ML13232A217: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 3: Line 3:
| issue date = 07/31/2013
| issue date = 07/31/2013
| title = Attachment 2 - Areva Document No. ANP-3102, Revision 3,Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with Mur, Revision 3, Dated July 2013
| title = Attachment 2 - Areva Document No. ANP-3102, Revision 3,Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with Mur, Revision 3, Dated July 2013
| author name = Mahmoud S H
| author name = Mahmoud S
| author affiliation = AREVA NP, Inc
| author affiliation = AREVA NP, Inc
| addressee name =  
| addressee name =  

Revision as of 00:03, 22 June 2019

Attachment 2 - Areva Document No. ANP-3102, Revision 3,Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with Mur, Revision 3, Dated July 2013
ML13232A217
Person / Time
Site: Three Mile Island Constellation icon.png
Issue date: 07/31/2013
From: Mahmoud S
AREVA NP
To:
Office of Nuclear Reactor Regulation
References
TMI-13-107 77-3102-003, ANP-3102, Rev. 3
Download: ML13232A217 (62)


Text

ATTACHMENT 2 AREVA Document No. ANP-3102, Revision 3, "Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with MUR," Revision 3, dated July 2013 ANP-3102, Rev. 3 July 2013 Three-Mile Island Unit I Appendix G Pressure-Temperature Limits at 50.2 EFPY with MUR ANP-3102, Rev. 3 July 2013 Three-Mile Island Unit 1 Appendix G Pressure-Temperature Limits at 50.2 EFPY with MUR Prepared by S. H. Mahmoud Reviewed by A.D. Nana AREVA Document No.77-3102-003 Prepared for Exelon Generation Co., LLC A AREVA ANP-3102, Rev. 3 Copyright

© 2013 AREVA.All Rights Reserved A AREVA A AREVA ANP-3102, Rev. 3 Record of Revision Revision Pages/Sections/Paragraphs No. Changed Brief Description

/ Change Authorization 000 All Original Release 001 Page 2 Changed first sentence of first paragraph and deleted second and third paragraphs.

001 Page 49 Corrected graph format.002 Pages 3 and 4 Corrected the entry on the first column last row from "IS to LS Circ. Weld (63%)" to "LS Longit. Weld (OD 63%)" in both Tables 1 and 2 003 Page 2 Corrected misrepresentation of reference number to Regulatory Guide 1.99, Revision 2 in the reference list.Page 6 Corrected description of the input temperature-time histories (225 is changed to 255)Page 13 1. Changed "The location adjusted P-T limits calculated for normal step cooldown are shown in Table 10" to "The location adjusted P-T limits calculated for ISLH step cooldown are shown in Table 10" 2. Changed "The criticality limit temperature corresponding to a pressure of 2500 psig read from Figure 2, or it can be can be determined through interpolation of ISLH heatup data in Table 6." to "The criticality limit temperature corresponding to a pressure of 2500 psig can be determined through interpolation of ISLH heatup data in Table 6.3. Changed "The criticality limit curve is shown in Figure 1" to "The criticality limit curve is shown in Figure 3" Page 53 Inserted reference 10.++A AREVA A AREVA ANP-3102, Rev. 3 Table of Contents Page RECORD OF REVISION ........................................................................................................................

I LIST OF TABLES .................................................................................................................................

IV LIST OF FIGURES ................................................................................................................................

V

1.0 INTRODUCTION

........................................................................................................................

1

2.0 BACKGROUND

..........................................................................................................................

1 3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES

........................

2 4.0 DESIGN BASIS FOR PRESSURE/TEMPERATURE LIMITS .................................................

5 4.1 Material Properties

............................................................................................................................

5 4.2 Postulated Flaws ...............................................................................................................................

5 4.3 Upper Shelf Toughness

............................................................................................................

5 4.4 Uncorrected Reactor Vessel Closure Head Limits ........................................................................

6 4.5 Convection Film Coefficient

...............................................................................................................

6 4.6 Reactor Coolant Temperature-Time Histories

..............................................................................

6 4.7 Adjusted Reference Temperatures

...............................................................................................

6 5.0 TECHNICAL BASIS FOR PRESSURE/TEMPERATURE LIMITS ...........................................

8 5.1 Fracture Toughness

..........................................................................................................................

9 5.2 Thermal Analysis and Thermal Stress Intensity Factor ...............................................................

9 5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region ................................

10 5.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles ............................................

11 6.0 PRESSURE CORRECTIONS

................................................................................................

12 7.0

SUMMARY

O F RESULTS ........................................................................................................

12 7.1 P-T Curves for ISLH Heatup / Cooldown ...................................................................................

13 7.2 P-T Curves for Normal Heatup / Cooldown ...............................................................................

32 8.0 SUM MARY ...............................................................................................................................

48 9.0 CERTIFICATION

......................................................................................................................

52 ii A AREVA A AREVA ANP-3102, Rev. 3 Table of Contents (continued)

Page

10.0 REFERENCES

.........................................................................................................................

53 A AREVA A ARE'VA ANP-3102, Rev. 3 List of Tables Page Table 1: Adjusted Reference Temperature Evaluation for the TMI-1 Reactor Vessel Beltline Materials at the 1/1/2-Thickness Locations Applicable Through 50.2 EFPY with MUR ...................................

3 Table 2: Adjusted Reference Temperature Evaluation for the TMI -1 Reactor Vessel Beltline Materials at the 3/4-Thickness Locations Applicable Through 50.2 EFPY with MUR ...................................

4 Table 3: M aterial Properties

...........................................................................................................

5 Table 4: Lim iting RTNDT'S for TM I-1 Beltline Materials

........................................................................

7 Table 5: Limiting Location Corrections Factors for Pressure ...............................................................

12 Table 6: TMI-1 Adjusted Location Specific P-T Limits for ISLH Heatup ..........................................

14 Table 7: TMI-1 Criticality Limit Temperature Determination

............................................................

16 Table 8: TMI-1 Tech. Spec. Basis P-T Limits for ISLH Heatup ........................................................

17 Table 9: TMI-1 Adjusted Location Specific P-T Limits for ISLH Ramp Cooldown ............................

20 Table 10: TMI-1 Adjusted Location Specific P-T Limits for ISLH Step Cooldown ............................

23 Table 11: TMI-1 Tech Spec. Basis P-T Limits for ISLH Cooldown .................................................

24 Table 12: TMI-1 Tech Spec. Basis P-T Limits for ISLH Composite Curve ......................................

27 Table 13: TMI-1 Adjusted Location Specific P-T Limits for Normal Heatup .....................................

33 Table 14: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup .................................................

36 Table 15: TMI-1 Adjusted Location Specific P-T Limits for Normal Ramp Cooldown .......................

39 Table 16: TMI-1 Adjusted Location Specific P-T Limits for Normal Step Cooldown ........................

42 Table 17: Tech Spec. Basis P-T Limits for Normal Limiting Cooldown ............................................

43 iv A AREVA A AREVA ANP-3102, Rev. 3 List of Figures Page Figure 1: TMI-1 Adjusted P-T Limits for ISLH Heatup and Cooldown .............................................

30 Figure 2: TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve) ...................................

31 Figure 3: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup and Criticality Limit .....................

46 Figure 4: TMI-1 Tech. Spec. Basis P-T Limits for Normal Cooldown ...............................................

47 Figure 5: TMI-1 Summary Tech Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Heatup and C ritica lity L im it ...............................................................................................................................

4 9 Figure 6: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Cooldown......................................................................................................................................................

5 0 Figure 7: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for ISLH (Composite C u rv e ) ...........................................................................................................................................

