ML20010D095

From kanterella
Jump to navigation Jump to search
Offsite Dose Calculation Manual
ML20010D095
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 08/12/1981
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20010D093 List:
References
PROC-810812, NUDOCS 8108210465
Download: ML20010D095 (72)


Text

O l-I SEQUOYAH l

NUCLEAR I

PLANT

!O i

0FFSITE DOSE CALCULATION MANUAL I

l I

i TENNESSEE ALLEY AUTHORITY O

8108210465 810812 3 DR ADOCK 05000

~

A s

(

SEQUOYAH NUCLEAR PLANT ODCM AND PCP REVISION 3 INSTRUC~ ION S51EET J

i i

~

Insert Hemove j

(front /back) front /back i

1 1

Old effective page listing New effective page listing 3-

)

i 5/6 5/6 I

11/12 11/12 4

13/14 1?/14 i

15/1Sa 15/15a 16/-

16/-

Table 1.4A Table 1.4A i!Q Figure 11.3-2 Figure 1 3

b' i

19/20 19/20 21/22 21/22 i

}

23/24 23/24

)

l 25/-

25/-

Table 2.1 (3 pages)

Table 2.1 (3 pages) 4 4

a I

i i

l 1

IlO

SEQUOYAH NUCLEAR PLANT OFFSITE DOSE CALCULATION MANUAL a

N.

EFF2CTIVE PAGE LISTING Revision Psg3

, TOC 1 through TOC 2 Revision 1

'l through 4 Original 5

Revision 3 6

Original 7

Revision 1 8

Original 9

Revision 1 10 Original 11 through 16 Revision 3 Table 1.1 (2 pages)

Original Table 1.2 (2 pages)

Original Table 1.3 (8 pages)

Original Table 1.4 Original Table 1.4A Revision 3 Table 1.5 through 1.8 Original Figures.1.1 through 1.2 Original Figure 1.3 Revision 3 17 Original 18 through.19 Revision 2 20 through 25 Revision 3 Table 2.1 (3 pages)

Revision 3 26 Original

()

Table 3.1-1 (4 pages)

Original Table 3.1-2 through 3.1-3 Original Table 3.2-1 (3 pages)

Original Figure 3.1-1 through 3.1-4 Original l

Orisinal 2/29/80*

Revision 1 4/15/80**

Revision 2 10/7'80**

Revision 3 11/3/80, 4

2/10/81, 4/8/81, and 6/4/81**

  • Low Power license for Sequoyah unit 1
    • RARC Meeting date i

i Revision 3

.J i

l TABLE OF CONTENTS Introduction 1.

Gaseous Effluents 1

1.1 Alarm / Trip Setpoints Ci/s 1

1.1.1 Release Rate Limit Methodology Step 1 1

A.

Noble Gases 1

B.

Iodines and Particulates 4

Step 2 10 10 1.2 Monthly Dose Calculations 1.2.1 Noble Gases 11 Step 1 11 Step 2 12 1.2.2 Iodines and Particulates 14 Step 1 1 ';

Step 2 15 13 Quarterly and Annual Dose Calculations 16 1

1.4 Gaseous Radwaste Treatment System Operation 16 1.4.1

System Description

16 1.4.2 Dose Calculations 16 O

TOC 1

TABLE OF CONTENTS (cont'd) 2.

Liquid Effluents 17 2.1 Concentration 17 2.1.1 RETS Requirement 17 l

2.1.2 Prerelease Analysis 17 2.1.3 MPC - Sum of the Ration 18 2.2 Instrument Setpoints 19 2.2.1 Setpoint Determination 19 l

2.2.2 Post-Release Analysis 20 23 Dose 20 2.3.1 RETS Requirement 20 l

2.3.2 Monthly Analysis 21 2.3.2.1 Water Ingestion 21 2.3.2.2 Fish Ingestion 23 233 Quarterly and Annual Analysis 24 2.4 Operability of Liquid Radwaste Equipment 25 i

3.

.adiological Environmenta] Monitoring 26 3.1 Monitoring Program 26 i

j 3.2 Detection Capabilities 26 4

l l

l 4

TOC 2

1.

Gnseous Effluents 1.1 Alarm / Trip Setpoints

!q! Specification 3.11.2.1 requires that the d;se rate in unrestricted areas due to gaseous effluents from the site shall be limited at all times to the following values:

1.

500 mrem /y to the total body ar.d 3,00c mrem /y to the skin from noble gases.

2.

1,500 mren/y to any organ from radiciodines and particulates.

Specification 3.3.3.10 requires gaseous effluent monitors to have alarn/ trip setpoints to ensure that the above dose rates are not exceeded.

This section of the ODCM describes the methodology that will be used to determine these setpoints.

The methodology for determining alarm / trip setpoints is divided into two major parts.

The first consists of backcalculating from a dose rate to a release rate limit, in UCi/s, for each nuclide and release point.

The second consists of using the release rate limits to determine the physical settings on the monitors.

1.1.1 Release Rate Limit Methodology - UCi/s Step 1 The first step involves calculating a dose rate based on the design 7~,lobjective

(

source term mix used in the licensing of the nlant.

\\~) llistorical meteorological data'used in licensing are also used in this calculation.

Doses are determtaed for (1) noble gases and (2) iodines and particulates.

Depending on the pathway involved, either air concontrations or ground concentrations are calculated.

A.

Equations and assumptions for calculating doses from noble gases are as follows:

Assumptions:

1.

Doses to be calculated are total body and skin.

2.

Exposure pathway is submersion within a cloud of noble gases.

3 Noble F N. s radionuclide mix is based on the design objective source term given in Table 1.1.

4.

Basic radionuclide data are given in Table

.2.

5.

All releases are treated as ground level.

6.

Meteorological data are expressed as a joint-frequency distribution of wind speed, wind direction, and atmospheric stability for the period January 1972 to D e c e r.ib e r 1975 (Table 1.3).

1 l

wJ.

7.

Raw cateorological data consist of wind speed and direction measurements at 10m and temperature measurements a t.

9m and 46m.

8.

Dose is to be evaluated at the :rfsite exposure point where maximum concentrations are expected to exist.

9.

Potential maximum-exposure noints (Table 1.4) considered are the nearest site bounda y points in each sector.

10.

A semi-infinite cloud model is used.

11.

No credit is taken for snielding by residence.

12.

Plutae depletion and radioactive decay are considered.

13 Building wake errects on erriuent dispersion are considered.

14 A sector-averaga dispersion equation is used.

15.

The wind speel classes that are used are as rollows:

fi u m b e r Range (m/s)

Miapoint (m/s) 1

<0. 3 0.13 2

0.3-0.6 0.45 3

0.7-1.5 1.10 4

1.6-2.4 1.99 S

2.5-3 3 2.80 6

3.4-5.S 4.45 7

5.6-8.2 6.91 9

> 10. 9 13.00 16 The stability classes t 'l a t will be used are the standard A through G classifications.

The stability classes 1 -7 will currespond to A:1, B=2, G=7.

17.

Terrain errect-are not considered.

Equations To calculate the dose for any one or the 16 potential maximum-exposure noint3, the following equations are used.

~

For determinir.g the air concentration or any radionuclide:

O 9

7 i

1/2 O

(2/n) jk i (1.1)

Xj

=

r

exp (-A x/u 1) zk"j (2nx/n)

E

~

j=1 k=1 where X i = air concentration of radionuclide i,pCi/m3 fjk joint relative frequency of occurrence of winds in

=

windspeed class j, stability clacs k,

blowing toward this exposure point, expressed as a fraction.

Qi = average release rate of radionuclide 1,

pC1/s.

p = fraction of radionuclide remaining in plume, Figure 1.1.

Ezk vertical dispersion coefficient for stability class k which includes a building wake adjustment, Ezk

(

2 + cA/n )

, where ozk is the vertical d

dispersion coefficient for stability class k (m), e is a building shape factor (c=0.5), and A is the minimum 2),

building cross-sectional area (1800 m m.

uj= midpoint value of wind speed class interval j, m/s.

/

)

x = downwind distance, m.

n = number of sectors, 16.

= radioactive decay coefficient of radionuclide 1,

s-l.

A1 2wx/n

= sector width at point of interest, m.

For determining the total body dose rate DTB

=

Xi DFB t (1,2) where i

DTB

= total body dose rate, mrem /y.

= air concentration of radionuclide i, UCi/m3, X i DFDj

= t,tal body dose factor due to gamma radiation, mrem /y per UCi/m3 (Table 1.51 f7

(

)

o For datormining tno skin doso rato D

Xi (DFS i + 1.11 DFyi)

(1.3) 3 1

where D

= skin dose rate, prem/y.

a

cir concentration of radionuclide 1,pCi/m3 X i OFS i skin done factor due to beta radiation, mrem /y per pCi/m3 (Table 1.5).

1.11

= the average ratio of tiasue to air energv absorption coefficients, mrem / mrad.

DF Y gamma-to-air dose factor for radionuclide i, nrad/y per

=

i UCi/m3 (Table 1.5).

D.

Equati>ns and assumptions for calculating doses from radiciodines and particulates are as folltws:

Assumptions 1

Dose is to be calculated for the critical organ, thyroid, and the critical age group, infant.

2.

Exposure pathways from iodines and particulates are milk ingestion, ground contamination, and inhalation.

3 The radiciodine and particulate mix is based on the design objective source term given in Table 1.1.

fl.

Basic radionuclide data are given in Table 1.2.

5.

All releases are treated as ground-level.

6.

Meteorological data are exprensed as joint-frequency dlatributions (JFD's) of wind speed, wind direction, ano atmospheric stability for the period.ianuary 1972 to December 1975 (Table 1 3).

7.

Haw meteorological data for ground-level releases consist of wind speed and direction measurements at 10m and temperature meastfrements at 9m and fl 6 m.

8.

Dose in to be evaluated at the potential offsite exposure point where maximum concentrations are expected to exist.

9.

lle a l cow locations are

c. a t considered.

-4

10.

Potential maximum exposure points (Table 1.4) considered are the nearest nite boundary points in each sector.

11.. Terrain effects are not considered.

12.

Building wake ef fects on ef fluent dispersion are considered.

13.

Plume depletion and radioactive decay are considered for i

air-concentration calculations.

14.

Radioactive decay is considered for ground-concentration calculations.

15.

Deposition is calculated based on the curves given in Figure 1.2.

16.

A milk cow obtains 100 percent of her food from pasture grass.

17.

No credit is taken for shielding by residence.

I

$gtations i

l r

To calculate the dose for any one of the potential maximum-exposure j

points, the following eauntions are used:

1 1.

Inhalatio..

Equation for calculating air concentration, X,

is the same as in the Noble Gas Section, 1.1.1.A.

4 For determining the thyroid dose rate:

DTIII = 1 x 10-6 Xi DFIi (1.4)

,3 1

where:

j DTIII = thyroid dose rate due to ini.ala t ion, mrem /y.

3 X i = air concentration of radionuclide i, u Ci/m.

s t

1 DPI i= infant inhalation doso factor, meem/yr per pCi/cm3, (Table 1.7).

1 x 106 = m /cm3 conversion fr.ctor.

3 l

(])

nevision 3

+

2.

f,round Contamination For determining the ground concentration of any nuclide:

9 f Q DR 3 15 x 10,7 (i yxp _ (g

( l') )

( i,,. )

C i =

i U,x/n) A a

y k-1 whcre:

ground concentration of radionuclide 1,

C1/m3 G i

=

.tability clans.

k =

Tk: joint relative frequency of occurrence of winds in atability claan k blowing toward thin exponure point, exprenned an a fraction.

Q i: average release rate of radionuclide 1,

p C1/n.

DR

= relative deposition rate, m-l (Figure 1.2).

x = downwind distance, m.

number of nectors, 16.

n =

sector width at point of intercat, m.

2ex/n =

= radioactive decay coefficient of radionuclide 1,

y-I.

A 3

t. i m e for buildup of radionuclide3 on the ground, 35y.

tb 3 15 x 107 a/y convernion f ac tor.

