe-135m 0.1500E+00 Xe-135 0.8500E+00 none 0.OOOOE+00 Nuclide 006:

Xe-131m 1

0.1036000000E+07 0.1310E+03 0.1810E-02 none 0.OOOOE+00 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 007:

Xe-133m 1

0. 1987,03200OE+06 0.133:OE+03 0.3390E-01

EC-RADN-1 128. Attachment 4 Page 33 Xe-133 0.1000E+01 none 0.0000E+00-none 0.OOOOE+00 Nuclide 008:

Xe-133 1

0.4553380000E+06 0.1330E+03 0.9890E+00 none 0.0000E+00 none 0.0000E+00 none 0.OOOOE+00 Nuclide 009:

Xe-135m 1

0.9360000000E+03 0.1350E+03 0.3150E+01 Xe-135 0.1000E+01 Cs-135 0.4500E-04 none 0.OOOOE+00 Nuclide 010:

Xe-135

  • 1 0.3286800000E+05 0.1350E+03 0.2750E+01 Cs-135 0.1000E+01 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 011:

Kr-83m 1

0.6840000000E+04 0.8300E+02 0.4190E+00 none 0..OOOOE+00 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 012:

Kr-85m 1

0.1569600000E+05 0.8500E+02 0.7290E+00 Kr-85 0.2100E+00 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 013:

Kr-87 1

0.4680000000E+04 0.8700E+02 0.2360E+01 Rb-87 0.1000E+01 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 014:

Kr-88 1

0.9972400000E+04 0.8800E+02 0.2450E+01 Rb-88 0.1000E+01 none 0.OOOOE+00 none 0.OOOOE+00

EC-RADN-1 128 Attachment 4 Page 34 Nuclide 015:

Kr-85 1

0.3382974720E+09 0.8500E+02 0.2430E-02 none 0.OOOOE+00 none 0.OOOOE+00 none 0.OOOOE+00 Nuclide 016:

Xe-138 1

0.8490000000E+03 0.1380E+03 0.1100E+02 Cs-138 0.1000E+01 none 0.OOOOE+00 none 0.OOOOE+00 End of Nuclear Inventory File

EC-RADN-1 128 Attachment 5 Page 35 Attachment 5 RADTRAD Output TBMST_500cfm_4mcDE_1 128.out

EC-RADN-1128 Attachment 5 Page 36 RADTRAD Version 3.03 (Spring 2001) run on 10/24/2006 at 12:59:23 File information

                                                                                                                1. 4##############

Plant file = C:\Program Files\radtrad3.03\EC-RADN-1128_RiRADTRAD\TBMSTO50cfm_4mcDE_1l28.psf Inventory file = c:\programfiles\radtrad3.03\ec-radn-1128_rlradtrad\slb,4mc.nif Release file = c:\program files\radtrad3.03\ec-radn-1128_rl radtrad\slb.rft Dose Conversion file = c:\program files\radtrad3.03\ec-radn-1128_rl radtrad\slb_phase 2.inp

  • ata 3.03 4/15/420401 Radtad303E 415/00 Compartments:

3 Compartment 1:

SSES TB MS Tunnel 3

4 .4000E+04 0

0 0

0 0

Compartment 2:

Environment 2

0 .OOOOE+00 0

.0 0

0 0

Compartment 3:

SSES CR 1

5.1800E+65

.0 0

0 0,

Pathways:

4

EC-RADN-1 128 Attachment 5 Page 37 Pathway 1:

SSES MST to Environs 1

2 2

Pathway 2:

Environment to SSES CR - 6391 cfm Normal Intake 2

3 2

Pathway 3:

Environment to SSES CR -500+10 cfm Unfiltered Inleakage 2

.3 2

Pathway 4:

'SSES CR to Environment - CR Exhaust 3

2 2

End of Plant Model File Scenario Description Name:

Plant Model Filename:

Source Term:

1 1 1.0000E+00 c:\program files\radtrad3.03\ec-radn-1128 rl radtrad\slbphase 2.inp c:\program files\radtrad3.03\ec-radn-1128 rl radtrad\slb.rft 0.0000E+00 1

9.5000E-01 4.8500E-02 1.5000E-03 1.0000E+00 Overlying Pool:

0 0.0000E+00 0

0 0

0 Compartments:

3 Compartment 1:

1 1

0 0

0 0

0 0

0 Compartment 2:

0 1

0 0

0 0

0 0

0 Compartment 3:

1 1

0

EC-RADN-1 128 Attachment 5 Page 38 0

0 0

0 0

0 Pathways:

4 Pathway 1:

0 0

0 0

0 1

o .OOOOE+00 2.2000E+06 o.OOOOE+00 0.OOOOE+00 o.OOOOE+00 3 .3300E-02 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00

7. 2000E+02 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 0

0 0

0 0

0 Pathway 2:

0 0

0 0

0 1

3 o .OOOOE+00 6.3910E+03 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00

6. 6600E-02 6.3910E+03 o.OOOOE+00 1.OOOOE+02 1.OOOOE+02 7 .2000E+02 0.OOOOE+00 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 0.

0 0

0 0

Pathway 3:

0 0

0 0

0 1

3 o .OOOOE+00 5. 1000E+02 o.OOOOE+00 0.OOOOE+00 0.OOOOE+00

6. 6600E-02 5. 1000E+02 o.OOOOE+00 1.OOOOE+02 1.OOOOE+02
  • 7.2000E+02 0.OOOOE+00 o.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0

0 0

0 0

0 Pathway 4:

0 0

0 0

0 1

EC-RADN-I 128 Attachment 5 Page 39 3

0.0000E+00 6. 9010E+03 o .OOOOE+OO o .OOOOE+OO O .OOOOE+OO

5. OOOOE-01 6. 9010E+03 o . 000E+00 o .OOOOE+00 o .OOOOE+00 7.2000E+02 0.OOOOE+00 0.0000E+00 o .OOOOE+0O o . 000E+00 0

0 0

0 0

0 Dose Locations:

3 Location 1:

EAB - MST Release 2

1 3

0.0000E+00

  • 8.3000E-04 2.0000E+00 8.3000E-04 7.2000E+02 o.OOOOE+00 1

4 o.0000E+00 3.5000E-04 8.0000E+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 o.OOOOE+00 0

Location 2:

MSLB @ LPZ - MST Release 2

1 5

o.OOOOE+00 4.9000E-05 8.0000E+00 3.50OOE-05 2.4000E+01 1.7000E-05 9.6000E+01 6. 1000E-06 7.2000E+02 0.0000E+00 1

4 o.OOOOE+00 3.50OOE-04 8.OOOOE+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 o.OOOOE+00 0

Location 3:

MSLB @ CR - MST Release 3

0 1

2 0.0000E+00 3.4700E-04 7.2000E+02 0.OOOOE+00 1

4 O.OOOOE+00 1.OOOOE+00 2.4000E+01 6.OOOOE-01 9.6000E+01 4.OOOOE-01 7.2000E+02 0.OOOOE+00 Effective Volume Location:

1 3

0.OOOOE+00 6.3000E-04

-6.66OOE-02 0.OOOOE+00 7.200'OE+02 O.OOOE+00 Simulation Parameters:

4

EC-RADN-t 128 Attachment 5 Page 40 O.OOOE+00 I.000OE-04 1.O000E-02 1.0000E-03 1.000E-01 1.OOOOE-02 7.2000E+02 O.OOOOE+00 Output Filename:

C:\Program Files\radtrad3.o5 1

1 1

0 1

End of Scenario File

EC-RADN-1 128 Attachment 5 Page 41 RADTRAD Version 3.03 (Spring 2001) run on 10/24/2006 at 12:59:23

                                                                          1. 4##################################

Plant Description Number of Nuclides = 16 Inventory Power 1.OOOOE+00 MWth Plant Power Level = 1.OOOOE+00 MWth Number of compartments = 3 Compartment information Compartment number 1 (Source term fraction = 1.OOOOE+00 Name: SSES TB MS Tunnel Compartment volume = 4.4000E+04 (Cubic feet)

Compartment type is Normal Pathways into and out of compartment 1 Exit Pathway Number 1: SSES MST to Environs Compartment number 2 Name: Environment Compartment type is Environment Pathways into and out of compartment 2 Inlet Pathway Number 1: SSES MST to Environs Inlet Pathway Number 4: SSES CR to Environment - CR Exhaust Exit Pathway Number 2: Environment to SSES CR - 6391 cfm Normal Intake Exit Pathway Number 3: Environment to SSES CR -500+10 cfm Unfiltered Inle Compartment number 3 Name: SSES CR Compartment volume = 5.1800E+05 (Cubic feet)

Compartment type is Control Room Pathways into and out of compartment 3 Inlet Pathway Number 2: Environment to SSES CR - 6391 cfm Normal Intake Inlet Pathway Number . 3: Environment to SSES CR -500+10 cfm Unfiltered Inle Exit Pathway Number 4: SSES CR to Environment - CR Exhaust Total number of pathways = 4

EC-RADN- 1128 Attachment 5 Page 42

                                                                                                                  1. 4##############

RADTRAD Version 3.03 (Spring 2001) run on 10/24/2006 at 12:59:23 Scenario Description Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP EARLY IN-VESSEL LATE RELEASE RELEASE MASS 0.000000 hr 0.0000 hrs 0.0000 hrs (gm)

NOBLES 1.OOOOE+00 0.OOOOE+00 0. 0000E+00 1.322E-05 IODINE 1.0000E+00 0.OOOOE+00 0. OOE+00 8. 936E-04 CESIUM 0.OOOOE+00 0.OOOOE+00 0 .OOOOE+00 0.OOOE+00 TELLURIUM 0.OOOOE+00 0.OOOOE+00 0 .OOOOE+00 0.OOOE+00 STRONTIUM 0.OOOOE+00 0.OOOOE+00 0 OOOOE+00 0.OOOE+00 BARIUM 0.OOOOE+00 0.OOOOE+00 0 .OOOOE+00 0.OOOE+00 RUTHENIUM 0.OOOOE+00 0.OOOOE+00 0 OOOOE+00 0. OOOE+00 CERIUM 0.OOOOE+00 0.OOOOE+00 0 OOOOE+00 0. OOOE+00 LANTHANUM 0.OOOOE+00 0.OOOOE+00 0. O00OE+00 0. OOOE+00 Inventory Power = 1. MWt Nuclide Group Specific half Whole Body Inhaled Inhaled Name Inventory life DCF Thyroid Effective (Ci/MWt) (s) (Sv-m3/Bq-s) (Sv/Bq) (Sv/Bq) 1-131 2 4.790E+01 6 956E+05 1.820E-14 2. 920E-07 8.890E-09 1-132 2 4.420E+02 8.390E+03 1.120E-13 1. 740E-09 1.030E-10 1-133 2 3.280E+02 7.533E+04 2.940E-14 4. 860E-08 1.580E-09 1-134 2 8.850E+02 3.150E+03 1.300E-13 2. 880E-10 3.550E-11 1-135 2 4.790E+02. 2 .423E+04 8. 294E-14 8. 460E-09 3.320E-10 Xe-131m 1 1.810E-03 1.036E+06 3.378E-16 0. OOOE+00 0.OOOE+00 Xe-133m 1 3.390E-02 1. 987E+05 1.370E-15 0 OOOE+00 0.OOOE+00 Xe-133 1 9.890E-01 4. 553E+05 1. 560E-15 0 OOOE+00 0.OOOE+00 Xe-135m 1 3.150E+00 9. 360E+02 2. 040E-14 0. OOOE+00 0.OOOE+00 Xe-135 1 2.750E+00 3 .287E+04 1. 190E-14 0 . OOOE+00 0.OOOE+00 Kr-83m 1 4.190E-01 6. 840E+03 1. 500E-18 0 OOOE+00 0.OOOE+00 Kr-85m 1 7.290E-01 1. 570E+04 7 .480E-15 0. OOOE+00 0. OOOE+00 Kr-87 1 2.360E+00 4.680E+03 4. 120E-14 0. OOOE+00 0. OOOE+00 Kr-88 1 2.450E+00 9. 972E+03 1. 020E-13 0. OOOE+00 0.OOOE+00 Kr-85 1 2.430E.-03 3 .383E+08 1. 190E-16 0. OOOE+00 0.OOOE+00 Xe-138 1 1.100E+01 8.490E+02 5. 770E-14 0 OOOE+00 0.OOOE+00 Nuclide Daughter Fraction Daughter Fractior Daughter Fraction 1-131 Xe-131m 0.01 none 0.00 none 0 .00 i-133 Xe-133m .0.03 Xe-133 0.97 none 0.00 1-135 Xe-135m 0.15 Xe-135 0.85 none 0.00 Xe-133m Xe-133 1.00 none 0.00 none 0.00 Xe-135m Xe-135 1.00 Cs-135 0.00 none 0.00 Xe-135 Cs-135 1.00 none 0.00 none 0.00 Kr-85m Kr-85 0.21 none 0.00 none 0.00 Kr-87 Rb-87 1.00 none 0.00 none 0.00 Kr-88 Rb-88 1.00 none 0.00 none 0.00 Xe-138 Cs-138 1.00 none 0.00 none 0.00 Iodine fractions Aerosol 9. 50OOE-01 Elemental 4.8500E-02 Organic 1.50OOE-03 COMPARTMENT DATA

EC-RADN- 1128 Attachment 5 Page 43

-Compartment number 1: SSES TB MS Tunnel Compartment number 2: Environment Compartment number 3: SSES CR PATHWAY DATA Pathway number 1: SSES MST to Environs Pathway Filter: Removal Data Time (hr) Flow Rate . Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 2.2000E+06 0.0000E+00 0.OOOOE+00 0.0000E+00 3.3300E-02 o.0000E+00 0.0000E+00 0.OOOOE+00 0.0000E+00 7.2000E+02 o.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 2: Environment to SSES CR - 6391 cfm Normal Intake Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 6.3910E+03 0.0000E+00 0.0000E+00 0.OOOOE+00 6.6600E-02 *6.3910E+03 0.0000E+00 1.0000E+02 1.OOOOE+02 7.2000E+02 o.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 3: Environment to SSES CR -500+10 cfm Unfiltered Inle Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 5. 1000E+02 0.0000E+00 0.OOOOE+00 0.OOOOE+00 6.6600E-02 5. 1000E+02 0.0000E+00 1.0000E+02 1.0000E+02 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.OOOOE+00 Pathway number 4: SSES CR to Environment - CR Exhaust Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 6.9010E+03 O.0000E+00 0.OOOOE+00 0.OOOOE+00

5. 0000E-01 6. 9010E+03 0.0000E+00 0.OOOOE+00 0.OOOOE+00 7.2000E+02 0.0000E+00 0.OOOOE+00 0.OOOOE+00 0.0000E+00 LOCATION DATA Location EAB - MST Release is in compartment 2 Location X/Q Data Time (hr) X/Q (s
  • m -3) 0.OOOOE+00 8.3000E-04 2.OOOOE+00 8.3000E-04 7.2000E+02 0.OOOOE+00 Location Breathing Rate Data Time (hr) Breathing Rate (m'3
  • sec^-l) 0.OOOOE+00 3.5000E-04 8.OOOOE+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.0o0oE+00 Location MSLB 4 LPZ - MST Rel ease is in comp artment 2 Location X/Q Data

