ML20140C999

From kanterella
Jump to navigation Jump to search

Review of Wind & Tornado Loading Responses,Oyster Creek Nuclear Generating Station, Technical Evaluation Rept
ML20140C999
Person / Time
Site: Oyster Creek
Issue date: 10/31/1984
From: Barrett D
FRANKLIN INSTITUTE
To: Persinko D
NRC
Shared Package
ML20140D007 List:
References
CON-NRC-03-81-130, CON-NRC-3-81-130 TAC-49392, TER-C5506-428, NUDOCS 8411020278
Download: ML20140C999 (94)


Text

. . _ _ _ _ _ _ . __ _ .. . _.

, A754coMEAT A TECHNICAL EVALUATION REPORT l

l I

i REVIEW 0F WIND AND TORNADO LOADING RESPONSES JERSEY CENTRAL POWER AND LIGHT COMPANY 0YSTER CREEK NUCLEAR GENERATING STATION

.-- i l

NRC COCKET NO. 50-219 FRC PROJECT C5506 NRCTAC NO. 49392 FRC ASSIGNMENT 17 NRC CONTRACT NO. NRC-03-81 130 FRC TASK 428 Preparec' by Franklin Research Center Author: D. J. Barrett 20th and Race Streets Philadelphia, PA 19103 FRC Group Leader: D. J. Barrett l

Prepared for \

Nuclear Regulatory Commission Lead NRC Engineer: D. Persinko ,

j Washington, D.C. 20555 l l

October 31, 1984 l l

l i

This report was prepared as an account of work sconsored by an agency of the United States .

Government. Neither the United States Government nor any agency thereof, or any of their ,

employees, makes any warranty, expressed or implied, or assumes any legal liability or  !

responsibility for any third party's use, or the results of such use, of any information, appa- j ratus, product or process disclosed in this report, or represents that its use by such third

, party would not infringe privately owned rights.

l FRANKLIN RESEARCH CENTER DIVISION OF ARVIN/CALSPAN 20th and Race Streets. Phila., Pa. 19103 (215) 448 1000 f042%ke 44y t

s ,

j .

i TECHNICAL EVALUATION REPORT i

REVIEW OF WIND AND TORNADO LOADING RESPONSES

. JERSEY CENTRAL POWER AND LIGHT COMPANY OYSTER CREEK NUCLEAR GENERATING STATION I

NRC DOCKET NO. 50-219 FRC PROJECT C5606 NRCTACNO. 49392 FRC ASS 3GNMENT 17

~l NRC CONTRACT NO. NRC-03-81 130 FRC TASK 428 i

j ii Prepared by j '

Franklin Research Center Author: D. J. Barrett 20th and Race Streets

'f Philadelphia, PA 19103 FRC Group Leader: D. J. Barrett t

I Prepared for Nuclear Regulatory Comrnission Lead NRC Engineer: D. Persinko R Washington, D.C. 20555 l

d l October 31, 1984 This report was prepared as an account of Work sponsored by an agency of the United States  !

Governmer:t. Neither the United States Government nor any agency thereof, or any of their i a employees, makes any warranty, expressed or Impiled, or assumes any legal llability or

.I responsibility for any third party's use, or the results of such use, of any information, appa-

, ratus, product or procesa disclosed in this report, or represents that its use by such third

! party would not infringe privately owned rights.

'j .

] Prepared by: Reviewed by: Approved by:

/ Y Wff &

Project Manager # Department D/ectq/

Prin[ pal Author Date & A 84 Date- /oNMdY Date: # *

  • 3 I ,

6 l

I

, FRANKUN RESEARCH CENTER

DIVISION OF ARVIN/CALSPAN l

4 20th and Race Streets. Phila., Pa. 19103 (215) 448-1000

s .

TER-C5506-428 CONTDrfS section Title Page 1 INTRODUCTION . . . . . . . . . . . . . 1 1.1 Purpose of Review . . . . . . . . . . . 1 i

l 1.2 Generic Issue Background . . . . . . . . . I 1.3 Plant-Specific Background . . . . . . . . . 1 l

2 REVIEW CRITERIA. . . . . . . . . . . . . 3 l

l l 3 TECHNICAL EVALUATION , . . . . . . . . . . 6 i

3.1 General Information . . . . . . . . . 6 i g .

3.2 Effective Tornado Loadings. . . . . . . . . 8 3.3 Structural Loadings . . . . . . . . . . 9 l

! 3.4 Structural Analysis and Modeling . . . . . . . 12 l

l 3.5 Structural Acceptance Criteria. . . . . . . . 12 3.6 Structural Systems. . . . . . . . . . . 15 4 CONCLUSIONS. . . . . . . . . . . . . . 23 5 REFERENCES . . . . . . . . . . . . . . 27 i

APPENDIX A - GERIERAL DESIGN REVIEN CALLULATION6 APPENDIX B - VENTILATION STACK DESIGN REVIEN CALCULATIONS I

APPEleIX C - TURBINE BUILDING DESIGN REVIEW CALCULATIONS i

l iii l

. ~ . . . ._. .. . - . . . .... .-

[ .

TER-C5506-428 L

L

) FOREWORD L

This Technical Evaluation Report was prepared by Franklin Research Center

, under a contract with the U.S. Nuclear Regulatory Commission (Office of Nuclear Reactor Regulation, Division of Operating Reactors) for technical assistance in support of NRC operating reactor licensing actions. The technical evaluation was conducted in accordance with criteria established by f

4 the NRC.

f-I i

)

I I

l l

l l

t

]

l l

i ,

V

\

. . . . . . ..:_........__._.:2..----.-. . - . . . . . . . . . . - ..-. . . . . . .

c. .

'l "ER-C5506-428

1. INTRODUCTION ,

1.1 PURPOSE OF REVIEN A study of the Oyster Creek Nuclear Generatic.g Station was undertaken by Jersey Central Power and Light Company (JCP&L) to examine the ability of the plant's civil engineering structures to resist a windatpra or i tornado M strike. The purpose of this review is to provide a technical evaluation of the approach, analysis, and conclusions of the JCP&L study.

1 1.2 GENERIC ISSUE BACEGROUND

[

1 .

4 The current design criteria for nuclear powe.e plant structures contaia 1

3 provisions for protection ag&itist vindstorms and tornadoes. Tnese requirements were not in of fect at the time that some of the older mielear plants were designed and licensed. Due to concerns regarding the extent to

!! which these older plants can sat.isfy the currant wind loading licensing

't criteria, the Nuclear Regulatory Commission (NhC), at part of the Systematic

]

l Evaluation Program (SEP), irtitiated Topic III *., "Nind and Tornedo Loadings,"

to investigate and assess the structural safety of existing designs.

1 The SEP encompasses a broad range of safety-related issues, many of which q

o I are concerned with the integrity of plant structores. The frantlin Research Center (FRC) provided technical assistance to the NRC An the review of several j SEP tcpics and was responsible for technical etaluctions for Topic III-2 under j Assignment 17 of NRC Contract No. NPC-03-Al-130.

j 1.3 PIANT-SPECIFIC BACKGROUND 1

g 1.3.1 Oyster Creek structural Deviese h In a previous Technical Evaluation Report (TEE) [1] , the FRC staf f r

examined a sample of the structures at the Cyster Creek plant for resistance b to high wind and tornado loadings. This effort determined that, although most of the designs had adequate strengtn, some of the structural coeponents were not designed to meet the provisions of current licensing criteria. The NRC included the findings of the FRC study in the Integrated Plant Safety Assessment 12] and also reported the safety-related concerns directly to JCP&L t ,_ . . _ _ . ., _,. _ _.

a 1 l l *

  • 1 b

TER+C5506-428 bt a

',f in as evaluation lettes (3) of a previously issued SEP Topic III-2 Safety 3

i Analysis Report (SAR) [4I a ,

4

$ In response to the safety assues raised by the NhC, JCP&L issued a letter J and support doententg, her, min referred to as the oyster Creek Structural Raylew (OCSS) [hl, optablishing the basis of the position taken in the SAR O [

concerning th6 adequacy of the structural systems. These documents included -

engineering calculat. ice.m that wees useo to establish the windspeed strength

  • retings of structures. A seabsequent letter (6) included information and G r calculatior.s on a ternaio analysis of the diesel generator building.

FFC was then charged with raking a technical evaluation of the OCSR q documents. The approach to thiw task was threefold

>4;

% 1 teview the procadares, criteria, and conclusions of the OCSR.  ;

l

?.i

'f ,

2. audit the ensi.7eering calculaticas. l ci n 3. seek to resolve outstanding safeti issues through independent .

analysis (subject to the limite of the resources assigned to this ,

'l?j task).

The particul.ar review itenes are identified and discussed in Section 3 of [

this reports the conclusions are summtirized in Secticr. 4.

u j 1.3.2 Turbine Buildine Structural Review  ;

IJ  !

? A draft TER '7] seporting the review of the CCSR documents was issued on U  ;

November 30, 1983. Subsequent to that date, the NRC requested FRC to examine q' an additional tcznado analysis [31 rerformed by JC7&L for the Oyster Creek turbine building. The purpose of the Turbine au11 ding Tornado Evaluation

[1 (T373) was identical to that of the OCSR, and the findings of the review of 9 ,

] the TNTE documents hsve teen incluced in the final version of this report.

J i

t 1

2-  ;

.j .

M s

]s i "  ;

'i

,1 I i TER-C5506-iL28 f

] 2.

a REV12W CRITEUIA h

The inter.t of code regulaticms is to ensure thti safety of systems vital i to the safe shutdown of a resctor. The General Design Criteria (GbC) of 10CTR50, Appendix A (9) regulate the dssigns of these safety systess; in particular, CDC 2 require 3 that structures housing safety-related equipment be able to tvithstand the effects of natural poenomena such as tornadoes. The

$ design basis must costsider the most severe postulated tornado as well as the k combined effects of tornado, normal, and accident conditiens.

)

d The Nuclear Regulatory Guide 1.76 (10) defines the design basis tornado l

d (DST) in terms of siit descriptive parameterst the anzimus wipd speed, the  ;

) rotational speed, the translation.nl speed, the maxieum atmospheric preestara drop, the rate of pressura drop, and the core radius. The specified

.t .

{ magnitudes of tnese ragional parameters (listed with respect to geographical

[.: location) are the acceptable regulation levels: however, where appropriate, ,

additional meteorological analysis may be performed to jiastify the selection j of a less cooservative D8". In P.eference 11, the NRC establishod tha torna.do parameters to be used in the SES study of the Oyster Creek plant.

9 l Regulatory Guide 1.117 (12] identifies tha structures and systetes that i

j should be protected from the effects of a D87. This information is elaborated ,

on in Branch Technical Position AAB 3-2 found in the Standard Review Plan

]

,' (SRP) , Section 3.5.1.4 (HUREG-0600) (13]. The OC3R analysis reviewed in this j report included Jacst of the safety-related structural systems of the oyster Creek plant.

j A velocity pressure model of a windstorm can be constructed from the

/ -f p: essure and air flow assumptiona stated in Sectior; 3.3.1 of tbe .SRP (14] and 1 i t the American National Standards Institute (ANSI) design loading guide Il$1 A 4

l velocity pressure model of a tornado strike can be constructed from the DET chara::teristics based on the guidar.cs of Section 2.3.2 of the SEP (16) and the )

engineeritig literature (17,18) . The actual loads acting on a structure are ,

,1 L calculated from these models through the use of experimentally determined 1

i i

( - - - -_ -

1

4 TER-C5506-423 b

g pressore cuefficients '15, 191. The loads act on the structural surfaces as pcsttive and r.egative pressures induced by the cnenge .in morcentum cf the wind and in the atticaphoric pressore.

k An additional tornado load is the impact of windborne missiles assinst

{

l structtares, The potential missiles are listad in the nissile spectrum of Section 3.5.1.4 of the SRP (13], and the particular rissiles e.o be included in U this study were identified by the NRC as part of the SEP assignment (11).

4 is Referencea 20 and 21 apsint it. the determination of the structural effects of misails iispect, whereas the guidelines of the SEP (M) indicat@ acceptable

/ combinatiens of impace effects with the loads resulting from wind and differential pressures, d Sirice the DST. is considered an extreine environmental event, tornado-q q induced loads ate part of the loading combinations to be used in extreme environmental design (see Article CC-3000 in the AEMg Boiler and Pressure vessel Code (22] and Section 3.8.4 of the 537 (231). The structural effects of these loading combinations are deterrined by analysist stresses are at calculated either by a working strass or an ultimate strength merbod, j whichever is appropriate for the struct.ure under consideration. 'The ASME Code

'; specifications ter an extreme environmental event permit the application of U reserve strength factors to allowable working stress design 11: nits. The specificational also permit local nerength capacities to be exceeded by missile d 1cadings (ccccentrated loads) provided that this causes r.o Icss of function in any safety-relatad systems.

The sources of cciteria described above and other source documents used i

in the evaluation are listed belows HRC Re:gulatory Guide 1.76, " Design Basis Tornado for Nuclear Power lj, Plants" (10]

Nhc R69ulatory Guide 1.117, " Tornado Design Classification" (12}

NURG-08f)9, Standard P.eview Flan Section 3.3.1, "Nind Loadings" (14]

< 5ection 3 3 2, " Tornado Loadings" [16]

g Section 3.f.1.4, 'Missilts Generated by Natural Phenomena" (13]

2 h e4-k i

. .-. -. . - . a. - . . . .~... .

]

  • , s

.j -

3 j TER-C5506-428 1

1 Sectton 3.5.3, 'Eargier Design Procedures" (24)

1 Section 3.8.1, " Concrete Containment" (25]

3 Section 3.8.4, "other seismic Category I Structures" [231 Section 3.8.0, ' Foundations" (26]

1 r MSC Specificatiors for Design, Fabrication, and Erecticn of Structural Steel fcr Buildings, sighth Edition (27)

ACI-318-77, "JBuilding Code Requirements fox Reinforced Concrete' [28]

ASME Boiler and Pressure vessel Code,Section III, Division 2 (ACI-359),

. "Ste.odard Code for Concrete Reactor Vesseis and Cantainments" (22]

FRC/SES, ' Criteria for Safety-Related Masonry Wall Evaluation,"

] Structural Engineering Branch (1581) (29]

ACI-307-79, "Specificaticn for the Design and Construction of Peinforced T Concrete Chimneys" (30).

l d

1 f

I ,

3

.r 1

l 1

a.

I d

J l

1

't 4

3 i l il I

L l i

44 - l t- . - . . - . .. _. -_ _ .-_ __.

O I w .

TER-C5506-428 1

3. TECHNICAL EVALUATION f

y .

3.1 GENERAL INFORMATION f' Based on a meteorological study of the Oyster Creek region, the NRC established the following site-specific DBT characteristics:

f Maximum wind speed 250 mph 1 Maximum pressure drop 1.5 psi Rate of pressure drop 0.6 psi /sec h

g Core radius 150 ft n

  • These characteristics correspond to a tornado with a probability of occurrence

~

of 10 per year (as required by current licensing criteria). The charac-teristics were used to calculate the structural loadings of the initial review

[1, 11] and are used as the basis of computations in the present review.

The following subsections review the approaches, analysis, and conclu-

, sions of the OCSR that are used by JCPEL to support the conclusions of the j i Oyster Creek SAR. Important steps of the analysis are examined, and an j evaluation of the adequacy of the steps are made. Audit calculations are il performed to check the analysis. Where necessary, calculations supporting,

] refuting, or correcting the JCP&L position were made and are included in the 1

appendices of this report.

1 The major structures of the Oyster Creek plant are the reactor building, the control room, the intake structure, the diesel generator building, the t

2 radwaste building, the turbine building, the ventilation stack, and various exposed mechanical components. All of these structures, except for the radwaste and turbine buildings, have been included in the OCSR. The TBTE f

g specifically addresses the turbine building structure alone. As an aid in interpreting the structural review, a site plot plan is shown in Figure 1.

e n

h i

f' 1

}

3' e.

,.gr.g awe my een, 4 eS.W he a 4ew w new m %. eepMMOm.*We og ee e. e g Wh WEN 64mDe = * * * * * * '

  • f

) -

t l

i l

TER-C5506-428 l .,

1 ye j - . . . . . . . . .

== *

,e.een

,,4

' ==

8 g *If h I i f, $

f

)

i .

,, d

' g 3 i I.I. _ .-4.. m J

mad ;m#_3 y

N

  • i s !ft I j 5 :a4 .'.; e j $$$

l

< =

al i la .  : , l- M.

a 8

a

.,..j.....;

l .

o j i g 1

j ...___ _ _____a '

e!

g a

) 9; Ip: ,i  ;

! s  ;:ii1 i i ih, '. e.

.! !. S # -

f i

I  %

J: " ; ' - ;} *f 8,_6

  • 6 i ' ,s::e

_ a,' mm s,o i  : _

I i "M.( '- 4..-6 I 3

i I

~

3 ii

,.a

- )/j +)

1 a-  ; m .-

l (- s ss l -

{

h,.- tfK l

i w'% I%,.

J

.I

  1. ~ ' _ i N e, U UQ l i

.2

, )'.

, 21 l

l  !!

<-1 E I I I

~

, i il e-i I-

.. ._1 -, ..

? o 1

6 i

~

E

i.

(j TER-C5506-428 f?

3.2 EFFECTIVE TORNADO LOADINGS b

3.2.1 Atmospheric Pressure Change

i d Evaluation

? Given the translational core speed and the windspeed distribution of a 1

g tornado, there is a well-defined procedure for calculating the magnitude of the atmospheric pressure change (APC) that occurs at any given point in a tornado [18]. The maximum APC occurs in the center of the tornado cure.

Since the intent of the calculations of the OCSR was to support the load <

resistance ratings of the SAR, the wind speeds corresponding to the maximum T APC were never calculated.

Conclusion For structures that resist the full structural loadings resulting from a

, tornado strike, it is unnecessary to find the limiting windspeed rating. For those structural components that are being qualified for reduced loadings, the

]

d limiting windspeed rating corresponding to the APC will be calculated in M

, Appendix A of this report.* ,

1 J

3.2.2 Wind Velocity Pressure

!]

ii

" Evaluation a

The methods used in the OCSR to calculate wind velocity pressures for 2 windstorms and tornado strikes follow the procedures delineated in Sections s, 3.3.1 and 3.3.2 of the SRP (14, 16] and ANSI A58.1-1982 (15].

i d

d Conclusion The wind velocity pressures were calculated in accordance with the

}#

-j applicable criteria.

