ML20133M293
Text
-
Jj ne
,e .
/ i UNITED STATES
[ ),gg'gg NUOLEAR REGULATORY COMMIodlON W ASHIN GTON, D.C. 20555 g }j t s , 'p -. a June 4,1979 OFFICE OF THE SECRETARY
. MEMORANDUM FOR THE RECORD
(
FROM: Samuel J. Chilk, Secrej y STRESSISSUEATBEAVERVALLb,
SUBJECT:
BRIEFINGONSHUTDOWN-)
1:50 P.M. , WEDNESDAY, MAY 0,1979, COMMISSIONERS' CONFiiRENCE ROOM, D.C. OFFICE (OPEN TO PUBLIC ATTENDANCE)
The Commission
- received a status report by representatives of NRR on seismic reanalysis matters.
Although the ~Comission took no action on this matter, they did note that subsequent briefings on seismic reanalysis matters would be scheduled in the near future.
cc: Public Document Room G .;I @ J- (
,.S, ', u 2 . - .
i
'( y'OC
/
- Comissioner Ahearne was not in attendance.
0 0 PDR
STONE E. CEBSTER ENGINEERING COQPOR ATION
~
ENGINEERING DIVISION MEMORANDUM NO. EMD-79-11 ENGINEERING MECIIANICS DIVISION REV. 2 SUBJECT STRESS INTENSIFICATION FACOTRS DATE June 8, 1979 AND STRESSES FOR REDUCED OUTLET BRANCH CONNECTIONS (ANSI B31.1 FROM RPWessel AND ASME SECTION III CLASS 2 & 3)
TO ALL HOLDERS OF EMD GUIDELINES CC 1.0 Purpose The purpose of this menorandun is to provide criteria for the determination and application of the Stress Intensification Factors (SIF) that are to be used at reduced outlet branch connections in the course of piping analysis when the rules of ANSI B31.1 or AStiE Section III Class 2 or Class 3 are applicable.
2.0 tipplication 2.1 SIF Values Provided by the Codes In the application of the rules of B31.1 and Section III, Classes 2 and 3 to the analysis of pipe branch connections, each of the three legs at a branch connection shall be checked individually for stress nagnitudes.
Each branch connection has one unique SIF associated with it and this SIF is applied to each of the three legs at the branch connection.
The expressions for the SIF's are presented in the tables of Appendix D in ANSI D31.3b, 1973 and in Tables NC/ND-3673.2 (b)-1 of Section III. The application of the rules of B31.1 prior to D31.1b, 1973 are discussed in Appendix A of this document.
PIPING ANALYSIS PROGRAMS PSTRESS AND SHOCK REPORT INCORRECT STRESSES AT REDUCED OUTLET EIDUifE CONN-UCTIONS DUE TO AN ERROR III Tl!E DETERNIMATION OF Tile SIF.
APPENDIX A OF TilIS DOCUliENT PROVIDES A MF.T!!OD FOR DETERMINING T!!E CORPECT STRESS AT REDUCED OUTLET BRANCil COIlliECTIO!!S WHERE PSTRESS OR SHOCK PROGRAMS ITERE USED. TIIE CORRECTIONS OF APPENDIX A MUST BE 11ADE MA!!UALLY TO ALL PSTRESS AND SHOCK RUNS TilAT CONTAIN REDUCED OUTLET BRANCll CONNECTIONS.
/
~
The values of SIF are dependant upon the run pipe dimensions and independant of the branch pipe dimensions for three of the four types of branch connections covered by the Code Tables. These are the ANSI B16.9 welding tee, the reinforced fabricated tee with pad or saddle, and the unreinforced fabricated tee.
There is one other type of branch connection covered by the Code Table s , i . e. the " nozzle" type where the added reinforce-ment material is placed on the branch nember rather than on the run. The SIF for this type is dependant upon both the run pipe and branch pipe dimensions. This branch connection is limited in its application in that it is restricted to branch /run ratios of about one half, and must have certain defined corner and fillet radii.
In the course of piping analysis using NUPTPE, the SIF values are determined internally in the program for those four branch connections that are given in the Code Tables.
2.2 Additional Acceptable SIF Values Since the development of the above SIF's, some additional SIP's i have becone available. At the present time, the additional
^
components for which SIF's are known are "MELDOLET9", "SOCKOLETS",
and "LATROLETS" manufactured by Donney Forge Corporation.
4 When the piping systen being analyzed contained "UELDOLETS",
"SOCKOLETS" or "LATROLETS" the SIF values must be determined by the analyst and these SIF's must be manually coded into the SIP field of the TEE card of NUPIPF (see the NUPIPE users
- manual 3.8.3.1h). The expressions for these SIP's are given below.
