ML20138C536

From kanterella
Jump to navigation Jump to search
Exam Rept 50-416/OL-86-01 on 851217-19 & 860110.Exam Results:All Nine Candidates Passed
ML20138C536
Person / Time
Site: Grand Gulf Entergy icon.png
Issue date: 03/20/1986
From: Munro J, Wilson B
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION II)
To:
Shared Package
ML20138C531 List:
References
50-416-OL-86-01, 50-416-OL-86-1, NUDOCS 8604020525
Download: ML20138C536 (186)


Text

.- . . . -

ENCLOSURE 1 EXAMINATION REPORT 416/0L-86-01 Facility Licensee: Mississippi Power and Light Company P. O. Box 23054 Jackson, MS 39205 Facility Name: Grand Gulf Nuclear Station Facility Docket No.: 50-416 Written and. operating examinations were administered at the Grand Gulf Nuclear Station near Port Gibson, MS.

Chief Examiner: d V,to /ac Date Signed p John F. Munro Ch~ief 3 Examiner Approved by: b>A x t d l. es 3 %fDc2 Brute A. Wilson, Section Chief Date Signed Summary:

Examinations on December 17-19, 1985, (operating) and January 10, 1986, (written) .

Examinations were administered to nine candidates; all of whom passed.

9604020525 860326 6 PDR ADOCM O

~.- - - - . - . - .

REPORT DETAILS 1.- Facility Employees Contacted:

  • G. D. Lhamon, Operations Training Supervisor
  • J. E. Cross, Site Director
  • K. E.. Beatty, Training Superintendent M. Shelly, Simulator Supervisor L. H. Hinson, Training Instructor T. Mayfield, Training Instructor
  • Attended Exit Meeting
2. Examiners: ,
  • J. Munro, Region II K. Brockman, Region II
  • Chief Examiner
3. Examination Review Meeting At the conclusion of the written examinations, the examiners provided G. Lhamon with a copy of the written examination and answer key for review.

The comments made by the facility reviewers are attached as Enclosure 4 to this report. Resolution to the comments are as follows:

R0 Exam and SR0 Exam

a. Question 1.14 and 5.12 Resolution: Disagree in part. Utilization of an OD-6 printout is knowledge appropriate for both senior and reactor operators. It is, therefore, a valid testing topic. The information included on the OD-6 attached to the exam was, however, different_in content and format from

.that used at Grand Gulf. Because of this, the question is deleted,

b. Question 1.19 Resolution: Agreed. Math error corrected on answer key,
c. Question 2,06 and 6.07 Resolution: Disagree. The question is clearly worded to elicit potential system automatic restarts, i.e., " Explain ALL of effect(s)

(Potential or. Actual) on the system operation ... ". No change to the answer key is warranted. -

1 i

Enclosure 1 2 March 26, 1986

'd. Question 2.09 and 6.09 Resolution: Agree. GGNS Electrical Prints (E1226 and E116) confirm the accuracy of the facility comment. The answer key has been changed accordingly. Consideration should be given by the facility to clarifying 0P-P42-501 for CCW pump emergency operation.

e. Question 2.11 and 6.11 Resolution: Agree. The answer key was incorrect in this instance due to a typographical error and has been changed accordingly,
f. Question 2.18 Resolution: Agree OP-E32-501 (pg.10) confirms the accuracy of the facility comment. The answer key has been changed accordingly. Page 6 of OP-E32-501 should be updated to reflect the additional F003 automatic closure.
g. Question 3.06

~

Resolution: Agree. Figure 2.4-2 of the "NRC Inspection and Enforce-ment Training Center BWR Systems Manual" confirms the accuracy of the facility comment. The answer key has been changed accordingly.

h. Question 3.11 Resolution: Agree. The Allis-Chalmers Turbine EHC Operating Instructions confirm the accuracy of the facility comment. The answer key has been changed accordingly.
1. Question 3.13 and 6.15 Resolution: Agree. GGNS Technical Specifications and OP-C51-4-501 (pg. 25) confirm the accuracy of the facility comment. The answer key has been changed accordingly. GGNS OP-C71-501 (pg.18) should be corrected to reflect existing plant conditions.

J. Question 3.15 and 6.16 Resolution: Agree. GGNS Technical Specifications and OP-C51-2-501 (pg.18) confirm the accuracy of the facility comment. The an'swer key has been changed accordingly. GGNS system description C51-2 (Figure 8) should be corrected to reflect existing plant conditions.

k. Question 8.12 Resolution: Evaluate is an explicit term and on a written exam should indicate that a response is required. As it relates to this question, if no response is made, the assumption that no violation exists will be

Enclosure 1 3 Marci. 26, 1986 made; however, the partial credit for identifying the particular limit will not be given.

4. Exit Meeting At the conclusion of the site visit the examiners met with representatives of the plant staff to discuss the results of the examination. Those individuals who clearly passed the oral examination were identified.

There were three generic weaknesses noted during the operating examination.

The areas of below normal performance were:

The P&ID's available in the control room were difficult to use due to their poor quality. As a reference to the operator, they are marginal at best, and deserve immediate management attention.

Use of Emergency Procedures by the operating staff was only minimally acceptable, especially when multiple procedure use was required. This should be reviewed frcm both a training and human-factors (formatting) standpoint.

The caution statement in the ONEP for Autcmatic Isolation is poorly worded and resulted in numerous interpretations as to whether operator actions are or are not required. This ambiguousness should be eliminated.

The cooperation given to the examiners and the effort to ensure an atmos-phere in the control room conducive to oral examinations was also noted and appreciated.

The licensee did not identify as proprietary any of the material provided to or reviewed by the examiners.

J

~

YOct 0 -

ENCLOSURE 3 i

U. S. NUCLEAR PEGULATORY COMMISSION REACTOR OPERATOR LICENSE EXAMINATION FACILITY: GRAND GULF 1 REACTOR TYPE: BWR-GE6 DATE ADMINISTERED: 85/12/16 EXAMINER: BROCKMAN, K.

APPLICANT: _________________________

INSTRUCTIONS TO APPLICANT:

Use separate paper for the answers. Write answers on one side only.

Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts.

% OF CATEGOPY  % OF APPLICANT'S CATEGORY VALUE TOTAL SCORE VALUE CATEGORY

,m ,-

3 l

, _ _ _" _' _ _" _ _ _"4.22 _____ ___________ ________

1. PRINCIPLES OF NUCLEAR POWER

) 14.25 PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW 26.00 24.94

________ ______ ___________ ________ 2. PLANT DESIGN' INCLUDING SAFETY AMD EMERGENCY SYSTEMS

_'[a 50_1____ _'5 4[_I_ ___________ ________ 3. INSTRUMENTS AND CONTROLS 65

_['_I_0 ___ _'[5_i_ 4 ___________ ________ 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL l 103.25 l 104.25 100.00 TOTALS FINAL GRADE _________________%

All work done on this enemination is my own. I have neither f given not received aid.

I APPLICANT'S SIGNATURE l

I L .

10 -PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 2

~~~~ ~

TUEE566YYE55C5-~EEET~TR5U5E5R dU6'EE656'EL6U QUESTION 1.01 (1.00)

Reactivity is defined as which of the following?

a. The ratio of the number of neutrons at some point in this generation to the no:ab e r of neutrons at the same point in the previous generation.
b. The fractional chenge in neutron population per generation.
c. The factor by which neutron population changes per genera-tion.
d. The cate of change of reactor power in neutrons per second.

QUESTION 1.02 (1.25)

ARPANGE the following in order of INCREASING heat transfer coef-ficient (Lowest Coefficient to Highest Coefficient).

a. Free Convection, Air
b. Boiling Water (Free Convection)
c. Geiling Water (Forced Convection)
d. Forced Ccnvection. 'A s t e r e, carced Convection. Air 1

(***** CATEGCPY 01 CONTINUED ON NEXT PAGE *****)

f

1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 3

--- iAEER6679ERIEs- REEi iEAN555k'dU6'kE6i6'kEUU QUESTION 1.03 (1.00)

Differential pressure measurements can by used to determine level, pressure, and flow. For each of the following in COLUMN A, SELECT the appropriate type of relationship that e::i s t s , from COLUMN B.

COLUMN A (Item) COLUMN B (Relationship)

a. Level 1. Proportional to differential pressure plus a constant
b. Flow 2. Proportional to differential pressure alone
3. Proportional to the inverse of differential pressure
4. Proportional to the square of differential pressure
5. Proportional to the square root of differen-tisl pressure GUESTION 1.04 (2.00)
a. STATE the design feature in the reactor vessel which ensures proper flow distribution through the core fuel bundles. (0.5)
b. EXPLAIN how the recirculation flow distribution would react during a power increase by cod pull if this design fecture were NOT PRESENT.

INCLUDE IN YOUR RESPONSE THE REASON (S) FOR THIS REACTION. (1.5)

(***** CATEGORY 01 CONTIHUED ON NEXT PAGE *****)

l l

l 1

l 1

b  :. =

4 Y

1. PRINCIPLES'0F NUCLEAR POWER PLANT OPERATION' PAGE 4

~~~~

T55R566Y555b5~~E555'iE5U5f55~5U6~fEU56fE6U i

OUESTION 1.05 (2.00)

s.. DEFINE ' Critical Power'. (1,0)

I Which one of the following conditions would tend to INCREASE the b.

Critical' Power level assuming all other variables-remain unchanged? (1.0)~

f NOTE: . ASSUME NORMAL FULL-POWER OPERA (ING CONDITIONS

1. Inlet subcoalin3 is~ DECREASED

.2. Reactor pressure is. DECREASED

, 3. The axial power-peak is RAISED i 4.. Coolant flow rate is-DECREASED GUESTION 1.06 (1.00)

Adding latent heat to liquid water at saturated conditions will...(CHOOSE ONE)

~

a. . ..' increase-the temperature-of the water.
b. . .. change the water to steam at the same temperature.
c. . .. change the water to steam at a slightly higher temperature.
d. . .. decrease its subcooling by making it-boil.

i

- GUESTION- 1.07 (1.00) 1 Water is an excellent neutron moderator. LIST two (2) NUCLEAR FACTORS

, which.make water the moderator of choice for most commercial reactors? ,

5 3

(***** . CATEGORY 01 CONTINUED ON NEXT PAGE *****)

I I

1 1

i

. , - - , , ~ . . . , . - , - -

J

1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION,' PAGE 5

~ ~

~~~~iUER566Y 55565I 55AT TE5O555R A56"FEU56 fL6U QUESTION 1.08 (1.00)

The reactor trips from full Power, equilibrium xenon conditions. Four (4) hours later the reactor is brought critical and power level is main-tained on range 5 of the IRMs for several hours.'Which of the following statements is CORRECT-concerning control rod motion during this period?

a. Ro's d ~ill w have to be withdrawn due to xenon build-in.
b. Rods will have to.be rapidly inserted since the critical reactor will cause a high rate of xenon burnout.
c. Rods wi.11 have to be' inserted since xenon will closely follow its normal decay rate.
d. Rods will approximstely remain as is'as the xenon establishe's' its equilibrium value for this power level.

QUESTION 1.09 (2.00)

A significant amount of excess-reactivity most be loaded into a core at BOL so that 100% power can be attained at the end of a fuel-cycle. For each of the following, LIST the approximate value of K-excess which must be loaded to overcome that negative reactivity component at rated-equilibrium conditions.

a. . Moderator temp increase
b. Void fraction increase i
c. . Samarium buildup
d. Xenon buildup GUESTION 1 10 (1.00)

The THRESHOLD power below which PCI failures do not occur is known to DECREASE with fuel burnup. STATE two (2) reasons for this decrease in the PCI threshold.

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

e

_1

1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 6

~~~~

T55EE66 555C5I 55dT-TRd 5f5R~ds6~FL0i6 ft60 GUESTION 1.11 (1.00)

Which of the following post accident containment hydrogen contributors is dependent on the. radiation field intensity inside containment for the amount of hydrogen released?

a. Zr + H g 0 -> Zr0 + H g 2Hg G - :: 2Hz + Og b.
c. 2Al & 3H gG -- S Alg G3 + 3H g '
d. Fe + H g0 -:: Fe0 + H g QUESTION 1.12 (1.00)

Attached Figure 4404 illustrates the ' Combined Head / Pressure Curves for Two Pumps.' Select from the figure the appropriate system operating point (numbered 1 through 6) for each of the following. conditions.

a. Pumps A and B running in SERIES with the pump discharge valve (0.5) throttled shut from the initial condition.
b. Pumps A and D running in PARALLEL with the pump Jischarge valve (0.5) fully open.

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 7

~~~~T55R566 Ud55C5-~55dT-TRdO5f5R~dU6 FL656'fL6U QUESTION 1.13 (1.00)

A reactor heat belance was performed (by hand) during the 00-08 shift due to the Process Computer being 00C. The GAF's were computedt but the APRM CAIN ADJUSTMENTS HAVE NOT BEEN MADE.

Which of the following statements is TRUE concerning reactor power?

SELECT ONLY ONE ANSWER (Only one is true!)

a. If the feedwater temperature used in the heat balance calcu-lation was LOWER than the actual feedwater temperature, then the actual power is HIGMER than the currently calculated power.
b. If the reactor recirculation pump heat input used in the heat balance calculation was OMITTED, then the actual power is L0uER than the currently calculated power.
c. If the steam flow used in the heat balance calculation was L0uCR than the actual steem flow, then the actual power is LOWER than the cutrently celenlated power.
d. If the RWCU return temperature used in the heat balance cal-culetion oe; :'IGHCP then the octual RWCU return temperature. then the meto 1 poner is LOVEP than the currently calculated power, QUEST!GN 1 14 (1,00)

-tisis u

-n u.4r+ F1-yern

  • 4M-M e C 5hc r Pree n r'eemn,*e, e < m t. m n 00-6 Option 1 and Option 4. _

I, the Neuti on F l o, profile _ in_3ur.dle'31 32 TOP or BOTTOM peaked? (0.5) b, EX^ LAIN uhy the LIML!!GR values for Bundle 31,32 vary at each

=as - - ---t h 5 F

(~* * * *

  • CATEGORY 01 CONTINUED ON NEXT PAGE *****)

. - . , . - . - . - . . - = .. _ ---

1.::

t

1. .- . PRINCIPLES OF NUCLEAR POWER PLANT OPERATIONr PAGE 8

~~~~ ~ ~

TE5R566YU555C5~~E5dT TRd EF5R d56"FEU56~FL6U J

OUESTION 1.15 (1.00)

Which of the following radioactive isotopes found in the

. reactor coolant WOULD NOT indicate a leak through the fuel )

, cladding. .

a. Co -'60
b. Xe --133 .

t 4

c. I- 131 ,
d. Kr - 87

, OUESTION 1.16 (1.00)

~

STATE for which condition the reactivity coefficient contribution would be MORE NEGATIVE. EXPLAIN your choice.

Moderator temperature coefficient for a 75% CONTROL-ROD DENSITY.

-OR-Moderator temperature coefficient for a-25% CONTROL ROD DENSITY.

I OUESTION 1.17 (1.00)

STATE for which conditton the reactivity coefficient contribution would be.MORE NEGATIVE. EXPLAIN your choice. j

! Doppler coefficient with a 25% Void Fraction in the cover

-OR- '

Doppler coefficient with a 75% Void Fraction in the core.

QUESTION 1.18 (1.00) k Attached Figure # 220 shows a POWER HISTORY and four possible i- SAMARIUM traces (Reactivity vs Time). SELECT the most accurate curve for displaying the expected SAMARIUM transient.

(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)

d 1

J I

i

a._, . a. e . . .a= e --w. . - - ,- . na a _ . . _- _a - a _ q y :' , .

1 3

4

1. PRINCIPLES OF NUCLEAR POWER PLANT' OPERATION, PAGE 9 1 --- isEEs55isAsiEs- sEAi isisiFEE Es5 FEUi5 EE5s
QUESTION 1.19 (2.00)

Saturated steam with 100% quality enters the main condenser at J 4.5 psia and.with a flow rate of 3E+6 lbm/hr. undensate exits as a saturated liquid. Circulating water enters the condenser at 62 des F and exits at 77-des F.

, a. CALCULATE the circulating water flow rate. .(1.5) i b. . STATE whether condenser vacuum would INCREASE, DECREASE,-or l- REMAIN THE SAME, if the circulating water flow rate were DECREASED. (0.5)

GUESTION 1.20 (2.00)

Attached Figure t 540 illustrates a transient that could occur at a BWR.

GIVEN: (1) A fast opening of BOTH recire. FCVs at 11% per second.

(2) No operator actions are taken.

(3) Valve closure begins at time = 0 seconds.

EXPLAIN the cause of the following recorder indications:

i a. The DECREASE in core inlet flow after. ~10 seconds (Graph A). (0.5)-

$ b. The PEAK in vessel pressure in circle on the graph (Graph B). (0.5)

c. The DECREASE in feedwater flow between ~23-30 seconds (Graph C). ~(0.5) i' .
d. The reactor SCRAM at ~1.5 seconds (Graph'D). (0.5)-

i J

i r

J (xxx** END OF CATEGORY 01 *****) -

i 5

i 1

i l

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 10 00ESTION 2.01. (3.00)

Consider an Off-Normal Event in which Instrument Air System pressure is lost.

a. How will the following valves Fall? (CLOSED, OPEN, AS IS1 (2.5)
1. CRD FCV
2. RFP Minimum Flow Valve
3. Feedwater Startup Flow Control Valve
4. Drywell Chillers Temperature Control Valves
5. TBCW Make-up Valve
b. EXPLAIN the cause of the potential High Radiation levels in the Off-Gas Building. (0.5)

GUESTION 2.02 (1.00)

Attached Figures t 477 A, B, C, & D represent four (4) CRD water flowpaths. Which one of the Figures most correctly displays the CRD Exhaust water flowpath following a ROD INSERTION?

NOTE: CONSIDER THE DEPICTED CRD AS TYPICAL AND PEPRESENTATIVE OF ALL OTHER CRD's GUESTION 2.03 (1.00)

FI'.L IN THE BLANKS:

During a single rod insertion, the RC& I S System . _ _ _ (opens / closes) ___

___ ( one/two) ___ stabilizing valve (s).

QUESTION 2.04 (1.00)

Consider Recire HPU 'A' operating as follows:

Both subloops are in the READY mode.

Subloop 2 is selected as the LEAD loop.

A subloop auto transfer results from a ' TANK LOW' condition. Operator action is only taken LOCALLY to remedy / repair this situation. Soon thereafter, the subloop 1 pump TRIPS.

STATE the status of HPU "A' and/or significant associated equipment.

(***** CATEGORY 02 CONTINUED ON NEXT PAGE *****)

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 11 GUESTION 2.05 (2.00)

LIST the DESIGN VALUES for the following containment parameters:

a. Drywell Internal Pressure (0,5)
b. Maximum Drywell Temperature (during Accident Conditions) (0.5) c._ Containment Shell Internal Pressure (0.5)
d. Containment Shell External Pressure (0.5)

GUESTION 2.06 (2.00)

The Standby Gas Treatment System has received a valid initiation signal. The system automatically initiated. The initiation sig-nel is still present.

EXPLAIN ALL of the effect(s) (POTENTIAL OR ACTUAL) on the system operation which would occur from the following operator actions.

NOTE: ENSURE YOUR RESPONSE ADDRESSES THE EFFECT(S) FOR BOTH POSITIONS De TllE 'SGTS DIV 1 MODE SEL SWITCH' - AUTO AND STANDBY.

The SGTS DIV 1 MAN INIT RCSET SW is taken to RESET and then taken back to NOPM

-AND-The ENCL BLDG RECIRC FAN 'A' and SGTS FLTR TR 'A' EXH FAN 3re taken to STOP COMMENTS MADE BY THE EXAMINER DURING THE EXAM An initiation signal is in -

Explain the effects!

a. ll) Mode Sel Switch in AUTO b. (1) Mode Sel Switch in STBY (2) Reset Su - RESIT -' NORM (2) Reset SW -> RESET -> NORM (3) Fans to STOP (3) Fans to STOP

(**mes CATEGORY 02 CONTINUED ON NEXT PAGE *****)

L i

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 12 GUESTION 2.07 ( .50)

The RHR-LPCI System has received a valid initiation signal. The system automatically instated. The initiation signal is still present.

RHR-LPCI 'A' flow is diverted to initiate Suppression Pool Cooling by use of the TEST RETURN LINE VALVE (F024A) MANUAL OVERRIDE function.

LIST the condition (s) that would defeat / inhibit this manual override signal to F024A.

QUESTION 2.08 (1.50)

With regard to the diesel fire pumps:

a. LIST the discharge pressure at which the 'A' and 'B' diesel fire pumps will AUTOMATICALLY start. (0.5)
b. LIST the number of start attempts which EACH diesel will make. (0.5)
c. If the diesel goes through all of its attempts, without starting, LIST the action (s) which must be taken to start the diesel.

BE SPECIFIC AS TO LOCATION (S) AND CONTROL (S) TO DE OPERATED. (0.5)

DUESTION 2.09 (1.00)

The plant is operating at power with A and C CCW pumps running and the B CCW pump selected for STANDBY operation. A LOP occurs and the diesels start and tie in normally. Which one of the followiig most accurately describes how the CCW system will respond during this transient?

a. The LSS panel will auto _ start the C CCW pump on ESF power after the bus is reenergized.
b. Both the A and C CCW pumps can be started manually on ESF power after the buses are reenergized.
c. The B CCW pump will not auto start. but can be manually started by the operator on ESF power after the bus is reenergized.
d. The O CCu pump will auto start on a low CCW pressure signal after the ESF bus is reenergi:ed.

(***** CATECORY 02 CONTINUED ON NEXT PAGE *****)

2. PLANT DESIGN INCLUDING SAFETY AND EMERCENCY SYSTEMS PAGE 13 GUESTION 2.10 (1.50)

The containment builcing sampling subsystem station located on the 105' elevation of containment provides a central location for moni-toring and grab sampling what three (3) fluid systems?

QUESTION 2 11 (1.00)

SDLC System A is in a normal STANDBY lineup with one systematic devi tion - the TEST T A N '! OUTLET VALVE (F031) is OPEN.

Which of the following most accurately describes the effects on the STORACE TANK OUTLET VAL 9E (F001) and SBLC PUMP A of placing the 3DLC Feylock Control Switch for Pump A to START.

a. ualue F001 Opens - SOLC Pump A Starts after the valve r e a c!.es its Full Open position.
b. Velve F001 Opons - SDLC Pump A starts concurrently with the salve opening.
"ol a c ') 01 d ae4 Not Open - SDLC Pump A Starts

.;. u ,1. , e cr01 dar.: Not Open - SCLC Pump A'does Not Start DUESTI0t' 2 12 (2 00's LIST t ;w four (4) OG sutom a tic shutdown signals that remain OPERABLE f *he die:-el is started by using the local Emergency Start PB.

NOTr; CoNSIDEP 0[ESCL CENEPATOR 11 OUNTION 2.13 (1.00)

DG l! 1; in the Oper1tional Mode. EXPLAIN the action (s) which must be 'aten to place DG 11 in the Maintenance Mode.

QUESTION 2.14 (1.50)

LIST the two criter ia which define an ESF Bus BUV and DIFFERENTIATE between this condition and an ESF Bus LOP.

(***** CATECORY 02 CONTINUED ON NEXT PAGE *****)

1

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 14 GUESTION 2.15 (1.00)

SSW Loop A contains a Leak Detection circuit. EXPLAIN the func-tioning of the circuit - include all parameters measured.

(Setpoints are not required).

QUESTION 2.16 (1.50)

FILL IN THE BLANKS on attached Figure t 573, RHR Injection Valves F027A and B, with the appropriate permissives, signals, and setpoints.

QUESTION 2.17 ( .50)

FILL IN THE BLANK DG 11 is the sole supply to ESF Bus 15AA. When paralleling the Normal Power Supply back to ESF Bus 15AA, the synchroscope should be turning slowly in the ________ direction.

QUESTION 2.18 (2.00)

With respect to the MSIV Leakage Control System

a. EXPLAIN the initiation sequence for valves F001A. F002A, and F003A within the first 5 minutes. Assume MSIV leakage is minimal (as designed). Indicate approximate timing in your response. (1.0)
b. Following an initiation of the INBD MSIV LCS, there are 2 system.

conditions which are indicative of excessive MSIV leak age. DESCRIBE these conditions and their resultant automatic action (s). Indicate component (s) affected. timing, and setpoints in your response.

CONSIDER ONLY SUBSYSTEM 'A'. '1.0)

I!OTE: FIGURE t 575 IS ATTACHED FOR REFERENCE

(***** CATECORY 02 CONTINUED ON NEXT PAGE *****)

r

2. PLANT DESIGN INCLUDING SAFELY AND EMERGENCY SYSTEMS PAGE 15 QUESTION 2.19 (1.00)

COMPLETE THE FOLLOWING FROM THE CHOICES PROVIDED:

Four Westinghouse Static Inverters (lY87, lY88, lY95, & lY96) are used to provide UNINTERRUPTABLE POWER to certain vital plant loads. They are normally supplied from __ (AC / DC) ___ sources with ___( AC / DC) ___

as a backup. If an auto transfer to the alternate source occurs, the inverter ___ (will / will not) ___ return to the normal source automatically. If manually transferred to the alternate source, the inverter ___ (will / will not) ___ transfer back to the normal source, if the alternate source is subsequently lost.

(***** END OF CATEGORY 02 *****)

3. INSTRUMENTS AND CONTROLS PAGE 16 GUESTION 3.01 (1.00)

Which of the following is NOT a symptom that you would e::pect to see as a result of a ' Jet Pump Riser Failure'?

a. DECREASE in failed Jet Pump flow.
b. DECREASE in core differential pressure.
c. DECREASE in reactor (APRM) power.
d. INCREASE in indicated core flow.

NOTE: ASSUME RECIRC FLOW CONTROL IS IN FLUX MANUAL QUESTION 3.02 (1.00)

Reactor Feed Pump (RFP) turbine speed is controlled by either a Motor Speed Changer (MSC) or an Electric Automatic Positioner (EAP). The MSC ...(CHOOSE ONE)

3. ... will control the RFP turbine's speed only if its speed s13nal is greater than that from the EAP.
b. ...is only able to control feed flow rate over a t_ebine speed of a ppr o:< i m a t e l y 2000 - 5b00 rpm.
c. ...,.like the EAP, does afford the capability of manual speed control by use of a local handwheel.
d. ...will lock in place to prevent a ramp response to a false signal, if the signal from the flow controller is lost.

QUESTION 3,0? (1.00)

Which of the following will NOT result in'the COMMANDS DISAGREE lamp being lit for RC & IS ?

3. Depressing the COMMAND DISAGREE *1': SHIFT INHIDIT PB
b. Depretsing the COMMAND DISAGREE '2": SHIFT INHIBIT PB
c. Depressing the MASTER TEST PB (CLOCK FREQUENCY Section)
d. Depressing the COMMAND INHIBIT PB's.

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

r i

3. INSTRUMENTS AND CONTROLS PAGE 17 GUESTION 3.04 (4.00)

With regard to the Nuclear Instrumentation System

a. Consider 3RM detector locations -
1. On the attached Figure # 551 A, indicate the locations of the SRM detectors by identifying the alphabetical designator in the circle. (0.6)
2. What are the AXIAL positions, with respect to the core, of these detectors durinj a reactor startupo (Indicate ~ distance) (0.4)
b. For the IRM range that follows INDICATE the enpected level AND any automatic action (s) that will take place. Switching from Range 5, reading 25. up to Range 7.

NOTE: FIGURE D 5S1 B (RANGE SCALE) IS PROVIDED FOR REFERENCE (1.0)

c. WHICH AGAF value (P1 printout) is more conservative? (0.5)
1. - 99
2. - 1.01
d. LIST ALL, if any, alarm (s) and/or automatic action (s) which will occur if the APRM Channel Mode Switch for APPM A is placed in

' Power-Flow'. (1.0)

e. Four Percent (4%) power should indicate appronimately _____ on IRM Range _____ during a Reactor Startup. (0.5)

OUESTION 3.05 (2.50)

Consider the Rectre Pump Slow Speed Starting Sequence Logic depicted on Figure t 554. LIST the ten (10) permissives that are left blank and numbered.

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

3. INSTRUMENTS AND CONTROLS PAGE 18 GUESTION 3.06 '(1.00)

The plant is operating normally at power when you receive a ' Pump A Seal Staging Flow High/ Low" alarm and note an INCREASE in No.2 Rectre Pump seal pressure with NO CHANGE in No. 1 seal pressure. Which of the following failures would cause these indications?

a. Failure of No. 1 seal
b. Failure of No. 2 seal
c. Plugging of the No. 1 internal restricting / breakdown crifice
d. Plugging of the No. 2 internal restricting / breakdown orifice NOTE! NO OTHER ALAPMS ARE PRESENT QUESTION 3.07 (1,00)

DESCRIBE the condition (s) which will generate EACH of the following indications on the Operator Control Module.

3 Channel Disagree (0.5)

b. Insert Required (0.5)

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

3. INSTRUMENTS AND CONTROLS PAGE 19 00ESTION 3.08 (1.00)

The plant is operating at 100% RTP (1310 MWe) with Recire Flow control in ' F l v:: Manual'. An operator inadvertently DECREASES the ' Pressure Reference Set' on the EHC Turbine Control System by 5 psis.

ASSUME: 1. No _further operator action.

2. All other EHC control settings are normal.
3. Starting Parameters TCVs (MSCV & LPSCVs) - 100% Steam Flow Position ESCVs -

0% Steam Flow Position R" Power - 100% Rated Thermal Power R:, P ressur e - 1025 psig Load Demand / Load Limit - 1310 MWe NOTES: All valve is are in % Steam Flow Position.

See Figure 1 553 (EHC Logic Diagram) for inforasation.

Which of the following most accurately describes both the INITIAL RESPONSE and FINAL OTATUS of the different parameters and components?

e b c d INITIAL RESP 0MSE

- TCV3 lo art.at IPartial INo Change INo Change IClose -t00%) IClose (<100%) l I

-CSCVs 'No Change IPartial IPartial IPartial I 10 pen (10%) 10 pen (>0%) 10 pen (>0%)

-Rv Power IIncrease INo Change IDecrease 10ecrease

-R" Pressure IIncrease lho Change 10ecrease IDecrease

! I I I FINAL STATUS I I I I I  ! I I

-TCVs l'100% IPartial 10% (MSIV I"100%

! IClose ('100%) 1 SHUT) I

-BSCOs 10% IFartial 10% (MSIV 10%

I 10 pen (>0%) i SHUT) 1

-Rv Power I>100% i?100% i~0% i<.100%

-Rv Pressure l>1025 psig I?1025 psig IAs controlled l<.1025 psig i I lby SRVs & RCICI ONLY ONE ANSWER - READ ENTIRE COLUMN FOR BOTH INITIAL AND FINAL RESPONSES

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

3. INSTRUMENTS AND CONTROLS PAGE 20 QUESTION 3.09 (1.00)

The reactor is critical at approximately 0 psig and the 'RX Heatop and Pressurication' phase of 03-1-01-1,RX SU is being performed.

The narrow range P-680 level instruments read the following ' approx-imate* values:

NR LT-N004A 33' NR LT-N004B 32' NR LT-N004C 33' The SHUTDOWN RANGE P-601 indicator should read which of the following approximate values?

a. O inches.
b. 33 inches
c. 38 inches
d. 60+ inches OVESTION 3.10 (2.00)

EXPLAIN the functioning of the Feedwater Control System 'Setpoint Setdown Mode' feature from actuation to a reset condition. Ensure that your explanation addresses the following:

- all applicable setpoint(s)

- specific effect(s)

- reset method (s)

GUESTION 3.11 (1.00)

With the reactor operating at 50% power and the Speed Demand set for 1809 rpm;

a. STATE the Load Reference Demand (in MW's) that is required for the IPC signal to become the minimum signal to min. 1. (0.5)
b. STATE the indication which would verify that the required load demand had been reached. (0.5)

NOTE: EHC LOGIC OIAGRAM ATTACHED FOR REFERENCE

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

3. INSTRUMENTS AND CONTROLS PAGE ~21 GUESTION 3.12 (2.00)

IDENTIFY the lines lettered A through F on the attached Power / Flow hop - Figure t S76.

QUESTION 3.13 (3.00)

Regarding the RPS System;

a. STATE whether the solenoids associated with the following valves are NORMALLY Energized or Deenergized. NO SCRAM SIGNAL EXISTS (1.0)
1. Back-uP Scram Valves
2. Scram Discharge Volume Vent and Drain Valves
b. Repositioning the Mode Switch from STARTUP/ HOT STANDBY to RUN causes certain resctor scram functions to be bypassed and others to be effective. LIf,T the three (3) scram functions which are bypassed and the three (1) scrani f unc t i oris which become effective when the Mode Switch is taken to run. IMCLUDE SETPOINTS.

QUESTION 3.14 (1.50)

The Off-Ga: Sys'em is equipped with a Post-Treetment Radiation Monitoring Sy"*ani. LIGT the three (3) combinations of signals which will satisfy the Off-Cas Isolation Logic and result in co..p'lete <ysten. isolEtion, QUESTION 1.lS (1.50)

Attached Figure t 500 illustrates a typical IRM rod block circuit.

GTATE when the si. (4) contacts shown on the figure will change (0,nen - :- Clow -or - Close # Open) position.

7E0r'OND TO THIS QUESTION ON FIGUPE t 500 (xa 7* CATECOPY 07 CONTINUED ON NEXT PAGE ****a) l

3. INSTRUMENTS AND CONTROLS PAGC 22

-QUESTION 3.16 (2.00)

For each of the following situations (i and ii) select the correct Feed-water Control System / plant response from the list (a through e) which follows. An answer may be used more than once, and N0 operator actions are taken.

a. Reactor water level decreases and stabilizes at a lower level.
b. Reactor water level decreases and initiates a reactor scram.
c. Reactor water level increates and stabilizes at a higher level.
d. Reactor oater level incraases and initiates a turbine trip.
e. None of *he above.
i. The plart :a operating _at 70% power, in 3-element control, when One (1) M S I') Fails Shut, ii. The plant is operating at 100% power. In 3-element control, when the Leoel Program Modifier signal fails to its MAXIMUM NORMAL OPFFATING value.

(***** END OF CATECORY 03 *****)

4. PROCEDURES - NORMAL, ACNORMAL. EMERGENCY AND PAGE 23

~~~~~~~~~~~~~~~~~~~~~~~~

~~~~R5656[6656dE~C6NTRUL 00ESTION 4.01 (1.50)

A reactor SCRAM has occurred, but NOT all of the control rods have inserted to less than the 06 position. Reactor power is indicated es 1% on the APRM's. LIST the three (3) immediate operator action steps that are required per ONEP-OS-1-02-I-1 " Reactor Scram.'

NOTE

  • LIMIT YOUR RESPONSE TO THOSE ACTION STEPS REQUIRED FOR REACTIVITY CONTROL.

QUESTION 4.02 (1.00)

Assume that adequate core cooling CANNOT be maintained and '

' Alternate Shutdown Cooling' must be established per EP-8.

OEGCRIBE the RPV cooling water flowpath that should be estab-Itsbed per EP-9.

NOTE: If!CLUDE IN YOUR DESCRIPTION THC SYSTEMS / COMPONENTS UHICH ARE USED.

QUESTION 4.03 (1.00) o er EP-2, ' Emergency Cooldown*, which one of the following most accurately describes hoo SRV operation should b'e vced to control pressure, if needed?

NOTE

  • ASSUME THAT THE INSTRUMENT AIR SYSTEM IG OPERATING-PROPERLY
a. Use numerous SRV'<. with short pressure reductions

( ~ SO psi;) to equali:e Suppression Pool heatop.

b. Ue fewer SRV blowdowns, with increased pressure redve-tions to minimize SRV cyclic stresses.
c. Depressurice with a sustained SRV opening to ma: imi:e the emergency cooldown rate.
d. Allow the SRV's to operate by mechanical actuation to ensure design pressure control and heat dispersion.

(***** CATEGORY 04 CONTINUED ON NEXT PAGE *****)

! 4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 24

~~~~RdDf6E6656dE 66UTREL'~~~~~~~~~~~~~~~~~~~~~~~

QUESTION 4.04 (1.00)

You enter an area posted with the following sign

  • CAUTION HICH RADIATION AREA LIST the minimally acceptable PERSONAL and PORTABLE dosimetry required for entry into this area.

QUESTION 4.05 (1.00)

The Control Room is declared uninhabitable and evacuated. The immediate operator actions for ' Shutdown From the Remote Shutdown Panel', ONEP-05-1-III-1, are completed. RCIC then ISOLATES.

Level subsequently decreases to Level 2. Restoration of level USING RCIC requires which of the following?

ASUME THAT THE THREE CONDITIONS NEEDED FOR RESETTING AN ISOLATION, PER ONEr-05-1-02-III-5, ' AUTOMATIC ISOLATIONS', HAVE BEEN MET.

s. No Operator Action. RCIC will restart automatically,
b. Operator Action. Close RCIC TURD TRIP /THR01 VLV; Place 9CIC TUPB FLO CONT in manual at minimum settingi Re-open FCIC TURO TRIP /TH90T VLV and establish flow.

c, Operator Action. Close RCIC TURB TRIP /THROT VLVi reset PCIC TURD TRIP logici RCIC will now restart automatically.

d. NOME OF T!!E A00VE. PCIC cannot be restarted from the Demota Shutdown P:nel after isolation.

(***** CATEGOPY 04 CONTINUED ON NEXT PAGE *****)

i l

l l - - _ . . _ .

4. PROCEDURES - NORMAL, ABNORMAL. EMERGENCY AND PAGE 25

~~~~ ~

RE656[651C5L C65TR6[~~~~~~~~~~~~~~~~~~~~~~~~

OUESTION 4.06 (1.50)

ONEP-05-1-02-III-3, ' Decrease in Recirevlation System Flow Rate *,

directs operator actions for an une::pected decrease in reactor.

coolant system flow rate.