  • Note that this calculation merely expresses the APC windspeed rating of the I components based on the strength reported in the OCSR. The adequacy of the

? reported APC resistance is subject to the validity of the structural review Ik criteria (see Section 3.5) .

e

I a

y .. --~ , ........w-_.-....._..-.-.,

. .=... - ; .  : ....:.....,--.:.....

5 l i '

e I

i TER-C5506-428 l

1 f 3.2.3 Windborne Missiles Evaluation In evaluating the structural effects of missile impacts, the OCSR bases its conclusions on equations and procedures provided in the engineering

) literature [20, 31]. These procedures are consistent with the intent of I* Section 3.5.3 of the SRP (24], which requires missile impacts to be modeled as concentrated loads acting in conoination with other applied loadings. The overall response of the structure to such loadings was then examined.

! The missiles used in analysis were the steel rod, telephone pole, and f automobile of the missile spectrum (13) . Therefore, the missile specifications

! of Reference 11 were satisfied.

j conclusion i

j The global structural effects of missile impact were examined in accordance with the applicable criteria (the components examined were limited j to those which satisfy the requirements of the othe' tornado loadings).

l 3.3 STRUCTURAL LOADINGS

{

! 3.3.1 Differential Pressure Load i Evaluation f The atmospheric pressu're change of a tornado leads to a lowering of the h amoient pressure outside of a structure. For an unvented structure, this change results in differential pressure loadings acting outwardly on the building surfaces. In the tornado strike analysis, the OCSR included the differential pressure as a bas:c loading condition. For structural components being qualified to resist the full effects of a tornedo, the correct maximum value of the differential pressure loading was examined. For those components with limiting strength, loadings were examined that were more conservative f than the differential pressure loads.

i O O

k-y

/ TER-C5506-428 5

Conclusion

. The differential pressure load was applied to the structures in accor-O t dance with the applicable criteria (16].

3.3.2 Effective Structural Pressures

(

e Evaluation

{.

The wind velocity pressure is converted to actual structural loadings through the use of pressure coefficients and gust factors. These coefficients vary for the direction of wind flow and for the section of the structure under consideration. The OCSR analysis draws from the appropriate reference sources (14, 15, 16, 18] for the values of these coefficients.

I The applicable criteria (16, 17] recognize that the peak wind velocity u

pressure occurs in a limited region and that this pressure rapidly decays away

from this region. The overall structural pressure acting on a building il

'.j surface is therefore greatly reduced from a uniform pressure based on the peak

..I wind velocity. However, individual components on the building exterior must l-} still be qualified for the local application of the peak pressure. In the h OCSR, all of the components were examined for the peak pressure value.

d M

Conclusion 5 The calculations for converting wind velocity pressures to effective structural pressures are in accordance with the applicable criteria. The local effect of the application of the peak pressure to exterior structural components was examined.

(

3.3.3 Design Loads Evaluation

  1. The design loads that are to be considered acting in combinatioof with tornado loads and wind loads are dead, live, thermal, and pipe reaction loads (23]. The analysis in the OCSR has included these additional loadings where Et l applicable. The magnitude of these loads while acting in combination with the

.j .

.. .. . . . . ~. . .. . . . . ....... . -

1 TER-C5506-428 differential pressure load was not always computed correctly; however, the

, combinations formed were usually conservative.

Conclusion

. The design loads were identified and included in the analysis in 4,

j accordance with the applicable criteria. Cases where the magnitude of the design loads were incorrectly and unconservatively computed will be identified in Section 3.6, Structural Systems, of this report.

P l 3.3.4 Shielding l

} Evaluation The term " shielding" refers to the reduction or elimination of wind loads e

on a structure from the blockage of wind flow by an upstream obstruction 4

(another structure, physical formation, etc.) . The provisions of the I

] applicable standard prohibit the reliance on shielding for the reduction of j

e wind loads. The OCSR does not rely on shielding for the qualification of structural compor.ents and, where applicable, accounts for the transmission of lateral forces through structures.

l , Conclusion Shielding and the transmission of lateral forces were treated in accor-l

! dance with the applicable criteria and good engineering judgment.

3.3.5 Load combinations Evaluation The correct load combinationc for severe and extreme environmental events are specified in various sections of the SRP (23, 25]. Specific load

( combinations of the basic tornado-related loadings are given in Section 3.3.2 of the SRP (16]. In establishing the capacity of structural components, the L

u

$j

> a p,

f TER-C5506-428 r

s i OCSR formed load combinations that are equal to or more conservative

  • than those specified for combinations involving effective structural pressures and differential pressures. Although missile loads were considered in proper load

, combinations for the reactor building, the combination was not properly k considered for the control room, ventilation stack, and the diesel generator building.

Conclusion 1

For some structural components, the missile load combinations were not formed in accordance with the applicable criteria.

h 3.4 STRUCTURAL ANALYSIS AND MODELING The review items included in this section (main structural frame, sequence of failure, secondary members, roof decking, etc.) are either not applicable to the OCSR or are addressed elsewhere in this report.

, 3.5 STRUCTURAL ACCEPTANCE CRITERIA 3.5.1 Steel components 1

Evaluation

.' d

. The extreme environmental structural acceptance criteria specified by the SRP (23] recognized the severity of the loadings presented in the rare f occurrence of a tornado and, as such, permitted stress levels in steel l components to approach yield conditions. This allowance may result in large q deflections but will still guard against instabilities so that a failure mechanism will not occur. In the review of steel components, the OCSR y i acceptance criterion is based on the tensile strength of steel.** Such

  • In many cases, the load combination formed in the qualification of components whose strength was found to be limiting was excessively conservative. The chief conservative measure was combining dynamic pressures and differential H pressures whose magnitude did not correspond to the same wind speed

%' **That is, for components subjected to bending loads, the stress levels were compared with the tensile strength of steel. Compression members (columns) were not examined in the OCSR but were reviewed in an earlier study [1] .

3

d

'l s j TER-C5506-428 i

a criterion results in larger deflections than are permitted in the SRP and does not ensure structural stability.

3 Conclutiion a

The structural acceptance criterion for steel components employed in the OCSR is not in con.Crmance with the applicable criteria. It is also not f

ri recommended on the basis of accepted engineering practice.

[>

3.5.2 concrete Components l

) Evaluation i

i As with steel components, the SRP recognises a tornado strike as a special event and permits levels of stress to occur that are above the j established code allowables. The strength of concrete components is therefore j based on the ultimate capacity of sections, which allows the stress in the l

reinforcing bars to reach yield val.as and the stress in the concrete to approach the ultimate compressive Strength. In conducting the review of l{

i

,1 concrete components,* the analysis of the OCSR adhered to these increased

.j upper limits.

a Conclusion l The structural acceptance criterion for concrete components employed in 1

i the OCSR is in conformance with the applicable criteria.

4

) 3.5.3 Masonry Block walls D

Evaluation j The NRC/SEB has established masonry block wall structural acceptance I criteria (23, 29] for stresses due to extreme environmental events. These

  • In the ventilation stack analysis, the stresses in the steel rebar were found to be slightly above yield values for the stated windspeed capacity. This is considered acceptable in light of the analysis presented in Section 3.6.9
of this report.

l 3

i k

4 , ,.

h i TER-C5506-428 I

h criteria permit overload factors for all basic stress levels including tensile masonry stresses for unreinforced blocks. In Reference 32, NRC asked if any d of the Oyster Creek masonry walls will be affected by tornado loads. JCP&L 3 responded that there are no masonry walls in the Category I areas of the o$ plant's structures (Reference 5, page 9, of " Responses to NRC Questions").

G i Conclusion e

This review item is not applicable for the structures at the Oyster Creek 2 plant.

1 3.5.4 connections Evaluation M Steel connections are permitted the same overstress factor for extreme Q

environmental loadings as steel members. This factor is applied to the allowable stresses as specified in the steel code [27]. The OCSR does not

} state the criteria used to examine steel connections and does not indicate if these components were examined. However, in typical engineering designs, of a which the structures of the Oyster Creek plant are representative, connections are designed to meet the limiting allowable capacity of members. In this case, given the manner in which loads are resisted in the Oyster Creek steel

[ structures, it is concluded that the connections will not be the limiting components of the steel frames if they were sized in accordance with good a

g engineering practice.

Conclusion This item is not critical for the structures at the Oyster Creek plant.

3.5.5 Roof Decks 7

N Evaluation y Roof decks are typically constructed of light gage steel sheets. Under b extreme loadings, the bending compression zones of the decks will be suscep-

, tible to local buckling failures. In establishing the capacity of the roof i

t

, _ . . . - . ..--~.,.a.a . . . .- . . . . . .;

}.

j 4

1 TER-C5506-428

! decks, the OCSR used beam bending formulas without any consideration of reducing stresses for the buckling of local compression elements.

I Conclus h k Roof decks were not analyzed in accordance with accepted practice. The i

i limiting failure mechanism of these components was not found.

. 3.5.6 Architectural Components N

! Evaluation

}

1 4

Large-scale architectural components such as structural siding and

{ roll-up doors must be reviewed for tornado resistance, and the consequences to j the mein structure caused by their failure must be examined. No architectural

)

't details were included in the analysis of the OCSR.

Conclusion

) verification of the lack of architectural components in critical struc-tures is recommended. If these components are present, they should be i included in the wind and tornado loading review.

f 3.6 STRUCTt7RAL SYSTEMS b

l 3.6.1 Concrete Components of the Reactor Building 1

Evaluetion l For effective structural pressure and differential pressure loadings, the

, analysis presented in the OCSR uses a working stress design method fer the l f

! review of concrete components. Although this procedure is not in s cordance with the accepted criteria [23], the conclusions formed are valid since they f are in agreement with a previous study (1) and since the members in question ,

inherently have a high capacity against these loadings (Attachment 1 of

Reference 5, . pp. 6-11) .

l Missile loadings acting in conjunction with other loads are reviewed through the accepted review procedure, and the conclusions formed are based on the appropriatw criteria (Attachment 1 of Reference 5, p. 45).

l'

( . .c kf g

I TER-C5506-428 Conclusion The SAR windspeed strength ratings for the reacs '.11 ding concrete components are valid and are based on the accepted criteria.

E

(( 3.6.2 Steel Components of the Reactor Building Evaluation l

The steel components of the reactor building were not reviewed with 3 respect to the standard structural acceptance criteria. Furthermore, not all y

, of the important load-resisting members were included in the review of tornado loadings (see Attachments 1 and 5 of Reference 5). The stated capacities of f some elements (girts, purlins, etc.) were based on procedures not consistent with good engineering practice (member capacities based on material tensile strength, see section 3.5.1) .

Conclusion

The SAR windspeed strength ratings for the reactor building steel components are invalid and are based on criteria not in conformance with the f

i accepted criteria.

. .i 3.6.3 Metal Siding Systems of the Reactor Building Evaluation The analysis used to qualify the insulated metal siding of the reactor building neither accounts for the possibility of buckling of local compression g components nor examines the capacity of the underlying connections. Neverthe-I less, the windepeed rating established for these components is of the level predicted by an experimental procedure performed elsewhere (33). Based on the g experimental results and assuming that the connections of the siding systems are comparable, the capacity of the Oyster Creek siding system has been overestimated by approximately 15 to 204.

(

4 i

k I;

- . . - . ...._ ~.....-- _ .-. . . . - . .  : . .

, o TER-C5506-428 1

conclusion If a safety-related concern arises that involves the metal siding systems, then their stated capacity should be reexamined.

3.6.4 Control Room Evaluation h The concrete walls and panels of the control room were examined in a Y manner similar to that used to review the concrete components of the reactor i

building (Attachment 1 of Reference 5, pp.19-24) . The capacity of the panel connections to resist differential pressure loadings was esamined in an appropriate manner.

Conclusion l

I The windspeed ratings that are listed in the SAR for the control room are valid and are based on the accepted criteria. Note that the OCSR concludes that the control room walls will not be able to resist load combinations involving missile impacts.

i 3.6.5 Intake structure Evaluation The components of this structure were examined in accordance with the ,

accepted criteria.

e Conclusion  ;

The windepeed ratings listed in the SAR for the intake structure are valid and are based on the accepted criteria.

[

d J

3.6.6 Diesel Generator Building i Evaluation h The concrete walls and roof slab of the diesel generator building were k esamined in a manner similar to that used to review the concrete components of

(

i

[

, 3 5
.

TER-C5506-428 4

F the reactor building (6]. I,oad combinations involving the impact of tornado missiles were not reported.

Conclusion The windspeed ratings reported in the SAR for the diesel generator f

building are valid and are based on accepted criteria. This structure's resistance to missile impacts was not examined in the OCSR.

{

3.6.7 Radweste Building Evaluation '

L I The radwaste building is a structure whose failure may have significant safety consequences. This building was not included in the tornado loading f review of the OCSR. Justification for excluding this structure from the study was not presented.

h

$ Conclusion The NRC has stated that it does not consider this structure to be an

, essential review ites.

I i 3.6.8 Exposed Mechanical Components l

Evaluation The Integrated Plant Safety Assessment Report identifies the safety-related mechanical components that are not housed in qualified structures.

l The majority of these components are reported to be enclosed in other structures with adequate protection or are identified as being of insigni-ficant safety-related concern. Some structures (condensate storage tank, y condensate storage pumps, and service water pumps) are to be reviewed under SEP Topic III-4.A, " Tornado Missiles." The three remaining components to be reviewed for resistance to a tornado strike are the service water pump, the emergency service water pump, and the start-up transformer.

)

1 1 -

?

- . . . - .. - . + . . , , _ ~ .

N 1 .

l .

1 4

l 1 TER-C 5506-428

.I i l The calculations used to qualify these components study the capacity of o the supports and the structural base to resist lateral loads and overturning moments. In addition, depressutization loads (due to the APC) on the 4 component housing were addressed. The adequacy of the component structure was h therefore established. However, no attempt was made to qualify the mechanical

} components' ability t<: remain functional af ter the application of tornado I loadings.

Conclusion 5 The conclusions on the adequacy of the structural support and housing of f the mechanical components are, valid and based on the accepted criteria. The functional ability of the mechanical components to resist tornado loadings was not examined.

j 3.6.9 Ventilation Stack Evaluation I

The OCSR examined the ventilation stack through an approach based on maximum stress design (MSD). This technique relies on working stress design formulas [30] but allows the stress in the steel rebar to reach yield stress and the stress in concrete to approach its ultimate compressive strength.

f Although such a procedure is sound and in conformance with engineering

practice (34], the structural acceptance criteria for extreme environmental I

events permit reinforced concrete structures to be reviewed only through t

ultimate strength design techniques (USD) . However, USD is not an accepted L dasign theory for stack structures (but there is a current movement working towards the acceptability of such a practice) . To resolve this dilemma, it is meaningful to examine the ventilation stack through USD to see if the results corroborate the conclusions formed from the MSD study.

The reviewers constructed a USD model of the chimney based on the h geometry, service loads, and material property information provided in the l OCSR documents. In addition, the following assumptions were included in the modelt i -

t t

I

h h

I::

TER-C5506-428

1. The longitudinal steel is placed towards the outside face of the stack, and there is a 2-in cover over the circumferential reinforcement.

h

2. Thermal effects do not influence the strength conclusions for an extreme environmental event. (This assumption is supported by the acceptable stress criteria for working stress designs. See attachment i of Reference 5.)

g Wind flowing past a stack gives rise to the regular shedding of vortices. These vortices cause a pressure drop across the cylinder which gives rise to lateral forces. If the shedding frequency of the vortices matches a natural frequency of the stack (resonance), then significant dynamic effects can result. Based on the natural frequencies of the vertical stack (351, the wind speeds at which resonance is likely to occur were calculated.

Another dynamic effect due to wind flowing past a stack is ring vibration (in the sectional plane) . Wind speeds at which this phenomenon is likely to

] occur were also estimated.

] Conclusion The results of the USD study corroborated the static strength conclusions l of the OCSR. However, the stack was found to have a limiting resonant wind speed of 133 mph. Specific details of the analysis can be found in Appendix B.

3.6.10 Turbine Ruilding Evaluation The turbine building is not seismically classified as a Category I type structure. However, the turbine building is adjacent to the control room so that its resistance against collapse during an extreme environmental event is essential. Therefore, the purpose of the TBTE was to examine the ability of the turbine building to remain stable with increasing windspeeds and successive component failure.

The TDTE modeled the turbine building structural systems as two- and three-dimensienal frames which were analyzed through the use of a standard computer code. The TDTE document includes the results of this analysis and a .

1

s .

j TER-C5506-428 4

l the design review of the critical components. It also includes the rationale and procedure for iterating the level of loading vs. component failure to find the windspeed level where the turbine building steel begins to impinge on the

]

I control room structure. The conclusions of the TBTE are as follows:

[' 1. At a windspeed of 107 aph, the anchor bolts of some frames will be overstressed. Bowever, the structure will remain stable.

2. At a windepeed of 139 aph, all of the anchor bolts will have f

s yielded. Bowever, stability will still be maintained.

L

] 3. At a windspeed of 154 uph, the turbi'ne building frames will have j deflected to the point where they will be in contact with the roof of

. the control room structure,

4. At a windepeed of 212 aph, the anchor bolts will reach ultimate j]l strength and fail. This will result in the collapse of the

'i structure. In the pre-collapse state, the reactions acting on the

! control room structure from the deflected turbine building frames are i less than the level of lateral loading that is expected to occur

! during an operating basis earthquake (033) .

} The computer program inputs, the tornado loading conditions, and the I design review of some structural components were not included in the T3TE I

documents.

