ML20098B044

From kanterella
Jump to navigation Jump to search
Rev 0 to Finite Element Analysis of Pipe Whip Restraints SI3R-640A,FWR-35 & FWR-16
ML20098B044
Person / Time
Site: Byron, Braidwood, 05000000
Issue date: 09/30/1984
From: Amin M, Pop J, Yang M
SARGENT & LUNDY, INC.
To:
Shared Package
ML20098B038 List:
References
SAD-442, SAD-442-R, SAD-442-R00, NUDOCS 8409250384
Download: ML20098B044 (40)


Text

FINITE ELEMENT ANALYSIS OF PIPE WHIP RESTRAINTS SI3R-640A, FWR-35 AND FWR-16 l

Commonwealth Edison Company Byron and Braidwood Stations - Units 1 and 2 Project Nos. 4391/4392 and 4683/4684 J . P op, J r .

M. S. Yang M. Amin Nuclear Safety-Related Revision 0 - September 1984 l

Report No.

SAD-442 SARGENTh LUNDY ,

8409250384 840920 PDR ADOCK 05000454 PDR A

l

..

  • j Strt'ctural Analytical Division Report Issue Summary P ect Byron /Braidwood Number 46 3/ 68 o .

U" Client Commonwealth Edison Company Finite Element Analysis of Pipe Whip Restraints P t SI3R-640A, FWR-35 and FWR-16

{, g 59 8~

c rt SAD-442 Nuclear Safety Related Yes b No 0 Revision Date Identification of Revisad Pages Signatures No.&Date Prepared by: lekw h. $ 84-o '.-=-

'l . l cf-j].-hf-s .

Reviewed by: l v': , f er[$,C 3-It~

.- t

.5

$ Approved by: h ,6 9 8 4 1

i l

I t

S

..e - - - , --n. , , . . _ . -

. n.;

i.

TABLE OF CONTENTS Page

! Report Issue Summary. il tI. . S'UMMARY - 1 II. _ RESTRAINT DESCRIPTION 2 III.- METHOD OF ANALYSIS 2

'IV. S'UMMARY OF RESULTS 4-5 V. REFERENCES 5 TABLE 6 FIGURES- 7

-APPENDIX A - Summary of Results for Deleted.

Restraint FWR-35 A-1 APPENDIX B - Summary of Results for Deleted Restraint FWR-16 B-1 111

- . -. _ _ _ _ _ . _ --...._,, --- _ , _ _ ,.-._ .- , . _ . - _ _ . - - _ _ _ , . _ , ~ .

.J ' '

SAD-442 Rev. O September 1984 I. S UMMARY.-

In discussions of the test plan for qualification of energy absorbing material (EAM) with NRC Region III and NRR S taf f, CECO was' requested to provide the design drawings for all Byron /Braidwood pipe whip restraints that use EAM

'(Reference 1). The staff was to review the drawings to determine whether the load angularities considered in the EAM test plan bound all design conditions. As a result of this review, the staf f indicated in a letter dated July 21, 1983, that the design of FWR-35 and SI3R-640A restrains is not bounded by the EAM test for the following reasons:

. "The staff believes that the tension member for two restrains (identified as FWR-35 id SI3R-640A) will be in compression (not tension) during the initial loading phase. Consequently, the EAM will be subjected to a load angularity and deformation not explicity considered in the restraint design nor in the test plan. Furthermore, the EAM will be subjected to an additional bending moment (in conjunction with the compressive and lateral loadings) which'is also not considered in the restraint design nor in the test plan."

In order to address the concerns stated above, CECO proposed to perform a detailed finite element analysis of the two restraints. This report summarizes the detailed nonlinear finite element analysis performed on these two pipe whip restraints (SI3R-640A and FWR-35) .

Subsequent to the analysis cf FWR-35 locations on the feedwater system were reviewed and revised. As a result of this review, FWR-35 was deleted. Because of this deletion, another two-legged restraint, FWR-16, was added to the study scope of the behavior of two-legged restraints. This addition was prompted by the fact that in SI3R-640A and FWR-35 the angle between the pipe break direction and the 1

s

. .1 - SAD-442

, Rev. O September 1984 tension. leg is less than 90 in each case. In FWR-16 this angle is 91 being closest to the range of angle which has been of interest to NRC S taf f. Subsequent to its selection, restraint FWR-16 was also deleted.

In'this report the details of modeling, method of analysis and results of the analysis are presented for the restraint SI3R-640A. Only the results of the analysis for the deleted restraint FWR-35 and FWR-16 are presented in Appendix A and B respectively. The analysis presented herein shows-that these restraints can withstand the

- postulated pipe break force without exceeding strain limits

.in the tension rod and energy-absorbing material.

