ML063060122

From kanterella
Jump to navigation Jump to search
Nuclear Engineering Calculation EC-059-1041, Rev. 02, Suppression Pool Ph Post Loca
ML063060122
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 03/13/2006
From: Waselus M
Susquehanna
To:
Office of Nuclear Reactor Regulation
References
EC-059-1041, Rev 02
Download: ML063060122 (79)


Text

{{#Wiki_filter:Attachment 1 to PLA-6120 Revised Calculation EC-059-1041, Revision 2 "Suppression Pool PH Post LOCA"

or Information Only NUCLEAR ENGINEERING CALCULATION COVER SHEET NEPM-QA-0221-1

1. Page 1 of 78 Total Pa-es 78

>2. TYPE: CALC >3. NUMBER: EC-059-1041 A>5. UNIT 3 '>6. QUALITY CLASS: >.7. DESCRIPTION: Suppression Pool pH post LOCA >4. REVISION: 2

8. SUPERSEDED BY:
9. Alternate Number:
10. Cycle:

NA

11. Computer Code/Model used:
12. Discipline:

M >*13. Are any resurts of this calculation described in the Licensing Documents? C9 Yes, Refer to NDAP-OA-0730 and NDAP-QA-0731 0 No >14. Is this calculation changing any method of evaluation described in the FSAR and using the results to support or change the FSAR? (Refer to PPL Resource Manual for Definition of FSAR) [ Yes, 50.59 screen or evaluation required. l No >15. Is this calculation Prepared by an External Organization? 0 Yes C] No EG771 Qualifications may not be required for individuals from external organizations (see Section 7.4.3). I >16. Prepared by: )17. Reviewed by: >18. Verified by: >19. Approved by: >20. Accepted by: M. M. Waselus ,1AA1AAJA-.S1~ Print Name(EG 771 Qualification Required) Signature Date R. E. Anderson s fa -k Print Name(EG 771 Qualification Required) Signature IDat* R. E. Anderson "9/O-Print Name(EG 771 & QADR Qualification Required) Signature /D~te Print Name(Qualified per NEPM-OA-0241 and comply ,ognature" Date with Section 7.8 of NEPM-QA-0221) l-,revj a.,q A. A '1,34, I Print Name(EG771 Qualificaj'n Required) and comply with Section 7.9 of NEPM-CA-0221 Date Verified 'Fields REQUIRED FIELDS ADD A NEW COVER PAGE FOR EACH REVISION FORM NEPM-QA-0221-1. Revision 9. Page 1 of 1, ELECTRONIC FORM

,r Information Only Page 2 CALCULATION REVISION DESCRIPTION SHEET NEPM-QA-0221-2 REVISION NO: 2 CALCULATION EC-059-1041 NUMBER: FULL REVISION "' SUPERSEDED [) PAGE FOR PAGE [- VOIDED A R R Revised d m Description Pages d p m of Revision on the Listed Pages d v All El [ El Complete calculation revision, E3 El El Specific technical revision 2 changes are itemized as follows to aid in the review of revision 2. Changes are side barred. 3 zl 0 El Define scope of revision 2. 5 E 0 El Add revision 2 purpose. 6 El 0K El Replace previous EPU results. 7 [1 Z El Change DI items 7 - 10. 24 El 0 El Minor editorial changes 26 -27 l0 Z l Update post EPU evaluation 28 0 El Update results. 29 El 0 El Add Reference 20: PPL SSES Extended Power Uprate Project Task Report T0609, GE-NE-0000-0031-6772-RO, Standby Liquid Control System, December, 2005. l El El El ElEl El El nI El E El El El E FORM NEPM-QA-0221 -2, Revision 5, Page I of 1. ELECTRONTIC FORM

r Information Only Page 3 TECIHNICAL CHANGE

SUMMARY

PAGE NEPM-QA-0221-5 Calculation: Number: EC-059-1 041 Reýision No. 2 This form shall be used to (1) record the Technical Scope of the revision and (2) record the scope of verification if the calculation was verified. It should not be more than one page. Its purpose is to provide summary information to the reviewer, verifier, approver, and acceptor about the technical purpose of the change. For non-technical revisions, state the purpose or reason for the revision. Scope of Revision: The scope of Revision 2 is to update the calculation to include the effects of changes in the quantity and type of sodium pentaborate to be used for extended power uprate (EPU) conditions on the post LOCA suppression pool pH. The change includes using sodium pentaborate enriched in B10 which reduces the total quantity of sodium pentaborate available to act as a buffer for pool pH. Scope of Verification (If verification applies): This verification is a review of the changes of Revision 2. Input, arithmetic, assumptions and output wilt be verified. I FORM NEPM-QA-0221-5. Revision 0. Page I of 1, ELECTRONIC FORM

r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6!06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 4 Checked By R. Anderson TABLE OF CONTENTS 1.0 OBJECTIVE...............................................................................

2.0 CONCLUSION

S AND RECOMMENDATIONS............................. 3.0 ASSUMPTIONS / INPUT.................................................. 4.0 METHOD....................................... 4.1 Hydriodic Acid.................................................................................... 4.2 Nitric Acid............................................................................................ 4.3 Hydrochloric Acid................................. 4.4 Cesium Hydroxide.......................................................................... 4.5 Summary of Acid and Base Production.................. 4.6 Sodium Pentaborate - Suppression Pool Buffered pH................... 4.6.1 Pre EPU Evaluation:.................................................... 4.6.2 Post EPU Evaluation:........ 5.0 RESULTS........................................................................................

6.0 REFERENCES

Attachment I Cable Data........................................................................ Cable Drawings.................................................................. Email from R. Vazquies to M. Waselus SP.pHCond.xls. o.........................ao~* ee eoeD .... e........ e................................................... ......................... o........................ oe

  • ............................. o...............

.5 ,. 6 .6 .7 10 12 18 20 24 24 26 28 29 in p............ 76

r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041, Designed By M. Wasclus Sh..No. 5 Checked By R. Anderson 1.0 OBJECTIVE The purpose of this calculation is to evaluate the post LOCA suppression pool pH crediting the injection of a fixed quantity of sodium pentaborate into the pool via the Standby Liquid Control (SLC) system to assure the pool pH is maintained above a value of 7 within 24 hours (Reference 19). Maintaining the suppression pool pH greater than 7.0 post-LOCA precludes the need to consider iodine reevolution from the pool during the LOCA in calculating the potential offsite and control room radiological consequences. This calculation is based on the methodology provided in NUREG/CR-5950 (Reference 1), NUREG-1 081 (Reference 2) and NUREG/CR-5732 (Reference 3). Per NUREG/CR-5950 there are a variety of acids and bases produced in containment during a LOCA. These include the following:

  • BoricAcid which is not applicable to aBWR and not considered any further herein.

Hydiodic Acid (HI) is astrong acid introduced into containment with the release of iodine.

  • Carn Dioxide (CO2) which depresses the pH of water by being absorbed, in water from air to form carbonic acid. Carbonic acid is a weak acid the effects of which are insignificant relative to the other acids produced during the LOCA. However, the initial suppression pool pH may be depressed below 7.0 during normal operation by the absorption of CO 2.

Section 2.23 of Reference 1 states that pure water will attain a pH that approaches 5.65 due to the absorption of CO2. A conservatively low pH is assumed as the initial condition for this evaluation and as such the effects of CO2 are not considered further herein. Nitric acid (HNO 3) is a strong acid produced by the irradiation of water and air. Hydrochloric acid (HCI) is a strong acid produced by the radiolysis or pyrolysis of chlorine bearing materials during the accident. Per section 2.2.5.3 of NUREG/CR-5950, pyrolysis occurs at temperatures around 752 OF which is well above the post LOCA temperatures (maximum drywell temperature < 330 OF). Therefore, only radiolysis is considered in this analysis.

  • Cesium Hydroxide (CsOH) is a strong base introduced into containment with the release of cesium during the accident.

Core-Concrete Aerosols are basic materials released from the interaction of the molten core materials with concrete. Consistent with the course of the postulated accident, core damage is assumed to be terminated after the in-vessel release phase and these chemicals are not considered any further herein. The purpose of Revision I of the calculation is to update the analysis for the effects of extended power uprate (EPU). The purpose of Revision 2 of the calculation is to update the pool pH for the change in the type and quantity of sodium pentaborate to be used for EPU operation and the reduction in the minimum allowable SLC system pump flowrate.

r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA CaIc. No. EC-059-1041 Designed By M. Waselus Sh. No. 6 Checked By R. Anderson

2.0 CONCLUSION

S AND RECOMMENDATIONS The results of the analysis demonstrate that with the injection of the Technical Specification minimum quantity of sodium pentaborate (13.6 weight percent), the 30 day suppression pool pH is greater than 7.0 which precludes the need to include reevolution of iodine from the suppression pool post LOCA. The 30 day suppression pool pH represents the worst case pH. Subsequent to the injection of the sodium pentaborate early in the accident scenario, the pH in the pool will be greaterthan the 30 day value since the generation of the post LOCA acids reaches its peak values at 30 days. The conservative 30 day suppression pool pH calculated herein is 8.61 with credit for post LOCA CsOH production in the pool and 8.58 without credit for post LOCA CsOH production in the pool for a reactor power of 3616 MWt. The conservative 30 day suppression pool pH calculated herein considering the effects of EPU with a reactor power of 4032 MWt is 8.42 with credit for post LOCA CsOH production in the pool and 8.08 without credit for post LOCA CsOH production in the pool. 3.0 ASSUMPTIONS I INPUT The following assumptions are used in this analysis:

  • The impact of ESF leakage is small compared to the suppression pool volume and will be ignored since there will be continuous makeup to the pool to maintain water level.

The beta dose to cables is reduced by a factor of 2 due to localized shielding effects. The gaseous HCI produced by cable radiolysis will be conservatively assumed to be instantly dissolved in the suppression pool. Sodium pentaborate will be injected via the SLC system for pH control. The suppression pool will be assumed to be well mixed by action of the ECCS systems such that a single pH value can be applied to the entire pool. The effect of EPU on this analysis is conservatively modeled as an increase of 25% in the radiation values used herein (See Reference 18, Item 10). The integrated radiation doses used in the radiolysis portions of this calculation are proportional to the core thermal power. The actual increase for EPU is estimated to be 11.5% [4032 MWt/3616 MWt] which is bounded by the 25% assumption. The following design input data is used in this analysis:

1. Minimum suppression pool pH during normal plant operation (Starting point for post LOCA pool pH transient).
2. Minimum suppression pool volume used in design basis LOCA.
3. Quantity and timing of sodium pentaborate input to the suppression pool.
4. Weight percent of chlorine for the various cable insulations.

or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA CaIc. No. EC-059-1041 Designed By M. Waselus Sh. No. 7 Checked By R Anderson

5. Post LOCA Gamma and Beta dose rate profiles and energy flux in drywell, wetwell and suppression pool including values from isotopic deposition on surfaces. In accordance with USNRC RG 1.183, section 1.3.5 and SECY-98-154, the TID-14844 Equipment Qualification dose rates previously calculated in the drywell air and suppression pool (beta and gamma) bound those generated by AST. The doses are increased to account for the higher EPU power.
6. Conservative values for the core inventory of cesium and core inventory of iodine in gram moles. These inventories include the stable Cs-133 and 1-127 species.
7. The pre EPU Standby Liquid Control Storage (SLCS) tank minimum available capacity >

4587 gallons (Reference 12). This volume is available volume above pump suction shutoff level. The post EPU Standby Liquid Control Storage (SLCS) tank low level volume is 1350 gallons.(Reference 20).

8. For pre:EPU operation the SLCS tank is maintained between a temperature:of 7'5 and 110

.F. (Reference,4, page68). Heating bf the SLCS tank will not be necessar* post EPU provided the SLC System t o below appimately50F. (Reference 20).

9. The pre EPU concentration of sodium pentaborate in the SLCS tank a 13.6 weight percent (Reference 12). The post EPU. concentration at the low level SLC system tank volume of 1350 gallons is 1:0 weight percent which equates to a minimum weight of sodium pentaborate of 118O lbs (Reference 20).
10. The pre EPU SLC system pump flow rate is >Ž41.2 gpm @ 2 1224 psig. (Reference 4, page 29). The post EPU minimum allowable pump flow rate is limited to one pump operation at a flow-of_4.0gpm.

4.0 METHOD Through basic chemistry equations, the pH of a solution is directly related to the concentration of H' ions by the formulas: pH = -log[H*] pOH = -log[OH] pH + pOH = 14 -log[H*] -log[OH] = 14 or [H(- [OH1 = 10*' where: [HI = concentration of H+ ions (moles/liter) 1[OH1] = concentration of OH ions (moles/liter) The initial suppression pool pH assumed at the start of the accident is 6. This is a conservative value based on the actual pH history at SSES as seen on the following figure (Reference 16).

ir Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06!2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 8 Checked By R. Anderson Suppression Pool pH .Combined SSES-1 and SSES-2 January 1990 to October 2004 25 120 15 a pa I I ON This corresponds to a value of H = 1 E-6 moles/liter 4.1 Hydriodic Acid Per section 2.2.2 of Reference 1, hydriodic Acid (HI) is a strong acid introduced into containment with the release of iodine, but small amounts are likely in containment. Table 1 of USNRC Regulatory Guide 1.183 (Reference 5) indicates that 5% of the halogen inventory is released during the gap release phase and an additional 25% is released during the early in-vessel phase. In accordance with Section 3.5 of Reference 5, 95% of the iodine released should be assumed to be cesium iodide (Csl) 4.85% elemental and 0.15% organic iodine. The basis for this release was NUREG-1465, section 3.5 (Reference 6) wherein it states iodine entering containment is at least 95% Csl with the remaining 5% as I plus HI, with not less than 1% of each as I and HI. This analysis will conservatively assume that all 5% of the release is in the form of HI in order to maximize the acid generation. This release process is assumed to occur at a constant rate over the release period identified in Table 4 of Reference 5. LOCA Release Phases BWRs Reference 5 Phase Onset Duration Gap Release 2 min 0.5 hr Early In-Vessel Release 0.5 hr 1.5 hr

)r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 9 Checked By R. Anderson The core iodine inventory used in this evaluation includes stable 1127 to maximize the amount of acid produced. Per Reference 7, the total core inventory of iodine is 107 gram atoms at the beginning of cycle and 228.7 gram atoms at the end of cycle. The value of 228.7 gram atoms is conservatively used in this analysis. Note: For a monotonic element gram mole equals gram atom. The following equations are used to describe this release. During the Gap Release Phase: d/dt[HI] = [0:05 0.05mil [Vsp

  • 0.5 hr]

During the Early In-Vessel Release Phase: d/dt[HI] = [0.05

  • 0.25mi] I [Vsp
  • 1.5 hr]

where: mi = gram mole iodine = 228.7 Vsp Suppression pool volume (liters) = 3.738+06 liters [132000 ft3] The volume of water in the suppression pool following a LOCA is conservatively assumed to consist of the suppression pool water volume at low water level plus the normal volume of water in the reactor coolant system. From Reference 8, the suppression pool low water volume is 122,410. ft3 and is based on a low water level in the pool of 22 ft. The mass of water in the reactor-coolant system is 610,000. Ibm. This mass is obtained from Reference 9, Table A28.1. The coolant water volume is conservatively based on a temperature of 70 *F. Coolant water volume = 610,000. Ibm / 62.4 lb/ft3 = 9776. ft Pool Volume Post-LOCA = 122,410 ft3+ 9776 ft3 = 132186 ft3 (Use 1.32000 ft3) Integrating the above yields: During the Gap Release Phase: [HI](t) = [mi] [200Vspj [t - tgrp] where tgrp = onset of the gap release phase 0.0333 hr [2 minutes] During the Early In-Vessel Release Phase: [HI(t) = [miu [120 Vsp] * [t -(0.5 + tgrp)] + [mi] /[400 Vsp] The final HI concentration at t = 2.033 hr [1.5 hr+0.5hr+2 min), the end of the iodine release from the core is given as:

-r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06!2005 Suppression Pool pH post LOCA CaIc. No. EC-059-1041 Designed By M. Waselus Sh. No. 10 Checked By R. Anderson [HI](2,033 hr) = [(228.7)/ (120"3.738E+06)] * [2.033 -(0.5 + 0.0333)] + [228.7] 1 [400"3.738E+061 [Hi](2.033 hr) = [5.0985E-071 *[1.5] + 1.5296E-07 = 9.1773E-07 moles/liter or a total of 3.4 moles [9.1773E-07 moles/liter

  • 3.7378E6 liters].