5 1 A AREVA A AREVA ANP-3102, Rev. 3

1.0 INTRODUCTION

This report presents operational pressure-temperature (P-T) limits for the reactor vessel at Three-Mile-Island Unit 1 (TMI-1). These limits are expressed in the form of a curve of allowable pressure versus temperature.

In addition, the minimum temperature for core criticality is determined to satisfy the regulatory requirements of 10 CFR Part 50, Appendix G [1]. The uncorrected P-T limits for TMI-1 were determined for 50.2 effective full power years (EFPY) of operation with Measurement Uncertainty Re-capture (MUR). Pressure-temperature limits are calculated for the reactor vessel beltline, inlet and outlet nozzles, and closure head locations for normal heatup, normal cooldown, and inservice leak and hydrostatic (ISLH) test conditions.

Pressure correction factors were determined between the RCS hot leg pressure taps and various other RCS locations.

2.0 BACKGROUND

The ability of the reactor pressure vessel to resist fracture is the primary factor in ensuring the safety of the primary system in light water-cooled reactors.

The three areas of the reactor coolant pressure boundary addressed in the present report are the beltline shell region, the reactor coolant nozzles, and the closure head flange region.A method for guarding against brittle fracture in reactor pressure vessels is described in Appendix G to the ASME Boiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components."[2].

This method utilizes fracture mechanics concepts and the reference temperature for nil-ductility transition, RTNDT, which is defined as the greater of the drop weight nil-ductility transition temperature (per ASTM E208 [3]) or the temperature that is 60 'F below that at which the material exhibits 50 ft-lbs and 35 mils lateral expansion.

The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (K 1 ,). The Kl,, curve appears in Appendix G of ASME Code Section XI. When a given material is indexed to the K 1 , curve, allowable stress intensity factors can be obtained for this material as a function of temperature.

Plant operating limits can then be determined using these allowable stress intensity factors.The RTNDT of the reactor vessel materials, and in turn, the pressure/temperature limits of a reactor vessel, must be adjusted to account for the effects of irradiation.

Neutron embrittlement and the resultant changes in mechanical properties of a given pressure vessel steel are monitored by a surveillance program consisting of periodic removal of surveillance capsules from an operating reactor and testing of reactor vessel material specimens obtained from the capsules.

The increase in the Charpy V-notch 30 ft-lb temperature is added to the unirradiated RTNDT to adjust it for neutron embrittlement.

This adjusted RTNDT is used to index the material to the K 1 , curve, which in turn, is used to set new operating limits for the nuclear power plant. These new limits take into account the effects of irradiation on the reactor vessel materials.

Pressure-temperature limits for the TMI-1 reactor vessel are developed in accordance with the requirements of 10 CFR Part 50, Appendix G [1], utilizing the analytical methods and flaw acceptance criteria of topical report BAW-10046A

[4] and ASME Code Section XI, Appendix G[2].As mentioned earlier, the three areas of the reactor coolant pressure boundary addressed in this report are the beltline shell region, the reactor coolant nozzles, and the closure head flange region. The beltline and nozzle regions are analyzed specifically for TMI-1 using the K 1 c reference fracture toughness.

The effect of the change in the reference fracture toughness curve on the P-T limits for the closure head flange region is included by utilizing generic limits that have been derived for B&W-designed 177FA reactor vessels.The TMI-1 reactor vessel contains both axially and circumferentially oriented welds. Therefore, the P-T limits for TMI-1 is based on the postulation of both axial and circumferential flaws in the most limiting axial and circumferential welds and the postulation of an axial flaw in the most limiting forging material of the reactor vessel.Page 1 A ARE VA A AREVA ANP-3102, Rev. 3 One-hundred percent steady state condition Appendix G limits were considered for the development of low temperature overpressure protection (LTOP) P-T limits. To further support the development LTOP system limits, temperature differences between the reactor coolant in the downcomer region and the 1/4/4 t wall location are determined for the maximum heatup rate transient.

The V4 t wall location is defined as a point within the vessel wall that is located at a distance of one quarter of the vessel thickness from the cladding-base metal interface.

3.0 ADJUSTED NIL-DUCTILITY TRANSITION REFERENCE TEMPERATURES The '/4 t and / t ART values for the TMI-I reactor vessel beltline materials applicable to 50.2 EFPY with MUR are listed in Table 1 and Table 2. These values were calculated in accordance with Regulatory Guide 1.99, Revision 2 [10]. The calculation of the ART values for the weld metals also used BAW-2308 Revision IA and 2A [5]. The controlling beltline materials for the Three Mile Island Unit 1 reactor vessel are the lower nozzle belt to upper shell circumferential weld with ART values at 50.2 EFPY with MUR of 216.0 OF at the 1/4T wall location and 161.1 OF at the 3/4T wall location and the axial welds of the lower shell and upper shell, respectively with ART values at 50.2 EFPY with MUR of 183.9 °F at the 1/4 T wall location and 126.8 °F at the /4 T wall location.The ART values used for the development of the Three Mile Island Unit 1 reactor vessel P-T limits curves, calculated in 2006 for license renewal, were 234.5°F at the '/4 T wall location and 178.5°F at the 3/4T wall location for the circumferential welds. The ART values used for the axial welds were 184.7 °F at the 1/4/ T wall location and 126.8 °F at the 3/4 T wall location.

Thus, in all instances the actual ART values or conservative ART values were used in the development of P-T limit curves performed in 2006.Page 2 A AREVA A ARIEVA ANP-3102, Rev. 3 Table 1: Adjusted Reference Temperature Evaluation for the TMI-1 Reactor Vessel Beltline Materials at the 1/4-Thickness Locations Applicable Through 50.2 EFPY with MUR Estimated Fluence Adiusted Reference Temperature Evaluation at 1/4T Location Reactor Vessel MatI. Heat A 50.2 EFPY, n/cm 2 Chema. Fluence R Initial I a, I 0 e I RTNr r, 1/4T_____________________