=

For determining the thyroid dose rate from ground contamination:

(8,760)(1 x 106)

G i DFGi (1.6)

DTilG

=

where:

thyroid dose rate due to ground contamination, DTilG

=

mrem /y.

ground concentration of radionuclide 1, pC1/m2 G i

=

DFG i = done factor for standing on contaminated ground, 2 (Table 1.8).

mrem /h per pCi/m occupation time, h/y.

8,760

=

1 x 106 pCi/HCi conversion factor.

e 3.

Milk Ingostion For determining the concentration of any nuclide (except C - 1 l4 and 7 ~x H-3) in and on vegetation:

?

7

\\/

(1.7) fk Qi DR CV i= 3,600 r(1-exp (- Ei te)) +

(2n x /ri)

YA y gi k=1 Biy (1 -e x p (-A i tb))

A P

i where:

CV i = concentration of radionuclide i in and on vegetaLion, UCi/kg.

k =

stability class.

1 fk =

frequency of this stability class and wind direction combination, expressed as a fraction.

Qi = average release rate of radionuclide 1,

pCi/s.

relative deposition rate, m-2 (Figure 1.2).

DR

=

( (j~')

x

= downwind distance, m.

\\

number of sectors, 16.

n

=

2nx/n nector width at point of interest, m.

=

fraction of dep sited activity retained on vegetation r

=

(1.0 for iodines, 0.2 for particulates).

= ofrective removal rate constant, A Ei

=A 14A w, I

A Ei where l

A is the radioactive decay coefficient, h-1, and t

A.

is a measure of physical loss by weathering

=.0021 H-l).

(A w l

te period over which deposition occurs, 7P0 h.

=

y agricultural yield, 0.7 kg/m2, Y

=

B iy

= transfer factor from soil to vegetation of radienuclide 3

i (Table 1.6).

A1 =

rndioa'ctive decay coefficient of radionuclide i, h-l.

tb = time for buildup of radionuclides on the ground, 3.07 x 105 h (?'y).

b) x_ >

P =

effective surface density of soil, 240 kg/m2, 3,600 s/h convernion factor.

=

For determining the concentration of C-14 in vege ta t ion:

CV 14 = 1 x 103 X14 (0.11/0,16)

(1.8) where:

CV 14

= concentration of C-14 in vegetatir.,

yCi/kg.

X 14 =

air concentration of C-14, aC1/u3.

0.1*

Traction of total plant mass that is natural carbon.

0.16 concentration of natural carbon in the atmosphere,

=

g/m3 103 = g/kg convernion factor.

1 x For determining th" cr'contration of 11-3 in vegetc ton:

CVT = 1 x 103 XT ( 0. 7 5 ) ( 0. 5 /II)

(1.9) where:

CVT = concentration o f 11-3 in vegetation,p C1/kg.

XT = air concentration o f 11 -3,

C1/m3 0.75 fraction of total plant mass that is water.

=

0.5

= ratio of tritium concentration in plant water to tritium concentration in atmospheric water.

11 absolute humidity of the atmosphere, g/m3

=

103 = g/kg conversion factor.

1 x For determining the concentration of any nuclide in cow's milk:

Cil i = CV i F t11 Of "XP (-Ai tr)

(1.10) where:

CMi

= concentration of radionuclide 1 (including C

  • 4 and 11 - 3 ) in cow's milk, p Ci ll CV i = concentration of radionuclide i in and o r-vegetation, pCi/kg.

FMi transfer factor from feed to milk for radionuclide

=

1, d /1 (Tab]- 1.61 Or = amount of feed consumed by the cow per day, kg/d.

A i =

radioactive decay coefficient of radionuc?.ide i, d-l.

(

)

~'

tr = transport time of activity from feed to milk to receptor, 2 days.

For determining the thyroid dose rate from ingestion of cow's milk:

DTHM = 1 x 106 CMi DFING; UM (1.11) i where:

DTHM =

thyrcid doss rate due te milk ingestion, mrem /y.

CMi

= concentration of radionuclide i in cow's milk, Ci/1.

l DFING i= infant ingestioti uose factor, mrem /pC1, (Regulatory Guide 1.109)

I

/

\\

(

)

Uf1 = infant ingestion rate foc milk 330 1/y.

v' 1 x 106 p Ci/p Ci conversion factor.

4 Total Thyroid Dose Rate For determining the total thyroid dosn rate from iodin (s and particualtes:

DTH = DTIII + DTHG + DTHM (1.12) where:

DTH = total thyroid dose rate, mrem /y.

DTHI =

thyroid done rate due to inhalation, mrem /y.

DTHG =

thyroid dose rate due to ground contaminatica, mrem /y.

D-iM thyroid dose rate due to cilk ingestion, mrem /y.

=

The maximum thyroid dose rate calculated in this step will be used in Ltep 2.

,n

-?

-q_

W:

Tha dvso rate limits of intercot (10 CP9 20) are Total body 500 mren/y

=

Skin =

3,000 mrem /y Maximum Organ = 1,500 mrem /y Dividing the above limits by the appropriate dose calcualted in step 1 yields a useful ratio.

Done limit

-= R Done step 1 This ratio, R,

represents how far above or below the guidelines the step 1 c a l c ula t ior, wa s.

Multiplying th e original source term by R will give release rates that should correspond to the aose limits given above.

Step 1 la redonc using the adjusted source terms to ensure that this is the case.

Appropriate release rate limits in uCi/s for each nuclide and release point will be provided to plant personnel for use in establishing monitor setpoints.

The setpoint for each gaseous effluent monitor will be established using plant instructions.

Release rato limit, principal gamma emitter, geometry, detactor efficiency, and a safety factor are combined to give an equivalent setpoint in counts por minute (cpm).

The sa fe ty factor ranges from 0.2 for systems without automatic isolation features and 0.5 for systems with automatic isolation features.

The physical and technical description, location. and identification number for each gaseous radiation detector is contained in p l a r. t documentation.

1.2 Monthly Done Calculation Dose calculations will be performed monthly to determine compliance with specif. cations 3.11.2.2 and 3.11.2.3.

These specifications require that the dose r Le in unrestricted areas due to gaseous effluents from each reactor at tSe site shall be limited to the following va?ues:

For noble gases, 1.

During any calendar quarter, 5 mrad to air for gamma radiation and 10 mrad to ai-for beta radiation.

?.

During any calendar year, 10 mrad to air for gamma r a d i a t i o r.

and 20 mrad to air for beta radiation.

For iodines and particulates, 1.

During any calendar quarter, 7.5 mrem to any organ.

2.

During any calendar year, 15 mrem to any organ.

1 This section of the ODCM describes the methodology that will be ssed to perform these monthly calculations.

simplified conservative approach Doses will first be calculated by a (step 1).

af these exceed the specification limits, a more realistic calculation will be performed (step 2).

1.2.1 Noble Oases S t o n __1_

i Doses will be celculated using the methodology described in this step.

If any limits are exceeded, step 2 will be performed.

E'quations and assumptions for calculating dosea from releases of noble

}

gases are as follows:

.I I,

^ I_ Luma 1.LnA1 1.

Doses to be calculated are gamma ana beta air doses.

2.

The highest annual-average X/0 based on licensing meteorology for ground level releases for any offsite location will be used.

1 3.

No credit is taken for rndioactive decay.

4.

For gamma doses, releases of Xe-131m, Xe-133, Ie-135, Ar-41, and Er-88 are considered.

5.

For beta doses, releases of Xe-131m,16-133, 3e-135 Kr-85, and Ar-41 are considered.

3 6

Dose factors are calculated using data from TVA's nuclide library.

7.

The calculations extrapolate doses assuming that only 90 percent of total dose was contributed.

1i 8.

.'. memi-infinite cloud model is used.

4 9

Iluilding wake effects on effluent dispersion are considered.

j liq 1811AD1 4

For determining the gamma dose to als' h

QI DFyi (1.13)

(I/Q) 106 Dy 3

0.9 3.15 x 107

! () Revision 3 4

.n,

wherc:

gamma dose to air, mrad.

Dy

=

higheat annual-sverage relative concentration, 5.13 x I/O

=

10-6 s/m3 fraction of total gamma dose expected to be contributed by 0.9

=

these nuclides.

105 pCi/Ci conversion factor 3

=

3.15 x 107 s/y conversion factor

=

monthly release of radionuclide i, Ci.

Q i

=

gamma-to-air dose factor for radionuclide i, mrad /yr per DFyi

=

pCi/m3 (Table 1.5).

This equation then reduces to 1.81 x 10-7 Q i DFyi (1.14)

Dy

=

I i

For determining the beta dose to air:

f 106 Q i DF i (1.15)

(X/Q)

D

=

0.9 l 3.15 x 107 I

5 where:

Dp = beta dose to air, mrad.

highest annual average r,lative concentration, 5.13 x

7. / 0

=

10-6 s/m3 fraction of total beta dose expected to be contribcted by 0.9

=

I these nuclides.

106 Ci/Ci conversion factor 107 s/y conversion factor 3.15 x

=

Q i = monthly release of radionuclide i, Ci.

DFpi gamma-to-air dose factor for radionuclide i, mrad /yr per pCi/m3 (Table 1.5).

This equation-then reduces to:

9 Revision 3

Dg = 1.81 x 10-7

)

Qi DFgi (1.16) o 4

1 Step 2 This methodology is to be used if the calculations in Step 1 yield dones that exceed applicable limits.

Equations and assumptions for calculating doses to air from releases of noble gases are as follows:

Assumptions 1

1.

Dosen to be calculated are gamma and beta air doses.

2.

Done in to be evaluated at the nearest site boundary point in each j

sector, i

1 3.

Ilistorical onsite meteorological data for the appropriate months from the period 1972-1975 will be used.

4.

All meanured radionur:ide releases are considered.

l 5.

A semi-infinite cloud model is used.

6.

Radioactive decay is considered.

1 1

7.

Building wake ef fects on ef fluent dispersion are considered.

()8.

Dose factors are calculated using data

  • rot TVA's radionuclide

]

library.

i Equations l

F,quations for calculating air concentration, X, is the same an in j

.9ection 1.1.1, s tep 1, par t A.

Air concentrations are calculated for the site boundary in each sector.

For determining the gamma dose to air j

D

=t Xni DF i (1. 24) yn m

I whero:

}

D,3

= gamma dose to air fcr sector n, mrad.

i Xni = air concer.tr.ition of radionuclide i in sector n, pCi/m3

.1

/

DF i =gammago-airdose factor for radionuclide i, mrad /yr per y

I i

p Ci/m (Table 1.5).

tm = time period considered, yr Revision 3 1

For determiring the beta dose to air:

tm 2ni DFpg (1.25lh Dpn

=

where:

Dpn beta dose to air for sector n,

mrad.

=

sir concentration of radionuclide i in sector n,

Ini

=

pCi/m3 1

DFpi = beta to air dose factor for radionuclide i, mrad /yr per pCi/m3 time period considered, yr tm

=

The sector having the highest total dose is then used to check compliance with specification 3.11.2.2, 1.2.1 lodines and Particulates Sten 1 Doses will be calculated using the methodology described in this step.

If any limits are exceeded, step 2 will be performed.

Equations and assumptions for calculating doses from releases of iodines and particulates are as follows:

Assumotiont 1.

Dose is to be calculated for the infant thyroid from milk ingestion and for the child bone from vegetable ingestion.

2.

Real cow locations are considered for the milk pathway and nearest resident-locations with home-use gardens are considered for the vegetable pathway.

3.

The highest annual-average D/Q based on licensing meteorology for ground level releases will be used for I-131 and SR-90 doses.

4.

The highest annual-average I/Q's based on licensing meteorology for ground Icvel releases will be used for C-14 doses.

3 5.

No credit is taken for radioactive decay.

6.

Releases of I-131 and C-14 are considered for the milk pathway.

SR-90 releases are considered for the vegetable pathway.

7.

The calculations extrapolate doses assuming that only 90 percent of the total dose was contributed.

8.

Releases

>f C-14 are based on the design source term.

9 Revision 3

~.

a 6

9.

The cow is assumed to graze on jasture grass for the wholo year.

