ML20236N612

From kanterella
Jump to navigation Jump to search
Informs That NMSS May Have Workable Solution Plan Re VSC-24 UT Insp.Will Keep People Informed of Schedule & Progress
ML20236N612
Person / Time
Site: 07201007
Issue date: 04/24/1998
From: Leeds E
NRC OFFICE OF NUCLEAR MATERIAL SAFETY & SAFEGUARDS (NMSS)
To: Grant G, Jorgensen B, Spitzberg D
NRC, NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION III)
Shared Package
ML20236K829 List:
References
FOIA-98-188 NUDOCS 9807150197
Download: ML20236N612 (5)


Text

From Eric Leeds To CHD1.CHPl.j/?>n)JJ GEG, CHD1.CHP2.BLJ, ARDI.ARPl.DBS, ARD1....d i Date: 4/24/98 9:19am / gg,

Subject:

VSC-24 UT Inspection Update -Forwarded -Forwarded FYI. It looks like we have a workable solution path. We'll keep your people informed of our schedule and progress.

Eric

[

t CC: CHDI.CHP2.RBL, ARDI.ARP1.JVE, WND2.WNP3.PMR, TWD2....

Y p $ 71 g 7 980630

,DUMS9s-1g8 .

PDR

. F.

MEMORANDUM TO: Allen Howe, Welding Review Team Leader Spent Fuel Technical Review Section, SFPO FROM: Ronald Parkhill, Mechanical Engineer Spent Fuel Technical Review Section, SFPO Kenneth Battige, Materials Engineer Spent Fuel Technical Review Section, SFPO

SUBJECT:

FLAWTECH TRIP REPORT On January 22,1998, Messrs. Parkhill and Battige visited the FlawTech Division of PH Diveuified, Inc., in Harrisburg, NC, to become more familiar with the methods for inserting flaws into metallic component specimens. FlawTech is currently under contract to Consumers Energy to implant flaws into the Palisades VSC-24 dry fuel storage mockup. Once the flaws are

- implanted, the mockup is to be shipped to ANO, where it will be used to evaluate the feasibility of performing UT on the structural lid closure weld. As a result of this visit, the following information was obtained:

a)L FlawInsenion Process-Flaws are inserted into the desired location by excavating the specimen at the appropriate location, welding a lever arm to the area of the desired flaw, and then using fatigue to break the base metal at the end of the lever arm. Either mechanical or thermal fatigue can be used to cause the breakage. Once the metal is removed from the end of the lever arm, this results in a small piece ofmetal that fits exactly into its corresponding area of the component specimen. The size of the crack is controlled by machining the small piece of metal to the desired shape, reinserting it in its matching component location, and then seal welding its penmeter to the component.

Once the seal welding of the flaw is completed, the excavated volume is welded to restore the component specimen to its original configuration. A UT examination of the excavated volume is performed to ensure that no other imperfections have been added during the welding process.

Other types of flaws, such as slag inclusions and lack of fusion, may also be introduced.

b) Control offlaw size and location-As described above the flaw size is controlled by measurement and machining of the small piece of fractured material prior to reattaching it to the component specimen via seal welding. The

, accuracy of this process was demonstrated via destructive examination ofinserted flaws and documented in a report prepared for the Navy.

cc: F. Sturz, E. Hackett, G. Hornseth, C. Interrante, T. Kobetz, H. Lee, M. Vassilaros, D. Reid l

h l

l f

i c) Records and Documentation - 1 Drawings are prepared by FlawTech working in concen with their client to determine the size, location, and type of flaw to be inserted. These drawings control the fabrication process.

Pictures are taken to provide a record of the flaw insertion process. A documentation package is provided to each client that includes the drawings and a pictorial record of the flaw insertion process. FlawTech also maintains a copy of the documentation package for their own records.

d) Shipping Considerations-Due to the massiveness of the component specimens, FlawTech generally puts them on a flat bed truck, covered with a tarp. Since the flaws are well within the component specimen protected by I the weld material of the excavated volume, no shipping damage is anticipated. For the Palisades mockup, Consumers Energy is planning to do a receipt inspection of the mockup at FlawTech's shop prior to shipping it to ANO.

e) Impact on UT inspectability-At the time of the shop visit many of the flaws had already been inserted and FlawTech provided a demonstration of UT's ability to detect some of the flaws. Using a small ponable, battery powered UT equipment with a 5-MHZ straight beam transducer, flaws # 13,1,2,3 & 4 were readily identifiable when manually examined from the side of the mockup. It took only a couple of minutes to set up the UT equipment and perform an examination for these flaws. The EPRI representative stated that thin transducers (i.e., less than a 1/16th of an inch) were available for tight spaces like the area between the inside wall of the transport cask and the outside diameter of the canister. The EPRI representative also stated that an automated UT process could produce more accurate and timely examinations than a manual UT process.

f) Difference between the Palisades mockup flaws and those that would be produced for other calibration standards (ASME Section XI Appendices VII or VIII)-

FlawTech stated there was no difference between the flaws implanted in the VSC-24 mockup and Section XI, Appendix VII or VIII, qualification flaws.

g) Construction u ider FlawTech or Utility QA program-FlawTech implanted f.aws on the Palisades mockup under the utility's QA program since Consumer's Energy has visited FlawTech and performed audits. As mentioned above, CE will perform a receipt inspection of the finished product prior to shipping to ANO. FlawTech has its own QA program modeled after 10 CFR 50 Appendix B developed with the assistance of a l utility.

I

h) Proprietary aspects--

FlawTech considered the physical details of the process by which they break the flaw specimen proprietary and we did not see this operation as part of our visit.

I) EPRI Involvement-As identified in the Persons Contacted list, two representatives from EPRI's NDE center were present during our visit. They stated EPRI is assisting the SNC owners' group in the preparation of UT procedures for examination of the VSC-24 structural lid welds.

PERSONS CONTACTED:

- George Pherigo, President FlawTech Aaron Pherigo, Executive VP FlawTech and QA Manager Kim Kietzman, EPRI NDE Center Robert Zeh Bouck, EPRI NDE Center l

1 I

I

February 3,1998 Note To: Eric J. Leeds, Chief, Spent Fuel Licencing Section, SFPO, NMSS Fritz C. Sturz, Chief, Spent Fuel Technical Review Section, SFPO, NMSS From: Timothy J. Kobetz, Project Manager, SFLS, SFPO, NMSS Allen G. Howe, Nuclear Engineer, SFTR, SFPO, NMSS

SUBJECT:

MINUTES FROM THE JANUARY 28,1998 WELD TEAM MEETING The Weld Team met to review corrective actions associated with VSC-24 weld issues. Attendees were K. Battige, E. Hackett, G. Homseth, A. Howe, C. Interrante, D. Jackson, T. Kobetz, H. Lee, S.

Malik, R. Parkhill, and F. Sturz.

1. T. Kobetz discussed a proposed letter to SNC intended to reply to recent VSCOG submittals

- (e.g. weld samples, revised flaw calculations, and proposed schedules), the staffs expectations with regard to performing closeout inspections of Confirmatory Action Letters (CALs) issued to each member of the Owners Group, and the current status of SNC's response to requests for additionalinformation (RAI). The RAls were issued to SNC on August 26,1997 and November 6,1997 and pertain to the CALs.-

A. Howe discussed the technical issues regarding SNC calculation CPC-06Q-301, Revision 1, " Allowable Flaw Size Definition for VSC-24 Dry Storage Cask Structural Lid to Shell Weld" submitted December 17,1997 and calculation WEP 10g.002.73," Analysis of a Hypothetical Crack in MSB-24 Shell and Bottom Plate,", Revision 1, dated October 24, 19g7. The weld team agreed to provide comments on the issues by 2/2/98.

After the technical issues are resolved, T. Kobotz will provide the draft letter to the team the week of 2/2/98.

2.- H. Lee discussed the recent Addenda to the Sections 111 and XI of the ASME Code.

These addenda provide guidance for the use of UT for preservice examinations and the section XI acceptance criteria. This is significant because, although the VSC 24 is not

' fully constructed to meet the Code, it parallels the approach agreed upon by the weld team to provide reasonable assurance that the welds are properly installed.

3. K. Battige and R. Parkhill discussed the results of their trip to FLAWTECH to observe the flaw insertion process in the VSC-24 mock-up. In addition to having a better understanding of the flaw insertion process, FLAWTECH demonstrated that a relatively simple, straight beam, UT scan of a flaw, readily detected the flaw. A trip report detailing this visit has been issued separately.
4. The weld team agreed that the pending inspection for the UT feasibility demonstration should focus on observing a " dress rehearsal" of the UT examination technique.

I i-h L

y i

% 7;(220 lg,

... n ~~))- \ o O'] gyjair, irrr.

h rs iis' y un / 4 6~2. / % 6 'n* 4 , 5 -

I). .h %. , .,R/t Q,Jorm. u.c .rvrir

)1' ^ -Ja t_fAsf 2%' M : ' ta==.d.nyg. W4.154 .:s p.__

I -

" .j+o ._& je_a M7C 4 netz :

q_2:3(s M'7~h-C- Q _f. 4 - 2>A M W :_th&

Ve 4 z% & w .

L-J n ^'7 :2 L-s - & As g____% ~ .r M ~1ldr'&'

r' f

oat hp'eE' --h g d'&.]ss+: - d L ; ;.

ket se 4 a 9_* 2-? = % %f oG.u.c__

}_! , } **nt.h ;.::.a. '. 7 ;N & h- - 4 r

1 f.f fc k .)f b r . W = ? 4 yM- fo~t %

& % .. d 4 ::' h anb.NW &-.t}' ^:

L

~2'"~

_ _ . 5 d sn.t j } (* * * * *

  • 1; *!y.. M z W W . y d ' E ?

Q . C= " ? ..e>L M9 = * ' = ' $.W.? b.p=:- . :

fbst. d': c'y N

& 9'st G p 6s.-

. ..h RH4 .61'*^ N ..*n *DG<..O :^^'" , -. _

.h .MY:= W.&-.4s**A. . N/A, Mf.7-lW

\

. ... A k M4.14l M m & = R 4 & =$/ &=# 1-4._._.-

  • 34't 31-12 .rf ks /7 tit ? .d *m . /"-4
4 set 7
'3=d :
1%< Y 4* r A W M ./.* h M:z...o C = = .4 v : ./

.5 b/t Xue of e / /ff/..u e./( '--Mf-_.  ;

& ell (!'ff. % w..M. 9'<.Ac-.!m ) 7'sf.e 0.Amet.W.-.s4R., & 4t 9*(sy ?.6> Jea<<s. . .. .

ch+syd.
=4: Jff.L. d. k y :PM stA w ua.<.

- y4 . w ...

.)f'%. SAC"n .

.- ;). u/p =.u. m c,. m . 6 4eec .26tw h en_ ,<< "

.sxd = -

%gkA.40.Y<.y &, =&.cews..a._s.4' sis'y'

. . . . . . . on

' M ,} p # wn ,.e-- ? - - 1 _

. //ru%: % dos < ~-c syr a= - -- ae psc.p ./

k %7 is ~ % u, y, a <wa.r-?

1-4y'~ssr< & ,

n w w ,

% (gua -9W4,p

.. .. [ .o

~ h .!

.?

(.9 M J + u 9 M L =} 'Km w r ly cA:y? to1J_,;-rn s&x 9 3.a4,3.di a.k-.=', )

. _ . . N M I-.O /%s(67 ... $ k Q - W '~= ",'. h

.. E .h..iru sr= h.=ri.J=l A & t!'-y'. .4.. ' = Y-I y h m W _-==-x #,eC13':,_Ap w

... Y$**c..isizi:M-l U$4r' A m :: O d W

% =" a_bo G . y ~. n . &.><.% d=.=".

.N p2 M A _:.w. _o L +As,s sfeu.m

.) d-e.c.4. x. W. +Lu<... y ,. .

wtI# yn ~

.1+ % ~k..sws-l..?M.f -tk. k.f m .4*. m W

, .A M . c A= ._

.. & W M % a. % .if Nt.c.

.eum, f .%_Yld. % w A u =,% S#c.j_ N . A

.. uu w. .xr A y W y 1 * ...e_ ='.i...

.. m 4tu.<- vw> .. -..+.kt w =.'.4 .

k r ko% g - m%..M ys M+t .

.. w g ? ( W . a p . w s v - A p ....

. Vn 44 L 3.tu & ,.a1 j - . W.n

... m f ' g'n p. W.S v,y=m,.tk ws*:_ .

.M A.n ce

    • (Me k W .m -

!.: c) & A 4 W.rf.

7 Lt4 - b - - x. s _- .4.

.. 4 .A ju k W7f. p w .%.[~u e y g

. . p.m.ur. -a c e 4.A-g % d -s y . c). W H b.ha":--M- y n .._. a . 4 ;

. -. 8 ..

.hJ.d:/=%~{.3, w /+,,,4 M.he 4 4.

ac % cM, : 'dw my Ac 4 a q. 24

&-~r w W<**7 ,4 Yo canym & W an .t,.

% % e t.M3? vie n<+w hey orf n .._ ...

I

.... .. , 3 il I

_ Qudt% :

I yJA_s Ajj% &.9 % Ww.w_ . >'A'r/?

.px },.% q/=.=y.%%_%A%iSt >4..e r-p _ m tx ..._x_ y H sp_ & H r d - [ C & p _.

3. . ..h_ % ,.ee % M L_'.A p ? 4 I -
alo Q f a # hse w M % g
:."A y&d M w.scR.3_ a K , & enwy
  • M9=x

. {. .se-c ? k = f_! ..

L . dita l a =.1'4

)n.ud-Youy?.JVsw m% ~&-Ms._y

.,. Asst

_14.<_m,. zn_..  ?

.. .r..: n Mus,4.yA=%..&'..s#4 wu-K

.., % frd

. . . _ _ _ . p A ; +6. *y nmXy.n.w_ M.:s ,Q ?f%=0k->

_r

/h_r n 44,.

.. . - 6 .. R . 7 ta K ..!

. . . ... (o.4 .

W** N. r :=' _ ;_&fk.l!;.- .sf 2%_H.rd..&

a, w Cs, n,

.7. --..=._,.a/_,r

. A... h Y Y $ $ .3 h ' k m ! . b :{ # N S ) 5 h .

  • _Ay%

"=*'= v{ 44.14.. & .

..r Ln -y-= M M ? #f w T y w M h y = + .d4_ %

.n A

  • k. k a -ka . ._-- w & ,._e y__4 4 L. n% %.sm
1. &k tu vs=f. a.m m.?n ,8se_  :.<y. d i a-

... du t<4 4 % .,$4 cad oa.. x. n y j a.,. ,p__,;_ _ .

. . ..___..l.j M M -'%. ;' . M, A W,, _f4r,, ,_p h..._ a...-,_=

f .. . r7

- _ ._...l H = = h ...._ c.. Q, w -%f w.eej m

-YNYA - W & ?. W W k T_. u w t 4 . k p & 's~

L .. A v. . fum.m a d _.-; ma W h. .... .u.ca._

A N h ^ T- " M M 'dM.. -.% ..

Y

s 1 .

i.

3

%_% s,Lk.Gd -}n % w Y 4 W <r - - .

\'

_ %_tro,4m_ssey je sMa_.m. . . -_.ps M. . =n 9Ap .

IC_s &_yfa_ % p% c_AA'n,. m c & ?_.h %

.n.

lL; suss qp=JQw s,-ud.t?Y4.<

w & s m -glg A ed g. W== A _

  • m a_s m +L.:_?) W,e M~ ~ n

, .=._.:= -f y_4_de s==#2Ak ep -

._s.h w& __i.we= el W

....m. JW . . ..$ M ~~ .* _

=w'-"' = .. .

n... tow Iy., ..

% %@ _= (hv.q 4!? Wred tr. ynzy

... w6'.4 ..

W._. a .,..% 4:u. ~ th <y!.m aacA--4?.__

k +. A .yI.et ? ^.sf=4.

T  % W . r.. - p_.<vtM .6 mh_

.0....Wsq Nrc & A. P h. > + -i. ~ c.. L

ett.,*r.s.R _M.a+ar' r A .< m:-W w.>~4f

.. ... w 2) gav. M. A / : ' d. t< a b - " . . .

^ ^ **""

g, * -

Q M 't1L t ;.=% :  % :::D g ?. . . .

+ ,' J_

l

.lk..t S .)<.s**eA./*E \  % ... 5 5 . W & s'?- & _n j: M i= 6 _ M k A M M .k # h . m 9 .._ 4

.h J. q ?_Wh W5_M. des 4.3 24 h Jo )4 44 L *d!. c - M _ _

- .._- se.l y/w. w.- _.. u.-_ k r. _ k,_ %..= +- u *--A_ 74. .~*_2.1 - %.

.. Y& ON,YS - - N % .y<. sk OND g. - t &+?.. ... .y.

$ O W W 4. W W "^ M. Y (!:h &

&m M k< lidM t&C't.-fu.<5 4A*< , & wkt .

l 44keam? .

.% L % % dtla., % M & P \

i

. __ ; ~ - . - - - . _ - . . . . - . . . . . . ~

., ~E ,

gypp,jgggy :ffggy ,- -. ~..& ~ - .

ca p. 9.,

1-ank tM z. (> f December 17,1997 SNC 97-125 Pupa.n-W n. . _ %

Mr. Timothy Kobetz U.S. Nuclear Regulatory Commission b.A

% %xtQ) 11555 Rockville Pike hr.bT Rockville,MD 20852

Subject:

Transmittal of Revised Calculation Package CPC-06Q-301 Rev.1: Allowable Flaw Size Definition for VSC-24 Dry Storage Cask Structural Lid to Shell Weld

Reference:

US NRC Request for Additional Information Concerning Confirmatory Action Letter 97-7-001 dated August 26,1997 US NRC Letter to J. Massey, Sierra Nuclear Corporation, dated December 9, 1997;

Subject:

Commitments Made to the Nuclear Regulatory Commission by s

Sierra Nuclear Corporation and the VSC-24 Owners Group i

I

! Dear Mr. Kobetz As pan of the response to Question 4 of the US NRC Request for Additional Information Concerning Confirmatory Action Letter 97-7-001 dated August 26,1997, and in response to Commitment 1 of the US NRC Letter to John Massey, Sierra Nuclear Corporation, dated

! December 9,1997; titled: Commitments Made to the Nuclear Regulatory Commission by l Sierra Nuclear Corporation and the VSC-24 Owners Group Sierra Nuclear Corporation (SNC) l and the VSC-24 Owners Group submit the updated and revised calculation package CPC-06Q-301 Rev. 4, titled: Allowable Flaw Size Definition for VSC-24 Dry Storage Cask Structural Lid to Shell Weld.

l The revised calculation has been updated to incorporate the comments mr.de during the l technical review meeting held in Washington D.C. on December 4,1997. In addition, the calculation has been revised to include a discussion on the postulated mockup defects (Section 7.0) and includes a complete description of these flaws in Appendix C.

1 1 Victor Square . Scotts Valley, California 95066 . (408)438-6444 .

