ML23068A405

From kanterella
Jump to navigation Jump to search

21. Renewed Certificate of Compliance No. 1014, Amendment No. 6, Appendix a
ML23068A405
Person / Time
Site: Holtec
Issue date: 06/29/2023
From:
Storage and Transportation Licensing Branch
To:
Holtec
Shared Package
ML23068A384 List: ... further results
References
CAC 001028, EPID L-2020-RNW-0007
Download: ML23068A405 (1)


Text

RENEWED CERTIFICATE OF COMPLIANCE NO. 1014

APPENDIX A

TECHNICAL SPECIFICATIONS

FOR THE HI-STORM 100 CASK SYSTEM

AMENDMENT NO. 6 TABLE OF CONTENTS

1.0 USE AND APPLICATION 1.1-1 1.1 Definitions............................................. 1.1-1 1.2 Logical Connectors...................................... 1.2-1 1.3 CompletionTimes....................................... 1.3-1 1.4 Frequency............................................. 1.4-1

2.0..................................................... 2.0-1

3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY...... 3.0-1 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY.............. 3.0-2

3.1 SFSCINTEGRITY...................................... 3.1.1-1 3.1.1 Multi-PurposeCanister(MPC)....................... 3.1.1-1 3.1.2 SFSCHeatRemovalSystem........................ 3.1.2-1 3.1.3 MPC Cavity Reflooding............................3.1.3-1 3.1.4 Supplemental Cooling System.......................3.1.4-1

3.2 SFSCRADIATIONPROTECTION......................... 3.2.1-1 3.2.1 Deleted.........................................3.2.1-1 3.2.2 TRANSFER CASK SURFACE CONTAMINATION........3.2.2-1 3.2.3 Deleted.........................................3.2.3-1

3.3 SFSCCRITICALITYCONTROL............................ 3.3-1 3.3.1 BoronConcentration............................... 3.3.1-1

Table3-1 MPCCavityDryingLimits................................. 3.4-1 Table 3-2 MPC Helium Backfill Limits................................ 3.4-2

4.0...................................................... 4.0-1

5.0 ADMINISTRATIVECONTROLS................................. 5.0-1 5.1 Deleted............................................... 5.0-1 5.2 Deleted............................................... 5.0-1 5.3 Deleted............................................... 5.0-1 5.4 Radioactive Effluent Control Program........................ 5.0-1 5.5 CaskTransportEvaluationProgram......................... 5.0-2 5.6 Deleted 5.7 RadiationProtectionProgram.............................. 5.0-5 5.8 Aging Management Program.............................. 5.0-8

Table 5-1 TRANSFER CASK and OVERPACK Lifting Requirements........ 5.0-6

i Definitions 1.1

1.0 USE AND APPLICATION

1.1 Definitions


NOTE--------------------------------------------------------

The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.

Term Definition ACTIONS ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion Times.

FUEL BUILDING The FUEL BUILDING is the site-specific power plant facility, governed by the regulations of 10CFR Part 50, where the loaded OVERPACK or TRANSFER CASK is transferred to or from the transporter.

LOADING OPERATIONS LOADING OPERATIONS include all licensed activities on an OVERPACK or TRANSFER CASK while it is being loaded with fuel assemblies. LOADING OPERATIONS begin when the first fuel assembly is placed in the MPC and end when the OVERPACK or TRANSFER CASK is suspended from or secured on the transporter. LOADING OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK.

MULTI-PURPOSE CANISTER MPCs are the sealed spent nuclear fuel canisters (MPC) which consist of a honeycombed fuel basket contained in a cylindrical canister shell which is welded to a baseplate, lid with welded port cover plates, and closure ring. The MPC provides the confinement boundary for the contained radioactive materials.

(continued)

Certificate of Compliance No. 1014 Appendix A 1.1-1 Definitions 1.1 1.1 Definitions (continued)

OVERPACK OVERPACKs are the casks which receive and contain the sealed MPCs for interim storage on the ISFSI.

They provide gamma and neutron shielding, and provide for ventilated air flow to promote heat transfer from the MPC to the environs. The OVERPACK does not include the TRANSFER CASK.

SPENT FUEL STORAGE SFSCs are containers approved for the storage of CASKS (SFSCs) spent fuel assemblies at the ISFSI. The HI-STORM 100 SFSC System consists of the OVERPACK and its integral MPC.

STORAGE OPERATIONS STORAGE OPERATIONS include all licensed activities that are performed at the ISFSI while an SFSC containing spent fuel is situated within the ISFSI perimeter. STORAGE OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK (or the reverse).

TRANSFER CASK TRANSFER CASKs are containers designed to contain the MPC during and after loading of spent fuel assemblies and to transfer the MPC to or from the OVERPACK. The HI-STORM 100 System employs either the 125-Ton or the 100-Ton HI-TRAC TRANSFER CASK.