ER111Jons For determining the thyroid dose from milk inge: tion of I-131:

I O

DF D/Q 6

4 3.15 x 107

_ x 10 131 131 DTII 131

=

(1.26)

I where:

thyroid dose from I-131, mrem.

j DTH131

=

i 0131 = monthly release of I-131, Ci.

I-131 milk ingestion dose factor to infant, a r e m.' y r lt i

DF131

=

per pC1/m2-s (Table 1.7) l 10-9

-2, relative deposition rate, 2.94 x D/0 m

=

107 s/y.

3.15 x

=

106 pCi/Ci 3

=

For determining the thyrcid dose from milk intestien of C-14:

DTilia = 014 DF14 X/0 3.35 x 10T (1.27)

I; where:

(

thyroid dose from C-14, aren.

DTilia

=

014 monthly release of C-14, C1.

=

C-14 milk ingestien dose factor, mrem /y per pCi/m3 DF14

=

(Table 1.7) 10-6 s/m3 3

X/0 = relative dispersion factor, 1.76 x 3.15 x 107 s/yr convercion factor

=

For determining the total thyroid dose:

DTil131 + DTH14 (1.28)

DTI:

a

0.9 where

4 thyroid dose, mrem.

DTil

=

thyroid dose from relesse of I-131 arem.

DTil131

=

thyroid dose from release of C-14, area.

DTH14

=

i.

( Revision 3

e fraction of total thyroid dose espected to be contributed 0.9

=

by these radionuclides.

For determining the bone dose from vegetable ingestion:

l h

Q.

DF D/0 x 106 (1.29)

DBC s

3.13x107(0.9) where:

s bone dose to child from SR-90, mrem.

DBC

=

s monthly release of Sr-90, Ci.

O

=

Sr-90 vegetable ingestion dose factor to child, DF

=

g 1.62x1012 mrem /yr per pCi/m2-s.

relative deposition rate, 7.32x10-9m-2, DiQ

=

s/yr.

3.15x107

=

106 pCi/Ci.

=

fraction of total bone dose expected to be contributed 0.9

=

by Sr-90.

Revision 3

i j

Sten 2 This methodology is to be used if the calculations in step 1 yield doses that exceed applicable limits.

l - k_

Doses for releases of iodines and particulates shall be calculated l

using the methodology in Section 1.1.1, step 1,

part B,

with the following exceptions:

1.

All measured radionuclide releases will be used.

2.

Dose will be evaluated at real cow locations and wzil consider actual grazing information.

The receptor naving the highest total dose is then used to check compliance with specification 3.11.2.3.

1.3 Quarterly and Annual Dose Calculations A complete dose analysis utilizing the total estimeted gaseous relesses for each calendar quarter w ill be performed and reported as I

required in Specifications 6.).1.8 and 6.9.1.9.

Methodology for this analysis is the same as that descrsoed in Section 1.1.1, except that real pathways and receptor locations (Table 1.4A) are considered.

In addition, meteorological data representative of a ground level release for each corresponding calendar quarter will be used.

This analysis will replace the estimates in Section 1.2.

At the end of the year an annual dose analysis will be performed by calculating the sum of the quarterly doews to the critical receptors.

)

1.4 Gaseous _Radweste Treatment System Goeration The gaseous radwaste treatment system (GRTS) described below shall be maintained and operated to keep releases ALARA.

r 1.4.1

System Description

A flow diegram for the GRTS is given in Figure 1.3 The system consists of two waste gas compressor packages, nine gas decay tanka, and the associated piping, valves, and instrumentation.

Gaseous e

nastes are r e c e iv e d from the following:

degassing of the reactor coolant and purging of the volume control tank prior to a cold shutdown, displacing of cover gases caused by liquid accumulation in l

the tanks connected to the vent header, and boron recycle process l

operation.

l D _s e Calculatlon_1 1.4.2 J2 Doses w ill be calculcted morthly using the methodology described in Section 1.2.

These doses will be used to ensure that the GRTS is operating as desigued.

t Revision 3

(

l 3

- ~. - - - - -

i i

TABLE 1.1 i

f EXPECTF.D ANNUAL POUTlf;E HELFASES FP0f1 ONE UNIT AT TIQJf0YAH NUC12AR PLANT O

AUXILIARY CONT A INiti:HT TUltBINE DUILD tr.

l N'fCt.IDE BUlt. DING VI:NT V Et'T VENT Kr-83m 4. '# ( 1 ',

3.l(-1) 3 0(-1)

Kr-85m

?.?fo) 2.3(0) 1.5(0) i Fr-85

?.0(0) 5.1(2) 1.2(0) l Fr-87 1.2(0) 8.1(-1) 8.?(-1) l Kr-88 4.0(0) 3.6(0)

?.7(0)

Kr-89

?.8(-2) 8.3(-3) 6.4(-2)

Xe $31m 1.7(0) 2.6(1) 1.1(0) h-133m 3.7(0) 1.6(1)

P.4(0)

Xa-133 P 9(2) 2.4(3) 1.8(2) xe-135m 1.8(-1) 7.8(-2) 2.0(-1) re 135 6.6(0) 9.9(0) 4.t:(0)

Xe-137 5.6(-2) 1.H(-?)

1.2(-1)

Xc-138 5.9(-1) 2.4(-1) 6.?(-1)

Br "s3 8.0(-4) 1.5(-5) 9.5(-5)

Dr-B 3.',( 4) 4.9(-6) 1.7(-5) i Dr-85 1.2(-5) 1.3(-7) 2.4(-7) 1 130 3.6( 4) 1.3(-5) 6.9(-5) 1 131 1.',( -2 )

1.2(-?)

9.2(-3) i 1 112 1.7(-?)

3 7(-4)

P.6(-3) 1 133

f. 5( -2 )

3.4(-3) 1.4(-?)

I 134 7.1(-3) 1.1(-4)

S.0(-4) i 1 135 1.3(-2) 9.0(-4) 5.4(-3) eb-66 1.q( 9) 7.1(-8)

?.fi( -7 )

l j

Pb-88 1.6(-2) 2.1(-2) 1.0( 't)

Cs-13's 5.5(-7) 9.1(-5) 6.4( 5)

Cs-136 2.9 ( -7 )

2.6(-6) 3.6(.5) l l

Cs-137 4.0(-7) 7.8(-6) 5.3(-5) i Cr-51 P.0(-8) 2.6(-7 )

3.6(-7) i i

l tin-54 1.6( fi) 3 1(-7) 4.5(-7) i i

Fe-59 2.1( M) 3.2(-7) 5.4(-7)

Co-5!!

r. 3(~9) 8.8( R) 0.0(-6) l co-60 1.6(-8 )

3 1(-7) 2.7(-7)

Sr-39 7.6(-9) 1.?(-7) 1.6(-7)

Or-90 2.2( -10) 4.3(-9) 8.4(-9)

Sr-91 1.5( -8) 1.2(-8) 8.9(-8)

Y-90 3.8(-10)

4. 7 ( -9 )

8.2( -9 )

t Ym-91 9.1(-9) 7.4(-9)

.1(-6, Y 11 4.4(-B) 7.0( -7 )

1.9(-6)

Y-)3 3.0 ( -9) 2.4(-9) 3.6(-6) i l

Zr-95 1.~(-9) 2.1(-8) 8.4(~8)

Nb-95 1.1 ( -9) 2.2( 8) 3.4(-8) tio-19 1.o(-5) 3.0(-5) 1.4(-4)

Tc-99m S.9(-6) 2.B(-5) 1.0( 4)

Pu -;0 3 9.8(-10) 1.fi( R) 4,2(-8)

F.a-10(

2.?"-10) 4.1(-9) 8.4( 9) f Ph-103m 1.1( -9 )

1.4( 8) 2.8(-8)

Rh-106 P.2(-10) 4.1(-9) 2.7(-7) f l

,i l

(Sheet. 1 or ?)

l h

l r i i

i l

i l '

5 f

l e

I

= -. - -.

-~.-_-__. _. -_.-. -.- _ _ - -.~. -

. ~

TABLE 1.1 EXPECTED ANNUAL _ ForlTINE RELEASES FROM ONE UNIT AT SFAU_OYAH NUCLEAR PLANT AUXILIARY CONTAINMr.NT TURSINE B'JILDING NUCLICE PUTLt)ING VENT VENT VENT Te-125m 6.3(-10) 1.0(-8) 1.3(-8)

Te-127m 6.1(-9) 1.1(-7) 2.1 ( -7 )

Te-127 P.0(-8) 1.2(-7) 5.3(-7)

Te-129s 3 1(-8) 4.3(-7) 1.3( M Te-129 3.6(-8) 2.8(-7) 8.3(-7)

Te-131n 5.6(-8) 9.1(-3) 2.0( 6) r Te-131 2.2(-8) 2.0(-8) 2.7 (-7 )

Te-132 6.0(-7) 2.0(-6) 2.1(-5) i Ba-137m 3.8(-?)

7.3(-6) 1.5(-5)

Ba-140 4.8(-9) 4.4(-8) 2.1 ( -7 )

La-140 3.4(-9) 4.6(-8) 1.k(-7) j Ce-141 1.5(-9) 2.1(-8) 8.M-8)

Ce-143 9.0(-10) 1.6(-9) 2.0(-8)

Cc-444 7.2(-10) 1.4(-8) 4.2(-3)

Pr-143 1.1(-9) 1.1 ( -8) 4.2(-8)

Pr-144 7.7(-10) 1.4(-8) 2.8(-8)

Np-239 2.7(-8) 7.0(-8) 1.2( 6)

I l

6 e

i l

i f

a h

i (Sheet 2 of 7) i 9

L

]

TA M 1.2 O

BASIC RADIONUCLIDE DATA Half-Life LAMUA BETA GAMMn WASH Nuclide (Days)

(1/S)

T C

(MEV/ DIS)

(MEV/ DIS)