where 3.7378E6 liters is the suppression pool volume. The core iodine and cesium inventory for the EPU core is provided in Reference 17. Reference 17 provides the inventory as grams. The value is converted to gram atoms by dividing each isotope by its atomic number. The values are given as follows. Isotope grams gm atoms Isotope. grams gm atoms Reference 17 Reference 17 1-127 6.349E+03 4.999E+01 1-129 2.842E+04 2.203E+02 Cs-133 1.857E+05 I 1.396E+03 1-130 1.352E+00 1.040E-02 Cs-134 1.780E+04 I 1.328E+02 1-131 8.633E+02 6.590E+00 Cs-135 7.869E+04 I 5.829E+02 1-132 1.513E+01 1.146E-01 Cs-136 1.008E+02 7.415E-01 1-133 1.963E+02 1.476E+00 Cs-1 37 1.994E+05 1.456E+03 1-134 9.244E+00 6.899E-02 Cs-138 1 4.882E+00 3.538E-02 1T135 5.990E+01 4.437E-01 Cs-139 1.322E+00 9.509E-03

  • Total 3.591 E+04 2.790E+02 Total 4.817E+05 3.568E+03 The final HI concentration for EPU conditions at t = 2.033 hr [1.5 hr+0.5hr+2 min], the end of the iodine release from the core is given as:

[HI(2.033 hr)= [(279) (120*3.738E+06)] * [2.033 -(0.5 + 0.0333)] + [279] (400-3.738E+061 [HI](2.033 hr) = [6.2199E-07] *[1.51 + 1.8660E-07 = 1.1196E-06 moles/liter or a total of 4.2 moles [1.11 96E-06 moles/liter

  • 3.7378E6 liters].

where 3.7378E6 liters is the suppression pool volume 4.2 Nitric Acid Radiolytic production of nitric acid is discussed in section 2.2.4 of Reference 1 and section 3.3.1.1 of Reference 3. The nitric acid (HNO 3) is produced by the irradiation of water and air. Both references provide the following constant for nitric acid production based on experimental data. g(HNO 3) = 0.007 molecules/100ev where the relationship is based on radiation absorption in the aqueous phase. This value is based on a water temperature of 86 OF, which is conservative for use following a LOCA since the solubility of nitrogen reduces with increasing temperatures. Per

r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Cale. No. EC-059-1041 Designed By M. Waselus Sh. No. 11 Checked By R. Anderson Reference 1 section 2.2.4, the equates to a radiation G value of 7.3-E-06 moles HNO 3/ L Megarad which means H" and NO 3 increase by 7.3-E-06 moles for each Megarad of dose delivered to the suppression pool water. This is expressed as: d/dt[HNO 3] = 7.3E-06 moles HNC3/L Megarad

  • DR(t) where: DR(t) = dose rate as a function of time in the suppression pool (Megarads/hr).

The suppression pool dose values are based on the integrated -energy absorption in the suppression pool from References 14. Reference 14, Page 29 provides the integrated energy absorption in the sump (suppression pool) for a power of 3458 MWt (Reference 14, page 8). The values for 3E+6 seconds (34.7 days) are conservatively used for the 30 day dose required. The values are: G+1B Sump Iodine Sump 1.575E30 ev 1.691 E30 ev Converting these energy depositions to Mrad yields the following: fl.575E30 ev + 1.691E30 evV 1 Mev/10 6 ev* 1 erQ16.25E5 Mev I Rad-gm/100 eras I Mrad/106 Rad *1 cc/am 3.7378E9 cc or 13.98 Mrad for 3458 MWt. The current power level being evaluated is 3616 MWt. The activity entering the suppression pool is taken as proportional to the power. Therefore, for the purposes of determining the quantity of nitric acid formed-,a da-y suppression p-ooI-iritegrated dose of 14.62 Mrad is applied [13.98

  • 3616/3458].

These dose rates were determined using TID-14844 source terms. In accordance with USNRC RG 1.183, section 1.3.5 and SECY-98-154, the TID-14844 Equipment Qualification dose rates previously calculated in the drywell air and suppression pool (beta and gamma) bound those generated by AST. Therefore, it can be concluded that the dose rates calculated with TID-14844 are conservative and acceptable for use in determining the HNO 3 production herein. [HNO 3](t) = 7.3E-06 P DR(t) dt where t = time into accident (hrs) or the nitric acid produced at any point in time is given as [HNO 3](t) = 7.3E-06 Integrated Dose at Time t. [HN0 3](30 days-suppression pool dose) = 7.3E-06

  • 14.62 = 1.0673E-04 moles/liter.

or a total of 398.9 moles [1.0673E-04 moles/liter* 3.7378E6 liters). where 3.7378E6 liters is the suppression pool volume.

'or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Efi Tech. PROJECT Date 6/06!2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 12 Checked By R. Anderson For EPU conditions this value is conservatively increased by 25% with the resulting 30 day suppression pool integrated dose equal to 18.28 Mrad [14.62 Mrad

  • 1.25] and

[HNO 3](30 days-suppression pool dose) = 7.3E,06

  • 18.28 = 1.3344E-04 moles/liter.

or a total of 498.8 moles [1.3344E-04 molesiliter

  • 3.7378E6 liters].
  • 4.3 Hydrochloric Acid The radiolysis of chloride-bearing cable jacketing will result in the production of HCI vapor as documented in Section 2.2.5.2 of NUREG/CR-5950 (Reference 1). It should be noted that a significant portion of the HCI vapor produced from cable radiolysis would react with the metal components within the primary containment (e.g., cable trays, gratings, etc.) and never enter the suppression pool. However, for this analysis it is conservatively assumed that all of the gaseous HCI produced is immediately dissolved in the suppression pool water. A model for the production of HCO from cable jacketing is developed below based on the approach given in Appendix B of NUREG/CR-5950.

The absorption of a radiation flux at a radius, r, can be described from basic principles as: q (r) = q (Ro)e-P(R°'r) P = Linear Absorption Coefficient (cm"1) from Table below. Ro = Outside cable radius (cm) Cable and Air Material Properties Reference 2 Density Linear Absorption Coefficient (cm") Material (gm/cm3) Beta Radiation Gamma Radiation Hypaion 1.55 52.08 0.099 EPR 1.27 42.67 0.081 Air 0.0198 !0.0000374 Similar to the approach in Reference 1, Appendix B, the production of HCI from radiolysis is given by: R =G (SA) cp A where: R = HCI production rate 4gm moles/sec)

or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Caic. No. EC-059-1041 Designed By M. Wasehus Sh. No. 13 Checked By R. Anderson G = Radiation G value for Hypalon (molecules HCI/1 00 ev) SA = Cable surface area (cm 2) P= Incident radiation energy flux (Mev/cm2-sec) A = Absorption fraction of energy flux in Hypalon jacket. Radiation G value for Hypalon Note: The radiation G value for Hypalon adopted in Reference 1, Section 2.2.5.2 is 2.115 molecules HCI_ per 100 eV. This G value is based on the energy absorbed by the polymer consistent with the footnote to Table 3 of NUREG-1081 (Reference 2). As described in Reference 2, this value represents a balance between the increased HCI production at elevated temperatures expected during accidents and the neutralization potential of fillers in the cable. The resulting value is 3.512E-20 moleslMev (Reference 1, page B.3). This term can also be expressed in terms of moles/Mrad (absorbed dose)-gm (exposed material). 3.512E-20 moleslMev

  • 6.25E+5 Mev/erg
  • 100 ergs/gm-Rad IE+6 RadlMrad = 2.195E-6 moles/Mrad-gm or 9.97E-4 moles/Mrad-lb. This value is conservative compared to the value of 4.6E-4 moles of HCI per lb of insulation per Megarad listed in Section 2.2.5.2 of Reference 1 since it produces about 2.2 times more HCI per lb of exposed material.

Absorption fraction of energy flux in Hypalon jacket The absorption fraction is the fraction of incident radiation energy flux absorbed by the Hypalon. As provided in-Section 4.2 of NUREG-1081 (Reference 2), the factor is calculated with the following equation (Reference 2, Equation 4 gamma and Equation 4 beta): Ay.H = 1 - exp[-pyH

  • tH]

where: Av H = Absorption of incident gamma. radiation py = Linear adsorption coefficient - gamma Hypalon (0.099/cm) tH = Hypalon thickness (cm) Ap.H = 1 - exp[-p13H* tH] where: A0 H = Absorption of incident beta radiation ppH = Linear adsorption coefficient - beta Hypalon (52.08/cm) tH = Hypalon thickness (cm) Using the above equations and values the following figure plots the radiation fluxes through Hypalon jacketing. As seen essentially all of the beta energy is completely absorbed even by relatively thin Hypalon cable jacketing while very little of the gamma energy is absorbed. In the subsequent analysis all of the beta energy will be assumed completely absorbed in the jacket.

or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Caic. No. EC-059-1041 Designed By M. Waselus Sh. No. 14 Checked By R. Anderson 12r000 1.0000. x LL 0.800 C 0) COW _. oeooo 0C o ILL 0.2=00 0.0000 0.02 0.04 o.Ce 005 0.1 Cable Thickness (inches) 0.12 HCI Generation The HCI generation can be calculated with the above equations as (See Reference 2, Equations 5-7 and 5-8 for gamma and Equations 5-10 and 5-11 for beta). Gamma: R = G (SA) cpA = G

  • SA* EVyN * [(1-exp(-pyair*r))/ pyai. * [1-exp (ý-pyH*tH)]

Beta: R=G (SA)upA= G *SA* EIVV* 1/pi3ar where: R EyN Ep/ pyf]ir r ppair SA tH G HCl production rate (gram moles/hr) Energy release rate / unit volume (Mev/hr-cc) gamma Energy release rate I unit volume (Mev/hr-cc) beta Linear adsorption coefficient - gamma Hypalon Linear adsorption coefficient - gamma air Distance of air to cable (cm) (252 cm). Linear adsorption coefficient - beta air Cable surface area (cm2) Hypalon thickness (cm) 3.512E-20 gram moles/Mev (Reference 1, Appendix B)

or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & EffTech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Caic. No. EC-059-1041 Designed By M. Waselus Sh.No. 15 Checked By R. Anderson Using the form for G in terms of absorbed dose [9.97E-4 moles/Mrad-lb (exposed material)], the total HCI generation from an integrated energy release is given as follows: Gamma: MHC1 = G

  • W* * [1-exp(-py-H*tH)]J0t DR dt Beta: MHCI

= G

  • W* Jt DR dt where:

MHCI HCI production (gram moles) W Weight of cable jacket material (Ibs) t _Time (hrs) 11-exp(-Iy*tH)]. Fraction of gamma energy absorbed .[o' DR dt Integrated dose (Mrad) G moles/Mrad-lb Using G in terms of absorbed dose (Mrad) replaces G (EyN) [(1-exp( -ipyair*r)/ Ij¥air] where the values were in terms of an incident flux and absorbed energy. The 30 day drywell doses are taken from Reference 10, Tables 2 and 3. Drywell Doses @ T = 30 days Dose (Rad) I Dose (Mrad) 1 Airborne gamma 8.19E+06 1 8.19 _---Plateout gamma- -1.88E+06:-- .1.88 Airborne beta I 2.32E+08 I 232 Plateout beta I 2.67E+08 267 Adjusting these values for EPU conditions using the conservative factor of 1.25 yields the following: Drywell Doses @ T = 30 days I Dose (Mrad) Dose (Mrad)* 1.25 Airborne gamma i 8.19 10.24 Plateout gamma 1.88 I 2.35 Airborne beta j 232 I 290 Plateout beta I 267 i 334 Due to the different attenuation properties of beta and gamma radiation they are addressed separately.

)r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA CaIc. No. EC-059-1041 Designed By M. Waselus Sh. No. 16 Checked By R. Anderson Beta: From Attachment 1, the total weight of cable jacket (assumed to be Hypalon properties) is 4855.42 lbs. Also as seen the jacket thickness in almost all cases is equal to or greater than the thickness required for the entire beta energy to be absorbed. The HCI concentration in the suppression pool is MHC1 I Pool Volume (132000 ft3 or 3.738E+6 liters) or. [HCI] = G

  • W* Integrated Beta Dose

[HCI] = 9.97E-4 moles/Mrad-lb

  • 4855.42 lbs
  • 2[232 Mrad + 267 Mrad]/ 3.738E÷6 liters

[HCI] = 3.2313E-04 moles/i due to beta or a total of 1207.8 moles [3.2313E-04 moles/liter.* 3.737BE6 liters]. where 3.7378E6 liters is the suppression pool volume and a factor of 2 reduction is taken for the beta dose due to self shielding effects. The HCI concentration in the suppression pool considering the adjustment for EPU conditions is MHC/I Pool Volume (132000 ft3 or 3.738E+6 liters) or [HCI] = G

  • W* Integrated Beta Dose (HCI] = 9.97E-4 moles/Mrad-lb
  • 4855.42 lbs Y2[290 Mrad + 334 Mradl / 3.738E+6 liters

[HCI] = 4.0405E-04 moles/I due to beta or a total of 1510.3 moles [4.0405E-04 molesiliter 3.7378E6 liters]. Gamma: Unlike beta radiation, the gamma radiation can penetrate the cable interior and HCI may be generated by interior jackets on individual conductors in multi conductor cables. Based on a review of the various cable types listed in Attachment 1, a bounding cable type is developed to conservatively determine the potential HCI production. A review of Attachment 1 indicates that type Q1 I cable comprises about 45% of the total cable length and 57.9% of the total outside jacket mass. Based on the information in Attachment 2 for type Q1 1 cable the mass of internal Hypalon and EPDM insulation is determined where the properties for Hypalon are conservatively applied to the EPDM material. The resulting 011 insulation-jacket mass/ft is conservatively applied to the total length for all cable types from Attachment 1.

or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6&06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 17 Checked By R. Anderson Approximate Representation of Type 011 Cable Per Attachment 2, there are thirteen 20 gage conductors with 20 mils EPDM and 10 mils Hypalon each. Per Marks (Reference 15), diameter of 20 AWG conductor equals 0.032 inches. Therefore, the area of insulation-jacket/conductor is: Tr[R 22 - R12] = Tr[(0.046in/I2in/ft)2 - (0.01 6in/12in/ft)2] = 0.0000406 ft2/conductor The total mass of insulation-jacket is conservatively estimated as: 13 conductors

  • 0.0000406 ft2/conductor
  • 96.7 lb/ft3
  • 79478 ft = 4070 lbs.

Where: 96.7 lb/ft3 = density of Hypalon 79478 ft = total length of all cable from Attachment 1. By inspection of Attachments 1 and 2, type Q1 1 cable bounds most types of cable used at SSES and provides a conservative estimate of the material used to generate HCI. HCI concentration in the suppression pool is MHa /Pool Volume [HCI] = G - W* * [1-exp(-pyH*tH)]

  • Integrated Gamma Dose

)r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 18 Checked By R. Anderson [HCI] = 9.97E-4 moles/Mrad-lb * [4855.42 + 4070]lbs [(1 - exp- (.099

  • 0.681)] * [8.19 Mrad +

1.88 Mradl I 3.738E+6 liters [HCI] = 9.97E-4

  • 8925.42 lbs
  • 0.0652
  • 10.07/3.7378E+6

[HCIJ = 1.5631 E-6 moleslliter due to gamma or a total of 5.8 moles [1.5631E-6 moleslliter

  • 3.7378E6 liters].

where 3.7378E6 liters is the suppression pool volume. Therefore, for 3616 MWt the total gamma + beta HCI equals 5.8 moles + 1207.8 moles = 1213.8 moles. Using the adjusted EPU values for gamma radiation of 10.24 Mrad airborne and 2.35 Mrad Plateout yields the following: HCI concentration in the suppression pool is MHc / Pool Volume [HCI] = G

  • W* [1-exp(-pyH*tH)]
  • Integrated Gamma Dose

[HCI] = 9.97E-4 moles/Mrad-lb * [4855.42 + 4070]lbs * [(1 - exp- (.099 0.681)] * [10.24 Mrad + 2.35 Mrad] / 3.738E+6 liters [HCI] = 9.97E-4

  • 8925.42 lbs 0.0652
  • 12.59 13.7378E+6

[HCl] = 1.9543E-6 molesiliter due to gamma or a total of 7.3 moles [1.9543E-6 molesiliter

  • 3.7378E6 liters]..