Certificate of Compliance No. 1014 Appendix A 1.1-2 Definitions 1.1 (continued)

1.1 Definitions (continued)

TRANSPORT OPERATIONS TRANSPORT OPERATIONS include all licensed activities performed on an OVERPACK or TRANSFER CASK loaded with one or more fuel assemblies when it is being moved to and from the ISFSI. TRANSPORT OPERATIONS begin when the OVERPACK or TRANSFER CASK is first suspended from or secured on the transporter and end when the OVERPACK or TRANSFER CASK is at its destination and no longer secured on or suspended from the transporter.

TRANSPORT OPERATIONS includes transfer of the MPC between the OVERPACK and the TRANSFER CASK, which begins when the MPC is lifted off the HI-TRAC bottom lid and ends when the MPC is supported from beneath by the OVERPACK (or the reverse).

UNLOADING OPERATIONS UNLOADING OPERATIONS include all licensed activities on an SFSC to be unloaded of the contained fuel assemblies. UNLOADING OPERATIONS begin when the OVERPACK or TRANSFER CASK is no longer suspended from or secured on the transporter and end when the last fuel assembly is removed from the SFSC. UNLOADING OPERATIONS does not include MPC transfer between the TRANSFER CASK and the OVERPACK, which begins when the MPC is no longer supported from beneath by the OVERPACK and ends when the MPC is lowered onto the HI-TRAC bottom lid.

Certificate of Compliance No. 1014 Appendix A 1.1-3 Logical Connectors 1.2

1.0 USE AND APPLICATION

1.2 Logical Connectors

PURPOSE The purpose of this section is to explain the meaning of logical connectors.

Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings.

BACKGROUND Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.

When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.

(continued)

Certificate of Compliance No. 1014 1.2-1 Appendix A Logical Connectors 1.2 1.2 Logical Connectors

EXAMPLES The following examples illustrate the use of logical connectors.

EXAMPLE 1.2-1

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME

A. LCO not met. A.1 VERIFY...

AND

A.2 Restore...

In this example the logical connector ANDis used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.

(continued)

Certificate of Compliance No. 1014 Appendix A 1.2-2 Logical Connectors 1.2

1.2 Logical Connectors

EXAMPLES EXAMPLE 1.2-2 (continued)

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME

A. LCO not met. A.1 Stop...

OR

A.2.1 Verify...

AND

A.2.2.1 Reduce...

OR

A.2.2.2 Perform...

OR

A.3 Remove...

This example represents a more co mplicated use of logical connectors.

Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector OR and the left justified placement. Any one of these three ACTIONS may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector AND. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.

Certificate of Compliance No. 1014 Appendix A 1.2-3 Completion Times 1.3

1.0 USE AND APPLICATION

1.3 Completion Times

PURPOSE The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.

BACKGROUND Limiting Conditions for Operation (LCOs) specify the lowest functional capability or performance levels of equipment required for safe operation of the facility. The ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Spec ified with each stated Condition are Required Action(s) and Completion Times(s).

DESCRIPTION The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the HI-STORM 100 System is in a specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the HI-STORM 100 System is not within the LCO Applicability.

Once a Condition has been entered, subsequent subsystems, components, or variables expressed in the Condition, discovered to be not within limits, will not result in separate entry into the Condition unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.

(continued)

Certificate of Compliance No. 1014 1.3-1 Appendix A Completion Times 1.3 1.3 Completion Times (continued)

EXAMPLES The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.

EXAMPLE 1.3-1

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME

B. RequiredB.1 Perform Action B.1 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Action and associated AND Completion Time not met. B.2 Perform Action B.2 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />

Condition B has two Required Actions. Each Required Action has its own separate Completion Time. EachCompletion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are to complete action B.1 within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> AND complete action B.2 within 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />. A total of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> is allowed for completing action B.1 and a total of 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br /> (not 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />) is allowed for completing action B.2 from the time that Condition B was entered. If action B.1 is completed within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, the time allowed for completing action B.2 is the next 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> because the total time allowed for completing action B.2 is 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />.

(continued)

Certificate of Compliance No. 1014 Appendix A 1.3-2 Completion Times 1.3

1.3 Completion Times

EXAMPLES EXAMPLE 1.3-2 (continued)

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME

A. One systemA.1 Restore system to7 days not within limit. within limit.

B. RequiredB.1 Complete action12 hours Action and B.1.

associated Completion AND Time not met.

B.2 Complete action36 hours B.2.

When a system is determined not to meet the LCO, Condition A is entered. If the system is not restored within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the system is restored after Condition B is entered, Conditions A and B are exited, and t herefore, the Required Actions of Condition B may be terminated.

(continued)

Certificate of Compliance No. 1014 1.3-3 Appendix A Completion Times 1.3 1.3 Completion Times

EXAMPLES EXAMPLE 1.3-3 (continued)

ACTIONS


NOTE-------------------------------------------

Separate Condition entry is allowed for each component.

CONDITION REQUIRED ACTION COMPLETION TIME

A. LCO not met. A.1 Restore4 hours compliance with LCO.

B. RequiredB.1 Complete action6 hours Action and B.1.

associated Completion AND Time not met.

B.2 Complete action12 hours B.2.