To judge the validity of the turbine building analysis, FRC studied the structure, reviewed the TBTE documents, and performed checks on critical 4

j structural members. Because the T3TE documents did not provide a j comprehensive report on all of the analytical procedures, FDC's conclusions I rely heavily on a subjective study of the structure (backed up by spot-check p calculations) and on the assumptions that the procedures found in the OCan documents are indicative of what was done in the TBTR (i.e., pressure I

calculations, load combinations, component reviews, etc.)

l The structural system of the turbine building was found to be well designed so that this structure would be capable of resisting levels of loading well above the norest operating loads. some design features that enhance the strength of this structure are as follows:

1. The lateral load-resisting members of the roof steel are structurally separated from the purlins. Thus, the number of components subject to both axial loads and transverse loads is minimised.

n b ___

@i P

TER-C5506-428 y

M f 2. Morisontal roof trusses provide strong load paths for transmitting the load on intermediate well columns to the vertically braced f lateral column lines.

3. The roof steel sway bracing members are oversised and formed into strong truss subsystems. Thus, the sway bracing can assist in

)4 resisting lateral loads by distributing these loads throughout the

% entire structure.

) 4. The secondary bracing and axial load resisting members are oversized.

I 5. The truss arrangements and fastened cross braces reduce the component

) .

j unbraced lengths.

$ In the structural review, FRC found components whose strengths were more f '

limiting than those reported in the TETE. However, the failure of these

[ components would not endanger the control room structure.

$ Conclusion i

i The conclusion that a collapse of the turbine building will not occur before windspeeds reach 212 mph is supported by the TBTE documents and a partial study of the structure but is contingent on the following clarifications:

) 1. on the turbine building design drawings [36], a note indicates that the connections in the structure are to be designed to at least 50%

of the capacity of sections. This implies that the structural design is limited by the capacity of the connections and not the capacity of the members. Since the TME did not address member connections, an investigation into their adequacy is recommended.

[

2. In the TWTE, the reactions between the turbine building and the control room structure are qualified by comparison to the OBE loadings. Bowever, these two types of loadings are fundamentally

, different because the tornado-related load is a highly localised 1 applied loading, whereas the earthquake load is a distributed type J load. Although both loadings may lead to the same conclusion on the lj overall structural strength, it is recommended that The local effects of the contact loading be examined in detail.

I 1,.

h -

n

. . . . - ~,

Y l .. .

s. TER-C5506-428
4. CONCLUSIONS The conclusions from the review of the OCSR windstorm and tornado strike

] analysis are summarized in Tables 1 and 2.

)

Table 1. OCSR Load and Review Criteria Summary L

Review Ites Status s 1 2 3 4 b'

Effective Tornado Loadings l,

( Atmospheric Pressure Change X 4 Wind Velocity Pressure X Windborne Missiles X Structural Loadings f

f Differential Pressure Load X Effective Structural Pressure X Design Loads X Shielding X Load Combinations X(b) j Structural Acceptance criteria

! Steel Components X

,1

?

Concrete Components X j Masonry Block Walls X j connections XI *I l Roof Decks X l1 Architectural Components X

a. The status of each item is defined as 1, 2, 3, or 4, as follows:

1 1 = The review item is in conformance with or more conservative than the

! accepted criteria.

,1 2 = The review item is not in conformance with the accepted criteria.

3 = The review item was not addressed in the OCSR and remains an open issue.

4 = The review item is not applicable.

..{ b. Nonconformance for this item stems from examining the missile loads' acting alone and not in conjunction with the wind-related loadings.

c. The connections are assumed to have been sized in accordance with good i engineering practice.

L__--_--_--------------------------_---- - - - - - - - - - - - - - - _ - - -_ --_- - - - - - - - - -

y f

b .

TER-C5506-428 I

h's Table 2. OCSR Structures and Components Summary Review. It;te Status

  • 1 2 3 concrete components of Reactor Building X

! Steel Components of Reactor Building X IDI I

Metal Siding System X Control Room X ("I Intake Structure  ?*.

Diesel Generator Suilding XI *I Radweste Suilding X Exposed Mechanical Components X II Ventilation Stack XI *I

[4 a. The status of each item is defined as 1, 2, or 3, as follows:

1 = The strength conclusions reported in the SAR (4] are adequately supported by the OCSR documents.

2 = The strength conclusions reported in the SAR are not adequately q supported by the OCSR documents. Where applicable, the strength ratings are limited to the findings of the TER [1].

3 = The structure or component was not adequately addressed in the SAR and OCSR, and its qualification remains an open issue.

b. If destruction of the steel portions of the reactor building does not cause significant safety-related concerns, then these items can be removed from the OCSR review.
c. Note that the OCSR concludes that this structure will not be able to jg resist load combintions involving missile impacts. Missile impacts were d not examined acting in conjunction with other wind-related loadings. For

? the diesel generator building, missile impacts were not examined at all.

d. The ability of the mechanical support structure to resist tornado loadings was established. The functional ability of the equipment to survive a tornado strike was not examined.

I

In addition, the results of the USD study of the ventilation stack are susunarised in Table 3: Table 4 lists the results of the structural vibration Pc study.

4 1.%

l1 ,

ai 0

. _ _ . . _ _. . ~ . _ .. _ . . . . . , . -_ . .-. . . . ~ . _ - . . . _ , .

7 . _ _ .. _ .-

4

.j -

i C* TER-C5506- 428 l
)

1 Table 3. Strength Summary of Ventilation Stack h

i Stress Type Review Procedure Wind Speed (moh) 3

' Longitudinal Stresses Maximum Stress Design ISO Ultiaste Strength Design 196 Circumferential Stresses (a) Maximum Stress Design 145 Ultioste Strength Design 153 h

i Foundation Stresses Working Stress Design (b) ISO Ultimate Strength Design >180 So11-Bearing Stresses Working 5tross(c) 191 1

I

a. The circumferential stress windepeed rating is that level of loading at which longitudinal cracks on the outside surface will occur. Note that j this loading does not result in stack collapse.

1 b. In the OCSR, the foundation and soil stresses are qualifled on the basis 1 of comparison to the earthquake loading (see p. 27, Attachment 3 of j Reference 5).

j c. This result of the OCSR it: based on a soil pressure in escess of 18 ksf.

It is not clear whether 18 ksf is the allowable or ultimate soil capacity.

e Table 4. Wind-Induced Structural Vibration

Resonant l Vibration Concern Mode Wind Speed (sch)

Vortes Shedding 3 133(*)

Vortex Shedding 4 197 ovalling Fundamental 286 r
a. Because this resonant wind speed is close to the longitudinal strength windspeed rating (see page B-22), it is the recommended limiting windspeed rating for the stack. It is recognised that the third mode may not lead to critical base moments but will cause high bending moments throughout the middle and upper regions or the stack where this particular chimney is week. Note that if large damping values are allowed then these moments will be substantially reduced.

1

1 e .*

1

.8 TER-C5506-428 The conclusions of the TBTE are justified subject to the clarifications of Section 3.6.10 of this report. The results of the turbine building study are summarized in Table 5.

i J

Table 5. Strength Summary of Turbine Building l Component Loading Type Wind Si ted (mph)

Column 10 Da Differential Pressure 50 Dynamic Pressure 76 Edge Lateral Strut Dynamic Pressure 165 W10 x33 (a) l (El.101 f t 10 in)

a. Although not t.ormally designed as such, the sway bracing members at this elevation are stocky and can help resist lateral loads. Therefore, the actual total structural resistance will be greater than 165 mph.

9

(

__ .. .__ ...- _ m .. . . ....._ _ _ ., . .. . . . . ~ . _

V U s .

I l

TER-C5506-428

)

1 . 5. RaEREwCES

1. Barrett, D. J. and Agarwal, R.

$ " Wind and Tornado Loadings, Oyster Creek Nuclear Generating Station" Franklin Research Center,. Technical Evaluation Report

) TER-C5257-402, June 1982 i

I 2. Integrated Plant Safety Assessment k Oyster Creek Nuclear Generating Station I Final Report U.S. Nuclear Regulatory Comunission 3 NUREG-0822, September 1982 a 3. D. M. Crutchfield (NRC) j Letter to P. B. Fiedler (JCP&L) f

Subject:

SEP Topic III-2, Wind and Tornado Loadings

September 1, 1982 1
4. I. R. Fintock (JCP&L)

Letter with Attachments to W. Paulson (NRC)

Subjects Oyster Creek Nuclear Generating Station Systematic Evaluation

{ Program j May 7, 1981 9

! 5. P. B. Fiedler (JCP6L) l Letter with Attachments to D. M. Crutchfield (NBC) i Subjects SEP Topic III-2, Wind and Tornado Loadings i Oyster Creek Nuclear Generating Station

) Docket No. 50-219 l

February 2, 1983

6. Y. Nagal (JCP&L)

Letter with Attachmenta to E. McKenna (NRC)

Subject:

Tornado Wind Evaluation of Diesel Generator Building October 25, 1983

/

7. Sarrett, D. J.

" Review of Wind and Tornado Loading Responses, Oyster Creek Nuclear Generating Station" I Franklin Research Center, Technical Evaluation Report Draf t TER-C5506-428

? November 30, 1983

8. F. B. Fiedler (JCP&L)

/ Letter with Attachment to D. M. Crutchfield (NRC) h

Subject:

Turbine Building Tornado Evaluation j March 13, 1984 t

j .

f4 i, . .

k f

f TER-C5506-428 sq \f l 9. Code of Federal Requistions, Title 10, Part 50, Appendix A, " General i Design criteria *

't Regulatory Guide 1.76 10.

" Design Basis Tornado for Nuclear Power Plants" i NRC, April 1974

11. E. J. Butcher (NRC)

Letter to S. P. Carf agno (FRC)

Subject:

Tentative work Assignment P April 23, 1981

12. Regulatory Guide 1.117

" Tornado Design Classification

  • NBC, Rev. 1, April 1978
13. Standard Review Plan Section 3.5.1.4, "Missilea Generated by Natural Phenomena *

, NRC, July 1981 NUREG-0800

14. Standard Review Plan I Section 3.3.1, " Wind Loadings" NRC, July 1981 i NUREG-0800 4

4 15. " Building Code Requirements for Minimum Design Loads in buildings and other Structuren*

f, New York: American Naticnal Standards Institute, 1992 I

[  ;

ANSI A58.1-1982 .

l 16. Standard Review Plan i Secton 3.3.2, "Tocnado Loadings

  • I NRC, July 1981 NURsG-0800
17. Mcdonald, J. R., Mehta, K. C., and Minor, J. E.

" Tornado-Resistant Design of Nuclear Pcwer Plant Structures

  • Nuclear Safety, vol.15, No. 4, July-August 1974
18. Meh ta , K . C. , Mcdonald , J . R. , and Mino r , J . E .

'Turnadic t.oeds on Structures

  • Proc. of U.S.= Japan Research feminar on Wind Effects on Structures, 1976
19. " Wind Forces on Structures

r L-

- . - _ . . . . . . . . . - . . _ . . - .. ,._a ... . .. -

TF.R- C5506- 428 l

20. Williamson, R. A. and Alvy, R. R.

{ " Impact Effect of Fragments Striking Structural Elements" '

Holmes and Maruer, Inc.

Revised November 1973

21. ' Full-3cale Tornado-Missile Impact Tests" Pelo Alto, CA: tiectric Fewer Research Institute, July 1977 Final Report 147-440, Project 199 h
22. AEM Boiler and F:esaure vessel Code,Section III, Division 2
  • standard Code for Concrete Reactor Vessels and Containments" New Ycrk: American society of Mechanical Engineers,1973 ACI "J59
23. 9tandard Review Plan Section 3.R.4, "Other Seismic Category I Structures" f NRC, July 1981 WREG-0800
24. Standard Review Plan l Section 3.5.3, " Barrier Design Procedures
  • NRC, July 1941 d

NOREG-0800

[ 25 standard Review Plan f Section 3.9.1, ' Concrete conttiimeent"

( NRC, July 1941 i WUREG-0800

26. Standard Review Plan Section 3.8.5, "Foundaticns' NPC, J uly 1981 ilUREG-0800 l
27. 'Apocification for Design, Fabrication, and Erection of Structurgi Steel I for Buildings
  • New Yorks American Institute of Steel Construction,1978
25. " Building Code Requirements for Reinforced Concrete" g Detroit American Concreta Inc.eltute, 1977 ACI 318-71
19. Criteria for Safety-Related Masonry Wall Evaluation NBC, structural Engineering Branch,1981

$ 10. "Spe:ification for tDe Design and Construction of Reinforced Concrete Chimneyt*

American Concrete Institute,1979 k ACI 167 '19 i

I i -29 d I

~

^

s(q

, .. t h

g TER-C5506-429

] 31. Kennedy, R. P.

I) *A Review of Frocedures for the Analysis and Design of Concrete Structures to Resist Missile Impact Effects"

)' -

Nuclear Enginetring and Design, Vol. 37, pp. 183-203 (1976)

32. D. M. Crutchfield (NBC) l Letter to I. R. Fin eck (JCP&L)

Suoject: SEP To91c III-2, Wind and Tornado Loadings t' sovember 19, 1991

33. J. E. hier (hG63)
  • Letter to D. M. Crutchfield (NRC)

Subje:ts structural Reanalysis Program, R. E. Ginna Nuclear Power Plant t

May 19, 1983 34' Mauga, L. C. anJ Rumman, W. S.

'Dytiasic Design of Reinforced Concrete Chimneys" American concrete Institute Journal, Title No. 64-47, September 1967, pp. 558-S67

35. Murr.sy, R. C., Melson, T. A., Ma, S. M., and Stevenson, J. D.

" Seismic Peview of the Oyster Creek Nuclear Power Plant as Part of the l Systematic Evaluation Program"

'l:,

EUMG/CR-1981, UCM,-53018

36. " Turbine Building Exterior well Praming and Bracing" W. C. 2299, Crawing 04213-2

., Burns and Boe, Inc.

'l t.

i

.i e

i 4

r l-i h

4

,4 4

4'

')

I 4

i

'l '

1 AFFENO!X A N

GENERAL OMIG8 PEVIDF CALCULATIONS

.I.

,1 i

1 1

w

,I 1

I i

I i

1

+

L f

I i

}

f MtANMLIN RESEARCH CENTER .

mVl5M OF 4 WIN /CALSPAN P

ll i, 20th ed kce $nsets. Phde.. Pa.19103 (?t$) 4441000 l

.e ,

it

. . , , - . . , _.,___._,c..._,_.,, _ , . _ . - _ . . . . - , . - _ _ _ - . , . _ . , _ , _ . _ . _ _ _ ,_,._,.-,__,,,._..,__.._..,_,,,_..._.~,_..-_._,.,______s-._

g ._ m.m __- . . . - . . . .. . . .s ._... . . z__...s.. __.. = . _ ~

fa

1 ., ,

1, -

i I

e proi.ce ..s.

t ,

$6 ll.{Df **4)G) h*l I 'd Franklin Researen Center ,,,,

,, r3,,, . .... o,,, o,,,

.} A i n o.m.mr,.a.i.ne. rr..cha.

cut e.sowu, i,iss g3 g ,.Wg .

p .

Title (Jr.:a:,,DcyAC,$ract.?)sAALsl42.och) ,, $/i'/* 40 b Jt) &l **

1 L' /*4:44_79;st "

,j f --

-~ lttT' $A*P %.3.2 )

14)p a Do//, l'ac ~tsuc~~ 2

  • shes~ik ( sf (Vuns 9)f u . 0040(, (Vw =$~f k,)w e sw is.* 1, set) e Qaoe:r4,l&gl  :

),

k 1 J so oux -  ;

i j k/'> - 6 , uno, e,. vm

  • FUA $*4a r1= w f a) f uuan Vys,4*) w ,*otog* busy '

5.dr* = (% 7)

  • se4 P/ W,, '

84 eon,1,. (=. f*)

' ~.sei2.s 4 a '

I47 M t SUp * =.oa4M, (longg =T)' .

, n r n u, .t.As w c5 < ~ **4M.ksll **4 kk.t.s =.1J:

n m . u r ,.. e u., 5

$^te MNY

  • 0* W YN45 * '** W $ e
      • A A
  • Yf f

$/0d* a =, ass ty Ylnpag =, on2a) f%g o Q*} * * *.4%135 %,4y +, ele 144, l

' .. ras <

SAtMm,gs. *

  • eosit, het = . ** Ea 2 (>n = $*) '

h 1

1 s . h $r $_90Y l$(6f -_

/dfon*ws". /*<CffWA'4** !4ef 9 E w h.!ks  %***La$""YHAM**

s ht4/7/wM"* pNd/6 Af* he f

  • N l N
  • N 30* e
  • sM4e & = $") '

f

'l 1

.I <

4 1

IN  !

w -. . - _ - - . _ - - ~ , - - . . _ - - _ . _ - - - _ _ . . ,

p I

Proient Pese zl p.a.c.,x -aa s A-:

d, M Frankiin Resea.ech Center L

l

,, c ,,, cu, o,,, ,,,, o ,,,

/ .A De of The FrenMn !nsoture , '

m e,a, re p. ,. %. e. ma2 N.9 $ "#9MW3 Tit e Y?. Y $ L ****4 W a*e!U4e* en/$N a S $9'd?$ a>N& ?h'd'*^ d l*

  • ArH2.:'Azur._ "* : dr 64M c'* (A+t')

W y -. w . ,. , - , - u a a . n ..,.

g . . ., v m '~ ~ -

yp... v. ~

- v.,

r vae; VrT r w m .

F i VLa A4 0s o t.

Weaq (,,) Nopgg #

~.. .. . .m .

..... )

'S L (,Q(VMAn*4))

i m**

s 1.$1de AIS $Ilneen

  • T) O Va*ses
  • Y2TQ7 f.h $~=* 9 h

,1 Ay w dassn (ta<rr s(<.) a denou.v.ar 1)

'! 4'carrt,4., d.v6Aw Arerm. . tim 4 ..r} m I+t. "*"

4 mar 88@^s4 .48 16 4 3 .. m um .; ... ,..

l , a~r., 4 ~

h NedrN h,4ss. >Q * )41 ***M l

1 A wand.4, ta 191 **M i

'l

t .. .

l Proiect Page 1

50 /- 5 sa -o o / s-3 j

. ] Franklin Research Center ,, o,,, . .,., o,,, ,,,, o,,,

A DMsaon of The Franklin imetute .,

n a.annen o.asen Per -.,. rema esielos D78 //

/2Jg.y bng=.cae,. $ *7 , $0s .~N $44.4. , hft':/w YC3~%

.) .9 A.44,. (fC l'f aJ' dr7M//MCvt' *s)

Dl W e*Lums:/A4 \%SitLi~ MToN4 47 dcLahl61446 MAf M!s~ud" Akhi, LaCO l^l u.re.c Settosc~ DL Abo Ang8AL L*40 dNQ $oM y2.0 l'A$C*,

  • 4 I Y 2:

0

( e

(- -- r- ,

w 7~

AgT.20 84 A I i

u-s g l l l 14 **  ;

l' Ag,v.70 '" s

/ V~

l .

