NRC-89-0148, Submits Addl Clarification Re Compliance W/Rev 2 to Reg Guide 1.97, Instrumentation for Water-Cooled Nuclear Power Plants to Assess Plant & Environ Conditions During & Following Accident

From kanterella
(Redirected from NRC-89-0148)
Jump to navigation Jump to search
Submits Addl Clarification Re Compliance W/Rev 2 to Reg Guide 1.97, Instrumentation for Water-Cooled Nuclear Power Plants to Assess Plant & Environ Conditions During & Following Accident
ML20245D802
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 06/19/1989
From: Orser W
DETROIT EDISON CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
CON-NRC-89-0148, CON-NRC-89-148, RTR-REGGD-01.097, RTR-REGGD-1.097 NUDOCS 8906270238
Download: ML20245D802 (53)


Text

_ ._

.< I

-0't

~

C

?$e?$Y unc= opmmu,% ,

Detroi.t

r. o um P

A

.C I S O n m a,.r~ m. *"- k 21 June 19,1989  !

IGC-89-014 8 U. S. Nuclear Regulatory Commission Attention: Document Control Desk hashington, D. C. 20555

References:

(1) Fermi 2 NIC Docket No. 50-341 NBC License No. !@F-43 (2) Regulatory Guide 1.97, " Instrumentation for Light Water Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident", Rev 2 dated December 1980 (3) Detroit Edison Letter RC-IG-85-0050, " Regulatory Guide 1.97 Compliance Report", dated September 30, 1985 (4) IEC Letter, " Fermi 2 Emergency Response Capability -

Conformance to Regulatury Guide 1.97, Revision 2 (TAC No. 59620)", dated September 1,1987 (5) IGC Generic Letter No. 82-33, Supplement 1 to NUIEG-0737, Requirements for Emergency Pesponse Capability, dated December 17, 1982 (6) NBC Standard Review Plan 6.2.4 Containment Isolation System (IUREG-0800) Rev 2, July 1981 (7) Detroit Edison Letter NFC-87-0198, " Additional Clarification of Fermi 2 Dnergency Response Capability - Conformance to R. G.1.97 Rev 2 (TAC-59620)", dated October 15, 1987 (8) ANSI /ANS-4.5-1980, American National Standard Criteria for Accident Monitoring FunctionG in Light Water Cooled Reactors, December 31, 1980 0906270239 890619 DR ADOCK 0500 1

%3

5 I v s

Subject:

Additional Clarification to Fermi 2 Compliance to Reaulatory Guide 1.97 Revision 2 This letter provides additional clarifications to a previously submitted report to the IGC on compliance of Fermi 2 design to R.G.

1.97, Rev 2 (Reference 2). A complete design review of primary containment isolation valve position indication against R.G.1.97, Rev 2 Category 1 requirements has been performed ard adequate justification for deviations is provided herein. A complete design 5 revfew of other variables is in progress.

Based on the clarification and justifications provided, the Fermi 2 design of primary containment isolation valve position indication meets the intent of Regulatory Guide 1.97, Rev 2 by providing indication to the operator that Primary Containment Isolation has been accomplished.

If there are any questions, Detroit Edison would be happy to meet with the IGC further on this topic. Contact Lynne Goodman at (313) 586-4211 to arrange a meeting or with any questions.

Sincerely,

/b Encl.

cc: A. B. Davis R. C. Knop W. G. Rogers J. F. Stang NUMAIC

.f

~

Enclosure to NRC-89-0148 Page 1 PRIMARY CONTAINMENT ISOLATION VALVE POSITION INDICATION REVIEW AGAINST R.G. 1.97

Background

The guidance provided by the NRC Regulatory Guide 1.97, Rev 2 stipulates that Category 1 Primary Containment Isolation Valve position indication be provided to inform control room personnel that primary containment isolation has been accomplished.

NUREG-0737, Supplement 1 (Generic Letter 82-33) provides additional clarification regarding R.G. 1.97 Rev 2, and specifies acceptable means for meeting the basic requirements provided therein. The generic letter requires that deviations from the R. G. 1.97, Rev 2 guidance be justified.

4 Category 1 basic design requirements as stated in R. G. 1 97, Rev 2 are summarized as follows (a through g are from R.G. 1.97, Rev 2, paragraph C.1 3; h from C.1.4; i from C.1.5 and j from C.1.6):

a. The instrumentation from the sensor to the display are to be environmentally qualified (EQ) in accordance with R.G. 1.89 and <

the methodology of NUREG-0588. The seismic portion of i qualification should be in accordance with R.G. 1.100.

b. No single failure within either the accident monitoring instrumentation, its auxiliary supporting features, or its power sources concurrent with the failures that are a condition or result of a specific accident should prevent the operators from 1

' ' l;9 T.

+

Enclosure to

'% NRc-89-0148 Page 2 1'

being presented the information necessary for them to deter;ine the safety status of the plant and to bring.the plant to and maintain'it in a safe condition following-that accident.

4 Redundant or diverse channels should be electrically independent and physically separated from each other and from equipment not classified important to safety in accordance with R. G. 1 75 Within each redundant division of a safety system, redundant monitoring channels are not needed.

c. The instrumentation should be energized from station Standby Power sources as provided in Regulatory Guide 1 32, " criteria for Safety-Related Electric Power Systems for Nuclear Power Plants",

and should be backed up by batteries where momentar' interruption is not tolerable.

d. The instrumentation channel should be available prior to an accident except as provided in paragraph 4.11, " Exemption", as defined in .IEEE Standard 279 or as specified in Technical Specifications.
e. The recommendations of R.G. 1.28, 1 30, 1 38, 1.58,.1.64, 1.74, 1.88, 1.123, 1.144 and 1.146 pertaining to Quality Assurance (QA) should be followed.
f. Continuous indication (it may be by recording) display should be provided. Where two or more instruments are needed to cover a particular range, overlapping of instrument span should be provided.

l l

4 l - _ _ _ . - . . - - . - - - _ _ - - -

.g 1 Enclosure to NRC-89-0148 Page 3

g. Recording of instrumentation readout information should be provided.
h. Instruments for Category 1 should be specifically identified on the control panels so that the operator can easily discern that they are intended for use under accident conditions.
i. The instrumentation should have a program of periodic checking, testing, servicing, adjusting, replacing, calibration,etc. To the extent practicable, monitoring instrumentation inputs should be from sensors that directly measure the desired variables. An indirect measurement should be made only when it can be shown by analysis to provide unambiguous information.

J. Table 1 of R.G. 1.97, Rev 2 requires that the instrument range for primary containment isolation valve position indication be

" Closed-Not Closed".

In Fermi 2 UFSAR, Appendix A, "Conformance with Regulatory Guides" Section A.1 97, Detroit Edison states that the Fermi 2 post accident monitoring system design is in conformance with R.G. 1.97 or has provided adequate justification to support an alternate means of meeting the intent of R.G. 1.97, Rev 2.

Based on concerns identified by the NRC Senior Resident Inspector, it was decided that a detailed review of Fermi 2's Containment Isolation Valve position indication design, for compliance with R. G. 1.97, Rev 2 should be performed. This topic was discussed at the May 27, 1989 Monthly NRC - Detroit Edison meeting in Glen Ellyn. This submittal provides the information requested at that meeting.

~

g, O

f.t (.

.. Enclosure to.

NRC-89-0148

.Page 4-g.

I(

Objectives

1. A' clarification to the previously submitted Regulatory Guide 1 97, Rev 2 compliance-report (Reference 3, as previously clarified by

- Reference 7) shall be furnished.

2. A detailed desia'.n review of Fermi 2 Primary Containment Isolation Valve position. indication design shall be performed and any-deviation from.the Regulatory Guide 1 97, Rev 2 Cat. 1' requirements shall.be identified.
3. A technical justification of the deviations identified by the r design review shall be provided.

Clarification

,The original report (Reference 3) submitted ~to the NRC on Fermi 2 compliance with Regulatory Guide 1.97, Rev 2 was prepared on the

. premise.that only the power-to-operate valves which are automatically

-isolated (Groups 1 through 18 of Technical Specification Table

'3 6.3-1)' require Category 1 position indication in the main control

' room. This is consistent with the NRC Standard Review Plan (Reference

6) section II.6.j guidance. It is Detroit Edison's position that 1 power-to-operate valves are those which require a source of power external to the valve to change position. For example, a motor operated valve (MOV) or a dual coil, latching solenoid valve, upon loss of electrical power, will not change its position and will remain as-is. A fail-closed (open) air-operated valve (A0V) or

= = _ _

t Enclosure to NRC-89-0148 )

Page 5 solenoid-operated valve (SOV), on the'other hand, does not require external power to close (open). The construction of the valve is such that on loss of power, spring force will close (open) the valve.

Thus, Detroit Edison does not consider fail-closed (open) A0Vs or SOVs as power-to-operate valves.

All other valves in the referenced Technical Specification table were excluded from Category 1 requirements. The exclusion of manual valves (MV), A0Vs and SOVs, Was based on the fact that these valves are either locked closed or operate independently of electrical power and as such are intrinsically fail safe on loss of power. The exclusion

~

of power-to-operate (MOVs) and dual coil latching solenoid valves not in Technical Specification Table 3 6.3-1 Group 1 - 18 is based on the function of these valves. All of these valves are fully qualified, including control room position indication, and are used in lines needed for the safe shutdown of the plant (e.g., cooling systems).

These valves, therefore, may not perform a containment isolation function. Hence, the valve position indication for these valves is not used for verification that Primary Containment Isolation has been accomplished.

However, as stated above, a detailed design review of all isolation valves in Technical Specification Table 3.6.3-1 aas performed and adequate clarification and justification are provided in Table 1.

Design Review The Fermi 2 Primary Containment Isolation System design utilizes 331 isolation valves. Per Fermi 2's Technical Specification, Table 3 6.3-1, there are 88 Automatic Isolation Valves in Groups 1-18, 104

t

' {

~

Enclosure to l NRC-89-0148 l Page 6 I

-l 1

i Remote-Manual Isolation Valves, 3 Manual Isolation Valves and 136 other Isolation Valves. This count does not include the 185 Hydraulic Control Units, each of which has Scram Valves (2/ unit), Ball Check Valves (2/ unit) and Directional Control Valves (4/ unit).

Check valve (CV) position indications are explicitly excluded by R.G.

1 97, Rev 2.