The Note above the ACTIONS table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was app licable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each component, and Completion Times tracked on a per component basis.

When a component is determined to not meet the LCO, Condition A is entered and its Completion Time st arts. If subsequent components are determined to not meet the LCO, Condition A is entered for each component and separate Completion Times start and are tracked for each component.

(continued)

Certificate of Compliance No. 1014 Appendix A 1.3-4 Completion Times 1.3 1.3 Completion Times (continued)

IMMEDIATE When "Immediately" is used as a Completion Time, the Required COMPLETION Action should be pursued without delay and in a controlled manner.

TIME

Certificate of Compliance No. 1014 1.3-5 Appendix A Frequency 1.4

1.0 USE AND APPLICATION

1.4 Frequency

PURPOSE The purpose of this section is to define the proper use and application of Frequency requirements.

DESCRIPTION Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Limiting Condition for Operation (LCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.

The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR.

Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed.

With an SR satisfied, SR 3.0.4 imposes no restriction.

(continued)

Certificate of Compliance No. 1014 1.4-1 Appendix A Frequency 1.4 1.4 Frequency (continued)

EXAMPLES The following examples illustrate the various ways that Frequencies are specified.

EXAMPLE 1.4-1

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY

Verify pressure within limit 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment or variables are outside specified limits, or the facility is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the facility is in a condition specified in the Applicability of the LCO, the LCO is not met in accordance with SR 3.0.1.

If the interval as specified by SR 3.0.2 is exceeded while the facility is not in a condition specified in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the specified condition. Failure to do so would result in a violation of SR 3.0.4

(continued)

Certificate of Compliance No. 1014 1.4-2 Appendix A Frequency 1.4

1.4 Frequency

EXAMPLES (continued) EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY

Verify flow is within limits. Once within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> prior to starting activity

AND

24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> thereafter

Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time the example activity is to be performed, the Surveillanc e must be performed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> prior to starting the activity.

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the 25%

extension allowed by SR 3.0.2.

"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If the s pecified activity is canceled or not performed, the measurement of both intervals stops. New intervals start upon preparing to restart the specified activity.

Certificate of Compliance No. 1014 Appendix A 1.4-3 2.0

2.0

This section is intentionally left blank

Certificate of Compliance No. 1014 2.0-1 Appendix A LCO Applicability 3.0

3.0 LIMITING CONDITIONS FOR OPERATION (LCO) APPLICABILITY

LCO 3.0.1 LCOs shall be met during specified conditions in the Applicability, except as provided in LCO 3.0.2.

LCO 3.0.2 Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5.

If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.

LCO 3.0.3 Not applicable.

LCO 3.0.4 When an LCO is not met, entry into a specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in specified conditions in the Applicability that are required to comply with ACTIONS or that are related to the unloading of an SFSC.

LCO 3.0.5 Equipment removed from service or not in service in compliance with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate it meets the LCO or that other equipment meets the LCO. This is an exception to LCO 3.0.2 for the system returned to service under administrative control to perform the testing.

Certificate of Compliance No. 1014 3.0-1 Appendix A SR Applicability 3.0

3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

SR 3.0.1 SRs shall be met during the specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be failure to meet the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on equipment or variables outside specified limits.

SR 3.0.2 The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.

For Frequencies specified as once, the above interval extension does not apply. If a Completion Time requires periodic performance on a once per... basis, the above Frequency extension applies to each performance after the initial performance.

Exceptions to this Specification are stated in the individual Specifications.

SR 3.0.3 If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed, from the time of discovery, up to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> or up to the limit of the specified Frequency, whichever is less.

This delay period is permitted to allow performance of the Surveillance.

If the Surveillance is not performed within the delay period, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.

(continued)

Certificate of Compliance No. 1014 3.0-2 Appendix A 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY

SR 3.0.3 within the delay period and the (continued) When the Surveillance is performed Surveillance is not met, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.

SR 3.0.4 Entry into a specified condition in the Applicability of an LCO shall not be made unless the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into specified conditions in the Applicability that are required to comply with Actions or that are related to the unloading of an SFSC.

Certificate of Compliance No. 1014 3.0-3 Appendix A Multi-Purpose Canister (MPC) 3.1.1

3.1 SFSC INTEGRITY

3.1.1 Multi-Purpose Canister (MPC)

LCO 3.1.1 The MPC shall be dry and helium filled.

Table 3-1 provides decay heat and burnup limits for forced helium dehydration (FHD) and vacuum drying. FHD is not subject to time limits. Vacuum drying is subject to the following time limits, from the end of bulk water removal until the start of helium backfill:

MPC Total Decay Heat (Q) Vacuum Drying Time Limit Q < 23 kW None 23 kW < Q <28.74 kW 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> Q > 28.74 kW Not Permitted (see Table 3-1)

APPLICABILITY: During TRANSPORT OPERATIONS and STORAGE OPERATIONS.

ACTIONS


NOTES---------------------------------------------------------

Separate Condition entry is allowed for each MPC.