Fax (408) 438-5206 l I

~~~~

Should you or the Commission have any additional questions please contact me at Sierra l Nuclear Corporation (SNC); 408 - 438 - 6444.

i Respectfully, 1

/

Kay kel M er, Licensing e

cc: G.Dixon,J.Massey;LicRile;f:\ admin \ltrs\ soc t

J l

1 l

i l

1 l

l l

l l

l

- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ L

1 STRUCTURAL CALCULATION FILE No: CPC-06Q-301

' INTEGRITY Associates, Inc. PACKAGE PROJECT No: CPC-06Q PROJECT NAME: Analytical Support for Dry Spent Fuel Storage Activities CLIENT: Consumers Energy (Palisades Nuclear Plant)

CALCULATION TITLE:

Allowable Flaw Size Definition for VSC-24 Dry Storage Cask Structural Lid to Shell Weld l w PROBLEM STATEMENT OR OBJECTIVE OF THE CALCULATION:

Develop Weld Flaw Acceptance Criteria 4

Project Mgr. Preparer (s) &

Document Affected Revision Description Approval Checker (s)'

Revision Pages Signature & Signatures &

Date Date 0 1-24 Appendix A OriginalIssue f)QA // Jj/z5/1 p

&B II/2f/N s# h/25 /t7 l

1 1-28 Incorporated Comments

) g //13, c/f 7 /M-Appendices sc/17/97 12/17 /9 7 A B,C l

SIC-97-039, Rev. I Page i of 28

-MiWOB? 1'ep-

1.0 INTRODUCTION

The purpose of this calculation is to develop acceptance criteria for flaws which may be detected in j the structural lid to shell weld of spent fuel dry storage casks at Palisades, Point Beach, and ANO Nuclear Plants. The typical geometry of the structural lid to shell weld joint is illustrated in Figure 1

{1].

For the casks which are currently in service, nondestructive examination of these welds has included dye penetrant examination of the root and final welded layers. No volumetric examination of these welds has been performed in the past, but the plant owners are considering such examination as a result of discussions with the N,RC.

2.0 CODE APPLICABILITY In the present analysis, the methods of ASME Section XI,IWB-3600 and Appendix A [2] are used to determine allowable flaw sizes under the limiting loading conditions. IWB-3600 and Appendix A are directly applicable to Class 1 vessels (such as reactor vessels) and piping. Although the dry fuel storage casks are Class 2 (NC) vessels, Section IWC-3600 is still under development, and Section

' XI permits the use of IWB criteria for flaw evaluations.

Section XI flaw evaluation criteria are directly applicable for evaluation of flaw indications detected in the structural lid welds of casks which are already in service. Its applicability is less clear for examination results for new casks. However, for examinations of structural lid welds which are performed immediately upon completion prior to putting them in service, it is SI's opinion that the

- rules of Section XI should still be applied,in lieu of Section III rules. Although a loaded cask is not formally considered to be "in operation" until it is successfully transferred to the storage pad, the cask is performing its design function in a difficult to reverse manner once fuel is loaded and the 7

shield lid and structural lid are in place.Section XI provides more extensive methods for the Revision  !

Preparer /Date gg/g/g Checker /Date

[ 12.fl?f 41 File No. CPC-06Q-301 Page 2 of 28 4

i l ,

l I

evaluation of defects detected by volumetric examination. and volumetric examination of the stmetural lid weld immediately following completion forms a baseline for any subsequent inservice l inspections by similar methods.

3.0 LOAD DEFINITION Table 1 [1] provides stress data for the structural lid weld under the horizontal drop accident. This event is considered to be an emergency / faulted class (service level C/D) event. Table 2 [1] presents stress data for normal operating events By comparing the Tables, it can be seen that at the structural lid weld, the normal operating stresses are significantly lower than the stresses which are predicted to result from the horizontal drop event. Therefore, the horizontal drop accident is judged to govern the critical flaw size determin$' tion.

As shown on Table 1, the horizontal drop event produces the following stresses in the structural lid-to-shell weld:

P = 7.2 ksi Pt. + PB = 43.3 ksi i 1

l In the fracture mechanics analysis below, both of these stress corr.ponents were included. These were conservatively modeled as a tensile membrane stress, with a magnitude of 43.3 ksi. This magnitude is appropriate for use in the vicinity of the structural lid-to-shell weld. The highest stress in the shell reported on Table 1 (73.0 ksi) occurs at a location which is approximately 12 inches from the bottom plate of the MSB [9), which is remote from this weld.

n. addition to this applied stress. weld residual stress was included in the calculation. Because no measurements or calculations of weld residual stress were available, the weld residual stress was assumed to be represented by a distribution typical of a multipass groove weld such as is presented in Figure 7, which is taken from NUREG-0313, Revision 2 [8].

Revision 1 Preparer /Date /]p p /g/p Checker /Date f{/[ ig Page 3 of 28 File No. CPC-060-301 l

l

l l

This typical distribution was scaled to reflect an assumed inside surface tensile stress of 40 ksi.

~

corresponding to a typical yield stress for the A-516 Grade 70 material. The scaled distribution is shown as a dashed line on Figure 7. Appendix A of Section XI [2] requires the use of residual stresses in determination of allowable flaw sizes.

l For normal operating conditions, the limiting applied stress intensity Ki(applied) is:

K*

i K (applied)< EU i

' where Km calculated from the projected Charpy data is used as the critical stress intensity. The

. safety factor of 80 is as defined in Section IWB-3612. Km is equivalent to Kr. as discussed above.

For this case, the total applied stress intensity Ki (applied) is determined from the membrane, bending, and residual stresses as K i(applied) = K i(membrane) + Ki(bending)

~.

+ Ki(residual) l I

where the K i(residual) reflects the residual stress case.

F For the emergency / faulted case (horizontal drop), it is still appropriate (and conservative) to use the calculated Km as the criterion, because of the dynamic nature of the loading,instead of the Kic (which would be appropriate for static or slow loading rates). For this case (horizontal drop) the applied 'Kiis limited by ,

K i(applied: drop)< K" E

l Revision 1 Preparer /Date /g/,;/p g p}nl4y Checker /Date l- File No. CPC-06Q-301 Page 4 of 28 i

l i

l

1 The applied K iusing a safety factor of E on residual stresses as discussed above. is given -

K i(applied) = K i (membrane) + Ki(bending) + Ki(residual)

For this case, residual stresses are also conservatively treated as primary membrane stresses, using the full code safety margin of E.

4.0 MATERIAL FRACTURE TOUGHNESS l The certified material test reco,rts (CMTRs) fl .5.61 for the stmetural lid weld material were provided by the plant owners. The procedure qualification records (PQRs) were also provided.

These documents contain Charpy V-Notch Impact data taken at -50 F (and some data at other temperatures). The PQRs also include Charpy,results for base metal and heat affected zone (HAZ) as well as weld metal.

~

_. According to the " Certificate of Conformance for the VSC-24 System" [9] in Section 1.2.13. there are administrative limits which prevent moving of the storage casks when the temperature is less than 0 F. Consequently, a horizontal drop accident is judged not to be possible below this temperature.

Article A-4000 of Appendix A to Section XI [2] recommends that the material fracture toughness be

! determined from the actual material and product form in question. Therefore, to evaluate the fracture toughness of this material, use of the actual Charpy data at 0 F is appropriate. The Charpy data at 0 F is used to determine material fracture toughness (Ku) using the following equation for carbon steel in the transition temperature region [3]:

Revision 1 Preparer /Date //g/gi:q Checker /Date ggg/g/9 File No. CPC-060-301 Page 5 of 28

I I

l l

Kio= ]5C, E In this equation, E was assumed to be 29,000 ksi.

Judging from the % shear data, the material is in the transition region in the -50 F to 0 F ternperature range, so use of this equation is appropriate [3]. Also, the Charpy correlation is for Kio (dynamic) fracture toughness as well as Ki c (static), so it is applicable to a dynamic event like the i

drop accident. 1 As noted above, the material specifications for both base metal and weld metal require Charpy V-imtdi ten resuits at .iu'r, wnne tne towest temperature at whicn a honzontal drop could occur is 0 F, due to administrative limits [1]. All three plants (Palisades, Point Beach, ANO) provided CMTRs for weld material used (or proposed for use) in the structural lid welds [1,5,6] and these CMTRs included Charpy data at -50 F. All CMTRs include data for the as-welded condition, which is applicable to all three plants. Results for base metal and HAZ from PQRs were also considered.

The PQRs include -50 Charpy data for weld metal, HAZ, and base metal. In order to determine the limiting material condition, all such data was evaluated for toughness at 0 F as described in the following. All available data is presented in Table 3. Based on the data in Table 3 the HAZ is not the limiting location.

In order to determine allowable flaw sizes for each plant, it is appropriate to use the limiting material toughness at the limiting temperature of 0 F. Since such data is not available in most cases,

, it is necessary to extrapolate toughness at 0 F from the available -50 F data.

l The data from all CMTRs and PQRs shows that the material is in the transition region (reported per cent shear of 20-80%) and so linear projection is appropriate. Referring to Figure 5 from [7],the l

l

( '

Revision l

/)fgg /g Preparer /Date Checker /Date Qg g}p}Q File No. CPC-06Q-301 Page 6 of 28


_J

s slope of this curve is estimated as 0.55 ft-lb/ F for the high manganese curve, which describ material similar to the A-516 Grade 70 base metal. This slope is more gradual than the 1%

manganese curve, and therefore projection is more conservative using this slope. This slope was used to project all reported base metal, HAZ, and weld metal -50*F data [1,5,6] to 0 F. The result are shown in Table 3. Also, all available Charpy data from CMTRs [1,5.6] at 0 F is shown in Table 3 for comparison. The predicted 0*F Charpy data for weld metal is conservative compared to available actual weld metal 0 F data. That is, the predicted Charpy results at 0 F (based on extrapolation of-50 data) are consistently lower than actual data at 0 F for weld metal, which is the only material for which 0 F data is available.

Sd, ef'd .c p. 'LJ C'. py Juav 'ved casesgy ac>uits at G7 weie u>cu tu caiculate a maternat toughness Km for use in allowable flaw size calculations.

l The resulting fracture toughness at 0 F is greater than 75 ksi-6for all cases. This value is shown

~~

in Figure 2 in comparison to ASME Section XI fracture toughness curves for carbon and low steel reactor pressure vessel bounding materials. Figure 4 shows allowable flaw size (depth ver length) for a toughness of 78.4 ksi-En', which results from extrapolation of the minimum spec Charpy V-notch absorbed energy of 15 fr-Ib at -50 F. (This is the minimum specified for both weld metal and base metal). Allowable flaw size curves for the limiting material for each plant are also shown.

5,0 APPLICATION OF ASME CODE MARGINS As discussed above, the limiting event for the structural lid weld is the horizontal drop accident, which is considered to be an emergency / faulted event. The stresses associated with this event are def'med in Table I from {ll.

Revision 1 Preparer /Date g,7/n/p Checker /Date (g gfg File No. CPC-06Q-301 Page 7 of 28 w____-_- - _ _

i

=

j I

Using the rules of IWB-3613(c) [2), the fracture toughness values determined above are reduced by a factor of E to define the limiting allowable K for i flaws in the structurallid weld under

~~

emergency / faulted conditions. That is, K

Kwo.aic<

l For example, a limiting Kip calculated from Charpy data of 78.8 'ksi-E produces an allowable Ki of 55.4 ksi-E. This value corresponds to the value obtained by extrapolating the minimum specified toughness (15 ft-lb at -50 F) to 0 F as discussed above.

6.0 ALLOWABLE FLA(V CALCULATIONS L Using the above load definitions and fracture toughness, a series of allowable flaw size calculations were performed using the Structural Integrity Associates computer program pc-CRACK * [4],

which has been developed and verified under the S1 Quality Assurance program.

}

6.1 Surface Flaws l The structural lid weld was modeled as a plate with an elliptical surface crack subject to both t

membrane and bending stresses. This model is illustrated in Figure 3. Use of this flat plate model for flaws in the structural lid to shell weld is appropriate for flaws originating in the vicinity of the weld root and propagating through the weld material or wehl-base metal interface. This model is j

l conservative compared to the actual weld geometry, because the actual weld experiences significant

{

hoop constraint due to the stiffness of the structural lid and cask shell. Such constraint will limit crack opening in the actual weld as compared to the model, and therefore a larger crack would be l l

tolerable in the actual weld than is predicted by use of the flat plate model. These results are equally l applicable to flaws originating on the outside surface and oriented inward.

Revision 1 Preparer /Date /)p g/,%;

Checker /Date [gMg/9 File No. CPC-06Q-301 Page 8 of 28  ;

i i

1 i

1 l

i The flaw aspect ratio (the ratio of flaw depth to length) was varied parametrically, to determine an allowable Oaw depth versus length curve. The conservative fracture toughness including the emergency / faulted Code margins was used as the criterion for determining al >wable flaw depth for each aspect ratio.

The results are shown in Figure 4, and the supporting pc CRACK analyses are attached in Appendix A. There is no known mechanism for continued crack propagation of defects in these welds, so no crack growth calculations have been performed for the assumed defects. Limiting allowable Daw depths for each heat of weld material at each plant are shown in Table 3.

l 6.2 Subsurface Flaws 4

The above discussion addressed the determination of allowable flaw sizes for flaws which are connected to the surface of the weld, under a conservative set of assumptions. The weld could also contain subsurface defects as a result of the welding process for example. In general, the allowable flaw size for a subsurface defect will be larger (usually twice or greater) than for a surface defect under the same conditions.

Evaluation of allowable subst'rface defects was performed using the same linear elastic fracture mechanics techniques as were described above for surface defects. For these cases, a center cracked plate model (Figure 6) was used to evaluate the infinite length flaw. This model is conservative for the actual cases, since it treats applied stresses as pure tension, while for the subsurface flaw cases, the drop load case has a significant through-wall bending component. Consequently, for a subsurface flaw the stresses due to the drop event will be significantly lower than the 43.3 ksi surface stress for this event (see page 3). The calculated allowable flaw sizes for subsurface flaws corresponding to the same assumptions presented in Table 3 for surface flaws are shown in Table 4.

The allowable subsurface flaw results presented in Table 4 also require that the flaw be sufficiently embedded that treatment as a subsurface flaw is justified. ASME Section XI, Figures IWA-3310-1,-

Revision 1 O

Preparer /Date ,l)j g/g/g y Checker /Date g g.y

~

File No. CPC-060-301 Page 9 of 28 l

, o 3320-1, and -3330-1 provide criteria for evaluating proximity of flaws to the surface and to each other (in the case of multiple Daws). In general, if a Daw is closer to the surface than 0.4 of its half-depth, it must be considered to be a surface Daw.

7.0 RECOMMENDED MOCKUP DEFECTS The above analysis shows that a family of significant sized flaws (Figure 4 a, b. c, d) can be accepted in the structural lid to shell weld, while maintaining Code margins, and under a conservative set of assumptions.

{

Ultrasonic examination of the final stmetural lid weld will be attempted using a mock-up which

+T He?" *: Snd strue:nn! !M "/ !d ccnS;untn. I I

l In order to demonstrate the feasibility of the ultrasonic examination process, qualify the technique, and verify the capability for detecting and sizing any observed indications, the mockup will be implanted with flaws which represent the following conditions:

  • Crack 0.05" to 0.25" deep and 0.5" long at the weld joint extremes to assure that the weld volume can be adequately examined - (Flaws 1-7,8-13,14-19 and 20-25).
  • Cracks 0.3",0.4", and 0.5" deep and 0.5" long at the weld centerline to provide confidence that large flaws can be detected and sized - (Flaws 28-30).
  • Welding defects which represent slag (0.1" deep x 0.5" long) and lack of fusion including lack of fusion resulting from weld starts and stops (0.1" to 0.3" deep x 0.375" long)- (Flaws q 26,27 and 31-33). i i

Revision I s

Preparer /Date gg/n/g l Checker /Date ggp, l File No. CPC-0'6Q'-301 Page 10 of 28

{

l l

Appendix C describes the Gaws which will be implanted in the mockup for use in demonstrating :he feasibility and performing the process qualification for ultrasonic examination of the final structural lid weld.

4 Appendix C identifies the defects (size, orientation, and location) which the Owners Group intends to incorporate in the Palisades mockup, for use in volumetric examinations, feasibility ,

demonstrations and process qualification. Multiple flaw configurations (e.g., parallel Daws in either planar or laminar orientations) are not expressly included in the mock-up, because of the large number of such hypothetical combinations. For evaluation purposes, multiple Daws will be combined in accordance with Section XI proximity rules.

The allowable Daw sizes contained in Tables 3 and 4 are presented as circumferentially oriented i defects. The allowable flaw depth are also conservatively applicable to flaws oriented transverse to the weld direction. Circumferentially oriented flaws are more significant with regard to structural adequacy and are not inherently limited in length, as are transverse flaws due to the structural constraints of the geometry. Flaws oriented radially into the shell will not degrade the integrity of the weld, and are not considered here.

8.0 CONCLUSION

S This analysis has shown that flaws with depths greater than those which could have been missed t  !

l during original weld examination can be accepted under the criteria of ASME Section XI, with a l 1

conservative set of assumptions. These results are generic and conservative in nature. Specific flaws j i

exceeding the criteria developed in this calculation could potentially be accepted based upon more  ;

detailed analyses and less conservative materials properties on a case-by-case basis.

We recommend that the above results be used as the basis for establishing methods for qualifying volumetric examination techniques for these welds, and for initial screening of results of field examinations.

Revision 1 Preparer /Date /j[tg/gfy.

Checker /Date g g.7 File No. CPC-0'6Q-301 Page 1I of 28

9.0 ~ REFERENCES l ._-

1.

l Letter from Emil A. Zernick (Consumers Energy) to Hal Gustin (SI)," Flaw Analysis Inputs," dated November 12,1997, transmitting design input information (letter attached as Appendix B). CPC-06Q-201 l

2. ASME Boiler and Pressure Vessel Code,Section XI(with Appendix A),1989 Edition.

l

3. Rolfe, Stanley T., and Barsom, John, M., Fracture and Faticue Control in Structures, Prentice-Hall,1977.

4

4. StructuralIntegrity Associates,pc CRACK for Windows, Version 3.0, March 27,1997.
5. Fax from Tom Burtard (Wisconsin Electric Power Company) to Hal Gustin (SI) dated 11/12/97 and 11/13/97 Charpy Test Results. CPC-06Q-203 2#
6. Fax from Darrell Williams (ANO) to Hal Gustin (SI) dated i 1/11/97: Weld Material CMTRs. CPC-06Q-202
7. ASM, The Metals Handbook. Vol 1,10th Edition,1990.
8. NUREG-0313 " Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping," Revision 2,1988.
9. Letter from Kay Moec) :1 (Sierra Nuclear) to Hal Gustin (SI) dated 12/12/97. CPC-06Q-204 1

l Revision 1 Preparer /Date gtt/;p/3 ?

-~ '

Checker /Date gjgg '

File No. CPC-060-301 Page 12 of 28 j l \

l

Table 1

.s TABLE 11.21 f

SUMMARY

OF STRESSES (ksi) IN THE MSB RESULTING FROM

'IME HYPOTHETICAL HORIZONTAL DROP k

':, ASME e-- -

Drop Dead Wt.' 'Iheraial Pressure Total Allowable k m Plase ' 29.4 N/A N/A a06 29.5 49 0 P.

F6 y r, 4 4.i 46.3 13.$

Shs5 25.9 N/A N/A al 26.0 49.0 P.

71J 1.2 73 0 73.5 PS + P.

Structural P. 24 N/A N/A a0 16 49n ud 0.4 43.3 73.5 P6 + P. 42.9 Shield Ud 2.4 N/A N/A Q.0 2.4 49D P.

P6 + P. 234 40 20.6 73.5 Ilouce Wald P. 25.9 N/A N/A a2 26I. 49.0 44.6 1.7 4&3 73.5

.- P6 + P.

Top Wald P. 7.1 N/A N/A a06 7.2 36.8 P6 + P. 42.9 a4 433 55.1 Shield Ud P. 9.1 N/A N/A 02 93 36.x Wald P6 + P. 204 N/A N/A E8 21.4 55.1

  • Dead weisha is includal in the dmp load.

Revision 1 Preparer /Date gt/g /g9 Checker /Date ]'[yyq7 File No. CPC-66Q-301 Page 13 of 28 l

L____________________ _ _ _ _ _

Table 2 1

TAB 1.E J.4 !

1158 %LW31CN1 STRESS D'utATION c - e e.. St e ses C RC'.*LAT'?D \* 21.UE KSI' i

gAo uut M:Citt mEssalg *WL14. MAL HA.Stt.*No TO"AL .:'c P. 0.1 0.1 N/A 0.9 1.1  ;&S SISB She!! Ps + P. 0.1 1.2 N/A 2.4 3.7 30 -

P+Q 0.1 1.2 1.0 2.4 4.7 61.5 Bottom P, 0.02 0.06 N/A 1.0 1.1 20.5 Plate P6 + P. 0.02 1.7 N/A IJ 3.2 30.7 P+Q 0.02 - 1.7 19.4 1.5 22.6 ~ 63 Top Ud P, 0.0 0.0 N/A 0.1 0.t 20.5 P6 + P, 0.0 0.4 N/A 0.2 0.6 30.7 P+Q 0.0 0.4 0.2 0.2 03 61.5 Bottom to- P, 0.1 0.2 N/A 0.9 1.2 20.5 Shen-- P6 + P. 0.1 1.7 N/A 1.5 3.3 30.7  !

function F+Q 0.1 1.7 1.5 1J 4.8 61.5 l 1

ap to4beQ P, 0.0 0.06 N/A 0.2 0.3 15.4

.uncnon P , + P.

i 0.0 0.4 N/A 0.2 - 03 23.1  !

P+Q 0.0 0.4 0.4 0.2 1.0 46.1

~

Sleen P, 0.05 N/A ' N/A IJ 1.9 20.5 Anembly P6 + P. 0.05 N/A N/A 2.1 2.2 30.7 P+Q 0.05 N/A 52.0 2.1 54.2 61.5 j Shield Ud. P, 0.3 0.2 N/A 0.3 QA 15.4 to.SheH P6 + P. 0.3 OJ N/A 0.4 1.5 23.1

. Wald P+Q 43 OJ 1.3 0.4 2.3 46.1 ,

i Siisid Ud P. &4 N/A N/A 0.3 &7 15.4 l Suppott P6 + P, 04 N/A N/A 0.3 0.7 23.1 Ring Weld P+0- 14 N/A 0.0 0.3 0.7 46.1 Values shown are madmums irrespee== of locacion Revision 1 l

Preparer /Date {Qq /g /g p

- Checker /Date gQ,jg, File No. CPC-06Q-301 Page 14 of 28 l

~

~

Table 3 Projected Charpy Data and Allowable Surface Flaw Sizes i

Charpy Charpy Charpy @ Allowable l Plant identifier Percent @ 50*F @ 0*F 0*F KID Depth Shear Average Predicted Actual @ 0*F (360*)

(If Surface Available)

WP-18P4(18 8)(GMAW)

Weld NA 28 55.4 NA 89.6 0.18 Base 18 8 NA 41 68.4 NA 99.6 Point Beach HAZ 18-8 NA 87 114.4 NA 128.8 PQR-WP-17 (SMAW)

Weld NA 84 111.4 NA 127.1 Base NA 40 67.4 NA 98.9 HAZ NA 137 164.4 NA 154.4 DQP.2aa m Cf.'."*

Weld 58 55 82.4 NA 109.3 HAZ 70 80 107.4 NA 124.8 ANO Base 13 33 60.4 NA 93.6 0.20 POR-398R1 (SMAW)

Weld 50 77 104.4 NA 123.0 l HAZ 40 70 97.4 NA 118.8 l Base 20 43 70.4 NA 101.0 l Weldstar 467H NA 84 111.4 NA 127.1

~

ESAB 41323 40 60 87.4 117 112.6 ESAB 37%2 27 55 82.4 96 109.3 ANO ESAB 2A505A02 50 94 121.4 NA 132.7 ESAB 2H408A03 43  % 123.4 NA 133.8 ESAB 2E426G02 63 103 130.4 NA 137.5 ESAB 2K407H03 70 122 149.4 NA 147.2 i

Revision 1 Preparer /Date jfp ;2/g/g;.

Checker /Date (gyg l File No. CPC-06Q-301 Page 15 of 28

l

. \

Table 3 (continued)

Charpy Charpy Charpy @ Allowable Plant identifier Percent @.50*F @0F 0F KID Depth Shear Average Predicted Actual @0F t.360*)

(If Surface Available)

Alloy Rods 32039 20 56 83.4 91 110.0 0.24 ESAB 38380 56 99 126.4 135 135.4 ESAB Si122 60 82 109.4 115 125.9 PQR-SM LID-D (SMAW)

Base NA 60 87.4 NA 112.6 Weld NA 130 157.4 NA 151.1 HAZ NA 123 150.4 NA 147.7 PQR-SM LID-C(SMAW)

Base NA 70 97.4 NA 118.8 Weld NA 92 119.4 NA 131.6 HAZ NA i12 139.4 NA 142.2 Palisades PQR-FC-LID (FCAW) _ ,, ,

l tsase '

NA 38 8 c.4 NA 111.3 Weld NA 69 96.4 NA 118.2 HAZ NA 141 168.4 NA 156.3 PQR-FC-LID (FCAW)

Base NA 64 91.4 NA 115.1 j Weld NA 91 118.4 NA 131.0 '

HAZ NA 158 185.4 NA 164.0 Min Specified Base and Weld NA 15 42.4 NA 78.4 0.15 (15 ft-lb @ 50*F)

Note: 1. The line labeled " Min Specified" represents calculation results based on 15 ft-lb absorbed energy at -50 F.

2. All Charpy data represents average results.

l l

I l

Revision 1  !

Preparer /Date // G it[7/p Checker /Date gg/gg -

1 File No. CPC-060-301 Page 16 of 28 1

Table 4 Projected Charpy Data and Allowable Subsurface Flaw Sizes Charpy Charpy Charpy @ Allowable Plant Identifier Percent @-50*F @0F 0*F KID Depth Shear Average Predicted Actual @0F (360*)

(If Subsurface Available)

WP-18P4(18-8) (GM AW)

Weld NA 28 55.4 NA 89.6 0.30 Base 18-8 NA 41 68.4 NA 99.6 Point Beach HAZ 18 8 NA 87 114.4 NA 128.8 PQR-WP-17 (SMAW)

Weld NA 84 111.4 NA 127.1 Base NA 40 67.4 NA 08.9 HAZ NA 137 164.4 NA 154g,,_,,,,,_,,,,

iOA .iss sum Weld 58 55 82.4 NA 109.3 HAZ 70 80 107.4 NA 124.8 ANO Base 13 33 60 4 NA 93.6 0.30 PQR-398RI (SMAW)

Weld 50 77 104.4 NA 123.0 HAZ 40 70 97.4 NA I I 8.8 Base 20 43 70.4 NA 101.0 Weldstar 467H NA 84 111.4 NA 127.1 ESAB 41323 40 60 87.4 117 112.6

~,

, ESAB 37962 27 55 82.4 96 109.3 ANO ESAB 2A505A02 50 94 121.4 NA 132.7 ESAB 2H408A03 43 96 123.4 NA 133.8 ESAB 2E426G02 63 103 130.4 NA 137.5 ESAB 2K407H03 70 122 149.4 NA 147.2 Revision 1 Preparer /Date g/,7 / g Checker /Date g'Qg '

File No. CPC-66Q-301 ' l Page 17 of 28

Table 4 fcontinued)

Charpy Charpy Charpy @ Allowable l Plant IJenn6er Percent u -50'F @ 0*F O'F KID Depth Shear Average Predicted Actual @0F (360*)

1

' (If Surface l

Available)

Alloy Rods 32039 20 56 83 4 91 110.0 ESAB 38380 56 99 126.4 135 135.4

,\

ESAB SI122 60 82 109.4 115 125.9 _

PQR-SM LID-D (SMAW)

Base NA 60 87.4 NA 112.6 Weld NA 130 157.4 NA 151.1 HAZ NA 123 150.4 NA 147.7 PQR SM-LID-C(SMAW)

Base NA 70 97.4 NA i18.8 {

Weld NA 92 119.4 NA 131.6 HAZ NA 112 139.4 NA 142.2 Palisades PQR-FC-LID (FCAW) haae "a na ao a3.4 na 311.3 Weld NA 69 96.4 NA i18.2 HAZ NA 141 168.4 NA 156.3 PQR FC-LID (FCAW)

Base NA 64 91.4 NA 115.1 Weld NA 91 118.4 NA 131.0 HAZ NA 158 185.4 NA 164.0 Min Specified Base and Weld NA 15 42.4 NA 78.4 0.24

_ (15 ft lb @ -50*F)

Note: 1. For subsurface defects at weld mid wall depth, the allowable through-wall dimension of the defect is generally twice the allowable surface flaw dimension for the corresponding case.

2. The line labeled " Min Specified" represents calculation results based on 15 ft-lb absorbed energy at -50 F.
3. All Charpy data represents average results.

Revision i Preparer /Date

//M2////G Checker /Date p gg File No. CPC-06Q-301 Page 18 of 28

J .

,..,v=<, , ,

1 -- lYt-1 /g5

-* 5/g' f, 3/32." MAX CAP HClGHT AS MEASERED F LOM NIGNE57 M ll SIDE (LID CA 19533Mt.LL).

p 6

T 45' ICM.

m

"* 'R' Q

/

.. s, me i m __

[ SE22l2 7,;:n L -

l 4

Figure i Revision I

>, Preparer /Date gj z!17/p- ,

/ Checker /Date g'[gg, File No. CPC-06Q-301 Page 19 of 28

e

.a 130 700 =

.0 -

/

100 -

"Is 4 ,

i

,2,, -

4 ^: \

100 -

I il 80 =

f3 2 .]$ $ $ {n g

2 80 -

... so - j

-- y ,

nrypy 46 0 ' ' I f

  • 100

.te 0 '98 *a00 +150 ,2cm tr nincr ** o ,

I.

FIG. A-42001 LOWER BOUNO K. AND Y.VS TEMPERATURE CURVES FROM TESTS 1 0F 5A 533 GRADE B CLASS 1, SA 500 CLASS 2, AND SA 508 Ct. ASS 3 STEELS i

Figure 2 l

i Revision i Preparer /Date g g/37 / g Checker /Date g'{Jg l File No. CPC-06Q-301 Page 20 of 28 i _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

".4*

t a

s %

0 = Co+Ci X+Cg+C 3X3 i I MR .

4 $a#ps e @l

,a5199 1

9%any%u$w&

  • a 6t%sArR

?n%g m.n ne mh^eBMPWy fl jg M[gi198w#Nie35)Cn: surfacestress(x4)

-dGs UWW;;

n%

wn%;$kkhhh mMn l s$$U$Nb

% AWN l .:&@9 ydeg%~%% yg .4 e%N up@>1u

9 3. i gmkN Mid ~~!@j$M$g@$2% $

EWil!E&WG --+ X

' - T-C,

.u V V)W' ir REQUIRED NPUTS:

t wallthickness a Inaximancrackdepth(%$0.8t) l l

l l

l Figure 3: Single Edge Cracked Plate -LEFM Crack Model 1

l l Revision 1 1

Preparer /Date //g,{q/g/9 p l _/ Checker /Date i l f ./Dlu. )ll/4) '

File No. CPC-06Q-301 ' Page 21 of 28 l

l - - _ _ _ _ _ _ _ - _ - - -

ALLOWABLE SURFACE FLAW SIZE FLAW DEPTH VERSUS LENGTH 0.8 BASED ON MINIMUM MATERIAL TOUGHNESS 0.8 l 0.7 --

0.7 OF 15 FT-LB @ -50 DEG, EXTRAPOLATED TO O DEG 0.6 z'

} 0.5 1

- 0.5

[ { FURTHER EVALUATION REQUIRED g 0.4 0.4 I

m '~

l 0.2- 0.2 0.1 - ALLO'NABLE FLAW -0.1 0 1 S S 4 b 5 I N b 10 FLAW LENGTH, IN.

& GREATER l

l Figure 4a I I

Revision 1 x

Preparer /Date gl7/j7/M Checker /Date /'Qgg7 l File No. CPC-060-301 Page 22 of 28 l

l

l l

l l l

i l

l ALLOWABLE SURFACE FLAW SIZE FLAW DEPTH VERSUS LENGTH 0.8 BASED ON MINIMUM MATERIALTOUGHNESS 0.8 0.7 . 7 FROM PALISADES DATA AT -50 DEG, EXTRAPOLATED TO O DEG

~~~~~~~~~~~~~"-~~ ~~~~~

0.6 u.6 N FURTHER EVAL _UATJON_BEQUlBED 0.5 l

l 35-0 Oi 0.4 0.4 0.3 L 0.24 --0.3 x

u

, ,. 0.2 0.2 0.1 - ALLOWABLE FLAW 0.1 0 1 N S 4 $ $ I $ $ 10 FLAW LENGTH, IN.

l

\

1 l

l Figure 4b l l

Revision 1 Preparer /Date //p f 7/f 7/qp Checker /Date g'[yg '

File No. CPC-06Q-301' Page 23 of 28

ALLOWABLE SURFAC E FLAW SIZE FLAW DEPTH VERSUS LENGTH 0.8 BASED ON MINIMUM MATERIAL TOUGHNESS 0.8 0.7 FROM POINT BEACH DATA AT -50 DEG, EXTRAPOLATED TO O DEG 0.6 0.6

- 0.5 h FURTHER EVALUATION REQUIRED 00.4_

O - 0.4 3 0.3 -- 0.3 0.18 0.2- ^ ~

ALLOWABLE FLAW

- 0.1 l 0 0 0 1 y j j $ $ $ 10 FLAW LENGTH, IN.

& GREATER l .

l I

Figure 4c 1

Revision 1 l Preparer /Date %,2/f7/jy llglgl,3

~

Checker /Date File No. CPC-06Q-301 ' ' I Page 24 of 28 L

o n'

ALLOWABLE SURFACE FLAW SIZE FLAW DEPTH VERSUS LENGTH 0.8 BASED ON MINIMUM MATERIAL TOUGHNESS 0.8 FROM ANO DATA AT-50 DEG, EXTRAPOLATED TO O DEG 0.6 - 0.6 3 *

-0 .5 ---

- 0.5 h \ FURTHER EVALUATION REQUIRED tu 0.4 0.4 0.3 -

0.20 - 0.3

._ 0.2- 0.2 ALLOWABLE FLAW 0.1 0.1 0 1 b b 4 b b I b b 10 FLAW LENGTH, IN.

& GREATER l

Figure 4d Revision 1 Preparer /Date //pg/g /97,.

Checker /Date ggfg '

File No. CPC-06Q-301 Page 25 of 28

Testing temperature. T

- 100 -E O E 100 150 200 18 e i i . .

g  ;

--- 1.01% Mn 1 c5% Mn /[ gg l


0.39% Mn /g r" , /. . * '

/

g _

......... O.30% Mn /# [

, i ..

I / '

./ ,/ ./l I f 5 /

ln

, l/ i  ;

/

.E 80 9 i

t l .

se l

/ /

i l 5 a

g / / .

- g5 f // -

i i

j' ,/

p

.~

a / '/ .

m

w l- .,

/ ,/

\

0 0

-18 -n -5 -3 0 5 5 3 100 Testing temperature.T g gj Variation in Charpy V. notch impac energy with temperature for 0.30% C steels containing varying amounts of manganese. The specimens were austenitized at 900 "C (1650 T) and cooled at specaimately 14 "Cimin (25 7/ min). The microstrucures of these steels were pearlitic. Source: Ref 6 Figure 5 Revision 1 Preparer /Date )]p31/g/g Checker /Date gfg '

File No. CPC-06Q 301 Pace 26 of 28

~

o - Ce s, a, 4,

' b ,

e a_,

REQUIRED INPUTS:

b: plate half width

=

a. marnun cracx neptn % _s u.yb)

Figure 6: Center Cracked Plate under Remote Tension Stress - LEFM Crack Model Revision 1 Preparer /Date g g/g/gp Checker /Date gp'jg ~'

File No. CPC-06Q 301 Page 27 of 28

. I l

INSIDE WALL OUTSIDE WA!.L  !

50- g  ;  ;  ;  ; g  ; j o GE 26 40 o GE 26 (4 azimuths)

F a ANL 26 (2 ozimulhs)

E o ANL 26 (IN-SERYlCE FROM XRB)

~'"

l

  • ANL 20 1 20 -

a g -

u l

I a

? m ow c e,

.c.

g-d M

o O o O 0 - r- -

3--8 o

' O *- o' c-O [ gg 5 e o a e

" -10 - o E q p.$g a E

  • oo x - yoo

-20 -

a o

- o

... , -30 -

64 e -

I I I I I I. I I i 0 0.2 0'.4 0.6 0.8 1.0 a/t i

I l

Figure 7 Axial Residual Stress Distribution for Multi-Pass Weld f rom [8] .

(Dashed line represents scaling of distribution to produce inside surface tensile stress of 40 ksi.)

Revision 1

/ Preparer /Date //[12/p/iy

'- Checker /Date /g g File No. CPC-06Q-301 ' ' Page 28 of 28 l

l E -- - --_

l l

l A nDC A. YNTV A.

pc CRACK Output Revision 1 Preparer /Date {f,)a//;[g Checker /Date y '

g/g Page Al of 33 File No. CPC-06Q-3D1 1

1

l

! tm l pc-CRACK for Windows Versien 3.0, Mar. 27, 1997 iC; Ccpyrignt '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Joce, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info 8structint.com Linear Elastic Fracture Mechanics Date: Tue Dec 16 10:49:01 1997 File: SURFANO.LEM

Title:

CPC-060: Allowable flaw size determination Loao Cases:

Case: residual --- Stress Distribution Depth Stress 0.0000 30.0000 0.1500 0.0000 0.3000 -15.0000 0.4500 -12.0000 0.6000 -2.0000 0.7500 10.0000 Stress Coefficients j Case ID C0 C1 C2 C3 Type normal 2 0 0 0 Coeff drop 43.3 0 0 0 Coeff residual 30.3653 -287.02 548.501 -268.861 StressDist )

l l

Crack Model: Single Edge Cracked Plate Crack Parameters:

Plate width: 0.7500 l Max, crack size: 0.5900 i

l - -- - - - ------- ---- --- S t r e s s I n t e n s i t y Fa c t o r ---- - -- - ----- -- - -- --

Crack Case Case Case l

l l c.Pc-o4o,m Al/u L____._________-.__-

Size normal drop residual 0.0118 0.4185 9.06053 5.92216 s_s 0.0236 0.598275 12.9526 7.87386 0.0354 0.740604 16.0341 9.04405 0.0472 0.864264 18.7113 9.76808 0.0590 0.976436 21.1398 10.1856 0.0708 1.08076 23.3985 10.3735 0.0826 1.19487 25.8688 10.5748 0.0944 1.31592 28.4897 10.7542 0.1062 1.43664 31.1033 10.827 0.1180 1.55746 33.719 10.8063 0.1298 1.67869 36.3436 10.7022 0.1416 1.80055 38.982 10.5229 0.1534 1.92952 41.7741 10.3067 l 0.1652 2.07603 44.9461 10.0972 l 0.1770 2.22516 48.1746 9.81596 f 0.1888 2.37689 51.4597 9.46745 1 0.2006 2.53123 . 54.8011 9.05601 U.2144 2.660lb 50.1986 8.b8b94 0.2242 2.84764 61.6514 8.0615 0.2360 3.04756 65.9797 7.56107 0.2478 3.2547 70.4642 6.97506 0.2596 3.46627 75.0447 6.2977 l

0.2714 3.68219 79.7194 5.53033 O.2832 3.90237 84.4862 4.67451 0.2950 4.12673 89.3436 3.73199 0.3068 4.4086 95.4461 3.13246

O.3186 4.73656 102.546 2.78244 0.3304 5.07193 109.807 2.37727

%" 0.3422 5.41456 117.225 1.92303 0.3540 5.76429 124.797 1.42617 .