Relief valves (RV) operate on a similar principle as check valves in that process pressure determines the RV position. Operating personnel cannot change the position of the CVs or RVs from the main control room. CV/RV position indication in the main control room would not provide any information necessary to cause the operator to take uny manual action to accomplish containment integrity. The RVs are added in the containment penetration lines per the requirement of the ASME Boiler and Pressure Vessel (B&PV) code, subsection NC-7000. The code does not allow any operator action or any devices in the pressure relici line that could impair the overpressure protection offered by the relief valve itself. The relief valves are installed in these lines in such a way that it would route the diverted fluid to the torus. The construction and orientation of a relief valve used in a containment isolation application is such that increased containment pressure acts in conjunction with spring pressure to increase the seating force of the valve, and tends to reduce leakage (reference UFSAR Table 6.2-2, Note 27). Thus, relief valves are excluded from meeting R.G. 1 97, Rev 2. Note that the Main Steam Safety Relief Valves (SRV) are not Primary Containment Isolation Valves and have their own special Category in R.G. 1 97, Rev 2; thus they are not part of this discussion.

g 4

.. Enclosure to NRC-89-0148 Page 7 MV position indication used in a containment isolation application also should be excluded from meeting R.G. 1.97, Rev 2, because they are locked closed during reactor operation and are under administrative control per plant procedure NPP-OP1-09 In addition, one of the basis documents for R.G. 1.97, ANSI /ANS-4.5, 1980 (Reference 8), Section 6.2.5 does not require position indication for manual containment isolation valves.

A summary of Fermi 2 automatic and remote manual isolation valves position indication design review is tabulated in Table 1. Table 1 lists the isolation valve groups as they appear in the Fermi 2 Technical Specification Table 3 6.3-1, and identifies which of R.G.

1.97, Rev 2 Category 1 criteria are met by each valve group.

Compliance of Fermi 2's isolation valve position indication design to R.G. 1.97 Category 1 criteria is identified by "Y". A superscript number is attached to the "Y" if an additional clarification note is needed to explain compliance to R.G. 1 97 Similarly, the letter "N" is shown for criteria if Fermi 2's isolation valve position indication design deviates from full compliance with R.G. 1.97 Category 1 criteria. A justification is provided for each deviation. In some instances, a typical sketch is provided.

Table 2 provides a list of specific valves in each of the groups listed in Table 1 for information.

Results of Design Review Primary containment isolation valves listed in Technical Specification Table 3 6.3-1 were reviewed. Results are as follows:

mm-_ - _ _

gx  ;,

-=

y  ;

y l si p:.

~

-Enclosure to

'.J NRC-89-0148

'Page 8-'

91 valves are~in~ full compliance with Regulatory Guide 1 97 Rev 2.-

~

.a.

b. ~ 135 valves;were excluded because they are check valves,. relief valves or-locked closed manual valves.
c. '105 valves have some deviation with respect to full compliance with R.G. 1 97, Rev 2 Category 1 criteria. Of these 105 valves position-indication, 48 are due to deviations from safety-grade design (EQ, ie '

- Seismic, and QA),.and, in some cases, power source criteria (See Table 1 justifications).

- 47 are due:to deviations from the single failure criteria (See Table 1 justification "j").

1 10 are due to deviations from the power source criteria (See Table 1 justification "a").

d. There are-185 Control Rod Drive Hydraulic Control Units. Each

' unit has 4 directional control valves, 2 scram valves and 2 ball check valves. Ball check valves are excluded.

Justification for.the deviation with respect to full complinace I

with R.G. 1 97, Rev 2 Category 1 criteria is provided in note k.

e. All exclusions and deviations are technically justified.

l]

e i

C ; ..

G Y Y Y N 1 A

R -lIlllIl! lI G

C R IG DN )

M OI 7 Y Y Y O IT ( Y Y Y Y Y Y Y RS R EE F PT Illll lIll liIll' N O

I E ) T U 6 Y Y Y Y Y Y Y Y Y Y A I

Q (

V I

ND E UI l D

Il ll F

Y O AD )

Y Y Y Y Y N LO 5 Y Y Y Y Y PH ( O ST I IE T DM A II11 C I

L F

PE ) Y Y Y Y Y Y Y Y Y Y I SP 4 T N IY ( S OS U I

T T lDTl! li

)

I I!ll l

J A N =

C E .

8 Y Y Y I M Y Y ( Y Y Y Y E A Y D R N I lQ I l

Ill IIll I

U .

Y Q . . L Y Y Y Y Y Y Y Y Y ,

f NE O TNI)

I R SAA3 ,

T 1 NHV( ek I ICA I1 ll1l!Ill l l Ill l!

S ,

O T E -

dj4 P A RC Y Y M Y Y Y Y Y Y Y ,

EC AER c1 V I WU L 2 ROO ,

A EPS IlIllIIllI Il bh T i 1V V E I

E R a EN R LO CER LU

)

2 Y Y Y Y Y Y Y Y Y N BI 7 2GL (

AT NI TAL 9 VIA O 1 ESF 1lI S R l  ;!!

)

I 7 . . 8 G. SL ) (

T R N 9. IA 1 Y Y Y Y Y Y Y Y Y Y E H 1EU (

M SQ lllIlllIl l ,il NT I

I G . )

A W .O N

8 T

N E RR (

Y Y Y Y Y Y Y Y Y Y O C N

IL VA CA NU I

Y L EQ II lllIjlli1ilii R P e s e s s 's s s s s A M L s i s i i i i i i i M O VIS o - o - - - - - - -

I LAO l s l s s s s s s s RC C A C A A A A A P lIlVFP '

e e e e e e

All A e e l

e IIIi M n s s s s s s s s s VRS e o o o ol o o o o o p l l l l l LOO l l l C C C C C C VNP  :

O C llIllIl C ilIlC Ilil' RE V V V V V V V V V V VEP O O O O O O O O O O LPY A M A M M M M M M M VOT I I!l1ll1lllll\ i s

l st l n e A a es / a o l s v I v ve y y v i ee l R m o l T a a o t sv a E e m a/ r r m c sl m V T t s e e V. ng p p e ea e I s n n R S S R C" VV t t R s y n i r i oi s s s C e S o a e L t sl l l e t m g en y e v i r t a I o o ov ae n r o S T OI D l m t D a e e o o ol et i ui TT H P Pa Hs y l st y w N a a a s W l p

yC a s s V os sa a o S A V e l ee lS oe el r l E t o) nv r m l rt enen P n S ss il o as a pnvovon a Cv r o c F I LR U o IV La t Se u Selili o ua l Ps S O i n I V c v d masasi dn na I p P TR t i mS m am rl i l nVsVst ii wV r e m O M

NG a a aM an ee ea s li e ea sl o oy r u E l M e( eo Rt tV em eanrnrl wt opopo Ro eo dn t a cr C o P C MS o t ti s a Re t o

- y Wn y n i pi p s C tai ap y N NE s - Ss St t a G IV I e a S o - sy r ot ut uI -

n ht R

eS -

r I AL 1 nv nl 2 ri DCaSaS Sa 5 p SI o TA c i l i o e ot 3S l l t 4 w l d p aa as pl RRoRoRs o Ro Ra S E t0 NVN i up t a p) HHsHsHe pd Hs He p D 4 O O t u MV MI cl RH u e e1 CNI a o om ra aoes uR oR RRIRIRT ut ou RI o r r0 OT m r . .

u-s99 o8 YIP RTI AAR t

o u

G a b GS RI rR G( ..c ab d

. rh GS a b

G r

C o S E

Y l - 3 MLC A 1 2 3

4 5 =

cCg I OS nRy RSE .

Y ENp PID A l! l' ,

i

l

G Y Y Y Y Y Y N '

'- ' 1 A _-. :

R' .

II1lllIl I

{l' G

C

~

IG' . ) R DN -

M OI 7 ~

Y Y Y Y Y YY O IT . ( Y Y Y Y Y R

RS '

F EE lPTII IIl li ll i N

. :  ; O I

E ) .

T U Y Y Y Y Y Y Y Y Y YY A Q

6

( -

.Y . -

I

. I~-

V ND E UI .

D I .

l F

Y' ~

O AD

) =

LO 5 Y Y Y Y Y Y Y Y Y Y YY N PH ( '

' . O I

ST T

! IE A A DM l1

.Il C I

L '

~

1 .

F PE ) Y Y Y Y Y Y Y Y Y Y YY I SP 4 T

N S

O S IY (

U DT . ..

I T l((  !

lIl J

T N

A =

~

E C

I M Y Y Y Y Y Y Y Y Y Y YY E A D

N R Q i lllI I I I U .

.L Y Y Y Y Y Y Y Y' Y Y YY , ,

NQ E TNI)

- f O R

~ I SAA3 ,

T NHV( ek I 1 llICA' l I

]jl 1 S'*

O

~

dj4 P T E -

A RC Y Y Y Y Y Y Y Y Y Y YY , ,

EC AER I WU c1 V;

L ROO , ,

- A 2 EPS .

l bh T I I 1VV I ,

s EN E R E '

a g CER

.)

J LO R LU 2 Y Y Y N Y Y Y Y Y Y YY .

BI 2GL

.' . AT 7 TAL 9 VIA NI

.( '

1 ESF . .

O R{I1 1 :1llll jlIl S'.

I 7 .

G. SL

) .

T R 9. I A 1 Y Y Y Y Y Y Y Y Y Y YY N 1EU (

E H M T lIlll!I 1 '

N I

I W

G.N SQ .

~

A . O .

TE RR

~

N Y Y Y Y Y Y Y Y Y Y YY O C N IL VA -

~

CA NU Y L I EQ ]t I

1s I

R P s s 's .

s s s s s s ss -

A M L i i i i i i i i i i ii M - - - - -

I O VIS - - -

s s s

s s s s s ss RC LAO s s VFP A A A A A A A A IAlAAl P l Al e

e .

nn n n n n n n n s s n . ee M' e e VRS e o e o e e e e p p p pp LOO p l p l p p p VNP O C O' O O O O OL OO O1'C '

' RE V V V V V V V V V V VV VEP O O O O O O O O O O OO LPY ) M M M M M M M -M M M MM 1 VOT d e I s n nrm

,ll p p

,I

!l!l u '

m ..

u s n t t r u o e ok u n

u n

s e e AP i n ne u i v i Bu t a d .e ak c t l t c a a v v IM n l yd r yv n l a a a a ama e e l l RO o o l r a ll or oe V l V l uV l l a a EC C o pa o pa i e or o ou C C V V T

~

( C po b pV tb CB e s n sce IY ub t u cm ns I o I ans r r) ) .e n RL s e 'm Sn u Ss ua em i e i VI e e) ed - S on oi CL e re I O s Sh ru Lv e t e Lv td t r rM si v ut m ma p C uu l rma rm l ar aa eW IL t OI D l ss a ap sc t a oel oeta Wa Wo tT a TT N a sy es ey mn sa sV Ct o ct sv o b a( et sl A V eS t e tB uoe eV u ss su rb rt W nseo SA r Sv S Piv r an ryI ryan on ou m ievs EP P n P) l . sl P) ho oS oSh o tI tO se LTlI I U o I ea 'e o r sa I xi t e t xi c( c( ut a LR O i hC nV ns eeV hC Et c) n c) Et a a r s RSvn PE TR t gP i i I t r gP a aCi aC a em em oy HS i M O

NG a i H bn b spn i H el eIL eI el Re Re TS R C n r.