Therefore, for EPU conditions at 4032 MWt, the total gamma + beta HCI equals 7.3 moles + 1510.3 moles = 1517.6 moles. 4.4 Cesium Hydroxide Per section 2.3.1 of Reference 1, cesium may be introduced into containment in various forms following an accident. The cesium will form cesium hydroxide and cesium borates which are basic materials Table 1 of USNRC Regulatory Guide 1.183 (Reference 5) indicates that 5% of the alkali metal inventory (including cesium) is released during the gap release phase and an additional 20% is released during the early in-vessel phase. Table 1 Reference 5 also indicates that 5% of the halogen inventory is released during the gap release phase and an additional 25% is released during the early in-vessel phase. In accordance with Section 3.5 of Reference 5, 95% of the iodine released should be assumed to be cesium iodide (Csl). This release process is assumed to occur at a constant rate over the release period identified in Table 4 of Reference 5.

)r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6106/2005 Suppression Pool pH post LOCA Caic. No. EC-059-1041 Designed By M. Waselus Sh. No. 19 Checked By R. Anderson LOCA Release Phases BWRs Reference I Phase Onset Duration Gap Release 2 min 0.5 hr Early In-Vessel Release 0.5 hr 1.5 hr The core cesium and iodine inventories used in this evaluation include stable Cs-i33 and stable I-127. Per Reference 7, the total core inventory of iodine is 107 gram atoms at the beginning of cycle (BOC) and 228.7 gram atoms at the end of cycle (EOC) and the total core inventory of cesium is 1490.9 gram atoms at BOC and 2969.5 gram atoms at EOC. The EOC values are used in this analysis. Although the BOC value for cesium is lower than the EOC value which would result in less CsOH, the EOC values are used consistent with the basis for the radiological calculations and other data input to the analysis which are conservatively based on EOC values. These include the core source terms, pool iodine concentration (HCI), EQ dose rates, etc. Note: For a monotonic element gram mole equals gram atom. The following equations are used to describe this release. During the Gap Release Phase: d/dt[CsOH] = (0.05mcs - (0.95 0.05mi)] I[Vsp

  • 0.5 hr]

During the Early In-Vessel Release Phase: d/dt[CsOHI = [0.2mcs - (0.95

  • 0.25mi)]

[Vsp 1.5 hr] where mi = gram mole iodine = 228.7 mcs = gram mole cesium = 2969.5 Vsp = Suppression pool volume (liters) = 3.738E+06 liters [132000 ft3] Integrating the above yields: During the Gap Release Phase: [CsOHj(t) = [0.1mcs- 0.095mi] / [Vsp]

  • ft-tgrp]

where tgrp = onset of the gap release phase = 0.0333 hr [2 minutes] During the Early In-Vessel Release Phase: [CsOH](t) = [0.4mcs - 0.475mi] /f3 Vsp] * [t -(0.5 + tgrp)] + [0.05mcs,- 0.0475mi]/ [VspJ The final CsOH concentration at t = 2.033 hr [1.5 hr+0.5hr+2 min] is given as:

or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & EffTech. PROJECT Date 6!06!2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 20 Checked By R. Anderson [CsOH](2.033 hr) = [0.4

  • 2969.5 - 0.475
  • 228.7] / [3
  • 3.738E+061 * [2.033 -(0.5 + 0.033)] +

10.05 " 2969.5 - 0.0475 228.7 11 [3.738E+06] [CsOH](2.033 hr) = ((1187.8 - 108.6]/[l.1214E+07)) [1.5] + [148.475 - 10.86]/13.738E+06] [CsOH](2.033 hr) = [1.444E-041 + [3.682E-05] moles/liter [CSOH](2.033 hr) = 1.8122E-04 moles/liter or a total of 677.4 moles [1.8122E-04 moles/liter* 3.7378E6 liters). where 3.7378E6 liters is the suppression pool volume. From section 4.1, for EPU conditions the values for core iodine and cesium are: mi = gram mole iodine = 279 mcs = gram mole cesium = 3570 The final CsOH concentration for EPU at t = 2.033 hr [1.5 hr+0.5hr+2 min] is given as: [CsOH](2.033 hr) = [0.4

  • 3570 - 0.475
  • 279]/ [3
  • 3.738E+06]

[2.033 -(0.5 + 0.033)] + 10.05 3570 - 0.0475

  • 279]/ [3.738E+06]

[CsOH](2.033 hr) = [1.733E-041 + [4.421 E-05] moles/liter [CsOH](2.033 hr) = 2.1751E-04 molesiliter or a total of 813 moles [2.1751E-04 moles/liter 3.7378E6 liters]. 4.5 Summary of Acid and Base Production The following provides a summary of the production of acids and bases in the suppression pool for 3R16 MVWt Material Concentration Concentration in Concentration in Reference in Suppression Suppression Suppression Section Pool generated Pool generated Pool by Beta by gamma radiation radiation moles/liter moles/liter moles/liter Hydriodic Acid I NA NA 9.18E-7 4.1 Nitric Acid I NC NC 1.07E-4 4.2 I Hydrochloric Acid I 3.23E-4 1.56E-6 3.25E-4 4.3 Cesium Hydroxide NA I NA 1.81E-4 4.4 NA: Not Applicable NC: Not Calculated

)r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Catc. No. EC-059-1041 Designed By M. Waselus Sh. No. 21 Checked By R. Anderson Material Suppression Reference Section .Pool gm-moles .Hydriodic Acid 3.4 4.1 Nitric Acid 399 4.2 Hydrochloric Acid 1214 4.3 Total acid 1616.4 Cesium Hydroxide 677.4 4.4 The following provides a summary of the production of acids and bases in the suppression pool for EPU conditions at 4032 MWt. Material Concentration. Concentration Concentration in Reference in Suppression in Suppression Suppression Pool Section Pool generated Pool generated by Beta by gamma radiation radiation moles/liter moles/liter moles/liter Hydriodic Acid NA NA 1.12E-6 4.1 Nitric Acid NC NC 1.33E-4 i 4.2 Hydrochloric Acid 4.04E-4 1.95E-6 4.06E-4 4.3 Cesium Hydroxide NA NA I 2.18E-4 I 4.4 NA: Not Applicable NC: Not Calculated Material Suppression Reference Section Pool gm-moles Hydriodic Acid 4.2 4.1 Nitric Acid 499 4.2 Hydrochloric Acid 1518 4.3 Total acid 2021.2 Cesium Hydroxide 813 4.4

?or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & EffTlech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 22 Checked By. R. Anderson ,Based on the above, the unbuffered pH of the suppression pool at 3616 MWt is 3.6 including credit for CsOH production I. Suppression Pool am-moles/liter 'H+ for pH = 6 1.OOE-06 Hydriodic Acid 9.18E-07 Nitric Acid 1.07E-04 Hydrochloric Acid 3.25E&04 Total Acid 4.34E-04 ,OH for pH = 6 1.OOE-08 Cesium Hydroxide 1.81E-04 Total Base 1.81E-04 Total Acid - Total Base 2.53E-04 pH unbuffered = -log[2.53E-04] = 3.6 Equivalents strong acid = 2.53E-04 gm-moles/liter* 3.7378E+06 liters = 946 gm-moles strong acid -The-followingp-rovides the-unbuffered pH of the production. suppression pool without credit for CsOH T Suppression Pool I urm-moles/liter 'H÷ for pH = 6 1.0OE-06 Hydriodic Acid 9.18E-07 Nitric Acid 1.07E-04 Hydrochloric Acid 3.25E-04 ITotal Acid 4.34E-04 OHfor pH = 6 1.OOE-08 Cesium Hydroxide 0 Total Base 1.OOE-08 iTotal Acid - Total Base 4.34E-04 pH unbuffered = -log[4.34E-04] = 3.36 Equivalents strong acid = 4.34E-04 gm-moles/liter* 3.7378E+06 liters = strong acid. 1622 gm-moles

Dr Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Caic. No. EC-059-1041 Designed By M. Waselus Sh. No. 23 Checked By R. Anderson The following provides the results for EPU conditions at 4032 MWt. The unbuffered pH of the suppression pool is 3.49 including credit for CsOH production. Suppression Pool .gm-moles/liter H+ for pH =6 1.00E-06 ,Hydriodic Acid 1.1 2E-06 Nitric Acid 1.33E-04 Hydrochloric Acid 4.06E-04 Total Acid 5.41 E-04 OH' for pH = 6 1.OOE-08 Cesium Hydroxide 2.1 8E-04 Total Base ,2.18E-04 [Total Acid - Total Base 3.23E-04 pH unbuffered =-log[3.23E-04] = 3.49 Equivalents strong acid : 3.23E-04 gm-moles/liter* 3.7378E+06 liters = 1207 gm-moles strong acid --7The-unbuffered pH of the suppression pool for EPU without credit for CsOH production is 3.27. -HdoiroA A Suppression Pool- _________________gm-moles/liter H4 for PH =6 1.OOE-06 'Hydriodic Acid 1.1 2E-06 iNitric Acid 1.33E-04 Hydrochloric Acid 4.06E-04 Total Acid 5.41E-04 OH-for pH = 6 1.OOE-08 Cesium Hydroxide 0.OOE+00 !Total Base 1.00E-08 Total Acid -Total Base 5.41 E-04 pH unbuffered = -log[5.41E-04] = 3.27 Equivalents strong acid = 5.41E-04 gm-moleslliter* 3.7378E+06 liters = 2022gn-moles strong acid.

)r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1-041 Designed By M. Waselus Sh. No. 24 Checked By R. Anderson 4.6 Sodium Pentaborate - Suppression Pool Buffered pH In order to maintain the post LOCA suppression pool pH greater than 7 a buffering agent is required to offset the various acid production post LOCA. The chosen method at SSES is to introduce sodium pentaborate (SPB) to the reactor vessel and ultimately the suppression pool via the standby liquid control system (SLCS). The SLCS solution is an aqueous solution of sodium pentaborate (Na2B10O16*10H20). The molecular weight is: Component No. of Atoms Atomic Weight Molecular Weight Na 2 22.9898 45.9796 B 10 10.811 108.11 0 16 15.99994 255.999 Total T 410.09 gm/mole 4.6.1 Pre EPU Evaluation: Using the maximum temperature of 110 'F (Dl 8) for the SLCS solution and the minimum SLCS tank volume of 4587 gallons (DI 7) with the minimum concentration of sodium pentaborate of 13.6 weight % (DI 9) the mass of sodium pentaborate is determined as follows: Solution mass, m = 4587 gallons * [1 ft3 I 7.4805 gall * [1 Ibm/*0.016165 ft3] =_37933.5 Ibm Mass of sodium pentaborate (SPB), mp = 0.136

  • 37933.5 Ibm = 5158.95 Ibm Converting the mass of sodium pentaborate to gm-moles results in the equivalent of:

5158.95 Ibm SPB* 453.59 gm/Ibm SPB /1 mole SPB/ 410.09 gm = 5706.2 gm-moles. The required quantity for pool pH control is injected early during the postulated LOCA. Per DI 10, the minimum SLC pump capacity is 41.2 gpm. Therefore, the time to inject the contents of the SLC tank is: Time to Inject = 4587 gallons/41.2 gal/min = 111 minutes for one pump or 56 minutes for two pumps. This weak acid and its conjugate base will buffer the pool water at a pH corresponding to the following: I pH = pKa + log [anion]/[acid] where: pK8 = negative of the log of the acid dissociation constant = -Iog[Ka] Ka = 5.8E-10 for borate buffer (Reference 1, section 2.3.3) [anion] = borate concentration

r Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/0612005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 25 Checked By R. Anderson [acid] = acid concentration Sodium pentaborate dissolves in water producing boric acid and sodium borate: Na2B100 16 + 16 H20 -- 2 Na4 + 2 B(OH) 4 + 8 H3B0 3 Therefore, the injection of 5158.95 Ibm SPB or 5706.2 gm-moles SPB results in 11412.4 gm-mole equivalent of borate [2* 5706.2] and 45649.6 gm-mole equivalent boric acid [8 *.5706.2] added to the pool. Summarizing the above equivalents yields the following with credit taken for CsOH production in the suppression pool. Material in Pool Sodium Equivalent Column 2 - Volume pool Finalpool Pentaborate strong acid Column 3 concentrations gm-moles gm-moles added to Section 4.5 liters gm-moles/l pool gm/moles _I_ I Equivalents"; 11412.4 946 10466.4 3737800.0 2.8001E-03 borate Equivalents boric 45649.6 946 44703.6 3737800.0 1.1960E-02

lacid, Therefore, the suppression p0ol ph-after addition of-the sodium pentaborate equals 8.61:

where: pH = pK8 + log [anion]/[acid] pH = -log[5.8E-10] + log [2.8023E-03/1.1962E-02] = 9.24 +(-0.63) 8.61. For the conservative case with no credit for CsOH production in the suppression pool the results are provided as follows. Material in Pool Sodium Equivalent Column 2-Volume pool Final pool Pentaborate strong acid Column 3 concentrations gm-moles gm-moles added to Section 4.5 liters gm-moles/I pool gm/moles Equivalents 11412.4 1622 9790.5 3737800.0 2.6193E-03 borate 'Equivalents boric 45649.6 1622 44027.7 3737800.0 1.1 779E-02 lacid b i, Therefore, the suppression pool pH at 3616 MWt after addition of the sodium pentaborate equals 8.58:

or Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/0612005 Suppression Pool pH post LOCA Caic. No. EC-059-1041 Designed By M. Waselus Sh. No. 26 Checked By R. Anderson where: pH = PKa + log [anionYlacid] pH = -log[5.8E-10] + log [2.6213E-03/1.1781E-02] = 9.237 +(-0.653) = 8.58. 4.6.2 Post EPU Evaluation: Similar to the above the following provides the final suppression pool pH for EPU conditions. Converting the EPU minimum mass of sodium pentaborate to gm-moles results in the equivalent of: 1180 Ibm SPB* 453.59 gm/Ibm SPB / 1 mole SPB/ 410.09 gm= 1305.2 gm-moles. The required quantity for pool pH control is injected early during the postulated LOCA. Per DI 10, the minimum EPU SLC pump allowable flow is 40 gpm. Therefore, the time to inject the contents of the SLC tank is: Time to Inject = 1350 gallons/40 gal/min = 34 minutes for one pump. Per Reference 20, two pump operation will not be used post EPU. Material in Pool Sodium Equivalent Column 2-Volume pool Final pool Pentaborate strong acid Column 3 1 concentrations gm-moles gm-moles added to Section 4.5 liters gm-moles/I pool I gm/moles Equivalents 2610.4 1207 1403.4 3737800.0 3.7546E-04 borate Equivalents boric 10441.6 1207 9234.6 3737800.0 2.4706E-03

acid Therefore, the suppression pool pH after addition of the sodium pentaborate for EPU power equals 8.42:

where: pH = pK. + log [anion]/[acid] pH = -log[5.8E-101 + log [3.7546E-04/2.4706E-03] = 9.24 +(-0.82) = 8.42.

ir Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/0612005 Suppression Pool pH post LOCA Caic. No. EC-059-1041 Designed By M. Waselus Sh. No. 27 Checked By R. Anderson For the conservative case with no credit for CsOH production in the suppression pool the results are provided as follows. Therefore, the suppression pool pH after addition of the sodium pentaborate equals 8.08: where: pH = pKI( + log [anion]/[acid" pH = -Iog[5.8E-10] + log [1.5742E-04/2.2526E-03] = 9.24 +(-1.16) = 8.08.

Dr Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & EffTech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 28 Checked By R. Anderson 5.0 RESULTS The results of the analysis demonstrate that with the injection of the Technical Specification minimum quantity of sodium pentaborate, the 30 day suppression pool pH is greater than 7.0 which precludes the need to include reevolution of iodine from the suppression pool post LOCA. The 30 day suppression pool pH represents the worst case pH. Subsequent to the injection of the sodium pentaborate early in the accident scenario, the pH in the pool will be greater than the 30 day value since -the generation of the post LOCA acids reaches its peak values at 30 days.- -, For pre EPU conditions, the conservative 30 day suppression pool pH calculated herein is 8.61 with credit for post LOCA CsOH production in the pool and 8.58 without credit for post LOCA CsOH production in the pool. For the case of EPU conditions, the conservative 30 day suppression pool pH calculated herein is 8.42 with credit for post LOCA CsOH production in the pool and 8.08 without credit for post LOCA CsOH production in the pool. These results are summarized in the following table. Case pH 3616 MWt pH 4032 MWt pH with credit for post LOCA CsOH 1 8.61 8.42 1 pH without credit-for post-WCA 8.58 8.08 -.-. CsOH

r Information Only I PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/0612005 Suppression Pool pH post LOCA Caic. No. EC-059-1041 Designed By M. Waselus Sh. No. 29 Checked By R. Anderson ii.

