ML20244B061

From kanterella
Jump to navigation Jump to search
Rev 2 to Odcm
ML20244B061
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 01/18/1989
From: Richard Anderson
DETROIT EDISON CO.
To:
Shared Package
ML20244B056 List:
References
ODCM-.0, ODCM-0.0, NUDOCS 8904180359
Download: ML20244B061 (80)


Text

_

Nocecar Prrducti:n.- Fermi 2

' C DCM-0.0 Cffsits D:se C:lculatisn M:nual R:visisn 2 -

Page 0.0-1 o

+y )-'

s i

I DETROIT EDISON - FERMI 2 OFFSITE DOSE CALCULATION MANUAL

.p

(

j-1 i

i AriMS - INFORMATION SERVICES Date approved: /d -/.(' -[/ ' Release authorized by: // ds[!

In gr7-

/

Change numbers incorporated: LCR 88-032-ODM DSN 07MA1-6,6 Rev 2

Date int i R MQ DTC TMPLAN File 1715.02 Recipient 362 l.

h 0%

y

= _ -m _ -_--

1

\\

ODCM-0.0 Revision 2 -

Page 0.0-2 b

TABLE OF CONTENTS

. f.

Page Section

.J 1.0- 1

1.0 INTRODUCTION

2.0- 1 2.0 LIQUID EFFLUENTS 2.0- 1 2.1 -

Radiation Monitoring Instrumentation and Controls 2.0- 1 2.1.1-Technical Specification 3.3.7.11 Requirement 2.0-2 2.1.2 Non Technical Specification Monitor 2.0-2 2.2 Sampling and Analysis of Liquid Effluents 2.0-3 2.2.1 BATCH Releases 2.0-3 2.2.2 CONTINUOUS Releases 2.0-3 2.3 Liquid Effluent Monitor Setpoints 20-4 2.3.1 Liquid Radwaste Effluent Line Monitor (D11-N007)

' 2.0-7 2.3.2 Circiating Water Reservoir Decant Line Radiation Monitor i

(D11-N402) 2.0-7 2.3.3 Generic, Conservative Alarm Setpoint for D11-N402 2.0-2 2.3.4 Alarm Setpoint for GSW and RHR System Radiation Monitors 2.'J-8 2.3.3 Alarm Respoase - Evaluating Actual Release Conditions 2.0-9 2.3.6 Liquid Radwaste Setpoint Determination With Contaminated Circulating Water Pond 2.0-9 2.4 Contaminated GSW or RHR System - Quantifying and Controlling Releases 2.0-10 2.5 Liquid Effluent Dose Calculation - 10 CFR 50

(

2.0-10 2.5.1 MEMBER OF THE PUBLIC Dose - Liquid Effluents

~L 2.0-12 2.5.2 Simplified Liquid Effluent Dose Calculation 2.0-13 2.5.3 Contaminated GSW System - Dose Calculation 2.0-14 2.S Liquid Effluent Dose Projections 3.0- 1 3.0 GASEOUS EFFLUENTS I

I 3.0- 1 3.1 Radiation Monitoring Instrumentation and Controls 3.0-1 3.1.1 Effluent Monitoring - Ventilation System Releases 30-1 3.1.2 Main Condenser Offgas Monitoring 3.0-2 3.1.3 Reactor Building Ventilation Monitors (Gulf Atomic) 3.0-2 3.2 Sampling and Analysis of Gaseons Effluents 3.0-2 3.2.1 Containment PURGE 3.0-2 3.2.2 Ventilation System Releases 3.0-3 3.3 Gaseous Effluent Monitor Setpoint Determination 3.0-3 3.3.1 Ventilation System Monitors 3.0-5 3.3.2 '

Conservative, Generic Alarm Setpoints 3.0-5 3.3.3 Gaseous Effluent Alarm Response - Evaluating Actual Release Conditions 3.0-6 3.4 Containment Drywell VENTING and PURGING 3.0-6 3.4.1 Release Rate Evaluation 3.0-7 3.4.2 Alarm Setpoint Evaluation 3.0-7 3.5 Quantifying Releases - Noble Gases 3.0-7 3.5.1 Quantifying Releases Using SPING Noble Gas Monitor 3.0-9 3.5.2 Quantifying Release Rate and Total Releases with Monitor Inoperable j

)

4'.

ODCM-0.0

[,

Revision 2

}

Page 0.0-3 TABLE OF CONTENTS (continued)

.?)

,(wl '

Page Section 3.0-10 3.6 Site Boundary Dose Rate.Radiolodine and Particulate ~

l 3.0-10 3.6.1 Simplified, Dose Rate Evaluation for Radioiodines and i

Particulate 3.0-11 3.7 Noble Gas Effluent Dose Calculations - 10 CFR 50 '

3.0-11 3.7.1 UNRESTRICTED AREA Dose - Noble Gases 3.0-11 3.7.2 Simplified Dose Calculation for Noble Gases 3.0 3.8 Radiciodine and Particulate Dose Calculations - 10 CFR 50

)

3.0-12 3.8.1 UNRESTRICTED AREA Dose - Radiolodine and Particulate 3.0 3.8.2 Simplified Dose Calculation for Radiolodines and Particulate '

3.0-14 3.9 Gaseous' Effluent Dose Projection 4.0- 1 4.0 SPECIAL DOSE ANALYSES -

l 4.0- 1 '

4.1 Doses Due to Activities inside the SITE BOUNDARY 4.0- 1 4.2 Doses to MEMBERS OF THE PUBLIC - 40 CFR 190' 4.0-2 4.2.1 Effluent Dose Calculations 4.0-3 4.2.2 Direct Exposure Dose Determination 4.0-3 4.2.3 Dose Assessment Based on Radiological Environmental Monitoring Data 5.0- 1

5.0 ASSESSMENT

OF LAND USE CENSUS DATA I

5.0 - l '

5.1 Land Use Census as Required by TS 3.12.2 5.0-3 5.2 Land Use Census to Support Realistic Dose Assessment 6.0- 1 6.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

\\

6.0- 1 6.1 Sampling Locations 6.0- 1 6.2 Reporting Levels 6.0-2 6.3 Interlaboratory Comparison Program APPENDICES A-1 A

Evaluation of Generic Concentration Limit for Liquid Effluents B B Technical Basis for Effective Dose Factors Liquid Effluent Releases C-1 C

Technical Basis for Effective Dose Factors Gaseous Radwaste Effluents

-TABLES 2.0-15 2.0- 1 Fermi 2 Site Specific Liquid Ingestion Dose Commitment Factors, Ajo 2.0-17 2.0-2 Bioaccumulation Factors (Bri) 3.0-15 3.0- 1 Default Noble Gas Radionuclides Distribution of Gaseous Effluents 3.0-16.

30-2 Generic Values for Evaluating Gaseous Release Rates and Alarm Setpoints 3.0-17 3.0-3 Dose Factors for Noble Gases 3.0-18 3.0-4 Controlling Locations, Pathways and Atmospheric Dispersion for Dose Calculations A

3.0-19 3.0 - 5 Gaseous Effluent Pathway Dose Commitment Factors

ODC M-0.0 Revision 2 Page 0.0-4 1,*.

TABLE OF CONTENTS (continued)

Q Page Section q

I TABLES 4.0-7 4.0-1 Assumptions for Assessing Doses Due to Activities inside SITE BOUNDARY 4.0-8 4.0-2 Recommended Exposure Rates in Lieu of Site Specific Data 4

6.0-3 6.0- 1 Radiological Environmental Monitoring Program, Fermi 2 Sample Locations and Associated Media 6.0-13 6.0-2 Radiological Environmental Monitoring Program, Fermi 1 Sample Locations and Associated Media A-2 A-1 Concentration Limit for Liquid Effluents from Ferrni 2 B-4 B-1 Relative Dose Significance of Radionuclides in Liquid Effluents C-4 C-1 Effective Dose Factors - Noble Gas Effluents FIGURES 2.0-18 2.0- 1 Liquid Radioactive Effluent Monitoring and Processing Diagram 3.0-34 3.0- 1 Gaseous Radioactive Effluent Monitoring and Ventilation Systems Diagram i

'6.0-15 6.0 - 1 Radiological Environmental Monitoring Program Sampling Locations -

Site Area

'6.0-16 6.0-2 Radiological Environmental Monitoring Program Sampling Locations -

Greater than 5 Miles 6.0-17

, 6.0-3 Radiological Environmental Monitoring Program Sampling Locations -

p t

within 10 Miles 6.0-18 6.0-4 Radiological Environmental Monitoring Program Sampling Locations -

Site Area (Lake Erie side) 6.0-19 6.0-5 Fermi 1 Sampling Locations END OF SECTION 0.0 1

i U

l l

{

Nuclear Pr ducti::n - Farmi 2 ODCM-1.0 Cffsit3 D ss Calculati::n Manual R;visien 2 Page 1.0-1 O

INTRODUCTION j

i J

1.0 INTRODUCTION

The Fermi 2 Offsite Dose Calculation Manual (ODCM) describes the methodology and parameters used in:

l 1.1 Determining radioactive material release rates and cumulative releases 1.2 Calculating radioactive liquid and gaseous effluent monitoring instrumentation alarm / trip set points 1.3 Calculating the corresponding dose rates and cumulative quarterly and yearly doses.

The methodology provided in this manual is acceptable for use in demonstrating compliance with concentration limits of 10 CFR 20.106 and the cumulative dose criteria of 10 CFR 50, Appendix l and 40 CFR 190. and the Fermi 2 (Radiological Effluent) Technical Specifications.

More conservative calculational methods and/or conditions (e.g., location and/or exposure pathways) expected to yield higher computed doses than appropriate for the maximally exposed person may be assumed in the dose evaluations for controlling the release of radioactive material from Fermi 2.

The ODCM will be maintained at Fermi 2 for use as a reference guide and training (g) document of accepted methodologies and calculations. Changes to the ODCM calculational v

methodologies and parame ters will be made as necessary to ensure reasonable conservatism in keeping with the principles of 10 CFR 50.36a and Appendix I for demonstrating radioactive effluents are "As Low As Reasonably Achievable."

NOTE: Throughout this document words appearing all capitalized denote either definitions specified in the Fermi 2 Technical Specifications or common acronyms.

Section 2.0 of the ODCM describes equipment for monitoring and controlling liquid effluents, sampling requirements, and dose evaluation methods. Section 3.0 provides similar information on gaseous effluent controls, sampling, and dose evaluation.

Section 4.0 describes special dose analyses required for compliance with Fermi 2 Technical Specifications and 40 CFR 190. Section 5.0 describes the role of the annual land use census in identifying the controlling pathways and locations of exposure for assessing potential off-site doses. Section 6.0 describes the Radiological Environmental Monitoring Program.

END OF SECTION 1.0 ARMS - INFORMATION SERVICES Date approved:

Release authorized by:

Change numbers incorporated:

LCR 88-032-ODM DSN 6 D S /.I - d. C odd. A1 - /. GI Rev 2

Date JAN 18 $89 V

DTC TMPLAN File 1715.02 Recipient 3M 1

[.

f

.a.

W./,.

Nucisar Prcductinn -.F rmi_2 '

ODCM-2.0 i

~

Offeits Dass Calculation Manual'

' R; vision 2 Page 2.0-1 y

LIQUID EFFLUENTS -

t

~

2.0 -

LIQUID EFFLUENTS-

' This section summarizes l'nfor'mation on the liquid effluent radiation monitoring.

'I in'strumentation and controls. More detailed information is provided in the Fermi 2 UFSAR and Fermi 2 design drawings from which this summary was derived. This section also describes the sampling and analysis required by. Technical Specifications. Methods for

-calculating alarm setpoints for the liquid effluent monitors are presented. Also, methods for evaluating doses from liquid effluents are provided.

2.1 Radiation Monitoring Instrumentation and Controls This section summarizes the instrumentation and controls monitoring liquid effluents.

'l This discussion focuses on the role of this equipment in assuring compliance with the Fermi 2 Technical Specifications and ODCM

~

2.1.1 Technical Specification (TS) 3.3.7.11 Requirement Fermi 2 TS 3.3.7.11 prescribes the monitoring required during liquid releases and the backup sampling required when monitors are inoperable.

The liquid effluent monitoring instrumentation for controlling and monitoring, radioactive effluents in accordance with the Fermi 2.TS 3.3.7.11 is summarized below; N/

1.

Radiation Alarm - Automatic Release Termination a.

Liquid Radwaste Effluent Line - The D11-N007 Radiation Monitor on the liquid radwaste effluent line provides the alarm and automatic termination of liquid radioactive material releases prior to' exceeding 1 Maximum Permissible Concentration (MPC) n; (10 CFR 20, Appendix B, Table 11, Column 2) required by TS 3.3.7.11. The monitor is located upstream of the Isolation Valve (G11-F733) on liquid radwaste discharge line and monitors the concentration of liquid effluent before dilution by the circulating water reservoir (CWR) decant flow.

2.

Radiation Alarm (only) i f

a.

Circulating Water Reservoir (CWR) Decant Line - The CWR Decant I:

Line Radiation Monitor (D11-N402) provides indication of the L

concentration of radioactive material in the diluted radioactive liquid releases just before discharge to Lake Erie. As required by TS 3.3.7.11, the alarm setpoint is established to alarm (only) prior to exceeding MPC.

ARMS - INFORMATION SERVICES Date approved:

Release authorized by:

Change numbers incorporated: LCR 88-032-ODM t

JAN1 6 W -

DSN 6D(1 A1 - 2.. c/

,Rev 2

Date DTC TMPLAN File 1715.02 Recipient 36A l

i s

- ODCM-2.0 -

-l Revision 2'

<s Page 2.0-2 3.

Flow Rate Measuring Devices m

1 llV) a.

Liquid Radwaste Effluent Line - In accordance with TS 3.3.7.11, the release rate of liquid radwaste discharges is monitored by G11-R703. This flow rate instrumentation is located on the radwaste discharge line prior to the junction with the CWR decant line.

b.

Circulating Water Reservoir Decant Line - In accordance with

'3 TS 3.3.7.11, the flow rate of the CWR decant line is monitored by N71-R802. The flow rate instrumentation is located on the decant line downstream of the junction with the liquid radwaste effluent line. 'This instrumentation measures the total discharge flow rate from Fermi 2 to Lake Erie.

2.1.2 Non Technical Specification Monitor An additional monitor not required by Fermi 2 TS is provided by Detroit Edison to reduce the likelihood of an unmonitored release of -

radioactive liquids.

1.

General Service Water - The General Service Water (GSW) Radiation Monitor (D11-N008) provides additional control of potential radioactive effluents. D11-N008 monitors the GSW System prior to discharge into the Main Condenser circulating water discharge line to the Circulating Water. Reservoir. Although not a TS required monitor, D11-N008 monitors a primary liquid stream in the plant that also discharges to

-O the environment (Lake Erie via the Circulating Water Reservoir).

i d

Indication of radioactive material contamination'in the GSW System j

would also indicate potential CWR contamination and the need to i

control all discharges from the CWR as radioactive effluents.

1 2.2 Sampling'..1d Analysis of Liquid Effluents The progrcm for sampling and analysis of liquid waste is prescribed in the Fermi 2 1

Technical Specifications. Table 4.11.1.1.1-1. This table distinguishes two types of liquid releases:

l 2.2.1 BATCH releases, defined as discrete volumes, normally processed through l

the radwaste system to the waste sample tanks i

2.2.2 CONTINUOUS releases, from the Circulating Water Reservoir (CRW) System, if it becomes contaminated

' Continuous releases from the CWR System are via the CWR decant line to Lake Erie.

The CWR Systera is not expected to become contaminated. Therefore, continuous radioactive material releases are not expected. However, the General Service Water (GSW) and the CWR systems interface with radioactive systems in the plant. Also, the GSW intake is within a few hundred feet of the CWR decant line discharge to Lake Erie. For these reasons, it is prudent to consider the GSW and the CWR a potential source of radioactive effluents and to sample them regularly.

'I l

p

ODCM-2.0 L.,'

Revision 2 Page 2.0-3 2.2.1 BATCH Releases I

i Fermi 2 TS Table 4.11.1.1.1-1 requires that a sample representative of the V

tank contents be obtained before it is released. The table specifies the following program:

Prior to each batch release, analysis for principal gamma emitters 1

(including all peaks identified by gamma spectroscopy)

Once per month, analysis of one batch sample for dissolved and entrained gases (gamma emitters). (See note in Section 2.2.2 below.)

i Once per month, analysis of a composite sample of all releases that month for tritium (H-3) and gross alpha activity. (The composite sample is required to be representative of the liquids released and sample quantities of the composite are to be proportional to the quantities of. liquid discharged).

Once per quarter, analysis of a composite sample of all releases that i

quarter for Strontium (Sr)-89, Sr-90, and Iron (Fe)-55.

2.2.2 CONTINUOUS Releases Fermi 2 TS Table 4.11.1.1.1-1 requires that composite samples be collected l

from the CWR System, if contaminated. The table specifies the following sample analysis:

/]

Once per month, analysis of a composite sample for principal gamma

(/

emitters and for 1-131.

Once per month, analysis of a composite sample for H-3 and gross alpha.

Once per month, analysis of weekly grab samples (composited) for dissolved and entrained gases (gamma emitters). (See note below.)

Once per quarter, analysis for Sr-89, -90 and Fe-55.

NOTE:

Identification of noble gases that are principal gamma emitting radionuclides are included in the gamma spectral analysis performed on all liquid radwaste effluents. Therefore, the TS Table 4.11.1.1.1-1 sampling and analysis for noble gases in batch releases (one batch per month) and continuous releases (monthly analysis of weekly grab samples) need not be performed as a separate program. The gamme spectral analysis on each batch release and on the CWR monthly composite meets the intent of this TS requirement.

2.3 Liquid Effluent Monitor Setpoints j

Technical Specification 3.11.1.1 requires that the concentration of liquid radioactive effluents not exceed the unrestricted area MPC at the discharge point to Lake Erie.

Dissolved or entrained noble gases in liquid effluents are limited to a concentration of 2 E-04 uCl/mi, total noble gas activity. TS 3.3.7.11 requires that radiation monitor setpoints be established to alarm and trip prior to exceeding the limits of TS 3.11.1.1.

.w

~

L ODCM-2.0

,s

~ Revision 2.

Page 2.0-4 3

  • . q-To' meet mis' specification,' the alarm / trip setpoints for liquid effluent monitors are

-l

- determined in accordance with the following equation:

CL (DF + RR)

SP <-

RR (2-1) where;

~

the setpoint, in uCi/ml, of the monitor measuring the radioactivity.

l SP

=

concentration in the effluent line prior to dilution.' The setpoint represents a value which, if exceeded, would result in concentrations -

exceeding the MPC in the unrestricted area the effluent concentration limit (TS 3.11.1.1) implementing 10 CFR.

CL

=

Part 20.106 (i.e., MPC at discharge point) in uCi/mi, defined in Equation (2-4) the liquid effluent release rate as measured at the' radiation monitor RR

=

location, in volume per unit time, but in the same units as DF, below 1

the dilution water flow as measured prior to the release point (Lake DF

=

Erie) in volume per unit time -

1 At Fermi 2 the available Dilution Water Flow (DF) is constant for a given' release, and the waste tank Release Rate (RR) and monitor Setpoint (SP) are set to meet the condition of Equation (2-1) for a given effluent Concentration Limit, CL.=

NOTE:

If no dilu: ion is provided, SP < CL. Also, when DF is large compared to RR, then (DF + RR)~DF.

2.3.1 Liquid Radwaste Effluent Line Monitor (D11-N007).

Liquid Radwaste Effluent Line Monitor D11-N007 provides alarm and automatic termination of releases prior to exceeding MPC. As required by TS Table 4.11.1.1.1-1 and as discussed in ODCM Section 2.2.1, a sample of the liquid radwaste to be discharged is collected and analyzed by gamma spectroscopy to identify principal gamma emitting radionuclides. From the measured individual radionuclides concentrations, the allowable release rate is determined.

O

?

ODCM-2.0 Rsvision 2 Pags 2.0-5.

s..

\\J' The allowable release rate is inversely proportional to the ratio of +he radionuclides concentrations to the MPC values. The ratio of the mJasured concentration to MPC values is referred to as the "MPC fraction" and is calculated by the equation:

MPCF =

Ci MPCi (2-2) where:

MPCF

= fraction of the unrestricted area MPC for a mixture of radionuclides

-Ci concentration of each radionuclides i measured in each tank

=

prior to release (uCi/ml)

MPC; unrestricted area most restrictive MPC for each radionuclides i

=

from'10 CFR Part 20, Appendix B, Table 11, Column 2. For dissolved and entrained noble gases an MPC value of 2E-04 uCi/mi shall be used.

Based on the MPCF, the maximum allowable release rate can be calculated by the following equation:

I X.

'N)

(

MAX RR =

DF

  • SF MPCF (2-3) where:

maximum acceptable waste tank discharge rate (gal / min)

MAX RR

=

(Monitor #G11-R703) dilution flow rate from the CWR as observed from the DF

=

Control Room readout (gal / min) (Monitor #N71-R802)-

0.5, administrative safety factor to account for variations in SF

=

monitor response and flow rates. The SF value of 0.5 provides for 100% variation caused by statistical fluctuation and/or 2

errors in measurements. Also, this factor provides conservatism, accounting for the presence of radionuclides that may not be detected by the monitors (i.e., non-gamma emitters).

MPCF

= As previously defined by equation 2-2.

1 NOTE:

Equation (2-3) is valid only for MPCF >1; if the.MPCF <1, the waste tank

)

concentration meets the limits of 10 CFR Part 20 without dilution, and the waste sample tank may be discharged at the maximum rate.

O If MAX RR as calculated above is greater than the maximum discharge pump capacity, the pump capacity should be used in establishing the actual l

I

e O D C M-2.0.

Revision 2

+

Page 2.0-6 Release Rate RR for the radwaste discharge. For the Waste Sample Tank,

~

the maximum discharge.1te is'50 gallons per minute. The actual Release

~ 7-.),

Rate RR is monitored in he Radwaste Control Room by G11-R703.

tv The Concentration Limit (CL) of a liquid radwaste discharge is the same as the effective MPC for the radinnuclide mixture of the discharge. Simply, the CL (or effective MPC) represents the equivalent MPC value for a mixture of radionuclides evaluated collectively. The equation for determining CL is:

CL=[Ci MPCF (2-4)

Based on the Release Rate RR and Dilution Flow OF and by substituting Equation (2-4) for CL in Equation (2-1), the alarm setpoint is calculated by the equation:

r" SP = b(Ci

  • SEN )
  • DF + Bkg i

MPCF

  • RR (2-5) where:

setpoint of the radiation monitor counts per second (cps)

SP

=

i concentration of radionuclides l'as measured by gamma C'

=

spectroscopy (uCi/ml)

[~N -

SENi monitor sensitivity for radionuclides i based on calibration

=

curve (cps /(uCi/ml))

actual release rate of the liquid radwaste discharge (gal / min)

RR

=

MPC fraction as determined by Equation (2-2)

MPCF

=

background reading of monitor (cps)

Bkg

=

Dilution flow rate of Circulating Water Decant Line as observed DF

=

from Control Room readout (gal / min) monitor '#N71-R802.

The Cs-137 sensitivity may be used in lieu of the sensitivity values for individual radionuclides. The Cs-137 sensitivity provides a reasonable conservative monitor response correlation for radionuclides of interest f

in reactor effluents. Coupled with the Safety Factor SF in Equation (2-3),

l this simplifying assumption does not invalidate the overall conservatism of the setpoint determination.

If no radionuclides are measured by gamma spectroscopy, the alarm setpoint can be established at 2 times the radwaste monitor (D11-N007) background.

Prior to conducting any batch liquid radwaste release, Equation (2-3) is used to determine the allowable release rate in accordance with Technical p

Specification 3.11.1.1. Equation (2-5) is used to determine the D11-N007 alarm setpoint in accordance with TS 3.3.7.11.

o l'

l.

ODCM-2.0 Revision 2 Page 2.0-7.

n' 2.3.2 Circulating Water Reservoir Decan%ine Radiation Monitor (D11-N402)

-Technical Specification 3.3.7.11 requires that the setpoint for the CWR Decant Line Radiation Monitor D11-N402 be established to ensure the radioactive material concentration in the decant line prior to discharge to Lake Erie does not exceed MPC, unrestricted area (10 CFR 20, Appendix B, Table 11, Column 2). The approach for determining the' alarm setpoint for the CWR Decant Line Radiation Monitor is the same as presented in-Section 2.3.1 for the Liquid Radwaste Effluent Line Monitor, Equation (2-1) remains valid, except that, for the CWR Decant Line Monitor, the dilution flow previously assumed for diluting the BATCH liquid radwaste effluents is now the release rate.' There is no additional dilution prior to discharge to -

Lake Erie. Thus, Equation (2-1) simplifies to:

SP < CL

~

. (2-6)

' Substituting Equation (2-4) for CL, the D11-N402 alarm setpoint can be calculated by the equation:

Ci SP <- MPCF (2-7) where:

Ci

= concentration of each radionuclides i in the CWR decant line (G

effluent uCi/ml)

Q MPC fraction as determined by Equation (2-2)

MPCF

=

Normally, only during periods of batch liquid radwaste' discharges will there exist any plant-related radioactive material in the CWR decant line.

j 2.3.3 Generic, Conservative Alarm Setpoint for D11-N402 The D11-N402 setpoint could be adjusted for each BATCH release as is done for the liquid radwaste effluent line monitor. Based on the measured levels of radioactive material in a BATCH liquid release, the alarm setpoint for D11-N402 could be calculated using Equation (2-7). However, during these planned releases, the concentrations will almost always be so low (due to dilution) that the D11-N402 Monitor will not indicate measurable levels. The CWR decant line design flow is 10,000 gpm; and the maximum liquid radwaste release rate is 50 gpm, providing a 200:1 dilution. The radioactive mategal concentration of BATCH liquid releases is typically in

- to 10- uCi/ml. With a nominal 200:1 dilution, the the range of 10 CWR degant line mogitor would monitor cliluted activity in the range of 5 x 10- to 5 x lo-uCi/ml. D11-N402 Monitor response at these levels would be 10 to 100 cpm, depending on the particular radionuclides j

mixture and corresponding instrument response. These response levels are less than the monitor background levels.

p in lieu of routinely adjusting the D11-N402 alarm setpoint, a generic, g

conservative alarm setpoint can be established. The Fermi 2 UFSAR,

___.______._-_____._____m

ODCM-2.0.

Revision 2 l

Page 2.0-8

[

' Section 11.2, Table 11.2-9, presents the estimated releases of radioactive fy liquid effluents. Using Equation (2-4), the distrib dion of the estimated releases corresponds to a Concentration Limit CL (or effective MPC) of

?

3 E-06 uCi/mL Using the Cs-137 sensitivity of 2.05 E #08 cpm /uCi/ml and CL = 3 E-06 uCi/mt, the corresponding D11-N402 alarm setpoint is 615 cpm above monitor background. Refer to Appendix A for details on the

]

determination of CL i

2.3.4 Alarm Setpoint for GSW and RHR System Radiation Monitors g-Levels of radioactive material detectable above background at Radiation 1

L Monitor D11-N008 would be one of the first indicators of contamination of the General Service Water (GSW) System and the CWR. Likewise, for the 1

- Residual Heat Removal (RHR) System, the D11-N401 A and B Monitors I

would be one of the first indicators of contamination and subsequent I

contamination of the CWR. Therefore, to provide early indication and assure prompt attention, the alarm setpoints for these monitors should be established as close to background as possible without incurring a spurious alarm due to background fluctuations. This level is typically around three times background.

If the GSW System or RHR System becomes contaminated, it may'become necessary to raise the radiation monitor setpoints. The alarm setpoints should be re-evaluated to provide the CR operator a timely indication of further increasing activity levels in the GSW or RHR System without spurious alarms. The method for this re-evaluation is the same as described above -~ the alarm setpoint established at three times its current f

reading. No regulatory limits apply for establishing a maximum value for

\\

these alarm setpoints since these monitors are located on plant systems and do not monitor final release points to the environment. However, as a practical matter, upper limits on the alarm setpoints can be evaluated using the methods of OCCM Section 2.3.1 based on the actual system flows, dilution and release paths in effect at the time.

2.3.5 Alarm Response - Evaluating Actual Release Conditions Normally, liquid release rates are controlled and alarm setpoints are established to ensure that the release does not exceed the concentration limits of TS 3.11.1.1 (i.e.,10 CFR 20 MPCs at the discharge to Lake Erie).

However, if either Monitor D11-N007 or D11-N402 alarms during a liquid release, it becomes necessary to re-evaluate the release conditions to determine compliance with TS 3.11.1.1. Following an alarm, the actual release conditions should be determined. Radioactive material concentrations should be evaluated by sampling the effluent stream or resampling the waste tank. Discharge flow and dilution water flow should be redetermined.

The following equation may be used for the evaluation:

CMPC Ci RR gj i

DF + RR (2-8) where:

~ ODCM-2.0 Revision 2 Page 2.0-9 i

' measured concentration of radionuclides i in the affluent C'

=

7)

- stream (uCs/ml) t V

MPCi the MPC value for radionuclides i from 10 CFR 20, Appendix B,

=

Table 11, Column 2 (uCi/ml),2 E-04 uCi/ml for dissolved or entrained noble gases actual release rate of the liquid effluent at the time of the

-RR

=

alarm, gpm actual dilution circulating water flow at the time of the release DF

=

alarm, gpm NOTE:

For alarm on D11-N402 (CWR decant line), the Release Rate RR is the Dilution Water Flow DF and the equation simplifies to (C /MPC) <1.

i l _,

2.3.6 Liquid Radwaste Monitor Setpoint Determination with Contaminated Circulating Water Reservoir in the event the CWR is determined to contain radioactive material, the effective dilution capacity of the CWR is reduced as a function of the MPCF. To determine the available dilution flow capacity the MPCF for the CWR is determined using equation (2-2). The MPCF of the CWR is used to determine the available dilution flow as follows:

(

CWR Dilution Flow = CWR Decant Flow Rate (GPM) * (1-CWR MPCF)

(2-9)

The resulting dilution flow rate is substituted in equation (2-3) to determine the maximum allowable release rate for discharges from the radwaste system. Substituting the available CWR dilution flow from equation (2-9),

the Liquid Radwaste Monitor maximum release rate can be determined using equation (2-3).

Once the available dilution flow and maximum allowable release rate have been determined the radraste monitor setpoint can be determined using equation (2-5).

2.4 Contaminated GSW or RHR System - Quantifying and Controlling Releases j

The GSW Radiation Monitor (D11-N008) provides an indication of contamination of this system. The Monitors D11-N401 A and B perform this function for the RHR System. Also, the CWR Decant Line Radiation Monitor monitors all liquid releases from the plant and would record any release to Lake Erie from either of these systems if contaminated. As discussed in ODCM Section 2.2.2, sampling and analysis of the CWR System is required only if this system is contaminated, as would be indicated by D11-N402 or 011-N008. Nonetheless, periodic samples are collected from the CWR System to verify absence of contamination. Although not required by TS, periodic sampling and analysis of the RHR System is also performed since it also

. is a potential source of contamination of the CWR and subsequent releases to Lake Erie. If contamination is found, further releases from the applicable system (G5W or RHR) via the CWR decant line must be evaluated and controlled to ensure

ODCM-2.0 Revision 2 ~-

Page 2,0 /m that releases are maintained ALARA. The following actions will be considered for

' ('}

controlling releases.

j.

Sampling frequency of.the applicable source.(GSW or RHR System) and the CWR will be increased until the source of the contamination is found and -

controlled.. This frequency may be relaxed after the source of contamination has been identified and isolated.

Gamma spectral analysis will be performed 'on each sample.

.The measured radionuclides concentration'ns from the gamma spectral analysis will be compared with MPC (Equation 2-2) to ensure releases are within the limits of TS 3.11,1.1.

Based on the measured concentration's, the setpoint for the CWR Decant Line Radiation Monitor (D11-N402) will be determiried as specified in Section 2.3.2. If the calculated setpoint based on the measured distribution is greater than the current setpoint (see ODCM Section 2.3.3) no adjustment to the setpoint is required.

Samples will be composited in accord'ance with TS Table 4.11.1.1,1-1 for monthly analysis for.H-3 and gross alpha and for quarterly analysis for Sr-89, 90 and Fe-55.

t Each sample will be considered representative of the releases that have occurred since the previous sample. For each sample (and corresponding release period), the volume of liquid released to the Iake will be determined based on the measured CWR decant line cumulative flow.