2.2a "MELDOLETS" i
in Sphy , but not less than 1.0 h
h=3.kf2
) T = Nominal thickness of the run pipe (in). .
r2 = Mean radius of the run pipe (in).
2.2b "SOCKOLETS" Same as for "NELDOLETS". Since these fittings also have socket welded attachments, the NUPIPE user must also designate an SRUN member on the branch in the vicinity of the physical location of the socket weld.
~
'. 2.2c "LATROLETS" "LATROLETS" due to their shape have two values l' for the SIF. One value applies to in plane bending, ,
and the other to out of plane bending. Since l NUPIPE accepts only one value of SIP and the i out of plane value is alwavs the larger, this [
value nust he used: !
i = 0.9 0 ~773 , but not less than 1.0 h
r' h = 1.971 2
Subscript "o" designates out of plane.
For the sake of completeness the SIP exoression {
for in plane bending is also provided: i i = 0.9 , but not less than 1.0 h _
h =
3.05f2 l i
Subscript "i" designates in plane "LATROLETS" are nade with an without socket weld ends. Where socket welds are provided, the NUPIPE user must designate an SRtU member on the branch in the vicinity of the physical location of the socket weld.
2.3 Some Numerical Values of SIP's There may be ' cases when the user must calculate stresses at branch connections nanually. Some values of SIP's are provided in the attachments to this document. These attachnents are:
Attachments 1, 1A and 1B Type A - ANSI B16.9 welding tee Type B - Unreinforced fabricated tee
, Type C - Reinforced fabricated tee with the reinforcement thickness equal to the pipe thickness Type D - Reinforced fabricated tee with the reinforcement thickness equal to 1.5 times the run pipe thickness.
Attachment 2 "WELDOLETS" and "SOCKOLETS"
Attachment 2A "LATROLETA" Attachments 3 and 3A
" Nozzle type connections. Nomenclature, !
limitations, and the expression for SIF 2A Small Branch Connection SIP's It is recognized that there are cases where small branch connections are made to relatively large run pipes. In these cases it is obvious that the moment load that can be introduced into the connection through an applied moment on the branch pipe is small and, in most cases, the presence of a snall branch connection has a negligible effect on the run pipe. Assuming that there is a lower limit to the ratio r4/gy(rA and Knare the nean radii of the branch pipe and the run pine respectively) below which the presence of a branch has a negligible influence on the run oipe stresses. This lower limit should be expressable in terns of ry and Rn.
One acceptable approach to defining this lower limit and reduced influence is to use the expression for the primary plus secondary membrane plus bending stress index, C2 that is anplied to the run moments of an integrally reinforceE,brahen connection in the analysis of class 1 Nuclear Components. This expression is given in Section III, Table nb-3682.2-1. Note 7, and ist C2r = 0. 8 (En/Tr I I#$/9m) , but not less than 1.0 P
3
= Mean radius of the run pine (in)
Tr = nominal thickness of the run pine (in)
, ry = Mean radius of the branch pipe (in) .
I By setting C2r ( 1.0 and transposinn:
l r{ ((R /T ) ~ ! (R /0.8) l This value of rh is the' maxinun value of branch pine mean radius for which no SIP need be apolied to the run pine noments.
There are some common pipe sizes listed in Attachment 4 to this document along with their maximun values of Mean Branch Pipe Diameter and equivalent branch pipe sizes for which no SIP need be apolied to the run oipe.
l
' ~
2.5 Stress Determination Finally a note on the determination of branch member stress.
This stress is deternined using an " effective" section modulus for the branch member as follows:
iMb S
b" 7--
i = SIF for the branch connection
- Mb = Resultant branch moment (in lb)
Zb - Effective the reducedsection modulus outlet branch,of (in) 3 Zb= (rb) t s rb = Hean radius of the branch pipe, (in) 1 tg = Effective branch thickness, taken as the lesses of (t r) or (itb)* (iD) tb = Noninal branch pipe thickness, (in) t = Nominal run pipe thickness, exclusive of reinforcing material, (in).
This concept of " effective" section modulus applies only at the reduced outlet branch. All other stress calculations must use the noninal section modulus.
- The SIF for a branch connection as covered throughout this memorandum is associated with and applied to each of the three legs of a branch connection at the intersection point of the three legs. Special attention is required when the branch connection is fabricated by means of a fitting such I
as a "SOCKOLET" where the branch pipe connection is made with a socket weld. The SIF for a socket weld G = 1. 3) must be applied to the branch line immediately adjacent to the l branch connection. This must be done in addition to the branch l connection analysis.