6.0 REFERENCES

1. NUREG/CR-5950, Iodine Evolution and pH Control, Revision 3 (12/92).
2. NUREG-1081, Post-Accident Gas Generation from Radiolysis of Organic Materials, September, 1984.
3. NUREG/CR-5732, Iodine Chemical Forms in LWR Severe Accidents, April, 1992.
4. Design Basis Document for Standby Liquid Control System DBD 042, Revision 2.
5. USNRC Regulatory Guide 1.183, Alternative Radiological Source Terms For Evaluating

- Design Basis -Accidents At Nuclear Power Reactors, July 2000.

6. NUREG-1465, Accident Source Terms for Light-Water Nuclear Power Plants-Final Report, February, 1995.
7. PPL Calculation EC-FUEL-1602, Core Average Source Term for End of Equilibrium 24-month Cycle.
8. PPL Calculation EC-012-0442, Containment Volume & Weights, Revision 0.
9. PPL:Calculation EC-PUPC-1 001, NEDC-32161P, General Electric Power Uprate Engineering Report For Susquehanna Steam Electric Station, Revision 6, 5/24/04.
10. PPL Calculation EC-RADN-1004, Post Power Uprate Post-LOCA Radiation Levels for Equipment Qualification, Revision 7, 11/21/03.
11. PPL Drawing C206130, Sheet 1, Primary Containment Zones, Revision 4
12. PPL Technical Specification 3.1.7, Amendment 178 and Bases, B3.1.7, Revision 0, Standby Liquid Control System,.
13. PPL Calculation EC-RADN-1 005, Post Accident Equipment Qualification Doses for Power Uprate, Revision 1.

14.PPL Calculation EC-073-0006, Hydrogen/Oxygen Generation in an Inerted Containment, Revision 0.

15. Marks Standard Handbook for Mechanical Engineers, 7h Edition.
16. Email from R. Vazquies to M. Waselus, SPpH Cond.xls, 12/09/04 included as Attachment 3.
17. EC-FUEL-1 615, "AREVA Alternate Source Term (AST) Fission Product Inventory For Atrium-10 Fuel", Revision 0, 4/25/05.
18. PLE-23866, Inputs for Alternate Source Term Analysis, May 3, 2005.
19. Safety Evaluation by the Office of Nuclear Reactor Regulation Related to Amendment No. 145 to Facility Operating License No. NPF-29 Entergy Operations, Inc., et. al., Grand Gulf Nuclear Station, Unit 1, Docket No. 50-416, March, 2001.
20. PPL SSES Extended Power Uprate Project Task Report T0609, GE-NE-0000-0031-6772-RO, Standby Liquid Control System, December, 2005.

Dr Information Only PP&L CALCULATION SHEET Dept. 0341 Rad & Eff Tech. PROJECT Date 6/06/2005 Suppression Pool pH post LOCA Calc. No. EC-059-1041 Designed By M. Waselus Sh. No. 30 Checked By R. Anderson Attachment I Cable Data Received from PPL (R. Vazquies) 12/7/04

Atlachnicit I Io I.C-059-1041 page 31 WPIFT ý l-Ldo Jacket Thlekneso.¢.lidde Jacka flrdkneo. FORFZONE 1i4F Cable Code Su Of IotaahkOutalde flhametac (IneIhl muUco#J CONOSIZE O-R Inc-h RfI (!joaloo 1.,o ~.. i 1 3 i* A To~a LI Y'wI donlte lIA .ncmN encnVN lýk. IN 1 +'

  • ~

I - I 61096 I r')tl 7fl " fl a? 1 AW(" 225 i Nw r 1.,7 1-47: .4F I.E 212 145 0.507 2 0.31 3 kWr 60W0 110 S10 1 10 0.05 0.021 0.01! 0.171004 0.04! h 119F,

  1. 11"*7c, I 6A7146 I IISIAAA I~,

64 I7 0.2535 1 0.2085 96.7 0.D139 1 123.3126 2811.501 6.3G I 0 13 313 252 6.00 .006 0.315 0.255 96.7 0 07" f13.22097 2121 720 l1ain .17 14 56 0.76! ,WOS In 0.01 n U479 6 367* 06R7 nni'7( 16R 6666*R. 1,fl;6 11fn 4d:1 nna 443 009 -:4

  • W*

R N4* 41N* '17 tl 1 'lflA 0I0* l~I 1604* 001* 1-47 _ 63 20 0,82.5 _ WG 8 0.45., 0.0 0.006...0*4:125 .0.352 0.7; 0.0-08 200.6566 2072.173 1.94 0.04 1-4F

014 162 0.445 8NA 0.12 0.2225 0.2225 90.7 0.0000 108.2330 0.00 0.00 1-04

.02 1775 0.434 WWG 14 0.1... 0.045 0.045 0.217 0.172 06.7 0.0360 105.5575 2858.330 65.55 1.35 '14F .03 151 5 00WG 14 0.14 0.U.15 .0.04 0.2525 0.2075 90.7 0.0437 122.8262 2812.585 0.59 0.14 1.4F .05 256 0.620 0,,4 0.24 o.0o 0.0 0.3125 0.2525 0.7 0.0715 152.0126 2125.519 18.31 0,3. 1.4F .07 i16 0.67.5 7WG 14 0.3 0.0 0.0-0.3375 0.2775 9G.7 0.0778 104.1736 2186.930 0.03 0.19 1.4F 7T71 0.674 10.WG 16 0.22 0.06 0 0.337 0.277 96.7 0.0777 163.9304 2109.235 59.92 1.23 1.47

Il 17422 0.681 I 4WG20 0.1.

0.0.0 0.0 0.3405 0.2805 96.7 0.0786 165.6329 2107.118 1369.48 28.21 1.4F 320 212 0.859 22 AWO 20 0.31 O.06 0.0( 0.4295. 0.3095 06.7 0.1011 208.9261 2065.760 21.44 0.44 1.4F 024 1343 0.37X 3WO 16 0.07 WA0.4 0.045 0.188 : 0.143 96.7 0.0314 91.4508 2910.262 42.20 0.67 1-4F )24A 910 0.343 3WG 16 0.05 0.045 0.045 0.1715 0.1260 96.7 0.0283 83.4245 2948.832 25.74 0.53 1.4F 26 71 0.685 AWOI1 0.2'6 0.07 0.06 0.3425 0.2625 96.7 0.0791 166.6058 2105.930 5.62 0.12 14F 27 382 0.886 21 AWG 16 0.45 0.01 0.06 0.444 0.384 90.7 0.1040 215.9795 2000.706 40.04 0.8Z 1.4,F 028 63 0.397 4 IQ010 0.08 0.1141 0.0415 0.1985 0.1535 90.7 0.0334 95.5584 2065.463 300.15 0.16 I-4F 29 124 0.753 12 WG 16 0.27 0.05 0.0O 0.3765 0.3165 00.7 0.0677 183.1448 2087.830 10.88 0.22 .-4F 30 1658 0.482 -WG IS 0.11. 0.04 .0.04K 0.241 0.196 00.? 0.041? 117.2321 2825.770 08.78 1.42 1.4F F104 34 0.735 1 WOO-4/0 0.35 0.D6AM 0.0865 CSp 0.3675 0.3025 96.7 0.0919 170.7668 1945.736 3.12 0.06 1-4, 105 620 0.362 3 WG 16 0.0 0.045 0.045 0.161 0.136 96.7 0.0301 60.0N57 2925.W44 18.66 0.36 1.4F 06 71 1.132 3 000516 0: 0.0 .0.0 0.566 0.486 96.7 0.1775 275.3252 t550.691 12.61 0.26 1-47 t60 192 0.324 3 WV_ G 20 0.05 C1.045 0.04! 0.162 0.117 96.7 0.0265 78.8033 2975.178 5.09 0.10 1-4F 0?7 25 0.51 1 A.WG 14 0.19 0.9n 0.045 CSP[ 0.275 0.23 96.7 0.6479 133.7711 27"0.252 1.20 0.02 1I4F 063 2 0.7s Mg AWG 6 0.000. O.0 CSP0. U.305 0.335 96.7 0.0124 192.1439 2079.398 2.68 0.06 I-4F .02 .2563 0.47. 2 WWG 14 0.12 0.745 0.045 CSP7 0.23175 0.1925 96.7 0.0408 115.5298 2830.071 104.03 2.15 1.4F 03 417 0.505 3 _.W_ 14 0.1O" 0.045 0.045 CSP 0.2525 0.2075 96.7 .0.0437 122.8262 2612.565 18.21 0.38 1.4F 0S 107 0.625 5 000G 14 0.21 O.

0.

0.060CSPE 0.3125 0.2525 96.7 0.071 . 152.0126 2125.519 7.65 0.16 1.4F 07 494 0.675 7 0W 14 0.2

0.

0.060 CSPE 0.3375 0.2775 90.7 0.0776 164.1736 210%.930 38.40 0.J9 1-4F 12 2St 12 AVVG 14 0.46 0.0 0.080,CSPE 0.43 0.35 96.7 0.1316 209.1693 1586.907 3.55 0.07 1-4F 13 29 0.63 3 WG 10 0.231 O.0M 0.060 CSPE 0.315 0.255 9617 0.0722 L03.2787. 2123.729 20.78 0.43 .IF [61 10 0.349 AW100 6 01*1 0.0.* 0.030CSP3 0.125 .0.1425 96.7 0.0199 83.9110.420_8.93 2.05. 0.04 1.-4F 63 ,77 0.955 3 G 6 0.4 0.08 0.080 CsP 0.4715 0.3976 95.7 0.1477 232.2753 1572.860 11.37 0.23 14F 83 134C 0.825 3 000 0.3e 09.0 0.00CSPI 0.4125 0.3525. 00.7 0.068 200.96.69 2072.173 129.76 2.67 2-4F 12 2 0.6 2 W0 10 0.1to 0.045 ,0,041 0..3 0.255 96.7 0.0527 14,95321 2769.085 11.01 0.23 2-4F 12 3 O 0.507 2 WG 10 0.7 0.04 0.04 0.2535 0.2085 96.7 0.0439 123.3120 2811.M01 1.67 0.03. 4F )13 262 AW 0010 0-26 0.00 0.01 . Q,315 0.265 W!.7 0.0722 .53.2287 2123.729 11 00.9 0.39 ,4F7. 14 65 0.0685 4 WG 10 0.32 0.06

0.

0.3425 0.2825 96.7 0.0791 166.6058 2105.930 4.43 0.09 .4F,,. 02... .0. 2 00 0.44 0.06 0..0 .0.45 0.37 00.7 0.1384 214.8061 1581.697 4.15 0.00 ?-IF M 03 19 0.825 3 0G0 8 045 0.00.06 A 0.4125 0.3525 96.7 O.RW 200.6566 2073.173 1.84 0.04 2-4F7 1_ 01 .1191__4___ WG 14 0.1 -45 0.04 0.217 0.172 90.7 0.0369 105.5575 2.50.330 43.66 0.91 1191_____ 0 04434 2 WG1 01 L4 0.04! _43.98_ .91_ -4F7 1.03

11.

0.505 0G 14 0.14 0.045 0.04' 0.2525 0.2075 96.7 -- 0.0437 122.8202 2_12.5n5 5.20 O.1 1-4F 08... 224 0.625 5 14 0.4 0.06 0.0 0.3125 0.2525 96.7 0.0715 152.0126 2125.519 16.02 0.33

4

.07 160 0.875 7 00014 0.3

9.

0__ 0.375 0.2775 00.7 0.0778 164.1736 2108.930 7.78 0.10 0 -4f 09 5, 0 00 16 0.22 0.08 0.0( 0.33? 0.277 96.7 0.0777 163. 304 10.235 5 1.00 1.05 1-4F .ll I* 0.61 I4 0W0020 0.990.0 0.0* 03405 0.2m. 0.? 2107.118 1441.46 29.69 ___4F 20 18 0.859 28 000 20 0.3Q

0.
0.

0.42.5 .0.395 96.7 0.1011 208.9261 2065.760 19.12 0.39

0 Ii Attachment I to EC-059-1041 ft1/ZON ~- page 32 _FZ C __C_'Um _fLnthO__l__a_ _r_ n NUIMCON CONDOSlZE V w deJakfmhmrkness eOu t Thlcltoo OR Inch OR-OJT densel lb/ft 0q cm/ft cmCl/b Jacket lbs "46 _(24 248') 0.370 3AWG 16 0,07 0.04' 0.04,L 0.1. 8 0.143 96.7 0.0314 91.4508 29810262 77.93 1.61 2-44F

02S 2e 0.621 6 AWG 16 0.17 0.06 0.0 0.3105 0.2505 96,7 0.0710 151.0397 2126.974 1.85 0.04 1

-4F 027 358 0.880 21 kWG 16 0.45 _r

0.

0.0 0.444 0.384 9V 0.1048 215.9795 2080.78 37.52 .0.77 4r-4F )28 5960 0.397 4 WG 16 0.08 0.04q!_ 0.04 0.1985. 0.1535 96.7 0.0334 96.5584 2889.482 199.17 4.10 0 .4F 20 348 0.7053 2.WG 6 0.27 0.8 0.0 0.3785 0.3/65 96.7 0.0077 183.1448 2087.830 30.26 0.62 -4" 30 1308 482 W 16 0.11 0.4 0 241 0.196 967 0.0415 117.2321 2825.776 56.75 1.17 0.48 RW4 1636___00 0.735 1 W-40 967

  • .4F R04 3

0.735 I ew-4ID 0.35. 0.06ý 0.085 CSPE 0.3675 0.3025 96.7 0.0919 178.7068 1945.736 3.31 0.07 4F T05 697 0,362 3 AWG 16 0.0 0.045 0.045 0.181 0.138 96.7 0.0301 88.0457 2325.644 20.98 0.43 .4F T0 78 1.132 36 AW /6 0,6.' 0.0

0.

0 68 0.486 96.7 0,1775 275,3252 1550.@91 13.65 0.29 .4F T08 207 0.324 3 AWG20, 0.0 0.045 0.045 0.162 0.1fi 90.7 0.0265 78.8033 2975.178 5.48 0.11 .4F Z02 2941 0.475 2 AWG 14.... 0.12 .045 0.045 CSPrz 0.2375 -01925 96.7 0.0408 115.5296 2830.071 120.06 2.47 Z4F 03 450 0.505 3 1 000/4 0.1. 3 0.04 0.045 CSPE 0.2525 0.3075 96.7 0.0437 122.8262 2812.585 20.09 0.41 -"4F .05 48 1 0.625 75 4WG 14 0.21 0.06 0.0608C9PE 0.3125 0.2525 90.7 0.0715 152.0126 2125.519 6.29 0.13 407 43 0.675F _.WG /4 027 _ 0.06 0.080 CSPE 0.3375 0.2775 96.7 0.0778 164.A736 2,05,930 32.15 0.66 Z46 -12 21 0.86 12 AWG 14 0.4 0.0/ 0.080 CSPE 0.43 0.35 96.7 0.1316 209.1693 1588.907 2.76 0.06 "-4F Z13 28 0.6: 3 \\WG 10 0.2

0.

0.060,CPI 0-315. 0.258 96.7 0.0722 193,2287 2123.720 20.20 0.42 _.4F 1 54 0.345 \\WG 0.t3

0.
0.

0.030CSPE 0.1725 0.1425 96.7 0.0199 83.9110 .4208.933 1.08 0.02 A.4F 3 7 0.95! 3 WG 6

0.

_0.0 0.080_CSPE 0.4775 0.3975 907 0.1477 232.2703 1572.M60 10.78 0.22 04F 3 1/

0.

8WO 6

0.

0.O00CSP . 0.4125 0.3525 90.7 0.0568 200.6506 2072.173 111.94 2.31 7974a 4805.42 100.00 86!Z Cbbocosu/fotaed) NOTE: The portion of the Table highlighted in gray has been modified by the calculation originator to provide additional values for the analysis.