'Therefore, they will satisfactorily perform their intended function.

II. RESTRAINT DESCRIPTION SI3R-640A is a two-legged restraint located on loop 4 of the safety injection system. Figure 1 shows the locations of the restraint and of the_three circumferential pipe breaks affecting the restraint on the 10-inch O.D. line.

The restraint is designed to transmit the postulated pipe break forces through the steel box girders to the embedment plates on the containment wall and secondary shield wall.

The restraint construction is shown in Figure 2. Tension forces are transmitted through two tension (7/8" 9 A193-B7) rods. Compression force is transmitted through a honeycomb material (5" x 4" x 3" thick) and a W8x35 structural steel. The direction of break forces on the restraint, is shown in Figure 2. The effective gap between the pipe and the. restraint is 1.754 inches.

III. METHOD OF ANALYSIS

.The dynamic deflection experienced by the pipe and restraint is calculated using the model in Figure 3 and the PWRRA program (Ref erence 3) . The pipe parameters used in 2

,cp .. SAD-44?

Rev. O September 1984

'the' analysis are summarized in the figure. The effecitve pipe break . force time history, F(t) , is shown in Figure

-4. Ph'RRA computes the nonlinear time history response of the pipe-and the restraint system.

The model in Figure- 3' considers the restraint SI3R-640A as a bilinear spring element-with an initial gap. The load deflection characteristic of thic bilinear. spring was derived from an independent static finite element analysis, including geometric and material nonlinearities of the.

restraint SI3R-640A.

The ADINA program (Reference 4) was used to compute the bilinear spring characteristics. Figure 5 shows the ADINA model'in the restraint plane. The main features of the finite element model are summarized below with reference to the ' node numbers shown on Figure 5. Further details of the

- model- and computer output are contained in SAD Calculations 8.15.1-14.

A. Beam elements with elastic plastic material behavior are used to represent the tension rod, the column under honeycomb, and gusset plates, which are not in the Y-Z plane. Table 1 summarizes the yield strength values used for these elements.

B. ' Elastic plastic plane stress elements in the Y-Z plane are used to model the honeycomb (EAM) material and the gusset plate above the honeycomb. A yield strength equal to a crushing strength of 6 ksi was used for the

, honeycomb. Dynamic tests conducted on honeycomb material show that material crushing strength does not decrease significantly because of load angularity (Reference 2). The yield strength used for gusset plate elements is given in Table 1.

3

SAD-442 Rev. O September 1984

~

C. A~ series of radial gap elements with center at node number 17 (ring center) are connected to the ring perimeter nodal points where contact between pipe and ring will occur. The gap for radial element 17-16 located on the negative Y-axis-is taken to be the effective 1 gap of 1.754 inches. The gaps for other elements are taken as this gap plus the geometric gap dictated by the undeformed surface of pipe and ring.

The spring constant for gap elements was selected from a consideration of local stiffness of the pipe.

To .obtain the load-deflection diagram for this restraint, a r

displacement c p is applied incrementally at node point 17 of Figure 5, and the corresponding force in radial elements is~ computed. This incremental analysis is carried out for a sufficient number of steps using the large displacement option of the ADINA program to obtain the restraint load-deflection curve as shown in Figure 6.

. IV . .

SUMMARY

OF RESULTS The restraint reaction is plotted against the pipe deflection in Figure 6. The calculated data points are idealized by the bilinear diagram shown-in the figure.

This is the required bilinear spring characteristic for use in the PWRRA model (Figure 3) . Note that restraint reaction is zero prior to closing of the effective gap.

Also shown in Figure 6 are the pipe displacement values at which EAM begins to crush and the tension rods yield.

The displaced configuration of the restraint after 45 (k g

= 2.525") and 75 ([p=4.005") steps of static solution are shown in Figures 7 and 8 by dash lines. In these figures, solid lines show the undeformed configuration.

4

5 SAD-442 Rev. O September 1984 When-the bilinear load deflection curve of Figure 6 is used in the dynamic model of Figure 3, the maximum pipe deflection needed to accommodate the pipe break time

-history:of Figure 4 is calculated to be 3.15 inches. This

-maximum deflection is marked in Figure 6.