From the sample analysis and the calculated volume released, the total radioactive material released will be determined and considered representative of the release period. Cumulative doses will be determined in accordance with OpCM Section 2.5.

2.5 Liquid Effluent Dose Calculation - 10 CFR 50 The parameters of the liquid release (or estimated parameters, for a pre-release calculation) may be used to calculate the potential dose to the public from the

. release (or planned release). The dose calculation provides a conservative method for estimating the impact of radioactive effluents released by Fermi 2 and for comparing j

that impact against limits set by the NRC in the Fermi 2 TS. The limits in the

.]

Fermi 2 TS are specified as quarterly and calendar year limits. This assures thtt the 4

average over the year is kept as low as reasonably achievable.

2.5.1 MEMBER OF THE PUBLIC Dose - Liquid Effluents Technical Specification 3.11.1.2 limits the dose or dose commitment to MEMBERS OF THE PUBLIC from radioactive materials in liquid effluents fr0m

' Fermi 2 to:

during any calendar quarter;

< 1.5 mrem to total body 3 5.0 mrem to any organ o

l'

_______________________.-m________

ODCM-2.0 Revision 2.

Page 2.0-11 J

during any calendar year; 3

. $ 3.0 mrem to total body c

.{a}

.5.10 0 mrem to any organ

-The calculation of the potential doses.to MEMBERS OF THE PUBLIC is a l

function of the radioactive material releases to the lake,' the subsequent.

l transport and dilution in the exposure pathways, and the resultant individual i

uptake. At Fermi 2, pre-operational evaluation of radiation exposure' pathways indicated that doses from consumption of fish from Lake Erie provided the most conservative estimate of doses from releases of radioactive liquids. ' However, with the proximity of the water intake for the?

City'of Monroe. It must be assumed that individuals will consume drinking water as well as fish that might contain radioactivity from dischargos into Lake Erie.

Study of the currents in Lake Erie indicates that the current in the Lagoona Beach embayment carries liquid effluents from Fermi 2 north along

~ the coast part of the time and south along the coast part of the time.

When the current flows north, liquid effluents are carried away from the Monroe Water intake, so only.the fish consumption exposure pathway must be considered. When the current flows south, toward the Monroe Water intake, both fish consumption and drinking water consumption. exposure pathways must be considered. To ensure conservatism in the dose modeling, the combined fish and drinking water pathway is used for evaluating the maximum hypothetical dose to a MEMBER OF THE PUBLIC from liquid radioactive effluents. The following calculational methods may be used for determining the dose or dose commitment due to the liquid

(

radioactive effluents from Fermi 2:

Do = 1.67 E-02

  • VOL * (C)
  • Ajo)

DF

  • Z (2-10) where:

dose or dose commitment to organ o or total body (mrem)

Do

=

site-specific ingestion dose commitment factor to the total Ajo

=

body or any organ o for radionuclides i (mrem /hr per uCi/ml)

Ci average concentration of radionuclides i in undiluted liquid

=

effluent representative of the volume VOL (uCi/ml)

VOL

= total volume of liquid effluent released (gal) average dilution water flow (CWR decant line) during DF

=

release period (gal / min) 5, near field dilution factor l

Z

=

(Derived from Regulatory Guide 1.109, Rev 0) 1 hr/60 min 1.67 E-02 Q

=

V i

I

C j

34

' ODCM-2.0 f'

Rzvision 2

]

E'

- Page 2.0-12 j

J N

i The site-specific ingestion dose / dose commitment factors (A o) represents i

a composite dose factor for the fish and drinking water pathway.. The

. V(T.

site-specific dos'e factor is based on the NRC's generic maximum individual consumption rates. Values of A o are presented in Table 2-1. They were i

derived in accordance with guidance of NdREG-0133 from the following equation:

l Ajo = 1.14 E + 05 (Uw / Dw + Up

  • BF ) DFi i

l (2-11).

where:

)

Up 21 kg/yr adult fish consumption

=

Uw 730 liters /yr adult water consumption

=

DW 15.4, additional dilution from the near field to the water

=

intake for the City of Monroe (Net dilution factor of 77 from discharge point to drinking water intake, Fermi 2 UFSAR, Chapter 11, Table 11.2-11)

Bioaccumulation factor for ranionuclide i in fish from BFi

=

Table 2-2 (pCi/kg per pClli$sr)

DFi dose conversion factor for nuclide i for adults in organ o

=

from Table E-11 of Regulatory Guide 1.109 (mrem /pci) 106 (pCl/uCl)

  • 103 (ml/kg)

A 1.14 E + 05

=

Q 8760 (hr/yr)

The radionuclides included in the periodic dose assessment required by TS 3.11.1.2 are those identified by gamma spectral analysis of th] liquid waste samples collected and analyzed per the requirements of TS Table 4.11.1.1.1-1. In keeping with the NUREG-0133 guidance, the adult age group represents the maximum exposed individual age group.

Evaluation of doses for other age groups is not required for demonstrating compliance with the dose criteria of TS 3.11.1.2. The dose analysis for radionuclides requiring radiochemical analysis will be performed after receipt of results of the analysis of the composite samples, in keeping with the required analytical frequencies of TS Table 4.11.1.1.1-1, tritium dose analyses will be performed at least monthly; Sr-89, Sr-90 and Fe-55 dose analyses will be performed at least quarterly.

j 2.5.2.

Simplified Liquid Effluent Dose Calculation j

t in lieu of the individual radionuclides dose assessment presented in Section 2.5.1, the following simplified dose calculation may be used for demonstrating compliance with the dose limits of TS 3.11.1.2. (Refer to Appendix EJ for the derivation of this simplified method.)

'OV

' ODCM-2.0 -

((

W-Revision 2 Page 2.0-13

- 3 4

j M:

Total Body j

(

Dtb = 9.69 E + 03

  • Z

'(2-12)

' Maximum Organ.

Dmax = 1.18 E + 04

  • Z (2-13) where:

'Ci

' average concentration of radionuclides i in undiluted

=

liquid effluent representative of the volume VOL (uCi/ml)

VOL

= vo!ume of undiluted liquid effluent released (gal) average dilution water flow (CWR decant line) during DF'

=

release period (gal / min) 5, near field dilution factor (derived from Regulatory Z

=

Guide 1.109, Rev 0)

Dtb conservatively evaluated total body dose (mrem)

=

O conservatively evaluated maximum organ dose (mrem)-

Dmax

=

0.0167 (hr/ min)

  • 5.80 E + 05 (mrem /hr per uCi/ml, 9.69 E + 03

=

Cs-134 total body dose factor from Table 2.0-1)-

0.0167'(hr/ min)

  • 7.09 E + 05 (mrem /hr per uCi/ml,.

- 1.18 E + 04

=

Cs-134-liver dose factor from Table 2.0-1) 2.5.3 Contaminated CWR System - Dose Calculation if the CVvR System becomes contaminated, releases via the CWR System to Lake Erie must be included in the evaluation of the cumulative dose to a MEMBER OF THE PUBLIC as required by TS 3.11.1.2. ODCM Section 2.4 described the methods for quantifying and controlling releases from the CWR System.

For calculating the dose to a MEMBER OF THE PUBLIC, Equation (2-10) remains applicable for releases from the GSW System with the following assumptions:

DF, Dilution Flow, is set equal to the' average CWR decent line flow rate over the release period.

Cl, Radionuclides Concentration, is determined as specified in ODCM i

Section 2 4.

L ll'

e.

O DCM-2.0 Revision 2

~

Page 2.0-14 VOL, Volume Released, is set equal to the total volume of the discharges to Lake Erie'via the CWR decant line as specified in

  • .n F*

' Section 2.4.

M

. 2.6 Liquid Effluent Dose Projections 10 CFR 50.36a requires licensees to maintain and operate the Radwaste System to' ensure releases are maintained ALARA This requirement is implemented through TS 3.11.1.3. This TS requires that the Liquid Radioactive Waste Processing System be used to reduce the radioactive material levels in the liquid waste prior to release when the projected dose in any 31 day period would exceed:

0.06 mrem to the total body, or 0.2 mrem to any organ When the projected doses exceed either of the above limits, the waste must be processed by the Liquid Radwaste System prior to release. This' dose criteria for processing is established at one forty eighth of the design objective rate (3 mrem /yr, total body or 10 mrem /yr any organ) in any 31 day period.

The applicable Liquid Waste Processing System for maintaining radioactive material releases ALARA is the ton Exchange System as delineated in Figure 2-1. Alternately,

' the Waste Evaporator (presented in the Fermi 2 UFSAR, Section 11.2) can be used to meet the NRC ALARA design requirements. It may be used in conjunction with or in lieu of the lon Exchange System to meet the waste processing requirements of TS 3.11,1.3.

(0 1 )

Each BATCH release of liquid radwaste is evaluated to ensure that cumulative doses are maintained ALARA. In keeping with the requirements of TS 3.11.1.3, dose projections are made at least once per 31 days to evaluate the need for additional radwaste processing to ensure future releases are maintained ALARA.

The following equations may be used for the dose projection calculation:

+

Dtbp =Dtb (31/ d)

(2-14)

Dmaxp = Dmax (31/ d)

(2-15) where:

Dtbp the total body dose projection for current 31 day period (mrem)

=

Dib the ct.mulative total body dose to date for current calendar quarter

=

including release under consideration as determined by equation (2-10)'or (2-12) (mrem)

Dmaxp the maximum organ dose projection for current 31 day period (mrem)

=

the maximum organ dose to date for current calendar quarter Dmax

=

including release under consideration as determined by Equation (2-10) or (2-13) (mrem) g i,

ODCM-2.0 Revision 2 Page 2.0-15 t

d the number of days to date in current calendar quarter

=

(

31 the number of days in projection

=

END OF SECTION 2.0 O

i j

l l

l l

i O

l h.

ODCM-2.0 Revision 2 Page 2.0-15 TABLE 2.0-1 N

Fermi 2 Site Specific Liquid Ingestion Dole Commitment Factors A o (mrem /hr per uC'/ml) i Nuclide Bone Liver T Body Thyroid Kidney Lung GI-LLI

-H-3 7.94E-1 7.94 E-1 7.94 E-1 7.94E-1 7.94 E-1 7.94E-1 C-14 3.13 E+4 6.26E+3 -

6.26E+3 6.26 E+3 6.26E+3 6.26E+3 6.26E+3 Na-24 4.16E+2 4.16 E +2 4.16 E + 2 4.16E+2 4.16E+2 4.16E+2 4.16E+2 P-32 1.39 E+6 8.62 E +4 5.36E+4 1.56E+ 5 Cr-51 1.29 E + 0 7.70 E-1 2.84 E-1 1.71 E + 0 3.24E+2 i

Mn-54 4.40E+3 8.40 E + 2 1.31 E+3 1.3 5E+ 4 -

1.41 E+ 2 3.53E+3 1

Mn-56 1.11 E +2 1.96 E+ 1 Fe-55 6.73 E + 2 4.65E+2 1.08E+2 2.59E+2 2.67E+ 2 Fe-59 1.06 E +3 2.50E+3 9.57E+2 6.98E+2 8.32 E+3 5.55E+2 Co-57 2.19 E + 1 3.64 E+ 1 Co-58 9.32E+ 1 2.09 E+2 1.89E+3

'Co-60 2.68E+ 2 5.90E+2 5.03E+3 i

Ni-63 3.18E+4 2.21 E +3 1.07E+3 4.60E+ 2 4.26E+2 -

- Ni-65 1.29E + 2 1.68 E + 1 7.66 E+0 Cu-64 1.04 E + 1 4.89 E + 0 2.63E+ 1 8.88E+2 4.65E+4 '

Zn-65 2.32 E +4 7.38 E + 4 3.34 E +4 4.94 E + 4 Zn-69 4.94 E + 1 9.44E+ 1 657E+0 6.14 E+ 1 1.42 E + 1 Br-82

~-

2.28E+3 2.62E+3 Br-83 4.06 E+ 1 5.85E+1 1

Br-84 5.27 E+ 1 4.13E-4 '

Br-85.

2.16 E+ 0 1.01 E-15 1.01 E + 5 4.71 E + 4 1.99 E+4 Rb-86 Ro-88 2.90E + 2 1.54 E + 2 4.01 E-9 1.92 E + 2 1.35 E + 2 1.12E-11 Rb-89 Sr-89 2.38 E + 4 6.83E+2 3.81 E+3 1.69E+4 Sr-90 5.85E+5 1.44 E + 5 Sr 4.38E+2 1.77E+ 1 2.09E+3 Sr-92 1.66 E + 2 7.18E+0 3.29E+3 Y-90 6.28E-1 1.68E-2 6.66E+3 1.74E-2 Y-91 m 5.93E-3 2.30E-4 Y-91 9.20E +0 2.46 E-1 5.06E+3 9.66E+2 Y-92 5.51E-2 1.61 E-3 5.55E+3 Y-93 1.75 E-1 4.83E-3 Zr-95 4.04E-1 1.30E-1 8.78E-2 2.04E-1 4.11 E +2 Zr-97 2.24E-2 4.51 E-3 2.06E-3 6.81 E-3 1.40 E+3 i

Nb-95 4.47 E + 2 2.49 E + 2 1.34 E+2 2.46E+2 1.51 E+6

Nb-97 3.75E +0 9.48E-1 3.46E-1 1.11E+ 0 3.50E+3 2.86E+2 2.93E+2

/Mo-90 2.88E-2 3.67E-1 4.38E-1 1.41 E-2 1.71 E + 1 I

1.26E+2 2.41 E+ 1 Tc-99m 1.02E-2 Tc-101 1.05E-2 1.51 E-2 1.48E-1 2.72 E-1 7.73E-3 4.54 E-14

p ODCM-2.0

' Revision 2 Page 2.0-16 TABLE 2.0-1 '

Fermi 2 Site Specific Liquid Ingestion Dose Commitment Factors Ajo (mrem /hr per uCi/ml)

Nuclide,

Bone Liver T Body Thyroid Kidney Lung GI-LLI Ru-103 5.43E+0 2.34E+0 2.07E+ 1 6.34 E+2

.Ru-105 4.52E-1 1.78E-1 5.84E+0 2.76E+2 5.22E+3 I

Ru-106

' 8.07E+1 1.02 E + 1 1.56E+2 Rh-103m Rh-106 Ag-110m 1.75E+ 0 1.61 E+0 9.59E-1 3.17E+0 6.59 E+2 1.70 E+ 1 6.20E+2 -

Sb-124 2.18E+ 1 4.13 E-1 8.66 E + 0 5.29E-2 Sb-125 1.40E + 1

.1.56E-1 3.32 E + 0 1.42E-2 1.08E+ 1 1.54E+2 -

Te-125m 2.58E +3 9.35E+2 3.46E+2 7.76E+2 1.05E+ 4 1.03E+4 Te-127m 6.52 E+ 3 2.33 E+ 3 7.94 E + 2 1.67E+3 2.65E+4 2.19E+4 Te-127.

1.06 E + 2 3.80E + 1 2.29E+ 1

- 7.85E+ 1 4.31 E+2 8.36E+3

- Te-129m 1.11 E + 4 4.13E+3 1.75E +3 3.80E+3 4.62E+4 5.58E+4 Te-129 3.02 E + 1 1.14 E + 1 7.37 E + 0 2.32E+ 1 1.27E+2 2.28E+ 1 Te-131 m 1.67 E +3 8.15E+ 2 6.79 E+ 2 1.29E+3 8.25E+3 8.09E+4 Te-131:

1.90 E + 1 7.93 E + 0 5.99E+0 1.56 E+ 1 8.31 E+ 1 2.69E+0 Te-132 2.43 E + 3 1.57 E +3 1.47 E + 3 1.73E+3 1.51 E+4 7.42 E+ 4 l

l-130 3.12E+ 1 9.21 E+ 1 3.64 E + 1 7.81 E+ 3 1.44E+2 7.93 E+ 1 '

l-131 1.72 E + 2 2.46E+ 2 1.41 E + 2 8.06E+4 4.21 E+ 2 6.49 E + 1 1-132 8.39 E + 0 2.24 E + 1 7.85E + 0 7.85E+2 3.57E+ 1 4.21 E + 0 1-133 5.87E + 1 1.02 E + 2 3.11 E + 1 1.50E+4 1.78E+2 9.17E+ 1 I-134 4.38 E + 0 1.19 E + 1 4.26 E + 0 2.06E+2 1.83 E+ 1 1.04 E-2 1-135 1.83E + 1 4.79 E + 1 1.77 E + 1 3.16E +3 7.68E+ 1 5.41E+1 Cs-134 2.98E+ 5 7.09E+ 5 5.80E+5 2.30E+5 7.62 E+ 4 1.24 E+4 Cs-136 3.12 E + 4 1.23Ed 5 8.87 E + 4 6.85 E+4 9.40 E + 3 1.40 E +4.

Cs-137 3.82 E + 5 5.22E*5 3.42 E + 5 1.77 E + 5 5.90E+4 1.01 E+4 Cs-138 2.65E+ 2 5.22E+2 2.59E +2 3.84E+2 3.79 E+ 1 2.23E-3

'Ba-139 1.45 E + 0 1.04 E-3 4.25E-2 9.68E-4 5.87E-4 2.58E+0 Ba-140 3.04E+2 3.82E-1 1.99 E + 1 1.30E-1 2.19E-1 6.26E+2 Ba-141 7.06 E-1 5.33E-4 2.38E-2 4.96E-4 3.03E-4 3.33E-10 Ba-142 3.19E-1 3.28E-4

. 2.01 E-2 2.77E-4 1.86E-4 4.49E-19

^ La-140 1.63 E-1 8.22 E-2 2.17E-2 6.04 E+3 La-142 8.35E-3 3.80E-3 9.46E-4 2.77E+ 1 Ce-141 7.30E-2 4.94E-2 5.60E-3 2.29E-2 1.89E+2 Ce-143 1.29E-2 9.51 E+ 0 1.05E-3 4.19E-3 3.56E+2

'Ce-144 3.81 E +0 1.59E+ 0 2.04E-1 9.44E-1 1.29E+3 1

1.39E-1 2.63E+3 Pr-143 6.00E-1 2.41 E-1 2.98E-2 4.60E-4 2.83E-10

~/

1 Pr-144 1.96E-3 8.16E-4 9.98E-5 Nd-147 4.10 E-1 4.74 E-1 2.84E-2 2.77E-1 2.28E+3 W-187 2.96E + 2 2.48E +2 8.66E+1 8.12E+4

. Np-239 '

3.49E-2 3.43E-3 1.89E-3 1.07E-2 7.04 E+2

d

(,

ODCM-2.0 Rsvision 2 L

Page 2.0-17 l ltN TABLE 2.0-2 Bioaccumulation' Factors (BFi)

(pCi/kg per pCi/ liter)*

Element-Freshwater Fish 1'

H 9.0E-01 C

4.6 E +03 Na 1.0E+02 P

3.0E+03 Cr 2.0E+02 L

Mn 4.0E+02 l.

Fe 1.0E+02 Co 5.0E+01 Ni 1.0E+02 Cu 5.0E+01 Zn 2.0E+03 Br 4.2E+02 Rb 2.0E+03 Sr-3.0E+01 Y

2.5E+01 Zr 3.3E+00 Nb 3.0E+04 f-)

Mo 1.0E+01 (j

Tc 1.5E+01 Ru 1.0E4 01 Rh 1.0E+01 Ag 2.3E+00 Sb 1.0E+00 Te 4.0E+02 1

1.5E+01 Cs 2.0E+03 Ba 4.0E+00 La 2.5E+01 Ce 1.0 E+00 Pr 2.5E+01 l

Nd 2.5E+01 W

1.2E+03 Np 1.0E+01 r

l 1

adapted from IJUREG/CR-1336, and silver and antimony, which are taken from UCRL 50564, i

Rev 1, October 1972.

v l

l i

e, j

9 t n

},,i v

S p l'.

c: i

^y

,g

(.,

3,

..;~.

,u i

3s ggg.

s.

,lI l}

l}

=.lja J

i e

P

.i d d l l

I

[

'f lPf" T

,r

/

11; e

a m

l Q-8 e

O

/ II l}$

\\.l.1.'

c'

~

,. m Mgb i I C

p 4

.s

. ll!

e

.~

O 1

I Il}!) i c 3 1 .59 e i 3 g / II l 1l .J th 1r {}]! [d <D = I Ib D c) l l l

Nucl:ar Pr:ducti:n - F rmi 2 ODCM-3.0

  • /

- Offsit] Dass Calculation Manual R3visisn 2 Page 3.0-1 f.- GASEOUS EFFLUENTS 1 m.- 4 l O l 3.0 GASEOUS EFFLUENTS 3.1 Radiation Monitoring Instrumentation and Controls 3.1.1 Effluent Monitoring - Ventilation System Releases l The gaseous effluent monitoring instrumentation required at Fermi 2 for controlling and monitoring radioactive effluents are specified in TS 3.3.7.12. The monitoring of each identified gaseous effluent release point must 3 include the following: Noble Gas Activity Monitor lodine Sampler (sample cartridge containing charcoal or silver zeolite) Particulate Sampler (filter paper) Sampler Flow Rate Monitor Meeting these requirements, a total of seven Eberline SPING Monitoring Systems are installed on the six gaseous release points (Onsite Storage Facility, Service Building, Radwaste Building, Turbine Building, Reactor Building Exhaust Plenum, and Standby Gas Treatment System 1 (3 Division 1 and Division 2). The SPING Monitor outputs are recorded y; electronically in the CT-2B Control. Terminal in the Main Control Room. t In general, a reading exceeding the High alarm setpoint of the SPING Monitors causes an alarm in the Control Room. Fermi 2 TS Table 3.3.7.12-1 identifies only the alarm function of the Reactor Building Exhaust Plenum Effluent Monitor, the Standby Gas Treatment System Monitors, and the Onsite Storage Facility. 3.1.2 Main Condenser Offgas Monitoring TS Table 3.3.7.12-1 specifies monitoring requirements for the Offgas System at the 2.2 minute delay line. The following monitors are required: Hydrogen Monitor - used to ensure the hydrogen concentration in the Offgas Treatment System is maintained less than 4% by volume as required by TS 3.11.2.6. Noble Gas Activity Monitor - used to ensure the gross activity release rate is maintained within 340 millicuries per second after 30 minute decay as required by TS 3.11.2.7. i ARMS - lNFORMATION SERVICES Date approved: Release authorized by: A. Change numbers incorporated: LCR 88-032-ODM t i V DSN d[)dM - 3,d Rev 2 Date .lAN 1 R 1QRQ .DTC TMPLAN File 1715.02 Recipient JM i

ODCM-3.0 Revision 2 l.- Page 3.0 " These two monitors perform safety functions. The Hydrogen Monitor. +- ' monitors the potential explosive mixtures in the Offgas System. The Noble (N Gas Monitor monitors the release rate from the main condenser ensuring .( doser ' the exclusion area boundary will not exceed a small fraction of the limit' 10 CFR 100 in the' event this effluent is inadvertently discharged direci io the environment bypassing the Offgas Treatment System. 3.1.3 Reactor Building Ventilation Monitors (Gulf Atomic) The Gulf Atomic Monitors (D11-N408 and 410) on the Reactor Building Ventilation System provide on high radiation levels (above alarm setpoint) initiation of SGTS, isolation of drywell vent / purge, isolation of the RB and Control Center Ventilation Systems and initiation of Control Center recirculation mode ventilation. These monitors and functions are not required by Fermi 2 TS but are important in controlling containment venting / purging. 3.2 Sampling and Analysis of Gaseous Effluents The program for sampling ar.d analysis of gaseous waste is prescribed in Fermi 2 TS Table 4.11.2.1.2-1. This table distinguishes two types of gaseous releases: (1) containment PURGE, treated as BATCH releases, and (2) discharges from the Reactor Building Exhaust Plenum (including Standby Gas Treatment System (SGTS)' when operating), and other building ventilation exhausts,. treated as CONTINUOUS releases. 3.2.1 Containment PURGE OQ TS Table 4.11.2.1.2-1 requires that a grab sample be collected and analyzed before each containment drywell PURGE. Sampling and analysis are required within eight hours before starting a PURGE. TS Table 4.11.2.1.2-1 Footnote i and TS 4.11.2.8.3 also require that if the PURGING or VENTING is through the Reactor Building Vent, rather than through SGTS, additional sample and analyses are required every twelve hours throughout the j release period. Analysis must include principal gamma emitters and tritium prior to venting and purging. j For a planned containment PURGE, the results of the sample and analysis are used to estabhsh the acceptable release rate and radiation monitor alarm setpoint in accordance with ODCM Section 3.3. This evaluation is l necessary to ensure compliance with the dose rate limits of T5 3.11.2.1. The periodic samples collected throughout the PURGENENT period are used to ensure that release conditions over an extended period are maintained within TS limits. 3.2.2 Ventilation System Releases TS Table 4.11.2.1.2-1 requires continuous samples of releases from the RB Exhaust Flenum, Standby Gas Treatment System, Radwaste Building, Turbine Building. Service Building, and Onsite Storage Facillity. The table specifies the following program: Once per week, analysis of an adsorbent sample of I-131 and I-133, plus analysis of a particulate sample for principal gamma emitters.

y, ODCM-3.0 Revision 2-I. Pago 3.0-3 I .c ~ Once per month, analysis df a composite particulate sample of all W. D '. : releases (by release point) that month for gross alpha activity. if Once per quarter, analysis of a composite particulate sample of all releases-that quarter for Sr-89 and Sr-90.- Once per month, analysirof a grab sample for principal gamma emitters (noble gases and (titium). J TS Table 4.11.2.1.2-1 also requires continuous monitoring for. noble gases. This requirement is met by the SPING Monitors on each of the plant =

1 gaseous release points.

+ The TS require more frequent sampling and analysis following reactor. startup, shutdown, or change in thermal power exceeding 15% within one hour. ;The TS allow exceptions to this increased sampling. schedule if the' Primary Coolant Dosa Equivalent 1-131 has not increased more than a factor of three and the Noble Gas (i.e, Offgas) Monitor reading has not increased more than a factor of three. Grab samples of the Fuel Pool Ventilation LExhaust are required for tritium analysis once per seven days whenever spent fuel is in the Spent Fuel Pool. Also, grab samples for tritium are required when either the reactor well or the dryer separator pool is filled. These samples are taken at the Reactor Building Exhaust Plenum and Standby Gas Treatment System (SGTS) when operating. ' 3.3 - Gaseous Effluent Monitor Setpoint Determination t% 3.3.1 - Ventilation System Monitors-Per the requirements of TS 3.3.7.12, alarm setpoints shall be established for ' the gaseous effluent monitoring instrumentation to ensure that the release rate of noble gases does not exceed the limits of TS 3.11.2.1. This TS limits releases to a dose rate at the SITE BOUNDARY of 500 mrem / year to the total body or 3000 mrem / year to the. skin From a grab sample analysis of the applicable release (i.e., grab sample of the Drywell or Ventilation System release), the radiation inonitoring alarm setpoints may be established by the following calculational method. The measured radionuclides concentrations and release rate are used to calculate the fraction *of the allowable release rate, limited by TS 3.11.2.1, by the equation: FRAC = 1.67 E + 01

  • X/O
  • VF * [(C1
  • Ki) 500 (3-1) l_

FRAC = 1.67 E + 01

  • X/O
  • VF * [(Ci 4 f., + 1.1 M l) i 3000 (3-2)

Where; fraction of the allowable release rate based on the FRAC = identified radionuclides concentrations and the release flow rate (%) s

ODCM-3.0 Revision 2. - Page 3.0-4 ^ 'X/O. .= - annual average meterological dispersion to the controlling site boydary location from ,.s A{); Table 3.0-4 (sec/m ) VF

  • Ventilation System flow rate for the applicable release point and monitor _(liters / minute)

Ci concentration of noble gas radionuclides i as determined = by gamma spectral analysis of grab sample (uCi/cc) = total body dose conversion factorf,or noble gas Ki radionuclides i (mrem /yr per uCi/m from Table 3.0-3) beta skin dose conversion far, tor fgr noble' gas L- = i radionuclides I (mrem /yr per uCi/m, ' Table 3.0-3) Mi gamma air dose conversion factog for noble gas = radionuclides I (mrad /yr per uCl/m, from Table 3.0-3) mrem skin dose per mrad gamma air o: se (mrem / mrad) 1.1 = 500 = total body dose rate limit (mrem /yr) 3000 skin dose rate limit (mrem /yr) ~ = 1.67 E '+ 01 1 E + 03 (cc/ liter) * (1/60) (min /sec) = .p Based on _the more limiting (i.e., higher) value of FRAC as determined above, . Q the alarm setpoints for the applicable monitors may be calculated by the equation: SP = (AF

  • Cl) + Bkg FRAC (3-3) 1 Where:

alarm setpoint corresponding to the maximum allowable - SP = release rate (uCi/cc) Bkg = background of the monitor (uCi/cc) administrative allocation factor (Table 3.0-2) for the AF = specific monitor and type release, which corresponds to the fraction of the total allowable release rate that is administratively allocated to the individual release points. Ci concentration of Noble Gas Radionuclides i as determined = by gamma spectral analysis of grab sample (uCl/cc) (- l y

l ODCM-3.0 q itevision 2 a Page 3 0-5 -.l The Allocation Factor (AF) is an' administrative control imposed to ensure l that combined releases from all release points at Fermi 2 will not exceed ' ) / the regulatory ilmits on rr, lease rate from the site (i.e., the release rate VL limits of Technical Specification 3.11.2.1). From the Fermi 2 design evaluation of gaseous effluents' presented in the.UFSAR Section 11.3, representative values have been determined for AF. These values are presented in Table 3.0-2. These values may be changed in the future as warranted by operational experience, provided the site releases comply with TS 3.11.2.1. When combined with the' Noble Gas Monitor calibration constant, the monitor sensitivity for Xe-132 may be used in lieu of the sensitivity values for the individual radionuclides. Because of its lower gamma energy and corresponding monitor response, tite Xe-133 sensitivity provides a conservative value for alarm setpoint determination. 3.3.2 Conservative, Generic Alarm Setpoints I A conservative alarm setpoint can be established, in lieu of the indiv' dual i radionuclides evaluation (described above) based on the grab sample i analysis. This approach eliminates the need to adjust the setpoint periodically to reflect mmor changes in radionuclides distribution or release flew rate. The alarm setpoint may be conservatively determined based on the UFSAR design radionuclides distribution values as summarized in I ' Table 3.0-1. For the radionuclides distribution given in 'UFSAR Table 11.3-5, the estimated total body dose rate is higher than the estimated skin dose rate. Therefore, the more restrictive setpoint is based on the total body dose rate limit and i p) is calculated with Equations (3-1) and (3-3). The calculated setpoints are ( presented in Table 3.0-2. 3.3.3 Geseous Effluent Alarm Response - Evaluating Actual Release Condition The monitor alarm setpoint is used as the primary method for ensuring and demorttrating compliance with the release rate lirnits of TS 3.11.2.1. Not exceeding ularm setpoints constitutes a demonstration that release rates "j 'have been maintained within the TS limits. When an effluent-Noble Gas Monitor exceeds the alarm setpoint, an evaluation of compliance WW the release rate limits must be performed using actual release conditions. This evaluation requires collecting a sample of the effluent to establish actual radionuclides conceritrations and permit evaluating the monitor response. The following equations may be used for evaluating compliance with the release rate limit of TS 311.2.1a: (K

  • C )

Dtb = 1.67 E + 01

  • X/O
  • VF
  • i 1

(3-4) (L + 1.1 M l

  • C )

Ds = 167 E + 01

  • X/Q
  • VF
  • i i

i (3-5) i Where: ~ Dtb total body dose rate (mrem /yr) = &D

ODCM-3.0 - Revision 2 Page 3.0-6 i Ds = skin dose rate (mrem /yr) yx. X/O = atmospheric dispersion to the cog) trolling. tv). ( SITE BOUNDARY location (sec/m VF - = Ventilation System release rate (litera/ min) Ci concentration of radionuclides i as measured in the grab = sample or as correlated fror.1 the SPING Noble Gas I Monitor reading (uCl/cc) Kj' total body dose c,onversion factorfor noble gas = radionuclides I (mrem /yr per uCl/m, from Table 3.0-3) Li beta skin dose conversion factor fgr noble gas = radionuclides I (mrem /yr per uCi/m, from Table 3.0-3) Mi gamma air riose conversion factog for noble gas = radionuclides i (mrad /yr per uCl/m, from Table 3.0-3) ' mrem skin dose per mrad gamma air dose (mrem / mrad) 1.1 = 1.67 E + 01 .= 1 E + 03 (cc/ liter) * (1/60) (min /sec) 3.4 ' Containment Drywell VENTING and PURGING 3.4.1 Release Rate Evaluation / For a drywell VENTING or PURGING, an evaluation of acceptable release rate should be performed prior to the release. Based on the measured noble gas concentration'in the grab sample collected per tne requirements of TS 'Ta ble 4.11.2.1.2-1, the allowable release rate can be calculated by the following equation: RRtb = 500