0.3658 6.12101 132.52 0.893474 0.3776 6.51287 141.004 0.402307 l

0.3894 7.0141 151.855 0.106159 0.4012 7.52584 162.934 -0.256648 0.4130 8.0479 174.237 -0.6781 O.4248 8.5801 185.759 -1.14987 0.4366 9.12225 197.497 -1.66333 0.4484 9.6742 209.446 -2.20947 0.4602 10.5138 227.623 -2.82647 0.4720 11.4141 247.114 -3.62191 0.4838 12.3317 266.982 -4.59183 0.4956 13.2665 287.219 -5.72798 0.5074 14.21C 307.821 -7.02199 0.5192 15.1862 328.781 -8.46527 1 0.5310 16.6666 360.831 -10.603 l 0.5428 19.6587 403.961 -13.5'71 1

0.5546 20.688 447.895 -16.E,18 l

l c e c -c 6c - s co A3/33

l l

0.5664 22.7538 492'.62 -20.4879 0.5782 24.8556 538.125 -24.3654 0.5900 26.993 584.397 -28.4845 Material fracture toughness:

l Material ID: ANO-min  !

l Depth Kic l 0.0000 66.0000 0.3750 66.0000 0.7500 66.0000 Load combination for critical crack size: i I

Load Case Scale Factor drop 1.0000, J testuuai 1.aduu- '

Crack Total Size K K1c l 1

l 0.0118 16.937 66 l 0.0236 23.4249 66 )

0.0354 28.0627 66 0.0472 31.7029 66 0.059 34.6867 66 i

< 0.0708 37.1953 66  !

0.0826 39.9333 66 l 0.0944 42.7928 66 0.1062 45.5032 66 0.118 48.0913 66 0.1298 50.5775 66.

0.1416 52.9774 66 0.1534 55.482 66 0.1652 58.3753 66 0.177 61.2298 66 0.1888 64.0514 66 0.2006 66.8456 66 i 0.2124 69.6178 66 0.2242 72.3732 66 0.236 76.0359 66 l 0.2478 79.741 66 O.2596 83.4207 66 l

0.2714 87.0747 66 O.2832 90.7033 66 0.295 94.3072 66 l

1 c FC- c6 0 -3ct M/33

4 0.3068 99.6123 66 0.3186 106.247 66 0.3304 112.969 66 0.3422 119.783 66 0.354 126.694 66 O.3658 133.708 66 0.3776 141.539 66 0.3894 151.996 66 0.4012 162.593 66 0.413 173.335 66 0.4248 184.23 66 0.4366 195.285 66 0.4484 206.508 66 -

0.4602 223.864 66 0.472 242.297 66 0.4838 260.874 66 0.4956 279.601 66 0.5074 298.481 66 0.5192 317.522 66 0.531 346.729 '

66 0.L426 365.sv9 e6 0.5546 425.443 66 0.5664 465.371 66 0.5782 505.719 66 0.59 -546.513 66 Critical crack size = 0.1969 1

)

I

( F C - c L-G - 3 a i As-/-

t i

I

tm pc-CRACK for Windows Versien 3.0, Mar. 27, 1997

,~. C:pyr gnt '84 - '97

,. Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info @structint.com i

l Linear Elastic Fracture Mechanics Date: Tue Dec 16 10:50:55 1997 File: SURFPB.LEM

Title:

CPC-060: Allowable flaw size determir.ation Load Cases:

Case: residual --- Stress Distribution Depth Stress 0.0000 30.0000 0.1500 0.0000 0.3000 -15.0000 O.4500 -12.0000 0.6000 -2.0000

--' O.7500 10.0000 Stress Coefficients Case ID C0 C1 C2 C3 Type normal 2 0 0 0 Coeff drop 43.3 0 0 0 Coeff residual 30.3653 -287.02 548.501 -268.861 StressDist Crack Model: Single Edge Cracked Plate Crack Parameters:

Plate width: 0.7500 Max. crack size: 0.5900

________.______....-Stress Intensity Factor--------------------

Crack Case Case Case

(- f (. ~ C lc Q ~ 3 C l p'

l .

I Size normal- drop residual l

0.0118 0.4185 9.06053 5.92216 l: 7.87386

. _,e 0.0236 0.598275 12.9526 0.0354 0.740604 ~ 16.0341 9.04405 l 9.76808 O.0472 0.864264 18.7113 0.0590 0.976436 21.1398 10.1856

'O.0708 1.08076 23.3985 10.3735 0.0826 1.19487 25.8688 10.5748

'O.0944 1.31592 28.4897 10.7542.

0.1062 1.43664 31.1033 10.827 l

0.1180 1.55746 -33.719 10.8063 R

l0.1298' 1.67869 36.3436 10.7022 I E 0.1416 1.80055 38.982 10.5229 0.1534 1.92952 41.7741 10.3067 L 10.0972

_0.'1652 2.07603 44.9461 0.1770 2.22516 48.1746 9.81596-l' O.1888 2.37689 51'.4597 9.46745 0.2006 2.53123 .. 54.8011 9.05601 0.2124 '2.60u1o ~ os.190s 8.58594

'O.2242 2.84764 '61.6514 8.0615 0.2360' 3.04756 65.9797 7.56107 10.2478 3.2547 70.4642 6.97506 0.2596 3.46627 75.0447 6.2977 0.2714 3.68219 79.7194- 5.53033 0.2832 3.90237 84.4862 4.67451

'O.2950 4.12673 89.3436 3.73199' O.3068 4.4086- 95.4461 3.13246

~" Y 0.3186 4.73656 102.546 2.78244 0,3304 5.07193 109.807 2.37727 o 1.92303 l~ O.3422' 5.41456 117.225

. 0.3540- 5.76429. 124.797 1.42617 0.3658 6.12101 132.52 0.893474

.0.3776' 6.51287. 141.004 0.402307 0.3894 7.0141 151.855 0.106159 0.4012 -7.52584. 162.934 -0.256648 0.4130 8.0479 '174.237 -0.6781 L 185.759 -1.14987 l 0.4248 8.5801 h 0.4366 9.12225 197.497 -1.66333 0.4484 9.6742 209.446 -2.20947

0.4602 10.5138 227.623 -2.82647 0.4720 -11.4141 247.114 -3.62191 0.4838 12.3317. 266.982 -4.59183 0.4956 13.2665 287,219 -5.72798 0.5074- 14.218 307.821 -7.02199 0.5192 15.1862 328.781 -8.46527 ,

I 0.5310. .16.6666 360.831 -10.603 1

0.5428' 18.6587 .403.961 -13.5771 l

0.5546- 20.688. 447.895 -16.8818 t.

l i I

L PC - C 6G - 3 c l gyf3 u

l' __ .___.--___-__.-_-___________________w

. o 0.5664 22.7538 492.62 -20.4879 0.5782 24.8556 538.125 -24.3654 0.5900 26.993 584.397 -28.4845

~ Material fracture toughness:

Material ID: PB-min Depth K1c 0.0000 63.0000 0.3750 63.0000 0.7500 63.0000 Load combination for critical crack size:

Load Case Scale Factor drop 1.0000 wa.JuaA 1.350 7 Crack Total Size K Kic 0.0118 16.937 63 0.0236 23.4249 63 0.0354 28.0627 63 0.0472 31.7029 63 0.059 34.6867 '63 0.0708 37.1953 63

.s 0.0826 39.9333 63 0.0944 42.7928 63  !

0.1062 45.5032 63 I 0.118 48.0913 63 0.1298 50.5775 63 0.1416 52.9774 63 0.1534 55.482 63 0.1652 58.3753 63 l 0.177 61.2298 63 0.1888 64.0514 63 0.2006 66.8456 63 0.2124 69.6178 63 0.2242 72.3732 63 0.236 76.0359 63 0.2478 79.741 63 0.2596 83.4207 63 0.2714 87.0747 63 0.2832 90.7033 63 0.295 94.3072 63 c

l

~

)

l l .

t 0.3068 99.6123 63

! 0.3186 106.247 63 0.3304 112.969 63 I

0.3422 119.783 63 s- 0.354 126.694 63 '

O.3658 133.708 63

, 0.3776 141.539 63 l

0.3894 151.996 63 0.4012 '162.593 63  ;

0.413 173.335 63 1 0.4248 184.23 63 l 0.4366 195.285 63 0.4484 206.508 63 0.4602 223.8t4 63 0.472 242.297 63 0.4838 260.874 63 0.4956 279.601 63 0.5074 298.481 63

b. 46[7 9

' )

0.5428 385;904 63 i 0.5546 425.443 '63 '

O.5664 465.371 63 0.5782 505.719 63

, 0.59 '546.513 63 1

Critical crack size = 0.1843

. t]

@d j i

i I.

1 i

l l

l

,,.A. ,

.)

c PGC6Q - 3cl A ci ~

n l

l ____________-______a

tm pc-CRACK for Windows Version 3.0. Mar. 27, 1997 (C) Copyright '84 - '97

,,e Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info @structint.com Linear Elastic Fracture Mechanics Date: Tue Dec 16 10:52:09 1997 File: SURFSPEC.LFM

Title:

CPC-060: Allowable flaw size determination Load Cases: '

Case: residual --- Stress Distribution Depth Stress 0.0000 30.0000 0.1500 0.0000 0.3000 -15.0000

' .~N 0.4500 -12.0000 0.6000 -2.0000 W 0.7500 10.0000 Stress Coefficients case ID C0 C1 C2 C3 Type normal 2 0 0 0 Coeff drop 43.3 0 0 0 Coeff residual 30.3653 -287.02 548.501 -268.861 StressDist Crack Model Single Edge Cracked Plate Crack Parameters:

Plate width: 0.7500 Max. crack size: 0.5900


Stress Intensity Factor--------------------

Crack Case Case Case l

1 l

l

' I

./ l 1

l C fC- C6 G-3Ci ,

l Allc[33

e l

Size normal drop residual l 0.0119 0.4185 9 06053 5.92216 l

0.0236 0.598275 12.9526 7.87386 0.0354 0.740604 16.0341 9.04405 l 0.0472 0.864264 18.7113 9.76800 0.0590 0.976436 21.1398 10.1856 0.0708 1.08076 23.3985 10.3735 0.0826 1.19487 25.8688 10.5748 0.0944 1.31592 28.4897 10.7542 0.1062 1.43664 31.1033 10.827 0.1180 1.55746 33.719 10.8063 0.1298 1.67869 36.3436 10.7022 0.1416 1.80055 38.982 10.5229 0.1534 1.92952 41.7741 10.3067 0.1652 2.07603 44.9461 10.0972 0.1770 2.22516 48.1746 9.81596 0.1888 2.37689 51.4597 9.46745 0.2006 2.53123 ~

54.8011 9.05601 0.2124 2.b8815 '

D8.198D 6.bBb94 0.2242 2.84764 61.6514 8.0615 0.2360 3.04756 65.9797 7.56107 0.2478 3.2547 70.4642 6.97506 0.2596 3.46627 75.0447 6.2977 0.2714 3.68219 79.7194 5.53033 0.2832 3.90237 84.4862 4.67451 0.2950 4.12673 89.3436 3.73199 0.3068 4.4086 95.4461 3.13246

~ 0.3186 4 73656 102.546 2.78244 0.3304 5.07193 109.807 2.37727

. - - 0.3422 5.41456 117.225 1.92303 0.3540 5.76429 124.797 1.42617 0.3653 6.12101 132.52 0.89.1474 0.3776 6.51287 141.304 0.402307 0.3894 7.0141 151.855 0.106159 0.4012 7.52584 162.934 -0.256648 0.4130 8.0479 174.237 -0.6781 0.4248 8.5801 185.759 -1.14987 0.4366 9.12225 197.497 -1.66333 i 0.4484 9.6742 209.446 -2.20947 ]

0.4602 10.5138 227.623 -2.82647 4 0.4720 11.4141 247.114 -3.62191 0.4838 12.3317 266.982 -4.59183 0.4956 13.2665 287.219 .-5.72798 0.5074' 14.218 307.821 -7.02199 0.5192 15.1862. 328.781 -8.46527 )

0.5310 16.6666 360.831 -10.603 1 0.5428 18.6587 403.961 -13.5771 I 0.5546 20.688 447.895 -16.8818 l

l C PC-obO - 3 0 \ A If

0.5664 22.7538 492.62 -20.4879 0.5782 24.8556 538.125 -24.3654 0.5900 26.993 584.397 -28.4845

~' Material fracture toughness:

Material ID: SPEC-min Depth Kic 0.0000 55.0000 0.3750 55.0000 0.7500 55.0000 Load combination for critical crack size:

Load Case Scale Factor drop 1.0000, fesidudA 1.JJUV' Crack Total Size K Kic 0.0118 16.937 55 0.0236 23.4249 55 0.0354 28.0627 55 0.0472 31.7029 55 s 0.059 34.6867 55 0.0708 37.1953 55

...- 0.0826 39.9333 55 0.0944 42.7928 55 0.1062 45.5032 55 0.118 48.0913 55 0.1298 50.5775 55 0.1416 52.9774 55 0.1534 55.482 55 0.1652 58.3753 55 0.177 61.2298 55 0.1888 64.0514 55 0.2006 66.8456 55 0.2124 69.6178 55 0.2242 72.3732 55 0.236 76.0359 55 0.2478 79.741 55 0.2596 83.4207 55 0.2714 87.0747 55 0.2832 90.7033 55 0.295 94.3072 55 l

Yl

  • Cl 0 ' E0f fQl33

e  ?

i 0.3068 99.6123 55 0.3186 106.247 55 0.3304 112.969 55 0.3422 119,783 55

,, 0.354 126.694 55 0.3658 133.708 55 0.3776 141.539 55 0.3894. 151.996 55 0.4012 162.593 55 0.413 173.335 55 l

0.4248 184.23 55 i 0.4366 195.285 55 0.4484 206.508 55 f

i O.4602 223.864 55 j 0.472 242.297 55 0.4838 260.874 55 0.4956 279.601 55 0.5074 298.481. 55 0.5192 317.522' 55 0.531 346.729 ~

55 u.o4eb Jd5.904 '

53 0.5546 425.443 55 0.5664 465.371 55 0.5782 505.719 55 0.59 546.513 55

)

Critical crack size = 0.1515 l

L C PC - c6 G -3 c1 Ae ; 3 .4,

~

u___-u___.-___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . _ . _ __ _ _ _ _ __ _ _ _ - . _ _ _ _ _ _ _

l .

l t

t l tm

! pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: Info @structint.com Linear Elastic Fracture Mechanics Date: Tue Dec 16 10:52:56 1997 File: SURFPAL.LFM i

Title:

CPC-060: Allowable flaw size determination l

Load Cases- '  !

Case: residual --- Stress Distribution Depth Stress 0.0000 30.0000 0.1500 0.0000  !

0.3000 -15.0000 l l

0.4500 -12.0000 O.6000 -2.0000 i .i> 0.7500 10.0000 Stress Coefficients Case ID C0 C1 C2 C3 Type normal 2 0 0 0 Coeff drop 43.3 0 0 0 Coeff residual- 30.3653 -287.02 548.501 -268.861 StressDist Crack Model: Single Edge Cracked Plate i Crack Parameters: -

l Plate width: 0.7500 Max. crack size: 0.5900 l

l l --------------------Stress Intensity Factor--------------------

l Crack Case Case Case l

( Pc-o6G -30 I jfy/;3

Size normal drop residual 0.0118 0.4185 9.06053- 5.92216 0.0236 0.598275 12.9526 7.87386 O.0354 0.740604 16.0341. 9.04405

.0.0472 0.864264 18.7113 9.76808 0.0590 0.976436 21.1398 10.1856 0.0708 1.08076 23.3985 10.3735 0.0826 1.19487 25.8688 10.5748 0.0944 1.-31592 28.4897 10.7542 j 0.1062 1.43664 31.1033 10.827 0.1180 1.55746 33.719 10.8063 0.1298 1.67869 36.3436 10.7022.

0.1416 1.80055 38.982 10.5229

.0.1534- 1.92952 41.7741 10.3067 0.1652 2.07603 44.9461 10.0972 0.1770 -2.22516 48.1746 9.81596 0.1888 2.37689 51.4597 9.46745 0.2006 2.53123 54.8011 9.05601 v.412* i.oueto i os. Aves o.aeove 0.2242 2.84764 61.6514 8'.0615 0.2360 3.04756 65.9797 7.56107 0.2478 3.2547 70.4642 6.97506 0.2596- 3.46627 75.0447 6.2977 0.2714 3.68219 79.7194 5.53033 0.2832 3.90237 84.4862 4.67451

.0.2950 4.12673 89.3436 3.73199

-0.3068 4.4086- 95.4461 3.13246 s 0.3186 4'.73656 102.546 2.78244 O.3304 5.07193 109.807 2.37727

%1L/ '0.3422 5.41456. 117.225 1.92303 0.3540 5.76429 124.797 1.42617 0.3658 6.12101 132.52 0.893474 0.3776 6.51287 141.004 0.402307 0.3894 7.0141 151.855 0.106159 j 0.4012 7.52584 162.934 -0.256648 0.4130 .8.0479 174.237 -0.6781 1 0.4248 8.5801 185.759 -1.14987-C.4366 9.12225 197.497 -1.66333

! 0.4484 9.6742 209.446 -2.20947 0.4602 .10.5138 227.623 -2.82647 L 0.4720 11.4141 247.114 -3.62191 0.4838 12.3317 266.982 -4.59183 0.4956 13.2665 287.219 -5.72798 l

0.5074 14.218 307.821 -7.02199 0.5192 15.1862 328.781 -8.46527 0.5310 16.6666 360.831 -10.603 0.5428 18.6587 403.961 -13.5771 0.5546 20.688 447.895 -16.8818 a . i k-Chb ~3C{ k /6 33

_ _ _ - _ - _ - - - -- ._ - _a

O O.5664 22.7538 492.62 -20.4879 0.5782 24.8556 538.125 -24.3654 0.5900 26.993 584.397 -28.4845 l

'~

Material fracture toughness:

Material ID: PAL-min Depth Kic 0.0000 78.0000

{

0.3750 78.0000 i 0.7500 78.0000 Load combination for critical crack size:

Load Case Scale Factor drop 1.0000

........ ..ssov l

Crack Total I Size K K1c l 0.0118 16.937 78 0.0236 23.4249 78 0.0354 28.0627 78 0.0472 31.7029 78 gg 0.059 34.6867 78 0.0708 37.1953 78

._ - 0.0826 39.9333 78 0.0944 42.7928 78 0.1062 45.5032 78 0.118 40.0913 78 {

0.1298 50.5775 78 0.1416 52.9774 78 0.1534 55.482 78 0.1652 58.3753 78 )

0.177 61.2298 78  !

0.1888 64.0514 78 0.2006 66.8456 78 0.2124 69.6178 78 0.2242 72.3732 78 0.236 76.0359 78 0.2478 79.741 78

-0.2596' 83.4207 78 0.2714 87.0747 78 I 0.2832 90.7033 78 0.295 94.3072 78 l

l C PC- 06G -3ci 416./33

0.3068 99.6123 78 0.3186 106.247 78 0.3304 112.969 78 0.3422 119.763 78

~~

0.354 126.694 78 0.3658 133.708 78 l 0.3776 141.539 76 l 0.3894 151.996 78 l 0.4012 162.593 78 i 0.413 173.335 78 l 0.4248 184.23 78 0.4366 195.285 78 0.4484 206.508 78 0.4602 223.864 78 0.472 242.297 78 0.4838 260.874 78 0.4956 279.601 78 0.5074 298.481 78 0.5192 317.522 78 0.531 346.729 ,

78 v.meza abs.904 'd i

0.5546 425.443 78 0.5664 465.371 78 0.5782 505.719 78 0.59 546.513 78 Critical crack size = 0.2423

~s 6

we

, , . i - m..

tm pc-CP.ACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyrient '94 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info 8structant.com Linear Elastic Fractu c 'fechanics Date: Tue Dec 16 14:00:51 1997 File: SUBPAL.LEM

Title:

CPC-060: Allowable flaw sire determination Load Cases:

Case: residual --- Stress Distribution Depth Stress 0.0000 30.0000 0.1500 0.0000 0.3000 -15.0000

~~'

O.4500 -12.0000 0.6000 -2.0000

"' O.7500 10.0000 Strecs Coefficients Case ID C0 Cl C2 C3 Type normal 2 0 0 0 Coeff drop 43.3 0 0 0 Coeff residual 30.3653 -287.02 548.501 -268.861 StressDist Crack Model: Center Cracked Plate Under Remote Tension Stress Crack Parameters:

Plate Half Width: 0.3750 Crack depth: 0.3375


Stress Intensity Factor--------------------

Crack Case Case Case I

l s

C PC- C 6 Cx - 3c r . , , ::

~. --

n--_-_____ _ _ _ _ - _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ -

I l

! Size normal drop residual l

l 0.0067 0.2913 6.30664 4.4227 s- 0.0135 0.412197 8.92407 6.25825 0.0202 0.505322 10.9402 7.67213 l l 0.0270 0.584283 12.6497 8.87096 0.0337 0.654384 14.1674 9.93529 0.0405 0.718372 15.5527 10.9068 0.0472 0.777895 16.8414 11.8105 0.0540 0.834048 18.0571 12.6631 0.0607 0.887603 19,2166 13.4762 0.0675 0.93314 20.3324 14.2586 0.0742 0.989108 21.4142 15.0173 0.0810 1.03787 22.4699 15.7576 0.0877 1.08573 23.5061 16.4843 0.0945 1.13295 24.5284 17.2012 0 1012 1.17976 25.5418 17.9119 l 0.1080 1.22636 26.5506 18.6194 0.1147 1.27294 .,

27.5591 19.3266 0.1215 1.31968 28.571 20.0362 0.1282 1.36675 29.59 20.7508 0.1350 1.41431 30.6199 21.473 0.1417 1.46255 31.6642 22.2054 0.1485 1.51162- 32.7265 22.9503 0.1552 1.56169 33.8106 23.7106 0.1620 1.61296 34.9206 24.489 0.1687 1.66561 36.0604 25.2883 0.1755 1.71984 37.2345 26.1117 I

% 0.1822 1.77587 38.4477 26.9625 0.1890 1.83395 39.7051 27.8443 G' O.1957 1.89434 41.0125 28,7611 0.2025 1.95732 42.3761 29.7174 0.2092 2.02323 43.803 30.7181 0.2160 2.09244 45.3013 31.7687 0.2227 2.16535 46.8798 32.8757 0.2295 2.24245 48.5491 34.0464 0.2362 2.32429 50.321 35.289 0.2430 2.41152 52.2095 36.6133 0.2497 2.5049 54.231 38.031 0.2565 2.60531 56.405 39.5556 0.2632 2.71385 58.7549 41.2035 0.2700 2.83183 61.309 42.9946 0.2767 2.96084 64.1022 44.9534 0.2835 3.10291 67.1781 47.1105 0.2902 3.26058 70.5916 49.5043 0.2970 3.43714 74.4141 52.1849 0.3037 3.63692 78.7393 55.2181 0.3105 3.86578 83.6942 58.6928 0.3172 4.13189 89.4555 62.7331 1

cn-c&a-w Mn

I O.3240 4.44704 96.2784 67.5179 0.3307 4.82904 104.549 73.3176 .

0.3375 5.30639 114.883 80.5651 l a

Material fracture toughness: j Material ID: PAL-min Depth Kic 0.0000 78.0000 0.3750 78.0000 0.7500 78.0000 Load combination for critical crack size:

Load Case Scale' Factor drop 1.0000., '

residual '1.3300' Crack . Total ,

Size K Kic j

)

0.00675 12.1888 78 1 0.0135 17.2475 78 0.02025 21.1441 78 0.027 24'.4481 78 r'% O.03375 27.3814 78 )

I 0.0405 30.0588 78

%i# 0.04725 32.5494 78 0.054 34.899 78 0.06075 37.1399 78 0.0675 39.2964 78 0.07425 41.3872 78 0.081 43.4276 78 0.08775 45.4303 78 0.0945 47.4061 78 0.10125 49.3646 78 0.108 51.3144 78 0.11475 53.2634 78 0.1215 55.2191 78 0.12825 57.1886 78 )

0.135 59.179 78  ;

0.14175 61.1973 79 j 0.1485 63.2504 78  !

0.15525 65.3458 78 0.162 67.491 79 0.16875 69.6939 78 i

)

l e ,

.4 C P C. - C' 64 - 30( A20 33

)

. l I

l 0.1755 71.9631 78 i 0.18225 74.3078 78 l 0.189 76.738 78 {

0.19575 79.2647 78

.., 0.2025 81.9002 78

.0.20925 84.6581 78  ;

0.216 87.5537 78 1 0.22275 90.6046 78 j 0.2295 93.8307 78 0.23625 97.2553 78 0.243 100.905 78-0.24975 104.812 78 0.2565 109.014 78 0.26325 113.556 78 0.27 118.492 78 0.27675 123.89 78 0.2835 129.835 78 0.29025 136.432 78 0.297' 143.82 78 0.30375 152.179 ,

78 j 1

0.3105 161.756 78 l

0.31725 172.891 78 0.324 186.077 78 0.33075 202.061 78 0.3375 222.035 78 l

Critical-crack size = 0.1925-

. ~ ,

  • %i.

1 l

t j

/

( PC- ObG -3 c l g t o_.

r

e *

. l l

tm )

pc-CRACK for Windows version 3.0, Mar. 27, 1997 j (C) Copyright '84 - '97

_. Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 l San Jose, CA 95118-1557 l

Voice: 408-978-8200 l Fax: 408-978-8964 l E-mail: info @structint.com l L Linear Elastic Fracture Mec anics Date: Tue Dec 16 14:01:43 1997 File: SUBANO.LFM

Title:

CPC-060: Allowable flaw size determination

  1. 1 Load Cases: '

Case: residual --- Stress Distribution t Depth Stress 0.0000 30.0000 0.1500 0.0000 j 0.3000 -15.0000

' O.4500 -12.0000 0.6000 -2.0000 Ni. 0.7500 10.0000 Stress Coefficients Case ID C0 C1 C2 C3 Type normal 2 0 0 0 Coeff drop 43.3 0 0 0 Coeff residual 30.3653 -287.02 548.501 -268.861 StressDist l Crack Model: Center Cracked Plate Under Remote Tension Stress Crack Parameters:

Plate Half Width: 0.3750 Crack depth: 0.3375 1


Stress Intensity Factor-------------------- J Crack Case Case Case l l

1 1

( R-c65-ict .

A2z 33

Size normal drop residual 0.0067 0.2913 6.30664 4.4227 0.0135 0.412197 8.92407 6.25825 O.0202 0.505322 10.9402 7.67213 0.0270 0.584283 12.6497 8.87096 0.0337 0.654384 14.1674 9.93529 0.0405 '0.718372 15.5527 10.9068 )

0.0472 0.777895 16.8414 11.8105 j 0.0540 0.834048 18.0571 12.6631 4 0.0607 0.887603 19.2166 13.4762 0.0675 0.93914 20.3324 14.2586 0.0742 0.989108 21.4142 15.0173 L 0.0810 1.03787 22.4699 15.7576 l 0.0877 1.08573 23.5061 16.4843 0.0945 1.13295 24.5284 17.2012 0.1012 1.17976 25.5418 17.9119 j 0.1080 1.22636 26.5506 18.6194 j 0.1147 1.27294 ,

27.5591 19.3266 u.1413 1.31968

  • 20.d71 20.0362 0.1282 1.36675 29.59 20.7508 I 0.1350 1.41431 30.6199 21.473 d 0.1417 1.46255 31.6642 22.2054 0.1485 1.51162 32.7265 22.9503 0.1552 1.56169 33.8106 23.7106 0.1620 1.61296 34.9206 24.489 0.1687 1.66561 36.0604 25.2883 0.1755 1.71984 37.2345 26.1117 l 0.1822 1.77587 38.4477 26.9625

-0.1890 1.83395 39.7051 27.8443

-' O.1957 1.89434 41.0125 28.7611 0.2025 1.95732 42.3761 29.7174 0.2092 2.02323 43.803 30.7181 0.2160 -2.09244 45.3013 31.7687 l

0.2227 2.16535 46.8798 32.8757 j L 0.2295 2.24245 48.5491 34.0464  !

l 0.2362 2.32429 50.321 35.289 l 0.2430 2.41152 52.2095 36.6133  !

0.2497 2.5049 54.231 38.031 L 0.2565 2.60531 56.405 39.5556 l 0.2632 2.71385 58.7549 41.2035 0.2700 2.83183 61.309 42.9946 0.2767 2.96084 64.1022 44.9534 0.2835 3.10291 67.1781 47.1105 0.2902 3.26058 70.5916 49.5043 0.2970 3.43714 74.4141 52.1849 0.3037 3.63692 78.7393 55.2181 0.3105 3.86578 83.6942 58.6928 0.3172 4.13189 89.4555 62.7331 cF0 c p -3ci , f e4/:3/33

0.3240 4.44704 96.2784 67.5179 0.3307 4.82904- 104.549 73.3176 0.3375 5.30639 114.883 80.5651

~ Material fracture toughness:

Material ID: ANO-min Depth Kic 0.0000 66.0000 0.3750 66.0000 0.7500 66.0000 Load combination for critical crack size:

Load Case Scale Factor dron 1.0000 residual 1.3300' Crack Total Size K K1c 0.00675 12.1888 66 0.0135 17.2475 66 0.02025 21.1441 66 0.027 24.4481 66 s 0.03375 27.3814 66 0.0405 30.0588 66

' - O.04725 32.5494 66 0.054 34.899 66 0.06075 37.1399 66 j 0 b 25 3872 66 '

0.081 43.4276 66 O.08775 45.4303 66  !

0.0945 47.4061 66 l 0.10125 49.3646 66 0.108 51.3144 66 0.11475 53.2634 66 0.1215 55.2191 66 0.12825 57.1886 66 0.135 59.179 66 0.14175 61.1973 66 0.1485 63.2504 66 0.15525 65.3458 66 0.162 67.491 66 0.16875 69.6939 66 m

( PL- Chc -3 ci 1

429/33

j i

0.1755 71.9631 66 0.18225 74.3078 66 0.189 76.739 E6 0.19575 79.2647 66 s_- 0.2025 81.9002 66 0.20925 84.6581 66 0.216 87.5537 66 0.22275 90.6046 66 0.2295 93.8307 66  !