)r Information Only to EC-059-1041 page 33 Cable Drawings I

or Information Only to EC-059-1041 page 34 SPFL Suasquehanina. L&.C TVM Nod, a*SbýeI Ai~k-nww.%PA 18101=17 Tel. 610-774J,723 FAxs 610.774.7782 . razpi=Ocpphl.coc= P pi December 8. 2004 Mr. Michael Waselus Parsons Energy & Chemical 2675 Morgantown Road Reading, PA 19607 SUSQUEHANNA STEAM ELECTRIC STATION SUPPRESSION POOL pH ANALYSIS PLE-23745

Dear Mr. Abrams:

The fonlowing drawings are attached for your use in determining cable dimensions for the Suppression Pool p" analysis: 1. 2. 3. 4. 5. 6., 7. 8. 9. 10. 11. 12. Z3. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. For Type B12 Cables For Type D1I Cables For Type D12 Cables For Type D13 Cables For Type 014 Cables For Type 062 Cables For Type D83 Cables For Type L02 Cables For Type L03 Cables For Type L05 Cables For Type L07 Cables For Type N09 Cables For Type 011 Cables For Type 020 Cables For Type Q24 Cables For Type Q24A Cables Foy Type 025 Cables For Type 026 Cables For Type 027 Cables For Type 028 Cables For Type 029 Cables For Type 030 Cables For Type R04 Cables For Type TO5 Cables For Type T06 Cables For Type TOB Cables For Type U07 Cables FF103301 Sheet 8901 FF103301 Sheet 5201 FF103301 Sheet 5301 FF103301 Sheet 5401 FF103301 Sheet 5501 FF103300 Sheet 5801 FF103301 Sheet 5701 FF103301 Sheet 4701 FF103301 Sheet 4801 FF103301 Sheet 4901 FF103301 Sheet 5001 FF103310 Sheet 0301 FF103310 Sheet 2501 FF103310 Sheet 0701 FF103310 Sheet 1401 FF61954 Sheet 44 FF103310 Sheet 1501 FF103310 Sheet 1601 FF103310 Sheet 1701 FF103310 Sheet 1801 FF103310 Sheet 1901 FF103310 Sheet 2001 FF103500 Sheet 0201 FF103310 Sheet 2601 FF103310 Sheet 4101 FF103310 Sheet 4301 FF61882 Sheet 5 1. I. I

x Information-Only to EC-059-1041 December 8, 2004 PLE-23745 Page 2 of 2 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. For Type U63 Cables For Type Z02 Cables For Type Z03 Cables For Type ZC5 Cables For Type Z07 Cables For Type Z12 Cables For Type Z13 Cables For Type Z61 Cables For Type Z63 Cables For Type Z83 Cables FF61882 Sheet 8 FF103950 Sheet 1201 FF103950 Sheet 1301 FF103950 Sheet 0201 FF103950 Sheet 1101 FF103950 Sheet 1001 FF103950 Sheet 0901 FF103950 Sheet 0601 FF103950 Sheet 0701 FF103950 Sheet 0801 Please contact me at 610-774-7723 if you need additional information. My email address is ravazquies@pplweb.com. Sincerely, Ronald Vazquies Senior Engineer - Mechanical Destgn Engineering RAV.Mr page 35 cc: wlo att: T.F. Mackay R.L Doty D.G. Kostelnik Nuclear Records GENPL5 GENPL5 GENPL5 GENPL4

e~ia FF+/-o35ot ~h89Oi

  • 0CI 27 1980 p

a jAcmrtED CONDUCTR AtOEALED TIN COATED OPPER 911-? 1013 x JD24 '.VALOM JKT. .0Q"'WALL EPR INSLATIN .015" WAILL MAX.. .04e HEAVY DUTY CLEAR MYLAR wpALoN jAcjr7 TAPE WRAP "-INSULATED JACKETED CORS. LL~4e-FILLERS 10 MO 1tICK, CSS 'REINFORCED -WnLAR TAPE USE 1 FOhLAM hE, G L~ APS TYEINORESE IF USED. IT. MAY BE 2M SuNAIEROES.VER OR A 2%o "OVE.RLAP. ANPO OVER FSE TAI tWIM. SEND PAInUS: 1.9 KAX. suumfs TENSION: se LBS. A peotox C"L W. I wit 1 .163' S OPTIONAL.

  • APPLIED OTH UNDER PE.

r,1 R NOTE: VOIDS FILLED WITH FLAME RESISTAINT FILLERS, W14ERE NECESSARY. SUPPLIER: PAIGE ELECTRIC CORP UNIONN.J. 17eN"kh(ý4NSKoNAL Cirl-WING 14 AWrj, 2 CoCNCJjArc ROUND 90C - 600 VOLT - POVWER a CONTROL CA9LE OPR INSULAT;ON WITh HYPALC"N JACKET HYPALON J=tKf'T OS.AI.L Fr.,R: .CWTEL POWER CORP. AMERICAN INS.,ATED WIRE". C:/0 SUSQUEHANNA STEAM "CORPORATION ,ELECTRIC PLANT. OL PENSYLVANLA POWIM B PLANT FWWTCKET ; HODEISLND ADIEDC~eE % viBECHTEL 8856-E.-30 '1 ,a 103

______D1.1 1.05301. zh. 5o i I. .t4. '1 H Cr, I-. 0 0 I-.. S 0" 'I Ca.

  • ~4.

a CA a. 'I p.. Ca 'C- -'C .0's eav ourWty. T -4 t~J -40 tTl 0 0 Aefnsalea Coibad

  • ~~M

.18 tfFA C TUREtz AMERICAN LTC I4 CGP 61'* LhLc VAG*iLI~crop i~~iIR rk CQ:tO ML~I u~dCo ON a saww 02673 A.&'.W. MI.J. 7*uu-l-s :itJ. Co 09 0 c-CJ -CCI

H N-4 0h 0 FI=,1,3:301, tzh.. t>oo:L APVEAW) COATED COPP~. INSU.ATED 8 jAcxeT COJCTOR AN E CASTEr .oa P* mi.ý5 9-, ':1 0 S

  • 1 I

w_ 1 .030- WALjlk EMWSULATON' .015" WALL HYPALON JACKET ,.cEARM'L'R1VWRAP

  • CLE MYLAR TAPE WRAP

', ~. INSULATED JACKET CORS.. .o4"!',EAVY o .JY HYPALON JACKET

  • 1 I.

10 MIL THICK, GLASS RONI* FLAME SAeRIEP. TP., I 25% OVERLAP MYLAR TAPE USE IS OPTIONAL. I( USED, rr MAY BE APPLIED

UNCER, OVER, OR BOTH UNDER AND OVER ESE TAPE.

-1 0 ,'J 0 LA 'I W, ITEM: 7 DIMENSIONAL OfWA',N 10 AWO, I CONOUCTOR PARALLEL-90"C 6"*600 VOLT POWER a CONTROL CABLE EPA INS.LA1ORN WITH M'PALON JACKET HYFALON JACKET OVERALL .. s.r. ~afl*N C.,

  • r unnJ aLeC ses..fl.w n. whet EJ.&..V a.L.J-Jf

-L.Mý I z~ Dlrtrp WHER-NECESSARY. SUPPLIER: PAIGE ELECTRIC CORP U .ION.N. J. RO. PEH 8275 .EC:TEL POWER CORP C/O SUSQUEHANNA STEAM ELCTRIC AMERICAN" INJSULATED WIREI AN CORPORATION !PENNV'L.VAN!A POWER 8 LIGHT PAWTUCKET. RMODS ISLAND oTc~gNALSS AW.MG.SEC S-?76 L A.IW I 0' 0o ~.

p-I 0 I.' 0J I F OI.0-5L 'bh.5'fCj. - ~I ~J%..A. - I~.d. - x hi INSULATED 8 JACKET CONDUCTOR ANNEALED COATED COPPER 7 STRS x.038" t.030" WALL EPR INSULATION

  • 016 WALL HYMLON JACKET LEAR MYLAR JAE WRAP

%p CLEAR 'MYLAR TAPE WRAP INSULATED JACK~ETED COS IBM--coo I0 MIL THICK, GLASS REINFORCED FLAMZ BARRIER TAPE,.IMEK*9, 25% OVERLAP . MYLAR. TAPE USE IS OPTIONAL. IF USED, IT MAY BE APPLIED UNDER, OVER, OR 80TH UNDER AND OVER ESE TAPE. Un C) ITEM: o DIMENSIONAL. DRAWING 10 AWG, 3 CONDUCTOR ROUND 90CC-W60VOLT POWER a CONTROL CADLE "EPIR INSULATION WITH HYPALON JACK*T HYPAJlO( JACKET OVERALL

  • NOTE:

DS FILLED W(TH FLAME RESISTANT ILLER,* WHERE NECE.SARY. SUPPLIER: PAIGE ELECTRIC CORjR UNION, N.J. RO, PEH 82T5 FUOR BECHTEL 'POWER CORR 0/0 SUSQUEHANNA STEAM ELECTRIC AMERICAN"' INSULATED WIRE POLANT.

  • c o p o R T~ o

" I.

  • PIM SY.,A N IA PO W E R,, L.IGH T CORPORATION

(*I PAWTUCKET, RHODE ISLANC S IOINAL Issue .ECH'TEL 8856"E-130 Aa qREVISIOLANSW MFG. SPEC. E§- 76780-3 13 .U..

0 0 0 P D14 VFF2-0ýC-ZýL)- Zh. -.)Z)CQi I~e~A - a~ .. t a ,.I1 INSULATEhD a JACKET CONOUCTOR.ANNEALED COATED COPPER r ST it.0385" +÷ t.030" WALL EPR INSULATION .15"WALL NYMLON JACKET CLEAR MYLAR TAPE WRAP CLEAR MY.AR TA0E WRAP S INj M ATE JACKETED C M & , r[,. " __ "_-Z_- 66de WAV ov,* Mr A WYPALON JACKET 10 MI6L THICK, GLASS REINFORCED I MY*,A TA.P FLAME BARRIER TAPEUMM Ls. IF USE IT,M 25% OVERLAP OVER, OR OT sad' USE IS OPTIONAL. AY BE APPLIED UNDER, H UNDER AND OV I R ESE'*-_... CD (-A' \\0 i If i I ITEM: 9 DIMENSIONAL DRAWING 10 AWO, 4 CONDUCTOR ROUND 90C - 600 VOLT POWER a CONTROL CAS..E _PR INSULATION WITH YPAWLON JACKE" HYPALON JACKET OVERALL i p I NOTE: Y0)1103LEQF WIT14 FLMAM RtEISTANT--F.I INHERE !IECESMAY. L SUPPUER: PAIG! ELECTRIC-CORP UNION, N... P.O. PEN, 827 11M-. BECHTEL *POWER CORP c/o SUSQUEHANNA STEAM* ELECTRIC AMERICAN. INSULATED WVIE I, PLANT. CORPORATION 1i I RP4 SYAN7A POWER Ok LIGHT PAWTUCKET, RHODE ISLAN*

  • o !

suz BLCITF.L 6656"E°i30 ys*;*£ -, -*_A.IW. MFG. SP$C. ES 7676-4 a, ~.-..----,.-.-.-.---..-..--.-.---... ,.~... 0

DLZ-FF'-0O3OO Zh..-58o1_ .0 'I.

L 55N N

I-I- C I-

  • 1*

CrJS.ArED B JAOl~i~D C0=U'* .EPA TO

  • $01W rim W~e pZf

-V -0 / m L A VJXE U,.VaA*P OFI 5*AIL AS.BE "S, cm

2. A SXGLE VW aC lO hML ASBTO3,

- Cm & A-o MNE iT CF -O

10. VILASS BE9t=C j

I -a JACKETED O-NDUCTORS 0 0 6 LA C) !R .4 1,0.2 DOME Asex.I -We WRAP ecs A vUE F:LLEW McM "*L &kANMCTI*r AMEMZCAN S"ULATEOD WIRE CORP. O AL W*AWWG 600 %W rowut , IcL*M CAM ES-G $l 37-6/2-FOR': MAt*JZf.(A STE.M SPEC SEC"EL*. S 6-.E-130 ELECTRIC STATION 6 ATIG 2A ROUND W41T I1a2 1E~COMti ITEM 37 DRAWtI SY JV I-' 0

0 3.uzzuj-zzon, Z-3. ILJ.L 01 o9 H INSULATED G JACKET CONOUCTOR ANNEALED COATED COPM E SSTRS,.0488 _. 04 WAL EP. 4I 1.296" - t-1045 - ALLEPRINSUJLATION4 .030WALIL WYMLON JACKET St IF NO qj; cos. .UOv r.VT tu4T I HYPALON JACKET 10 MiL THICK, GLASS REINFORCED. FLAME BARRRIER TAPEJ*T.. S 25% OVERLAP MYLAR TAPE - USE IS OPTIONAL. IF USED# IT MAY. B APPLIED UNDER, OVER, OR BOTH UNDER AND OVER ESE TAPE. -D Ul. TE: VYiDS FILLED WtTIJ El4M IRESSAT am lL ITE:II D 0IMENSIONAL-DRAWING 8 AWO, 3 CONDUCTOR ROtl SOC0*0* WDV0'3 POWER Ot C EPA INSULATION WITH MYPAi HYPALON JACKET OVERALL II I I ND ONTROL. CABLE LON JACKET WHLER NEGESSARIA ~9LI~R: PAIa! tL~eTRtc C~P UNION. N. J. R.O. PEN 6275 C,. ,BCHTEL *POWER CORP "SUS*IANNA 'STEAM ELECTRIC AMERICAN" INSUILATED .WIR PLANT. CORPORATION I ,I, ANIA POWER 8 LIGHT PAWTUCKET. RHODE ISLAND aHO~$INAL issur f.w 86--3 rJ

ý- ý- lu-5 Du:l- -Jh. *1 juj- 'n 4 0 INSULAlTD J ACKET CONDUCTOR ANNEALED TIN COATED.C -7STRS a.004k" .06.03 WALL IIYALO MMACI PIPER I D JACKET C"R MYLAR TAPE USE-IS OPTIONAL. F USED, IT MAY' BE APPLIED

UNDER, OVER, OR BOTH. UNDER AND OVER ESE TAPE.

I-* 0 N ul WHEBE NECESSAY - UPPUER, PAIOE ELCTRiC CORP LR4ION.N.J.. PO. PEN 82?5 ITEM:-I D IMENS0IAL DRAMiNG 14 AWO, 2 CONDUCTOR PARALLEL 910 - 600 VOLT POWER a CONTROL CABLE EPR INSULATION WITH HYPALON JACKET HY'ILON JACKET OVERALL

  • 1~

AMERICAN INSULATEO WIRE CORPORATION PAWTUCKET, RHODE ISLAND ! R. ECHTEL POWER CORP

  • 0/9 SUSOUEI4ANNSTEAM4 ELETRIC 1

PLANT. 11P6VISYLVANLA POWER 6 Ur.HT ORIGINAL IS5U~ NIiflhIONS+ J SPEC.-ES-Y6Y5ý-_ FLY

1-h 0 Ft Fl-. 0 LLTh

  • ~* 1 vq.,',A -

- I 0 4. INSULATED S JACK'ET CONDUCTOR NEALED TIN COATED'coER 7 9TRS .0242 '7 INULALIy -t.030!' WALL EPA IS.Ano. cxs"WALL HYPALON JACKET

  • 11.

II I CLEAR MYLAR TAPE WRAP CLEAR MYLAR TAPE WRAP 75-' .045" HEAVY DUTY NYPALON JACKET 10 MIL THICK, GLASS REINFORCED FLAME BARRIER TAPETP.E,, 25%, OVERLAP MYLAR TAPE 'USE IS OPTIONAL. IP USED, IT MAY BE APPLIED UNDER, OVER, OR BOTH UNDER AND OVER ESE TAPE. 0 6'. Iii 0p NOTE: YQ102-WTT FILE, RaM9 RESISANT ZLL.RS. WH I-RE NECFSSARY.. I. ITEM: 2 DIMENSIONAL DRAWING 14 AW0, 3 CONDUCTOR ROUND 90C - 600 VOLT POWER B CONTROL CABLE .EPA INSULATION WITH MYPALON JACKET HYPALON JACKET OVERALL I.I 8275 SUPPLIER:.

  • ir ELCTI COR UNO N.J

,.O, PE. ow I II. FRm: BECHTEL POWER CORP I. c,0 SUSQUEHANNA STEAm.am, ic AMERICAN INSULATED WIRE I I PLANT. 'CORPORATION I PE ANIA POWER "B LIGHT PAWTUCKET, RHODE ISLAND _4I"2g Aim mBr.HL r85-E 3 ___________,__M.,P..MG._S.PEC._E.S-767-3 1ý -I ia s r '- I to (IQ 4i.

0 0 w. LOS FF 10550a * ~h. '11C-JZL ~ ~ - I4~-t

  • S I,NSULATED S

JACKET CONDUCTOR ANNEALEO ?IN COATED PPER S

  • STRSu

.0242" S.030" WALL EPR INSULATION .0XS"WALL HYPALON JACKET I.

  • l I

I Ft 0? 4*~*

  • I CDRS.