  • AF 1.67 E + 01
  • X/O * { (K
  • C )

i i (3-6) - 1 or RRs = 3000

  • AF 1.67 E + 01
  • X/O * { ([L + 1.1 M l
  • C )

i i l (3-7) Where: RRtb allowable release rate so as not to exceed a dose rate = of 500 mrem /yr, total body (liters / minute) RRs allowable release rate so as not to exceed a dose rate = of 3000 mrem /yr, skin (liters / minute) allocation factor for the applicable release point from AF = Table 3.0-2 (default value is 0.5 for Reactor Building i o Exhaust. Plenum) \\

' ODCM-3.0 Revision 2 '~ Page 3.0-7 500 = total body dose rate limit (mrem /yr)

[D

.Q 3000 skin dose rate limit (mrem /yr) = The lesser value (RRtb or RRs) as ce!culated above should be used for establishing the allowable release rate for the drywell PURGING or VENTING. 3.4.21 Alarm Setpoint Evaluation For a containment drywell VENTING or. PURGING, a re-evaluation of the alarm setpoint is needed to ensure compliance with the requirements of TS 3.3.7.12. For the identified release path (RB Exhaust Plenum or SGTS) and associated effluent Radiation Monitor, the alarm setpoint should be calculated using Equations (3-1), (3-2) and 13-3). In Equations (3-1) and (3-2), the.value of the Ventilation Flow VF should be established at the total release flow rate, including the contribution from the PURGE or VENT. If the calculated alarm setpoint is greater than the current setpoint, no adjustments are necessary. { l 3.5 Quantifying Releases - Noble Gases i The determination of doses in the environment from releases is dependent on the i mixture of the radioactive material. Also, NRC Regulatory Guide 1.21 requires I reporting of mditidual radionuclides released in gaseous effluents. Therefore, . Detroit Edison.must determine the quantity released of the individual radionuclides. p 3.5.1 Quantifying Releases Using SPING Noble Gas Monitor The quantification of gaseous effluents (noble gases) is based on the Continuous Radioactivity Monitor on each of the Ventilation System release points. Thi.'. monitor measures the gross radioactive material concentration in the effluent but not the individual radionuclides concentrations. The latter are required for evaluation of release rate, alarm setpoints, and cumulative l doses. As required by TS 3.11.2.1, a gas sample is collected at least monthly from each of the six gaseous release points (Reactor Building Exhaust Plenum, Standby Gas Treatment System, Radwaste Building, Turbine Building, Onsite Storage Facility, and Service Building). As discussed in ODCM Section 3.2.2, this gas sample is analyzed by gamma spectroscopy to identify principal j gamma-emitting radionuclides (noble gases). The results of the sample analysis are used to determine the radionuclides distribution (i.e., fraction of total activity for each measured noble gas). For Containment PURGE / VENT, samples are collected prior to the initiation of the miease and periodically throughout the release (see ODCM Section 3.2.1). These samples and analysis are used for correlating the j radionuclides distribution with the SPING Monitor readings for determining total release. For an extended PURGE / VENT period (e.g., longer than j 48 hours), drywell airborne activity levels will equilibrate. After equilibrium is reached, the quantification of the PURGE / VENT can be adequately addressed by the periodic (typically weekly) sample and analysis of the ? Reactor Building Exhaust Plenum or Standby Gas Treatment System. Y I'

ODCM-3.0 R: vision 2 Page 3.0-8 Rased on the average Noble Gas Monitor reading over the release period, '^ 'i ine individual noble gas radionuclides releases are quantified by the nf equation: 1 Oj = 1.0 E + 03

  • Ai
  • C
  • VF
  • T i

{Aj (3-8) Where: Oi total activity released of radionuclides i (uCi) = activity of radionuclides i from the samma spectral Aj = analysis of the grab sample from the release point (uCi) average gross activity concentration over the release C = period as measured by the SPING Noble Gas Monitor (uCi/cc) Ventilation System flow rate (liters / min) VF = total time of the release period (min) T = 1.0 E + 03 milliliters per liter = The Eberline CT-2B Control Terminal for the SPING Monitors records q) historical averages (e g., daily averages for current 24 day history) of the ('" release rates for all the SPING Monitors. By entering the time period of interest (e.g., release period), the Average Concentration C used in Equation (3-8) can be obtained from the CT-2B Terminal. The Release Period T is the time from the last sample of the release point to the time of the current sample under evaluation. As required by TS Table 4.11.2.1.2-1, special samples are required of tb., RB Exhaust Plenum and SGTS following shutdown, startup or a THERMAL POWER change exceeding 15% within a 1 hour period. Exceptions to this special sampling are allowed as noted previously in ODCM Section 3.2.2. Equation (3-8) can be used for quantifying the releases based on this special sample analysis. The specified release period in this situation is shorter than the typical 7 days. However, the release i period still is represented by the time from the last sample to the time of the current sample under consideration. If no activity is detected in the gas sample (i.e., all activity less than Lower j Limits of Detection (LLD)), the default radionuclides distribution of Table 3-1 should be used unless better data is available to substantiate a different distribution. Until a radionuclides distribution can be established for Fermi 2 based on actual operating conditions and measured effluent, the design distribution of UFSAR Section 11.3 should be used. This distribution is presented in Table 3 0-1.

ODCM-3.0 Revision 2. ) Page 3.0-9 3.5.2 ' Quantifying Release Rate and Total Releases with Monitor inoperable. j e -p' The requirer ent to quantify radioactive releases continues even while .(/ . monitors are inoperable, in this situation, a backup method is used to 4 relate effluent concentrations and volumes to a total radioactive raaterial 4 release. Analysis of grab samples provides the radioactive material l concentrations in the effluent. The flow measurement ' device, or flow estimate, and the release duration provide the total volume released. With these, the backup method can determine the release rate and resultant total amount of radioactive material released. 1. Release Rate Evaluation With an inoperable monitor, the demonstration of compliance'with the release rate limit of TS 3.11.2.la must be based on the periodic grab samples. These grab samples provide a measurement of the noble gas concentration in the effluent stream. Equations (3-4) and (3-5) i I can be used for determining the dose rate based on the grab samples. For the applicable monitor and release point, the calculated dose rates should be compared with the allocated dose rates of Table 3.0-2. If the calculated exceeds the allocated, an evaluation of the total dose rates for the site should be performed. The dose rate . for each release point should be determined and these contributions summed to determine the total dose rate for the site. 2. Total Release Evaluation When a SPING Noble Gas Monitor is inoperable, operators lose the n {G[ capability to determine the average release rate over the release . period of interet,t. The periodic grab samples must be used to quantify the total releases. The measur.ed noble gas radionuclides concentrations in the grab samples will be considered representative of the average effluent concentration over the period since the last sample. The following equation may be used for determining the release quantities from any release point based on the grab sample analysis: O = 1.0 E + 03

  • VF
  • T
  • Ci i

. (3-9) Where: i Qi total activity released of radionuclides I (uCl) = Ventilation System release rate (liters / min) VF = total time of release period (min) T = 1.0 E + 03 milliliters per liter l = concentration of radionuclides i as determined by gamma Ci = spectral analysis of grab sample (uCi/cc) (0 %.) l'

ODCM-3.0 Revision 2 i Page 3.0-10 I 3.6 Site Boundary Dose Rate - Radiolodine and Particulate j ( ) TS 3.11.2.1.b limits the dose rate to <1500 mrem /yr to any organ for 1-131,1-133, tritium and particulate with half-lives greater than 8 days. To demonstrate l compliance with this limit, an evaluation is performed at a frequency no greater than j that corresponding to the sampling and analysis time period (nominally once per { 7 days). The following equation may be used for the dose rate evaluation: l bo = X/O * (R

  • d )

i i (3-10) Where: bo = average organ dose rate over the sampling time period (mrem /yr) = atmospheric dispersion to the corg) rolling SITE BOUNDARY location X/O for the inhalation pathway (sec/m from Table 3-4 3 Ri = dose parameter for radionuclides i, (mrem /yr per uCi/m ) for the child inhalation pathway from Table 3-5 i average release rate over the appropriate sampling period and = analysis frequency for radionuclides i -- I-131,1-133, tritium or other radionuclides in particulate form with half-life greater than 8 days (uCi/sec) Q = C

  • VF
  • 1.67 E + 01 i

i V Average ventilation flow for release point (liters / min) VF = Ci Concentration of radionuclides i as determined by gamma spectral = analysis of media (uCi/ml) { 1E + 03 (cc/ liter) * (1 min / 60 sec) 1.G7E + 01 = 3.6 1 Simplified Dose Rate Evaluation for Radioiodines and Particulate ) It is conservative to perform a simplified evaluation of allowable releases by applying the 1-131 dose factor to the collective releases for all meas,ured radionuclides. By substituting 1500 mrom/yr for Do and solving for Q.i an allowable release rate can be determined. j Based on the annual average meterological dispersion (see Table 3.0-4) and the dose factor for the most limiting potential pathway, age group and3 organ (inhalation, child, thyroid -- R = 1.62 E + 07 mrem /yr per uCi/m ), i the allowable release rate (based on 1-131) is 19 uCi/sec. For a 7-day period, which is the nominal sampling and analysis frequency, the cumulative release would be 11 Ci. Therefore, as long as the collective releases in any 7-day period do not exceed 11 Cl, no additional analyses are needed to verify compliance with the TS 3.11.2.1.b limits on allowable release rate. p

ODCM-3.0 Revision 2 Page 3.0-11 - 3.7 ' Noble Gas Effluent Dose Calculations - 10 CFR 50 - [] - 3.7.1 UNRESTRICTED AREA bose. Noble. Gases A._/ TS 3.11.2.2 ' requires a periodic assessment of releases of noble gases to evaluate compliance with the quarterly dose limits of 5 mrad, gamma-air and 10 mrad, beta-air and the calendar year limits 10 mrad, gamma-air and 20 mrad, beta-air.. The following equations may be used to calculate the ^' gamma-air and beta-air doses: D = 3.17 E - 08

  • X/O *

(M

  • Q )i.

i 7 (3-11) and = 3.17 E - 08

  • X/O *

(N

  • O )

i i (3-12) Where: D air dose due to gamma emissions for noble gas = 7 radionuclides (mrad) air dose due to beta emissions for noble gas = radionuclides (mrad) X/O atmospheric dispersion to the cog) trolling = SITE BOUNDARY location (sec/m AQ Oi cumalative release of nobis gas radionuclides i over the = period of interest (uCl) Mi air dose factor due to gamma emfssions from noble gas = radionuclides i (mrad /yr per uCi/m, from Table 3.0-3). Ni air dose factor due to beta emissgons from noble gas = radionuclides i (mrad /yr per uCi/m, Table 3.0-3) 3.17 E - 08 1/3.15 E + 07 (year /sec) = 3.7.2 Simplified Dose Calculation for Noble Gases In lieu of the individual noble gas radionuclides dose assessment presented above, the following simplified dose calculational equations may be used for verifying compliance with the dose limits of Technical Specification 3.11.2.2. (Refer to Appendix C for the derivation and justification of this simplified method.) D = 2.0

  • 3.17 E - 08
  • X/O
  • Meff
  • Oj 7

(3-13) and D = 2.0

  • 3.17 E - 08
  • X/O
  • Nef f
  • Oi (3-14)

O. U l l

ODCM-3.0 - R: vision 2 ~. Page 3.0-12 4 Where: .m (V) Mett 2.7 E + 03, effectivg) gamma-a:r dose factor = (mrad /yr per uCl/m = 2.3 E + 03, effectivg) beta-air dose factor Neff (mrad /yr per uCl/m 2.0 = conservatism factor to account for potential variability in the radionuclides distribution 3.8 Radiolodine and Particulate Dose Calculations - 10 CFR 50 3.8.1 UNRESTRICTED AREA Dose - Radiolodine and Particulate in accordance with requirements of TS 3.11.2.3, a periodic assessment is required to evaluate compliance with the quarterly dose limit of 7.5 mrem and the calendar year limit of 15 mrem to any organ. The following equation may be used to evaluate the maximum organ dose due to releases of l-131, tritium and particulate with half-lives greater than 8 days: (R

  • O )

Daop = 3.17 E - 08

  • W
  • SFp i

i (3-15) Where: Daop = dose or dose commitment via controlling Pathway p and f'~h Age Group a (as identifind in Table 3.0-4) to Organ o, V-including the total body (mrem) W = atmospheric dispersion parameter to the controIIing location (s) as identified in Table 3.0-4: i i W = X/Q atmospheric dispersion for inhalation pathw and l H-3 dose contribution via other pathways (sec/m D/O, atmospheric deposition for vegegation, milk and W = ground plane exposure pathways (m-) Where: 3 = doge factor for radionuclides i, (mrem /yr per uCl/m ) or Ri (m - mrem /yr per uCi/sec) from Table 3.0-5 for each Age Group (a) and the applicable Pathway (p) as identified in Table 3.0-4. Values for R were derived in i accordance with the methods described in NUREG-0133. Oi

  • cumulative release over the period of interest for radionuclides I -- l-131 or radioactive material in l

particulate form with half-life greater than 8 days (uCl). SF = annual seasonal correction factor to account for the p fraction of the year that the applicable exposure i pathway does not exist:

ODCM-3.0 RIvlsion 2 N Page 3.0-13 'q

1) For milk and vegetation exposure pat" ways:

M) L = A six month fresh vegetation and grazing season (May through October) limits exposure through this pathway to half the year - = 0.5 (derived from Reg Guide 1.109, Rev 1)

2) For inhalation and ground plane exposure pathways:

1.0 (derived from Reg Guide 1.109, Rev 1) = 1/3.15 E + 07 (year /sec) 3.17 E - 08 = The age group with the highest potential dose via the controlling pathway should be used for evaluating the maximum exposed individual. This determination is based on a comparison of the age group pathway dose conversion factors (Table 3-5). The infant age group is controlling for the milk pathway and the child age group is controlling for the vegetable pathway. Only the controlling age group and pathway identified in Table 3.0-4 need be evaluated for compliance with TS 3.11.2.3. i 3.8.2 Simplified Dose Calculation for Radiolodines and Particulate in lieu of the individual radionuclides (1-131 and particulate) dose assessment presented above, the following simplified dose calculation may G. be used for verifying compliance with the dose limits of TS 3.11.2.3. b

  • R -131
  • Oi Dmax = 3.17 E - 08
  • W
  • SFp I

(3-16) Where: maximum organ dose (mrem) Dmax = 1 R -131 = l-131 dose parameter for the thyroid for the identified I controlling pathway = 4.76 E + 10, child thyrgid dose parameter for the i vegetable pathway (m - mrem /yr per uCi/sec) ) l The ground plane exposure and inhalation pathways need not be considered when the above simplified calculational method is used because of the l overall negligible contribution of these pathways to the total thyroid dose. It is recognized th'at for some particulate radionuclides (e.g., Co-60 and Cs-137), the ground exposure pathway may represent a higher dose contribution than either the vegetation or milk pathway. However, use of the 1-131 thyroid dose parameter for all radionuclides will maximize the organ dose calculation, especially considering that no other radionuclides has a higher dose parameter for any organ via any pathway than 1-131 for the thyroid via the vegetable or milk pathway. ) s Oi i l l

O DC M-3.0 - 4 - Revision 2 i Page 3.0-14 The location of exposure pathways (critical receptors) and the ' g). corresponding maximum organ dose calculation should be based on the j - pathways identified by the annual land-use census (Technical V Specification 3.12.2). ' Otherwise, the dose should be evaluated based on the predetermined controlling pathways identified in Table 3.0-4. 3.9 ' Gaseous Effluent Dose Projection As with ' liquid effluents, the Fermi 2 TS on gaseous effluents require " processing" of gaseous effluents if the projected dose exceeds specified limits. This TS implements the requirements of 10 CFR 50.36a on maintaining and using the appropriate radwaste processing equipment to keep releases ALARA. TS 3.11.2.5 requires that the VENTILATION EXHAUST TREATMENT SYSTEM be used to reduce radioactive material levels prior to discharge when the projected dose exceeds 0.3 mrem to any organ in any 31 day period (i.e., one-quarter of the design objective rate). ' Figure 3-1 presents the gaseous effluent release points and the VENTILATION EXHAUST TREATMENT SYSTEMS applicable for reducing effluents prior to release. Dose projection is performed at least once per 31 days using the following equation: Dmaxp = Dmax * (31/ d) (3-17) Where: maximum organ dose projection for current 31 day Dmaxp = q/'] projection (mrem) .g maximum organ dose to date for current calendar quarter as Dmax = determined by Equation (3-15) or (3-16) (mrem) number of days to date in' current calendar quarter d = number of days in projection 31 = END OF SECTION 3.0 l L0 4 l

. ODCM-3.0 - Revision 2 'I J Page 3.0-15 4 _i i.*- TABLE 3.0-1 l ,A -l Default Noble Gas Radionuclides Distribution

  • w'-

of Gaseous Effluents Radionuclides Fraction of Total (Aj/ { A ) i Kr-85m 0.10 Kr-85 0.01 Kr-88 0.04 Kr-89

0.06 Xe-133 0.67-Xe-135 0.02 Xe-137 0.02 Xe-138 0.07 TOTAL 0.99 NOTE:

-t Data adapted from Fermi 2 UFSAR, Section 11.3, Table 11.3-5. Kr-90, Kr-91, Xe-139, and Xe-140 have been excluded from the distribution. Because of their short half-lives, they decay during transport off site to negligible levels of activity. Kr-87, Xe-131m and Xe-133m have been excluded because of their negligible fractional abundance. I l l I. l .1

b ODCM-3.0 o~ Revision 2 Page 3.0-16 j / TABLE 3.0-2 I x, /- Generic Values for Evaluating Gaseous Release Rates and Alarm Setpoints i 4 Allocation Allocated Dose f Release Point Flow Rate Factor Rate Limit Generic Alarm p (liter / min) (AF) (mrem / year) Setpoint (uCi/ml) ) Reactor Building 2.67E6 0.50 T Body = 250 1.02E-4+ Bkg I Exhaust Plenum Skin = 1500 D11-P280 Organ = 375 Standby Gas. 1.07E5 0.10 T Body = 25 6.12E-4+ Bkg Treatment System Skin = 150 .Div i D11-P275 Organ = 75 l* Standby Gas 1.12 E5 0.10 T Body = 25 6.17E-4+ Bkg Treatment Syr.em Skin = 150 r Div 11 D11-P276 Organ = 75 Turbine Building 8.67E6 0.20 T Body = 50 1.06E-5+ Bkg Ventilation Skin = 300 D11-P279 Organ = 150 /~ i Service Building 9.06E5 0.01 T Body = 2.5 7.93E-6+ Bkg

i. ~ () Ventilation Skin 15

= D11-P282 Organ = 7.5 ' Radwaste Building 1.13E6 0.02 T Body = 5 6.22E-6+ Bkg Ventilation Skin = 30 15 D11-P281 Organ = Onsite Storage 3.06E5 0.02 T Body = 5 1.93E-4+ Bkg Building Skin = 30 15 Ventilation Organ = D11-P281 Reactor Building 2.41E5 0.50 T Body = 125 9.19E-6+ Bkg Ventilation

  • Skin = 750

. Gulf Atomic Monitors D11-N408,N410 D11-N408 and N410 will start the SGTS, close the Drywell Purge / Vent Valves, isolate Rx Building Ventilation System, isolate Control Center, and initiate emergency recirculation mode. Alarm setpoints for these monitors are not required by Fermi 2 TS but have been included in this table for completeness. V]

ODCM-3.0 Revision 2 Page 3.0-17 .I /' TABLE 3.0-3 d.j% - Dose Factors for Noble Gases

  • Total Body Skin Gamma Air Beta Air Gamma Dose Beta Dose Dose Factor Dose Factor Nuclide Factor Ki Factor Li Mi Ni hnrem/yg)per (mrem /yg)per (mrad /yrg) er (mrad /yrg) er uCi/m uCi/m uCi/m uCl/m p

Kr-83m 7.56E-02 1.93 E+01 2.88E+02 Kr-85m 1.17 E+ 03 1.46E+03 1.23E+ 03 - 1.97E+03 Kr-85 1.61 E+01 1.34 E+ 03 1.72 E+ 01 1.95E+03 Kr-87 5.92E+03 9.73 E+ 03 6.17 E+ 03 1.03E+ 04 Kr-88' 1.47E+04 2.37E + 03 1.52 E+ 04 2.93E+03 Kr-89 1.66E+ 04 1.01 E+04 1.73 E+ 04 1.06E +04 Kr-90 ' 1.56E+04 7.29E +03 1.63 E+ 04 7.83E+03 Xe-131m 9.15E + 01 4.76E+02 1.56 E+02 1.11 E+ 03 - Xe-133m 2.51 E+ 02 9.94 E+ 02 3.27E+ 02 1.48E + 03 Xe-133 2.94E+02 3.06E+02 3.53E+02 1.05E+ 03 Xe-135m 3.12 E + 03 7.11 E+02 3.36 E+ 03 7.39E+ 02 Xe-135 .1.81E+03 1.86E +03 1.92 E+03 2.46E+03 Xe-137 1.42 E + 03 1.22 E+04 1.51 E+ 03 1.27E+ 04 i Xe-138-8.83E+03 4.13E + 03 9.21 E + 03 4.75E+ 03 Ar-41 8.84E+03 2.69E+ 03 9.30E+ 03 3.28E+ 03 ? gm i s NOTE: Dose factors taken from NRC Regulatory Guide 1.109 l'

~ ODCM-3.0 R: vision 2 P:ge 3.0-18 L, fs TABLE 3.0-4 i \\ Controlling Locatians, Pathways, and Atmospheric Dispersion ice Dose Calculations

  • Atmospheric Dispersion Factor Technical Location Pathway (s)

Controlling X/O D/O 3 2 Specification Age Group (sec/m ) (1/m ) 3.11.2,1 a site boundary noble gases N/A 4.94 E-6 N/A (0.915 km,NW) direct exposure 3.11.2.1 b site boundary inhalation child 4.94E-6 N/A (0.915 km,NW)

3. I 1.2.2 site boundary gamma-air N/A 4.94E-6 N/A (0.915 km,NW) beta-air

'3.11.2.3 residence

milk, infant 2.26 E-7 9.11 E-10 (3.379 krn,WNW) inhalation, and ground plane i j"~%

L) ' NOTE: The identified controlling locations and pathways have been determined from the 1988 land-use . census data. The atmospheric dispersion factors for these locations were derived from meteorological data records for the period 1/1/87 to 12/31/87. I I i l f

ODCM-3.0 T.nle 35 Revision 2 Geseous Effisent Patheav Dose Cosastrent Factors InhalationPathwayDoseFat5ers.ADVLT Page 3.0-19 1 3e. (ersa/yr per eC1/a 3 Jaclide Bone Liver Thyroid tanney .Lan8.. G1.LLI T.8edy "i 83 1.261+3-1.26t+3 1.26t+3 1.26t+3 1.26t+3 1.261 3-5'. C.16 1.42E+4 3.41E.3 3.611 3 3.411 3 3.411+3 3.41E+3

3. 61 t + 3 Na.24 1.02I..

1.02E+6 1.02t+6 1.02E+6 1.021 6 1.02E+6 1.02t+6 ( P.32 1.321 6 7.71t+4 8.64t+4 '5.011+. 1s, ' Cr.51 5.95t+1 2.20E+1 1.461+4 3.32t+3 1.00t+2 = 9.84t+3 1.40t+6 : 7.761 6 6.30E+3 3.96t+4 Mn-54 1.261 0' Mn 1 soE+0 9.44E+3 2.02t+4 1.83E.1 I. Fe.55 2.46E.4

7. 21t+4 - 6.03E+3' 3.9&t+3 1.70E+

2.781.' Fe-59 1.18t+4 1.02t+6 1.88t+5 1.06t+4 6 3.70t+5 3.16 tea 6.71E+2 Co-57 6.92E+2 1.581+3 9.20E+5 1.06t+5 2.07t+3 Co.58 5.97t+6

2. 8 5E+ 5 : 1. 68t +'

1.15E+6 Co.60 N1 63 a.32t+5 3.16t+' 1.78t+5,1.34t+4 1.45t+4 5.60t*3 1.23t+4 9.12t-2 W1 65 1.54t+0 2.101-1 1.66t+0 4.62E+0 '6.78E+3 4.90t+4 6.15E.1 Co.64 6.90E.6 8.64t+5 5.34t+A 4.661+6 !s.65 3.24t+4 1.03E+5 En-69' 3.38t 2 6.511-2 ~. 4.22E 2 9.20E+2 1.631 1 4.52E.3 1.04t+' 1.35E+' tr.82 3r.83 2.32t+2 2.41E.2 .1.64E-3 3.13E+2 tr-se 1.28t+1 tr.85 1.66t+4 5.90t+' 1.35t+5 86 86 3.34E.9 1.93t+2 8b.88 3.87t+2 1.70E+2 2.56t+2 86-89 + 1.40E+6 3.50t+5 0.72E+3 $r-89 3.0&E+5 Sr' 90 9.92E+7 9.60t+6 7.22E+5 6.101 6 3.65t+6 1.91E+5 2.50t+0 $r.91 6.19t+1 1.651.6 4.30t+4 2.911 1 $r.92 6.741 0 1.701 5 5.06t+5 5.611+1 7 90 2.09t+3 1.92E+3' 1.331 0 1.02E.2 7-91e 2.611 1 1.701 6 3.85t+5 1.2&E+4 7-91 4.621 5 1.571+4 7.35E+4 -3.02t-1 7 92 1.03t+1 4.85t+4 6.22t+5 2.61E+0 T 93 9.64t+1 5.42t+4 1.771+6 1.50E+5. 2.33E+s 21-95 1.07t+5 3.64t+4 2.971 1 7.87t+4 5.23t+5 9.041 0 Zr-97 9.68t+1 1.96E.1 Mb-95 1.61t+6 7.82E+3 7.7&E+3 5.05t+5 1.04t+5 a.211 3 6.541 2 2.601 3 2.42E+2 2.05E.2 N6 97 2.22E-1 5.621-2 2.91E+2 9.12t+a 2.481+5 2.30E+1 1.21t+2 Mo.99 4.62E.2 7.64E+2 4.16t+3 3.70E-2 Tc-99s 1.03E-3 2.918 3 5.90E-6 1.08E 3 3.99t+2 Ts.101 4.181 5 6.021 5 5.83E+3 5.05t+5 1.10t+5 6.58t+2 19 103 1.531 3 1.02t+0 1.10!+6 4.82t+6 2.111 1 8u.105 7.90E.1 -k _,. 1.34E+5 9.361 6 9.12t+5 8.721 3 8v-106 6.91t+6 g Rh.103e 8h.106 1.97t+4 6.63E+6 3.02t+5 5.94t+3 As-110s 1.081 6 1.00t.e St.126 3.12t+6 5.89t+2 7.55t.1 2.48t+6 4.06t+5 1.24E.4 SD 5.34t+6 5.951 2 5.40t+1 1.74E+6 1.01E+5 1.26t+6 Te.125e 3.42E+3 1.58t+3 1.05t+3 1.24E+a 3.141 5 7.061 4 4.67t+2 Te.12?e 1.26t+4 5.77t+3 3.29t+3 6.58t+4 9.60!+5 1.50E+5 1.571+3 Te.127 1.601 0 6.421-1 1.06t+0 5.10t+0 6.51E+3' 5.74E+4 3.101 1 Te.129e 9.761+3 6.671 3 3.aeE+3 '3.66t+4 1.16t+6 3.83t+5 1.58t+3 Te.129 4.98E-2 2.39E.2 3.90E-2 1.87t.1 1.94t+3 1.571+2 1.26t.2 Te-131e 6.99E.1 4.36t+1 f.501+1 3.09t+t 1.661+5 5.56t+5 2.90E.1 Te-131 1.111 2 5.95t.3 9.36E.3 4.375 2 1.36;+3 1.84t+1 3.591 3 Te-132 2.60t+2 2.151 2 1.90t+2 1.66t+3 2.641 5 T *)ct+59E'I' 5.2eE+3 5. '1.62t+2 2-130 4.58t+3 1.34t+4 1.141,6 2.09E:e . r<-' b tS8t3 2.05E+6 1-131 2.521 4 3.58t+4 1.19E+7 6.13E+4 1-132 1.16E.3 3.26t+3 1.141 5 5.181 3 4.06t+2 1.16 t+ 3 I-133 0.64t+3 1.48t+4 2.15t+6 2.54E+6 f.88t+3 A.52E+3 ) I-136 6.4aE+2 1.73t+3 2.98t+4 2.75t+3 1.01t+0 6.15E+2 1-135 2.68t+3 6.98t+3 a.68t+5 1.11t+4 5.25t+3 2.57t+3 Co-136 3.73E+5 8.681 5 2.87t+5 9.761+4 1.04t+4 7.28t+5 Cs.136 3.90t+4 1.46t+5 8.56t+4 1.20t+4 1.17t*6 1.10E+5 Co-137 4.78t+5 6.21t+5 2.22t+5 7.52t+a 8.40 6 4.28t+5 Cs-138 3.31t+2 6.21t+2 4.80t+2 4.86t+1 1.F' ~3 3.24t+2 8e 139 9.36E-1 6.66t.& 6.22E 4 3.76t+3 8. C+. 2.7&E.2 = 8e-140 3.90E+4 4.90t+1 1.67t+1 1.271+6 2.48E,3 2.57t+3 Sa-141 1.001-1 7.53E-5

7. 00 E-5
1. 94 t + 3 ' 1.16 E.7 3.36t-3 Sa-142 2.63E 2 2.70E.5 2.29E-5 1.19E 3 1.661 3 Ls.160

'3.4&E+2 1.741 2 1.36t+5 a.58t+5 6.58t+1 La-142 6.83E-1 3.101 1 6.33E+3 2.11E+3 7.721-2 Co.161 1.99t+4 1.35E+4 6.26t+3 3.62t+5 1.20t+5 1.53t+3 Co.143 1.86E.2 1.38t+2 6.081+1 7.98E+4 2.26t+5 1.53E+1 Ce-lea 3.43t+6 1.43t+6 8.681+5 7.78t+6 8.16t+5 1.8&E+5 Pr-163 9.36t+3 3.75t+3 2.16t+3 2.81t+5 2.00E+5 6.64t+2 ) Pr.146 3.011-2 1.251-2 7.051-3 1.02E 3 2.15E.8 1.53t.3 i Nd-147 5.27E+3 6.10t+3 3.56E.3 2.21t+5 1.73E+5 3.65E+2 W.187 8.48t+0 7.08E+0 2.90t+4 1.55t+5 2.48 t +0 7.00t+1 3.16t+4 1.19t+5 1.24E+1 Np.239 2.30t+2 2.26E.1

ODCM-3.0 F ;V $ 0112 T:ble 3-$ (ciottered) ta.16h31st12a Pethsc7 D>Se Fgettre - T!!Nacts P:ge 3.0-20 S (cre2/fr p1r cC1/3 ) Setlade Sese Liver Tb7 read tidesy Lees CI-LLI T. Sed? 83 1.27t+3 1.27t+3 1.27t+3 1.27t+3 1.27t+3 1.271+3 C-14 2.60t+4 4.87t+3 4.871+3 6.87t+3 4.87t+3 6.871 3 4.87t+3 r*N No.24 1.34t+4 1.34t+a 1.34t+4 1.38t+& 3.38t+4 1.381+e 1.38t+4 {f I-P-32 1.89t+6 1.10t+5 9.28t+4 7.161+6 g \\u / Cr.51 7.50t+1 3.07t+1 2.10t+4

3. 00!+ 3 1.35t+2 1.27t+e 1.981+6 6.64E+4 8.601 3 Me.56 3.11t+a Me-56 1.79t+0 1.52E+4 S.7eE+6 2.521 1 i

1.70t+0 Fe-55 3.36t+4 2.34t+4 1.24E+5 6.39t+3 S.54t+3 i Fe-59 1.39E+4 3.70E+6 1.53E+6 1.78t+5 1.43E+4 Co-57 3.86t+5 3.16 tee 9.20E+2 i 6.92E+2 Co-SS 2.07t+3