3.0 Unacceptable Branch Connections There are a number of branch connection configurations for which there are no existing SIP values. These branch connections are not acceptable for use in B31.1 or Section III Classes 2 and 3 Diping systers.
l
. . l 1
Some examples of unacceptable branch connections (shown in solid line) are:
3.1 Dranch Connections on Branch Connections !
i
( -) :
! k f
- 1
?
]_ . . . I.
. .,) .. .
i b .
)
3.2 Branch Connections to Elbows and Dends
, e .
1 i
s s
-w I
. _. ', j .
I 3.3 Ilillside Connections l
l l
l T A l
l i* f
\...,
t i
I
.o .
3.4 Dranch Connections to Crosses Even though crosses are covered by ANSI B16.9, there is no acceptable method for deternining SIF values. ;
(>'
(
l' O Ll . .. . _ i, ,. I .__ '..'
I', ._ }
3.5 Laterals
" Stub in" are unacceptable; however, Bonney Forge "LATROLETS" with proper SIF values are accep. table, see 2.2c.
e\
)
3.6 Uyes t
l
! .. \3 l / ,'
/
/
()
u_..._
1
, 3.7 Dimensi.onal Limitations l Finally, the following dinensional rules must he applied at j branch connections.
l For multiple branch connections on a pipe, the arc distance measured between the centers of adjacent branches along the surface of the run pipe shall be not less than three tines the sun of their inside radii in the longitudinal direction and not less than two times the sum of their inside radii along the circumference of the run pipe, p(r; + r g) min
+ rg --- l fi T2 -
3 m g 2(y;+r),n;n g Q true le$th > m rQg T ]
i
_ /_
( /
V V y N
//Naw R.P. Wessel Chief Engineer I
f
(
APPENDIX A
SUBJECT:
CORRECTION OF STRESS AT REDUCED OUTLET BRANCH CONNECTIONS THAT WERE EVALUATED USING THE PSTRESS AND SHOCK PROGRAMS 1.0 Scope The PSTRESS and SHOCK programs were superseded by NUPIPE prior to the B31.1b. 1973 edition of the ANSI Power Piping Code which was issued on 30 June 1973. The correction of PSTRESS and SHOCK stresses wi13 therefore be based upon ANSI B31.1 prior to the above edition.
THESE CORRECTIONS MUST BE MADE TO ALL REDUCF;D OUTLET BRANCH CONNECTIONS THAT WERE EVALUATED USING THE PSTRESS AND SHOCK PROGRAMS 2.0 Application In the reevaluation of reduced outlet branch connection stresses, only the branch member stresses need be reevaluated.
This reevaluation can be accomplished by any one of the following three steps:
Eie.J;LL S=S 1
_11 S = Corrected Stress Si = Stress value from PSTRESS or 31Qg i = SIF as determined in the body of this memorandum 11 = SIF from the PSTRESS or SHOCK run .
Step 2. Where the stresses determined in Step i exceed the allowable stresses, a second more precise evaluation can be made:
S= ' (1)2 + (a)2- i
,( 11 ) 2 + (a)2 ,
i t .
l a = The ratio of torsional moment to bending moment for the branch member (MI)
}MP)2,(gg)2;t 2
M = Component of moment (in.lb)
Superscript "b" denotes branch member Subscript "1" denotes in plane Subscript "o" denotes out of plane Step 3 Alternatively the branch moments may be extracted from PSTRESS or SHOCK and the more precise stresses determined in the manner shown below.
3.0 Calculation of Stresses Based on B31.1 Prior to the 30 June 1973 Edition The values of SIF are the same as those in the body of this memorandum: the application of the SIF values is somewhat different.
The moments that apply to a branch connection are evaluated from a unique orthogonal point of view, described as in plane bending, out of plane bending and torsion.
To describe in plane bending, let the three legs of'the branch connection describe a plane called the plane of the component. A line through the intersection of the three legs and perpendicular to the plane of the component describes the axis of in plane bending.
Torsion is self explanatory; each leg describes its torsional axis.
To describe the out of plane axis for either of the run pipe members, the in plane axis of the component and the torsional axis of the run pipe form two mutually perpendicular ates. The out or plane axis for the run pipe is described by these two axes and the right hand rule.
The out of plane axis for the branch pipe member is described in the same way, using the in plane bending axis of the component and the torsional axis of the branch pipe with the right hand rule.
The basic SIF is determined as in the body of this memorandum.
The value of the SIF (1) applies to the out of plane bending moment.
A new value (i') is determined as l' = 0 751 + 0.25 This value (1') applies to the in plane bending moment. There ;
is no SIF applied to the torsional moment.
Each leg of the branch connection has a unique set of moments. j The notation used here will be: l M[1 , M[1 ,M{1 for a run leg M[2 , gg2 , gg2 for the other run leg i My , MI . My for the branch leg 1
Mi = in plane bending moment (inalb).