E l H( ro rd opo H( no RC RCno t t or CI o ur Rm - 9 - s t ooiD MS NE s - n o

ui Tt a

Ta o

oui BSt a

n o

i s bI r

- ( a e

- (Ris bI r 0S Y

1S y

2 e n ttt as N

GN IV I IG AL -

6i Il Ib I ml 7i ur 8 gt 9 gur 1 1 1 m e

SSl u MMor SI o TA c pc t Co Ct Coo pc t Te pi nS pi nTe pU) pU) pg WWso ES t8 NVN i Ps Pu Pr s k k ua DE 4 O O t ue HI HO HfI ue I a ul C ul Ca uC uC TTIT

@1 CNI a o4 '

oi Ce ooI ooI e oW oW on ,

roc ra r0 , OT m rn . r n Pr roCr rR rR . . .

c u0 YIP o GI a b . GI HB GCR GCRB G( G( GM ab S s91 RTI t c EO o8 AAR u . . . . . . . YN I - e MLC A 6 7 8 9 0 1 2 cCg IOS 1 1 1 =

nRi RSE YN ENP-PID A '

- - ~ ;
G Y .Y Y Y Y Y Y Y Y Y Y L N i 1 P

- A M R . -

. O I l' l 1llI l

l1 C ' - ' .

G. C.

IG R 7 DN ) 9 M

OI 7 -

IT ( Y Y Y Y Y Y.

Y Y Y Y Y O l RS ' -

R EE F '.

PT . .

G.

q l IIll1 ll N O R I

E ) .

T N U 6 Y Y Y Y Y Y Y Y Y Y Y A O I

Q I

. ( .h .

V S ND E E UI 1 , -

,l'

- D T j l) Il1l I 1.

O F N Y '

O N

AD 1 .

" LO 5 Y Y Y Y Y Y Y Y Y Y' Y t t O PH (  :

O I I T ST '

IE T A DM -

A C l' lIIll! C I I F L^ F I PE ) Y Y Y Y Y Y Y Y Y Y Y I R T A N SP 4 J IY ( S L O S DT .

U C I l'  !

J

"- T T ll! '

=

N A

C E .

N N N

=

Y N Y' N Y N Y N 8 M

I D E A . '

N R lO I

I I I' l

] n 7 U

Y Y Y Y Y Y Y Y Y , , ,

N Q E TNI1

.L' Y Y fm 6 O R SAA3 I , , ,

T 1 NHV( ek5 I ICA -

II i

' ' liIIlI{l l' S .

OT E ~

N dj4 PA RC Y N Y N Y N Y N N N , , ,

EC AER I WU c13 V ROO L 2. EPS e A Tl bh,2, 1V V E I

R E , , ,

EN CER 1' ag1

.L O R LU 2 Y Y Y Y Y Y Y Y N N Y BI 7 2GL .( '

AT -

TA9 L VIA NI O 1 ESF R; ,

S 1 I 7 . .

G. SL )

T R 9. I A A 1 .Y N Y N Y N Y N N N N N 1EU (

I E R R M T N I 4 SQ l I .I !l E G . T I I A W .NO R TE C RR: - .

NC IL Y N Y N Y N Y N N N N O N VA O CA NU T Y L I EQ II lI ,!i Y

{l]

R e 'e e e s e s e s e L A P s s'

M L .' i s i s i s i s s s P M O VIS - o - o - o - o o o o M I

LAO s s s s l l O R C l l l l l A A C C C C C P 1IVFP .I' A C .

Il AtlC llIl1 C

e e e e ll e T e e M' n n n n s s s s s s s O V R S' e e e ep o o o o o o o N LOO p p p l l l l l l l VNP O O O C C C C C C C S

. I OI lIl!

~

iI !l E O

D

' RE V V V V V V tV V V V V R VEP O O O O O O eO O O O O O LPY )

. M A M A

  • A l M A A A S n S VOT'IIde
  • 1 I

's j' 1i E

- u p r e

I L

n m e. i -

AP i u - t At v e

t S s sm i s a rl I M RO n p e s e ee e Ls e t e i a r o m e v ln ei vv rt e v e v sr AV o EC C u .v l ps v l ev l uTt c T

( s S l a a l a py l a gl a a e & n - IY p a V r a V uS a v ra v h sl o nI RL s m n V D V S v uV xan 2i CL e u i n n n n P n EGI Nt s A v S a n o t n o & o n o n o a g e OI D l r o i n .o t i i o i ro i l y2s obNe ll oo i n v TT R

N a l D i t e i lt ti t ii t l A V l et a met a l a st a At a od v os sm a SA e rga l pga l el ua l a l Pn5l PI r e V EP P n w orl o i rl o wi al o &l o a a et I U o vr oao s uao s yt h o s o s nt mv nt vs l LR O i lhs I qh s I rn xs I 2s I oSe oe ay l PE TR t D FcI EcI De EI NI i t n i l rS a MH NG a s d' s d V d d soso sn T) B OT E l - lid r lid r - ld t ld r st yi sI CI MS o lDr a lDr a l l r a l r a e St e P m E NE s 3 e a o e a o 4 o ea o ea o r e a r e I e N I V I 1 wpo b vpo b 1 o wo b wo b pgtl pr no pg pr 5T t s

GN I G AL ymb t ymb t P yb t yb t 1(

y o- -

TA c p run u run u p r n u rn u uues uu SI t8 NVN i u DPI O DPI O un DI O DI O SPmI SP pe S ES 4 OO t o oo ub DE e1 CNI a r . . ri . . . . oo p ,D r0'- CT m G s c Gs a b c d rr i u1 YIP o GP T S ,

sf1 RTI t . . EO o8 AAR u 3 4 . YN l - e MLC A 1 1 5

,cCg IOS -

1 ==

nR2 RSE .

YN ENP PID A

llI
  • O I

N j* T A

C' A I

F I I'- R E

g. TE SD f d a a a T UO I R E JC {I1ill IlIlilIIlli iI l

C C N

7 A E 9 I G Y Y Y Y Y Y Y L

~ N l P A M R . O II II G. C l

il1 IlIl1lIl C R 7 IG 9 DN )

M OI 7 O1 IT ( Y Y Y Y Y Y Y RS R EE F .

PT :lIl IIIlIl!IIIl iII N G.

O R I

E ) T N U 6 Y Y Y Y Y Y Y A O I

Q (

I V S ND E E UI - D T lI lll .IIIiI O F N Y O AD ) N LO 5 Y . Y Y Y Y Y Y N O PH ( O I ST I T IE T A DM A C llI IlI L

C I

. I F L F I PE ) Y Y Y Y Y Y Y I R SP 4 T A N IY ( S L O

I S DT U C J

T T lI1lIil il1l

) =

A N

)

E 8 8 =

C 8 I M N N Y Y Y

( (

D E A Y Y ,

NR Q n7 I I I i U .

N Q . .L Y Y Y Y Y Y Y fm6 O E TNI)

I R SAA3 .

T NHV( ek5 I 1 S

IICA iIl llIllII O T. E dj4 PA RC N N N N N Y Y , .,

EC A ER c13 I WU V R OO L 2 , ,,

A E Tl PSlI 1lIllilllIlIlli! iiiiI bh2 1V V E I

R E , ,,

EN C ER a g1 LO R LU

)

2 N N Y Y Y Y Y BI 7 2 GL (

AT TA9 L V IA NI O 1 E SF S . R '

I ill

)

llIl1lli1l!

)

II1IiilII I 7 . . 8 8 T G. 9 SL ) .

( (

Y Y Y Y Y A N R 1 IA EU 1

(

N N I E R M H SQ Ii!i8 - 1IIiII E N IT i1llIl!li\l - l l I G . T N ) ) I AW .

. O 8 8 R T E R R ( ( C N C IL N N Y Y Y Y Y ON VA O CA NU T Y IL R

llIEQ  !:

ilIIIIliIl lit 1ililtIiII s e Ii1I Y L

AP e e e s

e e s P M O M L s s s i s VIS o ol o o o - o M I

LAO l l l l s l O RC V?P C C C C C A C C P l IIlIlIlIIIiIIl' ' ' IIl!I Iil1IIII1" - I T

M n n n n n n n O .

VRS e pe e e e e e N LOO p p p p p p _

VNP O O O O S ._

lI li O O l!iII1ll Ol1l11liiIi1iIIIIiI E O

D RE V V V V V V V R ._

VEP O O O O O O O O LPY ) A A .A S A M A VOT d S l

el l11l llilIi!]IIl1 II E

u I n s L i p u t AP t g mt o s n IM n n unm l e s e e RO o i Pee a s e vl m EC C t s mt es a v n T

( r e nns Se Grl a i s IY e e v oiy v oa V a s e RL n v l i aS sl ttv tm e vl CL -

s I l a tt pa ni n ne v A e la V ano mV enn o ot dl a OI D v n ov l on u moo i Cs ra V TT N l e r n uCi Pn nMi t y aV R A a g tn o c ryo r o i aya t a yS o n SA V o no i ni l r bn o EP P r oi t i rt ot ttl o ay no i I LR U n t Ct a cai i a nio s ml Ii t O i i a l emn tl ovs I ip t a PE MH TR t N el o Rio ao CiI rp la l o OT NG a ro s I rM l s t d Pu r S ll eo s I CI E l - us - P uI ycd E

MS o sI n c rar a - ws N NE s 6 s d 7& o re aoa o c yI r GN IV I 1 ed r 1 i i g mio b 8i d AL m rr a mt cr idb t 1t Dd r IG o TA c pe Pa o pea eu ran u a r a SI ES t0 NVN i ut o b uti RP PRI O pm oa o DE 4 O O t os b t osd uu to b o1~ CNI c ry 2n u rya . . oe b t ,D r0 OT m GS NI O GSR a b rn 2n u S ,

u2 YIP o GP NI O EO s?1 RTI t . .

oG AAR u 6 7 . YN l e MLC A 1 1 8

==

cCg IOS 1 nRh RSE .

YN ENP PID A lIjl i -

G Y Y YY 1 N -

, A .

R lllill1Ill

,llIlIl lllI 1II G

C R IG DN )

M OI 7 Y O IT ( Y Y YY Y Y Y Y Y Y Y Y Y Y Y RS R F

EE PT l '

ll 1l lll1IlliI' l

ll N

O I

E ) T U 6 A Q ( Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y I I V ND E UI D

]ll ll IIlI l

.lilIilIlil F

Y O AD )

Y Y Y Y Y Y N LO 5 Y Y YY Y Y Y Y Y Y PH ( O ST I I E T DM A ll I

.l! lll C

. I L F PE ) Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y I SP 4 T N I Y (

S O S U I

T T IDT(Ill ll l .lIll i IlilillIlil J N Y AE Y -Y YY Y Y Y Y Y Y Y Y Y Y Y =

C M A I

D E Q Ii N R 1' 1l . lllI .lIllIli I .