Figure 9!shows the deformation of the honeycomb needed to accommodate the pipe break. Figure 10 shows the tension leg force versus the pipe deflection. Note that the

-tension leg is in tension at all load levels and thus the question of buckling of tension rod does not arise. The strains.in the honeycomb, tension rods and pipe at the maximum pipe deflection are shown in Figure 6. Since

.i. strain in the-EAM jtension rods and pipe at the maximum deflection are within the acceptable limits, it is concluded that SI3R-640A can withstand the critical pipe break force which is postulated to occur.

.V. REFERENCES

1. Letter f rom B. Q. Youngblood of NRC to D. L. Farrar of CECO, dated July 21, 1983; Enclosure 1.
2. Commonwealth Edison Co, " Evaluation of Energy-Absorbing Material for Pipe Whip Restraints," Reoort No. SAD-431, Revision 1, April 1984.
3. Sargent & Lundy, " Pipe Whip Restraint Reaction Analysis Program-PWRRA, Program No. 09.5.125-2.19.
4. ADINA Engineering, " Automatic Dynamic Incremental Nonlinear Analysis - ADINA," S&L Program No. 09.7.199-2.09.

5

a ., .

,'*1

'a -

' SAD-442

-Rav. O September 1984 TABLE 1 VALUES OF YIELD STRENGTH FOR VARIOUS STEEL ELEMENTS (Section III, Items A and B)

-Component. Yield Strength '

(ksi)

Tencion Rod 112.0 Gusset Plates 56.2

.W 8 x 35 56.2 l

l 6 l' .

m AF '

Qy l

g n,394 EL394 IRC29AD -103 N i; ;f 9 e II EL3M4 -

^

4%b-2 =  %*? Mas i (IACG3AD 2I5 L- 393.00-

-ye g ;* L ,

.ys*- - y sr O

$9 Z g .

. GIRC -215*

{ "$.)5 Y g' w A l o3.o,2 g . SECTION ' A- A' - - gg a.

ua. N i

y'jv t -

stt W.2

. u y 3-o , ,isi EL394J20.

N m -1

_K TNAN YE h h. 6 a.39uso h

u

)% @

..?

a e

~ ~

'h hsse' g

23 ~

aus.soo.

m 2TTJi'_Lus @uso*m -o = ' < ?e m.~. D.%

GN~-.a.ses.soo*

. .. w .oa m eg 5 amh '

m, ,4 e..: : t'se*M

-> * ""D; @dh?dh SECTION 8,B I

E M '. uissa.E EL4to.OM BARMR d ,

i g

u:

f

'd - gJ se f

h Mistos-o3 2 IRI EL42L250-g EL428.SOfLr a

n" g

syrup 2

__ 9-l g i @' . *, - - ',, e 413 l Ig 'p q' ) Gs.l M ++ 7A c- a-]

i ' 3 h la e L2 . ,d", o g' - -

Et 4,3.2sa-

  • " U* 3 964 'o i

6103-0 3 g h forstoc..n#'2-lh SECTION C-C' ggm o<a i

V LOOP- 4 g1 Pr 0

",,as".c.a. mia re= SAFETY NJECTION sys m e $

e...

remozc7 DYAM/9ftAlOwpap Psio s cT Mo. 4 G g s

[

cur ><r cowchsArg zoi+od co.

T OCAT ONS OF RESTRAINT St3R-640A.

I AAD BREAKS B-625, B-630A AND B-630B FIGURE 1

. . , . SAD-442 Rev. O September 1984 4 Pirii.

i u w oi P . k n 4 - d riwA !T..

i. o. i4 v 4" 6' x 5" i noNLEYccva (7YP ) Ax G'4.1. .Y 'e-P' q.

/

4 PIPE ft'$ g -

f(E L. 994'-l'/z' , \'\ , s 9927 11

, 'F 19..I k4 = 3 w o 2

f M -

h[I.

/ -

$$$$~i.I g, {,

28/ A19 5 - LT p,. g?'=T g5 .g.

l /2'It, / '

W[

Wex56

@ *, L F{, t 4n' .

e. 0.S R i a l8 a f 5 m s'

\ >

\ ,'

l' ' 2 7'# e,A IC 6 - 67 2005 in n ti nac'.ioE -

i

' fl wli's e Wr Escs A* $' C/c s A

.i

.\ -, __

Jr s q _ q ; ,.

, 6 ,20 0 I?

l

/WPy/

O//

dl WPs 41 l

g g. 4 l

s

/

, L.' f R 2' 14' ggigt gi ---,

) / . s EXI67 82C

. ... .. g i \

I '

it i . s'. i.5'1. CET.16 (fff'(s.tG70.-rig I- SY)

(TYP)

RESTRAINT S13R - 64O A FIGURE 2 8

L

SAD-442 Itevision 0 Sentember 1984 F(t.)