Mo = out of plane bending moment (inalb).
MT = Torsional moment (in lb).
Stresses must be determined for each set of moments.
For a run leg
( ggi)2" i Sr1 = (1'M[1)2+(iM51)2 +
. (Zr)2 (gr)2 _
Zr = Run pipe section modulus (in )3 The stress for the other run leg, Sr2, is determined in the j same manner.
For the branch leg (1'MI)2+(ggg)2 (MT ) 1
~ +
(Zb)2 (gb)2 _
Zb = Effective section modulus of the branch pipe as determi memorandum.(in)ged >. in the body of this Zb = Nominal sgetion modulus of the branch pipe (in)>.
The maximum stress for the branch connection is the largest of the three stress values determined above.
. . . . . . . ...........6... v.. r v ..vn i ,
TYPE A TYPE B TYPE C TYPE D
- f. '
~
,- t j....
au ___
-le le tc: t t e = i.S t SUN f'U N 3" NOMINAL,SlZC 4" N0HINAL, SIZE Scil i TYPE A TYPE B TYPE C lYPE D SCH t TYPE A TYPE B TYPE C TYPED 10 120 1 9542 5 2471 2 6695 2 0646 10 120 2 3229 6 2373 3 173? 2 4543 20 20 I 30 30 STD 216 l 2956 3 4787 l 7698 I 3688lSTD 237 I 4496 3 8922 1 9502 1 5315 40 216 l 2956 3 4787 l 7698 l 3688l 40i 237 l 4496l 3 6922 l 9802' l 5315 60 -
60 i STR 300 1 0230 2 7468 1 3974 I 0808 STR 337 1 1284 3 0298 l 5415 1 1922.
80 300 1 0230 2 7468 1 3974 l 0808 50 337.1 1254 l 3 0298 l 1 5415l 1 1922 l 100 100 l l 120 120 437 I0 2 5070l1 2755l1 0 l 140 140 l i i l 160 !!37 l0 2 0763 1 0564 ;l 0 160 53111 0 2 1659 I l I O2 t! 80 1 SYR 600 10 1 6203 10 10 gyp 674 l0 1 8040 l l 0 10 6" NOHINALN IZE 8" N0MiH_ALN IZE SCN t TYPE A TYPE B ' TYPE C TYPE D SCH t l TYPE A TY?E B l TYPE C TYPE D 10 134 2 8049 7 5315 3 8317 2 9635 10148l3136584220 4 2547 33139l 20 20 250! 2 193Sl 5 890112 9966 l2 3176:
~
30 30 27712 0"4315 459212 792712 1509l STD 2801 6904) 4 5389L 2 3092 ' l 7860I STD 3221 l 8425 i 4 947312 517011 94G7 40 260'l 6094I 4 5389 2 3092 1 7860" 40 32211 842514 9473 l2 5170 i1 9467 j 60 60 406ll 567914 2101 '2 1419 ll 65661 X X STR' 4321 2tS7 3 3449 l 7018 l 3162 STR 500 1 3544 S 6?56' l 8502 I 4309 80 432l1 2457] 3 3449 I 7018 l 1 3162160 50011 35ti413 6366 Ii 8502 l1 4309 100 l100 593II 199613 22II II 6383112675 120 562.1 0307 2 767511 4080 1 08891120 71811 0450 2 3055 ll 427511 10'40 '
140 140 81211 0 2 5644 1 30"7 11 0017 160 718 l0 2 31D0 1 1752 10 ;160 906ll.0 2 3645 l 2030 ll 0 sYR 8 611 10 2 0079 l 0215 l0 sTR 875 l0 l24268 l 2347 l0 3 A S,fC- bN h V .'8 'OE d T" TAC R H E N T leoWcR W oUSTRY GROUP STRESS ITENSIFICATION FACTORS FOR TEE JOINTS m
W
, ;g , g, g g .,; , , ,.
I cU cxto o ;. n.m countcT ,g , n . .. n. SHEET l issut otscRteTICN arenovto z. :.: ? , . - STANDARD DE SIGtJ GUIDE S TD- M S A-1509 i iss ue. @ g) K4) kh) _.
. - . . . . ne
. TYPE A TYPE B TYPE C TYPE D
. -t ,-- t
- . = , . _._.