.060o 9EAVY DUTY HYPALON JACKET 10 MIL TH!CK, G:.ASS REINFORCED FLAME BARR!ER TAPET -ram, 25% OVERLAP MYLAR TAPE USE IS OPTICNAL. IF USED, IT M.AY 8' APPLIED UNDER, OVER, OR BOTH UNDER AND OVER ESE TAPE. 0 0ý '-I' LC! S FILLED WITH. FLAM! RFSISrANTl FILLEMS

  • SUPPLUER:

CAIGS ELECTRIC CORP' UN!ICN. N.J. 110. PD.? 8 275 V,' IT-M 3 DIMENSIONAL DRAWING I *.14 AWGO 5 CONDUCTOR ROt 90C" 600 VOLT POWER a EPR INSULATION WITH HYPA 4 HYPALON JACKET OVERALL JUID CONTROL CABLE LON JACKET IM* S EVI4T-1 POWER CORP I. C/o SUSQUL. ANNA MTAM ELcCTRIC AMERICAIC INSUJLATED WIRE .PLAN1. aCCIRDORATIOIJ 4 PENNsSYl.VYA9A POWER a UQ.?T 'rV~l<ET RHODE'SIC0TDL e8856E*!30 PAW'JI~?,MO~iL~e5~p'.I.ML91u _____I________SM._ES-?_75_- (JQ

L,.O"7 *FF JLOZ50. 5h. 500L .~.. '1 a INSULATED S JACKET CONDUCTOR ANNEALED TIN COATED COPPER 7 SIRS x A0242" IO ~63" L-T' .A0e WALL. EPR T NSWATN ,053 HYPALON JACKET

  • *11

~ 21 CLEAR MYLAR TAPE WRAP 9* CLEAR MYLAR TAPE WRAP INSULATED JACIETEO DS MYLAR TAPE USE IS OPTIONAL. rIF USE0D IT MAY BE APPLIED UNDER,

  • n~s~nOVER, OR BOTH UNDER AND OVER ESE TAPE.

C> Ik L/I 0* ITEM: 4-DIMENSIONAL DRAWING 14 AWG, 7 CONDUCTOR ROU 90OC-600 VOLT POWER 8 CPR INSULATION WITH HYPAL HYPALON JACKET OVERALL. /ND CONTROL CABLE-ON 4ACKET .1

  • 1 NOTE: *LD*_.JLkN0 4

WILAME RSTANT FILLERS. WH~R, I-NAc=1RL"

  • FN'u.

?n I' 0 AMERICAN INSULATED WIRE CORPORATION PAWTUCKET. RHODE ISLAND PFO1 BECHTEL POWER CORP. iC/o SWJSQUEHANNA STEAM ELMC. I PLANT .ENNSYL.VANIA POWER 8 LIGHT BECHTEL $8565E-130 I. ~1.*

  • g*

ý I... -i ~ 'm~~L~ In2ia i I A I. C*tl vc. .7 In MUM q. ~0

)r Information Only to EC-059-1041 page.47 ionOnl r 1_W.. (1rAi1Jf5 'RE-VTSON, 1 I f~) 4 C?' 0a Bechtel Tog Number N09 Item 5 SAMTlEL. MOORE PART NUMBER 1935-60933-O01 Vine. (9) conductors of sixteen (16) gauge, seven (7) strand tinned copper with twenty (20) nil. EPDK prinary insulation and ten (10) ails Hypalon intermediate jacket; color coded per ZPCEA, Method #4. all conductors colored whIite and numbered; a sixteen- (16) gaoge, seven (7) "straed tinned copper drain vire with two (2.0) mile Alu-minun/Mylar tape shield and five (5.0) milb silicone'rubber fiber-glass fire barrier and sixty (60) mile black Hlypalon outer jacket. Maximum 0.D. .674 inches Net Weight per PT". 217 lbs. Maximus Length - 6,700 feet Haximm Pulihn$ Tension 196 lbs. RECEIVED A6 77 AU8I11 Jacket Legend: Dekoron Dekorad Control Cable 1935 SUSQUEM.ANA PR-Samuel tIoore Aurora, 0 976/ot..-Number FINAL DRAWING HUST.-N0UW: CERTIFIED ODRR=CT FOR; 1935-60933-601 Fl*EC L P.O. 8856-131-A SUSQUEHAN4NA STEAM ELECTRIC STATION R4UNITS l and 2 SPEN*SYLVANI.A POWER A0' LIGHT cOMPANY signed 4 Date: 6116/77 I - - i-i. I-.M A 17% -{ 12 U I. £CL SAMUEL MOORE AND CO. Aurora, Ohio PRODUCT SPECIFICATION SHEET OF 1 0AP. 1316' CATEO 1935-60933-001 I - a I,,

'or Information Only to EC-059-1041 For L4Srit ion Only HGVC R ISION 2 0 VL FF J_0:3ý5jo sh. Z501. Bechtel -Tag Number 0-21 Item 38 SAýMFL MOORP PART NUMBER 1990-90636 page 48 '~1 I i 3 Thirteen (13) conductors; one pair of twenty (20) gauge. type x. (chromel. alumel) solid conductors with twenty (20) ails EPDH primary Insulation and ten. (10). mile Hypalon intermediate jacket, color coded per ANSI standards; eleven (11) conductors of twenty (20) gauge, seven (7) strand tinned copper with twenty (20) mIle EPON primary Insulation and ten (10) nl.s. Hypalon intermediate jacket, color coded per IPCEA, Method 4", "all conductors colored white and numbered; one and five tenths (1.5).-nls clear Mylar overwrap with one and seven. -tenths. (1.7) xils copper'/Mylar tape shield with a twenty (20) gauge, seven (7Y strand bare copper drain wire and five (5. 0)mlls silicone rubber f~berglaas fire barrier overall and.sLxty (60) .zile black Hypalon outer jacket. Maximum O.D. Net Weight per MFT Maximum Length Maximum Pulling Tension . 681 inches 187.3 lbs. 6,650 feet 116"lbs. RECIVED 1AUB 1'19771 LUSUE"NA PRLj Jacket Legend: Dekoron Dekoted 1990 Samuel Hoore Au -19 Yore, 0 FINAL I)RAW1KC MUST SHOW: 76/Lot Number CERTIFIED CORRECT FOR: --...-1990--90036 --- BECITKL P. 0. 8956-131-A k ,-SVSQUEHA'NA STEAM ELECTRIC STATION 54iLVAi4IA POWER AND LICUT CO. Signed ctea-.. D'. Dte: 7/1/77 SAMUEL-MOORE AND CO. PRODUCT DESCRIPTION SMEET.LOF..I PART 50. I q'9O-900fi-

r Information Only to EC-059-1041 page 49 Fo)r in'potmat~on only. V Uk.,e REVISION 1 aehe a lwbrQ2 ?-C F I05 0S.'0 Nw Bechtel 'Tag Num~ber Q*-20 Item 9 SAMY L 0ORE PART NUMBER 1935-02733-O01 Twenty-seven (27) conductors of twenty (20) gauge, seven (7) strand tinned copper writh twenty (20) mils EIPDM primary insulation and ten (20) mile Bypalon Intermediate jacket; color coded per IPCEA, Method #4, al. ton-ductors colored white and numbered; a twenty (20) gouge, seven (7) strand tinned copper drain wire with two (2.0) mile Aluirnum./Hyler tape shield and five (5.0) mile silicone rubber fitberglas fire '*aTaerk arA sixty (60) ails black Bypalon outer. jacket. 1. maxmu*,, O.D. Net Weight per NFT Maximum Length Haximum Pulling Tension .859.. uiche 308.-3 lbs. 3,750 feet. 227 lbs, RE C EE IV - DI AUGI i 97 sUSQjUEH1ANNA F1101., Jacket Leged. Deakoron Dekorad Control C Samuel Mh*0T Aurora, 0 1976/Lot Number-able 1935 F11ML.DRAWING MOST SHOW:~ CERTIFIED CORRECT FOR: 1935-02733-001 BECHT&L P.O. 8856-131-& SUSQUEHANNA STEAM ELECTRIC STATION' .UNITS l and 2 PENNSYLVANIA POWER AND LICHT cO. IS igned a*a-Date; 6116177 r RECEIV ED AUG 9.1977 N QA SEcTr0N I I PRODUCT DESCRIPTION I SHEET____1_0F I PART KO. 1935-02733-001 m

'or Information Only to EC-059-1041 page 50 for information Only

  • 5 p
  • ~~

RSO 1?. '"I*O 5,l~ B Eechtel Tog Number Q-24 Item 18 N 'SAMUEL MOORE PART NUMBER 1952-68340-002 .bone (1) pair of sixteen (26) gauge, seven (7) st*rand tinned copper con-ductors with twenty (20) mile EPDK primary insulation and ten (10) kails Hypalon intermediate jacket; color coded black and white wlth a sixteen (16) gauge, seven (7) strand tinned copper drain wire; two (2.0) mils Alu*inum/Hylar tape shield and forty-five (45) mile black Hypalon outer -acket. M*aimu O.D. .376 Inches Net Weight per MW2 .67.5 Iba. RECEIVED ,aximum Length. 1O,000 feet AUG 1 1977 .Maxlum Pulling Tension 59 lbs. SUSOUERANNA M Jacket Legend: Dekoron Dekorad Instrument Wire 1952 Samuel Moore Aurora, Ohio 1976ILot Number FINAL DRAWING MUST SVM0V CERTIFIED CORRECT FOR: 1952-68340-002 BECHTEL P.O. 8856-131-A SUSQUMi4 STEAM ELECTRIC STATION r ...~y UNITS Iand 2 ' F~EC IV~D ENNS'LVANIA lOWER AND LIGHT CO. CDAUG9 97 Signed O s 4 / .Date: 6116177 Co SNUIEL.MOORE AND (0. (0o-UC CRIPTION Aurora O hio 0APPO. DATE "PAT 6/16/771p 1952-68340-002

r Information Only to EC-059-1041 page 51 PFjnor T lratjon Qrnly* PRODUCT SP IECIRCAff.td ONE PAIR, 10 AWGi, 7 STRAND' nfNHEV COPPER VVIRE W~iT 2S MIL liICK pt-ý EPD4A (FIRE RETARDANT EtYlMENFE PROPYLEkE DIENE MONOMER) PRIMARY INSULATICN. COLOR C40DED SLACK AND~ WUITM AN OvERAUL 1.0 WAL THIOW AWWMNUM/MYLAA s£-UEL) TAPE AND AN W8 AWG, 7 STRAND71NNE.D COPPEW DRAIN WTRE. A 45 tW~ TH1CK BLACK( IYPALON JACKET. Eoo VOLT RATE JACKET LEGEND. DFEKORO)N E.LASTOSe' INSTARCABL.E IPR 15AV~rC FREPD1M. I HWAWN SHLO 600V AURORA. 01-10, (YR OF MFG) FUROJ, MAXIMUM O.OD (INCREf) wINIIAUM BEND RADIUS (INCHEt): MAXIMUM PUWUNG TENSION (LqSý .J5 owEIHT (Limim0o FI CALCUJLATED 4AXIMUM LENG-nh (FEEIM; FURON DE-KORON JUNE 21. ¶09" 0.341 2.0W8 64.24 53.00 10.000 I. I

e. 2..

FF6I~5'f~~ £j~~1L I

Dr Information Only to EC-059-1041 page 52 ?.p~ ~ Aa.?nYREVISION 2 Q 7_5 F F103,31O 15h. i5o-Bechtel Tag Number Q-25 Item 19 SAMUEL MOORE PART NI"MER 1974-50233-001, Two (2) pair of sixteen (36) gauge, nineteen (19) strand tinned copper conductor* with twenty (20) mile EPDM primary insulation ed ten (10) lu2ls lHypalon intermediate jacket; color coded black, white and numbered on the white leg with a sixteen.(16) gauge, seven (7) strand tinned copper drain wire; two_(2.0)-m~le aluminum/Myler tape shield and one end five tenths (1.5) mil1r Mylar separator tape over each pair; five (5.0) mils silicone rubber fiberglass fire barrier overall and sixty (60) mile bleclk Hypalon outer jacket. Maximum O.D. .621.inches Net Weight per WT 172.1 lbs. Maximum Length 7,000 feet Maximum Pulling Tension 98 lbs. Jacket Legend: Dekoron Dekorad Instrument Wire 9114?* -Samnuel Moore U Aurora. 0 i "."tA~

  • 1 1976/Lot Number 1FIM. bRAWING MUST SHOW:

CERTIFIED CORRECT FOR: 1974-50233-001.' .4 1 ~SUSQULIVNiA STE&M ELECTKIt STATION~ A .9 ' uNI TS I and 2 /PENNSYLVANIA POWER AND LIGHT CO. Sig-.ned 6.--

j.

Date: 7iiJ?? SAMUILAMORE AND C0. PRODUCT DESCRIPTION SMELT I0OF Auor, Oi'- 771/ 1/77 1974-50233-001

r Information Only to EC-059-1041 page 53 or WnfprmatinOnly~ 1 5 1.. y 2

  • CHAN SS?4 SION 2 Q?_&

FF1 *1.O

  • h. I*0a!

" ebht;rl 'ag *,*mber Q-26 Itm 20 t S AEL MOORE PART. NIMER 1974-50333-001 Three (3) pair of sfxteen.(16) gauge, nineteen (19) strand tinned copper conductors with twenty (20) mils EPDH primary insulation and ten (10) mile iiypalon Intermediate jacket; color coded black, white and numbered on the white leg with a gsixteen (1'6) gauge, 7 strand tinned copper drain wire; two (2.0) mnil alumimu/HyglaT tape shield and one and five tenths (1.5) mile Hylar:separator tape over each pair; five (5.0) mile silitone rubber fiber-glass fire barrier overall and sixty (60) mile black Bypalon outer jacket. Maximum 0.D. .685 Inches V Wet Weight per tRT.. 221.5 lbs. Ma..

  • iuz Length 5,500 feet Maximum Pulling Tension 137 lbs.

.Jacket Legend: Dekoron Dekorad Instrument Wire 1974 Samuel Moore 19761Lot llmberýF -CEI -AUG 1 1977 SUSOUCMAWMA PROJ. FINAL DRAWING MUST U M CERTIFIED COPRRBCT FOR: 1974-750333-001 BZECirEL P. 0. 8856-131-A SUSQUEH/ANA STEAM ELECTRIC STATION o.. I And 2 R E"" IV" YLV.e 717 W AD. '0. o I, SAMUEL. MOORE AND CO. PRODUC'T D!SCRPTICK SHEET I. Of 1O .,o,,,ooo 7A1117 D9AT--5033 -001 A~urora, Ohi J //77 1976-50:333-0l1

r Information Only to EC-059-1041 page 54 Fqr, knforanation -Only. ~ REVISION 2 CHANGE*3 FF1o~5IO1 5h. VrOL~ Bechtel Tag Number Q-27 'Itm 21 Nr SAMUEL MOORE PART NUMMBR' 1974-50733-001 Siven (0) pair of sixteeu (16) gauge, nineteen (19) strand tinmed.copper o onductors with tventy (20) uizls EM primary Insulation and ten (10) Mila Hypalon Intermediate jacket; color coded black, white and numrbered on.the white leg "with a sixteen (16) gauge, seven (7) ntraýd tinned copper drain wire; two (2.0) mlls alu.ir, m/Nylar cape shleld and one and five tenths (1.5) =ils Mylar separator cape over each pair; five (5.0) mila silicone rubber fiberglass fire barrier overall and slxty (60) uils black Hypalon outer jacket. maximum O.D. Net Weight per WT Maximum Length Maximum Pulling Tension -. 888 inches

  • 451.7 lbs.'