0.23625 97.2553 66 0.243 100.905 66 0.24975 104.812 66 0.2565 109.014 66 0.26325 113.556 66 0.27 118.492 66 0.27675 123.89 66 0.2835 129.835 66 0.29025 136.432 66 0.297 143.82 66 i b30 161.756 66 0.31725 172.891 66 O.324 186.077 66 0.33075 202.061 66 0.3375 222.035 66 i

Critical crack size = 0.1574 j

- ~ . i

_,l l

d a

l CPC-ObG ~3CI S2f 33 t -- -- - - - - - - _ _ - _ -

i tm l pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Ccpyright '84 - '97

- Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 l Voice: 408-978-8200 Fax: 408-978-P964 E-mail: info @structint.ccm y Linear Elastic Fracturc haechanics Date: Tue Dec 16 14:02:59 1997 File: SUBPB.LFM

Title:

CPC-060: Allowable flaw size determination l Load Cases:

Case: residual.--- Stress Distribution Depth Stress 0.0000 30.0000 0.1500 0.0000 0.3000 -15.0000

'~ N 0.4500 -12.0000 0.6000 -2.0000 U' O.7500 10.0000 Stress Coefficients Case ID CO C1 C2 C3 Type normal 2 0 0 0 Coeff drop 43.3 0 0 0 Coeff residual 30.3653 -287.02 548.501 -268.861 StressDist Crack Model: Center Crscked Plate Under Remote Tension Stress Crack Parameters:

l Plate Half Width: 0.3750 Crack depth: 0.3375


Stress Intensity Factor--------------------

Crack Case Case Case C PC - C26G - 3 C> l ,

r\ 1 G >-,> 1 1

1 l

Size normal drop residual 0.0067 0.2913 6.30664 4.4227

,,, 0.0135 0.412197 8.92407 6.25825 0.0202 0.505322 10.9402 7.67213 0.0270 0.584283 12.6497 8.87096 0.0337 0.654384 14.1674 9.93529 0.0405 0.718372 15.5527 10.9068 l 0.0472 0.777895 16.8414 11.8105 0.0540 0.834048 18.0571 12.6631 0.0607 0.887603 19.2166 13.4762 0.0675 0.93924 20.3324 14.2586 0.0742 0.989108 21.4142 15.0173 0.0810 1.03787 22.4699 15.7576 0.0877 1.08573 23.5061 16.4843 0.0945 1.13295 24.5284 17.2012

, 0.1012 1.17976 25.5418 17.9119 l 0.1080 1.22636 26.5506 18.6194 0.1147 1.27294 .

27.5591 19.3266 0.1215 1.31968 28.571 20.0362 0.1282 1.36675 29.59 20.7508 0.1350 1.41431 30.6199 21.473 0.1417 1.46255 31.6642 22.2054 0.1485 1.51162 32.7265 22.9503 l 0.1552 1.56169 33.8106 23.7106 0.1620 1.61296 34.9206 24.489 0.1687 1.66561 36.0604 25.2883 0.1755 1.71984 37.2345 26.1117

^

0.1822 1.77587 38.4477 26.9625 0.1890- 1.83395 39.7051 27.8443 l

- .0.1957 1.89434 41.0125 28.7611 0.2025 1.95732 42.3761 29.7174 )

0.2092 2.02323 43.803 30.7181 0.2160 2.09244 45.3013 31.7687 I 0.2227 2.16535 46.8798 32.8757 l

0.2295 2.24245 48.5491 34.0464 0.2362 2.32429 50.321 35.289 0.2430 2.41152 52.2095 36.6133 J 0.2497 2.5049 54.231 38.031 O.2565 2.60531 56.405 39.5556 0.2632 2.71385 58.7549 41.2035 1 0.2700 2.83183 61.309 42.9946 0.2767 2.96084 64.1022 44.9534 0.2835 3.10291 67.1781 47.1105 '

O.2902 3.26058 70.5916 49.5043 O.2970 3.43714 74.4141 52.1849 0.3037 3.63692 78.7393 55.2181 0.3105 3.86578 83.6942 58.6928 0.3172 4.13189 89.4555 62.7331 l

E O M27 33 l

l l _______________a

0.3240 4.44704 96.2784 67.5179 0.3307 4.82904 104.549 73.3176 0.3375 5.306?? 114.983 80.5651 '

(_- .

l Material fracture toughness:

Material ID: PB-min l Depth K1c f

0.0000 63.0000 0.3750 63.0000 0.7500 63.0000 l

)

Load combination for critical crack size:

Load Case Scale Factor drop 1.0000, residual 1.3300'  ;

1 l Crack Total Size K K1c 0.00675 12.18P8 63 1' 0.0135 17.2475 63 O.02025 21.1441 63 0.0?7 24.4481 63 1 0.033V5 27.3814 63 i 0.0405 30.0588 63 l

'  : >' O.04725 32.5494 63 0.054 34.899 63 0.06075 37.1399 63 0.0675 39.2964 63 O.07425 41.3872 63 0.081 43.4276 63  ;

0.08775 45.4303 63 0.0945 47.4061 63 0.10125 49.3646 63 0.108 51.3144 63 0.11475 53.2634 63 0.1215 55.2191 63 0.12825 57.1886 63 0.135 59.179 63 0.14175 61.1973 63 1 0.1485 63.2504 63 l

0.15525 65.3458 63 l 0.1E2 67.491 63 1 0.16875 69.6939 63 C PC - 06G-30i 4 2 x- t;,;,

l 1

l l

0.1755 71.9631 63 0.18225 74.3078 63 0.189 76.738 63 0.19575 79.2647 63

- 0.2025 81.9002 63 0.20925 84.6581 63-0.216 87.5537 63 0.22275 90.6046 63 0.2295 93.8307 63 0.23625 97.2553 63 0.243 100.905 63 0.24975 104.812 63 0.2565 109.014 63 0.26325 ' 113.556 63 0.27 118.492 63 0.27675 123.89 63 0.2835 129.835 63 0.29025 136.432 63 0.297 143.82 63 0.30375 152.179 ,

63 U.J103 161.156 63 0.31725 172.891 63 0.324 186.077 63 0.33075 202.061 63 0.3375 222.035 63 Critical crack size = 0.1478

'g.

1 s>

p  % e *  %

tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84 - '97

_, Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info @structint.com i

Linear Elastic Fracture Mechanics Date: Tue Dec 16 14:03:52 1997 File: SUBSPEC.LEM

Title:

CPC-060: Allowable flaw size determination Loaa Cases: '

Case: residual --- Stress Distribution Depth Stress 0.0000 30.0000 0.1500 0.0000 0.3000 -15.0000

' ~'

O.4500 -12.0000 0.6000 -2.0000

-" 0.7500 10.0000 Stress Coefficients Case ID C0 C1 C2 C3 Type normal 2 0 0 0 Coeff drop 43.3 0 0 0 Coeff residual 30.3653 -287.02 548.501 -268.861 StressDist Crack Model: Center Cracked Plate Under Remote Tension Stress Crack Parameters:

Plate Half Width: 0.3750 Crack depth: 0.3375


Stress Intensity Facter--------------------

Crack Case Case Case

( fl- OG G -k ' .

i 1,_ .: / 2. )

Size normal drop residual l

0.0067 0.2913 6.30664 4.4227

_ ,, 0.0135 0.412197 8.92407 6.25825 0.0202 0.505322 10.9402 7.67213 i

O.0270 0.584283 12.6497 8.87096 0.0337 0.654384 14.1674 9.93529 0.0405 0.718372 15.5527 10.9068 0.0472 0.777895 16.8414 11.8105 g 0.0540 0.834048 18.0571 12.6631 0.0607 0.887603 19.2166 13.4762 0.0675 0.93914 20.3324 14.2586 0.0742 0.989108 21.4142 15.0173 0.0810 1.03787 22.4699 15.7576 0.0877 1.08573 23.5061 16.4843 0.0945 1.13295 24.5284 17.2012 0.1012 1.17976 25.5418 17.9119 0.1080 1.22636 26.5506 18.6194 0.1147 1.27294 ,

27.5591 19.3266 0.121o 1.31968 2e.o11 20.0362 0.1282 1.36675 29.59 20.7500 0.1350 1.41431 30.6199 21.473 0.1417 1.46255 31.6642 22.2054 0.1485 1.51162 32.7265 22.9503 1 0.1552 1.56169 33.8106 23.7106 I 0.1620 1.61296 34.9206 24.489 0.1687 1.66561 36.0604 25.2803 0.1755 1.71984 37.2345 26.1117

~'- 0.1822 1.77587 38.4477 26.9625

. 0.1890 1.83395 39.7051 27.8443 j

/ 0.1957 1.89434 41.0125 28.7611 0.2025 1.95732 42.3761 29.7174 0.2092 2.02323 43.803 30.7181 0.2160 2.09244 45.3013 31.7687 0.2227 2.16535 46.8798 32.8757 0.2295 2.24245 48.5491 34.0464 0.2362 2.32429 50.321 35.289 0.2430 2.41152 52.2095 36.6133 0.2497 2.5049 54.231 38.031 0.2565 2.60531 56.405 39.5556 0.2632 2.71385 58.7549 41.2035 0.2700 2.83183 61.309 42.9946 0.2767 2.96084 64.1022 44.9534 0.2835 3.10291 67.1781 47.1105 0.2902 3.26058 70.5916 49.5043 0.2970 3.43714 74.4141 52.1849 0.3037 3.63692 78.7393 55.2181 0.3105 3.86578 83.6942 58.6928 0.3172 4.13189 89.4555 62.7331 C PC -obG -3Cl .

A 31 33

!~

0.3240 4.44704 96.2784 67.5179 l 0.3307 4.82904 104.549 73.3176 0.3375 5.30639 114.893 E0.5651 a

Material' fracture toughness:

Material ID: SPEC-min I Depth Kic {

{

0.0000 55.0000 l 0.3750 55.0000 0.7500 55.0000 l Load combination for critical crack size:

Load Case Sc' ale Factor drop 1.0000, resicual 1.3300 Crack Total Size K K1c

, 0.00675 12.1888 55 l

0.0135 17.2475 55 0.02025 21.1441 55 0.027 24.4481 55

<^^ 0.03375 27.3814 55 0.0405 30.0588 55 l u 0.04725 32.5494 55 l

0.054 34.899 55 O.06075 37.1399 55 l 0.0675 39.2964 55 0.07425 41.3872 55 0.081 43.4276 55 0.08775 45.4303 55 0.0945 47.4061 55 0.10125 49.3646 55 0.108 51.3144 55 0.11475 53.2634 55 0.1215 55.2191 55 l 0.12825 57.1886 55 0.135 59.179 55 0.14175 61.1973 55 0.1485 63.2504 55 0.15525 65.3458 55 0.162 6.'.491 55 0.16875 69.6939 55 l

I

'n c F C. - c L:G -2 :.

A32/n L__--__--___

l D.1755 71.9631 55 0.18225 74.3078 55 0.189 76.738 55 0.19575- 79.2647 55

%.- 0.2025 81.9002 th ,

0.20925 84.6581 55

(

0.216 87.5537 55-0.22275 90.6046 55 0.2295 93.8307 55 0.23625 97.2553 55 0.243 100.905 55 0.24975 104.812 55 0.2565 109.014 55 0.26325 113.556 55

'0.27 118.492 55 0.27675 123.89 55 0.2835 129.835 55 0.29025 136.432 55 0.297 143.82 55 0.30375 152.179 55 0.3105 '

161.756 55 0.31725 172.891 55 0.324 186.077 55 0.33075 202.061 55 ,

0.3375 222.035 55 l

! l Critical crack size = 0.1208

[ ca w f

I de *'

f 1

G fC- C 6C -3ci as ,  !

n>> , ]Li

v I

l l

i l

l 1

APPENDIX B Design Input from Consumers Energy

.m, 2./

Revision i s Preparer /Date ,)

N j g/);,/ .

Checker /Date p'/A ..

File No. CPC-06Q 301 Page BI of ll

CPc- or.9 -ao)

ConsumersEnergy 3 '

~-,-n . - - - - . - - - . . . . _,, -_.

~ A cMspery cmm patisa:es twear mant 2??S2 Bse Star Memoriao H.gnnar W ert. MI49043 November 12,1997 Mr. Hal Gustin Structural Integrity Associstes, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557

SUBJECT:

Flaw Analysis Inputs Dear Hal' m

This letter transmits design inputs Dr use in the flaw analysis beirig provided under purchase order C0025456. The specific design inputs shown below are enclosed.

e Safety Analysis Report for the Ventilated Storage System, PSN-91-001, Rev 0, dated October.1991, Table 11.21, Summary of Stresses (ksi)in the MSB Resulting from the Hypothetical Horizontal Drop. The limiting event for the structural lid weld is the horizontal drop accident, which is considered to be an emergency / faulted event.

  • Safety Analysis Report for the Ventilated Storage System, PSN-91-001, Rev 0, dated October 1991, Table 3.4-5, MSB Maximum Stress Evaluation.

e Certificate of Compliance ( C of C) for Dry Spent Fuel Storage Casks (No.1007), l effective May 7,1993, Section 1.2.13, Minimum Temperature for Moving the MSB.

  • Certificate of Compliance ( C of C) for Dry Spent Fuel Storage Casks (No.1007),

effective May 7,1993, Section 1.2.14, Minimum' Temperature for Lifting the MTC. j Certified Material Test Reports (Lot No. 32039 and 38380) for the weld material used on l

the structurallid welds in MSB's 1-13 are enclosed. The CMTR (Lot No. 51122) for the weld material to be used on future structurallid welds is also enclosed. The cask structural 1:d welds will remain in the as welded condition following welding.

I Please give me a callif you have any questions.

l Sincerely, Emil A. ernick 7 l Engineering Lead -Dry Fuel Stcrage .5 N '

RECE!VED N1114l937 I

C/T-G66-h STRLCniRAL M G ITI

{

)

TGLE 3.4 5 l rj j MSB 5tW51U51 STRESS EVALUATION

~

C roner.t Stresses CALC 1'L-\TED VALUE. KSI'

w cut l wucHT ratsscaz mtawa. womo me u,e l 0.1 0.1 N/A 0.9 1.1 :0.5 P.

N/A 2.4 3.7 30.7 MSB Shell P, + P, 0.1 1.2 2.4 4.7 61.5 P+Q 0.1 1.2 1.0 Bottom P. 0.02 0.06 N/A 1.0 1.1 20.5 Pc + P, 0.02 1.7 N/A 1.5 3.2 30.7 Plate ,, .,., 4 g,,

., ,. o. . ,.

rev 5.w. .. ...

Top Lid P. 0.0 0.0 N/A 0.1 0.1 20.5 Pc + P, 0.0 0.4 N/A 0.2 0.6 30.7 ,

0.2 0.2 0.8 61.5 l P+Q 0.0 0.4 1 l

0.1 0.2 N/A 0.9 1.2 20.5 Bottom-to- P.

Shell 0.1 1.7 N/A 1.5 33 30.7 Pc + P.

61.5 1.5 4.8

.q unction T P+Q 0.1 1.7 1.5 t

. . -s

& ap-to-shell 0.0 0.06 N/A 0.2 03 15.4 P.

0.4 N/A 0.2 0.6 23.1

. unction Pt + P. 0.0 1.0 46.1 P+Q 0.0 0.4 0.4 0.2 N/A 1.8 1.9 20.5 Sleeve P. 0.05 N/A N/A N/A 2.1 2.2 30.7 Assembly Pc + P. 0.05 2.1 54.2 61.5 P+Q 0.05 N/A 52.0 03 0.2 N/A 03 0.8 15.4 Shield Lid- P. 1.5 23.1 03 0.5 N/A 0.4 to.Shell Pc + P. 46.1 13 0.4 2.8

-Weld P+Q 03 0.8 N/A 03 0.7 15.4 Shield Lid P. 0.4 N/A 03 0.7 23.1 Support Pc + P, 0.4 N/A N/A 0.0 03 0.7 46.1 !

Ring Weld P + Q- 0.4 N/A

  • Values shown are maximums irrespective of location 1

. r be 1

3 - 35 Rev.' 0

k l e

- i ib 1 a 05 0. S 0. 5 H. I. d 51

0. 5 0. 5 Mw 93 93 9 L 93 93 t 3 5 5  :

35

- S o 47 47 47 47 47 Al l A

l a 53 0. 0 6. 33 4. 06 1 3 66 2. 3 3. 4 7 3 t 1 o 96 63 2 2 2 4 9 2 24 27 4 24 T

M O

R

- F e

G

- r 6 u 6 27 0 4

- N - s s

3 7 1 C1 2 0. 4 00

0. 0  : t i - 0 t

e

2. 8 uo I I TO er 41 I 1 L P U R S D E L RA B T SN l a

A AA MO m A A A

/ /

A A

/ / //

r Z e

/

N

/

N N N N N NN 1 EI h 2

- l R I 1 nO

\ I 1 N H E I L

L )

A

,- ( B i ksC A

t AA T

(1 I W A A A A A A //

SE El 4

/

N

/

N

/

N

/

N

/

N

/

N NN Sn S'

e D

EO RP TY SH d a

FE o l

OH p 9. 6 9 6

9. 8 46 4. 6 1 p
6. 9 1 o

9 0 YT 7 24 o 54 2 2 2 20 94 51 r 24 2 -

27 4 R D 24 d A ht e

M M i U

S . . d

~

P P P P P P d P

. P+ P+t .

P+

/' .

P+o

. l P+ P+ .

P+

P i P

P P P P P i h

i t d e

t 1

a k e

i L

a,-

a r t

=-

l P t u

l l

I W k e

d c

p c m W d m  !

k o it m o l l

u c t p ck t

e t ie o t r1 i o o h C B o h S

t S1 1 h S B T SW i .

- 3

. ' i '

h 2 Sf C

- g si c2. o

~

)

1.2,13 Minimum Temperature for Moving the MSB Limit / Specification:

Movement of the M5B inside the VCC 111 only :e aihec a:

. ambient temperatures of 0 8F or above.

Objective: To avoid the potential for brittle failure.

Action: Confirm that the ambient temperature is above 03 F immediately before moving the MS8, while inside the VCC. j Surveillance: The ambient temperatures shall be measured before movement of the MSB. ,

Basis: Each MS8 shell material will have shown, during fabrication, by Charpy test (per ASTM A370) that it has 15 ft-lb of absorbed energy at -50' F; and, therefore, movement of the MSB at temperatures above 0 8 F will avoid the potential for brittle fracture. Calculations show that the M58 shell 4' minimum temperature will be substantially above the ambient temperature (e.g., 20 'F for 25-year-old fuel). However, for  !

conservatism and simplicity, it is recomended that the ambient be selected as the minimum MSB movement temperature. ,

It is highly unlikely that any MS8 movement activity would  !

take place at temperatures below zero. Nevertheless, if movement at a temperature below that specified is necessary, calculations (similar to those presented in Chapter 4 of the SAR) may be used to estimate the minimum MSB shell temperature l

for any particular ambient condition.

t l

s

s. #

A-28 dlC Cb(S-3C! [35

l l

1.2.14 Minimum Temperature for lifting the MTC

-s Limit / Specification:

The MTC shall be allowed to be u:ed to move the MSB if the ambient temperature is 408 F or above.

Objective: To avoid the potential for brittle failure.

Action: Confirm that the ambient temperature is above 40 0F before

- moving the MS8 inside the MTC.

Surveillance: T,he MTC ambient temperature shall be determined before movement of the MSB in the MTC.

Basts: The MTC material will have shown, during fabrication, that it i

has 15 ft-lb of absorbed energy at 08 F. Having Charpy test results, at O' F, which show ductility (or other appropriate test to show that the Nil Ductility Temperature is lower than 08 F), will avoid the potential for brittle failure when the

  1. cask is moved at 40' F or higher. The MTC shell will have a temperature higher than ambient due to the heat source from the irradiated fuel. However, for conservatism and simplicity, it is reconnended that the ambient temperature be used as the minimum shell temperature. If movement at lower temperatures is ever required, additional specific analysis or other actions that meet the approval of the NRC must be provided.

e l .

l v

A-29

( f( -:$ G '

' 0;

n,- _ , ~ ~ . e.,.w BENE 511'POMBSG0032319E UELD87AA NUCLEAR SHIPP8MC:TZCIET W911411 r LVf.J.

a v ...,.

.. ~.a.: m . m n i Alt 0Y R'0DS'CORPORAT10N CERTIFICATE OF A'IALYSIS hf P.O. BOX 517/1500 KAREN LANE HANOVER, PA 17331 p)'

CERTIFIE[ N N TEST REPORT h VELDSTAR COMPANY Customer Order No.: 2244A-A

-f 1730 MITCHELL ROAD order No.: 144017-1

'.. AURORA. IL 60504...

This Material Conforms to Specification:

' 3 -r t ;..,. 4 %M ASHE SFA 3.20 SEC IU PART C & ASHE SEC III SUBSEC

'.4 ,..Q: 4.

HB FOR CLASS,1 MATERIAL 1989 ED., 1990' ADD.' ASHE Trade M, M f#.M F e b. S STA 3.01

.'f or Trademarks;Dus1' Shield II470 4~'0.g,%Ws CLASS;T2(;SCH.

'- ' . 'MV E.10 CTR PART y 21. APPL

" Diameter.Sizelf.045*.a 25# Spool 3 igTypes E717-1  ?

. Test'Mols.2-19406-00'i.f $[;.,f..h.? _

~

'pg..) Weightaj7.200 '1bs. -Q;::,./u@d, Type Steel.

4 t.lhambers; 32039 0/- v.t. fp@ X-Raystsatisfactory Pa.f r 4 .J-A-285 ,

Carbonti,y .06 MN  :. .ii fd)4F .4didr ..:

Hanganese Full 3 Split ' Trip ' quad;p.,rVolts * ' AmpsMW-fd ; , .:. 'i~-

romium 24g($;

04;tsi, gheg Nickel J Ol'Y',93 -;dS,5 - g =3,,,,, , .

g,,, ,, . 2 6 ?~,250** gpagt4T!.9 1DC & W i;;, 77," .', , . . ag 3111 16iinbi,com 2, 4 i +5.g y-gy y;f3: ge,..- a eTest a.. w 3tres "talan n tasultss? Wel 1 talleWit ~ . -

lyM '*2Yield W. 8'E 'e N ' #Mw.

Qge 00 ...

72 90 *N ensila 400 16n T ,

00 t

- anadi a ts est 's bO. .

3 ans EiskE Fillets: is-r**1 material =r s .rri pertifia'd,1, e =J. e t w S O seants.a. Ay ta s. f sotenn==st one11tr sveta i c= stsses. .s. one-art peo 322*and/or Aus/sta tretine e Ly1 pews * == tsp % m@==tati.at;pse repers are van

'~

u. L'in e u.tsau per m tractais'ar~e'y pe.cssp.4 la*jamp1Medta

~

ramenta of the petwsaz"'speel 1 eft 1Weid'ame nel ~~~ ressais' '1 Code Sectied*!!! Division'rl' ' ' an. pCAO before no '

sensert 12th de ~ f' June 19e2 A2. tor ampomance a se _

,og.amata servsons LINDA C. MYERS,' NoNOTARLAL BEAL 7"f"ubil Penn TownshiptYork ~un Commission Esolreii Apr$g gs

~ 1 .

e s '

  • .t ., .

5 y > % 6t.5 M iiT*iF ?itK i'ae,m q Q n'M W4K. ~s  ::

r-

~{/ -)

.. ..s ... ,- , - ; .-- .  ; . .

Id. W l (di.j'fl '

,(.

~ $ dis Y$M, 'g

~

g.  ;

-, D m 9;g - -  ;

l

! 9 4,p3 py_ j %;*r. - - e -

,g.,, ,,g 5 r .

~~ .. , - m - ..

< a. .

,J . >' NG%g4fgM* K,h - 1

  • ba,;.~ ^$g

. , ary g>r g+ e

.ru nawa .

u -,e 4 w, w >

n e

't @dl  ! '

, h g ,NN,5if S e yi$

. an. ~ igentgiJ. d$.fdec M *~ -

\

M * -

o .

V1Wi j a,g9 yn an y,, -, a 3_agcn Awse z >ps.,. ap e .w .

n.?

, s w m ,

S. .3 w s[I.g3 s [ 3 ,,

s g x fw,3

? iki p e

u p,,p*3 %' M v;ga 8(

y4Mg B

4 , g-i8tbiff ,g :isg , .

it; p, d ~

  • jtWV O W

! &jg,jb 0%vr6gl i g

f F p y : L,E lpg}c j ppqy am g no gq wn447 y 4- -~ q& gyp q 4l /,I p3 f g_, y a

. t. , y. 4,o ye, qvyw g c 'V A. 'i nutAr  %~ g24ag&M p$..f W,- P.

p,p e

~

c.n .

q p & 4

& y&t ,'F? 3 &*g SNYY' jl _ &

we en ga p t

, meeq46$(}; iuy

-. g s ie n a d ,Jg t s g r g qqpugwp 1 g ,

i ee

%jng.C f % .P - ,? y A t @ y F ig- fj;@ l $ M .- h g [ x.

t hA $2#- g 7 9 7 $$tfP $ $

M

'4 w< m ) Wm35 ell.4s .,_ __

f A. 7_. ,,,

DY 1$sii$wghyp$k$*N

$w..x,(Db.a_.___a%rg J

.. ~

'b - _y.- .a S k L% , . _ , , _?.; , .= ,., f . _

.____e.,_ _Eob..

) * ^-~+ _=&_..__..-.,._.___,4 I ' '

Y-~~2 ~~~~_ ~_**[*S ___. [ f j] =

G]gy J

p me-en$f h .u,,.n p) E 'amL

~. m-s.

brd59d5MNhl*!r_7&X.~U s

O n 's -

lm l [s5N

o OLD VALUES...NEW IDEAS

- ;'{- . -

l  %. . . c."' u ,

~ ~ G -

1936 1996 Years P.O. BOX 1150 + AURORA, IL 60507 1150

  • PHONE (630) 859-3100 j CERTIFICATE OF COMPLIANCE ISSUED August 22,1997 CUSTOMER: Consumers Energy 1 CUSTOMER PO#: 00238240 SHIP TICKET #. N917295 DESCRIPTION: 495 lbs. spooled wie (33# spools) ESAB r ,o y,,r,1 m r nwnyr mertn Lot #51122 )

The attached CMIRis), one copy per item, covers the matenal shipped assmst the above referenced purchase order 01mber v

The abow matmal wal meet code requanments of ASME Sectaco II, Part C and Sectxm III 1986 Ediuon through 1988 Addenda,NB2400 fu Clan 1 mecenal, with special impact properbes of 15 Mbe muumum absorbed ecergy at-50' F, and the requnwrnrns ofASME Boiler and Pressuri Vessel Code current edcaan and addenda for Section II, C, SFA 5.20. and is in ec:::pliance with the above referenced purchase order number, We cert:fy that the matenal shipped has been handled in compliance with our identibtian and ven5cauco program.

All vendors on Weldstar's approved vendor list have been audited by Weldstar.

Weldstar's Quahty Assurance Pmgram Revision K, dated November 12,1996 meets the requirements of ASME Section III, NCA-3800,1995 Edition.

The provuiens ofNRC 10CFR Part 21 apply to this order.

6/

\[

p -~

UMr' QUALITY AS CE 'AGER C K -c GG ~u i y' ' ,

1750 MITCHELL ROAD, AURORA, IL 60504-9594 PHONE (630) 253 3100 1000 E. MAIN STREET, LOGAN 9 PORT, ;ND. 46947 5011 PHONE (2 i9) 7221177 2650 BCND STREET. UNIVERSITY PARK, 'l 60466 3181 PPCNE (7C8) 5N.5561 4 %fb,W.9.+de q p.9ti;e.t ? *.Mf; 57.y . y ,3.;.3;l.,..  ;

g m u g y ;...;, 2 ._ .,. . ;.,; , ; .. .; ; .-

M ~c7 97 69:13 FRCr1:ESM QC 71769' M TD: 6 TR gg {

l TEST 180. 2-27679-00 ~

l l Page 2 Charyy V-Notch Impacts Tasted e -50*T. (As-Velded)

Ft. Lbs. 77-84-85 l Lat. Exp. 59-66-66 I Shear 50-50-??

GLTr'rtTirs METHOD HTDtDGEN ANALYSIS

1. 3.1 ML/100 0 07 WILD MITAL 4
2. 3.1
3. 2.2 4 3.1 I

2.9 AVERAGE err ARC VOLTAGE 26 AMPERIS 230 DC+

c e c - c 6 u, ,Sc ' b9d,/o

, i I

I I

i 1

l i

s- l l

l l

l APPENDIX C w aivaup i;iaw vetaiis

! Revision 1 Preparer /Date  ;);j r/,-is; l Checker /Date ,g ./A l File No. CPC-06Q-301 l Page Cl of 5'

A l t

n - S e

m e

m3

  • W fo c

r A n

' L F

i p R e

u d-e ymz g&

L A

k c

w/,D '

t I

T e

n N o i l

r E Q;O e

t n R M

e ,

C Ai i g E %.a E dl e , F S W ..

M F gQ U

D ,G' C

R s I C

e d

a s d i

i L l

a w l

a a r i F

P t u

c u

t r

S t

& c :i y r /

i A

DA 4 t ,

n p

e 3 n -

u u )- .

e y m tom 2" ?.-

r .

o

- f n

k i Rle - t.

0 c ld o W e

l

.i 3

7 M 3 S Ai i mMEaa e I'

S -

F .'

D s

e d

a s d i

i L l

a l a

r P t i

i c

n i

t r

S i\

i, i

(

' ,l

- i f

i

O _ -

@lL -

g_ -

M@ @

M@ e -

"@ gE- -

p t n

e u-n e

c r

' l o

k f n @ -

c i

e -

R L

o d l

e = W M W 'G u

s u @D _

m g- A 1

S @ m. n -

F l

i R-l e A h

D "

6 Nm. @- i g-n- S B k p

c u-i t

n o

s _ k -

c S o c e

e ~

_B- a- Me m

d a

5 0

3./ _

ht n

o S

g _@

s 0 i

l a @

@M -

8 1

ih i

t n

P @ M_

d w

e t

a c

o

@m -

l e

@ u_ -

b t

o

- d e

e - n l

m m

m u

s

@ @- - lap n

le - e r

h a S -

f o

e la s

w g - F 4

d E D C

p _ -

o T ' N s

c

al O c ')^ '

'k .