. ._ = '. A
--te t:' - ge te: t t e = l 51 RuH RUN 10" W 0 M l N A L ,-S I Z E 12" N 0 H I H A 1. . S I 7 E SCH t TYPE A TYPE B TYPE C TYPE D SCill t TYPE A l TYPEB TYPE C TffE D 10 165 3 3823 9 0819 4 6205 3 5735 10 LEO 3 5797 9 6120 4 6902 3 7MI 20 250 2 5503 6 6491 3 4946 2 6950 20 250 2 2651 l 7 69.3213 9140 l3 0271
.330 23703l63658 3 2337 l2 EC10 30 307 2 216tl 5 9512 3 0277 2 3417 30 STD 365 l 9676 5 2831 2 6878 2 0783 STD 375 2 1720' 5 S32! 2 9672 l 2 2?'.3 l 40 365 l 9676 5 2531 2 6578 2 0788 40 u05 2 C95 5 5218 I2 6093 !? 1777 60 500 1 5811 4 2 54 2 1599 l 67C6 60 562 1 6til7 40032l22427 l 77 S shp 500 1581I l 4 2454 2 1599 l 6705 l3hp 500 17803 l 4 7617 l2 4327 I 2315 60 593 1 4027 ! 3 7664 II 9162 i 4820 LO 667 1426313 8256 l1 pus 4 Ii 5C39
- 100 718 l 2248 3 2286Il 6731 11 2940 ICO l gua l l 2337 3 3125 ll 6553 ll 3Ji4 l
-120 f43 1 091u 2 9304 II u909 l 1: 120 I l0C0 1 09I2 ? 9299 I i UN6 l1 Ir"Od 140 1 CCO ' l0 ' 2 5572 l l 3163 1 0180 140 11125 l CMI l 2 6907 l 3699 'l C P71 160 1125 l0 2 3716 l ?066 I0 160 l 312 10 l2t012 1 2217 ll 0 XX XX STR STR ,
rum RUN 14" MONINAL, SIZE 16" NOMINAL 3 SIZE SCH t TYPE A TYPE B TYPE C TYPE D SCH t TYPE A TYPE 8 TYPE C TYPE D l 10 250 3 0530 6 1975 4 1706 3 2256 10 250 3 Su23 8 9745i u 5655 3 E313' 20 312 2 6260 7 C512 3 5274 2 7745 20 312 2 8753l 7 7219 3 9286 3 0354l 30 375 2 3159 8
6 2183 3 1636 2 4466 30 375 2 53731 6 8130 3 4662 l 2 65C[
STD 375 2 3159l 6 2163 3 1636 2 4463 STD 3751 2 5373 6 6130l 3 4662 l 2 6305) 40 437 2 OS50 5 5984 2 6482 2 2029 40 500l 2 0333l 5 5939 2 6400 i 2 2011 60 593 l 6579 4 5321 2 3C67 l 7833 60 656l l 72E6 4 6360 2 3586 l 9222:
500 l 9000 5 1016 2 5955 20074lgh, 500 2 C333I 5 5939 2 8450 2 201ll STo 80 750 1 4323 3 8459 l %57 l 5133 60 S431 1 4450 , 3 6E-37 l 9794ll 5309 100 937 1 2229 3 2836 1 6706 1 2921 100103ll12564 3 3736l 17164 l 13275 120 1 052 1 1178 3 0014! l 5270 1 1810 120 1:218 l 11491 2 9937 l 5231 1 1760 M40 1250 10 2 6562 1 3565 l 0491 140 1437 l0 1 2 6549 l 3507 l C446 160 1405 l0 2 4450 1 2439 l0 160 I562 10 2 u967 l 2703 10 xx xx SIR STR
}\ t /E D OH k u l's hi Per . [+7Ac,nmt_f.i7 f/
rowtn iNousiny cRct, STRESS INTENS!FICATION , , ,, ,,, ,
catexto wraww FACTORS FOR TEE JOINTS counter c, a.a w SHEET 2 issut otsC RIPTIC %
L P P R oI D
~
4 / c. STANDARD DE SIGN GUIDE "ssut i p)l (g STD-MS A 150 9 (7)l [Q)l
sTONC L wtOSTFQ EltolHE EQtNG COAP0T4 AT10N
/b TYPE C TYPE D -t TYPE B
- TYPE A d,_
_L b ,' /. _ f._
l Y te 19, le : I te :l St
- s. o n Evs a 20" HOHINAL, SIZE 18" tl 0 H I N A L _ S-1 2 E t TYPE A TYPE 8 TYPE C TYPE D SCH t TYPE A TYPE B TYPE C TYPE O SCH 5 3091 4 1061 10 250 3 6196 9 7191 4*9446 3 8242 10 250 3 886410 4355 3 1200 20 312 3 1153 8 3648 4 2557 ' 3 2914l 20 375 2 9536l 7 9307 l4 0345 30 437 2 4767 6 65031 3 3834 2 6168 30l 500l2 4277l 6 5167 l3 3165l 2 5550 STO 375 2 7492 7 3819 3 7556 2 9046 STOl375 2 953617 9307!4 034813 1206 2 9507' 2 2821 40 562 2 05t16 5 5972 2 8476l 2 2024 40 593 21560l 5 7997 4 5S46l 2 3324: l 8039160j 812Li 73E414 6679 2 3743l l 8357 60 750 1 7074 3yp 500 2 2559 6 0553l 3 0553 2 3656l3}p 500l2 4277l 6 5167 l3 3165l 2 5650l 80 937 l 4613 3 923Bl l M53i 1 54391601103111 471413 950912 01001 l 55% i 100 1 157; I 2587 3 379711 719511 3299I100ll 2501 2 Bull 3 yu7911 75cil 1 35s7 l 120 1343 1 1312 3 0375l 1 545311 1952ll20ll 500ll !270I 3 0260 lI 539511 1007 (
140 f 56211 Ol39 2 7224l I 3s5011 0712Ll40ll 750il 0078! 2 7059 i t 376711 0S47 l 160 175011 0 2 5045'I 274211 0 1601193711 0 l 2 5116 ll 277811 0 XX XX STR _
4 STR _
uve sun N0MINAL, SIZE 30" N0HIHAL 3 SIZE 24" ITYPEN TYPE B TYPE ' C ! TYPED .