CONDITION REQUIRED ACTION COMPLETIONTIME

A. MPC cavity vacuum A.1 Perform an engineering 7 days drying pressure or evaluation to determine the demoisturizer exit gas quantity of moisture left in temperature limit notthe MPC.

met.

AND

A.2 Develop and initiate corrective actions necessary 30 days to return the MPC to compliance with Table 3-1.

Certificate of Compliance No. 1014 Appendix A 3.1.1-1 Multi-Purpose Canister (MPC) 3.1.1 ACTIONS (continued)

CONDITION REQUIRED ACTION COMPLETIONTIME

B. MPC cavity vacuum B.1 Backfill the MPC cavity with 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> drying acceptance helium to a pressure of at criteria not met during least 0.5 atm.

allowable time.

C. MPC helium backfill limit C.1 Perform an engineering 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> not met. evaluation to determine the impact of helium differential.

AND

C.2.1 Develop and initiate 14 Days corrective actions necessary to return the MPC to an analyzed condition by adding helium to or removing helium from the MPC.

OR

C.2.2 Develop and initiate corrective actions necessary to demonstrate through analysis, using the models and methods from the HI-STORM FSAR, that all limits for cask components and contents will be met.

Certificate of Compliance No. 1014 Appendix A 3.1.1-2 Multi-Purpose Canister (MPC) 3.1.1

(continued)

CONDITION REQUIRED ACTION COMPLETIONTIME

D. MPC helium leak rate D.1 Perform an engineering 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> limit for vent and drain evaluation to determine the port cover plate welds impact of increased helium not met. leak rate on heat removal capability and offsite dose.

AND

D.2 Develop and initiate 7 days corrective actions necessary to return the MPC to compliance with SR 3.1.1.3.

E. Required Actions and E.1 Remove all fuel assemblies 30 days associated Completion from the SFSC.

Times not met.

Certificate of Compliance No. 1014 Appendix A 3.1.1-3 Multi-Purpose Canister (MPC) 3.1.1

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.1.1.1 Verify that the MPC cavity has been dried in Once, prior to accordance with the applicable limits in Table 3-1, TRANSPORT within the specified vacuum drying time limits as OPERATIONS applicable.

SR 3.1.1.2 Verify MPC helium backfill quantity is within the Once, prior to limit specified in Table 3-2 for the applicable MPC TRANSPORT model. Re-performance of this surveillance is not OPERATIONS required upon successful completion of Action C.2.2.

SR 3.1.1.3 Verify that the helium leak rate through the MPC Once, prior to vent and drain port confinement welds meets the TRANSPORT leaktight criteria of ANSI N14.5-1997. OPERATIONS

Certificate of Compliance No. 1014 Appendix A 3.1.1-4 SFSC Heat Removal System 3.1.2 3.1 SFSC INTEGRITY

3.1.2 SFSC Heat Removal System

LCO 3.1.2 The SFSC Heat Removal System shall be operable


NOTE---------------------------------------------------------

The SFSC Heat Removal System is operable when 50% or more of the inlet and outlet vent areas are unblocked and available for flow or when air temperature requirements are met.

APPLICABILITY: During STORAGE OPERATIONS.

ACTIONS


NOTE---------------------------------------------------------

Separate Condition entry is allowed for each SFSC.

CONDITION REQUIRED ACTION COMPLETIONTIME

A. SFSC Heat Removal A.1 Remove blockage. N/A System operable, but partially (<50%) blocked.

B. SFSC Heat Removal B.1 Restore SFSC Heat Removal 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> System inoperable. System to operable status.

Certificate of Compliance No. 1014 Appendix A 3.1.2-1 SFSC Heat Removal System 3.1.2

CONDITION REQUIRED ACTION COMPLETIONTIME

C. Required Action B.1 and C.1 Measure SFSC dose rates in Immediately and associated Completion accordance with the Radiation once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Time not met. Protection Program. thereafter

AND

C.2.1 Restore SFSC Heat Removal System to 64 hours7.407407e-4 days <br />0.0178 hours <br />1.058201e-4 weeks <br />2.4352e-5 months <br /> (MPC operable status. heat < 28.74 kW)

24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> (MPC heat >28.74 kW)

OR

C.2.2 Transfer the MPC into a TRANSFER CASK. 64 hours7.407407e-4 days <br />0.0178 hours <br />1.058201e-4 weeks <br />2.4352e-5 months <br /> (MPC heat < 28.74 kW)

24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> (MPC heat >28.74 kW)

Certificate of Compliance No. 1014 Appendix A 3.1.2-2 SFSC Heat Removal System 3.1.2 SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.1.2 Verify all OVERPACK inlet and outlet air ducts are24 hours free of blockage from solid debris or floodwater.

OR

For OVERPACKS with installed temperature 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> monitoring equipment, verify that the difference between the average OVERPACK air outlet temperature and ISFSI ambient temperature is

< 155oF for OVERPACKS containing PWR MPCs, < 137oF for OVERPACKS containing BWR MPCs.