X l i e i / 4

' /

j I

__.p._ i_.. Y . 1.__ __. l

, t'N lC

- i1.8 N - m l

(g*6$fff##')f$9) b2)* 24 0/ /

l b Y = (.7a m 3) (44 MV ' O

$e$ (%~x) G & {y e der {t~x) ~2C> 7"Is A f 'k- ef.za)fta)( y is-x (ie-x) ,m .v ,

r f M* ef4/4/d A/o M Yr 7"' 'd' 04 $& $(2-x) E' 24.0 / W k' (I~#)

L

/16 -$ x t/6 =&g w 4K. /6 X ~24.0/ X ~#

)

14 0/ X '~ 41L/4X +/44 =

  • X~ 432. /t. k Yt34'MZ -14132. l rr.a z.

= 8.3/ c 7./7 -=,,"># . 3 04 'V 4 = . 2df JV e

FORM CNRC41

y. .

kn V

,4 Project soy n,n -aai Page A,

, c L l. . J Franklin Research Center ,, o,,, o,w o,,, ,,,, o,,, l g A Dtvision of The Franklin insatute j //,f: ,3; n.s.a an ap  %.es isios . pal Title N IA Y S W) *M A4m& , f$.R R {d ,*h*g b # g A

[ rr a) (z .u ) . u se Cs .s)

G cza.oijdst) =:.34<

l,

  • hw~r6,osy = (e9(it - .zs9 r- ) <s+ek)(i T- .:n; l 2 #74. $ -# /.S'7 r /26 4 K=sM g g, f4,74 K.n7

.J A44Mder AetfA.~ 2) 8  :

  • 214 E => 2ff, ## f?.uf"PZ/)

I l

W 9

a Lj J

)

t g

I i . - -

8-

. . . _ . . ~ . . . . ~ . ... . - . . . . . . . . . - -

e .

i sQ l

Project

[M-f.dg, .J 2 /

Page d_3 L . J Franklin Research Center ,, o ,,, . .,., o,,, ,,,, o,,,

A D mss. on of The i

n.e r- Frank.lin

,. n .e. tnsatute mas Ord fjj.,: .31 e

rm. $N.< 3- C.O' Y.carIaC4e-it., , 0X?'% 6eS<

L o u .&.riri.a yc--

f Ne co m t;somt, detles oN 2747'iC s;ViC7% N z ~1% 7pt, Mut %v;x Agg= :: si, ggo

  • t . (fg-faa-rI.L. v 4;1c, , m ;-/)

i Oe'Md Asc7447 s N>'b

  • fMn< w fyry ' /./ (l*4y 5.9. $~)

h '; k I

A @ sde'0 f r (/./)f'/z2%

^ )

.C772 *'

l' F

'*733 ffcz, a4/ msv e" N/4,s.3o i

f t

h t

f i

L t

t I,

1l t

$ l

^

I

, ronu cuace

} *.

  • t t

, APPENDIX B 1

)

i

'I VENTILATION STACK DESIGN REVIEN CALCULATIONS

-s 1

e

' . ;i i

-i .

.]

)4 (i

-i i

1

!4

.4

~

~i y

. .g i

i l

i i

.I

'i (j FRANKUN RESEARCH CENTER

[; DIVI $lON OF ARVIN/CALSPAN 1

'i

, 20th and Race Streets. Phila.. Pa. 19103 (215) 448 1000

[

,. n . - . . - - .- - - - - , , .- - - - . , - - . . _ . _ . . . . - . _ . - - . - , - - . . . . - . . - - . . . , - -

7.. .... - .. _ . - - _ _ .. - - - . . . . _ . . . .

i i s . il 1

.: \

I

. Project 55oG _ooi Page nm e a2g 5-/

] Franklin Research Center A Dmsa.)n of The Franklin insatute N emnionen Frennen Penney, Pham.Pm 19103 MD yoV '33 Title

%14T STACK C'11.76 R C 2.EE <

C,AL CU L ATio d oF THC M A x. iMu M 'To9 W A-Qo uJ t R C SP es I) tue wc 9.Et uFoe Ct Q c.c SJ C2.ETE yEdT LTAc.ic. AT c' LITER. CEEE c cad WrT8TTA4D.

r H E. d. AL. cu t Am o a33 ARE FGRFoReds b osiM G T vJQ C.f.s7 3 C A :

A) CALCs/1 A7e 05 B ASE O od "T'M E STACK 9e2 ncA.L i?.Ce W F'r.ic.:.rm.O y, (7MeSC CALC.\ WEEE 'PeRFbe.ML O Tb1 SuG45 4 2.ot, m.o. ao. Sa s \- 25 chuc . A o. 6. 9 9.o T)

ChbCd b ATt o d $ b h3E O Od TME C n R.C J H ME OTI A L 9.E t u fenZC.E Mt.dI.

C A L cut.ATa c A W9 7HC i,A T T E S., c 2.sT a e.tb 4 A.G.C 3CTAu.t.c s ees meTee l

l I

1 A)oT 6 - -'rwe.EM Ab. 5 TO t:,:ts ALS cot AnowuTEQ trog. iJ reca.E c.A t ev yATis as ,

l l

1 I

i

.I I

i

'I l

I.

h FORM 20710M-4 74.CP ]

t;;

q . .. ,

LP .

A B

'h "*i'"r cy- rn s -ooI '~'E ' 2

&(

0 .-J Franklin Research Center A DMsion of The Franklin insttute

,, o... en.e. o. . n. o. .

m

n. am Freena e=== v. % ra 39103 DIO p/,,, ,

3 fgjyfQg($ 4g45[ NOWl& b5 )  ?~ 5 hl '

.*j Stf*rT .

.l q Ia ;?

50 3raex Arx l1 9

1.

No 4-spos- .serr "I r<w 17 l 1. jg l l4

% densot AA.o Aire ~ Ze. Il g

. M (Arracucer

  • 3 or Asst adned-- 4 ) .

t

-:~.

, wp

.j E  !  ! kk t .:

et  ; 4&

n;I t-

- t ky 9

1

(' w E5 9

t

  • JE $l l l WY

).]

'i  !- $d i.

. .j

?.J

.1 '

.)

n s .

N O j

~, j -4.  %  ;

e ,

O s

_, g-l l l

+  ;

'l - * ,

d I-

[$ l EJ 8 1

oq .-

p _y.

e

!. ~

f e x 1l.

  • I.[

l

.) i g * [ {U 4  ; .r

  • i =#

.Y

,f g

) a 4 6 I R. Y~

+ FORM CS-FRC 81

.g :

l_'

.m. m _ - . m ...... _ - - = . -

---m,__2__.... _-. . -

m. m

~

i s

i D OYSTFR CREEK NilCLEAR GENERATING STATION g f

I SEP TOPIC III-2,'HIGH WINp AND TOHNADO LOADS' 6 8 [

f CONCRETF VENTILATION STACK k w r>a C

I

      • B A S IC GEoHETRY T A B L E 81 *** b A ga 5E ,

ELEVATION OUTSIDE WALL CONCHETE AREA 0F REINFORCEMENT STEEL STEEL DIAMETER THICKHESS AREA INERTIA t/BAR s/BAR AREA RATIO in 4

(FT) (FT) (IN) (FT**2) (FT**4) (IN#42) #g .

278.00 15.87 6.0 23.86 713.7 34/ 7 33/ 7 40.27 .01172

$ f5r?

248.00 17.57 7.0 31.13 1124.1 h ;E8Q 218.00 19.26 8.0 38.72 1685.0 37/ 6 36/ 6 32.27 .00579 I 8k 3 188.00 20.95 9.0 47.60 2430.9 ,k 4 158.00 22.64 10.0 56.89 3398.4 46/ 5 46/ 5 28.24 .00345 113.00 25.18 12.0 75.76 5561.2 18/ 5 47/ 5 29.17 .00267 75.00 27.33 13.0 88.94 7705.2 53/ 7 53/ 6 55.28 .00432 '

68.00 27.72 19.0 130.01 11142.3 k? g o0.00 28.17 2b.0 170.74 14616.2 A o. 3 23.00 23.00 30.26 30.26 15.0 21.0 113.47 156.29 12006.6 15985.4 54/ 7 54/ 7 54/

54/

7 7

b4.91 .00397 64.91 ,00268 { h x

23.00 30.26 21.0 156.29 15985.4 54/ 7 54/ 7 64.91 .00288 C\ 1

-3.00 31.73 18.0 141.23 16313.0 84/11 76/ 7 176.88 00870 O i 6  !

IIEIGHT AHOVE BASE 394.00 (FT) h b h TOP ELEVATION GRADE ELEVATION 391.00 (FT) 23.00 (FT)

Q w

y 0.D. AT CHIMNEY TOP 9.50 (FT) h h 1.D. AT CHIMdEY TOP 6.50 (FT) d P

4 e g a  ;

FLUE OPENINGS A ELEVATION (FT) 4 HETA (DEG)

GAMhA (DEG) {t.

\ f j h

23.00 1 4.94 0.00 8 23.00 4.94 0.00 W 1 g ,

s

. . . ~ . - - . - . . .

.1 l

.. l

-1 .

1 Proi.ct Pag. , ,

Sp/- c.u .::m nr i J Franklin Research Center " ". ~ ""- ~

L s.c a c e m : ,,A Titi, d . AnMi;*wndt SrcTJ Akduf f!! > 5Ad $ $ ^'C W h A S* 07f/*i4 $4 h'

?u j OYSTER CREEK NilCLEAR GFNEit ATING ST ATION SEP TUPIC III-2,'IIIGH WIND AND TORNADO LOADS *

$y CONCRETE VENTILATION STACK II -

      • BASIC G E O !i FTRY y -

TABLE #2 ***

i ELEVATICN SECTION EXPOSURE SECTTON M OM E'!T VOLU2.!E AREA ARM APEA (FT) (FT**2) (FT**2) (FT) (FT**3) 278.00 2162.84 1433.41 51.77 74209.17

!, 248.00 826.98 501.60 14.75 124607.82 218.00 1048.97 552.45 14.77 190817.97 180.00 1295.95 603.15 14.79 274362.12 150.00 1568.17 653.85 14.81 376761.27

113.00 2984.38 1075.95 22.10 569042.00 75.00 3137.11 997.69 18.74 770914.79

[J} 68.00 767.88 192.68 3.49 812314.23 d 60.00 1203.09 223.56 3.99 861292.23 1 23.00 5313.38 1080.96 18.28 1111721.70

'i 23.00 0.00 0.00 0.00 1111721.70 1 23.00 0.00 d 0.00 0.00 1111721.70

-3.00 3895.42 205.37 12.90 1312312.60 CONCRETE

~

COMPRESSIVE STREffGTH 5000. (PSI)

MODULUS OF ELASTICITY 4287. (KSI)

STRESS BLOCK PARA;4ETER .800 h]@..-

UNIT WEIGHT 150 (PCF)

V STEEL YIELD STRENGTH 60000 (PSI) 4 MODULUS OF ELASTICITY 29000 (ASI)

YIELD STRATu 00207

$ MODULAR RATIO 6.76 STRENGTH RATIO 12.00

i FORM CS-FRC 41

pe. .w, -

z.m p ,, % m . <_ _ m g% # - ,,, mm . _ _ _

m I

l t

f d E OYSTER CREEK NHCLEAR GENERATING STATION I SEP TOPIC III-2,'HIGH WIND AND TORNADO LOADS

  • CONCHETE VENTILATION STACK

(' c_3 cgs g

n  !

& r

?@> S [

      • BASIC LUADING T A B L E *** $ gg:j{ [

ELEVATION DEAD SERVICE TOTAL WIND'4 WIND MOMENT SHEAR SHEAR I LOAD t.0 ADS LOAD PRESSURE LOAD FORCE STRESS I fE i (FT) (KIPS) (KIPS) (KIPS) (PSF 1 (KIPS) (K*FT) (KIPS) (PSI) Og f[g$ I k a -

278.00 324.43 13.00 337.43 82.9 83.22 4308.6 83.22 24.22 Q%

f3  !

248.00 124.05 0.00 461.47 82.9 29.12 7234.8 112.35 25.06 218.00 157.35 8.00 626.82 82.9 32.00 11079.0 144.42 25.90 gs 7{#

je!?

188.00 194.39 0.00 821.21 82.9 35.02 15929.7 179.44 26.18 ( KR I 158.00 235.23 6.00 1062.44 82.9 37.96 21875.1 217.41 26.54 '

J- 4 113.00 447.66 6.00 1516.09 82.9 62.47 33039.0 279.88 25.65 f  :

75.00 470.57 5.00 1991.66 82.9 57.93 44759.9 337.80 26.37  %  !

68.00 115.18 0.00 2106.84 82.9 11.19 47163.6 348.99 18.64 ' '

60.00 180.46 0.00 2287.30 82.9 12.98 50007.3 361.97 14.72 QI J 23.00 797.01 77.00 3161.31 82.9 62.76 64547.4 424.73 25.99 k\ Q. I 23.00 0.00 0.00 3161.31 82.9 0.00 64547.4 424.73 18.07 ks h 23.00 0.00 0.00 3161.31 82.9 0.00 64547.4 424.73 18.87 o .

-3.00 584.31 174.00 3919.62 0.0 0.00 75590.5 424.73 20.8b

\ ') i vg

% a (0 SMEO o.J Uso mfh usuoseaxo h y j 8 $ 0 i

t

! C l *** STRENGT11 T A B L E *** k '3 '

ELEVATION MONENT NEUTHAL STEEI, CONCRETE TURNADO TURNADO '

9

CAPACITY AXIS STRAIN STRAIN PRESSURE W1HDSPEED 5t a' j (FT) (KIP *FT) (DEG) (PSF) (MPH) yg "

i 278.00 20654.2 27.9 0.04878 0.00300 397.6 394.1 CONCHETE

! 218.00 23572.1 18.6 0.07000 0.00188 176.5 262.6- STEEL 7% . p 158.00 0.07000 210.3 8 29847.8 14.5 0.00114 113.2 STEEL 74 .

113.00 39243.0 13.2 0.07000 0.00094 98.5 196.2 STEEL 7% [( ,

1 75.00 68938.6 17.5 0.07000 0.00165 127.7 223.4 STEEL 7% A 2 [

I 23.00 99702.3 23.1 0.07000 0.00293 128.1 223.7 STEEL 7% (3 m 23.00 99914.1 13.7 0.07000 0.00102 128.4 223.9 STEEL 74 p i  ;

l j

23.00

-3.00 96748.7 214321.3 18.0 26.6 0.07000 0.05349 0.00191 0.00100 126.9 233.3 222.6 301.9 STEEL 71 C0i4CHETE f g 8

}

I C'

Project 55eG oeg Page.

4

, ] Franklin Research Center A DMsion of The Franidin insatute n a.a.m. r a >===.e nios yc g eq - /]3 1

Tltie

~

MEUT srArX o % TER., CM.EE WC k

J S_. cA LC U L A7's e d C F T H E. M Aximu m wiuo Peesraec a,Ase s o.)

4, 'TW E c s e.c.o m fc e c o Ts M S T R.E ss E : id WE. STACl<

c

^

.y "TW o A p t= R. c A c. Q C 5 AGt c e u5:DCR GD MERE 0 0 D ER. -

1., Ust W G '7HE. W oG.Vt4 G STR.GIS METH o D d wtd id B ,

4 s

S Ec.Tio d A ."1 eF n.w Ac t. . f o l j g .CocE , wysus APPL 1i d4 1. AE.GE R, Av o4/.(%E STCetsES .:s%FAO./ AE To THE Tuos.E vSED t4TME vLTimATE ETe.e u d.TW wt rac o. '

i ,

( E A'PPL1 td G Tt4E U LTs M ATE. STRE.4aT4 Mg ryon "T'o A.. y g tT Hei4aT ew rge STA c 4 spig tt s;sia c 13E A M F'oR MVLA 3 At WELL As W E Moned 7 l,

3 Ed?UATic535 G WE O ed FAGT= 50 cF THE D ORW A7'c d N-

, cF T14 E CGu A7te 45 sd T4t. AC.) 3o"1 19 coce.

i

,j l

(.

I K'

si

[r]

1 1

C '

e l

'd

[.1 j FORM 071CM 4 74 CP C ..

.. . 3

'j Project 5 5 c c. . g Page-1 l .1 Franklin Research Center

] A Chasion of The Franklin insatute

= r .% % r. mas MQ dov. '$ 3 L 9EdT STAct c>1 STE R cR'ee w:

1 U se d ce rHE A.C \ bo7 79 Cc DE , "THE ciacm Fsa.c cTi t arTR @$ 5 E S AR.C CALCO L ATc Q S] AP PL1:4G TAE. Fo Lt. w i u 4 Mue. IEG u A ri e d 5 , AS APf*L t ED To wi4D LoADtu4 :

(t) M A.y.tt-to n ciaevars e.e.0 r: A L Stress ia psi se Tag, co a cRs.Tc AT ras swEe s,ue.FAcc eP w s.ae.u Tss. t4-0 e.

=.

k= a t'- .ccP n y :ce.c_ya a): .

M r. Yld D 9 R.55 5V 9.,E. , 5f u meae.Amm ~ sme .T m,..o eom om,so. q t s "T4tctcE55 op STAct<. sptLt AT WE SECTsod ,l ,

E.4 11 :

E.c

l. d = RATie or eg.ost _&ec. ARE A eF THt. ciAc.u MF5#.Euct. ovnics F4c5 EciuF. STER.( {EE Qu LT %CLC ^T ' > Tac *M Sc.