1. Set +6 9.32 E+4 2.781,3

= Co-60 8.72t+6 2.59t+S 1.98t+4

1. Sit +4 81-63 S.80E+5 4.34t+4 3.078 5 1.42t+4 1.94E+4 81 65 2.18t+0 2.931-1 9.36t+3 3.67t+6 1.271 1 Co-66 2.03E+0 6.41t+0 1.11E+4 6.1&E+4 8.68t.1 Ze.65 3.86t+e
1. Set +5 8.64t+4 1.24E+6 4.66t+4 6.24t+a Ze.69 4.83E.2 9.20g.2 6.021-2 1.58t+3 2.85t+2 6.461 3 Br-42 1.82E+e Sr.83 3.44t+2 Br.84 4.33t.2 Br-8' 1.83t+1

= 8b-86 1.90t S 1.77t+4 8.40E+4 86 88 S.46t+2 2.92t-5 2.72E+2 th.f9 3.32E+2 3.38E.7 2.33E+2 $r-89 4.36t+5 2.42t+6 3.71E.S 1.25t+4 St-90 1.08t+8 1.65E.7 7.65t+5 6.641+6 $r.91 8.80E+1 6.871 4 2.391+5 3.51t+0 Sr-92 9.52t+0 2.741 6 1.19t+5 4.061-1 7 90 2.98t+3 2.93E+5 5.59t+5 8.001 1 3.20t+3 3.02t+1 1.62E.2 7 91e 3.70E.1 f.91 6.611+5 2.94t+6 4.09t+5 1.77t+4 2.64E+4 1.65t+5 4.29E.1 7 92 1.47t+1 7 93 1.35t+2 8.32E+4 S.79t+5 3.721 0 Zr 95 1.661 5 e.58t+6 6.74t+e 2,691+6 1.49t+5 3.15E+6 Zr-97 1.38t+2 2.72E+1 4.12t+1 1.30E+5 6.301+5 1.26t+1 Nb.95 1.86t+4 1.03t+4 1.00E+4 7.51t+5 9.64t+e 3.661 3 4 Nb.97 3.14E.1 7.781 2 9.121 2 3.93t+3 2.17t+3 2.84t.2 Me.99 4.11E+2 1.54E+5 2.69t+5 3.221+1 1.69t+2 Tc-99s 1.38E.3 3.861 3 S.76E.2 1.15t+3 6.13t+3 6.991 2 Tc.101 S.928-5 8.601-5 1.321 3 6.67t+2 8.72E-7 8.24E-4 Su-103 2.10t+3 7.e}t+0 t+3 7.83t+S 1.09t+S 8.94t+2 ('N Is.105 1.12t+0 1.el 1.821+4 9.04t+4 4.34E.1 (*--) Su-306 9.64t+4 1.90t+5 1.61E.7 9.60t+5 1.24t+4 Sn.103s Sh.106 2.$0E+4 6.75t+6 2.73E+S 7.99t+3 es 110s 1.38t+4 1.311+4 3.85t+6 3.98t+5 1.68t+4 St 126 6.30E+4 7.96t+2 9.76t+1 2.741+6 9.92E+4 1.72t+e Sb.125 7.38E.4 8.08t+2 7.06t+1 S.36t+5 7.501+4 6.67t+2 To.12 5e e.881+3 2.24t+3 1.60t+3 Te.127e 1.80E.6 8.16E.3 4.38t+3 6.54E+e 1.661+6 1.591+5 2.181+3 To.127 2.01E+0 9.121.; 1.62t+0 7.28t+0 1.12t+e 8.08t+4 4.62t-1 To.129s 1.39t+e 6.58t+3 4.58t+3 S.19t+4 1.s8t+6 e.05E+5 2.25E+3 To.129 7.101 2

3. 38 E-2 S.181 2 2.66E.1 3.30t+3 1.62t+3 1.761-2 To.131s
9. 84 E + 1 6.01E+1 7.25E+1 4.39E+2 2.381+5 6.21E+5 e.02t+1 To.131 1.54E.2 8.32E-3 1.24E-2 6.18E.2 2.34E+3 1.51t+1 S.04E.3 To.132 3.60t+2 2.90E.2 2.66t+2 1.95t+3 4.49t+5 6.63t+5 2.19t+2 9.12E+3 7.17t+3 2-130 6.24E+3 1.79t+4 1.49t+6 2.75E+e 6.49t+3 2.64t+e

!.131 3.54E+4 4.91E+6 1.46t+7 8.401+4 1.271+3 1.58t+3 1 132 1.591 3 e.38E+3 1.51t+S 6.92E+3 1.03E+4 6.22E+3 1 133 1.22t+4 2.05E+4 2.92t+6 3.59E+4 2.04t+1 8.40t+2 1 134 8.848 2 2.328 3 3.95E+4 3.66t+3 6.95t+3 3.495 3 2 135 3.70E+3 9.eet+3 6.21E+5 1.49t+4 3.75E+5 1.46t+S 9.76t+3 S.49t+5 Co-134 S 02E+5 1.13E.6 1.10E*5 1.78E+e 1.09t+4 1.37t+5 Co.136 S.15t+4 1.Det+5 3.04E+$ 1.28t+S 8.ett+3 3.11E+5 Co-137 6.70t+S 8.68t+5 6.62E+2 7.87t+1 2.701 1 4.66t+2 Co.138 e.66t+2 8.56t+2 8.888-6 6.66t+3 6.45E+3 3.90E-2 Se.139 1.3&E+0

9. 64 8-4 2.28t+1 2.03t+6 2.29t+5 3.52t+3 Se.160 S. aft +4 6.70t+1 Se.161 1.42E-1 1.06t-4 9.661 5 3.29t+3 7.46E.4 4.74t.)

s 2.27E.3 3.14E.S 1.91E+3 Se.142 3.70E.2 3.70s.5 2.14E+5 6.87t+5 6.265 1 Le-le0 4.79t+2 2.368+2 1.02E+4 1.20t+4 1.061-1 Lo.142 9.601 1 6.252 1 8.88t+$ 6.145 5 1.26t+5 2.17t+3 Co-let 2.84E+4 1.90E+4 8.64t+1 1.30t+5 2.55t+S 2.16t+1 i Co.143 2.66E.2 1.94t+2 1.21t+6 1.36t+7 8.64E+5 2.62E+5 Co. nee 4.89E+6 2.02E+6 3.09t+3 4.83t+5 2.16t+5 6.621+2 Pr-143

1. Set +4 S.31E+3 1.011 2 1.75t+3 2.35t-e 2.18E.3 Pr. lee 4.301 2 1.76E-2 S.02E+3 3.72t+5 1.82E+5 S.13E.2 94 167 7.861 3 8.56t+3 e.7&t+4 1.77t+5 3.43t+0 b-187 1.20E+1 9.76t+0 1.00t+2 6.49t+6 1.32t+5 1.77t+1 s7 239 3.38E.2 3.191 1 lO

(qH@ggy][s] q p Table 3-5 (eastansed)' R3 vision 2 ' l R,.. !shalatiss Pat ivsy Dise [ec tors - CHILD Pa9e 3 0 4 g (cretlyr per uC1/e ) Nac11de Sine Liver thfraid titley Lyn 8 CI-LLI - T.8sdy .l M-3-. 1.12E+3 1.12t+3J 1.12E+3 1.12t+3 1.12t+3 1.12 t+ 3 - i C-16 3.59t+6 6.73t+3 6.73t+3 6.73t+3 6.73t+3 6.73E.3 6.73t43' !' i Ns.26 1.61E+4 1.61t+4 1.61t+4 -1.61E+6 1.611 6 1.61E++ 1.61E.& P-3: Cr-51. 2.60t+6 1.14t+5 4.22t+4 9.88t+. ,[<- s} i 8.55E+1 2.63t+1 1.70t+& 1.08E+3 1.54E+2 i' Ss / - Mn-54 6.29t+4 1.00E+6 1.581+6 2.29t+4 9.51t+3 Mn-56 1.66t+0 1.675+0 1.31E+4 1.23E.5 3.121 1 .Fe-55. 4.74t+6 2.52E+6 3.11E+5 2.87t+3. 7.771+3-Fe-59 2.07t+4 3.34t+4 1.271+6 7.07t+6 1.67t+4 Co-57 9.03E 2 5.07t+5 1.32E+6-1.07E+3 Co-58 1.77t+3 1.11t+6 3.4&t+4 3.16t+3 Co-60 1.31E+4 7.07t+6 9.62E+4 2.26E+4 N1 63 8.21E+5' 4.63E+6 2.75E 5 6.33t+3 2.00t+6 N1 65 2.99E+0 2.96E.1 8.18t+3 8.40E+6

1. 64 1-1.

Cu-64 1.991+0 6.03E+0 9.54E+3 3.67E+4 1.07E+0 En.65 4.26t+4 1.13t+5 7.14t+4 9,951 5 1.63E+& 7.03fea Za.69 6.701 2 9.665-2 5.85E-3 1.42t+3 1 0&8H4 8.921-3 Br-82 2.09t+6 Br 83 4.7&E+2 Br.84 3.44t+2 Br-85 2.53E+1 tb-86 1.98t+5 .7.991+3 1.16t+5 Rb-88 5.62t+2 1.72t+1 3.66E+2 1.89E+0 2.90E+2 Bb.89-1.65t+2 St 89 5.99E+5 2.16E+6 1.67E+5 1.72E+4 Sr.90 1.01t+8 1.48E+7 3.43E+5 6.44E+6 Sr-91 1.21t+2 5.33E+a 1.7&E+5 4.59E+0 Sr.92

1. 31 E + 1 -

1.60t+4 2.42t+5 5.25E.1 Y 90 4.11t+3 2.62E+5 2.68E+5 1.11E+2 2.81E+3 1.72E+3 1.84E-2 7-91s 5.071-1 Y-91 9.14E*5 2.63t+6 1.86E+5 2.44E+4 2.39E+6 2.39E+5 5.811-1 7-92 2.04E+1 T-93 1.86t+2 7.64E+4 3.89t+5 5.11E+0 5.96t+4 2.23E+6 6.111 6 3.70E+6 2r.95 1.90!+5 4.18t+4 Zr-97 1.88t+2 2.72E+1 3.891 1 1.13E+5* 3.51E+5 1.60E+1 Nb.95 2.35E+4 9.18E+3 8.62t+3 6.14E+5 3.70E+a 6.55E+3 Wb.97 6.291 1 7.701-2 8.551 2 3.42E+3 2.78t+6 3.60t-2 Mo 99 1.72E+2 3.92t+2 1.35E+5 1.27E+5 4.261+1. Tc.99s 1.781-3 3.481 3 5.071-2 9.51t+2 a.81t+3 5.771-2 Tc 101 8.101 5 8.511 5 1.45E-3 5.85t+2 1.63E+1 1.08E-3 fu.103 2.79t+3 7.03t+3 6.62E.5 4.681+6 1.07t+3 1.3&E+0 1.59E+4 9.95E+4 5.551 1 Ru-105 1.53E+0 gs / Re-106 1.36E.5 1.84E+5 1.63E+7 6.29E+5 1.69E+4 i th-103a l th.106 110s 1.69t+6 1.16t+4 2.12E+4 5.48E+6 1.00E+5 9.14t+3 A8 124 56 5.7&E+4 7.act.2 1.26t+2 3.24I+6 1.64 E 5 2.00E+a 5b-125 9.84E+a 7.591+2 9.10E+1 2.321 6 a.03E+4 2.07t+4 Te.125e 6.73E+3 2.33E+3 1.92E+3 4.77t+5 3.38t+4 9.16t+2 Te-127s 2.49t+e 8.55E+3 6.07t+3 6.36E+4 1.68E.6 7.14E.6 3.02E+3 Te.127 2.771 0' 9.511 1 1.96t+0 1.07t+0

1. 00 t +' 5.621 6 6.111 1 Te.129s 1.921 4 6.851 3 6.33E+3 5.03t+4 1.761+6 1.82E+5 3.06E+3 Te-129 9.771 2 3.50E.2 7.16E-2 2.571 1 2.93E+3 2.55E+6 2.381 2 Te.131s 1.34t+2 5.92E+1 9.77E+1 4.00t+2 2.06t+5 3.08t+5 5.07E.1 Te.131 2.17E-2 8.441 3 1.70E-2 5.08E.2 2.05E+3 1.33E+3 6.59E-3 Te.132 4.81t+2 2.721 2 3.17E.2 l 11r+5 3.77E+5 1.38t+5 2.63t+2

!.130 8.18t+3 1.64E+e 1.85t+6 2.45E+6 5.11E+3 8.46t+3 ! 131 6.81t++ 6.81E+4 1.62t+7 7.88E.4 2.84t+3 2.73E+& I.132 2.12E+3 4.07t+3 1.96t+5 6.25t*3 3.201 3 1.88t+3 1-133 1.66t+4 2.03E+4 3.85E+6 3.38t+a 5.48E+3 7.70t+3 1-134 1.17t+3 2.16t+3 5.071+4. 3.30E+3 9.55E+2 9.95t+2 1 135 4.92E+3 8.73t+3 7.92E+5 1.34E+4 4.44E+3 4.14E+3 Co 134 6.51E 5 1.01E+6 3.30t+5 1.21E+5 3.85E+3 2.25E+5 Cs-136 6.511+4 1.71E+5 9.55E+4 1.45E+4 6.18t+3 1.16t+5 Cs.137 9.07E*5 8.25E*5 2.82E+5 1.DeE+5 3.62E+3 1.28E+5 6.22t+2 6.81t+1 2.70t+2 5.55t+2 Co 138 6.33t+2 8.60E.2 te.139 1.84E+0 9.84E-4 8.62E-4 5.77t+3 5.77t+e 5.37t-2 Sa 160 7.60t+4 6.48t+1 2.11E+1 1.74E+6 1.02E+5 4.33t+3 Se.161 1.96E-1 1.091 4 9.475 5 2.92t+3 2.75E+2 6.36E.3 2.91t 5

1. 64 E + 3 2.74E+0 2.79E.3 Ba.142 5.00E-2 3.601 5 La.160 6.64E 2 2.25t+2 1.83t+5 2.26t+5 7.55t+1 La.1 2 1.30E+0 e.11E 1 8.70t+3 1.59E+4 1.291-1 8.55E+3 5.44E+5 5.66E+4 2.90t+3 Co.161 3.92E+4 1.95E+4 8.36t+1 1.15E+5 1.27t+5 2.87E+1 Ce-163 3.66t+2 1.99E.2 1.17t+6 1.20E+7 3.89E+5 3.61t+5 Co-164-6.77E+6 2.12E+6 3.00t+3 4.33t+5 9.73t+6 9.14t+2

) Pr-143 1.85t+4 5.55t+3 9.77E.3 1.57t+3 1.97t+2 3.00E-3 i Pr-164 5.961-2 1.85t.2 6.81t+3 . 28E+5 8.21t+4 6.81E+2 l 44-167 1.08t+6 8.73t+3 4.11t+6 9.105+4 4.33t+0 W.187 1.63t+1 9.66t+0 9.73t+1 5.81E+4 6.40E+6 2.35E+1 Np.239 4.bbt,t 3.34E+1 e s

.. Ta ble 3-5. (caattssed) R vision 2 ..ie.2ca.1.is.ee.ine.7o,se5.. ore.isr4NT

n v~

qv]hr * (2res/yr par eC1/8 ). Page 3.()-22 p ts ( ; Nuclide Sine Lieer '. Thyro 18 tieneyo.-Leng C2.LLI T.lgdy f f jL. - lyarg: t 4.471+2 6.47t+2 6.67 t+216.671+ 2 6.47 t+2 6.67 t+2 ? H-3 '2.65t+4 5.31t+3 5.31E+3 5.31E+3 5,31E+3 5.31t+3 5.311 3 ? C ~. No.24 1.06t+a-1.06t+a 1.06t+6 1.06t+6 1.06t+6 1.06t+6. 1.061++ e ", 'l;,*\\ i-C r. 51 1.611+4 7.741 4 ' j' P.32.

2. 2E+6 1.12t+5.

5.75t+1 1.32t+1 1.28E.4 3.57t+2 8.95E+1 f e.98t+3 1.00t+6 7.06t+3? 4.981 3 - (,, ; 2.53t+4 Mn 56 >1.10E+0 1.25t+4 '7.17E+4. 2.211-1' Mn.56 1.54t+0 8.69E+4--1.09E+3 3.33E+3 Fe 55 1.97t+6.1.17t+4 1.02t+6 2.68E+6 9.48t+3 Fe.59 1.36t+6 '2.351 4 3.79E+5 6.86t+3l6.41E.2 Co.57 6.51E+2 ~ 7.77t+5 1.11E+4 1.82E+3 <i4 t'- Co.58 1.22E+3 4.51t+6 -3.19t+a 1.18t+4 8.02E 3 Co.60 ' 2.09t+5 2.42E+3 1.16 t + 4 - N1 63 3.39t+5 2.04t+6 8.12E+3 5.01E+4 1.23E-1 N1 65 2.39E+0 2.86t.1 3.98t+0 9.30E+3 1.50E+4 7.74E-1 1.88t+0 Cu-66 3.25E+4 6.47t+5L5.16t+4l 3.11t+6 to-65 ,1.93E+4 6.26t+4 4.02I 2' 1.67E,3 1.32E+4 7.181-3 to.69 5.39E.2 9.671 2 1.33E+e tr-82 3.81t+2 Sr.83 4.00t+2 Br 66 2.04t+1 tr.85 3.04t+3 8.82E+4 1.90E+5 tb 86 + 1. 3.39E*2~ 2.871+2' 5.57t+2 8b.88 6.02E+1 2.06t+2-3.21E+2 46 89 2.01Y+6 6.60E+& 1.14t+4- -Sr 89

3. 981+ 5 -

1.12E+7 1.31E+5 2.59t+6 Sr-90 4.09t+1 '5.26E+4 7.3&E+4 3.661 0 Sr.91 9.56t+1 2.38t+4 1.60E+5 3.91E-1 Sr-92 1,05E+1, 2.69E.5 1.04E+5 8.82E+1 1-90 3.29E+3 2.79E 3' 2.35t+3f1.39E.2-7-91e 6.073 1 2.65E+6 7.03E+4 1.571+4 7 91 ' 5.88t+5 2.65E+4 1.27E+5 4.61E.1 Y.92 1.64E+1

7. 64 t+6 - 1.67E+5 4.07t+0

'Y-93 1.50E+2 3.11t+4 1.75E.6 2.17E+6 2.03E+4 2r.95 1.15E+5 2.79t+4 2.591+1 1.10E+5 1.40E+5 1.17E+1 2r-97 1.50E+2 2.56E 1 4.72E+3 +.79E+5 1.27t+a 3.78t+3 Nb.95 1.57t+4 6.63E+3_ ND.97 .3.421 1-7.29E 5.70E-2 3.32E+3.2.69E+a 2.631 2. 2.65E.2 1.35E+5 4.87E+4 3.23E+1-1.65E+2 Mo.99 3.11E.2 8.113 2 2.03t+3' 3.721 2 Tc.99e 1.60E-3 2.88t-3 9.79E.6

5. 84 t + 2 8.4&E+2 '8.121 4

.Tc.101 6.511 5 8.23E-5 4.26t+3 5.52E+5 1.61t+4 6.791+2 2s.103 2.02E+3 8.991 1 1.57E+6 4.84E+4 4.10E-1 tu-105 1.22E+0 1.07t+5 1.16 E + 7 - 1.64t+5 f.09t+6 to-106 0.68E+4 ) th-103e \\ th.106 1.09t+4 3.671+6 3.30t+4 5.00!+3 Ag-110e-9.98t+3 7.22t+3 56 126 3.791+4 5.56t+2 1.011 2 2.65E+6 5.91E+6 1.20!+6 1.6aE+6 1.47t+6t.09E++- $b-125 5.17t+6 4.77t+2 6.23t+1 Te-125e 6.76E+3 1.99E+3 1.62E+3. 4.47t+5 1.298+6 6.58E+2 Te.127e 1.67t+6. 6.90E+3 4.87t+3 3.75E.4 1.31t+6 2.73E+4-2.07E+3 Te.127 2.23t+0 9.53t-1 1.85E+0' 4.86E+0 1.03E+4 2.64E+4 4.89E.1 Te.129e 1.61E+4 6.09t+3 5.47t+3 3.18E+6 1.68t+6 6.90E+4 2.23E+3 Te.129 7.881-2 3.6?E-2 6.751 2 1.751 1 3.001,3 2.63E+' 1.881 2 7e.131 e ' 2.07t+2 5.501 1 8.931+1 2.65t+2 1.99t+5 1.19t+5 3.63E+1 Te.131 1.74E-2 8.221 3 1.581 2 3.99E-2 2.06t+3 8.221 3 5.00E 3 Te-132 3.72E+2 2.37t+2 2.79t+2 1.03t+3 3.60!+5 6.61E+6 1.76t+2 2 130 6.36t+3 1.39E+4 1.60E+6 1.53E+4 1.991+3 5.57E.3 1 131 3.791+6 6.64E+e 1.68t+7 5.18t+4 1.06t+3 1.96t+4 !.132 1.69t+3 3.54t+3 1.69t+5 3.95t+3-1.90t+3 1.26t+3 1-133 1.12t+6 1.92E+4 3.56E+6 2.26E+4 2.16E+3 5.60t+3 1 134 9.21E+2 1.88t+3 4,65t+4 2.09t+3 1.29t+3 6.65E+2 1 135 3.86t+3 7.60E+3 6.96E+5 8.47E+3 1.83E+3 2.77t+3 Co-134 3.96t*5 7.03E+5 1.90E+5 7.97t+& 1.331 3 7.45t+4 Co-136 4.83E+4 1.35E+5 5.64E+6 1.18t+4 1.43t+3. 5.29t+4 Co-137 5.69E+5 6.12t+5 1.72E+5 7.13E+& 1.33E+3 4.55t+6 Co-138 5.05t+2 7.81t+2-4.10E+2 6.54t+1 0.76t+2 3.98t+2 Be-139 1.68E+0 9.8&t-4 5.921 6 5.95E+3 5.10E+6 4.302 2 So.140 5.60E+4 5.60E+1 1.34E+1 1.60t+6 3.84E+4 2.90!+3 Se-161 1.57E 1 1.08E.6 6.50E.5 2.97t+3 6.75t+3 a.97E-3 Se 162 3.98E.2 3.30E-5 1.90E.3 1.55E+3 6.93E+2 1.96E-3 Le-160 5.05E+2 2.00E+2 1.68t+5 8.68t+a 5.15t+1 8.22t+3 5.95E+4 9.06E.2 La.142 1.03E+0 3.77t=1 Co.161 2.771+4 1.67t+a 5.25E+3 5.17E+5 2.16t+4 1.99t+3-5.64t+1 1.16E+5 6.97t+6 2.211+1 Co-143 2.931 2 1.93E+2 Co.164 3.19t+6 1.21E+6 5.38t+5 9.84t+6 1.68E+5 1.761+5 1.97t+3 4.33E+5 3.72t+4 6.99t+2 Pr.143 1.40E+4 5.2&E+3 6.7"E.3 1.61E+3 6.28t+3 2.41E-3 Pr.144 6.79t.2 1.85E 2 + 3.15E+3 3.22t+5 3.121+6 5.00E+2 No.167 7.941 3 8.13E+3 i 3.96E+6 3.56t++ 3.121 0 l W-187 1.30E.1 9.02t+0 9p-239 3.711 2 3.32E+1 6.62t+1 5.95E+e 2.66t+6 1.88t+1 SL . us l L -_i__._________________.____.___ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _. _ _ _ _ _. _ _ _ _ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. _ _ _ _ _ _ _ _ _. _ _ _ _ _ _ _ _.___________________u

WOD8 e S-9 4 ce n t i s se s$.. NDN p.. 'E to'. Crass.Cee.Malk' Pet 8 var Dioe Factst e 4DL'LT Revision 2 (c5e.ityr pst.,,sf,,vCate3),,,,ci,for N.3,, sed-C.14 Page 3JD-23 (e ,,,1 ,,,,,e Nuclade tone Liver Thyrste Endssy Lsng 'C1.LLI T. Body 1 N-3 7.63E+2 7.631 2 7.63E+2 7.63t+2 7.63t+2 7.631 2 C 3.63E.5 7.26E+4 7.261 e 7.26t+4 7.26E+4 L7.26t+4 7.26t+4- ~,*. No.24

2. 5+ t+ 6 ? 2.54E.6 2.54E+6 2.54t + 6 2.54E+ 6 - 2. 54E +6 s 2. 54 E +6 t

P.32 -1.71t+10 1.06E.9 1.92E+9 '6.60E+8 2-ds Cr.51-

1. 71 t + ' 6.30E+3 3.80t+4 7.20E+6 2.86E.4 3

s ,Mn-54 8.40!+6 2.50E+6 2.57t+7 1.60E.6 Mn.56 4.23t 3 5.38E.3 1.15E-1 7.51E-4 Fe-55 2.51E+7 1.73t+7 9.67E+6 9.95t+6 4.04E+6 Fe.59 L 2.981+7 7.00t+7 1.95t+7' 2.33t+8 2.68t+7 Co.57 1.20E*6 l3.25E+7 2.13E+6 Co-58 4.12E+6

9. 57 t + 7, 1. 06t + 7 '

Co.60 1.64E+7 3.08t+8 3.62E+7 N1 63 6.73E 9. 4.66E 8 9.73E+7.2.26t+8 Na-65 3.70E.1 4.81E.2 .1.22E+0 2.19E.2 Co-64 2.41E+4 6.08E+4 2.05t+6 1.13E+4 2n.65 1.37E+9 4.36E.9 2.92t+9-2.75E+9 1.97E+9 'Za.69 ts Sr.82 3.72E+7 3.25t+1 Br.83-1.49E-1 1.03E-1 ar.84 Br-85 R6 86 2.59E+9 5.11t+8 1.21E+9 Rb.88 Rt.89 Sr.89 1.45t+9 2.33E+8 4.16E.7 l Sr-90 4.681 10 1.35t+9 1.151 10 Sr.91' 3.13t+4' 1.49E+5 1.2?E+3 $r-92

4. 8 9 E.1 7 00 7.07t+1 9.68E+0.2.11E.2 7.50E.5 1.90E+0 Y.91s Y-91 8.601 3 4.73E+6 2.30t+2 f.92 5.42145 f.93 2.331 1 9.49E.1 1.58E.6 7.391+3 6.43E-3 2r-95' 9.46t+2 3.03t+2 4.16E.2 9.621 5 2.05E+2 Zr-97 4.26E-1 8.59E.2 1.30E.1 2.66E+4 3.93E.2 Mb-95 8.25t+4 4.59E+4 4.54E+4 2.79t+8 2.47t+4 Nb-97 5.47E.9 Mo.99 2.52E+7 5.72E+7 5.85E+7 4.00E+6 Tc.99:

3.25t+0 9.19t+0 1.40E+2 4.50E+0 5.44E+3 1.17E*2 Tc-101 8v-103 1.02t+3 3.89t+3 1.19t+5 4 ii!+ 2 - 8.-105 8.571.e-5.241 1

3. ' it-4 1.11E-2

/N Ru-106 2.04E+4 3.94t+4 1.32E+6

2. 58 E + 3 f

th.103s In.106 As-110s 5.83t+7 5.39E+7 1.06t+8 2.20!+10 3.20t+7 to.124

2. 57 t+ 7 ' 4. 86t+ 5 6.241 4 2.001 7
7. 31 t + 8 1.02E.7 St.125 2.04E+7 2.28t+5' 2.08t+4 1.58t+7 2.25E 8 4.86t+6 7e.125e 1.63t+7 5.90E.6 4.90E.6 6.631 7 6.50E.7 2.18t+6 Te-127e 4.58E.7 1.6+E+7 1.171+7 1.86E+8 1.54E+8 5.58E+6 Te.127 6.72E+2 2.41E+2 4.98E+2 2.74t+3 5.30E.4 1.45E+2 Te-129s 6.04E.7 2.2SE+7 2.08t+7 2.52E+8 3.04E+8 9.57t+6 Te.129 Te-131s 3.61E+5 1.771 5 2.40E+$

1.79E+6 1.75E+7 1.471 5 Te.131 Te-132 2.39t+6 1.55t+6 1.71E+6 1.49E+7 7.32E+7 1.45E+6 1-130 4.26t+5 1.261 6 1.07t+8 1.6 E+6 1.081+6 4.961+5 1 131 2.96E+8 4.24E.8 1.39t+11 7.27E+8 1.121 8 2.43E+8 !.132

1. 64 E.1 4.371-1 1.53E+1 6.971 1 8.22E.2 1.53E-1 1 133 3.97E*6 6.90E+6 1.01E+9 1.20E+7 6.20E*6 2.10E+6 2 134 1 135 1.39t+4 3.63E+4 2.40E+6 5.83E++

4.101 4 1.34E.4 Cs-134 5.65E+9 1.34E+10 '4.35E+9 1.44E+9 2.35E+8 1.10E+10 Co-136 2.61E+8 1.03E+9 5.74E+8 7.87t+7 1.17E+8 7.42E+8 Ca 137 7.38E.9 1.01E+10 3.43E+9 1.14E+9 1.95E+8 6.61E+9 Co.138 Ba 139 4.701-8 8.34E.8 1.38t.9 Ba 140 2.69E.7 3.38E+4 1.15t+4 1.93E.4 5.54E.7 1.76t+6 8 -141 Ba.142 La.140 4.49t+0 2.26t+0 3.66t+5 5.97E.1 La.142 3.03E.8 Ce-141 4.84E+3 3.27E+3 1.521 3 1.25t+7 3.71E*2 Co.143 4.19E+1 3.091+4 1.36E+1 1.16t+6 3.42E+0 Co.144 3.58E+5 1.50E 5 8.871+4 1.21E+8 1.92E+4 Pr-143 1.59E.2 6.37t+1 3.68E+1 6.96E+5 7.88t+0 i Fr.144 Nd.147 9.42E+1 1.091 2 6.37t+1 5.23t+5 6.52E+0 i W-107 6.56E.3 5.48t+3 1.80E+6 1.92t+3 r~s f up.239 3.66t+0 3.60E-1 1.12E+0 7.39E+4 1.90E.1 Is

a T2bli 3 5 issett:ssel Rev. ion 2 .-8(ta), trase.Cee-alik reinte r 8 3. r:cters. TTruette is . (cres/pr ptr gC1/a31 f ar u.3 ted C Pags 3.0-24 i ~ (;2 e sess/pr por EC1/sec) far sthere Lui C1-LLI T. Be d y .-...... Thyrtid t s ats y Lleet tese. Wec11de- ..--.t.. 9.DeE+2

9. 94 E + 2 9.94t+2 9.94t+2 9.961 2 9.94t+2

,, a N.3 .1 p' C.14 6.70t+5 1.34t+5 1.341 5 1.34t+5 1.34t+5' 3.3465 1.36t+5 ras us. 24 a.64t+6 4.44E+6 4.64t+6 4.44E+6 6.eet+6 6.441 6 4.46t+6 f 1 -,\\m-): . 8.40t+6 5.00E+41 2,651 9 1.22t+9 'e P-32 3.15t+10 1.95t+9 2.78t+4 1.10E+4 7.13t+4 Cr.51 2.07t+7 2.78t+6 4.17t+6 Me-Se 1.60t+7 4.961-1 1.335 3 9.50E.3 7.51t.3 Me 54 .4.45t+7 3.16t+7 2.00t+7 1.371 7 7.36t+6 Fe-55 3.02E.7' 2.871+8 4.68E 7 Fe.59 5.20E+7

1. 2 8 t + 8.