Certificate of Compliance No. 1014 Appendix A 3.1.2-3 Fuel Cool-Down 3.1.3

3.1 SFSC INTEGRITY

3.1.3 MPC Cavity Reflooding

LCO 3.1.3 The MPC cavity pressure shall be < 100 psig


NOTE--------------------------------------------------------

The LCO is only applicable to wet UNLOADING OPERATIONS.

APPLICABILITY: UNLOADING OPERATIONS prior to and during re-flooding.

ACTIONS


NOTE--------------------------------------------------------

Separate Condition entry is allowed for each MPC.

CONDITION REQUIRED ACTION COMPLETIONTIME

A. MPC cavity pressure not A.1 Stop re-flooding operations Immediately within limit. until MPC cavity pressure is within limit.

AND

A.2 Ensure MPC vent port is not Immediately closed or blocked.

Certificate of Compliance No. 1014 Appendix A 3.1.3-1 Fuel Cool-Down 3.1.3

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.1.3.1 Ensure via analysis or direct measurement that Once, prior to MPC cavity pressure is within limit. MPC re-flooding operations.

AND

Once every 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> thereafter when using direct measurement.

Certificate of Compliance No. 1014 Appendix A 3.1.3-2 Supplemental Cooling System 3.1.4 3.1 SFSC INTEGRITY

3.1.4 Supplemental Cooling System

LCO 3.1.4 The Supplemental Cooling System (SCS) shall be operable


NOTE------------------------------------------------------------------

Upon reaching steady state operation, the SCS may be temporarily disabled for a short duration

(< 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br />) to facilitate necessary operational evolutions, such as movement of the TRANSFER CASK through a door way, or other similar operation.

APPLICABILITY: This LCO is applicable when the loaded MPC is in the TRANSFER CASK and:

a. Within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of the completion of MPC drying operations in accordance with LCO 3.1.1 or within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of transferring the MPC into the TRANSFER CASK if the MPC is to be unloaded

AND

b1.The MPC contains one or more fuel assemblies with an average burnup > 45,000 MWD/MTU

OR

b2. The MPC decay heat load exceeds 28.74 kW.

ACTIONS

CONDITION REQUIRED ACTION COMPLETIONTIME

A. SFSC Supplemental A.1 Restore SFSC Supplemental 7 days Cooling System Cooling System to operable inoperable. status.

B. Required Action A.1 andB.1 Remove all fuel assemblies 30 days associated Completion from the SFSC.

Time not met.

Certificate of Compliance No. 1014 Appendix A 3.1.4-1 Supplemental Cooling System 3.1.4

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.1.4.1 Verify Supplemental Cooling System is operable. 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />

Certificate of Compliance No. 1014 Appendix A 3.1.4-2 Deleted 3.2.1

3.2 SFSC RADIATION PROTECTION.

3.2.1 Deleted.

LCO 3.2.1 Deleted.

Certificate of Compliance No. 1014 Appendix A 3.2.1-1 TRANSFER CASK Surface Contamination 3.2.2 3.2 SFSC RADIATION PROTECTION.

3.2.2 TRANSFER CASK Surface Contamination.

LCO 3.2.2 Removable contamination on the exterior surfaces of the TRANSFER CASK and accessible portions of the MPC shall each not exceed:

a. 1000 dpm/100 cm2 from beta and gamma sources
b. 20 dpm/100 cm2 from alpha sources.

NOTE--------------------------------------------------------

This LCO is not applicable to the TRANSFER CASK if MPC transfer operations occur inside the FUEL BUILDING.

APPLICABILITY: During TRANSPORT OPERATIONS.

ACTIONS


NOTE--------------------------------------------------------

Separate Condition entry is allowed for each TRANSFER CASK.

CONDITION REQUIRED ACTION COMPLETIONTIME

A. TRANSFER CASK or A.1 Restore removable surface 7 days MPC removable surface contamination to within contamination limits not limits.

met.

Certificate of Compliance No. 1014 Appendix A 3.2.2-1 TRANSFER CASK Surface Contamination 3.2.2

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.2.2.1 Verify that the removable contamination on the Once, prior to exterior surfaces of the TRANSFER CASK and TRANSPORT accessible portions of the MPC containing fuel is OPERATIONS within limits.

Certificate of Compliance No. 1014 Appendix A 3.2.2-2 Deleted 3.2.3

3.2 SFSC RADIATION PROTECTION.

3.2.3 Deleted.

LCO 3.2.3 Deleted.

Certificate of Compliance No. 1014 Appendix A 3.2.3-1 Boron Concentration 3.3.1

3.3 SFSC CRITICALITY CONTROL

3.3.1 Boron Concentration

LCO 3.3.1 As required by CoC Appendix B, Table 2.1-2, the concentration of boron in the water in the MPC shall meet the following limits for the applicable MPC model and the most limiting fuel assembly array/class and classification to be stored in the MPC:

a. MPC-24 with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and < 5.0 wt% 235U: > 400 ppmb
b. MPC-24E or MPC-24EF (all INTACT FUEL ASSEMBLIES) with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and < 5.0 wt% 235U:

> 300 ppmb

c. Deleted.
d. Deleted.
e. MPC-24E or MPC-24EF (one or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS) with one or more fuel assemblies having an initial enrichment > 4.0 wt% 235U and < 5.0 wt% 235U: > 600 ppmb
f. MPC-32/32F: Minimum soluble boron concentration as required by the table below.