_ m f

t

_ h * "

g 5" 5" i" " " " 5 5" " 5" "57 5* 5""57" 5 5" 5" "

He57"00112" 5 5" 21 57*

001 122001" 1 22001 1221 "

1 3"" "45123

)))

l l l iiaaa i l l ddd aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa l l l l l l l l l l l l l l l l l l l l l l l l l l l l iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiRRR t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t n neeeeeeeeeeeeeeeeeeeeeeeeeeeeee nr nr nr nr nr nrnrnrnrn rn rn rn rn rn n n n n n n n n n n n n n n (e (e (e r r r r r r r r r r r r r r r sss ior t

eeeeeeeeeeeeeeRfeeeeeeeeeeeeeeer af f f f f f f f f f f f f f f f f f f f f f f fr f frf f eee n mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmvvv t

sss

_ ie uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu cccccccccccccccccccccccccccccc r r r r r r r r r r r r r r r r r r r r r r r r r r iiiir r r r nnn aaa riiii i iiiiiiiiiiiiiiiiiiiii r r r OCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCTTT kkk e kkkkkkkkkkkkkkkkkkkkkkkkk

_ cccccccccccccccccccccccccgF cccFFF aaa

_ paaaaaaaaaaaaaaaaaaaaaaaaa yr r r r rrr r r r r r r r r r r r r r r r r r rl aOr r rOOO TCCCCCCCCCCCCCCCCCCCCCCCCCSLCCCLLL

)

e S

I l

o T h A s s

T e E c D c a

W e v

A l a

L v

^

F r a

e

( neeeccc e cc ee gggggg eeeeeeeaaa cccccccfff aff c aa ggggggiiiiiikkkkkk r r rf r r nnnnnn aaaaaaauuur f ff ffff sss u uunnnnnn i i i i i i aaaaaa ggg r r r r r r r uuuuuuu ddd s ddaaaaaar sskkkkkk eeeeee r r r r r nnn iii sssssssiiidiieeeeeebbbbbb kkk gl dddddddwww wi wwbbbbbbeeeeee ll eeeeeeaaaaaa aaa l l l l t r r r r r r n il i l l i i l il li il cccccc eee r r r lo ooo ol oo bbb wwwwwwwl l eeel l eeccccccf ff f rff r r r r r eee l ooooooo bbb ebbaaaaaauuuuuu l l l l l l ccc 5.

eeeeeee*

bbbbbbb55" 5 "5 b" 5 5" uuuuuu ffr frf frf r r r ssssss ,,,,,, aaa ff f ly 000000 ssssssZZZZZZ r r r et 5" 5" 5" 5 5" 5" 5"

,AAAAAA uuu t 0000000 , , , ,

,,ZZZZZZ HHHHHH sss a ZZZZZZ HHHHHHldddddd

,AAAAAA AAAAAA d d , ,

leeee, imx ZZZZZZZ AAAAAAA HHHHHH dddddd l l l eeeeee le wiiinnn l l l l l r r r or r

HHHHHHHlddddddl l l l l l l eeeeee l l l l wwwwww wfoeee t t t pp pa lddddddd eeeeeewwwwwweeeeeef ennn a l l eeeeeee l l l l wwwwww eeeeeeiiiiiisssssseiccc dddddd o d eee eb wwwwwwweeeeeedddddd s b l l ll l l l id l ldddddd eeeeeeeiiissssss ddddddiiiiiissssssleeeeeesl iii l l l l eeeeeee l l l l l dl lu dddddddiiiiiii l l nsssssss leeeeee l

l l l ll l l l ddddddhhhhhh iiiiiissssssis l l l l l l

,,,,,,l dh wwwwww , , , , ,

h oh i

t o d dl dliil i i d dl d d hlissssss i i h h h h h m,m,m,m m m m m m m m m e,e,m m m m m m, l l s

l a ,,,,,,,,,,,,,t cpppppppppppppt tt t t t tt l

oooooooooooodd t t oooooo t t tt tt tt t tt tt t t tt 03 3

t t t t t ddt t t ooooooooooooooooooooooooooi: oooooo LTTTTTTTTTTTTTBBBBBBBBDBBBMMBBBBBB 1 ss j' w .......

w a ........ .01. 2345678901......2345678901 23 la

_ l 22222222223333 FF F1 234567891 1 1 1 1 1 1 1 1 1 q

G3 ,

~

N

( yT > i e t '

p Q '- .

t

. s

/ -A - i u s ; j i

_ - _ 3 . i iw .

f ..

j~ .

\

yyg7gggy n =. ~ ... . -~

I2-l*

hub

&b i November 26,1997 5%1 SNC 97-121 Q

l l

l Mr. Timothy Kobetz  % f U.S. Nuclear Regulatory Commission wgT_@ l i

11555 Rockville Pike Rockville,MD 20852 b%

l

Subject:

Hardcopy Transmittal of Calculation Package CPC-06Q-301; Attachment to Response to Question 4 of Request for Additional Information Concerning l CAL 97-7-001 l Dear Mr. Kobetz f1 l Sierra Nuclear Corporation (SNC) submits the attached hardcopy of calculation package CPC-06Q-301; as part of the response to Question 4 of Request for Additional Information concerning CAL 97-7-001. Should you or the Commission have any additional questions l please contact me at Sierra Nuclear Corporation (SNC); 408 - 438 - 6444.

Respectfully, I l

W t Kay occkel j M er, Licensing l

l cc: G.Dixon, J.Massey; LicRile; c:\ltr\nrcrai4 k

a pO

,

  • s  ;

G .

STRUCTURAL CALCULATION FILE No: CPC-06Q 301 INTEGRITY Associates,Inc. PACKAGE PROJECT No: CPC 06Q l

l PROJECT NAhE: Analytical Support for Dry Spent Fuel Storage Activities l

l CLENT: Consumers Energy (Palisades Nuclear Plant) l l CALCULATION TITLE:

Allowable Flaw Size Definition for VSC-24 Dry Storage Cask Structural Lid to Shell Weld l

l PROBLEM STATENENT OR OBJECTIVE OF THE CALCULATION:

Develop Weld Flaw Acceptance Criteria l

l l

Project Mgr. Preparer (s) &

Document Affected Revision Description Approval Checker (s)

Revision Pages Signature & Signatures &

l l Date Date j 0 1 - 24 OriginalIssue p[ Q //p 11/7$/f f j Appendix A "/r r/t t 47 l &B , lif2 1

l SIC-97-039 Page 1 of 24

', i ilu ^R 20 pp.

1.0 INTRODUCTION

The purpose of this calculation is to develop acceptance criteria for flaws which may be detected in the structural lid to shell welds of spent fuel dry storage casks at Palisades, Point Beach, and ANO Nuclear Plants. The geometry of the structural lid to shelljoint is illustrated in Figure ' [1]. {

For the casks which r.re currently in service, nondestructive examination of these welds has included dye penetrant examination of the root and final welded layers. No volumetric examination of these welds has been performed in the past, but the plant owners are considering such examination as a result of discussions with the NRC.

2.0 CODE APPLICABILITY In the present analysis, the methods of ASME Section XI,IWB-3600 and Appendix A [2] are used

, to determine allowable flaw sizes under the limiting loading conditions. IWB-3600 and Appendix  ;

l A are directly applicable to Class 1 vessels (such as reactor vessels) and piping. Although the dry fuel storage casks are Class 2 (NC) vessels, Section IWC-3600 is still under development, and Section XI permits the use of IWB criteria for flaw evaluations.

Section XI flaw evaluation criteria are directly applicable for evaluation of flaw indications detected in the structural lid welds of casks which are already in service. Its applicability is less clear for examination results for new casks. However, for examinations of structural lid welds which are performed immediately upon completion prior to putting them in service, it is SI's opinion that the rules of Section XI should still be applied, in lieu of Section III rules. Although a loaded cask is not formally considered to be "in operation" until it is successfully transferred to the storage pad, the cask is performing its design function in a difficult to reverse manner once fuel is loaded and the shield lid and structural lid are in place.Section XI provides more extensive methods for the Revision 0 Preparer /Date yp/g17 Checker /Date [ .,; . , . -

File No. CPC-06Q-301 l Pace 2 of 24

evaluation of defects dewted by volumetric examination, and volumetric examination of the structural lid weld itamediately following completion forms a baseline for any subsequent inservice inspections by similar methods.

l l

3.0 LOAD DEFINITION l

l Table 1 (1) provides stress data for the structural lid weld under the horizontal drop accident. This l

l event is considered to be an emergency / faulted class (service level C/D) event. Table 2 [1] presents stress data for normal operating events. By comparing the Tables, it can be seen that at the

<mrninil tid wald. the norel ewating ctreues are cienificantiv lower than the stresses which are l predicted to result from the horizontal drop event. Therefore, the horizontal drop accident is judged

, to govern the critical flaw size determination.

l l As shown on Table 1, the horizontal drop event produces the following stresses in the stmetural lid-  !

to-shell weld: I i i

! Pm = 7.2 ksi l Pt .+ Ps = 43.3 ksi

~

In the fracture mechanics analysis below, both of these stress components were included. The l second (bending) component was modeled as linear through weld bending, with the 43.3 ksi applied i

as tension on the inside surface (root) of the weld, which is assumed to be the origin of any observed cracks.

i i In addition to these two load components, weld residual stress was included in the calculation.

l Because no measurements or calculations of weld residual stress were available, the weld residual stress was assumed to be represented by a constant tensile stress through the weld thickness.

Revision 0 Preparer /Date M n/7 y/n Checker /Date g/ ' ,,/,,. 4,3 File No. CPC-060-301 Page 3 of 24

l Appendix A of Section XI[2] requires the use of residual stresses in determination of allowable flaw sizes. However,it is overly conservative to treat such steady state secondary stresses equally j

with primary stresses resulting from normal operation (e.g. pressure) or accidents (such as the i

horizontal drop event). Appendix H of Section XI defines treatment of residual stresses in a manner which is judged to be appropriate for evaluation of flaws in the structural lid weld. This appendix requires that residual stresses be included, but with a safety factor of 1, rather than the Section XI specified factors for code-limited types of stress.

i f For normal operating conditions, the limiting applied stress intensity Ki(applied) is:

l Ki (applied)< E6 where Kio calculated from the projected Charpy data is used as the critical stress intensity. The l safety factor of 88 is as defined in Section IWB-3612. Ko is equivalent to Kr. as discussed j

above. For this case, the total applied stress intensity Ki(applied) is determined from the membrane, bending, and residual stresses as Ki(applied) = Kr (membrane) + Kr (bending)

+ K,( residual)

E5 \

l l

'

  • I K (residual) reflects the safety factor of I for the residual stress case.

i where the EU l l

For the emergency / faulted case (horizontal drop), it is still appropriate (and conservative) to use the calculated Kio as the criterion, because of the dynamic nature of the loading, instead of the Kic (which would be appropriate for static or slow loading rates). For this case (horizontal drop) the applied Kr is limited by Revision 0 l Preparer /Date )]gotles i' ? l l l l l

Checker /Date Q , . 7 .,- /

l l

! File No. CPC-060-301 l Page 4 of 24 l

l l

K'"

  • K,, applied - drop ) < 1 I

l The applied Ki using a safety factor cf 1.0 on residual stresses as discussed above, would be given 1

by:

Ki(applied) = Ki(membrane) + Ki(bending) i+ K (residual)  !

E j

"a H:vt:v:r, b::=: 1: heri:= .! 6:p =: i: dyn=ic la.9 din; cese "'i t h ? ~/ bichl~ di';  ;

(impact), residual stresses may not be able to redistribute during the horizontal drop case as they would during slower or static cases. In fact, for the initial horizontal drop impact, residual stresses may in fact behave more like primary stresses over the shon interval of the drop impact.

Consequently, for this case, residual stresses are conservatively treated as primary membrane stresses, using the full code safety margin of E.

The magnitude of the residual stress is assumed to be a constant 30 ksi tensile value through the weld thickness'. This value was selected based upon consideration of the base material yield stress, with consideration of anticipated reduction of residual stresses in the inner (near root) layers of the weld due to application of subsequent welded layers.

i L

4.0 MATERIAL FRACTURE TOUGHNESS The cenified material test reports (CMTRs) [1,5,6] for the structural lid weld material were provided by the plant owners. These documents contain Charpy V-Notch Impact data taken at -

50*F (and some data at other temperatures). According to the "Certi0cate of Conformance for the 1

Revision 0 { )

Preparer /Date

))$/n /n l i

Checker /Date 4,,,g' y ; e j  !

File No. CPC-060-301 i Page 5 of 24 6

VSC-24 System" [9] in Section 1.2.13. there are administrative limits which prevent moving of the storage casks when the temperature is less than 0 F. Consequently. a horizontal drop accident is judged not to be possible below this temperature.

l Article A-4000 of Appendix A to Section XI [2] recommends that the material fracture toughness be determined from the actual material and product form in question. Therefore, to evaluate the fracture toughness of this material, use of the actual Charpy data at 0*'"is appropriate. The Charpy data at 0 F is used to determine material fracture toughness (Kic) using the following equation for carbon steel in the transition temperature region {3):

Kro= G5C, E In this equation, E was assumed to be 29,000 ksi.

Judging from the % shear data, the material is in the transition region in the -50*F to 0*F temperature range, so use of this equation is appropriate [3]. Also, the Charpy correlation is for Kio (dynamic) fracture toughness as well as K ic (static), so it is applicable to a dynamic event like the drop accident.

As noted above, the material specifications require Charpy V-notch test results at -50 F, while the lowest temperature at which a horizontal drop could occur is 0 F, due to administrative limits [1].

All three plants (Palisades, Point Beach, ANO) provided CMTRs for weld material used (or proposed for use) in the structural lid welds [1,5,6] and these CMTRs included Charpy data at -

50 F. Although all CMTRs include data for both as-welded and stress relieved conditions, the as-welded condition is applicable to all three plants, so that data will be used.

Revision 0 Preparer /Date /g4ghr/pl l Checker /Date g7,? i. 7 /2, l l File No. CPC-06Q-301 l Page 6 of 24 l

In order to deterTnine allowable flaw sizes for each plant, it is appropriate to use material toughness at the limiting temperature of 0 F. Since such data is not available in most cases, it is necessary to extrapolate toughness at 0 F from the available 50 F data.

The data from all ChflRs shows that the material is in the transitior cion (reported per cent shear of 20-80%) and so linear projection is appropriate. Referring to Figure 5 from [7],the slope of this curve is estimated as 0.55 ft-lb/ F for the high manganese curve, which describes a material sirr.ilar to the 516 Grade 70 base metal. This slope was used to project all reported weld metal -50 F data

[1,5,6] to 0*F. The results are shown in Table 3. Also, all available Charpy data from CMTRs

[1,5,6] at 0 F is shown in Table 3 for comparison. The predicted 0 F Charpy data for weld metal is conservative compared to all available actual 07 data. Ina'. is, tne predicted Unarpy results at ut (based on extrapolation of-50 data) are consistently lower than etual data at 0*F.

Each of predicted Charpy absorbed energy results at 0 F were used to calculate a material toughness Kio for use in allowable flaw size calculations.

The resulting fracture toughness 0 F is generally greater than 75 ksi-d. This is shown in Figure 2 in comparison to ASME Section XI fracture toughness curves for carbon and low aloy steel reactor pressure vessel bounding materials. Figure 4 shows allowable flaw size (depth versus length) for a toughness of 78.4 ksi-En~, which results from extrapolation of the minimum specified Charpy V-notch absorbed energy of 15 ft-lb at -50 F.

5.0 APPLICATION OF ASME CODE MARGINS As discussed above, the limiting event for the structural lid weld is the horizontal drop accident, which is considered to be an emergency / faulted event. The stresses associated with this event are defined in Table 1 from [1].

Revision 0 Preparer /Date fj7J ,pr/p l l l Checker /Date g/ /, , . .,

File No. CPC-060-301 l Page 7 of 24 l m___ _ _ _ _ _ _ .

l Using the rules of IWB-3613(c) [2), the fracture toughness values determined above are reduced by a factor of d to define the limiting allowable Ki for flaws in the stmeturallid weld under emergency / faulted conditions. That is, Kw h,i mo me< _

For example, a limiting Kro calculated from Charpy data of 78.8 ksi-E produces an allowable Ki of S5.4 ksi-M. This value corresponds to the value obtained by extrapolating the minimum specified toughness (15 ft-lb at -50 F) to 0 F as discussed above.

6.0 ALLOWABLE FLAW CALCULATIONS Using the above load definitions and fracture toughness, a series of allowable flaw size calculations were performed using the Structural Integrity Associates computer program pc-CRACK * [4],

which has been developed and verified under the SI Quality Assurance program.

6.1 Surface Flaws The structural lid weld was modeled as a plate with an elliptical surface crack subject to both membrane and bending stresses. This model is illustrated in Figure 3. Use of this flat plate model for flaws in the stmetural lid to shell weld is appropriate for flaws originating in the vicinity of the weld root and propagating through the weld material or weld-base metal interface. This model is conservative compared to the actual weld geometry, because the actual weld experiences significant hoop constraint due to the stiffness of the structural lid and cask shell. Such constraint will limit crack opening in the actual weld as compared to the model, and therefore a larger crack would be l Revision 0 Preparer /Date ))gy/ir4:.

l Checker /Date 4){  !,g .,

i File No. CPC-06Q-301 Page 8 of 24

tolerable in the actual weld than is predicted by use of the flat plate model These results are equally applicable to flaws originating on the outside surface and oriented inwvd.

The flaw aspect ratio (the ratio of flaw depth to length) was varied parametrically, to determine an allowable flaw depth versus length curve. The conservative fracture toughness including the emergency / faulted Code margins was used as the criterion for determining allowable flaw depth for each aspect ratio.

The results are shown in Figure 4, and the supporting pc CRACK analyses are attached in Appendix A. There is no known mechanism for continued crack propagation of defects in these ic:!i, = :: :=:': gr: d. =!=!:'i n: We b? . p '^md 'a+ ="m-d d-f-m Umi'ina allowable flaw depths for each heat of weld material at each plant are shown in Table 3.

6.2 Subsurface Flaws The above discussion addressed the determination of allowable flaw sizes for flaws which are connected to the : mface of the weld, under a conservative set of assumptions. The weld could also contain subsurface defects as a result of the welding process for example. In general, the allowable flaw size for a subsurface defect will be larger (usually twice or greater) than for a surface defect under the same conditions.

Evaluation of allowable subsurface defects was performed using the same linear elastic fracture mechanics techniques as were described above for surface defects. For these cases, a center cracked plate model (Figure 6) was used to evaluate the infinite length flaw. This model is conservative for the actual cases, since it treats applied stresses as pure tension, while for the subsurface flaw cases, the drop load case has a significant through-wall bending component. Consequently, for a subsurface flaw the strenes due to the drop event will be significantly lower than the 43.3 ksi surface stress for this event (see page 3). The calculated allowable flaw sizes for subsurface flaws Revision 0 Preparer /Date l,;/h;/75/n Checker /Date ./j7 . /y/ ,

File No. CPC-060-301 Page 9 of 24 ,

1 corresponding to the same assumptions presented in Table 3 for surface Gaws are shown in Table 4.

The allowable subsurface flaw results presented in Table 4 also require that the flaw be sufficiently embedded that treatment as a subsurface flaw is justified. ASME Section XI, Figures IWA-3310-1, l

1

-3320-1, and -3330-1 provide criteria for evaluating proximity of flaws to the surface and to each other (in the case of multiple flaws). In general,if a flaw is closer to the surface than 0.4 of its half- l l

depth, it must be considered to be a surface flaw.

7.0 RECOMMENDED MOCKUP DEFECTS The above analysis shows that a family of significant sized flaws (Figure 4) can be accepted in the I stmetural lid to shell weld, while maintaining Code margins, and under a conservative set of assumptions.

For the existing operating casks, the nondestructive examination performed as a part of accepting these welds included dye penetrant examination of the root pass. Such an examination would have detected defects which had penetrated the root pas 3 surface. Consequently, it is concluded that the most likely defects in these welds are limited in size to less than the root pass thickness. The root pass is assumed to be about 0.1 inch in thickness. Therefore, we recommend that a mockup to be used for qualification of volumetric examination techniques include indications in the root of the weld which are equal to the root pass thickness (e.g.,0.1 inch deep), to test detection capability. To test defect sizing capability, we suggest that a range of flaws with depths from 0.05 inch to perhaps 0.25 inch be included, with orientations along and normal to the weld direction, and directed through the weld metal, along the lid to weld interface, and along the shell to weld interface.

Indications of various aspect ratios in the range of 0.1 to 0.5 should be considered. Implanted flaws will give results which are most representative of those to be expected in actual casks.

With regard to embedded defects representative of welding defects, the most likely defects are interbead lack of fusion and lack of penetration at both weld metal-base metal interfaces. Where the Revision 0

' Preparer /Date j g gj; r):- l l l Checker /Date [  ? . . -l l l File No. CPC-060-301 l Pace 10 of 24

l l . .

weld was made with a flux shielded process (such as is the case at Palisades and ANO), slag ,

l inclusions could also occur. Representative defects of these types should also be included in the mockups, with sizes in the same range as the above root defects.

8.0 CONCLUSION

S 1

This analysis has shown that flaws with depths greater than those which could have been missed l during original weld examination can be accepted under the criteria of ASME Section XI. with a

, conservative set of assumptions. These results are generic and conservative in nature. Specific 1

flaws exceeding the criteria developed in this calculation could potentially be accepted based upon more detailed analyses and less conservative materials properties on a case-by-case basis.

We recommend that the above results be used as the basis for establishing methods for qualifying volumetric examination techniques for these welds, and for initial screening of results of field l

examinations.

9.0 REFERENCES

1. Letter from Emil A. Zernick (Consumers Energy) to Hal Gustin (SD; " Flaw Analysis Inputs",

dated November 12,1997, transmitting design mput information (letter attached as Appendix B).

2. ASME Boiler and Pressure Vessel Code,Section XI(with Appendix A),1989 Edition.

1

3. Rolfe, Stanley T., and Barsom, John, M., Fracture and Fatigue Control in Structures, Prentice- l Hall,1977. l
4. Structural Integrity Associates, pc-CRACK" for Windows, Version 3.0, March 27,1997.
5. Fax from Tom Burtard (Wisconsin Electric Power Company) to Hal Gustin (SO dated 11/12/97 and 11/13/97 Charpy Test Results.
6. Fax from Darrell Williams (ANO) to Hal Gustin (SI) dated 11/11/97: Weld Material CMTRs.
7. ASM, The Metals Handbook. Vol 1,10th Edition.1990.

Revision 0 Preparer /Date % g,!rfn l Checker /Date [.fg . . . :, ,

File No. CPC-060-301 l Pace 11 of 24

, . i l

l Table 1 t l

, TABII 11.21

SUMMARY

OF STRESSES (ksi) IN THE MSB RESUL71NG FROM 1RE HYPOTHE71 CAL HORIZONTAL DROP

'.* ASME l ray-. '

rme n .a we.

  • w .i pecu,,,,. Ten; A n..we Sassaan Plase P. 29.4 N/A N/A a06 29.5 49.0 P , + P. 446 .1.7 463 73.5 j 1

Shall P. 25.9 N/A N/A al 26.0 49.0 P6 + P. 7LB 1.2 73 o 73.5 3 ruc:aral P. 2.6 N/A N/A a0 2.6 49.0 Ud P6 + P. 42.9 a4 433 73.5 i i

Shield Ud P. 2.4 N/A N/A 0.0 2.4 49.0 P6 + P. 284 40 20.6 73.5 i Botsama Wald P. 25.9 N/A N/A a2 26.1 49.0 P6 + P. 446 1.7 463 73.5 Top Wald P. 7.1 N/A N/A a06 72 36.8 P6 + P. 42.9 0.4 43,3 55.1 Shield Lid P. 9.1 N/A N/A 0.2 93 36.x WeW P6 + P. 2a4 N/A N/A a8 21.4 55.1 Dead weight is included in the drop load.

Revision 0 l

Preparer /Date /g n/,- ['9 l l l l Checker /Date Ty ,:7.-l /

, . . . l l File No. CPC-660-301 l Page 12 of 21 i

Table 2 l

l TABLE J.4-3

%tSB $1AXIMUM STRESS EVM.UATION

)

C reae-t Ct esses C 21Cl* LAUD V Alt.T K5t' CIAD qvg arcar rarsr::nz rwrx u HA.ver v. ., n: c .sc-P. 0.1 0.1 N/A 0.9 1.1 20J MSB She!! N/A 2.4 3.7 ,to.7 P6 + P. 0.1 1.2 P+Q 0.1 1.2 1.0 2.4 4.7 6iJ Bottom P. 0.02 0.06 N/A 1.0 1.1 20.5 Plate P6 + P. 0.02 1.7 N/A 1.5 3.2 30.7 Iv 0 2.22 *7. ' 7. ' *J

. "2 2.;

Top 1.id P,, 0.0 0.0 N/A 0.1 0.1 20J P6 + P. 0.0 0.4 N/A 0.2 0.6 30.7 P+Q 0.0 0.4 0.2 0.2 0.8 61J Bottom to- P. 0.1 0.2 N/A 0.9 1.2 20J ,

Shell PS + P. 0.1 1.7 N/A 1.5 33 30.7 funcnon P+Q 0.1 1.7 1.5 1.5 42 61.5 Jp-to.she0 P. 0.0 0.06 N/A 0.2 0.3 15.4

. unction P6 + P. 0.0 0.4 N/A 0.2 0.6 23.1 P+Q 0.0 0.4 0.4 0.2 1.0 46.1 Sleeve P. 4 05 N/A N/A 1.8 1.9 20.5 Anembly P6 + P. 0.05 N/A N/A 2.1 2.2 30.7 P+Q 0.05 N/A 52.0 2.1 54.2 61.5 Shield Ljd. P. Q3 0.2 N/A 0.3 02 15.4 to Sheu F5 + P. 0.3 0J N/A 0.4 1.5 23.1 Wald P+Q 43 0A 1.3 a4 23 41 S U Lid N/A N/A 0.3 0.7 15.4 P. Q.4 Support P6 + P. 0.4 N/A N/A Q3 0.7 23.1 Ring Weld P+Q" 14 N/A 40 0.3 0.7 41

  • Values dews are maximuna imspectm of location Revision 0 l

Preparer /Date l j.j{j. n/;i a:-l l l Checker /Date p,, i. , ..- l l l l File No. CPC-06Q-301 i Page 13 of 21 j

Table 3 Projected Charpy Data and Allowable Flaw Sizes Charpy Charpy Charpy @ Allowable Plant Identifier Percent @ 50*F @ O'F O'F KID Depth Shear Average Predicted Actual @ O'F (360')

(or Min) (If Surface  ;

Available)

WP-18P4(IS-8) NA 28 55.4 NA 89.6 0.14 Weld Base 18 8 NA 41 68.4 NA 99.6 0.17 Point Beach Haz 18 8 NA 87 114.4 NA 128.8 0.22 Weld Zone Min 40 17 44.4 NA 80.2 0.13 Weld Zone Avg 58 $5 82.4 NA 109.3 0.17 ANO PQR AS-030 HAZ Avg 70 80 107.4 NA 124.8 0.20 Base,,l g ong Avg,.,_,_,,,,,,13 _ 33 60.4 NA 93.6 0.14 Weldstar 467H Av NA 84 111.4 NA 127.1 0.20 Min Spec 467H NA 20 47.4 NA 82.9 0.13 ES AB 41323 40 60 87.4 117 112.6 0.17 l ANO ESAB 37962 27 55 82.4 96 109.3 0.17 I ESAB 2A505 A02 50 94 121.4 NA 132.7 0.22 ESAB 2H408A03 43 96 123.4 NA 133.8 0.22 {

ES AB 2E426G02 63 103 130.4 NA 137.5 0.22 ESAB 2K407H03 70 122 149.4 NA 147.2 0.25 l

Allov Rods 32039 20 56 83.4 91 110.0 0.17 -

Palisades ESAB 38380 56 99 126.4 135 135.4 0.22 .

ES AB 51122 60 82 109.4 115 125.9 0.20 l

Min Specified NA NA 15 42.4 NA 78.4 0.13 l

)

Note: For subsurface defects at weld mid wall depth, the allowable through-wall dimension of the defect is generally twice the allowable surface flaw dimension for the corresponding case.

i 1 .

l l l 1

Revision 0 Preparer /Date l,jjgh 5e t. l l l Checker /Date ]//,./,-g._,

Page 14 of 24

~

File No. CPC-06Q-301

f Table 4 Projected Charpy Data and Allowable Flaw Sizes I

Charpy Charpy Charpy @ Allowable Plant Identifier Percent @-50'F @ O'F 0*F KID Depth Shear Average Predicted Actual @ O'F (360')

(or Min) (If Subsurface Available) j WP-18P4(18 8) NA 28 55.4 NA 89.6 0.32 j Weld j Point Beach Base 18-8 NA 41 68.4 NA 99.6 0.38 )

l Haz 18-8 NA 87 114.4 NA 128.8 0.48 l l Weld Zone Min 40 17 44.4 NA 80.2 0.28 l ANO PQR AS-030 Weld Zone Avg 58 55 82.4 NA 109.3 0.38 HAZ,, A,g,_,, , , ,_,, ,7 0 8 0,,, , 107.4,,_ _ N,A . ,,_12_4,.8 , _0.44 __

Base Long Avg 13 33 60.4 NA 93.6 0.32 Weldstar 467H Av NA 84 111.4 NA 127.1 0.44 Min Spee 467H NA 20 47.4 NA 82.9 0.28 ESAB 41323 40 60 87.4 117 112.6 0.38 ANO ESAB 37962 27 55 82.4 96 109.3 0.38 l ESAB 2A505A02 50 94 121.4 NA 132.7 0.48

  • ESAB 2H408A03 43 96 123.4 NA 133.8 0.48 ESAB 2E426G02 63 103 130.4 NA 137.5 0.48 ES AB 2K407H03 70 122 149.4 NA 147.2 0.52 Alloy Rods 32039 20 56 83.4 91 110.0 0.38 Palisades ESAB 38380 56 99 126.4 135 135.4 0.48 ESAB 51122 60 82 109.4 - 115 125.9 0.44 Min Specified NA NA 15 42.4 NA 78.4 0.28 l

l l

Note: For subsurface defects at weld mid wall depth, the allowable through-wall dimension of the defect is generally twice the allowable surface flaw dimension for the corresponding case.