AR.E A oF THE STAcr st+t.t.t Fe t. o u sT Rc-tc 4T f C[ s. ,ou f.s.

si es rn c.e cie.coe rr Rect at REicF.c.e.iita 17c ct. acen oc c.inu:.ug F. R E tuF. vTEEL AGEA.

3LSTAUCC ?C"TdEEd iu61EE Sue. Fact [at STACCilEt.l.I Cif(C0i,etMTrat, t- ouTittE NC.E P. C id F 57 3 E.L  ! 7oTAt. '% ELL TMtrt4CZ g cit.tAud: 9.s Twee d iu d er. so t.F A C.c 4F 54C.V. S M E l L. ( O VTF L pac.s ve tit:A L R eiu F.

9 r oTAL s u c t.L m te. < w s t i

[ Pomu 2071ou.4 74.cp

.]

. . .6 Projec t :rso(, Page.

, ,4 . l

] Franklin Research Center LD#"C",!$TUin' "O "" 'I 3 Title 95MT STAc.< -- on resit cees.

n b = -. f n [c'+ ) +( ~ p'n (c'+i)P.e 2 p' n [ 7.'.e c'(i -/)]

1 1

e.esa a c c.. s ea T.

u

( es. id)

, ~

3_. t

}swc = n hcwc 'g _

4 (3 M AYi MV M ct 9. CV KFCEG ATtM., tiTR.Ei$ ,id p35, 19 T 'AE cc Oc2.cTE AT are o utce. 50e Fact a Tae s.sutt ( eg. 2.41) .

g

% t' ((')* ,3n 7 " (3.', i' -if 4 c'( a' ft, )*]

    • ' i

) wee.s A'., = -p n (cW O'n (c'+C ain [c'a' +i-a']

1 d,

N (4 ) M A.%I M d M STE.5% 1W ySL L 4 Tt4E. 14TER.to 2. cta cJt t FE E.E471.%

3 asiuronceMc.oT ( se. 2.4i)

.. = T) 1i

, a s m e. (*Lw c

. g.i 3 a

g .

1 .

b 9

s 0

FORM M710M-4 74 CP k

.. . 5 7

g Project 55o ro . o o t Page

. . . J Franklin Research Center g ,a_tTh gegg uo u w. 's s Title f ' 11E.OT STAcr c't'.T5.R. c.7 M 4 AT ELE.v ATie u t il (t. ( secerio u 4 )

I t= 12 f, ao t ,

25.it n2 -iz , 99,,3 ;

2. 2 n3 21,oso . r, q '

j dono s *** s . o o 3:1TS i s * (,

(' A Q Co)

Cs o ( >J o cie.coaees sous aei er. so iNusa.

, wa.rxa)

'd = I2 1 = 0.933 ( 2' C.vca c.,4si c.c 22 0)

12. 4,,

/ ~~.

O e j 11 h --J CAccut.ATio 4 oF k, "To BC d iE Q in (E Q'MS 5414 l4$

h -

/

k = - .c oTl'1T X '7.1(o+4)t, .co2Tl2 X'7.2h 2 %.o*17'l? CT.0(433 3= . 1 o' 3 /.

e M

i c Acc.o L.A. fio a oF fe , To 6e 01ED iu E Q R 's 281 h 2,43

/

, ;., - .001W x7.7. + .oo2771 x 7.7 ) 2 , g),,,,,7777g7, \,,,9 3) = ,g44 g 4

~

l l Pomu 207 iond 74.cc

.' . * .c 1

l Project S T o(. o ot Page ,

4 o =/3

< [ JJ Franiilin Research Center 7j A mQ coy, #31 a ~ D.Msion,of T.he- Franklin m io insatute

- Title slEWT LTAc,< c'l5~CR c EECA i:.

// 2= .,

\ fk% 14T.OT I . I b 3 (a gg cu c. - io t ( n.)* , (.ic.3c.)3+ h7.2 x.o o rns [ o + (as n-.rc.x.)*]J ,

pt

~833

./ -

7. 2 x7. 22 W _ t } =. 212 e 7W sc JSWC * .lc,3G 4.-

s.

M % 147.07 C. 0 b 414

- u e <c.. u , % m ,. m .o. m , 3 . ,33 .. . c . .

4' 113.4 W pai rg, _-

'/

lb V o"l* A PPbl LA d LE 3 Ak 00 id TEEtCR C)RCuu . kClu F. t % iJ S C O .

a. . s.

. w .

w c. <sw

'1 Eecew '. c Tnc I AAE w 'A m e.

ALLcW A0LC CTRESSES .

Fo R. cc 4 c,lt e T E.

j 7 =. o.8T o.35 x 5oo o = 425o . u' fqR STEG L.

J y

o F3F = co o xi FORM 20710M-4 74-CP

-~

l .. .

l 1

i Project OSoG oog Page l . ] Franklin Research Center k lwr & WON HO d o'I- 'S ~

! Title f 'IC n T S 7'A c.'< citT&e cLe c *c.

t-C At cu L A.Te o d oF' YHE MA XIMUM VIl d C., VELsciT'/ dA.?ES ad

{

a N THE cie.cdM FE;i!EAJ T/ A 4 1bTRE55Ef 17) TFS STA c4.

t

/

"THE D'isJ A Mt c. vli0 O 'Pf? E ! ! O E T VJ = Cg g[/

W4ERE g ( o.T f . -co m Ib .r.c.5 /.[/

f M = C.7Y  % c o t3~1 Y 4 71ec.

j w = o.i x .c om ( v x t..wrP ('v , yy I '

.. V \

. 2.'b. W h j ' l 5. . c o tT5" V

TM E. M AxtMvH c.t 9.c.u M F ed2E dTs A L 6T2 655 /.T TuE o aTEd iJ0.eget f

a oF THE to Q ce.ETE.

p s

'  %$ (,, h t

) 113.4 W = 425o fe W: 4170 =. 3 7 4 s lb/pf s in.4

[

.. v.- n.n,m,a -

i4r ,p t

FORM 2071OM 4 74 CP

n A-3 Project SS(, .or3( Page

'.[

,4(

l cJ Franklin Research Center

') A mer DWon of T.he

.%e Franun ma Insmae MO 4 oV. ,T 3 i

Title VEWT STACkf o71756 CASE k::

> Ps R. T M C H b Y . STR.E:: n) THi SxTCR. sad. cu t cm fCd.irJ ' 4 '- -

u

,J NdlNbkObMW v.Q

_ 5 2. +l = f =.

L*.a/ aae

. .d g

s

$'N C "I

h S 0  %

.2, t L7 f.. t . N-23.nht s M"] %ph

.. C0dCit75 $72Ef5 CodTr2at.,$,

e, t4 Ay, Wi@ V E Lo cit y G 11 3 -/* E t ss/. id, 14 5 ~ph y

VH tC H t1 Lo aJTea LLED d,'[ T4E OTAM $ t AJ TH E cadcdETE A 'T"

, Td6 JVTER. S uRFa c c cm T!J c Onc t.L (

. y .

b-i '

L,

', .5 S.

^1 ,

Mi 1.

rom m. iou-4 74.c,

y. __ _. . . _ ._ _. _ .. ._ . ,

s j .. .

Project 5 fog o el Page j 4 L

I JJ Franklin Research Center 44'/. Ih An,.D. Mesonr of e Franklin Inst.itute a-tO

~ T.he Ti tle

! J s,a7 s rAex c't F e 2. c. 3 e '<.

L A.T E tsvAT,o4 153 ./ I . [ Sec.r., a 5)

T ._ to T= t S o .1 i

i n= liaa--

43

= -

r.2.

1 I;

y- Il = .colgD (*h G (. ' )

\ 80 x Go C' o (ao so ccu e.< . Leon * a a ru u te sectM]'

I l

~1 'o t IQ

- c.8 (.2

  • cow Au J i

.f .

= . .c o lS 3S N"7.7 t (.00IT33X"I.1)+2.X***IIUd' '\ O' ~:

  • I 23 t

-, . c o tT 3 3 ( ~T.2 + ( co t 33 3 0."L [ + 2. A . o o i t J 3 0 1 b 4 -. . o 6 o M i

i M s 130.[ . .[327

~

_ go, .77_7 gf 3 CWC lo fe (io)' (.s 3 2.7f + 3 x l. 2 A . o i T 3 3 ( . 9 4 3 ty'" .1

  • > 5 l
  • g 9 \

f ~7,2. x t o.T7."1 W v. 311.3 W

/3% .

s.

.n6 -l t 15E t

f W (110.3 *86CGT

  • g gg g i 9tGoP - (ow.r)' , 3 c .2 3.o i s n (.s e . c. ar 0' l e

c ,,

+-

ts udT APPLtcAGW , As av. ,arre.o c ciacvre. (t c sus, is u se c SWc "TH E A6oVE t aJD i t. ATE *h "TH AT 4 ,, g #.E To 60 co vi . 0 c c.c 3 CWC 5Wc g SEc Auis Ti4E1 APC WE t ARC.E9.

b FORM 20710M 4 74 CP

1 s

Project S To . o ai Page 4 _

'l-0.1 Franklin Research Center j *s

'{.

An.Division s - r. aof.The Franklin a==. ha.Pa insb*ute asias

%g D m .f t

l Title M E W-[ 5.TActC o'( $TS C C4.E5 4~

.4 Tr4 E M A 'X.. C.t (?.c.U H FE P cM7s At. ST e.C35 AT THE C VTCC S v R.rA c.c

., oF 'T H E co u c. R.ETE.

f c c si C ** U

  • s,

\\3.. 1 (J =. 4 1 '5 0 l l

N = O EC D'"1.31 \'o s I n 3.1

.i N = '2 "1, . lo 7 'l 1"1. 3Y c. 14 4.'"i w h THE M A L . STCESS r d rH E E x Tarana l c i dc u M Fu=d r71 7*A G e rinr.

- -,,. .b "1 I .R W =. = G0,aco fM' a

W 0* # 16/ 3 112/'# '

.s , i .,

14 M= M.67 )\ (Gl.b . Eco  %, h 4

) .. Coacte rE .s 7/22$ $ co U T2 a G S 1

M h)<. v4t 40 JELo c gif G Et,., is M4, 7 ah

/$3 f l~

9 4

A

-1 1

a 1

1 b .

.4

..l

'j

.J FORM 20710M-4 74 CP

]

Page 4

g Project C$o c, o.st g

. ( ] Franklin Research Center A DMaon of The Frenidin Insatute Th.e r,.menp. .r. pow ps mas qg Mov. h 3 Title VawT s7 Ace c1Mse, cc.sc<.

1

-f" UtiiHATE s ra e94TH s t w o n A P P R oA.c 4 5

usi o c. rt4 E. R.Ec.TA 4 4 0 t.A et, beA rt WR.Mut A g WE ALL4 uJ A 6 LE eno M E4} ^

s

- ~

(

u= A 5[,.(d_3.)*

M 2.

ds

< ~

NsM a 3  % ", -

m u

.( .. . .

o MseQ.s k ,

a.= As J2 N5 I:'-

'n;/

i

  • U llk }*."' ,

.L *l '

c,eam r, a.sinrocam eJT A7 ELEVATied \t3 h (SEcTiedS}

C = 145.oS i7 k= $ . 2. l {

  • 4 SputM. LNG G G, Pt TcH)

} - .

3 f.s a K.s t.

u '3 5

,,.  :  % i.

"c .

lo = 6 '7 ts 12 7

.. a. = *2YG* = 0. 57ata 9 7 s S

  • Ca l]
  • ' m tr a ..So w m _

1

! FORM 20710M 676CP

N Proj ect $5o (, , o o g Page-

. [ '] Franklin Research Center

  • A Ondsson of The Frenidin insatute MQ aj W, #33 ms r,  % % r m e o Title s .
VE4T STA c.t<. ~

o1 STER. c.ut.EEW:

j F6M 9 AGE 'S o oF THE ACl 3 a"1 79 FoL MubAS Ak A

$ ciec.uMFT.EEQ -fi AL Mo MEdTs auE To R A Ql AL w 61D *PREn0R.G

+

I. .

2>ts re.s a u rio d AEe 5

[ Compression inside of shell, Mi = 0.'t72 pr2

~

i compression cutside of shell, Mo = 0.314 pr2 f

g p = Velocity wind pressure, ps i L

y = Mean radius, in.

M = Moment, Ib.-in./in. .

.i To use the wind pressures w (psf) in Table 4.2.1, set

' ~~-

w = 0.5p (144), t. p = g .

p where 0.6 is the drag coefficient for cylindrical st=ctures and i 1% is a conversica facter to convert psi to psf.

e-I Mi = .003148wr 2 ,

Ma = .003634wr 2 H 14 M S A d M.1in $ A O2.A4 Co E FFtcsE4 T oF o.7 vttu se v5CO ll  :

2 WsW 41-M r. O."1 y b44)

~

J.

q L p :::

(, too.3 Wf. 2

,' l l'

M(: O. c c 2(s18 4 Ma = 0.0051\5\ N4 t '

Y t

.. il Proj ect 55.,4 ,, , g Page ,

L ] Franklin Research Center a e ,. 's :

A n w a.t T.he

r. Fr.nwin

.=e mm in.ma. ~o Title N3 MT i, f f-c.tc o'f ',T 6 9. CAF.C V.

CoMgat. ES*.e o d o9 THE iws DE 2 outsioE ca JG P.L oa rssse, 4 b0 p  ?

w N y= -> M 9Eal. sf^4 7

M-Hy 1.

  • 1 % in o, 0 0 0 10 A}0L n o TY
  • t st2"d . a,

1i 7,1 m ,n Ib[4

a - s o" C oMPR E.5St o d od TL46 c uTalb E ,,

o. s . 41o f.

8 a' , dvTsioE .=c M u, = . 2 s G o,oo.( 2_ $6) --*j M,

= as nra 'a l ' '"

we u- r.ac s.~ee r is s s, e t r is a o u o e a u -1 4

LESS TWAd M TWtesoeE 3 M, ogg wu ac c.assoces o .

%,4T M m 3l4 f 4 * (f IN(so)

em wr u c, H, 4 Hv, saw aeT .

Alwa f/44) ff W (J /)

?s . s 14 it.'

= (2/144)(#4+) = 7(. . # c t/ = n.. s I, i rz nses

~

e i.1W.)i14sbb)' o*zst.

FORM 20710aH 74 CP

]s . .

Project SSo G . o ., Page 4 (( JJ Franklin Research Center ,.

LM,oLTh;3agadmy Mo 9oV 's 2.

Title

[

'l C 0T S T'A cX _ o 'l S T C d2. c. E E C. %

i 1

c Atcv t.x r,o d oF -r HE. t.Wr s d G VD 4 D 5 PEE. C , d s i d a -- . e, U LTi NI A~TE. S'T2EMC.TH MET 4 o D APPeoAcr4 7 GAseo .oa aE c.t e ca m vee.s c u s ra.c. ses .

E L.

] A3 b J ca " s[* c i,

q T

? ft s 'n*

i in 4 h ,w ic, + .

.1 2 17

  • d 2 92.2 toe o

1 G .2.537 tors j (e a G c ") ,

2ir 2 H G 2. 25 e g z,e m . c. i m. >

(* 3 G c ") t ISg

  1. L 1 2.32.4 1231 IS c .S ,

153 u

3 (* 3 e 7@} $2. '

~ l 11 3 4 G 1 .4 fo4 3f?/ 3 45. c ~3 17 3 ,

(* A G c ") ,.

m' 75 , 2.

(. 4 e c,")

3 z . .n, 3 ,c7 i , g, f ,o

/Mm<d .su mg.r- S-13) i d

y a.= k5 Y- =_J8-455 b - 14.It11 4 1.

la

.; 31 f,' 6 b j s < %, = hs (( c)- f lh Fo <

&not.t $-nlon) 1 '

v. on, z yk.. '

1 e a . t.u>

3,+ c t ra 7 .. p & ~ v=7,.car n

.r, 4

.l 3 _ _

FORM 2071OM-4 74-CP

t.

fl -

t

~* Prcinct Page

.$p/- CCu =>J t 0*Y I

[ 0". Franklin Research Center ,, c ,,, o ., ., c ,, ,,,, o,,,

A CMsion et The, FranWin institute w e e ,w. me A ., .. ,,/r,/:n twe 0pir;x $: c'K _ l/c'kmar*w 5%'A > A!M$ A's a l/saan'" ?

Vatter k $4evdM, Ass.,yff '

/

$MM4 f.T .tsv As*TJs,lANCf" 4/4% Tdr 54.1t%&4l W 6 udo*fM !s/affshd ,

y a,~<,s.a n,u s ~~u m..y a 7xe.cnn<c l

i

f- g - &

177 Og Ss frx ,<.ed u wwe (saz g -: )

yr kaga,.orf ("Ess) 9 Elk 6tttilA4 4% narix {&)

9Xd*"* dV6. F#N#'*eM 48" G44 4 , b.,

d.',, 3f/ CO 1* % '

et. 2 7,5 ' sf17' e7., 3 6 ' x ~=-> !$ . 4 ' O . p . '

AC. t +3 ** 19*$7 '

h] '

t A *fo Ole **.rvs .. t5 '

.l ,

Y*

'4l M is.~g.;,9 t'.o4e'e w meiAf n 4c*a.94 W f3) .

HeGr f4aC%rM,y ks*.ar/n'o k u t,s.n v

!?] (ll*1) 8w,P4)

> f4 1.*. * //. S l u

'1 g /. 784 -3e.7 do. s"-

1 1W HCr !53,5 4 M,rf7. Inu.T ef7  ;

]

1

.I h

t-j,

--l 2

==

c ij v3 1

Protect Page 1 W $0ll- C4 ~<J .3 'I 1:2 UL Franklin Research Center ,, o,,, c,w o,,, ,,,,, o,,,

A w Dwisica e cf The. Franklin r-e  % r. a.esinsctute D7d n/rces.

Titie 0$Y$, o'Aks'4%4el.a b4?* AAL D:,aAd/L$

5.7.3 stack

)q '

O Asgted half-space daJaping ratios were used for the two stack SSI analyses. Case 51 used a shear modulus of 1500 ksf and a stiffness jl comprising the half-space stiffness plus the stiffness due to embed:sent, N as calculated by Novak's method. Case $2 used the Fork River shear

[ modulus G and as-computed : nodal danping ratios.