FILL IN THE BLANKS (After the unexpected decrease), if both recirculation loops are still operating, transfer the FCV's to ____(a) ____. Balance loop flows to within ____(b) ____ at less than 70% core flow, or to within

____( c) ____ at greater than 70% core flow.

QUESTION 4.07 (1.00)

The unit is operating at 70% RTPi you notice power start to increase with NO CHANGE in recirculation flow or rod position. You suspect a ' Loss of Feedwater Heating.'

Which of the following is required / appropriate per ONEP-05-1-02-V-57

a. A 30% reduction in Recirc Flow, monitored by Recire Flow indication.
b. A 30% Power Reduction, using Recite Flow, monitored by APRM's.
c. Insertion of Ghallow Rods, to maintain proper flux shape, prior to reducing Recire Flow.
d. Insertion of Power Rods, to maintain proper flute shape, prior to reducing Recire Flow.

( * * *'*

  • CATCGORY 04 CONTINUCD ON NEXT PAGE *****)
4. PROCEDURES - NORMAL, ADNORMAL. EMERGENCY AND PAGE 26

~ ~~~~~~~~~~~~~~~~~~~~~~~~

~~~~Ed656L6G56dL C6UTR6L OUESTION 4.08 (2.50)

EP-3, EP-5, and EP-7 caution the operator to observe certain limitations on Suppression Pool Level and Temperature when operating HPCS, LPCS, RHR, and/or RCIC.

a. COMPLETE THE FOLLOWING: (1.5)

Suppression Pool Level shall not be less than ____ (1) ____.

Suppression Pool Temperature shall not exceed ____ (2) ____

during 9PCS, LPCS. and/or RHR operationi it shall not exceed ____ (3) ____ during RCIC operation.

b. STATE the basis for these temperature / level limitations on the Suppression Pool. (1.0)

GUESTION 4.09 ( .50)

You are conducting a shutdown of the CRDH system, per SOI-04-1-01-C11-1. You open Drain Valve 107xn to drain the water accumulators.

STATE the indication (s) which should be used to determine that the accumulator is fully drained.

QUESTION 4.10 (1.00)

Upon recovering from a ' Loss of Off Site Power', ONEP-1-02-I-4 cautions the operator that either the SJAE's be isolated -OR-the condenser vacuum be broken PRIOR to re-ener31:ing MCC's 11842, 12B42, and 14B22. Which of the following is the basis for this caution?

a. Prevent large reverse flows in the Off Gas system.
b. Prevent inadvertent initiation of the Mechanical Vacuum Pomps.
c. Prevent establishing combustible gas mintures in the charcoal adsorbers.
d. Prevent electrically tripping the cooling compressors in the Off Gas System.

(***** CATECORY 04 CONTINUED ON NEXT PAGE *****)

4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 27

~~~~~~~~~~~~~~~~~~~~~~~~

~~~~E5D 6L6556dE~C6NTR6L QUESTION 4.11 (1.50)

DESCRIBE the steps that must be performed in order to take the Main Generator from its normal operating status to a status where maintenance can be performed on the generator after a shutdown.

NOTE: LIMIT YOUR RESPONSES TO THE GAS SYSTEMS REQUIRED TO EFFECT THE PURIFICATION.

QUESTION 4.12 (1.00)

SOI-04-1-01-N64-1, 'Off Gas System', cautions that the Charcoal Adsorber Beds should be BYPASSED during the initial startup of the Off Gas System. STATE the basis for this procedural caution.

CUESTION 4.13 (1.00)

The Immediate Operator Actions for a TURBINE TRIP (ONEP-05-1-02-I-2) direct the operator to be prepared for a possible reactor power INCREASE. STATE the conditions under which such a power increase would be likelyi JUSTIFY your response.

QUESTION 4.14 (1.50)

LIST the three (3) Entry Conditions for EP-1, ' Level Control'.

QUESTION 4.15 (1.00)

You are using an Energency Procedure (EP) and notice the annotation

[SSD] listed beside a component name,

s. STATE the significance of the annatation. (0.5)
b. STATE under what emergency conditions this annotation is significant (i.e., used in conjunction with what condi-tions in the plant). (0.5)

(***** CATECORY 04 CONTINUED ON NEXT PAGE *****)

i 4.- PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 28

~~~~ - -----~~--~~-------------

Rd65UL55iEAL C6sTR6t 1

5 QUESTION 4 16 (1.00)

}

ONEP 05-1-02-I-2 cautions the operator NOT to allow an OPEN 500 KV Breaker to have voltage to it for > 30 minutes.

a. STATE the basis for this caution (i.e., limiting component (s')) (0.5)
b. STATE the appropriate action that should be.,taken if a 500 KV Breaker is expected to be OPEN for > 30 minutes. (0.5)

OUESTION 4.17 (1.00)

Per ONEP 05-1-02-IV-1, 'CRD Malfunction', if NO CRD Pumps are' running and NO CR0 Pumps will restart

a. STATE WHEN immediate corrective action must be initiated. (0.5) 1
b. STATE the Immediate Action (s) required. (0 5) l QUESTION 4.18 (2.00)

Per ONEP 05-1-02-V-1, STATE the Immediate Actions required for a j PARTIAL Loss of CCW.

t t

GUESTION 4.19. (1.00)

You are in the ' Reactor Heatup and Pressuri:ation' phase of I0I 03-1-01-1, ' Cold Shutdown to Generator Carrying Minimum Load".

t Reactor Pressure is 300 psis. The procedure cautions you to j *'.. minimize the use of a condensate booster pump at low pres-sures.' STATE the basis for this caution.

QUESTION 4.20 (1.50)

, With the exception of breaker position, what THREE (3) items should an operator check on a breaker, if applicable dur(ing the performance of a system lineup checksheet per Control' and Use ;1f Operations Section Directives, 02-S-01-2? Consider Local checks only, and a 4.16 KV I.T.E.

Circuit Breaker as an example. ,

i.

(***** CATEGORY 04 CONTINUED ON NEXT.PAGE mumus) i i

l 1

l 7

,-r ._ -,,._,_,,.,_..,_,,._-__,_,.m m-__-, e __.,_.,,_.__,._,,,,.,_,,,..,..,4.,,_ , , _ _ . . _ , _ , , - _ , , , _ . m, __ _,._m,_ , _ . _ , . , . , _ . _ , . _ _ _ _ . _ _ , _ _