Revision 0 Preparer /Date // g p/r Th% l Checker /Date g / .. < , /;.7 File No. CPC-06Q-301 Page 15 of 24

i J

Y i,, , . ,v.<,

' , ~ t '/ t- i 5/t '

5/g 3/32." MAX CAP HClGHT AS MEAsl&RE3 F LOM MIGHE57 I

MBE (LlD CA MSR 3MELQ. U..

_ _s __

, i 45' JCM.

~ x- (

m 1

i _

=

  • i I

I MM 1 -- ~ -

L _

Figure 1 Revision 0 l

l Preparer /Date [j[g1,;l- 7 2 y l l Checker /Date -

,~l l File No. CPC 060-301 l Pace 16 of 24

I . e i

i 230 200 = I

/ l 360 -

4 a geq , l 2

/

tan *

! 100 -

F

~

.0 .

y =.75 Kss'[n y

r .

ao .

~

2f. ~

MTy py 0 ' ' ' '

.,100 40 0 *te *100 *I50 291 tr- Arnop.t **

FIG. A 42001 LOWER SOUND 4 AND K. V5 TEMPERATURE CURVES FROM TESTS OF 5A 533 GRADE B CLA5s 1, SA 508 CLASS 2, AND $A-500 CLASS 3 STEELS Figure 2 I

Revision 0 Preparer /Date l fjp a /g l yp l l Checker /Date t . / , . --

. /./ ,

l l' l File No. CPC-060 301 I Page 17 of 24 l

. - _ _ . _ - -- _ . . . -_ _ _ _ . - . _ . - _ _ _ - - _ _ - _ _ _ - - _ - _ _ . _ - - - _ _ . - , _ _ _ _ _ - _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ - - _ _ L.______---_ -. J

a = C. - Cis t  :- '

l C. '

s . .

I i

' X g

i_ a sl\d A A

. i x f i

.d t

g 3 a 1 Sectics A-A

a. = Co + C c.

ab ==-Ca.(' +

i 3

,\s)(t/s)(me:nbrane stress)

(bending stress)

Ci = -2sn\t i l l

v 921:rt REQUIRED LNFL'IS:

t: wau thicksess a: crack depth (a.u 5 0.5t)

, material yield stress
2. r.: c:2cz aspec. ratto

' 9p: 2-T: '. Int C::ci 4:de! A. Pye 2 - IUiptic:1 Scrisc C: sci ?!:,:e unde:

Ie=i::=e n.i 3e:di:z i:: sses - - - . - - . . . - -

Figure 3 1

1 Revision 0 Preparer /Date ljjp;;/> s/'sC. l l I i ' I Cheeker!Date ,meif > > . ii.. .L l l l l l i File No. CPC.06Q 301 l Pac: 18 of 21 I !

1 e

i 1

ALLOWABLE FLAW SIZE FLAW DEPTH VERSUS LENGTH 0.8 BASED ON MINIMUM MATERIAL TOUGHNESS 0.8 0.7 _

0.7 OF 15 FT-LB @ -50 DEG, EXTRAPOLATED TO O DEG c,c . _. ...-.-. _ ._.._.. 06 i

-- 0.5

} 0.5 FURTHER EVALUATION REQUIRED L-ITJ 0.4 0.4 O

h 0.3 0.3 0.2 0.2

( 0.13 ~

j 0.1 0.1 )

ALLOWABLE FLAW 0 1 $ $ 4 $ $ t $ $ 10 ,

FLAW LENGTH, IN.

& GREATER  !,

Figure 4a l

l Revision 0 l l l Preparer /Date l/jQ,i/g%l  ;

l l

{ Checker /Date psy,. f,. . .. l i File No. CPC-060-301 Page 19 of 24

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _E

1 ALLOWABLE FLAW SIZE FLAW DEPTH VERSUS LENGTH 0.8 BASED ON MINIMUM MATERIAL TOUGHNESS 0.8 0.7 7 FROM pal.lSADFS DATA AT gn nFG. FYTRAPOl ATFD Tn n nFG I l 0.6 .

0.6 i FURTHER EVALUATION REQUIRED 0.5

}- 0.5_

t o,4 i g 0.4

l.3 y 0.3 u.

0.2 0.2 -

0.17 0.1 ALLOWABLE FLAW -0.1 1 0 , . . . . . . . , O i 0 1 2 3 4 5 6 7 8 9 10 i FLAW LENGTH, IN. i

& GREATER j l

Figure 4b I l

~

Revtsien 0 Preparer /Date fjg\n/>5p b l l l r

Checker /Date /g'[;

/ . /.,.b-l l l File No. CPC-06Q-301 . I Pace 20 of :.:

j l

ALLOWABLE FLAW SIZE FLAW DEPTH VERSUS LENGTH l 0.8 BASED ON MINIMUM MATERIAL TOUGHNESS 0.8 0.7- ^'

FROM POINT BEACH DATA AT-50 DEG, EXTRAPOLATED TO O DEG 0.6 0.6 i E g 0.5 0.5 l g FURTHER EVALUATION REQUIRED g 0.4 0.4 b 0.3 0.3 i L

0.2 0.2 0.1 0.1 ALLOWABLE FLAW 0 1 $ $ 4 $ $ t S $ 10 FLAW LENGTH, IN.

& GREATER l

l Figure 4c I

Revision 0 l l Preparer /Date  ;)% g/77/gl Checker /Date g/f' ,' ,/, j,,,l l File No. CPC-06Q-301  ! Page 21 of 22

ALLOWABLE F_AW SIZE FLAW DEPTH VERSUS LENGTH 0.8 BASED ON MINIMUM MATERIAL TOUGHNESS 0.8 !

0.7 0.7 j

FROM ANO DATA AT-50 DEG, EXTRAPOLATED TO O DEG

~ ~ " ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~~~

0.6 0.6 l g 0.5 0.5

[ FURTHER EVALUATION REQUIRED g 0.4 0.4 b.0.3 0.3 0.2 0.2

(. 0.13 _

0.1 - -

0.1 ALLOWABLE FLAW l

0 . . . . . .. . . . 0 0 1 2 3 4 5 6 7 8 9 10 FLAW LENGTH, IN.

& GREATER l

l Figure 4d l

Revision 0 Preparer /Date lf)Qj/z5/f:-l l l Checker /Date Q//j.,-j,,- l

' File No. CPC-060-301 l Page 22 of 24 l l

L---_ -- i

l l

1 Testing temperature,1

- 100 - 50 0 50 100 150 2 150 , , ,

, , , 4 g  ;

I 100 1.55% Mn / g M -.--

~

--- 1.01% Mn  ! l/ l x6 l


0.m.un  ! /,/ [.! ~

M

/

g

- 0.30% Mn l ,

/

g

/ .

t  : =

y

/  ;

s

/ .

E E 3 '

E 75 r j i

./ { ,

1 / <

/

/  :

5 / / ./ - soI

),//,

f l 20

[ ,/

/ .-

0 0 100

- 50 - 25 0 25 50 75

- 100 - 75 Testing temperature. *C Variation in Charpy V-notch impact energy with temperature for 0.30% C steels containing varying

' E jg amounts of manganese. The specimens were austenitized at 900 *C (1650 T) and cr>oled at Wmately 14 *C/ min (251/ min). The microstructure of these steels were pearlitic. Source: Ref 6 Figure 5 l

i Revision 0  !

\

Preparer /Date //j p/f yl yt l l Checker /Date QPf.[ g ./,,l l \

1 i Flie No. CPC-060-30i l Page 23 of 24 i

. i i

t___ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ . _ . _ _ _ _ _ _

(

e = Co a i i l l i b

I Ia I l I 3, ]

REQUIRED INPUTS:

b: platewidth a: crack depth (a.u $ 0.9b)

Figure 3 ':2. LEFM Crzek Mode! C, Page 2 - Center C:sek Plate under Remote Tensten Stress Figure 6 Revision 0 l l Preparer /Date l $ n/;*7 l l l Checker /Date l ,f;(. .-

l l l l File No. CPC-060-301 i Page 24 of 24 l

i

^PPEWD: A pc CRACK Output l

i i

l l.

l 1

Revision 0 1 l

Prepa'rer/Date /)Q ilh5/pl  ;

Checker /Date /4

/....

,/.s<. /r Il File No. CPC-06Q-301 Page Al ofA45- l

l l

l l

l tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) C pyrig..t '54 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 j Voice: 408-978-8200 2 I

Fax: 408-978-89f4 E-mail: info @structint.com Linear Elastic Fracture Mechanics Date: Thu Nov 20 10:56:27 1997 File: 55.LFM l

Title:

CPC-060: LIMITING ZERO DEGREE FLAWS {

1 Load Cases:

Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.3000 0.3750 7.2000 0.7500 -28.9000 l

Etress Coefficients i Case ID CO C1 C2 C3 Type RESIDUAL 30 0 0 0 Coeff MEMBRANE 7.2 0 0 0 Coeff  ;

DROP 2 43.3001 -96.2668 0 0 StressDist Crack Model: Single Edge Cracked Flate Crack Parameters:

Plate width: 0.7500 Max. crack size: 0.3750


Stress Intensity Factor--------------------

Crack Case Case Case Size RESIDUAL MEMBRANE DROP 2 P.

1 0.0075 4.98488 1.19637 7.12042 0.0150 7.09853 1.70365 10.034 0.0225 8.75371 2.10089 12.2441 0.0300 10.177 2.44248 14.0849 0.0375 11.4554 2.74931 15.6861 0.0450 12.6334 3.03202 17.1144 0.0525 13.737 3.29688 18.4094 I 0.0600 14.7832 3.54796 19.5969 0.0675 15.7835 3.78805 20.695

'O.0750 16.7465 j 4.01917 21.7166 .

0.0825 17.9075 4.29781 22.9894 0.0900 19.0627 4.57506 24.2291 0.0975 20.2147 4.85153 25.4397 0.1050 21.3655 5.12771 26.6243 0.1125 22.5167 5.404 27.7854 0.1200 23.6695 5.68069 28.9252 0.1275 24.8252 5.95805 30.0451 0.1350 25.9845 6.23629 31.1465 O.1425 27.1482 6.51557 32.2305 u.isuu 2s.31ee e./sbu4 JJ.2se 0.1575 29.7019 7.12847 34.5864 0.1650. 31.1029 7.46469 35.8642 0.1725 32.5197 7.80472 37.1309 0.1800 33.9523 8.14855 38.3864 0.1875 35.4007 8.49617 39.63 0.1950 36.8649 8.84758 40.8616 o 0.2025 38.3448 9.20276 42.0805 l 0.2100 39.8404 9.56169 43.2863

. 0.2175 41.3515 9.92437 44.4787 0.2250 42.8782 10.2908 -45.6571

~

0.2325 44.8048 10.7532 47.2543 0.2400 46.7591 11.2222 48.8424 0.2475. 48.7407 11.6978 50.4204 0.2550 50.7491 12.*798 51.9869 0.2625 52.784 12.6682 53.5409 0.2700 54.8452 13.1628 55.0813' O.2775 56.9322 13.6637 56.607 0.2850 59.0448 14.1708 58.117 0.2925 61.1827 14.6838 59.6102 0.3000 63.3455 15.2029 61.0856 0.3075 -66.4177 15.9402 63.5413 0.3150 69.5356 16.6886 65.9877 0.3225 72.6988 17.4477 68.423

  • 0.3300 75.9066 18.2176 70.8454 0.3375' -79.1584 18.998 73.2532 0.3450 82.4536 19.7889 75.6445 0.3525 85.7917 20.59 78.0178 0.3600 89.1722 21.4013 80.3714 l 0.3675 92.5944 22.2227 82.7036 0.3750 96.0581 23.0539 85.0129 t

M_3terial fracture toughness:

erial ID: A516_55 Depth K1c 0.0000 55.4000 0.3750 55.4000 0.7500 55.4000 Lord combination for critical crack size:

Lord Case Scale Factor RESIDUAL 1.0000 DROP 2 1.0000 Crack TotaJ Size K Kic 0.0075 12.1053 55.4 0.015 17.1326 55.4 0.0225 20.9978 55.4 0.03 24.2618 55.4 0.0375 27.1415 55.4 0.045 29.7478 55.4 0.0525 32.1464 55.4 0.06 34.3801 55.4 0.0675 36.4785 55.4

. 0.075 38.4631 55.4 0.0825 40.897 55.4-0.09 43.2918 55.4 0.0975 45.6544 55.4 0.105 47.9897 55.4 0.1125 50.3021 55.4 0.12 52.5947 55.4 0.1275 54.8703 55.4 0.135 57.131 55.4 0.1425 59.3787 55.4 0.15 61.6148 55.4 0.1575 64.2884 55.4 0.165 66.9671 55.4 0.1725 69.6506 55.4 0.18 72.3386 55.4 0.1875 75.0308 55.4 0.195 77.7265 55.4 0.2025 80.4253 55.4 0.21 83.1267 55.4 l

1 l

l L-------_------

0.2175 85.8302 55.4 0.225 88.5352 55.4 0.2325 92.059; 55.4 0.24 95.6015 55.4

~~'

O.2475 99.161 55.4 0.255 102.736 55.4 0.2625 106.325 55.4 0.27 109.926 55.4 0.2775 113.539 55.4

! 0.285 117.162' 55.4 0.2925 120.793 55.4 0.3 124.431 55.4 0.3075 129.959 55.4

! 0.315 135.523- 55.4 0.3225 141.122 55.4 0.33 146.752 55.4 0.3375 152.412 55.4 0.345 158.098 55.4 0.3525 163.81 55.4 0.36 169.544 55.4 l 0.3675 175.298 55.4 0.375 181.071 55.4 l

l

. Critical crack size = 0.1292 M

Ar

tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info @structint.com Linear Elastic Fracture Mechanics Date: Thu Nov 20 10:58:23 1997 File: 60.LFM

Title:

CPC-06Q: LIMITING ZERO DEGREE FLAWS Load Cases:

Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.330 0.3750 7.2000

'O.7500 -28.9000 Stress Coefficients Type C1 C2 C3

-.se ID CO 30 0 0 0 Coeff RESIDUAL 0 Coeff i 7.2 0 0 MEMBRANE 0 StressDist l ~ DROP 2 43.3001 -96.2668 0 i

j Crack Model: Single Edge Cracked Plate  ;

Crack Parameters:

l Plate width: 0.7500 .

0.3750 l l Max. crack size:

l


Stress Intensity Factor-------------------- l Crack Case Case Case RESIDUAL. MEMBRANE DROP 2 Size i

l

i .

. ]

0.0075' -4.98488 1.19637 7.12042 0.0150 7.09853 1.70365 10.034 0;0225 8.75371 2.10089 12.2441 0.0300 10.177 2.44248 14.0849

.. 0.0375 11.4554 2.74931 15.6861

, 0.0450 12.6334 3.03202 17.1144 l 0.0525' 13.737 3.29688 18.4094 0.0600 14.7832 3.54796 19.5969 0.0675 15.7835 3.78805 20.695 0.0750 16.7465 4.01917 21.7166 0.0825 17.9075 4.29781 22.9894 0.0900 19.0627 t.57506 24.2291 )

0.0975 20.2147 4.85153 25.4397 0.1050 21.3655 5.12771 26.6243

0.1125 22.5167 5.404 27.7854 l 0.1200 23.6695 5.68069 28.9252

!' O.1275 24.8252 5.95805 30.0451 0.1350 25.9845 6.23629 31.1465 0.1425 27.1482 6.51557 32.2305 0.*;;; 20.;;;" C.7;;;4  !~.i;;

l 0.1575 29.7019 7.12847 34.5864 l 0.1650' 31.1029 7.46469 35.8642 0.1725 32.5197 7.80472 37.1309 0.1800 33.9523 8.14855 38.3864 0.1875 35.4007 8.49617 39.63 0.1950 36.8649 8.84758 40.8616 0.2025 38.3448 9.20276 42.0805 0.2100 39.8404 9.56169 43.2863

~

0.2175 41.3515 9.92437 44.4787 0.2250 42.8782 10.2908 45.6571 l 0.2325 44.8048 10.7532 47.2543 0.2400 46.7591 11.2222 48.8424 0.2475 48.7407 11.6978 50.4204 0.2550- 50.7491' 12.1798 51.9869 i 0.2625 52.784 12.6682 53.5409 l 0.2700: 54.8452 13.1628 55.0813 L 0.2775- 56.9322 13.6637 56.607 l 0.2850 59.0448 14.1708 58.117 L 0.2925 61.1827 14.6838 59.6102 l 0.3000 63.3455 15.2029 61.0856 l 0.3075 66.4177 15.9402 63.5413 i 0.3150 69.5356 16.6886 65.9877 l 0.3225 72.6988 17.4477 68.423 ,

0.3300 75.9066 18.2176 70.8454 0.3375 79.1584 18.998 73.2532 i 0.3450 82.4536 19.7889 75.6445 l 0.3525 85.7917 20.59 78.0178 J 0.3600 89.1722, 21.4013 80.3714 , )

l 0.3675 92.5944 22.2227 82.7036 I

0.3750 96.0581 23.0539 85.0129 l

l l

"sterial fracture toughness:-

_..;terial ID: A516_60 Depth Kic 0.0000 60.0000 0.3750- 60.0000 0.7500 60.0000 Load combination for-critical crack size:

ELoad Case- Scale Factor RESIDUAL 1.0000 DROP 2' 1.0000 Oto.i' .:...'

{

Size K Kic j I

0.0075 12.1053 60 0.015 17.1326 60 0.0225 20.9978 60 0.03 24.2618 60 0.0375 27.1415- 60 0.045' 29.7478 60 0.0525. 32.1464 60 0.06 34.3801 60 0.0675' 36.4785 60

~

O.075 38.4631 60 0.0825- 40.897 60 0.09 43.2918 60 0.0975- 45.6544 60 0.105 47.9897 60 0.1125 50.3021 60 0.12 52.5947 60 l 0.1275 '54.8703 60 j 0.135 57.131 60 O.1425 59.3787 60 '

0.15 61.6148 60 b 65 66.96  ;

0.1725 .69.6506 60 a 0.18 72.'3386. 60 0.1875 75.0308 60 l- -0.195 .77.7265 60 0.2025 80.4253 60 0.21 83.1267 60 L

p

)

i

. l h 9'

l-1 0.2175 85.8302 60 0.225 88.5352 60 0.2325 92.0591 60 0.24 95.6015 60

..- 0.2475 99.161 60 0.255 102.736 60 t 0.2625 106.325 60 l

0.27 109.926 60

(' O.2775 113.539 60 i- 0.285 117.162 60 0.2925 120.793 60.

0.3 124.431 60

, 0.3075 129.959 60

! 0.315 135.523 60 l 0.3225 141.122 60 0.33 146.752 60 0.3375 152.412 60 0.345 158.098 60 0.3525- 163.81- 60 U.JC '103.344 00 0.3675 175.298 60 0.375 181.071 60 l

' Critical crack-size = 0.1446 f

p-I i

l l .

l i

(.

  • L

tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84 - '97 I Structural Integrity Associates, Inc. ,

3315 Almaden Expressway, Suite 24 l San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info 0structint.com ,

1 1

Linear Elastic Fracture Mechanics l l

Date: Thu Nov 20 10:59:25 1997 File: 70.LFM i

Title:

CPC-060: LIMITING ZERO DEGREE FLAWS Load Cases:

Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.3000 0.3750 7.2000 l 0.7500 -28.9000 Stress Coefficients wase ID CO C1 C2 C3 Type RESIDUAL 30 0 0 0 Coeff MEMBRANE 7.2 0 0 0 Coeff DROP 2 43.3001 -96.2668 0 0 StressDist Crack Model: Single Edge Cracked Plate Crack Parameters:

Plate width: 0.7500 Max. crack size: 0.3750


Stress Intensity Factor--------------------

Crack Case Case Case Size RESIDUAL MEMBRANE DROP 2 lb

l J

i

'O.0075' 4.98488 1.19637 7.12042 0.0150 7.09853 1.70365 10.034 .

0.0225 8.75371 2.10089 12.2441 0.0300 10.177 2.44248 14.0849 l 0.0375- 11.4554 2.74931 15.6861 0.0450 ]

12.6334 3.03202 17.1144 '

l 0.0525 13.737 3.29688 18.4094 0.0600 14.7832 3.54796 19.5969 0.0675 15.7835 3.78805 20.695 0.0750 16.7465 4.01917 21.7166 0.0825 17.9075 4.29781 22.9894 0.0900 19.0627 4.57506 24.2291

'O.0975 20.2147 4.85153 25.4397 0.1050 21.3655 5.12771 26.6243 0.1125 22.5167 5.404 27.7854 0.1200 23.6695 5.68069 28.9252 0.1275 24.8252 5.95805 30.0451 l 0.1350 25.9845 6.23629 31.1465 0.1425 -27.1482 6.51557 32.2305 n Tann ?o,mico e 7oan4 is paa 0.1575 29.7019 7.12847 34.5864 0.1650 31.1029- 7.46469 35.8642 0.1725 32.5197 7.80472 37.1309 i 0.1800 33.9523 8.14855 38.3864 0.1875 35.4007 8.49617 39.63 i 0.1950 36.8649 8.84758 40.8616 0.2025 38.3448 9.20276 42.0005 0.2100 39.8404 9.56169 43.2863 0.2175 41.3515 9.92437 44.4787 O.2250 '42.8782 10.2908 45.6571 l

0.2325 44.8048 10.7532 47.2543 0.2400 46.7591 11.2222 48.8424 0.2475 48.7407 11.6978 50.4204 0.2550 50.7491 12.1798 51.9869 q 0.2625 52.784 12.6682 53.5409 0.2700- 54.8452 13.1628 55.0813 -

0.2775 56.9322 13.6637 56.607  !

l 0.2850- 59.0448 14.1708 58.117 0.2925 61.1827- 14.6838 59.6102 l 0.3000 63.3455 15.2029 61.0856 O.3075 -66.4177 15.9402 63.5413 0.3150 69.5356 16.6886 65.9877 l

0.3225 72.6988 17.4477 68.423 i O.3300 75.9066 18.2176 70.8454 1 0.3375 79.1584 18.998 73.2532 0.3450 82.4536 19.7889 75.6445 0.3525 85.7917 20.59 78.0178 0.3600 89.1722 21.4013 80.3714 0.3675 92.5944 22.2227 82.7036

-0.3750 96.0581 23.0539 85.0129 l

l

-Material fracture toughness:

, .aterial ID: A516_70 Depth K1c 0.0000 70.0000 0.3750 70.0000 0.7500 70.0000 Load combination for critical crack size:

Load Case Scale Factor RESIDUAL 1.0000 DROP 2 1.0000 C...k "w L.1 Size K K1c 0.0075 12.1053 70 0.015 17.1326 70 0.0225 20.9978 70 0.03 24.2618 70 0.0375 27.1415 70 0.045 29.7478 70 0.0525 32.1464 70 0.06 34.3801 70 )

0.0675 36.4785 70 0.075 38.4631 70 0.0825 40.897 70 0.09 43.2918 70 0.0975 45.6544 70 0.105 47.9897 70 ,

0.1125 50.3021 70 0.12 52.5947 70 0.1275 54.8703 70 0.135 57.131 70 )

0.1425 59.3787 70 '

O.15 61.6148 70 0.1575 64.2884 70 0.165 66.9671 70 0.1725 69.6506 70 0.18 72.3386 70 0.1875 75.0308 70 0.195 77.7265 70 0.2025 80.4253 70 0.21 83.1267 70 I

0.174 62.585 90 0.18 64.3934 90 0.186 66.2586 90 0.192 68.1871 90 0.198 70.186 90 0.204 72.2631 90 0.21 74.4272 90 0.216 76.6879 90 0.222 79.056 90 0.228 81.5437 90 0.234 84.1649 90 0.24 86.9355 90 0.246 89.8738 90 0.252 93.0009 90 0.258 96.3416 90 0.264 99.9252 90 0.27 103.767 90 0.276 107.968 90 0.282 112.519 90 n.?RR 117.504 90 0.294 123.001 90

. 0.3 129.109 90 Critical crack size = 0.2463 1

e

tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San, Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info @structint.com Linear Elastic Fracture Mechanics Date: Mon Nov 24 12:18:54 1997 File: CCP100.LFM

Title:

CPC-06Q: SUBSURFACE DEFECT, KID =100 Load Cases:

Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.3000 0.3750' 7.2000 0.7500 -28.9000-Stress Coefficients

-case ID CO C1 C2 C3 Type RESIDUAL 30 0 0 0 Coeff

's MEMBRANE 7.2 0 0 0 Coeff DROP 2 43.3001 -96.2668 0 0 StressDist Crack Model: Center Cracked Plate Under Remote Tension Stress Crack Parameters:

Plate Half Width: 0.3750

. Crack depth:- 0.3000 l

l --------------------Stress Intensity Factor--------------------

Crack Case Case Case l

l Size RESIDUAL MEMBRANE DROP 2 l

\

G kHL L _

0.0060 4.11943 0.988664 5.9457.?

0.0120 5.82841 1.39882 8.41235 0.0180. 7.14374 1.7145 10.3108 0.0240 8.25766 1.98184 11.9186 0.0300 9.24501 2.2188 13.3437 0.0360 10.1444 2.43466 14.6418 0.0420 10.9791 2.63498 15.8465 0.0480 11.7643 2.82342 16.9798 0.0540 12.5107 3.00257 18.0572 0.0600 13.2264 3.17434 19.0902 0.0660 13.9176 3.34021 20.0877 0.0720 14.589 3.50137 21.0569 0.0780 15.2449 3.65878 22.0035 0.0840- 15.8886 3.81326 22.9326 0.0900 16.523 3.96552 23.8482 0.0960 17.1508 4.11618 24.7543 0.1020 17.7742 4.2658 25.6541 0.1080 18.3954 4.41489 26.5507 0.1140 19.0164 4.56392 27.447 0,1200 19.639 4.71 W ?A 3457 0.1260 20.2651 4.86363 29.2494 0.1320 20.8965 5.01516 30.1607 0.1380 21.5349 5.16837 31.0821 0.1440 22.182 5.32369 32.0161 0.1500 22.8398 5.(8154 32.9655 0.1560 23.5099 5.64238 33.9327 0.1620 24.1944 5.80665 34.9206 0.1680 24.8952 5.97486 35.9322 0.1740 25.6146 6.1475 36.9705 0.1800 26.3547' 6.32513 38.0387 0.1860 27.1181 6.50834 39.1405 40.2797 0.1920 27.9074 6.69777 0.1980 28.7255 6.89411 , 41.4605 0.2040 29.5756 .7.09814 42.6875 0.2100 30.4613 7.31071 43.9659 0.2160 31.3866 7.53277 45.3013 0.2220 32.3558 7.76538 46.7002  ;

0.2280 33.3739 8.00974 48.1698 '

O.2340 34.4467. 8.26722 49.7182 0.2400 35.5807 8.53936 51.3549 0.2460 36.7832 8.82798 53.0906 0.2520 38.0631 9.13514 54.9378  ;

0.2580 39.4304 9.46328 56.9112 0.2640' 40.897- 9.81529 59.0282

.0.2700 42.4774 10.1946 61.3092 0.2760 44.1886 10.6053 63.7789 0.2820 46.0514 11.0523 66.4677

-0.2880 '48.0916 11.542 69.4124 0.2940 50.3414 12.0819 72.6595 0.3000 52.8414 12.6819 76.2679 1

l l

Material, fracture toughness:

,aterial'ID: a516-100 i

( ' Depth- Kic i

l' O.'0000 100.0000 p 0.3750 100.0000 l- 0.7500 '100.0000 load combination for critical crack size:

Load Case- Scale Factor.

l' I  :

RESIDUAL 1.0000 l DROP 2 1.0000 '

Crack. Tota 3

, Size- K K1c p

0.006 10.0652 100 0.012 14.2408 100 t 0.018- 17.4545 100 l -- 0.024 20.1762 100

. 0.03 22.5887 100 O.036 24.7863 100

'O.042 26.8256 100.

0.048 28,7441- 100-0.054 30.5679' 100 O.06 32.3166 {

100 j 0.066 34.0053 100 l 0.072 35.6459' 100 0.078 ~37.2484 100

'O.084 38.8211 100 0.09 40.3712 100 0.096 41.905 '100 0'102

. 43.4283 100 0.108 44.9461 100 l- 0.114 46.4633 100 0.12 47.9847 100 0.126 49.5145 100 0.132 51.0572 100  !

0.138 52.617 100 i t

0.144 54.1982 100

.O.15 55.8052 100 I 0.156 57.4426 100 i

l. 0.162 59.115 100 0.168 60.8274 100 i l

l l

! I i l l 4 LU i

L___ _ _ _ _ . _ _ _ _ . _ _ _ _ _ _ _ _

o 0 0.174 62.585 100

-0.18 64.3934 100 0.186 66.2586 100

.0.192 68.1871 100

. 0.198: 70.186- 100 0.204 72.2631 100 0.21~ 74.4272 100 0.216 76.6879 100 0.222 79.056 100 0.228 81.5437 100 0.234 84.1649 100 0.24 86.9355. 100 0.246- 89.8738 100 0.252 93.0009 100 0.258 96.3416 100 0.264 99.9252 100 0.27 103.787 100 0.276 107.968 100 0.282 112.519 100 0.288 117.504 100 0.294 123.001 100 0.3 129.109 100 Critical crack size = 0.2641

>, p.