ent Numer RT.sT, Shift, Beltllne Region Location Ident. Number Type Cu Ni IS 1/4T Factor Factor F J F Margin ART Guide 1.99, Revision 2, Position 1.1 Lower Nozzle Belt Forging (LNB) ARY 59 123S454 SA-508 CI2 0.08 0.72 1.32E+19 7.698E+18 51.0 0.927 3 31 17 47.3 70.7 121.0 Upper ShellPlate (US) C2789-1 C2789-1 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 8.575E+18 58.0 0.957 1 26.9 17 55.5 63.6 120.1 Upper Shell Plate (US) C2789-2 C2789-2 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 8.575E+18 58.0 0.957 1 26.9 17 55.5 63.6 120.1 Lower Shell Plate (LS) C3307-1 C3307-1 SA-302 Gr B Mod. 0.12 0.55 1.47E+19 6.575E+18 82.0 0.957 1 26.9 17 78.5 63.6 143.1 Lower Shell Plate (LS) C3251-1 C3251-1 SA-302 Gr B Mod. 0.11 0.5 1.47E+19 8.575E+18 73.0 0.957 1 26.9 17 69.9 63.6 134.5 LNB to US Circ. Weld (100%) WF-70 72105 Linde 80 Flux 0.32 0.58 1.32E+19 7.698E+18 199.3 0.927 -31.1 13.7 28 184.8 62.3 [216.0]US Longit. Weld (Both 100%) WF-8 8T1762 Linde 80 Flux 0.19 0.57 1.31E+19 7.662E+18 167.0 0.925 -47.6 17.2 28 154.5 65.7 172.6 US to LS Circ. Weld (100%) WF-25 299L44 Linde 80 Flux 0.34 0.68 1.43E+19 8.335E+18 220.6 0.949 -74.3 12.8 28 209.3 61.6 196.6 LS Longit. Weld (100%) SA-1526 299L44 Linde 80 Flux 0.34 0.66 1.16E+19 6.778E÷18 220.6 0.891 -74.3 12.8 28 196.6 61.6 {183.9)LS Longit. Weld (ID 37%) SA-1526 299L44 Linde 80 Flux 0.34 0.68 1.15E+19 6.755E+18 220.6 0.890 -74.3 12.8 28 196.3 61.6 183.6 LS Longit. Weld (OD 63%) SA-1494 8T1554 Linde 80 Flux 0.16 0.57 1.15E+19 N/A 167.0 N/A -47.6 17.2 28 N/A N/A N/A-Highest values of the adjusted reference temperature for circumferential welds.-Highest values of the adjusted reference temperature for base metal or longitudinal welds.Page 3 A ARIEVA A AR EVA ANP-3102, Rev. 3 Table 2: Adjusted Reference Temperature Evaluation for the TMI -1 Reactor Vessel Beltline Materials at the %-Thickness Locations Applicable Through 50.2 EFPY with MUR Estimated Fluence Adusted Reference Temperature Evaluation at 3/4T Location Reactor Vessel Matt Heat C 50.2 EFPY, n/cm 2 Chem. (Fluence Initial J o. RTNoT 3/4T Beltilne Region Location Ident. Number Type CU Ni IS 3/4T Factor Factor F ' F Margin ART Regulatory Guide 1.99, Revision 2, Position 1.1 Lower Nozzle Belt Forging (LNB) ARY 59 123S454 SA-508 C02 0.08 0.72 1.32E-19 2.80E+18 51.0 0.652 3 31 17 33.3 70.4 106.7 Upper Shell Plate (US) C2789-1 C2789-1 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 3.12E+18 58.0 0.680 1 26.9 17 39.4 63.6 104,0 Upper Shell Plate(US)

C2789-2 C2789-2 SA-302 Gr B Mod. 0.09 0.57 1.47E+19 3.12E+18 58.0 0.680 1 26.9 17 39.4 63.6 104.0 Lower Shell Plate(LS)

C3307-1 C3307-1 SA-302 Gr B Mod. 0.12 0.55 1.47E+19 3.12E+18 82.0 0.680 1 26.9 17 55.8 63.6 120.4 Lower Shell Plate (LS) C3251-1 C3251-1 SA-302 Gr 8 Mod. 0.11 0.50 1.47E+19 3.12E+18 73.0 0.680 1 26.9 17 49.6 63.6 114.2 LNB to US Circ. Weld (100%) WF-70 72105 Linde 80 Flux 0.32 0.58 1.32E+19 2.80E+18 199.3 0.652 -31.1 13.7 28 129.9 62.3 [161.1]US Longit. Weld (Both 100%) WF-8 8T1762 Linde 80 Flux 0.19 0.57 1.31E-19 2.78E+18 167.0 0.651 -47.6 17.2 28 108.7 65.7 {126.8J US to LS Circ. Weld (100%) WF-25 299L44 Linde 80 Flux 0.34 0.68 1.43E+19 3.03E+18 220.6 0.673 -74.3 12.8 28 148.5 61.6 135.8 LS Longit. Weld (100%) SA-1526 299L44 Linde 80 Flux 0.34 0.68 1.16E+19 2.46E+18 220.6 0.620 -74.3 12.8 28 136.8 61.6 124.1 LS Longit. Weld (ID 37%) SA-1526 299144 Linde 80 Flux 0.34 0.68 1.15E+19 N/A 220.6 N/A -74.3 12.8 28 N/A N/A N/A LS Longit. Weld (OD 63%) SA-1494 8T1554 Linde 80 Flux 0.16 0.57 1.15E+19 2.45E+18 167.0 0.619 -47.6 17.2 28 103.4 65.7 121.5 3 -Highest values of the adjusted reference temperature for circumferential welds.-Highest values of the adjusted reference temperature for base metal or longitudinal welds.Page 4 A AREVA A AREVA ANP-3102, Rev. 3 4.0 DESIGN BASIS FOR PRESSURE/TEMPERATURE LIMITS Essential geometric data and analytical parameters used in the preparation of TMI-1 P-T limits are described below.4.1 Material Properties Table 3 describes the material properties used in the development of the P-T limits for the TMI-1.Table 3: Material Properties Temp. Elastic Thermal Thermal Specific Density Poisson's Modulus Expansion Conductivity Heat Ratio Ref. [6] Ref61 Ref.[6] Ref.[6] (assumed)(°F) (106 psi) (10- in/in/°F)

Btu/hr-ft-°F) (Btu/lb-°F) (lb/ft 3)70 29.20 7.02 23.3 0.104 490.9 0.3 100 29.04 7.06 23.6 0.107 490.5 0.3 150 28.77 7.16 24.1 0.111 489.9 0.3 200 28.50 7.25 24.4 0.114 489.2 0.3 250 28.25 7.34 24.6 0.117 488.6 0.3 300 28.00 7.43 24.7 0.121 487.9 0.3 350 27.70 7.50 24.7 0.124 487.3 0.3 400 27.40 7.58 24.6 0.127 486.7 0.3 450 27.20 7.63 24.4 0.129 486.0 0.3 500 27.00 7.70 24.2 0.132 485.4 0.3 550 26.70 7.77 23.9 0.135 484.7 0.3 600 26.40 7.83 23.5 0.138 484.1 0.3 650 25.85 7.90 23.2 0.141 483.4 0.3 700 25.30 7.94 22.8 0.144 482.8 0.3 4.2 Postulated Flaws a. Postulated Reactor Vessel Beltline Flaws Semi-elliptical surface flaws that are '/4 t deep and 1 1/2 t long are postulated on the inside and outside surfaces of the reactor vessel beltline region. A longitudinal flaw is postulated in the base metal and the axial seam welds and a circumferential flaw is postulated in the circumferential welds.b. Postulated Nozzle Comer Flaw A 3" (1/4 tNB) deep comer flaw is postulated on the inside surface of the reactor vessel inlet and outlet nozzles.4.3 Upper Shelf Toughness A maximum value of 200 ksi'An is used for the upper shelf fracture toughness of the reactor vessel beltline.

For the nozzle forging materials, a "no cut-off' limit is used.Page 5 A AREVA A AREVA ANP-3102, Rev. 3 4.4 Uncorrected Reactor Vessel Closure Head Limits Pressure-temperature limits for the reactor vessel head-to-flange closure region for normal operation and ISLH operation were derived for TMI- I reactor vessel closure head region based on the K c fracture toughness curve.4.5 Convection Film Coefficient A value of 1000 BTU/hr-ft 2-°F is used for an effective convective heat transfer film coefficient at the cladding-to-base metal interface for all times during heatup and cooldown when reactor coolant pumps (RCPs) are in use.When no reactor coolant pumps are running (i.e., before the first RCP is started during heatup and after the last RCP is shut off during cooldown), a value of 430 BTU/hr-ft 2-°F is used as an effective film coefficient at the cladding-to-base metal interface.

This value was developed for flow conditions when no RCPs are running and 40°F water enters the vessel through the core flood nozzle as the decay heat removal system switches to an idle low pressure injection cooler. The outside surface is always modeled as a perfectly insulated boundary.4.6 Reactor Coolant Temperature-Time Histories Both ramped and stepped transient definitions are modeled for normal operation heatup and cooldown.