4.19t+7 '3.76t+6 'Co 57 2.25E+6 - .1.10t+8 1.031 7 7.95t*6 Co-58 3.62t+8 6.26t+1 Co-60 2.78t+7 1.33t+8 e.01t+8 W1 63 1.18t+10 8.35t+8 ~ 4.70t+0' 3.961 2 W1-65 6.78E.1 8.66t-2 3.33t+6 2.02t+4 1.09t+5 4.29t+4 Ca.64 3.10t*9 3.41t+9 to-65' 2.11E+9 7.31E+9 4.68E.9 l te.69 Gr.02 5.64t+7 1.91E.1 tr-83 tr.84 Br-SS 7.808,8 2.22t+9 4.73h.9 86 86 Ob 88 Ob 89 3.18t+8

7. 66 t + 7 Sr-89 2.67t+9 1.86E+9 1.63t+10 Sr.90 6.61t+10 -

2.61E 5 2.29E.3. Sr.91 5.75t+4 2.28t+1 3.811-2 St-92 8.95t.1 1.07t+6 3.50t+0 7 90' 1.30E+2 7 91e 6.68t+6

4. 26t+ 2 -

7 91 1.54t+4 2.75t+0 2.90t.6 7 02. '1.00E.4 1.31t+4 1.181 2 7 93 4.301-1 1.201 6 3.59t+2 7.67t+2 2r-95 .1.65t+3 5.221 2 4.15t+6 7.D6t-2 i 2.321 1 tr 97 7.75t-1 1.33E-1 3.36t+8 4.30t+4 7.57t+6 ub.95 1.411 5 7.80E.4 6.34t-8 56 97 8.16E 7 8.69t+6 4.56t+1 1.04t+8 Mo.99 2.341 2 8.73E+0 1.03E+6 2.06E+2 Tc-99e 5.64t+0 1.57t+1 Tc.101 = = 1.52E+5 7.75t+2 6.40t+3 Su-103 1.81E+3 1.971 2 1.261+0 6.001-6 Su-105 1.57E.3 1.00E+6 6.73E+3 7.23E+4 Sm.106 3.75t+4 Sh-103e Sh-106 'l 2.56t+10 5.541 7 40-110e 9.63E+1 9.111 7 1.74E+8 4.01E.7 9.25t+8 1.791 7 Sb-126 6.591+7 8.46t+5 1.04E+5 3.21E+7 2.86I+8 8.541 6 56-125 3.65E.7 3.99t+5 3.495 4 8.461 7 e.021 6 Te.125e 3.00E*7 1.081+7 8.39t+6 2.10E+4 1.00t+7 Te-127e 0.44E+1 2.99t+7 2.0!!+7 3.42t+8 9.611+6 2.68t+3' Te-127 1.24E+3 e.41E*2 8.59E*2 5.041 3 e.15t+8 1.75t+7 To.129e .1.11t+8 4.10t+7 3.57t+7 4.62t+8 2.18E.9 1.6?E.9 Te-129 2.53E+7-2.63E+5 Te-131e 6.571 5 D.15E+5 4.76t+5 3.29E*6 Te.131 4.58t+7 2.55E.6 Te-132 4.20E*6 3.71t+6 2.86t+6 2.60t+1 1.67t+6 8.66t+5 1 130 7.ett+5 2.17t+6 1.77t+8 3.54Ee6 1.49E.8 a.04E+8 1 131 5.38t+8 7.53t+8 2.20t+11 1.30t+9 3.311-1 2.72E-1 1 132 2. 90 r.. ' 7.59t.1 2.56t+1 1.20t+0 9.30t+6 3.75E+6 1 133 7.24.;4 1.23E+7 1.72E 9 2.15E+7 1 134 7.03t+4 2.35 +4 1 135 2.47L.. 6.35t+4 4.08t+6 1.00t+5

7. 341+ 9 2.00E+9 2.87t+8 1.07E+10 Co.134 9.81E.9 2.31t+10 9.53E.8 1.50E*8 1.41E*8 1.18t+9 l

Co.136 4.451+8 1.75t+9 6.D6t+9 2.35E+9 2.53E+8 6.20t+9 Co-137

1. 54t+1b 1.78t+10 Co-138 7.751 7 2.538 9 ee 139 8.69t.8 2.02t+4 e.00t+4 7.49t+7 3.13t+6 Be-140 4.85E+7 5.95E+4 8.-141 Be-142 2.27t+5 1.05E+0 La 160 8.06t+0 3.96t+0 2.23t.7 La.142 1.69t+1 6.81t+2 2.79E+3 Co-141 8.87t+3 5.92t+3 1.68t+6 6.25t+0 2.51E+1 Co-143 7.69t+1 5.60t+4 1.66t+8 3.5et+4 1.63E+5 Co.146 6.b8E+5 2.72t+5 9.612 5 1.aSt+1 1

4 6.77t+1 Pr=143 2.92t+2 1.17t+2 Pr.166 7.11t+5 1.18t+1 1.16t+2 54-147 1.01t+2 1.97t+2 2.65E+6 3.43t+3 W.187 1.20E+4 9.78t+3 1.06E 5 3.641 1 2.07t+0 pp-239 6.99t+0 6.598 1 I n.

ODCM-3.0 ' Table 3-3 (esstanved) 8(te). C re.. -C...ns i t recht:r one recier. - Cn1Lo Revision 2 (cros/yr per uC1/23) for M-3 end Cole Page 3.0-25 (22

  • cres/vr psr ECt /sec ) ist othsrs Nuciade Bone Liver Thyroid Eliney Luna CT-LLI T.8edy M.3-1.571 3 1.57t+3 1.57E.3 1.57t+3 1.57t+3 1.57t+3 C-14 1.65t+6 3.291 5 3.29E.5 3.291 5 3.29E.5 3.29E+5 3.79E+5 No.26 9.23E+6 9.23t+6 9.23E+6 9.23t+6 9.23t+6 9.23!.6 9 23E+6

/,_,\\ P-32 7.77E.10 3.64E.9 2.15E+9

3. sot +9

) Cr.51 5.66t+4 1.55t+6 1.03t+5 5.411 6 1.02E+5 Mn.54 2.09E+7 5.47t+6 1.16t+7 5.58t+6 Ma-56 1.31E.2 1.38E-2 1.90t+0 2.95E.3 fe.55 1.12t+8 5.93t+7 3.35t+7 1.10E+7 1.86E.7 Fe-59 1.20t+8 1.95E+8 5.65E+7 2.03E+8 9.71t+7 Co.57 3.861+6 3.14t+7 7.77t+6 Co-58 1.21t+7 7.08t+7 3.72t+1 Co-60 4.32E+1 2.39E+8 1.27t+8 Nt.63 2.961+10 1.59t+9 1.07t+8 1.01t+9 N1 65 1.661+0 1.561 1 1.91t+1 9.111 2 Co.64 7.55E.6 1.82t+5 3.54E+6 4.56t+6 Zn.65 4.13E+9 1.10E+10 1.93E+9 6.85E+9 l 6.94E+9 In 69 2.14t.9 tr.82 1.13t+8 Br.83 a.691-1 Br.84 3r-85 8b.86 8.77E.9 5.64t+8 5.39t*9 86-88 8b.89 5r-89 6.62E+9 2.56t+8 1.89t+8 St-90 1.12E+11 1.51E+9 2.83t+10 St 91 1.41Z.5 3.12E+5 5.33t+3 Sr-92 2.19E+0 4.1&E.1 0.76E.2 Y-90 3.22E+2 7-91s 9.15t+5 8.61t+0 Y.91 3.91E+4 5.21E+6 1.04t 3 7-92 2.661-6 7.10E+0 7.03t.6 i Y-93 1.06t+0 1.571+4 2.90E.2 2r.95 3.84E.3 8.45E+2 1.21t+3 8.81t+5 7.521 2 Zr.97 1.89E.0 2.72E-1 3.911-1 4.13E+4 1.611 1 Nb-95 3.18t+5 1.26t+5 1.16t+5 2.29E+8 8.84E+4 ht.97 1.45E.6 Mo 99 8.29t+7 1.771+8 6.861+1 2.05t+7 Tc-99 1.291+1 2.54t+1 3.68t+2 1.29t+1 1.4&E+6 a.20E*2 Tc-101 89 103 a.29t+3 1.08t+4 1.11E+5 1.65t+3 /\\ Su.105 3.821 3 3.361-2 2.49t+0 1.39E.3 t j' Bu.106 9.261 4 1.25E+3 1.6&E.6 1.15t+e 'v Oh.103s Oh.106 A8-11Ce 2.09t+8 1.61t+8 2.63E+8 1.68E+10 1.13t+8 Sb.126 1.09E+8 1.61E+8 2.401 5 6.03E+7 6.79E+8 3.81E 7 Sb-125 8.7CI+7 1.61E+6 8.06t+4 4.85E+7 2.08t+8 1.82t+7 Te 125e 7.38E+7 2.0CE+1 2.07t+7 7.121 7 9.84t+6 Te 127s 2.081+8 5.60!+7 6.97t+7 5.93t+8 1.68E+8 2.47t+7 Te.127 3.06E+3 8.25E.2 2.12E+3 8.71t+3 Te-129s

2. 72 7 + 8 7.61E.7 8.781 7 8.00E+8 3.20t+5 6.561 2 3.32E+8 6.23E+7 Te 129 2.871 9 6.12E.8 Te 131s 1.60E+6 5.53t+5 1.16t+6 5.35E+6 2.24t+7 5.89t+3 Te-131 Te-132 1.02E.7 4.52t+6 6.58t+6 4.20E+7 4.551 7 5.46t+6 1 130 1.75E+6 3.56t+6 3.90E.8 5.29t+6 1.66t+6 1.82t+6 I-131 1.301 9 1.31E+9 6.34E+11 2.15t+9 1.171+8 7.66t+8 1-132 6.86E.1 1.26t+0 5.85E+1 1.93t+0 1.68t+0 5.80E.1 1-133 1.761 7 2.191+7 6.04E+9 3.63E+7 8.77t+6 8.23E+6 1 134 1 135 5.841 4 1.05t+5 9.30E+6 1.61E+5 4.00t+4 4.97t+6 Cs 13' 2.26t+10 3.71E+10 1.15t+10 6.13E+9
2. 00 t + 8 7.83t+9 Co.136 1.00E.9 2.76t+9 1.67t+9 2.19t+8 9.70E+7 1.791+9 Ca.137 3.22t+10 3.091 10 1.01t+10 3.62E+9 1.93E+8 4.55t+9 Co.138 8s.139 2.161-7 1.23E-5 6.19t-9 8e.160 1.17t+8 1.03E+5 3.34E+4 6.12t+4 5.94t+7 6.86t+6 8s.161 Ba-162

= La-140 1.93t+1 6.74t+0 La-1&2 1.88t+5 2.27t+0 2.511 6 Co.161 2.19t+4 1.09E+4 4.78t+3 1.36t+7 1.62t+3 Co.143 1.091+2 1.02E+5 6.29t+1 1.50t+6 1.48t+1 Co-166 1.62t+6 5.09E+5 2.82E+5 1.33t+8 8.66t+6 Pr.163 7.23E+2 2.171+2 1.171+2 7.80E+5 3.59t+1 Pr.164 Nd.147 a.45t+2 3.60!*2 1.98E+2 5.71E+5 2.79E+1 eN W.187 2.91E+a 1.72E+4 f 2.42t+6 7.73E+3 i Np.239 1.72E+1 1.23E+0 3.571+0 9.16t+4 8.68E.1 J -.._--_.---.a

ODCM-3.0 Table 3-5 (cs ttesed) R vision 2 B(as). Crase.cas.Malk Pathisy Dzse factors - fpF4NT (crez/yr par eC1/=3) isr H.3 and C.14 Paga 3.0-26 (32

  • crGo/yr pst EC1/sec) for others i

Nuclide tone Liver Thyroid Endney Lens GI-LLI T.Sody H-3 2.38t+3 2.38t+3 2.38t+3 2.38t+3 2.38t+3 2.38t+3 C-16 3.23t+6 6.89t+5 6.89E+5 6.89t+5 6.89t+5 6.89t+5 6.891+5 ."'N ha-24 1.61t+7 1.61t+7 1.61E+7 1.61E+7 1.61E+7 1.61E+1 1.11t+7 !(_,<j P.32 1.60t+11 9.42t+9 2.17t+9 6.21E+9 ) Cr.51 1.05E+5 2.30E+4 2.05t+5 a.71t+6 1.61E+5 3.89t+7 Mn.54 8.631+6 .1.63t+7 8.83t+6 Mn-56 3.211 2 2.761 2 2.91E+0 5.53E.3 i Fe.55 1.35t+8 8.72t+1 4,27E*7 1.11E+7 2.33t+7 Fe.59 2.25E+8 3.93E 8 1.16E+8 1.88E+8 1.55E.8 Co.57 8.95t+6 3.05t+7 1.66t+7 Co.58 2.431+7 6.05t+7 6.06E+1 Co-60 0.81t+7 2.10E+8 2.08E+8 N1 63 3.49t+10 2.161+9 1.07t+8 1.21t+9 N1 65 3.51E+0 3.971 1 3.02E+1 1.81E.1 ) Co.64 1.881 5 3.17t+5 3.85E+6 8.69E+4 2n-65 5.55t+9 1.90t+10 9.23E+9 1.61E+10 8.78t+9 Zn.69 7.36E-9 1.941+8 Br.82 9.95E-1 ] Br-83 8,.8 Br-85 2.221*10 Bb.86 5.69t+8 1.10!+10 Bb.88 8b-89 Sr 89 1.26t+10 2.59E+8 3.61t+8 q 1.52E+9 3.10E+10 Sr-90 1.22t+11 Sr-91 2.94t+5 3.48t+5 1.06t+6 Sr.92 4.651 0 5.01t+1 1.73E.1 Y.90 6.80E+2 9.39t+5 1.82E.1 v.91s Y-91 7.33E+4 5.26t+6 1.95t+3 9.97t+0 1.671 5 Y.92 5.221 6 Y-93 2.25t+0 1.78t+& 6.131 2 8.28t+5 1.18t+3 Zr.95 6.83E+3 1.661 3 1.79E+3 2r.97 3.991 0 6.85E-1 6.911 1 4.37t+4 3.131-1 Nb 95 5.93t+5 2.ut+5 1.75t+5 2.06t+8 1.41E+5 he.97 3.70E.6 Mo.99 2.12t+8 3.17E.8 6.98t+7 a.13t+7 Tc.99e 2.691+1 5.55t+1 5.97t+2 2.90E+1 1.61E+4 7.15t+2 Tc.101 /N Bu 103 8.69E+3 1.06t+5 2.01E+3 1.81E+4 e 4 8u-305 8.061 3 5.92E 2 3.21t+0 2.71E-3 \\s_ / Sv.106 1.90E.5 2.25E+5 1.44t+6 2.38t+& Bn.103a 8h-106 43 110e 3.86t+8 2.821 8 4.03E+8 1.66t+10 1.86t+8 Sb 124 2.09E.8 3.081+6 5.56t+5 1.31t+8 6.46t+8 6.49t+7 St.125 1 49t+8 1.45t+6 1.87t+5 9.381,7 1.991 8 3.07t+7 Te.125e 1.51E+8 5.061 7 5.071 7 7.181 7 2.0&t+1 Te.127a 4.211 8 1.40t+8 1.22t+8 1.04t+9 1.70E.8 5.10E.7 Te.127 6.50E+3 2.18t+3 5.291+3 1.591 6 1.36t+5 1.601 3 Te-129s 5.59t+8 1.92E+8 2.15t+8 1.60E.9 3.34E+8 8.62t+7 Te.129 2.081 9 1.751-9 5.181 9 1.661-7 Te-131m 3.38t+6 1.36t+6 2.76t+6 9.35t+6 2.291+7 1.12t+6 Te.131 Te-132 2.10t+7 1.04E.7 1.54t+1 6.511,7 3.85t+7 9.72t+6 1 130 3.60E+6 7.92E+6 8.881+8 8.70E+6 1.70E+6 3.181 6 1 131 2.72E+9 3.21t+9 1.05E+12 3.75E.9 1.15E+8 1.41E+9 ) 2 132 1.42E+0 2.89E+0 1.35E+2 3.22E+0 2.36t+0 1.03E+0 2 133 3.72E+7 5.41E+7 9.84E+9 6.36E+7 9.16E+6 1.58t+7 1 134 1.011 9 1 135

1..*1 E + 5 2.41t+5 2.161+7 2.69t+5 8.74E+4 8.80E+4 Co-136 3.65 t+ 10 4.00t
  • 10 1.75E+10 7.18t+9 1.85t+8 6.87t+9 Co-136 1.96E.9 5.77t+9 2.30149 4.70E+8 8.76E+7 2.151 9 Cs-131 5.15E.10 6.02E+10 1.62E.10 6.55E+9 1.88E+8 4.275+9 Co.138 8e-139 4.55E.7 2.88E.5 1.32E-8 8e-160 2.61E+8 2.41t+5 5.73E+4 1.48t+5 5.92t+7 1.24t+7 Ba.lal Ba.142 La.140 4.031+1 1.59E,1 1.47E*5 4.09t+0 La-142 5.211 6 Co.141 4.33E+4 2.64E+6 8.15E+3 1.37t+7 3.11E+3 Co.143 4.001 2 2.65t+5 7.72E.1 1.55E+6 3.02t+1 Ce-164 2.33E+6 J.52t+5 3.85E+5 1.33E+8 1.30E+5 Pr.143 1.69E+3 S.591+2 2.081+2 7.89t+5 7.41t+1 j

Pr-146 /'~'A Nd 447 8.82E+2 9.06t+2 3.491 2 5.76t+5 5.55E+1 J [ i W-187 6.12E+6 4.26t+6 2.50t+6 1.471+' i s__,/ Np.239 3.64E+1 3.25t+0 6.49E+0 9.60E+4 1.8&E+0 -- -- A

Tale 3+5 cc nic es; ' ODCM-3l0 R(to). Crtse.cas. net Pathsty DMe F2tt$re

  • ADULT =

Revislori 2 (grea/yr per uC1/e3) f ar N.3 and C-te '(s2

  • eres/yr psr uCt/sec) fer othere-Page 3.0-27 Nat114e tone a Ltver,Thyrass Essiey-Lrne C1.LL1 f.esdy H-3 3.25E+2 3.25E+2 3.25E+2 3.25t+2 3.25E+2 3 25t+2 C.14'

.3.33f+5 6.66t+4 6.66E+4 6.66t+6 6.66E+4.6.66t+4 6.66E+4 No.26 1.86E.3 1.84E.3 1.44!.3 1.84E.3 1.861 3 L.84E-3 1.8&E.3 /N P.32 4.65E+9 2.89t+8 f.23E+8 1.80t+8 { Cr.51 4.22E+3 1.56E+3 9.38t+3 -1.78E.6 7.071+3 Ma.54 - -L 9.15E.6 2.72E+6 2.00t+7 1.75E+6 Me 56 To.55 2.93t+8 2.02E+8 1.13E+8 1.16E+8 4.72E+7 Te.59 2.67E+8 6.27t+8 1.75E.8-2.09t+9 2.40E+4 Co.57 5.64E+6 1.63E+8 9.375+6 Co.58 1.83E+7 3.70E+8 4.10E+7 Co.60 7.52t+7 1.41t+9 1.66E+8 ut-63 1.89E.10 1.31E+9 2.73E*8 6.33E+8 pt.65 Co.64 2.95E.7 7.65E-7 2.$7t.5 1.39E.7 !s.65 .3.56t+8 1.13E+9 7.57E+8 7.13E+8 5.121s 4 Zn-69 Sr 82 1.64E+3 1.26E+3 tr 83 Sr.86 -Sr.85

6. 87 t+ 8 -

Ab.86 9.60E+7 2.27E*8 tb-88 tb-89 Sr.89 3.01E+8 4.44E+7 8.65t+6 $r.90 1.26t+10 3.59E*8 3.05E+9 Sr-91 1.34E.9 Sr.92 Y.90 1.07t+2 1.13E+6 2.86E+0 f.9le Y-91 1.131 6 6.24E+8 3.03E+4 Y.92 Y.93 2.08E.7 1 2r-95 1.88t+6. 6.04t+5 1.91E+9 4.091+5 9.48E+5 Zr-97 1.831 5 3.691 6 5.58E.6 1.16E+0 1.691 6 ub.95 2.29t+6 1.28E.6 7.75E+9 6.86E+5' 1.26t+6 ub.97 Mo.99 2.46t+5 2.52E+5 2.07E+4 1.09t+5 Tc.99e Tc.101 tv-103 1.06!.8 4.03E+8 1.23E+10 4.55E+7 .f tu-305 ( Ru-106 2.80E+9 j 5.40E.9 1.81E+11 3.5&E+8 th-103s th-106 e A8-110e 6.69E+6 6.19t+6 1.22E+7 2.52E+9 3.67E*6 5b.116 1.98E+7 3.74E+5 4.80!+4 1.54E+7 5.62E+8 7.85E+6 St.12L 1.91E+7 2.13t+5 1.96t+4 1.67t+7 2.101 8 4.54t+6 7e.125e 3.59t+8 1.30E+8 1.08E.8 1.46t+9 1.43t+9 6.81t+1 3.76E+9 1.36t+8 te.127e 1.12E.9 3.991+8 2.45E+8 4.53E+9 Te.127 4.27E+8 3.93t+8 4.77E+9 1.09E-9 2.101 8 fe.129m 1.1&E+9 5.76E+9 1.81E+8 Te.129 Te.131e 4.51E+2 2.21E+2 3.50E+2 2.2&E+3 2.19E.4 1.04E+2 .Te 131 4.29t+1 8.53E+5 Te.132 1.60!+6 9.07t*5 1.00E+6 8.73t+6 1 130 2.35E.6 6.94E.6 5.881 4 1.08E-5 5.981 6 2.74E-6 1 131 1.08t+7 1.5eE+7 5.05E+9 2.64E+7 4.071+6 8.83E+6 1 132 6.72E.1 2.28E.1 1 133 6.301-1 7.471 1 1.10E+2 1.30!+0 j !.134 3 135 Co.134 6.57t+8 1.561+9 5.06E+8 1.64E+8 2.76E+7 1.28t+9 Co.136 1.18E.7 6.67t+7 2.60E+7 3.56E+6 5.30E*6 3.36t+7 1 C o.13 7. 8.72t+8 1.19E+9 4.0SE*8 1.35t+8 2.31E+7 7.81E+8 Co.138 es.139 1.23E+6 2.07t+4 5.92E 7 1.89E+6 es-160 2.88t+7 3.61E+4 te.161 es.142 La.160 3.60E-2 1.01E.2 1.33E+3 4.79E-3 Le.142 Ce-141 1.60t+4 9.68t+3 4.40E+3 3.62E+7 1.08t+3 Co.143 2.09E.2 1.55t+1 6.001 3 5.78t+2 8.71E.3 Ce-146 1.66E.6 6.09E+5 3.61E+5 6.93E+8 7.83E+6 Pr.143 2.13t+6 8.54t+3 4.93E+3 9.33E+7 1.06t+3 Pr.144 3.93t+7 4.90E+2 Ne-167 7.08t+3 8.18E+3 4.78E+3

G W.lB7 2.16E.2 1.811 2 5.92E+0 6.321 3 m,-239 2.56E.i 2.531 2 7.8.E.2 5.15E+3 1.39E.2 sj J___________-____-_-____-__-___-____-_-_--_

ODCM-3.0 Table 3-5 (contassed)' R(se). Graes-Caw-utet Pathway Dise Facters' TEENACEE Revision 2 (Eren/yr par sC1/33) for M-3 sad C-16 (o2

  • cres/rr per C1/est) for othere Page 3.0-28 Nuclide Bone Liver. Thyroid Esdney Lens CI.LLI T.Sedy H-3 1.94t+2 1.96t+2 1.94t+2 1.94t.2 1.94E.2 1.94E.2 C-la ~

2.811 5 5.62E+4 5.62E+6 5.62t+4 5.62t+4 5.62E+' 5.621 4 i r We-26 .1.67E-3 1.47E-3 1.471 3 1.67E-3 1.67E-3 1.471-3 1.471-3 , jc s. P-32 7 Cr.51 '3.93t+9. 2.6aE+4-3.30E+8 1.52E.8 3.141 3 1.24E+3 8.07E.3 9.50E*5 5.65t+3 s, . Ma-54 6.98E+6' 2.08E+6 1.43t+7 1.381+6 Mn 56 Fe-55 ~2.38E 8 1.69t+8 1.07E+8 7.30E+7 3.93E+7 Fe 59 2.13t+8 4.98E+8 1.571+8 1.181+9 1.92E.8 Co-57 4.531,6 8.65E+7 7.59E+6 Co-58 1.41E+7 't.96E.8 3.25E+7 Co.60 5.83E+1 7.60t*8 1.31E+8 ut-63 1.521 10 1.071+9 1.71E.8 5.15E.8 ut-65 s 1.13E-7 Cu-66 2.61E.a 6.10E-7 1.87E-5 to.65 ' 2.50E+8

8. 6' + 8 5.56t+8 3.68t+8 4.05E 8 In-69 Sr-82 9.94E+2 8r-83 Br-84 3r-85 tb-86 4.06E+8 6.01E+7 1.91E+8

.Ib-88 tb-89 $r-89 2.54E+8 3.03E+7 7.29t+6 $r-90 8.05E+9 2.26t+8 1.99E,9 $r-91 1.101-9 Sr-92 Y-90 8.981+1 7.40t+5 2.42t+0 t-91s Y.91 9.56t+5 3.92t+8 2.56t+4 Y 92 7-93 1.69E 7 Zr-95 1.51E.6 4.76E+5 6.991+5 1.101 9 3.27t+5 2r-97 1.531-5 3.021-6 4.581-6 8.181-1 1.39E 6 Mb-95 1.79t+6 9.94E+5 9.64t+5 6.25t+9 5.47t+5 pp.97 Mo-99 8.98E+4 2.06t+5 1.61t+5 1.71E+4 Tc-99s Tc.101 A tv-103 8.60E+7 3.03t+O 7.18t+9 3.68t+7 I i tu 105 \\ j-28-106 2.36E+9 4.55E+9 1.13E+11 2.97t+8 th-103s th-106 A8-110s 5.06E+6 4.791+6 9.14t+6 1.35t+9 2.91E+6 $b-126 1.62E+7 2.98t+5 3.67t+4 1.41E+1 3.26E+8 6.31E+6 Sb-125 1.56E+1 1.71t+5 1.49E+6 1.37t+7 1.22t+8 3.66t+6 7e-125e 3.03E+8 1.091 8 8.47t+7 8.94t+8 4.05t+7 Te-127s 9.61E+8 3.34E+8 2.241,8 3.82t+9 2.35E+9 1.12E+8 Te-127 1.75E-8 Te-129e 9.58E+8 3.56E+8 3.09E.8 a.01E+9 3.60E+9 1.52E+8 .Te-129 Te - 131 s 3.76t+2 1.80E+2

2. 71 t+ 2 1.88t+3 1.45t+4 1.50!+2 Te-131 Te-132 1.15E.6 7.26t+5 7.66t+5 6.97t+6 2.30t+7 6.841+5 1 130 1.89E-6 5.68E-6 4.47E-4 8.64E 6 4.21E-6 2.191 6 I-131 0.95E+6 1.25E+7 3.661+9 2.16t+7 2.48E+6 6.73t+6 1 132 1-133 3.591 1 6.10t-1 8.511+1 1.07t+0 4.61E.1 1.86E-1 1 134 1 135 Co-13' 5.23t+8 1.23E+9 3.91E+8 1.49t+8 1.53t+7 5.71t+8 Co 136 9.22E+6 3.631 7 1.97E+7 3.11E+6 2.92E+6 2.64t+7 Co.137 7.26t+8 9.63E+8 3.20E*8 1.27t+8 1.37t+7 3.36t+8 Co-138 8e-139 8.-140 2.38t+7 2.91E+4 9.881+3 1.9t.+4 3.671+7 1.53E*6 Se-161 8e-142 Le-140 2.96E-2 1.45E-2 8.35t+2 3.871-3 La-162

= = Co-tal 1.18t+6 7.86E 3 3.70E+3 2.25t+7 9.03E+2 Co-163 1.76E-2 1.28t+1 5.161-3 3.85t+2 1.43E-3 Co.144 1.23E+6 5.08E+5 3.04t+5 3.09E+8 6.60E.& Pr-143 1.79t+4 7.15143 4.16t+3 5.90t+7 8.921 2 Pr-144 Nd-147 6.2&E,3 6.79E 3 3.98t+3 2.45E+7 a.06t+2 / W-187 1.81E.2 1.48E-2 6.61E-2 3.99t+0 5.17E-3 up 239 2.23E-3 2.11E.2 3.39E+3 1.17E-2 f

TJtle 3 5 (ssatteatd) - 8(13). Crges. Cow-mett Pathser Sees Festate. Cu1La Revislori 2 - (crez/tr per ECA/331 tar 8 3 ted C.16 (c2 e cres/yr pst (CA/ess) Isr.ethere . Page 3.0 2EF Lea C1.LL1 T.bsdy- ' frt118e 8see - Livst Thf. read tidle r ....t... N.3 . S.29t+S 1.06t+5 1.06I+5 1.06t+5 1.06t+5 1.06t+5. 1.06t+5 2.34t+2 2,36t+2 2.3&t+2 2.36t+2 2.34t+2 2.34t+2 j C-16 P.32 7.41E+9 3.47t+8 ~ 2.341 3.2.341 3 2.341 3 2.34t.3 Wo.26 2.34E.3 2.34E.3 2.361 3 ~ 2.05t.8 2.86t+8 -(' P ~l '- 4.091 3. 1.34t+3: 8,93t+3 4.671+S' O.81E.3 Cr.51 i' 7.99t+6 2.24t+6 6.70t+6 2.131+6 us.54 no.56 1.37t+8 4.49t+7 7.SIE+7 Fe.S$ e.571+8 2.42t+8 Fe.59 3.781+8 6.12t+8 1.77E+8. 6.371 8 3.05t+8 6.858 7 1.20E*7 S.92E+6 Co.57 Co.$8 1.6SE+7 9.60E*7 S.04t+7 6.93E+7

3. Set +8 2.04E+8 Co.60 51 63 2.91t+10 1.56t+9 1.05t+8 9.91E+8 81 65 Co.66 3.248 7 1.52E.$ fl.961 7 7.821 7 1.76t+8 6.22t+8 to.65 3.75t+8 1.00t+9 6.30t+8 Zo.69 1.56t+3 Sr.82 '

Br 83 = = Sr.84 Br.85 3.71E+7 3.54t+8 S.76t+8 Bb.06 86 88 8b.09 1.86t+? 1.38 t+ 7 - ,Sr.89 4.82E+8 1.40t+e

2. 64 t + 9 Sr.90 1.04t+10 1.01E.9 Sr.91 St-92 e.64E+3 4.SSt+0 T-90 1.70t+2 T.91e 2.411+8 4.83t+4 7 91 1.81t+6 7 92 1.S$t.7 f.93 6.14t+4 S.24t*$

8.43E+5 Zr.95

  • 2. 68t+6 S.891+5 tr.97 2.841 5 4.101 6 3.891 6 m

6.21E.1 2.62E.6 2.23t+* 8.61E+S 1.13E+6 N6 95 3.09t+6 1.20E+6 ut.97 1.03E+S 3.09t+4 2.67t+5' 1.25t+S no.99 Tc.99e Tc.101 6.02t+9 S.90E+7 Bu.103 1.56t+8 3.921+8 Ba.105 6.901+10 S. Set +8 S.99t+9 Bu.106 4.64E+9 - (,- Bh.iO3. Sh.106

1. tot +7

~6.75E+4 6.33t+6 48 110e 8.40t+6 S.67t+6 1.62E+1 1.83t+8 1.03t+7 56 124 2.93t+7 3.80E+5 6.46t+6 1.$9t+7 6.00t+1 S.961+6 56 125 2.8St+7 2.19t+5 2.64E+4 S.69t+8 7.59t+7 Te 125e S.69t+8 1.S&E.8 1.60t+8 1.e4t+9 2.11t*8 Te.127e 1.77t+9 4.788+8 4.24E+8 S.06t+9 Te.127 1.211 9 1.661 8 Te.129s 1.815 9 S.DeE+8 S.82t+8 S.30E+9 2.20t+9 2.00t+8 Te.129 Te.131e 7.00t+2 2.42E+2 6.99t+2 ' 2.34E+3 9.821+3 2.54t+2 Te.131 Te.132 2.09t+6 9.27t+$ 1.3St+6 8.60t+6 9.33t+6 1.12t+6 1 130 3.391 6 6.851 6 7.54E.e 1.02E.S 3.20F.6 3.531 6 1 131 1.66t+1 1.67t+7 S.52t+9 2.74E+7 1.49E+6 9.49E+6 1 132 1 133 6.68E.1 8.262 1 1.53t+2 1.58t+0 3.338 1 3.121 1 I.136 1 135 4.69t+8 1.68t+8 8.15t+6 3.19t+8 I Co.136 9.22E+8 1.51t+9 2.33E+7 3.47t+6 1.54t+6 2.83E+7 Co.136 1.59t+7 4.37E+7 Co.137 1.33t+9 1.281+9 4.16t+8 1.50E 8