TIP WElGHT e 0.oGol K A E C U JP -

h GAP = l .7 54 IN .

sRESTRAINT PROPERTIES f FROM LOAD DEFLECTION CURVE L,s24'b.9iN. L2 *7.4 IN. _

P'I P E Plt 4 F E R TI E 6 :

WEl(=HT = 0.01171 K/14 o.0. =10.76 IN.

THICKN ESS =I4 IN-YIELD STRESS = 28.7 K51 ULTIMATE STRESS = (s2.O K51 liLASTiclTY MODULUS = 7.7,6,00 KSI PIPE WHIP RESTRAINT MODEL USED FOR DYNAMIC ANALYSIS OF Sl3R-640A FIGURE 3 9

. . . - . . .. - - . . - , - . . _ . . - - - . . ~ . - _ . . - . - . . _ - - . - - _ . - . _ - . . -

SAD-442 Rev. O Sentenber 1984 a

e o _

9 E

2

=

c d

a:

e 9

I t i f I k O.0 01 0.002 0.003 0.004 0.005 TIM E t (SEC.)

FORCE TIME HISTORY OF PIPE BREAKS B-625-2A, B-630A-2A 8 B-630B-2A FIGURE 4 10

SAD-442 l Rev. 0 l September 1984 l

GSCALE 0 0795 i SRIGINAL 25 gg dk Z te

,e n

,L 14

--> ss8 Y

/ te 36 4 37

_S9404 42

<,53 1

, ,54

.=

54 6

VIEW OF FINITE ELEMENT MODEL IN PLANE OF RESTRAINT Sl3R-640A FIGURE 5 11

SAD-442 Rev. )

Sentekber 1984

. 9

_m, T

n#

ooNNe 5 o o' 4

,, ,, ,, O t

E Oi z<

-c

! * [

H mg A-.

{ _

  • c mE@

\ *o-z w

\ o c: n z

x

?9m zr

$o Lt.

\ $w*5 h,LLI

, x ~ a. _ > w

  • Gll'

>IV3W8 3did 01300 d$ XVW T.

\

~

$>O Q

w e

E 073fA S008 NCISN31 \, 926'2 CW E g -@ E Z

\

N a o F-O LLI

_.J L1_

LLI

\. O I

S3HSAWD MV3

=

961 o O 4

O S3SO,0 dvo 99ti- ._.I

o. o o e _: o

_ ~. . e O'O'02 O'OOI (Sdl>i) 8 N0110V381NIV81S3B 12

  • SAD-442 Rev. O September 1984 9RIGINAL - OSCRLE 0.0742 DEFORMED _.DSCRLE 0 0742 -

TIME 45.00 DMAX 0 187 ,

f p )

)

b _

/

i k

D SP _.AC E J CON F GURA- O \ O r RESTRAINT SI3R-640A AT bp =2.525 IN.

FIGURE 7 13

-- - - - - - , , , ---,,.-..-----.-.---.v.n,_ m ,, ..,--,,..,,-,...,,,,_,_._-,~--,,--.,_.-n--..n.,

~ '

SAD-442 Rev. O September 1984 BRIGINAL-_ OSCALE 0 0732 DEFORMED _ _ OSCRLE 0 0732 TIME 75 00 DMRX 0 293 I i b= >

I

/

?

- . '. l e

DISPLACED CONFIGURATION OF RESTRAINT SI 3R-640A AT 6p = 4.0 IN.

FIGURE 8 14

=,+ .

~

SAD-442 Se te her 1984 ORIGINAL DEFORMED ZA Y

h \

/ s N o.

/

\

\

(s N

/

/ *

/ O DISPLACED CONFIGURATION OF EAM AT MAX 5, DUE TO PIPE BREAK FIGURE 9 15 15

3 x

4 w

E w

a E

o H

d $

o 2

o 2

X

! 15 0-- 4 2

-13 5.0 ROOS YlELD CAPACITY IN UNIFORM TENSION '

r

,p.-* .-

g M

x

~

ROOS YlELD IN BENDING

/.

+

U s*

w -

lli,0

/ .=/ . ' '

E*u$u.100-- ../.

/

(n f 8

x /

/

/

l $ .