The limiting normal heatup and cooldown transients (as determined by the controlling P-T limits) are also used to simulate the reactor coolant transients used for inservice leak and hydrostatic (ISLH) pressure testing.The following input temperature-time histories are considered:

Normal Ramp Heatup, 50 *F/hr.Normal Step Heatup, 15 OF/ 18 min. steps.Normal Ramp Cooldown, 100 °F/hr to 255 'F then 30 0 F/hr to 70 'F.Normal Step Cooldown, 15'F/ 9 min. steps to 255 'F then 15 'F/ 30 min. steps to 70 'F.4.7 Adjusted Reference Temperatures As discussed in Section 3.0, limiting values of the adjusted reference temperature were evaluated.

The limiting ART or RTNDT values that were used for determining the P-T curves are also listed in Table 4 for the l/4 t and 3/4 t locations of the reactor vessel beltline wall at 50.2 EFPY with MUR. An RTNDT of 60 OF is used for the reactor vessel nozzles.Page 6 A ARE VA A AREVA ANP-3102, Rev. 3 Table 4: Limiting RTNDT'S for TMI-1 Beltline Materials Vessel Wall Limiting RTNDT (OF)Component Location Material at 50.2 EFPY Beltline 1/4 t SA-1526 184.7 Axial Weld WF-8 126.8 Beltline 1/4t WF-70 234.5 Circ. Weld _7/_4t _ WF-70 178.5 Page 7 A AREVA A AREVA ANP-3102, Rev. 3 5.0 TECHNICAL BASIS FOR PRESSURE/TEMPERATURE LIMITS Pressure-temperature limits are developed using an analytical approach that is in accordance with the requirements of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G [2]. Additional requirements are contained in Table 1 of Appendix G to Title 10, Code of Federal Regulations, Part 50 [1]. The analytical techniques used to calculate P-T limits are based on approved linear elastic fracture mechanics methodology described in topical report BAW-10046A

[4]. The fundamental equation used to calculate the allowable pressure is Pallow KIR -Krr SFx ki where, Pallow = allowable pressure K I = reference stress intensity factor ( K a or K 1c Srr = thermal stress intensity factor I, = unit pressure stress intensity factor (due to 1 psig)SF = safety factor For each analyzed transient and steady state condition, the allowable pressure is determined as a function of reactor coolant temperature considering postulated flaws in the reactor vessel beltline, inlet nozzle, outlet nozzle, and closure head. In the beltline region, flaws are postulated to be present at the 1/4 t and 3/4 t locations of the controlling material (shell forging, or circumferential weld), as defined by the fluence adjusted RTNDT. The reactor vessel nozzle flaws are located at the inside juncture (comer) with the nozzle shell, and the closure head flaw is located near the outside juncture with the head flange. P-T limits for the beltline and nozzle regions are calculated using a safety factor of 2 for normal operation and 1.5 for ISLH operation.

The P-T limit curves presented consist of the allowable pressures for the controlling beltline flaw, inlet and outlet nozzles, and closure head, as a function of fluid temperature.

These curves have been "smoothed", as necessary, to eliminate irregularities associated with the startup of the first reactor coolant pump during heatup and the initiation of decay heat removal during cooldown.

After the initial determination of the P-T limit curves, location specific curves were adjusted for sensor location.

No instrument error correction has been applied. The final results include the determination of a minimum/lower bound P-T curve.The criticality limit temperature is obtained by determining the maximum required ISLH test temperature at a pressure of 2500 psig (approximately 10% above the normal operating pressure).

The ISLH analysis considers the most limiting heatup and cooldown transients.

The approach satisfies the requirement of Item 2.d in Table 1 of 10 CFR 50, Appendix G [1]. It requires the minimum temperature to be the larger of minimum permissible temperature for inservice system hydrostatic pressure test or the RTNDT of the closure flange material + 160 OF.Various aspects of the calculation procedures utilized in the development of P-T limits are discussed below.Page 8 A AREVA A AREVA ANP-3102, Rev. 3 5.1 Fracture Toughness The fracture toughness of reactor vessel steels is expressed as a function of crack-tip temperature, T, indexed to the adjusted reference temperature of the material, RTNDT. Pressure-Temperature limits developed in accordance with ASME Code,Section XI, Appendix G, as permitted by RIS 2004-04 [7] , utilize the crack initiation fracture toughness, Kic = 33.2 + 2.806 exp [0.02 ( T -RTNDT + 100 'F)]The upper shelf fracture toughness is limited to an upper bound value of 200 ksi'lin for the reactor vessel welds and base metal and 250 ksi x/in for the inlet and outlet nozzles. The crack-tip temperature needed for these fracture toughness equations is obtained from the results of a transient thermal analysis, described below.5.2 Thermal Analysis and Thermal Stress Intensity Factor Through-wall temperature distributions are determined by solving the one-dimensional transient axisymmetric heat conduction equation, PCP" O _ .c2T 1 aT.P a Or 2 r Or subject to the following boundary conditions:

at the inside surface, where r = Ri,-k = h(Tw -Tb)Or at the outside surface, where r = Ro,-0 agr where, p density CP = specific heat k = thermal conductivity T = temperature r = radial coordinate t= time h = convection heat transfer coefficient Page 9 A AREVA A AREVA ANP-3102, Rev. 3 Tw= wall temperature Tb = bulk coolant temperature R= inside radius of vessel Ro = outside radius of vessel The above equation is solved numerically using a finite difference technique to determine the temperature at 17 points through the wall as a function of time for prescribed changes in the bulk fluid temperature, such as multi-rate ramp and step changes for heatup and cooldown transients.

An equivalent linear thermal bending stresses (based on AT through the wall) is derived from the through-wall temperature distribution at each solution time point. Through-wall thermal stress distributions are determined by trapezoidal integration of the following expression:

Thermal hoop stresses: o()=Ea I r 2 + Ri2f'Tr&dr+fr TrdrTr2~1- ý R' ,R[8, Eqn (255)]Expressing the thermal stress distributions by cr(x) = Co + C, (x/a) + C 2 (x/a)2 + C 3 (x/a)3 , where, x = is a dummy variable that represents the radial distance from the appropriate (i.e., inside or outside)surface, in.a = the flaw depth, in.The thermal stress intensity factors are defined by the following relationships:

For a 1/4 t inside surface flaw during cooldown, Kit = (1.0359 Co + 0.6322 C, + 0.4753 C 2 + 0.3855 C 3),r-a4 For a 1/4 t outside surface flaw during heatup, Kt= (1.043 Co + 0.630 CI + 0.481 C 2 + 0.401 C 3)O a 5.3 Unit Pressure Stress Intensity Factor for Reactor Vessel Beltline Region The membrane stress intensity factor in the reactor vessel shell due to a unit pressure load is Kjm = Mm x Ri/t where Ri = vessel inner radius, in.Page 10 A AREVA AREVA ANP-3102, Rev. 3 t= vessel wall thickness, in.For a longitudinal

'/4 -thickness x 3 -thickness semi-elliptical surface flaw: at the inside surface, Mm. 1.85 for 4t < 2 0.926 4t for 2 _< 4t _< 3.464 3.21 for 4t > 3.464 at the outside surface, Mm = 1.77 for 4t < 2= 0.893 4/t for 2 _< 4It _< 3.464= 3.09 for 4t > 3.464 5.4 Unit Pressure Stress Intensity Factor for Reactor Vessel Nozzles Considering a nozzle as a hole in a shell, WRC Bulletin 175 [9] presents the following method for estimating stress intensity factors for a nozzle comer flaw: Klm = o'r/-'i F(a/rn)where (= Ri/t R= nozzle belt shell inner radius, in.t = nozzle belt shell wall thickness, in.a = flaw depth, in.r,= apparent radius of nozzle, in.= ri + 0.29rc r= inner radius of nozzle, in.rc= nozzle comer radius, in.and F(a/r,) = 2.5 -6.108(a/rn)

+ 12(a/r,)2 -9.1664(a/r,)

3 Page 11 A AR EVA A AREVA ANP-3102, Rev. 3 6.0 PRESSURE CORRECTIONS The uncorrected P-T limits are calculated at the required locations or components in the RCS. However, the plant uses only two instruments locations for indicated pressure, the pressurizer low range tap and the hot leg wide range tap. Therefore, the uncorrected P-T limits may be corrected to one or both of these locations.