SCH t TYPE A TYPE B TYPE C TYPEO SCH t 10 250 4 394911 8008 6 0037 4 6434 10 312 l
20 375l3 342218 974ll4 5657 3 5311 1
30 56212 533816 8163l 3 4681l 2 6823 STO 375 STO 375l3 3422l8 97ull 4 565713 5311 438 40 687 2 2128 5 9417l 3 0229 2 3379 60 60 937 :1787614 7999I 2 44201 l 6887 3 382 500l3 21 , d 57 4 374 500 2 7493l7 3822j 3 755Sl 2 9048 3 p STR 562 i 80 1218 I 4876'3 9942i2 032111 5717 l
625 i 100 1500 1 2841 3 4479!l 7541 1 3567 120 1750\l 150I 3 083ll 1 5711 I 2151 140'2 062l 1 0824 2 906311 4786 1 1436 I l
160'2312 10 2 5215 1 2828 l0 XX
- STR _
b456b Os 2vu P,ps- A 773 c sise nt J' 3
STRESS INTENSIFICATION . . . . .!
rowta inousf.'v ucuP '
CHECKc0 03 / s i. i., .. FACTORS FOR TEE .lOINTS SHEET 3 issut otscairTios 4 w s.r F C O FsH ECT APPROVED ,4
?sii- STANDARD DE SIGN GUIDE S TD- MS A-ISO 9 'N @l l@_ W1 @ -
.t v en u ,,c, ; ;
..../.../cateut. ... ..
. a".. StG.og.o4.-tim A - ei3 .Nct Pte'ot**T hEvit a t t; / o8.t :.-
Patr,atp/ LATE atvit wa n /cHter.t n / caf t A l G ~;:
-ll/?.,f) 4.r,19 1/ry c. Wh: /79 .L' V on caitconv / coct cia:.
~suostcv71 s t L t 5Ti?.5" G l N Ta Ns # r= 1 cati ou FAc. tor; e, Po e 'V4 a m._ eTs "
STaess INTGNSIIIC AT t DN FACIOD.S>
Bouway Foncg CortPORATION Wes bc.)t GTS STANDARb WT EX.TRA 6TIRONQ RUN DRARCH DN DIRARCH SIE6 Sits SIF SIEE Stue SIF NPS _
NPS 2 Au I . s 2. 2 Att 1,is 1
- 1. S ? 3 I,7.4 3
17 6 4 1,37 4
6 2,05 G t si .
8 2,23 8 f.64 2.3B to (,c) 2 to 2.63 12 2,16 12.
2,81 14 2,3o f 14 ,
(6 S o7 16 2.62 16 3.33 1& f.74 i 2o 3,58 Zo 2.94 l 22 s,sa 22 3.14 24 4.os '24 3.33 3,88 So 431 30 9 4,39 3G S.33 3G l
i ATTAct-#ueur 7
CALCULATION SHEET J.G./*J.O. / C2LCUL Af ssa KO. CtE vsat ort FACE e 4%AM f 1 REVIEWER / CHECNER / DATE INDEPENDENT REVIEWER /DATE PX[ PAR ER / D AT C Q A CATEGORY / CODE CL ASS l BUB J LCT /1 S T LE l
sraeSS l WT32 f a st FtCAT t o ts; FACTORS, 13 OlaNE.Y For<se Cc>aroRATios C.ATROLET S STANDARD MT EXTRA bTROt4G 3 RvN Si<Awcs SlF Ruw DRANCH SIF Siaa Sia our ce SiEE S13a eur or PLANG PLA N 3
- NPS .. .