I U . .L N Q E

TNI)

SAA3 Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y f ,m O R NHV( , ,

I T 1 ICA lilli

,l!

ek I

S . E O T RC dj4 PA AER Y Y YY Y Y .Y Y Y Y Y Y Y Y Y Y , ,

EC I WU ROO ci V EPS L T liliillI l , ,

A 2

[I I bh2 1V VE R CER E

)

EN R LU 2 Y Y YY N N N N Y N N Y N Y N N a g LO 2GL (

I "A T 7 NI TA 9 VIA L L a ESF llIlllllI' liI 1 RII 1

l Ill~ l O

S . 7 . .

I ) Y Y YY Y Y Y Y Y Y Y Y Y Y Y Y G.

T R

9. IA SL 1 N 1EU (

E SQ lIlil1l M H l iIlIllllIl!Illill l 1ll N T G .. .

I I N A W .O Y Y Y Y Y ' Y Y Y Y Y Y RR Y Y YY '

T N E IL O C VA C N NU A EQ 1l!llItl llllllI l I

Y e s es s s s s s s s s s s s s R L s i i i i i i i i i A P si i i i L i M M VIS o - o- -

s s s

s s

s s s s

s s s

I U LAO l s l s A A A A A A A RC P

VFP C

!lI A CAIll1 A A A llA (lllIl(lA ll1 de e e e e e e e es ee e M s k o ss n s n n s n n s s s s s VRS o cl oo e o e e o e e o o ol o o LOO l oC ll p l p p l p p l l l l O C O O C O O C C C C C ilVNP l1 C l L CC lI '

Il lll '

V V VV V V V V V V V V V V V V RE O O OO O O O O O O O O O O O O VEP S M SM M M S M M M M M M M M M LPY lVOT l

!lllIl1lI1lI iI1 lI1llll lilllli1Iii s e n e v s o v s r l AP s r i l e o a n IM e naop s o t a v m t e V e o RO s sv se t a V l o c v v i EC e el iy ev o l a rs a l n l t T o mn V e a o a a IY v va tB vl M s eo f e v R V i V l RL l lV c l a o CL a a ue aV n I ti d mn nl t V vl Sv V o st n r uo oa oetv o w oa w o msoI OI o l n i e ya o a mi iV tl o r TT D n nr ga no t n Sl i o i t t l l l F

N o ot nV oi a i o t b na cr ea F es f r A i in i it l L ns c n il ue gV gI e SA t o l n st a u oI u I Mo Sb r m t m nb EP P

t a aC oo eal c h i Ss s s m ar u ar u om I LR oi vl o rs s t n e pe pI pa h e m h e m ia U l l u co sv ov o oh cd i cd i th PE O o s

oe sg Ct a

l os ie cv ei ul ol on oC sa n sa n cC MH TR asI el l

F t t r a La L o L i e i ie i u OT NG I I a nl VI n DH Sn CI E k wo d Ra oa oV y V i yo DH M M o

MS l ma os sdr v d n

rt Pn T

n an yt aa pr p pr p pi N NE a ae dI pr a s po ai r s me mu meut m ms GN IV u eL t oao pd a e r o rl u us I AL n t ud oob me p rm mi pi pu ps ut P Pa P Pe SI o1 TA a S) h r Lbt ut ou ut St S c S e Pa re ES t3 NVN M V Sae nu Pa ue t r Pa a r r w w DE 4 O O - nI ov II O r mv ct l el ei ep Id I Cd C Cpv a1 CNI e iS Rbl Re rl as R o ro rc rp Ce C I e I I pl Cua r0 OT t aM Hna C P . . Ep aa en Es os oe ou Pe P Ce RF C

R RSV S u3 YIP o M( RIV Lab RO WV RI RI CI CR CS HF H EO r91 RTI m . . . . . YN o8 AAR e . . . . . . .

8 9

0 1 2 3 4 5 l - e MLC R 1 2 3 4 5 6 7 1 1 1 1 1 1 =

cCg IOS i RA RSE .

YN DNP FID B

. l1

,j'j 1 I N

O q' I T n A

C g A

I I

s F-I , R TE j j j j j j j h e E

, SD T I

UO R E JC i llIf IIl1lIl!ll lil1l 1I C C N

7 A E 9 I G Y Y Y Y Y Y Y Y Y  ! Y Y L 1 P

N A M R .

I

. O

.llIIll1 ull(Il f' lIl C

1lliI G. C IG R 7 DN ) 9 OI 7 -

M IT ( Y Y Y Y Y Y Y Y' Y Y Y Y O1 RS R EE F .

PT l .lll ll1l l' 'lIillIlI :1 N G.

O R I

E ) T N U 6 A O Q ( Y Y Y Y Y Y Y Y Y Y Y Y I I V S ND E E UI D T l E 1' '  !

l l

lIli! 1il" O F N Y O A 'D ) N LO 5 Y Y Y Y Y Y Y Y Y Y Y Y N O PH ( O I ST I T IE T A DM A C tl l

!ll0 llII" liIl ' C I

. I F L F I PE 1 Y Y Y Y Y N Y Y Y Y Y Y I R SP 4 T A N IY ( S L O S DT .

U C I llIlillill llll1 J

T T i LlIlllI' ,i'

=

A N E Y Y Y Y Y N Y Y Y Y Y N  :

C 8 I M A E lQ DR ,

l

1 ll  !]il1 I N I . n7 I

U . .L ,,,

N Q TNI)

E SAA3 Y Y Y Y Y Y Y Y Y Y Y Y fm6 O

I R NHV( , ,,

T 1 ICA lIl1iltI', .

illIl' ek5 I

S . E e ,,

O P AT RC .

Y Y N N dj4 A ER Y Y Y Y Y N Y Y ,,,

I WU EC R OO ci3 V E PS L 2 T I1IlIllIIli1iil1llli lL III ,,,

A I bh2 lV V R E , ,,

E N R C ER )

N LU Y Y N N N N N N N Y N a g1 uO I 2 GL 2

uT 7 TAL 9 V IA NI . (

E SF O 1 R ' lllIlilIlI1Ill ]lillIll l1I S . 7 . .

I 9SL ) Y- Y Y Y Y N Y Y Y Y Y N G. IA 1 T 1 EU ( A NR SQ- I E H . IIlIl!lIlllill1 lIl1IlllIl1IliIll Il1! R M G E N IT I N T

I A W

. O R R Y Y Y Y Y N Y Y Y Y Y N R TE IL C NC VA O ON NU T CA lEQ s' llIlI1lll1ltIt jlIllIL i1i I lll 1 Y L R s 's le' s

e s

e s

e s

e s i s

i s'

i s Y L

AP L i i i M VIS - - o o o o o s s

s s

- - P M

M O LAO s s l l l l l I

A C' C C A A A A O R C lIlVFP lIl!

A' Cl ' C' ilIl1llI1l ill lI 1!

C P de e e 'e es T M s s n n n s n n n n ko n O VRS o o e e e o e e e e p

cl e p

N LOO l l p p p l p p p oC VNP C C O O O' C O O O O L O S i'

(: lIl(I1ll E

) -

M L

d V V V V V V V V V V V O

o e R RE e O O O O O O O O O O l ev VEP u M M A A A A A S M M M pvl O LPY n xia S

VOT i lllEsVIli l E

i tt1 .!IlllIi1l1 ll1l1l n I C

o me m e

g nn gn no r

e p AP L

( t t io ii b i IM s s ri rt m - u s RO s y y ot oa a n q e EC e S S ta tl e hy e n E l v T v s il io l Cl p m o ll s e

IY RL l l e l s no ns p us i l ea l a ov oervos oI m np re lt l s wVy l v CL V rl MI M a ou tv ea ee e l A t a tl n S iS sl na eo vl wv rn w y

a V

OI D

N n

o nv o

na tn nr to ni e s

s2 Iv Ls yl ra Doi r

TT R

A i t

cno CoVn mt eu et mc r

es eN r s en l I DV mt Ds oa e r

a SA EP

-P a si so ne nu he pse ro on on rl ov e h I LR U l at ai iR iS pv prv ui oo t o Fo s

tl a S PE O o Ga Gt a a sl uel st Pi i MH TR s l a t s ts oa Sk a sa t yt n1 rV OT NG I eo el nu nu mV aV el na l a r i m E l s l o or or t An oe r o ot pl po ut An e o

CI E

MS l bI bs Co Co t rn Ps in t n t a T o Bo se us ee ei s N NE y T i iI I IV u tn t y li l i l sm SI Rm ct y GN AL n so sn ur rms aee rms aee ea eua lt l mt eo l n eus rre Wt Wi p i a S IG o TA a ui ptv Cn Cu Eq es vl ro P S, I ES _

t3 NVN M bt ou mtv mtv wl wul wi 4 O O - mc mt isl isl yo yco yt psl Ee I DE e ou oeCR rya rya rr ras ra una Ee EE SI T ,D e1 r0 -

CNI OT t CS PSV PSv DJ DVI Dt SIv S ,

.. s71 u

4 YIP o . . EO RTI m . . . . . . . . . .

YN o8 AAR e 6 7 8 9 0 1 2 3 4 5 6 7 l- e MLC R 1 1 1 1 2 2 2 2 2 2 2 2

==

cCg- IOS nRa RSE .

YN ENP - PID B yifi

l1l).

l l il .

q- )? .

[ - ilRl .

3

- M*l t - -

s JI*

T' ^

Ww .

.I~

A~

C 2 j J

_ A I

F^

F - TE I

3 '

i j

k

, k 1

R E _

T f^ ,

SD UO I R E r !JC Il j1 '

l il I CC N

I m 7 A E .

- 9 I G -.'Y Y Y Y' Y Y 'Y N N Y L m'. ' -

N A

1 P M

+%f ' -

R C

lI I 1.' iI I

. O G. C IG R7 DN ) 9

, OI IT 7

( Y Y Y Y' Y Y

Y Y Y_ Y' M O 1 __

RS R .

EE F PT :g IllIllIl 1Ii Il N G.

O R I

_' c E'-- ) T N U 6 .

A O Q' Y' . Y Y Y Y Y Y- Y Y I

< I f

- Y- -

V S ND E E UI D T O

l ( Il l' .il' I  !

F N Y O AD ) N LO 5 -

Y Y Y Y Y Y Y .

N O PH ( Y Y. Y O I

_ ' ST I T IE T A

.' DM A C

~:"

l l

C I

. I F L

~

F I PEh)4

- Y Y Y" Y' Y Y ~-

I R SP -Y N Y Y~ T A

- N~ IY1 (

- S L O

I S D T '~ ~

U C T II1llI Ijj  ;{-

J TN -

=

AE Y' Y_ Y Y 'Y ' N Y N-- .N N =

8 CM

~

I A-D E Q- !l1 .1llI' ,

. N IR

. . n7

.I U . .L' .

NQ T N I '1 Y Y Y Y ,,,

fm6

. O E SAA3 Y Y. Y Y Y Y

~

I R NHV( ,,,

. T~l ICA III ll ek5

. I .

S . 'E ,,,

O 'T RC . dj4

.N N

-PA Y Y N Y A E R '- -- Y Y Y ,,,

sE C I WU N R OO- .

ci3 V~ E PS' L T ll' l

.Illglll ,,,

A2. . I bh2 1V V R .E! ,,,

EN E C ER .) .