t i

4. ' PROCEDURES - NORMAL, ABNORMAL, EMERG'ENCY AND PAGE. 29

~~~~R5656L6G5C5E~C6ATR6E~~~~~~~~~~~~~~~~~~~~~~~~

i i GUESTION 4.21 (2.00)

  • i I MATCH the following emergency classifications to their appropriate

. definitions.

i i The occurrence of an event or events

a. Unusual Event 1.

j- which involve actual or likely major

b. Alert. failures of the plant functions needed for the protection of the public. l j .c. -Site Area Emersency  ;
2. The occurrence of an event or events i i d. General Emergency which indicate a POTENTIAL degradation
of the level of safety of the, plant, j 3. The occurrence of an event or events which involve actual or imminent substan- ,

tial core degradation or melting with

the potential for loss of containment a

integrity and substantial releases of large amounts of radioactive material

off-site.
4. The occurrence of an event or events
which involve an actual or potential -

SUSSTANTIAL desrsdation of the level of sa f ety of the plaret.

l; I

1 i

i I

i t

! (***** END OF CATECORY 04 *****)

(************* END OF EXAMINATION ***************)

l I

I i

i I

l 1 l 4

I i

i 1

.- _ . , _ , _ . = _ _ _ . _ _ . _ . _ _ _ . _ . _ _ _ _ _ _ . . _ _ _ . - - - _ . . . _ . _ . _ . . _ _ _ _ . _ . _ , _ _ . . _ . _ . . _ _ _ _ . _

f, rY} - stisem er,cn l Order 1 -

. gMi .

to-  :

a -

S i i i i i , i ,

e i so i e se es se ss so u we %s as w i

w i

i.

TnM E (days) 49=

.ht N

4 .. - =

i i i I i i i # 1 I s l' s to is ao as so u %e Mb so es so es '*

Tl ME (da.gs) s.$ -

.3t N

  1. t.e -

4  :

Y s_

b.

. , s . . . , i e i i e i I so 45 30 as to as ele avs ao er se er 70 TIME (Am3 e )

Jr N

- i.s _

C. #5- '

2 l

$ s's ik a'o a's so ds o &'s A a s'o s'r 1.

il M E (,4e 3% )

40 l.0 == T

d. 8.5 -

e , e W

i i i i i i i i i i i e se s( Ao AT JE $O fo VE to er 40 to T l M C. (edhj N

/. /t '

FIGURE #2b0

1 e

m \

l 4

e '.

I  % -

[. #

N' ..

' N

{ b N v*

a '

.{u{N s

f

. N N f

N .

,~ s.- ., -

5 ,

o ~ -

~

0 ~\

U. s N

~ - s ~ N lwl N

/ c N \.

z -

=-

a ~, > -

3  %  % l 3 ,

o \

g <

\.\\\

=  %

l g

f .

f ,

\.

.g

a. Y

} .

I l

M 6

k eM I e

i l 40-6 TMERNAL DATA IN FUSL I58pM8L% IX,JY = 31,32 8/24/84 0800 : "

l CTF 'WT F8UN F8UNAV W W8UNAV FIOFF KE NFLFB KENF NFLCPE NCPE SSBN - DS9 i 2103. '182.15 2.984 2.7.52 0.127 0.119 0.988 0.0946 0.406 19 0.4165 2.9774 27548.75 17.32 f

CPE DATA . .

~

NFLCFR MCFR BLCFR EKFLO ITYF SIZE FLIM b- .>

0.4165 2.9774 1.240 1.600 2 ,

' 8X8 13.40 -

E3C5 LIMITS -

4 APRAT ELEV MAFLNCR LIMLHCR

0.474 -

19 . . 5.02 10.60 - .

r . .

EE ,

POW RELFWR , qual VF LFKF FLPD FKLNCR l

1 ,.

0.0360 0.2897 * -0.0260 0.000 1.183 0.097 1.304

,2 ;

  • 0.0818 0.6583 -0.0236 0.000 1.104 0.206 2.764 l3' -

0.0873 0.7025 -0.0202 -0.000 1.099 0.219 2.938

4' O.0905 ' O.7276 -0.0166 <0.001 1.098 0.227 3.040

! !5, , 0.0936 0.7525 -0.0128 0.017 1.099 0.235 3.146

'6," 0.0972 0.7815 ,

-6.0049 0.044 1.100 0.244 3.270 ,

!7' O.1014 0.8157 -0.0049 0.075 1.100 0.255* 3.416 -

'8; 0.1085 0.8723 -0.0006 0.110 1.102 0.273 3.656 i l 9 '. 0.1144 0.9204 0.0039 0.147 1.102 0.288 3.860 l0 s 0.1207 0.9709 0.0087 0.185 1.103 0.304 4.073 l  !! !',

  • 0.1309 1.0531 0.0138 0.225 1.103 0.330 4.420

?

L23 -'

O.1383

  • 1.1126 0.0193 s.170 1.,103 0.348 4.670

, l3 ' ' O.1431 1.1512 0.0250 0.313 1.103 0.360 4.830 -

! [44 0.1449 1.I'653 0.0309 0.349 1.102 0.365 4.886

l5 7;.7 ,, 0.1515 1.2182 0.0369 0.380 1.101 0.381 5.105 i l6.~i 0.1559. 1.2540 0.0431 0.407' 1.101 0.392 5.253 ~

L7)[ g 0.1528 1.2294. 0.0494 0.431 1.100. 0.384 5.146 (Syd . 0.1580 1.2708 0.0557 0.453 1.099 0.397 5.317

,  ;~' ,0.1619 1.3026 0.0623 0.472 1.099 -0.406 4.556 0,1604- 1.2903 0.0688 0.4.91 1.098 0.402 5.391
  • i  ? '

0.1570 1.2626 0.0753 *0.507 1.098 0.394 5.275

'n; . 0.1490 1.1981 .0.0815 0.522 ,

1.101 -

0.375 5.021

, . 0.1367 1.0997 -

0.0873 0.535 1.109 0.346 4.639 YJ 0.1122 0.9023 0.0924 0.546 1.125 0.288 3.861 u.., .

FIGURE # 426 A .

l.ILf

L. '

. \ . )

l' .

006 OPTION '

4 8/24/44 0800 .

, , TNE 12 HIGNEST RATIOS OF'A. BUNDLE MAPLHGR To'ITS LIMITING LNCE. *

~

l FOR ALL BUNDLES IN THE CORE ARE u .

NAFRAT MAFLHCR .LIMLHCR. ITYF 'EXP L.J K .

1.Y K .

i

~

154.4.19 19.49.19

  • g 0.572 5.79 10.12 2 34252.

0.572 5.77 10.11 2 34307 65.2.19 41.14.19

, 0.572 5.79 10.'13 2- 34193. 60,1,19 19.14.19 t i. *0.572 5.7p 10.11 2 34289. '38.3.19 41.48.19 i, ,

0.533 6.64 12.00 5 11936. I19.3.20 9.36.20 1

0.553 6.63 , 12.00 5 .

11946. 96.I.20 51.26.20

. 0.552 6.60 12.00 5 11988. 130.4.20 51.36.20 r

0.552 6.62 ,12.00_. 5' 12034. *13.2.20 9.26.20

[ 0.552 6.67 12.10 6* 13290. 154.,3.19 21.48 gl9 ,

0.551 6.67 12.10 6 12718.. 154.1.19 19.50,19 13317. 60.2.19 21.14.19

. 0.551 6.67 12.10 6 l

0.551 6.67 12.10 6 13297 65.1.19 39.14.19' l NUMSER,OF BUNDLES WITH MAPEAT -

GREATER THAN 1.0 IS 0 O e I

4 , .

f.i ig ,

FIGURE f 426 B

/.@

9 i

s

~-

006 0FTION ,

4 S/24/84 0800 BROWNS FEERY - 2 ,

THE 12 MIGMEST RATIOS OF A.SUNDLE NAPLXGR TO'ITS LIMITING LMGE, *

  • ~'

FOR ALL BUNDLES IN TME CORE ARE M& FRAT MAFLMGR .LINLMCE. 'ITYF EXP L.J.K -

E,Y,K-0.572 5.79 10.12 2 34252. 154,4,19 19,49,19 i 0.572 5.77 10.11 2 34307 65,2,19 41,14,19

,0.572 5.79 10.13 2- 34193. 60,1,19 19.14,19

  • 0.572 5.7p 10.11 2 34289. '38,3,19 41,48,19 ~

0.533 6.64 12.00 5 ,

11936. 119,3,20 9,36,20

>- - 0.553, 6.63 12.00 5 11946. 96,1,20 51,26,20

.0.552 6.64 12.00 5 11988. 130,4,20 51,36,20 ,

0.552 6.63 12.00_ 5* 12034. *13,2,20 9.26,20 0.552 6.67 12.10 6* 13290. 154 ,3,19 21.48,19 ,

0.551 6.67 12.10 6 12718.. 154,1,19 19,50,19 13317. 21,14,19 -

. 0.551 6.67 12.10 6 o0,2,19 0.551 6.67 12.10 6 13297 65,1,19 39,14,19

~

MUMBER,OF SUNDLES WITH MAPRAT GREATER THAN 1.0 IS 0

' * ~

y . .

e

' - e FIGURE # 426 C I. IL{

,_ e ,,,a,_aa . - , .s--- - n - - - . . . . -a --- - - - ,s.------e-. _,.s .A "Simo g: F is J ' S c.h t m a b i c. ok i C.ED NvDE.a. wit b ' S ' Em MacTWA 1

. - , ennematun N "  !

,\ _

c.***

enews matum i

- , .s os sman o,m. ass VALVE

-- d b l

gCAP DARY 3:.AafCJp vALvt 5 i

l 4 >

L I g3 -

30MlO EEMA #

wALvt n

~

l _

._...A scars <

saars 4-eggyysic mAtsm _

,,,_.,__._ _.- ----- g p mA

....-. sl+ + ,

, i

. -p .

, _ j fh -

g b 8 i . C _

y _ _ _va.1ves i

_ _ _ _ - - - - - - - .j CP D a 3TA31U: 4 VALVE 3 LAGt4D i

7; pre, 4'17 A - 2 o2 .

  • i g

g 2_,, - _ ___ _ _ - - . _ . . _ _ - , ,,. -

4 4% & &mA , g O be

-_ s . ,'& .

weses, 6

. , q SfW E thTERfestTt@RAWA i _

m._

W -

-- O G. -

-pg,___

, m ._. - ym x ,

=

b.Aas one 43 F45 scRAar VALyt "W,

W '

l

- t, f

B.

e <

I

.au IwatvaAs. #

?

k . A e j g

[ggi .EkmtCTtOseAL . Ao .

[ y3 .

SILADER '

dk VALVE M I l

/* -

en u.mu .nmuum _ _

~ .u.em N l _

--,g,,_

- se EY_N EAM

- grrMgpi gynga r

  1. 8 -

I CDOUsec MATER - -

p_.-

  • 8 4 -- bp ma k>4- +- 4, "

V gy=

Ft3TDs W p_

1 q , ,

g c

g I

I s I4ua.lMM e vA2,u l .

(j g 4'

4 ,_g i

STAstut 4 VALVE.8 LPCf49 _ _ _ - i 5

~

2. o ,

$ b%&

l l

s.-, c ,-r sa. s . -

v c.it e 9,ou-sa 5 are -

=.

1 sa m = T** W "

\

5,.. [<4; -

r ..1, m .

w.

w==n f.=, -

== -

. VALVE I

/- e W  % 0.J's W watvt m

r . m ,

[== Iv1 n. . [ = ' p 'm , ..

l, -

,_ . w,

_e .

s.

CW8 gy,,gn p gg

.or. .

,or.

1 4-coeu c = m -

i

___---------- ---} g" onevs g'

i i MM 9479 l R

    • == ,cv

(_.) ett:" E i, p  :.

. 1

__ 8 (h

-- --_i

, 3 a

ss1,u

[.

s y ____ __- -

cm. d h  !

-- ,_ =.

l vatvis ucawo -- ,

q, o 2.

ih%fb  :

l l

l '

'r l

l l

1

s.- , ,.a sa.-w 9 c.go y,o .m Svare

===. .

d ' 4---'

enevamatansentwomAW .

_e on

.5 .

g 5.,..- n p,,,t 7

d .

I-Km, senaan VALvt

\

.s WE g

[/ . A _

e DeatcDos 7

h '. g AL

'[agl840

~

I 3 ' n= - ,

omio e

_r, l

==wr j,

\

  • __ ,, p assumummun eme. - -

' A -

-p-46

- CD'ER p gn

~

gywsm -

a. _

enou amram _ --

____________ ---, 4,-

o..

l L c..

E 4- W :.

V

t. , p i

=v t m i

~

31fF l Md 4 e

[7 ._ _ ------.)

a y _..,n1,.s

    1. a0 P.pe giAstu =G VALVES LACEMD __ ]

F:p *n o z 02.

WM 4

9

A . *

'I A. O.

t I l 4 l4 , NEUTRON FLUX i

? AVE SURFACE HEAT FLUX 1 VESSEL PRES RISE IPSil 160.

3 CORE INLET FLOW

    • 2 REllEF VALVE FLOW 3 BYPASS VALVE FLOW 4 CORE INLET SUB

- 4 DIFFUSER FLOW 1 (%)

3

)

w 1 5 DIFFUSER FLOW 2 (%)

g100. -

y -

f e-f

"[ 5 7 3 45

' 23 ~

U 50. O.

^

5 y 1 Q. ,

A, , w -

i

.,00.:....l....

0. 10. 20. 30. 44. O. 10. 20. 30. M.

TIME (SECl TIME (SEC) 1 1

1 C. O.

, I i l

1 VOID RE ACTIVITY I t.EVEL INCH-MEF.SEP.SKlMT g 2 MLER REACM8W

- 1 3 SCRM REACM8W 7 VESSEL STEAMFLOW 3 TURBINE STEAMFLOW p 4 TOTAL REEM8W 160.

4 FEEDWATER FLOW $

g 0.

12 V 23 g -

4 2- _

2 4 L y b u

4 1

~ (3

, 2'l 4 $ 1- \

so, __ ._. t g .

~ ~

8 23 '

\4 23 4 ~

u ~

8 g, -

.s.... -

2.' ***-

gg .

O. ,0. se. 30. 40. O. - -

TIME (SECl TIME (SEC) SW M SC4d MISSISSIPPI POWER & LIGHT COMPANY /. 2o GRAND GULF NUCLEAR STATION FAST OPENING OF BOTH MAIN RECIRCULATpON LOOP VALVES AT 11% PER SECONO UNITS 1 & 2 e ... . . a . -e,w . .. . . wei n c on o v , , , , , , , , , , ,,,

g 322:sc a s==~==nexx=ce:::s======= ,= = r.:  :=

s a

e.e a e. == a. r. =~ ~ =e:= .e x e = r. r.

I r I llI c a'

- oo

< i E

~ b= > o  :' ar J

r+++++++5 aa =e os::

e,

- J+++++ 44++'

e. '

. -=a io . ,

t+++++o+++ + + +p+ +

e - m - ,,

e.

R E=5 ,s ;

-e e 3

g a  ! E ;>,': _r + + +>+ + t +p+ + +0++ ++ ++

5 l  ; 1

mt R5g ,;; ++++p+++++++++++++++++++ I'
a ;i8
  • ::: t+++ 5 g

+ + +o+ + + +p++ ++y+ ++

l lP; l-

= +++ + + ,

a j  ! "g:

+ +y++p+

++++++++++++ + + + -

+ + +g+ + + + + + + + +g

++ -

s 5 .:"

l' E ::

5

+ +.t t ++ ++ +++t+++ ++O+ + + I,+

e gM get ee4 e o e

I 1

l 0 ,

1 30 75 100 12 5

{ '

se , , , , , t.,,,',',,,,y,,,,y,,,,y arcoacta scAtt  !

9*

1 i

6 9

0 m

  • FIGURE # 551-B

, I N-Mo0 tai $ "STAAT"]

I luCCMPLh*rg bE4WDCE _

RELAY NCfr ACT!vATED ] ' Ft 4P ll P ETAMT IncCMPut!i l cs-1 @ [ Pumi- [ Pub SEaupCE Tzw.a ruu.Y isSteED. i r Cu ruu.Y inantroi '

C M MAnnasWITCM @ g (b0 SECOND TD)

I I MFf 18 FULL- N LO0t FLC>I -

1 ACE PUMP SPEED E CONTROLLD CS-2 BETVED 20-261 FULLY INSERTED. I II Is MANUAL l 1

@[ Ch ] Chi Ch I Ch? 30T C146ED i

FCV (F060) In ] [

M]NIMLM Cb 1 hANDSWITCM @[CS

~ PLMP I

POSITION BOT IN PULL-W1DCK @[CE i MIT HTF l

I g Chi M SUCTIOm VALVE PLMP MCTIOR W

(F023) > 905 I OPEN I C6-2 OPEh j LOCKOLfr RELAY h5ET @l CB 1 I I I

DISCMAMCE VAL.vt. ' PWP MCTIOR trN LDCaoui LFN LDCxotfr (F067) 905 RELAY R5ET 14CEOLT RELAY l CPU .HELAY RIS C RE1AY I - - I WESSEL TnERMA'. .

IC;.0SE C M 1 II N L3Cr.ott; Sil0CK INTERIDCK ICIDSE Cb-31 RE1AY RESET PERM 1551VES MC I g a I

> F Ea;> ATER FW ~~

SYPASS ICLOSt.D Cb-? l LESS THAN 30; -

T d

- SLOW SPEED STARTING SEQUENCE s

2aC a' FIGURE # 554

1 ACT. S1M. -31 1 PS1/SEC PRESS CIASE

+ SIAS -

+

  • LIN M [

\ F PRESS CONT.

v t '

E/H CONV BSCV

.ll .

v a .-

'RESS FEED . SP CONT REF FORWARD [). MIN 1 l b

E

  1. \

RECIRC FCV CK13 y )

M E/H M l

)\ 1 CONV 1

~

MSCV

' N E/H N LPSCV

> 2 MW 9

  1. \

1102

' 'kM .

, g FAILURE OY

+

^

-l *C l i f' d sm i '

LIM TSE-1 d k S- TURB i

d \ . O START RPM

+ + 0 SPEED I D CONT. D W LIM C SP LIM DM

, + -

BIAS V> RPM IAAS 1 LOAD '-

FEEDBACK GRAD O TSE-1  %

t- %4 g, LIM j LIM (

~

e s q M -

'SYS REF. TSE-2

  • SEL. SW._ ory:

CEN. TURS

  • TRIP DR W 9 j LOAD

! k EDRACK L.R . > 3 51 3' o,4 2 08' ,

-l

Lesson: Res1C:a1 Heat Removal $ystem - E12 Page Q cf C3 1

SYSTEM LESSON PLAN

( TABLE 3 (Cont'd)

11. RHR INJECTION VALVES F027A AND 9 M L3 = PbOI N AA- Fi t a MS-M611A(B) HS-M211A(B)

OPEN OPEN

c. < L sese I . . . . . . .l l

l

(-

l MANUAL INITIATION l WEN ua.ese t w as..Ti ro MS-M611A(B) HS-M211A(8)

CLOSE ca., CLOSEes,

~-

CLOSE

, d. / 6 FIGURE # 573

Lesson: MSIY and FidLC system - E32/E38 Page 23 of 24 system LEssou PLAN .

l l

Jag sette l?u tiet 3 l Etten sesin $ta ttlt c l irem att:t lim List 0 I IIIs0AftD snTIM att;*ga VLllt. h b,.. j

-c e > C , . _ _ _ _ _ _ _ _ . ,

to tais l

"' M

  • I'
  • I I Ca

~

rTA iuts f*

STN WL ,f3E Fe p asiv.t*1 er.

g r= - =. m MD m3!V tC1 'J' _

. , ,' e - _ .4  ;

_ _ _ . i o

' r= 4 Cabin 3L.f5. +y ._. -[,] l

' e raga 1:v t*1 *4*

E. @.4 .m.,

ly  !,

g.A w Q. . l gja -

@ '> 's to : eLas roc a.. roon.. ' ' gt*i'l Irma.. ames s ta wt I ,i u so.n* t.-_________

to e is: e: w _ . .

ATE S M at O

, m.mi.,

su:c i s arm s x to e .:,t cogeotin.

6.Q.Ag

(.=r ,, g--@-(3
rem-hh - =

ouTsoAna s n

.g..g i

sa - - f - , "sm' ' ' ' 'd' i

_____ .i g_ _ .4 m:,ran coat s n . > _ g . . _ _ 1

)q . . . . I

>= 2 ll l j I. ,

{__Q__) -~~

Q-

.m i . , i, IUILDIIE S 4 ran reo, ---

e p_

SLDE ATm 5 FIGURE 1. MSIV INBOARD MD OUTBOARD LEAKAGE CONTROL SYSTEMS

~

0IV '

FIGURE # 575

,,-w- - - , .....,,m. ....___--.-_____-_----m. ,_--_.__.,_,__.,_--,,_m.-, ,__we,..my. _ - - . . _ - - - _ . _ , , -

l

. l l

1 i

l l

i I

I l

130 = '

I N

APAM THERMAL 90wth  !

FLOW SIASED SCRAM 100.= - coMstAwt puMe s>Eno onet

!;:nu %An eCveou

- . . es Mr PuMe Settei so . ui:ii . . !!aii.

\ 4l

.m .

n..::

g.. ...:., .!!:l I

n:: -  :.::u ,q;;tainauisay-. ui.g;g;t.
!:h';!l.

~

, ' ?'.'

' ~

of;j

. _ .);;g.n:eq. ; .,

ld

i;.'.?:?.:l.;::Hig..Hi! %. lElllali ali% !  :::n.:

/ .-

.c: *.:!:f* ,:.

c':

=

p (19 1: ;;il::

~.

n.:::: ...::p.::.

'":* 1 l C ] N!!!

' .'""IH'"'"If ye$iWf:.::,Hii'

.. .. .ng it'~l>. nuYIU?I;ppiu

'u

'J ~

L:sp.Ib::'ih=:

ra- _

E  : .j; p ,

1

.i.:1 1

+ n i

. . .y I I I l i ao I

so ao 50o iso e so PERCENT RATED CORE FLOW M sp **

i l

l l

' Power / Flow Map 1

I

' .lb FIGURE # 576 -

,-- - ~ - . . - , - , . . - - . , . - , - - . . - - , - - , - . ~ , , - _ . . . . - - - . - - - - -

  • ' .i A

2 e

' () +20 VDC g-l oreN 5 (96 -

CPtNS ON ORbER -

6 toes 7 NOT MOTT" # - _ orms ON _ _ CO$ED F 4_ __

%7

k. nosso wNaN oroes ON

. . . - A

.e.g 7 p T < l 70 -

acau l

l 1

. IRM Rod Block Circuk (typical)

~ -- ..

s

?- 3. ll '

FIGURE # 580 )

--.--.-.ar..=.

-.9-- , , . , .=

S S '

  • f &f*}& MaSfY & ,. i

. . . . . .. ...a.. . . _ , . - _ _ ___ _ .__ _ _ ,_ ,, ,

out)/(Energy ini e 3

,o mg 5e 1 t + 1/2 at'

. E = mc' A=Ae"

~

<E = 1/2 mv a=(/f- I )/t g A = i3 3

PE = mgn a

vf=Vg - at = e/t x = In2/t1/2 = 0.593/t. 2 .

y , , .p

^*

D 2 l/2'ff ( l"}(

4 [(t1/2) ' it 3I3

.E = 931 am

, m=V av Ao -Ex I=1e0 Q=[4h Q = mCoat Q = UAci I=Iec p e = d ah f

I=I g 10-*/U '

TVL = 1.3/u -

P = Pg10 sur(t) HVL = -0.693/u P = Po e*I SUR = 26.06/T SCR = 5/(1 - K,ff)

CR, = 5/(1 - K,ffx)

SUR = 2So/t* + (a - o)T CR;(1 - K,ff)) = CR 2 (I - l'eff2)

T = ( t*/o ) + [(s - o V Io ] M = 1/(1 - K,ff) = CR /CR j g T = t/(o - s) M = (1 - X,ffa)/(1 - K,ff))

T = (a - o)/(Io) SDM = ( - K,ff)/K,ff a = (X,ff-1)/K,ff = aK,ff/K,ff t= 10 seconcs I = 0.1 seconcs~I

= [(t*/(T K,ff)] + [i,ff (1 / + IT)]

Ij d) = Id 2 ,2 gd 2

P = (reV)/(3 x 1010) I)d) 22 2 I = eN R/hr = (0.5 CE)/d (meters)

R/hr = 6 CE/d2 (f,,;) ,

Water Parameters Miscellaneous Conversions 1 gal. = 8.345 lbm. 1 curie = 3.7 x 1010 eps 1 ga . = 3.78 liters 1 kg = 2.21 lom 1 ft* = 7.48 gal. 1 np = 2.54 x 103 Stu/nr Oensity = 62.4 lbrp/f t 3 1 mw = 3.41 x 100 5tu/nr Density = 1 gm/cw lin = 2.54 cm Heat of vaporization = 970 Stu/lom *F = 9/5'C + 32 Hest of fusion = laa Stu/lem 'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg. 1 BTU = 778 ft-lbf I ft. H 0 = 0.4335 lbf/in.

2 e = 2.718 br: ) G tu j l bn deg i:

W ** 'NF -

Volume, ft'/lb Enthalpy, Stu.4b Entropy, Sty /D a F ~

  • [ w ater Evap Steam Water Evep Steem water Evep Steem  %

'o *se ve he h ,, h, so s,o s, 3305 3305 -0.02 1075.5 1075.5 0 0000 2.1873 2.1873 32 32 0.06859 0.01602 0.01602 2948 2948 3 00 1073.8 1076 8 0 0061 2.1706 2.1767 35 35 0.09993 0 0162 2.1432 2 1594 40 0 01602 2446 2446 8 03 1071.0 1079 0 40 0.12163 0 0262 2.1164 2.1426 45 0.01602 2037.7 2037.8 13.04 1068.1 1081 2 45 0.14744 0 0361 2.0901 2.1262 50 0.01602 1704.8 1704 8 18.05 1065.3 1083.4 50 0.17795 0 0535 2.0391 ' 2.0946 60 0.01603 1207.6 1207.6 28.06 1059.7 1067.7 60 0.2561 868.3 868 4 38.05 1054 0 1092 1 0.0745 1.9900 2 0645 70 70 0.3629 0.01605 6333 633.3 48.04 1048.4 1096.4 0 0932 1.9426 2 0359 80 80 0.506S 0.01607 468.1 468.1 58 02 1042.7 1100.8 0 1115 1.8970 2.0086 90 30 0.6981 0.01610 350.4 68 00 1037.1 1105.1 0.1295 1.8530 1.9825 100 100 0.9492 0.01613 350.4 265.4 265.4 77.98 1031.4 11C9.3 0.1472 1.8105 1.9577 110 110 1.2750 0.01617 203.25 203.26 87.97 1025.6 1113 6 0.1646 1.7693 1.9339 120 120 1.6927 0.01620 0.1817 130 157.32 157.33 97.% 1019.8 1117.8 1.7295 1.9112 130 2.2230 0.01625 122.98 123.00 107.95 1014.0 1122.0 0.1985 1.6910 1.8895 140 140 2.8892 0.01629 97.05 97.07 117.95 1008 2 1126.1 0.2150 1.6536 1.8686 150 150 3.718 0.01634 160 77.27 77.29 127.% 1002.2 1130.2 0.2313 1.6174 1.8487 160 4.741 0.01640 '

62.04 62.06 137.97 996.2 1134.2 0.2473 1.5822 1.8295 170' 170 5.993 0.01645 ISO 50.22 148.00 990.2 1138 2 0.2631 1.5480 1.8111 ISO 7.511 0.01651 50.21 40.94 40.96 158.04 984.1 1142.1 0.2787 1.514S 1.7934 100 190 9J40 0.01657 1146.0 0.2940 1.4824 1.7764 200 11.526 0.01664 33.62 33.64 168.09 977.9 200 971.6 1149.7 0.3091 1.4509 1.7600 210 210 14.123 0.01671 27.80 27.82 178.15 26.80 180.17 970.3 1150.5 0.3121 1.4447 1.7568 212 212 14.696 0.01672 26.78 23 15 188.23 965.2 1153 4 03241 1.4201 1.7442 220 220 17.186 0.01678 23.13 0.01695 19.364 19381 19833 958.7 1157.1 03388 1J902 1.7290 230 230 20.779 0.3533 1.3609 1.7142 240 0.01693 16 304 16.321 208.45 952.1 1160.6 240 24.968 1.3323 1.7000 250 13.802 13.819 218.59 945.4 1164.0 0.3677 250 29.825 0.01701 11.762 228.76 938 6 1167.4 0.3819 - 1.3043 1.6862 240 260 35.427 0.01709 11.745 10.060 238.95 931.7 1170.6 03960 1.2769 1.6729 270 270 41.856 0 01718 10.042 8.644 249.17 924.6 1173.8 0.4098 1.2501 1.6599 280 280 49.200 0 01726 8.627 7.460 2594 917.4 1176.8 0.4236 1.2238 1.6473 290 290 57.550 0.01736 7.443 6.466 269.7 910.0 1179.7 0.4372 1.1979 1.6351 300 300 67.005 0.01745 6.448 280.0 902.5 1182.5 0 4506 1.1726 1.6232 310 310 77.67 0 01755 5.609 5.626 4.914 290 4 8948 1185.2 0 4640 1.1477 1.6116 320 320 89.64 0 01766 4.896 3.788 3113 878 8 1190.1 0.4902 1.0990 1.5892 340 540 117.99 0.01787 3.770 2.957 332.3 862.1 1194.4 0.5161 1.0517 .1.5678 360 360 153.01 0.01811 2.939 353.6 844.5 1198.0 0.5416 1.0057 1.5473 380 340 195.73 0.01836 2.317 2.335 375.1 825.9 1201.0 0.5667 0.9607 1.5274 400 400 247 26 n01864 1.8444 1.8630 396.9 806.2 1203.1 0.5915 0.9165 1.5080 420 420 303.78 0 01594 1.4808 1.4997 419.0 785.4 1204.4 0.6161 0.8729 1.4890 440 :

1.1976 1.2169 440 381.54 0.01926 0.9746 0.9942 441.5 763.2 1204 8 0.6405 08299 1.4704 460 I 460 466.9 0.0196 480 56E2 0.0200 0.7972 0.8172 464.5 739.6 1204.1 0 6648 0.7871 1.4516 480 l 487.9 714.3 1202.2 0.6890 0.7443 1.4333 500 500 680.9 0.0204 0.6545 0.6749 512.0 687.0 1199 0 0.7133 0.7013 1.4146 520 520 812.5 0 0209 05386 0.5596 657.5 1194.3 0.7378 06577 1.3954 540 540 962.8 0 0215 04437 04651 536 8 562.4 625 3 1187.7 0.7625 0.6132 1.3757 560 SEO 1133.4 0.0221 0.3651 0.3871 589.9 1179 0 0.7876 0.5673 1.3550 580 550 1326.2 0.0228 02994 0 3222 589.1 617.1 550 6 1167.7 0 8134 0 5195 1.3330 500 600 1543.2 0 0236 02438 0.2675 506.3 1153.2 08403 04659 1 3002 620 620 1786.9 C0247 0.1962 0.2208 646.9 454.6 1133.7 0.8655 0.4134 1.2621 640 640 2C59 9 0.0260 0.1543 0.1802 679.1 392.1 1107.0 0.8995 0.3502 1 2458 660 660 236s.7 0 0277 0.1166 0.1443 714.9 310.1 1068.5 0.9365 0.2720 1.2086 680 no 2708.6 0 0304 0.0808 0 1112 758 5 0.0386 0 0752 822.4' 172.7 995 2 0.9901 0.1490 1.1390 700 700 30943 0.0366 0 1.0612 705.5 0 0 0508 906 0 0 506 0 1.0612 705.5 3203 2 0 0508 TABLE A.2 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (TEMPERATURE)

A.3

yolume. Its/a Enthalpy. Stu/m Exterpy Stw/4 a F E.-w. Stzpe Ceter Eup Caerr Steem N*.

PMSL DP Cater Evep Steam Ccter Evec Steem Steem pee

  • pela F Fr 'e 's A, hg A, s, s, e s, e, y, 3302 4 0 00 1075.5 1075 5 0 2 1872 2.1872 0 1021.3 e.0886 e.0a86 32.018 0.01602 3302.4 0.01602 2945.5 2945 5 3 03 10738 10768 0 0061 2 1705 2.1766 3A3 1022.3 8.10 0.10 35.023 0.15 45.453 0 01602 2004.7 20047 13.50 1067.9 10814 0 0271 21140 2 1411 13.50 1025.7 0.15 0.20 53 160 0 01603 1526 3 1526 3 2122 10635 1084 7 0 0422 2 07?8 2.1160 21.22 1028 3 0.20 0.30 44 484 0 01604 1039.7 1039.7 32.54 1057.1 1089 7 0 0641 2 0165 2.0809 32.54 1032 0 0.30 72.869 0.01606 792.0 792.1 40.92 1052.4 1093.3 0.0799 1.9762 2.0562 40 92 10347 0.40 0.40 0 01607 641.5 641.5 47.62 1048 6 1096 3 0 0925 1.9446 2.0370 47A2 1036 9 8.5 0.5 79.586 53J4 1038.7 85.218 0 01609 540 0 540.1 53 25 1045 5 1098 7 0.1028 19186 2.0215 0.6 0.6 58 10 1042 7 11008 0.3 1 8966 2.0083 58.10 1040 3 0.7 0.7 90 09 0.01610 466.93 466 94 0.01611 411.67 411.69 62.39 1040.3 1102.6 0.1117 1.4775 1.9970 6239 1041.7 0.8 0.8 94 38 9824 0.01612 368 41 368 43 66.24 10381 1104 3 0 1264 18604 1.9870 86J4 1042.9 0.9 0.9 1.0 101.74 0 01614 333 59 333 60 69.73 1036 1 1105 8 0.1326 1A455 1.9781 09.73 1044.1 1.0 0.01623 173.74 173 76 94 03 1022.1 1116 2 0 1750 1.7450 1.9200 94A3 10512 2.0 2.0 126 07 8.0 3.0 141 47 0 01630 118 71 118 73 109.42 1013 2 1122 6 0 2009 1.6854 1.8864 109 41 1056.7 90 64 120.92 10064 1127.3 0.2199 1.6428 1.8626 120.90 1060.2 4.0 4.0 152.96 0.01636 90 63 8.0 162 24 0 01641 73.515 73.53 130 20 1000.9 1131.1 0.2349 1.6094 1A443 130.18 1063.1 5.0 61 98 13803 996.2 1134.2 0 2474 1.5820 1A294 138.01 106554 6.0 6.0 170 05 0 01645 61.967 0.01649 53 634 53.65 144 83 992.1 1136 9 02581 15587 1A168 14431 1067.4 7.e .

7.0 176 84 8.0 8.0 182 86 0 01653 47.328 47.35 150 87 988 5 1139 3 0 2676 1.5384 12060 15034 1069.2 42.385 42 40 156.30 985.1 1141.4 0 2760 1.5204 1.7964 15628 1070.8 9.0 9.0 188 27 0 01656 161.23 1072J 10 193.21 0.01659 38.404 38 42 161.26 982.1 1143.3 02836 1.5043 1.7879 le 26 80 ISO 17 970.3 1150 5 0.3121 1.4447 1.7568 180 12 1077.6 14.696 14.696 212.00 0.01672 26.782 15 213 03 0.01673 26 274 26.29 181.21 969.7 1150.9 03137 1.4415 1.7552 181.16 1077.9 15 20 070 20 087 196 27 9601 1156.3 0.3358 1.3962 1.7320 196.21 1082.0 30 20 227.96 0.01683 30 250 34 0 01701 13.7266 13 744 218.9 945.2 1164.1 0 3682 1.3313 1.6995 218 3 127.9 30 40 267.25 0 01715 10 4794 10 497 236.1 933 6 1169.8 0.3921 1.2844 1.6765 2360 1092.1 40 8 4967 8.514 250.2 923.9 1174.1 0 4112 1.2474 J.6586 250.1 1095.3 50 60 261.02 0.01727 292 71 0.01738 7.1562 7.174 262.2 915 4 1177.6 0.4273 1.2167 1.6440 262.0 1088.0 60 80 272.5 1100 2 70 70 302.93 0.01748 6.1875 6 205 272.7 907.8 1180 6 0 4411 1.1905 1.6316 0.01757 5 4536 5 471 232.1 900.9 1183 1 0 4534 1.1675 1 6208 281.9 1102.1 80 80 312 04 290.4 1103.7 90 90 320 28 001766 4.8777 4.895 290 7 894 6 1185.3 0 4643 1.1470 1.6113 0 01774 4.4133 4.431 218.5 888.6 1187.2 0 4743 1.1284 1.6027 298.2 1105.2 100 100 327.82 0C1789 3 7057 3 728 312 6 877.8 1190 4 0 4919 1.0960 1.5879 312.2 1107.6 120 120 341 27 324 5 1109.6 140 140 353 04 0 01803 3 2010 3 219 3250 8680 1193 0 0 5071 1 0681 15752 0 0;815 2E155 2 834 3361 859 0 1195.1 0 5205 1 0435 1.5641 335.5 1111.2 160 160 36355 180 180 373 08 0 01827 2.5129 2.531 346.2 850 7 11 % 9 05328 1 0215 1.5543 345.6 1112.5 0 01829 2.26S9 2.287 355.5 842.8 1198.3 0 5438 10016 1.5454 3543 1113.7 200 200 351 80 0 01665 1.8245 1.8432 3761 825 0 1201.1 0 5679 0 9585 1.5264 3753 1115.8 250 250 400 97 300 417 35 0 01839 1.5233 1.5427 394 0 808 9 1202 9 05682 09223 1.5105 392.9 1117.2 300 1.3255 409 8 794 2 1204 0 0 6051 0 6909 1.4968 4066 Il18 ! 350 350 411.73 0 01913 1.3064 1.1610 424.2 760 4 1204 6 06217 0 8630 1.4647 422.7 111F 7 400 400 44460 00193 1.14162 450 4H 28 0 0195 1.01224 1.0318 437.3 767.5 1204 8 06360 0 8378 1.4738 435.7 1118.9 450 09276 449 5 755.1 1204 7 06490 0 8145 1.4639 447.7 1118 8 500 500 AU 01 0 0199 0 90787 0 8418 460 9 743.3 1204 3 0 6611 07936 1.4547 456.9 1118 6 550

$50 476 94 00199 0 82183 600 485 10 0 0201 0 74962 0.7698 471.7 732 0 1203 7 06723 0 7738 1.4461 469 5 1116 2 500 0 6556 491.6 710 2 1201 8 0692R 07377 1.4304 488.9 1116 9 700 700 .502 08 0 0205 0 63505 000 800 518 21 0 0209 0.54809 0.5690 5098 689 6 1193 4 07111 0 7051 1.4163 506 7 1115.2 g.

l 900 5)! 93 0 02i2 0 4796% 05009 526 7 659 7 1196 4 0 7279 06753 1.4032 523 2 1113 0 900 1000 5 ~413 0 0216 0 42435 0 4460 542 6 E 50 4 1192 9 07434 06476 1.3910 5336 1110 4 1000 631 5 1159 1 0 7573 06216 1.3794 553 ? I107.5 1100 1100  ; Si! 2d 00220 0 376f 3 04005 557.5 1200 e :67.19 0 0223 0 14013 0 3625 571 9 613 0 1184 8 07714 0 3969 13633 556 9 1104 3 1200 1300 U7 42 00227 0 30722 0.3299 5856 544 6 !!80 2 07843 05733 1.3577 530 1 1100 9 1300 1iC0 537 07 0 0231 0 2781; O3018 599 8 5765 1175 3 0 7966 0 5507 1.3474 5929 1037.1 1400 1500 5 % 20 0 0235 025372 0 27/2 01).7 550 4 11701 08035 0?253 1.3373 605 7 10931 1500 0 02*,7 0 1883 6721 465 2 1133 3 0BU1 0 4256 1.7b81 662 6 10GS 6 2000 2000 :635 80 0 16?60 361 6 1093 3 C 9139 0 3206 1.2345 118.5 1032 9 2500 2WO '66d 11 0 02cf 010209 01307 731 7 218 4 1070 3 0 9723 0 1891 1.1619 182 8 9731 3000 j

3000 695 33 0 0343 0050/3 0 0850 801 8 906 0 0 906 0 10612 0 10612 875 9 875 9 3708.?

32982 701 47 0 050B 0 0 050d TABLE A.3 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (PRESSURE)

A.4

I Tempeestwo, F Abe poses.

200 300 400 900 000 700 000 900 1000 1100 3200 1300 1400 1500

) 100

(

e 00161 392 5 452.3 511.9 571.5 631.1 090 7 ,

3 3 68 00 1150 2 1195.7 1241 8 1288 6 IBM I 1384 5 (101.74) s 0.1295 2 0609 2.11L2 2 1722 2.2237 22708 2J144 e 0.0161 78 14 90.24 '102 24 114.21 126 15 138 08 150 01 161.94 173 M 185 78 197 70 209 62 221.53 233 45 6 m GS 01 1844 6 lite 8 1241.3 1288 2 13359 1344 3 1433 6 1483 7 1534 7 1586 7 1639 6 1693 3 17480 1803 5 2

(162 24) s 0.l?M 1 8716 1.9369 1.9943 2.0460 20932 2 1369 2.1776 2 2159 2 2521 2.2M6 2.3194 2 3509 2.3811 2.4101

, 0016l 38 to 44 93 51 03 57.04 63 03 69 00 74 98 to M M 91 92 37 9a as los 30 110 76 116 72 l J

30 6 68 02 II46 6 11937 1240 6 1287.8 1335 5 13840 14334 1483 5 1534 6 ISM 6 16395 1693 3 1747.9 1303 4 l (192.21) s 0.1295 1.7928 1.8593 1.9173 1.M92 2 0lu 2.0603 2.1011 2 1394 2 1757 2.2101 2 243G 2.2744 2.3046 2.333 '

v 00161 0 01M 29 899 33 M3 37.985 41 984 45.978 49 964 53 M6 ' 57.926 61905 65 882 69358 73 333 77.30 ,

15 e e8 04 168 09 1892 5 1239 9 1287.3 1335 2 1383 8 1433 2 1483 4 1534 5 1546 5 16394 13:3 2 17473 1303 4 (213.03) s 0 1295 0.2940 1.8134 1 9720 1.9242 1.9717 2.0155 2.0563 2.0946 2.1309 2.1653 2.1982 2.2297 2.2599 2.299 e 0 0161 0 0166 22.356 25 428 28 457 31 466 34 465 37 458 40 447 43 435 46 420 49 405 123e5 55.370 54 3 i 30 a 68.05 160 11 1191.4 1239.2 12M 9 1334.9 1383 5 1432 9 1483 2 1534 3 15M 3 1639 3 l#31 17473 1303 3 i (227.96) s 0.1295 0.2M0 1.7005 1A397 13921 1.9397 1.M36 2.0244 2 0628 2D991 2.13M 2.1665 2.1979 2.2282 2.2572 i e 0 0161 0 0166 11 035 12.624 14 145 15685 17.195 18 699 20 199 21697 23 IM 24 689 26.183 27.676 29.1 40 6 68 10 16815 1186 6 1236.4 1285.0 13336 13R2 5 14321 1482.5 1533.7 1585 8 16388 IM27 1747.5 1803 (267.25) s 0.1295 0 2940 1.6992 1.7608 18143 1A624 1.9065 1.9476 1.9060 2.0224 2.0569 2.0899 2.1224 2.1516 2.

l e 0.0161 0 0156 7.257 8354 9400 10 425 11 438 12 446 13.450 14.452 15.452 16.450 17.448 18.445 19.44 60 4 68.15 168 20 1181 6 1233.5 1283 2 1332 3 1381.5 1431.3 14818 1533 2 1585.3 1638 4 1692 4 1747.1 18 (292.71) s 0.1295 0.2939 1.6492 1.7134 1.7641 1.8168 1A612 1.9024 1.M10 1.9774 2.0120 2.0450 2 4765 2.1085 2.

e 0.0161 0 0166 0.0175 6 218 7.018 7.7M 8560 9 319 10 075 10 829 11 581 12.331 13AB1 13 829 14.577 to A 68 21 16824 269 74 1230 5 12813 1330.9 1380 5 1430.5 1481.1 1532 6 1584.9 1638 0 1692.0 17463 1802.5 (312.04) s 0.1295 0 2939 0.4371 1 6790 1.7349 1.7842 1A289 1 8702 1.9039 1.M 54 1.9000 2.0131 2.0446 2.0750 2.1041 e 0 0161 0.0166 0 0175 4 935 5 588 6 216 6.833 7.443 8050 0655 9258 9 960 le460 11A00 11 659 '

100 h 68.26 168 29 269 77 1227.4 1279.3 1329 6 1379 5 1429.7 14s0 4 1532.0 1584 4 1637.6 IW1.6 1746.5 1902.2 (327.82) s 0.1295 0.2939 0.4371 1.6516 1.7088 1.7506 1.9036 1A451 1.0839 1.9205 1.9552 1.9883 2A199 2.0002 2.0794 e 0 0161 Ot166 0 0175 4 0786 4.6341 51437 5 6831 6.1921 6 7006 7.2060 7.7096 8.2119 8_7130 9.2134 9.7130 120 A 68.31 168 33 269 81 1274.1 1277.4 1328 1 1378 4 14288 14798 1531.4 1583 9 1637.1 telJ 17462 1802A (341J7) s 0.1295 0 2939 0 4371 1.6286 1.6872 1.7376 1.7829 111246 1 8635 1.9001 1.9349 1.9600 1.9996 2.0300 2.05

, 00161 0 0166 0 0175 3 4651 3 9526 4 4119 4 8585 5 2995 57364 6.1709 66036 7.0349 7.4652 7.3946 S.32 140 4 68 37 168 38 269 85 1220 8 1275 3 1326 8 1377.4 1428 0 18791 1530 8 1583 4 1636 7 IMO9 1745.9 1801.7 (353 04) s 0 1295 0 2939 0 4370 1 6055 1.6686 1.71 % 1.7652 1 8071 1A461 18828 1.9176 1.9508 1.9825 2.0129 2.04 e 0 0161 0 0166 0 0175 3 0060 3 4413 3 8480 4 2420 4 6295 50132 5 3945 5 7741 6 1522 6 5293 6 9055 7.2 100 h 68 42 168 42 269 82 12174 1273 3 13254 1376 4 1427.2 14784 1530.3 1582.9 1636.3 1990.5 17456 1801.

(363 55) : 01294 0 2938 0 437c 1.5906 16522 1.7039 1.7499 1.7919 18310 1.8678 1.9027 1.9359 1.9676 1.9900 2 02

, 0 0161 0 0166 0 0174 26474 3 0433 3 4093 3.7621 4.1064 4.4505 4.7907 5 1289 54457 53014 Gu1363 6 4 180 a 68 47 168 47 260 91 12136 1271 2 1324 0 1375 3 1426 3 1877.7 1529 7 1582.4 1635 9 1640 2 17853 180 (373.081 : C 1294 0 2i38 04370 1 5743 16376 1.6900 1 7362 1.7784 1.8176 1 8345 1.8894 1.9227 1 9545 1.9849 2 e 0 0161 0 0166 0 0174 2 3598 2.7247 3.0583 3 3783 3 6S15 4 0008 4 3077 4 4128 4 9165 5.2191 55209 5 200 m 64 12 108 51 269 96 1210 1 1269 0 13224 1374 3 1425 5 1477.0 15291 1581.9 1635 4 1689 8 1745 0 19 (33L60) s 01294 02933 04359 1.5593 1.6242 1.6776 1.7239 1.7663 1.8057 16426 1.8776 1.9109 1.M27 1.9732 e Otl61 0 0165 0 0174 0 0186 2.1504 2 4662 2 6872 2 9410 3 1909 3 4382 38837 3 9278 4.1709 4 4131 4.654 250 h 64 66 168 63 270 05 3/5 10 1263 5 13190 1371 6 1423 4 1875 3 1527 6 1580 6 16344 16M 9 1744 2 1900 1.5951 1 6502 1.6976 1.7405 1.7601 1 8173 1 8524 1Ad58 1.9177 1.9482 1.9 (400 97) : 0 1294 0 2937 0 4363 0 5567 '

e 00161 0 0165 00174 00186 1.7665 2 0044 2 ??63 2 4407 2 6509 2 5555 3 0643 3 2688 3 4721 3 6746 3 300 e' 68 79 155 74 27u 14 375.15 1237 7 1315 2 1368 9 1421 3 1473 C 1526 2 15794 1633 3 16880 1743 4 179 1.5703 1.6274 1.6/58 1.7192 1 7591 1.7964 1.8317 1.8652 1 8972 1.9278

(*17.35) s 0.1294 0 2937 04M7 C 5665 e 0 0161 0 0166 0 0174 0 0186 1.4913 17028 18973 2 0332 2 2652 2 4445 2 6219 2 7980 2 9730 3 1471 3 350 a 68 92 108 35 270?? 375 21 12515 13114 1366 2 1419 2 1471 S 1524 7 15782 1632 3 IC87.1 1742 6 17 (431.73; a 01293 0 2936 0 43G7 0 5664 1.5483 1 t:077 1.6571 1.7009 1 7411 1 7787 1 8141 1.8477 1A795 1.9 05 e 00161 001C6 0 0174 0 0162 1 2841 14763 16493 18151 19753 22339 2 2901 2 4450 2 5987 2 7515 2 9 400 a 69 05 168 97 270 33 375 27 12451 1307.4 1363 4 14 t 7 0 14701 1523 3 1576 9 1631.2 1686 2 17419 1 (444 60) : 01293 0 2931 0 4366 0 56G3 1.5282 1 5901 1 6406 1 6850 1 7255 1 7632 1.7988 13325 1A647 1.8955 e 00161 0 01C6 0 0174 0 0186 0 9919 11584 13037 I4397 15708 16932 38256 1.9507 2 0746 2 1977 2 320 500 h 69 32 159 19 270 51 34 38 1231 2 1299 1 13573 l#12 7 1866 6 1520 3 1574 4 1629 1 1684 4 1740 3 (457.01) s 01292 0 2934 04354 0 5t.60 14971 15595 16'23 165/8 16990 17371 1.7730 18069 18393 13702 18994 TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE)

A.5

mp T m per tar,r C/s4 IS hat.tsagp) 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 tc00 1500 e 0 0161 0 01M 0 0174 0 0186 0 7944 0 94 % 1 0726 1 1892 13008 14093 1 5160 1 6211 1.7252 18284 1 9309 400 4 69 58 169 42 270 70 375 49 1215 9 1290 3 1351 8 1408 3 1463 0 1517 4 1571 9 1627.0 1682 6 1738 8 1795 6 (48620) s 0.1292 0.2933 04362 0.% 57 14590 15329 35844 16351 16769 17155 17517 1.7859 I3184 3 8494 1879;

, 0 0161 0 01M 0 0174 0 0135 0 0204 0 7928 0 9072 1.0102 1.1078 12023 12944 1.3858 14757 1 5647 1 6530 700 h 6964 169 65 270 89 375 61 48793 1781 0 1345 6 1403.7 1459 4 15144 1%94 16248 16607 17372 1794 3 (503.08) s 0 1291 02932 0 4360 0 % 55 06889 35090 3.% 73 16154 16580 36970 17335 17679 I Sch 16318 18617

, 0 0161 0 01 % 0 0174 0 0186 0 0704 0 6774 0 7825 0 8759 0 % 31 10470 1 1289 12093 12825 1 3669 1.4446 800 6 70.11 169 88 271 07 375 73 487.88 1271 1 13392 13991 1455 A 1511 4 1566 9 16227 1678 9 17350 1792.9 (5182.)

  • 0.1290 0 2930 0 4354 0 % 52 0 6885 14869 1 5484 15~e80 1 6413 16807 1.7175 1 7522 1.7851 18164 1 8464

, 00161 0 0165 00174 0 0186 0C234 0 5869 0 6858 07713 0 8504 0 9262 09998 10720 11430 1.2131 1.2825 900 6 70 37 170 10 271.2G 375 44 48783 1260 6 1332 7 1394 4 1452 2 15c8 5 1564 4 1620 6 16771 17341 1791 6 (531.95) s 0 1290 0.2929 0 4357 0.5649 0 6881 1.4659 1.5311 1.5822 16263 1 M62 1.7033 1.7382 1 7713 16028 18329

, 00161 0Olu 00174 00186 0 0204 0 5137 0 6083 0 6875 07603 0 8295 0 39 % 0 % 22 1 07 % 3.0901 1.1529 1000 6 70.63 170 33 271.44 375 96 44779 1249 3 1325 9 1389 6 14485 15044 1%I9 1618 4 1675 3 17325 1790 3 (544.58) s 0.1269 0.2928 0.4355 0.5647 0.6876 1.4457 1.5149 1.M77 1.6126 16530 16905 17256 3.7589 1.7905 1.8207 e 0 0161 0 01M 00174 0.0185 0 0203 0 4531 0 5440 0 6188 06865 0 7505 0 8171 0 8723 09313 0 9894 1.0468 1100 a 70 90 170.56 271 63 376 08 447.75 1237.3 1318 8 1384 7 1444 7 1502 4 1559 4 1616 3 1673 5 17310 1789 0 (5%.28) s 0.1269 02927 0.4353 0.5644 0.6872 1.4259 1.4996 1.5542 16000 1.6410 1.6787 1.7141 1.7475 12793 1.809,7

, 00161 0 0166 0.0174 0 0185 0 0203 0 401f 04905 0 5615 0 6250 0 6845 0 7418 07974 08519 0 9055 0 9584 1200 a 71.16 170.78 271.82 376.20 487.72 1224 2 1311.5 1379 7 1440 9 1449 4 1556 9 1614 2 16716 1729 4 1787.6 (567,19) s 0.1288 0.2926 0.4351 0.5642 0.6868 1.4061 1.4851 1.5415 1.5843 16298 1 M79 1.7035 1.7371 1.7691 1.7996

, 0 01(,1 0 0166 00174 00185 0 0203 0.3176 0 4059 0 4712 0 5282 0$809 06311 0 6794 0 7272 0.7737 0 8195 1400 t 71.68 171 24 272.19 376 44 487 65 1194.1 12 % 1 1369 J 1433 2 1493 2 1551 8 1609 9 IM80 17263 1785 0 (587.07) s 0.1287 02923 0.4348 0.5636 0 6859 1.3652 1.4575 1.5182 1.5670 1.6076 1.6484 14845 1.7185 1.7508 1.7815 e 0.0161 0 01 % 0.0173 0 0185 0 0202 0.0236 0 3415 0 4032 0 4555 0.5031 0 5482 0 5915 0 6336 0 6748 0.7153 1600 4 72.21 171.69 272.57 376 69 487.60 616 77 12794 13535 1425.2 1446 9 1546 G 1605 6 !M43 17232 1782.3 (60187) s 0 1284 0 2921 0 4344 05631 0.6451 0.8129 1.4312 1.4963 1.5478 1.5916 1.6312 1 M78 12022 1.7344 1.7657 e 0 0160 0 0165 0 0173 0.0185 0 0202 0 0235 0 2906 0 3500 0.3984 0 4426 0 48 % 0 5229 0 5609 0.5980 06743 1800 a 72.73 172.15 272.95 376 93 487.% 615 58 1261.1 13472 1417.1 1480 6 1541.1 1601 2 1660 7 17201 1779 7 (621/12) s 0.1284 0 2918 0 4341 C 5626 0.68*3 0 8109 1.4054 1.4768 1.5302 1.5753 16154 14528 16876 1.7204 1.7516 e 0 0160 0.0165 0 0173 0 0184 0.0201 0 0233 0 2488 0 3072 0 3534 0 3942 0 4320 0 4680 0.5027 0 5365 0 5695 2000 4 73 26 172 60 273 32 377.19 487 53 614 48 1240 9 1353 4 1408 7 1447.1 1536.2 1596.9 1657.0 1717.0 1777.1 (635 80) s 0.1263 0.2916 0 4337 05621 06834 0 8091 13794 1.4578 1.5138 1.5603 1.6014 1.6391 1.6743 1.7075 1.7389 e 0 0150 0.0165 0 0173 0 0184 0 0200 0 0230 0 1681 0 2293 02712 0.3068 0 3390 0 1692 0 3980 0 4259 04529 2500 h 74 57 173 74 274 27 377 82 487.50 612 08 1176.7 1303 4 1386 7 1457 5 1522.9 1585 9 1647.8 1709 2 1770 4

(%8.11) s 0.1280 0 2910 0 4329 0 5609 0 6815 0 8048 1.3076 1.4129 1.47M 1.5269 1.5703 1.6094 1.6456 1.6796 1.7116 e 0 0160 0.0165 00172 0 0183 0 0200 0 0228 0 0982 0 1755 0 2161 0.2484 0 2770 0 3033 0 3282 0.3522 0.3753 3000 A 75 83 17tS8 2/5.22 378 47 487.52 510 08 1060 5 1267 0 1363 2 1440 2 15014 1574 8 1635 5 1701 4 17(1.8 (695.33) s 0.1277 0 29.4 0 4320 0 5597 06796 0 8009 1.1966 1.3692 1.4429 1.4975 1.5434 1.5641 1.621' l.0161 1 6688 e 0 0160 C 0165 0 0172 0 0183 0 0199 0 0227 0 0335 0.1588 0 1987 0 2301 0 2576 0 2827 0.3065 03291 0.3510 3200 h 76 4 175 3 275 6 378 7 487.5 6094 800 3 1250 9 1353 4 14331 1503 8 1570.3 16343 1698.3 17612 (705 C21 s 0 1276 0 2902 0 4317 0 5592 0.6768 0 7994 0 9708 1.3515 14300 1.4466 1.5335 1.5/49 14126 1 6477 1.6806

  • 0 0160 0 0154 0 0172 0 01E3 0 0199 0 0225 0 0307 0.1364 0 1764 0 2066 0 2326 02%3 0 2784 0 2995 0 319F 3500 t 77.2 1760 276.2 3791 487.6 608 4 779 4 1224 6 1338 2 1422 2 1495 5 1563.3 16292 1693 6 17b7.2 s 0.1274 02899 04312 0 5585 06777 0.7973 0 9508 1.3242 1.4112 14709 1.5194 1.5618 1.6002 1.6353 1.6691 e 0 0159 0 0164 0 0172 00182 0 0198 0 0223 00287 0 1052 0 1463 0 1712 0 1994 0 2210 0 2411 0 2601 0 2783 4000 h 78.5 177 2 277.1 379 8 487.7 6C6 5 7630 1174 3 1311 6 1403 G 1431.3 1552 2 1619 8 1685 7 1750 6 s 01271 0 2a93 0.4304 0 5573 0 6760 0 7940 0 9343 12754 1.3807 14461 1497G 1.5417 1.5812 1.6177 1 6516 e 00159 0 0164 0 0171 0 0181 0 01 % 0 0219 0 0268 0 0591 0 103S 01312 0 1529 0 1718 01660 0 2050 0 2203 5300 a 81 1 179 5 2791 381 2 4881 604 6 746 0 1042 9 1252 9 1364 6 1452.1 15291 16W9 1670 0 1737.4 s 0.1?65 0 2861 04267 0.5550 0 6726 0.7880 0 9153 1.1593 1.3207 1.4001 1.4582 1.5061 1.9 81 1.5663 I.6216

' 0 0159 0.0163 0 0170 0 0160 0 0195 0 0216 0 0256 0 0397 0 0757 0.1020 0.1221 0.1391 015L4 O!684 0 1817 60C0 4 83 7 181.7 281.0 362 7 4PS 6 602 9 7361 9451 1168 8 1323 6 1C23 1505 9 1592 0 1654 2 1724 ?

e 0 1258 0 2670 0 4271 0 5528 0 6693 0 7826 0 9026 10176 1.2615 1.35 N 1.4229 1.4743 1.5194 15593 1596.2 e 0.0158 0.0163 0 0170 0 0180 0 0193 0 0713 0 0248 0 0334 0 0573 0 0315 0 1004 01160 0 1298 0 1424 0.1542 7000 h 86.2 184 4 283 0 354 2 489 3 601 7 729 3 901 8 1124 9 1281 7 1392 2 1482 6 1%31 16396 1711 1 s 01252 0 2859 0 4256 05607 06563 0 7/77 0 8926 10350 12055 131)I i 1904 1th6 14938 153-5 1.5735 TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE) (CONTINUED)

A.6

= 0 it l' 2 13 14 IS 1 la 19 to 21 gy 33 4%IN/ NJI P '#

IN*TA/

h i 1 IX 1 1sool N // N

,. /

/[/ h IS7MUN'/I[f "l / / 7A / / /5L/ / soo ; 1

,. M//f/(be s/

7s N/ ///%J

/ se6' I

f hl .f I 4

,. lllb5/ 7%/ /N/ 1%I ///%J I&

$fbWN)

I K /

N //r%J V N/ / / MI M7 N >% /

{lll

,. /]VH/ f 4' /, I I %MID IU ,

)

.' .M 7N~il:

"'E /

,gso i lf /f/ l 1,.

fMKMQgib;RW 7.9 l

< Il00 10W ~

MMW7##7 / 7 ~

\

N

.MM(M)5<

. ~

MYWM/7Y

~

.MMMM

~

~

.WX/ MDY

.MM7M

~

10 11 32 3.3 14 15 1.6 IJ 18 1.9 20 2.1 2J 2

.[ntropy. Otwitb, F FIGURE A.5 MOLLIER ENTHALPY-ENTROPY DIAGRAM A.7

PROPENTIES OF WATER Density e (Ibsitt')

PSIA

' 2300 2400 2500 3000 2000 2100 8200

  • l(v 4 1000 82.909 62.93 82.951 63.056 82.637 82.848 62.867 62.888 32 62.414 62.846 62.87 62.99 82.75 62.774 62.798 62.822 50 62.38 82.55 62.445 62.559 62.390 42.409 82.427 62.446 100 61.989 82.185 62.371 80.568 80.587 40.606 60.702 90.314 60.511 60.53 80.549 200 80.118 57.850 57AS2 67.908 57.767. 57.79 57.813 67.836 300 57.310 57.537 64.529 54.28 54.311 54.342 64A73 63.651 53.903 54.218 54.249 400 $3.89 63.925 63.95 54.11 53.475 53.79 S3.825 63.86 410 53.248 53.50 53 53 53A9

' 53.36 53.40 63.425 63.44 420 52.798 53.025 63.265 52.99 53.02 - 53.065 53.09 52.356 52.575 52.925 52.95 430 62.51 62.54 52.56 52.275 52.125 52.42 h2.45 52.475 440 51.921 82.175 52.21 S2.41 51.66 62.025 52.065 52.10 62.14 450 51.546 61.725 51.76 61.96 51.56 51.81 51.64 51.68 460 51.020 51.175 61.50 51.175 51.22 61.25 51.30 470 50.505 50.70 51.1 51.14 80.74 80.78 60.825 51A35 50.20 50.82 50 A6 50.7 480 50.00 50.31 50.35 80 575 49.685 50.13 50.175 60.22 50.265 5

4M 49.505 49.714 49.782 49.81 49.858 50.098 48.943. 49.097 49.618 49.666 500 49.203 49.254 49.305 49.56 48.51 49.05 49.101 49.152 510 48.31 48.68 48.735 49.01 48.46 48.515 48.57 48.625 520 47.85 47.91 48.155 48.45 .

47.919 47.978 48.037 48.096 530 47.17 47.29 47.86 47A9 47.362 47.428 47.494 47.56 46.51 47.23 47.296 540 46.794 46 862 46.93 47.27 46.59 46.658 46.726 550 45.87 46.216 46.29 46A6 45.92 45.994 46.068 46.142 560 45.25 45.54 45.62 46.02 45.22 45.30 45.38 45.46 570 44.64 44.844 44.93 45.36 44.50 44.586 44.672 44.758 580 43.86 44.11 44.205 44.68 43.73 43 825 43.92 44.015 530 43.10 43.33 43.434 43 956 42.913 43.017 43.122 43.226 600 42.321 42.432 42.55 43.14 41.96 42.08 42.196 42.314 610 41.49 41.483 41.616 42.283 i

40.950 41.083 41.217 41.35 620 40.552 41 44 630 39.53 ~ 40388 640 38 491 39.26 1 650 37.31 38408 1 660 36.01 36.52 670 34.48 34.638 633 32.74 32.144 690 30.515 TABLE A.6 PROPERTIES OF WATER, DENSITY l

- A.8

voivme, it'Ab hthalpy. St:Ae EsttrIpy. Stw/4 a F tmera. StvAt )

WP Cat:r Ever Steam Ceter Evap S;eem Caerr Steem P**-

Puss. tener Eve, Steam pe6e

  • ps4 F

't 't 's A8 A 4 A s s, s, s, e, e, 0.01602 3302.4 3302.4 0 00 1075.5 1075 5 0 2 1872 2.1872 0 1021.3 0.0s86 0.0e86 32 018 l 0.10 35.023 0.01602 2945.5 2945 5 3 03 19738 10768 0 0061 2 1705 2 1766 3A3 1022.3 0.10 45.453 0 01602 2004.7 2004 7 13 50 1067.9 1081 4 0 0271 2 1140 21411 13.50 1025.7 0.15  !

0.15 0 0422 2 07?8 2.1160 2122 1028 3 0.20 53.160 0 01603 1526.3 1526 3 21 22 1063 5 1084 7 0.20 l 64 484 0 01604 1039.7 1039.7 32.54 1057.1 1089 7 0 0641 20 65 2.0809 32.54 1032 0 0.30 0.30 0.0799 1.9762 2.0542 O.40 72.869 0.01606 792.0 792.1 40.92 10524 1093 3 40 92 1034 7 0.40 79.586 001607 641.5 641.5 47.62 1048 6 1096 3 0 0925 1.9446 2.0370 4722 1036.9 0.5 0.5 0.1028 19186 2.0215 5324 1038.7 0.6 0.6 85.218 0 01609 540 0 540.1 53 25 1045 5 1098 7 0.01610 466.93 466 94 58 10 1042 7 11008 0.3 18966 2.0083 58 10 1040.3 0.7 0.7 90 09 6239 1041.7 0.01611 411.67 411.69 62.39 1040.3 1102 6 0.1117 1.8775 1.9970 0.8 04 94 38 66 24 10381 1104 3 0 1264 1.8606 1.9870 66.24 1042.9 0.9 0.9 98.24 0.01612 368 41 368 43 001614 333 59 333 60 69.73 1036.1 11058 C.1326 1.8455 1.9781 09.73 1044.1 1.0 1.0 101.74 94A3 10513 126.07 0.01623 173.74 173 76 94 03 1022 1 1116 2 0 1750 1.7450 1.9200 2.0 2.0 0 2009 1.8854 1.8864 109 41 1056.7 8.0 3.0 141 47 0.01430 118 71 118 73 109.42 1013 2 1122 6 to 63 90 64 120.92 10064 1127.3 0.2199 1.6428 1.8426 120.90 1060.2 4.0 4.0 152.96 0.01636 162 24 0.01641 73.515 73.53 130 20 1000.9 1131.1 0.2349 1.6094 13443 130.18 1063.1 5.0 8.0 61.98 138 r3 996 2 1134 2 0 2474 1.5820 13294 138.01 1065 4' 4.0 6.0 170.05 0 01645 61.967 0.01649 53 634 53.65 144 L3 992.1 1136 9 02581 1.5587 13164 14431 1067.4 7.0 .

7.0 176 84 8.0 8.0 182 86 0.01653 47.328 47.35 150 87 988 5 1139 3 02676 1.5384 1A060 15034 1069.2 42.385 42 40 156.30 985.1 1141.4 0.2760 1.5234 1.7964 15628 1070 8 9.4 9.0 188 27 0 01656 to 193.21 0 01659 38.404 38 42 161.26 982.1 1143.3 0 2836 1.5043 1.7879 16123 1072J 1e 0 01672 26.782 26 80 18017 ~ 970.3 1150.5 0.3121 1.4447 1.7568 100 12 1077.6 14.096 14.696 212.00 0.01673 26 274 26.29 181.21 969.7 1150.9 0 3137 1.4415 1.7552 181.16 1077.9 15 15 213.03 227.96 0.01683 20 070 20 087 196 27 9601 1156 3 0.3358 1.396' 1.7320 19621 1082.0 20 20 2ISS 1087.9 80 '

30 250 34 0 01701 13.7266 13 744 218.9 945.2 1164.1 0 3682 1.3313 1.6995 10 497 236.1 933 6 1169 8 0.3921 1.2844 1.6765 236 0 1092.1 40 40 267.25 0 01715 10 4794 8 4967 8 514 2502 923 9 1174.1 0 4112 1.2474 J.6586 250.1 10953 50 SO 281.02 0.01727 80 292.71 0.01738 7.1562 7.174 262.2 915 4 1177.6 0.4273 1.2167 1.6440 242.0 1088.0 80 70 302.93 0.01748 6.1875 6 205 272.7 907A 1180 6 0 4411 1.1905 1.6316 272.5 1100 2 70 40 312 04 0.01757 5 4536 5 471 232.1 900 9 1183 1 0 4534 1.1675 1 6208 281.9 1102.1 80 90 320 26 0 01766 4.8777 4 895 290.7 894 6 1185.3 0 4643 1.1470 1.6113 290 4 1103.7 to 04743 1.1284 1.6027 2982 1105.2 4.431 298 5 888.6 1187.2 100 4 4133 l 100 32782 0 0:774 120 341.27 0 01789 3 7097 3 728 312 6 8772 1190 4 0 4919 1.0960 1.5879 312.2 1107.6 120 140 353 04 0 01803 3 2010 3 219 325 0 868 0 1193 0 0.5071 1 0681 1.5752 324 5 1109.6 140 160 363 55 0 0;815 25155 2 834 3361 8590 11951 05205 1 0435 1.5641 335.5 1111.2 160 2.531 346.2 850 7 11 % 9 05328 1 0215 1.5543 345.6 1112.5 300 180 373 08 001827 2 5129 200 351 80 0 01829 2.2699 2.287 355.5 542.8 1198.3 0 5438 10016 1.5454 3543 1113.7 200 250 400 97 001865 1.8245 1.8432 3761 825 0 1201 1 0 5679 0 9585 1.5264 3753 1115.8 250 300 417 35 0 018E9 1.5233 1.5427 394 0 808 9 1202 9 05682 09223 1.5105 392.9 1117.2 300

' 350 421.73 0 01913 1.3064 1.3255 409 8 794 2 1204 0 0 60 % 08909 1.4968 406& 11IB ! 350 424 2 760 4 1204 6 0E217 0 8630 1.4847 422.7 111E 7 400 400 444 60 0.0193 1.14162 1.1610 437.3 767.5 1204 8 06360 0 8378 1.4738 435.7 1118.9 450 450 455 28 0 t.;95 1.01224 1.0318 l

449 5 755.1 1204 7 06490 0 814S 1.4639 447.7 1118 8 500 500 AU O! 0O!99 0 90787 0 9276 460 9 743.3 1204 3 06611 07936 1.4547 45E.9 1118 6 550 550 476 94 00199 082183 0.8418 471.7 732.0 12037 06723 0 7738 1.4461 469 5 lilE 2 500 400 485 20 0 0201 074962 0.7698 491.6 710 2 1201 8 0692R 07377 1.4304 488.9 1116 9 700 700 . % 2 08 0 0205 0 63505 0 6556 800 51421 0 0209 0.54809 0.5690 5098 689 6 1199 4 0.7111 0 7051 1.4163 506 7 1!!5.2 800 900 E*s! 93 0 02i? O4795S 05009 526 7 659 7 1196 4 0 7279 0 6753 1 4032 523 2 1113 0 900 (50 4 1192 9 07434 06476 1.3910 53".6 11104 1000 1000 544 B 00216 042435 0 4450 542 6 6315 1189 1 0 7573 0 6216 1.3794 553 f 1107.5 1100 1100 .5EC 2d 0 0220 0 376f 3 04005 557.S 1200 e .6719 0 0223 0 34013 0.3625 571 9 613 0 1184 8 07714 0 3969 1,3633 556 9 1104 3 1200 1300 U142 00227 0 30722 0.3299 585 6 544 6 1180 2 0.7843 05733 1.3577 530 1 1100 9 1300 1200 537 07 0 0231 0 278/; O3018 599 8 5765 1175 3 07966 05507 1.3474 5929 1017.1 1400 1500  % 6 20 00235 025372 0 27/2 611.7 550 4 11701 0 8035 0?253 13373 605 7 1033.1 1500 1

20M 635 80 0 02*,7 0 16? % 01883 672 3 465 2 1133 3 0BCt 04256 17b81 662 6 10*,3 6 2000 361 6 1093 3 C 9133 0 3206 12345 118.5 1032 9 2500 2500 '65.:11 002cf 010209 01307 731 7 3000 801 8 218 4 1070 3 0 9723 01891 1.1619 182 8 973.1 3000 695 33 0 0343 G050/3 0 0850 906 0 0 906 0 10512 0 10612 875 9 875 9 37082 32082 701 47 0OS0B 0 0 050d - ~

TABLE A.3 PROPERTIES OF SATURATED STEAM AND SATURATED WATER (PRESSURE)

A.4

Tempevetwo F Abe poet.

400 900 000 700 000 900 1000 1100 1200 1300 1400 1500 100 ICO 900 3

392 5 452.3 511.9 471.5 631.1 M07

, 0 0161 3 4 48 00 1150 2 1195 7 1241.8 1788 6 13M i 13845 (101.74) s 0.1295 2 0609 2.11L2 2.1722 2.2237 2.270s 2.3144

, 0 0141 78 14 90.24 102 24 114.21 126 15 138 08 150 01 161 94 173 86 185 7s 197 70 209 62 221.53 233 4 S a 68 01 1144.6 1144 8 1241.3 1288 2 1335 9 1354 3 1433 6 1483 7 15 47 1586 7 1639 6 1693 3 17480 (162 24) s 0.1795 18716 1.9369 1.9943 2.0460 2 0932 2.1361 2 1776 2 2159 2 2521 2.2866 2.3194 23509 2.3811 2

, 00151 38 84 44 95 51 03 57.04 63 03 69 00 74 98 BC 94 86 91 92 S7 tase 10430 110 76 116 72 10 6 68 02 1146 6 11937 1240 6 1240.4 13355 1364 0 1433 4 14835 1534 6 1546 6 1639 5 1693 3 1747.9 (192.21) s 0.1295

.1.7928 1.8593 1.9173 1.9692 2 01M 2.0603 2.1011 2 1394 2 1757 2.2101 2 2430 2.2744 2.3 e 0 0161 00lM 29 899 33 963 37.985 41 986 45.978 49 964 53 M6 57.926 61 905 45 042 69 454 73 433 7 1192 5 1239 9 1287.3 1335 2 13838 1433 2 1443 4 1534 5 1546 5 1639 4 les3 2 17473 1g03 4 16 6 68 04 168 09 (213.03) s 0 1295 0.2940 1.8134 18720 1.9242 1.9717 2.0155 2.0M3 2.0946 2 1309 2.1653 2.1982 2.2297 2.2599 2 e 0 0161 0 01M 22.356 25 428 28 457 31 446 34 465 37.458 40 447 43 435 46 420 49 405 52J08 55.370 30 h 64.05 16811 1191.4 1239.2 1286 9 1334.9 1383 5 1432 9 1443 2 1534 3 1546 3 1639 3 16631 1747A (227.96) s 0.1295 0.2940 1.7005 13397 1.8921 1.9397 1.9836 2 0244 2 0628 2.0991 2.13M 2.lM5 2.1979 2.2262 e 0.0161 0 0166 11 036 12 624 14.165 15655 17.195 18 699 20 199 21697 23 194 24 689 26'183 27.67 40 6 64.10 164 15 1106 6 1236.4 1785.0 1333 6 1342.5 1432 1 1482.5 1533 7 1545 8 1638 8 1992 7 174

, (267.25) s 0.1295 0 2940 1.6992 1.7608 18143 IJ624 1.9065 1.9476 1.9060 2.0224 2A569 2.0899 2.1224 2.151 _

e 0.0161 0.0156 7.257 8 364 9 400 10 425 11 438 12 446 13.450 14 452 15.452 16.450 17.444 18 445 60 4 48 15 168 20 1151 6 1233.5 1283 2 1332 3 1381.5 1431.3 1441.8 1533 2 1545.3 1638 4 1692 4 174 (292.71) s 0.1295 0.2939 1.6492 1.7134 1.7681 1.8168 13612 1.9024 1.9410 1.9774 2.0120 2.0450 2.0765 2.106 e

0.0161 0 0166 0 0175 6 218 7 018 7.794 8.560 9 319 10 075 to829 11 581 12.331 13.081 13 829 14.577 80 6 6521 16824 269 74 12375 128I3 1330 9 1380 5 1430.5 1481.1 1532 6 1584.9 1638 0 1692 0 1746A 1802.5 (312.04) s 0.1295 0 2939 0 4371 1.6790 1.7349 1.7842 1A289 1 8702 1.9009 1.9454 1.9800 2.0131 2.0446 2.0750 2.10 7.443 8050 8 655 9258 9 460 to 460 11A00 11459 o 0 0161 0.0166 0 0175 4 935 5 548 6.216 4.833 100 h 68.26 168.29 269 77 1227.4 1279.3 1329 6 1379 5 14297 1440 4 1532.0 1584 4 1637.6 18914 1746.5 1902.

1.4516 1.7008 1.7506 1A036 14451 1.9839 1.9205 1.9552 1.te83 2A199 2.0002 2.0794 (327.42) s 0.1295 0.2939 0 4371 I e 0 0161 0 01 % 0 0175 4 0786 4.6341 5.1637 5.6831 6.1923 6 70C4 7.2060 7.7096 S.2119 S.7130 9.2134 9.7<

120 4 68.31 168 33 269 81 1224.1 1277.4 13281 1378 4 1428 8 1479 8 1531.4 1583 9 1637.1 1991J 1746 2 1 (341.27) s 0.1295 0 2939 04371 1.6286 1.4872 1.7376 1.7829 IJ246 1 8635 1 9001 1.9349 1.9600 1.9996 2.0300 2

, 0 0161 0 0166 0 0175 3 4651 3 9526 4 4119 4.8585 5.2995 5 7364 61709 68034 7.0349 7.4652 7 2946 4 3 1220 8 1275 3 1326 8 1377 4 1428 0 1479 1 1530 8 1543 4 1636 7 logo t 1745.9 1301.7 140 h 68 37 168 38 269 85 (353 04) s 0 1295 02939 0 4370 1.6085 1.6686 1.71 % 1.7652 1.8071 1.4461 18828 1.9176 1.9508 1.9825 2.0129 2

, 0 0161 0 0166 0 0175 3 0060 3 4413 3 8480 4 2420 4 6295 5 0132 5 3945 5 7741 6 1522 65293 49055 7 ISO h 68 42 168 42 269 89 1217 4 1273 3 1325 4 13764 1427.2 1478 4 1530.3 1582 9 1636.3 1990.5 1745 6 18 (363 55) : 01294 0 2938 04370 1.5906 16522 1.7039 1.7499 1.7919 1.8310 18678 1.9027 1.9359 1.9676 1.9900 2

, 0 0161 0 0166 0 0174 2 6474 3 0433 3 4093 3 7621 4.1064 4.4505 4 7907 5 1289 5 4457 SA014 6.1363 180 4 68 47 168 47 260 9/ 1213 8 1271 2 1324 0 1375 3 1426 3 1477.7 15297 1582.4 1635.9 1640 2 17253 (373 C3) : C.1294 C H38 04370 1 5743 1 6376 1.6900 1 7362 1.7784 1.8176 1 8345 1.8894 1.9227 1 9545 1.9849 e 0 0161 0 0166 0 0174 2 3598 2.7247 3.0583 3 3783 3 6915 4 0008 4 3077 4 6128 4 9165 5.2191 5.520 200 > 68 12 108 51 269 96 1210 1 1269 0 1322 6 1374 3 1425 5 1477.0 15291 1581.9 1635 4 1689 8 1745 0 (331.60) s 01294 0253S 04359 1.5593 1.6242 1.677G 1.7239 1.7663 15057 18426 18776 1.9109 1.9427 1.9732 e OC161 0 0165 0 0174 0 0166 2.1504 2 4662 2 6872 2.9410 3 1909 3 s382 3 6837 3 9278 4.1709 4 4131 4. '

250 a 68 66 168 63 270 05 3/5 10 1263.5 1319 0 13716 1423 4 1475 3 !$2 7.6 15806 1634 4 1688 9 1744 2 18 1.5951 1.6502 1.6976 1.7405 1.7601 1 6173 1 8524 1A458 1.9177 1.9482 1.  :

(400 97) s 01294 02937 0 436a 0 5567

, 0 0161 0 0165 00174 00186 1.76 % 2 0044 2 2263 2 4407 2 6509 2 65S5 3 0643 3.2688 3 4721 3 6746 3 300 m l 68 79 1 % 74 27v 14 375.15 1237 7 1315 2 1368 9 14213 1473 E 1526 2 15794 1633 3 1688 0 1743 4 179 (417.35) s 0.1294 02937 04M7 C 5665 1.5703 1.6274 1 6/58 1.7192 1 7591 1.7964 1.8317 1.8652 1 8972 1.9278 1 1 e 00161 0 0166 0 0174 0 018C !.4913 1 7028 1 8970 2 0332 2 2652 2 4445 2 6219 2 7980 2 9730 31471 3 ,

350 m 68 92 IES 35 2702" 375 21 1251 5 13114 1366 2 1419 2 14716 1524 7 1578 2 1632 3 1087.1 17426 17 ,

(431.73) . 0 1293 02935 0 43G7 0 5664 1.5483 1 6077 1.6571 1.7009 1.7411 1 7787 18141 1.8477 12795 1.9605 1.9 e OG161 0 0106 0 0174 00102 12841 1.4763 16499 18151 19759 21339 2 2901 2 4450 2 5987 2.7515 2 400 a 69 05 168 97 270 33 375 27 12451 1307.4 1363 4 1417 0 14701 1523 3 1576 9 1631 2 1656 2 I (444.60) s 0 1293 02935 04366 0 56G3 1.5282 15901 16406 16350 17255 17632 1.7988 1.8325 1A647 t8955 1.92 e 0 0161 0 0106 0 0174 0 0186 0 9919 !!584 13037 1.4397 1 5708 1 6972 19256 1.9507 2.0746 2.1977 2 32 500 h (9 32 1% le 27051 3?; 38 1231 2 12991 13571 let? 7 1466 6 1520 3 1574 4 16291 1684 4 1740 3 179 l

, (457.01) : 0 1292 02934 04364 C ht.60 1 4971 1 5595 1 6123 1 65/8 1 6990 1 7371 1.7730 1.8069 IA393 1 8702 1 TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED 3

WATER (TEMPERATURE END PRESSURE)

A.5 4

l

~

pp Twperstm, F 100 200 300 400 600 600 700 300 900 1000 1100 3200 1300 1400 1500 v 00161 u0166 0 0174 0 0186 0 7944 0 94 % 1 0726 1 1892 13000 14093 1 5160 1 6211 1 7252 1 8284 1 9309 888 6 69 58 169 42 270 70 375 49 1215 9 1290 3 1351 8 1408 3 1463 0 15174 15789 1627 0 IM26 17388 1795 6 (486.20) s 0.1292 0.2933 04%2 0 % 57 14590 15329 1 M44 16351 16769 17155' I7517 1.7859 14184 3 4494 38792

, 0 0161 0 0lM 0 0174 0 0186 o tu )4 0 7928 0 9072 1.0102 1.1078 12023 1 2944 1 3858 1 4757 1 % 47 1 6530 700 a 69 84 16965 270 89 375 61 487 93 1281 0 1345 6 18037 1459 4 1514 4 1%94 16248 16607 1737 2 1794 3 (503.08) s 0 1291 0.2932 04%0 0 % 55 0 6489 I5090 1.M73 16154 16540 36970 17335 17679 I Sch I 8118 18617 l

e 0 0161 0O!M 00174 00186 0 0704 0 6774 07825 0 8759 0 9631 10470 11789 12093 1.2825 13M9 14446 888 6 70.11 16988 271.07 37573 487 8d 1271 1 1339 2 13991 1455 8 1511 4 ISM 9 1622 7 167E9 1735 0 1792.9 (5182.)

  • 0.1290 0 2930 0 4358 0 % 52 0 6885 1 4869 1 5484 1.5"e80 1 6413 1 6807 1.7175 17522 17851 1 8164 18464 e 0.0161 0 0166 0 0174 0 0186 0C234 05869 0 6858 0 7713 0 8504 0 9262 0 9998 10720 1 1430 1.2131 1.2825 988 6 70 37 17010 271.26 375 84 48783 1260 6 1332 7 1394 4 1452 2 15045 1%44 1620 6 16771 173 1 1791 6 (531.95) s 0.1290 0.2929 0 4357 0 % 49 O Mal 1.4659 1 5311 1.5822 1 6263 I M62 1.7033 1.7382 1.7713 16028 1 8329 e 0 0161 0 01 % 00174 0 0186 0 0204 05137 06080 0 6875 07603 0 8295 0 89 % 0 M22 1.07M 10901 11529 1000 6 70.63 17033 271.44 375 M 447.79 1249 3 1325 9 1389 6 1448 5 15044 1 % 3.9 16184 1675 3 1732 5 1790 3 (544.58) s 0.1269 0.2928 0.4355 05647 04476 14457 1.5149 1.5677 1.6126 16530 14905 1 72 % 1.7589 1.7905 1.8207 t

, 00161 0 01 % 0 0174 0.0185 0 0203 04531 0 5440 0 6188 06865 0 7505 0 8121 0 8723 0 9313 0 9894 1.0468 110e a 70 90 170.% 271 63 376 08 487.75 1237 3 1318 8 1344 7 1844 7 15024 1559.4 1616 3 1673.5 17310 17890 (5%.28) s 0.1269 0.2927 0 4353 0.% 44 0 6872 1.4259 1.4996 1.5542 1 6000 1.6410 1.6787 1.7141 1.7475 1.7793 1.409,7 e 0 0161 0 0166 0.0174 00185 0 0203 04016 0 4905 0 Mll 0 6250 0 6845 0 7418 0.7974 0 8519 09055 09584 1208 4 71.16 170.78 271.82 376 20 487.72 1224 2 1311.5 1379 7 1440 9 1449 4 15M 9 1(14 2 16716 1729 4 1787.6 (567.19) s 0.1288 0.2926 0.4351 0.5642 0 6868 1.4061 14851 1.5415 1.5883 16298 1 M79 1.7035 1.7371 1.7691 1.7996 e 0 01(,1 0 0166 0 0174 00185 0 0203 0.3176 0 4059 0 4712 0 5282 0 5809 0 6311 0 6794 0 7272 0.7737 0 8195 1400 6 11.68 17124 272.19 376 44 487 E5 1194.1 12 % I 1369 3 1433 2 1493 2 155I 8 1609 9 16M 0 17263 1785 0 (587.07) o 0.1287 02923 0.4348 0.5636 0 6859 1.3652 1.4575 1.5182 1.5670 1.6CM 1.6444 1.6445 1.7185 1.7508 1.7815 e 0.0161 0 0166 0 0173 0 0185 0 0202 0 0236 0.3415 0 4032 0 4555 0.5031 0 5482 05915 0 6336 0 6748 0.7153 1808 4 72.21 171 69 272.57 376 69 487 60 616 77 12794 13585 1425 2 1486 9 1546 6 1605 6 1664 3 17232 1782.3 (604.87) s 0 1286 0 2921 0 4344 0.% 31 04851 0.8129 l4312 1.4963 1.5478 1.5916 1 6312 I M78 1.7022 1.7344 1.7657 e 0.0160 0.0165 0 0173 0.0185 0 0202 0 0235 0 2906 0 3500 0 3988 0 4426 0 48 % 0.5229 0 5605 0 5900 0 6?43 1000 a 72.73 172.15 272.95 376 93 487.M 615 58 1261.1 1347.2 1417.1 1440 6 1541.1 1601.2 1660 7 1720.1 1779 7 (621.02) : 0.1284 0.2918 0 4341 0 5626 0.68'3 0 8109 1.4054 1.4768 1.5302 1.5753 1 61 % 14528 1 6876 1.7204 1.7516 e 0 0160 0.0165 0 0173 0 0184 0.0201 00233 0 2488 0 3072 0 3534 0 3942 0 4320 0 4680 0.5027 0 5365 0 5695 l 2000 6 73.26 172 60 273.32 377.19 487.53 614 48 1240.9 1353 4 1408 7 1447.1 1536 2 15M.9 1657.0 1717.0 1777.1 (635 80) s 0.1263 0.2916 0 4337 0 5621 0 6434 0 8091 1.3794 14578 1.5138 1.5603 1.6014 1.6391 1.6743 1.7075 1.7389 e 0 0160 0.0165 0 0173 0 0184 0 0200 0.0230 0 1681 0 2293 0 7712 0.3068 0.3390 0 3692 0.3980 0 4259 0 4529 2500 h 74 57 173 74 274 27 377 82 487.50 612 08 1176 7 1303 4 1386 7 1457 5 1522.9 1585 9 1647.8 1709 2 1770 4 (668.II) s 0.1280 0 2910 0 4329 0 5609 0 6815 0 8048 1.3076 1.4129 1.47M 1.5269 1.5703 1.6094 1.64 % 1.67 % 1.7116

, 00160 0 0165 0 0172 0 0183 0 0200 00228 0 0982 0 1755 02161 0.2484 0 2770 0 3033 0 3282 03522 0.3753 3000 h 75 83 17t S8 275.22 378 47 487.52 610 08 1050 5 1267 0 13632 1440 2 15014 1574 8 1635 5 1701.4 17f1.8 ,

(695.33) s 0.1277 029L4 0 4320 0 5597 0 67 % 0 8009 1.1966 1.3692 1.4429 1.4975 1.5434 1.5641 1.623d 1.0561 1 6488 e 0 0160 0 0165 0 0172 00183 00199 0 0227 0 0335 01548 0 1987 0 2301 0 2576 0 2827 0.306% 0.3291 0 3510 3200 4 76 4 175 3 275 6 378 7 487.5 609 4 800 8 1250 9 1353 4 1433 1 15038 1570 3 16343 1698 3 1761.2 f705 C8) s 01276 0 2902 0 4317 0 5592 0 6768 0.7994 0 9708 1.3515 1 4300 1.4866 1.5335 1.5/49 14126 1 6477 1.6806

, 0 0160 0 0154 00172 0 01E3 00199 00225 0 0307 0.1364 0 1764 0 2066 0 2326 02%3 0.2784 0 2995 0319P 3500 a 77.2 176 0 276.2 3791 487 6 6084 779 4 1224 6 1338 2 1422 2 1495 5 1%3.3 16292 1693 6 1757.2 s 0.1274 0.2899 0 4312 0 5585 0 6777 0.7973 0 9508 1.3242 1.4112 1.4709 1.5194 1.5618 1 6002 1.6353 1.6691 e 0 0159 0 0164 0 0172 00182 0 0198 0 0223 0 0287 0 1052 0 1463 0 1712 0 1994 0 2210 0 2411 0 2601 0 2783 4000 A 75 177 2 217 1 379 8 487.7 6C6 5 7630 1174 3 1311 6 14036 1431.3 1552 2 1619 8 1685 7 1750 6 s 01271 0.2a93 04304 0 5573 0 6760 0 7940 0 9343 1.2754 1.3807 1.4461 14976 1.5417 1.5812 16177 1.6516 e 00159 0 0164 0 0171 0 0181 0 01 % 00219 0 0268 0 0591 0 1038 0 1312 0 1529 0 1718 01660 0 2050 0 2203 5000 a 81 1 179 5 2791 381 2 4881 604 6 746 0 1042 9 1252 9 13(4 6 1452.1 1529t 16(A) 9 1t 70 0 1737.4 s 0.1765 0 2E61 0 4267 0.5550 0 6726 0 7880 0 9153 1.1593 1.3207 1.4001 1.4582 1.5061 1.M81 1.56 63 1.6216 e 00159 0.0163 0 01/0 0 0160 0 01 % 0 0216 0 0256 0 0397 0 0757 0.1020 0 1221 0.1391 0.1544 O!684 0 1817 60C0 4 83 7 181.7 281.0 362 7 AP8 6 602 9 7361 9451 1168 8 1323 6 1422 3 1505 9 15B20 1654 2 1724 7 e 01258 0 2670 0 4271 0 5528 06693 0 7826 01026 10176 1.2615 1.35 M 1.4229 1.4743 1.5194 15593 15962 s 0.0158 0.0163 0 0170 0 0180 00193 0 0713 0 0248 0 0334 0 0573 0 031 A 01004 0 1160 0 1796 01424 01542 7000 A 86 2 184 4 283 0 3H4 2 439 3 601 7 729 3 901 8 1124 9 1281 7 1392 2 1482 6 1%31 1639 6 17111 s 01252 0 2859 04256 0 5507 0 6563 0 7/77 0 8926 10350 12055 1.31,1 1 3904 14496 14938 1 53-5 1.5735 TABLE A.4 PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE) (CONTINUED)

A.6

p. - , = 17 , ,a ,, 20 yi .. ..

,. ae . _ ,. ,....... . ~

'~ 8,,/k/by[pe ' ~ '~

"* AVbNf7/ /q' /J,f ~

' ~

/ N/ /r'R

~ dh75RK v - / A/ / 15L/ f 1.

j

. . x/ N // /3, Q' -

, n ii w a

//f~y,QQ / N ///%j

+ '~ '

1

"~ JVAO{ fy'j'/f n

y Mp ' ly

/EF2Wf

~ ,.

/p sj,m - , , ~ .

by lyp

- MJ2 -

i-I

'7 $

h/hhM w

~

ll.

samA/) -

swan /u'

/

g,y//

'#b?XMMN)'

/

MXMMj%/ -

RM /%9%/

$ ?X / % W, .. .. . .. ,.

. Entropy ggfh,,7 IS 20 2. 5 22 M

E A.5 MOLLIER ENTHALPY-ENTROPY DIAGRAM A.7

~

i PROPENTIES OF WATER Density e 8

(Ibstit )

I Temp soturated 2400 2500 3000 1000 2000 2100 2200 2300

(*F) Liquid 62.888 62.909 62.93 62.951 63.056 62.414 62.637 62.846 62.867 32 62.846 62.87 62.99 62.55 62.75 62.774 62.798 62.822 50 62.38 62.465 62.559 62.390 62.409 62.427 62.446 100 61.989 62.185 62.371 60.549 80.568 60.587 60.606 60.702 60.118 80.314 60.511 60.53 200 57.859 57.882 57.998 57.537 57.767 57.79 57.813 57.436 300 57.310 54.529 54.249 54.28 54.311 54.342 54J73 400 53.651 53.903 54.218 53 86 53,89 53.925 53.95 54.11 410 53.248 53.475 53.79 53.825 53.425 53.46 53.50 53.53 53A9 420 52.798 53.025 53.36 53.40 52.99 53.02 - 53.065 53.09 53.265 430 52.356 52.575 52.925 52.95 52.475 52.51 52.54 52.56 52.275 440 51.921 52.125 52.42 52.45 52.10 52.14 52.175 52.21 52.41 450 51.546 51.66 52.025 52.065 51.64 51.68 51.725 51.76 51.96 460 51.020 51.175 51.56 51.61 51.175 51.22 51.25 51.30 51A0 470 50.505 50.70 51.1 51.14 50.7 50.74 50.78 50225 51235 480 50.00 50.20 50.62 50.66 50.22 50.265 50.31 50 35 50 575 49G 49.505 49.685 50.13 50.175 49.714 49.762 49.81 49.858 50.098 48.943 49.097 49.618 49.666 500 49.254 49.305 49.56 48.51 49.05 49.101 49.152 49.203 510 48.31 48.735 49A1 48.46 48.515 48.57 48.625 48.66 520 47.85 47.91 47.978 48.037 48.096 48.155 48.45 530 47.17 47.29 47E 47.919 47A9 47.296 47.362 47.428 47.494 47.56 540 46.51 47.23 46.794 46 862 46.93 47.27 45.87 46.59 46.658 46.726 550 46.216 46.29 46.86 45.92 45.994 46.068 46.142 560 45.25 45.62 46.02 45.30 45.38 45 46 45 54 570 44.64 45.22 44.758 44.844 44.93 45.36 44.50 44.586 44.672 530 43.66 44.205 44.68 43.825 43.92 44 015 44.11 550 43.10 43.73 43.226 43.33 43.434 43.956 42.913 43.017 43.122 600 42.321 42.55 43.14 42.08 42.196 42.314 42.432 610 41.49 41.96 41.35 41.483 41.616 42.283 40.950 41.083 41.217 620 40.552 41.44 630 39.53 40.388 640 38 491 39.26 650 37.31 38.006 660 36.01 36.52 670 34.48 34.638 633 32.744 32.144 690 30.516 TABLE A.6 PROPERTIES OF WATER, DENSITY

  • A.8
1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION. PAGE 30