(1/S) 1 TRITIUM 101 4.49E 03 1.79E-09 2

1 5.68E-03 0.0 2.86E-07 2

c-14 604 2.09E 06 3.84E-12 2

1 3.17E-02 0.0 0.0 3

N-13 732 6.94E-03 1.16E-03 2

1 4.91E-01 1.02E 00 1.00E-02 4

0-19 804 3.36E-04 2.39E-02 2

1 1.02E 00 1.05E 00 1.00E-02 5

F-18 902 7.62E-02 1.05E-04 2

1 2.41E-01 9.88E-01 1.00E-04 6 NA-24 1104 6.33E-01 1.27E-05 5

1 5.55E-01 4.12E 00 1.00E-04 7

P-32 1504 1.43E 01 5.61E-07 5

1 6.95E-01 0.0 1.00E-04 8 AR-41 1805 7.63E-02 1.05E-04 2

1 3.63E-01 1.28E 00 0.0 9 CR-51 2405 2.78E 01 2.09E-07 5

1 3.75E-03 3.28E-02 1.00E-04 10 MN-54 2508 3.03E 02 2.65E-08 5

1 4.17E-03 8.36E-01 1.00E-04 11 MN-56 2509 1.07E-01 7.50E-05 5

1 7.93E-01 1.76E 00 1.00E-04 12 FE-59 2604 4.50E 01 1.78E-07 5

1 1.18E-01 1.19E 00 1.00E-04 13 co-58 2706 7.13E 01 1,12E-07 5

1 2.05E-01 9.76E-U1 1.00E-04 14 co-60 2708 1.92E 03 4.18E-09 5

1 9.68E-02 2.50E 00 1.00E-04 15 ZN-69M 3007 5.75E-01 1.39E-05 5

1 0.0 4.15E 00 1.00E-04 16 ZN-69 3006 3.96E-02 2.03E-04 5

1 3.19E-01 0.0 1.00E-04 17 BR-84 3516 2.21E-02 3.63E-04 2

1 1.28E 00 1.68E 00 1.00E-04 18 BR-85 3518 2.08E-03 3.86E-03 2

2 1.04E 00 8.40E-01 1.00E-04 19 KR-85M 3611 1.83E-01 4.38E-05 1

2 2.53E-01 1.59E-01 1.00E-11 20 KR-85 3610 3.93E 03 2.04E-09 1

1 2.51E-01 2.21E-03 1.00E-11 21 KR-87 3612 5.28E-02 1.52E-04 1

1 1.32E 00 7.93E-01 1.00E-11 22 KR-88 3613 1.17E-01 6.86E-05 1

1 3.75E-01 1.96E 00 1.00E-11 23 KR-39 3614 2.21E-03 3.63E-01 1

1 1.23E 00 2.08E 00 1.00E-11 24 RB-SS 3713 1.24E-02 6.47E-04 5

1 2.06E 00 6.86E-01 1.00E-04 25 RB-39 3714 1.07E-02 7.50E-04 5

1 0.0 2.40E 00 1.00E-04 26 SR-59 3308 5.20E 01 1.54E-07 5

1 5.73E-01 1.36E-04 2.67E-07 27 SR-90 3810 1.03E 04 7.79E-10 5

1 1.96E-01 0.0 2.67E-07 23 SR-91 3811 4.03E-01 1.99E-05 5

2 6.50E-01 6.95E-01 2.67E-07 29 SR-92 3812 1.13E-01 7.10E-05 5

1 1.95E-01 1.34E 00 2.67E-07 30 SR-93 3813 5.56E-03 1.44E-03 5

1 1.61E 00 6.28E-01 2.673-07 31 Y-90 3916 2.67E 00 3.00E-06 5

1 9.36E-01 0.0 1.00E-04 32 Y-91M 3919 3.47E-02 2.31E-04 5

1 0.0 5.56E-01 1.00E-04 33 Y-91 3918 5.88E 01 1.36E-07 5

1 6.06E-01 3.61E-03 1.00E-04 34 Y-92 3920 1.47E-01 5.46E-05 5

1 1.44E 00 2.50E-01 1.00E-14 35 Y-93 3921 4.29E-01 1.875-05 5

1 1.17E 00 8.94E-02 1.00E-04 36 ZR-95 4014 6.50E 01 1.23E-07 5

2 1.20E-01 7.35E-01 1.00E-04

(,

TABLE {'(cont'd)

/T L

U BASIC RADIONUCLIDE DATA Half-Life LAMUA BETA GAMMA WASH Nuclide (Days)

(1/S)

T C

(MEV/ DIS)

(MEV/ DIS)

(1/S) 37 NB-95M 4115 3.75E 00 2.14E-06 5

1 2.85E-01 5.87E-02 1.00E-04 38 NB-95 4114 3.50E 01 2.29E-07 5

1 4.50E-02 7.64E-01 1.00E-04 39 M0-99 4209 2.79E 00 2.87E-06 5

2 3.96E-01 1.62E-01 1.00E-04 40 TC-99M 4314 2.50E-01 3.21E-05 5

1 4.85E-03 1.43E-01 1.00E-04 41 TC-99 4313 7.74F 07 1.04E-13 5

1 8.38E-02 0.0 1.00E-04 42 TC-104 4320 1.25E-02 6.42E-04 5

1 0.0 0.0 1.00E-04 43 RU-106 4407 3.67E 02 2.19E-08 5

1 1.01E-02 0.0 1.00E-04 44 TE-132 5223 3.24E OC 2.48E-06 5

1 1.00E-01 2.05E-01 1.00E-04 45 I-129 53'S 6.21E 09 1.29E-15 3

1 4.02E-02 3.77E-03 5.00E-06 46 I-131 5317 8.05E 00 9.96E-07 3

2 1.94E-01 3.81E-01 5.00E-06 47 MI-131 15317 8.05E 00 9.96E-07 4

2 1.94E-O' 3.81E-01 5.00E-06 48 I-132 531C 9.58E-02 8.37E-05 3

1 5.14E-01 2.33E 00 5.0CE-06 49 MI-132 15318 9.58E-02 8.37E-05 4

1 5.14E-01 2.33E 00 5.00E-06 50 I-133 5319 8.75E-01 9.17E-06 3

2 4.08E-01 6.10E-01 5.00E-06 51 MI-133 15319 8.75E-01 9.17E-06 4

2 4.08E-01 6.10E-01 5.00E-06 52 I-134 5320 3.61E-02 2.22E-04 3

1 6.10E-01 2.59E 00 5.00E-06 53 MI-134 15320 3.61E-02 2.22E-04 4

1 6.10E-01 2.59E 19 5.00E-06 54 I-135 5321 2.79E-01 2.87E-05 3

2 3.68E-01 1.58E v0 5.00E-06 55 MI-135 15321 2.79E-01 2.87E-05 4

2 3.68E-01 1.58E 00 5.00E-06 56 XE-131M 5412 1.18E 01 6.80E-07 1

1 1.43E-01 2.01E-02 1.00E-11 57 XE-133M 5414 2.26E 00 3.55E-06 1

1.90E-01 4.16E-02 1.00E-11 58 XE-133 5413 5.27E OG 1.52E-06 1

1.35E-01 4.54E-02 1.00E-11 59 XE-135M 5316 1.08E-02 7.43E-04 1

1 9.50E-02 4.32E-01 1.00E-11 60 XE-135 5415 3.83E-01 2.09E-05 1

1 3.17E-01 2.47E-01 1.00E-11 6'

XE-137 5417 2.71E-03 2.96E-03 1

1 1.64E 00 1.94E-01 1.00E-11 62 XE '38 5418 1.18E-02 6.80E-04 1

1 6.06E-01 1.18E 00 1.00E-11 63 CS-134 5510 7.48E 02 1.07E-08 5

1 1.57E-01 1.04E 00 1.00E-04 64 CS-135 5512 1.10E 09 7.29E-15 5

1 5.74E-02 0.0 1.00E-04 65 CS-136 cc'h 1.30E 01 6.17E-07 5

1 1.01E-01 2.20E 00 1.00E-04 66 CS-137 5515 1.10E 04 7.29E-10 5

1 2.52E-01 5.97E-01 1.00E-04 67 CS-138 5516 2.24E-02 3.58E-04 5

1 1.23E 00 2.30E 00 1.00E-04 68 BA-139 5615 5.76E-02 1 39E-04 5

1 6.54E-02 5.05E-02 1.00E-04 69 BA-140 5616 1.28E 01 6.27E-07 5

1 3.15E-01 1.95E-C1 1.00E-04 70 LA-140 5715 1.68E 00 4.77E-06 5

1 5.40E-01 2.31E 00 1.00E-04 71 CE-144 5815 2.84E 02 2.82E-08 5

1 9.13E-02 3.29E-02 1.00E-04 72 PR-143 5912 1.36E 01 5.90E-07 5

1 3.14E-01 J.0 1.00E-04 73 PR-144 5913 1.20E-02 6.58E-04 5

1 1.23E 00 3 10E-01 1.00E-04 74 NP-239 9310 2.35E 00 3.41E-06 5

1 1.24E-U1 2.08E 00 1.00E-04

O r%

k I

I

\\

/

x

/

J

=C mOWbe m m m tw trt b N 4 N & N O

to t*

- e m. O. O. O. O. O. e-M m e. O. O. O e-m O

e e e e e a e

h F*

OOOOODOO00OOOO00 N

O 9

9 10 g

4 O. O. 0 0 0 0 0. O. O.O. 0 0 0. O 0 0 O.

v3 N

e e

M O C 0 0 O 0 0 0 0 0 0 0 0 t'8 00 O

n.

3 N

O. O. 0 0. O. O.

.s O. 7 0. O. 0 0. O. O. O.

O.

Im OO00000O0000000O O

m O

tal tal M

0, f}3 Vb O

M.

L p.

2 n.

H Cr) e-e-

-e-.-

NN e=

e-r-N H

pi b

H "a

O O. O. O. O. 0 0. O. 0 0 0 0 0. O. O. O.

r.

O P

H e

as:

O O

J to.

OOOOOOOOOOOOOOOO O

h1 O

M H

sc O

O.

as N

p <

C 3 d

9 H m u) y vb E

=t EG v

at O

O grg h3 N.,.J O

H P-4*

6 Es e

U e-Q H

4%

O

=

N 7 @ f6 N trt @ m N N m

6-'

>4 O

U

.)

e

^-

O. +

e-O O. O O O O. *

  • O O O.

^ 43 O

F*

p.

py o

yo 2 5 O

H so

  • p;
p. C OOOOO00OC0000OC0 r

H H

T.

=

J Z

fe.l 2

3

=( 0 0

O.3 c

- e-f.

H

~i p

H w

ha a

ai 3

UO t*

O C4 H

ad D.

a.c e

tr }

h3

=C H

Erj

h. t-

>= m 2.

3 (al R-M E

.J V

VJ F*

A h3 aC (C

H **

S*

N M

h' (O

Esa

=g v}

3 0 b

et*

[a1 m

v S./ex saa,f I* 4e A

LA H

a O

+ N 03

.s

.3 1 O trt e N @ a) Ome

-N A r-t-e

>3 b

O. N. *. O. O. O. O. O. O. e-. e. o. O. O. O. O.

.m

(

%4

=4 6-4 sh.

H I O.

.3 (3

2

-; p p

g gn O

=a:

z

\\

  • m.

en at 8K 2

O000000O00000O00 O

H H

H 2:

V,O

.h.

.t*

=c

=c m

.3 O

O

=c O

3 Es)

  • )

ed f*

=s:

cal O tal J

g) b taJ O

M a;

0; DO i

D b*

m OZ O

Z (q (n.

N O

LaJ D t-La H

MO U

NI LO MmOm

    • N fet4 0%N m O

N

.J

.J K

  • E

=s:

8 O. e-. N.O O. O.O. O. O.O.*.O.O. O. O. O.

<D m

O

=c ta. O p

>e to e

e c

A O

OOOOOOOOOOOOOOOO O

.3 t/]

  • E [. =

a3 in)

D m

=s!

ti t*

U O

(*

2

$s]

W3 O A.

EaJ O

N z

na tal L1 F4 O

A aC t

$4.

et ta.

as4 4

Ca.

tal O

.J E4 O

E H ta) k m

e a cg) vt e - e-e e-e a N -

ee H

EpQ H

0 O. O. 0 0. O. 0 0. O. 0 0 0 0 0. O. 0 0 m

F4 C.

Z ss. *4 O

gn D

tal ta3 3

D OOOCOOOOOOOOOOOO O

O tal O

e. O O D.

CC in as y)

Es3 e o A

O

)

O En3 O ta3 2

Z O

t*Z:=

bl N

O

  • C ad O de st 3

e-O m

su O f,3 W D

1 J

3 fet 8

O.O.00 0 00.O.00 000.O.O.O.

O.

O

=C e

o z g.

>e m OO00O00OOO000OOO O

O O

O H H La3 O

H F.

H Z Is.

et F*

J U

E H

m ta:

a O

m t

0;

=C

=C E 2

e-H U

la. t 41 O. O. C. 0. O. O. O. O. 0 0. O. O. O. O. O. O.

O.

.J O

Ef) f 4

.3

=g o

O g z *g U

C00OOOO00O00O00 O

O Z

at H

>e 2

=C U

H H

H ta]

g H

IE M

Q ^ CC.

.J Z

O F

Z H

Q 2-3 H v.

O 3

n2 H

D O =C Z H

aC

=C

.3

.J p; sc H

{5 t*

t*

=C Q

O f.a3 E4 2

O v) v En3 g% O H M t*

T+4 3 p; 2 [s3 Ba3 f3 ta)

"3 T

"a

't p3 a3 n

3 m) g.3 H U

$$$I.30$ Nvi8[59:n!E$!E N N

d 1

V

e

--m

[

)

%s eJ L.

OOOOOoo O

N

  • 2 i

t 9999k999k 99999. 9 N

0000000000000000 O

4 s

n e-e O

0000000 OCOOOOOOO O

e a

e-U M

L b

n x Q

a.

o M

2 2

EC m

o=

  • = M N e=

w=

m M

CC 5

b Y

G J

m O000000000000000 O

y 5

0 4

r g

m 5 13 8

=

H

.=

.J taa b

N

.e E

U U

U 4A ta3 W.J H

N in O

i E u O

(s.

i H

G3 O O

a N

m co e eN*OON-mme e.