.Y.Y N N Y a g1 LOR LU 2 -- Y m Y N - Y 2 GL' (

BI 7 NI-AT V IA

<YA L 9 E SF Ol R Il1 1l ll S 7 . .

- I'. 9 SLL ) Y Y T Y Y N .

G. Y. N .N .M T R IA 1 A

N 1 EU2 (

I E' SQ -

1 R M H

.lg' l' !1 G . E N IT N- T I

1I AW

. O .

R R R' Y _Y-- Y Y Y N Y N- N N

- T IL O O N ON N C NC E VA I I I

.O N T , T~ T O NU.

C IA EQ A -A A T

~ l li' C1l1lICl Cl

'le' l -

.Y L I e e e e I- .I e I' 'el Y

.R P  :

L' s 'e s .s s s s n F F s Fn s L AM ^

o o ol o l o ol e o- I e .o P MO VIS LAO l l l p'- I R

I R l Rp l M I

VFP- .C C _ C C C C' . IlllI O A A C 1li1 AO C O RC !l L L! LI C P

l' I

'es C C e

C ei T e e. e es e Rs n O M s s s s n .R R s-VRS o o. lo ol o e' o E E o Eo e p

- N LOO l p l P P l - Pl VNP~

-- l C -l. C C C C O C C Dl;lll C o S E

Il!n L' lEDD . D 1 iII E O I

E

) .

D D' D d . V V Y V V O O V' V O

U L

U L

V O

UV LO V

O R

_RE- e O O- O O S CA A O VEP u -S S S S S A A C C X

LPY~ n X X VOT i ' E iiljE E S t l l' iIl .I l!

iIli l I

E n s s s I o e e t s t e e L C r w n e nv v AP

'. ( e e l a v el l s e

IM l h a l l ma v a

n RO EC o

s p p V a nV 2 e m s o V i 2 s mi T v a os n Cs an e l a

eL m a

IY RL _

l g

S me r e nr to ni h

gsl v

w t

sl r CL _

' a t v u rv uea a ya s c A V n e Al t ol u e ot s r Sw e S OI i r a e t a t v Ca ovV a v

_ .D n l e lv R cV e l l se rl d e

TT

.N o p h o a R a yo ev s han h er l R

~

,A i m ps on el enBo gv rs vl e tvo t vd a ve SA t as se Po e n aI l al v i i i h Vs im EP P a Se ov i p i l in d aVa u l 9nt W rt e ru I

,U l v ml nt m dt p to nr V a 1oa Di k v Dl LR O o tl ta oc a ec m ri oe nn V il & W cl o PE s na Av iu S zu a et ck noa dto d ea dV MH T R f~'

NG I eV sS iS S na ea oiM n nas t od hV o OT 9"' E d ln s s r It Se it o alI r Rn C Re g CI MS l i n lo ee u ue d n r tad i o e a m E NE' IV a

u co ci ei wt r1 p 3-o e

sl sp u em i ne oB t

al e l os t

a 7sf 1I e s

n l

ot l a l r l r oa N

GN AL n At yc pm s em q gu m oso l i I rr ac rh IG o BS t c SI TA^ a a ru ua a ra i or su sIl h2l te 8 NVN M tl DS SS G PS L rt uu I C s g3 e D ns ns ES M~4 O O CNI e

- so os . . . . .

ts in rc oa l 3 -

d I u1R o / C R on CI ab CD oi DE

,D vu01 "' : OT t PI a b c d e NI TV al e r rlk S ,

5 YIP o uak h

e hac tt e EO RTI m . . ntc . . .

m. F 1 AAR e 9 0 aoo t oh 8 3 4 YN x-8 e -

- MLC IOS R

8 2 2 3 MTL O 1TC 1 2 2

==

RC MP Ra g RSE PID B C

D YN

<lpb(' ._

Enclosure to

- NRC-89-0148 Page 16 Table 1 Clarification Notes on R.G. 1.97 Compliance by Isolation Valve Position Indication Design

1. Light bulbs in valve position indication assemblies are not individually seismically qualified. Each open and close pushbutton has two internal lamps which provide the valve position indication. The pushbuttons are qualified devices, but the lamps ree commercial grade subminiature style.

The seismic capability of the design is considered adequate as a result of the following:

a. Two redundant lamps are provided for each of the open and close functions
b. The control room operating panels were seismically tested with pushbutton and indicating lamps installed. This seismic test of the control panels established the fact that the

. indicators would function following a seismic event. The indication equipment was not energized during the shake tabic l tests, but the operability of the indication equipment was determined following the test.

2. Single failure criteria for redundant isolation valves position indication does not apply. R.G. 1.97 Rev 2 position 1,3 1(b) states that within each redundant division of a safety system, i redundant monitoring channels are not needed. Thus, redundancy for redundant isolation valve position indication is not intended by R.G. 1.97 mm_m_____

, t q

D-Enclosure to .J NRC-89-0148 l Page 17 .]

l- - f

! l i

Fermi 2 design, in general, has two isolation valves in series for j containment penetration lines and proper isolation of the line can be verified by observing the position indication of the redundant l 1

isolation valve if any valve position indication fails.

3 Technical Specification Section 3.6 3 requires operability of i primary containment isolation valves in Technical Specification l Table 3.6.3-1 during reactor operational conditions 1, 2 and 3 Surveillance procedures exist which implement the Technical

. Specification surveillance requirements. These procedures prove valve operability.

In addition, the Inservice Testing Program (NE-5.6-IST) verifies valve function by monitoring valve stroke time. Valve stroke time monitoring utilizes valve position indication. If a valve position indicator is not functioning (excluding CVs, MVs and RVs), then that valve is declared inoperable. Thercfore, valve ,

position indication channel availability is confirmed.

4. Compliance to R.G. 1 97, Rev 2 criteria for continuous indication is provided by backlighted pushbuttons on the control panels for valve open or closed status indication. In addition, Fermi 2 design provides automatic isolation valve group status indication on the isolation valve mimic panel in the main control room. This panel is viewable by a closed circuit TV (CCTV) n.onitor system in Technical Support Center (TSC).
5. R.G. 1.97, Rev 2, Position C.1 3 1.g states, " Recording of instrumentation readout information should be provided. Where 1

?

Enclosure to NRC-89-0148 Page 18 direct and immediate trend or transient information is essential for operator information or action, the recording should be available on dedicated recorders."

The purpose of providing Primary Containment Isolation Valve position indication is so that the operator can determine if containment isolation has been accomplished. l Recording of Primary Containment Isolation Valve position would not provide the operator with any additional information than that already provided by the valve position indicating lights.

Containment isolation valves are normally in one of two states, open or closed.- If the valve is in its fail-safe condition, it takes direct operator action to change the valve position.

Therefore, Primary Containment Isolation Valve position indication does not need to be recorded. F

6. ANSI /ANS 4.5-1980 is referenced from Section C of R.G. 1.97 and requires that the " accident monitoring displays... be distinguishable from other displays so that in an accident situation, the operator can rapidly id3ntify the accident monitoring displays."

Detroit Edison originally planned to uniquely color code the accident monitoring displays to meet the criteria. However, a 1 human factors evaluation of the control room determined that this additional color colding could potentially cause confusion and l distractions to operations personnel during an accident.

Therefore, the special identification required by R.G. 1.97 is not desirable. I I

l, 1

i I -_.

1 j

'i

_g Enclosure to r0 ' ' NRC-89-0148 J Page 19-t 7.. Primary Containment Isolation Valves are part of the Fermi 2 l surveillance program which provides to the extent practicable the i necessary periodic testing, checking, repair, adjustment, etc.

This meets the R.G. 1 97 Rev 2 position C.1.5. criteria.

8. ~The valve position indication design utilizes Namco limit switch models EA-180 or EA-740, which are identified in the design configuration control. documents as non-safety related items.

However, the switches'are maintained as safety-related and identical models are used as safety grade items elsewhere in the Fermi 2 design.

l Therefore, the position indication design with these switches, meets R.G. 1.97, Rev 2 criteria.

' Table 1 Justification for Deviation of Primary Containment Position Indication Design from R.G. 1.97 Rev 2 Criteria

a. This item justifies deviation from the Class IE power source criteria.

The position indications for isolation valves of this group are powered by RPS power routed in divisional and safety related cable trays. Each of the RPS buses has its own motor generator set.

Either bus can receive alternate power from a bus that can be energized by standby power. Thus, the limit switches receive reliable power, in that power could be available from standby power. This is the same as the solenoid valve motive power.

l l

l

c;, . 4 3<

~'

Enclosure to!

NRC-89-0148

- Page 20 4

The isolation valves in this group move'to the safe position independently of electrical power and as such are intrinsically fail-safe.- Therefore, the loss of indicating power will result in the' closure of the isolation valve. As a result of the design characteristics of the valve control and_ indication circuitry, a loss of indication of a fail-safe (e.g., closed)' valve is itself indication of a safe (e.g., closed) position (or failed light 1 bulb, which is easily changed). Additionally, backup parameters of pressure, flow and temperature for the system can be used to verify valve closure. Since the operator has means to ascertain isolation valve closure, Fermi 2 position indication design is adequate.

b. This item justifies deviation from the EQ, Seismic, and QA criteria for the Drywell Sumps Discharge Valves position

~ indication.

The air-operated isolation' valves, G1100F003 and G1100F019 (sump-pump. discharge outboard isolation valves), are powered by a RPS power supply and are normally open. These valves receive _q isolation' signals and are fail safe (fail close on loss of power or air). ]

The redundant isolation valves in series G11F600 and G11F018 are I i

safety related MOVs, normally open with safety grade, j 1

nuclear-qualified position indication in the control room. See attached Figure 1.

1.

The position indication design for these A0Vs uses non-safety j grade limit switches. The indication circuit is powered by the  !

l 1

I

_ . _ _ _ ___.._____ _ _ _ }

N M q[* , '4 L Enclosure' ' to -

+ 1NRC-89-0148; >

j

-Page'21r l

)-

  1. 1

.same RPS power. supply as the solenoid. valve'which controls air supply'to.the valve operator.

The design of. position indication and valve control circuit is such that any-failure of component or power supply'in.the position.-

e -indication' circuit cannot prevent
the , isolation valve from l performing its safety function of closure. Furthermore, since this' fail-closed; isolation valve is-in series.with another safety
  • ^

Lgrade redundant. isolation valve, a' loss of non-safety; grade-

position indication will not compromise the primary containment
isolation: integrity. 'By design, loss of power will result in the 3.g 4 closure of the isolation valve.

In the event that the position indication of the fail-closed valve is lost, the operator can ascertain the' isolation status of the containment penetrating'line by. observing.the redundant valve

.' position indication. Additionally, a. loss of indication of the fail closed valve is'itself indicative of a closed position (or l

failed light bulb, which is easily diagnosed).