EC-RADN-1 128 Attachment 5 Page 44 Time -(hr) X/Q (s

  • m^-3) 0.0000E+00 4.9000E-05 8.0000E+00 3.5000E-05 2.4000E+01 1.7000E-05 9.6000E+01 6.1000E-06 7.2000E+02 0.OOOOE+00 Location BreathLing Rate Data Time (hr) Breathing Rate (m'3
  • sec'-1) 0.0000E+00 3.5000E-04 8.0000E+00 .1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.0000E+00 Location MSLB @ CR - MST Release is in compartmen t 3 Location X/Q Da .ta Time (hr) X/Q (s
  • m'-3) o.0000E+00 6.3000E-04 6.6600E-02 0.0000E+00 7.2000E+02 0.0000E+00 Location BreathLing Rate Data Time (hr) Breathing Rate (mW3
  • sec^-1)

.0.0000E+00 3.4700E-04 7.2000E+02 0.0000E+00 Location Occupa *ncy Factor Data Time (hr) Occupancy Factor 0.0000E+00 1.OOOOE+00 2.4000E+01 6.OOOOE-01 9.6000E+01 4.OOOOE-01 7.2000E+02 0.000OE+00 USER SPECIFIED TIME STEP DATA - SUPPLEMENTAL TIME STEPS Time Time step 0.0000E+00 1.OOOOE-04 1.OOOOE-02 1.OOOOE-03 1.OOOOE-01 1.OOOOE-02 7.2000E+02 0.OOOOE+00

EC-RADN-1 128 Attachment 5 Page 45 RADTRAD Version 3.03 (Spring 2001) run on 10/24/2006 at 12:59:23 44 ##4#444#4444#4#4444# 44# 44## 444# 44#4#44####44444tft 444 * * #44 444 # 4 4#4 44 ft ft ft 4 ft 4

  1. 1 ft
  1. 1 # 4 ft 4 4
  1. 44 #444 ft 4 4 4 4
4. 4 4444 4 Dose, Detailed model and Detailed Inventory Output Detailed model information at time (H) = 0.0000 EAB - MST Release Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.5193E-04 8. 6221E-03 4.4260E-04 Accumulated dose (rem) 1.5193E-04 8.6221E-03 4.4260E-04 MSLB @ LPZ - MST Release Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 8.9694E-06 5.0901E-04 2.6129E-05 Accumulated dose (rem) 8.9694E-06 5. 0901E-04 2.6129E-05 MSLB @ CR - MST Release Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 5.1270E-13 3.9624E-10 1.3871E-11 Accumulated dose (rem) 5.1270E-13 3.9624E-10 1.3871E-11 SSES TB MS Tunnel Compartment Nuclide Inventory:

Time (h) = 0.0000 Ci kg Atoms Decay 1-131 4. 7889E+01 3.8681E-07 1.7782E+18 9.7468E+08 1-132 4.4190E+02 4.3379E-08 1.9791E+17 8.9939E+09 1-133 3.2792E+02 2. 9122E-07 1.3186E+18 6.6742E+09 1-134 8.8480E+02 3.3104E-08 1.4878E+17 1.8008E+10 1-135 4.7889E+02 1.3886E-07 6. 1942E+17 9.7468E+09 Xe-131m 1.8096E-03 2. 1769E-11 1. 0007E+14 3.6830E+04 Xe-133m 3.3892E-02 7. 9393E-11 3.5949E+14 6.8981E+05 Xe-133 9. 8877E-01 5. 3077E-09 2.4033E+16 2.0124E+07 Xe-135m 3.1493E+00 3.5274E-11 1.5735E+14 6.4097E+07 Xe-135 2.7494E+00 1.0814E-09 4.8237E+15 5.5958E+07 Kr-83m 4.1890E-01 2. 1080E-11 1. 5295E+14 8.5259E+06 Kr-85m 7.2883E-01 8. 6191E-11 6.1065E+14 1.4834E+07 Kr-87 2.3595E+00 8. 5154E-11 5.8943E+14 4.8022E+07 Kr-88 2.4494E+00 1. 9053E-10 1.3039E+15 4.9853E+07 Kr-85 .2.4294E-03 6. 1923E-09. 4.3871E+16 4.9447E+04 Xe-138 1.0997E+01 1. 1421E-10 4.9840E+14 2.2383E+08

'SSES TB MS Tunnel Transport Group Inventory:

Time (h) = 0.0000 Atmosphere Sump Noble gases (atoms) 7.6500E+16 0.0000E+00 Elemental I (atoms) 1.9705E+17 0.OOOOE+00 Organic I (atoms) 6.0943E+15 0.0000E+00

EC-RADN-1 128 Attachment 5 Page 46 Aerosols (kg) 8.4870E-07 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 9.6191E-08 Dose Effective (Ci/cc) 1-131 (ICRP2.Thyroid) 1.6567E-07 Total I (Ci) 2.1814E+03 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 0.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.7535E+13 Elemental I (atoms) 0.0000E+00 4.5167E+13 Organic I (atoms) 0.OOOOE+00 1.3969E+12 Aerosols (kg) 0.OOOOE+00 1.9454E-10 SSES CR Compartment Nuclide Inventory:

Time (h) = 0.0000 Ci kg Atoms Decay 1-131 2 .2523E-05 1.8192E-13 8. 3631E+11 4.5841E+02 1-132 2.0783E-04 2 .0402E-14 9. 3080E+10 4.2300E+03 1-133 1.5423E-04 1 .3697E-13 6. 2017E+11 3.1390E+03 1-134 4.1614E-04 1 .5570E-14 6. 9972E+10 8.4696E+03 1-135 2.2523E-04 6. 5307E-14 2. 9132E+11 4.5841E+03 Xe-131m 8.5109E-10 1. 0238E-17 4 .7066E+07 1.7322E-02 Xe-133m 1.5940E-08 3. 7340E-17 1. 6907E+08 3. 2443E-01 Xe-133 4.6504E-07 2 .4963E-15 1. 1303E+10 9.4650E+00 Xe-135m 1.4812E-06 1.6590E-17 7. 4005E+07 3.0146E+01 Xe-135 1.2931E-06 5. 0858E-16 2 .2687E+09 2.6318E+01 Kr-83m 1.9702E-07 9. 9144E-18 7. 1935E+07 4.0099E+00 Kr-85m 3.4279E-07 4. 0537E-17 2. 8720E+08 6.9767E+00 Kr-87 1.1097E-06 4. 0050E-17 2 .7722E+08 2.2586E+01 Kr-88 1.1520E-06 8. 9612E-17 6. 1325E+08 2 .3447E+01 Kr-85 1.1426E-09 2. 9124E-15 2. 0634E+10 2.3256E-02 Xe-138 5.1723E-06 5. 3715E-17 2. 3441E+08 1.0527E+02 SSES CR Transport Group Inventory:

Time (h) = 0.0000 Atmosphere Sump Noble gases (atoms) 3.5980E+10 0.0000E+00 Elemental I (atoms) 9.2677E+10 0.OOOOE+00 Organic I (atoms) 2.8663E+09 0.OOOOE+00 Aerosols (kg) 3.9916E-13 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 3.8428E-15 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 6.6186E-15 Total I (Ci) 1.0260E-03 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 0.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 3.3321E+10 Elemental I (atoms) 0.OOOOE+00 8.5828E+10 Organic I (atoms) 0.OOOOE+00 2.6545E+09 Aerosols (kg) 0.OOOOE+00 3.6966E-13 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 0.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 2.6590E+09 Elemental I (atoms) 0.OOOOE+00 6.8490E+09 Organic I (atoms) 0.OOOOE+00 2.1183E+08 Aerosols (kg) 0.OOOOE+00 2.9499E-14 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 0.0000 Filtered Transported

EC-RADN-1 128 Attachment 5 Page 47 Noble gases (atoms) 1.4648E+03 0.OOOOE+00 Elemental I (atoms) 3.7732E+03 0.OOOOE+00 Organic I (atoms) 1. 1670E+02 0.0000E+00 Aerosols (kg) 1.6251E-20 0.OOOOE+00 Detailed model information at time (H) = 0.0333 EAB - MST Release Doses:

Time (h) = 0.0333 Whole Body Thyroid TEDE Delta dose (rem) 6.6273E-01 3. 7615E+01 1.9308E+00 Accumulated dose (rem) 6.6288E-01 3.7624E+01 1.9312E+00 MSLB @ LPZ - MST Release Doses:

Time (h) = 0.0333 Whole Body Thyroid TEDE Delta dose (rem) 3.9125E-02 2.2206E+00 1.1399E-01 Accumulated dose (rem) 3 9134E-02 2.2211E+00 1.1401E-01 MSLB @ CR - MST Release Doses:

Time (h) = 0.0333 Whole Body Thyroid TEDE Delta dose (rem) 9.4493E-04 7.3581E-01 2.5742E-02 Accumulated dose (rem) 9.4493E-04 7.3581E-01 2.5742E-02 SSES TB MS Tunnel Compartment Nuclide Inventory:

Time (h) = 0.0333 Ci kg Atoms Decay SSES TB MS Tunnel Transport Group Inventory:

Time (h) = , 0.0333 Atmosphere Sump Noble gases (atoms) 3.2899E-27 0.OOOOE+00 Elemental I (atoms) 8.0858E-27 0.OOOOE+00 Organic I (atoms) 2.5008E-28 0.OOOOE+00 Aerosols (kg) 3.4825E-50 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 3.9512E-51 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 6. 7883E-51 Total I (Ci) 8.8515E-41 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 0.0333 Filtered Transported.

Noble gases (atoms) 0.OOOOE+00 7.6518E+16 Elemental I (atoms) 0.OOOOE+00 1.9701E+17 Organic I (atoms) 0.OOOOE+00 6.0932E+15 Aerosols (kg) 0.OOOOE+00 8.4855E-07

'SSES CR Compartment Nuclide Inventory:

Time (h) = 0.0333 Ci kg Atoms Decay 1-131 9.5716E-02 7. 7311E-10 3.5540E+15 4 .2641E+11 1-132 8.7463E-01 8.5859E-11 3.9171E+14 3. 9155E+12 1-133 6.5478E-01 5.8149E-10 2.6329E+15 2. 9185E+12 1-134 1.7226E+00 6.4451E-11 2.8965E+14 7. 7755E+12 1-135 9. 5400E-01 2.7662E-10 1.2339E+15 4. 2571E+12 Xe-131m 3.7014E-06 4.4527E-14 2.0469E+11 1. 6298E+07 Xe-133m 7.5664E-05 1.7724E-13 8.0255E+11 3 .1912E+08 Xe-133 2. 0921E-03 1. 1230E-11 5.0851E+13 9. 0578E+09 Xe-135m 1.7949E-02 2.0104E-13 8. 9680E+II 5 3889E+10 Xe-135 7.5635E-03 2. 9748E-12 1.3270E+13 2. 9000E+10 Kr-83m 8.2726E-04 4.1629E-14 3.0205E+ll 3 .7076E+09 Kr-85m 1.4492E-03 1. 7138E-13 1.2142E+12 6. 4729E+09 Kr-87 4.6334E-03 1.6722E-13 1. 1575E+12 2. 0824E+10 Kr-88 4.8557E-03 3. 7771E-13 2.5848E+12 2. 1721E+10 Kr-8'5 4.8564E-06 1.2378E-11 8. 7698E+13 2. 1634E+07

EC-RADN-1 128 Attachment 5 Page 48 Xe-138 1.9934E-02 2.0701E-13 9.0338E+11 9.3271E+10 SSES CR Transport Group Inventory:

Time (h) = 0.0333 Atmosphere Sump Noble gases (atoms) 1.5988E+14 0.OOOOE+00 Elemental I (atoms) 3.9296E+14 0.OOOOE+00 Organic I (atoms) 1.2153E+13 0.OOOOE+00 Aerosols (kg) 1.6925E-09 O.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.6311E-11 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2. 8023E-11 Total I (Ci) 4.3017E+00 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 0.0333 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4546E+14 Elemental I (atoms) O.OOOOE+00 3.7452E+14 Organic I (atoms) 0.0000E+00 1.1583E+13 Aerosols (kg) 0.OOOOE+00 1.6130E-09 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 0.0333 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1607E+13 Elemental I (atoms) 0.OOOOE+00 2.9886E+13 Organic I (atoms) 0.OOOOE+00 9.2432E+11 Aerosols (kg) 0.OOOOE+00 1.2872E-10 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 0.0333 Filtered Transported Noble gases (atoms) 4. 1748E+12 0.OOOOE+00 Elemental I (atoms) 1.0505E+13 0.OOOOE+00 Organic I (atoms) 3.2491E+11 0.OOOOE+00 Aerosols (kg) 4 .5247E-II 0.OOOOE+00 Detailed model information at time (H) = 0.0666 EAB - MST Release Doses:

Time (h) = 0.0666 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 6.6288E-01 3.7624E+01 1.9312E+00 MSLB @ LPZ - MST Release Doses:

Time (h) = 0.0666 Whole Body Thyroid TEDE Delta dose (rem). 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.9134E-02 2.2211E+00 1.1401E-01 MSLB @ CR - MST Release Doses:

Time (h) = 0.0666 Whole Body Thyroid TEDE Delta dose (rem) 9.1445E-04 7.2291E-01 2.5259E-02 Accumulated dose (rem) 1.8594E-03 1.4587E+00 5.1001E-02

,SSES TB MS Tunnel Compartment Nuclide Inventory:

Time (h) = 0.0666 Ci kg Atoms Decay

'SSES TB MS Tunnel Transport Group Inventory:

Time (h) = 0.066-6 Atmosphere 'Sump Noble gases <atoms) 3.4328E-27 0.000OE+O0

EC-RADN-1 128 Attachment 5 Page 49 Elemental I (atoms) 8.0669E-27 0.0000E+00 Organic I (atoms) 2.4949E-28 0.0000E+00 Aerosols (kg) 3.4743E-50 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 3.9458E-51 Dose Effective (Ci/cc) 1-131 (I-CRP2 Thyroid) 6.7626E-51 Total I (Ci) 8.7333E-41 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 0.0666 Filtered Transported Noble gases (atoms) 0.0000E+00 7.6518E+16 Elemental I (atoms) 0.OOOOE+00 1.9701E+17

  • Organic I (atoms) 0.OOOOE+00 6.0932E+15 Aerosols (kg) 0.0000E+00 8.4855E-07 SSES CR Compartment Nuclide Inventory:

Time (h) 0.0666 Ci kg Atoms Decay 1-131 9. 3191E-02 7. 5271E-10 3 .4603E+15 8.4518E+11 1-132 8.4.326E-01 8.2780E-11 3 . 7766E+14 7. 7235E+12 1-133 6.3688E-01 5.6559E-10 2.5610E+15 5. 7818E+12 1-134 1.6337E+00 6. 1124E-I1 2.7470E+14 1. 5214E+13 1-135 9. 2576E-01 2.6843E-10 1. 1974E+15 8. 4240E+12 Xe-131m 3.6861E-06 4.4343E-14 2.0385E+II 3 .2671E+07 Xe-133m 8.1372E-05 1.9062E-13 8.6309E+11 6. 6688E+08 Xe-133 2. 1496E-03 1.1539E-11 5.2248E+13 1. 8456E+10 Xe-135m 2.7825E-02 3.1165E-13 1.3902E+12 1. 5510E+11 Xe-135 9.3935E-03 3.6945E-12 1.6481E+13 6. 6488E+10 Kr-83m 7.9580E-04 4. 0046E-14 2 .9056E+11 7. 3053E+09 Kr-85m 1.4037E-03 1.6600E-13 1.1761E+12 1. 2797E+10 Kr-87 4.4323E-03 1.5996E-13 1.1073E+12 4. 0919E+10 Kr-88 4.6889E-03 3.6474E-13 2 .4960E+12 4 .2878E+10 Kr-85 4.7289E-06 1.2053E-11 8.5396E+13 4. 2882E+07 Xe-138 1.7600E-02 1.8278E-13 7. 9764E+11 1. 7637E+11 SSES CR Transport Group Inventory:

Time (h) = 0.0666 Atmosphere Sump Noble gases (atoms) 1.6245E+14 0.OOOOE+00 Elemental I (atoms) 3.8174E+14 0.OOOOE+00 Organic I (atoms) 1.1806E+13 0.OOOOE+00 Aerosols (kg) 1.6441E-09 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1. 5861E-11 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2 .7183E-11 Total I (Ci) 4.1328E+00 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 0.0666 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4546E+14 Elemental I (atoms) 0.OOOOE+00 3.7452E+14 Organic I (atoms) 0.OOOOE+00 1.1583E+13 Aerosols (kg) 0.OOOOE+00 1.6130E-09 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 0.0666 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1607E+13 Elemental I (atoms) 0.OOOOE+00 2.9886E+13 Organic I (atoms) 0.OOOOE+00 9.2432E+11 Aerosols (kg) 0.OOOOE+00 1.2872E-10 SSES CR to Environment - CR Exhaust Transport Group Inventory:

EC-RADN-1 128 Attachment 5 Page 50 Pathway Time (h) = 0.0666 Filtered Transported Noble gases (atoms) 8.4627E+12 0.OOOOE+00 Elemental I (atoms) 2 .0816E+13 0.OOOOE+00 Organic I (atoms) 6.4378E+11 0.OOOOE+00 Aerosols (kg) 8.9651E-11 0.OOOOE+00 Detailed model information at time (H) = 0.5000 EAB - MST Release Doses:

Time (h) = *0.5000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 6.6288E-01 3.7624E+01 1.9312E+00 MSLB @ LPZ - MST Release Doses:

Time (h) = 0.5000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.9134E-02 2..2211E+00 1.1401E-01 MSLB @ CR - MST Release Doses:

Time (h) = 0.5000 Whole Body Thyroid

  • TEDE Delta dose (rem) 8.9523E-03 7.7797E+00 2.6984E-01 Accumulated dose (rem) 1.0812E-02 9.2384E+00 3 .2084E-01 SSES TB MS Tunnel Compartment Nuclide Inventory:

Time (h) = 0.5000 Ci kg Atoms Decay SSES TB MS Tunnel Transport Group Inventory:

Time (h) = 0.5000 Atmosphere

  • Sump Noble gases (atoms) 5.2536E-27 0.OOOOE+00 Elemental I (atoms) 7.8418E-27 0.OOOOE+00 Organic I (atoms) 2.4253E-28 0.OOOOE+00 Aerosols (kg) 3.3765E-50 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 3.8797E-51 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 6.4621E-51 Total I (Ci) 7.4097E-41 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 0.5000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6518E+16 Elemental I (atoms) 0.OOOOE+00 1.9701E+17 Organic I (atoms) 0.OOOOE+00 6.0932E+15 Aerosols (kg) 0.OOOOE+00 8.4855E-07 SSES CR Compartment Nuclide Inventory:

Time (h) 0.5000 Ci kg Atoms Decay 1-131 6.5803E-02 5 .3150E-I0 2 .4433E+15 5.3720E+12 1-132 5.2423E-01 5. 1462E-11 2 3478E+14 4.6327E+13 1-133 4 .4398E-01 3. 9429E-10 1. 7853E+15 3 .6533E+13 1-134 8.1962E-01 3. 0666E-11 1. 3782E+14 8.3101E+13 1-135 6.2612E-01 1. 8155E-10 8. 0986E+14 5.2494E+13 Xe-131m 3.3599E-06 4. 0419E-14 1 .8581E+11 2.3570E+08 Xe-133m 1.2763E-04 2. 9897E-13 1. 3537E+12 6.8483E+09 Xe-133 2.5459E-03 1.3666E-11 6. 1879E+13 1.5551E+11 Xe-135m 7.2562E-02 8.1273E-13 3. 6255E+12 3. 5081E+12 Xe-135 2.5681E-02 1.0101E-11 4 . 5058E+13 1. 1237E+12 Kr-83m 4.8049E-04 2.4179E-14 1. 7543E+11 4.3251E+10 Kr-85m 9.2660E-04 1.0958E-13 7. 7635E+11 7. 8866E+10 Kr-87 2.4878E-03 8. 9786E-14 6 .2150E+11 2.3459E+11

EC-RADN-1 128 Attachment 5 Page 51 Kr-88 2.9752E-03 2.3143E-13 1.5838E+12 2 . 5957E+11 Kr-85 3.3449E-06 8.5257E-12 6.-0404E+13 2.7278E+08 Xe-138 3.4822E-03 3.6163E-14 1.5781E+11 6.7765E+ll SSES CR Transport Group Inventory:

Time (h) = 0.5000 Atmosphere Sump Noble gases (atoms) 1.7582E+14 0.0000E+00 Elemental I (atoms) 2.6244E+14 0.OOOOE+00 Organic I (atoms) 8.1166E+12 0.OOOOE+00 Aerosols (kg) 1.1300E-09 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.1029E-11 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.8370E-11 Total I (Ci) 2.4798E+00 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 0.5000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4546E+14 Elemental I (atoms) 0.OOOOE+00 3.7452E+14 Organic I (atoms) 0.OOOOE+00 1.1583E+13 Aerosols (kg) 0.OOOOE+00 1.6130E-09 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 0.5000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1607E+13 Elemental I (atoms) 0.OOOOE+00 2.9886E+13 Organic I (atoms) 0.OOOOE+00 9.2432E+11 Aerosols (kg) 0.OOOOE+00 1.2872E-10 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 0.5000 Filtered Transported Noble gases (atoms) 6.7737E+13 0.OOOOE+00 Elemental I (atoms) 1.3111E+14 0.OOOOE+00 Organic I (atoms) 4.0549E+12 0.OOOOE+00 Aerosols (kg) 5.6461E-10 0.OOOOE+00 Detailed model information at time (H) = 2.0000 EAB - MST Release Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 6.6288E-01 3 .7624E+01 1. 9312E+00 MSLB @ LPZ - MST Release Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.9134E-02 2.2211E+00 1.1401E-01 MSLB @ CR - MST Release Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.0685E-02 1.2732E+01 4 .3247E-01 Accumulated dose (rem) 2.1497E-02 2. 1970E+01 7. 5331E-01 SSES TB MS Tunnel Compartment Nuclide Inventory:

Time (h) = 2.0000 Ci kg Atoms Decay SSES TB MS Tunnel Transport Group Inventory:

EC-RADN- 1128 Attachment 5 Page 52 Time (h) = 2.0000 Atmosphere Sump Noble gases (atoms) 1.0907E-26 0.OOOOE+00 Elemental I (atoms) 7.2681E-27 0.OOOOE+00 Organic I (atoms) 2.2479E-28 0.OOOOE+00 Aerosols (kg) 3.1273E-50 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 3.6826E-51 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 5. 7404E-51 Total I (Ci) 4. 8101E-41 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6518E+16 Elemental I (atoms) 0.OOOOE+00 1.9701E+17 Organic I (atoms) 0.OOOOE+00 6.0932E+15 Aerosols (kg) 0.OOOOE+00 8.4855E-07 SSES CR Compartment Nuclide Inventory:

Time (h) 2.0000 Ci kg Atoms Decay 1-131 1.9732E-02 1.5938E-I0 7.3268E+14 1.2984E+13 1-132 1 .0117E-01 9. 9314E-12 4 .5309E+13 9. 7503E+13 1-133 1 .2737E-01 1. 1311E-10 5. 1216E+14 8.6991E+13 1-134 7 .5307E-02 2. 8176E-12 1.2663E+13 1.4515E+14 1-135 1 .6175E-01 4. 6901E-11 2. 0922E+14 1.2077E+14 Xe-131m 1 .7942E-06 2 .1584E-14 9. 9224E+10 7.4533E+08 Xe-133m 1 .0843E-04 2 .5399E-13 1. 1501E+12 3 .2529E+10 Xe-133 1 .7988E-03 9. 6562E-12 4.3722E+13 6. 1076E+11 Xe-135m 2 .5429E-02 2 .8482E-13 1.2705E+12 1.3160E+13 Xe-135 2 .5626E-02 1. 0079E-11 4.4961E+13 6. 9798E+12 Kr-83m 8. 3811E-05 4 .2176E-15 3.0601E+10 8.8456E+10 Kr-85m 2 .2009E-04 2 .6028E-14 1. 8440E+11 1. 7667E+11 Kr-87 3 .3709E-04 1 .2166E-14 8.4212E+10 4.4871E+11 Kr-88 6. 1629E-04 4 7940E-14 3 .2807E+11 5. 5774E+11 Kr-85 1. 0090E-06 2. 5719E-12 1. 8221E+13 6.6066E+08 Xe-138 1 .2778E-05 1. 3270E-16 5.7907E+08 8. 0076E+11 SSES CR Transport Group Inventory:

Time (h) = 2.0000 Atmosphere Sump Noble gases (atoms) 1.1005E+14 0.OOOOE+00 Elemental I (atoms) 7.3334E+13 0.OOOOE+00 Organic I (atoms) 2.2680E+12 0.OOOOE+00 Aerosols (kg) 3.1554E-10 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 3 .1562E-12 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 4.9198E-12 Total I (Ci) 4.8533E-01 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4546E+14 Elemental I (atoms) 0.OOOOE+00 3.7452E+14 Organic I (atoms) 0.OOOOE+00 1.1583E+13 Aerosols (kg) 0.OOOOE+00 1.6130E-09 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1607E+13 Elemental I (atoms) 0.OOOOE+00 2.9886E+13

-organic I (atoms) 0.OOOOE+00 9.2432E+11 Aerosols (kg) 0.OOOOE+00 1.2872E-10

EC-RADN-1 128 Attachment 5 Page 53 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 2.4520E+14 0.OOOOE+00 Elemental I (atoms) 3.0859E+14 0.0000E+00 Organic I (atoms) 9.5441E+12 0.0000E+00 Aerosols (kg) 1.3286E-09 0.0000E+00 Detailed model information at time (H) = 8.0000 EAB - MST Release Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 6.6288E-01 3. 7624E+01 1.9312E+00 MSLB @ LPZ - MST Release Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.9134E-02 2.2211E+00 1. 1401E-01 MSLB @ CR - MST Release Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 2.4730E-03 5.1015E+00 1.6864E-01 Accumulated dose (rem) 2.3970E-02 2. 7072E+01 9.2195E-01 SSES TB MS Tunnel Compartment Nuclide Inventory:

Time (h) = 8.0000 Ci kg Atoms Decay SSES TB MS Tunnel Transport Group Inventory:

Time (h) = 8.0000 Atmosphere Sump Noble gases (atoms) 2.5589E-26 0.OOOOE+00 Elemental I (atoms) 6.0442E-27 0.OOOOE+00 Organic I (atoms) 1.8693E-28 0.OOOOE+00 Aerosols (kg) 2.5957E-50 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 3.1276E-51 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 4. 3828E-51 Total I (Ci) 2.2652E-41 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases,(atoms) 0.OOOOE+00 7.6518E+16 Elemental I (atoms) 0.OOOOE+00 1.9701E+17 Organic I (atoms) 0.OOOOE+00 6.0932E+15 Aerosols (kg) 0.OOOOE+00 8.4855E-07 SSES CR Compartment Nuclide Inventory:

Time (h) = 8.0000 Ci kg Atoms Decay 1-131 1.5956E-04 1.2888E-12 5. 9247E+12 1. 6218E+13 1-132 1.4033E-04 1.3776E-14 6.2847E+10 1.0972E+14 1-133 8.6267E-04 7.6610E-13 3 . 4689E+12 1.0715E+14 1-134 5.3669E-06 2. 0080E-16 9.0243E+08 1. 5142E+14 1-135 7.2045E-04 2 .0890E-13 9.3186E+ll 1.4445E+14 Xe-131m 4.0067E-08 4. 8200E-16 2 .2158E+09 1.1420E+09 Xe-133m 2.8372E-06 6.6462E-15 3.0094E+10 5.8790E+10 Xe-133 4.4372E-05 2.3819E-13 1. 0785E+12 1.0328E+12 Xe-135m 1.1391E-04 1.2759E-15 5.6915E+09 1.6851E+13 Xe-135 4.9287E-04 1.9385E-13 8.6474E+11 1.2847E+13 Kr-83m 7.7585E-08 3.9042E-18 2.8328E+07 9.7999E+IOl

EC-RADN-1 128 Attachment 5 Page 54 Kr-85m 7.0055E-07 8.2846E-17 5.8695E+08 2 . 0705E+11 Kr-87 1.1363E-07 4.1008E-18 2.8386E+07 4 .8226E+11 Kr-88 1.1346E-06 8.8260E-17 6.0400E+08 6.3550E+11 Kr-85 8.3474E-09 2.1276E-14 1.5074E+11 8.2680E+08 SSES CR Transport Group Inventory:

Time (h) = 8.0000 Atmosphere Sump Noble gases (atoms) 2.1332E+12 0.0000E+00 Elemental I (atoms) 5.0387E+11 0.0000E+00 Organic I (atoms) 1.5584E+10 0.0000E+00 Aerosols (kg) 2.1639E-12 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 2.2147E-14 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 3.1035E-14 Total I (Ci) 1.8884E-03 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.4546E+14 Elemental I (atoms) 0.0000E+00 3.7452E+14 Organic I (atoms) 0.0000E+00 1.1583E+13 Aerosols (kg) 0.0000E+00 1.6130E-09 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.1607E+13 Elemental I (atoms) 0.0000E+00 2.9886E+13 Organic I (atoms), 0.0000E+00 9.2432E+11 Aerosols (kg) 0.0000E+00 1.2872E-10 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases (atoms) 3.9054E+14 0.0000E+00 Elemental I *(atoms) 3.7824E+14 0.0000E+00 Organic I (atoms) 1.1698E+13 0.0000E+00 Aerosols (kg) 1.6281E-09 0.0000E+00 Detailed model information at time (H) = 24.0000 EAB - MST Release Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.0000E+00 0.0000E+00 0.0000E+00 Accumulated dose (rem) 6.6288E-01 3 .7624E+01 1.9312E+00 MSLB @ LPZ - MST Release Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.0000E+00 0.0000E+00 0.0000E+00 Accumulated dose (rem) 3.9134E-02 2.2211E+00 1.1401E-01 MSLB @ CR - MST Release Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 8.2942E-06 3.6358E-02 1.1688E-03 Accumulated dose (rem) 2.3978E-02 2.7108E+01 9.2312E-01 SSES TB MS Tunnel Compartment Nuclide Inventory:

Time *(h) = 24.0000 Ci kg Atoms Decay

EC-RADN-1 128 Attachment 5 Page 55 SSES TB MS Tunnel Transport 'Group Inventory:

Time (h) = 24.0000 Atmosphere Sump Noble gases (atoms) 3.7977E-26 0.OOOOE+00 Elemental I (atoms) 4.5471E-27 0.0000E+00 Organic I (atoms) 1.4063E728 0.0000E+00 Aerosols (kg) 1.9466E-50 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 2.3029E-51 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2. 8688E-51 Total I (Ci) 9.5762E-42 SSES MST to Environs! Transport Group Inventory:

Pathway Time (h) = 24.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6518E+16 Elemental I (atoms) 0.OOOOE+00 1.9701E+17 Organic I (atoms) 0.OOOOE+00 6. 0932E+15 Aerosols (kg) 0.0000E+00 8.4855E-07 SSES CR Compartment Nuclide Inventory.:

Time (h) = 24.0000 Ci kg Atoms Decay 1-131 4 .2033E-10 3.3951E-18 1.5607E+07 1. 6245E+13 1-133 1.4166E-09 1.2581E-18 5.6964E+06 1. 0729E+14 1-135 3. 8691E-10. 1.1219E-19 5.0044E+05 1. 4455E+14 Xe-131m 2. 8744E-13 3 .4578E-21 1.5896E+04 1. 1495E+09 Xe-133m 1.6250E-11 3.8066E-20 1.7236E+05 5. 9315E+10 Xe-133 2.6602E-10 1.4280E-18 6.4658E+06 1. 0410E+12 Xe-135 1.0001E-09 3. 9334E-19 1.7546E+06 1 .2931E+13 Kr-85 2.3303E-14 5.9397E-20 4.2082E+05 8. 2819E+08 SSES CR Transport Group Inventory:

Time (h) = 24.0000 Atmosphere Sump Noble gases (atoms) 8.8327E+06 0.OOOOE+00 Elemental I (atoms) 1.0576E+06 0.OOOOE+00 Organic I (atoms) 3.2709E+04 0.OOOOE+00 Aerosols (kg) 4.5274E-18 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 4.5496E-20 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 5.6675E-20 Total I (Ci) 2.2272E-09 Environment to SSES CR - .6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 24.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4546E+14 Elemental I (atoms) 0.OOOOE+00 3. 7452E+14 Organic I (atoms) 0.OOOOE+00 1.1583E+13 Aerosols (kg) 0.OOOOE+00 1.6130E-09 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 24.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1607E+13 Elemental I (atoms) 0.OOOOE+00 2.9886E+13 Organic I (atoms) 0.OOOOE+00 9.2432E+11 Aerosols (kg) 0.OOOOE+00 1.2872E-10 SSES CR to Environment -. CR Exhaust Transport Group Inventory:

Pathway Time (h) = 24.0000 Filtered Transported Noble gases (atoms) 3.9282E+14 0.OOOOE+00 Elemental I (atoms) 3 . 7873E+14 0.OOOOE+00 Organic I (atoms) 1.1713E+13 0.0000E+O0

EC-RADN-1 128 Attachment 5 Page 56 Aerosols (kg) 1.6303E-09 0.OOOOE+00 Detailed model information at time (H) = 96.0000 EAB - MST Release Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) o.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 6.6288E-01 3.7624E+01 1.9312E+00 MSLB @ LPZ - MST Release Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0. 000E+00 Accumulated dose (rem) 3.9134E-02 2.2211E+00 1.1401E-01 MSLB @ CR - MST Release Doses:.

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 4.4223E-12 4.5228E-08 1.4197E-09 Accumulated dose (rem) 2.3978E-02 2.7108E+01 9.2312E-01 SSES TB MS Tunnel Compartment Nuclide Inventory:

Time (h) = 96.0000 Ci kg Atoms Decay SSES TB MS Tunnel Transport Group Inventory:

Time (h) = 96.0000 Atmosphere Sump Noble gases (atoms) 3.8638E-26 0.OOOOE+00 Elemental I (atoms) 2.6232E-27 0.OOOOE+00 Organic I (atoms). 8.1131E-29 0.OOOOE+00 Aerosols (kg) 1.1184E-50 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.1953E-51 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.2407E-51 Total I (Ci) 1.9578E-42 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6518E+16 Elemental I (atoms) 0.OOOOE+00 1.9701E+17 Organic I (atoms) 0.OOOOE+00 6.0932E+15 Aerosols (kg) 0.OOOOE+00 8.4855E-07 SSES CR Compartment Nuclide Inventory:

Time (h) = 96.0000 Ci kg Atoms Decay SSES CR Transport Group Inventory:

Time (h) = 96.0000 Atmosphere Sump Noble gases (atoms) 9.0939E-19 0.OOOOE+00 Elemental I (atoms) 6.1741E-20 0.OOOOE+00 Organic I (atoms) 1.9095E-21 0.OOOOE+00 Aerosols (kg) 2.6324E-43 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 2.3896E-45 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2.4805E-45 Total I (Ci) 4.6079E-35 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4546E+14 Elemental I (atoms) 0.OOOOE+00 3.7452E+14

-Organic I (atoms) 0.OOOOE+00 1.1583E+13

EC-RADN-1128 Attachment 5 Page 57 Aerosols (kg) 0.OOOOE+00 1.6130E-09 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1607E+13 Elemental I (atoms) 0.OOOOE+00 2.9886E+13 Organic I (atoms) 0.OOOOE+00 9.2432E+11 Aerosols (kg) 0.OOOOE+00 1.2872E-10 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered Transported Noble gases (atoms) 3.9282E+14 0.OOOOE+00 Elemental I (atoms) 3.7873E+14 0.OOOOE+00 Organic I (atoms) 1.1713E+13 0.OOOOE+00 Aerosols (kg) 1.6303E-09 0.OOOOE+00 Detailed model information at time (H) = 720.0000 EAB 7 MST Release Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) *6.6288E-01 3 .7624E+01 1.9312E+00 MSLB @ LPZ - MST Release Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.0000E+00 Accumulated dose (rem) 3.9134E-02 2 .2211E+00 1.1401E-01 MSLB @ CR - MST Release Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 3.4235E-38 1.6032E-33 4.9044E-35 Accumulated dose (rem) 2.3978E-02 2. 7108E+01 9. 2312E-01 SSES TB MS Tunnel Compartment Nuclide Inventory:

Time (h) = 720.0000 Ci kg Atoms Decay SSES TB MS Tunnel Transport Group Inventory:

Time (h) = 720.0000 Atmosphere Sump Noble gases (atoms) 3.3513E-27 0.OOOOE+00 Elemental I (atoms) 2.6802E-28 0.OOOOE+00 Organic I (atoms) 8.2893E-30 0.OOOOE+00 Aerosols (kg) 1.1420E-51 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.1945E-52 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.1945E-52 Total I (Ci) 1.4883E-43 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 720.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6518E+16 Elemental I (atoms) 0.OOOOE+00 1.9701E+17 Organic I (atoms) 0.OOOOE+00 6.0932E+15 Aerosols (kg) 0.OOOOE+00 8.4855E-07 SSES-CR Compartment Nuclide Inventory.:

Time (h) = 720.0000 Ci kg Atoms Decay

EC-RADN-1 128 Attachment 5 Page 58 SSES CR Transport Group Inventory:

Time (h) = 720.0000 Atmosphere Sump Noble gases (atoms) 1.8837-236 0.OOOOE+00 Elemental I (atoms) 1.5065-237 0.OOOOE+00 Organic I (atoms) 4.6593-239 0.OOOOE+00 Aerosols (kg) 6.4191-261 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 5.7032-263 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 5.7032-263 Total I (Ci) 8.3656-253 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 720.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4546E+14 Elemental I (atoms) 0.OOOOE+00 3.7452E+14 Organic I (atoms) 0.0000E+00 1.1583E+13 Aerosols (kg) 0.OOOOE+00 1.6130E-09 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 720.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1607E+13 Elemental I (atoms) 0.OOOOE+00 2.9886E+13 Organic I (atoms) 0.OOOOE+00 9.2432E+11 Aerosols (kg) 0.OOOOE+00 1.2872E-10 SSES CR to Environment - CR Exhaust Transport Group Inventory:

.Pathway Time (h) = 720.0000 Filtered Transported Noble gases (atoms) 3.9282E+14 0.OOOOE+00 Elemental I (atoms) 3.7873E+14 0.OOOOE+00 Organic I (atoms) 1.1713E+13 0.OOOOE+00 Aerosols (kg) 1.6303E-09 0.OOOOE+00 72185 1-131 Summary SSES TB MS Tunnel Environment SSES CR Time (hr) 1-131 (Curies) 1-131 (Curies) 1-131 (Curies) 0.000 4.7889E+01 1.0977E-02 2 .2523E-05 0.033 1.9695E-42 4.7900E+01 9. 5716E-02 0.067 1.9693E-42 4. 7900E+01 9 .3191E-02 0.330 1.9674E-42 4. 7900E+01 7. 5426E-02 0.500 1.9662E-42 4. 7900E+01 6. 5803E-02 0.750 1.9645E-42 4. 7900E+01 5. 3835E-02 1.000 1.9627E-42 4. 7900E+01 4.4044E-02 1.250 1.9609E-42 4. 7900E+01 3.6034E-02 1.500 1.9592E-42 4 .7900E+01 2.9480E-02 1.750 1.9574E-42 4. 7900E+01 2.4119E-02 2.000 1.9557E-42 4. 7900E+01 1.9732E-02 2.250 1.9539E-42 4 .7900E+01 1.6144E-02 2.500 1.9522E-42 4. 7900E+01 1.3208E-02 2.750 1.9504E-42 4.7900E+01 1.0806E-02 3.000 1.9487E-42 4 .7900E+01 8.8404E-03 3.250 1.9469E-42 4. 7900E+01 7.2326E-03 3.500 1.9452E-42 4 .7900E+01 5.9172E-03 3.750 1.9434E-42 4. 7900E+01 4.8411E-03 4.000 1.9417E-42 4 .7900E+01 3.9606E-03 4.250 1.9400E-42 4. 7900E+01 3.2403E-03

EC-RADN-1 128 Attachment 5 Page 59 4.500 1.9382E-42 4.7900E+01 2.6510E-03 4.750 1.9365E-42 4.7900E+01 2.1629E-03 5.000 1.9347E-42 4.7900E+01 1.7744E-03 5.250 1.9330E-42 4.7900E+01 1.4517E-03 5.500 1. 9313E-42 4. 7900E+01 1.1877E-03 5.750 1.9295E-42 4.7900E+01 9. 7168E-04 6.000 1. 9278E-42 4.7900E+01 7.9496E-04 6.250 1. 9261E-42 4.7900E+01 6. 5038E-04 6.500 1.9244E-42 4 7900E+01 5.3210E-04 6.750 1.9226E-42 4.7900E+01 4.3533E-04 7.000 1. 9209E-42 4 .7900E+01 3.5615E-04 7.250 1.9192E-42 4 .7900E+01 2.9138E-04 7.500 1. 9175E-42 4 .7900E+01 2.3839E-04 7.750 1. 9157E-42 4 .7900E+01 1.9503E-04 8.000 1. 9140E-42 4.7900E+01 1.5956E-04 8.250 1. 9123E-42 4 .7900E+01 1.3054E-04 8.500 1. 9106E-42 4.7900E+01 1.0680E-04 8.750 1.9089E-42 4 .7900E+01 8.7377E-05 9.000 1.9072E-42 4 .7900E+01 7.1486E-05 9.250 1.9055E-42 4 .7900E+01 5.8485E-05 9.500 1.9038E-42 4.7900E+01 4.7848E-05 9.750 1.9020E-42 4.79.00E+01 .3.9146E-05 10.000 1.9003E-42 4 .7900E+01 3.2027E-05 10.250 1.8986E-42 4.7900E+01 2.6202E-05 24.000 1. 8073E-42 4.7900E+01 4.2033E-10 96.000 1.3959E-42 4.7900E+01 3.2854E-35 720.000 1.4883E-43 4 .7900E+01 8.3656-253 Cumulative Dose Summary EAB - MST Release MSLB @ LPZ - MST Rele MSLB @ CR -- MST Relea Time Thyroid TEDE Thyroid TEDE Thyroid TEDE (hr) (rem) (rem) (rem) (rem) (rem) (rem) 0.000 0.0000E+00 0.0000E+00 0.0000E+00 0. OOOE+00 0.0000E+00 0.0000E+00 0.033 3.7624E+01 1. 9312E+00 2 .2211E+00 1.1401E-01 7.3581E-01 2.5742E-02 0.067 3.7624E+01 1.9312E+00 2.2211E+00 1. 1401E-01 1.4587E+00 5. 1001E-02 0.330 3.7624E+01 1.9312E+00 2.2211E+00 1. 1401E-01 6 5184E+00 2.2693E-01 0.500 3.7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 9.2384E+00 3 .2084E-01 0.750 3 .7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 1.2597E+01 4.3612E-01 1.000 3.7624E+01 1. 9312E+00 2. 2211E+00 1.1401E-01 1.5322E+01 5.2906E-01 1.250 3.7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 i.7533E+01 6.0407E-01 1.500 3 .7624E+01 1. 9312E+00 2.2211E+00 1. 1401E-01 1. 9329E+01 6 .6468E-01 1.750 3.7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 2 .0787E+01 7. 1367E-01 2.000 3.7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2. 1970E+01 7.5331E-01 2.250 3.7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2 .2932E+01 7. 8540E-01 2.500 3.7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 2.3713E+01 8. 1139E-01 2.750 3 .7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2.4348E+01 8.3245E-01 3.000 3.7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 2 .4864E+01 8.4953E-01 3.250 3.7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 2 .5283E+01 8.6337E-01 3.500 3 .7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 2 .5624E+01 8. 7460E-01 3.750 3 .7624E+01 1.9312E+00 2.2211E+00 1. 1401E-01 2 . 5901E+01 8.8371E-01 4.000 3 .7624E+01 1. 9312E+00 2.2211E+00 1. 1401E-01 2 .6127E+01 8.9111E-01 4.250 3 .7624E+01 1.9312E+00 2.2211E+00 1. 1401E-01 2 .6310E+01 8. 9711E-01 4.500 3 .7624E+01 1. 9312E+00 2.2211E+00 1. 1401E-01 2.6459E+01 9. 0199E-01 4.750 3 .7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2 .6580E+01 9.0594E-01 5.000 3.7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 2.6678E+01 9. 0916E-01 5.250 3.7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2 .6758E+01 9. 1177E-01 5.500 3.7624E+01 1.9312E+00 2.2211E+00 1. 1401E-01 2.6824E+01 9. 1389E-01 5.750 3 .7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2.6877E+01 9.1562E-01 6.000 3.7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2.6920E+01 9.1702E-01 6.250 3 .7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 2.6955E+01 9.1816E-01 6.500 3.7624E+01 1. 9312E+00 2.2211E+00 1. 1401E-01 2.6983E+01 9.1909E-01

-6.750 3.7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2.7007E+01 9.1984E-01 7.000 3.7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2.7026E+01 9.2045E-01

EC-RADN- 1128 Attachment 5 Page 60 7 .250 3.7624E+01 1.9312E+00 2. 2211E+00 1.1401E-01 2.7041E+01 9.2095E-01 7 .500 3 7624E+01 1.9312E+00 2.2211E+0.0 1.1401E-01 2 .7053E+01 9.2135E-01 7.750 3 7624E+01 1.9312E+00 2.2211E+00 1.1401E-01 2 .7064E+01 9.2168E-01 8.000 3 7624E+01 1.9312E+00 2.2211E+00 1. 1401E-01 2.7072E+01 9.2195E-01 8.250 3 7624E+01 1.9312E+00 2.2211E+00 1. 1401E-01 2.7079E+01 9.2217E-01 8.500 3 7624E+01 1. 9312E+00 2.2211E+00 1. 1401E-01 2. 7084E+01 9.2235E-01 8.750 3 7624E+01 1 9312E+00 2.2211E+00 1.1401E-01 2. 7089E+01 9.2249E-01 9.000 3 .7624E+01 1.9312E+00 2.2211E+00 1. 1401E-01 2 .7092E+01 9.2261E-01 9.250 3 . 7624E+01 1. 9312E+00 2.2211E+00 1. 1401E-01 2. 7095E+01 9.2270E-01 9.500 3. 7624E+01 1. 9312E+00 2. 2211E+00 1. 1401E-01 2. 7098E+01 9.2278E-01