! E w 50--8 a -

/

H U

  • f mmW g .l C O 3' 4 / c<a i O / @" $

e o ./ . ?O l k M 1

z -

! l.7 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 g j PIPE DISPLACEMENT fp (lN) l 1

TENSION RODS FORCE VS. PIPE DISPLACEMENT FOR SI3R-640A

+

FIGURE 10 I

i_

SAD-442 Rav. O Scptcmb2r 1984 APPENDIX A Summary of.Results for Deleted Restraint FWR-35 Figure Al and A2 show the location and construction of pipe whip restraint FWR-35. As discussed in Section I this restraint is no longer needed because of changes in break locations. The discussion below assumes break locations which would have required the restraint. -This restraint was designed to resist break force B-80A. The location of the break is marked in Figure Al and the direction of the force on the restraint is shown in Figure A2.

Figures A3 and A4 show the dynamic analysis model and forcing function. The finite element model for static load deflection is shown in Figure AS.

The restraint. reaction is plotted against the pipe deflection in Figure A6. The calculated data points are idealized by the

. bilinear diagram shown in the figure. This is the required load-deflection diagram for use in the PWRRA model in Figure A3. Note that restraint reaction is zero prior to closing of the effective gap. Also shown in Figure A6 are the pipe displacement values at which the tension rod yields and EAM begins to crush.

The displaced configuration of the restraint after 70 (h p =

3.25") steps of static solution is shown in Figure A7 by dashed lines. In this figure, solid lines show the undeformed configuration.

When the bilinear load deflection diagram of Figure A6 is used in the dynamic model of Figure A3, the maximum pipe deflection needed to accommodate the pipe break time history of Figure A4 is calculated to be 2.87 inches. This maximum deflection is marked in Figure A6. Figure A8 shows the deformation of the EAM needed to accommodate the pipe break force. Figure A9 shows the tension A-1

. - . - - SAD-442 Rov. O September 1984

?

rod force versus the pipe deflection. Note that the tension rod is.in tension at'all load levels and thus the question of buckling of tension rod does not arise. The strains in the honeycomb, tension' rod and pipe at the maximum pipe deflection are . shown in Figure A6. Since the calculated strains in the EAM, 1t ension rod and pipe at the maximum pipe deflection are within acceptable limits, it is concluded that FWR-35 can withstand the pipe break force which was postulated to occur.

l A-2

~

. 4 stzAcT*A Z +My g 3 J , +Y o sanvo n

.. c.ows. E=+s 8s .s a

d..,_ i. ......

8

' Yda

/ k

.a m.

h4

  • h +Mr v v
g. +I

. h @ t-a ms t ps4 T.,.gs: g.

t. La liF*c9-ca/l A ANCHO=

hs herw.e9-00( 'T. '

  • 5- H O o^ra ' r.

4 S 8 ELL M al. 4 0s.c,t.,7'

  • g, O auncTion

, UFWo*MD-8 # ,.h p*

  • i .

p enauca

=i p wos.cc .s F: &* Teau o hselsA ~I ? "M A.

vanism.z on

@ g Ib

'l .- .

  • $,,]'f,',,

'N-. L g L.4a.,. 946'

"' N'$"'

s Arm e.s s 7- , 0

,a  : ,, b '_ r -899S* _st a

i h  : ( h h he.sta

; i 4 . ,e s .. , A 6 . rwn-35 U_ nLg ..u . yy 4

j }[ -,

east.wn h e- Isf "N u

gewos-ooze . O,'*' yya l F'-7 G a?s

      • ~' w a

mu '

s..

g s ,.

a

$ B4.70t* **

31 743 $ J.99 7 .

3.00. Mcv.a.s 's - a'

)t *'5' 958

Toe m. u ss44 . ear l Q' 3.... ... ,,

4414 ppoop g.o o P -4 in x n O O *>

Asent.YTDCAL & U<O rt - I PHYSICAL DATA FD*' FEED */AT @ SYSTru o 6 4991 Psiozer byRad/6RAtowoop enorev No. 4c,gg hO^N e

curwr couvoJwsALTH EoisonJ co-

  • I LOCATIONS OF RESTRAINT FWR-35 AND BREAK B-80A FIGURE At

m .

I -

g. _ 4caa eer = 4 m at k ,ee ITTr icAL p tru e v. e se  ; <>- / as.,o,>,-,e-TAIL .e r>

et.4oi'-ob.,,

l k / e.eu _

6 '*4.

w.ao, ge' si

+ i -.istry,>

B - 8oA-2 'tf de s\

e s v .,v.,-o- -

k u .., . s 8511b

~ ' 4-

' J HoJevco*e e e.,e .e-e e '

w. y' 7 ,r y c e . v ... ew r*L.