These location corrections were calculated using a TMI-1 Cycle 19 RCS hydraulics model with 0% steam generator tube plugging, and analyzing it for various temperatures and pump combinations.

The location corrections are based on 0/0 pumps operating up to 100 OF (the conservative start temperature for the first two pumps) and then based on 2/0 pumps up to -200 OF, and 2/1 pumps up to -350 OF. The low range corrections (taken from the pressurizer) are conservatively estimated to be a constant 10 psi less than the wide range corrections (taken from the hot leg tap). Thus the limiting location corrections are from hot leg (wide range)tap and are applied to the P-T limits. The hot leg (wide range) tap pressure corrections are presented below in Table 5.Table 5: Limiting Location Corrections Factors for Pressure Temperature 70-100 101-199 200-349 350-499 500-5321 Range, °F Component AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP AP, psi RCP Beltline 22 (WR) 0/0 90 (WR) 2/0 104 (WR) 2/1 111 2/2 99 2/2 Outlet Nozzle 17 (WR) 0/0 74 (WR) 2/0 74 (WR) 2/0 67 2/0 51 2/1 RVCH 13 (WR) 0/0 70 (WR) N/A N/A N/A The correction factor was used for 601F as well, since the rounded correction factors are found to be bounding The correction factor is used for temperatures above 532°F since the values are bounding for higher temperature 7.0

SUMMARY

OF RESULTS The following is a summary of results for the TMI-l P-T limits at 50.2 EFPY with MUR analysis corrected for location only. No correction due to instrument uncertainty is applied.Page 12 A AREVA AREVA ANP-3102, Rev. 3 7.1 P-T Curves for ISLH Heatup / Cooldown The Pressure-Temperature limits are developed for ISLH test operations.

For ISLH heatup, adjusted location specific (i.e. on a per component basis) P-T limits are presented in Table 6. The Tech. Spec. basis P-T limits for ISLH heatup are shown in Table 8. The location adjusted P-T limits for ISLH ramp cooldown are presented in Table 9. The location adjusted P-T limits calculated for ISLH step cooldown are shown in Table 10. The Technical specification (Tech. Spec.) basis P-T limits for ISLH cooldown generated as the limiting allowable pressure at every calculated temperature is shown in Table 11. The adjusted P-T limits for ISLH heatup and cooldown are plotted in Figure 1. A limiting composite curve for Tech. Spec. Basis P-T limits for ISLH is developed, the pressure-temperature data is shown in Table 12 and the curve is plotted in Figure 2. The criticality I limit temperature corresponding to a pressure of 2500 psig can be determined through interpolation of ISLH heatup data in Table 6. As shown in Table 7, the criticality limit temperature is 262.7 'F. The criticality limit curve is shown in Figure 3 along with the normal heatup Tech. Spec. basis P-T limit curve.Page 13 A AREVA A AREVA ANP-3102, Rev. 3 Table 6: TMI-1 Adjusted Location Specific P-T Limits for ISLH Heatup Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 832 833 835 838 841 841 850 857 863 802 810 819 828 839 851 864 879 895 913 932 954 978 1005 1035 1067 1103 1143 1187 1222 1275 1335 1400 1473 1553 1642 1740 1848 1967 2099 2244 2405 873 878 892 912 934 948 991 1029 1071 1059 1108 1162 1222 1289 1363 1444 1534 1634 1744 1866 2001 2149 2314 2495 2696 2918 3163 3433 3732 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050 907 912 927 947 971 985 1030 1069 1113 1102 1153 1210 1272 1341 1418 1503 1596 1700 1814 1941 2080 2235 2405 2594 2802 3033 3287 3568 3878 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 671 811 953 1095 1237 1435 1633 1831 2029 2170 Page 14 A AREVA A AREVA ANP-3102, Rev. 3 Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi (psi)265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 2582 2777 2993 3231 3494 3785 4106 4460 4788 4788 4788 4787 4787 4787 4786 4786 4786 4778 4778 4777 4777 4776 4776 4775 4775 4774 4774 4773 4773 4772 4772 4771 4771 4771 4770 4770 4770 4770 4769 4769 4768 4768 4766 4766 4766 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050 4050.4050 4050 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4057 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4208 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 4215 Page 15 A ARE VA A AREVA ANP-3102, Rev. 3 Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (4F) (psi) (psi) (psi) (psi)490 4765 4057 4215 495 4765 4057 4215 500 4776 4073 4231 505 4776 4073 4231 510 4775 4073 4231 515 4775 4073 4231 520 4774 4073 4231 525 4773 4073 4231 530 4773 4073 4231 535 4772 4073 4231 540 4772 4073 4231 545 4772 4073 4231 550 4771 4073 4231 555 4771 4073 4231 560 4770 4073 4231 565 4769 4073 4231 570 4769 4073 4231 Table 7: TMI-1 Criticality Limit Temperature Determination Criticality Limit Temp. at 500 psig Pressure Temp.(psig) (OF)2405 260 2582 265 Interpolating:

2500 262.7 Page 16 A AREVA A AREVA ANP-3102, Rev. 3 Table 8: TMI-1 Tech. Spec. Basis P-T Limits for ISLH Heatup Fluid Temp.(OF)60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 Governing Adjusted Pressure (psi)671 802 802 802 802 802 802 802 802 802 810 819 828 839 851 864 879 895 913 932 954 978 1005 1035 1067 1103 1143 1187 1222 1275 1335 1400 1473 1553 1642 1740 1848 1967 2099 2244 2405 Page 17 A AREVA A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)265 2582 270 2777 275 2993 280 3231 285 3494 290 3785 295 4050 300 4050 305 4050 310 4050 315 4050 320 4050 325 4050 330 4050 335 4050 340 4050 345 4050 350 4057 355 4057 360 4057 365 4057 370 4057 375 4057 380 4057 385 4057 390 4057 395 4057 400 4057 405 4057 410 4057 415 4057 420 4057 425 4057 430 4057 435 4057 440 4057 445 4057 450 4057 455 4057 460 4057 465 4057 470 4057 475 4057 480 4057 485 4057 Page 18 A AR EVA A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)490 4057 495 4057 500 4073 505 4073 510 4073 515 4073 520 4073 525 4073 530 4073 535 4073 540 4073 545 4073 550 4073 555 4073 560 4073 565 4073 570 4073 Page 19 A AREVA A AREVA ANP-3102, Rev. 3 Table 9: TMI-1 Adjusted Location Specific P-T Limits for ISLH Ramp Cooldown Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)70 75 80 85 90 95 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 733 742 753 765 780 786 724 727 743 759 776 795 816 840 866 894 926 961 999 1042 1089 1141 1199 1263 1334 1397 1469 1549 1638 1735 1844 1963 2066 2193 2402 2580 2777 2995 3235 3501 3795 937 992 1041 1094 1154 1219 1295 1361 1501 1609 1728 1860 2006 2167 2346 2542 2760 3001 3266 3560 3772 3761 3748 3733 3716 3696 3674 3646 3616 3581 3540 3492 3395 3462 3405 3342 3293 3295 3296 3298 3300 974 1031 1081 1137 1199 1267 1347 1416 1562 1674 1798 1935 2086 2254 2439 2643 2869 3119 3395 3700 3919 3908 3895 3879 3862 3841 3818 3789 3757 3721 3679 3629 3528 3598 3538 3473 3423 3424 3426 3428 3430 953 1095 1237 1435 1633 1831 2170 Page 20 A AR EVA A AREVA ANP-3102, Rev. 3 Allowable Pressures Limiting Outlet Inlet Closure Fluid Beitline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 4119 4308 4308 4307 4306 4306 4305 4305 4305 4304 4304 4304 4304 4304 4297 4298 4298 4298 4298 4299 4299 4300 4301 4302 4304 4304 4306 4308 4311 4314 4318 4322 4326 4331 4337 4343 4349 4356 4364 4373 4383 4393 4405 4418 4444 3302 3304 3307 3309 3312 3315 3318 3323 3326 3330 3334 3338 3342 3347 3358 3363 3369 3375 3378 3385 3392 3399 3407 3415 3424 3433 3442 3452 3463 3474 3485 3496 3509 3522 3536 3550 3565 3581 3597 3614 3632 3651 3670 3690 3727 3432 3434 3436 3439 3442 3445 3448 3454 3457 3461 3465 3469 3473 3478 3490 3495 3501 3507 3511 3518 3525 3533 3541 3549 3558 3568 3577 3588 3598 3610 3622 3633 3646 3660 3674 3689 3705 3721 3738 3756 3774 3793 3814 3834 3872 Page 21 A ARE VA A AREVA ANP-3102, Rev. 3 Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)505 4459 3749 3895 510 4476 3769 3916 515 4494 3793 3941 520 4513 3818 3966 525 4533 3843 3993 530 4556 3870 4020 535 4582 3897 4049 540 4609 3925 4077 545 4638 3953 4107 550 4670 3982 4137 555 4703 4010 4166 560 4738 4037 4194 565 4772 4060 4218 570 4793 4072 4231 Page 22 A AR EVA A AREVA ANP-3102, Rev. 3 Table 10: TMI-1 Adjusted Location Specific P-T Limits for ISLH Step Cooldown Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (F) (psi) (psi) (psi) (psi)70 80 85 100 105 115 130 145 160 175 190 205 220 235 240 255 270 285 300 315 330 345 360 375 390 405 420 435 450 465 480 495 510 525 540 555 766 781 788 813 757 780 828 893 980 1098 1258 1464 1735 2050 2241 2777 3501 4347 4345 4343 4343 4342 4336 4336 4337 4341 4345 4353 4366 4382 4405 4436 4487 4539 4605 4690 910 1038 1094 1292 1324 1501 1860 2346 3001 3811 3772 3712 3619 3435 3501 3314 3318 3323 3330 3338 3351 3362 3383 3398 3418 3442 3470 3502 3538 3580 3628 3682 3759 3827 3905 3989 945 1078 1137 1342 1377 1562 1935 2439 3119 3960 3920 3858 3761 3570 3638 3444 3448 3454 3461 3470 3482 3495 3516 3531 3552 3577 3606 3639 3676 3720 3770 3826 3906 3976 4057 4144 953 1237 1435 2029 2170 Page 23 A AREVA A AREVA ANP-3102, Rev. 3 Table 11: TMI-1 Tech Spec. Basis P-T Limits for ISLH Cooldown Governing Fluid Adjusted Temp. Pressure (OF) (psi)70 724 75 724 80 724 85 724 90 724 95 724 105 724 110 727 115 743 120 759 125 776 130 795 135 816 140 840 145 866 150 894 155 926 160 961 165 999 170 1042 175 1089 180 1141 185 1199 190 1258 195 1334 200 1397 205 1464 210 1549 215 1638 220 1735 225 1844 230 1963 235 2050 240 2193 245 2402 250 2580 255 2777 260 2995 265 3235 270 3298 275 3300 280 3302 285 3304 Page 24 A AREVA AR ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)290 3307 295 3309 300 3312 305 3315 310 3318 315 3323 320 3326 325 3330 330 3334 335 3338 340 3342 345 3347 350 3358 355 3363 360 3369 365 3375 370 3378 375 3385 380 3392 385 3399 390 3407 395 3415 400 3424 405 3433 410 3442 415 3452 420 3463 425 3474 430 3485 435 3496 440 3509 445 3522 450 3536 455 3550 460 3565 465 3580 470 3597 475 3614 480 3628 485 3651 490 3670 495 3682 500 3727 505 3749 510 3759 Page 25 A A R EVA A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)515 3793 520 3818 525 3827 530 3870 535 3897 540 3905 545 3953 550 3982 555 3989 560 4037 565 4060 570 4072 Page 26 A AR EVA A AREVA ANP-3102, Rev. 3 Table 12: TMI-1 Tech Spec. Basis P-T Limits for ISLH Composite Curve Fluid Temp.('F)60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 Goveming Adjusted Pressure (psi)671 724 724 724 724 724 724 724 724 724 727 743 759 776 795 816 840 866 894 926 954 978 1005 1035 1067 1103 1143 1187 1222 1275 1335 1400 1473 1553 1642 1740 1848 1967 2099 2244 2405 2582 Page 27 A AREVA A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)270 2777 275 2993 280 3231 285 3304 290 3307 295 3309 300 3312 305 3315 310 3318 315 3323 320 3326 325 3330 330 3334 335 3338 340 3342 345 3347 350 3358 355 3363 360 3369 365 3375 370 3378 375 3385 380 3392 385 3399 390 3407 395 3415 400 3424 405 3433 410 3442 415 3452 420 3463 425 3474 430 3485 435 3496 440 3509 445 3522 450 3536 455 3550 460 3565 465 3580 470 3597 475 3614 480 3628 485 3651 490 3670 495 3682 Page 28 A A R EVA A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)500 3727 505 3749 510 3759 515 3793 520 3818 525 3827 530 3870 535 3897 540 3905 545 3953 550 3982 555 3989 560 4037 565 4060 570 4072 Page 29 A AR EVA A AREVA ANP-3102, Rev. 3 Figure 1: TMI-1 Adjusted P-T Limits for ISLH Heatup and Cooldown 2400 2200 2000.2- 1800 U'G1600 (A1400 U) 1200 I--1000 S800-0 6 100 4 000 4OO 200 0 0 50 100 150 200 250 300 350 Indicated RCS Inlet Temperature, OF 400 450 500 Page 30 A AREVA A AREVA ANP-3102, Rev. 3 Figure 2: TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve)2400 2200 2000.-1800 G 0.01600 01400 ID.a.U) 1200 1000 j 800 600 400 200 0 0 50 100 150 200 250 300 350 Indicated RCS InletTemperature, IF 400 450 500 Page 31 A AREVA A AREVA ANP-3102, Rev. 3 7.2 P-T Curves for Normal Heatup / Cooldown The Pressure-Temperature limits are developed for both normal heatup and cooldown operations.