3,000 feet 294 lbs. .t Jacket Legend* Dekorcu Dekorad Instrument Wire 1974 AG1 j Samsuel Moore A81 17 A u ro r a, 0 .'A H NA PRO 1976/Lot Number -4 0, o, RECEIVED AuG 9 377-TFIALDRAWINC MUST SHOW: CERTIFIE) CORRECT tOR: 1974-50733-001 BECHTEL P. 0. 8856-131-A .SUSQUE)IAMNA STEAM ELECTRIC STATION UNITS I and 2 PENNSYLVANIA POWER AND LICHT CO. Signed 071-. _'T Date: 7_11./77 SAMUEl 'MOORE AND CO. P*oDUCT *.*"SRPTIO14 Aurora, Ohio APPO. DAT9 -PA SHEET 1 OF 1 1974-50733-001

Dr Information Only to EC-059-1041 page 55 For inf6ruation Only For inf6rmation Only CHANCES REVISION 1 09-8 FFE i iii I. e1 TglimerQ2 ?1O33 5:0 5h. 18 0: rn Ii (~) 'C 00 Bechtel Tag Number Q-28 Item 22 SAMUEL MOORE PART NMMBER 1962-68340-002 Three (3) conductors of sixteen (16) gauge, seven (7) strand tinned cop-. per conductors vith btenty (20) mil EPDH primary Insulation and ten (10) mils Hypalon intermediate jacket; color coded per IPCEA, Meth*o4 14, all con*ductors colored white and numbered with a sixteen (16) gauge, seven (7) strand tinued copper drain wire;. two (2.0) miles Aluinum./y-1ar tape shield and forty-five (45) mile black Hypalou outer jacket. Maxi* uO.D. Net Weight per 1VT Maximum Length Maximum Pulling Tensico .397 inches. 82.2 lbs. 9,300 feet 78 lbs. RECEIVED AUG 1 1977 SUMUEHANNA PR01. Jacket Legend: Dekoron Dekorad Instrument Wire 1962 Samuel Moore 1976/Lot Number YiNAl. DRAWING MUST SHOW: CERTIFIED CORRECT FORP 1-962-683&G-002 BECHUL P.O. 8856-131-A sUSQUEIIARN STEAM ELECT&iC STATOM1 UNITS I and 2 R VE. E 'NSYLVAIA POWER AND LIGHT CO. AUG 9 Date: 6/16/77 '.4 0 0 0 '0 N'a0 d U a SAMUEL MOORE AHD co. PRODUCT RIcP* ON, SfKEET OF. Aurora, Ohio 1 P. %7t6/7 VA&R 1962-68340n-nn

r Information Only to EC-059-1 041 page 56 'or Info:,-motion only m Rechte3. Tag Number Q-29 I ten Z3 SAMMI2 MOORE PART NUMBER 3 984-50133-4301 '~IO SThree (3) triads.of sixteen (16) gauge, nineteen (19) strand tinned copper conductors with twenty (20) mile EPDM primary Insulation and ten (10) wils Hypalon intermediate jacket; color coded per. IPCEA, Method"'4, all con-ductor, white and numbered with a sixteen (16) gauge, seven (7). strand tinned copper drain wire;* two (2.0) mile eluminum/Hyl~ar tape shield and one and five tenths (1.5) mil Mylar separator tape. over each triad; five (5.0) mile silicone rubber fiberglass fire barrier'overall and sixty (60) mile black Rypalon outer jacket. S az ium O.D. 'Net Weight per * "T Maximum Length Maximum Pulling Tension .. 733 inches 274.4 lbs. 4.500 feet 196 lbs. -REECEIVED" Jacket Legend: Dekoron Dekorad Ingtrument Wire 1984 AU61 l7 Samuel Moore =1 Aurora, 0 UNAINAA RJ. 1976/Lot Number A UGI 9 !7 VIVAL DRAWING MUST SHUO: CERTIFIED CORRECT FOB-1984-50333-002 BECHTEL, P. 0. 8856-131-A SUSQUERAH"A STEAM ELECTRIC STATION UNITS I and"2 PENNSYLVANIA POWER AND LICHT CO. Signed C L Date: 7/1077 -d Ca f-a a.' I.' Cv-a cO Oa 0 ..~ aI. C SAMUEL.. MOORE AND CO. PRODucr DrSCRIPTION Aizrcro, M0o APPO. ID ;277T/l1 7 ISHEET 1 OF I ART No.* 1984-50333-001

r Information Only to EC-059-1041 page 57 E, m tiou only .CANGEd REVTSpt 2 Q-3.0 FFiOO5

h. ZO01 Bechtel Tag Number Q-30 Item 24.

SAM*EL MOORE PART AMBER 1935-50433-001 Four (4) conductors of.sixteen (16) gauge, nineteen (19) strand tinned copper with tventy (20) tils EPD( primary Insulation and ten (I0) nils

  • Hypaloo intermediate jakcet; cokoe-'coded per IPCEA, Method 14, all con-t ductors colored white and numbered with a sixtee2 (16) gauge. sevin- (7) strand tinned copper drain wire; two (2.0) pil 6 o*io.m/Mylar -tape shield and five (5.0) nlU silicone rubber fiberglass fire barrier and forty-five (45) il black Rypalon outer jaicket Maximum O.D.

.482 inches Net 'Weight per Mgy 110.4 lbs. Maxlmum Length. -10,000 feet Maximum Pulling Tension 98 lbs. Jacket Legend: Dekoron Dekorad Control Cable 1935 Samuel M'oore Aurora, 0 E

  • 1976/Lot Number 19

.*UB -"77 FINAL -DRAWVINIOST SHO0W: CERTIFIED CORRECT FOR: RECEIVED I 193550)33-oo1 AU6 9 19i'77 sCTEL P. 0. 8856-131-A-1"."T SUSQUEHARA STEAM ELECTRIC STATION UNS I and 2 0 Ew~SYLVAflIA PO94ER AND LIGHT CO. signed 0-. Date: 7/il_7 SAMUEL.MOORE AND CO. PRODUCT DESCRIPTIO SHEET I OF I

Auror, Ohio

/1 15 5o. I7/1/7 1935-50433-001 A i

r Information Only to EC-059-1041 page 58 Dr i-if oitnltioxT only 904O

  • Product Data Section 3: Sheet 6 Okonite Okolon Type RHH, RHW, USE 60V Power Cable.

One AJurtmnum Contuctor/D0C Raing' 9 L1% A--.- Insuilaion OlroniteO is Ohesiiles biade nae Wi Its

  • heal Fs~a1 res anlcil rnd mAugged ethyierý-rnAifl based InsUISUMn cewrnpouid. The InaW~ool idrfe tN h=IN
  • wire dsieaf AwV through 32 ~A-9 Is 45 nms; 0 1 Awg through ft4M Aýwg.

15 Milt 250 MOM 1+/-trugh 50q MCM, 65 ntiS amd to 7W0 mo find Clow MW it 'a

  • Jackets end Finishes The OkOlon jacet VAaWpwied ith Uis cabl Is a rnjlcanLzetl chloi'o-ulwcflitted-PdtYettr~ene based oormund Which~

PrIDaides a~cellerll ?00$t~tnMl 10o& Ocal abuse, Dania. weatheitng., WOO oil, acids and alkalieS Appli"Wrios C5onlle-ci~n 400 volt. POW-iCable am e recornnnended lot use In ORl IM ~vltge dmouits wt)GS dnfinvlTY of am-vice Is the prnime coderstiwfl Th&l

  • cati be Instafed in ooull, taidergyOufl

"%ts appro'ed CocewaOrs 1"d IsraeA Wuial (S~zes I8 AWD B tandrgeil. Rated for 75C wet anid 90C dfY. Industry specit'"lions Con&clotors: Strandled alumnumf~t conductor pet ASTM 6-231. InjalnMeets at exceeds Al rKgidfi ments of interim Standard III tOIPCtiA S-68-$61 EMAW MB0(Msrcht 971) F0I ethylene Propelee rubber insulatio'n and ASIM 02802-70. Jacket: Exceeds all rd(Iulrrnemftt 01 iPCEA S-19-81, (51h Edidion) Sectio 4.13.8f0' Hea~vy "k. V11110tO &Alfonated Wwo 4~ent. ProdtKI Featutar . Extreme heal resistance DOC co*itrk," fl rh .1 l00* WlS"o atiA.

  • 13=0 emnergency a-enoad ralft 2.00 shor circtui rallaI
  • Exicepliortal resistance lodef0erm,110A at high teflotaltae.

" StaWt eleclicat Properties " LowISC Id*soweract0' " Low moistue absorption

  • MeChanica-.y -
  • Res3fsrtrnto wealf. mos
4as, acids and atsi Adlditional Inlorkruaion Slzes. Wei;hia and Dmenslons are con-tained o the reverse *t this she t

Pr* ,lorr nlion is resented on sepaale sheets filed in the back of this SLCtion Foe add~liont inlO mallon contact ~ local COkoite represenlative or Ser**Ce Cen*er Manag*r

  • 1 1*

I I A Stra.06d Aki.nliAWa conductor

e, A1.t;-14!0 A..g-%

vols: 250 fACM-500 hECM -65 0419: 75o Wu alis 1000 MCM-30 Mills C cihste-okoft

r Information Only to EC-059-1041 (r j e kbion. Type RHH, RHW, USE 6*0V Power Cobte One Aluminumn Conducavr/90C Rali ig FF 103500 5h. MI. Product Data' Section 3: Sheet 6 RO4 Oltorlthe lsulstio.1: II6 Awg Thfooh 112 AwjL4 MIS i; III Awg Through #f41O Awg. 55 uFF11; 250 MCM Thiough 500 MOM 65 MIS. 600 MCM lhsough 1000 MOM, go,nifs Z*-

SLOeAwg, wNato je" Aawox-CableO.0'O NOWL Amo.tl plAl.

KEC *Ampefz 00 0, Ku~r MCM So&t4l Tfl*4rtm wk MM, LhsJM. WLLMIWV AmevcdV* lCw~ WI "Co". io.1221 B 7 3 0.16 342i 0.09 70

oo so 0

65 13211.2251 4 1 30 0.70 .389 9.80 93 139 70 03 70 1!3LI!1211 _ 2 7 30 016 .449 11.37 126 210 102 00 05 132-11.2M1 I 1i 9t 4S 6.4 .541 13.74 178 2'4 122 100 It*. M-3211436 10 19 45 A.14 31W 14.70 208 325 ..139 120 125 132-tl.23v 210 19 45 U.14 .A26 15.90 24 '5 363 158 135 445 i2-i112F91 .3k to. 45 1.14 .607 17.20 '£91 40ID in 16M5

165, h-324t142411 410 to 45'
1. 14 1735 18.67 348 a08 tty Igo IS$

?3.1.41 5 37 65 1.45 .840 2$.49 446 528 249 M0 t552' -*1324-1t247 350 31 83 1.05 i5G0 24.13 574.- 793 303 256b. 200 _0 aj~f 1-n" 500 37 65 .1.65 i.081 27.40 ?60 07? Sol 310 330 .. potnig49 I- . 7n0 61 80 .1.65 1.320 3533 1072 1244 4e& 315 405 121-31 100 Wt 0k 7.075 1.475 37.ýi.j3i3 1449 678 445 480 &1.5 94 A.V 11t-O.h 02 A-9 1. 15.000 WIC d 0, *05000 eo~w*t~. C-*.A6wn400 Via 11 Aw0lkt-*"Ct 1000MCM 16 10.000 tOIM It.. b*Md on OC Wf *nb4"t~1 fl S'.u1.ra P-%.jo. 16 A..ýAOC) C M-25W IPCCA m.1httl Fo* S0C

  • .wLi-t -w40tr
  • 4.tA.P0.5OUW-d%,*qLw.1I,=.

N A P-,

    • .tvel byt1.10; A., WC 'tuttI'Iy by.90. Fel So64.,

V-6.2oe -0 bttal9o CldotsNit ~. f

1. E-00*t Ott.*mso" 60 6*44 0-t NIC Tab*1 310.14.

T.ýva*k tht ".* bhhk ti.~ 1M KC Not ft00 Ouse =I0 11o~nducos 41%"m ay 5,061 C04 d,*od 11*49. 69h.1 th. -Wag b-10-4C ot AlrOM~o T.Mealo,*IS.a 10.Vf I O.-un 30C MPI 0Co*N.014d bet 112-31tW" page.59 I 0 THE OKONITE. COMPANY Fwr~ny Nbwk)e-y A4B

r Information Only to EC-059-1041 page 60 For lnE IL"tS0V PFICi351O

h. 7-(.0j tr~

I N I I .4. I. "Bechtel Toag NuOer TQ-5 Item 39 SAMUEL M~OORE PART ?iM3t 1902-65340-001 One (1) pair of sixteen (16) gauge, type TX.(copper conutntan) solid* conductors with twenty (20) ails EPDHKprimary Insulation and ten (%0) M1l1 Hlypalon Intermediate jacket; color coded FeTv'AISI standards with a siLxteen (16) gauge, solid tinned copper drain wire; two (2.0) aii. aluninwueHylar tape aldeId and forty-five (65)* oils blue Hyplaon butet jacket. Maximum 0.3. Net Weight per D0T 4ax*lmum Length. iMaxIstu Pulling Tension .362. inches 68.3 lbs.: 10,000 feet 59 lbs. .Jacket Legend: lekoroo De),orad Tbermocouple Extenalon Wire 1902 Samuel. Hoore Aurora, 0 1976/Lot Number WECE1 v E CO.

  • SAU81 %977 1 WjjQLHAN~k R.)j 8

FINAL DRAI4INC MUST SHOW,1 CEPRT1F1Ef COIRRECT IF XR% 1902-65340-001 1ECHTEL P. 0. 8856-131-A SUSQUEHANNA STEAI( ELECTRIC STATION RE~gEV~Ikpj"NLVAHIA POWIER MID1 LIC1hT CO. AUG 9 1~nJ ~ ~ Nr-v-CTcI0te': 7/1/17 A ISHEITj-4OF.1 PRODUCT DESCRIPTION 7/1/77 1@ 90t lc2-6534"01.

)r Information Only to EC-059-1041 'S. int~nOl Bec'htel Tag Wu~ber TQ-6 Item.40 SAM.iUL MOORS PART !OftEER 1974-612A.3-001 N T-ielve (12) pair of sixteen (16) gauge, type TX (copper constantan) solid conductors with twenty (20) mile EPDM.primary insulation and can (10) mile Bypalon intermediace jacket; color coded per ANSI. standards; each pair shielded'vith a sixteen (16) gauge, solid tinned copper drain wire and two (2.0) alu alminuw/Mylar tape shield and one and five tenths (1.5) all Hylar separator; five (5.0) mils.sillcone rubber fiberglass fire harrier overaU and eighty (80) mile blue Rypalon outer jackat. iwximum O.D. Net Weighit per ?Mr ?laxitnmm Lengtb Maximum Pulling Tension 1.132 inche.*

  • 646 lbs.

2,400 feet 490 lbs.

  • RE-CEIVED
  • ANi i

¶911 U~SOSIOHANINA PROJ. page 61 .1 Jacket Legend: 'ekoron Dekored Therzocouple Extension Vire 1924 Samuel Hoore Aurora, 0 1976/Lot Number !nAL DRAWING MUJST SHOW: CERTIFIED CORRECT FOR; 1924-612A3-001 -BE-C2EL P.O. 8856-131-A SUSQUEHANA STEAM ELECTRIC STATION UNITS I AND 2 PENN5YhVANIA POWER AND LIGHT CO. Signed a-..*. i.....Av Date: 7/1/77 I ODUCT DESCRIPTION ISH EET I ' F I.L. i.-612A3--001

or Information Only to EC-059-1041 page 62 For ýnfýrmat.1on Onli 4AUr.e( puTsA) i T08 FF 10331O 5h. 4-50 Bechte I Tag Number TQ-S Item 47 t4 SAyrjLL MOORE PART NumBLR 1902-03340-001 One (2) pair of twenty (20) gauge solid type TOX (chromef alumel) conductors wtlth twenty (20) nil. EPDM primary insulation and ten. (10) mile Hypalon intermediate jacket; color coded per ANSI standards; eighteen gauSe, solid tinned copper drain wire; two (2.0) mile aluminum/Mylar tape shield and fort)-five (45) mils yellow Hypalon outer jackel. Haxi-num O.D. Vet Veigbt per KFT Maximum Length... Maxim-tu Pulling Tension .324 inches 45.5 lbs. 10,000 feet 23 lbs. AUr1~7 .Jacket Legend: Decoron Dekorad Thermocouple Extension Wire 1902 Samuel Moore Aurora, 0 1976/Lot Nqumber F.IAL DRAWING MUST s180U! CERTIFIED CORRECT FOR: - 1902-03340-001 BECHTEL P.O. 8856-131-A SUSQUL3DANU. STEAM ELECTRIC STATION. UNITS I and 2 PENNSYLVANIA POWER AND LIGI*I co. Signed 7e/-17 Ce.. Date% 7/1/77 A I d C C PRODUCT DESCRIPTION

  • 0 0

Cfj FF(DS us h. PRODUCT CODE: C63-0070 CONSTRUJCTION( DETAILS 01$CAIPTIOX: ?/C 14 AWl G INEIIALL 11, 6001 "nzWHY SENDINGB RADIUS CDUUZRG'0INSTALLATION): -MlINIMUM BEMINGIB ACIUS(,PI6,AMhII1 TRAhINING) XAXINIIN POILLINIG TENlSION CSTRAIOIT RUNS). MAXIMUMI SIDEVALL PftCSSURK-I 1000 1.23 INCHES 129 LIS LBS/fr Or offll RADIUIS .: w4g 0 (U S rrl

CtJ, 0

) - I -U..1.1 0,

0 LA,. -'P L-AL P O 12 Wfts1~TIOIIj DETAILS pusuc Col 1001, c.00 U07NJTI 0EAI PCS~C 015C3P7 it 7C 14 AVI MEVALL3 III 4001 R1is5ing SCXO[ftS RADIUS COURTpo.INStALLATONIU. 15 1C, .Fl1xi5g RENOIR& A OU 5015535(2 aI:CHIS MIIIINUM 5150550 5503330n (STP I SNANS ThIsiSSI S FOR.5 LBS/Pt SAOIUS ~ ~ ~ ~ LAC CHLORIYOIULPOATED L~ IAS~ ? 551 51 C14tI RHO 71.0242 TC.2030 CI5SL~1 P@LICINIUME5 DECICSMIOMI 7.C1 l IREIA. 2350 CI5CSITiDIFICATIOIS 2114 P11100 1 II J;A FRI IK I* SOO I. C35 LPllIEU11105 ~~~~]~1 AW COPPER ROCKOCSTO2 i012C 3EAt i ALPt C&Ir fe "HuAmoul MtA~l*ILI oe. a SttVtSTtU. FOCI14 .C 1'ML1,3 0116L Sww-OMIN5AL uKIUfl I DOW/. j cps,2 RA Ul Q DCN -w..... No... 0 twr 0 am.