~~~~ ~

T55RE66 55555I~555T i55U5f5E~5U6~5[U56~fL6U ANSWERS -- GR At'D CULF 1 -85/12/16-BROCKMAN, K.

ANSWER 1.01 (1.00) b REFERENCE DPC- F'.+ n d a m e n t 3 1 s of Nuclear Reactor Engineering, p. 96 001/000-K5.56 (2.8/3.1)

GGNS: OP-NP-511 ANSWER 1.02 (1.25)

1. a
2. e
3. d 4 b
5. e (0.25 each)

REFERENCE GCNS: MCD, 2.0-1, p 14 ANSWER 1.03 (1.00)

a. 2
b. 5 (0.5 each)

REFERENCE GGNS: MCD, 4.6, pp 33, 47, 50

4 1.. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 31

---~is5NR66 AIEiC57~5555"iREA5f5R Es6~F[656 5[6s ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 1.04 (2.00)

a. Orificed Fuel Support Pieces (Core Orificing) (0.5)-

i '

b.' As power increases, the f);w to the central (higher Powered) bundles would decrease (0.25); flow to the peripheral (lower powered) bundles would increase (0.25) This is due to the increased two-phase flow resistance that- is develcoed in the higher powered bundles where there is greater boiling (0.5) and the . resultant ' restriction" that i this would pose to flow,'thus sending it preferentially through the lower powered bundles (0.5). (1.5)

REFERENCE GGNS: Thermal Limits LP, p 28 ANSWER 1.05 (2.00) i

, s. The assembly' power which would cause'the onset of transition boiling at some point in the' assembly. (1.0)

b. 2

. REFERENCE BFNP TRANSITION BOILING & ATLAS TESTING LP,P.5-6 ,

GEXL CORRELATION & CRITICAL POWER LP,P.3 GGNS MCD, THERMAL LIMITS, P.26,32-33 ANSWER 1.06 (1.00) b REFERENCE GGNS: OP-HF-502, p7 f

a l

l l

I s

-, ,,A, . , , , . . , . . --..---e.- - - . . - - . - , , , ,,, ,--7n.-_,- ,4 e,

-, . - .-. . .. . ~ - .

t l

1. . PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 32

--- iREER557eisiEi, REAi isAsiFEE As5 FC0i5 FE5s ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 1.07 (1.00)

I

'i. It (hydrogen) has a high microscopic scattering cross section .

J-

2. It (hydrogen) has.a high lo3arithmic ener3y decrement per collision.
3. It (hydrogen) has a small microscopic absorbtion cross section.

(2 ? 0.5 each)

REFERENCE

-GGNS: OP-NP-502, p9 ANSWER 1.08 (1.00) a REFERENCE BFNP: XENON-& SAMARIUM LP, pp 4, 12 GGNS: OP-NP-514 ANSWER 1.09- (2.00) 4

a. 4.77% (+- .48%)-
b. 3.8% (+- .38%)
c. 1.0% (+- .10%)
d. 3.0% (+- .30%)- (0.5 each)

! . REFERENCE GGNS: OP-NP-513; OP-NP-514 i

4

, , -,,---,=,r--w,---w-w,,-

. ..-, . - - -,.---,-p r

1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION.- PAGE 33

~~~~

T555566 IU5C5,~55di TRA 5E5R~d 6~fL656

________________________________________"EL6U ____

' ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 1.10 (1.00)

1. Neutron embrittlement of the cladding.
2. Thermally induced pellet growth.
3. Inward motion of the cladding walls (creePdown).
4. Clad weakenin3 from (thermal) Cyclic.. Stresses. (2 9 0.5 each)

REFERENCE GGNS: MCD, PCIOMR, p7 ANSWER '1.11 (1.00) b REFERENCE GGNS: OP-PC-505, pp 6 .10 ANSWER 1.12 (1.00)

a. 1
b. 4 (0.5 each)

REFERENCE BFNP:. PUMP CHARACTERISTICS, PUMP HEAD, PUMP LAWS LP,P.4 -

GGNS 'OP-NP-504;'OP-NP-514' ANSWER 1.13 (1.00) b REFERENCE ist Law of Thermodynamics EIH L-RG-667 (10) L BSEP: L/P 04-2/3-E, P 66 GGNS: OP-AD-545

1. PRINCIPLES.0F NUCLEAR POWER PLANT OPERATION,' PAGE 34

~ ~

~~~~iE5RE66 555C5I 5EST TR A5fER IU6" FLU 56"FL6U ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K'.

ANSWER 1.14 (1.00)

DLLt itD '^ p

-a.- -T op--p; d. ; d -

b. Each Node has received a different exposure. (LIMLHGR yar-ies' '

with both exposure and fuel type and .only the expy' ate dif-ferent for each node) ,' (0.5)

REFERENCE - . - - ' ' , _-

General' Electric _.NEDE T 24810, June 1981 BFNP; Process Computer LP, p 13 (Obj #4)

SCt1C ; MCh...IHERMAL- l.IMI-TCL. ~ . . - - - - -

ANSHER 1.15 (1.00) a REFERENCE OFNP: .BFN Mitigating Rx Core Damage, pp 17 - 18: RQ 85/02/01

-GGNS: MCD. SECTION 4.4 RNSWER 1.16 (1.00) 75% CONTROL ROD DENSITY. (0.5)

~

(The incr. eased Control Rod Density causes greater competition for the therms 1 neutrons this necessitates greater pin power for the same net power output). Higher pin power results in a greater Void Fraction which causes a more negative coefficient. (0.5)

-- OR --

With a greater. rod density, a greater number of neutrons are ' lost' to~the control rods (increased leakaSe).

~

Thus, a change in rod density effects reactivity more, by allowins increased absorbtion by other fuel bundles. (Can also explain why low rod density does not have a large reactivity effect, since the leakage to other fuel bundles is already so large) (0.5)

REFERENCE EIH; Reactor Physics L/P, pp 1.7-9, 10, & 13.

BSEPt.L/P 02-2/3-A, pp 141 - 143 GGNS: GP-NP-513

4 4

~

1.- PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, PAGE 35

' ~

~~~~iE5RE66 IE5C57~555T TRI 5f5R 556 fC616~5[6Q

. ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

1 ANSWER 1.17 (1.00) 4 75% Void Fraction in the core.(0.5) This is because of the increased reasonance capture which would occur (due to the longer slowin3 down length).(0.5)

REFERENCE EIH: L-RQ-604 GGNS: Reactor Physics L/P, pp 1.7 - 9, 10, 13 BSEP: 02-0G-A ? pp 39 -49 BFNP' Reactivity. Coefficient LP, pp 4, Si RO 85/03/01 ANSWER- 1.18- (1.00) d REFERENCE EIH; L-RO-606, pp 4, 5; Fig. 4 BSEP: 02-2/3-A, pp 177 - 180; 02-0G-A, pp 60 - 61 BFNP:- Xenon and Samarium LP, pp 5, 6; RO 84/03/05 GGNS: OP-NP-514 ANSWER 1.19 (2.00)

NOTE: 0.9 - EQUATIONI 0.5 - VALUE SUBSTITUTIONS; 0.1 - MATH h(out) = 1129.4 Btv/lbmi h(in) = 125.9 Btu /lbmi c(p) =

1.0 Btv/lbm-des F STEAM 0 =m ( h(out -in) } = 3E+6 (1129.4 - 125.9)

= 3.01E+9 Btu /hr HEAT REJECTED BY THE STEAM WATER 0=m { c(p)

  • T(out - in) }

m =0/{ c(p)

  • T(out - in) } = 3.01E+9/(1.0
  • 15)

= 2.01E&8 lbm/hr

b. Decrease (Absolute pressure increases)

REFERENCE ist Law of Thermodynamics; Bernoulli's Equation

. GGNS: OD-FH-504 (Obj 4) 1

.,_,.__L,.,,-. ,,,,. . , , , . .,_,-,-.,_,,.,,,,,,,n_n,, . _ _ _ . _ , , _ _ . , . , . . _ ,

4 i 1. PRINCIPLES OF. NUCLEAR POWER PLANT OPERATION, PAGE 36

~

~~~~IUER560YUdb5C5HEdi TRdN5FER A 6~EL656~EL6U ANSWERS -- GRAND GULF ~1 -85/12/16-BROCKMAN, K.

ANSWER 1.20 .(2.00)

a. Due to'recire. pump' trip on high vessel level 2.

~

5 b. Due to the spike in. reactor power.

c. Due to the vessel level recovery -OR-Due to the feed pump trip on high vessel level 8.

I d._Due to APRM_high flux. (O'5 each)

REFERENCE CCNS: FSAR, Chapter 15.4 4

i i

t I

1 4

+

n 4

I' 4

4

, . . . . ,-.mm._,, - ~- , -,

~

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS' PAGE 37 ANSWERS .--- GR AND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 2.01 (3.00)

a. 1.- FAI
2. F0
13. FC.
4. .FC
5. F0 (0.5 each)
b. . Valve stem air.to Off- Gas system is lost (0.5)

REFERENCE GGNS: GNEP 05-1-02-V-9; OP-C11-1A-501, p 13 ANSWER 2.02 (1.00) d REFERENCE BFNP CONTROL ROD DRIVE LP GGNS: SD C-11-1-A, p 7; OP-C11-1A-501, p 45 GE SIL 200 (Suppi 2)

ANSWER 2.03 (1.00) a.- Closes

b. .Two (0.5 each)

REFERENCE GGNS: OP-C11-1A-501, p4 ANSWER 2.04- (1.00)

.1 ) Both subloops are in the Maintenance Mode

2) . Valve Motion Inhibit interlock activates (FCV Lock-up) (0.5 each)

REFEF:ENCE GGNS: SD B-33-1, B-33-2

2. PLANT DESIGN INCLUDING SAFETY.AND EMERGENCY SYSTEMS PAGE 38 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 2.05 (2.00)-

r

a. 30 psis
b. _330-des F

-c. 15 psis

d. -3.0 psis (0.5 each)

REFERENCE-GGNS: SD M41-1, pp 4, 9 4

' ANSWER 2.06 (2.00)

AUTO - SGTS Train A will not stop. (C.A.F.) . (0.5)

STBY - SGTS Train A will stop (0.5), but will auto restart (0.5) on -( 1. 0 )

1) Low Flow Train B (Filter Train, 1250 SCFM -or- Recirc

) Fan B Flow Low,_8500 SCFM) (0.25)

J

-OR-

2) Encl Blds Pressure High ( .15' wc) (0.25) i REFERENCE GGNS: SD T-48, pp 3, Si OP-T48-501, pp 8, 13; 04-1-01-T48-1 ANSWER 2.07 ( .50)

Containment Spray initiation.