Computed values of natural periods and associated composite modal damping ratios for Cases 31 and $2 are shown in Table 14.

n a

'mBLE 14. Ventilation stack natural frequencies and modal damping values.

j Case 51 Case S2 4

! Mode Period Composite modal Period Composite modal j number (s) damping ratio (s) damping catio

.{ -

l 1 1.791 5 *.n~3 0.094 1.791 0.094 I

2 0.586 o 4 32 a.7c6 .097 0.586 .097 1

3 .264 h

  • L75~1 .110 .256 .110 4 .180 /4 e f.iisi. 472 .179 .472

[ 5 .155 fev4.f72 .150 .155 .150 j 6 .112 47, .204 .112 .204 7 .035 .133 .085 .134 6 .0 80 .157 .080 .157

- 9 .063 .106 .062 .106 q

'4

10 .048 .101 .048 .101 j 11 .043 .112 .043 .112 c) 12 .038 .100 .038 .100 13 .031 .100 .031 .100

{ 14 0.029 0.105 0.029 0.105 i

R:n 6,vst:x Gm: $c.rmc A'ama A%'c%/cA .F3/,14'! ~b/S 9OR64 CS *WA1

. . . . . . . . ~

.}

j .. .

Propct Page 5 *;'/

1 sg/ f,~J5-aa)

~'

'r:b

[d Franklin Research Center ,,, o,,, 3., .,, o,,, m o ,,, -

A Dndsien of The FranWin insotute we s P.w. e - a m.ra :eios DId l'/.*//t J rice 0$b$, b'dayMA4. N4M f.i"4 Strouhal Number TNE of the Strouhai Number with Reynolds Num-ber and surface roughness (1,2)is shownin figure 1. Depen- g j

a, ,

ding on surface roughness. regular shedding can occur over g g #"'#d'. g 4 d n D3 virtumly au Reynolds Numbers although for smooth cylin-ders there is a range in which the snedding is aceriodic and

},

b i

its lefluence very minor. If toaghness is to be %nored the Strouhal Number can be apprommated as bemg 0.19 foe

  1. d ##'d ## 4 k 'Ae < 10' W 0.25 for Me > 30*. ,,

l - ~

  1. c-E's

.:- , y

)

, ., war.e-h*- g "* }J

  • Nt4 @ %17/t. WsL*Q$/
/ - -. - 11
  • d'AddKffe'/.fM Ptsvi34o.VI

,\ -

(,. '

I .,.

f_i .

.=::::,:;, .;:,, Aer de:9twr

{ =

..- Ac

  • 41".,o V4 V m f,,g A' ' 5'r

." . 5.. " '

Pie.1: venenen of strounw wmeer.nn se

~l$ r<Ad 7;'M t"* 1MA4tstvaH Mot 'ggd ~74' xr l1.1. / 3 'hW. e.V. o.c WNN. '*'3)

Ifs 17. 36 f/T fo' * (4380) V(os) w>

1] = 3 ~4

- m r - so ~yre rw s. .u-

.i

~ l, f

t i

-i Ih

[

y . ..

D1  :

N Prciect Page q}

l 5:'j-54. ~ uJI 8~N U s} Franklin Research Center ,, o,,, en w o,,, ,,,. o, ,,

.A w DMsaon,d

- ,- ~ eThe mm FranWin fast:ts te DJ'8 se/n/s; ,

q /

i: ris.

l$ XVC Oy u eri<. l a c A c r.u.

j:l

J Aswa* nwr? W
cory 5; tac 4?vuufid
  • C9) 4 lysf) 9 e 5 ss sr.5 K+

1.l. 1 q + . 11 7 f14 p

l hjac,7 as $fMK id

&v.crer Qca% $wuwc.,M (MD) : !$o "'N f $z.1 M) i) F K 4e.sesa (PSD) 'c !14 * ( W,')

Qwn. M<r Aerox. *au.ec r,> do,e senan7 en+rmv so n frat CM'uf~

! Apr 37.f e /. 3 3 1

  1. G4 O

V 4

1

1 -

,j g.

.1 .

I

.'i (l

ej u

r!-

- .n ue osa .,~ nes,-u e n. o, n w r usi,av s;1

'4

a r .

FORM CMRC41

t

  • s t

p.,. Prcier. ' reae.,

  • l Franklin Research Center ,,

w . an .,s ,

o,,, 2.,., o, .

n ,= .

cm ,

A DMmon of The Franeninsawte m m e,m on n.os mas D?d ss/: y b.

$$V$, lVJNd -/nt}Jf47 ) h)f/AAIY/d & $ & $ ktY/&O uvaussi Assyrir -

6. [r rac~ set.uo ar 4 citess.4<., 4/g <wn eten A snt ex;; .1,: r. . r';,s.ao i

of far sycansn6 oc s..wrers, 7~/s/ *>4Lwg on ne cus.* 1:tm<4 revus ,

cres,4 Tae* &curorj ronr e u o cx w r ass;iM lesd M r!*s sr 7.%~

h t,

rescr.r W M M4 H M c it Civfu sf '

I Y* 146 (b) is,msn.c" s 732. d l' If k n d O cto " v Mj J 6: wu. rn,caen 6+j i l

{ D .' Dinke7f4 erferries /F)*)

t

) M4m4 o.a. Tdwc3 N. D. Vrzecay To cbse- Aww k, L act) c vr) lon) in) i Hen) .

c g sh 9.T* 4 *o ,

hk

%7 ?, a$".51 4 IS' 17 2Sb

, 74g 87 f7 6 4.fD 387

( ,

? 2,s n.n. s is>7 sos ~ i i

lieb 3D.ft" 'f 7o. 2, E6

  1. 5b 22 4 so 7/.3/ 13 r--

ronu em

(.1 . ..

N t

,j Ag' Peoiect Page

,: i in[

A J Franklin Research Center ,,

s $- s'TJ4 - o a /

o ,,, m ., o,,, n ,..

6- ? /.

o . ,,

A DMs.on of The Frenlen Insotuts m m v , m ree r m .rs.esos DJ'8 ///21/.93 I

'liffe i, ' h$Vb dr[WA$/,, (bOdd4- 54% ? W ll/S w' bNF'&'$ ?

s a-, s~ a,s ~ w,,,r, sa n,,,, , n. u f w 3..

ffe&~ $NW $l 05 Yr?!$$NN$h? l

$ 4

. -m,o,-:a a w c.,n u/. nu ~r

?g y

,Iuw swre c y,u,.y a .rzr,va (6sw) = soaoco a *-'r (s r jw.- s-s.)

^%e~.w r.a .<ar.rr4au ow ro nirsar sysn a naciias,s.s--

L l'*

t *

044tt,xr**.sd' ,stegarse? TNor s*f ^ fctrs *N es JfW k o . . M r 4 ~~~

kam" a.r 9 ipar. 4s,r-a o,><:.y w w:9m

..;iJ E M N ~ a v stst. ! Ta t. AtcM , f/ nee- sw,s.nrfi.:wAL:"A // d!!*fe fe"C6444 ZeWd'* ot'tTofMMa~~ /f Sk4 aff p:%14 L aAf j r.sg) swag,, Ac'*344.) ,

=i

'l 1

'1 a.

-3

.:4 4

l

)' l

.t

, f00M WVOO1 Jt _ . , _ ___ _ _____ _ _

q._. - - . - . . . . . ~ . . . . .. .. ,

d

,% Project Q rs4. sus -aa3 5 - : .,-

] Franklin Research Center ey Deu Dan R w. Dau zNu /g . g/q A Ondsson,of.T.he

~s., . . -Fran,kun. .. Inst.it.u.te om -

u.

b MLsTf y as' $/vsWnty o & A?7eM i S. 61.T * ' 84.199' '

i dipty Sue?oeAJ

  • -,. ,,. u.,,.4ze-
  • h41)e !!.sh'+ks.177) x p

At xes!.ita ' kov ef' ss&

s' =15 4zi'+ z x h~ / ,

na.u-cco.a

~

% -h.A's=> fen)# % /-1.,)

4 <xz l

i u.r' _l

,

  • A*x fi - 1zwrx; )

L~s 4*o 2.c P%

  • 4ei6- 4

"&.M LoMartaa

  • a mo dt'kf r

dV* N4xJfxJdX = f/g.42 s~'4 2 x)/%4x //~ .96f))<)dd

e la O

Vtx) *lM% ,A .42r.19fk d e Z X ~ AtsmiX ')aL*

't n n

( - % fie.as x +(5- .;L7r-)x z . a:u7art )

4 rz dNY dAf= Y<\{X x

ft ea,-/* r 4.nex .sw' x, 2e ....m>) xe sn

  • -t. X ' =. 00 7 / 2, X f $dx f1.1/25~X * . /12f*M$

x, -

t

(

{

r 6-

. ,oam ewac.

l r-s Project Page

J r c#-sc/4 oos g _ ~, ;,

tj ll . J Franklin Research Center A Dmsion of The Franklin Institute

, u,,, 3 .,., o,,, n o, o,,,

n. a- r,~ em . m en m m P74 2,6&/24 fgf, .-),Jef+

. 4 r;c.

0 Y4PM*?? i o' 6twc1 Ancin~.ud

/

\

541ssa" 6td= Q) n'.w/ NCE":7, A WKNMc V 3 Oe' Y&<;~ Ar~s'icc M a ~ * > ~

} (Lus s~c sa~ Gras.crw #4 .tC n~ L a r :7)

Ic1 = .c4 Arc I% Ax - Ib.+15 KS P p

. lkr; - Q6 433 ) (,Ib.6If x t R7 X

  • I 032f X ) (4 b~f) l Mu? - 6ts.452)(1.sar x'+. !T6x ' .oosSx +) (k.- er) o t

Ar sne o.e rmex x = zz.r'- surp ' - c. u)

z.

.: k cx> - ti.tt7 l'c4 - c%.+11)/nx.t.+ is.i - 11) v zn 3 x d'

Na> = de.tss)Aa.i + v.c- u.9) - ezors -ar

'. i. .

t 3

4

=

s

l. 1 Ji 1 .

.. , . . . . . . . - . . . ~ - . - . . . . . . .

7 o .. .

'1

., A ~~

W -c:x ao1

] Franklin Research Center U ""-

j'"Y U U U*

A n h-of r-The ~

FranMn

~ a Ins,m,,we D7d ,/ !.,,.'st.

~ y g/i/M rio.

$A)FAC4Q Jsit" fM/Afg Af*/JAl

' /

i.- 7/.5f7 #

l

  • 152.0 *" I

'<l

'Y~ ~A fs/ SJt.t *e 4r c 'N

[ 7a!I, f j C Berlust JAAf st st?' f'N p

hCK $stetted &/04

  • Y Y4,y $stex. fdctK /~ar deMT4'" .sts*/??AAda~M7*.M 4of F

l 44e*A =' (1/.f ')(vo) = 111.1 0 '

r.

., [s.s*47s4 e ik l1/.f')[7') 3

  • f//. $ '*1"*

i r

$mwg : Ctf e Egz3 M x sa ao

  • x /. s== m //s lJ' /

g, 111 3Wlx /44 * **

0~y

  • D20 PYAseoo */x x /2Yhff.txt%~) s 2if If l'f//.3 ft 4) //1n/pt)4 k1 d= M db MMd
  • Yeo4.
  • JeoQ 7ll t

l1 k 3' t.f Wg/ ~

//0 5  % //g E50 M r $"(MP Y f / e 274 ### v 2/f #f/

t 4

d.

t

I r

I 1 .

  • i'**

n d[.%[ranklinJ F Research Center ss -.r5 ;g as.: Is. : 3

..,, o.,,

cny o.1, n. o.i.

s LD @ v C i.[ 2 2 b i'"E DPJ 2/UnJ $$5 14/?')

Title

$<caoMf;,4.t%7i4 $4c'T1 St *.f/J /

1

'94 31At. sT(tss A<~ La d.f

i F44 s'l A ra xo , % M ,wec.,or A u s sYs w AA.er,Afy ,,og a r.m er G r oa F,4c>-fin rt) HoodZ =p I

%

  • I@ f 5 E.7' i or

\ j Luust4~ + " /Nottir6 (s><fsc% Cad e4

% owT5s ot~ sus.rs:cs~ oc fus'G ,

a verrwn aa i /

5 j / h/4.~"- F/ren ucoet. =) H,i, = , I,5I f 3 t. 2-t fit s 3 P

  1. , VPfres%*14%o Poustraczy dLth

\

( H n c - n m 4 C' n a aez -=p  % =.44 f 6i L tea c1c~ p = srM.,m riod ,p msu r~

gr Noor gri4. 5 Aci44 g, . enomy sno ul in) &q Eart' **** dwoss, GuxcrC 447 , "Gu~ fr~~ca"r 'M L*M '"h*e~

k Aonc7tg &saarey s~p fMs7s * , Acr oc. ept.,oriase ts e n s w <<T.se:u it Aft w .3t+ psA L As frA. 4&T so7-7f.

Ain g . h se a w G w m t A xcv en t'e sc M ri r= Mas:11 nst Atte-- A.o in,m .

r><*ss, w o r .r w < r m >--

I i PCMM CS#RC41 u

h

e. o

' Protect Page 1

j Franklin Research Center c e.- c:,c - . , e-s

0 '

0 " D

. A Division of The FrankJin insatute n e rm%.me isin 37,3 7/: ,'y y//g/

nu.

NbMNYWikLe $Aff t/sJ / N $4 f * /M4,2 6Wa*Yeme

?

f

. 4 0 4 4 )

e in

  • 3-b &

t i '

'S k' A $ t,, $ s2 2 - -

s, 4 x $

( T Si 8, e? -

) [ I

- =

h, 1 i

3 f!

3.,5!!

- 3, s "a

N I

(}

f 4 Vc 7 #

~ sa 4

e 6

L G

( 19 g a

{!

il 3

1,,

f4e R bg

,s, ~

a g g ~ ,

s , , ,

e

8

, o o e

, a t,4 '

,7 yg i o

Ni 4 e

2  % N

[]

g i

+ 'g TW i s

k

, 4 g , i-

d Ea a

, , o = a o e u  :,

I Md4  % 4 Q D g Q

^

  • A 0 4 h  ? 7 s R i,,

s s[ , u Pa 2

?, .

!3 Eis

{ *$

'8 * "

  • D Q g 5 & E C

+ . a4#

.w x .c = = = ,a

~*

g *i, 9'x ** LLL k -

p, is T

$ $@ E h 8 d { k d d d a

b

] ronne cmw

1

'l

, l proj.et Page r, - so a ca+-sal ~ua3 J 0 '] Franklin Research Center ,, o,,, ..e, o,,, ,,,, o,,,

. A Devision of The Frank!!n Insutute

j. ne o.a.ma re-maa P=== % Pa inics D7S 2/2d,if,

_ gj/f/

y Title ,

n bNGA fitas 6,arusty s** box.y Agna,tif

. ,I (1

$44/4c.* A 4/4/ ef fddtki"Q fc?ll4.y f} ~7j' gsfy,;* f, 'px 2 -

i

  1. Q W4 rich. CadtWJ '

I  !

1

,. ~

l I \ o

~,

l

' ' ~f *& sei. y e<a ssAi. Seer m "

i .

i i

- l 1

-scina"m?:ioa~ tauft it

( ,

I l W%fr f?

? t 3: ,

i - '

l  !

I m _

i e'

-4\

i

\

8-1 m -- w

.t eilentr4 d t t' is A s, N. ' N' N' m'

~j l'pt) lon) b u) Con) lon) isn') liso) trse) (fro) 4

'l

}! ZTb t L 4 ,II 19 s 19 12.

tb 1 s L 4 .nl ns lo6 14

/G 2 b 6 s:;- .9 for 37 77

~

13 3 2 17. b 4 slo 14 0 // f" 74.

~15" E I$ ol C. eto IZ'l /OS* ll, (l) 744hfMttrAdir $4e*A/. 642?? OA) &4,,. f41ertasI Pa  :. jt dcfy 41eaaf t~ tin ,a r .7s , G . 4 o, sa. M/

As w' w' 1

(2) 'f444sArtf/*Adid*~ f//t;F{' 64ft29 OAJ 5t&lt 5//e24.b,.ldtol

(-l k- As  : . 777 L, is -

y44/ As Air,y 7' :. sc., */

ri e' W

[

J f5) A6cX.4'f~ TNr~d4. ??x YJ Al /f4 Mi.:' *$= %~~ 54,. /re * // k'sAdSA;;?C 3.

9M CS4RC<S1

_ ._m.. _ .- .. - - . . - ..

-)

.. o J.

Project Page

([ ] Franklin Research Center

,, o.,, 2.s., o... n. o...

A Division of The Franklin Insetute m s e tr e e A ra isio3 MS (meg (H/Af4my, b4C4Af A?3ffAU"/// h4ft3 ULY$/$s AE~ SAMO P

A4P/4/. A<CS.v4C h adJ F4aM s

8. N*1 NMO, YoudA=W.ef ?W G N:Zi&&*4]

K *ts y 46/

i

+

[ Os ,

Pressure distnbution according to Roshko.

f .

I Maerx~d % ew i%g m p

! fNG^f L f. d'ALW2' And 7"6NefN

~

D ^44d*fd ,* $ & l" Y4;*

  1. ' fad ~ c'hert ox M~o oa as-0/AWTN dx/M47f An 9 fulf;*J +

+ .-

Bending moment diagram. N8' . It"4 /A L Asial force diagram.

N# ~

' f*S 7 P

A $

~

N nr . 'ZZ/ Yk U N p

-i.4if 24

}

W

ci  ;

l

]

-A ar i ==

O , s.Oj -a.;_,

e j . J Franklin Research Center A DMsaon of The Franklin insatute o,,, cy, o,,, ,,,.