-Therefore,.the isolation valve position indication design with non-safety. grade components powered by RPS power supply is

" adequate. .

l

c. This. Item justifies deviation from the EQ, Seismic, Power-Source and QA crit'eria for' Automatic Group 14 A0Vs position indication j where redundant valve is an MOV.  !

The air operated isolation valves in this group have two pilot SOVs in series to control the air supply to their operators. The J"

- - . - - , - . - - - . - - . . - , - - - --- ------------a -- --- - - - - - - - - - - - . - - - , - - - - - - - - - - - - - - - - - - - - - - - , - - - - - - - -----_----a,- , - - - ..- - . - - - - - - _ - , - - _ - , - . - - , - - , - - - . , - - - - . _

_-.b--__---,--~-,--w,_ , _

_=_ - - _ -

/i .

' Enclosure to -

Page 22 inboard SOV is a safety grade nuclear qualified valve powered by the divisional, but non-Class 1E, RPS power supply. The outboard SOV is a non-safety grade valve powered by non-Class.1E (BOP) power supply. The air operated isolation valve is normally closed and fail-closed. Either of the SOVs can close the isolation valve and both SOVs receive primary containment isolation signals. A-loss of power to these SOVs will result in closure and the

. subsequent loss of air to the valve actuator and thus provide isolation.

The redundant isolation valve in series is a safety-related, motor-operated, normally closed valve with safety-grade, nuclear i qualified position indication in the control room, see Figure 2.

The position indication design for the air-operated isolation valves uses non-safety grade limit switches and indicating switch I assemblies. The indication circuitry is powered by a non-Class 1E (BOP) power supply and routed in non-seismic cable tray. However, the design of position indication and valve control circuitry is such that any failure of component or power supply in the position indication circuitry cannot prevent the isolation valve from .

1 performing its safety function of closure. Furthermore, since the fail-closed, safety-grade isolation valve is in series with another safety grade redundant isolation valve, a loss of non-safety grade position indication will not compromise the primary containment isolation integrity.  ;

In the event that the position indication of one of the fail-closed valves is lost, the operator can ascertain the l l

isolation status of the containment penetrating line by observing 1

1

- n- . _ - _ _ _ .

Enclosure to'

-NRC-89-0148:

Page 23.

the redundant valve's position indication. Also,-loss of the

. position indication of a fail-closed valve is indicative of a closed position (or a failed bulb,.which is easily diagnosed).

Therefore, the isolation valve position indication design with non-safety. grade components powered by non-Class 1E power supply is adequate.

d.-.

This item justifies deviation from the EQ, Seismic, Power Source and QA criteria for Automatic Group 14 A0Vs position indication where redundant valve is another A0V.

There are two safety grade, nuclear qualified air operater'

' redundant isolation valves in each containment penetration line.

The air supply to each of these isolation valves is controlled by two SOVs.in series. The inboard SOV is a nuclear grade, environmentally and seismically qualified valve powered by divisional RPS power supply. The outboard SOV is a non-nuclear grade valve' powered by non-Class 1E (BOP) power supply. Either.

SOV can close the air-operated isolation valve. Both the SOVs receive primary containment isolation signals. The inboard and outboard air-operated isolation valves are fail-closed on loss of air or loss of power supply. See the attached Figure 3 The design of position indication for these air operated isolation valves utilizes non-safety related limit switches and indicating switch assemblies which are powered by n)n-Class 1E power supply routed in non-seismic cable tray. Howevar, the design of position indication and valve control circuitry is such that any failure of components or power supply in the position indication circuitry i

Y r s. , ~ Enclosure to 0' NRC-89-0148 Page.24

, may result in loss of. indication but will not prevent the fail-closed isolation valves-from performing the safety function-

.of closure. Since there are two' fail-closed, safety-related, isolation valves in series, containment isolation is assured.. A

' loss of position indication is itself indicative of a closed' position (or failed light bulb, which is easily diagnosed).

Therefore, the valve position indication design with non-safety M grade components and powered by non-Class 1E power supply is

' adequate.

e. This item justifies deviation from the EQ, Seismic, Power Source and QA criteria for the TIP valves position indication.

The TIP system lines do not communicate freely with the containment atmosphere or the-reactor coolant. The failure of the TIP system' lines presents no safety consideration. However, the' TIP system guide tubes have redundant isolation capabilities.-

To provide containment isolation, a ball valve and a cable shearing valve are mounted in series in the guide tubing just outside the primary containment. They prevent the loss of containment integrity. The guide tube ball valve is a normally closed, fail-closed valve and opens only when the TIP is being inserted. Operating personnel are always in attendance while these. valves are opened. If LOCA occurs'while these valves are open,.the isolation signal overrides and closes the ball valves.

The shear valves are used only if containment isolation is required when the ball valve fails to provide isolation. The shear valve, which is controlled by a manually operated keylock switch, can cut the cable and close off the guide tube. The shear

^

, lJL 1

. 7, - Enclosure to NRC-89-0148-Page 25 s

1 valves are actuated-by detonation squibs. The continuity of the squib circuits is monitored by a main control room alarm and the ball valve position indication is provided in the relay room panel which is part of the Fermi 2 Control Center. See attached Figure 4.

The design'of position indication of the ball valve and shear-valve uses non-safety grade components, indicating lights powered by non-Class 1E power supply, and cable routed in non-seismic cable trays. However, limit switches are safety-grade, QA level I, and Seismic Category 1. The TIP system design is a BWR generic one and the safety features have been reviewed by the NRC for BWR/4 (Duane Arnold), BWR/5 (Nine Mile Point) and BWR/6 (Gessar),

and it was concluded that the design of the containment isolation system meets the objectives and intent of the applicable GDC.

Thus,'the TIP system isolation valve position indication design is adequate.

f. This item justifies deviation from the EQ, Seismic, Power Source and QA criteria for T4800F455 position indication.

The isolation valve in this category is a safety grade, normally open, fail-closed nitrogen operated valve. The nitrogen supply is contrciled by a single fail-closed solenoid valve. See attached Figure 5 The isolation valve position indication design has non-safety related components powered by non-Class 1E power and routed in non-seismic trays. This position indication design is identical to that described in "d" above. Therefore, based on the

6

p o Enclosure to NRC-89-0148 Page 26
1 justification provided in "d" above, the isolation valve position indication. design is adequate.

i'

g. This l' tem justifies deviation from the EQ, Seismic, Power Source and QA criteria.

The isolation valves 74800F416 through T4800F427 provide outboard isolation to a 1" nitrogen line for the vacuum breakers between the drywell and torus. The vacuum breakers are normally closed and are set to open automatically based on a preset differential 1

1 pressure. These valves have no operator controls. The 1" nitrogen' lines to the vacuum breakers are used for testing purposes only. The nitrogen line isolation valves are normally closed and fail closed and will be opened by an operator only during the periodic vacuum breakers test. Thus, the operator is always in attendance while these valves are open. They are administrative 1y controlled to preclude the possibility of their

. inadvertent opening during normal reactor operation. See attached Figure 6.

. The position indication design for these valves uses non-safety grade components, powered by non-Class 1E power supply and cable routed in non-seismic trays.

Based on the application as described above, the justification for single failure deviation provided in j, and the justification for display type provided in n, the position indication design is adequate.

I i

Enclosure to

. NRC-89-0148

- Page 27

\ h. This item justifies deviation from the Single Failure, and Class IE Power Source criteria.

The position indication design for these valves utilizes a l non-Class IE power source routed in the same cable raceway system.

The motor operated valves P5000F603 and F604 act as inboard and outboard isol? Lion valves for the station air line to the drywell. The valves are normally closed and control power to the MOVs is removed through a keylock switch in the main control room. The use of the key is administratively controlled per Procedure NPP-OP1-09 Since the Fermi 2 design utilizes an

inerted drywell, this station air line is not used during normal E- plant operation. The design provides a station air header inside

. the drywell only for maintenance use.

The valve position indication utilizes the gear driven limit switches which are integral components of a safety grade f Limitorque actuator. Therefore, a possibility of malfunction of 2 limit switches is very remote. Since the valves are locked closed and use of the key is ad.ninistratively controlled, containment integrity is assured and does not require Category 1 valve g position indication. Therefore, the position indication design is adequate.

i. This item justifies deviation from the EQ, Seismic, Power Source and QA criteria for the Scram Discharge Vent and Drain Valves position indication.

tR I

2' Enclosure to j NRC-89-0148 {

Page 28 i 1

i

)

The air operated valves C1100F010, C1100F011, C1100F180 and C1100F181 provide isolation to the scram discharge volume vent and )

drain lines. These valves are normally open, fail-closed safety related valves. See attached Figure 7 l l

1 The position indication design for these valves uses non-safety related limit switches and indicating switches which are powered by non-Class 1E power and cable is routed'in non-seismic tray.

Failure of the indication circuit cannot prevent the valves from reaching their safe position. Containment integrity is assured despite the potential for loss of position indication. Loss of indication as' mentioned in justification "d", indicates the valves t.re in the closed position. Thus, the position indication design is adequate.

j. This item justifies deviation from the single failure criteria for position indication.

1 The drywell instrumentation lines, the suppression pool instrumentation lines, nitrogen-inerting instrumentation line, containment atmosphere sample system lines and some other non-instrument lines are designed with a single isolation valve to enhance the system reliability. The non-instrument line valves are applied to ESP or ESF-related systems that are closed-loop outside containment. Frequently, these single isolation valves have other safety-grade valves in series in the same line.

However, these redundant valves are not credited for containment isolation, e.g., Group A.6.c HPCI Pump Suction has two safety grade MOVs in series, but only the inboard valve is considered a i

A m_ . _ _ _ _

p. j it . ..,.

1

f-

-Enclosure to

)

  • b  ;

.NRC-89-0148 Page 29 i

containment isolation valve since the connected system is closed l

loop.

The systems are designed and installed as ASME Class 2 and ANSI q Quality Group B, up to.tand including the. isolation valves. These lines are closed-loop systems outside the containment, and as such can accommodate a single active failure and still maintain containment integrity. This design is consistent with the NRC Standard Review. Plan (Reference 6) acceptance criteria in Section II.6.e. : Furthermore, the instrument lines isolation system design complies with the NRC guidance in R. G. 1.11, " Instrument Lines Penetrating Primary Reactor Containment".

The above design is described in detail in Fermi 2 UFSAR Section 6.2.4 and accepte6 by the NRC in SER (NUREG-0798) section 6.2.4.

The position indication design for the above systems isolation valves has one open indication channel and one close indication channel. This design deviates from the explicit requirements of redundant and single failure proof position indication design, since cach penetration line of these groups has a single isolation valve with a single channel position indication.

As stated above, these systems, by design will maintain containment integrity in the event of a single active failure.

For the same reason, a single channel position indication design is adequate and deviation from redundant and single failure proof design is justified.