T T'" \ -e + Amo -e.7 scon

/j gin 2-e4'ed.T9 w/c eiJTo tP4h*cA --L 'g 94 usv.eT eJcao v '

t.c4.,e,s' o= & A . ,'s,c.o-

- ~4

. i + e. .'c. .'. . 'e o o (4e4ne>

-4 o + r. m n v, >

0 i h-\

u. A .s&an m , s NQ, 3,7 A <i n<+*m

/ .;....

, s m,. <...g ..

. ~. . ; -

- , ,, / -

eins.im>.' ,. .,g.

m :n m OQ>

" .* ?

m

  • 9 o s.

0" N O

P1 RESTRAINT ~ FWR-35 m FIGURE A2

  • l

i SAD-442 Rev. O September 1984 1

TIP WElGHT

= 3.8G K V

U 0

._ G A P

  • l G2414.

P RESTRAIMT PRO PERTIES 7/8' FROM LOAD DEFLECTIOW CURVE 2Cl2.2 iW. _

27.81W.

PIPE WElGHT = 0.0182 K/lu.

O. D. = IG IM.

THlCKMESS

  • O.84314.

YlELD STRESS = 28.9 KSI ULTIMA.T6 STRESS = Gl.8 K91 ELASTICITT MODULUS = 29000 KSI o

PIPE WHIP RESTRAINT MODEL USED FOR DYNAMIC ANALYSIS OF FWR-35 FIGURE A3 -

A5

4 SAD-442 Rev. O September 1984 Il

^

> 200 -

15 0 -

7 _

.9 E -

3 ~

u. _

w LOO o

x -

o ~

LL.

50 -

O i , , , l ,,,,l , , , , l , , , , [

~

0 .01 .02 .03 TIME t (Sec.)

A-6 FORCE TIME HISTORY OF PIPE BREAK B-80A-2 FIGURE A4 A-6

~

ORIGINAL OSCALE 0.112

\e.

I St

. Y j "

es .

. i.

17 su i.

.80 .37 se 15 1

"4. ~ 41 _

r- 14 48 se

    • 6

.es .e4 44 es -

7 >

i g 3 13

-a a 82 ES 1

, $5$

c :e E1

! VIEW OF FINITE ELEMENT MODEL IN l8 PLANE OF RESTRAINT FWR-35 i j FIGURE A5

gUiO g4

  • o
U Eg.e" .E 5 _

%% 5 " 3 -

6.62 51 0 R

=

W l0 F 5

NN I

AAI R RR TT e O SS F D N I

~

BO A MRR I5 4 E O

C O N T

S V

YI

)

H R ES E NN OEI HTP P

i0.

C I

(N U

C 6 A

4 p

N

  • E h R O

I U

G T

I N F

/ 5.O l3IT C

E L

C E

L F

F

/ 0.E D E

i3 D y

E -

5' Nw oW w5 n *.x$

W P I D P A I5 O

u 2 L EI $ m 3 ywzO W

/

m O W > g m z o E Z "! I./ W 0

/ i2 8 1 4 5 7 9 0 3 mW o a$ 3 2 2 1 $ 5 h - - - I o Oe OQ ao oo Gbx" x zOj - gT r7 t< h n( g T=

-  ! {

4 SRIGINAL _ 98CRLE 0 112 DEFORMED _ _ DSCALE 0 112 TIME 70.0 DMRX 0.296 i

\

\ s i

'N

'N ~

m .

N

! - . /

g j

-Y \ Us DISPLACED CONFIGURATION OF  % , E

^

RESTRAINT F W R-35 AT 63= 3.25 IN. g. j FIGURE A7

hY Z

O RIG lN AL -

_ _. ._ DE FO R M E D i

n i -

I

> l I

$ b' I l

1 o I

, I I

i l

I l I l o '

_______________J 4 ii" wir:

Ef?

DISPLACED CONFIGURAT.lON OF EAM FOR kE l.

FWR-35 AT MAXIMUM S P DUE TO PIPE BREAK g

^

! FIGURE A8

a ,

d 500- E te e

s 400 397.2 ROD YlELD CAPACITY IN UNIFORM TENSION _

4 x

^

<t

$300 -

m m m

O M

e d ./'/

m E' >

0E" o 200 4

" / . / ..

z 9

/

13 5.0 ROD YlELDS IN BENDING /

z Y l00 -

7

< ./ '

/

1.5 1.75 2.0 2.25 2.5 2.75 3.0 Eys O<0 PIPE DISPL ACEMENT fp (IN) g1 TENSION ROD FORCE VS. PIPE DISPLACEMENT a FIGURE A9 y

T^ ]

'- }

SAD-442 {

Rev. 0 l September 1984

- APPENDlX B Summary of Results for Deleted Restraint FWR-16 Figures B1 and B2 show the location and construction of pipe whip restraint FWR-16. As discussed 'in Section I. this restraint is no longer needed'because of changes in break locations. The 1 discussion below assumes break locations which would have required the restraint. This restraint was designed to resist break force B-55A. The location of the break is marked in Figure

'B11and the direction of the force on restraint is shown in Figure B2, i Figures B3 and B4 show the dynamic analysis model and forcing function. The finite element model for static load deflection is shown in Figure B5.