REFERENCE 4

GGNG: OP-E12-501, pp 14, 50 i

s l

i

)

2. PLANT' DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 39 ANSWERS -~ GRAND GULF 1 -85/12/16-BROCKMAN, K.

' ANSWER 2.08 (1.50)

a. 125 psis (0.5)
b. six (6) (0.5)
c. Reset the starting circuit on the local panel (P-134) (0.25) by P l acing the Diesel Driven Fire Pump A/B Selector Switch to the OFF position. (0.25) (0.5)

REFERENCE GGNSi OP-P64-501, p7 ANSWER 2.09 (1 00)

C

' REFERENCE CGNS: SD P42, pp 3, 19; OP-P42-5018 04-1-01-R21-1; Prints-E1226 & E1116 ANSWER 2.10 (1.50)

1. Reactor water
2. RWCU' system water
3. CRD system water REFERENCE -

GGNS OP-P33-501,P.4,5 ANSWER' 2.11 (1.00)

C

. REFERENCE GGNS: OP-C41-5018 Print E1169-05 1

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 40 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 2.12 (2.00)

1) Engine Overspeed
2) Low Lube Oil Pressure
3) Generator Ground Overcurrent
4) Generator Differential (0.5 each)

REFERENCE GGNS: OP-P75-501, p 18-ANSWER 2.13 (1.00)

Operation of both the remote and local PB's are required. (0.5)

The remote PB must be depressed first (or simultaneously) and released last (0.5) for the DG to be placed in the Maintenance Mode.

REFERENCE GCNS: OP-P75-501, p 19; 04-1-01-P75-1, p 4 ANSWER 2.14 (1.50)

BUV - 90% Bus UV for 9.0 seconds 80% Bus UV for 0.5 seconds w/ LOCA signal 70% Bus UV for 0.5 seconds (2 0 0.5 each)

LOP - All 3 lines supplying the ESF Bus are deenergized (0.5)

REFERCNCE GGNS: OP-R27-501, p 7, 8; 04-1-01-R21-1, p5 ANSWER 2.15 (1.00)

Compares and takes differences (0.5) of the supply and return flows (0.5)

REFERENCE GCNS: OP-P41-501, p 1

f

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 41 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

J ANSWER 2.16 (1.50) '

See Attached Figure # 573 REFERENCE

.GGNS
OP-P12-501, p 40 ANSWER 2.17 ( .50)

Counterclockwise (Slow)

REFERENCE BFNP: OI-57; OI-82

,- .GGNS: 04-1-01-P75-1 ANSWER 2.18 (2.00)

a. 'F001A, F002A, & F003A auto open on initiation F003A auto closes in 1.5 minutes (0.5 each) 1;
b. High Pressure -

> 5 psis between MSIV's after 1 minute Leakage High Flow -

> 22 SCFH after Hi Flow Leakage. Timer times a out (13 minutes) l Closes F001A a F002A ('O.33 each) l- F003A Closes ONLY on High Pressure (0.05) (Setpoints 9 0.05) .

REFERENCE GGNS
OP-E32/E38-501, pp 5, 6 ANSWER 2.19 (1 00)

- AC 1 - DC 1-j - will

- will not (0.25 each) i t

4 -

k

. - . . - ...-._..-.,_.,,-e., , , , - - ,.,_._v,-._--.. - . , - - - . . -~.....--,----.s. , , , . , .,.,,,-.m..m. ..-m_ .,,w., -r. . . _ - ,

2. PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE 42 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

REFERENCE GGNS: 04-1-01-L62-li GGNS E:;am Rpt 50-416/0L-84-01 s

3. INSTRUMENTS AND CONTROLS PAGE 43 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 3.01 (1.00) d REFERENCE BFNP BF-0I-68, PP 28, 29 EIH: EIH Simulator, Malfunction 136 GGNS: SIM MAL 11 ANSWER 3.02 (1.00)

C REFERENCE USNRC BWR-4 Systems Manual, pp 3.3 3.3-10 EIH: HNP-x-1001; HNP-n-1286 GGNS: OP-N21-501, p 10 ANSWER 3.03 (1.00)

C REFERENCE GGNS: SOI-04-1-01-C11-1, pp 2, 3 ANSWER 3.04 (4.00)

a. 1. See attached figure.[0.63
2. About 15 inches [0.23 above the core midplane.[0.23
b. 2.5 on range 7[0.53 NO auto actions will result.[0.53
c. 41 - .99[0.53 is the more conservative
d. 1. APRM INOP[0.333
2. Rod Block [0.33]
3. 1/2 Scram [0.343
c. 100, 8 REFERENCE GGNS: OP-C51-1, 2, 4 - 501; GGNS Theory Rev.; General Electric NEDO 24810

3o INSTRUMENTS AND CONTROLS PAGE 44 ANSWERS 1-- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 3.05 (2.50)

1) Pump Speed < 20 %-
2) CB-2 Open
3) CB-3 Closed
4) CB-4 Closed
5) Pump Speed > 95 %
6) Pump Speed between 20 % and 26 %
7) ~CB-1' Closed
8) Pump Motor Voltage < 75 volts for > 4 seconds
9) CB-5 Open
10) LFMG at Rated Voltage (0.25 each)

REFERENCE GGNS: OP-B33-1-501 ANSWER 3.06 (1.00) d- or a

' REFERENCE NRC BWR TTC Manual, Figure 2.4-2 -

DFNP: LPt7.P. 28 EIH L-RG-714, Figure 714-6; HNP-2-2447 GGNS: SD B33-1, pp 5, 6; OP-833-1-501, p'5; ARI B33-FAL-L603A ANSWER 3.07 (1.00)

a. Indication that the RGDS finds disagreement between the signals received from the 2 RACS.
b. Indication that the withdrawn rod must be fully ~ inserted before any other control rod can be moved. (0.5 each)
3. INSTRUMENTS AND CONTROLS PAGE 45 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

REFERENCE GGNS: LP OP-C11-2-501 ANSWER 3.08 (*. 00) d PEFERENCE GCNS: LP OP-N32-2-501 ANSWER 3.00 (1.00) b REFERENCE OFNP: L/P 43 EIH: GPNT, Vol. VI, Chapter 2.3-3, 5, Fig 2.3(3)

L-RO-712, pp 4, 5, 19 GGNS: LP OP-821-501; LP OP-C34-501 ANSWER 3.10 (2.00)

- Auto initiated at + 11.4' (0.5)

- Level signal increased to +54' (0.3) for 10 seconds (0.2)

- After 10 seconds (0.2), +54' replaced by +18' signal (0.3)

- No Reset until operator actuation of 'Setpoint Setdown Reset * (0.5)

RErERENCE GGNS: OP-C34-501 ANSWER 3.11 (1.00)

a. S22 MW (0.40
b. Bypass Valves Full Closed (0.5 each)

REFERENCE GGNS: SD's N32-2, N32-18, N32-19; Allis Chalmers Gen. Instr. Manual, Chapter 5

t d

1 3. INSTRUMENTS AND CONTROLS PAGE 46 e ____________________________

ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

i ANSWER 3.12 (2.00)

a. Max FCV Position - 15 H: Pump Speed i ts . Rated Flow Control Line (100% Rod Pattern)
c. Min FCV Position - 15 H: Pump Speed
d. ' Min FCV Position - 60 H:f Pump. Speed
e. Natural Circulation Line
f. JP Cavitation Interlock- (0.33 each) 1 REFERENCE GGNS* OP-833-2-501, p 30

, ANGHER 3.13 (3.00)

a. 1~. Deenergized
2. Energized (0.5 each)

'b.: ACTIVATED BYPASSED (0.33 each) i MSIV Closure (<= 94% F0 x 3 lines) I APRM High-High (15%)

, 'Rx Vessel High Water Level (Lvl 8, 53.5') l IRM High=High (120/125 scale) i APRM High Power-Flow (Clamped < 118%) i IRM INOP (Low Volt, Out of Oper

(Neutron Upscale Flux -OR- 1 Module-Unplus).

Neutron Flux-High Fixed) I REFERENCE GGNS* OP-C71-501, pp 17, 18; OP-C51-4-501, p 25; TS's i

ANSWER 3.14 (1.50) l- 1) Two Downscale Trips

! 2) Two' Upscale High-High-High Trips

+ 3) One.Downscale Trip -AND- One Upscale High-High-High Trip (0.5 each) i i

! l

. . . - . . . . . - ~ . . . _ _ - _ _ . - _ - _ . _ , _ _ . , . _ _ . , _ . . _ . _ _ _ , , . _ , , . _ , _ . , _ , , _ _ . . . _ . . _ , _ _ _ , _ , _ _ _ . , _ _ , , _ ,

h k

4

3. INSTRUMENTS AND CONTROLS PAGE 47 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

t REFERENCE GGNS* 04-1-01-N64 ANSWER 3.15~ (1.50)

GGNS: See Attached 1 Figure 4 580 REFERENCE

< GGNS: OP-C51-2-5013.SD-C31-2; TS's 2 ANSWER 3.16 (2.00)

-i. e i ii. a REFERENCE .

j BFNP: LPt12, p 24; TRANSIENT #20;-0I-57, p 535 RQ 85/01/02 EIH: L-RQ-726 BSEP: RTN 026; HD 17-2/3-B, Section 3.2 GGNS: OP-C34-501 a

1 l

k

!~

4 J

i i

a y - . - , - - _ _ ,,_,-.-,,,r-,-_,..-,.y..,,...,_v.,y-,,m,m.y_,, , - , _ . _ _ _ , _ _ ._w.wy,,_,,..,,...m_y,.,,.e ._...--,_.,_y- , . ,,,..,_.,,-_.r

4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 48

- ~~~~~~~~~~~~~~~~~~~~~~'~

~~~~EI656L6656IL 6 UTR6L ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 4'.01 (1.50)

1. Place the RPS (Div.1, 2, 3, a 4) CRD Discharge Volume HI Trip Bypass Switches in the BYPASS position.
2. Place the RPS (Div 1, 2, 3, a 4) Scram Reset Switches in

-the RESET position and verify that the scram resets.

3. ' Allow the HCU's to recharge, then drive the control rods that are not full-in to position 00. (0.5 each)

REFERENCE GGNS: ONEP-05-1-02-I-1, p3 ANSWER 4.02 (1.00)

Establish LPCS or,LPCI flow from the Suppression Pool with injection to the RPV (0.5) and open two (2) SRV's to establish return flow to the Suppression Pool. (0.5)

REFERENCE GGNS: 05-S-01-EP-0, ppi1, 2 ANSWER 4.03 (1.00) b REFERENCE GGNS: 05-5-01-EP-2, p 6 ANSWER 4.04 (1.00)

Personal Dosimeter (Low Range) (0.25) TLD (0.25)

Alarmin3 Dosimeter (or Portable Survey Instrument) (0.5)

( -OR- HP Surveillance )

REFERENCE GGNS: 01-S-08-2, pp 15, 16

4 i

PROCEDURES.- NORMAL, ABNORMAL, EMERGENCY AND 40 PAGE~ 49

~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~

Rd656L66565L 66 TR6L ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

t ANSWER 4.05 (1.00) 1 d

REFERENCE GGNS: ONEP-05-1-II-1,-p 4 ANSWER 4.06 (1.50)

a. Loop Manual i b. 10%
c. 15% (0.5 each)

REFERENCE GGNS: ONEP-05-1-02-III-3, p2

?

1 ANSWER- 4.07 (1.00) b REFERENCE EIH: HNP-2-1946 l CGNS: ONEP-05-1-02-V-5, p2 ANSWER 4.08 (2.50)

a. (1) 14.5 feet (2) 212 des F (3) 140 des F (0.5 each)

.l b. To ensure that there is adequate NPSH for the respective ECCS pumps. (1.0) l REFERENCE GGNS: EP-3, p 68 EP-5, p 2; EP-7, p 1 L

i.

i i-i l 7

=vaar + w y - ~ ye e,-w - e--q .y,v.,..,,-,g- -,_my--,,~-aw, n---w-~ -w,.,--.--

4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND 'PAGE 50

~~~~ -~~--------~~------~~---

i R 5i5t55iEAC 55sTR5L -

ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 4.09 ( .50)

Gas Pressure (PI-R131) remains constant REFERENCE GCNS: SOI-04-1-01-C11-1, p9 a

ANSWER 4~.10 - (1.00) a i

REFERENCE 4

GGNS: ONEP-1-02-I-4, p3

ANSWER =4.11 (1.50)
1. Vent the hydrogen pressure (to 2 - 5 psis)
2. Purge the hydrogen from the generator with CO-2 (to a CO-2 purity of 95%)
3. Purge the CD-2 from the generator with instrument air (to a .

CO-2' purity of 0%) (0.5 each)

REFERENCE GGNS: 04-1-01-N44-1, p2 ANSWER 4.12 (1.00)

P To prevent wetting of the Charcoal Adsorber Beds REFERENCE GGNS: SOI-04-1-01-N64-1 L

i i

l i

4. PROCEDURES - NORMAL, ABNORMAL,. EMERGENCY AND PAGE 51

~~~~E4616[65555[~56ATR6[~~~~~~~~~~~~~~~~~~~~~~~~

ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 4.13 (1.00)

Power-could increase if the reactor did not scram'due to power being less than 30% (0.5); reactor power could increase due to a loss of feedwater heatin3 (0.5).

REFERENCE GGNS: ONEP-05-1-02-I-2 ANSWER 4.14 (1.50)

1. RPV Level < + 11.4 *

(+- O')

2. Drywell Pressure > + 1.23 psis (+- O psig) 3.- Group I Isolation (0.5 each)

REFERENCE GGNS: EP-1, p 1 ANSWER 4.15 (1.00)

a. . Identifies equipment necessary for the safe shutdown of the reactor.
b. Used in conjunction with a FIRE in the plant. (0.5 each)

REFERENCE GGNS: EP-1, EP-2, EP-3, EP-4, EP-5 ANSWER 4.16 (1.00)

a. (Volta 3e Gradient) Capacitors (0.1) will Overheat (0.4)
b. Open the Disconnects (0.5 each)

REFERENCE GGNS: .ONEP 05-1-02-I-2, p9

. - . - .._-... ~ ,--_ - _ -. ....-.. . . , - - - . - , . - - . - . _ _ . - - .

f

4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 52 i

~~~~R E656[66 6dL"C6 TR6t

ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K. I I

f

. ANSWER. 4.17 (1.00)

a. When the 2nd Scram Accumulator (0.25) for'a withdrawn control i rod is declared INOPERABLE (0.25) (0.5) l l b. Place the Mode Switch in Shutdown (0.35 for Scram the Reactor) (0.5)

! REFERENCE GGNS: ONEP 05-1-02-IV-1 l ANSWER 4.18 (2.00)

1. Verify the Standby Pump Starts
2. ' Isolate the Fuel Pool Heat Exchanger (0.25) (CCW side also) (0.25)
3. Isolate RWCU (0.25) (CCW side also) (0.25)
4. Monitor Reactor Recirculation Systems (0.5 each)

REFERENCE GGNS: ONEP 05-1-02-V-it Section.4.2 i i  !

i ANSWER 4.19 (1.00)

Due to_the excess dP developed across the Startup Level Control Valve (0.7/0.3), . level instabilities may result (0.3/0.7). <

REFERENCE .

GGNS IDI 03-1-01-1, Section 6.2.7 i.

?

't I

i l

l

_ _ . . . . . . . _ _ _ . _ _ _ , . _ _ . ~ . _ _ . _ _ _ _ , . . . . _ _ _ _ , _ . . _ _ _ . _ _ , , _ . _ _ . _ _ , . . _ _ , _ ,__ _ _ _ ,_._____._,_, _

4. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 53

~~~~~~~~~~~~~~~~~~~~~~~~

~~~~Rd656E6656dE~66 TR6L ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 4.20 (1.50)

The following checks should be made:

- Breaker charging springs charged. (0.5)

- Charging motor disconnect switch on. (0.5)

- Control power ~on. (0.5)

REFERENCE GGNS: Procedure 02-S-01-2; OP-AD-539 ANSWER 4.21 (2.00)

a. 2
b. 4
c. 1
d. 3 REFERENCE EIH: GET Handbook, pp 57, 58, 60, 61 HNP-::-4420, H N P - :( - 4 5 2 0 , H N P-::-4 62 0 , HNP-x-4720 GGNS: Procedures 10-S-01-2, 3, 4, & Si OP-EM-502, 503, 504, a.505 l

l 1

Lesson: Residual Heat Removal System - E12 Page 40 of 68 SYSTEM LESSON PLAN TABLE 3 (Cont?d)

11. RHR INJECTION VALVES F027A AND B l

l I

HSNY1I(B) HS U dlik(B) REACTOR LOW HIGH ORYWELL WATER LEVEL PRESSURE 0

epN gN -150.3" 1.39 PSIG I l . . . -

REACTOR LOW HIGH DRY'4 ELL WATER LEVEL PRESSURE

-150.3" 1.39 PSIG VALVE

._ F028A(B)

FULLY

_ CLOSED N k 9Ctn VALVE CA- RnR.

F042A(B)

MANUAL D' INITIATION 1

i OPEN I wa.esee u it..P e ro HS-M611A(B) HS-M211A(B)

CLOSEc c ,

CLOSEew RESETTiNC.

'A" LPCS IMI.T RES t i Pb CLOSE oc MG-9601

'T KhE IMIT RESET Ph ou Bl3-P60n FIGURE # 573

J f i o +2o vDc oPEN W M M

_g DETECTOR 5 NOT .

7 - ruuv msar D

' g OPENS ON McH

- ine mszi25

/. orms oN 04ANNEL _., CLOSED W IRM 7 INCPERATIVE TRIP -", CH ANNEL 13,8YPA$$ED of tw A.Ac

(' CCSED MEN OPENS ON DOWNSCXI M RME -f "d TRIP 3/i25 4,4)).-% . i swnCH QN 7 j ,

aAnos i il ns m p,3 V

~~

PRAUSSIVE 10 aCnss 1

I

\

1RM Rod Black Circuk (typical) n .s . .

HNi u't R- - , 2 5 pr. CA< f l i

FIGURE # 580

' 7 m - - _. . .--..:y.e: ; 7 7.y - - - -..- _ -

y_- " - == =_"

n : a a ;; = = = a ~ ~ ~ m a :: n ,: = = : ~ :: : : n = .: :: : : : E

<:eana=an::..::~= =--- -----:==n==::  ?

I =

= . ,

=

  • >>O

-m -

' ai H+++++++5 e

ro N m 78 ' 06 3 ED: e -  :=,o m 2

x

!! N 'l

t + +>+ + +e+ +>4 4 + +E a eas is " c

, g 3 m  ; _r  ?

+ + + + + t + + + +e+ ++ ++ 1 s = =Es  ;,,ll

' zo s a e

x-

," g a

,pz.

++++p++++++++++++++++++++

++++

s

- e m e 5 s- ;pa -

++ -

E

- m i

8  ;;;;

,o

+ + +e+ + + +>+

++t +++D++ J

++

c

+ +

5 y

5, a

>,e .

+ +D++p+

++ ++++++++ + + ++ + + + + + +

= s ":: + +

i-b "a

. , so

+L + +e+ +y+ + +++ + ++>+ ++e g

- 5..

' ' s, si s,

+

+ ++++-F-F d- +

+e+1

- - -F + + + + 4- 5,,

a

~

" s; s .

T + + + + + +)+ 4- + + + r3~

TH

. . f.4, 5 + + +, ,+ + + d i-5

TEST CROSS REFERENCE PAGE 1 QUESTION VALUE REFERENCE 01.01 1.00 KEB0000482 01.02 1.25 KEB0000483 01.03 1.00 KED0000484 01.04 2.00 KEB0000485 01.05 2.00 KEB0000486 01.06 1.00 KEB0000407 01.07 1 00 KE30000488 01.08 1.00 KEB0000489 01.09 2.00 KEB0000490 01.10 1 00 MEB0000492 01.11 1.00 KEB0000493 01.12 1.00 KEB0000494 01.13 1.00 KEB0000495 i 01.14 1.00 KEB0000497 01.15 1.00 KEB0000498 01.16 1.00 KEB0000499 01.17 1.00 KEB0000500 01.18 1.00 KEB0000501 01.19 2.00 KE30000502 01.20 2.00 KEB0000540 25.25 02.01 3.00 KED0000548 02.02 1.00 ME30000549 02.03 1.00 KEB0000550 02.04 1.00 KEB0000553 l 02.05 2.00 KEB0000562 02.06 2.00 KEB0000563 02.07 .50 KEB0000564 02.08 1.50 KEB0000565 02.09 1.00 KEB0000566 02.10 1.50 KEB0000567 02.11 1.00 KEB0000568 02.12 2.00 KEB0000569 02 13 1.00 KEB0000570 02.14 1.50 KEB0000571 02.15 1.00 KEB0000572 02.16 1.50 KEB0000573 02.17 .50 KEB0000574 02.18 2.00 KEB0000575 02.19 1.00 KEB0000578 26.00 03.01 1.00 KEB0000229 03.02 1.00 KEB0000238 03.03 1.00 MEB0000328 03.04 4.00 KEB0000551 03.05 2.50 KEB0000554

TEST CROSS REFERENCE PAGE 2 GUESTION VALUE REFERENCE 03.06 1.00 KE00000556 03.07 1.00 KEB0000557 03.08 1.00 KEB0000558 03.09 1.00 KED0000559 03.10 2.00 KEB0000560 03.11 1.00 MED0000561 03.12 2.00 KEB0000576 03.13 3.00 KEB0000577 03.14 1.50 KED0000579 03.15 1.50 KEB0000580 03.16 2.00 KEB0000581 26.50 04.01 1.50 KEB0000300 04.02 1.00 KEB0000302 04.03 1.00 KEB0000305 04.04 1.00 MEB0000311 04.05 1.00 KEB0000313 04.06 1.50 KEB0000314 04.07 1.00 KED0000317 04.08 2.50 KEB0000319 04.09 .50 KED0000322 04.10 1.00 KEB0000327 04.11 1.50 KE00000508 04.'12 1 00 KEB0000509 04.13 1.00 KEB0000511 04.14 1.50 KEB0000513 04.15' 1.00 KEB0000S15 04.16 1.00 KEB0000516 04.17- 1.00 KEB0000519 04.18 2.00 KEB0000520 04.19 1.00 KEB0000521 04.20 1.50 KE80000523 04.21 2.00 KEB0000524 26.50 104.25

- M ader cop y -

ENCLOSURE 3 U. S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATIDH FACILITY: GRAND GULF 1 REACTOR TYPE: BWR-GE6 DATE ADMINISTERED: 85/12/16 EXAMINER: BROCKMAN, K.

APPLICANT

  • _________________________

INSTRUCTIONS TO APPLICANT:

Use separate paper for the answers. Write answers on one side only.

Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the e:: amination s tar ts .

% OF CATEGORY  % OF APPLICANT'S CATEGORY VALUE TOTAL SCORE VALUE CATEGORY e c^ 9 7

_ [_ ___ _[4_1__6 ___________ ________ 5. THEORY OF NUCLEAR POWER PLANT 23 53 OPERATION, FLUIDS, AND THERMODYNAMICS 27.00 26.21 PLANT SYSTEMS DESIGN, CONTROL,

________ ______ ___________ ________ 6.

AND INSTRUMENTATION 7

_'6 50I_I____I _'I"I_3 _ ___________ ________ 7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL 24.00 23.30 ADMINISTRATIVE PROCEDURES,

________ ______ ___________ .------- 8.

CONDITIONS, AND LIMITATIONS

\0).00 100.00 100.00 TOTALS FINAL GRADE _________________%

All work done on this e:: amination is my own. I have neither S i ven nor received aid.

5PPL5C55TI 5~55555TUR5'~~~~~~~~~~~~~

l

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 2 QUESTION 5.01 (1.00)

Which of the followin3 is NOT CORRECT as applies to the impact of delayed neutrons en reactor operations?

a. When calculating reactor period, the delayed neutron term may be considered INSIGNIFICANT if the reactivity addition is GREATER l then Beta.

l b. The magnitude of the effective delayed neutron fraction (Beta- ,

l bar) is GREATER at EOL than at BOL. j

c. The delayed neutron fraction (Beta) is the RATIO of the number.of delayed neutrons produced to the number of fission neutrons produced,
d. The presence of delayed neutrons causes the average neutron generation time ( 1 -- b e r ) to INCREASE.

QUESTION 5.02 (1.00)

Reactivity is defined as which of the following?

a. The ratio of the number of neutrons at some point in this generation to the number of neutrons at the same ,)oint in the previous generation,
b. The fractional change in neutron population per generation..
c. The factor by which neutonn population changes per genera-tion.
d. The rate of change of reactor power in neutrons per second.

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

1

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDSr AND PAGE 3 GUESTION 5.03 (1.25)

ARRANGE the following in order of INCREASING heat transfer coef-ficient (Lowest Coefficient to Highest Coefficient).

a. Free Convection, Air
b. Boilin3 Water (Free Convection)
c. Boiling Water (Forced Convection)
d. Forced Convection, Water
e. Forced Convection, Air DUESTION 5.04 (1.00)

Differential pressure measurements can by used to determine level, pressure, and flow. For each of the following in COLUMN A, SELECT the appropriate type of relationship that exists, from COLUMN B.

COLUMN A (Item) COLUMN B (Relationship)

a. Level 1. Proportional to differential pressure plus a constant
b. Flow 2. Proportional to differential pressure alone
3. Proportional to the inverse of differential pressure
4. Proportional to the square of differential pressure
5. Proportional to the square root of differen-tial pressure GUESTION 5.05 (2.00)
a. STATE the design feature in tne reactor vessel which ensures proper flow distribution through the core fuel bundles. (0.5)
b. EXPLAIN how the recirculation flow distribution would react during a power increase by rod pull if this design feature were NOT PRESENT.

INCLUDE IN YOUR RESPONSE THE REASON (S) FOR THIS REACTION. (1.5)

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

5. THEORY OF NUCLEAR POWER PLANT OPERATION. FLUIDS, AND PAGE 4 QUESTION 5.06 (1.00)

Adding latent heat to liquid water at saturated conditions will...(CHOOSE ONE)

a. ... increase .the temperature of the water.
b. ... change the water to steam at the same temperature.
c. ... change the water to steam at a slightly higher temperature.
d. ... decrease its subcooling by making it boil.

QUESTION 5.07 (1.00)

Hater is an excellent neutron moderator. LIST two (2) NUCLEAR FACTORS which make water the moderator of choice for most commercial reactors?

QUESTION 5.08 (1.00)

The reactor trips from full power, equilibrium xenon conditions. Four (4) hours later the reactor is brought critical ar.d power level is main-tained on range 5 of the IRMs for several hours. Which of the following statements is CORRECT concerning control rod motion during this period?

a. Rods will have to be withdrawn due to xenon build-in.
b. Rods will have to be rapidly inserted since the critical reactor will cause a high rate of xenon burnout.
c. Rods will have to be inserted since xenon will closely follow it; normal decay rate,
d. Rode will approximately remain as is as the xenon establishes its equilibrium salue for this power level.

(***** CATECORY 05 CONTINUED ON NEXT PAGE *****)

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 5 GUESTION 5.09 (1.50)

Using the enclosed Mollier Diagram, LIST the following property values for steam with an enthalpy of 1390 BTU /lbm and an entropy of 1.568 BTU /lbm - F.

a. Pressure
b. Temperature
c. Superheat 00ESTION 5.10 (1.00)

Attached Figure 1404 illustrates the ' Combined Head / Pressure Curves for Two Pumps.' Select fr.om the figure the appropriate system operating Point (numbered 1 through 6) for each of the following conditions.

a. Pumps A and B ru.nning in SERIES with the pump discharge valve (0.5) throttled shut from the initial condition.
b. Pumps A and B running ~in PARALLEL with the pump discharge valve (0.5) fully open.

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

Y J

4 i

4

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 6 n

I

! GUESTION 5.11 (1.00) 1 A reactor-heat balance was performed (by hand).during the 00-08 4

shift due to the Process Computer bein3 00C. The CAF's were computed, but the APRM GAIN ADJUSTMENTS HAVE NOT BEEN MADE.

t Which of the followin3 statements is TRUE concerning reactor power?

SELECT ONLY ONE ANSWER.(Only one is true!)

a. If the feedwater temperature used in the heat balance calcu-lation was LOWER than the actual feedwater temperature, then the actual power is HIGHER than the currently calculated power. ,

d

b. If the reactor recirculation pump heat input used in the heat  ;

balance calculation was OMITTED, then the actual power is LOWER than the. currently calculated power.

, c. If the steam flow used in the heat balance calculation was

^

LOWER than the actual steam flow, then the actual power is LOWER than the currently calculated power.

d. If the RWCU return temperature used in the heat balance. cal-culation was HIGHER than the actual RWCU return temperature, then the actual power is LOWER than the currently calculated power.

GUESTION U.12 (2,00) ~ _.

u c. t E 6L .D o r* . y. g . g '

A + & - _., h .7 y C i .

. . , a M]z a t-

. p7  ; 7  ;

an OD-6, Option 1 and Option 4.

a. Is'the Neutron Flux. profile in' Bundle 31,32; TOP or-EU' TOM peaked? ,

(0.5)

I

b. W o u l d t h e h i g h e s t p o w e r e d n o.Lhrr-FiI6 d l e 31,32 appear on a P-1 edit'taken at this timgl -EkFCK~IN why or..why not! (1.0)

-c. Eyg_LAINmJh%e LIMLHGR values for Bundle.31,32 vary at each

--e d _ (^.5)

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

k

. - - , v . ,. . , . . . - , , , . ~ . . , , - . . , , , , ,, . _ . , ~ . . ,

,_ , , . , , _ - , , ___mm,, .,-m._,,_._._, , - - . . , m ,.

5.- THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 7 GUESTION 5.13 (1.00)

STATE for which condition the reactivity coefficient contribution would be MORE NEGATIVE. EXPLAIN your choice.

Moderator temperature coefficient for a 75% CONTROL ROD DENSITY,

-OR-Moderator temperature coefficient for a 25% CONTROL ROD-DENSITY.

QUESTION 5.14 (1.00)

STATE for which condition the reactivity coefficient contribution would be MORE NEGATIVE. EXPLAIN your choice.

Doppler coefficient with a 25% Void Fraction in the core,

-OR-Doppler coefficient with a 75% Void Fraction in the core.

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 8 QUESTION 5.15 (2.00)

Concerning General Electric's Preconditioning Interim Operating Management Recommendations (PCIDMR):

a. Starting with the fuel at a. threshold of 11.0 kw/ft, a maximum camp increase is begun at time 0000 and the final desired power of 13.0 kw/ft is' achieved at 2000. At this time, the required soak i s.

performed FOR 10 MINUTES, at which time the load dispatcher directs a power reduction that takes nodal power down to 11.0 kw/ft. SELECT the valid preconditioned value for this node.

ASSUME THE MAXIMUM RAMP RATE IS .10 Kw/ft/hr

1) 11.0 kw/ft'
2) 11.8 kw/ft
3) 12.5 kw/ft
4) 13.0 kw/ft
b. SELECT the minimum time which would be required to raise power back to 13.0 ku/ft, given the above maximum ramp rate.
1) Immediate (Raise to 13.0 kw/ft, w/o restrictions)
2) 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br />
3) 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />
4) 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> GUESTION 5.16 (1.00)

Shortly after a power increase from 75% RTP, Off-Gas Activity increases at an above normal rate. Sampling confirms an increase in short-lived isotopes in the reactor coolant. The I-131/I-133 ratio is approximately 0.5; the activity concentration appears to be exponential to the power level,

a. STATE the type of Fission Product Release that is indicated. (0.5)

The incident continues to evolve to such a point that ALPHA emmitters are released.

b. STATE the type of Fission Product Release that is now indicated. (0.5)

(***** CATEGORY 05 CONTINUED ON HEXT PAGE *****)

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 9 9

QUESTION 5.17 ( .75)

Attached Figure 4 285 is a simplified sketch of e SJAE. For each of the pressure relationships given below, STATE whether the pressure listed first is. GREATER THAN, LESS THAN, or EQUAL TO the pressure listed second.

NOTE: THE LOCATION OF THESE PRESSURES CORRESPOND TO THE POINTS INDICATED IN THE FIGURE.

a. P(1) as to P(3) (0.25)
b. P(1) as to P(5) (0.25)
c. P(2) as to P(4) (0.25)

DUESTION 5.18 (3.00)

Attached Figure t 538 represents a transient that could occur at a BWR.

Given: (1) EHC Pressure Controller FAILS DOWNSCALE at time T =-1.4 see (2) No operator actions occur (3) Recorder Speed = 1 division = 2 seconds EXPLAIN the cause(s) of the following recorder indications:

a. Neutron Flux INCREASE (up to approximately 1.2 seconds) prior to the DECREASE to zero (Graph A). (0.5)
b. The Reactor Pressure INCREASE (just after 3 seconds) AND the subsequent DECREASE AND INCREASE (Graph B). (1.0)
c. The DIVERGENCE in lines 4 and 5 (Graph C) (up to approx-imately 2.4 seconds) AND their subsequent DECREASE. (1.0)
d. The Reector SCRAM (Graph D). (0.5)

(***** CATEGORY 05 CONTINUED ON NEXT PAGE *****)

l

5. THEORY OF NUCLEAR POWER PLANT OPERATIONr FLUIDS, AND PAGE 10 OUESTION 5.19 (2.00)

Attached Figure 4 539 illustrates a transient that could occur at a BWR.

GIVEN: (1) A fast closure of BOTH recire. FCVs at 11% per second.

(2) No operator actions are taken.

(3) Valve closure begins at time = 0 seconds.

EXPLAIN the cause of the following recorder indications:

a. The peak in inlet subcooling at ~11 seconds (Graph A). (0.5)
b. The dip in reactor pressure at '8 seconds (Graph B). (0.5)
c. The peak in vessel steam flow from ~12-15 seconds (Graph C). (0.5)
d. The reactor scram at ~8 seconds (Graph D). (0.5)

(***** END OF CATEGORY 05 *****)

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 11 QUESTION 6.01 (3.00)

Consider an Off-Normal Event in which Instrument Air System pressure is lost.

a. How will the following valves Fail? (CLOSED, OPEN, AS IS) (2.5)
1. .CRD FCV
2. RFP Minimum Flow Valve
3. Feedwater Startup Flow Control Valve
4. Dryaell Chillers Temperature Control Valves
5. TSCW Make-up Valve
b. EXPLAIN the cause of the potential High Radiation levels in the Off-Gas Building. (0.5)

GUESTION 6.02 (1.00)

Attached Figures t 477 A, B, C, & D represent four (4) CRD water flowpaths. Which one of the Figures most correctly displays the CRD Exhaust water floWPath following a ROD INSERTION?

NOTE: CONSIDER THE DEPICTED CRD AS TYPICAL AND REPRESENTATIVE OF ALL OTHER CRD's GUESTION 6.03 (2.50)

Consider the Recire Pump Slow Speed Starting Sequence Logic depicted on Figure t 554. LIST the ten (10) permissives that are left blank and numbered.

QUESTION 6.04 (1.00)

DESCRIBE the condition (s) which will generate EACH of the following indications on the Operator Control Module.

a. Channel Disagree (0.5)
b. Insert Required (0.5)

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 12 GUESTION 6.05 (1.00)

The plant is operating at 100% RTP (1310 MWe) with Recire Flow control in ' Flux Manual'. An operator inadvertently DECREASES the " Pressure Reference Set' on the EHC Turbine Contrcl System by 5 psis.

ASSUME: 1. No further operator action.

2. All other EHC control settings are normal.
3. Starting Parameters' TCVs (MSCV & LPSCVs) - 100% Steam Flow Position BSCVs -

0% Steam Flow Position Rx Power - 100% Rated Thermal Power

- R :, Pressure- - 1025 psi 3 Load Demand / Load Limit - 1310 MWe NOTES: All valve %s are in % Steam Clow Position.

See Figure t 550 (EHC Logic Diagram) for information.

Which of the following most accurately describes both the INITIAL RESPONSE and FINAL STATUS of the different parameters and components?

a b c d INITIAL RESPONSE

- TCVs IPartial I P a r t i cil INo Change INo Change IClose (<100%) IClose (<100%) I 1

-BSCVs INo Change IPartial IPartial IPartial

! 10 pen (>0%) 10 pen (>0%) 10 pen (>0%)

-R: Power IIncrease INo Change IDecrease IDecrease

-R> Pressure !Increaso INo Change IDecrease IDecrease 1 1 1 I FINAL STATUS  !  ! I I

' I I 1

-TCVs  !"100% IPartial 10% (MSIV I"100%

! IClose (<100%) I SHUT) 1

-ESCVs 10% IPartial 10% (MSIV 10%

!Open (>0%) I SHUT) 1

-P/ Power  !>100% l>100% l~0% i<100%

- R >' Pressure _131025 psig l>1025 psis IAs controlled l<1025 psig i l Iby SRVs & RCICI ONLY ONE ANSWER - READ ENTIPE COLUMN FOR BOTH INITIAL AND FINAL RESPONSES

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 13 QUESTION 6.06 (2.00)

EXPLAIN the functioning of the Feedwater Control System 'Setpoint Setdown Mode' feature from actuation to a reset condition. Ensure that your explanation addresses the following*

- all applicable setpoin.t(s)

- specific effect(s)

- reset method (s)

GUESTION 6.07 (2.00)

The Standby Gas Treatment System has received a valid initiation signal. The system automatically initiated. The initiation sig-nal is still present.

EXPLAIN ALL of the effect(s) (POTENTIAL OR ACTUAL) on the system operation which would occur from the following operator actions.

NOTE

  • ENSURE YOUR RESPONSE ADDRESSES THE EFFECT(S) FOR BOTH POSITIONS OF THE 'SGTS DIV 1 MODE SEL SWITCH" - AUTO AND STANDBY.

The SGTS DIV 1 MAN INIT RESE1 SW is taken to RESET and then taken back to NORM

-AND-The ENCL BLDG RECIRC FAN 'A' and SGTS FLTR TR 'A' EXH FAN are taken to STOP COMMENTS MADE BY THE EXAMINER DURING THE EXAM An initiation signal is in -

Explain the effects!

a. (1) Mode Sel Switch in AUTO b. (1) Mode Sel Switch in STBY (2) Reset Sw -> RESET -> NORM (2) Reset SW -> RESET -> NORM (3) Fans to STOP (3) Fans to STOP GUESTION 6.08 ( .50)

The RHR-LPCI System has received a valid initiation signal. The system automatically initated. The initiation signal is still present.

RHR-LPCI 'A' flow is diverted to initiate Suppression Pool Cooling by use of the TEST RETURN LINE VALVE (F024A) MANUAL OVERRIDE function.

LIST the condition (s) that would defeat / inhibit this manual override signal to F0244.

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 14 OUESTION 6.09 (1.00)

The plant is operating at power with A and C CCW pumps running and the B CCW pump ' selected for STANDBY operation. A LOP occurs and the diesels start'and tie in normally. Which one of the following most accurately describes how the CCW system will respond during this transient?

a. The LSS pane'l will auto start the B CCW pump en ESF power after the bus is reenergized.
b. Both the A and C CCW pumps can be started manually on ESF power after the buses are reenergized.
c. The B CCW pump will not auto start, but can be manually started by the operator on ESF power after the bus is teenergized.
d. The B CCW pump will auto start on a low CCW pressure signal after the ESF bus is reenergized.

QUESTION 6.10 (1.50)

The containment building sampling subsystem station located on the 185' elevation of containment provides a central location for moni-taring and grab sampling what three (3) fluid systems?

OUESTION 6.11 (1.00)

SPLC System A is in a normal STANDBY lineup with one systematic deviation - the TEST TANK OUTLET VALVE (F031) is OPEN.

Which of the following most accurately describes the effects on the STORAGE TANK OUTLET MALVE (F001) and SBLC PUMP A of placing the SBLC Keylock Control Switch for Pump A to START.

a. Valve F001 Opens - SBLC Pump A Starts after the valve reaches its Full Open position.
b. Valve F001 Opens - SBLC Pump A starts concurrently with the valve opening.
c. Valve F001 does Not Open - SBLC Pump A Starts
d. Valve F001 does Not Open - SBLC Pump A does Not Start

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

j

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 15 QUESTION 6.12 (1.50)

' FILL IN THE BLANKS on attached Figure 4 573, RHR Injection Valves F027A and Br with the appropriate permissives, si3nals, and setpoints.

QUESTION 6.13 ( .50)

FILL IN THE BLANK DG 11 is the sole supply to ESF ' Bus 15AA. When parallelin3 the i Normal Power. Supply back to ESF. Bus 15AA, the synchroscope should be turning slowly in the ________ direction.

QUESTION. 6.14 (2.00)

I With respect to the MSIV Leakage Control System:

.a. EXPLAIN the initiation sequence for valves F001A, F002A, and i F003A within the first 5 minutes. Assume MSIV leakase is minimal

, (as designed)~ . Indicate approximate timins in your response. (1.0) b.- Followins an initiation of the INBD MSIV LCS, there are 2 system conditions which are indicative of excessive MSIV leakage. DESCRIBE these conditions and their. resultant automatic action (s). Indicate component (s) affected, timing, and setpoints in your response.

CONSIDER ONLY SUBSYSTEM 'A*. (1.0).

NOTE: FIGURE # 575 IS ATTACHED FOR REFERENCE QUESTION 6.15 (3.00)

I '

Resarding the RPS System
a. STATE whether the solenoids associated with the following valves i-are NORMALLY Ener3 i red or Deenersi=ed. NO SCRAM SIGNAL EXISTS (1.0)
1. Back-up Scram Valves
2. Scram Discharse Volume Vent and Drain Valves
b. Repositioning the Mode Switch from STARTUP/ HOT STANDBY to RUN

~

causes certain reactor scram functions to bs bypassed ind others to be. effective. LIST the three (3) scram functions which are bypassed

and-the three (3) scram functions which become effective when the Mode Switch is taken to run. INCLUDE SETPOINTS.

(***** CATEGORY 06 CONTINUED ON NEXT PAGE *****)

i-

. -.- .,. . , _ - . -.-- - - ,, . . - , - - - ~ , , ,

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 16 QUESTION 6.16 (1.50)

Attached Figure 4 580 illustrates a typical IRM rod block circuit.

STATE when the six (6) contacts shown on the figure will change (Open -> Close -or- Close -> Open) position.

RESPOND TO THIS QUESTION ON FIGURE 4 580 QUESTION 6.17 (2.00)

For each of the following situations (i and ii) select the correct Feed-water Control System / plant response from the list (a through e) which follows. An answer may be used more than once, and N0 operator actions are taken.

a. Reactor water level decreases and stabilizes at a lower level.
b. Reactor water level decreases and initiates a reactor scram.
c. Reactor water level increases and stabilizes at a highar level.
d. Reactor water level increases and initiates a turbine trip.
e. None of the above.
1. The plant is operating at 70% powere in 3-element control, when One (1) MSIV Fails Shut.

ii. The plant is operating at 100% power, in 3-eleme1t control, when the Level Program Modifier signal fails to its MAXIMUM NORMAL OPERATING value.

(***** END OF CATEGORY 06 *****)

7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 17