All INTACT FUEL ASSEMBLIES One or more DAMAGED FUELASSEMBLIES or FUEL DEBRIS

Array/Class Maximum Initial Maximum Initial Maximum Initial Maximum Initial Enrichment Enrichment 5.0 Enrichment Enrichment

< 4.1 wt% 235U wt% 235U < 4.1 wt% 235U 5.0 wt% 235U (ppmb) (ppmb) (ppmb) (ppmb) 14x14A/B/C/D/E 1,300 1,900 1,500 2,300 15x15A/B/C/G 1,800 2,500 1,900 2,700

15x15D/E/F/H 1,900 2,600 2,100 2,900 16x16A 1,400 2,000 1,500 2,300

17x17A/B/C 1,900 2,600 2,100 2,900

For maximum initial enrichments between 4.1 wt% and 5.0 wt% 235U, the minimum soluble boron concentration may be determined by linear interpolation between the minimum soluble boron concentrations at 4.1 wt% and 5.0 wt%.

Certificate of Compliance No. 1014 Appendix A 3.3.1-1 Boron Concentration

3.3.1 APPLICABILITY

During PWR fuel LOADING OPERATIONS with fuel and water in the MPC

AND

During PWR fuel UNLOADING OPERATIONS with fuel and water in the MPC.

ACTIONS


NOTE-------------------------------------------------------------

Separate Condition entry is allowed for each MPC.

CONDITION REQUIRED ACTION COMPLETIONTIME

A. Boron concentration notA.1 Suspend LOADING Immediately within limit. OPERATIONS or UNLOADING OPERATIONS.

AND

A.2 Suspend positive reactivity Immediately additions.

AND

A.3 Initiate action to restore boron Immediately concentration to within limit.

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY


NOTE----------------------------------------- Once, within 4 This surveillance is only required to be performed if the MPC is hours prior to submerged in water or if water is to be added to, or recirculated through entering the the MPC. Applicability of this


LCO.

SR 3.3.1.1 Verify boron concentration is within the applicableAND limit using two independent measurements.

Once per 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> thereafter.

Certificate of Compliance No. 1014 Appendix A 3.3.1-2 MPC Cavity Drying Limits Table 3-1

Table 3-1 MPC Cavity Drying Limits

Fuel Burnup Method of Moisture (MWD/MTU) MPC Heat Load (kW)Removal (Notes 1 and 2)

< 29 (MPC-All Assemblies < 45,000 24/24E/24EF) VDS or FHD

< 26 (MPC-32/32F)

< 26 (MPC-68/68F/68FF)

> 29 (MPC-24/24E/24EF)

All Assemblies < 45,000 > 26 (MPC-32/32F) FHD

> 26 (MPC-68/68F/68FF)

One or more assemblies > 45,000 < 36.9 FHD

Notes:

1. VDS means Vacuum Drying System. The acceptance criterion for VDS is MPC cavity pressure shall be < 3 torr for > 30 minutes.
2. FHD means Forced Helium Dehydration System. The acceptance criterion for the FHD System is gas temperature exiting the demoisturizer shall be < 21oF for > 30 minutes or gas dew point exiting the MPC shall be < 22.9oF for > 30 minutes.
3. For total decay heat loads up to and including 20.88 kW for the MPC-24 and 21.52 kW for the MPC-68, vacuum drying of the MPC must be performed with the annular gap between the MPC and the HI-TRAC filled with water. For higher total decay heat loads in the MPC-24 and MPC-68 or for any decay heat load in an MPC-24E or MPC-32, the annular gap must be continuously flushed with water with sufficient flow to keep the exit water temperature below 125oF.

Certificate of Compliance No. 1014 Appendix A 3.4-1 MPC Helium Backfill Limits Table 3-2 Table 3-2 MPC Helium Backfill Limits1

MPC MODEL LIMIT

MPC-24/24E/24EF

i. Cask Heat Load < 27.77 kW (MPC-24) 0.1212 +/-10% g-moles/l or < 28.17 kW (MPC-24E/EF)

OR

> 29.3 psig and < 48.5 psig

ii. Cask Heat Load >27.77 kW (MPC-24) >45.5 psig and < 48.5 psig or > 28.17 kW (MPC-24E/EF)

MPC-68/68F/68FF

i. Cask Heat Load < 28.19 kW 0.1218 +/-10% g-moles/l

OR

> 29.3 psig and < 48.5 psig

ii. Cask Heat Load > 28.19 kW >45.5 psig and < 48.5 psig

MPC-32/32F

i Cask Heat Load < 28.74 kW >29.3 psig and < 48.5 psig

ii. Cask Heat Load >28.74 kW >45.5 psig and < 48.5 psig

1 Helium used for backfill of MPC shall have a purity of > 99.995%. Pressure range is at a reference temperature of 70oF

Certificate of Compliance No. 1014 3.4-2 Appendix A 4.0

4.0

This section is intentionally left blank

Certificate of Compliance No. 1014 4.0-1 Appendix A Programs 5.0

5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS

The following programs shall be established, implemented and maintained.