The restraint reaction is plotted against the pipe deflection in

. Figure B6' . The calculated data points are idealized by the solid line.shown_in the figure. This is the required load-deflection diagram.for use in the PWRRA (Figure B3) . Also shown on Figure B6 are the pipe displacement values at which the. tension rod yields and EAM begins to crush.

The' displaced configuration of the restraint af ter 70 (Ep =

3.12") steps of static. solution is shown in Figure B7 by dashed

. lines. 'In this figure solid lines show the undeformed configuration.

When the linear load deflection diagram of Figure B6 is used in the dynamic model of Figure B3, the maximum pipe deflection

~

needed to accommodate the pipe break time history of Figure B4 is calculated to-be 2.544 inches. This maximum deflection is marked in Figure B6. _ Figure B8 shows the deformation of the EAM needed to accommodate the pipe break force. The strains in the honeycomb, tension rod and pipe at the maximum pipe deflection B-1 u

y-

, , . , SAD-442 Rev, O September 1984

-are'shown.in' Figure B6. Since the calculated strains of the EAM, '

tension rod and pipe.at the maximum pipe deflection are within acceptable. limits, it is concluded that FWR-16 can withstand the

-critical pipe break force which was postulated to occur.

w

-B-2 c

r - y _ . , , _. .- , . . - - - - _ . - , , , .-

i . -

- ~

'. sa rn- e 1.-Ais3 i. . .. ,-

(lT 41E%W)' **'-

A

=

Q ..

y e e ,s ,..

,, o,,g-=l1

[

, < *m

< *+ - .

. 4sunet. un . . ,

,,. g.-ll .

9 .2 ~ * + -

N...-..,.(p.

4

- - a ..

e

]

h. "*" ( ,

hwn f **

fa"s*oI.3._._ _ . . _ . ;

m f r.O .m gQ t ... ,

i - - ..

-e o. ie 3 - Qu =e= _-\g' ip" '

NMEN sw ..c. e p.

a g I .s m,

eg

. ,_ _;- - K..-

g \\- t t~

j 3 .

g

~~

,,,,y% '  : i~

t :V: 3  ;

s

y t= " _.. "
  • s/ c 47 r -

i Q,_4 % _~., _ l , -, ,,

a .

.. g

.Ad %x H * )II

~ ,

f b m u a.2N*. g': M \ ~]3- iQ?M ,3*'('i a -- -

d k. M M)NI []. 14- l - '-dS 5 -

-1

.. ._S .-f ".  : . "L12b 7  :: y . . A y

? ~,4 : -- -

eg p* ,, ,

~-r.g,

= .

- .  :.a. 3 g, d -

[ w ew. os+isa ri.am

i j -

j ,

,~ .

{- . - - -

semer ao. --- - - x[y- >

IFWO9008)f Pensed alp.,e e ya es as , Y tier rmr tair #1 pt Isn't .] L4 st.co, e61* gpljf s,3-}tsel '1 IFWO9segg espe 4 pi r.4,pA Ta'It 57 u travv' %W7 oas n e. W ' s<4ss k g 36 st P

~ - . . ..N . _ _-b ._:h. ,. . : h ._ _ _ _ . I _ __.b. .._, . maAtowoop

' ~ '

f T8'.'*M ~

k;/ I~1

~ '

I [ [ ' (~;

  • m.i..a heewuu -

~-

e

.~8 [@ .,w f

.J e 3), ,,

I gyRoeg

- pyuse AssALYTi:':AL & PHYWCAL BATA 'A T UI r FEED kATER , 8e5

,,,0,,c, BYRON / BRAIDWOOD-l  ;* 1.

et,,,,, COMMONWEALTH EDISON CQ yC M

,etOMCT Iso.

j 498ll.0# l 4 6 99- ## l l w e

C3 LOCATIONS OF RESTRAINT FWR-16 AND BREAK B-55A FIGURE B1

,$ -suu 2%.

.\ (SEE DET.2) 9 4'Nd RING sfge g.