NPS -- . . . . - - - - ._ _ . . . . . .
F., At L 2. I 4 2 At t I,66 3 2,2i 3 Ias 4- 2AS et 1,93 2.89 6 2,13 4
3,I 6 8 2,3 l S
10 3,3G io 27o
! le 3,71 12 ,
3.c4 >
3,9c let 3,26 l
l 4-l i IG Lt .34 I G- 356 l
18 47o 123 3,86 5,06 20 4, ld I
2o S,39 22 4,4'$
22 S,71 24 4,7o 24 3o 6,6+ 30 S,47 7,6 I 34. " c, Ic) 3G u ATTACHMauvT 2 A
IG l
. APPENDIX D
+ Te o- -*- Tb *- l
, BRANCH PIPE I
+ <>- 4- e-T b d c
% -rs P%'( d ,<>
h, . r,m L :I4 Is\
M i i ( f N .a -6=90' 2 -OFFSET 7
- OFFSET rp N _, ,,, P i . -
Y \
RmlTr dh .
RlmTr Ak 2 2 (a) (b)
Tb - Ti + 0.667 y BRANCH, PIPE : NOZZLE
+ *T 'b -cr <>- T'b : Tb BRANCH PIPE d
,,, 1 [' ' '
6.s 45a o
o3 j
(
j i : t tfg <
'! 4{f NOzztE ?
'I Tr /2 r'm r2
~% ['2 ,, Tb : k
,k br, g[f3;, [ k skfh Y 7r yM IRm T _" i i pml h./
3 (c) (d) l A 7771 CNH&J7' 3 FIG. D I NOZZLE DIMEN$1CN$
138
. /7 L i
APPENDIX D - T able D.2 (Cor.t.)
Sketch Stress Intensincation Factor Cornponent -
t
) 1 A ;
m 3 r *m 2 :
I= 1.5Tr(jg Rm l i
See Figure D 1 Branch Connections (see Notes 3 and 4)
Notes for Tatte D-2:
Note 3:
The equation apphes only if the following conditions are triet:
(a) De reinforcement area requirements of 104.3 are met.
(b)The axis of the branch rire is normal to the sarface of the run pipe ivall.
(c) For tranch connectionsin a riae.the arc dkt.ince measured betacen the centers of adjacent tiraciches along t the run 3,ipe is not less than three times the sum of their inside radiiin the longitudinal direction or is not icas than* two times the sum of their radu along the circuniference of the run pipe (d)The inside corner radius r, (see Fig. D 1)is between to percent and 50 percent of 7).
(e) The outer radius, r,,(see Fig. D-1)is not less than the larger 6 ofb 7 /2,(T + y)/2 Ifor Fig. D-1(c)] or T,/2.
(f) ne outer radius, r ,(seee Fig. D-1)is not less than the larger of (1) 0.002 6do (2) 2(Sin 8)' times the offset for the configurations shon in Figs.D 1(a) and D 1(b).
(b)Rm/Tr < $0 and r'm/Rm C 0.5 Note 4:
The followingnomenclature applies to Figure D.1:
rf = inside radius of branch pipe,in.
r *m= encan radius of branch pipe,in. .
Tg*
- nominal thickness of branch pipe,in.
Rm= mean radius of run pipe,in.
Tr = nominal thickness of run pipe,in.
do = outsiJe diameter of branch,in.