7. 99 5 + 6 1.88t+8 l

Co.138 Se.139 1.25t+4 2.29E.4 2.22t+7 2.56t+6 Be.160 6.39t+7 3.SSE 6 8.e.141 g e.i 2 Le.160 S.41E.2 1.098 2 S.27t+2 6.381 3 J Le.i42 i 1.381+7 1.64t+3 i Co.161 2.22E+6 1.11t+4 6.8&t+3 Co.143 3.301 2 1.79t+1 7.51E.3 2.62t+2 3.591 3 Co.166 2.325 6 7.26t+$ 1.891+4 1.241 5 4.02t+5 3.66t+7 1.68t+3 F,t, 143 3.39t+4 1.02t+4 S.51t+3 ie ud 167 1.17t+& 9.48t+3 S.20E+3 1.50t+7 7.36t+2 W.187 3.365 2 1.99E.2 2.79t+0 0.921 3 f Sp.239 6.205 1 3.02E.2 8.735 2 2.23t+3 2.121 2 l

.ODCM 3 b A p f. . R9VISIOh 2 - -Table 3.F (contatusd) -(-. Rio. VeSetation Pathea D4se Fac tors ADL'LT - (sgsstyr per vCase ) for H.3 and C.14 Page 3.0-30: -(s+ + gres/yr pst vC1/sec) for others ' ] _s. . I, .....t.'. C3.LL1' T.Sody Lun 'Muc116e Sone ' Liver Th7 told Eadney 2.261+3 2.26t+3 2.26E+3 2.26t+3 '2.26t+3 : 2.26E+3 : .N - u ,g<'.s'. C.14 8.971 5 1.79t+5-.1.79t+5 1.791+5 1.79t+5. 1.79t+5 1.79E.5 Ns.24 2.76t+5 2.76E.5 2.76t+5^ 2,76t+5 2.761 5 2.76t+5 2.761 5 ' j i P 32 1.401 9 8,73t+7. . 1.58t+8' 5.421 7 2.79E+4 1.03t+4 6.19R+4 1.17E+7 4.66t+4 Cr.51 9.54t+8 5.94 t +7 - 9.27t+7 Mn.54 3.111+8 2.041+1 . 5.131+2 2.tSt+0 1.61t+1 Mn.56 . 2.09E+8 1.45t+8-8.06t+7' 8.291 7 13.37t+7 Fe-55 8.35E.7.9.961+8i 1.14E+8 Fe-59 _1.27t+8 2.99t+8 2.97t+8: 1.95E.7-1.17t+1 Co.57 - 6.76t+8 1 6.92t+7 - 3.09t+7 Co.58' =

3.14t+9 L3.69t+8 1.671 8-Co.60 1.50E+8 3.49t+8 N1 63-1.04E+10 7.211+8-

~. 2.03t+2~ 3.65E+0 N1 65 6.15t+1 7.99t+0 - 7.90E+ 5 : 4.35E+3 2.34E+4 9.27t+3 Cu'-64 6.36t+8 4.$6t+8 6.75E+8 En.65 3.17E+b 1.01E+9 1.091 5 . 2.51E.6 1.16E-6 2n 69 8.75E-6.1.67E.5 . 1.73E+6 1.51E+6 tr-82 St.83 4.63E+0'3.211+0 tr.8+ .Sr.85 .~ 4.32E+7 1.02E+8 tb.86 2.19t+8 . a b.88 - Sr.89. 9.96t+9 ab.89 1.60E+9

2. 86t+ 8.

i 1.751+10 1.48t.11 Sr.90 6.05t+11 1.52E+6 1.29E+4 $r.91 .3.20t+5 - 8.46E+3 1.85E+1 5r-92 4.27t+2 1.41E+8 3.56E+2 Y.90 1.33E+4 1.71E.8 'Y 91e 5.83E.9 2.82t+9 1.37t+5 Y.91 5.13E+6 1.58E+4. 2.631 2 Y-92 9.01E-1 5.52E+6 4.80t+0 f.93 1.74t+2 '1.21E+9 2.581+5 5.97 t+ 5 2r.95 .1.191 6 3.81t+5 2.081 7. 3.00E+1 1.02E+2 2r.97 3.33E+2 6.73E.1 7.81E+4 4.80E+8 4.25E+4' Nb.95 1.421 5 7.91t+4 2.711-3 2.68E.7 8.561 7 Nb.97 2.901 6 7.34E-7 1.45t+7 1.19t+6 1.41t+7 6.25E+6 Mo.99 1.32E+2 4.24E+0 5.125 3' 1.10E+2 Tc.99e-3.06t+0 8.66E.0 .Tc.101 5.61E+8 2.07t+6-1.83E+1 / 8v-103 4.80E+6 3.30t+4 2.13E+1 6.96t+2 4 Eu.105 5.391+1 3.12E+8 .- ~ 1.25t+10 2.44E+7 A-tv-106 1.93t+8 th-103e = Rh-106 3.98t+9 5.80t+6 1.92t+7 48 110e 1.06t+7 9.76t+6 8.08t+7 2.95E+9 4.11E+7 SD-124

1. 0+'.+ 8 1.96t+6-2.52E+5 1.0$E+8 1.50t+9 3.25E+7 5b-123 1.36t+8 1.52E+6 1.39E+5 3.86t+8 1.29t+1 Te.125e 9.toI+7 3.50t+7 2.90t+7 3.93E+8 1.17t+9 4.26E+7 t i

.Te.127e 3.49E+8 1.25E+6 8.92t+7 1.42E+9 4.54t+5 1.25E+3 Te-127 5.76t+3 2.07t+3 4.271+3 2.35t+4 Te.129a. 2.551 8 9.50t+7 8.75E+7 1.06t+9 L. 1.28t+9 ~ 4.03E+7 5.021 4 1.621 4 Te-129 6.651-4 2.50E-4 5.10t.4 2.79E-3 Te.131e 9.12E+5 4.46t+5 1.06t+5 4.52t+6 4.43E+7 3.72t+5. Te-131 1.31t+8 2.60E+6 Te.132 4.29t+6 2.77t+6 3.06t+6 2.67t+7 1.01E+6 4.61t+5 2 130 3.96E+5 1.17t+6 9.90E+7 1.82t+6 3.05t+7 6.63t+7 I.131 8.09t+7 1.16E+8 3.79t+10 1.90E+8 2.89E+1 5.38E+1 1 132 5.74E+1 1.54E.2 5.381+3 2.45E+2 3.31E+6 1.12t+6 1 133 2.12t+6 3.69E+6 5.42E+8 6.44t+6 2.511-7 1.035 4 1-134 1.06E-4 2.88E.4 5.005 3 4.59t.4 1.21E+5 3.94t+4 1 135 4.081+4 1.07E+5 7.04E+6 1.71E+5 3.59E+9 1.19t+9 1.94E+8 9.071+9 Co.134 4.66t+9 1.11t+10 9.24t+7 1.27t+7 1.09t+7 1.19t+8 Co.136 4.20E+7 1.66E+8 2.95E+9 9.81E+8 1.68E+4 5.70E+9 Co-137 6.36t+9 8.70E+9 Cs.138 1.96t.$ 1.191 5 5.231 2 8.64E.4 8e-139 2.95E.2 2.10E.5 5.495+4 9.25E+4 2.65E+8 8.43t+6 Se-140 1.29t+8 1.62E+5 8s.141 Se-142 7.28t+7 2.62E+2 La.140 1.97t+3 9.92t+2 4.64E.1 1.58E.5 La.142 1.401-4 6.351 5 5.00t+8 1.51t+4 6.17t+4 Co 141 1.96t+5 1.33t+5 2.77E+7 8.21t+1 3.26E+2 Co.143 1.00E+3 7.42t+5 1.11E+10 1.77E.6 8.16E+6 Co.144 3.29E+1 1.38t+7 2.78t+8 3.14t+3 1.47t+4 Pr.143 6.34E+4 2.54E+4 Pr.144 No.147 3.34t+4 3.86E.4 2.2SE+4 1.85t+8 2.31t+3 1.05t+7 1.12E+4 W.187 3.82t+a 3.19E.4 2.87t+7 7.72E+1 '0-4.37t+2 Np.239 1.42E+3 1.40E+2 l

ODCM-3.0 Table 3 5 (continued) Revision 2 2,. vegetatsen Pathway 3)ise f acters - TIENPhils 3.0 ' 3 D (ebas yr per sC1/a for H.3 sad C-16 (a

  • gres/yr pst zC1/sec) f ar others

~ Liver Thyroid.tidaey. Lung C1.LLI T.Sody Nuclide Bone. (, N-3 2.59t+3 2.59E+3 2.591 3 2.59E+3 2.591+3 2.59t+3 C.14 1.45E+6-2.91E+5 2.91E+5 2.91t+5

2. 91 t + 5 - 2. 91 t+ 5 2.911 5 r

/ \\ .Ma-24 2.65E+5 2.451 5 2.45E+5 2.45E+5 2.451 5 2.451 5 2.65t.5 '3% -),. - P.32 1.61E+9 9.96t+7 t Cr.51 3.4&E+6 1.361 6 8.85E*6. 1.35E+8.6.231 7 1.06t+7 6.201 4 . Mn-56 4.52E+8 1.35t+8 9.27t+8 8.97t+7-Mn 56

1. 4 5 F.+ 1 1.83E+1

'9.54E+2 2.58E+0 Fe.55 3.25E+8 2.312,8 1.46t+8 9.98t+7 5.34E+7 Fe.59 1.811+8 4.22E.8 1.33E+8.9.90E+8 1.63t+8 Co.57

3. 3& E+8 ' 3.00E+ 7 -

1.79E+7 Co.58 6.Det+8 't.01t+8 4.30E+7 Co.60 2.491+8 3.24E+9 5.60t+8 81-63. 1.61E+10 1.13E*9 1.81E+8 5.45E+8 ui-65 5.73E+1 7.32t+t 3.971+2 3.33t+0 2.121+4 6.51t+5 3.951+3-Cu-64 8.40t+3 Za-65 4.24t+8 1.47t+9 9,41E+8 6.23t+8 6.86t+4 Zn-69 8.19E.6' !.561-5 '1.02E.5 2.881 5 1.09E.6 - St-82 1.33E+6 Br-83 3.011 0 St.84 Br-85 2.73E+8 4.05E+7 1.28t+8 Rb-86 Rb.88 ~- ~, I 8b.89 -1.40E+9 4.33t+8 j Sr.89 1.51t+10 3r.90 7.51E+11' 2.11E+10 1.85!.11 1.36E+6 1.19E 6 $r.91 2.99t+5 -1.01E+6 1.691 1 $r.92 3.971+2 1.02E+8 3.341 2 7-90 1.24t++ 7 91s 5.63E.9 2.56E.7 3.23E+9 2.11E+5' T.91 7.871+6 2.32E+6.2.451 2 7 92 8.471-1 6.98E+6 4.67t+0 7 93 1.63E42' 2r.95 1.7&E+6.5.69E+5 1.27t+9 3.78E+5 8.07t+5 1.65t+7 2.811+1 Zr.97 3.09t+2. 6.11t+1 9.26E+1 Mb.95 1.92E+5 1.06t+5 4.55E+8.5.861+& 1.03t+5 1.59E-2 2.441 7 Nb.97 2.691-6 6.671 7 ~ 7.80E 7 Mo.99 1.31E+1 1.03t+7 1.09E+6 5.76t+6 1.12E+2 4.19t+0 4.95E+3' 9.77E+1 Tc.90s 2.70t+0 7.54E+0 Tc.101 /'~'Sg: 5.74t+8 2.94t+6 2.42E+7 ' i j ~ Re.103 6.87t+6 4.04E+4 1.94E+1 Eu-105 5.00E+1-6.311+2 th-103s ' 1.48t+10 3.90E+7 N.s Ru 106 3.09E+8 5.97E+8 th.106 As-110s. 1.52E+7 1.6&E+7 2.7&E+7 4.04t+9 8.74E 6 1.35t+8 3.11E+9 6.03E.7 i Sb-126 1.55t+8 2.851 6 3.51t+5 1.88E+8 1.66t+9 5.001 7 $b.125 2.16t+8 2.3&E+6 2.04E+5 6.37E+8 1.98t+7 To.125e-1.48E+8 5.34E+7 4.14t+7 Te.127s 5.51E+8 1.96E+8 1.31t+8 2.2&E+9 1.37t+9 6.56E+7 4.19t+5 1.17"+3 Te-127 5.43E+3 1.921 3 3.74E+3 2.20t+4 Te-129m 3.671 8 1.36E+8 1.18E+8~ 1.56t+9 1.38t+9 5.811 7 3.60E-3 1.511 4 Te-129 6.221 4 1.32E-4 4.451 4 2.611-3 Te-131s

8. eat +5 6.05E+5 6.091+5 6.22E+6 3.25E+7 3.38t+5 To.131 Te.132 3.90!+6 2.47E+6 2.60E+6 2.37t+7 7.82t+7 2.32t+6 1 130 3.5&E+5 1.02E+6 8.35E+7 1.58E+6 7.871+5 4.091 5 1 131 7.701 7 1.08E+8 3.14E+10 1.85E+8 2.13E+7 5.79t+7 1 132 5.18E+i 1.36E+2 6.57t+3 2.14t+2 5.91E+1 4.87E+1 2.53E+6 1.02E+6 1-133 1.97E.6 3.34E+6 4.66E+8 5.86E+6 i

3.355-6 9.13t.5 l 1-134 9.591-5

2. 54 t.4 6.24t.3 4.011 4 1.05E+5 3.52E+4

( Z-135 3.64E+4 9.40E+4 6.10E+6 1.50t+5 5.30t+9 2.02E+9 2.082+8 7.7&E+9 Ca.134 7.09t+9 1.47E+10 Co-136 4.29t+7 1.69E+8 9.19E+7 1.45t+7 1.36E+7 1.13t+8 4.59E+9 1.78t+9 1.92E+8 a.69t+9 Co-137 1.. alt +10 1.35E+10 Ca.138 1.841 5 1.341-5 2.e?!.1 0.08E.4 1 Be-139 2.771-2 1.95t.5 8e.160 1.34E+8 1.69t+5 5.75E+4 1.14t+5 2.13t+8 8.91t+6 8e.141 Se.162 5.08t+7 2.35t+2 La.140 1.80E*3 8.84t+2 1.73t+0 1.422 5 La-142 1.28E.4 5.69E.5 5.38E+8 2.16t+6 Co.141 2.82E+5 1.88t+5 8.86t+4 2.05E+7 7.62E+1 Co.143 9.371+2 6.82E.5 3.06t+2 1.33E+10 2.83t+6 1.30t+7 Co-146 5.27t+7 2.18E.7 2.3&E+8 3.55E+3 Pr-l&3 7.12E+4 2.84E+6 1.65t+4 Pr-le' 1.62E+8 2.36t+3 W4 147 3.63E+4 3.94E+6 2.32E+4 7.84!.6 1.02E+' 4 187 3.55E+6 2.90E+6 s. 2.10E+7 7.2&E+1 \\ Np.239 1.38E+3 1.30E+2 6.091+2 _____m

l ' C)DCh4-3.0 J Teile'3 5 c sets:<ed) 8' '**** s - C01'5 Revision 2 8. ve 8eisisse raC'*/s > l'e'r 8 3 e'xd 1

    • 5 C-is c:5 2/7, 82r

<e a cres/7, nr..Ct/see ) f or othere Paga 3.0-32 -Nus11de Sese Liver Th7 tend tides? Lost C1-LLI T.8147 4.01E 3 4.011+3 e.01E*3 4.01E+3 6.01t+3 4.011+3 83 C-14 3.50t+6 7.01t+S 7.01t+5 7.01t+5 7.01t+5 7.01t+5 7.01t+S ?i' No-26 3.83t+S 3.83t+S' 3.83t+5 3.83E+S 3.831 5 3.83E+5 3.83t+S 9.30t+7 1.30t+8 4 P-32 3.37t+9 1.581+8 6.54t+6 1.79t+6 1.19t+S 6.251 6 1.18t+5 j Cr.51 .E S.SSt+8 1.76t+8 l 1.8SE+8 6.61E*8 Me-Se 2.75t*3 4.281+0 1 2.291+1 1.90E+1 Me.56 2.40E+8 7.86t+7 1.31t+8 j Fe-SS 8.00t+8 4.26t+8 1.84E+8 6.761 8 3.23t+8 Fe.59 .e.0!t+8 6.49t+8 2.45E+8 6.04E+7 2.99 5+ 7 Co.57 3.77t+8

1. 94 t + 8 6.471+7 Co.58 2.10t+9 1.12t+9 1.78t+8 Co.60

= 1.42t+8 1.34E+9 81 63 3.95t+10 2.11E+9 1.21t+3 3.77t+0 51-63 1.0$t+2 9.89E+0 S.20E+5 6.69t+3-1 2.68t+4 1.11E+4 Co.64 1 3.80t+8 1.35t+9 l 1.361+9 te.65 0.12t+8 2.16t+9 1.38E-3 2.021 6 1.321 5 te.49 1.515 5 2.18E-S 2.04E46 = tr.82 S.SSE+0 Br-43 Sr.86 l 2.91t+7 2.78t+8 l Sr 85 e.32t+8 Sb.46 86 88 86 09 1.391+9 1.03t+9 .i Sr.89 3.591+10 1.67t+10 3.lSt+11' Sr.90 1.24t+12 1.21E+6 2.081 6 i $r-91 S.50t+S 1.38t+4. 2.921,1 Sr.92 7.281 2 6.56t+7 6.17t+2 7 90 2.301 4 1.951.S 7 91s 9.941 9 2.69t+9 S.0lt.S 7 91 1.875 7 4.518 4 4,661 2 7 92 1.561+0 6.68t+6 8.25t+0 7-93 3.01t+2 8.95t+8 7.661+5 1.23t+6 Zr-95 3.90E+6 8.581+5 1.23E+7

4. 81 E + 1 l

1.17t+2 Er-97

5. 64 t+ 2 8.15E+1 2.95t+8 1.1&t+5 1.501 5 ub-95 4.10t+5 1.59t+5 2.73E-1 4.131 7 9.821 7 ut 97 a.901-6 8.85E.7 6.681+6 1.961+6 1.67t+7 7.83t+4 Me-99 1.33E+2 a.63t+0 S.19t+3 1.31E+2 Tc 99e 4.65E+0 9.121+0 Tc.101 3.99t+8 S.94E.6 3.89t+7 Su-103 1.S$t+1 S.98t+'

3.33E+1 8.06t+2 Su-105 9.171+1 O 1.16t+10 9.30147 1.01E+9 Su-106 7.45t+8 Sh-103s Sh-106 2.58t+9 1.74t.1 4.05E+7 48-110m 3.12E+7 2.17t+7 1.961+8 2.20E+9 1.23E.8 $b-126 3.52t+8 a.57t+6 7.78t+5 2.781+8 1.19E+9 1.051 8 Sb-12S 6.99t+8 3.85t+6 4.62E+5 3.38t+8 4.67t+7 Te.125e 3.511+8 9.50t+7 9.86t+7 1.07t+9 1.57E.8 Te-127s 1.32E+9 3.56E+8 3.16E+8 3.77t,9 3.91t+$ 2.15t+3 Te.127 1.00t+4 2.70t+3 6.93E+3 2.851 4 1.041+9 1.33t+8 Te.129s 8.54E+8

2. 39 E+ 8 2.75E+8
2. Sit +9 7.17t.2 2.74E.6 Te.129 1.15t 3 3.22E.a 8.22E.4 3.371-3 2.16t+7 S.68t+5 Te-131e 1.S41 6 S.33t+5 ' 1.10E+6 S.165+6 Te.131 3.11t+7 3.73t+6 Te.132 6.94t+6 3.09t+6 4.50E+6 2.87t+7 S.87t+S 6.4?E*S 1 130 6.211+5 1.26t+6 1.38t+8 1.84t+6 1.281 7 8.18t+7 1 131 1.63E+8 1.e4E+8 6.76t*10 2.36t+8 1.99t+2 7.77t+1 1-132 9.20t+1 1.69t+2
7. 64 t
  • 3 2.59E.2 1.79E+6 1.68t+6 1 133 3.$98+6 a.e4E+6 8.2SE+8 f.60E+6 2.101 4 1.461 6 1 134 1.701 4 3.16E.4 7.28t 3 4.848 4 8.98t+6 S.57t+6 1 135 6.54t+4 1.185+S 1.04t+7 1.81t+5 8.16t+9 2.92E+9 1.621 8 S.54t+9 Co.134 1.60!+10 2.63t+10

= 1.18t+8 1.76E+7 7.79t+6 1.43t+8 Co.136 8.D6E+7 2.22E+8 7.665+9

2. 68t + 9 1.43t+8 3.38t+9 Co.137 2.39t+10 2.295+10 Co.138 2.38E.S 1.611-S 2.95E+0 1.48t.3 Se.139 S.115 2 2.738 5 7.90t+e 1.45E+5
1. 60t +4 1.62t+7 be.160 2.775+8 2.43t+5 be.141 Se.142 3.15t+7 3.81t+2 La.160 3.23E+3 1.13t+3 1.47t+1 2.32t.S Le.162 2.32E.4 7.601 5 7.66t+7 9.12E+3 2.69t+4 Co.141 1.23E+5 6.16E+4 1.37t+7 1.36t+2 3.93E.2 Co-l&3 1.73t+3 9.36t+5 1.04E.10 6.78t+6 2.211+7 Co.146 1.27t+8 3.98E+7 1.60t+8 7.37t+3 2.415+4 Fr.163 1.48t+5 4.661 6 Pr.164 9.18Ee7 4.69t+3 3.181+4 5d-167 7.161+4 S.80t+6 S.38t+6 1.721*

v.187 6.471 4 3.83t+6 1.36t+7 1.292+2. S.30t+2 58-239 2.S$t+3 1.83t+2

_ _.... _ _,,. - -. -, - - ~ ~ - v -p ODChh-3.0 ~ n Revision 2 e

i --

.1. Page 3.0-33 f 44-Teil. 3 5 cesesse.es) -1 -; p;,. '). Rio. Croged Flese Pathway Does Festore (a

  • ares /yr per uC1/sec )

p_ ' f i. '5uclide s,,r Any Or8.en -t' s C.14' 1 No.26 1.28t+7 'P.32 Cr.51 4.68t+6 Me.54 1.34t+9. Me.56' 9.05t+5 Fe.55 Fe.59 2.75t+8 Co.58 3.82t+8 Co.60 2.16t+10 N1 63 N1 65 2.971+5 Co.64 6.09t+5 to.65 7.45t+8 Ze 69 Sr.83 4.89t+3 Br-84 2.03E+3 8r.85 86 86 4.98t+6 Rb.88 3.29t+4 lb.89 1.21t+5 3r-89 2.16t+4 Sr.90 Sr.91 2.19t+6 Sr.92 7.77t+5 T 90 4.48t+3 f.91e 1.01t+5 T 2:1 Y.91 1.08t+6 f.92 1.80t+5 .l T.93 l'85t+5 f 2r.95 2.681+8 Zr.97 2.94E+6 I ub.95 1.36t+8 i Me.99 a.05t+6 i Tc.99e 1.83E+5 ,f "'g - e Ts.101 2.0&t+4 e Ru 103 1.09t+8 \\ / Rv.105 6.36t+5 Ru-106 ' 4.21t+8 th 103e-Ah 106 A8 110e 3.47t+9 Te.125e 1.55E+6 To.127e 9.17t+6 Te.127 -3.00t+3 Ts.129s 2.00E+7 Te.129 '2.60t+6 To.131e 8.03t+6 To 131 2.93t+& To.132 4.22t+6 1 130 5.53t+6 I.131 1.72E+7 1 132 1.24t+6 3 133 2.47t+6 1 13a 4.49t+5 1 135 2.56t+6 Co.134 6.75t+9 l Ce=136 1.498+8 Co.137 1.04t+10 Co.138 3.59t+5 Be 139 1.06t+5 84 160 2.05t+7 Be.141 4.18t+4 Is.142 6.49t+4 ( La.140 1.91E+7 f Ls.142 7.36t+5 i Co.161 1.36t+7 l Co.163 2.32E+6 Co.164 6.95t+7 i f Pr.143 Pr.166 1.83E.3 Nd.167 8.60146 W.187 2.36t+6 Np.239 1.71t+6 p-*% j \\, s' - ) l I

e E u_ m A /,k\\ H n __ C e l P d Y 4 i E I . e hu ~ h 0s + K x E u 7 3i 4 e d Mi e i C +vg S O4P 7 i D + a rh 05 N b 1 1D k S c TG a t S S l T I 7 N O I 0 A 1 4 L s I N l a K ao G wa ca T 1 4 1 0 M maw 0 m D 0 r f e 0 N av f f V p,E5 i yh I-n h O 1 C 1 D m c D j1 a %.m. _r N h 0 D A 0 A 3 !M 4 0 0 M G 1 1 D [c N 5 5 1 H N 1 A n' I D 4 R M 1 1 O 1 1 l I 0 I ev l gI I 0 A D D l N 1 T R G rv y N D BgD r 1 1 0 A D O 3 M I S S io D a D D B :. T x N N T a/ G Bl g G u U E ] E T

  • (

R N S E ; S A U S l M U E C /f G Uf V A I L 1 S F F Y F H S E C EN f V I T C A D I AC re D ' 0 s5 s A n 5 t sN e O ^ gD e m 1 o dn S 3 eM 0 U 5N E L 1 S 1 MMDQ nQ I h A 4 G 0 5 N j y 1 80 5H ,Q sa 1 M A M Oy ^ r g o tc ae w R e e h'"'% ri tg hd g egy sn t t et et tsrd wnc D *' M P M no du e Ot F T eD S R N)Q' "((

},. Nuct:ar Prsducti:n - Fermi 2 ODCM-4.0 Offsite Dsso Calculation Manual RIvisisn 2 Page 4.0-1 ] SPECIAL DOSE A0ALYSIS V t f 4.0 - SPECIAL DOSE ANALYSES 4.1 Doses Due to Activities inside the SITE BOUNDARY l In accordance with Technical Specification 6.9.1.8, the Semiannual Radioactive Effluent Release Report submitted within 60 days after January 1 of each year shall include an assessment of radiation doses from radioactive liquid and gaseous effluents to j l l-MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY. Two locations within the Fermi 2 SITE BOUNDARY are accessible to MEMBERS OF THE PUBLIC for activities unrelated to Detroit Edison operational and support activities. One is the over-water portion of the SITE BOUNDARY due east of the plant. Ice fishermen sometimes fish here during the winter. The other is the Fermi 2 Visitor's Center, outside the protected area (but inside the Owner Controlled Area), approximately 470 meters SSW of the Reactor Building. The Visitor's Center is open to the public and is routinely visited by MEMBERS OF THE PUBLIC, including school i 1 tour groups on a frequency of once per year. Conservative assumptions of locations, exposure times and exposure pathways for assessing doses due to activities inside the SITE BOUNDARY are presented in Table 4.0-1. The calculational methods presented in ODCM Sections 3.6 and 3.7 may be used for determining the maximum potential dose to a MEMBER OF THE PUBLIC based on the above assumptions. O V The potential dose from the fish pathway to a MEMBER OF THE PUBUC engaged in ice fishing within the SITE BOUNDARY is accounted for by the modeling presented in ODCM Section 2.5. Therefore, no additional special dose analyses are required for this exposure pathway for reporting in the Semiannual Radioactive Effluent Release Report. 4.2 Doses to MEMBERS OF THE PUBLIC - 40 CFR 190 The Semiannual Radioactive Effluent Release Report shall also include an assessment of the radiation dose to the likely most exposed MEMBER OF THE PUBLIC for reactor releases and other nearby uranium fuel cycle sources (including dose contributions from effluents and direct radiation from onsite sources). For tha likely most exposed MEMBER OF THE PUBLIC in the vicinity of the Fermi 2 site, the sources of exposure need consider only the radioactive effluents and direct exposure contribution from Fermi 2. No other fuel cycle facilities contribute significantly to the cumulative dose to a MEMBER OF THE PUBLIC in the immediate vicinity of the site. Davis-Besse is the closest fuel cycle facility located about 20 miles to the SSE. Due to environmental dispersion, any routine releases from Davis-Besse would contribute insignificantly to q the potential doses in the vicinity of Fermi 2. { l ARMS - INFORMATION SERVICES J Date approved: Release authorized by: I Change numbers incorporated: LCR 88-032-ODM Odd,M-dO Rev 2 Date J A N i 8 to R a DSN DTC TMPLAN File 1715.02 Recipient 362 l l

ODCM-4.0 Revision 2 \\ Pags 4.0-2 As appropriate for demonstrating / evaluating compliance with the limits of Technical ,* f ; Specification 3.11.4 (40 CFR 190), the results of the environt.iental monitoring program 0( may be used to provide data on actual measured levels of radioactive material in the

\\-,

actual pathways of exposure. y 4.2.1 Effluent Dose Calculations For purposes of impl' menting the surveillance requirements of TS 3.11.4 e and the reporting requirements of 6.9.1.8, dose calculations for Fermi 2 may be performed using the calculs!! anal methods contained within this ODCM, - the conservative controlling pathways and locations of Table 3.0-4 or the - actual pathways and locations as identified by the land use census - (TS 3.12.2 and ODCM Section 5.0) may be used. Liquid pathway doses may be calculated using Equation (2-10). Doses due to releases of radiciodines, j tritium and particulate are calculated based ori Equation (3-15). The following equations may be used for calculating the doses to MEMBERS l-OF THE PUBLIC from releases of noble gases:

Dtb = 3.17 E - 08
  • X/O *

(K

  • Q )

i i (4-1) J and i (lL + 1.1 Mj]

  • Q )-

Ds = 3.17 E - 08

  • X/O
  • i i

. (4-2) where: (/ Dtb = total body dose due to gamma emissichs for noble gas radionuclides (mrem) Ds skin dose due to gamma and beta emissions for noble. = gas radionuclides (mrad) 3 X/O = atmospheric dispersion to the offsite location (se'c/m ) Qi = cumulative release of noble pas radionuclides i over the period of interest (uCl) C x VF x 1.67E + 01 = i 1 Ci .= concentration of radionuclides i as determined by gamma spectral analysis of media (uCl/ml) ] t VF = average ventilation flow for release point (liters / min) ] (1E + 03 ml/ liter) * (1 min /60 sec) j 1.67E + 01 = k = total body dose factor due to gamma emissig)ns from i noble gas radionuclides I (mrem /yr per uCi/m (from Table 3.0-3) skin dose factor due to beta emisglons from noble gas e Li = 3 radionuclides i (mrem /yr per uCi/m ) (from Table 3.0-3) i I l 1

ODCM-4.0 R; vision 2 Pag) 4.0-3 Mi gamma air dose fagtor for noble gas radionuclides i = -] (mrad /yr per uCi/m ) (from Table 3.0-3) mrem skin dose per mrad gamma air dose (mrom/ mrad) 1.1 = 1/3.15 E + 07 yr/sec ) 3.17 E - 08 = Average annual meterological dispersion parameters or meterological conditions concurrent with the release period under evaluation may be used (e g., quarterly averages or year-specific annual averages). 4.2.2 Direct Exposure Dose Determination { From evaiustions performed in the Fermi 2 Environmental Report, Section 5.3.4, the direct exposure to the highest offsite location from the Turbine Building N-16 skyshine dose has been calculated to be approximately 3 mrem / year. This value may be used as a baseline for actual direct exposure contributions during plant operations. Other potentially significant direct exposure contributions to offsite individual doses may be evaluated based on the results of the environmental measurements (e 9., TLD. ion chamber measurements) or by the use of a radiation transport and shielding calculational method. Only during atypical conditions will there exist any potential for significant onsite sources at Fermi 2 that would yield potentially significant offsite doses to a MEMBER OF THE PUBLIC. However, should a situation exist whereby the direct exposure contribution is potentially significant, onsite measurements, offsite measurements and calculational techniques will be used for determination (

  • )

of dose for assessing 40 CFR 190 compliance. The calculational techniques b' will be identified, reviewed, and approved at that time. 4.2.3 Dose Assessment Based on Radiological Environmeistal Monitoring Data j Normally, the assessment of potential doses to MEMBERS OF l'HE PUBLIC must be calculated based on the measured radioactive effluents at the plant. The resultant levels of radioactive material in the offsite environment are so minute as to be undetectable. The calculational methods as presented in this ODCM are used for modeling the transport in the environment and the resultant exposure to offsite individuals. The results of the radiological environmental monitoring program can provide input into the overall assessment of impact of plant operations and radioactive effluents. With measured levels of plant related radioactive material in principal pathways of exposure, a quantitative assessment of potential exposures can be performed. With the monitoring program not identifying any measurable levels, the data provides a qualitative assessment - a confirmatory demonstration of the negligible impact. Dose modeling can be simplified into three basic parameters that can be applied in using environmental monitoring data for dose assessment: D = C

  • U
  • DF (4-3) o c) l

ODCM-4.0 Revision 2 Page 4.0-4 where: ,m dose or dose commitment ) D = J l concentration in the exposure media, such as air C = concentration for the inhalation pathway, or fish, vegetation or milk concentration for the ingestion pathway l individual exposure to the pathway, such as br/yr for U = direct exposure, kg/yr for ingestion pathway dose conversion factor to convert from an exposure or DF = uptake to an individual dose or dose commitment The applicability of each of these basic modeling parameters to the use of environmental monitoring data for dose assessment is addressed below; Concentration - C The main value of using environmental sampling data to assess potential l doses to individuals is that the data represents actual measured levels of radioactive material in the exposure pathways. This eliminates one main uncertamty and the modeling has been removed - the release from the plant and the transport to the environmental exposure medium. Environmental samples are collected on a routine frequency (e.g., weekly fN airborne particulate samples, monthly vegetable samples, annual fish (,/ samples). To determine the annual average concentration in the environmental medium for use in assessing cumulative dose for the year, an average concentration should be determined based on the sampling frequency and measured levels: k= (C

  • t)/365 i

(4-4) where: k average concentration in the sampling medium for the = year concentration of each radionuclides i measured in the Ci = inoividual sampling medium period of time that the measured concentration is t = considered representative of the sampling medium (typically equal to the sampling frequency; e.g.,7 days for weekly samples,30 days for monthly samples). If the concentration in the sampling medium is below the detection capabilities (i.e., less than Lower Limits of Detection (LLD), a value of zero should be used for C (C = 0). i i g V I

ODCM-4.0 Revision 2 Pago 4.0-5 l Exposure - U )' Default Exposure Values (U) as recommended in Regulatory Guide 1.109 are ' ~' presented in Table 4.0-2. These values should be used only when specific data applicable to the environmental pathway being evaluated is unavailab!e. Also, the routine ratJiological environmental monitoring program is designed to sample / monitor the environmental media that would provide early indications of any measurable levels in the environment but not necessarily levels to which any individual is exposed. For example, sediment samples ) are collected in the area of the liquid discharge: typically, no individuals are directly exposed. To apply the measured levels of radioactivity in samples that are not directly applicable to exposure to real individuals, the approach recommended is to correlate the location and measured levels to actual locations of exposure. Hydrological or atmospheric dilution factors can be used to provide l reasonable correlations of concentrations (and doses) at other locations. The other alternative is to conservatively assume a hypothetical individual i at the sampling location. Doses that are calculated in this manner should be presented as hypothetical and very conservatively determined - actual exposure would be much less. Samples collected from the Monroe water supply intake should be used for estimating the potential drinking water doses. Other water samples collected, such as near field dilution area, are not applicable to this pathway. Dose Factors - DF The dose factors are used to convert the intake of the radioactive material to an individual dose commitment. Values of the dose factors are presented in NRC Regulatory Guide 1.109. The use of the RG 1.109 values applicable to the exposure pathway and maximum exposed individual is referenced in Table 4.0-2. Assessment of Direct Exposure Doses Thermoluminascent Dosimeters (TLD) are routinely used to assess the direct exposure component of radiation doses in the environment. However, because routine releases of radioactive material (noble gases) are so low, the resultant direct exposure doses are also very low. A study

  • performed for the NRC concluded that it was generally impractical to distinguish any plant contribution to the natural background radiation levels (direct exposure) below around 10 mrem per year. Therefore, for routine releases from nuclear power plants the use of TLD is mainly confirmatory - ensuring actual exposures are within the expected natural background variation.