I

., .# .t 4 l EnclosureLto- j

~

'NRC-89-0148 Page 30

k. Justification for deviation of the control rod drive (CRD)' system

. valves positirn indication design from R.G. 1 97, Rev 2

. requirements is provided based on Fermi'2 UFSAR section 6.2.4.2.2, which is summarized as follows:

Control rod drive (CRD) insert and withdrawal lines penetrate the

. primary containment, but they neither directly communicate with the containment atmosphere nor comprise part of the reactor coolant pressure boundary. See attached Figure 8.

Since'these lines are necessary for the scram function, the reliability of their operation is of utmost concern. Thus,

' isolation valves should not be incorporated in the design of.this system.- The probability of reliable and timely operation is enhanced by simplicity of design and by minimizing, where possible, the introduction of possible failure mechanisms.

Both the'CRD insert and withdrawal lines are provided with normally closed, fail-closed, solenoid-operated directional control valves, which open only during routine movement of their associated control rod. The normally closed, fail-open air-operated scram inlet and exhaust valves open only when required to effect a rapid reactor shutdown (scram). Note that the scram valves are not specified in Technical Specification Table 3 6.3-1. .In addition, manual shutoff valves are provided for positive isolation in the unlikely event of a pipe break within a hydraulic control unit. (These units and the valves

. described above are located outside containment to satisfy testing, inspection, and maintenance requirements.) In addition,  ;

- _ _ _ _ _ _ _ _ _ _ - - _ _ J

f?J q

. Enclosure to  !

NRC-89-0148' l Page 31'

,each CRD insert line is provided with an automatically actuated  !

ball check valve inside containment.

As stated above, for design simplicity, no position indication for CPD system valves, other than the' scram valves, is provided in the l main control. room. The air-operated scram valves,1two per Hydraulic Control Unit (HCU), position indication in the control room consists of a " scram" indication light for each CRD/HCU on the full core display. The light is illuminated when both scram valves are open,.and "off" when either or both valves are closed.

The valves are fall-safe (open) on loss of pressure or air. Fermi 2 CRD system design is a BWR generic design which bris been reviewed and accepted by the NRC. (See NUREG 0803).

Therefore, the deviation of the CRD valves position indication to

. comply with R.G. 1.97, Rev 2 is justified.

m. This item justifies deviation from the EQ, Seismic, Power Source and QA criteria.

The isolation valve in this category is a safety grade, normally open, fail-closed, air-operated valve. The supply is controlled by a fail-closed solenoid valve. The isolation valve is located in an instrument sensing line for a pressure transmitter. This design meets the requ.rements of R.G. 1.11. See Figure 9 The valve position indication design has non-safety related components powered by non-Class 1E power and is routed in non-seismic trays, i

1* 1 I

l

g'

~ ..

Enclosure to NRC-89-0148 Page 32 l However, as discussed earlier, any failure in position indication circuitry will not prevent the isolation valve from performing its safety function. In the event of loss of indication, the operator can determiae the isolation valve status by observing the pressure-recorder in the control room, In addition, loss of indication of the fail-closed' valve is itself indicative of a closed position.

n. This-item justifies deviation from the control room requirement of the display type criteria.

The position indication for the isolation valves of this group is located on a local rack instead of the main control room.

The isolation valves are normally closed and fail closed. The operator opens these valves from this local rack to test the

-operability of.the vacuum breakers between the torus and drywell.

The indications are mounted just above the valve control switchss. Since these valves are operated only during the performance of surveillance tests, they are not controlled from the main control room, and therefore do not require position indication in the main control room. Thus, the design is adequate.

)

i l

l l

a _ - _ - _ _ _ - _ __ - --___ . _ - . _ - _ __ - . - - _ _ _ _ - - _ _ _ - - - _ _ -

Enclosure to 3,f NRC-89-0148

-Page 33 Table 2 PRIMARY CONTAINMENT ISOLATION VALVES A. Automatic Isolation Valves-

1. Group 1 - Main steam System
a. Main Steam Isolation Valves (MSIVs)-

Inboard: Line A: B21-F022A Outboard: B21-F028A Line B: B21-F022B B21-F028B Line C: B21-F022C B21-F028C Line~D: B21-F022D B21-F028D

b. Main Steam Line Drains Isolation Valves Inboard: B21-F016 Outboard: B21-F019
2. - Group 2 - Reactor Water Sample System Reactor: Water Sample Line Isolation Valves Inboard: B31-F019 Outboard: B31-F020
3. Group 3 - Residual Heat Removal (RHR) System
a. RHR Drywell Spray Isolation Valves Loop A: E11-F016A Loop B: E11-F016B E11-F021A E11-F021B
b. RHR Containment Cooling / Test Isolation Valves Loop A: E11-F024A Loop B: E11-F024B
c. RHR Suppression Pool Spray Isolation Valves Loop A: E11-F027A Loop B: E11-F027B
d. RHR Suppression Pool Spray / Test Isolation Valves l

Loop A: E11-F028A Loop B: E11-F028B

,,f  :*

' Enclosure'to NRC-89-0148

'Page 34:

A. ; Automatic Isolation Valves (Continued)

4. Group 4 - Residual Heat Removal Shutdown Cooling and Head Spray--
n. RHR Shutdown Cooling Suction Isolation Valves Inboard: E11-F009 Outboard: E11-F008
b. RHR Reactor Pressure. Vessel Head Spray Isolation Valves Inboard: E11-F022 Outboard: E11-F023
5. Group 5 - Core-Spray System-Core Spray Pump Flow Test Valves Loop A: S21-F015A Loop B:. E21-F015B
6. Group 6 -'High Pressure Coolant Injection (HPCI) System
a. HPCI Turbine Steam Supply Isolation Valves Inboard: E41-F002 Outboard: E41-F003
b. HPCI Turbine Steam Supply Outboard Isolation Bypass Valve E41-F600
c. HPCI Booster Pump Suction from Suppression Chamber Isolation Valve l

E41-F042 7 Group 7 - High Pressure Coolant Injection-(HPCI) Vacuum Breakers HPCI Turbine Exhaust Line Vacuum Breaker Isolation Valves E41 ~r'075 E41-F079 )

I

8. Group 8 - Reactor Core Isolation Cooling (RCIC) System

.RCIC Steam Line Isolation Valves Inboard: E51-F007 .

Outboard: E51-F008 l

1

Hi g .Ebclosure to P' '

NRC-89-0148 L Page 35

[y A. Automatic Isolation. Valves (Continued) 9 Group 9 - Reactor Core Isolation Cooling (RCIC) System Vacuum Breakers RCIC Turbine Exhaust Line Vacuum Breaker Isolation Valves E51-F062 E51-F084

10. Group 10 - Reactor Water Cleanup (RWCU) System-(Inboard)..

G33-F001.

11. Group 11 - Reactor Water Cleanup (RWCU) System (Outboard)

.G33-F004-

12. ' Group 12 - Torus Water Management System (TWMS)
a. TWMS to RHR Line Isolation Valves G51-F605 G51-F604
b. TWMS to CSS (Condensate Storage System) Test Line Isolation Valves G51-F607 i G51-F606  !

.c.. Torus Drain Isolation Valves G51-F600 G51-F602 G51-F601 k G51-F603 13 Group 13 - Drywell Sumps

a. Drywell Floor Drain Sump Pump Discharge Isolation Valves Inboard: G11-F600 Outboard: G11-F003
b. Drywell Equipment Drain Sump Pump Discharge Isolation Valves Inboard: G11-F018 Outboard: G11-F019 i

. - _ _-_ _-_O

i- g, [Di

. Enclosure to NRC-89-0148 Page 36 A. Automatic Isolation Valves (Continued)

14. Group 14 - Drywell and Suppression Pool Ventilation System
a. Drywell Exhaust Isolation Valves Inboard: T4803-F602 Outboard: T46-F411 T46-F402
b. D'ywell N2 and Air Purge Inlet Isolation Valves Inboard: T4803-F601 Outboard: T48-F408 T48-F407
c. Suppression Pool Exhaust Air Purge to Standby Gas Treatment System and N2 Inlet Isolation Valves T46-F400 T48-F410 T46-F401 T46-F412
d. Suppression Pool N2 and Air Purge Inlet Isolation Valves i

T48-F404 T48-F405 T48-F409 15 Group 15 - Traversing In Core Probe (TIP) System TIP system Ball Valves

! C51-F002A l C51-F002B C51-F002C C51-F002D C51-F002E l

16. Group 16 - Nitrogen Inerting System N2 Pressure Control Isolation Valves Inboard: T48-F455 Outboard: T48-F453 i T48-F454 l L T48-F456 T48-F457 T48-F458 Q.-

a ,;

L 7 Enclosure to J NRC-89-0148 Page 37 1.

r A. Automatic Isolation Valves (Continued)

I-H 17. Group 17 - Recirculation Pump System and Primary Containment Radiation Monitoring System

a. Recirculation Pumps Seal Purge Isolation Valves

. Inboard:L_ B31-F014A Outboard: B31-F016A h:

B31-F014B B31-F016B

b. Primary Containment Gaseous Radioactivity Monitor Isolation Valves

' Inboard: T50-F450- Outboard: T50-F455 T50-F451 T50-F456

18. Group ~18 - Primary Containment Pneumatic Supply System N2 to Drywell Isolation Valves Inboard: T49-F601 Outboard: T49-F465 T49-F602 T49-F468 p

t- .

Enclosure to' 2

NRC-89-0148' Page 38 t

-B. Remote Manual Isoation Valves

1. Main Steam Isolation Valves (MSIV) Leakage Control Valve B21-F434
2. RHR Shutdown Cooling Suction. Inboard Isolation Valve Bypass Valve E11-F608' .

3 LPCI' System Isolation Valves Loop A: E11-F015A Loop B: E11-F015B E11-F610A E11-F610B

4. RHR Pumps Recirculation Motor Operated Valves Pumps A/C: E11-F007A

. Pumps B/D: E11-F007B

5. Warmup and Flush Line Isolation Valves E11-F026B
6. Reactor Pro'ection t System Instrumentation Isolation Valves E11-F414 E11-F412 E11-F415 E11-F413 7 RHR Pump Torus Suction Isolation Valves Pump A: E11-F004A Pump B: E11-F004B Pump C: E11-F004C

-Pump D: E11-F004D

8. Core Spray Loop Inboard Isolation Valves ,

Loop A: E21-F005A Loop B: E21-F005B l

9. Core Spray Loop Minimum Recirculation Isolation Valves Loop A: E21-F031A Loop B: E21-F031B L 10. Core Spray Loop Suction From Suppression Chamber Valves Loop A: E21-F036A Loop B: E21-F036B .

l l

, 7;v

.q).i

'~'

Enclosure'to '

NRC-89-0148-Page 39.