5.1 Deleted.

5.2 Deleted.

5.3 Deleted.

5.4 Radioactive Effluent Control Program

This program implements the requirements of 10 CFR 72.44(d).

a. The HI-STORM 100 Cask System does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required.

Specification 3.1.1, Multi-Purpose Canister (MPC), provides assurance that there are not radioactive effluents from the SFSC.

b. This program includes an environmental monitoring program. Each general license user may incorporate SFSC operations into their environmental monitoring programs for 10 CFR Part 50 operations.
c. An annual report shall be submitted pursuant to 10 CFR 72.44(d)(3).

(continued)

Certificate of Compliance No. 1014 5.0-1 Appendix A Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS

5.5 Cask Transport Evaluation Program

This program provides a means for evaluating various transport configurations and transport route conditions to ensure that the design basis drop limits are met. For lifting of the loaded TRANSFER CASK or OVERPACK using devices which are integral to a structure governed by 10 CFR Part 50 regulations, 10 CFR 50 requirements apply.

This program is not applicable when the TRANSFER CASK or OVERPACK is in the FUEL BUILDING or is being handled by a device providing support from underneath (i.e., on a rail car, heavy haul trailer, air pads, etc...) or is being handled by a device designed in accordance with the increased safety fac tors of ANSI N14.6 and/or having redundant drop protection.

Pursuant to 10 CFR 72.212, this program shall evaluate the site-specific transport r oute conditions.

a. For free-standing OVERPACKS and the TRANSFER CASK, the following requirements apply:
1. The lift height above the transport route surface(s) shall not exceed the limits in Table 5-1 except as provided for in Specification 5.5.a.2. Also, the program shall ensure that the tr ansport route conditions (i.e., surface hardness and pad thickness) are equivalentto or less limiting than either Set A or Set B in HI-STORM FSAR Table 2.2.9.
2. For site-specific transport route surfaces that are not bounded by either the Set A or Set B parameters of FSAR Table 2.2.9, the program may determine lift heights by analysis based on the site-specific conditions to ensure that the impact loading due to design basis drop events does not exceed 45 gs at the top of the MPC fuel basket. These alternative analyses shall be commensurate with the drop analyses described in the Final Safety Analysis Report for the HI-STORM 100 Cask System. The program shall ensure that these alternative analyses are documented and controlled.

(continued)

Certificate of Compliance No. 1014 5.0-2 Appendix A Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS

5.5 Cask Transport Evaluation Program (continued)

3. The TRANSFER CASK or OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during transportation between the FUEL BUILDING and the CTF and/or ISFSI pad, provided the lifting device is designed in accordance with ANSI N14.6 and has redundant drop protection features.
4. The TRANSFER CASK and MPC, when loaded with spent fuel, may be lifted to those heights necessary to perform cask handling operations, including MPC transfer, provided the lifts are made with structures and components designed in accordance with the criteria specified in Section 3.5 of Appendix B to Certificate of Compliance No. 1014, as applicable.
b. For the transport of OVERPACKS to be anchored to the ISFSI pad, the following requirements apply:
1. Except as provided in 5.5.b.2, user shall determine allowable OVERPACK lift height limit(s) above the transport route surface(s) based on site-specific transport route conditions. The lift heights shall be determined by evaluation or analysis, based on limiting the design basis cask deceleration during a postulated drop event to < 45 gs at the top of the MPC fuel basket. Evaluations and/or analyses shall be performed using methodologies consistent with those in the HI-STORM 100 FSAR.
2. The OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during transportation between the FUEL BUILDING and the CTF and/or ISFSI pad provided the lifting device is designed in accordance with ANSI N14.6 and has redundant drop protection features.

(continued)

Certificate of Compliance No. 1014 5.0-3 Appendix A Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS

5.5 Cask Transport Evaluation Program (continued)

Table 5-1

TRANSFER CASK and Free-Standing OVERPACK Lifting Requirements

ITEM ORIENTATION LIFTING HEIGHT LIMIT (in.)

TRANSFER CASK Horizontal 42 (Notes 1 and 2)

TRANSFER CASK Vertical None Established (Note 2)

OVERPACK Horizontal Not Permitted OVERPACK Vertical 11 (Note 3)

Notes: 1. To be measured from the lowest point on the TRANSFER CASK (i.e., the bottom edge of the cask/lid assemblage)

2. See Technical Specification 5.5.a.3 and 4
3. See Technical Specification 5.5.a.3.

(continued)

Certificate of Compliance No. 1014 5.0-4 Appendix A Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS

5.6 Deleted.

5.7 Radiation Protection Program

5.7.1 Each cask user shall ensure that the Part 50 radiation protection program appropriately addresses dry storage cask loading and unloading, as well as ISFSI operations, including transport of the loaded OVERPACK or TRANSFER CASK outside of facilities governed by 10 CFR Part 50. The radiation protection program shall include appropriate controls for direct radiation and contamination, ensuring compliance with applicable regulations, and implementing actions to maintain personnel occupational exposures As Low As Reasonably Achievable (ALARA). The actions and criteria to be included in the program are provided below.