For heatup, location specific adjusted P-T limits are presented in Table 13. The Tech. Spec. basis P-T limits for normal heatup are shown in Table 14. The location specific adjusted P-T limits for ramp cooldown are presented in Table 15. The location adjusted P-T limits calculated for normal step cooldown are shown Table 16. The Technical specification (Tech. Spec.) basis P-T limits for cooldown generated as the limiting pressure at every calculated temperature is shown in Table 17. The Tech. Spec. basis P-T limits for heatup are plotted in Figure 3 and the Tech. Spec. basis cooldown P-T limits are plotted in Figure 4.Page 32 A AR EVA A AREVA ANP-3102, Rev. 3 Table 13: TMI-1 Adjusted Location Specific P-T Limits for Normal Heatup Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)60 65 70 75 80 85 90 90 90 95 100 101 105 110 115 120 123 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 618 619 621 623 626 629 632 632 632 637 642 575 579 585 592 599 604 607 616 626 637 649 662 677 693 711 731 753 778 805 835 868 890 931 975 1024 1079 1139 1205 1279 1360 650 654 665 679 696 716 738 738 739 768 799 749 776 813 853 898 928 948 1004 1065 1132 1207 1290 1381 1482 1593 1717 1853 2003 2170 2353 2556 2780 3019 3019 3019 3019 3019 3019 3019 3019 676 680 691 706 724 744 767 767 768 798 830 780 808 847 889 936 967 988 1045 1108 1179 1256 1342 1437 1542 1658 1786 1927 2083 2256 2447 2657 2890 3138 3138 3138 3138 3138 3138 3138 3138 612 612 612 612 612 761 910 910 910 1058 1207 1180 1360 1585 1810 2035 2170 Page 33 A AREVA A AREVA ANP-3102, Rev. 3 Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)245 250 255 260 265 270 275 280 285 290.295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 1449 1548 1657 1777 1910 2057 2219 2398 2595 2813 3053 3319 3565 3565 3565 3564 3564 3564 3564 3563 3563 3556 3556 3555 3555 3555 3554 3554 3553 3553 3553 3552 3552 3551 3551 3551 3551 3550 3550 3550 3550 3549 3549 3549 3548 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3026 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3138 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 3145 Page 34 A AREVA A AREVA ANP-3102, Rev. 3 Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)470 3548 3026 3145 475 3547 3026 3145 480 3547 3026 3145 485 3546 3026 3145 490 3546 3026 3145 495 3546 3026 3145 500 3558 3042 3161 505 3557 3042 3161 510 3557 3042 3161 515 3556 3042 3161 520 3556 3042 3161 525 3555 3042 3161 530 3555 3042 3161 535 3555 3042 3161 540 3554 3042 3161 545 3554 3042 3161 550 3554 3042 3161 555 3553 3042 3161 560 3553 3042 3161 565 3552 3042 3161 570 3552 3042 3161 Page 35 A AREVA AREVA ANP-3102, Rev. 3 Table 14: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup Governing Fluid Adjusted Temp. Pressure (OF) (psi)60 575 65 575 70 575 75 575 80 575 85 575 90 575 90 575 90 575 95 575 100 575 101 575 105 579 110 585 115 592 120 599 123 604 125 607 130 616 135 626 140 637 145 649 150 662 155 677 160 693 165 711 170 731 175 753 180 778 185 805 190 835 195 868 200 890 205 931 210 975 215 1024 220 1079 225 1139 230 1205 235 1279 240 1360 245 1449 250 1548 Page 36 A AR EVA A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)255 1657 260 1777 265 1910 270 2057 275 2219 280 2398 285 2595 290 2813 295 3019 300 3019 305 3019 310 3019 315 3019 320 3019 325 3019 330 3019 335 3019 340 3019 345 3019 350 3026 355 3026 360 3026 365 3026 370 3026 375 3026 380 3026 385 3026 390 3026 395 3026 400 3026 405 3026 410 3026 415 3026 420 3026 425 3026 430 3026 435 3026 440 3026 445 3026 450 3026 455 3026 460 3026 465 3026 470 3026 475 3026 Page 37 A AR EVA A AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)480 3026 485 3026 490 3026 495 3026 500 3042 505 3042 510 3042 515 3042 520 3042 525 3042 530 3042 535 3042 540 3042 545 3042 550 3042 555 3042 560 3042 Page 38 A A R EVA A AREVA ANP-3102, Rev. 3 Table 15: TMI-1 Adjusted Location Specific P-T Limits for Normal Ramp Cooldown Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)70 75 80 85 90 95 101 110 115 120 123 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 545 551 559 568 579 584 519 523 535 547 555 560 574 590 607 627 648 672 698 727 759 794 834 877 925 978 1022 1076 1136 1202 1276 1357 1446 1524 1619 1775 1909 2057 2220 2400 2600 2820 3063 699 740 776 817 861 910 913 1002 1107 1188 1242 1278 1377 1486 1607 1741 1888 2052 2232 2431 2652 2810 2802 2792 2781 2768 2754 2737 2716 2693 2667 2636 2600 2527 2578 2535 2488 2451 2453 2454 2455 2456 2458 726 769 807 849 895 946 951 1044 1153 1237 1293 1330 1433 1546 1672 1810 1964 2133 2321 2528 2756 2921 2912 2902 2891 2878 2862 2845 2823 2799 2772 2741 2703 2627 2680 2635 2586 2548 2550 2551 2552 2554 2555 612 612 612 761 910 1058 1180 1585 1810 2035 2170 Page 39 A AREVA A AREVA ANP-3102, Rev. 3 Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 3205 3205 3204 3204 3203 3203 3203 3202 3202 3202 3202 3202 3202 3195 3196 3196 3196 3196 3196 3197 3197 3198 3199 3200 3200 3202 3203 3205 3208 3210 3214 3217 3221 3225 3229 3234 3239 3245 3252 3259 3267 3276 3286 3308 3320 2460 2461 2463 2465 2468 2470 2474 2476 2479 2482 2485 2488 2491 2502 2506 2510 2514 2517 2522 2527 2533 2539 2545 2551 2558 2565 2573 2580 2589 2597 2606 2615 2625 2635 2646 2657 2669 2681 2694 2707 2721 2736 2751 2783 2799 2557 2559 2561 2563 2565 2568 2572 2574 2577 2580 2583 2586 2590 2601 2605 2609 2613 2616 2621 2627 2633 2639 2645 2652 2659 2666 2674 2682 2691 2699 2708 2718 2728 2739 2750 2762 2774 2787 2800 2814 2828 2843 2859 2891 2908 Page 40 A AREVA A AREVA ANP-3102, Rev. 3 Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (OF) (psi) (psi) (psi) (psi)510 3332 2814 2924 515 3346 2832 2943 520 3360 2850 2962 525 3375 2870 2982 530 3392 2889 3002 535 3411 2910 3024 540 3432 2931 3045 545 3454 2952 3067 550 3478 2973 3090 555 3503 2995 3112 560 3529 3015 3133 565 3554 3032 3151 Page 41 A AREVA A AREVA ANP-3102, Rev. 3 Table 16: TMI-1 Adjusted Location Specific P-T Limits for Normal Step Cooldown Allowable Pressures Limiting Outlet Inlet Closure Fluid Beltline Nozzle Nozzle Head Temp. Weld (F) (psi) (psi) (psi) (psi)70 80 85 100 101 115 123 130 145 160 175 190 205 220 235 240 255 270 285 300 315 330 345 360 375 390 405 420 435 450 465 480 495 510 525 540 555 569 580 586 604 538 562 581 598 647 713 801 921 1072 1276 1511 1655 2057 2600 3234 3232 3231 3231 3231 3224 3224 3225 3228 3231 3237 3247 3259 3276 3299 3341 3380 3429 3493 678 774 817 965 921 1107 1251 1377 1741 2232 2839 2811 2766 2696 2558 2607 2467 2470 2474 2479 2485 2495 2503 2521 2531 2547 2565 2586 2609 2637 2668 2704 2745 2807 2858 2916 2979 705 804 849 1002 959 1153 1302 1433 1810 2321 2951 2921 2875 2802 2659 2710 2564 2568 2572 2577 2584 2593 2602 2620 2631 2647 2666 2687 2712 2740 2773 2810 2853 2917 2969 3030 3096 612 612 761 1207 1180 1810 2170 Page 42 A AR E VA A AREVA ANP-3102, Rev. 3 Table 17: Tech Spec. Basis P-T Limits for Normal Limiting Cooldown Fluid Temp.(OF)70 75 80 85 90 95 101 110 115 120 123 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 Governing Adjusted Pressure (psi)519 519 519 519 519 519 519 523 535 547 555 560 574 590 607 627 648 672 698 727 759 794 834 877 921 978 1022 1072 1136 1202 1276 1357 1446 1511 1619 1775 1909 2057 2220 2400 2455 Page 43 A AREVA AREVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure ('F) (psi)275 2456 280 2458 285 2460 290 2461 295 2463 300 2465 305 2468 310 2470 315 2474 320 2476 325 2479 330 2482 335 2485 340 2488 345 2491 350 2502 355 2506 360 2510 365 2514 370 2517 375 2522 380 2527 385 2533 390 2539 395 2545 400 2551 405 2558 410 2565 415 2573 420 2580 425 2589 430 2597 435 2606 440 2615 445 2625 450 2635 455 2646 460 2657 465 2668 470 2681 475 2694 480 2704 485 2721 490 2736 495 2745 Page 44 A"AR EVA A ARIEVA ANP-3102, Rev. 3 Governing Fluid Adjusted Temp. Pressure (OF) (psi)500 2783 505 2799 510 2807 515 2832 520 2850 525 2858 530 2889 535 2910 540 2916 545 2952 550 2973 555 2979 560 3015 565 3032 Page 45 A AR EVA A AREVA ANP-3102, Rev. 3 2400 2200 2000 1800 0.)1600 (A 1400 I.r/) 1200 U A14000 S800 o)"-600 400 200 0 Figure 3: TMI-1 Tech. Spec. Basis P-T Limits for Normal Heatup and Criticality Limit-P-T Limits for Normal Heatup-Criticality Limit P-T Limit Curve 0 50 100 150 200 250 300 350 Indicated RCS InletTemperature, OF 400 450 500 Page 46 A AREVA A AREVA ANP-3102, Rev. 3 Figure 4: TMI-1 Tech. Spec. Basis P-T Limits for Normal Cooldown 2400 2200 2000.01800 0.a1600 U) 1400 S1200.2 800-600 400 200 0 0 50 100 150 200 250 300 350 Indicated RCS Inlet Temperature, OF 400 450 500 Page 47 A AREVA A AREVA ANP-3102, Rev. 3 8.0