+

( lD 23 (q E PIPE 3 4

s$

_5ee

,E

\, BS5A s nins3 r-4' e

a. m. l i "1 - _ _

o R 2't' All*z O' ii'

\

~

f PIPE h 7 j

(TYP.) O g m

s' E l'A 9 '(TYP) y s y' N. -'f

/ -- :

' 1 # E 2V2"a 11'a 0'-11" 7,-.

/,o R l' r .

I i;.' l :lN

,+ -

w__ 3 ,7h.,7g.

  • W

- / *s j j l t'."'2=h HONEYCOMB MAT'L T/s s1 4oo'-iok 7 is q .

+! -

_ _~ _

_ _. h \ ,,

7 N

v s i 6 ---  %? ..s (TYP

, ,, ,. 3. . . .

f

  • N  %
  • t,i EL. 399'- 9'S _

3 ,

s q N I

/ g loa 4x500 i \ \stI 4 (TY

'[11' A 1'- 2' s

/l

'k C s u

' - ~ ~ -

, m ----.

. . l > s ksSEE DET. I (S -lG 70 BY)

R l' ( E54 (1 P)

[

( S - 910) 2-3 c ROOS (A193 - 87',

8e 5' !!7(2 2 e,A__'_ W/ 3 ' 9 UPSET ENDS e s* c.c.

7., 7-- gre m<a g*{

g. o".

RESTRAINT FWR - 16  :

9 e

FIGURE B2 2

< .

  • SAD-442 Rev. O Sentenber 1984 F (i.)

TIP WEIGHT

= 0.17 i K 1

A B C, o i

GAP = 1 ACISIN RESTRAlWT PROPERTIES

/ FROM LOAD DEFLECTION CURVE.

32 I .GG IN 17.87 ld _

PIPE WE IGHT

  • O.0182 K/1H
0. D. =lGlu TWIC K M E SS . = 0. 84 3 14 YlELD STRESS = '28.9 KSI LlLTIMATE STRESS = Gl .8 KSI ELASTICITY Mooutu6= 29000.0 KSI.

PIPE WHIP RESTRAINT MODEL USED FOR DYNAMIC ANALYSIS OF FWR-16 FIGURE B3 B-5

.~

..r j

4 1

12 0 -

10 0-4 O

g80 -

u.

~

E @

u.

1

- l 40 -

20 -

$ 5 !.i i n .* ?

, 3 c i.

ge-e m

TIME t (SEC.) ,

FORCE TIME HISTORY OF BRE AK B- 5 5 A F I G LI R E B4

. r SRIGINAL OSCALE 0.165 as .s2 so gl L 46

. 45 40 2

I e- >> ,, .p, ,,

96 '

2 '6 3l ,,30 2.

'2.

.k2.= -

O

, ,30 a

,a

.I VIEW OF FINITE ELEMENT MODEL IN nm

!'?

l PLAN E OF RESTR AINT FWR-16 I " 't FIGU R E B5 $

J.

I

3

' - . . gyc pp7 83 '* 0 sacaaagaJ 169?

t o

  • 8 ,$

o QO tU 1U -O n u n z

EE

> x O' 4-4- n(

n( U &

S OE -

ExD n- I O Z Uh m D( m I

Z Z Omg r 4 - D-3

. o t 0-O x% - Lq

'z N, o N'N' &[(m

/*

t-- y m T

ECROF KAERB OT EUC P4XAJ % '_ 445 2 iz DLElY DOR NOISNET 8 BMOCYENOH mc m c

' 3 SESOLC PAG .5991"4~?Z~ 2 ) S[$ O k

5O

$R d o_-

p0

- 1rF h o '

DC O' 5 3 -

1T

, , . . . ,,... .............. -g g o o o o o a g

o. o. o. o. o. o o o o o o

ne o.m.

o o o

o o. O or o c.e 3SPIM( R NOITCAER TNIRRTSER

>]

O G sE

. s e'

,e OR191NRL 06CRLE 0.185 DEFORMED -- DSCRLE 0.165 _

DMRx 0 516 y  %

TIME *10 00 N

, N

~7 \ ,

~_ _ _ _ _ _

l k /

um / xx

.i /

m 7

x /

. x 4

4 9

in ca i.

DISPLACED CONFIGURATION OF RESTRAINT FWR-16 ?e l . AT b p = 3.12 IN . [

4 FIGURE B7

. h 1

't

~

/

nY t ,

/

= /

Z /

p ORIGINAL DEFORMED /

h /

4

, s i

Es?

DISPLACED CONFIGURATION OF EAM FOR FWR-16 lE

, AT MAXIMUM SP DUE TO PIPE BREAK -

e FIGURE B8 E

!