H O >.

LeJ

.J

.= ^-

O. e-O. O. O. O. O. O. O. N. *. O. O. O. O. O.

co.

Q

>=

e A

O m xe H

p.

O H

su AO OOOOOOOOOOOOOOOO O

ta3

.J f2:

I m

m.J b.

O O

I a se H

4 ta.l tal v tw b

m J

H M

e-3 C.E)

"8 F

O O

H M

A C

't 4

F.

(s. S.

M, t.al na g

g/)

m J

O M pd A

N

=C

(

G3

4 It b

N t/)

m ta2

[N ed CA b J

M b

W J

(,

\\ H tm] z H

n m

U

)

H W

AH 26 Nome bowmee-N e

N M

D

,va u

E ad 8 dh.

h8 O. N. O. O. O. O. O. O. O. N.**. O. O. O. O. O.

co.

.J O

2 e.

a <

m h2 vs F K

2 OOOOOOOOOOOOOOOO O

H t

H m

D l

=C O

.J O

O O.a.

=u.:

4

=C P

.e:

M Q M

U 6M L

E DO En. E D

M O

OZ O

m 2

2, N

A tnJ b b.

$ b h

c e-r

'-=e=

mm e=

N O. N. h. u... O.. O. O. b. e. e-w n. O. O. O. O.

h.

I I

m O

4 60 m

3 o

O OOOO000000000000 O

4 en En3 i

i D

m (S

F.

's >

O at.

F 2

N to O IE tal O

H Z

m W

M E4 Q

t/) *C A

au:

b tal d

s.

vs.

Sa1 O

AH O

~

H an3 he m

m MN m a m *=

e-M H

7: tua Q 0" 0. 8 0 0 0 0" "3.O. 0 0 0 0 0 0 0 m.

l, H

a o

a

_, n. ;c O

m ni pa a

M OOOOOOOOOOOOOOeo O

tea O

P. O O e

O.

6C in CK l

M ta

-O t

A C4 t

> n l'.n a L*'

= z O

r H

O

.c.4

=.

M 2

h, m m

o e

a Jm J.

999999999999999q q u

,ng 8 8 8 0000000000000000 O

e M l:'

C H

s H

" U r dgm f/

tal

.,4

(*

m v.,

=

< cm x

H u

t v y, 9999999999999999 9 t.

n A

b Apg OO C000000000000 O

O z

<H

>. = <

o E-.

H H

H 3

p a:;

O F*

2 O

JHM O

.J 03 H

O4E H

=C 3

3 CC EE H Qh

(*

=C.

t-at O

O tal gu

= $ t! ga 13 N h 8 3 9 3 R ill ti M

M 3

3 3

3 O

w >

U gA s tj B

J.J ti m. m, m -

o e

e a

M m

e

[\\

/

i

\\

/

w/

/'

v a

e 4

e-e e-m N N N m as - - e m m e m e OMNO000O-MMOOODO O

6.

e e o e e

e e e e o e o e e e e e

O 00000000OO000000 N

fe) sa G

G m

O ggggqqqqqqqqqqqq O,

Nm 00000000OO000OOO O

n.

M N

O g o, g g g q q q q q o, g g o, g O,

e m

0000000000000000 O

m n

e-t4 M

Esa M

x A

a W

z m

x e

t4

>e so N *-

e-m H

r.

O A

P O 0 0 0 0 0 0 O. C. O. 0 0 0 O 0 0 F*

e e e e e e e e e e e e e

as U

H t

a m

C00000D000000000 O

n N

E g

o 5 l3 8

x H

- a ui N

og K

Le u o

  • t d

~ ~

m e

8 N

N-m N e m e-N - - m m u,

H H

un Q

M O *"e O O O O O C O ** O O O O O O uT.

O P

to

    • ^ * -

e e e e e e e e o e e e e e e H

p gr p

rei

g; e OO00000000000O00 O

.J t*

O M

v

h. W*i H

Z m

sut 4

= m O

2 tal vb CE3 at (e*

Q O

H 4

.J e

t*

H e-

.a sEl ad I

W

=4 H

O.

$s) ta ta M

e tel m

M eJ O tt) 64 Q.

h1 E

4 4

N M

6, M,

c3 H es 3

m gal y

6 ag

.3 H

.g a

gn3 e

N*p S*

tQ H

i F4 eJ t-N-

@#NM e-N N b

k El I

b H 8 O e-O O O O O O ** - O O O O O Q

ag U

D eg

g og
  • t c gg lir:

e e o e o e e e e e e e e

e e e

OO00000000000OOO O

H H

v E

2 4

=4 m

e.1 O

r:

(F H tal

  • )

mg

$4 a(

et b

Q

.3 b3 De K)

U to K

OO Im er p

m o

py 2

N O

Oa b

Ir.

H ad o p$ d e

e-g E

"a' E. ". ". O. E. E. E. E. $. "e $. $. O. E. O. E.

3 R

=

b H

e g

g OOOO000000000O00 O

g g g

h O

E4 z

M 2O fan O

H 2

to gx3 M3 to O

at L

to la.

b

$4 O

E

. 3 h3 m e-m e-e p

H h3 n e-m $ M e- - e-e-00000000000n0 N.

t.

o z r a~ y m

H s

00 p

w g,3 p

O m

e e e e e e e

o e e

e e e e e 00000000Ou000O00 O

O hJ O

nOO O.

E t - tri M M

(d e e-O f4 O fm3

@C O

Es3 Z %

H O

t e =( o n

2 e-og gn O m as:

el OM gr} h ek k k.

.Sek bk k

  • 3 5 B u3 O000000000000O00 O

O H

te g4 In O

t*

H U

E ei m

Ed

.4 H 3m m

at t i r.

H U

aC F4 t/)

.I4 OOOOOOOOOOOOOOOO O

O m tr) <

e e e e e o e e

e o e e e e e e e

O y,

OO00000OC0000000 O

A a

e3 H H

E

=c

-(

F*

H t a tal N

3 6 4 p; r.

d i

SeM n

g

-J 0 M d 825 H

o to 2

2 2

8

!; # 8

'"I !'! n QC W h!

= N W $ ro u M H M H A 9 3 i". !: "s E

u N

a

- - a n

era e e n

e

\\

l

%_/

{

\\

\\

)

u/

J O ** LA e e Ch O M O N

  • m N N N m e

<D 6*

tD m m M ** O N # m # N O M M b m CO O

e e e e e e o e o e e e e e e e e

b OMNOOOOOp mmeOOOO m

o m

e.9 m

e Gn 9eO, g g o, q O, g o, g g g O, g o, g

M N

N ODO000OOOO00O00O O

a e=

e-e- *=

4 e e e

e m

0000000000000000 O

m Q

e-41 i

sh.

2 n

2 m

3r.

e e

N b

H eo NO e N N m W N ** m N O

O O

b 000000000000O00O 2

at U

e H

e e e o e e e e e e e e e e e e e e

et O

O J

to 0000000Os O00O000 O

p.

2 h

e O

=

o N

w e

=g e-U H

z a W

6 O

=C e.2 Ea3 U

U O

O LA be.

tal e.J N

t%

w En

>e gt U

N O

N N ED N e-H OU O

e N

b*

to m O N e-m (D *- @

W

(*=

H Q

.J

r. e-
  • = t-M O O O O O N t= to N e-e M M e-3 f*

p O

m me e e e o e o e

e e o e e o + e e e

H z

A N

(*

m m

2

.J Ca O

O ge O000000OC

.7 O O O f. O O e

g

]

e P-4 H

Q tea ta) wh e-3 sQ Q

Q F*

H n.

at M

=G 1A tal (G

taa is F*

De

  • I h3 th3 5

=4 J

O t/)

HO A

p.

e EaJ m

H I L*

N t/3 7.

en ad

(/) P m

W 4

O,J

/7N, ta) w j' -

te (s3 Z Q

b D

t*

taJ 883 H m t-W#NmN m eD m m eD O ** N IA J

tej g

g J

O E

ad 0 c.

e-H 8 e-gD # O O O O O m m O e- "e g

j gg W p og 3 ge e-N N O O O O O O O O O O ** O O O O Oa P-O O

e e

o e e e e o e e e a e e e

H N*,/

Bij ta.

n to 0:

2 e

O, 3r, y

p la.

=t

=4 m

H et (7 H taJ H

Q H

h3 Q J

F1.

=C O

M y

Ca.

LaJ M

J h.

et p

m O

(1 0 N

(nJ 2 O

O 2

a 6

O c) b ta3 en.

e N

b H

O O

e-E to N m c0

  • m N cD in te 'Is t% a o te q(
  • n e

m O

3 w sc ag 4

as i

N O s' **. O O O r= to N *-

^

(*

e-tt UO

>e in 2

a e e e e e o e e s A

4

, e e e

J g

8 O ** O L OOOOO-*-COOOO

=d a

3 p=

m 0

P 2

H to.

sK Ca3 0

H kl O

t/3 t*

O z

e go taJ.

0

=g tal as ta.

Ed Es.

J O

m O

HH 1

  1. M@" N @ N O ** 4 b N @ @ f0 m CD Q

I-*

O H

9 N N N N "e O "e "eM&MNOOOe e

2 3

2 O

ge e e e o e

e * * * * * *

  • O DJ 6

D

  • a e

O00000000000OOOO 4

n.

O e 00 t/3 0;

e at in)

O e- 0 0

D.

CaJ 2

2

(* (3 tal taJ H

O

-C 2 >

M 3

D 8

eO O at O EC O

80 J m et

-.N---

O a

m J*

0000000000 COO 00O O

H 9999999999999999 ".

8 8 hou b

HA* l:'

O n e e O

H tal I"

O M

nd it = "

m ed 8 88 O O 8 8 8 o 8 8 0 8 8 e

., g r>

mmm mmm em m 5

a.e a o e

U OO...... e. e O

n 21 O

O O

lirt M

UN F*

H

=C e-4 H

3 0 tu eJ M

O p)i M H

O

~J.

H 2

c O

CQ H

gL e > H t.1

.]

=C

.J 6)

H O

p.

M ag 2 H

H

=C

() EC H Oh 0.J g Q

tal 2U tal tal lB 3
  • R 3

TW R s! W 5@ ta. l3 N G ro G R 9 = E E D.

"O O

F, t

  • i 8

.L td. 9 e.J o

.m a

n

. =<

7%

3 e

o

\\

f

\\j

};

i TABLE 1.3 JCINT PER3NTAGE FREQWNCIES CF WIND DIRECTICNI AND WIND SPEED FOR DTFFERENT STABILITY CLASSES

  • SIABILITT RASS E

-0.5 DdLTA-T =

1.5 DEC C/100M SEQUOYAH NUCLEAR FLANT IETEOR100ICAL FACILITY

  • JAN 1, 72 - DEC 31, 75 4

WIND WIN 0 SPEED ( W H) 4 DIRECTION CALM 0.6-1.4 1.5-M 3.5-5.4 5.5-7.4 7.5-12.4 12.5-18.4 18.5-24.4

=24.5 TOTAL N

.017 0.23 1.26 0.1, 0.39 0.27 0.3 0.0 0.0 2.98 l

WNE

.023 0.31 2.83 2.46 1.07 0.92 0.03 0.0 0.0 7.62 NE

.011 0.15 1.03 0.71 0.31 0.18 0.01 0.0 0.0 2.39 ENE

.009 0.12 0.48 0.16 0.04 0.0 0.0 0.0 0.0 0.80 E

.010 0.14 0.24 0.05 0.01 0.01 0.0 0.0 0.0 0.45 i

ESE

.007 0.09 0.11 0.01 0.01 0.01 0.01 0.0 0.0 0.24 i

SE

.007 0.10 0.37 0.06 0.01 0.01 0.0 0.0 0.0 0.55 SSE

.008 0.11 0.58 0.24 0.13 0.23 0.04 0.02 0.0 1.35 1

5

.013 0.17 1.33 1.49 0.91 1.05-0.09 0.0 0.0 5.03 1

SSW

.007 0.10 1.67 2.32 1.67 1.45 0.11 0.0 0.0 7.32 SW

.013 0.17 1.59 2.07 1.30 0.99 0.10 0.0 0.0 6.22 Wsv

.010 0.13 0.87 0.55 0.35 0.40 0.06 0.0 0.0 2.36 W

.007 0.10 0.42 0.29 0.21 C.22 0.03 0.0 0.0 1.26 WNW

.010 0.14 0.3" C.22 0.19 0.27 0.02 0.0 0.0 1.21 NW

.007 0.10 0.50 0.37 0.43 0.38 0.02 0.0 0.0 1.80 NNW

.011 3.15 0.83 0.68 0.57 0.40 0.01 0.0 0.0 2.61 SUBTOTAL 0.17 2.31 14.45 12.50 7.60 6.79 0.52 0.02 0.0 44.19 i

h

^

14624 STABILITY CLASS E OCCURRENCES 007 0F TOTAL 32723 VALID TEWERATURE DIFFERENCE READINGS s

14146 T.tLID WIND DIRECTION - WIND SPEED READINT> CUT CF TOTAL 14624 STABILITY CLASS E OCCURREN2S ALL COLOMNS AND CALM TOTAL 100 PERCENT 7 FE*, VALID READINCS i

1

'METEROBOLOGICAL FACILITY LOCATED.74 MILES SW CF SEGUOYAH NUCLEAR PLANT TEWERATURE INSTRUPENTS 33 AND 150 FEET ABOVE GROUND WIND INSTRUE NT3 33 FEET ABO'E OROUND i

i r

a l

,. Sheet 5 of 8 j

i l

i s

..-~n

+

I I

l l

?