^
Tg, 8, r, , r,, r,, rpand y are defined in Figure D 1 minimum sequired thickness of tun pipe, calculated as a plain cylinder fr =
ArrAC. maut 3A
n '
ATTACHMSMT ' 4 $ ~! D' MAXIMUM SfEE OF BRANCH FOR WMIC.H (SIF) MGeb NOTIse AaPueb TD.IHe RoN d j! *hr F'@c
- . waerze seecir=,c .scseoute.s Aa.e usTep,Tuiwweg etres or 7sArsim sw2_tser c3e v:.en Q%g 3 g- -
RowPws Rum Pies bawca PIPE MAX BRANCH RUN Pipe Rus Pees Baascs Pipe MAX EMAMcH +
c.b. ( w) ru'x./scssp Mew D A.. (wes)* o . o . (i m ) Ts <,c /scseo yet,s D A. (wes)A j $' y,
(.ru) (MA4, ( 4 Os') G N') (uAx), (i") (en') i 3 Sfo.o o.Soo xs 4. l oo - 4SCH 12C Vt .o 0.90 o xS 2. C)7 G. 3' xxs 4 3 " t LES S 7'T e cess y Y
- 14. 0 o,376 STD 2.4c.6 2/xxs 3 G,. . o 0.37S STp 3.395 3 "
- Le ss 2'< t.eos N*n r
7 5 7 *:
3o. o o.soo xs 3.sce +" xxs 12.-)so o,Foo xs 2,882 2 ke*ctess I%
a, Ti ;;
3 e.tess 2.75-o o.37,5sro 2,3s7 zixxs q g- 3 g 2- = tess p: :;
j*
3 O, o 0.316 sTo 3,1 > 3 3"scs (ca .;s5'_C!5 y 2'/a" t Less t o.-) So o,6co Xs 2,?ii 2 k2." STD h
- 24. c) O.Soo XS 3 680
~"
3
- Less 2" c tess \"
!o lOi7FO o,366 srp 2,2 i 2,, scu SOS
'2 4 . O o.3 76 srb 2.% i 2F/eLess iPz'< v cc-ss j n
l l8, o o. goo xs . 3.246 3"scs Bo B,c.26 o,sco xs 2.513 . e" c tess -
2'/a" t less i
- l 8,629 O,322 STD l,SS8 iP"rLESS e , j i ( 8, , o o,37 6 Srt> 2,C.8.5 2'/e' STD ; ;,
2 e cess 6.G,2 6 0,432 >S 2. O<S2 2" scu Ico E ": 5 ikz" g Less i E
~
, l6,o O.Soo Xs 'S , I l '7 3'scs IGo
! 2'/e* < Less 6 6ti o,2 S o STD 1.672 Ik i Xx5 @S l 1 % ' S Le ss l (o , O O,3'7G s[D 2,S80 2e%cnI6c, -E "
2'eLess' '+, 6 o o O.237 stb t,2 3 2. I'
- L e 5 5- ~
1 .
c- INICl(01iICC MEMORANDUM
- 4 R$ 12 ' s. 2 ' ' ' $ /1}D9 SUDJLC1 l'll'L $1HLS$ Sl'LLI AL l'KUL.Itf1 DATE May 25,1979 FROM DTKing TO Task rorce Distrioution List cc I
i END 79-10 provices general procedure for the stress analysis of b 31.1.0 branch piping. EMD 79-11 provides technical information relatins, to tne
' use of stress intensification factors and stresses for reduced outlet branch connections (B 31.1).
?
Tnis memorandi c is intended to provide clarification with respect to the applicabiliti of EMD 79-16 and 79-11. EiiD 79-15 shall be used to identify brancn line which iaust be includeo in the analysis of a piping run.
EMD 79-11 hall be applied only to those branch lines which have been identifi .d by EMD 79-15.
Proje< t Engineers are directed to incorporate this policy into respective Project Procedures for evaluation of dynamic pipe tress analysis.
D. T. King
-1 D_ISTRIBUTION PIPING SYSTEMS EVALUATION i J.P. Allen /D.Oakes 12 L. D. Barnes/H. W. Durkin 14 W. Chamberlain 09 J. T. Christian 12 K. A. Condon/M. B. Stetson 08 B. F. Crowe 14 J. P. Czaika 07 H. F. Foley 06 D. C. Foster 08 D. Esielionis/R. Hankinson (5) 14 N. A. Goldstein 08 S. Greer/R. A. Bain (5) 14 R. Haladyna/J. J. Moran 14 G. L. Harper /F. Kucharski (4) 14 S. B. Jacobs 13 D. T. King 09 R. A. Loranger 14 A. A. Micale 09 C. B. Miczek 10 L. D. Nace 02 M. Pacy (5) 14 M. H. Fedell/D. F. Shave 08
, C. F. Reeves 09 K. Reinschmidt 10 C. M. Robinson, Jr. VEPCO 14
.* R. F. Rossi 11 S. C. Rossier 09 M. Sergio 14 E. J. Siskin NYOC
- 1. Sprung 03 R. C. Tappen 14 A. L. VanSickel 08 R. P. Wessel 08 W. G . White , J r. 09 P. A. Wild 10 F. P. Whittum 05 (Computer Program related only)
R. Baumgarten NYOC - 38 K. Y. Chu NYOC - 38 P. Dunlop NYOC - 38 F. Dymek NYOC - 38 P. Garfinkel NYOC - 40 A. Greenfeld NYOC - 38 .
J. Hall NYOC - 38 J. Lee NYOC - 38 H. Moscow NYOC - 38 NYOC JOB FILE - c/o T. Adams NYOC - 38 P. Riegelhaupt NYOC - 40 C. Silvestrelli NYOC - 38
Tape 2 I t
ENGIEFIRIEC DIVISION MINCRANDUP' EFCIETTItING MECHANICS DIVISION Issue No. Title Date fyD-79-19 USAS B31.1 Stress Cdrputatior.r 5/14/70 FMD-7 9- 2 0 Conversior. of TE'JRTSS/SPOCF Data to Nurire Data 5/22 /79 s
,-