3 A NUREG/CR-0711, Evaluation of Methods for the Determination of X-and Gamma-Ray Exposure Attributable to a Nuclear Facihty Using Environmental TLD Measurements, Gail dePlanque, June 1379, USNRC. /'S ON

, - - =. ODCM-4.0 Revision 2 ] Page 4.0-6 For releases of noble gases, environmental modeling using plant measured J releases and atmospheric transport models as presented in ODCM 1 () Section 3.6 and 4.2.1 represents the best method of assessing potential ) L/ environmental doses. However, any observed variations in TLD measurements outside the norrn should be evaluated, END OF SECTION 4.0 ( i i 1 L_.] i .O I V l t l lL_______-_-________

ODCM-4.0 V, Revision 2 Page 4.0-7 TABLE 4.0-1 v - . Assumptions for Asscssing Doses Due to. Activities inside SITE BOUNDARY Ice Fishing Visitor's Center. Distance / Direction: 470 meters / E 470 meters / SSW Estimated Exposure 240 hr/yr 4 hr/yr Time! (20 hr/ week over (4 hr/ visit,1 visit 3 month period) per year) Exposure Pathways: direct exposure direct exposure (noble gases) (noble gases) inhalation inhalation (H-3,1-131, -133, (H-3,1-131, -133 particulate) particulate) Meteorological' annual average annual average Dispersion: (as determined for (as determined for Vear being evaluated) year being evaluated) 3 3 1.93E-5 sec/m 5.74E-6 sec/m O " _ Meterological data is provided from the monitoring year 1987. I e l l O

ODCM-4.0 l /' ' Revision 2 p Page 4.0-8 TABLE 4.0-2 'J Recommended Exposure Rates in Lieu of Site Specific Data

  • Table Reference

' Exposure Pathway Maximum Exposed ' Exposure Rates for Dose Factor Age Group from RG 1,109 Liquid Releases Fish Adult 21 kg/y .E-11 Drinking Water Adult 7301/y E-11 Bottom Sediment. Teen 67 h/y E-6 Atmospheric Releases 3 Inhalation Teen 8.000 m /y E-8 Direct Exposure All 6,100 h/y** N/A Leafy Vegetables Child 26 kg/y E-13 Fruits, Vegetables - Teen 630 kg/y E-12 and Grain Milk Infant 330 1/y E-14 / Adapted from Regulatory Guide 1.109, Table E-5 Net exposure of 6,100 h/y is based on the total 8760 hours per year adjusted by a 0.7 shielding factor as recommended in Regulatory Guide 1.109. END O --_--___---,_--_-,__w-_--___.-a_--.__-.-- ..--.---.----,,u.__s .a.u- ._->_---a-___.s.------,.--_--_.------_..-_--,-..._-_u._-,--_-,--_-----:_.------. -_--_-----,.--.-,---_--..a

Nuctsar Prcductisn - Fcrmi 2 CDCM-5.0 Offsita Dasa C lculati:n Manual R:vislan 2 Page 5.0-1

  • 4 ASSESSMENT OF LAND USE CENSUS DATA Ov

5.0 ASSESSMENT

OF LAND USE CENSUS DATA A Land Use Census (LUC) is conducted annually in the vicinity of the Fermi 2 site. This census fulfills two main purposes: 1) Meet requirements of TS 3.12.2 for identifying controlling location / pathway for dose assessment of TS 3.11.2.3; and 2) provide data on actual exposure pathways for assessing realistic doses to MEMBERS OF THE PUBLIC. 5.1 Land Use Census as Required by TS 3.12.2 As required by TS 3.12.2, a land use census shall be conducted during the growing season at least once per twelve months. The purpose of the census is to identify within a 5 mile distance the location in each of the 16 meterological sectors of the nearegt milk animal, nearest residence and nearest garden larger than 500 ft producing broadleaf vegetation. The data from the LUC is used for updating the location / pathway for dose assessment and for updating the Radiological Environmental Monitoring Program. If the census identifies a location / pathway (s) yielding a higher potential dose to a MEMBER OF THE PUBLIC than currently being assessed as required by TS 3.11.2.3 (and ODCM Section 3.7 and Table 3.0-4), this new location pathway (s) shall be used for dose assessment. Table 3.0-4 shall be updated to include the currently identified controlling location / pathway (s). Also, if the census identifies a location (s) that yields a calculated potential dose (via the same exposure pathway) 20% greater than a location currently included in the Radiological Environmental Monitoring Program, the new location (s) ! hall be added to the program within 30 days. The sampling location (s), excluding control locations, having the lowest calculated dose may be deleted from the program after October 31 following the current census. As required by TS 3.12.2 and 6.9.1.8, the new location / pathway (s) shall be identified in the next Semiannual Radiation Effluent Release Report. The following guideline shall be used for assessing the results from the land use census to ensure compliance with TS 3.12.2. 5.1.1 Data Compilation 1. Compile all locations and pathways of exposure as identified by the land use census. 2. From this compiled data, identify any changes from the previous year's l census. Identify the current controlling location / pathway used in the ODCM Table 3.0-4. Also, identify any location / pathway currently included in the REMP (Table 6-1). ARMS - INFORMATION SERWCES Date approved: Release authorized by: Change numbers incorporated: LCR 88-032-ODM DSN O d6/11 -8, d Rev 2 Date inij R tQAQ DTC TMPLAN File 1715.02 Recipient M.b

ODCM-5.0 Rsvision 2 Page 5.0-2 3. Determine the historical, annual average meterological dispersion parameters (X/Q, D/O) for any new location A (i.e., location not previously identified and/or evaluated). All locations $gf should be evaluated against the same historical meterological data set. 5.1.2 Relative Dose Significance For all new locations, calculate the relative dose significance by applicable i pathways of exposure. 1. Relative dose calculations should be based on a generic radionuclides distribution (e.g., Fermi 2 UFSAR gaseous effluent source term or past year actual effluents). An 1-131 source term dose may be used for assessment of the maximum organ ingestion pathway dose because of its overwhelmir:g contribution to the total dose relative to the other.. particulate. 2. The pathway dose equations of the ODCM should be used. 5.1.3 Data Evaluation 1. By exposure pathway, formulate a listing of locations. The listing should be in descending order of relative dose significance. Include the relative dose significance in the listing. 2. Verify' the controlling location used in the ODCM Table 3.0-4. If any g location / pathway (s) is identified with a higher relative dose, this ('j location / pathway (s) should replace the previously identified controlling location / pathway in Table 3.0-4. If the previously identified controlling pathway is no longer present the current controlling location / pathway should be determined. 3. This listing should be used in the evaluation for revisions to the REMP and Section 6.0 of the ODCM in acccrdance with TS 3.12.2, Action item b. 4. Any changes in either the controlling location / pathway (s) of the ODCM dose calculations (Section 3.7 and Table 3.0-4) or the REMP (ODCM Section 6.0 and Table 6-1) shall be reported to NRC in accordance with TS 3.12.2, Action items a. and b. and TS 6.9.1.8. NOTE: As permitted by footnote to TS 3.12.2, broadleaf vegetation sampling may be performed at the SITE BOUNDARY in two locations, in different sectors with highest predicted D/Os, in lieu of the garden census. Also, for conservatism in dose assessment for compliance with TS 3.11.2.3 (ODCM Section 3.7 and Table 3.0-4), hypothetical exposure location / pathway (s) may be assumed (e.g., milk cow at 5 mile location or garden at SITE BOUNDARY in highest D/O sector). j By this approach, the ODCM is not subject to frequent J revision as pathways and locations change from year to year. A verification that the hypothetical pathway remains conservative and valid is still required. Also, for NRC i

ODCM-5.0 Revision 2 Page 5.0-3 ~ reporting, the actual pathways and doses should be reported I along y:th the hypothetical. The reporting of the actual-

g) 1 pathway and doses provides a formal documentation of the b

more realistic dose impact. 5.2 Land Use Census to Support Realistic Dose Assessment The LUC provides data needed to support the special dose analyses of the ODCM Section 4.0. Activities inside th'e SITE BOUNDARY should be periodically reviewed for dose assessment as required by TS 6.9.1.8 (ODCM Section 4.1). Assessment of realistic doses to MEMBERS OF THE PUBLIC is required by TS 3.11.4 for demonstrating compliance with the EPA Environmental Dose Standard,40 CFR 190 (ODCM Section 4.2). To support these dose assessments, the LUC shall include (a) areas within the SITE BOUNDARY that are accessible to the public; and (b) use of Lake Erie water on and near the site. The scope of the LUC shall include the following: 5.2.1 Assessment of areas onsite that are accessible to MEMBERS OF THE PUBLIC. Particular attention should be given to assessing exposure times for ice fishing near the Fermi 2 shoreline and visits to the Fermi 2 Visitor's Center. Data should be used for updating ODCM Table 4.0-1. 5.2.2 Data on Lake Erie use should be obtained from local and state officials. Reasonable efforts shall be made to identify Individual irrigation and potable water users, and industrial and commercial water users whose source is Lake Erie This data is used to verify the pathways of exposure used in G ODCM Soction 2.5. %) END OF SECTION 5.0

Nuclear Productisn - Formi 2 ODCM-6.0 Offsits Dese Calculat!on Manual R; vision 2 Page 6.0-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM s 6.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM The Radiological Environmental Monitoring Program (REMP) is conducted in accordance with the requirements of Technical Specification 3.12.1. The sampling and analysis program described herein was developed to provide representative measurements of radiation and radioactive materials resulting from station operation in the principal pathways of exposure of MEMBERS OF THE PUBLIC. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the radiological effluent control program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for the development of this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring. 6.1 Sampling Locations Sampling locations as required by TS 3.12.1 are described in Teble 6-1 and shown on the maps in Figures 6-1, 6-2, 6-3, and 6-4. NOTE: For purposes of implementing TS 3.12.2, sampling Iccations will be modified as required to reflect the findings of the land use census as described in ODCM Section 5.1. 6.2 Reporting Levels TS 3.12.1, Action b, describes criteria for a Special Report to the NRC if levels of plant-related radioactive material, when averaged over a calend6r quarter, exceed the prescribed levels of TS Table 3.12.1-2. The reporting levels are based on the design objective doses of 10 CFR 50, Appendix ! (i.e., the annual limits of TS 3.11.1.2, 3.11.2.2 and 3.11.2.3). In other words, levels of radioactive material in the respective sampling medium equal to the prescribed reporting levels are representative of potential annual doses of 3 mrem, total body or 10 mrem, maximum organ from liquid pathways; or 5 mrem, total body, or 15 mrem, maximum organ for the gaseous effluent pathway. These potential doses are modeled on the maximum individual exposure or consumption rates of NRC Regulatory Guide 1.109. The evaluation of potential doses should be based solely on radioactive material resulting from plant operation. As stated in TS 3.12.1, Action b, the report shall also be submitted if radionuclides other than those in TS Table 3.12.1-2 are detected (and I are a result of plant effluents) and the potential dose exceeds the above annual l design objectives. The method described in ODCM Section 4.2.3 may be used for l assessing the potential dose and required reporting for radionuclides other than those l in TS Table 3.12.1-2. ARMS - INFORMATION SERVICES Date approved: Release authorized by: Change numbers incorporated: LCR 88-032-ODM DSN odd Af - 6, d Rev 2 Date JAN18 E DTC TMPLAN File 1715.02 Recipient M,2 l i

ODCM-6.0 Revision 2

'A . Page 6.0-2 ' ' 6.3 Interlaboratory Comparison Program I A me.jor objective of this program'is to essist laboratories involved in. environmental nV. radiation measurements to develop and maintain both an intralaboratory and an .interlaboratory quality control program. This is accomplished through an extensive

laboratory intercomparison study (" cross-check") program involving, environmental media (milk, water, air, food, soil, and gases) and a variety of radionuclides with activities at or near environmental levels.

Simulated environmental samples, containing known amounts of one or more radionuclides, are prepared and routinely distributed to all laboratories upon request. .These laboratories perform the required analyses and return their data to the Suality Assurance Branch of the Environmental Protection Agency (EPA). The EPA performs statistical analysis and comparison with known values and analytical values obtained from other participating laboratories. A report and control chart are returned to each - participant. The program thus enables each laboratory to document the precision and - accuracy of its radiation data, identify instrument and procedural problems, and compare its: performance with that of other laboratories. The environmental laboratory is required to participate in a Commission-approved Interlaboratory Comparison Program and to submit GA Program Progress Summary Reports to Detroit Edison on a bimonthly or quarterly basis.~ These reports contain summary descriptions and performance data summaries on reference standards,c blank, blind, spiked, and duplicate analyses, as well as the USEPA and other Laboratory Intercommission Programs, as applicable. A summary of the . Interlaboratory Comparison Program results obtained is required to be included in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.7, Participation in an appr'oved Interlaboratory Comparison Program ensures that an independent check on the precision and accuracy of the measurements of radioactive material in environmental sample matrices is performed as part of the OA Program for environmental monitoring in order to demonstrate that the results are valid for the purpose of Section IV.B.2 of Appendix I to 10 CFR Part 50.' END OF SECTION 6.0 i ____--_-_______.--__---_-___-_._l__________-.- -- -- l

ODCM-6.0 Revision 2 Page 6.0-3 ~ f^} TABLE 6.0-1 l: q) l RADIOLOGICAL ENVIRONMENTAL MONITCRiNG PROGRAM l FERMI 2 SAMPLE LOCATIONS AND ASSOCIATED MEDIA KEY 1 -~ - T-TLD Locations (Pg. 6.0-4 to 6.0-6) 2-S. Sediments Locations (Pg. 6.0-7) '3 - F Fish Locations (Pg. 6.0-7) 4-' M Milk Locations (Pg. 6.0-8) 5-DW Drinking Water Locations (Pg. 6.0-9) 6-SW Surface Water Locations (Pg. 6.0-9) 7-GW Ground Water Locations (Pg. 6.0-9) 8-API Air Particulate / lodine Locations (Pg. 6.0-10) 9-FP Food Products Locations (Pg. 6.0-11) ~(~ \\- NOTE: Fermi 1 sampling information is Appendix 1. l l 1 l j i I 4 O

uq er F - 24 n n n n n n n n n n n n n n n n0 o o o o o o o o o o o o o o o

0. e i

i i i i i i i i i i i i i i 6t 6 t t t t t t t t t t t t t t t a a a a a a a a a a a a a a a s a i i i i i i i i i i i i i i i 3i3 t C vg d e d d d d d d d d d d d d d d d t a a a a a a a a a a a a a a a Das e DDP h d R R R R R R R R R R R R R R R e t t t t t t t t t t t t t t t d N e c c c c c c c c c c c c c c c t e e e e e e e e e e e e e e e i i i i i i i i i i i i i a r r r r r r r r r r r r r r r i i i D D D D D D D D D D D D D c D D om e a A e l s o R t a y d P R dn e v b y R a r i b d r o r e e d R u e a s h P c c e R a c e n n c d w p i r n n s ( o e e e n R r d e m f e i k t F F e e R i a f n r F l t V C O r e t a S s e l s t W o n a L c u tu t e o u s n d d C ro e o n a l i t T C o a s n l W C c P w e a et L o e C S i r N S l i o S i h S e e c t n e d o n FL E f l l n a o n v 2 n d P o n S f p o a o o o 1 a n se - g o O m P r B 5 a 2 rg n n a B d d e 7 y ed ai e o t ) n R R g w y fi ek l s S no y n a d e f r rr o e o 2 n i t w o w l l i m, H lb n J P o t eB A a P l P o t i e i S l l r r e p ni t o o B a i m a f e P t t i m t i uv a f T T F m o r Wo mf r 1 a r me n o f 1 r e ao y o r i c mk i d d o y 0 T s - r G w p 0 o 6 F d s oa m r n n t s e a H n w a e CL r e a a r o r r a en ee o e er er e d N E . R D ( e n e D e e M t o l A t n m f T r y y n n n e L B a t ho o r r r d r r er t C t u a d N t r n r c c e) C) a a o n o o dr iuE u Dt B i t A g e a5 h e y d d C i C C i a o r e t c Wt n n n) S v oS oe h h T r i Bs n Ni u u E el E W a M Me dg d e P D e t e n o o N bo N N Sn n r ni n b l l ad u B2 B3 r i eo eT aL a g ao i .m ,t .h t t n rP es ee e e e en e e eC ne nr oh o e t t ee l e tI t I l l o l l l il ia bt b l r s0 rR oL iP iP o oC o o of oo oe ai a o o E1 T P( SA SA P P( P P Po PP p n L w L P t i no M ) m mo l or a t rp l i i i i i i i i i i i i i i n fp e A m m m m m m m m m m m m m m m m e( 1 6 6 6 9 5 2 3 1 1 4 4 9 2 n c 1 o nr r ao 1 l 1 0 0 O 4 1 1 2 6 6 4 4 3 i tt 1 v sc n ia E De R l ac ig l h o at o cun l 8 0 '6 mo 0 o i 0 3 0 0 3 8 i gii 0 0 ozt 0 1 4 1 9 0 4 3 5 3 0 3 1 d l Ac 8 2 3 2 2 9 0 3 2 3 7 / 3 a R o/e 3 / o / 3 / 6 3 / 0 / / 5 W / rrr / E 4 W / W 2 / W 6 E E 3 N W ooi E N / M W N / W N / N N / N N etD N N N N H W W N N N N N N t c ee mS nor 1 2 3 4 5 0 ie tb 1 2 3 4 5 6 7 O 9 1 1 1 1 1 1 am T T T T T T T T T T T T T T T O t u SN jl il!

N e Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q gi uq er F 25 n n n n n n n n n n n n n n n n0 o o o o o o o o o o o o o o o

0. o.

i i i i i i i i i i i i i i i 6i6 t t t t t t t t .t t t t t t t s a a a a a a a a a a a a a a a a i i i i i i i i i i i i i i i Oia Cvg d a id d d d d d d d d d d d d d d i a a a e a a a a a a a a a a a Dea e ORP M d R R R R R R R R R R R R R R R e d M t t t t t t t t t t t t t t t e c c c c c c c c c c c c c c c t e e e e e e e e e e e e e e e a r r r r r r r r r r r r r r r i i i i i i i i i i i i 9 i i iD D D D D D D D D D D D D D c D oss f A f o d o e d n W c n a Rt l w t n i n de a e n S a a a d s l o s b s st f o e o) t i l f o a r n w l P y r n a A o n r kS o o o r D o l i e o gi W P 1 a d) r r p f r D F a o e t n wn( d R y t a ri s 2 n r m L n c d el s e w u x a r t t 5 rt o a t rk l e m xo ud e m s d ox L r d aer o i u uB an F r a n e Ce p r wt o P v a a eu e E a l n e a u Sw k e ee P o f F o k s L H n r 8 r P Pt B o d k P r. lp d o-e a i n f n e ae m R d d t P n ns ue 5 o a e 1 Pd a n n nna u u( A t r i S n t a a erw d) t A A i e S n C sS) o s ri/ E a a e eS e a e a 'y N e 2 n i o u l i t e e ) e ep t( l s t r i t i p e t ei) mA l a t ti n o e i a x r( r o t P a e Scv sr re n) nP i e P l t t i a A 1 srk e ar i y i ot o M r D M m t i d d n imrDr l a P P a P n G 1 M M 5 .t a r a r n a o t l eA or ot P a 3 P c o .l 0 o i c a N M re a 6 F d s k et eP l i d d e g 6 tSi ),' . a e r rr r F nc ic f e f n f V nf r r f S c e' ' m. R D a ea e ine we ot ou o oo e) e o ( ee E W nP n f at p a o o l d d na n op L B a t r r of ra eS el eB et aw R A re r e rrS jg r c f oe o ot t d d or o d en( g e o Cm C E nS id( eu i e it et t l CA C i t o A p t T ) S) sM) o r o rE S y So St Sx t s t l El l u r i e ao o o El r i E EH E ee g w P P D S N N l ndn 5H N( NS 5 n GP T T N a So E o Cde e orRi ( i r r nv g .l P o l .e .h .n t e .c .t .t .ai n e ei e ck r et ec eg eo mc e e ee en en e R i l l b l t r e l n l a l n l r rn l l l p l o l o l m r o oo o seat oi oe oo ou oe o o oS oC oC ol o NPS PD PB PL PH FF P P P( P( P( pet o P PM P 1 t i n o M ) n l mo a or t rp l i t t t t i t l i l i t t t n f p e A m m m m m m m m m m m m m m m m e( 8 8 0 6 7 2 4 . 0 6 3 8 2 1 2 1 n c o nr r ao 4 5 4 5 2 2 1 1 1 1 1 7 0 0 7 i t t 1 1 v sc n ia E De R l ac i g l h lo atcun o 0 3 0 0 0 0 0 lo imo 2 5 0 3 7 3 0 9 8 0 0 7 7 gii 8 0 4 4 5 3 0 9 2 4 5 3 7 3 4 d ozt 2 3 2 3 2 2 8 1 2 2 2 2 2 2 2 a l A c / 7 / 2 / / 6 / 2 / / 2 2 / / W / w w / / W w R o/e W 2 w / w w 1 rrr N / S w S 5 / 5 W 5 S w w S S ooi W w W S W W S 5 S W w S S W w et D t c ee WS nIore 6 7 8 9 0 1 2 3 4 5 6 7 8 9 O t b 1 1 1 1 2 2 2 2 2 2 2 2 2 2 S am T T T T T T T T T 7 T T T T T g t u SN

F u k. q e r F 20 n n n n n n n n n n n n n n n n0 o o o o o o o o o o o o e o o

0. o.

i i i i i i i i i i i i t i i 6i6 t t t t t t t t t t t t t t t - s e a a a a a a a a a a a e a a a Cio l i i i i i i i i i i i l i i i Cvg d a d d d d d d d d d d d d d d d 0ee e i a a a a a a a a a a a a a a a 0RP M d R R R R R R R R R R R R R R R e d M t t t t t t t t t t t t t t t e c c c c c c c c c c c c c c c t e e e e e e e e e e e e e e e a r r r r r r r r r r r r r r r i i i i t i i i 1 i i i i i i i c D D D U D D D 0 D D D D D D D o s ~ s A s 'm s d o s o n r d r s a 'd f R c r s tR a F e a s f s l ( A l n Pr d o s l P l o " e R o i r o i t f 5 r h a ) B t ns n o c a t F a ou e e a C l A l = c tC z N l a P l u o l n o r d r ( a A W L iN i e P D n b . e F d M F l a i e o 1 r G y c d A n e e d P e r w n l P a c lp ve n v a d H e e n me i v a 1 k i t n F t l e rr e R l a e h l F S n De k .n e a t a S l a F o s e do r n r s m e l w A n 2 n i ee e Ri C o) b m l r F d a P o o t cR r t ra i a O A A n W l d p n C nc t ue G d P a t i 1 m t i al oe r Hr A) d d i r p e r e r ra y t s o A f a H e A l 0 o c t n n f r P S o f n t B e h o i l 6 F d s no o ae l oi 4 c A O i S o t e e Ei t rt f d f a r r 9 e B h D F S . R D t S Gn oR oi e ra 5 t O n S n A E m f a I c n eM 6 o e e F P e L B a t oe r e en ee r n r g e g e S g r c r e g e Wc n idn ido dp o rg P n w n w S r A o t iS C ou o t o t O a T o r e) r St Sl S( Cb e r l e l e r B r i eRl o f r E m c e a b a b e e P D l o C wa Ea St N 5 u n n t n e e r y y y y t r d .C .S .H onr r d o a a a a s o i g P ot ,G n sn e e/ el ee e em i C w w w w o C S d dF p i t no l l h l l l c l l o s d d i iA p E E r suC o os oi oa o or e E i i o iM( P PA PW PP P Pf R S M M M MP O N N t i no M ) x mo l a or t rp l i i i i t n f p t m e A m i m m m m m m m e( 7 6 5 5 4 4 6 2 n c 9 3 3 6 2 9 7 1 1 1 1 1 1 1 7 o nr 0 0 0 0 0 0 0 0 r ao 8 0 9 9 7 9 9 1 i t t 1 v sc n ia E De R l ac i g l h o at l cun 0 0 0 0 0 0 mo 4 6 0 9 0 9 7 0 0 0 1 0 1 4 0 o i i 5 9 8 3 0 0 3 8 4 9 3 5 gt l ort 2 2 1 3 0 0 2 2 1 3 3 2 1 1 0 7 d l Ac / / 3 / 6 6 / / / 1 1 1 / 0 4 / e R o/e W W / w 3 3 E w E / / / E 1 8 E rrr S N w N f / N N S E E E S / / N ooi W W N N N N N W S S S S E E E E et D t c ee MS nor ie 1 2 3 4 5 6 7 8 9 0 1 2 3 4 S 6 t b 3 3 3 3 3 3 3 3 3 4 4 4 4 4 A 4 f-am T T T T T T T T T T T T T T T T t u SN l' i'

( ( u q e r F 27 n0

0. e.