.9.750 3. 7624E+01 1.9312E+00 2. 2211E+00 1.1401E-01 2.7100E+01 9.2284E-01 10.000 3 .7624E+01 1.9312E+00 2. 2211E+00 1.1401E-01 2. 7101E+01 9.2289E-01 10.250 3 .7624E+01 1. 9312E+00 2. 2211E+00 1.1401E-01 2. 7103E+01 9.2294E-01 24 .000 3 .7624E+01 1. 9312E+00 2.2211E+00 1.1401E-01 2. 7108E+01 9.2312E-01 96.000 3 .7624E+01 1. 9312E+00 2.2211E+00 1. 1401E-01 2. 7108E+01 9.2312E-01 720.000 3 . 7624E+01 1. 9312E+00 2.2211E+00 1. 1401E-01 2. 7108E+01 9. 2312E-01 Worst Two-Hour Doses EAB - MST Release Time Whole Body Thyroid TEDE (hr) (rem) (rem) (rem) 0.0 6.6288E-01 3 .7624E+01 1.9312E+00

EC-RADN- 1128 Attachment 6 Page 61 Attachment 6 RADTRAD Output TBMST_500cfm.2ptmcDE_1 128.out

EC-RADN-1 128 Attachment 6 Page 62

                        1. it##########################################################

RADTRAD Version 3.03 (Spring 2001) run on 10/24/2006 at 13:01:07

    1. i#####it ####################i#####i################itit#####
                                                                                1. 4###############################

File information Plant file = C:\Program Files\radtrad3.03\EC-RADN-1128 R1 RADTRAD\TBMST_500cfmpt2mcDEll28.psf Inventory file = C:\Program Files\radtrad3.03\EC-RADN-l128_RiRADTRAD\SLBspt2mc.nif Release file = C:\Program Files\radtrad3.03\EC-RADN-1128_RiRADTRAD\SLB;RFT Dose Conversion file = C:\Program Files\radtrad3.03\EC-RADN-1128_RiRADTRAD\SLBPhase 2.inp Radtrad 3.03 4/15/2001

  • SSES MSLB Nuclide Inventory File:

C:\Program Files\radtrad3 .03\EC-RADN-1128_RiRAflTRAD\SLB-pt2mc.nif Plant Power Level:

1. 0000E+00*

Compartments:

3 Compartment 1:.

SSES MS Tunnel 4.AOOO0E+04 0

0 0

0 0

Compartment 2:

Environment 2

0. OOOOE+00 0

0 0

0 0

Compartment 3:

SSES CR 1

S. 1800E+05 0

0 0

0 Pathways:

4 Pathway 1:

EC-RADN- 1128 Attachment 6 Page 63 SSES MST to Environs 1

2 2

Pathway 2:

Environment to SSES CR - 6391 cfm Normal Intake 2

3 2

Pathway 3:

Environment to SSES CR -500+10 cfm Unfiltered Inleakage 2

3 2

Pathway 4:

SSES CR to Environment - CR Exhaust 3

2 2

End of Plant Model File Scenario Description Name:

Plant Model Filename:

Source Term:

1 1 1.OOOOE+00 C:\Program Files\radtrad3.03\EC-RADN-1128 R1 RADTRAD\SLBPhase 2.inp C:\Program Files\radtrad3.03\EC-RADN-1128_RIRADTRAD\SLB.RFT 0.OOOOE+00 1

9.5000E-01 4.8500E-02 1.5000E-03 1.OOOOE+00 Overlying Pool:

0 o.OOOOE+00 0

0 0

Compartments:

3 Compartment 1:

1 1

0 0

0 0

0 0

0 Compartment 2:

0 1

0 0

0 0

0 0

0

--Compartment 3:

1 1

ý0.

0

EC-RADN-1 128 Attachment 6 Page 64 0

0 0

0 0

Pathways:

4 Pathway 1:

0 0

0 0

0 1

3 o . 000E+00 2.2000E+06 o.OOOOE+00 o .OOOOE+O0 O.OOOOE+O0 3 .3300E-02 o.OOOOE+00 o.OOOOE+00 o0.0006E+00 O.OOOOE+00

7. 2000E+02 o.OOOOE+00 o.OOOOE+00 o .OOOOE+0O O.OOOOE+00 0

0 0

0 0

Pathway 2:

0 0

0 0

0 1

3 o .OOOOE+00 6.3910E+03 o.OOOOE+00 o.OOOOE+00 0.OOOOE+00 6 .6600E-02 6.3910E+03 o.OOOOE+00 1.OOOOE+02 1.OOOOE+02

7. 2000E+02 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 0.OOOOE+00 0

0 0

0 0

0 Pathway 3:

0 0

0 0

0 1

3 o .OOOOE+00 5. 1000E+02 o.OOOOE+00 0.OOOOE+00 0.OOOOE+00

6. 6600E-02 5. 1000E+02 o.OOOOE+00 1.OOOOE+02 1.OOOOE+02 7 .2000E+02 o.OOOOE+00 o.OOOOE+00 o.OOOOE+00 0.OOOOE+00 0

0 0

0 0*

0 Pathway 4:

0 0

0 0

0 1

3

EC-RADN-. 128 Attachment 6 Page 65 o.0000E+00 6. 9010E+03 O. 0000E+00 o.O000E+00 o.0000E+00

5. 0000E-01 6. 9010E+03 o.0000E+00 o.OOOOE+00 o.OOOOE+00 7.2000E+02 0.OOOOE+00 o.0OOOE+00 o.OOOOE+00 o.0000E+00 0

0 0

0 0

0 Dose Locations:

3 Location 1:

EAB -MST Release 2

1 3

o.OOOOE+00 8.3000E-04 2.OOOOE+00 8.3000E-04 7.2000E+02 o.OOOOE+00 1

4 o.OOOOE+00 3.5000E-04 8.OOOOE+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.OOOOE+00 0

Location 2:

MSLB @ LPZ - MST Release 2

1

.5 o.OOOOE+00 4.9000E-05 8.OOOOE+00 3.5000E-05 2.4000E+01 1.7000E-05 9.6000E+01 6. 10OOE-06 7.2000E+02 0.OOOOE+00 4

.0.0000E+00 3.5000E-04 8.OOOOE+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.OOOOE+00 0

Location 3:

MSLB @ CR - TB MST Release 3

0 1

2 0.OOOOE+00 3.4700E-04 7.2000E+02 0.OOOOE+00 1

4 0.OOOOE+00 1.OOOOE+00 2.4000E+01 6.OOOOE-01 9.6000E+01 4.OOOOE-01 7.2000E+02 0.OOOOE+00 Effective Volume Location:

1

.3 0.OOOOE+00 6.300OOE-04 6.6600E-02 0.OOOOE+00 7.2000E+02 0.OOOOE+00 Simulation Parameters:

4 0.OOOOE+00 1.OOODE-04

EC-RADN-1128 Attachment 6 Page 66 1.0000E-02 .4OOO0E-03 1.0000E-O1 1.OOOOE-02 7.2000E+02 o.oooOE+00 Output Filename:

C:\Program Files\radtrad3.o7 1

1 1

0 1

End of Scenario File

EC-RADN-1 128 Attachment 6 Page 67 RADTRAD Version 3.03 (Spring 2001) run on 10/24/2006 at 13:01:07

                      1. 4############################################################
                                                                                1. 4###############################

Plant Description Number of Nuclides = 16 Inventory Power = 1.OOOOE+00 MWth Plant Power Level = 1.OOOOE+00 MWth Number of compartments 3 Compartment information Compartment number 1 (source term fraction = 1.OOOOE+00 Name: SSES MS Tunnel Compartment volume = 4.4000E+04 (Cubic feet)

Compartment type is Normal Pathways into and out of compartment 1 Exit Pathway Number 1: SSESMST to Environs Compartment number 2 Name: Environment Compartment.type is Environment Pathways into and out of compartment 2 Inlet Pathway Number 1: SSES MST to Environs Inlet Pathway Number 4: SSES CR to Environment - CR Exhaust Exit Pathway Number 2: Environment to SSES CR - 6391 cfm Normal Intake Exit Pathway Number 3: Environment to SSES CR -500+10 cfm Unfiltered Inle Compartment number 3 Name: SSES CR Compartment volume = 5.1800E+05 (Cubic feet)

Compartment type is Control Room Pathways into and out of compartment 3 Inlet Pathway Number 2: Environment to SSES CR - 6391 cfm Normal Intake Inlet Pathway Number 3: Environment to SSES CR -500+10 cfm Unfiltered Inle Exit Pathway Number 4: SSES CR to Environment - CR Exhaust Total number of pathways = 4

EC-RADN-1 128 Attachment 6 Page 68

                                                                                                                  1. 4##############

RADTRAD Version 3.03 (Spring 2001) run on 10/24/2006 at 13:01:07

                                                                                                      1. 4####################

Scenario Description

                                                                                                            1. 4#################

Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP EARLY IN-VESSEL LATE RELEASE RELEASE MASS 0.000000 hr 0.0000.hrs 0.0000 hrs (gm)

NOBLES 1.OOOOE+00 . 0.OOOOE+00 0.OOOOE+00 1.322E-05 IODINE 1.OOOOE+00 0.OOOOE+00 0.OOOOE+00 4.473E-05 CESIUM 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0. OOOE+00 TELLURIUM 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOE+00 STRONTIUM 0.OOOOE+00 0.0000E+00 0.OOOOE+00 0. OOOE+00 BARIUM 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0. 000E+00 RUTHENIUM 0.OOOOE+00 0.OOOOE+00 0 .0000E+00 0. OOOE+00 CERIUM 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOE+00 LANTHANUM 0.ooo0E+00 0.OOOOE+00 0.OOOOE+00 0. OOOE+00 Inventory Power = 1. MWt Nuclide Group Specific half Whole Body Inhaled Inhaled Name Inventory life DCF Thyroid Effective (Ci/MWt) (s) (Sv-m3/Bq-s) (Sv/Bq) (Sv/Bq) 1-131 2 2.400E+00 6 956E+05 1.820E-14 2. 920E-07 8. 890E-09 1-132 2 2.210E+01 8.390E+03 1.120E-13 1. 740E-09 1. 030E-10 1-133 2 1.640E+01 7. 533E+04 2.940E-14 4. 860E-08 1. 580E-09 1-134 2 4.420E+01 3. 150E+03 1.300E-13 2. 880E-I0 3 .550E-11 1-135 2 2.400E+01 2 .423E+04 8.294E-14 8 .460E-09 3 .320E-10 Xe-131m 1 1.810E-03 1. 036E+06 3.378E-16 0. OOOE+00 0 OOOE+00 Xe-133m 1 3.390E-02 1. 987E+05 1.370E-15 0 OOOE+00 0 OOOE+00 Xe-133 1 9.890E-01 4 . 553E+05 1.560E-15 0. OOOE+00 0 .OOOE+00 Xe-135m 1 3.150E+00 9.360E+02 2.040E-14 0. OOOE+00 0. OOOE+00 Xe -135. 1 2.750E+00 3 .287E+04 1.190E-14 0. OOOE+00 0 OOOE+00 Kr-83m 1 4.190E-01 6. 840E+03 1.500E-18 0. OOOE+00 0 .OOOE+00 Kr-85m 1 7.290E-01 1.570E+04 7.480E-15 0. OOOE+00 0.OOOE+00 Kr-87 1 2.360E+00 4.680E+03 4.120E-14 0. OOOE+00 0.OOOE+00 Kr-88 1 2.450E+00 9. 972E+03 1.020E-13 0. OOOE+00 0.OOOE+00 Kr-85 1 2.430E-03 3 . 383E+08 1.190E-16 0. OOOE+00 0.OOOE+00 Xe-138 1 1.100E+01 8.490E+02 5.770E-14 0. OOOE+00 0.OOOE+00 Nuclide Daughter Fraction Daughter Fraction Daughter Fraction 1-131 Xe-131m 0.01 none 0.00 none 0.00 1-133 Xe-133m 0.03 Xe-133 0.97 none 0.00 1-135 Xe-135m 0.15 Xe-135 0.85 none 0.00 Xe-133m Xe-133 1.00 none 0.00 none 0.00 Xe-135m Xe-135 1.00 Cs-135 0.00 none 0.00 Xe-135 Cs-135 1.00 none 0.00 none 0.00 Kr-85m Kr-85 0.21 none 0.00 none 0.00 Kr-87 Rb-87 1..00 none 0.00 none 0.00 Kr-88 Rb-88 1.00 none 0.00 none 0.00 Xe-138 Cs-138 1.00 none 0.00 none 0.00 Iodine fractions Aerosol 9. 5000E-01 Elemental 4.8500E-02 Organic 1.5000E-03 COMPARTMENT DATA

EC-RADN-1128 Attachment 6 Page 69 Compartment number 1: SSES MS Tunnel Compartment number 2: Environment Compartment number 3: SSES CR PATHWAY DATA Pathway number 1: SSES MST to Environs Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0 0000E+00 2.2000E+06 0.0000E+00 0.OOOOE+00 0.0000E+00 3.3300E-02 o.OOOOE+00 0.0000E+00 0.0OOOE+00 0.0000E+00 7.2000E+02 o.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 2: Environment to SSES CR - 6391 cfm Normal Intake Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 6.3910E+03 0.0000E+00 0.0000E+00 0.OOOOE+00 6.6600E-02 6.3910E+03 0.0000E+00 1.0000E+02 1.0000E+02 7.2000E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Pathway number 3: Environment to SSES CR -500+10 cfm Unfiltered Inle Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 5. 1000E+02 0.0000E+00 0.0000E+00 0.OOOOE+00 6.6600E-02 5.1000E+02 0.OOOOE+00 1.OOOOE+02 1.0000E+02 7.2000E+02 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0.OOOOE+00 Pathway number 4: SSES CR to Environment - CR Exhaust Pathway Filter: Removal Data Time (hr) Flow Rate Filter Efficiencies (%)

(cfm) Aerosol Elemental Organic 0.0000E+00 6. 9010E+03 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 5.0000E-01 6. 9010E+03 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 7.2000E+02 0.OOOOE+00 0.0000E+00 0.OOOOE+00 0.OOOOE+00 LOCATION DATA Location EAB - MST Release is in.compartment 2 Location X/Q Data Time (hr) X/Q (s

  • m'-3) 0.00OOE+/-00 8.3000E-04 2.OOOOE+00 8.3000E-04 7.2000E+02 0.OOOOE+00 Location Breathing Rate Data Time (hr) Breathing Rate (m'3
  • sec^-l) 0.OOOOE+00 3.5000E-04 8.0000E+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.OOOOE+00 Location MSLB @ LPZ - MST Rel.ease is in compartment 2 Location X/Q Data