1 i

B. - Remote Manual. Isolation Valve'(continued) J 11.'HPCI Pump Discharge to Reactor Feedwater Header Valve E41-F006

12. HPCI Pump Minimum Flow Valve E41-F012
13. RCIC Pump Discharge to Feedwater Header Isolation Valve

'E51-F013

14. RCIC Pump Minimum Flow Valve E51-F019
15. RCIC Pump Suction from Suppression Chamber Isolation Valves

' Inboard: E51-F031

16. Combustible Gas Control System Suction Isolation Valves Inboard:

Torus: Division I: T48-F602A' Division II: T48-F602B Drywell: Division I: T48-F603A Division II: T48-F603B Outboard:

Torus: Division I: T48-F606A Division II: T48-F606B Drywell: Division I: T48-F605A Division II: T48-F605B

17. Combustible Gas Control System Return Isolation Valves Inboard Outboard Division I: T48-F601A T48-F604A Division II: T48-F601B T48-F604B
18. Primary Containment Monitoring System Torus Return Isolation Valves Division I: T50-F408A Division II: T50-F408B
19. Primary Containment Monitoring System Torus Suction Isolation Valves Division I: T50-F407A Division II: T50-F407B

, <s.

, Enclosure to NRC-89-0148 Page 40 l-B. Remote Manual Isolation Valve Continued

20. Drywell Atmosphere Sample Isolation Valves Division I: T50-F401A Division II: T50-F401B T50-F402A T50-F402B T50-F403A T50-F403B T50-F404A T50-F404B T50-F405A T50-F405B
21. Drywell to Suppression Chamber Vacuum Breakers Np Supply Isolation Valves T48-F416 T48-F417 T48-F418 T48-F419 T48-F420 T48-F421 T48-F422 T48-F423 T48-F424 T48-F425 T48-F426 i T48-F427
22. Drywell Pressure Instrumentation Isolation Valves Division I: T50-F420A Division II: T50-F420B
23. Suppression Pool Level Instrumentation Isolation Valves Division I: E41-F401 Division II: E41-F403 T50-F412A T50-F412B E41-F400 E41-F402
24. EECW Supply to Drywell Equipment Isolation Valves Division I: P44-F607A Division II: P44-F606B
25. EECW Return from Drywell Equipment Isolation Valves Division I: P44-F606A Division II: P44-F607B P44-F616 P44-F615
26. Service Air to Drywell Isolation Valves Inboard: P50-F604 Outboard: P50-F603 l

_ _ _ _ _ _ _ _ _ __ _ J

s

-,#' ~.Q Enclosure to l' .NRC-89-0148' Page 41 E 'B. LRemote Manual Isolation Valves (Continued)

27. TIP System Shear Valves C51-F001A-

-C51-F0018 C51-F0010

.C51-F001D C51-F001E

28. Post Accident Sampling Isolation Valves
a. Drywell Atmosphere Sample Suction Valves Division 1: P34-F404B- Division II: P34-F403A P34-F403B P34-F404A
b. Suppression Pool Atmosphere Sample Suction Valves
Division'I: ' P34-F405B' Division II: P34-F405A P34-F4065 P34-F406A

.c; Gaseous Sample Return Valves P34-F408 P34-F410 d Pressurized Reactor Coolant Sample Suction Valves P34-F401A P34-F401B

e. Liquid Sample Return Valves P34-F407

, P34-F409

29. Nitrogen Inerting Instrumentation Valve  ;

T48-F451

30. Torus to Secondary Containment Vacuum Breaker Isolation Valves T23-F410 T23-F409 i

1

E i ,

i

~

. Enclosure to'

NRC-89-0148-Page 42

' O. Manual Isolation Valves Total three (3). manual valves

. LOCKED CLOSED'

=

Excluded.per clarification.

D. Other~ Isolation Valves

1. through 17.and 19 through 22 Total'132 CHECK AND RELIEF VALVES---Excluded per clarification
===========
18. CRD Insert and' Withdrawal Valves C11-F120 }

C11-F121 }. Directional } Typical for 185.

C11-F122 } Control' Valves } Control Rod Drive Units

.C11-F123 }

23. Control Rod Drive System Insert and Withdrawal Lines

'C11-F115 } Ball Check }

C11-F138 } -Valves- }

} Typical for 185 Control

} Rod Drive Units C11-F126 } Scram # }

C11-F127 } Valves }.

24. Control Rod Drive Scram Discharge Volume

.C11-F010 C11-F011 C11-F180 C11-F181

  1. Scram valves not listed in Tech Spec Table 3.6.3-1 l.
M)R-I AEO-Mt4Tf s A E. R t

o o Wt.iAM

& Aoi E F (R c q 3D

.. g i

.a iw.

oa si is E b

4t S M

$ - 3 p ( NB F "

A t

N O

I uIT' O g T eoA l ' mW s E

i AC rC' i i

' u I sh oW PI E F I E

l E

RT h Uu M

O D N I S GJ T I U

O FR o I

F I!;1 R E D

-EW Ei I

S o N N uP io'-

O r E I

T A

A e

- I W ARDP i t R d l u

T i . A u*

E o- t.

N no s O PP s ,

E i P ti s

uRoO M I vot eL C u m t F E, s

(

i o

t8 4

e1 r0 u3 s94 o8 l - e cC g nR a ENP

_ O R

M

-. SE

_ UT S ,

S R RY C A O OS l

1 T 2 N

~

O N .

)

Le 0s O  : 5 CT N M R1E 8is 8

TA C

bVNO I

E-PWeJ

  1. . oS HERP TR O F

Ooo r -

'" W)=

BPN( .

l, # 23 t -

c i

/-

s-7,4

- _' E

)m

.A '

Lw '

oa si I

s - E C S S 4' c 3 P -

- L I

R -

A '- H FC o M

og s

2i T T mW E' A Ac MY!'

i uS I

CI b 'F t

u E i g

RT s g

p E" .

D Uu

. I S

T G"J I

U O

Fe o iII I l F

R E

_E D W E I O

I S

N N u.P O

I oE i

r A

I I

T c A

u "\h R m o w t8 T e1 4 E i

o8 T

_ r0 N wo N u4 . E e E s94 P v ,

o8 l - e t

s oM TN cC g nR a b I P

ENP A .

NT

. EN

? PO OC C

' U 4

a wt i.

1 a e Wo W o ?

^ {

g [X ky W 3's Ww .G < >

4 u

fI ,,2 f 1 ,

u eto

' O I N t 3

' a5 p-io".,g"pt  :

,j di es .

" ,' JE i dd

!' e ll,h--- Il i 2 9

n1 2

w *I w 2 9 or 9 tr lr{ry I " a s I I' d L - i -E @ r r 9 R u- y w

si t

.1 nryu,[

& KJi o .

,j 2 f3 t 9 25 w f ji f W

s siJ g E( U ,

p

\

E a

l j;ib----ft u

l m -- 3 r- -$$

jd0 2 EJ 7; a n EMa tNo O O O- .

gr u - - - -__

l  ; 1 i'

, J I

es s _

Ts PScA I _

TE Gts. w c ouss TTsn _

g g

g g

g _

l l J q,;I l

~

e e

n i g 6

v 5

T . i o

s v O 4 T so t O A ui a c

l B i i

x s E F n

I a

f -

R i g e '

O 0s

_ s G 3 u )

e P F P.

o F

s M

OP w R1R FT> -

o t8 4

e1 r0 u6 s94 o8 l - e _

cC g nRa EWP -

s l IllI

i;l:l i 1 lj' I c Y A L

' v P u P a U s R S E A1

' , g i t

8

- " :: U

) 0 " E '

RlE 8 8  : 37 4

t m Pw C- -

<  : 4 3

P2 _

Oo r  ! M G P(h f,f* g= ."

o o

T T

i2 F

Q M 7, hQg=

=

o [

):

t .

T L-O A S t R I s

T

[A,-

,- t e. _

E F^ c a

N u E o*

P .

i

.Av t ,

! g .

e t

%le 9 w o

i E

)

=

=

D I

S E AT RlE M I

R c E- O U n i G sT j ,.

,Ig 30o pWN .

fP( E I u D

N, I

S N

F s t

y I o o

. r g, !Qg=

=. ,

t.

e _

t.

S t .

s _

s e. _

Ai _

Fc d

e e t>

e, #8 a  ! y .

i g

g

%g.g' c

Wpn e

E

=

WWe

=

= T o

poMAT

-. t8 4

e1 r0 u7 _

s94 o8 l - e cCg nRa ENP

  • s, 3

. ~

, l el j

M E

) T S

RlE Y E- S PWN 2

Oo J GPN( t M

O R

F

] M

= . e s

.A g 4w

. 7, 0s 1i w 1

s E o

'e D yt.s s g

C t

At FC

o. 6mc u E i o$

i t e Rv i L aAT' Urs-I; m '

Airc'

, u C sb i

Gus I

L R:>u t

t t .

F e 8

e E o O

N D

I v

S T

U O

7Ig E

D .

I R

S Ro I

N ME-T g uRA o uAR i

cEE T ARP N VGO R

T

_ o E t8 M e1 4 E r0 P u8 s94 o8 l - e

_ cC g nR a .

_ EWP

l l!

1N_

l .

. RE _

Et _

PJvw - _

Do NPw(

g -

o g

7 _

R g E g , O go g

m eF i

m s pR p N yo 3 F I

t Mi u*

E v

i t

s ,

i r  ?

u o

t v b

~

T 4r e

- I 7 W t o V s

, t T E

- ~A t C F

C. C.

F

< E O R I F

G R  !" " U

+ )

MRAE A HD hV.

C A. SMP U G I

T S

u c rom

( Q R CA F.

I J

^

t ,

C5H St E

v. OOoU TTRS F R t O F

b i

~

, Y o

t8 4 .

e1 r0 u9 s94 o8 l - e cC g nRa ENP * =

s iIl l -

l I 1!1ll I1 l1lIl1ill w

w

. =

n

,L=g e 9==

eT=e k

. =

,..)T A k' A h V N

.B A A

. (S P d '

p 0 t

1 J '

d -

T A

%q r AT A4 P

k C r i k aY

.= S c i

1 d i w

o r

u. t eti a E F y e, e or it.

e U n R t i

n o . X .

i Er-n# =p5

e y8 U 0 s

i t

a r

.i T1 ew r

ne GI 3 t I gie iI e-wr e

. 2 G . =

I.

c .r F R P _. m ** )

O w* "=

" ,n9 f

l E

f e.1 t sn eet u ='* mf i t e(

F o

t8 4

e1 r0 u0 s95

- o8 l - e cC g nRa E1 4 P p, !l i

gv gu g o g c 4 e

) 7R RlE _

E- _

nWN _

ooO R sPN( _.

- E T

a eT nt uoM sS wsM

' sea wmR1

, = "

- . n l

.A N

'J o

i. W&

I t

$T

( gtoON l

aS s A

't s E C

n c 1 A s. O t W

FcE RF l 0 c T t

U T s

T' A I; M E I G u C , U I r

N F I

A R W o l

e E

F O

N D

I S

T U

O j,s " ] I g E

rD

- I N NS EN o I t

T oM r

_ A M R 1 sA

_ T .

C rT e

_ N PM o P E ooC t 8 4

e1 r0 u1 s95 o8 l - e cC g nR a ENP ll1i