SUMMARY

The Tech. Spec. basis P-T limits for normal operating heatup and cooldown and ISLH operation were reported in the previous section for TMI-1 at 50.2 EFPY with MUR. This section provides summary P-T curves for heatup, cooldown, and ISLH with some key points (P-T limits) indicated on the plot.Figure 5 shows a summary of the TMI-1 Tech. Spec. basis P-T Limits for normal heatup and criticality limit with some key points noted on the plot. Figure 6 shows a summary of the TMI-1 Tech. Spec. basis P-T Limits for normal cooldown with some key points noted on the plot. Figure 7 shows a summary of TMI-1 Tech. Spec. Basis P-T Limits for ISLH (Composite Curve).Page 48 A AREVA A AREVA ANP-3102, Rev. 3 Figure 5: TMI-1 Summary Tech Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Heatup and Criticality Limit 2400 2200 2000 1800 0.01600 W 1400 2!0.(/1200 U-o 1000 u 800 600 400 200 0 0 50 100 150 200 250 300 350 Indicated RCS InletTemperature,OF 400 450 500 Page 49 A AREVA A AREVA ANP-3102, Rev. 3 Figure 6: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for Normal Cooldown 2400 2200 2000 1800 1600 U3 1400 CL i-a-W 1200 1000 u 800 600 400 200 0 T265, 2400... -In 250, 1909 240, 1619- -____220, 1276/1 90, 921________ ________16069 70, 519 13 3 ý 130 '574 101. 519 ____ ____ ____0 50 100 150 200 250 300 350 Indicated RCS Inlet Temperature, OF 400 450 500 Page 50 A AREVA A AREVA ANP-3102, Rev. 3 Figure 7: TMI-1 Summary Tech. Spec. Basis P-T Limits at 50.2 EFPY with MUR for ISLH (Composite Curve)2400 2200 2000 1800 eL* 1600 Wfl 1400 (L h.1200 1000 a)o 800 600 400 200 0 0 50 100 150 200 250 300 350 Indicated RCS Inlet Temperature, OF 400 450 500 Page 51 A AREVA A AREVA ANP-3102, Rev. 3 9.0 CERTIFICA71ON Pressure/temperature limits for the TMI-1 reactor vessel have been calculated to satisfy the requirements of 10 CFR Part 50, Appendix 0 using analytical methods and acceptance criteria of the ASME Boiler and Pressure Vessel Code,Section XI, Appendix G,1995 Edition.Samer -L. Malmioud, Principal Engineer Component Analysis and Fracture Mechanics Date 'This report has been reviewed for technical content and accuracy.Ashok D. Nana, Supervisor Component Analysis and Fracture Mechanics Date Verification of independent review.lkýtw c6rPl-'Wirr ,I--, Date Tim M. W'iger, Manager I Component Analysis and Fracture Mechanics This report is approved for release David Skulna, Project Manager Date Page 52 A AREVA A AREVA ANP-3102, Rev. 3

10.0 REFERENCES

1. Code of Federal Regulations, Title 10, Part 50 -Domestic Licensing of Production and Utilization Facilities, Appendix G -Fracture Toughness Requirements, Federal Register Vol. 60. No. 243, December 19, 1995.2. American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code,Section XI, "Rules for Inservice Inspection of Nuclear Power Plant Components," Appendix G, Fracture Toughness Criteria for Protection Against Failure, 1995 Edition with Addenda through 1996.3. ASTM Standard E 208-81, "Standard Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels," American Society for Testing and Materials, Philadelphia, Pennsylvania.
4. AREVA NP Document BAW-10046A, Rev. 2, "Methods of Compliance with Fracture Toughness and Operational Requirements of 1OCFR50, Appendix G," by H. W. Behnke et al., June 1986.5. AREVA NP Document BAW-2308, Rev. IA and Rev. 2A, "Initial RTNDT of LINDE 80 Weld Materials," by K. K. Yoon., August 2005 and March 2008.6. ASME Boiler and Pressure Vessel Code,Section III, Rules for Construction of Nuclear Power Plant Components, Division 1 -Appendices, 1995 Edition with Addenda through the 1996 Edition.7. NRC Regulatory Issue Summary 2004-04: Use of Code Cases N-588, N-640, and N-641 in developing Pressure-Temperature Operating Limits, Dated April 5, 2004.8. Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity, Third Edition, McGraw-Hill Book Company, 1970.9. PVRC Ad Hoc Group on Toughness Requirements, "PVRC Recommendations on Toughness Requirements for Ferritic Materials," Bulletin No. 175, Welding Research Council, August 1972.10. U. S. Nuclear Regulatory Commission, "Radiation Embrittlement of Reactor Vessel Materials," Regulatory Guide 1.99, Revision 2, May 1988.Page 53 A AR EVA