LUA(0 PROOUCT CO.OtP.04 c(SmflWCOW DETAILS DESCRIPTION.- 11C 6 AVG rlREUALt III 600W VIIN 3-12 AUG GROUNDUilIS HJIlMIU SENOJIl RADIS .1 (ousING insRIALLATIONI, 2-.10 IftillS "IftWXItM RVNDI RADIO$ IPEUNARER? TRAININS.)s 1.25 INCHES RAtITKN PULLING TENSION (STRAIGHT EONS)i 1121 Los 04ARINUR SIDEWALL PUISSUREI 1000 LOS/FT OF SEND RADIO& I C) ri9 C-,' '.0 0 THE ROMiESMD COIPMY 'A 965oP INS mm~ 60wr NIOtRAL

FIOON-8F 5h.8ff .&6 "4. -. CE IlSCIIPT!010 219 $AV F0 1IRMALL II1 800! OITN 8-19 Awe 11MOUV11011 S RtOINON. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .00 I110

  • 00~010RItU?@)
  • s oa LACK CKLMOSULP0EAT1i 5 YETNTLEWE NININIIM 81111111RAIUBSI (PUW tIrm t TUINEII)i 1.21 INCHES
  1. IA0 I
  • t nol 11.0305 NAZhN0I9PI.LtIl TENSION (S I EAAIS RO? J 103P21 LIS,3 POWP#OSTLIMS MAXI SIVVAL FRESUR

~ 1l0N.LIS/pT or stan RADIS 0 SIC 6 AVl 71.2061 lIC .0W FoLA aREARDNaT RE ao-toc OLVTITUTCI OESCllP1IO~i! I 6 £08 1IJIE ALL 11I0ll IH3 AD ioivigC CIRCUIT IOfCSIIICArIlON: 121* k02500 4

  • 0 PRINT LEGEND0 T 10 ICL.U0.

4 AW 1011 1.101:;; 30FIR1Q PWTA obeOIw"N M SIR BUR OIL 0.11 It REC f0P I L I' ILPI WE A ITE I~. j Al NANUVACIIIAIS. ?IACI*NST WEA POTG IAN!TgRS, dONISALi ;40,*Ilo:.8 ARU Agl "MR OF~h at-Now ___~ -4 ~IDCN 0 Pi.- PA'A F-i. -3iU 0.1, 0. r ~ ~ ,. ~ .CFO.

v 81W PARTý 1,3231-H-0024 PENNStYJANIA POWER & LIGHT. CQ>

0 r ~BECHTEL SPEC. 6856-EA-4-0 FO8856B-E -401-AC, ITEM I (C02) A A, felW 4 'z2elq4- 0-G4 (41. 4 Av'~e...1/tO2 42" .0-0-.05 VVAIA.5, 9QlWM4EV CO-Oe. COPe, CA p -hol, o0e R~5AMS JET fX' Q4TiT UA Psqr IbA e-AZ 0-c SC0~ 14A. 0tW SCAtf V"o. F"M"D C'4ANGf DATE Bey D W~O i IW "b O W N 9DM II $) U> / C A A T O IWA~tOOSt M CSdS0 +/-L CAW7 DYVAT 1'al 81BW Part 113231-14-OD2 all PcvwMsylvafiia Pawer A Unh0t Co. 0SAWWO NO. off 6ao" OSTON Sechtel Wpe 818564-t8OI 81wW45A E ' P.O. IFMiS6-E-.1-AtC. Item~ I (COZ) cj was.---...--.Co.

. ý I v.'": T7-lt - M." - - II ~1 (A -0 (A 0 ENSYLVAN:IA. POWERS. LIGHT.c... .ECHTE. SPEC-8856-E-401 PO.4.6-E- ,AC,. nlM 2 (L03) 31, i. WrT4 CO LFO~t~-&ATl~p Y2'CE J4MT SMEVE?(TtAL.Foc1TAC(-r e 1~ 00" 6J 'I', s4'at ONSM W INISH .:CHANGE DATE BY AUt -QuMINStoU IN INP#EUIS .s REVISIOM4 O MtNSoNtor~ANwt v- ? b" D$2 AIEý I~ t~'PR P40.. .4 '8Iw'partfl3232-H-003-,-- FAIM4 IfNOEStAp DATE 6 1 .env~i Po: 7 RWNG O ObMVUýMmsosI.N5 61 BOSTON Sftc.8856-E401 Co 4.. ~~ J

  • .f.*1

'rob owjbs A*4

2. 4 l

I a. ~-....

0 0 0 0 F-. 'I -0 LA

  • Ii
  • i.
  • I U.

.1 Int-A P'Z. )0, BIW PAPTdI3234-Hi-Q05 -PENNSYLVANIA POWE:R & LIGHT CO. ii I.,.

  • &.o I P0.

6 885 1E~-'-AC,,. ITEM 3 CL05) 3 .011 W,

Lam

'T EOPaEE- &-CI'!ýS -rAP

  • 4 h4L~Q~LF~P-TED R=,-YET"Y~LENE.JAb 4;1:

-0 DooWAI4-t-...3P4KET'?Q.vNT-e"8i4 e-AsLZ-

  • ~

1EM~z l~N..(Ze) 54 4 4WdO VOLT, -S 'EAL Fg. " i FtM i~Z

  • I.

I 0n '0 ""o S° .° a 30 0Nor £CAff D1*G FINISH Z. [ i.-I jOAC +0.A Att 0"gtrmdoNI MN INcwtl kf~i REVISIONS Y teoir $=W to5 WF O I UlS'0-1 S MOON P -y, Al'llO OWN DAft .uI.1:51 CK DAII gI AC1l0fJ4l DIMMLIASn#A. F C1*f 01A& IMNONS L~ BOSULTON

  • ML nc/C #14 AWG 031W Part 1 132U-4-06Of5

-Pennsylvania. .Power & Linht Mr.- Bechtel Spec 8856-E-401 .P.O. 58856-E-401-AC-, Item'3 (L05) PART NO. ORAWING NO. I..# I Qm I* g GO 0*.

  • .-.--.--..-.-.--......-..-.-...-.-..---...-....-...~--.---..--..-.........----*.-.--.-..---**.---.'..-.**..-.-..--I..,--.-~*'-.'-.....

0-'-1 0 0 0-- m L N -1 -n _0 LA ,ry

  • A 2-W.

A-i r A

  • .,iii4
0.

n pjbob B8IW: PART. :235 -H-'Q7.. PE SUtVANIA tPOWER&LIr co.. B_-ECP-TEL SPEC.85'r-:E--401 PQ"'.$8566-E.401-AC ITEM`~p MC/q. Obw"-WALLS~PjXPC~~e4v. C. cablClMok-AL 4'IGD P0L~eeMlNý. J~Z

  • ~ ~

~ ~ ~ ~ ~ ~ ~ 11 OOWC.LJ C(Tpz-:AB'NCABelb s~s~ 1 4 r&~A). /C=Ir4Av6. (O~ V7T I NJ. 0 CD~ m i m I m i*w i I MOI Sno t 40 uOwo. FINISH d CAG. DATE y 6,",**. tw'DATE. i'ATM 04 OrSj9,/' 71C. 64 AWG TN. Flk*IAC!IO VAI DMIGONS'l. .+/-1 DAIT I~ r l25H.D D(CIMALDIM!NSIt4S.* .Pennsyl a ,i Po ter-8 Liht -Co.,tA IO O BO$TN ec'htq1 Spec*1§8564.-401 B-0 I '-AW.nA* 1111Mr CD -4 0)

  • a -

.~ 0 0 ý31W.ARF~ .15237-H-R012` PENNSYLVANiA POWER'A LIGHT CO.:

  • -ECHTEL SPEC 8856 -E-401 PQ 8.5o*.-E-40l-AC... rEM 5:,(L12) r'j S

I3 -.4.

11 I-t 0 H1-0 0 ',a N. -n i-F 0 I-f.3Y F 0 0ii Mo BIW PART "14007-H-003 9. C C C PENNSLAWN'IA POWER & UGHT CO. BECHTEL SPEC - 8856-E-401, IQ,8856-E-401-AC, ITEM 8 CDl3) i! flMkNeV oP C ~W u4'NE ?WL;ýeRe .OW-0O-5 WWALLI, PQOtNTV LCDLc'lZCCV 00 OM7i-ý $rLFApAE RCAV-04sr t-lE0gR%ME - C---, -rApe. .O0o0vVAL.L, JA-C.<T F'QII.h-e5evW ~C-Aye4 CABLE CODC-e ~13 t a K-O.5~5 T~' 0 0 t-t10& '~J1 0 VT ti I +/-1 .S~A/ 7~F/J i,;-El 1ý70 7,170 tlýtýrjlA'? I ~ y*~5.~fJ

  • -'jzi sc%"

Do-- HOT l~ cALf em. NSH CHANGE 7ATi BY Alt WON06 MCA14'10 EWVSIONS u~f30,romDATE 3 Xli 11C 110 AiW3 ow<"Otft we~sod ý4vlýL, DI Part 01007.4-003 ALOiiOcd0v iV* DT Peinsylvenia Power A Liaht Co. Pjam"W)P.O. E856E-401.AC, Item 8 (013) (go -I

N -n 0 0 LA 0 I *ryz.! fr~ Z4 81W PART 'ý4QO9 -H-(306 PENNSYLVANIA POWER 8 LIGHT CQ BECHTEL SPEC 6856-E-401 0 8856-E-401-AC, ITEM 12 (DrD) -B- '1 H f1 '0 C H ~ ~1ttEWEP PLyhJ Fee-I~UA~C4 .045 WAaLLe 3. -F- ~* SYS~~t('AS h-r-/C 4 (PAWýs'. (00 VOLT, 0 0 6 ul ,o ,,C., C.A.JG DATE BY Aft ow"5~10" IN C9 sw IM jPEA5QN lp0q 0t.YW~ SDIC04 OR 4 N ~ n DATE 1ý~ CI~ -4~' ATE d APV,Y// soI t3*Cimm bvioeSImu A I I I I I II *. JoCUA ViSnW0*, t Apo"MA OfIma'O A vww a CA~Ud Co. "! /C,M A,* M.V Part ?1400.9H-;,,06 P~msylvanie Pmr F, Litah Co. Ph.o1* -4*c AR56.--.to4 P 0 64--401-AC. item~ 12 (061) OAWI NO. I I I ~.-.

ýN 0 0 r ~ ~ .7 ~

  • I.

~ ~ti~II K~;ii ii m~o~ 8 .Jo 61W..- PART

14016 - H-003 PENNSYLVANIA %POWERS

&LIGHT.O. BECHTEL SPEC 88567-E-;oL.-Q '....8856 -E... -AC [ TEM.13 5(D63)

  • 1 H

0 0. 00 I-' J, C' -C V10oWLX~otATh1 POL TMAYLEINe. _ACAZU,. .0F0 WAL, J~~X Pn.4'RAW C4eLFE .6ý$Te'6' Ike- ('w m4eWC;(O O [ (t-t 0ý ~/%2~fri Sc4I -- Jo lo cl w fNri.N CHA.NGE -DATE. By AIL OrtMINI04J IN INCHES UNIMI EIIN DVAINS,004 rOIEANCIS DR'N DATE i 18 PART NO. UNLESS speIC.o -bATE. 7#/ ILE./6 AWG fwvAqCIt tlýoows tI K~ DAN.- "A, 6Dw Part. 114016-H-003-DEIMWAL Dim[."IONS.1 L DRAWING. NZO NOSTON Otakmhtao.. Sp66.-3)E40 .A 6 w su% LATEo ,0.

  • :=.*
  • 4..

6w 50M ;-ý =

0 rt '1-0 414' 0 0 r( BWPARkT" 14013-H-003

iE*

CC) rt PENNSYLVANIA POWER & LIGHT CO. 0 BECHTEL SPEC 8856-E-401 0 A O.a6*885E-4-OI-AC, ITEM It (D83) k O C51. ot' ,1o-r(4 ol ýS-REP

VOL2w, 4*frt*l

.c :*X*A. 0 "'~o -C ") 0* 0.745"' 5 'SYTM 1*4.' qmz -C ,8 A-* t,,F11 *

  • O O
  • "'.w "t I *cwI CH'C 9*..

DATE Ti -/., I iI!I0 FAC?*-t o*sx APW DATE[ Sdi*t _ IV Part # 14O13-I!-003 S...

  • eimsy'vanie Po,*e-A tloht Co, CD
  • b8rON eClhte Spec MR55-1-401 O

P.O. I 8RS6,-.4eP-.C, Item T 1*1 ( &0, "Olfe S. A(IF VýMl C S C14AN.TE D L Ask ogw~son ww~wsV(Al olm " REVSI-F4 Lii

r Information Only to EC-059-1041 page 76 Email from R. Vazquies to M. Waselus SP-pHCond.xls

Dr Information Only to EC-059-1041 page 77 Wasct 1 Mckhnat M. "ra:a7Qus. R.l.nM :ARA( ( u.mJdjpr P A.,wb.Cu.hI

Sud, ThLegy, flecerebs i O.

4 2:QtPM To; iV. Oena Mkf' WU-5"D)*,: FVV: SSPa.IR aC4d. CSI Inn ?h 1 s h tnfsrac fot-k.e azppress.!Cr ccoI pfl Vtica. W you nbbj Qqr*rMe.qe-ricea; Norgen. WVN-3 Sent: ~.ns Dsy ecetk-i re. 2003 5:0! P31 ?0: Vatqiuet. iosscAl Par,~!rreW~os~~ Ta Tt ,0,1;,31z vt lupteesxon PoO.ls arid Lor the ciLsa .ts the Haa -3 ýitl7-1.b i-C).Taeleis cne orasuienant SCL el 211 at 6.2, L ~ C nt'.Ci;C, h 111tial V1lo 1., 2 bel jert that eculd esvppsnt, a ninimn 'chatj c4 dt-.3.. It to L:tely that Cfl-6t 0: tra. tnfssill 4-6.3 or hiuher. if itd a cwiticci lid COO e 1:5hdth-

a. Cthen a ckvasev nL=

tn. bo iD. Mnsl that tho aeppreseinn, pool w itt as rl 1~v~yhg purl!?.ý This Itls 10 1?4 1.sLt6l b..s.frinc -%n.r fl cr0 t ki -L3) t4 sraiLva a5 relatl!-uy VTAII Addltiene.t -id or bee.. 'enI m'irO. know ho-tho vocaJ~1-tcti5.- br. bt 61C'7 TBo ir. tihe t=. ee. ona flrP.c tta! T.Sy @tor* trisc'Ciun pccrf.rtax ill the &cPt~aiaan to rile. !,B is th. 6c0ot of & VUA, V1 ir~jwct t~~1, cthe Safe 1~c.!~ wQ lCJeQt -'L&, W ill! to inatir Sr~ - h-Ij1 "oi soluticmi Into zfis ser*tGO 1o %t31e!, Whichf-W!!! he.-p p~w tste pa trca goinq acidic. s Ms::tipn, !lavid 3 Sent: Wdocsdag.stma, I 620414 An Ta; -asoutec. :ýcnaLd Alhiat Icar. SlcA ensed the* -nds yet-. WAst I thir:kj I ssjr.i. )1Wa t;.ss, ricitc.

70 0i Suppr~eslon Pool pH Combined SSES-1 and SSE$-2 January 1000 to Ortabor 2004 IN. 100 '20' 'Il .*i I i.... + +.._.....' I I LL 02 41. 04

  • "I; G I lO

.1 7,2 1 3 74 74 P 5" I ~~ ~&0 tjJ -j 00}}