5.7.2 As part of its evaluation pursuant to 10 CFR 72.212(b)(5)(iii), the licensee shall perform an analysis to confirm that the dose limits of 10 CFR 72.104(a) will be satisfied under the actual site conditions and ISFSI configuration, considering the planned number of casks to be deployed and the cask contents.

5.7.3 Based on the analysis performed pursuant to Section 5.7.2, the licensee shall establish individual cask surface dose rate limits for the HI-TRAC TRANSFER CASK and the HI-STORM OVERPACK to be used at the site. Total (neutron plus gamma) dose rate limits shall be established at the following locations:

a. The top of the TRANSFER CASK and the OVERPACK.
b. The side of the TRANSFER CASK and OVERPACK
c. The inlet and outlet ducts on the OVERPACK

5.7.4 Notwithstanding the limits established in Section 5.7.3, the measured dose rates on a loaded OVERPACK shall not exceed the following values:

a. 30 mrem/hr (gamma + neutron) on the top of the OVERPACK
b. 300 mrem/hr (gamma + neutron) on the side of the OVERPACK, excluding inlet and outlet ducts

5.7.5 The licensee shall measure the TRANSFER CASK and OVERPACK surface neutron and gamma dose rates as described in Section 5.7.8 for comparison against the limits established in Section 5.7.3 or Section 5.7.4, whichever are lower.

Certificate of Compliance No. 1014 5.0-5 Appendix A Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS

5.7 Radiation Protection Program (contd)

5.7.6 If the measured surface dose rates exceed the lower of the two limits established in Section 5.7.3 or Section 5.7.4, the licensee shall:

a. Administratively verify that the correct contents were loaded in the correct fuel storage cell locations.
b. Perform a written evaluation to verify whether placement of the as-loaded OVERPACK at the ISFSI will cause the dose limits of 10 CFR 72.104 to be exceeded.
c. Perform a written evaluation within 30 days to determine why the surface dose rate limits were exceeded.

5.7.7 If the evaluation performed pursuant to Section 5.7.6 shows that the dose limits of 10 CFR 72.104 will be exceeded, the MPC shall not be placed into storage until appropriate corrective action is taken to ensure the dose limits are not exceeded.

5.7.8 TRANSFER CASK and OVERPACK surface dose rates shall be measured at approximately the following locations:

a. A minimum of four (4) dose rate measurements shall be taken on the side of the TRANSFER CASK approximately at the cask mid-height plane. The measurement locations shall be approximately 90 degrees apart around the circumference of the cask. Dose rates shall be measured between the radial ribs of the water jacket.
b. A minimum of four (4) TRANSFER CASK top lid dose rates shall be measured at locations approximately half way between the edge of the hole in the top lid and the outer edge of the top lid, 90 degrees apart around the circumference of the top lid.
c. A minimum of twelve (12) dose rate measurements shall be taken on the side of the OVERPACK in three sets of fourmeasurements. One measurement set shall be taken approximately at the cask mid-height plane, 90 degrees apart around the circumference of the cask. The second and third measurement sets shall be taken approximately 60 inches above and below the mid-height plane, respectively, also 90 degrees apart around the circumference of the cask.
d. A minimum of five (5) dose rate measurements shall be taken on the top of the OVERPACK. One dose rate measurement shall be taken at approximately the center of the lid and four measurements shall be taken at locations on the top concrete shield, approximately half way between the center and the edge of the top concrete shield, 90 degrees apart around the circumference of the lid.

Certificate of Compliance No. 1014 5.0-6 Appendix A Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS

5.7 Radiation Protection Program (contd)

e. A dose rate measurement shall be taken on contact at the surface of each inlet and outlet vent duct screen of the OVERPACK.

Certificate of Compliance No. 1014 5.0-7 Appendix A Programs 5.0

ADMINISTRATIVE CONTROLS AND PROGRAMS

5.8 Aging Management Program (AMP)

Each general licensee shall have a program to establish, implement, and maintain written procedures for each applicable AMP described in the FSAR.

The program shall include provisions for changing AMP elements, as necessary, and within the limitations of the approved design bases to address new information on aging effects based on inspection findings and/or industry operating experience. Each procedure shall contain a reference to the specific aspect of the AMP element implemented by that procedure, and that reference shall be maintained even if the procedure is modified.

The general licensee shall establish and implement these written pr ocedures prior to entering the per iod of ext ended oper ation or no later than 365 day s after the effective date of the renewal of the CoC, whichever i s l ater. The general licensee shall maintain these written procedures for as l ong as the general licensee continues to operate H I-STORM 100 Cask Systems i n service for longer than 20 ye ars.

Each general l icensee shall perform t ollgate assessments as desc ribed in Chapter 9 of the FSAR.

Certificate of Compliance No. 1014 5.0-8 Renewed Amendment No. 6 Appendix A