~~~~R 3656[65565L"66 TR6L'~~~~~~~~~~~~~~~~~~~~~~~

GUESTION 7.01 (1.50)

A reactor SCRAM has occurred, but NOT all of the control rods have inserted to less than the 06 position. Reactor power is indicated as 37. on the APRM's. LIST the three (3) immediate operator action steps that are required per ONEP-05-1-02-I-1, ' Reactor Scram."

NOTE: LIMIT YOUR RESPONSE TO THOSE ACTION STEPS REGUIRED FOR REACTIVITY CONTROL.

GUESTION 7.02 (1.00)

Assume that adequate core cooling CANNOT be maintained and

' Alternate Shutdown Cooling' must be established per EP-8.

DESCRIBE the RPV cooling water flowpath that should be estab-lished per EP-8.

NOTE: INCLUDE IN YOUR DESCRIPTION THE SYSTEMS / COMPONENTS WHICH ARE USED.

\

GUESTION 7.03 (1.00)

Per EP-2

  • Emergency Cooldown*, which one of the following most accurately describes how SRV operation should be used to. control pressure, if needed?

NOTE

  • ASSUME THAT THE INSTRUMENT AIR SYSTEM IS OPERATING PROPERLY
a. Use numerous SRU's, with short pressure reductions

( ~ 50 psis) to equalize Suppression Pool heatup.

b. Use fewer SRV blowdowns, with increased pressure reduc-

.tions to minimize SRV cyclic stresses.

c. Depressurice with a sustained SRV opening to maximize the emergency cooldown rate.
d. Allow the SRV's to operate by mechanical actuation to ensure design pressure control and heat dispersion.

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

l

7. PROCEDURES - NORMAL, ABNORMAL 7' EMERGENCY AND PALE 18

- ~~~~~~~~~~~~~~~~~~~~~~~~

~~~~R A515L55f5AL 5 UTR L QUESTION 7.04 (1.00)

The Control Room is declared uninhabitable and evacuated. The immediate operator actions for " Shutdown From the R e re o t e Shutdown Panel *, ONEP-05-1-III-Ir are completed. RCIC then ISOLATES.

Level subsequently decreases to Level 2. Restoration of level USING RCIC reguires which of the following?

ASUME THAT THE THREE CONDITIONS NEEDED FOR RESETTING AN ISOLATION, PER ONEP-05-1-02-III-5,-' AUTOMATIC ISOLATIONS", HAVE BEEN MET.

a. No Operator Action. RCIC will castart automatically.
b. Operator Action. Close RCIC TURB TRIP /,THROT VLV; Place RCIC TURB FLO CONT in manual at minimum setting; Re-open RCIC TURB TRIP /THROT VLV and establish flow.
c. Operator Action. Close RCIC TURB TRIP /THROT VLV; reset RCIC TURB TRIP logici RCIC will now restart automatically.
d. NDHE OF THE ABouE. RCIC cannot be restarted from the Remote Shutdown Panel after isolation.

QUESTION 7.05 (1.50)

ONEP-05-1-02-III-3, " Decrease in Recirculation System Flow Rate",

directs operator actions for an unexpected decrease in reactor coolant system flow rate.

FILL IN THE BLANKS (After the unexpected decrease), if both recirculation loops are still operating, transfer the FCV's to (a) ____. Balance loop flows to within ____ (b) ____ at less than____70% core flow, or to within

____ ( c) ____ at greater than 70% core flow.

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

70 PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 19

- ~~~~~~~~~~~~~~~~~~~~~~~~

~~~~UhU5ULUU5U5L CUNTR6L GUESTION 7.06 (1.00)

The unit is operating at 70% RTPi you notice power start to increase with NO CHANGE in recirculation flow or rod position. You suspect a ' Loss of Feedwater Heating.'

Which of the following is required /aopropriate per DNEP-05-1-02-V-5?

a. A 30% reduction in Recire Flow, monitored by Recire Flow indication..
b. A 30% Power Reduction, using Recire Flow, monitored by APRM's.
c. Insertion of Shallow Rods, to maintain proper flux shape, prior to reducing Recirc Flow.
d. Insertion of Power Rods, to maintain proper flux shape, prior to reducing Recire Flow.

QUESTION 7.07 (2.50)

EP-3, EP-5, and EP-7 caution the operator to observe certain linitations on Suppression Pool Level and Temperature when operating HPCS, LPCS, RHR, and/or RCIC.

. COMPLETE Tl!E FOLLOWING * (1.5)

Suppression Pool Level shall not be less than ____ (1) ____.

Suppression Pool Temperature shall not exceed (2) ____

during HPCS, LPCS, and/or RHR operation; it shc!1 ____not exceed ____ (3) ____ during RCIC operation.

b. STATE the banis for these temperature / level limitations on the Suppression Pool. (1.0)

GUESTION 7.08 ( .50)

You are conducting a shutdown of the CRDH system, per SOI-04-1-01-C11-1. You open Drain Valve 107xx to drain the water accumulators.

STATE the indication (s) which should be used to determine that the accumulator is fully drained.

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 20

~ ~~~~~~~~~~~~~~~~~~~~~~~~

~~~~R565UL655C5L CU5TRUL GUESTION 7.09 (1.00)

Upon recovering from a ' Loss of Off Site Power", ONEP-1-02-I-4 cautions the operator that either the SJAE's be isolated -OR-the condenser vacuum be broken PRIOR to re-energizing MCC's 11842, 12B42, and 14822. Which of the following is the basis for this caution?

a. Prevent large reverse flows in the Off Gas system.
b. Prevent inadvertent initiation of the Mechanical Vacuum Pumps.
c. Prevent establishing combustible gas mixtures in the charcoal adsorbers.
d. Prevent electrically tripping the cooling compressors in the Off Gas System.

QUESTION 7.10 (1.50)

DESCRIBE the steps that must-be performed in order to take the Main Generator from its normal operating status to a status where maintenance can be performed on the generator after a shutdown.

NOTE

  • LIMIT YOUR RESPONSES TO THE GAS SYSTEMS REQUIRED TO EFFECT THE PUREFICATION.

QUESTION 7.11 (1.00)

SOI-04-1-01-N64-1, "RWCU System", cautions that, whenever pos-sible, the RWCU system should be operated at MAXIMUM permissible temperature and flow rate to both Feedwater lines during LOW Feedwater Flow conditions. STATE the basis for this procedural caution.

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

t

7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 21

~~~~R E656[665C [ 665TR6[~~~~~~~~~~~~~--~~~~~~~~~

GUESTION 7.12 (1.50)

FILL IN THE BLANKS; EPP-183 " Personnel Search and Rescue", authorizes the SAR Team cembers to receive a MAXIMUM emer3ency dose of ____ (a) ____ when taking measures to protect plant safety systems. Lifesaving actions which may result in doses in exerss of __ (a) __ shall be

____( b) ____ in nature and should not exceed ____(c) ____.

QUESTION 7.13 (2 50)

LIST five (5) Entry Conditions for EP-3, ' Containment Control'.

QUESTION 7.14 (1.00)

You are using an Emergency Procedure 'EP) and notice the annotation CSSD] listed beside a component name.

a. STATE the significance of the annotation. (0.5)
b. STATE under what emergency conditions this annotation is significant (i.e., used in conjunction with what condi-tions in the plant). (0.5)

GUESTION 7 15 (1.00)

ONEP 05-1-02-I-2 cautions the operator NOT to allow an OPEN 500 KV Breaker to have voltage to it for > 3 0 r.. i n u t e s .

a. STATE the basis fer this caution (i.e.r limiting component (s)) (0.5)
b. STATE the appropriate action that should be taken if a 500 KV Breaker is expected to be OPEN for > 30 minutes. (0.5)

GUESTION 7.16 (1.00)

A SINGLE MSIV CLOSES and you determine that a high flow condition was reached in the other steam lines. Given that a Group I Isol-ation DID NOT OCCUR - STATE your Immediate Actions.

(***** CATEGORY 07 CONTINUED ON NEXT PAGE *****)

7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 22

~~~~~~~~~~~~~~~~~~~~~~~~

~~~~RE656[6656AL'665TR6L QUESTION 7.17 (1.50)

Per ONEP 05-1-02-III-11, " Containment Hydrogen Control", LIST three (3) conditions which require the operator to START the HYDROGEN IGNITERS.

QUESTION 7.18 (1.00)

Per ONEP 05-1-02-IV-1, 'CRD Malfunction', if NO CRD Pumps are runnin3 and NO CRD Pumps will restart;

a. STATE WHEN immediate corrective action must be initiated. (0.5)
b. STATE the Immediate Action (s) required. (0.5)

GUESTION 7.19 (2.00)-

Per ONEP 05-1-02-V-1, STATE the Immediate Actions required for a PARTIAL Loss of -CCW.

QUESTION 7.20 (1.00)

You are in the ' Reactor Heatup and Pressurization' phase of IOI 03-1-01-1, ' Cold Shutdown to Generator Carrying Minimum Load".

Reactor Pressure is 300 psig. The procedure cautions you to

"... minimize the use of a condensate booster pump at low pres-sures." STATE the basis for this caution.

QUESTION 7.21 ( .50)

TRUE OF FALSE If all rod position indication.is lost - rod insertion is the only allowable rod motion. (i.e., Insert or Scram)

(***** END OF CATEGORY 07 *****)

8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 23 QUESTION 8.01 (1.50)

Hith the exception of breaker position, what THREE (3) items should an operator check on a breaker, if applicable during the performance of a system lineup checksheet per Control and Use of Operations Section Directives, 02-S-01-2? Consider Local checks only, and a 4.16 KV I.T.E.

Circuit Breaker as an example.

QUESTION 8.02 (1.00)

The APRM Trip Setpoint Formula is (.66W+48%)mT. Which of the following choices correctly details the definition of 'T' AND when it is applied?

a. T = FRTP/MFLPD i T applied if f 1.0
b. T = MFLPD/FRTP i T applied if < 1.0
c. T = FRTP/MFLPD i T applied if > 1.0
d. T = MFLPD/FRTP i T applied if > 1.0 QUESTION 8.03 (1.00)

What are the Two (2) provisoes / stipulations that must be met in order to allow 'out of sequence" completion of IOI procedural steps?

OUESTION 8.04 (1.00)

FILL IN THE BLANK with one of the following TS terms

  • A ________ shall be the injection of a simulated signal' into the channel as close to the sensor as practicable to verify OPERABILITY including alarm and/or trip functions and channel failure trips.'
a. Channel Calibration
b. Channel Check
c. Channel Functional Test
d. Logic System Functional Test

(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)

8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 24 QUESTION 8.05 ( .50)

FILL IN-THE BLANK FOR THE FOLLOWING:

In accordance with 10 CFR 55, "if a licensee has not been actively.

performing the. functions of an operato.r or senior operator for a per.iod of ___(1) ___ months, or longer, he shall, prior to resuming activities licensed pursuant to this part, . demonstrate to the Commission that his knowledge and understanding of facility oper-ation and administration are satisfactory."

-GUESTION 8.06 (1.50)

Technical Specifications define SHUTDOWN MARGIN as ...

" SHUTDOWN MARGIN shall be the amount of reactivity by which the reactor is suberitical or would be subcritical assuming ...

and the reactor is in the shutdown condition; ...

LIST the plant conditions which complete the definition of SHUTDOWN MARGIN.

QUESTION 8.07 (2.00)

ADEQUATE CORE COOLING must be assured prior to securing an ECCS system that has automatically init'iated. LIST four (4) plant conditions (per the ' Conduct of Operations

  • procedure) which will assure that Adequate Core Cooling exists.

QUESTION 8.08 (1.00)

The symbols (x) and (4) may proceed step (s) in the Pre-Startup Checksheet of an I0I. STATE the meaning of each of th*se symbols.

NOTE: FIGURE t 533 IS PROVIDED AS AN EXAMPLE.

QUESTION 8.09 (1.00)

LIST the action (s) which the Shift Supervisor shall perform prior to the intentional removal of any safety-related systems or components from service. s

(***** CATEGORY 08 CONTINUED ON NEXT PAGE xxxxx)

80 ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 25 GUESTION 8.10 (2.00)

During a Reactor Startup with the plant in Operational Condition 2, a Channel Functional Test on the'EOC-RPT system is determined to be UNSATISFACTORY. The UNSAT condition affects no other TS systems.

a. STATE whether it is allowable to enter Operational Condition 1.

JUSTIFY your response. (1.0)

b. DESCRIBE the physical phenomenon which necessitates the EOC-RPT system. (i.e., the Bases for EOC-RPT) (1.0)

GUESTION 8.11 (1.00)

Unit 1 is in Operational Condition 1, at 75% RTP, with one outstanding deficiency:

ADS 1 ADS Valve INOP (1 Day)

The Auto - swap of the HPC3 suction upon receiving CST low level is determined to be UNSATISFACTORY. One channel of the swap-over lo3 i c is tripped, the suction is MANUALLY switched to the Suppression Pool, and the suction to the CST is ISOLATED.

Which one of the following actions most correctly details the allowances and/or limitations imposed by the Technical Specifi-cations in this instance?

NOTE: APPLICABLE TS's ARE ENCLOSED FOR REFERENCE

a. ...no new limitations or TS Operational Condition restrictions are initiated by this re-alignment.
b. ...be in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and reduce reactor steam dome pressure to less than or equal to 150 paig within the fol-lowing 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
c. ...be in at least HOT SHUTDOWN withiri 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and COLD SHUTDOWN within the followin3 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.
d. ...be in at least HOT SHUTDOWN within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and reduce reactor steam dome pressure to less than or equal to 150 psis within the next 30 hou'rs.

(***** CATEGORY 08 CONTINUED ON.NEXT PAGE *****)

8. ADMINISTRATIV

E. PROCEDURE

S, CONDITIONS, AND LIMITATIONS PAGE 26 QUESTION 8.12 (3.00) l

a. The following data was derived for' Unit i during a single day of operation at Operational Condition 1..The' unit has been in Opera-tional Condition 1 for two weeks. Only FINAL DATA is presentedi

-Preliminary data is not supplied.

SHIFTS 00-04 04-08 08-12 Floor Drain Leakage 2.52 spm 4.58 spm 3.75 spm Equipment Drain Leakage 20.91 spm 20.58 spm 21.00 spm Total Leakage 23.43 sem- 25.16 SPm 24.75 spm SHIFTS 12-16 16-20 20-24 Floor Drain Leakage 4.30 spm 4.25 spm 4.60 spm Equipment Drain Leakage 22.25 spm 24.33 spm 19.33 spm Total Leakage 26.55 SPm 28.58 spm 23.93 spm MOTE THE DRYWELL LEAKAGE CALCULATIONS ARE THE TOTAL LEAKAGES WHICH WERE CALCULATED DURING THE INDICATED PERIODS. .THUS, DAILY TOTALS WOWLD BE ATTAINED BY ADDING THE 6 4-HOUR PERIOD TOTALS.

EVALUATE FOR EACH of the four (4) TS Leakage LCO limits applicable in this plant' condition whether the limit was exceeded, or not. ~

(Disregard the Reactor Coolant' System Pressure Isolation Valve Limit as defined in TS Table 3.4.3.2-1) (2.0)

b. DEFINE " Pressure Boundary Leakage.' (1.0)

QUESTION 8.13 (1.50)

With the Mode Switch locked in the Refuel position *

' CORE ALTERATIONS shall not be performed using equipment assoc-iated with.a Refuel position interlock unless at least the full associated Refuel position interlocks are OPERABLE for such equipment.'

LIST these three (3) Refuel Position Interlocks.

(***** CATEGORY 08 CONTINUED ON NEXT PAGE mwarm)

8. ADMINISTRATIVE PROCEDURES, CONDITIONSr AND LIMITATIONS PAGE 27 QUESTION 8.14 (1.00)

Per the Technical S P ecifications, COMPLETE THE FOLLOWING TABLE:

MINIMUM SHIFT CREW COMPOSITION POSITION NUMBER OF INDIVIDUALS REQUIRED TO FILL POSITION CONDITIONS 1, 2r &3 CONDITIONS 4 &S SS _____ (a) _____ _____ (f) _____

SRO _____ (b) _____ _____

( s)_____

RO _____ (c) _____ _____ (h) _____

A0 _____ (d) _____ _____ (i) _____

STA _____ (e) _____ _____ (j)_____

QUESTION 8.15 (1.00)

All Fuel is removed from the core; however, Fuel Loading is scheduled to commence. TWO (2) Control Rods are removed from the core under the allowances of the Technical Specifications.

Which one of the following actions most accurately details the allowances and/or limitations imposed by the Technical S P ecifications in this instance?

NOTE: APPLICABLE TECHNICAL SPECIFICATIONS ARE ENCLOSED FOR REFERENCE

a. Fuel Loading may.not commence until all Control Rods are inserted.
b. Fuel Loading may commence and continue as long as the Shut- l down Margin requirements of TS 3.1.1 are satisfied. i
c. Fuel Loadin3 may commence - however the four fuel assemblies surrounding the removed Control Rods may not be loaded,
d. Fuel Loading may commence AFTER one of the Control Rods is inserted. The four fuel assemblies surrounding the removed Control Rod may not be loaded.

(***** CATEGORY 09 CONTINUED ON NEXT PAGE *****)

0. ADMINISTRATIVE PROCEDURESr CONDITIONS, AND LIMITATIONS PAGE 28 GUESTION 8.16 (1.00)

Which of the following choices will correctly complete the blanks for the MCPR'LCO listed below?

The MCPR shall be equal to or ____ (1) ____than ____ (2) ____ MCPR(f)

____ (3) ____MCPR(p) limits at indicated core flow and THERMAL POWER as shown in Figures 3.2.3-1 and-3.2.3-2.

NOTE: Figures 3.2.3-1 and 3.2.3-2 are enclosed for reference.

(1) (2) (3)

a. greater i the smaller of the i or
b. less i the larger of the ; or
c. greater i both i and
d. less i both i and QUESTION 8.17 (1.00)

Unit 1 is in COLD SHUTDOWN during a reactor startup with no outstanding deficiencies. Hydrogen Recombiner A becomes INOP.

It is anticipated that repairs will be complete within two (2) weeks.

Which of the following actions most accurately details the allowances and/or limitations imposed by the Technical Spec-ifications in this instance?

a. Operational Condition 4 must be maintained (Entry into Operational Condition 5 is acceptable)
b. Startup activities may continuei Operational Condition 3 may be entered, but not exceeded.
c. Startup activities may continvei Operational Condition 2 may be entered, but not excee'ded; Oxygen concentration shall be maintained < 2 v/o.
d. Startup activities may continvei Operational Condition 1 and/or.2 may be entered, but the Recombiner must be returned to an OPERABLE status within 30 days.

NOTE

  • APPLICABLE TS's ARE ENCLOSED FOR-REFERENCE

(***** CATEGORY 08 CONTINUED ON NEXT PAGE *****)

l

8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 29 GUESTION 8.18 (1.00)

Unit 1 Technical Specification 3.4.4 establishes the following conductivity and chloride limits

  • PLANT CONDITION CONDUCTIVITY LIMIT- CHLORIDE LIMIT 1 1 umho/cm 0.2 ppm 2 and 3 2 umho/cm 0.1-ppm
a. Per the TS Basis, WHY is the chloride limit more restrictive at the lower steaming rate than when at power? (1.0)

GUESTION 8.19 (1.00)

Unit 1 is in Operational Condition 1, at 100% RTP, with one outstanding dieficiency*

ADS 1 ADS Valve (Division 1) INOP (1 Day)

Surveillance testing on High Pressure Core Spray (HPCS) 13 is UNSATIS-FACTORY. The HPCS is declared INOPERABLE.

Which one of the following actions most accurately details the allowances and/cr limitations imposed by the Technical Specifi-cations in this instance?

NOTE: APPLICABLE TS's ARE ENCLOSED FOR REFERENCE

a. Be in at le.st HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
b. Be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and reduce reactor steam dome pressure t o = <' 135 psig within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
c. Within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, commence action to be in at least STARTUP within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in HOT SHUTDOWN within the following 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> with reactor steam dome precsure =< 135 psig within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
d. Within 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />, commence action to be in at least STARTUP within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in HOT SHUTDOWN within the following 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

(***** END OF CATEGORY 08 *****)

(************* END OF EXAMINATION ***************)

V@

8 STEM JET AIR EJECTOR s , . _. . . ., 3 . . :

. , ~

j,. ,,. ,, , , r. P(5) rv)

^

{S**ij"j),7,17,,..;re-+'_

., _..~. -

,, _L -

P(4)

\

l l

l l

1 I

\ l r >(2) main Condenser 4

FIGURE g 285 5.11

g STEAM JET AIR EJECTOR j,, . , s. ., , . . .

-.,-..~.

.gg ,.. ,(y) . .....

. . . .e. . . . ... ... ,. . 4y ,. .y . . . .

. .s .

P(5)

_m _%

P(4) .

. I e (2)

Main Condenser 6

FIGURE f 285 .

5. I 1

e H

e " .

f .

2 J s N

\*

~

N.

. a.

h

(_ %g s

\ q *IW 5

~ ,e .- .

= .

p .

~s

~ ,%

wv

\ ' "'e e

M s

y

~

N \&

3 s .

m N N E .%

s : \

s\\-

-3 ..

'y

} .gg)

\.

  • - j j -

y( ,

= l EM i E

N **

e e

' ~ ~ - - -- - - ._______ _ ___. ,__ _ ___ __ _

~

GD-6 TH8EMAL DATA IN FUEL iS85MBL% IX JY = 31,32 8/24/84 0800  :

CTF 'WT FRUN FBUNAV W WBUNAV FIOFF XE MFLPD KZMF MFLCPR MCFR EBUN DNA t 2103. 182.15 2.984 2.7.52 0.127 0.119 0.988 0.0946 0.466 19 0.4165 2.9774 27548.75 17.32 64' CPR DATA . .

~

NFLCFR MCFR ELCFR EKFLO ITYF SIZE FLIN b.

"I 0.4165 2.9774 1.240 1.600 2 '

' 8X8 13.40 -

ECCS 1.IMITS -

APRAT ELEV MAFLHCR LIMLHGR 0.474 -

, 19 . , 5.02 10.60 -

1 . .

EE ,

POW RELFWR , QUAL VF LFKF FLPD FKLHCR I

1 0.0360 0.2897 * -0.0260 0.000 1.183 0.097 1.304

2; 0.0818 0.6583 -0.0236 0.000 1.104 0.206 2.764 l3' O.0873 ~ 0.7025 -0.0202 -0.000 1.099 0.219 2.938
4* 0.0905 0.7276 -0.0166 40.001 1.098 0.227 3.040 -

l5. ,

0.0936 ' O.7525 -0.0128 0.017 1.099 0.235 3.146

! 6 ,. ' O.0972 0.7815 ,

-6.0049 0.044 1.100 0.244 3.270

!7' O.1014 0.8157 -0.0049 0.075 1.100 0.255* 3.446 -

'8! 0.1085 0.8723 -0.0006 0.110 1.102 0.273 3.656 l sr. 0.1144 0.9204 0.0039 0.147 1.102 0.288 3.860 LO ' s 0.1207 0.9709 0.0087 0.185 1.103 0.304 4.073 ,

?!!',

  • 0.1309 . 1.0531 0.0138 0.225 1.103 0.330 4.420

?

12.( . -

0.1383 ,1.1126 0.0193 6.170 1.103 0.348 4.670 L3 7 O.1431 1.1512 0.0250 0.313 1.'103 0.360 4.830 L44 0.1449 1.I'653 0.0'309 0.349 1.102 0.365 4.886 l5TM.. 0.1515 1.2182 0.0369 0.380 1.101 0.381 5.105 L6.F 0.1559. 1.2540 0.0431 0.407- 1.101 0.392 5.253 '

L7)[ g 0.1528 1.2294. 0.0494 0.431 1.100. 0.384 5.146 4

[8 94 . 0.1580 1.2708 0.0557 0.453 1.099 0.397 5.317

<  ; ' 't- 0.1619 1.3026 0.0623 0.472 1.099 -0.406 4.556

. 0.1604- 1.2903 0.0688 0.491 1.098 0.402 5.391 i' , .? 0.1570 't.2626 0.0753 0.507 1.098 0.394 5.275 2T . 0.1490 1.1981, .0.0815 0.522 ~

1.101 -

0.375 5.021

, 0.1367 1.0997 0.0873 0.535 1.109 0.346 4.639 5

i'. O.1122 0.9023 0.0924 0.546 1.125 0.288 3.861

${ ' '- . .

FIGURE f 426 A S .12.

4

\ , .

j  !. . . N . T.

{ '

. s-

{ 006 OPTION ,

4 8/24/84 0800 .

, , THE .

12 HIGNEST RATIOS OF'A.SUNDLE MAPLHCR TO'ITS LIMITING LHCR, FOR ALL-BUNDLES IN THE CORE ARE

~

~k

(

l r .

j 4

NAPRAT NAFLHCR .LINLHCR. 'ITYP .'EXP L J.K -

X,Y,K .

' 154.4.19 i

0.572 5.79 10.12 2 34252. 19,49,19

  • I 1

O.572 5.79 10.11 2 34307 65,2,19 41,14,19

,0.572 5.79 10.13 2 34193. 60,1,19 19,14,19 ,

i . *0.572 5.7% 10.11 2 34289. '38,3,19 41,48,19 f

,, 0.533 6.64 12.00 5 11936. 119,3,20 9,36,20 l .- 0.553, 6.63 , 12 00 5 11946. 96,1,20 51,26,20 0.552 6.63 12.00 5 11988, 130,4,20 51.36,20 r

0.552 6.62 12.00_. 5' 12034. *13,2,20 9,26.20 ,

[ 0.552 6.67 12.10 6* 13290. 1 5 4 . ,3 ,1 9 21.48 g19 ,

154.1.19 0.551 6.67 12.10 6 12718.. 19,50,19

! . 0.551 6.67 12o10 6 13317. 60,2,19 21,14,19

  • l 0.551 6.67 12.10 6 13297 65,1,19 39,14.19- -

[ NUMBER OF BUNDLES WITH MAPRAT GREATER THAN 1.0 IS O

> e O

h a .e .

f.;. -

l &. -

i FIGURE # 426 B

]

s. i t 1

s .

N \

006 OPTION ,

4 8/24/84 0800' EE94d,S FERRY - 2 .

. . l -

) , ,

THE 12 HIGNEST RATIOS OF 'A.5UNDLE MAPLHCR TO'ITS LIMITING LNCR, *

~

FOR ALL BUNDLES IN THE CORE ARE ~~ ~ .

MAPRAT MAPLEGR LIMLHCR. 'ITYP 'EXP L.J .K X,Y,K- -

34252. 154,4,19 19,49,19 *

- 0.572 5.79 10.12 2 7

0.572 5.77 10.11 2 34307. 65,2,19 41.14,19 .

0.572 5.79 10.13 2- 34193. 60,1,19 19.14,19

~6.572 10.11 2 34289. '38,3,19 41,48,19 5.75 ~

0.533 6.64 12.00 5 11936. 119,3,20 9,36,20

. 0.553, 6.63 12.00 5 11946. 96 -1,20 51,26,20 0.552 6.63 12.00 5 11988. 130,4,20 51,36,20 0.552 6.62 12.00_ 5* 12034. *13,2,20 9,26,20 4

0.552 6.67 12.10 6.* 13290. 154.,3,19 21,48,19 .

0.551 6.67 12.10 6 12718.. -154,1,19 19,50,19

. 0.551 6.67 12.10 6 13317. 60,2,19 21,14,19 l 0.551 6.67 12.10 6 13297 65.1.19 39,14,19' NUMBER OF BUNDLES WITH MAPRAT GREATER THAN 1.0 IS 0

% . g

  • i-Y1 . .

.} ' . ' ,

FIGURE # 426 C f.12_

e T

!5'33 E

=

w la

=E E a_

wa.L:e (

ge e er, s -

=,

5 NW 8 h,hd h .

"-:  ! e d"i

' r

.c at i ,s H

g B

l o

\ s < g I N.

C %.

,: m 4 O =

_- 4

( N

! -#- g se

  • y r'i N g j

i =

N N get 111AI13fRI N

h5 -

hhkl '

a e

n:fst-e l

If j I[

E Ed m ! d b:- I' a *=

g-a y E WE . U 5 $ )

~

m, ~

a

$$ 5

!!PJ t J e_

-~ ~

"a iii 8

.a 8 i

i

, U\ f. i g5EE

< fi i N. .c 8 i

4 ,= ' g E

f 9

/a '

I r; 4 Is

=

i , i a Jj

,a g g g -d i

'  ! a -

iamm a tamm '

l .

= - _ . . - _ . _ ,

Q, . h, 180. 125.

I NEUTRON FLUX 1 VESSEL PRES RISE (PSI)

- 2 AVE SURFACE HEAT FLs;X 2 RELIEF VALVE FLOW

  • O 4 3 CORE INLET FLOW 1 3 BYPASS VALVE FLOW 4

,g i2 4 j 4 CORE INLET SUB k 2

2 I E 3 1

3 l

. 21 gu so.

3

Q 2s.

(.

s

' 3\ g 4

-4

- 123 2 3

2r 3-

~ .

0.  !-

S.

8- ',

10. 20.

M N.

40.

25.

i O.

XI-i

10. 20. 30. 40.

1 TIME (SEcl TIME (SECl (ch -

(A)

' I I 1 VOID REACTIVITY I LEVEL INCH REF-SEP-SKIRT 5 3 SC REACT 2 VESSEL STEAMFLOW $ 4 yoyA(. REACTIVITY 2 3 TURBINE STEAMFLOW

^

Z f*

100. 23  ;

f0. 2 " 3 4 .

50. -- - --

'~

1 k 2 1 -

T ,

uwNMI 2 3 S.

. .,. ~

4 3 g _

2.f...... .

0. Ic. 20. 30. 40. O. 2. 4. 6. S. 3 TIME (SEC) TIME (SEC) MN

. MISSISSIPPI POWER Si LIGHT COMPANY S. f 9 GRAND GULF NUCLEAR STATICN FAST CLOSURE OF SOTH MAIN 2 RECIRCULATION VALVES AT 11% F ECONO

, , UNIT ( '

\ FINAt eassTV AA<YSIR REPORT Femsap # sivl -

$. , p g . p g 4 ' SO e ~ k: <- e5

(,,gD Q y QLA.6:4 hw67 %

M wassa.

1 l

h spuvtthATER e ^VR

, q j dr A

,qg s w a w p!DAfVt

..a,m WATER ym e

scP.A M C'p- ]. ,- -

g 3 - (gg g VALVE ,

"# EI

n. -

.- p - '

I acpina.y I .~. 3'< -

~9

% ALVI [

4 -

A _

g a

,g ,,p b e .DsR NL 4 ExMAts?

d' 33 - .

CCNTviOL SOLENOID DELADER '

WALVE O ,

/*

I -

\ DL" ^'M tr ATRA 1

Wa i

DC#s g-. I i .

.. J i coc o c mATIR - -

UE g

carvt ,

d' l

- { n. s nn ,

4-----

A WG l-mmm j

iVF M :l wo n -ins s c7-y e

t____-___-_-___e sA1,a

'd Y

si A31UO *C VALvu LAGEND _ , ,

Feyn. m a s . o z.

W N

I

$!m0 L* F:sd S c.h e. m a b i c, ok

- e. _ s.. _ - . .

==

1

" sam anum e >*

y =._

< I *

..m.~~.__ p~A s_. # (,

r .1, t < .f.. -

m. 7 ,

w$MMAAC VALVE W ,

7 a .

[

r4

.l. cu ecpinasty l

wALv5 %  % ,,

[>

g . m ra.

r .

' [~, W n= .

- m,,

. . .omeo . = = urr u- ea ,,a l

l- .

~ ~ ~gp_mg&~~ ~

I

- =

CTNER ggygg STWO -

6 We

  1. 8 Dents

--= - ,_._________________,  !

b .---!