{~%i t\\ /

d 8

s.s.s.s. u.m. m. a.s. a. m. e. n. u. s. 5 :

u O

H Nd-ooooo-NNoooo-0u 9

I 3

e d

999o99999N999999 o

u oooooooooooooooo o l

f 9

oe99999999999999 9 9

oooooooooooooooo o F

E

=

r l

8 W a

m o

n.

o u

l t

7 o999eo99999eoq99 9 g

i g

d 9

w i

W D

6 q

B G EL d

- w x

0 9 8 dm g#

E d "8

i o

~

-m-m-wo g

si so9999999.-99999 4

m m

l 0

a gg v

3 oooooooooooooooo o g

gg o

gy o

e e

,g x.-

a a a S

=

o 2

d h" S Q

l 5

M M MJ E

f-s $

g y.W n ",

U S S e, 2-E,T 8 8 5. o.o.o. o. B.2. 2. M.5 5 5 8 8 a.

4 8 o

sm g

e I

H N

7

=

oooooooooooooooo o a

$a%

o o

b W So q

W m

MM R

' 8 k

a g

3 f E.$999EEE064EEEE6 9 h

Eb g

g g

gg g, b, cooooooooooooooo -

a 8

8 e

=

~

0 '-

E b

EU g

T M. G. W. A. N.T. 0. m. C. ". $.3 8. %. R. S.

B 0 M

. M y,

~

o m g

e. g g o

j

-m-oooooo-oooooo y

Eg a-"

2 4 M U"s o

o Do 2

o g

EN58.EE".EEU.8.EE8.EE 6 hd h

U

-pd oooooooooooooooo m

-o w g ge e

uWm x

g N

h" N I

5' 5 55 8 58.$.$.$.e $.m. m m.#.

-m-mob a'M6 8 8 8 8.8.F.

g g

a 7

=

ag o

a=2 s-ase

- a g

OHM m -

I g

d 4

825 U

d

(""Bo B

9.a 0

.num.nnama=ns= Inn, g w w y

usa w

i s

l

.-=

4 n

i

)

i l

..m.

m.

...=._ _.,,

.\\

p N. N. $. m. &. S. S. N. m. m* $. $. $. $. 5. ?.

a".

u O"OO000000000000 W

O t

b r

a 5

o9999oo9999ae.999 9 4

C000000000000000 O

i 99o9999999999999 9 m

0000000000000000 O

o-g 5

a m

m r

O a

2 m

H e

O T

m i

99999999o9999999 9 g8 Q

m 0000000000000000 O

U U

v, g g v

H a

b b

m W d 2

"b b

c H

0%

=

N e

e N

Q H

a u

c 8 a si 9999999999999999 9 e

M g >*

E gm C000000000000000 O

g j

aa l m x" s 3 un Y

?

3 b V M9 Y

Y a

-0*

h N

e H

D y

g a

g<v "

ga 99999o9o"Ng999o9 g a a a a

M9.

g u

m 3

g y y C000000000000000 O

Q y

G M

g W

O j

Q m

O bM D

N

.3 %

o a

e s

a ns g

b 40EEss9o99E99EEE 9 h

bb N

N d g

0000000000000000 e

3 8 5 9 "p

N 6

o m

m e

O b m.

$m MG y

T A. B. E. 2. *.E. E. E. S. T. ". ;. 8 0. 8 2 a.

g"k o r. $

W 0

m w

s O-O0000000000000 q

U 30

~

g"=

Ora 2

M O L.

5 O

5 j

8 2. 4 E ".:. 4 8..8 4 4 E 4 4 4 9

$d 0$g e

8 u

b N

C000000000000000 e

H

  • d i

t "

d r

W W A E b E. E. E. E. E.E. E. E.E. E. E. 5. 5. 5. 5. 5. 8~ R n.

g d.

O O

o 5 :

S~g d

J 8pm n

g "a s i

5 aM E O2; a

e < a EU

=

= 8 8

U"$"o WW

= IM 5 = =B M a n 8 M 9 3 $ E R" B

R E a 5

y

~

m m d

.n, a

n N

N

(

_ ~

=

./

TABLE 1 3 PERCENT OCCURREN3 CF WIND SPEED FOR ALL WIND DIRECTIONS SEQD0YAH NUCLEAR PLANT M TEOROLOGICAL FACILITY

  • JAN 1, 72 - DEC 31. 75 WIND WIND SPEED (M'H)

DIRECTION CALM 0.6.1.4 1.5 3.4 3.5 5.4 5.5 7.4 7.5 12.4 12.5 18.4 18.5 24.4

=24.5 TOTAL t

N

.044 0.51 3.20 1,63 0.67 0.58 0.0 0.0 0.0 6.59 NNE

.063 0.82 8.30 5.05 2.46 2.18 0.11 0.0 0.0 18.92 NE

.043 0.48 3.86 2.59 1.01 0.83 0.a6 0.0

'0 8.83 ENE

.027 0.42 1.58 0.39 0.09 0.0 0.01 0.0 0.0 2.4?

E

.030 0.50 0.80 0.11 0.03-0.02 0.01 0.0 0.0 1.47 ESE

.023 0.33 0.45 0.07 0.02 0.01 0.02 0.0 0.0 f 1 SE

.019 0.34 0.82 0.19 0.01 0.02 0.0 0.0 0.0 1.38 SSE

.024 0.41 1.36 0.55 0.23 0.36 0.06 0.02 0.0 2.99 3

.031 0.47 2.89 2.49 1.58 1.53 0.14 0.0 0.0 9.10 MW

.019 0.29 3 79 4.91 3.44 2.84 0.24 0.0 0.0 15.51 SW

.023 0.30 3.55 4.79 3.02 1.93 0.20 0.02 0.0 13.81 W5W

.016 0.24 1.68 1.19 0.66 0.69 0.16 0.02 0.0 4.64 W

.016 0.21 0.78 0.47 0.35 0.44 0.06 0.01 0,0 2.32 WNW

.019 0.27 0.70 0.36 0.34 0.51 0.03 0.0 0.0 2.21 NW

.011 0.18 0.93 0.63 0.74 0.83 0.07 0.0 0.0 3.38 NNW

.020 0.27 1.55 1.23 0.93 0.99 0.04 0.0 0.0 5.01 SUBTOTAL 0.43 6.04 36.24 26.65 15.58 13.76 1.21 0.07 0.0 99.55 l

32338 VALID WIND DIREC"fION. WIND SPEED READINGS OUT OF 35040 70!AL HOURS = 92.29 PERCENT I

ALL CCLID01S AND CALM TOTAL 100 PERCENT OF NET VALID READINGS

  • METER 0T7.0GICAL FACILITY LOCATED.74 MILES SW OF SEQUOYAH NUCLEAR PLA!rf WIND INSTRUMENTS 33 FEET ABOYE GRC"ND t

i I

I l

Sheet 8 of 1 b

t

T ABLi! 1.4 SEQUOYAH NUCLEAR PLANT LAND SITE BOUNDARY DATA' O

Sector Distance (m)

X/Q (s/m2)

D/Q (m-2) i N

950 5.13(-6) 1.29(-8)'

NNE 2,260 1.94(-6) 5.28(-9)

NE 1,910 2.33(-6) 6.33(-9)

ENE 1,680 1.12(-6) 2.64(-9)-

E 1,570 7.11(-7) 1.46(-9)

ESE 1,460 7.92(-7) 1.58(-9)

SE 1,460 9.17(-7) 2.41(-9)

FSE 1,550 1.34(-6) 3.23(-9)

S 1,570 2 37(-6) 4.18(-9)

SSW 1,840 4.51(-6) 9.26(-9).

SW 2,470 1 38(-6) 2.63(-9)

WSW 910 2.93(-6) 3.86(-9) l W

670 3.63(-6) 3.74(-9)

WNW 660 2.49(-6) 2.44(-9)

NW 660 2.85(-6) 3.67(-9)

NNW 730 3.96(-6) 6.59(-9) l

'All release points treated as ground level.

O

TABLE 1.4A REAL RECEPTOR LOCATIONE AQ)

NEAREST HOME-USE MILCHa EXE*LO R RESIDENT (m)

GARDEN (m)

ANIMAL (m)

N 1344 1344 4219

~

NNE 2812 2812 4531 NE 3438 3438 5625 ENE 2187 23 37 I

E 1812 2656 i

i ESE 1812 2031 2344 3

l SE 1719 2062 I

SSE 2250 2344 S

2375 2375 7031 i

SSW 2250 2750 3594 SW 2969 3438 WSW 1469 2062 W

938 938 WNW 1812 1812 1875 1

NW 1188 1188 2031, 5781 (goat)

NNW 781 1875 2438 (goat) l I

a.

All are real cow locations except where noted otherwise.

1 O

Revision 3

(

l l

't ABLE 1.5 DOSE FACTORS FOR SUBMERSION IN NOBLE OASES f"

DFBI DF. 2 9p31 pp 2 t

Kr-85m 1.17(+3)3 1.21(+3) 1.46(+3) 3.86(+3)

Kr-85 1.61(+1) 1.69(+1) 1.34(+3) 3.83(+3)

Kr-87 5.92(+3) 6.05(+3) 9.73(+3) 2.01(+4)

Kr-88 1.47(+4) 1.50(+4) 2.37(+3) 5.72(+3)

Kr-89 1.66(+4) 1.59(+4) 1.01(+4) 1.88(+4)

Xe-131m 9.15(+1) 1.53(+2) 4.76(+2) 2.18(+3)

Xe-133m 2.51(+2) 3.17(+2) 9.94(+2) 2.90(+3)

Xe-133 2.94(+2) 3,4f,(+2) 3.06(+2) 2.06(+3)

Xe-135m 3.12(+3) 3.30(+3) 7.11(+2) 1.45(+3)

Xe-135 1.81(+3) 1.88(+3) 1.86(+3) 4.84(+3)

Xe-137 1.42(+3) 1.48(+3) 1.22(+4) 2.50(+4)

Xe-138 8.83(+3) 9.00(+3) 4.13(+3) 9.25(+3) i Ar-41 8.84(+3) 9.76(+3) 2.69(+3) 5.54(+3) l l

1.

n. rem'y per pC1/m3 l

2.

mrad /y perj4C1/m3 l

3.