.a  %

o , ,,

n.a re a r% %.p. ivos - /o.

a bM4,+f'J ~47's'/h 4 $f<ett' llM'-J'/// , $1;'iM;.6y c).us%Ar Ai+ ~ Edeh*M.'f, :i,*m 6A, eat.r* ,74a 11 f "~ L.**/.44 N 4%ct A,,,-4n'e~d /.*a <

I G dy*}

f, cwo i o I.o dy; G x &C & s';*,'r.: t 7 % C66 A lo

. 60 91  ?.

to TO

, le

.83 L 4a .% l i

fa  ! -s.e7

-14

! cfs'+ l j t,a n

y

} To -28 4G ,

to -Mt. i '

,h*

i 4o ,

- /. M j ...-

l ga =/ H j i slo '

.94 ,

cw A40 05 or f;78tr 1 l i i  : l P

  • STA4 MAT 7m Parmaa~

l $ l k \a v w orrt I sea  ! .W  !

l i

l 1  % en 9 .-

Svf.)

/

. Ha ./

&Mc-> 1

(

a Yu! / 's ome s

  • \

A, v 7 k /x"er~- /hro Noca. Li18 A<1c.ar-ko t'ar&ctred ra drersweer Aars e

1

  • fiksY A* INK 4 DA dsf, romw cs anc.es g .

7 - - - .

P.g.,

sA  % =t a , .e .x -x _, n.-

[ f Franklin Research Center ,, o.,, o . , ., o,,, ,,,, o.,,

A DMsion of The Franklin Institute Mt*,

n.a r =,a e nua.pa mm I

Titi.

$747sMM.Y $',sta A: %3* S7 lAt'IfWo/C" b40f, be47 *A kS/4'd?'*U AW f W?-4 CRACKED RING NODEL OF R.C.CHINNEYS. USED TO STUDY THE STRESS RESULTANTS OF 2HE SECTION DUE TD RADIAL

[ PRES 8URE LOADS. THE PRESSURE DISTRIBUTION IS BASED t ON A NIGN RETNOLD'S NUMBER WIND FLOW (10ee7,R08HKO) l KEY TO VARIABLES:

Ps STACNATION PRES 8URE i

. Se HOOP REth. SFACING I Re CHIMNEY RADIUS w s,.,,oua ,,r autae se so *w l PRES 8URE LOADING TABLE 4 PNT , ANGLE HORIZ VERT FORCE FH FV (DEG) (R) (R) (P*B8R) (PSB*R) (P8ReR) 1 5.00 0.0872 0.9962 0.16493 =0.01437 =0.16431 2 15.00 0.2988 0.9659 0.12828 =0.03320 =0.12391 j 3 25.00 0.4226 0.'9 63 0.06196 =0.02619 =0.05615

  1. 4 35.00 0.5736 0.8192 =0.02007 0.01151 0.01644 5 45.00 0.7071 0.7071 =0.12479 0.0RR24 0.08924 6 55.00 0.8192 0.5734 =0.23300 0.19086 0.13364

) 7 65.00 0.9063 0.4226 =0.31416 0.28472 0.13277 l 8 75.00 0.9659 0.2598 =0.34558 0.33380 0.08944

'l 9 *5.00 0.9167 0.ge72 =0.31416 0.31296 0.02738 10 9b.00 0.9967 =v.od72 =0.*e3998 0.23907 =0.02092 0 105.00 0.9659 =0.2588 11 =0.17017 0.16437 =0.04404 12 115.00 0.9063 =0.4226 =0.14661 0.13287 =0.06196 13 125.00 0.8192 =0.5736 =0.14661 0.12009 =0.08409 14 135.00 0.7071 =0.7071 =0.14661 0.10367 =0.10367 15 145.00 0.5736 =0.8192 =0.14661 0.08409 =0.12009 16 155.00 0.4226 =0.9063 =0.14661 0.06196 =0.13287 17 165.00 0.2588 =0.9659 =0.14661 0.03794 =0.14161 18 175.00 0.0872 =0.9962 =0.14661 0.01278 =0.14405 L

CUT LOCATION TARLC m to77 4.at411t39 614M.f ja

  • CUT ANGLM NORIZ VERT (DEG) (R) (RJ 1 10.00 0.1736 0.9348 2- 20.00 0.3420 0.0397 '

, 3 30.00 0.5400 0.8669 -

i 4 40.00 0.642F 0.7660 5 50.00 0.7660 0.6428 6 60.00 0.8660 0.5000 7 70.00 0.9397 0.3420 8 80.00 0.9R48 0.1736 .<'

9 90.00 1.0000 0.0000 ..

10 100.00 0.9848 =0.1736 i 11 110.00 0.9397 =0.3420 -

j 12 120.00 0.8660 -0.5000 ,

13 130.00 0.7660 -0.6428 -

14 140.00 0.6428 =0.7660 .

15 150.00 0.5000 =0.8660

>' 16 160.00 0.3420 -0.9397 17 170.00 0.1736 =0.9848 '

J 18 100.00 0.0000 -1.0000

  • I h Poma8 CMaC8'

?,9 a

0 mb Pmiect , , ,

.) - %" Ja 7 o ,,

l. . J Franklin Research Center ,, o ,,, ..,., o,,, ,, o,,,

e A DMsion of The Franidin insatute the teamson Fransen Paramer.Pheia.Pa 49103 GS*d Title lke$/NWA*[W/A/,e &N NdeY$/$ o WWOkW $m L $*N"5

i

.,,$ YMC" he#A*Y $ & / W N & & Ytl4 NOMth? $d/A$/e"l C$ Atw# $ W$"4;"Oh'f l sc.m is aceseu r~r4) s sma :.,xarre ra s.o. : ro i 11sr sacrw can sw M4:~4 desit;~ M*HtNr. 'Ltdur a r rait da:.:-ass" 3 17.ete // a4 4CQifrgj dwrMH es MuMCA/7*

9 v

1 s

- x % ~CAofY ,_s+tta31L= p f s

3

)

),.

,, . i

')

~,., f. ~ ..

hur mur-mes .4McN Madwy raoc6s n.rva.w) a: $nt,rax Mciuy.t; /

i

? 4 tr m "N%f 4 1 , '

/

/

/

? /

/ #

noox.c- ve a co ner .or oa era na-ysuo L ,

I

- , las40L4'" A7 Pai47 A D0%g,7soQ br* Ta 7%540Aet'"

  • D('i"tetnsAJ hi* TJ Tf45#0n)

'A

, , b'L$so *4 6 M4 heg5Lif, $Qf** gM&ATIOhh i& $T4% OAL ,

e 1

W Y.. .

,, ,o cua k __ _ . . . - . _ . _ __ _ _ _ _ _ . _ . _ . . _ _ _ , , _ . . _ _ . . _ , ,_ _ _ _ . _ _ .

1

\

. l c/ . r ; .s  ;

d[.A[ ranklin J F Research Center

,, o. ,, cy,.. o,,, ,,,, o,,,

P'.'",21.fi'",!d"dif v74 riti. $4eZ~ 55xt2;F Nant, kid A?Ts>M" &df

, STRES3 RESULTANT TABLE 64 w 4,t.aar.4 FREE-FIXED MODEL .,f m, ,

/

b >

CUT MOMENT AXIAL SHEAR TOTFH TOTFV ANGLE (P*88R**2) (P*B*R) (PSB*R) (PSB*R) (P*B*R) (DEG) 1 -0.01437 0.00000 -0.16493 =0.01437 -0.16431 10.00000 2 -0.05387 0.02228 =0.29127 =0.04758 -0.28822 20.00000 3 -0.10831 0.04347 -0.34949 =0.07376 -0.34437 30.00000 4 =0.16310 0.03343 =0.33211 -0.06225 -0.32793 40.00000 5 -0.20032 =0.04678 =0.23651 0.02599 =0.23969 50.00000 Il 6 -0.20026 -0.22527 =0.08674 0.21685 =0.10604 60.00000

.j 7 =0.14644 =0.49734 0.07034 0.50158 0.02672 70.00000 8 -0.03066 -0.d2208 0.18853 0.83538 0.11617 80.00000

, 9 0.14355 -1.13146 0.24309 1.14834 0.14355 90.00000 10 0.36169 -1.37145 0.24309 1.38741 0.12263 100.00000 11 0.60459 =1.53903 0.21354 1.55178 0.07859 110.00000 12 0.85673 -1.67680 0.16339 1.68466 0.01663 120.00000 13 1.10839 -1.80376 0.09009 1.80475 -0,06746 130.00000 14 1.35193 -1.91607 =0.00415 1.90842 -0.17113 140.00000 15 1.57995 -2.01031 -0.11646 1.99251 -0.29122 150.00000 16 1.78552 -2.08361 =0.24342 2.05447 -0.42409 160.00000 17 1.96239 -2.13375 -0.38119 2.09241 -0.56571 170.00000 18 2.10519 -2.15921 -0.52557 2.10519 -0.71176 100.00000 Nownr g faF/V

/

q ( 0 9:

NYS ;_

\

\

a \

. \ \

\ ,

\M 1

PosW Cs-PRC41

l:

3 .

P Project Page ,

; . ..g

,...a -

i l Franklin Research Center ,, o , ,, cy,., o , ,, n ,,,

o ,,

A Division of The FrankJin institute

n. e , r, e ,. e p m os C. d riti.

k'l4:C9JA) Al-)/$/( &(Q et?* CU 0 $4' 2., .fs Ao 4'R ! l YluA? *'AO$

. ;A W l rg - du. nais ,<saau

. .s a

G a tuse.ac-Men derind J+nao

_o i

N d M d E #

. s /

N '

s ~ A$3 6'MC"* fM/ fig, ;er/1*V 4/A %4. <7o'UdoW?'d4

/

'% / ss* s7xAsu1 7844.44 7,wC.Wnfsi Nd f,v* '. A~, y

  • e & y 2 TN

',l ~Gy h!v e A8Mj LaAbiNs

~ -- ,

An ', l Vg a Sf44s4 CAC s@4 LeeAG ,*W

/ \

l -o, 4 s

'3 . r-S

.. ,3 % - a .r ,e 4

~,- a., za v  ;

a .,..

}, ,

a , , v..

~ 54 $ fs4,1(

  • Ny

~

Nlg) b d$s OM

/

O eh> . (?~.cc,nxfr z"n.-z.0,n r - s '

'I z

'EC, a t - s v l ( & y '+ & a 'f f 's m 4* + 2 H , f ir b 4 ) V3Asirq + !",v;) 24 a <

r:

k  % Sat :.d-* A4 Da~rt.sr7%yf & roc % l.4c) &1J~~ $.C4 LsANo '1 54, m

4x4 : )IL 3rny ,

"(2/*,yPhn*,r+ZAfsFLNAbrA)zsrdj (rne's sy'r

.b e

f

  • Y ~ C/N 14 "0" k t ?*H Nw 'O NM h ' f ofz.

ec + o L

FORM CS-7RC41

m . .. _;. _ _. _ . _ ... .. _ -

._ . 2 _ . . _ . .-

7 . _ . . . . ..

C;- co ;-w; ~5-

"&[

[. J Franklin Research Center A DMe4on of The frenWin Insetute

,, o,,, . . . , o,,, ,, o,,,

n.e -ir s % mm.pame CrJ6 Title 6 a.Pld af ?/id& MLy$/$ Sih4, eTo kA50 dgL AA*/ %C f.$$er4 ~ b d e $

  • $4N $$ 5"ON
  • JJN ftT=ZOy )

. d*Z" '  % 4 1

n

,8

. (2* L 4 .. '

f

Y-k f

LIya u D 774 = f2Gv4'savk + 2Myfny K Crg) Og u., , e4 v., w 6

e Avgl / $ -cinzg ) #~0"

- cr '

  • 5- (4 9

er 2 +

i y h f  %

3Hu a \ M

/snu ae F~n as"*

  • /

r~ c m x "-*~

f2 D

,y l

n -r- < wzos,)

Et*

- cu,r

l

[, . ..

,-j .

Project Page

O A -h -x.; 6-;3 l '] Franklin Research Center ,, o,,, ...., o,,, , , , o,,,

. A o.

OMsion,of

- . The

, Franklin,insa.t.ute

.~.. gd rm.

.. FAK7 sad A.As*44ffsf fs4 kcT NAfd NJde tr a ncK fden d.:" .'.;st J:

A,

. A <

<mo .urMrs e 2x. sin (.fs) s.

1 4YA n i y l g / A d

.jj 3 7 ---- - Ava i

l W

s

/

e i

'b / b 1 ey ,/ ,

5 E/IM.#,.W / O Ny l

/

= L 4% y Q498 cas (Q) i

%~ onn. ,

! z

'l 4 -

2}

N

$NGdd La"M o*N E L.e 4  !

1

.i: rswa amacwnr, NOAlhN?kde
  • b $Af + b & $/ l 1

se<mse - sya + is e.afAs.

] ,- c Pac.

y -. i. _

,_x  :+ ;,; m v w -n:

,.<-:L. m m .: a m .:: -

w- -

m i

d DEFLECTION YABLE

{ FOR h ;i-;

l K4 a - r k . o N ao a .-  %

3 yW a

s ,

Ph? DELXN DELYN DLLhA CHORD CUTX CUTY DEBUG E i (K) (K) (L) (R) (K) (K) (R4) U 1 -0.02250 -0.25s05 -0.32924 0.00724 -0.02303 -0.20675 1.57050 f s N i 2

3

-0.05196

-0.04043 0.01727

-0.19391

-0.00671 0.02467

-0.25219

-0.11011 0.26105 0.43200

-0.06055

-0.05150

-0.25910

-0.13663 1.56490 1.34414 y

s f$R I 4 0.03o51 0.o0141 0.02300 0.04561 1.50029 S f Q.

5 0.12602 0.12602 0.21303 0.76537 0.10041 0.27645 1.42010 Ey 6 0.25304 0.17710 0.36665 g g ,

0.92350 0.40930 0.47752 1.32575 y je *  :

7 0.34027 0.15067 0.44e9J 1.07460 0.59832 0.56372 1.19500 8 ?.

0.34759 0 0.09314 0.43502 1.21752 g 0.67001 0.51333 1.04130 4 9 0.27304 0.02309 0.34154 1.35110 0.50402 0.36413 0.07244 5 10 0.16495 -0.01461 3.21907 1.47455 0.40511 0.20363 0.69835 i 11 0.00703 -0.02332 0.12613 1.50671 0.24500 0.09051 0.52950

'{a  !

sy *,. ,

12 0.04992 -0.02320 0.00465 1.60670 0.17035 ,0.05 44 13 0.02943 -0.02061 0.06252 1.77402 0.12700 0.03061 0.37572 0.24504 h

  • a
l.  ;

14 0.01479 -0.01479 0.04294 1.04776 0.00010 0.01557 0.14270 4 g,

15 0.00593 -0.00047 0.02651 1.90743 0.05416 0.00674 0.07051 s 16 0.00165 -0.00351 0.01374 1.95259 0.02704 0.00226 0.02666 [ f,p i 17 0.00022 -0.00004 0.00500 1.90209 0.01004 0.00046 0.00590 g q 10 0.00000 -0.00003 0.00056 1.99010 0.00112 0.00002 0.00022 (3 k TOTAL DEFLECTION AT CUT o o d X-DIRECTION Y-DIRECTION 3.46926*(A)

1. 96903 s (g()

( i 0 g

9 kap *B8R**4/EI l LaPSB*R**3/EI D k E i

A. 4 g -

l y

sm.wrx. Ase.ccmwr Ar Amr 4 ou ra /*Aol = <trXc ' y l Di l

l , l' uxnue * ~ ~ s <1rn N*

,e e s y j# e t i

_ .__i

l Project Page d c; - G~a; - u; 5'- 4.s 0 'll Franklin Research Center ,, o ,,, cy , ., o,,, ,,,, o ,,

, A DMason of The FranWin Insttute ,5.- -. , ,

n s.w= r, ap m. ea oos T.tte

~

fELd?'/GA) bNdLyf/f rG4 fM42"= *-YXt*f) NW.37 &A,el f f $**at*,, $'%.fie M Ai dd p

l N

1% s A<sz - f)xa-d Nooa7 N

fL -W

~

\ Y* $fg11,. YfAef/J^}

?

h

  • e h / \\ Gs 7 fq

+

f, ~7/*- fr///N 84 er.7. =s ,o NL die

. = =-c l

,/

~

n'g*1 -

t V was.-rg6-w)

v. r r#xz 6-uose ws7)n 8

,x j 7'x' zer (a -zsme +2z. * !sW9 + o e

YE R . I l-f'>[

zeT d

k

.o na amw,+vo's %, .XT , - k = six57 27 24"I 6

L

  • dAT $ 7* 47[

I 14"I L:

.c kl 1

li 4

,o. me.

___ _ _ _ _ _ _ _ _ . _ - _ _ _ _ . _ _ _ _ . - - _ _ , - - _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ d

I t

ah '"*' c .; m ; - x ; '"*G 'i I

[ J Franklin Research Center ,, o. . env. o. . n. o. .

^ "*,.*"rL*?.l.*'L"I"?E

. kJ6 F Titi.

$a w now rs' //ncs S ke~d // ads L F Z a y 6

  • p* a rJig s lr v ,

A 14 M x .c//nsN4 krord he Sr. ira M i?2:4~ ns.i"'~ x A .

w! _

_i l 7

f Ch u Czaresf fee" TO N W 5 7et'? Ta noftJ N w d y-

' d4t.x .s/rsand D&d"-ra Destox^enen of' aw ft,r.s,, t .o a

h Ac w 4 f*3 8 Lwat!* Gw 3.4(, y A C ,Ar'o<, fMa~

T4 Tg 43 *' j 77 7A' I

'3 .

4 Cg 44d J% etr~~ 4g2 43 9 7"= & f88 i

/.~1" 77' MOMENT RESULTANT TABLE

' ' Gr= die 7~ Nient 47 4 fee m d FOR HINGE = FIXED MODEL N7N ~

  1. ~#

ANGLE dET M0HENT w

(DEG) (P*899**2)

    • d4*fWN**[i.D~hid)) "'i> 10.00000 =0.02556

/.s"/r 20.00000 -0.09427 30.00000 -0.20694 10.00000 -0.33534

$0.00000 -0.46330 M rta~ &w TNr~ R tt*****dAf*0 W it f & 60,00000 =0,ssg36 c(4xf # d'/La~N W MF 70.00000 =0.63064 80.00000 =0.63902 90.00000 -0.59265 100.00000 =0.50235 4 110.00000 -0.38340 1

120.00000 -0.247b7 j 130.00000 140.00000

-0.10103 0.05177 150.00000 0.20614 160.00000 0.35752 170.00000 0.50117 180.00000 0.63279 lj ronu co ences L

e ,e

.k Project Page ,

r.>,- m , sa .

a ,-

i

[ . ] Franklin Research Center ,, o ,, c,, ., .. o,,, ,,,, o ,,,

A Division of The Franklin Insetute ne o.a n r..a m. p ,. rma. Pa isios > sT) riti.