/Q L = yy i: 1

  • - -D4j--

U ~),yo .,

g. k><F F  :-

~

ivi uu^2 m ns r .

G CPD P.MF 4---f L____1^1:P__________J 4.,,,,J STA31Ut*G VALVI3 L5CtwD _ _ _

F:hs'a'"78' c. a s

L e

(

"s:,.ari,r s u - ta .v -

c.1E D H ym-6:s Svsvam .

M 6

, (' entvs navam c _ive

=- _

I d fpAlv DAW h d[. . .

F hM =h o ( Na m

senAm gm ms

_*1* VALVE 8

46 q

- m p -

VE 2 -

t

/ . ,

p lO EKMAMET y3 -

" d' WALVE C""1

/. --# --

__._y_

a.

a.

CDCNfeeC uATER _ __

e N.

MA U hr" - E fl .

p

~

M f} l I4dd4 e iw __________ ----_j 7

C-val, e.s 90 f

- ,,, ,, s VALVE 5 g

L3GEMD

%N Cop W W -

E

"T;;Cll' .':2' wuma.

1

+---

sawsmann esaN* -

  • 9 .

-op_

db I~ b4 m I ri gm h 96 pdj g *

  • om - -

h 6m sca m VALVE w o.es:

I

-- " o -

1 l* . ,.,

BCwnDARY

\SCRNC(Af

.s wALvt N w

LENotD WE E g3 -

6 WALVE n

/ -

/ ~

f_ ~

l C)W p gp p -

,or.

l coeu o mvia -

c- - ------ --- ;, $,~

@fVI .5 h l MM PATER R 1 '

RO _

MATER PCW e l

CN A* C"'C

... L_,

-p ,-

, .cv i

' N 33fh

~

~

s J

a i vaivu -----

f- y _. .__.--

@O WALVE5 g

LSCE4D _ . _ _

fig %fb D d . 0 2.

Wemm L

1 l

i

=

I L-sen07A/6 "STAFT"]

I -

l IllCOfLh*fE SEQUDCE

. RELAY INFT ACTIVATED 1 Pb 4P PUW P sTakT IncoMPitu C 5-1 @ IPumP 1 StQUDCE Tir.D FULLY INSEMED 1 I CM FULLY INJL1rrL*D_I I CS-$ NANLakilTCn @ g (60 StconD TD)

I Loop rLow .

s w is PULL- N PL84P SPEED EM CD-2 1DCE CONTROLLER I

,II SETWED 70-761 FULLY INSENTED

.15 MANUAL 1

@l Ck ] Chi d m

C6 1

i Cb-2 NOT CLOSED _

I FCV (F060) Ja 1

MINIHLM C M MANDSWITCM GliC& 1 I ~ PLMP

. POSIT 10sl NOf IN DIT 107 PULL- % 14CK @lCb I I

I suCT10m VALVE I e W

CS-1 M

' PLMP MOFOR (F023) > 90$ LOCK 0Lff RELAT I OPS IC5-2 OPEh]

h5N @l C5 1 I I l

DISCNAMCE VALYL ' MMP seCnOR Lrt LDCEOLT LT E 14 CE OLff (F067) 90$ RELAY RESET LDCKOLff RELAY

. CPD RELAY RES!"I RELAY I * - I VESSEL THEletA:. LIMG 1DCLOLf!

ICLOSE Cb-1 ) [CLOSE CM J SHOCK 3srfEA14CK . RELAY R5FT PtnMISSIVS MC I

~ N I

FEa:DiATER Flow BTPASS

"" I CLOSED Cb-2 ]

LIES TMAN 30; ~

T s

e I

l 2

~ SLOW SPEED STARTING SEQUENCE r, '

6.03 ,,

FIGURE # 554

ACT. S1M. -3%

1 1 PS1/ seq PRESS CthSE ,

I + sIAS - -

l LIM 4- f[\

PRESS CONT.

+

y i

) E/H CONV BSCV s r _

J L

+ -

f j'RESS FEED (MIN A

1l . BP CONT V REF FORWARD EN/CLOSE LOOP ,

  1. \

l RECIRC FCV CKTS '

M s E/H M -

I jg I S CONV 1 MSCV 1

> N s E/H N LPSCV I 1 2 MW 4

  1. \

110%

' 'kM

. +

A SF A C ,

j j

,K99,,

k I i ' LIM TSE-1 ,

d 9- TURS' d b - O START RFM

+ SPEED l D CONT. M M LIM O Sr LIM BIAS RPM MAD

[ FEEDBACK GMD O TSE-i WIAAE l

(.-.  %, , LIM LIM (

g

  • STS REF. TSE-2 +

l SEL. SW. OF7:

CEN. TEI .-* DR W q j 1EAD L.R. > 3 5% TRIP o,4 EDSACK C os' ,

l L. P.. < 122 FIGilRF # SSR (FHC IOGIC) CEN _.

Lesson: Resiczal Neat Removal system - E12 Page C3 cf C3 SYSTEM LESSON PLAN I TABLE 3 (Cont'd)

. 11. nHR INJECTION VALVES F027A AND 8

,MS-M611A(B) MS-M211A(B)

OPEN OPEN c.e ese <

I . . . .._

. j

( ~

..~,

MANUAL INITIATION

. I l

,. l WEN wa.n c, i wn.wro

,~

MS-M611A(B) HS-H211A(B)

CLOSEc,e CLOSEes, CLOSE

, 6.lt 1

FIGURE # 573 i .

Lesson: M5!V and FWLC System - E32/E38 Page 23 of 24

~

SYSTEM LESSON PLAN .

_ , . . i . . n. .

, .i.v.a.c z,

.: . i,. o . .

O amoun sum uA:~o.

VL35t. bh ,. ,.

eo >c _ _ _ _ _ _ _ . ,

n r i.

L-< $ G~~1:=:,: <- E @-'-

'I i so,,A:

I

. *'..m=.,.

- _ . _ , 1,.a. .c 9, ,' e _ _ .4

_ _ _ .. i A., .:,m

. , . . c=p 4-.s.9 -  :,

V  :

g. 4

'ri t. g.e

,. . . .e s . _

IA.A

,geta.A lk ,

$I84 8 l E

fre l,003A.A r.

Am 5

,b u__________g e a.=

toAoi ATEspt( =:a.(: Q r =iium,=

W!GIRE AT45 x 70IMOAW e6:n cc m.

  • -Q.lg G-@- ;;,.=, ai,,-- G - $-- Q.'?"a."#,"

ourioun sn i r - - - ,. _ 9 - , _ _ _, t= ' =

'" T.g. $ l l 1 ao L  !

..___ .. g _ 4 .:n cg'=m. _6_ .. . _

,, a aa

_ _g _ ,,, _ .,

Y=c  ; i M r ll r- gf_4 g ---

g TO WILDI . t!L .tAa, *

( , f=s q ---

a . ..

.,LDEAT,8, FIGURE 1. MSIV INBOARD AND OUTBOARD LEAKAGE CONTROL SYSTEMS 6./4 FIGURE # 575

- n.---.-_-. . - ,,----.-- , - - - - _ - - - - - _ _ , . - , . - - _ , , . - - - - , - - . , , , , , _ , - - . , , , , - - - - . _ , , , ,a.- , , , . , - , -

- . t. .,.

1

, i t I

? \

g- () +10 VDC l

t opsN F

[gd -

orsNS ON ORbeR. -

6 Does 7 NoT MGM # --

/. orms oN .

CLOSED F

.  % 7

k. cLosso wMEN OPENS ON

. . . - 4 .e-g r

7 -

y ,

to

  • RCats

. IRM Rod Black Circuk (typical) a -- . . .

o e

~

S lb .

FIGURE # 580

    • T'""""'"""""""  ;
  • - **P".

h,.y,r pg.,y . .w slumargue-adsswTurmuuss wa w'.s

- - - - ~ -

WAR blAllut w 19 Pages 10 No.: 03-1-01-1 R;vicion:

nnutdown T3 GsmsettEr c'erying Minimum t.ead Shift Supervisor Initials /Date e g. Feedwater LCS - In standby per

/

501 04-1-01-E38-1.

h. Process Sampling System - In

/

operation per 501 04-1-01-P33-1.

3.3.4 Containment Buildings and Systems

  1. a. Primary Containment integrity verified per Technical Specification /

3.6.1.

Drywell integrity verified per

b. /

Technical Specification 3.6.2.

\

l

c. PRM System - In operation per SOI - -

-/ )

04-1-01-017-1.

d. ARM System - In operation per SOI

/

04-1-01-021-1.

e. Containment Cooling System - In

/

operation per SOI 04-1-01-H41-1.

f. Drywell Cooling System - In '

/

operation per 501 04-1-01-M51-1. ,,,,,,

g. Drywell Chilled Water System - In /

operation per 501 04-1-01-P72-1. .

h. Containment and Drywell i Instrumentation and Control-In / j operation per SOI 04-1-01-M71-1. .
i. Floor and Equipment Drains - In operation per 501 04-1-01-P45-1 and /

SGI 04-1-01-P45-2.

J. Oily Weste Collection System,

, , Chemical Waste Sump System, and Condensate Regen. Waste System-In standby or in operation per 50I '/

04-1-01-P45-3, 4, and 5.

( 06 Figure # 533 l

l

3 . ..

1. ~,:-

^.... c'u - *

.~ ..... .

-s.

( .

-1.7

, . 2. -

_ a. . ..

3 .e . .

, M. s j '#,.,: 1.6 jCy.*

e -

$.u. y.; ..po . . . 1.

,2: m:.., -

~_,' -- --

. q.

.J .

3

-: <. \

r: &$.3~<

4. .

H's-1-

' ?.V 1.4 n.' -.

i s.

_ _. w _ _ . _ _ . _

m

, q . .. y.

n.

o lE (e

+ 0 m

.13 m-..

.~s* :

4, v

.; ~-

h 4 m

\

1.2

': W./.I' ~, \

au

..w 6

8 1.1 l.O O 20 40 60 80 10 0 120 Core Flow, % of' Rcted Core Flow MCPR f l

\ h.l(o FIGURE 3.2.3-1  !

. rown ,,JI.F-UNIT 1

.. ._ 3/4 2-5 .- - . -----:

y:

t : M. . .

J

'Ae

) l.7

}-. - _ _ . . .

9 -

2-y 5' '. I.6

,' I . :_ i. _ _ . . . . . . . . _. .. . .. . -. .. ..

...... g , , . , ,

i .

). .. . 9

~

l.5

?:

4.

_ --  : (

w.

.f.7.. . -

a:a.1.4

._$. . . a.

}* ~ w

.s. .-

I 1.3 f.

_s

\

i

-3..~4t . . . ..?. -

\

t2 ..esO" 1.2 T y .+

~~.

1.1 1.0 0 20 40 60 80 10 0 120 Thermal Power, % of Roted Thermal Power MCPR P

?.llo ,

, . FIGURE 3.2.3-2 \

GRAND GULF-UNIT _ 1 3/4 2-6 _ ,,,

e .. Of i VW.'

, .r .

( .se.

\

3/4.0 APPLICABILITY .

_. LIMITING CONDITION FOR OPERATION 3.0.1 Compliance with thr. Limiting Conditions for Operation contained in 'the

. succeeding Specifications i: required during the OPERATIONAL CONDITIONS or other

'l conditions specified therein; except that upon failure to meet the Limiting

. . ;l2 Conditions for Operation, the associated ACTION requirements shall be met.

hz_

' ? -

i 3.0.2 Noncompliance with a Specification shall exist when the requirements of

~

M :h. 'the not Limiting Condition met within the specified for Operation time and associated ACTION requirements are intervals. If the Limiting Condition for Operation is restored prior to expiration of the specified time intervals, ccmpletion of the Action requirements is not required.

k!kF 3.0.3 When a Limiting Condition for Operation is not met, except as provided d '- in the associated ACTION requirements, within one hour action shall be initiated

. ;M'vf.'f.~._

, to place

y. r: not apply by placingthe it,unit as applicable,in an OPERATIONAL in: CONDITION in which t At least STARTUP within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />,

__ 1.

2. At least HOT SHUTDOWN within the following 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, and
3. At least COLD SHUTDOWN within the subsequent 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

Where corrective measures are completed that permit operation under the ACTION requirements, the ACTION may be taken in accordance with the specified time

((f-limits at measured from the time of failure to meet the Limiting Condition for Operation. Exceptions to these requirements are stated in the individual Speci-

.j, .l, fications.

This specification is not applicable in OPERATIONAL CONDITION 4 or 5.

3' ..'Y 3.0.4 Entry into an OPERATIONAL CONDITION or other specified condition shall

J.

not be made unless the conditions for the Limiting Condition for Operation are b,, , met without reliance on provisions contained in the ACTION requirements. This f.e provision shall not prevent passage through or to OPERATIONAL CONDITIONS as ip required to comply with ACTION requirements. Exceptions to these requirements are stated in the individual Specifications.

/

ening.gutg-UNIT.1- -3/' 0 -

- -------,-n. - - - - -~ , - - , - , - - - - . - - - - - - - - - - . . , - - , - - - - - - --

8

} ;'

, INSTRUMENTATION 3/4.3.3 EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION LIMITING CONDITION FOR OPERATION .

- 3.3.3 The emergency core cooling system (ECCS) actuation instrumentation channels shown in Table 3.3.3-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.3-2 and with EMERGENCY CORE COOLING SYSTEM RESPONSE TIME as shown in Table 3.3.3-3.

- ~-

t, -

APPLICABILITY: Xs shown 10 Table 3.3.3-1. . ._- . __..,.

5 ACTION:

a. With an ECCE actuation ins'trumentation channel trip setpoint less conservative than the value shown in the Allowable Values column of
f
Table 3.3.3-2, declare the channel inoperable until the channel is

,M'. ,,

restored to OPERABLE status with its trip setpoint adjusted g, . , - consistent with the Trip Setpoint value.

b. With one or more ECCS actuation instrumentation channels inoperable, take the ACTION required by Table 3.3.3-1.
c. With either AL,a trip system "A" or "B" inoperable, restore the inoperable trip system to OPERABLE status within:

y 1. 7 days, provided that the HPCS and RCIC systems are OPERABLE.

2. 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />.

- Otherwise, be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> l'.

and reduce reactor steam dome pressure to less than or equal to j ,,

135 psig within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

'220 t] SURVEILLANCE REQUIREMENTS N2- 4.3.3.1 Each ECCS actuation instrumentation channel shall be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL C0FDITIONS and at the frequencies shown in Table 4.3.3.1-1.

4.3.3.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.

4.3.3.3 The ECCS RESPONSE TIME of each ECCS trip function shown in Table 3.3.3-3 shall be demonstrated to be within the limit at least once per 18 months. Each test shall include at least one channel per trip system such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific ECCS trip system.

s

. GRAND. GULF-UNIT 1 3/4 3-27 . . ._-

  • * : o 4. w .,

. y.s,yyp ?,a .

4

'$ Q /)Ms.. ..t A.ri. f

(

. f I

Q TABLE 3.3.3-1 '

l ..

E i-EMERGENCY CORE COOLING SYSitM ACillATION INSTRINfMIATION I 8

, c3 li '

c

, MINIMIM OPERABLE APPL.!CA8tE gn CllANNELS PER OPERATIONAL c TRIP FUNCTION 1 RIP FUNCil0N I 'I CON 0lil0NS ACTION I a!-

j--e A. DIVISION I 1 RIP SYSTEM

~

gg. 1. AllR-A TTPCI M00il & LPCS SYSTIM i i

g

a. Reactor Vessel Water leveT - tow low n ow, level 1
b. Drywell Pressure - liigh 2(g h) 1,2,3,4*,5* 30 2 1, 2, 3 30
c. LPCI Pump A Start time Delay Relay I 1, 2, 3, 4 * , 5* 31 t
d. Manual Initiation g 1/ system (b) 1, 2, 3, 4 * , 5* 32
2. AUl0MATIC DEPRE550RIZAll0N SYSitM IRIP SYSilft "A"#
a. Reactor Vessel Water Level - Low low low, level ! 2 1, 2, 3 30
b. Drywell Pressure - liigh 2 1, 2, 3 30
c. ADS Timer 1 1, 2, 3 31
d. Reactor Vessel Water Level - Low, level 3 (Pennissive) 1 1, 2, 3 - 31
e. LPCS Pump Discharge Pressure-liigh (Peimissive) 2 1, 2, 3 31 p'w
f. LPCI Pump A Discharge Pressure-liigh (Peemissive) 2 1, 2, 3 31 I g. Maiiual Initiation 2/ system 1, 2, 3 32 T

N U"

8. DIVISION 2 TRIP SYSIEM l RiiR W C (lPCl~ MODE)
a. Reactor Vessel Water level - Low, low low, level 1 2 1,2,3,4*,$* 30 i b. Drywell Pressure - liigh 2 1, 2, 3 30 .
c. IPCI Pump 8 Start Time Delay Relay I 1, 2, 3, 4 * , Sa 31
d. Manual Initiation g)

\ 1/ system 1.-2, 3, 4*, 5* 32

2. AilI0MATIC DEPRE55URilAT10N SYSIEM 1 RIP SY5flM "8"#
a. Reactor Vessel Water level - low low low, level 1 2 1, 2, 3 30
b. Drywell Pressure - liigh 2 1, 2, 3 30
c. ADS Timer 1 1, 2, 3 31

. d. Reactor Vessel Water level - low, level 3 (Peemissive) I 1, 2, 3 31

) e. IPCI Pump 8 and C Discharge Pressiere - liigh (Peimissive) 2/ pump 1, 2, 3 31

f. Manual Initiation 2/ system I, 2, 3 32 I

e l

.. ns u i . . , '.

. ... . m.. , . .

, . wa..

( *

. li./ 'i - /

- ( .M(,,. J . .Nj;... -. Y.'. y '.e '

s

. $,j. a

.- 7 s

.c. - .

A.

'l  :

I E TA8tf 3.3.3-1 (Continued) ,

ii fMERCINCY CORE COOLING SYSIIM ACiUATION INSTRUMENTAT10N O .

% MINIMUM OPERA 8LE APPLICA8tE OPERAil0NAL 7

c- TRIP FUNCTION CHAhMELS PER 1 RIP FUNCTION I *I CONDITIONS. ACTION 3

H , C. DIVISION 3 TRIP SYSTEM

1. HPCS SYSIEM
a. Reactor Vessel Water level - Low, tow, tevel 2 4 1,2,53,4*,5* 33
b. Drywell Pressure - liigh## 4 1, 2, 3 , 33
c. Reactor Vessel Water Level-High, tevel 8 -

2 ICI 1, 2,,3, 4*, 5* 31

d. Condensate Storage Tank Level-tow  ! 2 1, 2,'3, 4*, 5* 34
e. Suppression Pool Water Level-High 2 T, 2, 3, 4*, 5" 34
f. Manual Initiation ## 1 1, 2 3.,4*, 5* 32 D. 1055 0F POWER  !.

.5

1. Division 1 and 2  ;
  • a. 4.16 kV Bus Undervoltage 4 1, 2,;3. 4**, 5** 30 k (Loss of Voltage) , .

A b. 4.16 kV Bus Undervoltage 4 1, 2,.3, 4"*, 5** 30 l La (80P Load Shed)

O c. 4.16 kV Bus Undervoltaga 4 1, 2, 3, 4**, 5** 30

  • (Degraded Voltage) i 2. Division 3 .
a. 4.16 kV Bus Undervoltage 4 1, 2,'3, 4**, 5** 30 .

(Loss of Voltage)

(a) A channel may be placed in an inoperable status for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> during periods of required surveillance without placing the trip system in the tripped cundition provided at least one other OPERA 8tE channel in the same trip system is monitoring that parameter.

(b) As o actuates the associated division diesel generator.

l (c) Provides signal to close llPCS pump discharge valve only.

(d) Provides signal to HPCS pump suction valves only.

Applicable when the system is required to be OP[RAUl[ per Specification 3.5.2 or 3.5.3.

    • Required when applicable ESF equipment is required to be GP1RABl[.
  1. Not required to be OPERABLE when reactor steam don.e picssuie is less than or equal to 135 psig.

g

    1. Prior to STARTUP following the first refueling outaege, the injection function of Drywell Pressure -

High and Manual Initiation are not required to be OP[ Haul [ with indicated reactor vessel water level on the wide range instrument greater than level 8 ,elpoint tuincident with the teactor luen uie len than 600 psig.

- 1 r

q - - - - _ . _ - - - - - - _ _ _

p .

INSTRUMENTATION A TABLE 3.3.3-1 (Continued)

(

EMERGENCY CORE COOLING SYSTEM ACTUATION INSTRUMENTATION

, . . ACTION -

4

. ACTION 30 - With the number of OPERABLE channels less than required by the

, Minimum OPERABLE Channels per Trip Function requirement:

a. With one channel inoperable, place the inoperable channel in- the tripped condition within one hour
  • or declare the z .

v-'

-associated system (s) inoperable. ,.

g . .. . * ~~-

b. 'With more than one channel inoperable, declare the ,

associated system (s) inoperable.

ACTION 31 - With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement,

,- declare the associated ADS trip system or ECCS inoperable.

ACTION 32 - With the number of OPERABLE channels less than required by the

~ '- Minimum ODERABLE Channels per Trip Function requirement,

" " restore i .e inoperable cnannel to OPERABLE status within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />

, or ceclare the associated ADS trip system or ECCS inoperable.

ACTION 33 - With the number of OPERABLE channels less than required by the i(

Minimum OPERABLE Channels per Trip Function requirement, place the inoperable channel (s) in the tripped condition within one hour ^ or declare the HPCS system inoperable.

I' ACTION 34 -

je ,

With the number of OPERABLE channels less than required by the Minimum OPERABLE Channels per Trip Function requirement, place at least one inoperable channel in the tripped condition within j one hour

w 1 .

l  ?

l "The provisions of Specification 3.0.4 are not applicable.

l l

l l

. (

GRAND GULF-UNIT 1 3/4 3-30

~ . - . - - ~ ~ - -- - -

2 '.

+ . *

[, /0 INSTRUMENTATION --

.N END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION

?

+ 3.3.4.2 The end-of-cycle recirculation pump trip (EOC-RPT) system D

instrumentation channels shown in Table 3.3.4.2-1 shall be OPERABLE with their i trip setpoints , set cons.isten,t with the values shown in the Trip Setpoint column

.k- of Table ~3.3'4.2-2 and with the END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM

... RESPONSE TIME as s'hown in Table 3.3.4.2-3. -

' ~ '

T l',' w'h'en SENMAL POWER is greater than or

'A'PPLICABI'LYTY:~ *'OP'ERATI'OiIA'L' COND'IYION equal to 40% of RATED THERMAL POWER.

I .s ACTION:

h:~

f .'.7 ,, ,, a. With an end of-cycle recirculation pump trip system instrumentation m .. channel trip setpoint less conservative than the value shown in the N

g& Allowable Values column of Table 3.3.4.2-2. declare the channel inoperaole etil the channel is restorea to OPERABLE status with the O-channel set. at aojusted consistent with the Trip Setpoint value.

b. With the numoer or OPERABLE channels one less than required by the
  1. Minimum GPERABLE Channels per Trip System requirement for one or both

.s trip systems, place the inoperaole cnannel(s) in the tripped condition i .. ( within one hour.

T c. With the number of GPERABLE channels two or more less than required f i '? e - by the Minimum OPERABLE Channels per Trip System requirement for one gg k -z.e,-

trip system and:

l EfF' -

. 1

1. If the inoperable channels consist of one turbine control valve l

! ~. . channel and one turbine stop valve channel, place both inoperable l channels in the tripped condition within one hour. l l . 1

) 2. If the inoperable channels include two turbine control valve

( channels or two turbine stop valve channels, declare the trip system inoperable.

i

d. With one trip system inoperable, restore the inoperable trip system t

I to OPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or reduce THERMAL POWER to less than 40% of RATED THERMAL POWER within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />,

e. With both trip systems inoperable, restore at least one trip system

~ to OPERABLE status within one hour or reduce THERMAL POWER to less than 40% of RATED THERMAL POWER within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.

b GRAND GULF-UNIT 1 3/4 3-41 .

g .. , '