EC-RADN-1 128 Attachment 6 Page 70 Time (hr) X/Q (s

  • m'-3) 0.0000E+00 4.9000E-05 8.OOOOE+00 3.5000E-05 2 .4000E+01 1.7000E-05 9.6000E+01 *6.1000E-06 7.2000E+02 o.OOOOE+00 Location Breathing Rate Data Time (hr) Breathing Rate (mW3
  • sec'-1) 0.OOOOE+00 3.5000E-04 8.OOOOE+00 1.8000E-04 2.4000E+01 2.3000E-04 7.2000E+02 0.0000E+00 Location MSLB @ CR - TB MST Release is in co mpartment 3 Location X/Q Data Time (hr) X/Q (s
  • m'-3) 0.OOOOE+00 6.3000E-04 6.6600E-02 o.0000E+00 7.2000E+02 0.0000E+00 Location Breathing Rate Data Time (hr) Breathing Rate (mW3
  • sec"-1) o.OOOOE+00 3.4700E-04 7.2000E+02 .0.0000E+00 Location Occupancy Factor Data Time (hr) Occupancy Factor o.0000E+00 1.0000E+00 2.4000E+01 6.0000E-01
9. 6000E+01 4.0000E-01 7.2000E+02 0.0000E+00 USER SPECIFIED TIME STEP DATA - SUPPLEMENTAL TIME STEPS Time Time step 0.0000E+00 1.0000E-04 1.0000E-02 1.OOOOE-03 1.0000E-01 1.0000E-02 7.2000E+02 0.OOOOE+00

EC-RADN-1 128 Attachment 6 Page 71

                                                                                      1. 44##############################

RADTRAD Version 3.03 (Spring 2001) run on 10/24/2006 at 13:01:07

  • t##### #####
  • It #####
  1. 4 # #4 4 # 4 #4# * #
  1. 4 * #4# 4 t 4 44#
  • 4.
  1. 4 #t # It
  • 4*4## # It *
  1. 4 # #. *
  • 4 * # It 44 #4# 4 It 4 # It It
        1. ####4 #I #
  1. 4###################################################################

Dose, Detailed model and Detailed Inventory Output Detailed model information at time (H) = 0.0000 EAB - MST Release Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 8.3209E-06 4.3156E-04 2.2869E-05 Accumulated dose (rem) 8.3209E-06 4.3156E-04 2.2869E-05 MSLB @ LPZ - MST Release Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 4.9124E-07 2.5478E-05 1.3501E-06 Accumulated dose (rem) 4.9124E-07 2.5478E-05 1.3501E-06 MSLB @ CR- TB MST Release Doses:

Time (h) = 0.0000 Whole Body Thyroid TEDE Delta dose (rem) 2.8079E-14 1.9833E-11 6.9666E-13 Accumulated dose (rem) 2.8079E-14 1.9833E-11 6. 9666E-13

'SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) 0.0000 Ci kg Atoms Decay 1-131 2.3995E+00 1.9381E-08 8.9094E+16 4.8836E+07 1-132 2.2095E+01 2. 1690E-09 9. 8953E+15 4.4970E+08 1-133 1.6396E+01 1 .4561E-08 6. 5931E+16 3 .3371E+08 1-134 4.4190E+01 1. 6533E-09 7 .4304E+15 8.9939E+08 1-135 2.3994E+01 6. 9573E-09 3 1036E+16 4.8836E+08 Xe-131m 1.8096E-03 2. 1769E-11 1. 0007E+14 3.6830E+04 Xe-133m 3.3892E-02 7. 9393E-11 3 .5949E+14 6.8981E+05 Xe-133 9. 8877E-01 5. 3077E-09 2 .4033E+16 2 . 0124E+07 Xe-135m 3. 1493E+00 3. 5273E-11 1. 5735E+14 6.4097E+07 Xe-135 2.7494E+00 1. 0813E-09 4. 8237E+15 5.5958E+07 Kr-83m 4..1890E-01 2. 1080E-11 1. 5295E+14 8.5259E+06 Kr-85m 7.2883E-01 8. 6191E-11 6. 1065E+14 1.4834E+07 Kr-87 2.3595E+00 8. 5154E-11 5. 8943E+14 4.8022E+07 Kr-88 2.4494E+00 1. 9053E-10. 1.3039E+15 4.9853E+07 Kr-85 2.4294E-03 6. 1923E-09 4.3871E+16 4.9447E+04 Xe-138 1.0997E+01 1. 1421E-10 4. 9840E+14 2.2383E+08 SSES MS Tunnel Transport Group Inventory:

Time (h) = 0.0000 Atmosphere Sump Noble gases (atoms) 7.6500E+16 '0.00ýE+00 Elemental I (atoms) 9.8642E+15 O.OOOOE+00

EC-RADN-1 128 Attachment 6 Page 72 Organic I (atoms) 3.0508E+14 0.OOOOE+00 Aerosols (kg) 4.2485E-08 0.000.OE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 4.8147E-09 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 8.2902E-09 Total I (Ci) 1.0907E+02 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 0.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.7535E+13 Elemental I (atoms) 0.OOOOE+00 2.2611E+12 Organic I (atoms) 0.0000E+00 6.9929E+10 Aerosols (kg) 0.OOOOE+00 9.7383E-12 SSES CR Compartment Nuclide Inventory:

Time (h) 0.0000 Ci kg Atoms. Decay 1-131 1.1285E-06 9. 1151E-15 4. 1903E+10 2.2969E+01 1-132 1.0392E-05 1. 0201E-15 4.6540E+09 2.1150E+02 1-133 7 .7115E-06 6. 8483E-15 3. 1009E+10 1.5695E+02 1-134 2 0783E-05 7. 7760E-16 3.4946E+09 4.2300E+02 1-135 1. 1285E-05 3 .2722E-15 1.4597E+10 2.2969E+02 Xe-131m 8 .5109E-10 1. 0238E-17 4.7066E+07 1.7322E-02 Xe-133m 1. 5940E-08 3.7340E-17 1.6907E+08 3 .2443E-01 Xe-133 4 .6504E-07 2.4963E-15 1.1303E+10 9.4650E+00 Xe-135m 1 .4812E-06 1.6590E-17 7.4004E+07 3.0146E+01 Xe-135 1 .2931E-06 5. 0858E-16 2.2687E+09 2.6318E+01 Kr-83m 1. 9702E-07 9. 9144E-18 7. 1935E+07 4.0099E+00 Kr-85m 3 .4279E-07 4.0537E-17 2.8720E+08 6.9767E+00 Kr-87 1 .1097E-06 4. 0050E-17 2.7722E+08 2.2586E+01 Kr-88 1.1520E-06 8. 9612E-17 6.1325E+08 2.3447E+01 Kr-85 1.1426E-09 2. 9124E-15 2. 0634E+10 2.3256E-02 Xe-138 5.1723E-06 5.3715E-17 2.3441E+08 1.0527E+02

'SSES CR Transport Group Inventory:

Time (h) = 0.0000 Atmosphere Sump Noble gases (atoms) 3.5980E+10 0.OOOOE+00 Elemental I (atoms) 4.6393E+09 0.OOOOE+00 Organic I (atoms) 1.4348E+08 0.OOOOE+00 Aerosols (kg) 1.9982E-14 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.9235E-16 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 3.3119E-16 Total I (Ci) 5.1300E-05 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 0.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 3.3321E+10 Elemental I (atoms) 0.OOOOE+00 4.2965E+09 Organic I (atoms) 0.OOOOE+00 1.3288E+08 Aerosols (kg) 0.OOOOE+00 1.8505E-14 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

.Pathway Time (h) = 0.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 2.6590E+09 Elemental I (atoms) 0.OOOOE+00 3.4286E+08 Organic I (atoms) 0.OOOOE+00 1.0604E+07 Aerosols (kg) 0.OOOOE+00 1.4767E-15 SSES CR to Environment - CR Exhaust Transport -Group Inventory:

Pathway

EC-RADN-1 128 Attachment 6 Page 73 Time (h) = 0.0000 Filtered Transported Noble gases (atoms) 1.4648E+03 0.OOOOE+00 Elemental I (atoms) 1.8888E+02 0.OOOOE+00 Organic I (atoms) 5.8417E+00 0.OOOOE+00 Aerosols (kg) 8. 1352E-22 0.OOOOE+00 Detailed model information at time (H) = 0.0333 EAB - MST Release Doses:

Time (h) = 0.0333 Whole Body Thyroid TEDE Delta dose (rem) 3.6295E-02 1.8828E+00 9. 9761E-02 Accumulated dose (rem) 3.6303E-02 1.8832E+00 9.9784E-02 MSLB @ LPZ - MST Release Doses:

Time (h) = 0.0333 Whole Body Thyroid TEDE Delta dose (rem) 2.1427E-03 1. 1I15E-01 5.8895E-03 Accumulated dose (rem) 2.1432E-03 1.1118E-01 5.8909E-03 MSLB.@ CR - TB MST Release Doses:

Time.(h) = 0.0333 Whole Body Thyroid TEDE Delta dose (rem) 5. 1646E-05 3.6830E-02 1.2927E-03 Accumulated dose (rem) S. 1646E-05 3.6830E-02 1.2927E-03 SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) = 0.0333 Ci kg Atoms Decay SSES MS Tunnel Transport Group Inventory:

Time (h) = 0.0333 Atmosphere Sump Noble gases (atoms) 3.1503E-27 0.OOOOE+00 Elemental I (atoms) 4.0477E-28 0.OOOOE+00 Organic I (atoms) 1.2519E-29 0.OOOOE+00 Aerosols (kg) 1.7433E-51 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.9777E-52 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 3.3969E-52 Total I (Ci) 4.4260E-42 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 0.0333 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6489E+16 Elemental I (atoms) 0.OOOOE+00 9.8625E+15 Organic I (atoms) 0.OOOOE+00 3.0503E+14 Aerosols (kg) 0.OOOOE+00 4.2478E-08 SSES CR Compartment Nuclide Inventory:

Time (h) 0.0333 Ci kg Atoms Decay 1-131 4. 7958E-03 3. 8736E-11 1.7807E+14 2. 1365E+10 1-132 4. 3731E-02 4. 2929E-12 1. 9585E+13 1. 9577E+11 1-133 3 .2739E-02 2. 9074E-11 1.3165E+14 1.4592E+11 1-134 8. 6034E-02 3 .2189E-12 1.4466E+13 3.8833E+11 1-135 4. 7800E-02 1. 3860E-11 6.1826E+13 2.1330E+11 Xe-131m 3. 6212E-06 4. 3562E-14 2 . 0026E+11 1.6123E+07 Xe-133m 6. 8118E-05 1. 5957E-13 7.2250E+11 3 . 0261E+08 Xe-133 1. 9820E-03 1. 0639E-11 4.8173E+13 8.8167E+09 Xe-135m 6. 3712E-03 7. 1360E-14 3.1833E+11 2.8186E+10 Xe-135 5 .6007E-03 2 .2028E-12 9.8264E+12 2.4711E+10 Kr-83m 8 .2726E-04 4. 1629E-14 3.0205E+11 3.7076E+09 Kr-.85m 1 .4492E-03 1. 7138E-13 1.2142E+12 6.4729E+09 Kr-87 4. 6334E-03 1. 6722E-13 1. 1575E+12 2. 0824E+10 Kr-88 4 .85'57E-03 3. 7771E-13 2.5848E+12 2.1721E+10

EC-RADN-1 128 Attachment 6 Page 74 Kr-85 4.8564E-06 1.2378E-11 8.7698E+13 2.1634E+07 Xe-138 1.9934E-02 2. 0701E-13 9.0338E+11 9.3271E+10 SSES CR Transport Group Inventory:

Time (h) = 0.0333 Atmosphere Sump Noble gases (atoms) 1.5310E+14 0.0000E+00 Elemental I (atoms) 1.9671E+13 0.OOOOE+00 Organic I (atoms) 6.0840E+11 0.OOOOE+00 Aerosols (kg) 8.4723E-11 0.00O0E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 8. 1641E-13 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.4023E-12 Total I (Ci) 2. 1510E-01 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 0.0333 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4540E+14 Elemental I (atoms) 0.OOOOE+00 1.8748E+13 Organic I (atoms) 0.OOOOE+00 5.7984E+11 Aerosols (kg) 0.0000E+00 8.0748E-11 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 0.0333 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1603E+13 Elemental I (atoms) 0.OOOOE+00 1.4961E+12 Organic I (atoms) 0.OOOOE+00 4.6271E+10 Aerosols (kg) 0.OOOOE+00 6.4437E-12 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 0.0333 Filtered Transported Noble gases (atoms) 4.0856E+12 0.OOOOE+00 Elemental I (atoms) 5.2590E+11 0.OOOOE+00 Organic I (atoms) 1.6265E+10 0.OOOOE+00 Aerosols (kg) 2.2650E-12 0.OOOOE+00 Detailed model information at time (H) = 0.0666 EAB - MST Release Doses:

Time (h) = 0.0666 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.6303E-02 1.8832E+00 9.9784E-02 MSLB @ LPZ - MST Release Doses:

Time (h) = 0.0666 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 2.1432E-03 1.1118E-01 5.8909E-03 MSLB @ CR - TB MST Release Doses:

Time (h) = 0.0666 Whole Body Thyroid TEDE Delta dose (rem) 4.9784E-05 3.6184E-02 1.2683E-03 Accumulated dose (rem) 1.0143E-04 7. 3014E-02 2.5610E-03 SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) = 0.0666 Ci kg Atoms Decay SSES MS Tunnel Transport Group Inventory:

Time (h) = 0.0666 Atmosphere Sump

EC-RADN-1 128 Attachment 6 Page 75 Noble gases (atoms), 3.1542E-27 0.OOOOE+00 Elemental I (atoms) 4.0383E-28 0*0000E+00 Organic I (atoms) 1.2489E-29 0.0000E+00 Aerosols (kg) 1.7392E-51 0.OOOOE+00 Dose Effective (.Ci/cc) 1-131 (Thyroid). 1.9750E-52 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 3 .3841E-52 Total I (Ci) 4.3669E-42 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 0.0666 Filtered Transported Noble gases (atoms) 0.0000E+00 7.6489E+16 Elemental I (atoms) 0.OOOOE+00 9.8625E+15 Organic I (atoms) 0.OOOOE+00 3.0503E+14 Aerosols (kg) 0.0000E+00 4.2478E-08 SSES CR Compartment Nuclide Inventory:

Time (h) = 0.0666 Ci kg Atoms Decay 1-131 4.6693E-03 3 .7714E-11 1. 7337E+14 4.2347E+10 1-132 4.2163E-02 4. 1390E-12 1. 8883E+13 3 .8617E+11 1-133 3.1844E-02 2. 8280E-11 1. 2805E+14 2. 8909E+11 1-134 8.1593E-02 3 .0528E-12 1. 3719E+i3 7.5986E+11 1-135 4.6385E-02 1 .3449E-11 5. 9996E+13 4.2208E+11 Xe-131m 3.5299E-06 4 .2464E-14 1. 9521E+11 3.1975E+07 Xe-133m 6.6687E-05 1 .5622E-13 7. 0733E+11 .6.0142E+08 Xe-133 1.9352E-03 1. 0388E-11 4. 7036E+13 1.7500E+10 Xe-135m 6.2696E-03 7 .0223E-14 3 .1325E+11 5. 6171E+10 Xe-135 5.5553E-03 2 .1849E-12 9. 7467E+12 4. 9436E+10 Kr-83m 7.9580E-04 4 .0046E-14 2. 9056E+11 7.3053E+09 Kr-85m 1.4037E-03 1 .6600E-13 1. 1761E+12 1.2797E+10 Kr-87 4.4323E-03 1 .5996E-13 1. 1073E+12 4. 0919E+10 Kr-88 4.6889E-03 3 .6474E-13 2 .4960E+12 4 .2878E+10 Kr-85 4.7289E-06 1 .2053E-11 8. 5396E+13 4.2882E+07 Xe-138 1.7600E-02 1. 8278E-13 7..9764E+II 1.7637E+11 SSES CR Transport Group Inventory:

Time (h) = 0.0666 Atmosphere Sump Noble gases (atoms) 1.4926E+14 0.OOOOE+00 Elemental I (atoms) 1.9110E+13 0.OOOOE+00 Organic I (atoms) 5.9103E+11 0.OOOOE+00 Aerosols (kg) 8.2303E-II 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid). 7. 9389E-13 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.3603E-12 Total I (Ci) 2. 0665E-01 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 0.0666 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4540E+14 Elemental I (atoms) 0.OOOOE+00 1.8748E+13 Organic I (atoms) 0.OOOOE+00 5.7984E+11 Aerosols (kg) 0.OOOOE+00 8.0748E-11 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 0.0666 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1603E+13 Elemental I (atoms) 0'.OOOOE+00 1.4961E+12 Organic I (atoms) 0.OOOOE+00 4.6271E+10 Aerosols (kg) 0.OOOOE+00 6 .4437E-12 SSES CR to Environment - CR Exhaust Transport Group Inventory:

EC-RADN-1 128 Attachment 6 Page 76 Pathway Time (h) = 0.0666 Filtered Transported Noble gases (atoms) 8.1095E+12 0.OOOOE+00 Elemental I (atoms) 1.0420E+12 0.OOOOE+00 Organic I (atoms) 3.2228E+10 0.OOOOE+00 Aerosols (kg) 4.4879E-12 0.OOOOE+00 Detailed model information at time (H) = 0.5000 EAB - MST Release Doses:

Time (h) = 0.5000 Whole Body Thyroid . TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.6303E-02 1.8832E+00 9.9784E-02 MSLB @ LPZ - MST Release Doses:

Time (h) = 0.5000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 2.1432E-03 1.1118E-01 5.8909E-03 MSLB @ CR - TB MST Release Doses:

Time (h) = 0.5000 Whole Body Thyroid TEDE Delta dose (rem) 4.7893E-04 3 .8940E-01 1.3537E-02 Accumulated dose (rem) 5.8036E-04 4.6241E-01 1.6098E-02 SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) = 0.5000 Ci kg Atoms Decay SSES MS Tunnel Transport Group Inventory:

Time (h) = 0.5000 Atmosphere Sump Noble gases (atoms) 3.2135E-27 0.OOOOE+00 Elemental I (atoms) 3.9257E-28 0.OOOOE+00 Organic I (atoms) 1.2141E-29 0.OOOOE+00 Aerosols (kg) 1.6903E-51 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.9419E-52 Dose Effective (Ci/cc) .1-131 (ICRP2 Thyroid) 3..2338E-52 Total I (Ci) 3.7056E-42 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 0.5000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6489E+16 Elemental I (atoms) 0.OOOOE+00 9.8625E+15 Organic I (atoms) 0.OOOOE+00 3.0503E+14 Aerosols (kg) 0.OOOOE+00 4.2478E-08 SSES CR Compartment Nuclide Inventory:

Time (h) = 0.5000 Ci kg Atoms Decay 1-131 3.2970E-03 2.6630E-11 1. 2242E+14 2. 6916E+11 1-132 2..6212E-02 2.5731E-12 1.1739E+13 2. 3164E+12 1-133 2.2199E-02 1.9714E-11 8.9265E+13 1. 8267E+12 1-134 4.0935E-02 1.5316E-12 6. 8830E+12 4. 1504E+12 1-135 3.1372E-02 9.0963E-12 4.0577E+13 2 6302E+12 Xe-131m 2.5316E-06 3.0455E-14 1.4000E+11 2. 0468E+08 Xe-133m 5.0425E-05 1 1812E-13 5.3484E+11 3 .9467E+09 Xe-133 1.4169E-03 7.6059E-12 3 .4439E+13 1. 1310E+11 Xe-135m 4. 7215E-03 5.2883E-14 2 .3590E+11 3. 6933E+11 Xe-135 4.8322E-03 1.9005E-12 8.4780E+12 3 .4833E+11 Kr-83m 4.8049E-04 2.4179E-14 1. 7543E+11 4 .3251E+10 Kr-85m 9.2660E-04 1.0958E-13 7.7,635E+11 7. 8866E+10

EC-RADN-1 128 Attachment 6 Page 77 Kr-87 2.4878E-03 8.9786E-14 6.2150E+11 2.3459E+11 Kr-88 2.9752E-03 2.3143E-13 1.5838E+12 2.5957E+11 Kr-85 3.3449E-06 8.5257E-12 6. 0404E+13 2.7278E+08 Xe-138 3.4822E-03 3.6163E-14 1.5781E+11 6.7765E+11 SSES CR Transport Group Inventory:

Time (h) = 0.5000 Atmosphere Sump Noble gases (atoms) 1.0755E+14 0.OOOOE+00 Elemental I (atoms) 1.3138E+13 0.OOOOE+00 Organic I (atoms) 4.0633E+11 0.0000,+00 Aerosols (kg) 5.6568E-ll 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 5.5203E-13 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 9. 1928E-13 Total I (Ci) 1.2401E-01 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 0.5000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.4540E+14 Elemental I (atoms) 0.OOOOE+00 1. 8748E+13 Organic. I (atoms) 0.0oooE+00 5.7984E+I1 Aerosols (kg) 0.OOOOE+00 8.0748E-11 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 0.5000 Filtered Transported Noble gases,(atoms) 0.OOOOE+00 1.1603E+13 Elemental I (atoms) 0.OOOOE+00 1.4961E+12 Organic I (atoms) 0.OOOOE+00 4.6271E+10 Aerosols (kg) 0.OOOOE+00 6.4437E-12 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 0.5000 Filtered Transported Noble gases (atoms) 5.2177E+13 0.OOOOE+00 Elemental I (atoms) 6.5634E+12 O.OOOOE+00 Organic I (atoms) 2.0299E+11 O.OOOOE+00 Aerosols (kg) 2.8264E-11 O.OOOOE+00 Detailed model information at time (H) = 2.0000 EAB - MST Release Doses:

Time (h).= 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.6303E-02 1.8832E+00 9.9784E-02 MSLB @ LPZ - MST Release Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.0000E+00 Accumulated dose (rem) 2.1432E-03 1.1118E-01 5.8909E-03 MSLB @ CR - TB MST Release Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 5.5960E-04 6.3730E-01 2. 1671E-02 Accumulated dose (rem) 1.1400E-03 1.0997E+00 3.7769E-02 SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) = 2.,0000 Ci kg Atoms Decay

EC-RADN-1 128 Attachment 6 Page 78 SSES MS Tunnel Transport Group Inventory:

Time (h) = 2.0000 Atmosphere Sump Noble gases (atoms) 3.4347E-27 0.OOOOE+00 Elemental I (atoms) 3.6387E-28 0.OOOOE+00 Organic I (atoms) 1.1254E-29 0.OOOOE+00 Aerosols (kg) 1.5656E-51 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.8433E-52 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2.8729E-52 Total I (Ci) 2.4065E-42 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6489E+16 Elemental I (atoms) 0.OOOOE+00 9.8625E+15 Organic I (atoms) 0.OOOOE+00 3. 0503E+14 Aerosols (kg) 0.OOOOE+00 4.2478E-08 SSES CR Compartment Nuclide Inventory:

Time (h) = 2.0000 Ci kg. Atoms Decay 1-131 9.8868E-04 7.9857E-12 3.6711E+13 6.5057E+11 1-132 5.0585E-03 4.9657E-13 2.2655E+12 4.8751E+12 1-133 6.3684E-03 5.6556E-12 2.5608E+13 4.3496E+12 1-134 3.7611E-03 1.4072E-13 6.3241E+11 7.2491E+12 1-135 8. 1045E-03 2.3499E-12 1.0483E+13 6.0511E+12 Xe-131m 7.9984E-07 9.6219E-15 4 .4232E+10 5.0380E+08 Xe-133m 1.8452E-05 4.3225E-14 1. 9572E+11 1.0298E+10 Xe-133 4.7567E-04 2.5534E-12 1. 1562E+13 2. 8490E+11 Xe-135m 1.2801E-03 1.4338E-14 6. 3960E+10 8. 9427E+11 Xe-135 2.2462E-03 8.8347E-13 3 .9410E+12 1. 0369E+12 Kr-83m 8.3811E-05 4.2176E-15 3 0601E+10 8. 8456E+10 Kr-85m 2.2009E-04 2.6028E-14 1.8440E+11 1.7667E+11 Kr-87 3.3709E-04 1.2166E-14 8.4212E+10 4.4871E+11 Kr-88 6.1629E-04 4.7940E-14 3.2807E+11 5.5774E+11 Kr-85 1.0090E-06 2.5719E-12 1.8221E+13 6.6066E+08 Xe-138 1.2778E-05 1.3270E-16 5.7907E+08 8.0076E+11 SSES CR Transport Group Inventory:

Time (h) = 2.0000 Atmosphere Sump Noble gases (atoms) 3.4656E+13 0.0000E+00 Elemental I (atoms) 3.6714E+12 0.0000E+00 Organic I (atoms) 1.1355E+11 0.0000E+00 Aerosols (kg) 1.5797E-11 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.5798E-13 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2.4622E-13 Total I (Ci) 2.4281E-02 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.4540E+14 Elemental I (atoms) 0.0000E+00 1.8748E+13 Organic I (atoms) 0.0000E+00 5.7984E+11 Aerosols (kg) 0.0000E+00 8.0748E-11 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 0.0000E+00 1.1603E+13 Elemental I (atoms) 0.0000E+00 1.4961E+12 Organic I (atoms) 0.0000E+00 4.6271E+10 Aerosols (kg) 0.-000OE+00 6.4437E-12

EC-RADN-1 128 Attachment 6 Page 79 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 2.0000 Filtered Transported Noble gases (atoms) 1.2939E+14 0.OOOOE+00 Elemental I (atoms) 1.5449E+13 0.OOOOE+00 Organic I (atoms) 4.7780E+11 0.OOOOE+00 Aerosols (kg) 6.6511E-11 0.0000OE+00 Detailed model information at time (H) = 8.0000 EAB - MST Release Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.6303E-02 1.8832E+00 9.9784E-02 MSLB @ LPZ - MST Release Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0. OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 2.1432E-03 1. 1118E-01 5.8909E-03 MSLB @ CR - TB MST Release Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.2919E-04 2.5536E-01 8.4465E-03 Accumulated dose (rem) 1.2692E-03 1.3551E+00 4. 6215E-02 SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) = 8.0000 Ci kg Atoms Decay SSES MS Tunnel Transport Group Inventory:

Time (h) = 8.0000 Atmosphere Sump Noble gases (atoms) 4.0353E-27 0.0000E+00 Elemental I (atoms) 3.0263E-28 0.OOOOE+00 Organic I (atoms) 9.3596E-30 0.OOOOE+00 Aerosols (kg) 1.2996E-51 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.5656E-52 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2. 1936E-52 Total I (Ci) 1.1337E-42 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6489E+16 Elemental I (atoms) 0.OOOOE+00 9.8625E+15 Organic I (atoms) 0.OOOOE+00 3.0503E+14 Aerosols (kg) 0.OOOOE+00 4.2478E-08 SSES CR Compartment Nuclide Inventory:

Time (h) = 8.0000 Ci kg Atoms Decay 1-131 7.9948E-06 6.4575E-14 2. 9685E+11 8.1260E+11 1-132 7. 0164E-06 6. 8878E-16 3.1424E+09 5 .4862E+12 1-133 4 .3133E-05 3.8305E-14 1. 7344E+11 5. 3576E+12

.1-134 2.6804E-07 1.0029E-17 4. 5071E+07 7. 5626E+12 1-135 3.6097E-05 1.0467E-14 4.6690E+10 7. 2374E+12 Xe-131m 7. 7891E-09 9.3701E-17 4.3075E+08 6. 4020E+08 Xe-133m 2.4171E-07 5.6621E-16 2.5638E+09 1. 3724E+10 Xe-133 5.3059E-06 2.8482E-14 1.2896E+11 3. 6909E+11 xe-135m 5.7076E-06 6.3928E-17 2 .8517E+08 1. 0794E+12 Xe-135 2.9738E-05 1.1696E-14 5.2174E+10 1 .4759E+12

EC-RADN-1 128 Attachment 6 Page 80 Kr-83m 7.7585E-08 3 .9042E-18 2.8328E+07 9. 7999E+10 Kr-85m 7.0055E-07 8.2846E-17 5.8695E+08 2.0705E+11 Kr-87 1.1363E-07 4.1008E-18 2 8386E+07 4.8226E+11 Kr-88 1.1346E-06 8.8260E-17 6.0400E+08 6.3550E+11 Kr-85 8.3474E-09 2 .1276E-14 1.5074E+1I 8.2680E+08 SSES CR Transport Group Inventory:

Time (h) = 8.0000 Atmosphere Sump Noble gases (atoms) 3.3640E+11 0.OOOOE+00 Elemental I (atoms) 2.5228E+10 0.OOOOE+00 Organic I (atoms) 7.8026E+08 0.OOOOE+00 Aerosols (kg) 1.0834E-13 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.1086E-15 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.5533E-15 Total I (Ci) 9.4510E-05 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4540E+14 Elemental I (atoms) 0.OOOOE+00 1.8748E+13 Organic I (atoms) 0.OOOOE+00 5.7984E+11 Aerosols (kg) 0.OOOOE+00 8.0748E-11 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1603E+13 Elemental I. (atoms) 0.OOOOE+00 1.4961E+12 Organic I (atoms) 0.OOOOE+00 4.6271E+10 Aerosols (kg) 0.OOOOE+00 6.4437E-12 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 8.0000 Filtered Transported Noble gases (atoms) 1.6524E+14 0.OOOOE+00 Elemental I (atoms) 1.8936E+13 0.OOOOE+00 Organic I (atoms) 5.8564E+11 0.OOOOE+00 Aerosols (kg) 8.1509E-11 0.OOOOE+00 Detailed model information at time (H) = 24.0000 EAB - MST Release Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.6303E-02 1.8832E+00 9.9784E-02 MSLB @ LPZ - MST Release Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 2.1432E-03 1.1118E-01 5.8909E-03 MSLB @ CR - TB MST Release Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 4.2770E-07 1.8200E-03 5.8519E-05 Accumulated .dose (rem) 1.2696E-03 1.3569E+00 4.6274E-02 SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) = 24.0000 Ci kg Atoms Decay

EC-RADN- 1128 Attachment 6 Page 81 SSES MS Tunnel Transport Group Inventory:

Time (h) = 24.0000 Atmosphere Sump Noble gases (atoms) 4.4915E-27 0.OOOOE+00 Elemental I (atoms) .2.2771E-28 0.OOOOE+00 Organic I (atoms) 7.0425E-30 0.OOOOE+00 Aerosols (kg) 9.7479E-52 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1.1530E-52 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.4360E-52 Total I (Ci) 4 . 7917E-43 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 24.0000 .Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6489E+16 Elemental I (atoms) 0.OOOOE+00 9.8625E+15 Organic I (atoms) 0.OOOOE+00 3.0503E+14 Aerosols (kg) 0.OOOOE+00 4.2478E-08 SSES CR Compartment Nuclide Inventory:

Time.(h) = 24.0000 Ci kg Atoms Decay 1-131 2. 1061E-1I 1. 7011E-19 7.8200E+05 8. 1393E+11 1-133 7. 0831E-11 6 .2903E-20 2.8482E+05 5.3645E+12 1-135 1. 9386E-11 5. 6210E-21 2.5074E+04 7.2427E+12 Xe-133m 1. 0404E-12 2 .4371E-21 1.1035E+04 1.3767E+10 Xe-133 2. 1212E-11 1. 1387E-19 5. 1558E+05 3. 7001E+11 Xe-135 5 .4284E-11 2. 1350E-20 9.5240E+04 1.4809E+12 Kr-85 2 .3303E-14 5. 9397E-20 4.2082E+05 8.2819E+08 SSES CR Transport Group Inventory:

Time (h) = 24.0000 Atmosphere Sump Noble gases (atoms) 1.0446E+06 0.OOOOE+00 Elemental I (atoms) 5.2960E+04 0.0060E+00 Organic I (atoms) 1.6380E+03 0.OOOOE+00 Aerosols (kg) 2.2672E-19 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 2.2779E-21 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2.8370E-21 Total I (Ci) 1.1145E-10 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 24.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4540E+14 Elemental I (atoms) 0.OOOOE+00 1.8748E+13 Organic I (atoms) 0.OOOOE+00 5.7984E+11 Aerosols (kg) 0.OOOOE+00 8.0748E-11 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 24.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.1603E+13 Elemental I (atoms) O.OOOOE+00 1.4961E+12 Organic I (atoms) 0.OOOOE+00 4.6271E+10 Aerosols (kg) 0.0000E+00 6.4437E-12 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 24.0000 Filtered Transported Noble gases (atoms) 1.6558E+14 0.OOOOE+00 Elemental I (atoms) 1.8960E+13 0.OOOOE+00 Organic I (atoms) 5.8640E+11 0.OOOOE+O0

EC-RADN-1 128 Attachment 6 Page 82 Aerosols (kg) 8.1614E-11 0.OOOOE+00 Detailed model information at time. (H) = 96.0000 EAB - MST Release Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.6303E-02 1.8832E+00 9.9784E-02 MSLB @ LPZ - MST Release Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 2.1432E-03 1.1118E-01 5.8909E-03 MSLB @ CR - TB MST Release Doses:

Time (h) = 96.0000 Whole Body Thyroid TEDE Delta dose (rem) 2.2450E-13 2.2645E-09 7. 1085E-11 Accumulated dose (rem) 1.2696E-03 1.3569E+00 4.6274E-02 SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) = 96.0000 Ci kg Atoms Decay SSES MS Tunnel Transport Group Inventory:

Time (h) = 96.0000 Atmosphere Sump Noble gases. (atoms) 4.2196E-27 0.OOOOE+0 0 Elemental I (atoms) 1.3142E-28 0.OOOOE+0 0 Organic I (atoms) 4.0647E-30 0.OOOOE+0 0 Aerosols (kg) 5.6034E-52 0.OOOOE+0 0 Dose Effective (Ci/cc) 1-131 (Thyroid) 5.9882E-53 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 6.2154E-53 Total I (Ci) 9.8035E-44 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6489E+16 Elemental I (atoms) 0.OOOOE+00 9.8625E+15 Organic I (atoms) 0.OOOOE+00 3.0503E+14 Aerosols (kg) 0.OOOOE+00 4.2478E-08 SSES CR Compartment Nuclide Inventory:

Time (h) = 96.0000 Ci kg Atoms Decay SSES CR Transport Group Inventory:

Time (h) = 96.0000 Atmosphere Sump Noble gases (atoms) 9.9314E-20 0.OOOOE+00 Elemental I (atoms) 3.0932E-21 0.OOOOE+00 Organic I (atoms) 9.5666E-23 0.OOOOE+00 Aerosols (kg) 1.3188E-44 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 1. 1972E-46 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 1.2426E-46 Total I (Ci) 2.3074E-36 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4540E+14 Elemental I (atoms) 0.OOOOE+00 1.8748E+13 Organic I (atoms) 0.OOOOE+00 5.7984E+11

EC-RADN- 1128 Attachment 6 Page 83 Aerosols (kg) 0.00-OOE+00 8..0748E-11 Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered. Transported Noble gases (atoms) 0.OOOOE+00 1.1603E+13 Elemental I (atoms) 0.OOOOE+00 1.4961E+12 Organic I (atoms) 0.OOOOE+00 4.6271E+10 Aerosols (kg) 0.OOOOE+00 6.4437E-12 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 96.0000 Filtered Transported Noble gases (atoms) 1.6558E+14 0.OOOOE+00 Elemental I (atoms) 1.8960E+13 0.OOOOE+00 Organic I (atoms) 5.8640E+11 0.OOOOE+00 Aerosols (kg) 8.1614E-11 0.OOOOE+00 Detailed model information at time (H) = 720.0000 EAB - MST Release Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 3.6303E-02 1.8832E+00 9..9784E-02 MSLB @ LPZ - MST Release Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 Accumulated dose (rem) 2.1432E-03 1.1118E-01 5.8909E-03 MSLB @ CR - TB MST Release Doses:

Time (h) = 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.7428E-39 8.0315E-35 2.4570E-36 Accumulated dose (rem) 1.2696E-03 1.3569E+00 4.6274E-02 SSES MS Tunnel Compartment Nuclide Inventory:

Time (h) = 720.0000 Ci kg Atoms Decay SSES MS Tunnel Transport Group Inventory:

Time (h) = 720.0000 Atmosphere Sump Noble gases (atoms) 1.8971E-27 0.OOOOE+00 Elemental I (atoms) 1.3429E-29 0.OOOOE+00 Organic I (atoms) 4.1533E-31 0.OOOOE+00 Aerosols (kg) 5.7220E-53 0.OOOOE+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 5. 9851E-54 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 5. 9851E-54 Total I (Ci) 7.4570E-45 SSES MST to Environs Transport Group Inventory:

Pathway Time (h) = 720.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 7.6489E+16.

Elemental I *(atoms) 0.OOOOE+00 9.8625E+15 Organic I (atoms) 0.OOOOE+00 3.0503E+14 Aerosols (kg) 0.OOOOE+00 4.2478E-08

'SSES CR Compartment Nuclide Inventory:

Time (h) = 720.4DOOO Ci kg Atoms Decay

EC-RADN-1 128 Attachment 6 Page 84 SSES CR Transport Group Inventory:

Time (h) = 720.0000 Atmosphere Sump Noble gases (atoms) 1.0663-236 0.OOOOE+00 Elemental I (atoms) 7.5483-239 0.00OOE+00 Organic I (atoms) 2.3345-240 0.0000E+00 Aerosols (kg) 3.2163-262 0.0000E+00 Dose Effective (Ci/cc) 1-131 (Thyroid) 2.8576-264 Dose Effective (Ci/cc) 1-131 (ICRP2 Thyroid) 2.8576-264 Total I (Ci) 4.1915-254 Environment to SSES CR - 6391 cfm Normal Intake Transport Group Inventory:

Pathway Time (h) = 720.0000 Filtered Transported Noble gases (atoms) 0.OOOOE+00 1.4540E+14 Elemental I (atoms) 0.OOOOE+00 1.8748E+13 Organic I (atoms) 0.OOOOE+00 5. 7984E+11 Aerosols (kg) 0.0000E+00 8.0748E-II Environment to SSES CR -500+10 cfm Unfiltered Inle Transport Group Inventory:

.Pathway Time (h) = 720.0000 Filtered. Transported Noble gases (atoms) 0.OOOOE+00 1.1603E+13 Elemental I (atoms) 0.OOOOE+00 1.4961E+12 Organic I (atoms) 0.OOOOE+00 4.6271E+10 Aerosols (kg) 0.OOOOE+00 6.4437E-12 SSES CR to Environment - CR Exhaust Transport Group Inventory:

Pathway Time (h) = 720.0000 Filtered Transported Noble gases (atoms) 1.6558E+14 0..OOOOE+00 Elemental I (atoms) 1.8960E+13 0.OOOOE+00 Organic I (atoms) 5.8640E+11 0.OOOOE+00 Aerosols (kg) 8.1614E-11 0.OOOOE+00 72185 1-131 Summary SSES MS Tunnel . Environment SSES CR Time (hr) 1-131 (Curies) 1-131 (Curies) 1-131 (Curies) 0.000 2.3995E+00 5.50OOE-04 1. 1285E-06 0 .033 9. 8681E-44 2.4000E+00 4. 7958E-03 0 .067 9. 8670E-44 2.4000E+00 4. 6693E-03 0.330 9. 8577E-44 2.4000E+00 3. 7792E-03 0 .500 9. 8516E-44 2.4000E+00 3 .2970E-03 0.750 9. 8428E-44 2.4000E+00 2. 6974E-03 1.000 9.8340E-44 2 .4000E+00 2 .2068E-03 1.250 9. 8252E-44 2 .4000E+00 1. 8055E-03 1.500 9. 8164E-44 2 .4000E+00 1 .4771E-03 1.750 9. 8076E-44 2 .4000E+00 1. 2085E-03 2.000 9. 7988E-44 2 .4000E+00 9.8868E-04 2.250 9.7900E-44 2.4000E+00 8. 0887E-04.

2.500 9.7812E-44 2 .4000E+00 6. 6176E-04.

2.750 9.7724E-44 2.4000E+00 5 .4141E-04 3.000 9.7637E-44 2.4000E+00 4 .4294E-04 3.250 9.7549E-44 2 .4000E+00 3. 6239E-04 3.500 9.7462E-44 2,.4000E+00 2. 9648E-04 3.750 9.7375E-44 2.4-00E+00 2 .4256E-04 4.000 9.7287E-44 2.4000E+00 1. 9844E-04 4.250 9.7200E-44 .2.4000E+00 1 .6235E-04

EC-RADN-1 128 Attachment 6 Page 85 4.500 9. 7113E-44 2.4000E+00 1.3283E-04 4.750 9.7026E-44 2.4000E+00 1.0867E-04 5.000 9.6939E-44 2.4000E+00 8.8906E-05 5.250 9.6852E-44 2.4000E+00 7.2737E-05 5.500 9.6765E-44 2.4000E+00 5.9508E-05 5.750 9.6678E-44 2.4'000E+00 4.8685E-05 6 .000 9.6592E-44 2.4000E+00 3. 9831E-05 6.250 9.6505E-44 2.4000E+00 3.2587E-05 6.500 9. 6419E-44 2.4000E+00 2.6660E-05 6.750 9.6332E-44 2.4000E+00 2. 1812E-05 7.000 9. 6246E-44 2.4000E+00 1.7845E-05 7.250 9. 6160E-44 2.4000E+00 1.4599E-05 7.500 9.6073E-44 2.4000E+00 1.1944E-05 7.750 9. 5987E-44 2.4000E+00 9.7720E-06 8 .000 9. 5901E-44 2.4000E+00 7.9948E-06 8.250 9. 5815E-44 2.4000E+00 6 .5408E-06 8.500 9.5729E-44 2.4000E+00 5.3512E-06 8 .750 9.5644E-44 2.4000E+00 4.3780E-06 9.000 9.5558E-44 2.4000E+00 3.5818E-06 9.250 9. 5472E-44 2.4000E+00 2.9304E-06 9.500 9.5387E-44 2.4000E+00 2.3974E-06 9.750 9. 5301E-44 2.4000E+00 1. 9614E-06 0 .000 9. 5216E-44 2.4000E+00 1.6047E-06 10.250 9. 5130E-44 2.4000E+00 1.3128E-06 24 .000 9.0552E-44 2.4000E+00 2 .1061E-11 96.000 6.9940E-44 2.4000E+00 1.6461E-36 720.000 7.4570E-45 2.4000E+00 4.1915-254 Cumulative Dose Summary EAB - MST Re lease MSLB @ LPZ - MST Rele MSLB @ CR - TB MST Re Time Thyroid TEDE Thyroid TEDE Thyroid TEDE (hr) (rem) (rem) (rem) (rem) (rem) (rem) 0.000 0.0000E+00 0.0 000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.033 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 3.6830E-02 1.2927E-03 0.067 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 7.3014E-02 2.5610E-03 0.330 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 3.2627E-01 1.1389E-02 0.500 1.8832E+00 9.9 784E-02 1.1118E-01 5. 8909E-03 4.6241E-01 1.6098E-02 0.750 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 6.3052E-01 2.1876E-02 1.000 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 7.6691E-01 2.6533E-02 1.250 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 8.7761E-01 3.0292E-02 1.500 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 9.6748E-01 3.3328E-02 1.750 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.0404E+00 3.5783E-02 2.000 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.0997E+00 3.7769E-02 2.250 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.1478E+00 3.9376E-02 2.500 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.1870E+00 4.0678E-02 2.750 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.2187E+00 4.1733E-02 3 .000 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.2446E+00 4.2588E-02 3.250 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.2655E+00 4.3281E-02 3 .500 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.2826E+00 4.3844E-02 3 .750 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.2965E+00 4.4300E-02 4.000 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3077E+00 4.4671E-02 4.250 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3169E+00 4.4971E-02 4 .500 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3244E+00 4.5215E-02 4 .750 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3304E+00 4.5414E-02 5.000 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3354E+00 4.5575E-02 5.250 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3394E+00 4.5705E-02 5.500 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3426E+00 4.5812E-02 5.750 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3453E+00 4.5898E-02 6.000 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3474E+00 4.5968E-02 6 .250 1. 8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3492E+00 4.6025E-02 6 .500 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3506E+00 4.6072E-02 6 .750 1.8832E+00 9.9 784,E-02 1.1118E-01 5.8909E-03 1.3518E+00 4.6109E-02 7.000 1.8832E+00 9.9 784E-02 1.1118E-01 5.8909E-03 1.3527E+00 4.6140E-02

EC-RADN-1 128 Attachment 6 Page 86 7.250 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3535E+00 4.6165E-02 7.500 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3541E+00 4.6185E-02 7.750 1.8832E+00 9.9784E-02 1. 1118E-01 5.8909E-03 1.3547E+00 4.6202E-02 8.000 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3551E+00 4.6215E-02 8.250 1.8832E+00 9.9784E-02 1. 1118E-'01 5.8909E-03 1.3554E+00 4.6226E-02 8.500 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3557E+00 4.'6235E-02 8.750 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3559E+00 4.6242E-02 9.000 1.8832E+00 9.9784E-02 1.1l18E-01 5.8909E-03 1.3561E+00 4.6248E-02 9.250 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3562E+00 4.6253E-02 9.500 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3564E+00 4.6257E-02

.9.750 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3565E+00 4.6260E-02 10.000 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3565E+00 4.6262E-02 10.250 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3566E+00 4.6264E-02 24.000 1.8832E-00 9.9784E-02 1.1118E-01 5.8909E-03 1.3569E+00 4.6274E-02 96.000 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3569E+00 4.6274E-02 720.000 1.8832E+00 9.9784E-02 1.1118E-01 5.8909E-03 1.3569E+00 4.6274E-02

                                                                                                                        1. W#######

Worst Two-Hour Doses EAB - MST Release Time Whole Body Thyroid TEDE (hr) (rem) (rem) (rem) 0.0 3.6303E-02 1.8832E+00 9.9784E-02

Attachment 2 to PLA-6124 PPL Drawings E-105004, Sheets 3 and 6

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED:

DRAWING-NO. E105004, SHEET NO. 3 REV. 26, GENERAL FLOOR PLANS ELS 683-0,699-0,714-0 & 716-3" WITHIN THIS PACKAGE...

D-01

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED:

DRAWING NO. E105004, SHEET NO. 6 REV. 23, SUSQUEHANNA S.E.S.

UNIT 1/ UNIT 2, GENERAL FLOOR PLAN EL'S 779'-1", 799'-1" & 806'-0" WITHIN THIS PACKAGE... OR D-02