Ad& **Yffd[o4"/4L Y$ & 4d/aY)*/[ } ik$.l"* ='= /Mf* Cf' r

hf** N/4,ll.',"- ftXi2) **4dda2, ,N:3 s'**$ dGYf4 A*L*?" <!A/Uss%j JN D s'~

Case,sAs .r;~4fA4 fidd"* lso.~N 7:yd'~ d'o<ded, A M~-u N<<%', ~ /j' s~.>4Hrd L

> 7* * *C* far om rr,s/ M.s== Mid/f*d/d&a%-4) AdA/N. *;**

J / +c2 N ~~~A : 4 D/129t/<$oriaAl d*M A H n a ~ *4 NiNd #~~ Ns44,a~~~ Hu dc2, ,

f 1*J

$saLL C Z ej rd :Jia~ h?~Ff:P EM:C / d.: h* d J' zasca sou.rrs,v A,s~a 4 7.-ssia saumus w.~.~ 7

'l

) s ,a m a. u,.w .us:a ma ~-e.s:x.- s.

fi~rs f farsfij~ i'%d e 26s.:.IdMr./+t )

j .

se I l ; --, a s , - a- n ,. , ~ m - e~,,, n e )

= 's.<

, sim.,, gaseineer

  • 2 A'7* f > rc t s,,,

I b=A~tc'* & iy ar Z.Jo T~ M ,;t4- f,4;,-*

ur :.,; is)

Net A/s m 7 nr See7 ras a fsyP8A3-7'fd-4tsjd)

F34 ('G ~ f 64,,, f/-casa)

I N

d i

)

l t

i j PORM CHRC41

1

3 .

f I

'j O * '** "*g g_mg_m3 ,/3 b . ] Franklin Research Center ,, o.,. cn w o... n. o. .

A DMsaon of The Franklin insatute p7,3 n, se er p sp. A Ps 19103 rio.

Ode d*Yienhol 0$ H%$Q" = /N$ E"" O *u**

~75a- yim - Avas.:~~ Made1 M .:viC72~ 4.:3 n?!"~~ # U H T ANT T M E HINGE-HINGC MODEL

i He u a y 3' 74 4 x 4.vaa.;~ 7'd.ftert/W .f.o TNAf TN."

L ANGLE NET MOMENT ft;Ytw mar,s= or 7kr tWsM4sc'5/ N' M 4Mdds'* (DEC) (FSB4R**2)

D, / 10.00000 -0.0J037 C 20.00000 -0.11735

}l N taymcstnN (Av47' C/4tM'Artar/AL,. 97Vesks). 3n,onnnn .o,y4a33 40.00000 -0.40936 50.00000 -0.57632 60.00000 -0.72656 70.00000 -0.83902 80.00000 -0.90047 90.00000 -0.90905 100.00000 =0.87369 110.00000 -0.80801 120.00000 =0.72216 130.00000 -0.62000 140.00000 -0.50700 '

150.00000 -0.39422

160.00000 -0.25619 y 170.00000 =0.12681 g 180.00000 0.000u0 1

k i ao= ==

4 ,e o

,4 f4 R

)

f b.a J

s s

i s

t o

a

1 APPENDIX C

.]

'1

TURBINE BUILDING DESIGN REVIEW CALCULATIONS

.s

]

-a i

l k

k' l FRAMMUN RESEARCH CENTER OtVl$lCN OF ARVIN/ CAL $ PAN l4 l

20th and Race Streets. Phda., Pa. 19103 (215) 44810rm I

n____.. . - __ _ _ - - _ _ ._- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

F d' O '* '

Sots er::s6 -oo3 e-/

. . . J Franklin Research Center ,, o.,,

q,. o,,, . o,..

LOY" AWL"Y%* D76 $/n/H , ? rhl?'

Title

  1. d,We* #f g 'N s O, .. . ' W

/.. 's. .

e s sA q p e

, . ,N ,# Y j

g e

N/ / j ik ,-

\

/ e n. ct

,/ ,/ .

!; 7 zu x ~.

,. x ~

/ ,

/ \x, ///

f/ f i t

i N '/ / ..p e y

N a --

.g . ,

1 t s@g Proi.ct p, s:v- m.3 u; c_-~.---- ,

. . . J f.ranklin Research Center -

av oc. m . , no. om t A mecas,on- r.of T.he . .Franwnat,ute mrueu p]*J 4/faf.g, _ ff f,g:.f, i rm.

AbiAo f &*/$lY/ Aid

.7 .e) .

rt.: n..

.,, e s ',

s n:,_eN . .. eon eur.we -

~ ~g...  :

.- !s I

i p p

  • s
l. '
.c'.,~.~.::: . . t ~'~ '"

a*ps n.  ; *** ..+- g --,

- c ;,,n -,,.,.a o l c_7 _

- p/ ,/ y

.\

~,,,+,, ,,,,

g, d 3 i .

\-

\

,, g -- _

\= .-..,,,, c

-.== . /--

- e,  ;

,, m 7 _ - .=. .

l"'" 1 i 1

0 o j q ., r-  !

.,.p__.

9! I

i. >

s'

[

i e,lF g s;=::= 9. * .ss. n r _'

.i ,

r * * * .s e >

ana m s

"' f 4-M

-4 i /.s ,,. .wew.a* _4_Z

' b ,

^

~ *** e/ h . ..,i ~~. . ,"~~~ T [

~..g-i l . -

1,...

'. L

,y

'gy,j ' g?! ~m:.]

I c .. - .

3'

, I.....L ( l ,, . d

, , V 4 \

y . 1 k/ g _. af e t

[ .; w i d l

- t I,

. * ** ) i e.

a Js ass, i

g y s eroos. ~

{

,p*, 2 er+ es r i , t- e.

  • 1 _ l  !
r. ee,r _ .]

y r ., i

. I.

,J..g*., 3 , ,

G I h .

- - . . . . .. 2..ri I B ji . "'4 ':: ::: <J y a era D

.' Mos*aearsy . . sdr (..s. 4.a.t i.) .

7 d cet .

- . 2.13 / ' -_ '

een is,. oossn. S ' ~4 *--- ,bb c 1

i

'q 1

e.e ao.o , . m w W "+b 7.

r* d - g (

i dsr. is.so14..

s. % , y' . . ., , _ . L -. 4. '. f '*

symU.p ~

I/7X MO g ',l ;

i

?$ ' it*V.::ll ~

1 w m ** ,sn , . r, i . w

%. .. , b 3f s' A*

7..C f r 0 M. 7:aTr-

(,_--....-.~- - . . - ~ . . . . - . . . . .. . - = . . . . - . . _ . . .

'- +

V

, a t

1>

lt be i g, - ' ~ * ~##3 4-3 >

'ru' Franklin Research Center

  • m, m.# N Dm C'," ,

ANx of N n. nun in

"' * % % % ** m e <

0 74 gj ,

~

  • *~- % m , 6 .,n .- Aara s,,.,_

i pit'* i

,s.rt f

f D<"

ANJ, -

- ,,*1

.- n &

'/ n.h, f

4' of-k 3 v

,,, ,4 i #

g .["' 'r.9 g ,' # ' f

t e>

/

  1. - ,. A r .

t I fi k

y 3 p pgif, i,

~

l

  • n,W j
  1. , 4

, . ' ., . g .pl3 ..

' **.$ V gY ' 'lt e ' g# ,s/

1 y.9 .

go -9 pl le

/,'. y d,/' .

., se,;)

e e!9p.t,v'

,1

,,,.y' '  :: - ,- ...

.- (.

/rw,

, I 3

r .

I

, e ,o A

d,st*:

i i

I s l@

,s ef $/

%3

~ps l

.h j

.a*

r i ($

]1

m) _

f.

O

  • Prosest 909e 1

C.24. m3 -us3 c-4 j N1" Franklin Research Center ,,

2 o,,, ..... o.,,  %, o,,,

3 A

ti.Owen r,

<d.The Frerun e siasinunde 074 >8/is/,4,,,. ,, 4,? ..

, +

tine

,_g Ad*At 140/N/ ,

e64enesp) eGe%l .$dN $/t? dN l

4 A

, < 244r tu m r,

fi ~ Mgy 74

' ~

G ')' 2<a7 7 b l A l-- + mr H

b i I

'l [ \ 'ttT F I

'tr-5 t,a r  ?

szr _;

l a u.*1 r

~,

,' '; 7 /_

[' t

    • t '!ss77

'I ,/

f. .

28 ? _. wa $$$ ? .. -_ .~~ -

e. a <, vise F

[ f- %M Y . . . . fo44 f . . - . .

6, j p-g -

s

'm

$%tos4 014/A*f $a%davf &A7 0M444A4 4

. '#, 34, i

j TS.G* a 4e 204l'(T1.fp*)

  • 7.67 7(4(,,5') + 104 f($3 21')
  • Ziffl1/ 2+'}

.I t 21s7 (11.91y tit P kt,,0)

  • tif//7.n ')

ij = disFfd F -9 #s 'a df7 #

t

, #3 a ago p i

H4 M de'** ms % g%7'

  • f&$lP(P*A=,/

s

,j k ot.d* i of Al Afin' 4

(Citste.7)N3'/(f) e lid t, *

(4fk U.9) f/4 ')(f)

  • 711.*.
  • D.s2 ts;*,;,)/fo.of*) e 2737
  • fd 6 n$ $)//s !)(!) '" tot * (e2x to f)fis *]{o)e ty
  • fis 'aig )o lT.s .rjp 7.g jfg/.*p) e $"t& 3
  • coar<ut

{U os m iss) (ts')[) e 168** //6" 4g.4)($4 *)(r') r 1,1%

  • nus o.s. d 1;.,uf '

l (kl As s 99)(/'4 '){oje '73 +

  • e 11.a4 %

i t

FQN0 W M i

p - . _ _ . . . . _ . . . . _ . _ _ . . . . . . _. _ _

a s%  % =t

    • > i =&D!. ~co y d~ f

.1 Franklin Research Center 8v o.t. c='k. d. o.t. a.v. o.t.

A

% r- m %oin,..rr.nunin e i e.. O, d //J.v'M v.- -

rio.

AdfA.C.'** Our/4g7/AJ4 4 4 M AJ -% b}JA.9*%' t%1 A'a hl d24.x74 4 = tt P ' Soxs /74 m 47= /.92 J^J d),q,a- s 5.fo

. As c f 4f !" #7e 111.)" kr/zf,r e 4.57 l(af, = 0 0)/ff.52 x z*) = 44,4 /b4 ((4-2 if. A 161W .# #4 = /2 r #c' =

5.f: 4// s 4,:7 M/

- U bh)*

Kd = (i.0)( % 2fW E ") = /Tf.J y I.12 W ,i for % /1 44 * .407M/

22.4 * *

./$ = , /$~ w . -Y7

.$. w $1.53112 e 27 7.I 7 h4 &

+ 2 12 -

55=t90xie'.!4 s 2.21M/

^

(2/4,-)1 mr:> /~5

  • 4. 7f M /

f4 = /21/0 ' d4 = 4*79 "I 3 s%q w h.y ^*')l/74 A,/l/aeo nc ~rr) , 7.si m = r i

$d/Ap /2 w -K

}'s ,s 4

4 Mot ME~ H4s.t., c //Z, doo * ~F1*

J7teoy ^ %fc ~ l' Afw L*:fP 1

A Yena? Git ** /ss7BAerross ep%4 ries,s deTooper

.

  • 017+ ftQff 2 I =p P t lo.3 MF lit,40 o NE k 7$*YY.'

S M44-l U^<a fMIClAdfAd'* f*h 3.,a* l4r7 ,

ll* $$507 X _?

2* Q, yI Y'1 O/ set"$fAtT/AamlAR.WarA4' /#

'l 3

}

} j% Project Page

. D 1 - T m - ::a - C-a l . J Franklin Research Center ,, o,,, . .,., o,,,  %, o,,,

A DMsion of Thefranklin Insecute q w s- rm p =,. A r= isia D76 4/b,34 f

'i b < , . : :.

!j ** - -

9 " 7d eI//o A/ NcWde'4f, d4f7 d4e".ed,TJa/ 3# / - a.* r3. A.e*

, C . /a #1.sV l

@ (~;D U/ox31

' et ses'- se" Laox;3 ,

Ar 1.7/ m * /7e 2./.; w al/s,,3 : t; fxa 2 1s~^** ' Sy v f.at wI h.

% A's v 4 1.2 47 - /. f,8 !"

et es'-ei"

~

weexn t

i l J

ll .

_. %nT' _._

4.6MAJ e=/Arq*

l k s 33MTM Z '" w I40,7., =,) Ed e /ge~.

L w 4. ) ~ 4*/

L y I.H 'd 23

],, w 5e.75~."12 'N e I70 6 >y //fVq dr  :. it. '"

1

.} $w 4 /YJ X /JI :*d s  : $*g j Mf/

  • c'24*.)t 4 r"5 = //. if "I
I J Ks e 12.ria 3 x4 = /t. 4f Mt
i. .u,y, 3 h_rY D/_' W f,

}' < /g 4.Ta !4 A~ke szt ,:- 2~ w /f,35 M /

.l i c' @j)'

i 1 e

l H= $ ^* $*

  • h l'n */,ayp'sa.7r') ' = 3,% *-pr s.

ks = Nlf a co X /3 ) (mi w /337 N/ ,

ro, cu a

p-.._..___.m . - . _ . . . , - - - . . , m_.. . . ~

tg -

V s... o sg Project

$~2 4- TO 4 - oa ~;

Paes d~7

. ] Franklin Research Center ,, o,,, a .,., o.,,  %. o.,,

.,78 ,j ,

A DMeson n.s r of.pT.henum.psisios Frankun Institute 4/Ja f 3.4 l .

M*

5 M?xtr.u/ N~MHV.*,

4 C d : ~ .~ ':~% % ) d / Ad d *m*~ D!~(). '*$

/411*rAA.C"'.Ms Glos 97 o4, g .$ s 61x / sex .s', /, a w> $A st 4.a1//,1J "I') $ /. O 54 kg 4./1 #

f/- 0,. //. Nl*#**Y f

+

(/=,cy' $ //.53.kh, fA) A /= $1 + , 43:. A fl./3 ' / ~ h

/,4 13 /f. 73

/f,33.k ~/A * / f. 53

  • 713 3 -/./3 l4 k is - z1,46 .r'4 + 7). C'/ 4o a&w 21. fd' b y f.2s f1,) ; (J),-l)..'*a,r?)'

t f , 1, $~4 MJ , sy.f2 *//

h A t. eTE"" /A=f/.a)('1.f~p).*4~l.4 All p

Y h '*

D . g ,, x p sora p 2.. g '-; " 7.u nt n r*

~

u,n - n.. a s..- i. a: -

. .I u,m y a .wm suee ,~

i , , , , Gdw 8- on

.:  % . ' ' y* * ' ,wg- c.onexere usst hdttn/' d.%tr gg M.u.<ss & t~as ke**f 8 u &

'f

\

~

... ....... o_.. ...i ......... rc.....> _

en

~

4'- 4 h h %'.To34 dA fgt- pm-e.s. .. .s e ..e.a., o.s.s.a., .ea..

I<

p . .$.. 6 r.. . 4 . , r.....

1 ZeM7pou Q e $9; 7 w

d fs + F4 ,

- e.

A '* *.s :-o $ = 6s'jdso.96*) F = 132, P w . r ,- ,

4 8 5 s* wen- h.s n ,rsy

1

'4 .

\

i' j Project Pege su- s su -sa g c- 3 I

[ ] Franklin Research Center "" U * R ev. Date A DMaion of The Franklin Institute # "./ . Date M6 f)'//E ,. f w % r,  % %r me -

1 niie 1 6 m u.m s m s,c h e % w a r u. - c a.~s d

'l ~

C LA n M A,wpuien tJ A& Lows c 1

$ 193 P= (C64 Af!)/tooo *)f1.7/ w*)

Mk 6 F - $3 7

~

' ormmc s%sode~ s Byg Af.f nr

< v- @

sr.1 1 h . /gs un l

e deJI"4 j 1

..,t il ll

.i i

1 4

1 1

4 1

4

) ,

PORM CS FRC41 d

g. --.. . _ _ . . .. _ . . . .. -. .. . . _ . -

t t ..s.

A

4 Pro M soy-g334 - aos Peos d' - ~7

. . J Franklin Research Center ,, o,,, ..n o.,, m. o.,,

j o e i sg ..

p A neDMeion.r f The men e. Frenadin am. A mesInstitute P.T6 f"///.9A , 7 . .%

i Title OJ17"soAf b.s4,4p $M/3wAt,,, &sM Afe'.*4 (

4,n t'rra m- )

c z z 'r wxh urs l koe 11.4 *'/rr fax = t.47 m 47e 1. ton 44. % " sgnasanov

'Ae f.Kr Av s dg e /.7) W f a. /. 4=y M Art,, Vs H ser iqtyp.og

$ W} r fl.9)(s.99*x 33*) , 825 L y &w JZ f I g** e f.ff ASl S y I. 4Q 'N  %]

Y  :

i y,. i.19 84 '

Mr I w 9 ' * $ (12. 4 /arZ i6 7r ') = 1136 * - p r Yg 4.o#' ,

j' * [llf L * *8r1* .t f 2 ")[le M 8")

8 y 73 II j T xx = I4 3 '" + 34 3 s=4-

_S y y S we r 4 A d %+1If5 f frenm .F-d *v dNg , 47af-2.

1L1 4xD /s. / .1L84

~

?

Was e I. l S~"* '

K = 6.a)lh nie.1s%IL'_'l = 160.4 m $ r $~ h "'I A. 4 e.#rew g = T 6 f " r.sA. N'

(,g 48 o) Oe.,n e sf~ ) - n r.c-

= 144" r.n. '/g 'l

~

L fy 2.W" I-t

{

__