1.17(+3) = 1.17 x 103 I

i t

I t

l

l TABLE 1.6

,r S

STABLE ELEMENT TRANSFER DATA i

)

'O' Biy Fm (Cow)

Elen nt, Vcg/ Soil

!! ilk (d//)

l 11 4.8E 00 1.0E-02 l

C 5.5E 00 1.2E-O?

l tla 5.2E-02 4.0E-02 P

1.1E 00 2.5E-02 i

Cr 2 5E-04 2.2E-03 L

Mn 2.9E-02 2 5E-04 l

Fo 6.6E-04 1.2E-03 l

Co 9.4E-03 1.0E-03 fli 1.9E-02 6.7E-03 Cu 1.2E-01 1.4E-02 2n 4.0E-01 3.9E-02 Rb 1 3E-01 3.0E-02 Sr 1.7E-02 8.0E-04 Y

2.6E-03 1.0E-05 Zr 1 7E-04 5.0E-06 Ub 9.4E-03 2.58-03 l1o 1.2E-01 7.5E-03 l

Tc 2.5E-01 2.5E-02 Ru 5.0E-02 1.0E-06 Rh 1 3E 01 1.0E-02 g]

Ac 1.5E-01 5.0E-02

(

l Te 1 3E 00 1.0E-03 I

2.0E-02 6.0E-03 Ca 1.0E-02 1.2E-02 Da 5.0E-03 4.0E-04 i

La' 2.5E-03 5.0E-06 l

re 2.5E-03 1.0E-04 l

Pr 2.5E-03 s.0E-06 i

Ild 2.4E-03 5.0E-06 W

!.8E-02 5.0E-04 Up 2.5E-03 5.0E-06 l

l i

O

1 l

TABLE 1.7 j

I tJT E RIJ A L DOSE PACTORS I - INF At;T TilYROID i e i

Inhalation 2 Cow tiilk Incestion mrem en3 nD-s mrem ha d l onit c l id e yr

/.A C i yr mci l

i i

II-3 14.30(+8) 2.75(+9)*

l C - 1 'i 5.04(+9) 6.55(+11)'

j Tn-132 2.30(+7) 1.116 ( + 7 )

I-131 1.141 ( + 13 )

9.12(+11)

I-133 li.66(+12) 1.21(+10) l l

' Unit for 11-3 and C-14 is mren/yr per pC1/cn5 1

1.

Baced on Regulatory Guide 1.109 methodolecy.

(

2.

Annumes infant breathing rate of 11100 m3/yr.

i I

i i

1 i

)

i 1

i l

1 l

1 i

4 1

l-l

. TABLE 1.8 EXTERNAL DOSE-FACTORS FOR STANDING ON CONTAMINATED' GROUND (mrem /hr per pC1/md)

Element Total Body Skin i

H-3 0.0 0.0 C-14 0.0 0.0 NA-24

.2.50E-08 2.90E-08 j

P-32 0.0 0.0 i

Cr-51 2.20E-10 2.60E-10 Mn-54 5.80E-09 6.80E-09 Mn-56 1.10E-08 1.30E-08.

Fe-55 0.0 0.0 Fe-59 8.00E-09 9.40E-09 i

Co-58 7.00E-09 8.20E-09 i

Co-60 1.70E-08 2.00E-08 l

N1-63 0.0 0.0 Nr-65 3 70E-09 4.30E-09 Cu-64 1.50E-09 1.70E-09 Zn-65 4.00E-09

!!. 6 0 E -0 9 Zn-69 0.0 0.0 Br-83 6.40E-11 9 30E-11 Br-84

. 20E-08 1.40E-08 Br-85 0.0 0.0 Rb-86 6.30E-10 7.20E-10 l

9 Rb-88 3.50E-09 4.00E-09 Rb-89 1.50E-08 1.80E-08 i

Sr-89 5.60E-13

'6.50E-13 Sr 91 7.10E-09 8.30E-09 f

Sr-92

).00E-09 1.00E-08 Y-90 2.20E-12 2.60E-12 Y-91M 3.80E-09 4.40E-09 l

Y-91 2.40E-11 2.70E-11 l

Y-92 1.60E-09 1.90E-09 Y-93 5. 7. 0 E - 10 7.80E-10

7. r -9 5 5.00E-09 5.80E-C' Zr-97 5.50E-09 6.40E-09 Nb-95 5.10E-09 6.00E-09 Mo-99 1.90E-09 2.20E-09 Tc *^M 9.60E-10 1.10E-09 Tc '01 2.70E-09 3.00E-09 Ru-93 3.60E-09 4.20E-09 Ru-105 4.50E-09 5.10E-09 Ru-106 1.50E-09 1.80E-09 Ag-110M 1.80E-08 2.10E-08 Te-125M 3.50E-11 4.80E-11 I

Te-127M 1.10E-12 1.30E-12 i

Te-127 1.00E-11

1. ~. 0 E - 1 1 l

Te-129M 7.70E-10 9.00E-10 l

Te.129 7.10E-10 8.40E-10 I

To-131M 8.40E-09 9.90E-09 G

-Te-131

_2.20E-09 2.60E-06' Te-132 1.70E-09 2.00E-09 l

I-130 1.40E-08 1.70E-08 I-131 2.80E-09 3.40E-09 j

i I

I i

1 TABLE 1.8 (cont'd) l.

1 EXTERNAL DOSE FACTORS FOR STANDING ON CONTAMINATED GROUND (mrem /hr per pCi/m2)

Element Total Bogy Skin i

I-132 1.70E-08 2.00E-08 I-133 3.10E-09 4.50E-09 i

I-134 1.60E-08 1.90E-08 I-135 1.20E-08 1.40E-08 l

Cs-134 1.20E-08 1.40E-08 Cs-136 1.50E-08 1.70E-08 Cs-137 4.20E-09 4.90E-09 d

Cs-138 2.10E-08 2.40E-08 Ba-139 2.40E-09 2.70E-09 i

Ba-140 2.10E-09 2.40E-09 Ba-141 4.30E-09 4.90E-09 Ba-142 7.90E-09 9.00E-09 La-140 1.50:.-08 1.70E-08 La-142 1.50E-08 1.80E-08 Ce-141 5.50E-10 6.20E-10 Cc-143 2.20E-09 2.50E-09 Ce-144 3 20E-10 3.70E-10 Pr-143 0.0 0.s Pr-144 2.00E-10 2.30E-10 Nd-147 1.00E-09 1.20E-09 W-187 3.10E-09 3.60E-09 9

Np-239 9.50E-10 1.10E-09

[

l 8

t r

r

. - -, _.... - -,, - - -.... - -... ~,.... - - -.. - - -,. - -..,..

o g

7 f

O N

~h l'

j 9

t I

8

- - ~

f l

1

-~

j I

/

n t

/

h 0

.E.

~ -_

f

%e

=

C w

w p

w l

oE B

/.'

o-o t

f.

/

1 L

-d x

/

E D

I IJ I

j a

g

~-

er, l.

7

[

j S

A s

a j

I a

n l

i I

o a

W w

u3 y

I 4

T w

~~

W bU O q, S

N2 I

D I

J

&U 4

1 t

o @>

o f

i c,

e-

~[

h.5

[

23 j

nm p

~'

.. [

I - --

~

g a

6 t

i f

e i

.o

'c' C

9 H

D N

4 O.

N s

o o

o o

o d

o o

d'"

?

l 3 WIT 1d NI DNINIVW38 NOll3VUd

FIGV_RE 1.7

^

\\

39 3

! - m'-H-w W^

em i

i i I

i i

l =. ~.:

i j

l I l i i i ll i 1 ii:is i

i

! 1 i; l

l l l llI l

}

! llii'!

l I

ll l

l I Illil!

l I i ! ill'i l

l' lli.l.:l:ll:l I

l l IIli:

i t

i l

10 ~,*

i) i e

t

_._...l

~

c-1 u

d.

p.

, - _i, i t,

i i

C l

l l I ! i ll!

a E

l l l!!.lt.I!!

l m

i t-l f

l.. I,,1 I

~-

!>>I ct I

10-5

! l l lll i

I i

I I

o i

P R

f/)

a o

c a

4 c

l t.i I

l

!!!t ll j

i

1 ! '

u

_ _l ! !.l lq t

a i

i -

I 1

I c

l l

j j

'..Iie i

i

+

10-6l

!lI l

i 1

iti i i r I

i 1

i l:.

i i i ll i i t

l 1

e 1

i i

i Ui-7 e

i.6 !ir 0.1 1.0 10.0 1C.0 200.0 PLU.'.1E TRAVEL DISTANCE (KILO.*.;ETE RS) l Relatim Deposition for Ground Lt.a' Reieses (All Atmospheri-:

Stability Classes)

e e

E f'

O*

l.\\l E

j!.]

s g

y

,' \\

p t

O C

m O

  • M l

m

~

M

(-)

i f.

o E"

I u

.I as as

, r.

a

+l l r 8r i

i i

i.

1, a

i J

(

~

f~

j

\\

\\

r

.(

l l

l\\:'i!

ip

}

6 i

1 I

?

4 l'f 1

I f

l--

l

I

,\\.t'.

j

g..

1r" Y.. L -.

! Q I

3 s \\

j s{

l

{

( !

s i

l 1

('.

k-10.4

- j 4

I i -i

=>

4 3.

k.

j.,

i.

c})

V, Li4 f.,

9

'~N

^

2.

Liquid Effluents 2.1 Concentration l'3

)

2.1.1 RETS Requirement v

3pecification 3.11.1.1 of the Radiological Effluent Technical Specifications (RETS) requires that the concentration of radioactive material released at any time from the site to unrestricted areas shall be limited to the Maximun Permissible Concentr a tion (MPC, attached as Appendix I) specified in 10 CFR 20, Appendix B,

Table II, Column 2 for nuclides othea titan dissolved or entrained noble gases.

l For dissolved or entrained noble gaaes, the concentration shall be g

limit?d to 2x10 uCi/ml total activity.

To ensure compliance, the following approach will be used for each release.

1 2.1.2 Prerelease Analysis Most tanks will oe recirculated through two volume changes prior to sampling to ensure that a representative sample is obtained.

Because of their size the high crud tanks, non-reclaimable waste tank, and cask decontamination tank will not necessarily be recirculated through two volu1ea.

An appropriate recirculation time for these tanks will be determined by a one time t e s.

The tank will be recirculated and periodically sampled for suspended particalates during the test.

The appropriate recirculation time will be the time that the suspended particulate concentration reaches steady state.

The condensate demineralizer waste evaporator blowdown tank cannot be recirculated.

However the contents of the tank will be under administrative control (vs) and could be t>ansferred to the distillate tanks prior to release.

l l

Prior to release a grab sample will be analyzed for each release point l

for the concentration of each radionuclide.

I n

C

=

C (2.1) 1 l

i=1 where:

C

=

total concentration in the liquid effluent at release l

point j, uCi/ml.

l C

=

concentration of radionuclide i, pCi/ml.

t l

h o

2.1.3 MPC-Sum of tha Ration The num of the ratios (R 3) for each release poitJ will he calculated by the following r e l a t i o ri s h i p.

O C

C C

C (2.2)

A B

i n

H

=

+

+

+

+

MPC MPC MPC MPC A

E i

r.

where:

C

=

undiluted effl1ent concentration of radionuelide i, an determined in Section 2.1.2, pCi/ml.

MPC

=

the MPC of radionuclide i, as specified in 1

Section 2.1.1, pC1/ml.

R

=

the sum of the ratios for release point J.

There are 4 possible liquid release points into cooling tower blowdown.

1.

Steam Generr. tor )

N

" Cooling Tower Blowdown

= F 2.

Steam Generator) 3.

Condensate Tankn)

O i

4.

Ita d wa s t e Tanks v

i The num of the ration at the diffuser pipes must bei 1 due to the releanes from any or all of the above sources.

The following relationship will assure this criterion is met:

fj(R j-1) +

fp ( It2-I}

3('3~I)

+

I

+

I4(R 4-1) 1F (2.3) where-f j, 0,,, 0~3, f,,,

the offluent flow rate (gallons / minute) at

=

the respective release point determined by plant personnel.

R 3, lt.,, R3,R3

=

the aum of the ration of the respective release point as determined by Equation 2.2.

F

=

minimum d ilu tion flow rate for prereleane analysia (cooling tower blowdown, gallons / minute) 15,000 gal / min.