. L -.-. $.JO

~~~~~~

INSTRUMENTATION

\' ,<- TABLE 3.3.4.2-1 END-OF-CYCLE RECIRCULATION PUMP TRIP SYSTEM INSTRUMENTATION MINIMUMOPERABLECHAN((jSPER TRIP FUNCTION TRIP SYSTEM

' ~

1. Turbine Stop Valve - Closure 2(D)

- ,2. ,(Tur,bineControfVal've-FastClosure.. 2 ID)

,{ ' , ... $[:i . . '.

3@r$'il. . .: ..

. )- .

a (a) A trip system may ,be placed in an inoperable status for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveill6.se provided that the other trip system is OPERABLE.

(b) This function shall oe automatically bypassed when turbine first stage pressure is less than 30%* of the value of turbine first stage pressure,

, in psia, at valves wide open (VWO) steam flow, equivalent to THERKAL POWER

'iess than 40% of RATED THERMAL POWER.

\m k% , -

,.

  • Initial setpoint, final setpoint to be determined during startup test program.

...g,. Any required change to this setpoint shall be submitted to the Commission

@ ?r#..u. - within 90 days of test completion.

1 k' f! ~~'

ths:

. )???

s' N;;-

l l

I

)

\~  %

s. .

GRAND GULF-UNIT 1 3/4 3-43

~

f' 3/4.5 EMERGENCY CORE COOLING SYSTEMS

\ 3/4.5.1 ECCS - OPERATING LIMITING CONDITION FOR OPERATION

~. 3.5.1 ECCS divisions 1, 2 and 3 shall be OPERABLE with:

T . a. ECCS division 1 consisting of:

.Ts *

~. , 1. The OPERABLE low pressure core spray (LPCS) system with a flow ~

- 6,vr path capable,,oi' tak,i_ng ,suc. tion, .from the suppression pool and

, M ~.. transferring the water through the spray sparger to the reactor

' g.g.h-' ,

9'55'I* '. .' '

. ./7 . 2. 'The OPERABL:E low pressure coolant injection (LPCI) subsystem "A" of the RHR system with a flow path capable of taking suction from the suppression pool and transferring the water to the reactor-47 vessel.

'h

., 3. Eight OPERABLE ADS valves.

b. ECCS division 2 consisting of:
1. The OPERABLE low pressure coolant injection (LPCI) subsystems

/~ "B" and "C" of the RHR syst~em, each withTfiow path capable of taking suction from the suppression pool and transferring the water to the reactor vessal.

.$. ,. 2. Eight OPERABLE ADS valves.

\

-( c. ECCS division 3 consisting of the OPERABLE high pressure core spray (HPCS) system with a flow path capable of taking suction from the suppression pool and transferring the water through the spray sparger

. ._ to the reactor vessel.

f,f[,' ~ APPLICABILITY: OPERATIONAL CONDITION 1, 2* # and 3*.

ACTION:
a. For ECCS division 1, provided that ECCS divisions 2 and 3 are OPERABLE:
1. With the LPCS system "noperable, restore the inoperable LPCS system to OPERABLE status within 7 days.
2. With LPCI subsystem "A" inoperable, restore the inoperable LPCI subsystem "A" to OPERABLE status within 7 days.
3. With the LPCS system inoperable and LPCI subsystem "A" inoperable, restore at least the inoperable LPCI subsystem "A" or the inoperable LPCS system to OPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />.
4. Otherwise, be in at least HOT SHUTOOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.**

^The ADS is not required to be OPERABLE when reactor steam dome pressure is less than or equal to 135 psig.

  1. See Special Test Exception 3.10.5.

- **Whenever two or more RHR subsystems are inoperable, if unable to attain COLD g( SHUTDOWN as required by this ACTIOH, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

GRAND GULF-UNIT 1 3/4 5-1

tr' 4.,

3.. -

1 v' i '

/ . *EMERGCNCY CORE C00LlNG SYSTEMS

. s. .

LIMITING CONDITION FOR OPERATION (Continued) 1[' ACTION: (Continued)

.E

b. For ECCS division 2, provided that ECCS divisions 1 and 3 are OPERABLE:

t T 1. With either LPCI subsystem "B" or "C" inoperable, restore the inoperable LPCI subsystem "B".or "C" to OPERABLE status within 7 days.

71,"

2. With both LPCI subsystems "B" and "C" inoperable, restore at least

.I

. the inoperable LPCI subsystem "B" or "C" to OPERABLE status 2, within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />. ~

D' ; 3. Otherwise, be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />

' l ... and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> ^.

t...

u. c. For ECCS division 3, provided that ECCS divisions 1 and 2 and the jL__ RCIC system are OPERABLE: ..

3 1. With EC's division 3 inoperable, restore the inoperaole division to OPERABLE status within 14 days.

': \- 2. Otherwise, be in at least HOT SHUTCOWN within the next 12 r: cars (

- - and in COLD SHUTDOWN within tne following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

S -

1

d. For ECCS divisions 1 and 2, provided that ECCS division 3 is i., OPERABLE:
f. 1. With LPCI subsystem "A" and either LPCI subsystem "B" or "C"

'; inoperable, restore at least the inoperable LPCI subsystem "A" or the inoperable LPCI subsystem "B" or "C" to OPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />.

A

2. With the LPCS system inoperable and either LPCI subsystems "B" or "C" inoperable, restore at least the inoperable LPCS system  ;

or the inoperable LPCI subsystem "B" or "C" to GPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />.

3. Otherwise, be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />".

"Whenever two or more RHR subsystems are inoperable, if unable to attain CCLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

s.

(

de

. . . GR.AND. GULF-UNIT 1 3/4 5-2 .. ..

t I

EMERGENCY CORE COOLING SYSTEMS '

f

%( A LIMITING CONDITION FOR OPERATION (Continued)

I ACTION: (Continued)

  • ' For ECCS divisions 1 and 2, provided.that ECCS division 3 is e .'

,,. . OPERABLE and divisions 1 and 2 are otherwise OPERABLE:

.L.:

1.

~~

With one of the above required ADS valves inoperable, restore

.. .k'L' the inoperable ADS valve to OPERABLE status within 14 days or

, be in at least HOT SHUTDOWN'within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and reduce

  • reactor steam dome pressure to i 135 psig within the next 24 t ;; . M b,,

hours.

4

2. With two or more of' the above required ADS valves inoperable,

. .nb be in at least HOT SHUT 00WN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and reduce reactor

'; W .', ,

steam deme pressure to i 135 psig within the next 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

.[ f. With an ECCS discharge line " keep filled" pressure alarm
,,- instrumentation channel inoperable, perform Surveillance Requirement 4.5.1.a.1 at least once_per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />,
g. With an ECCS header delta P instrumentation channel inoperable, restore the inoperable channel to OPERABLE status with 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or determine ECCS header delta P locally at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />; s otherwise declare the associated ECCS inoperable.

[ h. In the event an ECCS system is actuated and injects water into the Reactor Coolant System, a Special Report shall be prepared and sub-mitted to the Commission pursuant to Specification 6.9.2 within

". . p ' 90 days describing the circumstances of the actuation and the total accumulated actuation cycles to date. The current value of the j"2- useage factor for each affected safety injection nozzle shall be provided in this Special Report whenever its value exceeds 0.70.

5.

Whenever two or more RHR subsystems are inoperable, if unable to attain COLD SHUTDOWN as required by this ACTION, maintain reactor coolant temperature as low as practical by use of alternate heat removal methods.

s 6 GRANDGULF-UNkT1 3/4 5-3

1

-~

)

EMERGENCY' CORE COOLING SYSTEMS

(, ' 3/4 5.2 ECCS - $HUTDOWN _

l LIMITING CONDITION FOR OPERATION l 1

3.5.2 At least two of the following shall be OPERABLE:  ;

a. The low pressure core spray (LPCS) system with a flow path capable

.. of taking suction from the suppression pool and transferring the

. water through the spray sparger to the reactor vessel.

[ '.',. b. Low pressure coolant injection (LPCI) subsystem "A" of the RHR system e- -

with a flow path capable of taking suction from the suppression pool I S' upon being manually realigned and transferring the water to the

.".- w -4 reactor vessel. : .. .. .. . ...;. . . .

~O h, c. Low pressure coolant injection (LPCI) subsystem "B" of the RHR system q with a flow path capable of taking suction from the suppression pool

{,, upon being manually realigned and transferring the water to the

~ g.3 O. reactor vessel.

h."- d. Low pressure coolant injection (LPCI) subsystem "C" of the RHR system G4 with a flow path capable of taking suction from the suppression pool f-- '- upon being manually realigned and transferring the water to the reactor vessel.

W -.

e. The high presrure core spray (HPCS) system with a flow path capaole of taking suction from one of the .following water sources and trans-ferring the water through the spray sparger to the reactor vessel:

(\ 1. From the suppression pool, or

2. When the suppression pool level is less than the limit or is drained, from the condensate storage tank containing at least 170,000 available gallons of water, equivalent to a level of 18 feet.

Uh, APPLICABILITY: OPERATIONAL CONDITION 4 and 5*.

l-l- ACTION:

a. With one of the above required subsystems / systems inoperable, restore at least two subsystems / systems to OPERABLE status within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> or suspend all operations that have a potential for draining the reactor vessel. '
b. With both of the above required. subsystems / systems inoperable, suspend CORE ALTERATIONS and all operations that have a potential for draining the reactor vessel. Restore at least one subsystem / system to OPERA 8LE status within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> or establish SECONDARY CONTAINMENT INTEGRITY within the next 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />.

The ECCS is not required to be OPERABLE provided that the reactor vessel head is removed, the cavity is flooded, the upper containment fuel pool gates are removed, the spent fuel pool gates are removed,'and water level is maintained within the limits of Specifications 3.9.8 and 3.9.9.

k. .

GRAND GULF-UNIT 1 3/4 5-6 9

,.-r--~- --

--..,--m---. -

g.

,e .

l CONTAINMENT $YSTEMS

%- 3/4.6.7. ATMOSPHERE CONTROL lr(

CONTAINMENT HYOROGEN RECOMBINER SYSTEMS LIMITING CONDITION FOR OPERATION 3.6.7.1 Two independent containment hydrogen recombiner systems shall be OPERABLE.

...'- APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2. -

2. .

W^l' ACTION: .C,7", J' i,! l * ~., ' ,- , _' .,

". ~

iF '

With one containment hydrogen recombiner system inoperable, restore the-

. inoperable system to OPERABLE status within 30 davs or be in at least HOT SHUTOOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

I._ SURVEILLANCE REQUIREMENTS

-j. p 4.6.7.1 Each containment hydrogen recombiner system shall be demonstrated OPERABLE: a

.' a. At least once per 6 months by verifying during a recombiner system functional test that the minimum heater sheath temperature ircreases

. to greater than or equal to 700 F within 90 ninutes. Maintain >700*F r

-( for at least 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />. I

. \

, b. At least once per 18 months by:

R.

1* .

1. Performing a CHANNEL CALIBRATION of all control room recombiner 3 1; instrumentation and control circuits.

f-l0 ift' 2. Verifying the integrity of al.) heater electrical circuits by

. performing a resistance to ground test within 30 minutes following the above required functional test. The resistance to ground for any heater phase shall be greater than or equal to 10,000 ohms.

3. Verifying during a recombiner system functional test that the heater sheath temperature increases to greater than or equal to 1200*F within 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> and is maintained between 1150 F and

- 1300*F for at least 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

4. Verifying through a visual examination that there is no evidence of abnormal conditions within the recombiner enclosure; i.e, loose wiring or structural connections, deposits of foreign

. materials, etc.

c. [0ELETE0]

s_

(

GRAND GULF-UNIT 1 3/4 6-58

r l'

s

.'- CONTAINMENT'SY$TEMS

'(I CONTAINMENT AND DRYWELL HYDROGEN IGNITION SYSTEM LIMITING CONDTION FOR OPERATION 3'.B.T.'2 'TTic"To'n'ta'in~ ment "a'n'dd'rywell hydrogen ignition system consisting of. .

the following:

a. *At least two igniter assemblies in each enclosed area specified in Table 3.6.7.2-2,

. . . . . . . . . . . . . . ..s . ,, ..

  • b.~ ~ ~ All igniter assemb'11es a'djacent to any inoperable' igniter assembly in 2, each open area specified in Table 3.6.7.2-2, and
c. Two independent containment and drywell hydrogen ignition subsystems each consisting of two circuits (as listed in Table 3.6.7.2-1) with no

. , , more than two igniter assemblies inoperable per circuit,

h. shall-be OPERABLE. ..

$~' APPLICABILITY: OPERATIONAL CONDITIONS 1 and 2

~"

. ACTION:

, a. With less than two igniter assemblies OPERABLE in any enclosed area e specified in Table 3.6.7.2-2, restore at least two igniter assemblies to OPERABLE status within 7 days or be in at least HOT SHUT 00WN within

-( .

the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

b. With any adjacent igniter assemblies within an open area as specified in r4y Table 3.6.7.2-2 inoperable, restore the igniter assemblies in that open I. M C5 . 1 -~ _. area so that all igniter assemblies adjacent to an inoperable igniter lW. CJ assembly are OPERABLE within 7 days or be in at least HOT SHUTDOWN

';Yif ' ". -

within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

9

c. With one containment and drywell hydrogen ignition subsystem inoperable,
  • restore the inoperable subsystem to OPERABLE status within 7 days or be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

SURVEILLANCE REQUIREMENTS 4.6.7.2 The containment and drywell hydrogen ignition system shall be demonstrated OPERABLE:

a. At least once per 92 days by energizing the supply breakers and:
1. Verifying a visible glow from the glow plug tip of each normally accessible igniter assembly specified in Table 3.6.7.2-2,

)

1 ,

GRAND GULF-UNIT 1 3/4 6-59 _ _ _ _

a' 4.

,L. ELECTRICAL POWER SYSTEMS f ._

F 3/4.8.3 ONSITE POWER DISTRIBUTION SYSTEMS

. . ?c DISTRIBUTION - OPERATING A s. '

'Q

~

LIMITING CONDITION FOR OPERATION -

d &"-

't

~

3.8.3.1 The following power distribution system divisions shall be energized:

j ;. .

a. A.C. power distribution:

i ,';- . 1. Divi'sion 1, consisting of:

5 ~ :-

4 ,~ ', .a) . ,3160 iolt A.C., bus 45AA. . i. . c .. e--

] b) 480 volt A.C; MCCs ~15B11,15B21,--15B31715841, -15B51 and 15861.

da .' c) 120 volt A.C. distribution panels in 15P11, 15P21, 15P31, 15P41, 15P51 and 15P61.

} ,

-y d) LCCs 15BA1, 15BA2, 15BA3, 15BA4, 15BA5 and 15BA6.

. ,2 4 :a 2. Division 2, consisting of:

i '6 - - --

a)-

( ,I 4160 volt A.C. bus 16AB.

b) 480 volt A.C. MCCs 16B11, 16821, 16831, 16841, 16B51 and 16861.

' w;. , ....... .

c) . M A_voit A.C. distribution panels in 16P11, 16P21, 16P31, 1 7 1, 16P51 and 16P61.

g d) LCCs 16881, 168B2, 16883, 168B4, 16885 and 16886.

( -

3. Division 3, consisting of:

\( a) b)

4160 volt A.C. bus 17AC.

480 volt A.C. MCCs 17801 and 17B11.

'.'- c) 120 volt A.C. distribution panels 17P11.

@ ~

TM 4. Two separate and independent OPERABLE load shedding ana 3 319 ' sequencing panels for the control of Division 1 and 2,

{'.$.

.. 7f respectively.

3~ b. D.C. power distribution:

1. Division 1, consisting of 125 volt D.C. distribution panel 10A1

.. and 1DA2.

2. Division 2, consisting of 125 volt D.C. distribution panel 1D81 and 10B2.
3. Division 3, consisting of 125 volt D.C. distribution panel 10C1.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.

GRAND GULF-UNIT 1 3/4 8-15 __

I a:.

f" ELECTRICAL POWiR SVSTEh5

.: .\ s fN LIMITING CONDITIONS FOR OPERATION (Continued) u t

7 ACTION:

] a. For A.C. power distribution:

'. 1. With either Division 1 or Division 2 of the above required A.C.

distribution system not energized, re-energize the division

  • 4 -

within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> or be in at least HOT SHUT 00WN within the next

[ 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

S{th.DfvisforiTWtfieTabove: required A.C. distribution system 7T 2.

not energized, declare the HPCS system inoperable and take the ACTION required by Specification 3.5.1.

3. With one of the above required load shedding and sequencing E- panels inoperable, restore the inoperable panel to OPERABLE .

-, status within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> or be in at least HOT SHUT 00WN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

b. For 0.C. power distribution:
1. With w her Division 1 or Division 2 of the above required.D.C.

distribution system not energized, re energize the division within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or De in at least HOT SHUTOOWN within the next-12 hours and in COLD SHUTDOWN within the folicwing 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

( 2. With Division 3 of the above required 0.C. distribution system

{L f

not energized, declare the HPCS system inoperable and take the ACTION required by Specification 3.5.1.

~'

SURVEILLANCE REQUIREMENTS Y

s

f. I ' 4.8.3.1.1 Each of the above required power distribution syste'm divisions shall I' be determined energized at least once per 7 days by verifying correct breaker 4 alignment on the busses /LCs/MCCs/ panels and voltage on the busses /LCs.

4.8.3.1.2 Each of the above required inad shedding and sequencing panels shall be demonstrated OPERABLE:

a. At least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> by determining that the auto-test system is operating and is not indicating a faulted condition.
b. At least once per 31 days by performance of a manual test and verifying response within the design criteria to the following test

. inputs:

a) LOCA.

b) Bus undervoltage.

c) Bus undervoltage followed by LOCA.

( d) LOCA followed by bus undervoltage.

GRAND GULF-UNIT 1 3/4 8-16 ._

's G.;.

i2. -

/' REFUELING OPERATIONS

\* '

3/4:9.10 CONTROL R00 REMOVAL f(

SINGLE-C0NTROL R00 REMOVAL LIMITING CONDITION FOR OPERATION

. 3;9:10.1 One control rod and/or the associated control rod drive mechanism may be removed from the core and/or reactor pressure vessel provided that at

..., least the following requirements are satisfied until a control rod and associ '

ated control rod drive mechanism are reinstalled and the control rod is fully inserted in the core.

' a. The reactor mode switch' is OPERABLE and locked in the Shutdown p ? ' Mon

-- .or in the Refuel position per Table 1.2 and Specification 3.9.1.

b. The source range monitors (SRM) are OPERABLE per Specification 3.9.2.
c. The SHUTDOWN NARGIN requirements of Specification 3.1.1 are satisfied, except that the control rod selected to be removed;
1. May be assumed to be the highest worth control rod required to be assumeo to be fuily withdrawn by the SHUTOOWN MARGIN test, and Need not be assumed to be immovable or untrippable.
2. 4

. _. d. All other control rods in a five-by-five array centered on the control rod being removed are inserted and electrically or hydraulically A ' .' disarmed or the four fuel assemblies surrounding the control rod 8'7f; or control rod drive mechanism to be removed from the core and/or

{f;, reactor vessel are removed from the core cell.

{ e. All other control rods are inserted.

APPLICABILITY: OPERATIONAL CONDITION 4 and 5.

ACTION:

With the requirements of the above specification not satisfied, suspend removal of the control rod and/or associated control rod drive mechanism from the core and/or reactor pressure vessel and initiate action to satisfy the above requirements.

L .k coaun GtLFe.W3T4 -


J/4 9* M - -- --

4 i':

( . .

^

{- REFUELING OPERATIONS

\ . MULTIPLE CONTROL R00 REMOVAL f LIMITING CONDITION FOR OPERATION

. .e 3.9.10.2 Any number of control rods and/or control rod drive mechanisms may be removed from the core and/or reactor presjure vessel provided that at least the following requirements are satisfied until all control rods and control

.?od drive mechanisms are reinstalled and all control rods are inserted in the core. 7,,;,

1.

a. The reactor mode switch is OPERABLE and locked in the Shutdown position or in the Refuel position per Specification 3.9.1, except that the Refuel position "one rod-out" interlock may be bypassed, as required, for those control rods and/or control rod drive mechanisms to be removed, after the fuel assemblies have been removed as specified below.
b. The scurce range monitors (SRM) are OPERABLE per Specification 3.9.2.
c. The SHUTOOWN MARGIN requirements of Specification 3.1.1 are satisfied.
d. All other control rods are either inserted or have the surrounding four fuel assemblies removed from the core cell.

A

e. The four fuel assemblies sierounding each control rod er control rod {

drive mechanism to be removed from the core and/or reactor vessel are removed from the core cell.

v.- . ,- ,

, -- f. All fuel loading operations shall be suspended unless all control y .,y :g , rods are inserted in the core.

.f.+.6 5)$h4;.-' APPLICABILITY: OPERATIONAL' CONDITION 5.

.. c ,u ;

Gsi i .

ACTION:

.e -

With the requirements of the above specification not satisfied, suspend removal

~

of control rods and/or control rod drive mechanisms from the core and/or reactor pressure vessel and initiate action to satisfy the above requirements.

s_ '

GRAND GULF-UNIT 1 3/4 9-16 . . . ..

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 30 ANSWERS - . GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 5.01 (1.00) b REFERENCE CIH: GPNT, Vol VII, Chapter 10.1-48,49,59,60 GGNS* 05-NP 515, p 47 ANSWER 5.02 (1.00) b REFERENCE DPC, Fondamentals of Nuclear Reactor Engineering, p. 96 001/000-K5.54 (2.8/3.1)

-GGNS: OP-NP-511 ANSWER 5.03 (1.25)

1. a
2. e
3. d ,
4. b
5. e (0.25 each)

REFERENCE GGNS: MCD, 2.0-1, p 14 ANSWER 5.04 (1.00)

a. 2
b. 5 (0.5 each)

I

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 31 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

REFERENCE GGNS: MCD, 4.6, pp 33, 47, 50 ANSWER 5.05 (2.00)

a. Orificed Fuel Support Pieces (Core Orificing) (0.5)
b. As power increases, the flow to the central (higher powered) bundles would decrease (0.25); flow to the peripheral (lower. Powered) bundles would increase (0.25). This.is due to the increased two-phase flow resistance that is developed in the higher powered bundles where there is greater boiling (0,5) and the resultant ' restriction' that this would pose to flow, thus sending it preferentially through the lower powered bundlas (0,5). (1.5)

REFERENCE GGNS: Thermal Limits LP, p 28 APS9ER 5.06 (1 00) b REFEPENCE GGNS: OP-HF-502 p7 ANSWER 5.07 (1.00)

1. It (hydrogen) has a high microscopic scattering cross section .
2. It (hydrogen) has a high logarithmic energy decren.ent per' collision.
3. It (hydrogen) has a small microscopic absorbtion cross section.

(2 0 0.5 each)

REFEPEMCE GGUS: OP-NP-502, p9

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 32 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 5.08 (1.00) a REFERENCE DFNP: XENON & SAMARIUM LP, pp 4, 12 GGNS: OP-NP-514 ANSWER 5.09 (1.50)

a. 1000 psia (+ 200, - 100 psi)
b. 800 F (+ - 50 F)
c. 255 F (or ac per (b) above) (0.5 each)

REFERENCE GGNS OP-HF-503,P.22-24 ANSWER 5.10 (1.00) a, i

b. 4 (0.5 each)

PEFERENCE 9FNP: PUHF CHARACTERISTICS, PUMP HEAD, PUMP LAWS LP,P.4 GGNS: OP-NP-504: OP-NP-514 ANSWER 5.11 (1.00) b REFERENCE 1st Law of Thermodynamics EIH: L-RG-667 (10)

SSEP: L/P 04-2/3-E, p 66 GGNS: OP-AD-545

4 So THEORY 0F NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 33 ANSWERS -- GRAND GULF'1 -85/12/16-BROCKMAN, K.

ANSWER 5.12 (2.00)

UkLGLU

, c. T:p p :Eri '

O r5 )~

b. NO (0.5) Only the 12 most limitin3 bund?.e nodes appear on -

the P-1 edit. (The 00-6, Option 4 shows the-12 most limitiny bundles in the core at this time) (0.5) (1.0)

c. Each Node has received a different exposure. -(LIMLHGR varies with both exposure and fuel type and only the exposures are dif-ferent for each node) (0.5)

REFERENCE

! General Electric NEDE # 24810, June 1981 BFNP: Process Computer LP, p 13 (Obj 14)

CCPC: MCC, "!CP"^.L LIMITS?

, ANSWER 5.13 (1.00) 75% CONTROL ROD DENSITY. (0.5)

(The increased Control Rod Density causes greater competition for the thermal neutrons; this necessitates greater pin Power for the same net power output). Higher pin power results in a greater Void Fraction which-causes a more negative coefficient. (0.5)

-- OR --

With a greater rod density, a greater number of neutrons are ' lost' to the control rods (increased leakage). Thus, a change in rod density effects reactivity more, by allowing increased absorbtion by other fuel bundles. '(Can also explain why low rod density does not have a large reactivity effect, since.the leakage to other fuel bundles is already so large) (0.5)

REFERENCE EIH: Reactor Physics L/P, pp 1.7-9, 10, & 13.

BSEP: L/P 02-2/3-A, pp 141 - 143 GGNS: OP-NP-513

- , * - - - - - - - - - - - - - - - - - - - w- ---<----w - --- -T

-- . .. . .. . . . _ ~ _ . . . . .

d

5. THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND PAGE 34

, ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER .5.14 (1.00) 75% Void Fraction 'in the. core.(0.5)- This is because of the increased-reasonance cap t ure which would occur (due'to the longer slowing ,

down lensth).(0.5)

REFERENCE

.EIH: 'L-RQ-604 GGNS: Reactor Physics L/P,'pp 1.7 - 9, 10, 13

BSEP
02-0G-A, pp 39 -49 BFNP: Reactivity Coefficient LP, pp 4, Si RO 85/03/01 ANSWER- 5.15 (2.00)'

4

.a. 2 l

b. 3 (Or, as. appropriate for answer Siven in (a)) l REFERENCE General Electric NEDE 21493, February 1982 I EIH: GPNT, STA TTrainins Manual, Section 9

'GGNS: MCD, PCIOMR; 4

q ANSWER 5.16 (1.00)

a, Cap Release (Small Fracture or Crack) (0.5)
b. Oxydation (0.5)

REFERENCE

BFNP
MCD LP, p 16; RQ'85/02/01 GGNS:-MCD. SECTIONS 4.3 & 4.4 1

1 a

p

  • s.,,.ez-__..- -..,-...s - -, .- -- . re--.e--,

4 4.

5.

____ THEORY OF NUCLEAR POWER PLANT OPERATION,. FLUIDS, AND PAGE 35 7

ANSWERS -- GRAND GULF l' -85/12/16-BROCKMAN, K.

ANSWER- 5.17 ( .75)

a. GREATER'THAN b.' GREATER THAN
c. GREATER THAN (0.25 each)

REFERENCE- ,

Air Ejector Theory /Bernoulli's Equation EIH: L-RO-660 BCEP: HTFF, pp 5.63 - 5.68 BFNP:'BF Off-Gas LP, pp 5 - 7 GGNS:

ANSWER 5.18 (3.00)

a. Void-Collapse (due to increasing pressure). (0.5)
b. Pressure peaks due to TCV's shutting (0.5) and then cycles due to the-operation of the SRV's (0.5). (1.0)
c. Core inlet flow increases due to the decreased 2-phase flow

! resistance as steam flow decreases (0.5); it decreases with drive flow when the Recireviation Pump trips CHigh Pressure (RPT)3.(0.5) (1.0)

d. Scram is from High Neutron Flux (APRM's). (0.5)

REFERENCE GGNS: FSAR, Chapter 15.2 ANSWER 5.19 (2.00)

a. Due to the pressure spike.
b. Due to the decrease in reactor power.
c. Due to the cycling of SRVs.

~

d. Due to vessel high level (L8). (0.5 each) 4 1

1 1

i i

i l

, ,. -- . , ._-. _ - _. - ._ --- _. , _ ..._ , . _ - - , , . , . . . _ _ . ~ . , , - - - _ _ , _ _ _ - , . , _ - , . , _ - , - _ . _ - -

5. THEORY OF NUCLEAR POWER PLANT 0PERATION, FLUIDS, AND PAGE' 36 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

R E.F ER E N C E GGNS:.FSAR, Chapter 15.3 1

P

I

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 37
c ------------------------------------------------------

ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 6.01 (3.00)

a. 1. FAI
2. FO
3. FC
4. FC
5. F0 (0.5 each)- .
b. -Valve stem air to Off- Gas system is lost (0.5) 1 REFERENCE GGNS: ONEP 05-1-02-V-9; OP-C11-1A-501, p 13-ANSWER 6.02 (1.00)
j. d REFERENCE

,- DFNP CONTROL ROD DRIVE LP

'GGNS: 2D C-11-1-A, p 7: OP-C11-1A-501, p 45 GE SIL 200 (Suppl 2)

' ANSWER 6.03 .(2.50) 1). Pump Speed < 20 % '

2) CB-2 Open-
3) -CB-3 Closed

. 4) CB-4 Closed

5) Pump Speed > 95 %
6) Pump Speed between 20 % and 26 %

4

7) CB-1 Closed 8)_ Pump Motor Voltage < 75 volts for > 4 seconds
9) CB-5 Open
10) LFMG at Rated Voltase (0.25 each) t a

i

. .. ~ -_ _ ..._.. . _ _ _ _ ~ _ _ _ _ _ _ . _ . _ _ _ _ _ . _ . , _ _ _ . . _ _ . . _ . . . __ _

t

.i r

1 i i

i i '

i-

[ 6. PLANT--SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 38 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKHAN, K.

~ REFERENCE GGNS10P-B33-1-501 1

j ANSWER 6 04 (1.00)'

a. Indication-that the RGDS finds disagreement.between the signals received from-the 2 RACS.
b. Indication that the withdrawn rod must be fully inserted before any other' control rod can be moved. (0.5 each)

REFERENCE

j. GGNS: LP OP-C11-2-501 ANSWER 6.05 (1.00) <

d REFERENCE GGNS: LP OP-N32-2-501 1

ANSWER 6.06 (2.00)

- Auto' initiated at + 11.4' (0.5)

- Level signal increased to +54' (0.3) for 10 seconds (0.2)

, - After 10 seconds (0.2), +54' replaced by +18' signal (0.3)

'. - No Reset until operator actuation of "SetPoint Setdown Reset" (0.5) i-~~

REFERENCE GGNS: OP-C34-501 A M S'AER 6.07 (2.00)

AUTO - SGTS Train A will not stoa. (C.A.F.) (0.5) f STBY - SGTS-Train A will stop-(0.5), but will auto restart (0.5) on (1.0)

1) Low Flow Train B (Filter Train, 1250 SCFM'-or- Recite Fan B Flow Low, 8500 SCFM). .(0.25)

-OR-

2) Encl Blds Pressure High ( .15' we) -( 0. 25 )

i i.

i 9

6. PLANT SYSTEMS DESIGN, CONTROL, PAGE 39

- ---------------------------------- "------------------A D INSTRUMENTATION ANSWERS - . GRAND GULF 1 -85/12/16-BROCKHAN, K.

4 REFERENCE GGNS: SD T-48, pp 3, 5; OP-T48-501, pp 8, 13; 04-1-01-T48-1 i

ANSWER l 6.08 ( .50) l-Containment Spray initiation.

REFERENCE-
j. CGNSt.OP-E12-501, PP 14, 50 ANSWER' 6.09 (1.00) <

4 C

REFERENCE

. GGNSt SD P42, pp 3, 19; OP-P42-501; 04-1-01-R21-1; Prints E1226 & E1116 l- ANSWER- '6.10 (1.50) i

1. Reactor water
2. RWCU system water l 3. CRD system water i

REFERENCE GGNS OP-P33-501,P.4,5 ANSWER 6.11 (1.00)

C

' REFERENCE GGNS: OP-C41-501; Print E1169-05 ANSWER 6.12 (1.50)

} See Attached Figure # 573 REFERENCE j- GGNS: OP-P12-501, p 40 1

i

')

+- e-,,,--v 1 -a m, --, .-,e,,---n---,n .- - . . - - . - ..ww- -----n - ,e . . , . ~,----.---,-,,-m --1,- ,,-s,- r -- -ww, .-

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 40 i ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 6.13 ( .50)

Counterclockwise (Slow)

REFERENCE OFNP: OI-57; DI-82 i' 'GGNS: 04 01-P75-1 ,

ANSWER 6.14- (2.00)

a. F001A, F002A, & F003A auto open on initiation F003A auto closes in 1.5 minutes (0.5 each)
b. High Pressure -

> 5 psis between MSIV's-after 1 minute Leakage High Flow -

> 22 SCFH after Hi Flow Leakage Timer times out (13 minutes)

Closes F001A & F002A (0.33 each)

F003A Closes ONLY on High Pressure (0.05) (Setpoints 0 0.05)

REFERENCE GGNS: OP-E32/E38-501, pp 5, 6

, - ANSWE- 6.15 (3.00)

a. 1. Deenergized
2. Energized (0.'5 each)

ACTIVATED

b. BYPASSED (0.33 each)

MSIV Closure (<= 94% F0 x 3 lines) l APRM High-High (15%)

Rx Vessel High Water Level (Lvl 8, 53.5') l IRM High=High (120/125 scale)

.APRM High Power-Flow (Clamped < 118%) 1 IRM INOP (Low Volt, Out of Oper-(Neutron Upscale Flux -OR- 1 Module Unplus)

Neutron Flux-High Fixed) i REFERENCE GGNS: OP-C71-501, pp 17, 18; CP-C51-4-501, p 25; TS's i

3

6. PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION PAGE 41 ANSWIRS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 6.16 (1.50)

GGNS: See Attached Figure t 580 REFERENCE GGNS: OP-C51-2-501; SD-C31-2; TS's ANSWER 6.17 (2.00)

i. e ii. a REFERENCE BFNP: LPt12, p 24; TRANSIENT 820; OI-57, P 53; RG 85/01/02 EIH: L-RQ-726 BSEP: RTN 026; HD 17-2/3-B, Section 3.2 GGNS: OP-C34-501
w. 6

~ .a u a s. - - . - . - -a za. a l

7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 42 R

~~~~ 56 6L655CIE'_66 TR6L ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

1 ANSWER 7.01 (1.50) l 1. Place the RPS (Div 1, 2, 3, & 4) CRD Discharse Volume HI Trip Bypass Switches in the BYPASS position.

2. Place the RPG (Div 1, 2, 3, & 4) Scram Reset Switches in the RESET position and verify that~the scram resets.

. 3. Allow the HCU's to recharge, then drive the. control rods that are not full-in to position 00. (0.5 -each) 1 j REFERENCE t

GGNS: ONEP-05-1-02-I-1, p3 1

  • - ANSWER 7.02 (1.00)

Establish LPCS or LPCI flow from the Suppression. Pool with l injection to the RPV (0.5) and open two (2) SRV's to establish return flow to the Suppression Pool. (0.5)

REFERENCE GGNS: 05-S-01-EP-8, pg 1, 2 i

ANSWER 7.03 (1.00) b REFERENCE GGNS: 05-5-01-EP-2, p6 ANSWER 7.04. (1.00)

, d .

REFERENCE GGNS: ONEP-05-1-II-1, p4

o

\

t

\

Fo PROCEDURES - NORMAL, ABNORMA',., EMERGENCY AND PAGE 43

~~~~ ~ --------~---------------

R5656L65fEdL 66sTR5L

____________________ g ANSWERS -- GRAND GULF 1 1 -85/12/16-BROCKMAN, K. -

ANSWER 7.05 (1.50)

a. Loop Manual
b. 10%
c. 5% (0.5 each)

REFERENCE GGNS: ONEP-05-1-02.-III-3, p 2 ANSWER 7.06 (1.00) b' REFERENCE EIH HNP-2-1946

-GGNS ONEP-05-1-02-V-5, p2 ANSWER 7.07 (2.50)

a. (1) 14.5 feet ,

(2).212 des F (3) 140 des F .

(0.5 each)

b. To. ensure that there is adequate NPSH for the respective ECCS pumps. (1.0) ,

REFERENCE GGNS: EP-3, p 6; EP-5, p 2; EP-7, p 1 ANSWER ~ 7.08 ( .50)

Gas-Pressure (PI-R131) remains constant REFERENCE GGNSt SOI-04-1-01-C11-1, p9 k'

7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 44

~~~~~~~~~~~~~~~~~~~~~~~~

~~~~R d6 UL6 56dL'66 TR6L ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 7.09 (1.00) a REFERENCE GGNS: ONEP-1-02-I-4, p 3' ANSWER 7.10 -(1.50)

1. Vent the hydrogen pressure (to 2 - 5 psis)
2. Purse-the hydrogen from the generator with CD-2 (to a CD-2 purity of 95%)
3. Purge the CD-2 from the generator with instrument air (to a CD-2 purity of n%) (0.5 each)

REFEREMCE GGNS: 04-1-01-N44-1, p2 ANSWER 7.11 (1.00)

To limit Feedwater No :le temperature transients.

REFERENCE GGNS: SOI-04-1-01-G33-1 ANSWER 7.12 .(1.50)

a. 25 Rem
b. Voluntary p
c. 75 Rem '

(0.5 each)

REFERENCE GGNS: EPP-18, ' Personnel Search and Rescue".

7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE -45

~~~~Rd656L66ICdE"C6 TR6L""~~~~~~~~~~~~~~~~~~~~~~

ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER -7.13 -(2.50)

1. Drywell Pressure > 1.23 psig (+-0 psig) 2.. Drywell Temperature >~135 des F (+-0 deg )
3. Supression Pool Temperature > 95 des F (+-0 deg )
4. Suppression Pool Level > 18.81 ft (+-0 ft ) l 3.. Suppression Pool Level < 18.34 ft (+-0 ft )
6. Containment. Temperature > 90 des F (+-0 deg') (5 0 0.5 each)

REFERENCE GGNS: EP-3,'p 1

~

ANSWER 7.14 (1.00)

3. Identifies equipment necessary for the safe shutdown of the reactor.

b.- Used in conjunction with a FIRE in the plant. (0.5'each)

' REFERENCE i

GGNS: EP-1, EP-2, EP-3, EP-4, EP-5 '

ANSWER 7.15 (1.00) 1

a. (Voltage Gradient) Capacitors (0.1) will Overheat (0.4)
b. Open the Disconnects (0.5 each)

REFERENCE GGNS: ONEP 05-1-02-I-2, p9

7. PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND PAGE 46

~~~~R 5656L6556dL"66 TR6L'~~~~~~~~~~~~~~~~~~~~~~~

ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 7.16 (1.00)

1. Place the Mode Switch ~in. Shutdown (0.25 for Scram the Reactor)
2. Close all Group I Isolation Valves (0.5 each)~

REFERENCE GGNS: ONEP 05-1-02-I3, Section 4.3.1 ANSWER 7.17 (1.50)

1. CH-23'-> 3.5% (+0, .5%)
2. Containment Pressure = 7.84 psis (+0, .34 psis)

~3. Level = TAF (+-0 *) (0.5 each)

-REFERENCE GGNS: ONEP 05-1-02-III-11, Section 4.2 ANSWER 7.18 (1.00)

6. When the 2nd Scram Accumulator (0.25) for a withdrawn control rod is declared INOPERABLE (0.25) (0.5)
b. Place the Mode Switch in Shutdown (0.35 for Scram the Reactor) (0.5)

REFERENCE GGNS: ONEP 05-1-02-IV-1

f 7 o- PROCEDURES .NORMAlt.. ABNORMAL, EMERGENCY AND. PAGE 47

~~~~ -~~~~~~~~~~~~~~~~~~~~~~~

Rd656L65EE E~66 TR6L

] ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

l ANSWER 7.19 (2.00) 1

1. Verify the Standby Pump Starts' .

, 2. Isolate the Fuel Pool Heat Exchanger (0.25) (CCW side also) (0.25) 3.- Isolate RWCU (0.25) (CCW side also) (0.25)

4. Monitor Reactor'.Recireviation Systems (0.5 each)

REFERENCE GGNS: ONEP 05-1-02-V-1r Section 4.2 l

I ANSWER 7.20 (1.00) 1

'Ove to the excess dP developed across the Startup-Level Control Valve (0.7/0.3), level instabilities may result (0.3/0.7).

REFERENCE .

-GGNS: IOI 03-1-01-1, Section 6.2.7

, ANSWER 7.21 ( .50)

Felse REFERENCE GGNS: ONEP 03-1-02-IV-67 Section 4.3 l

t

-._.: -- .- - , . . - w ,,--,,- - , c y

. ._ _ _ _ _ _ _ _ _ _ _ _ __~ . . _ . . _

0

. 8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 48

, ANSWERS.-- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 8.01. (1.50)

. The fol',csing checks should be made

- Brv_ sr chargins springs charged. (0.5)

- Ch.O sing motor disconnect switch on. (0.5)

- Control power on. .(0.5)

REFERENCE GGNS: Procedure 02-S-01-2: OP-AD-539 ,.

ANSWER 8.02 (1.00) a REFERENCE GGNS: TS 3.2.2 ANSWER 8.03 (1.00)

The two provisces are:

- The sequence of major evolutions is -not changed. (0.5)

- The intent of the instruction.is not chan3ed. (0.5)

REFERENCE GGNS: Procedure 02-S-01-2 ANSWER 8.04 (1.00)

C

.- _ REFERENCE

.GGNS: TS DEFINITION 1.6 f

4 a

e 4

I

8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 49 ANSWERS --' GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 8.05 ( .50) 4 months REFERENCE 10 CFR 55.31.e ANSWER 8.06 (1.50)

1) All rods fully inserted except for the single control rod of highest reactivity worth which is assumed to be fully withdrawn
2) Cold (68 des. F)
3) Xenon free (0.5 each)

REFERENCE GGNS* TS DEFINITION 1,39 ANSWER G.07 (2.00)

1. Reactor Water Level maintained > TAF.
2. Core being sprayed by HPCS.
3. Core being-sprayed by LPCS.
4. Reflooding flow of 1 LPCI pump injecting into the core with reac-tar water level high enough to. produce 2 phase flow through the core.
5. Steam flow of (later) through the core. (4 0 0.5 each)

REFERENCE GGNS* Procedure 01-S-06-2 i

< l

, , ._ .. _ _ _ _ . . . . _ . . _ _ . _ _ _ _ _ . _ . _ . ~ . - - ..

. _ - . - =

s

8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 50 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKHAN, K.

ANSWER 8.08 (1.00)

(x) - Preceeding step requires the checksheet to be performed if the plant has been shutdown for a given period of time (> 2 weeks).

(4) - In'dicates that a significant period of time may be required for the completion of this step of the checksheet.

REFERENCE '

GGNS: Procedure 02-S-01-2; I0I-03-1-01-1  ;

' ANSWER 8.09 (1.00)

The Shift Supervisor shall perform-a veritication (by test or inspection) of the operability of redundant safety-related systems or components.

REFERENCE GGNS: Procedure 01-S-06-2 ANSWER 8.10 . (2.00)

a. YES (0.5) TS 3.0.4 does not preclude a made shift since no Acion Requirements are, or will, be relied on immediately upon shifting into Operational Condition 1. (EOC-RPT is not applic-able until Rated Thermal Power is >= 40%) (0.5) (1.0)
b. Void reactivity feedback due to a pressurication transient (0.5) could add positive reactivity at a faster rate than the Control Rods can add negative reactivity late in core life. (0.5) .

(1.0) 4' REFERENCE GGNS: TS 3/4.3.4.2, 3.0.4 e

ANSWER 8.11 (1.00)

, a REFERENCE EIH: U2 TS, 3.5.1, and 3.5.2 '

GGNS: TS, 3/4.5.1 and 3/4.5.2 1

j

. - . . ,-.,,n n ~ - . , ,- -

- - - , - e m-. - , . , , ,.--,n-n--- _.

8. ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 51 ANSWERS -- GRAND GULF 1 -85/12/16-BROCKMAN, K.

ANSWER 8.12 (3.00)

a. PRESSURE BOUNDARY LEAKAGE -

Not Exceeded-UNIDENTIFIED LEAKAGE (5 GPM) -

Not Exceedeed TOTAL LEAKAGE (30 GPM) -

Not Exceeded UNIDENTIFIED LEAKAGE (2 GPM INCREASE) -

Exceeded- (0.5 each-

~(0400-0800) 0.1- ID 0.4-Eval)

b. Pressure Boundary Leakage shall be leakage throvsh'a non-isolable fault (0.5) in a reactor coolant system component body, pipe wall, or vessel wall. (0.5) (1.0)

REFERENCE EIH: U2 TS, 3.4.3.2; Confirmatory Order 7590-01, dtd 7-8-83 BSEP: U2 TS, 3.4.3.2 GGNS: U1 TS, 3.4.3.2;.06-OP-1000-D-0001 ANSWER 8.13 (1.50)

1) One-rod-out
2) Refuel Platform Position
3) Refuel Platform Main Hoist Fuel-loaded -(0.5 each)

REFERENCE GGNS: TS 3/4.9.1 ANSWER 8.14 (1.00) a.- 1 f. 1 <

b. 1 9 0 -(n/a)
c. 2 h. 1
d. 2 i. 1
e. 1 j. 0 (n/a) (0.1 each)
8. ~ ADMINISTRATIVE PROCEDURES, CONDITIONS, LIMITATIONS' PAGE 52

__________________________________________'AND ________________

ANSWERS -- GRAND GULF'1 -85/12/16-BROCKMAN, K.

REFERENCE GGNS: TS, Table 6.2.2-1 ANSWER 8.15 (1.00) a REFERENCE.

GGNS: TS 3/4.9.10.2 ANSWER 8.16 (1.00) e REFERENCE GGNS TS 3.2.3 ANSWER 8.17 '(1.00) b REFERENCE EIH: 02 TS, 3.0.3r 3.0.4, 3.6.6.2 GGNS: TS 3.0.4, 3.'6.7 ANSWER 8.18 (1.00)

a. Because the dissolved oxygen content of the reactor coolant is typically higher ~during low steaming rates (e.g. Startup or Hot Standby) (1.0)

REFERENCE

.EIH: U1 TS's,-3.6-6

.GGNS: TS 3/4.4.4, Table 3 4.4-1 ANSWER 8.17 (1.00)

C

l l

l l

8.- ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS PAGE 53 ANSWERS -- GRAND GULF 1- -85/12/16-BROCKMAN, K.

REFERENCE

-GGNS: TS 3.0.3 & 3 5.1 t

i

.4 A

Lesson: Residual Meat Removal System - D2 Page 40 of 68 SYSTEM LESSON PLAN

( TABLE 3 (Cont'd)

11. RHR INJECTION VALVES F027A AND 8 HS$$I1N(B) "U

HSM2lik(B) REACTOR LOW WATER LEVEL HIGH DRYWELL OPE" PRESSURE ep MN -150.3" 1.39 PSIG l .. . .

REACTOR LOW HIGH DRYELL WATER LEVEL '

PRESSURE

-150.3 " 1.39 PSIG VALVE

_ F028A(B) -

FULLY

_ CLOSED 1

YALVE

[*A'. Ak V e,- R u t >

F042A(B)

FULLY '

WUE CLOSED INITIATION l

uG.P6e l H11 915"O HS-M611A(B) HS-H211A(B)

CLOSEc c CLOSE es, RESETTun

'A' LPC5 If0TT RESTT Pb . ~~

CLOSE ou M13-96C2 j W KhE l'10IT RESET Pb ou nl3-P601

FIGURE # 573

--e, ,,--.-----~n,-n, - P

o + o voc OpsN W EM p4 emcCR puut pasmisD s NOT - '

CPEN5 ON MGM ft r 100ft25

_ 4 OPeas oN OMNNE _

QO5ED W EM y-storsmAfivt 7:e -

CHANNE 15,8YPAs$tD 01' gwN C OSED W EN 4- ~~ OPEN5 ON DOWHsCMI EM RANGE swnCH ON 7 ~ "d

"/ TEF 3/125 A N 6-Is.

. amGt i Ghu AM T

To scans i

i 1

)

- i

\

IRM Rod Black Circuk (typicsI) l e =

Answ. sea. -

. as er es < f  ;

l

P .. '

FIGURE # 580 i

1 i

l 1

.-. -- - - ~ ~ ~ = --

_y3- y yg g g k3 * * ', S "

g

\ **

_ . _ = _ _ . _ _ _ , __. _ ,.

l F

s TEST CROSS REFERENCE PAGE 1 QUESTION. VALUE REFERENCE 05.01 1.00 KEB0000065 05.02 1.00 KEB0000482 05.03 1.25 KEB0000483 05.04 1.00 KEB0000484 05.05 -2.00 KEB0000485 05.06 1.00 ~KEB0000487 05.07 1.00 KEB0000488 05.08 1.00 KEB0000489 05 09 1 50 KEB0000491 05.10 1.00 MEB0000494 /

05.11 1.00 KEB0000495

^" 12 2.00 "E92000^96 A

05.13- 1.00 KEB0000'499 05.14 1.00 KEB0000500

.05.15 2.00 MEB0000505 05.16 1.00 KEB0000506 I 05.17 .75 KEB0000507 05.18 3.00 -KEB0000538 4

05.19 2.00 MEB0000539 25,50-06.01 3.00 KEB0000548 06.02 1.00 KEB0000549 06.03 2.50 KEB0000554 06.04 1 00 KEB0000557

06. 5 1.00 KEB0000558 va.v6 2.00 KEB0000560 06.07 2.00 KEB0000563 06.08 .50 KEB0000564 06.09 1.00 KEB0000566 06.10 1.50 MEB0000567 06.11 1.00 KEB0000568 06.12 1.50 KEB0000573 06.13 .50 KE00000574 06.14 2.00' KEB0000575 06.15 3.00 KEB0000577 06.16 1.50 KEB0000580 06.17 2.00 KEB0000581 27.00 07.~01 1.50 KEB0000300 07.02 1.00 KEB0000302 07.03 1.00 KEB0000305 07.04 1.00 KEB0000313 07.05 1.50 KEB0000314 07.06 1.00 KEB0000317 07.07 2.50 KEB0000319 07.08 .50 KEB0000322

l TEST CROSS REFERENCE PAGE 2 QUESTION VALUE REFERENCE 07.09 1.00 KEB0000327 07.10 1.50 KEB0000508 07.11 -1.00 KEB0000510 07.12 1.50 KEB0000512 07.13 2.50 KEB0000514 07.14 1.00 KEB0000515 07.15 1.00 KEB0000516-07.16 1.00 KEB0000517 H0 7 .17 - 1.50 KEB0000518

.KEB0000519

~

07.18 1.00 -

07.19 2.00 KEB0000520 07.20- 1.00 KEB0000521 07.21 .50 KEB0000522 s 26.50 08.01 1.50 KEB0000523 08.02 1.00 KEB0000526 08.03 1.00 KEB0000527 1 08 04 1.00 KEB0000528 08.05 .50 KEB0000530

-08.06 1.50 KEB0000531 08.07 .2.00 KEB0000532 08.08 1 00 KF70000533 08.09 1.00 KEt.9000534 08.10 2.00 KEB0000535 08.11 1.00 KEB0000536 08.12 3.00 KEB0000537 08.13 J1.50 KEB0000541 08.14 1.00 KEB0000542 08.15 1.00 KEB0000543 08.16 1.00 KEB0000544 08.17 1.00 KEB0000545 08.18 1.00 KEB0000546 08.19 1.00 KEB0000555 24.00 103.00