4 e

l

- @aL #

A6

APPENDIX B Design Input from Consumers Energy i

l i

i i.

i Revision 0  ;

~~ '

Preparer /Date pg ilhy/9p Checker /Date

} ( gj .p ,

File No. CPC-06Q-301 I Page B1 of 8il l

( __ ,

j i

l a cyS pegy cywy Pausaces Nuotr Punt 27780 Bwe Sur Memonawgnway l cwtw non \

l l November 12,1997 l

Mr. Hal Gustin Structural Integnty Associates, Inc.

l 3315 Almaden Expressway, Suite 24 l

San Jose, CA 95118 1557 l

SUBJECT:

Flaw Analysis inputs l Daar Hal:

This letter transmits design inputs for use in the flaw analysis being provided under l

purchase order C0025456. The specific design inputs shown below are enclosed.

e Safety Analysis Report for the Ventilated Storage System, PSN-91-001, Rev 0, dated l

' l October 1991, Table 11.2-1, Summary of Stresses (ksi) in the MSB Resulting from i the Hypothetical Horizontal Drop. The limiting event for the structural lid weld is the l

horizontal drop accident, which is considered to be an emergency / faulted event. l

e Safety Analysis Report for the Ventilated Storage System, PSN-91-001, Rev 0, dated l October 1991, Table 3.4 5, MSB Maximum Stress Evaluation.

e Certificate of Compliance ( C of C) for Dry Spent Fuel Storage Casks (No.1007),

effective May 7,1993, Section 1.2.13, Minimum Temperature for Moving the MSB.

e Certificate of Compliance ( C of C) for Dry Spent Fuel Storage Casks (No.1007),

effective May 7,1993, Section 1.2.14, Minimum Temperature for Ufting the MTC.

( Certified Material Test Reports (Lot No. 32039 and 38380) for the weld material used on the structural lid welds in MSB's 1 13 are enclosed. The CMTR (Lot No. 51122) for the l weld material to be. used on future structurallid welds is also enclosed. The cask structural lid welds will remain in the as welded condition following welding.

Please give me a callif you have any questions.

I Sincerely, Emil A. ernick g Engineering Lead Dry Fuel Storage O RECElVED NOV 141997

, STRUCTURAL INTEGRITY I

4 T.GLE 3.4 5 515B StAXI5tC51 STRESS EVALUATION Cc rener.: Stresses CALCULATED VALUE. KSI' cug DEAD THEKMAI. HANDI.so TUTAL ;N.-

%IIGHT PRE.55URE 0.1 N/A 0.9 1.1 0.5 P. 0.1 0.1 1.2 N/A 2.4 3.7 30.7 htSB Shell: P6 + P. 2.4 4.7 61.5 1.0 P+Q 0.1 1.2 0.02 0.06 N/A 1.0 1.1 20.5 Bottom P.

0.02 1.7 N/A 1.5 3.2 30.7 Plate Pt + P. 1", 22.0 5;.5 P+Q u.uz 1. I 13.4 0.0 N/A 0.1 0.1 20.5 Top Lid P. 0.0 0.4 N/A 0.2 0.6 30.7 Po + P. 0.0 0.4 0.2 0.2 0.8 61.5 P+0 0.0 0.2 N/A 0.9 1.2 20.5 Bottom to- P. 0.1 0.1 1.7 N/A 1.5 33 30.7 Shell Pt + P. 1.5 4.8 61.5

^m: tion P+Q 0.1 1.7 1.5 0.0 0.06 N/A 0.2 03 15.4

'hp-to-shell P. 23.1 0.0 0.4 N/A 0.2 0.6

. unction Pt + P. 0.2 1.0 46.1 P+Q 0.0 0.4 0.4 N/A 1.8 1.9 20.5 Sleeve 'P. 0.05 N/A  ;

N/A 2.1 2.2 30.7 Assembly Pt + P. 0.05 N/A 2.1 54.2 61.5 P+Q 0.05 N/A 52.0 l 03 0.8 15.4 Shield Lid- P. 03 0.2 N/A 0.4 1.5 23.1 to-Shell Pt + P. 03 0.8 N/A 0.4 2.8 46.1 Weld P+Q 03 0.8 13 03 0.7 15.4 SSield Ud P. Q.4 N/A N/A 03 0.7 23.1 Pt + P. 0.4 N/A N/A Support 46.1 0.4 N/A 0.0 03 0.7 Ring Weld P+Q-l 1

a values shown are maximums irrespective of location i

i 83 l

lj il; !IlllIl1 l

e

! e I t s g t.

Mw a n5 0. 5 o5 0. 5 n. 5 I.

n5 93 93 91 93 93 m5 5 35 S o 47 47 47 47 47 Al l A

l 1 3 a 53 0. 0 63 3

4. 6 2. 3 3. 4 66 7 3 t

o 96 63 2 4 2 0 2 24 4 9 12 T 24 27 M

O R

F e

0 r u M7 00 27 6 28 4  ; 1 2 04 0 4 s

I F TO e r 0' I.

01 00 C0 ( 1 0( f (

L R P U

S D EL RA BT SN l a

MO m A A A A

/

A

/

A

/

AA

//

Z r / /

1 EI e

/

N N N N N N NN 2

- I R h I

)

1 1

VO l Nl -

E I L

L )

iA B '.

ksC A (1 t

A A AA T I

' W A A A A //

SE / /

N

/

N

/

N

/

N

/

N NN EI S

d a N _

SU e

EO D .

RP TY SI d I

e _

F OlE p 9 6 l

o _

96 l o A6 9A 6. 29 4.

2 &

6 14 1

I. 0 p _

Y* I r 94 11 27 2 4 2 24 7 24 9 2 o r

R D 24 d A e M ht -

M i n

.* U d S . e P. P P. P. P. P. d u

'1*

P.+P P. +

P+ .

P. +

t P. +

s P. + ,

P. +,

l c

n P.

P s

P. P P P P i s

_ i t

hg i

e I d d e

_ t t a l e

i L w

= a r d l

P u M W l e

d a

e a I m e p

s o m e u d l o W d l t ek D n t 5 e t t p ie C

o t B

o e h

S t

SIrR i h

S B o

T o

hW S *

- W3. o .7G '

m c:.

=

7l( \1!l

1

, 1.2.13 Minimum Temperature for Moving the MSB 1^

l Limit / Specification:

Movement of the MSB inside the VCC will only ee allowee at

. ambient temperatures of 0' F or above.

Objective: To avoid the potential for brittle failure.

Action: Confirm that the ambient temperature is above 08 F immediately before moving the MS8, while inside the VCC.

~

ui .. i11...s.: Th. ..si i ,.<.L.... i;. 11 v.

..wred 'vfore o movement or the MSB.

Basis: Each MS8 shell material will have shown, during fabrication, by Charpy test (per ASTM A370) that it has 15 ft-lb of absorbed energy at -50' F; and, therefore, movement of the MSB at temperatures above 0 8 F will avoid the - potential for brittle fracture. Calculations show -that the MSB shell minimum temperature will be substantially above the ambient temperature (e.g., 20 'F for 25-year-old fuel). However, for conservatism and simplicity, it is recommended that the ambient be selected as the minimus MSB movement temperature.

It is highly unlikely that any MS8 movement activity would take place at temperatures below zero. Nevertheless, if movement at a temperature below that specified is necessary, calculations (similar to those presented in Chapter 4 of the l ,, SAR) may be used to estimate the minimus MSB shell temperature l for any particular ambient condition.

t

%e A-28 l

85 1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a

~

1.2.14 Minimum Temperature for Lifting the MTC Limit / Specification: 1 The MTC shall be allowed to be used to move :ne MSS if tne '

ambient temperature is 408 F or above.

I Objective: To avoid the potential for brittle failure, i

Action: Confirm that the ambient temperature is above 40 F before 8

a moving the MS8 inside the MTC.

'iw. .. ; mr..e . T!.c !"C ::bitat t* ~.J r:t' r: 5 .11 b: d:::- in:d 5:':. :

movement of the MSB in the MTC.

Basis: The MTC material will have shown, during fabrication, that it has 15 ft-lb of absorbed energy at 08 F. Having Charpy test results, at o' F, which show ductility (or other appropriate test to show that the Nil Ductility Temperature is lower than O' F), will avoid the potential for brittle failure when the

~

" cask is moved at 40' F or higher. The MTC shall will h:ve a temperature higher than antiient due to the heat scurce from the irradiated fuel. However, for con.<er.atism and simplicity, it is recomended that the ambient temperature be used as the minimum shell temperature. If movement at lower l

[

temperatures is ever required, additional specific analysis or other actions that meet the approval of the NRC must be provided. ,

a A-29

. H

I

~ .m -

men .

-s + .. wdmi4it $, tw

.,.amana rommeCoons.1ervELData vuctEu Sun 10:TzcEET

, Alt 0YR'0DS CORPOP.ATION CERTIFICATE OF A'lALYSIS N.Jf? P.O. BOX 517/1500 KAREN LANE

, ,,,; HANOVER, PA 17331 CERTIFIE[ N b 7EST RXFot?

T-t WELDSTAR COMPANY Customer order No.: 2244A-A

~

. 1730 MITCHELL' ROAD , Order No.: 144017-1 AURORA, 'IL 60304 ;" '? - This Material Conforms to Specification:

'.Pr . 54. .r i %.c # ASHI SFA 5.20 SEC:!I* FART C & ASME.SEC III SUBSEC ..

.-$1A'.Y* W-

. NB FOR CLASS.'1' MATERIAL 1989 ED..'1990' ADD.' ASME Trada ~ '. '

CLASS 3 72f;SCH. E.10 CTR FART'21. APPLIES J N r Trademark: ' sedS-.S 1' ShieldSFA'5.01g#,E'WE'jiW' II 70t.'*- .

'-. ' ; ~ #im ' i..

Diameter.81ast .045'Lx 258 Spool .LL . '.- i-C.C' . .:

7. [,

$ $Lat.lhambers;32039

/g.Weightg7.200?,1bs. M Q CE~ ' g Typen E717-1 ..Tast 4 d .

i f y f. -

r. . 4-Carhas '.06 p[t-  :. .lj S.:s'JM,. Type y:j,X-Eayst 3taal.A-2ES Sat.sv.h .ysa Wy

actory .

. c. .

gamese 24- Full F: Split'~ rip ' Quad 3 Volts .mAmp  ? g s;.:. .,.:: -(3 1 yjg.,t g ,g.p, ppt a.y

@roni.un ,og .. ; , , , , , , l

$ $t 16inbium+

  • Y est

"$N"f* Strass# $$" a

' :T antal .. Resul'ts Jf 6111 sed ly%' M:- ,.

8"E ji' Yield 400' m 72;90  ;

SGest 00 f

! Tensil E16nT 009 EM

.. p 0

. c ted's M1 " {~ 4

. . .5 ,

i f i

1 oc 39 .. f;

~

Fillets Thi mater _,. , ' sj eert,1fiadito.;-

r,yjegg),ag,ga,t,,

cuatler we.ctn.e. semi

.a r =>=annes teed /or ass /arn tratten Dete 1st pecimmas'ag{ ~

~-

r1ees1.e. T. _tan

--d -i. -

Q,J,Q kle repers are.

certitles ,

su ves esensa . ..Q11fe,,or;then ettese essersion rumeu et patar g open,ifiel . %,p ( [

unctare la ,,_3 v er Ame ree - eel Code septise !!! Davielen T .CA*3000 Saheeribed swore before l' 12th de ' 1993 330 CCSPOW30s se &

. &. amau, serv &as NOTARLAL Sta t-- =**

UNDAC M7ER8;N- ' puiti I

Penn TowA4N rt un Commisalon Er Aprt: 13 ,

-_, _ m

_ p. .i iv ( E- W rT.inII'Mi.E'i,dE4@, AU*Tif.5)(iWaVs@u,% GtTS.'

AM ,

, - i 4 i givyr- r . rp -

Ga_.T,q 4.i.7s,g.

c -

. . - r. -

ET g 6 p' ' ac GLE h.', kb.k ..

&i- ' * . =.

. ~ h s. ..ff, .q.

~

g. . 1 e _ .4. . ; ,

W

./ ..

. . . , . a.s .

. . . . ~. f2inf' W DE ~.- -

' r s. Mer- c . .; f ...~.  % tTtM r N

'~

,g ,

Ena23 0: N G d.l g Maasag e. n 3.-4f at h(1 su . 65m va g g .

cn . uns y

  • g,

.o h 5 59 @ '

~

a -

A O

(- - ,-

-6 4E3 .T - '

f=':iW~"*.a Qn- q - fRirvT D NF1 thT4fl- tIy D QisM i- &'

^

T 6:g C .iCW .

..-=~.. . gpt:

  • G.,[{.5..J - Gg, ryt rTF 4

_ = n J' 4.

44 idir sJ. 44 5 g qq. 5 vail _.. O j i sit. rrTar : (f r , , r. qi 4. - ~ .

r,g. - f ,

GMP:WU e Ht i]Ttf. J_sg - v'k e .

To .. .

@EEr, (41 <,-

ic.29c i.> (..,.. e_,'.._. . . _ . . . .._.;.. ..

.y , . ~.y . . . ,

412 n-, .k. ij. , .u . . ~ t - . .a- ,

G C3. s1 M.s el4 .

es e q.,

~

c1. 11.;#,s. q.~.xy 1 p(, ' ":< >

v(da. L.

GE#i T. ThTr. ,E.. Q.*>T ,4- l 1.:. . . (-).htE Qd rl.14 f 4 44

. f. 1,fC',

5 0

  • . , g 4 l wVrfl.O . 4.'1 is.g vc;.wa. ..:,, >Qn.41 vj. .-f-3..- g- ifq1.k(s. f:

f G. .t. ,

$ .g A[G 31.*

in G.-. 4t4 .  % vt 2 *

%suqts.3 .

( L575 r.

11.:1923 ,

t.ghs.g.1g. G rq 3

P'?, $6 '9.( 89 to!*. , ~~.= 3 2

~

  • thti DA b)- Q =s' 1 h14 ' T- 5
  • .'A_t.es la e 81 v4. %tirA*, t

'D1B i-311f.r.n. =ft1. .j=J-IE .

h* j%

~

_ ., * . . s&tn.

as . . . it .- ;asse g 4;.

'^

tf E C- .C$75.i f r95e. - "$ , ,

Es ._ _~,

g. --* - nt-* - -- t .t- n . r.
  • l'E t-f 3C1,744_ $3 e (" : 'm (._ 6 (.6,,; .

m*

.Q .,; .Q r: .

z uQJ.*fr Yems** ~ gi. C' t Y'% a.s.t

+ a> a -e. >

i f-;* .,, fl.'i L8=*.23 G Gf.,*.f_ m. N - *** *C., '

26 . .

j4.1.: D '_i .T C' *isiel a3 . "

j

'M C,3 s , a ,;g ,

- h 5 Q~ - - ,,.$,arJ .ne! l '

. dib 3 rah C . ~ .

ts 'a t'215., *Ge.2,.(- te G fli:-- ~'

O.64:M' .'fi

-.. . ,'". 4 eg.j 1h '

'8' lp 8 .. ' .- , . . n ,

wk:+ubis .... _

- -a_ n

I OLD vat.UES...NEW IDEAS I.

N , T, .,*\ w. '{ E aiff - I

+ . ',,.;

1 1936 1996 Years P.O. BOX 1150

  • AURORA, IL 60507 1150
  • PHONE (630) 859 3100

! CERTD1CATE OF COMPLIANCE ISSUED: August 22,1997 CUSTOMER: r'a====3 Energy CUSTOMER POR 00238240 SHIP 'I1CEET A N917296 DESCRIPTION: 495 Ibe. spooled whv (33# spools) ESAB

.20' 0";7:: ,7;T.;;.0.i;T.;C..". 3 Iot #51122

~

The MM CMIWs), aos ecpy per isen, covers the matenal shipped apuust the above referenced purchase order munber.

The above mesmal will meet code rup.;,- =a of ASME SectxmII, Part C and Secuan E 1986 Edinon through 1988 Addeda,NB2400 brClass I matenal, with special unpaa propernes of15 Mbe - . . . .. absorbed enerEY at-50* F, md the requrernaras ofASME Boiler and Pnesuis Vessel Code curnat edshan and mM=L for Seenon II, C, SFA S.20, and is in cocupliance with the above referenced purtbane order mwn6. We comfy that the matenal shipped has been handled in compliance with our ideseh and ver#w== propam.

All vendors on Weldstaf ws..d venders list have beco nudstad by Weldstar.

Walder's Qualsy Assurance Program Revision K, dated November 12.1996 meets the r q._ ofASME Secuan E. NCA.3800,1995 fan-Ibo provisions ofNRC 10C7R Part 21 apply to this order.

W - .

C -

f'QUALTI'Y AS CE 'AGER f

1750 MITCHELL ROAD. AURORA. IL 60504-9594 PHONE (630) 259-3100 8'1 1000 E. MAIN STREET, LOGANSPORT, IND. 46947 5011 .

PHONE (2 e9) 7221177 2650 BOND STREET. UNIVERSITY PARK. IL 60466-3181 PHCNE (708) E34 E561

" *'2*97 09:10 FROMESM QC 717 m vps TD: M m gg CERTIFICATE OF ANALYSIS CERTITIED MATE 11alJ TEST RIPotT WELD 5 TAR COMPANY Custmeer Order No.: 901556 _

1750 MITCHILL ROAD Order No.: 68953/RMA 3798 l AURORA. IL 60504 This Matarl.1 Conforms to 5 pacification:

ASME STA 5.20 SEC 11 PART C AND ASME SEC III. SUB5EC NB TCt CLA35 1 MATERIAL 1995 ED., 1995' ADD., ASME STA 5.01. CLASS T3.

SCHEDULE E. 10 CTR PART 21 AFFLIES Trada Eame or Trademarks Dual shield II 70T12 Diameter Sizes .045 x 33# 5 pool Type: E71T-1 / 717-12MJ / 71T-12MJH8 Weight: 4.752 lbs. Test No.: 2-27679-00 l Imt Number 51122 shielding Gas: 75% AR / 25I CO, -

X-Rays satisfactory j

Carbon: .07 Type Steel A-285 l

Manganase: 1.30 Tull split Triple Quad Volts Amps l Chromium: .02 .

~

?.hh11 m.01 -.

e -- -- 77 s*n ne..

Silicon: .39 Columbime*: Test As stress Tantalum: Easnits: Welded Relieved

( Molybdeoma: .01 8 Hrs. 9 1150'F.

l 'hangsten: Tiald 81.000 73.500 Copper <.01 Tensile 88.000 85.500 Titanium Elongation (2"). I 28.0 27.0 l Phosphorus .013 Red. of Area 72.4 73.4 sulphur: .007 ,

Vanadius .01 C21arpy V-Notch Ispacts Tested 0 0'F.

~~

Co*oalt: Ft. Lbs. 109-117-120 90 e4-92 Cool Eate: 100'T. 1.a t. Exp. 83-76-80 71-61-67 max /hr. above 600*F. 2 Shaac 70-70-70 60-70-70 Frahaat: 65'T.

Interpass: 325'T. Charpy V-Notch Impacts Tested 8 -20*F.

! Ft Lbs. 112-96-107 41-73-50 l

Fillets: OK Vertical-L*p/ Lat. Exp. 83-69-70 33-57-39 l Overhead I shear 70-70-70 30-40-30 1

Charpy V-Wotch Ispacts Tasted 9 -40'F.

Ft. Lbs. 99-78-109-102-102  ;

Lat. Exp. 69-56-78-74-70

{

Tensile Speciman .505" I shear 70-70-70-50-50 ,

Impact Specimen .394" x .394*

j Duality syntaos Prograo loses rhis matar141 le certified to be -

so. 6, Dev. 4. sated 07/10/96. free of any earciary omstamiastaan.

}

.ac. ties 4 Orleatatlee of charyy v-setan/3ses11e Guality Systaes Cartricate me. get.321 l sp h == le 1/A/W & ass 33 2323 eas/ar ass /aPA taptratten Deten Septaneer e, 1993, Epos1f4casiana es applicanae. f rhe sedarsignes certi!!as that the corrtenta of tale repart are -

l state of posaeylvania ) securata and that all operstaeno perferend by the understgr.am j j ses er em>-eastractere are La semp11ames with requirements s.' the l

Coasty of fork ) patersal opes 121catian and Aase leales and Ptonsure veneel I

case. Sortase !!:. D191 sten :. atheartion eCA.3500.

Supeer1ted and e.ess to before es tala #

atea esy of Aayuet. 1997. ,-

m.. &s C. NI9A esteer r.eu , w er,

c. a. w ta, s n .r u s. c. a. m ,es Nt.k &D -

1

\

  • Ine Esab Group,Inc. .

e' mo m6.8 t.a~e g ,Q cf. '

A QVER PA 17331 1058 rwn e arum v ,

(717)837 8911 te r h enom aan 11 aus i ___

F AI,300 444 491'

~

..-......a....., .,--...,a., , .__, ,, _ _ , _ _

EST sIO.s 2-27679-00 _

ago 2 harpy Y-Botch lapacts Testad e -504. (As-Valded)

1. Lbe. 77-54-85 4t. Esp. 59-66-66 shear 50-60-70 CLTCZEEE NETHOD STPtDGER ANALYST)
1. 3.1 ML/100 0 0F WELD METAL
2. 3.1
3. 2.2 4 3.1 2.9 AVERAGE AM VOLTAGE 26 AMFERIS 230 DC+

8

0.2175 85.8302 70

-0.225 88.5352 70 0.2325 92.0591 70 g 0.24 95.6015 70 0.2475 33.161 70 0.255- 102.736 70 0.2625 106.325 70 0.27 109.926 70 0.2775 113.539 70 0.285 117.162 70 0.2925 120.793 70 0.3 124.431 70 0.3075 129.959 70 0.315 135.523 70 l 0.3225 141.122 70 0.33 146.752- .70 0.3375~ 152.412 70

  • 0.345 158.098 70 0.3525: 163.81 70 0.00 *:0.140 70 0.3675 175.298 70 0.375 181.071 70

. Critical crack size = 0.1735 e

e aR )

i

f' tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 l E-mail: info @structint.com Linear Elastic Fracture Mechanics Date: Thu Nov 20 11:00:13 1997 File: 80.LFM 1

Title:

CPC-06Q: LIMITING ZERO DEGRIE FLAWS Load Cases:

Case: DROF2 --- Stress Distribution Depth Stress 0.0000 43.3000 0.3750- 7.2000 0.7500 -28.9000 Stress Coefficients wase ID CO Cl- C2 C3 Type i

30 0 0 0 coeff

-RESIDUAL MEMBRANE 7.2 0 0 0 Coeff DROP 2 43.3001 -96.2668' O O StressDist Crack Model: Single Edge Cracked Plate Crack Parameters:

Plate width: 0.7500

. Max. crack size: 0.3750


Stress Intensity Factor-------------------- l

-Crack Case Case Case Size RESIDUAL MEMBRANE DROP 2 i

i 4

i

0.0075 4.984E8 1.19637 7.12042 0.0150 7.09853 1. ~i O 3 65 10.034 0.0225 8.75371 2.10089 12.2441 0.0300 10.177 2.4424E 14.0849 0.0375 11.4554 2.74931 15.6861 0.0450 12.6334 3.03202 17.1144 0.0525 13.737 3.29688 18.4094 0.0600 14.7832 3.54796 19.5969 j 0.0675 15.7835 3.78805 20.695 l 0.0750 16.7465 4.01917 21.7166 l 0.0825 17.9075 4.29781 22.9894 0.0900 19.0627 4.57506 24.2291

.0.0975 20.2147 4.85153 25.4397 0.1050 21.3655 5.12771 26.6243 0.1125 22.5167 5.404 27.7854 0.1200 23.6695 5.68069 28.9252 0.1275 24.8252 5.95805 30.0451 0.1350 25.9845 6.23629 31.1465 0.1425 27.1482 6.51557 32.2305 0.1500 28.3168 6.79604 33.298 0.1575 29.7019 7.1284*/ 34.5664 0.1650 31.1029 7.46469 35.8642 0.1725 32.5197 7.80472 37.1309 0.1800 33.9523 8.14855 38.3864 0.1875 35.4007 8.49617 39.63 0.1950 36.8649 8.84758 40.8616 0.2025 38.3448 9.20276 42.0805 0.2100 39.8404 9.56169 43.2863 0.2175 41.3515 9.92437 44.4787 0.2250 42.8782 10.2908 45.6571 0.2325 44.8048 10.7532 47.2543 0.2400 46.7591 11.2222 48.8424 0.2475 48.7407 11.6978 50.4204 0.2550 50.7491 12.1798 51.9869 0.2625 52.784 12.6682 53.5409 0.2700 54.8452 13.1628 55.0813 0.2775 56.9322 13.6637 56.607 0.2850 59.0448 14.1708 58.117 0.2925 61.1827 14.6838 59.6102 0.3000 63.3455 15.2029 61.0856 0.3075 66.4177 15.9402 63.5413 0.3150 69.5356 16.6886 65.9877 0.3225 72.6988 17.4477 68.423 0.3300 75.9066 18.2176 70.8454 0.3375 79.1584 18.998 73.2532 0.3450 82.4536 19.7889 75.6445 0.3525 85.7917 20.59 78.0178 0.3600 89.1722 21.4013 80.3714 0.3675 92.5944 22.2227 82.7036 0.3750 96.0581 23.0539 85.0129

l

  • ' terial fracture toughness:

.cerial ID: A516,80 Depth Kic j 0.0000- 80.0000

.0.3750 80.0000 0.7500 80.0000 Load combination for critical crack size:

Load Case Scale Factor RESIDUAL 1.0000

-DROP 2, 1.0000 Crack Total Size K. Kic 0.0075 12.1053 80 0.015 17.1326 80 0.0225 -20.9978 80 0.03 24.2618 80 0.0375 27.1415 80 0.045 29.7478 80

.0.0525 32.1464 80 0.06 34.3801 80 0.0675 -36.4785 80 0.075 38.4631 80 0.0825 40.897 80

.0.09 43.2918 80 0.0975 45.6544 80 0.105 47.9897 80 0.1125 50.3021- 80 0.12 52.5947 80 0.1275 54.8703 80 0.135 57.131 80 0.1425 59.3787 80 0.15 61.6148 80 0.1575 64.2884 80 0.165 66.9671 80 0.1725 69.6506 80 0.18 72.3386 80 0.1875 75.0308 80

.0.195 77.7265 80 0.2025 80.4253 80 0.21 83.1267 80

  • \

Al6

l 0.2175 85.8302 80

! 0.225 88.5352 80

! 0.2325 92.0591 80 0.24- 95.60'.5 20 0.2475 99.161 80 0.255 102.736 80 0.2625- 106.325 80

-0.27 109.926. 80 l O'.2775 113.539 80 0.285 117.162 80 0.2925 120.793 80 0.3 124.431 80 0.3075 129.959 -80 0.315 '135.523 80 0.3225 141.122 80 0.33 146.752- 80 0.3375 152.412 80 0.345 158.098 80 0.3525 163.81 80 0.36 169.544 80 U.aois t r o .~ e v e av 0.375. 181.071 80 Critical crack size = 0.2013 i

l

tm f pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyrtght '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info @structint.com Linear Elastic Fracture Mechanics Date: Thu Nov 20 11:00:51 1997 File: 90,LFM

Title:

CPC-060: LIMITING ZERO DEGREE FLAWS Load Cases:

Cese:-DROP 2 --- Stress Distribution Depth "~ Stress 0.0000 43.3000 0.3750 7.2000 0.7500 -28.9000 -

Stress Coefficients I case ID _C0 C1 C2 C3 Type i RESIDUAL 30 0 0 0 Coeff MEMBRANE 7.2 0 0 0 Coeff l DROP 2 43.3001 -96.2668 0 0 StressDist ,

j- Crack Model: Single Edge Cracked Plate

. Crack Parameters:

Plate width: 0.7500 Max. crack size: 0.3750 ,

i i 1 l --------------------Stress Intensity Factor--------------------

l Crack Case Case Case l Size RESIDUAL MEMSRANE DROP 2

4 6 0.0075 4.98488 1.19637 7.12042 0.0150 7.09853 1.70365 10.034 0.0225 8.75371 2.10089 12.2441 0.0300 10.177 2.44248 14.0849 0.0375 11.4554 2.74931 15.6861 0.0450 12.6334 3.03202 17.1144 0.0525 13.737 3.29688 18.4094 0.0600 14.7832 3.54796 19.5969 0.0675 15.7835 3.78805 20.695 0.0750 16.7465 4.01917 21.7166 0.0825 17.9075 4.29781 22.9894 0.0900 19.0627 4.57506 24.2291 0.0975 20.2147 s.85153 25.4397

, 0.1050 21.3655 5.12771 26.6243 0.1125 22.5167 5.404 27.7854 0.1200 23.6695 5.68069 28.9252 0.1275 24.8252 5.95805 30.0451 0.1350 25.9845 6.23629 31.1465 0.1425 27.1482 6.51557 32.2305 0.1500 28.3168 6.79604 33.298 l G.ibib is.iGis i . li Wi 5.n . u b o 4 l

0.1650 31.1029 7.46469 35.8642 0.1725 32.5197 7.80472 37.1309 0.1800 33.9523 8.14855 38.3864 0.1875 35.4007 8.49617 39.63 0.1950 36.8649 8.84758 40.8616 0.2025 38.3448 9.20276 42.0805 0.2100 39.8404 9.56169 43.2863 0.2175 41.3515 9.92437 44.4787 0.2250 42.8782 10.2908 45.6571 0.2325 44.8048 10.7532 47.2543 0.2400 46.7591 11.2222 48.8424 0.2475 48.7407 11.6978 50.4204 0.2550 50.7491 12.1798 51.9869 0.2625 52.784 12.6682 53.5409 0.2700 54.8452 13.1628 55.0813 0.2775 56.9322 13.6637 56.607 0.2850 59.0448 14.1708 58.117 0.2925 61.1827 14.6838 59.6102  ;