0tGs a =io i Cvc d Oaa e t t t t t OnP M n n n n n e e e e e m m m m d a m i i t id s s s e i i h h h t d d d d d a e e e e e e i i i M S S S S S F F F icoss a A e r d a ) n e e a s e e e r a r f k k o s B o oa a h t s n h ,L n f o t d s i f n f ed i f t a f rn o a 0L o oa t c 0 h n t o 5o t sk a f L t f f e l ) o f e P 0 l e t y 0 or h 0 o l 0 C c r 2 r lp et 2 t a e 1 t m nc

f. n e

w n a l e m a B o m o n l r o O w P ) o C S o ei r OS y l r ( t rd p 2 t t o p 2 i n t o p e i o r p a e p h g a n r n n t a e l m 1 a oe u n n ( r r i i S n rh m a o A r i 0 d e c .t e pw m h C e e 6 F s s h g p o C ( g a S e ug r ae C r n D ai a n n d a i kj E d ,i s o n h r L m es h n '"f( B a P c hl i t a c a a r er s ce t n l s M A g w r e t ar a e s i T h uow O eot r r) I D y o s r Ah o Bh e T Tl a P sT 2 se o n 2 B i F ef l m n sr o g t f r i ah a - t r t t n noe m rt e t on e m s i i t r t ri d Co l r e r ooa e sor n E c e e r o Pt W F ENE I D( C F B t i noM ) s mo l a or t rp i i i i i i t n f p e A m m m m i m m m m e( m 9 0 5 4 0 2 1 n c 3 o nr r ao 0 0 1 3 1 9 0 5 i t t v sc n ia E DeR l ac ig l h o atcun 0 0 l o imo 4 0 0 O 8 0 gii 6 7 0 4 O 0 8 l ozt 1 6 7 2 2 3 0 3 d l A c / / 3 / / / 5 2 e R o/e E E / w E E 8 / rrr S N E S N M / w ooi S E N w N N E S etD t c ee mS S T n N or E 1 2 3 4 5 1 2 3 '. e M I H t b i)/ am O S S S S S S F F F t u E I SN S F [II j!' i i i, Il ll!>

u ~ q er F 28 '0 n 0 a. 6t 6 - s e a 3ia l i Cvc d d D=c e e S S O* p I I d k k k e l l l t i i i a M M M i c o ~ ss A d n a s n o i t ac o. 1 e d l R p d m r R a e o S n t b t o s a r 2 t u L o t C p p E w l 1 a i e r r N 5 N O. e c 0 6 F k s 2 7 9 e 1 2 3 i ^ l D 5 2 E %} m u 7 3 L B a m - r ~ A T g r o m) a m r rl F r P ao a F r e F g t m n yn u s i t o s a r oC e o o D( R Y t i no M ) m mo l or a t rp l t n f p i e A m m m m e( 2 7 5 n c o nr r eo 4 5 4 i t t 1 v sc n ia E DeR l ac i h g l o at cun l o imo 0 0 gil 9 t i ort 9 1 t d l A c 6 3 3 a R o/e 2 / / rrr / W W ooi W N N et D t c - ae rS I nor ie 1 2 3 t b am M M M t u SN i i l ii

e r F 29 r r

0. en0 e

e r r t t e e 6t 6 a a t t r r r r s e a w w a a e e e e cie l i w w t t t t Cvc d d g g a a a a Dea e e n i c c d d d d n e e w w w w 0RP M M i k k a a n n n n d i i r r o o o o n n f f u u u u e t r r u u r r r r a D D S S G G G G i co s s t A o e l d r n u g a n t e n ey u c k i ce s A u a k nn n r t r eo o e t n) a Ft i t S I l P S t n o d f a n e t r 1 R r o i c o o k nt e i a an F ) v N f o P L t t l o E P o o f a n PC A t e o t i ( Ps f E d S r e ( e lp eR r e) i . s 2 t m d r e w3 r n s 6 f a ig e) t o4 E uo S n Sn t l a P# ar 8 e ec e o o ao w l e k s P t 2 i NL wr t t e es ar P a d p nf ) n k nu L e nA e G R l 1 a i oo k o a no k uPh r r i rC L ah f a A t d n 0 e r c t w a( h n oe eD R o s a P w C e p er t 6 F e e t k a e w t en P g t E a D Sc nd R nr d nh r A n m W o eR oc t e i we P ae L B a rl l i tS f r o t e Lc r eB l n n( i pf s f c n A g t A a t e 0f oe on f e T o a2 ( r i re 0 f w e oF r w/ o n T r 1 s ow wF e i M U u a s Sd P 1 t st n g 5t' td R g om o0 t 'o u c o f t fR t n ru r0 m r r t n f l i na t 7 r C r pa f 7i 3P l r oe e4 e Et pe 2 o 4A 2 o o MP D1 F DS A n 44P 1 P 4T t i no M ) x mo l a or t rp l i t l l n f p t e A m i m i m m m m m e( m m 4 4 0 0 6 n c 2 o nr 0 3 r ao 1 2 0 1 0 1 1 0 i t t v sc n ia E De R l ac i g l h o at l cun 0 0 lo imo 9 0 7 0 9 gii 0 5 0 C 0 5 8 ozt 9 1 2 4 2 2 2 d l A c 6 0 / / 7 / 2 / a R o/e 1 8 E E 1 w / w rrr / / S N / S w N ooi S N S N S S S W et D t c R ee E R MS T E A T W A S W L G L n N 1 2 C 1 2 W t 2 3 4 E E or I e K A i t b N W w F W w E w w w W D D R S S T G G G G am I t u R U I }, SN D S S o 'lk !l l

uq ~ e r 0' F 21 n0

0. e s

s s s s 6t 6 ee ee ee ee ee s e a nt nt nt nt nt Oiu l i ia i a ia i a ia Cvg d d dl dl dl dl dl ou ou Dea e e ou ou ou l c ic M t c i c t c e ORP n oi ci oi oi ci d it it it it it e dr dr dr dr dr t aa aa aa aa aa a RP RP RP RP RP i coss A f o y y d d b b a n 5 o s a e e R d s c c P s e n n r n l e e e n o o F F t u t P s a t e e u e a 8 t t C P c 1 i i o S S s N u L e n n A e r o o 2 o) 1 e lp e h y 5 t m n st d d 7 n a ei a a i i S d n k n o o o o o au R R P m 7 I i L m l l r d t m r p no l l a n l 1 a oC o o F a i r A ir T T 0 e c et y t 6 F e s l s d d t S t e oe n n o . a D P r a a O e b E e l a i L B a u he y y d r r c cN r r n E A i a( d d i g T o t e n n h) f r r B w u u el o P a ' e o o bo P l i B B r r g av ,t e n - re e e en n I l t k t 4 t 5 l o r r A sa i - i - oC o o EL ST ST P( C t t no M ) m mo la or t rp t i n f p e A im i im <n m m e( m 2 0 n c o nr 4 6 6 r ao 4 1 i t t 1 0 0 1 v sc n ia E DeR l ac i g l h o at cun 0 l o imo 0 0 0 "9 8 gt i 0 4 1 i 9 d ort 0 3 2 Ac 3 / 3 6 1 a l R o/e / W / 2 / rrr E N W / ~W ooi N N N W S et D t c ee MS n 1 2 3 4 5 or ie tb I I I I I \\' am P P P P P t u A A A A A SM I

j( u hl ht hl hl hl q wi wt wi wi wi e ( a ( a ( a ( a ( a r - v v v v v 1 F Ma M' a Ma Ma Ma 21 n0

0. o.

s s s s s t t t t t 8i6s a a c c c c c i u u u u u 3ie i 1Cvc d d d d d d d 5 o o 0ea e e o o t B r r r r r 0RP M S . P P P P P d e d d d d d t o o o o o a o o o o o t F F F F F cesa A dna s no i t y a a c w o hg L i e H lp e m k a S n ip o n 2 t r ) t u l s t p T o 1 t i r m c r r i t 0 o d o u c 0 n s 5 6 F o C e 9 '. r D u ( E P m a L a e n I B d m h a r A e r c m g o T o a n t o r F r F a s b t P r o a e t B P L G g n 1 2 6 0 n a i l 4 6 0 0 r o 4 2 8 2 o R 6 4 7 8 t i noM ) m mo l or a t rp n f p e A m e( n c t o nr t t r ao l m i t t m m m t 6 v sc m i a 0 4 1 n 1 1 4 E De 1 2 R 4 l ac l h g l o at cun 0 lo i mo 0 0 0 9 gt t 2 1 0 8 i d ort 2 1 2 2 a l Ac / / / / / R o/e E F W E w rrr N N N N N ooi N M w N W etD t c-ee MS s _W n or ie t b 1 4 5 6 3 b as P u t u F P P P P SM F F F F !i i! il!

gs r g e P / s '2 u 21 s n n0 e

0. e C

6i6 - s a e 0t o, s i C vg d U 0ee e 0RP M d n d a e L t a t i n c e c c o e s r A t d s n o a m s e n h o t i t n ac i o s L ec e n l e p d ma i s S n e o r 2 s m x x i t u u u u t p t 1 s a a a s m n e e e e i r r e P p P s 0 e C o c 6 F s l e x n n 'w}/ e u u u c D e u t E s A A A m u e r a t L B a o e e n r h h h m o e e e h A d s c c u t t t t t g n T e n n t o g l n n n g o a k a a s r n l i i i n s r L P a r l o e a o o o o o a L B B P L L T P p P L d g n 0 1 0 1 7 0 1 1 4 0 4 e i 6 4 0 0 7 0 0 8 9 2 3 i. r 7 4 2 7 5 2 0 9 1 8 8 f e o 6 6 6 5 6 6 6 4 5 5 4 il tb t na t ec n di o il c ) e p n np mo ea l a or e t rp be n f p r e A t l t t t t l l t t l ea m e( m m m m m m m m m m m v n c 1 1 ~1 at 9 r ao 4 2 7 8 2 2 o nr 1 ha i t t 1 1 1 1 1 0 0 1 1 1 0 h st v sc n n ia or E De io R t t l ac a ce c oS i l h g l o at l cun w w W w ea lo imo E N W N S w S sc N N N N W W W S 5 ei gt i d ort N N / / / / / / / / / hg i Ac / / 0 0 0 0 0 0 0 To a l R o/e 0 0 5 7 3 8 4 1 7 9 l rrr 6 7 6 3 1 0 7 2 2 9 7 r

o ooi 3

1 3 3 3 3 2 2 2 1 1 Ee etD Tt t c Oe ee NM e S t ~~. l'

jl 1 il 4j g<J. y .^ c f[\\ n 3 e 21 u A A 3 A A A A q N 5 S S S S n0 .e

0. o r

6i6. F s . Min C vg . Doz OMP. e t d e M de t a W W W w a W w a i S S S S d R R d ic e o M ss A er d u n n k e a e t w e 4 c 'a S r u n k C t r i. a n n r t o n d s t t a a 'J a w e t. c. e y S k ne o g w t a aw L a H s a - t l A r ) t d n P e o n l t lea e e eR i e e s d t o g r ns p s a r m u i m i a o Sn e er o t me a l D 's l n . L a tf i a o S o f s n m N w af ee 1 oe a u .f l c o e rJ l e .c ' c p n k T 2 a u HA w f o. a n W L ro r f o o i 0 e r ec l t e d gi f ak w t e 6 F e n dl r E t c a al t ib e So R ws i E a f(% m w h e u v t t I L e rt 1 y a e bR o t t2 t i l e B e t e r n b n ( A n g o w e i a/ i i T e o. r Cl L o i r t n l d e w1 n e U tB P p i eR h t e. i r i l b w e of g r e k i o= i t n c r ae a m ru m ro n i s o ee e r na r t e r .e h rr r e oe e e o D S AC A F MP F DN. C t r i o n t o ) c M a m e l o R a mr t op 2 n rp i e f a i m m ( i l i i i i mn e m m m m m m r o cr 5 e r. no 5 9 4 4 2 4 F 9 t at 0 0 1 0 2 m w t c 0 1 n sa o E ie r 'O R f l a n c e t k s h a l t t o au l 0 o cm e '8 i ii 0 9 9 r d gzn 0 6 0 5 0 5 e 9 1 2 a oAo 9 5 0 1 6 / / w l / i 1 / / / R 1 E E rrt / W E E s ooc 5 N N 5 / S N e et e 5 S S N c r t cr n eei r e a mSD e n t t t o a s a o k r W l w g e e O a e t3 y n e L r rl a# t f 1 f t or c C oe w i oe oi i e a h t n C o i o tb f t n cn e yr m yr e t am r u a aa k e t n r tt t u u o w eh a a io e ie o ( SN S S S Rt L R CM F CD N ,!?Iii rIfIIli l

e .o r 6t 6 F - s - Jis C vg DeE ORp e l d b e S I t t t d n n n e e e e t ia i im im m a d d d d tc e e e .e e S S S o R m a A n d k a na e w e S s r n k C. d o n n i a - n a t t a a w c e s y o g a L a s H 6 r t e o e ea t e ie lp s m n r m ia a l l D S i a s o n f s a oe 1 l c c 2 i e .c m u w N a s r f n 0 e .t ec t n F d f gi 6 e n r dl m i e ib E i m d h v ru L e o bp a e n b I j B r A S g o e w T o t e r o. r t n e l t P p i h err i l w b g r e k n c r a ae i s o e ee r e h r rr o D S A AC t i ne 8 1 m o l a mr t op i i i n rp e f a m m m m ( n e 5 4 9, o cr r no 0 0 1 i at v t c n sa i e E DR l ac ig h o l tau lo cm 0 i i i d gzn 0 6 a oA o 0 5 l /t 9 0 / R rrt 8 0 W ooc / / / et e S N N t cr eei eSD t n rl or n oe e h o t n k t tb t o cn ne am ug aa ee t u oa eh = r ]v SN SL nC sC [\\

Nucidar Pr:ductirn - Fsrmi 2 CDCM-6.0 Offsita D:se Calculation Manual Revisi:n 2 - Pag 3 6.0-15 z ' O i 5 l l = 5/ 3 ar s2 M W - 5 E M~ E = 4 zc G t l i _ i g r. 0 /l-f /3 i. t g - ', a Z >f \\ s Q ~ 2 g ' b ~e f . g\\ z-- 9 t 8 'm .a. ~ ~3 +,, y: V A: J (') 1 m m P 4 's s ss E l e n J,'e f, E 9 T j 0;s sm% Eil8[ rg; ' E3 ; !E II o l u! si o e s l i a-E E- ~ 0 8 si l=e x M > l 9 2= ~.. -.... e-=

Nuclear Prsducticn - F;rmi 2 ODCM-6.0 l Offsits Das? Cciculaticn Manut;l R3 vision 2 P;ga 6.0-16

O

!i E 'p _ p -..... ~ + i, uj!$,juM /- l !6-: l l/ I b t y N 3I l / II ~ g i z p, alf .J3 i. 2 F t 2 ,5 'i : a %^. wp -E .t - E /

/

\\ i ,N Rl g-i n ,-5 a l JI g s e e .u Pb i h~ ?3 s ~ ~ ;.; ( ~i.s ~ O \\m ~s z 2 d '8 Jtts f y g +' g W m Z m M "JLI5 m, m t' "ILL5 2 m ..o.. H$iifit i 31Eig{g

  • i E3

'I" sEEE l ~ x l E

Ek:

15lg;a l li! EE RE A 8 5 - :~

  • ! gy 5 -

O di 5[i e E! i !a o

Nucl. ar Pr:ductirn - Fermi 2 CDCM-6.0 2 . Offsite D:s3 Calculation Manual R:vielen 2 Page 6.0-17 O e V s --I 1 I m A =~= t g c / A f I i' t u m ac. g~ :> -~ R . :/ / / gn % gl 1,i = i

/

? i E 2 m 2 m e 4's j [ L 1 y '.s ,~ C s n '/ g "- \\ o -s' ,a- .~..L V-I:s i i z i m ,W'04 ,y -- i p 5 as a.. =; / ~ ~ ~ _~ ~ n / ? 7 O m e x ~ iL($ rI z r rer. _ - y "Z l li.,, i 'Est 9 lL t e i l' E E "l ll c=o il - - i m ll r;

i m;t m

z ,l s :zY-,lli V l >o >z i..; ,l M z m un a m F il ll.:e,Es ll m ji e-i i :: l't i, i li i' C i re s

i.. ::_~.g i i

N J

!sse~s

= r; Ep0 g,) X _se. - gg m I E ~ = a =, R" E E R l 5 s-z - e Bf o P f ~t- ? E, O 5* !a! 1 1: I E_______-___ a

g, U-Nuclhar Prcducti:n - Farmi 2 C DCM-6.0 Offsite Dase Criculati:n Manual R2visisn 2 E I Page 6.0-18 l b, I ~,, I [ [ 'l ). m .s v u 'h 2u / l s i. = I ~ Q( d / l l t / \\ \\ g /1 a t[*[ es# a i e 0 .0 7 k C / O / c s N"- ~ - + % 3 p; f, 4 3pf~ ppa ~# =- /- ./ \\, > 4Nn 5 J g /- s~ 8, l E ,N,, L' = ,/ l m r s j / f s, l l 1 N/ (J / \\ ~

r. s

/ ,? l i I e / [ I g f C i m. / I \\ l m I i l seos>>o. $ r

,sas s u%

' " ?' A g !fg" Etec c 3["[ESz a,, r t,

  • 5K h k"g rn m

{ 5 q t-i 1 a.: o i EE E =,g E, j 'E l o ',A h' l ) y., g r

  • I 5U i

8 g s O

Page 6.0-19 l R;visian 2 Offsit] D$ss Calculati n Minuti . r. M W 6.- 5 8 E i i Oi n ? l G,/ 5 s i g t e E 4, 2 t v s' i n* a { '.J 4 I _ 1 m N w N e. e a-x/ 1 1 l' i j E g _>i vi .e, E i .m t g 2 \\ h / 1p \\ p s y; ) / s \\ I a . -. s i s x )! y~ f a

m

(. " r ff \\1 [ s immi-) \\ i r t. L. \\ / r / ~ w a w z l e M m \\ 6, \\ A S V.{ g F g-\\ j f -= v F. / f 4 i i m M n i A m k-m I k m \\ \\ j E' -= 1 -E L oe I q ~ ~, 5 i -

  • m E

"Om 'R k.m" 2' o g ~ O f O i A _.i

l Nucl:ar PrEducti::n - Farmi 2 ODCM-APP-A j ,l* Offsit2 Dase_ Calculation Manual Rivisinn 2 Page A-1 l f.s APPF?! DIX A: EVALUATION OF GENERIC CONCENTRATION LIMIT FOR LIQUID EFFLUENTS l In accordance with the requirements of TS 3.3.7.11, the Radioactive Liquid Effluent Monitors I shall be operable with alarm setpoints established to ensure that the concentration of l radioactive raaterial at the discharge point does not exceed the MPC value of 10 CFR 20, Appendix B, Table 11, Column 2. The determination of allowable radionuclides concentration l and corresponding alarm setpoint is a function of the Individual radionuclides distribution and corresponding MPC values, in order to limit the need for routinely having to reestablish the alarm setpoints as a 1 function of changing radionuclides distributions, a generic alarm setpoint can be established. This generic setpoint is based on an evaluation of the anticipated radionuclides distribution in liquid effluents presented in Fermi 2 FSAR, Section 11.2, Table 11.2-9. Based on this distribution, the Concentration Limit CL (or effective MPC) is calculated by the equation: Ci Ci CL = MPCi (A-1) Where: concentration limit (or effective MPC for the mixture of radionuclides so as not /'~ T CL = C/ to exceed the unra stricted area MPC of 10 CFR 20 (uCi/ml) concentration of radionuclides i in the mixture (uCi/ml) C) = MPCi = the 10 CFR 20, Appendix B, Table ll, Column 2 MPC value for radionuclides i (uCi/ml) Using the above equation and the radionuclides distribution in the Fermi 2 FSAR Table 11.2-9, the value of CL is calculated to be 3.0 E - 06 uCi/ml. Table A-1 presents the data for this calculation. END OF APPENDIX A ARMS - INFORMATION SERVICES Date approved: Release authorized by: Change numbers incorporated: LCR 88-032-ODM DSN 6/M h1 -/4 PD-A Rev 2 Date .l AN 1 81QRQ gU DTC TMPLAN File 1715.02 Recipient 36,2

' ODCM-APP-A Revision 2 Page A-2 . c.. -(' TABLE A-1 Concentration Limit for Liquid Effluents from Fermi 2 Fstimated Annual Nuclide MPC - Release

  • Ratio (uCi/ml)
(Cl)

(Ci/MPCI) Na-24 3E-05 0.0044 1.5E+02 i Mn-56 1E-04 0.0097 9.7E+01 Cu 2E-04 0.013 6.5E +01 Np-239 1E-04 0.0036 3.6E+01 i Y-92 6E-05 0.0027 4.5E+ 01 l-131 3E-07 0.0022 7.3E+01 1-132 8E-06 0.011 1.4E+03 1-133 1E-06 0.025 2.5E+04 l-134 2E-05 0.0071 3.6E+02 1-135 4E-06 0.018 4.5 E + 03 TOTAL 0.097 3.2E+04 i [C1

3.0E-06 uCi/mi CL

{(C /MPCj) J m Radionuclides distribution adapted from Fermi 2 UFSAR, Section 11.2, Table 11.2-9. Radi6nuclides contributing less than 0.1% to the determination of CL (or the effective MPC) have been excluded END U

E 1 Nucl:ar Prsduction - Fsrmi 2 ODCM-APP-B I ~ Offsits Dass Calculation Manual R$ vision 2 Page B-) 'N APPENDIX B: TECHNlr.SL BASIS FOR EFFECTIVE DOSE FACTORS LIQUID EFFLUENT RELEASES Overview l To simplify the dose calculation process, it is conservative to identify a controlling, l dose-significant radionuclides and to use its oose conversion factor in the dose calculations. I Using the total release (i.e., the cumulative activity of all radionuclides) and this single dose conversion factor as inputs to a one-step dose assessment yields a dose calculation method which is both simple and conservative. Fermi 2 does not have a large data base of previous releases of radioactive liquid effluents upon which to base the determination of the controlling, dose-significant isotope. The Fermi 2 FSAR, Table 11.2-9 presents the estimated annual releases from liquid effluents as calculated using the NRC GALE computer code, (NUREG-0016, Revision 1). Site specific dose conversion factors (Ajo) from ODCM Table 2.0-1 were multiplied by the FSAR estimated annual release quantity to determine a relative dose significance. Table B-1 presents the results of this relative dose evaluation. t Because Cs-134 is the controlling nuclide for the total body dose and has the highest dose conversion factor among the nuclides evaluated for that dose, the use of its dose i conversion factor in the simplified dose assessment method for evaluating the total body dose is demonstrably conservative. Selection of the appropriate dose conversion factor for the maximum organ dose is not so 9 straightforward. Inspection of Table B-1 shows that the thyroid dose is th controlling (V organ dose, and it follows that the lodines are tt e controlling radionuclides However, this identification is based upon the FSAR estimate of annual releases. To be adequately conservative when using this sirr plified method, it is appropriate to select the largest dose conversion factor from among all the radionuclides evaluated to assure that offsite doses are not mistakenly underestimate'J. For the FSAR Table 11.2-9 isotooes evaluated, there are a few radionuclides with a higher dose conversion factor than 1-153 for the thyroid dose. Further inspection of Table B-1 shows that P-32 is the major contributor to the dose to the bone, which is the second highest organ dose. P-32 has a high dose conversion factor (1.39 E + 06 mrem /hr per uCi/ml) and would provide additional conservatism if used as the simplifying dose conversion factor. However, analysis for P-32 is not required. P-32 decays by beta j emission without any accompanying characteristic gammas. l Use of the P-32 dose conversion factor is therefore inappropriate. The next largest dose conversion factor of the evaluated radionuclides is Cs-134 for the dose to the liver at j 7.09 E + 05 mrem /hr per uCi/ml. (The dose to the liver is the third largest organ dose.) As Cs-134 is easily measured with gamma spectroscopy, has a long half-life, and a high organ i dose conversion factor, it is used as the controlling radionuclides for the simplified maximum organ dose assessment. i ARMS - INFORMATION SERVICES Date approved: Release authorized by: O Change numbers incorporated: LCR 88-032-ODM JAN 1 U $89 DSN O Dd.M -Kpp ~/b Rev 2 Date DTC TMPLAN File 1715.02 Recipient ) 1

ODCM-APP-B l-Revision 2 . Pag 3 B ' i Simplified Method ,,.,4-f' N - For evaluation compliance with the dose limits of Technical Specification 3.11.1.2, the-i\\j. .following simplified equations may be used: Total Body Dtb = 1.67 E - 02

  • VOL
  • A(Cs-134,tb)

Ci DF

  • Z (B-1) where:

Dtb dose to the total body (mrem) = VOL volume of liquid effluents released (gal) = average circulating water reservoir decant line flow (gal / min)' . DF _ = Z ' 5, near field dilution factor (derived from Regulatory Guide 1,109) = A(Cs-134,tb) 5.80 E + 05 mrem /hr per UCi/ml, the total body ingestion dose factor = for Cs-134 C) = total concentration of all radionuclides (uCl/ml) 1.67 E 1 hr/60 min = i -[ Substituting the value for the Cs-134 total body dose conynrsion factor, the equation U simplifies to: Dtb = 9.69 E + 03

  • VOL Ci DF
  • Z (B-2)

Maximum Organ Dmax = 1.67 E - 02

  • VOL A(Cs-134, liver)
  • Ci DF
  • Z (B-3) where:

Dmax maximum organ dose (mrem) = A(Cs-134, liver) 7.09 E + 05 mrem /hr per uCi/ml, the liver ingestion dose factor = for Cs-134 -) I 1 - f3 u.) =_ _ - _ _ _ _ _ _ _ _

[:. ;. i; ~ ODCM-APP-B - }: Revision 2 -Paga B-3' . Substituting the value for the Cs-134 liver dose conversion factor, the equation simplifies to: Dmax = - 1.18E + 04

  • VOL Ci (B-4) l Tritium'is not included in the limited analysis dose assessment for liquid releases, because the potential dose resulting from normal reactor releases is relatively negligible.

Furthermore, the release of tritium is a function of operating history and is essentially unrelated to radwaste system operations. O 10

L' , - 6 C N @ M N O N @ @ - 0) N T N 9 - @ c o @ tD N

4. O. N.

. @. N M - M. O - O. @ CD @ @ CD. O @ N. 4 ms y /N s J - M @ @ M N # N N f9 -T CD N O O [ \\ -N l .e p? O C 3 iCOOOOC 0 0 0 0 0 0 0 0 019 N @ o 0 m e C N 3 N. O. . O L, M J N O@o Os ON C O*N m i O m (L C 4 > - O O M N C O C, O to @ ~ O M O @ O O O O CD e CL.O g) N. NM@ s O O. q. g C M. @ T. @. T. N. W. CD. T. U> @

==A D e e T 4-0NN-CD G 2*W (9 f%. - C L X e O@ W O 3 CL C-3 0W D N00000000-9@ tD @ c O O O O O O .D Um N. O. c M. M. N. O O L 9 *. 6 CD - 0 0) m N C O88 E O Ow U cOOMMN-DONem@@@@he-O N m C C D 8 ". ". 0 0 0 0 0 0 0 " O ' " ". 9. ". # 0 0 9 0 D gg U Q M -O@ e L mN- ~ 9 U C. 3 L NM-D-CDOONM-ONODN0-0 M O y 9 N @ v O. O N = - M N. N O. cD O. C O. ~ ) D M M y J @ON m g %NN E d Oi N O O v c M O O M @ T - 4 f9 N f's @ N O f9 O @ M. @ N - C O.O - O @ - N.O.d.f9.C.O C . CD D D s O N. o O g G .T. U, N N N O N N 4 N e N @ O @ O - N - O to O ~ e.= D g J c-MO-WCm@Oe ode--=OMO M d e' N' T' N' O' M' N' N @ v'* 'N'- N @ - -M m l ,O i g m. - (9 - N I Q N /~N g w z f a 3 u \\ C w q N0000000000000NT@ DOC N O C C O.".'." N C C. 3 NT@ OV g J N e O y N. C U g 5 > N O N 0 4 C 0 0 0 - 4 v M @ tD O M T 0 0 N 0-A, U W C MM4 4 0 4 0 0 0. . c. @. O. m. M,W C w t - - c - c - c) O c) - N "O" O C "C b O 3- " C d 4 G Me -L M gr M3 T NOOOOOOOO@N@@MOOOOOO O U C 0 4. N @ M T. N b G g o d 2 6 O d) M W O +EI e O O 0 N@ O O O O I N v N 6 N E, 6C $4 3 w e O

  • =

h N O @ N N M N O O f9 0 O (D @ - @ 01 C - O CD E6 V CD 0) - g o ... O. @. O O O O O M - CD (9 N O. @. O O. O OO S g "E CD -m M CD@N-0) s > @MM m C O E N CN O N@mvMOOOOg-mmmW@vmMO + L 6 C. 4. O e.. O @ N. cD @. N. N O. O. O O

  • O I

y ps G-CD N OCNN O e NWO e J e N L m

  • O N O O O O O @ O O tD f7 O @ N v W N @ W D f9 mV W

(C. N. O.N M C. O.O 9. - @ #9.N.N.O.O O O e C Ue O

    • N N

O (9 N - CD 0 M O-T e N D* i e e V W O-00-0000@O000N4-09O C=0 m 4 - N O *- @ O N @ O N O O O - *v - O - @ UW

  • Om W

4 O @ to O - N N - O N - O ED O O O 9 O to 3L 3@ 8Ce 000-0000000- N-OOOOOO C L 00000C00000000000000 O-C- 3 -g

  • (

C U C* W E eD W 3 *. (N 5 G E \\ ) D <@k@ %/ 9 @TO-N M-NMOMMMMNM J N N O @ @ @ @ N M - f9 f9 M M * * - - M N ( = U e en i i e i @@ i----# 1 e 1 - I N 3 miC3Cw L i i ei i e I mmmmI Q. O z Z CL 2 U N O A > > b w w

  • M UUUU3Z N

.______________________w

Nucl:ar Praducticn - Fcrmi 2 ODCM-APP-C Offsit3 Dsso Calculation Manual Revisien 2 Page C-1 APPENDIX C: TECHNICAL BASIS FOR EFFECTIVE DOSE FACTORS GASEOUS RADWASTE EFFLUENTS Overview Dose evaluations for releases of gaseous radioactive effluents may be simplified by the use of an effective dose far,toi it.tner than radionuclides-specific dose factors. These effective dose factors are applied to the tote.' radioactive release to approximate the various doses in the environment; i.e., the total body, pmma-air, and beta-air doses. The effective dose factors are based on the typical radionuc!ide distribution in the gaseous radioactive effluents. This approach re..uces the analyses to a single multiplication (Keff, Meff, or Neff) times the quantity of radioactive gases released, rather than individual analyses for each radionuclides and summing the results to determine the dose. Yet the approach provides a reasonable estimate of the actual doses since under normal operating conditions there is relatively little variation in the radionuclides distribution. Determination of Effective Dose Factors i:ffective dose transfer factors are calculated by the following equations: (K*f) Keff = i i (C-1) where: Keff = the effective total body dose factor due to gamma emissions from all noble iO gases released (mrem /yr per uCi/m, effective) Kj = the total body dose factor due to gamma epissions from each noble gas radionuclides i released (mrem /yr per uCi/m, from Table 3-3) fi = the fractional abundance of noble gas radionuclides i relative to the total noble gas activity ((L + 1.1 Mj)

  • f )

(L + 1.1 M)ef f = i i (C-2) where: (L + 1.1 M)eff the effective skin dose factor due to beta and gagma emissions = from all noble gases released (mrem /yr per uCi/m, effective) the skin dose factor due to beta and gamma emissions frory (Lj + 1.1 Mj) = each noble gas radionuclides i released (mrem /yr per UCi/m, from Table 3-3) ARMS - INFORMATION SERVICES Date approved: Release authorized by: Change numbers incorporated: LCR 88-032-ODM N 10 DSN 6d&A1 - A)M-d Rev 2 Date DTC TMPLAN File 1715.02 Recipient ME

ODCM-APP-C Revision 2. Paga C-2 Megg = (M

  • f )

i i r_ / s.1-(C-3) X_/ where: Meft = the effective air dose factorg'ue to gamma emissions from all noble gases released (mrad /yr per uCi/m, effective) Mi = the air dose factor due to ggmma emissions from each noble gas rausonuclide i released (mrad /yr per uCi/m, from Table 3-3) (N

  • f )

Neff= i i (C-4) where: Neff = the effective air dose factorgue to beta emissions from all noble gases released (mrad /yr per uCl/m, effective) Ni = the air dose factor due to bgta emissions from each noble gas radionuclides i released (mrad /yr per uCi/m, from Table 3-3) Normally, past radioactive effluent data would be used for the determination of the effective dose factors. Fermi 2, however, does not have a sufficient operating history at or near full power to provide a reasonable data base for determination of the typical radionuclides distribution in gaseous effluents. Therefore, the FSAR estimate of radionuclides O concentrations at the site boundary is used as the initial typical distribution. The effective h' dose factors derived from this distribution are presented in Table C-1. Application To provide an additional degree of conservatism, a factor of 2.0 is introduced into the dose calculation when the effective dose factor is used. This conservatism provides additional assurance that the evaluation of doses by the use of a single effective dose factor will not significantly underestimate any actual doses in the environment. For evaluating compliance with the dose limits of Technical Specification 3.11.2.2 the following simplified equations may be used: 2.0

  • 3.17 E - 08
  • X/O
  • Meff
  • Qi D

= 7 (C-5) and 2.0

  • 3.17 E - 08
  • X/O
  • Neff
  • Oi D

= L where: air dose due to gamma emissions for the cumulative release of all D = 7 noble gases (mrad) l D air dose due to beta emissions for the cumulative release of all noble = h gases (mrad) i

ODCM-APP-C Revision 2 Page C-3 atmospheric dispersion to the controlling site boundary (sec/m ) { 3 X/Q = s f 3 4 kJ Meff 3 2.7 E + 03, effective gamma-air dose factor (mrad /yr per uCi/m ) = 3 Neff 2.3 E + 03, effective beta-air dose factor (mrad /yr per uCi/m ) = Q; cumulative release for all noble gas radionuclides (uCi) = 3.17 E - 08 conversion factor (yr/sec) = 2.0 conservatism factor to account for the variability in the effluent data l = Combining the constants, the dose calculation equations simplify to: D = 1.71 E - 04

  • X/O
  • Qi y

(C-7) and D = 1.46 E - 04

  • X/O
  • Qi (C-8)

The effective dose factors are used for the purpose of facilitating the timely assessment of radioactive effluent releases, particularly during periods when the computer or ODCM software may be unavailable to perforrn a detailed dose assessment. /l N-) ,-) iw.,

a Revision 2 Page C-4 TABLE C-1 f'i - Effective Dose Factors - Noble Gas Effluents C Total Body Skin Dose Gamma Air Beta Air Dose Factor Factor Dnse Factor Dose Factor 'isstope Fractional

  • Kegg (L+ 1.1Megg)

Megg Negg Abundance (mrem /gr per (mrem /gr per (mrad /yg)per (mrad /yg)per uCi/m ) uCi/m ) uCi/m uCi/m Kr-85m 0.10 1.2 E+ 02 2.8E+02 1.2E+02 2.0E + 02 l Kr-85 0.01 1.6 E-01 1.4 E + 01 1.7E-01 2.0E + 01 Kr-88 0.04 5.9E+02 7.6E+ 02 6.1 E +02 1.2 E + 02 l Kr-89 0.06 1.0E+ 03 1.7E+03 1.0E+03 6 4E+02 Xe-133 0.67 2.0E+02 4.7 E + 02 2.4E + 02 7.0E +02 ' Xa-135 0.02 3.6 E +01 7.9E+ 01 3.8E +01 4.9 E + 01 .. Xa-137 0.02 2.8E+01 2.8E + 02 3.0E+ 01 2.5E + 02 Xs-138 0.07 6.2 E+ 02 1.0E + 03 6.4E+02 3.3 E + 02 TOTAL 2.6E+03 4.6 E + 03 2.7E+03 2.3 E + 03 l Radionuclides distribution as presented in ODCM Table 3-1, derived from Fermi 2 UFSAR, Section 11.3, Table 11.3-5. Kr-90. Kr-91, Xe-139, and Xe-140 have been excluded from the UFSAR distribution because of short half-lives and subsequent decay during environmental transport. Kr-87. Xe-131m. and Xe-133m have been excluded because of their negligible ( - fractional abundance. END 4 . 'w) .___________ ______________ - ___ - _____________- _ _ _ _ _ _ __ _ - -}}