0.3000 63.3455 15.2029 61.0856 O.3075 66.4177 15.9402 63.5413 0.3150 69.5356 16.6886 65.9877 0.3225 72.6988 17.4477 68.423 0.3300 75.9066 18.2176 70.8454 0.3375 79.1584 18.998 73.2532 0.3450 82.4536 19.7889 75.6445 0.3525 85.7917 20.59 78.0178 0.3600 89.1722 21.4013 80.3714 0.3675 92.5944 22.2227 82.7036 0.3750 96.0581 23.0539 85.0129 i

e A6

. ,o l

"'terial fracture toughness:

.cerial ID: A516_90 Depth Kic 0.0000 90.0000 0.3750 90.0000 0.7500 90.0000 Load combination for critical crack size:

Load Case Scale Factor RESIDUAL 1.0000 DROP 2 1.0000 Crack Torn 3 Size K Kic 0.0075 12.1053 90 l 0.015 17.1326 90 0.0225 20.9978 90 i

l 0.03 24.2618 90 l 0.0375 27.1415 90 0.045 29.7478 90 0.0525 32.1464 90 0.00 34.3801 90 0.0675 36.4785 90 0.075 38.4631 90 0.0825 40.897 s

'0 0.09 43.2918 90 0.0975 45.6544 90 0.105 47.9897 90 0.1125 50.3021 90 0.12 52.5947 90 0.1275 54.8703 90 0.135 57.131 90 0.1425 59.3787 90 0.15 61.6148 90 0.1575 64.2884 90 0.165 66.9671 90 0.1725 69.6506 90 0.18 72.3386 90 0.1875 75.0308 90 0.195 77.7265 90 0.2025 80.4253 90 0.21 83.1267 90 4

m~s l

L __ - . _ _ _

0.2175 85.8302 90 0.225 88.5352 90 0.2325 92.0591 90 0.24 95.6015 90 0.2475 99.161 90 0.255 102.736 90

, 0.2625 106.325 90

! 0.27 109.926 90 l 0.2775 113.539 90 0.285 117.162 90 0.2925 120.793 90 0.3 124.431 90 0.3075 129.959 90 0.315 135.523 90 0.3225 141.122 90 0.33 146.752 90 0.3375 152.412 90 0.345 158.098 90 0.3525 163.81 90 0.36 169.544 90 v.ao/s 175.23e av 0.375 181.071 90 Critical crack size = 0.2291

tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Ccpyright '64 - '9" Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info @structint.com Linear Elastic Tracture Mechanics Date: Thu Nov 20 11:01:34 1997 File: 100.LEM

Title:

CPC-060: LIMITING ZERO DEGREE FLAWS Load Cases: 1 Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.3000 0.3750 7.2000 0.7500 -28.9000 Stress Coefficients wase ID CO C1 C2 C3 Type RESIDUAL 30 0 0 0 Coeff MEMBRANE 7.2 0 0 0 Coeff j DROP 2 43.3001 -96.2668 0 0 StressDist j I

crack Model: Single Edge Cracked Plate Crack Parameters:

Plate width: 0.7500 Max. crack size: 0.3750


Stress Intensity Factor--------------------

Crack Case Case Case Size RESIDUAL MEMBRANE DROP 2 A SS fdL

1 i

l 0.0075 4.98488 1.19637 7.12042 0.0150 7.09853 1.70365 10.034 4 0.0225 8.75371 2.10089 12.2441 0.C30C 10.177 2.44245 14.0849 0.0375' 11.4554 2.74931 15.6861

! 0.0450 12.6334 3.03202 17.1144

.0.0525 13.737 3.29688 18.4094 0.0600 14.7832 3.54796 19.5969 0.0675 15.7835 3.78805 20.695 0.0750 16.7465 4.01917 21.7166 O.0825 17.9075 4.29781 22.9894 0.0900 19.0627 4.57506 24.2291 0.0975 20.2147 4.85153 25.4397 0.1050 21.3655 5.12771 26.6243 0.1125 22.5167 5.404 27.7854 0.1200 23.6695 5.68069 28.9252 0.1275 24.8252 5.95805 30.0451 L 0.1350 25.9845 6.23629 31.1465 0.1425 27.1482 6.51557 32.2305 0.1500 28.3168 6.79604 33.298 0.1575 2 3. 7 0' ~ 7.*'G47 34.;004 0.1650 31.1029 7.46469 35.8642 0.1725 32.5197 7.80472 37.1309 0.1800 33.9523 8.14855 38.3864 0.1875 35.4007 8.49617 39.63 0.1950 36.8649 8.84758 40.8616 0.2025 38.3448. 9.20276 42.0005 0.2100 39.8404 9.56169 43.2863 0.2175 41.3515 9.92437 44.4787 0.2250 42.8782 10.2908 45.6571 0.2325 44.8048 10.7532 47.2543 0.2400 46.7591 11.2222 48.8424 0.2475 48.7407 11.6978 50.4204 0.2550 50.7491 12.1798 51.9869 I 0.2625 ' 52.784 12.6682 .53.5409 0.2700 54.8452 13.1628 55.0813 0.2775 56.9322 13.6637 56.607 0.2850 .59.0448 14.1708 58.117 0.2925 61.1827 14.6838 59.6102 0.3000 63.3455 15.2029 61.0856 )

0.1075 66.4177 15.9402 63.5413 0.3150 69.5356 16.6886 65.9877 0.3225 72.6988 17.4477 68.423 0.3300 75.9066 18.2176 70.8454 0.3375 79.1584 18.998 73.2532 ]

0.3450 82.4536 19. '< $ 9 9 75.6445 0.3525 85.7917 20.59 78.0178 0.3600 89.1722. 21.4013 80.3714

-0.3675 92.5944 22.2227 82.7036 0.3750 96.0581- 23.0539 85.0129 l

l

l "eterial fracture. toughness:

}

l aterial ID: A516 - 100 t

Depth Kic 0.0000 100.0000 1 0.3750 100.0000 0.7500 100.0000 Load combination for critical crack size:

Load Case Scale Factor RESIDUAL 1.0000 DROP 2 1.0000 Crack Total Size K Kic

.0.0075 12.1053 100 0.015 17.1326 100 0.0225 20.9978 100 0.03 24.2618 100 0.0375 27.1415 100 0.045 29.7478 100 0.0525 '32.1464 100 0.06 34.3801 100 0.0675 36.4785 100 0.075 '38.4631- 100 0.0825. 40.897 100 0.09 43.2918 100 0.0975 45.6544 100 0.105 47.9897 100-0.1125 50.3021- 100 0.12 =52.5947 100 0.1275 54.8703 100 0.135 57.131 100 0.1425 59.3787 100 0.15. 61.6148 100 0.1575 64.2884 100 0.165- 66.9671 100 0.1725 69.6506 100 0.18 72.3386 -100 0.1875 75.0308 100 0.195 77.7265 100 0.2025 80.4253 100 0.21 83.1267 100 l

O3J

,r . n

. 4 0.2175 85.8302 100 0.225 88.5352 100 0.2325 92.0591 100 0.24 9 5 . 6 0 *. E 100

' O.2475' 99.161 100 0.255 102.736- 100 0.2625 106.325 100 0.27. 109.926 100 0.2775 113.539 100 0.285 117.162 100 0.2925 120.793 100

.0.3 -124.431 100 0.3075- 129.959 100 0.315 135.523 100 0.3225 141.122 100 0.33 146.752 100 0.3375 152.412 100 0.345- 150.098 100 0.3525 163.81 100 0.36- 169.544 100

- 0.3635 4 't h . 2 W O 1UO 0.375 181.071 100 Critical crack size = 0.2493 r

[

i l

. s , j N 2 ]

l

l l e c l

l tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84 '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 l E-mail: info @structint.com ,

Linear Elastic Fractura Mechanics l l 1 Date: Mon Nov 24 12:13:59 1997 File: CCP60A.LFM

Title:

CPC-060: SUBSURFACE DETECT, KID =60 Load Cases:

Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.3000 0.3750 7.2000 0.7500 -28.9000 Stress Coefficients case ID CO C1 C2 C3 Type RESIDUAL 30 0 0 0 Coeff MEMBRANE 7.2 0 0 0 Coeff DROP 2 43.3001 -96.2668 0 0 StressDist l

Crack Model: Center Cracked Plate Under Remote Tension Stress Crack Parameters:

Plate Half Width: 0.3750 Crack depth: 0.3000


Stress Intensity Factor--------------------

Crack Case- Case Case Size RESIDUAL MEMBRANE DROP 2 l

l i

t L________.__

-s' e 0.0060 4.11943 0.988664 5.94573 0.0120 5.82841 1.39882 8.41235 0.0180 7.14374 1.7145 10.3108 0.0240 8.25766 1.98184 11.9186 0.0300 9.24501 2.2188 13.3437 0.0360 10.1444 2.43466 14.6418 l

l 0.0420- 10.9791 .2.63498 15.8465 0.0480 11.7643 2.82342 16.9798 l

O.0540' 12.5107 3.00257 18.0572 0.0600 13.2264 3.17434 19.0902 20.0877

0.0660- 13.9176 3.34021 0.0720 14.589 3.50137 21.0569 0.0780 25.7449 3.65878 22.0035 0.0840 15.8886 3.81326 22.9326 0.0900 16.523 3.96552 23.8482 0.0960 17.1508 4.11618 24.7543 0.1020- 17.7742 4'.2658 25.6541 0.1080 18.3954 4.41489 26.5507 27.447 0.1140 19.0164 4.56392 0.1200 '19.639 4.71336 28.3457

-0.1260 20.2651 4.8e3e3 zy.e499 0.1320 20.8965 5.01516 30.1607 '

0.1380 21.5349 5.16837 31.0821 O.1440 22.182 5.32369 32.0161 0.1500 . 22.8398 5.48154 32.9655

~0.1560 23.5099 5.64238 33.9327 0.1620 24.1944L 5.80665 34.9206 0.1680~ 24.8952 5.97486 35.9322 0.1740 25.6146 6.1475 36.9705 0 1800' 26.3547 6.32513 38.0387 0.1860 27.1181 6.50834 39.1405 0.1920. 27.9074 6.69777 40.2797 0.1980 28.7255 6.89411 41.4605 0.2040 29.5756 -7.09814 42.6875

'O.2100' 30.4613 -7.31071 43.9659 0.2160 -31.3866 7.53277 45.3013 0.2220 32.3558 7.76538 46.7002 0.2280 33.3739 8.00974- 48.1698 0.2340 134.4467- 8.26722 49.7182 0.2400 '35.5807 8.53936 51.3549 0.2460 36.7832 8.82798 53.0906

0.2520- 38.0631 9.13514 54.9378

'O.2580' 39.4304 9.46328 56.9112 J0.2640 40.897 9.81529 59.0282 0.2700 42.4774 10.1946 61.3092

<0.2760- 44.1886 10.6053' 63.7789 0.2820. '46.0514- 11.0523 66.4677' O.2880- 48.0916 ~11.542 69.4124

,0.2940 50.3414- 12.0819 72.6595 0 3000 52.8414_. ~12.6819 76.2679 An

Material fracture toughness:

.aterial ID: a516-60 Depth Kic

! 0.0000 60.0000 0.3750 60.0000 0.7500 60.0000 Load combination for critical crack size:

Load Case Scale Factor RESIDUAL 1.0000 DROP 2 1.0000 Crack Totel Size K K1c 0.006 10.0652 60 0.012 14.2408 60 0.018 17.4545 60 0.024 20.1762 60 0.03 22.5887 60 0.036 24.7863 60 0.042 26.8256 60 0.048 28.7441 60 0.054 30.5679 60 0.06 32.3166 60 0.066 34.0053 60 0.072 35.6459 60 0.078 '37.2484 60 0.084 38.8211 60 0.09 40.3712 60 0.096 41.905 60 0.102 43.4283 60 0.108 44.9461 60 0.114 46.4633 60 0.12 47.9847 60 0.126 49.5145 60 0.132 51.0572 60 0.138 52.617 60 0.144 54.1982 60 0.15 55.8052 60 0.156 57.4426 60 0.162 59.115 60 0.168 60.8274 60

e J 0.174 62.585 60 l~ . 0.18 64.3934 60 l 0.186 66.2586 60 l 0.192 68.1971 60

0.198.- 70.186 60 f 0.204. 72.2631 60 l- ~0.21 74.4272 60 l,

0.216 76.6879 60 0.222 79.056 60 0.228 81.5437 60 )

0.234 84.1649 60 '

O.24- 86.9355' 60 0.246 89.8738 60 0.252 93.0009 60 0.258 96.3416 60

.0.264 99.9252 60 0.27 103.787 60 1 0.276 107.968 -60 l 0.282 .112.519 60 0.288 117 Lod 46 0.294 123.001 60 0.3 129.109 60 Critical crack. size = 0.1652 i

l i.

I .

1 i

l l

1 .;

~

L A2c 1'

L_-___________---_-_.____----- -

1

... s.

l tm j pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C; Cepyright '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info @structint.com Linear Elastic Fracture Mechanics 1

Date: Mon Nov 24 12:15:34 1997 File: CCP70.LFM

Title:

CPC-060: FUBSURFACE DEFECT, KID =70 I

Load. Cases: l 1

Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.3000

.0.375u 7.2000 0.7500 -28.9000 Stress Coefficients I case ID CO C1 C2 C3 Type I

RESIDUAL 30 0 0 0 Coeff.

MEMBRANE 7.2 0 0 0 Coeff DROP 2 43.3001 -96.2668 0 0 StressDist Crack Model: Center Cracked Plate Under Remote Tension Stress Crack Parameters:

JPlate. Half Width: 0.3750 Crack depth: 0.3000


Stress Intensity Factor--------------------

Crack Case .

Case Case

' Size RESIDUAL MEMBRANE DROP 2 1

. .', .N

  1. " , W

't. w I

L 0.0060 4.11943 0.988664 5.94573 L 0.0120 5.82841 1.39882 8.41235 0.0180 7.14374 1.7145 10.3108

! 0.0240 8.25766 1.98124 11.9186

. 0.0300 9.24501 2.2188 13.3437 q l 0.0360 10.1444 2.43466 14.6418 l L 0.0420 10.9791 2.63498 15.8465 0.0480 11.7643 2.82342 16.9798 0.0540 12.5107 3.00257 18.0572 i 0.0600 13.2264 3.17434 19.0902 0.0660 13.9176 3.34021 20.0877

- 0.0720 14.589 3.50137 21.0569 0.0780 15.2449 3.65878 22.0035 0.0840 15.8886 3.81326 22.9326 0.0900 16.523 3.96552 23.8482 0.0960 17.1508 4.11618 24.7543 0.1020 17.7742 4.2658 25.6541 0.1080 18.3954 4.41489 26.5507 0.1140 19.0164 4.56392 27.447 0.1?ne 1. o . s t o 4 71114 7e.3457 0.1260 '20.2651 4.86363 29.2494 0.1320 20.8965 5.01516 30.1607 0.1380 21.5349 5.16637 31.0821 0.1440 22.182 5.32369 32.0161 0.1500 22.8398 5.48154 32.9655

- 0.1560 23.5099 5.64238 33.9327 0.1620 24.1944 5.80665 34.9206

.0.1680 24.8952 5.97486 35.9322

' 0.1740 25.6146 6.1475 36.9705 0.1800- 26.3547 6.32513 38.0387 0.1860 27.1181 6.50834 39.1405 0.1920 27.9074 6.69777 40.2797 0.1980 28.7255 6.89411 41.4605 0.2040 '29.5756 7.09814 42.6875 j 0.2100 30.4613 7.31071 43.9659 0.2160 31.3866 7.53277 .45.3013 1

0.2220 32.3558 7.76538 46.7002 0.2280 33.3739 8.00974' 48.1698 0.2340 34.4467 8.26722 49.7182 0.2400 35.5807 8.53936 51.3549 '

- 0.2460 36.7832 8.82798 53.0906 O.2520 38.0631 9.13514 54.9378 0.2580 39.4304 9.46328 56.9112 0.2640 40.897' 9.81529 59.0282 0.2700 42.4774 10.1946 61.3092.

' O.2760 ' 44.1886. 10.6053 63.7789

= 0.2820 46.0514 11.0523 66.4677 0.2880 48.0916- 11.542 69.4124 0.2940 50.3414 12.0819 72.6595

0.3000. 52.8414 -12.6819 76.2679 f '.

p _

Q)I a

.. 6 l

l "aterial fracture toughness:

.4aterial ID: a516-70 Depth K1c 0.0000 70.0000 0.3750 70.0000

.0.7500 '70.0000

. Load combination'for critical crack size:

Load (Case Scale Factor-RESIDUAL 1.0000 p DROP 2 1.0000 t

Czecw souai Size ~ K K1c 0.006 10.0652 70 0.012 14.2408

'70 l 0.018 17.4545 70 '

O.024 20.1762 70  !

0.03 22.5887 70 0.036 24.7863 70

- 0.042 26.8256 70 0.048 28.7441 70

-0.054 30.5679~ 70 0.06 32.3166 70 0.066 34.0053 70

-0.072 35.6459 70

~0.078 37.2484. 70 0.084 38.8211 70

~0.09 40.3712. '.7 0 0.096 41.905 70

.0.102 43.4283 70 0.108 44.9461 70

-0.114 46.4633 70 0.12 47.9847 70 0.126 49.5145 70 0.132- 51.0572 70 0.138- 52.617 70 10.144 54.1982 70 0.15 55.8052 70 0.156 57.4426 70

.0.162 59.115 70

-0.168 60.8274 70 i

1 n)- <

~

0.174- '62.585 70 0.18 64.3934 70 0.186 66.2586 70 0.1-2 ff.;ii; "O 0.198 70.186 70 0.204 72.2631 70 0.21 .74.4272 70 0.216 76.6879 70 0.222 79.056 70 l 0.228 81.5437 70 0.234 84.1649 70 0.24 86.9355 70 O.246 89.8738 70 i 0.252 93.0009 70 -

l 0.258 96.3416 70 l l 0.264 99.9252 70 i i

'0.27 103.787 70 0.276 l 107.968 70 l 0.282' 112.519 70 i- 0.990 117.cna 70 0.294 123.001 70 0.3 129.109 70 i

Critical crack size = 0.1976 J

e

..a

a. n tm pc-CRACK for Windows Version 3.0, Mar. 27, 1997 (C) Copyright '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 E-mail: info 8structint.com 4 l

Linear Elastic Fracture Mechanics l

Date: Mon Nov.24 12:16:49 1997 File: CCP80.LFM

Title:

CPC-060: SUBSURFACE DEFECT, KID =80 Load Cases:

Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.3000 0.3750 7.2000 0.7500 -28.9000 Stress Coefficients Case ID CO C1 C2 C3 Type RESIDUAL 30 0 0 0 Coeff MEMBRANE 7.2 0 0 0 Coeff DROP 2 43.3001 -96.2668 0 0 StressDist Crack Model: Center Cracked Plate Under Remote Tension Stress Crack Parameters:

Plate Half Width: 0.3750 Crack depth: 0.3000


Stress Intensity Factor--------------------

Crack Case Case Case Size RESIDUAL MEMBRANE DROP 2 l

l u - - . - - - - - - - _ - - - -_- ____

- o

  • l 0.0060 4.11943 0.988664 5.94573 l l 0.0120 5.82841 1.39882 8.41235 l 0.0180 7.14374 1.7145 10.3108 l 0.0240 8.25766 1.98154 11.9106 0.0300 9.24501 2.2188 13.3437 0.0360 10.1444 2.43466 14.6418 l 0.0420 10.9791 2.63498 15.8465 0.0480 11.7643 2.82342 16.9798 0.0540 12.5107 3.00257 18.0572 0.0600 13.2264 3.17434 19.0902 0.0660 13.9176 3.34021 20.0877 0.0720 14.589 3.50137 21.0569 0.0780 15.2449 3.65878 22.0035 0.0840 15.8886 3.81326 22.9326 0.0900 16.523 3.96552 23.8482 0.0960 17.1508 4.11618 24.7543 0.1020 17.7742 4.2658 25.6541 0.1080 18.3954 4.41489 26.5507 0.1140 19.0164 4.56392 27.447 0.1700 19.f?9 d.71?1c ?o.24*'

O.1260 20.2651 4.86363 29.2494 0.1320 20.8965 5.01516 30.1607 0.1380 21.5349 5.16837 31.0821 0.1440 22.182 5.32369 32.0161 O.1500 22.8398 5.48154 32.9655 0.1560 23.5099 5.64238 33.9327 0.1620 24.1944 5.80665 34.9206 0.1680 24.8952 5.97486 35.9322 0.1740 25.6146 6.1475 36.9705 0.1800 26.3547 6.32513 38.0387 0.1860 27.1181 6.50834 39.1405 0.1920 27.9074 6.69777 40.2797 0.1980 28.7255 6.89411 41.4605 0.2040 29.5756 7.09814 42.6875 0.2100 30.4613 7.31071 43.9659 0.2"60 31.3866 7.53277 45.3013 0.2220 32.3558 7.76538 46.7002 0.2280 33.3739 8.00974 48.1698 0.2340 34.4467 8.26722 49.7182 0.2400 35.5807 8.53936 51.3549 0.2460 36.7832 8.82798 53.0906 0.2520 38.0631 9.13514 54.9378 )

0.2580 39.4304 9.46328 56.9112 l 0.2640 40.897 9.81529 59.0282 I 0.2700 42.4774 10.1946 61.3092 0.2760 44.1886 10.6053 63.7789 0.2820 46.0514 11.0523 66.4677 l 0.2880 48.0916 11.542 69.4124  !

0.2940 50.3414 12.0819 72.6595 I 0.3000 52.8414 12.6819 76.2679 1

I l

,. o Material fracture toughness: i aterial ID: a516-80 k Depth Kic 0.0000 80.0000 O.3750 80.0000

'0.7500. 80.0000 l -Load combination for critical crack size:

-Load Case Scale Factor

' RESIDUAL 1.0000 DROP 2 1.0000 1 Crack Total' Size K K1c 0.006 10.0652 80 0.012 14.2408 80 0.018 17.4545 80

.0.024 20.1762 80

^0.03. '22.5887 80 0.036 24.7863 80 0.042 26.8256 80 0.048 28.7441. 80 0.054 30.5679 80 0.06 32.3166 80 0.066 34.0053 80 I 0.072 35.6459 80 0.078 37.2484 80 0.084 38.8211 80 1 0.09 40.3712 80 0.096 41.905 80 0.102 43.4283 80 t

0.108 44.9461 80 l 0.114 46.4633 80

[ 0.12 47.9847 80 0.126 49.5145 80 0.132 51.0572 80 0.138 52.617 80 0.144 54.1982 80 0.15 55.8052 80

! 0.156 57.4426 80

! 0.162 ;59.115 80 0.16S- -60.8274 '80 4

A36 l

o L_ _ _ - _ _ _ _ _ - _ - _ _ _ _ - - - _ - - - - _ --

v l 0.174 62.585 80 0.18 64.3934 80 0.186 66.2586 80 0.192 68.1871 80 0.198 70.186 80 0.204 72.2631 80 0.21 74.4272 80 0.216 76.6879 80 l 0.222 79.056 80 l- 0.228 81.5437 80 0.234 84.1649 80 0.24 86.9355 80 0.246 89.8738 80 l.

0.252 93.0009 B0 0.258 96.3416 80 0.264' 99.9252 80 0.27 103.787 80 0.276 107.96P 80 i 0.282 112.519 80 0.266 117.5v4 ou )

l L 0.294 123.001 80 0.3 129.109 80 1

I Critical crack r,1ze = 0.2244 i-f.

A37

_ ~ - _ - - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ __ _ . _ _ _ __ _

tm pc-CRACK for Windows version 3.0, Mar. 27, 1997 (C) Copyright '84 - '97 Structural Integrity Associates, Inc.

3315 Almaden Expressway, Suite 24 San Jose, CA 95118-1557 Voice: 408-978-8200 Fax: 408-978-8964 l E-mail: info @structint.com Linear Elastic Fracture Mechanics Date: Mon Nov 24 12:17:52 1997 File: CCP90.LFM

Title:

CPC-060: SUBSURFACE DEFECT, KID =90 Load Cases:

Case: DROP 2 --- Stress Distribution Depth Stress 0.0000 43.3000 0.3750 7.2000 0.7500 -28.9000 Stress Coefficients case ID CO C1 C2 C3 Type RESIDUAL 30 0 0 0 Coeff MEMBRANE 7.2 0 0 0 Coeff DROP 2 43.3001 -96.2668 0 0 StressDist Crack Model: Center Cracked Plate Under Remote Tension Stress Crack Parameters:

Plate Half Width: 0.3750 Crack depth: 0.3000


Stress Intensity Tactor--------------------

Crack Case Case Case Size RESIDUAL MEMBRANE DROP 2

?\ ) -

- s 0.0060 4.11943 0.988664 5.94573 0.0120 5.82841 1.39882 8.41235 0.0180 7.14374 1.7145 10.3108 0.0240 8.25766 1.98184 11.9186 0.0300 9.24501 2.2188 13.3437 0.0360 10.1444 2.43466 14.6418 0.0420 10.9791 2.63498 15.8465 0.0480 11.7643 2.82342 16.9798 l 0.0540 12.5107 3.00257 18.0572 0.0600 13.2264 3.17434 19.0902 0.0660 13.9176 3.34021 20.0877 0.0720 14.589 3.50137 21.0569 0.0780 15.2449 3.65878 22.0035 0.0840 15.8886 3.81326 22.9326 0.0900 16.523 3.96552 23.8482 0.0960 17.1508 4.11618 24.7543 0.1020 17.7742 4.2658 25.6541 0.1080 18.3954 4.41489 26.5507 0.1140 19.0164 4.56392 27.447 0.1706 1.c 6'o 4 '1335 7' ?o5' O.1260 20.2651 4.86363 29.2494 0.1320 20.8965 5.01516 30.1607 0.1380 21.5349 5.16837 31.0821 0.1440 22.182 5.323E9 32.0161 0.1500 22.8398 5.48154 32.9655 0.1560 23.5099 5.64238 33.9327 0.1620 24.1944 5.80665 34.9206 0.1680 24.8952 5.97486 35.9322 0.1740 25.6146 6.1475 36.9705 0.1800 26.3547 6.32513 38.0387 0.1860 27.1181 6.50834 39.1405 0.1920 27.9074 6.69777 40.2797 .

0.1980 28.7255 6.89411 41.4605 0.2040 29.5756 7.09814 42.6875 0.2100 30.4613 7.31071 43.9659 0.2160 31.3866 7.53277 45.3013 0.2220 32.3558 7.76538 46.7002 0.2280 33.3739 8.00974 48.1698 0.2340 34.4467 8.26722 49.7182 0.2400 35.5807 8.53936 51.3549 0.2460 36.7832 8.82798 53.0906 0.2520 38.0631 9.13514 54.9378 0.2580 39.4304 9.46328 56.9112 0.2640 40.897 9.81529 59.0282 0.2700 42.4774 10.1946 61.3092 0.2760 44.1886 10.6053 63.7789 0.2820 46.0514 11.0523 66.4677 --

0.2880 48.0916 11.542 69.4124 0.2940 50.3414 12.0819 72.6595 0.3000 52.8414 '12.6819 76.2679 l

s g.,

i Material fracture toughness:

3

.terial ID: a516-90 Depth Kic 0.0000 90.0000 0.3750 90.0000 0.7500 90.0000 Load combination for critical crack size:

Load Case Scale Factor RESIDUAL 1.0000 DROP 2 1.0000 Cr-rh Te*a' j

Size K K1c

{

0.006 10.0652 90 1 0.012 14.2408 90  !

l 0.018 17.4545 90

) 0.024 20.1762 90 0.03 22.5887 90

/ 0.036 24.7863 90  ;

g 0.042 26.8256 90 i I

0.048 28.7441 90

[ 0.054 30.5679 90 I

0.06 32.3166 90 0.066 34.0053 90 0.072 35.6459 90 0.078 37.2484 90 0.084 38.8211 90 0.09 40.3712 90 0.096 41.905 90 0.102 43.4283 90 0.108 44.9461 90 0.114 46.4633 90 0.12 47.9847 90 0.126 49.5145 90 0.132 51.0572 90 0.138 52.617 90 0.144 54.1982 90 ,

0.15 55.8052 90 0.156 57.4426 90 0.162 59.115 90 0.168 60.8274 90 J

-y. _ _ _ _ _ _

q ;, ' 4 t

""aterial fracture toughness:

.torial ID: a516-90 Depth Kic 0.0000 90.0000 0.3750 90.0000 0.7500 90.0000

. .f

.Losd combination for critical crack size:

Lond-Case: . Scale Factor 3 RESIDUAL 1.0000

DROP 2 1.0000 C::rt. Tet ?. ?

Size K Kic i 0.006 10.0652 90 0.012 14.2408 90 0.018 17.4545 90 1 .0.024 20.1762 90

]p 0.03.

0.036

.22.5887 24.7863 90 90 0.042 26.8256 90

[. 0.048 28.7441 90 O.054 30.5679 90 0.06 32.3166 90 0.066 34.0053 90 0.072 35.6459 90 0.078 -37.2484 90 0.084 30.8211- 90 0.09' 40.3712 90 0.096 41.905- 90 0.102 43.4283 90 0.108 -44.9461 90

'O.114 46.4633 90 0.12 47.9847 90 0.126 49.5145 90 0.132 51.0572 90 0.138 52.617 90 .

0.144 54.1982- 90 0.15 55.8052 90 0.156~ -57.4426 90 0.162 59.115 90 L O'168=

. '60.8274 90 l

l l

A t- .