=

For releanen into the c o o l i n;' tower blowdown line, additional mixing in a n :1u m e d to occur in the ditfuser pond when SQN is operating in 2

Holper or Open cooling mode, e

The renultn, from field tests conducted in September 1979, are e x p < <: n:md in terms of r e l a t. i v e e,ncentration r:

+

f

+

f

+

f fy)

?.4x10 (F

7-3 p

3+

r

=

r

\\

Mquations 2 3 then becomes 2

3("3~

3+fy) f 3(R -1)

+ T j

2 2-P.4x10 (F + r

+ T

  • r 2

+ fy(Ry-1)

IF (2.3a) 2.2 Inntrum-7t Setpoints 2.2.1 Setpoint Determination The netpoint for each liquid effluent monitor will be established uning plant instructions.

Concentration, flow rate, dilution, principal gamma emitter, geometry, and detector efficiency are c omb i n e<1 to it,i v e an equivalent setpoint in counts per minute (cpm).

The phynical a n el technic 1 description location and identification number for each liquid er"luent radiation detector is contained in plant documentatLon.

The respective alarm / trip setpoints at each release point will be set auch that the sum of the ratios at each point, as calculated by Equation P.2, will not be exceeded.

The R is directly related to the total concentration calculated by Equa$1on 2.1.

An increase in respective R the concentration would indicate an increase in thein Secti n 2.1$.1 to

/~)

A large increase would cause the limits specified Y2 be exceeded.

The minimum alarm / trip setpoint value is equal to the releane concentration, but for ease of operation it may be desired that the setpoint(s) be set above the effluent concentration (C3).

That 1t,

'1

=

b x

C (2.4) 3 3

or i

a b

=

l C j l

i where:

desired alarm / trip setpoint at release point J.

S.

=

J nealing factor to prevent alarmn/ trips due to b.

=

A variations in the efflue. concentrationn at release point J.

C

=

total concentration in the liquid effluent at release 3

point j specified by Equation 2.1,pCi/ml.

The R.

used in Equation 2.3a must also be scaled by;the correspondin3 scale 3 factor.

Equation 2.3 and the corresponding alarm / trip setpoints 2

ll) become

~

-6

_ 7(b R -1) 2.4x10 (F + f

& f vf

' f4}

F

+

7 7 2

3 F

(b R ~1) vE (b

-1)

  • f ID R -1

((

F

( 2. M 3

2 2

2 3

3 3

4 4

4,

S 1 (2.6) b

=

y C y 3 2 (2.7) b

=

2 C 2 3 3 (2.8) b

=

3 C 3 S

f_

(2.9) b

=

4 4

For example, for 2 release points, minimum dilution flow and no diffuser pond dilution this becomes, m

ft ( S1xR1) -1 +f2

(

3_2 x R2)

-1 (15,000 (2.10)

Cl C2 2.2.2 Post-Release Analysis A post-release analysia will be done using actual release data to ensure that the limits specified in Section ?.l.1 were not exceeded.

A composite list of concentrations (C i), by isotope, will be uqed with the actual liquid radwaste (f) and dilution (F) flow rates (or volumes) during the release.

The data will be substituted into Equation 2.3 to demonstrate compliance with the limits in Section 2.1.1.

This data and setpoints will be recorded in auditable records by plant personnel.

l 2.3 Dose 2.3.1 RETS Requirements Specification 3.11.1.2 of the Radiological Gffluent Technical Specification (RETS) requires that the dose or dose commitment to an individual from radioactive materials in liquid ef fluentn released to unrestricted areas from each reactor (see Figure 2.2.l-1) shal'L he limited:

a.

During any calendar quarter to 4 1.5 mrem to the total body and to

~

f 5 mrem to any organ, and O Revision 3

l I

l

,b.

During any calendar year to < 3 mrem to the total body and to ( 10

~

"~

mrem to any organ.

To ensure compliance, cumulative dose calculations wili be performed l

at least once per month according to the following methodology.

2.3.2 Monthly Analysis Principal radionuclides will be used to conservatively estimate the monthly contribution to the cumulative dose.

If the projected dose exceedn the above limits, the methodology in Section 2.3.3 will be implemented.

Calculated doses from liquid effluents (based upon historical release data) have been dominated by the Phosphorus-32 (P-3 2) dose to the bone.

To further ensure accurate dose assessment, ten additional nuclides are considered.

The 11 nuclides (listed below) contribute more than 95 percent of the dose to the total body and the two most critical organs (bone and gastro-intestinal tract (G.I. t rac t) ) for 3

both water and fish ingestion.

U-3 Co-58 Nb-95 P-32 Co-60 Xe-133 Mn-54 St-89 Ce-144 Fe-55 St-90 A conservative calculation of the monthly dose will he done according to the following procedure.

First, the monthly operating report Ocontaining the release data will be obtained and the activities l3 released of each of the above eleven radionuclides will be noted. This 1

l information will then be used in the following calculatiphs.

I I

2.1.2.1 Water Ingestion

(

The dose to an individual from ingestion of water is described by the j

Eo1 lowing equation.

11 3

Dja 1_

(DCF)ij x II, rem

( 2.11)

.95 i=l O

l L) l Revision 3 I.

where:

Dj = dose for the jth organ from eleven radionuclides, rem jg the organ of interest (bone GI tract and total body) j

=

the release point of interest (cooling tower blowdown k

=

or turbine building sump).

conservative correction factor, considcring only eleven

.95

=

r ad ionucl ides.

adult ingestion dose commitment factor for the jth DCF j i

=

organ from the ith radionuclide rem /p Ci, see attached as Table 2.1.

I t=

monthly activity ingested of the ith ra ' onuclide, 4 Ci.

I t is desc.ibed by I t=

Ai V (30) p Ci (2.12)

Fd (7.34 x 1010) where:

Ai activity released of ith radionuclide during the month,

=

y Ci.

average rate of water consumption (730 ml/d ICRP 21, p.

V

=

358) d ays per month 30

=

average river flow at Chickamauga Dam for the month F

=

(cubic feet per second) fraction of river flow available for dilution (1/5) d

=

7.34 x 1010 = conversion from cubic feet per second to milliliters per month.

The dose equation then becomes 11

\\

Dj= 1.57x10-3

\\

(DCF)ij xAi, m rem

( 2.13 )

F i=1 considering the conversion factor from rem to mrem. i<evision 3

2.3.2.2 Fish Inmestion The dose to an individual from the consumption of fish is described by Equation 2.11.

In this case the activity ingested of the ith

(~)T radionuclide (I I) is described ti

\\_

A B

M pCi (2.14)

I t i

i

=

Fd (7.34x1010) s where:

A1 activity released of i th radionuclide during the

=

month, pCi Il i

= effective fish concentration factor for the ith radionuclide uCi/am, see attached as Table 2.1.

pCi/mi amount ci fish eaten monthly (1.91103 g,)

M

=

average river flow at Chickamauga Dam for month F

=

(cubic feet per second) 3 fraction r iv e r flow available for dilution (1/5) d

=

7.34x1010 conversion from cubic feet per second to

=

milliliters per month.

The dose equation then becomes 11 1.36x10-4 A ixB izDCF j, i

mrem (2.15)

D

=

j F

i=1 co n s i d e r i n g the conversion factor frem rem to mrem.

If these calculated monthly doses exceed limit, specified in Section 2.3.1, then a more accurate and complete calculation will be done as described in Section 2.3.3.

An annual check will be made to ensure that the moathly dose estimates account for at least 95 percent of the dose calculated by the method described it Section 2.3.3.

If less than 95 percent of the dose has been estimated, either a new list of principal isotopes will be prepared or a new correction factor will be used.

The latter option will not be used if less than 90 percent of the total dose is predicted.

2.3.3 Quarter 1v and Annual Analysis A complete dose analysis utilising the total estimated liquid releasesg for each calendar quarter will be performed and reported as required

1 in Specifications 6.9.1.8 and 6.9.1.9.

This analysis will replace l3 previous estimates calculated in Section 2.3.2 and consists of the following approach.

The dose to the jth organ from m radionuclides.

Dj, is described by O

LJ Rev111on 3

m

\\

i rem (2.16)

Dj D j,

=

/

i=1 m

(DCF)ij xI i, rem (2.L7)

=

1-1 3

where:

dose to the jth organ from the ich radionuclide, Dj i

=

rem.

j the organ of interest (bone, GI tract, thyroid,

=

liver or total bcdy)

(DCF) ij = adult ingection dose commitment factor for the jth organ from the i th radionuclide, rem /pCi, see Table 2.1.

I t = activity ingested of the ith radionuclide, pCi.

I t for water ingested is described by

^i uCi (2.[8)

I t=

~

Fd and for fish ingestion 1 1 is described by Ai_ Bt Ci (2.19)

M 1 1=

Fi Revision 3 9

where:

f)

Ai activity releaned of jth radirnuclide during the NL release period, pC L.

M average rate of water consumption (730 ml/d).

V

=

number of days during the release period (d).

l n

=

total river flow at location of interest for period, l

F

=

l ml.

l 3

fraction of river flow available for dilution d

=

(1/5 above Chickamauga Dam, 1 below the dam) l B i fish concentration factor, uCi/gm

=

Ci/ml p

amount of fish eaten during period (fraction of year x M

50 lb/ year x 45 3.6 g/lb)

At the end of the year an annual dose analysis will be performed by calculating the num of the quarterly doses to the critical receptors.

2.4 Operabil_ity of Liquid Radwaste Equipment Speci fication 3.ll.1. 3 of the Radiological Ef tluent Technical Specifications requires that the liquid radwaste system shall be used to reduce the radioactive materials in lignid wastes prior to their-d! scharge when the projected dose due to liquid effluent releases to unrestricted areas (see Figure 2.1.1-1) when averaged over 31 days would exceed 0.06 mrem to the total body or 0.21 mrem to any organ.

Doces will be projected monthly to assure compliance.

l w Revision 3 l

l l

4 --

)

k_/

v

  • APLE 2.1 DOSE CDMI"WT' AND FISR CDCDf!PATIN FY" ORS FISH FADIOtD.

SIOrmICAL STE'IVE BICXEGICAL imIE-LIFE imLF-LIFE HAIE/ LIFE IENAN DOSE CONTDGNI' FK"IURS (PDVJCI)

CDCDFIRATIN FMT. IRIE-LIFE ICCLIIE (LAYS)

(DAYS)

(DAYS)

BWE GI TRET "HY10TD WAL BCtrl LIV 6i STABLE RADIOtD.

DAYS H-3 4.48E+03 1.00E+01 9.98E+00 9.77E-05 1.05Fe04 1.05E-04 1.05E-0 4 1.05E-04 1.00E+00 1.00E+00 0.0 C-14 2.09E+06 1.00E+01 1.00E+01 2.84E-03

5. 6BE-04 5.88FA 4 5.68E 04 5.68E-04 4.55E+03 4.55E+03 0.0 NA-24 6.33Fe01 1.10E+01 5.99E-01 1.70E-03 1.70E-03 1.70E-03 1.708-03 1.70E-03 1.00E+02 1.00E+02 0.0 P-32 1.43E+01 2.57E+02 1.35E+01 1.93E-01 2.17E-02 7.47Fr03 7.46Fe03 1.20E-02 1.00E+05 $ 2.50E+04 0.0 K-40 4.60E+11 5.80E+01 5.80E+01 3.45FA 2 0.0 3.45Fr02 3.45Fe02 3.45E-02 2.50E+03 2.50E+03 0.0 CR-51 2.78E+01 6.16E+02 2.66E+01 3.21Fr06 6.69E-04 1.59Fe06 2.66E-06 2.668-06 2.00E+02 2.00E+02 0.0

% 54 3.03E+0 2 1.70E+01 1.61E+01 8.83E-04 1.40Fe02 8.83Fe04 8.72Fe04 4.57Fe03 4.00E+02 4.00E+02 0.0 W 56 1.07Fe01 1.70E+01 1.06Fr01 2.04Fe05 3.67E-03 2.04FA5 2.04E-05 1.15Fe04 4.00E+02 4.00E+02 0.0 FPr55 9.50E+02 8.00E+02 4.34E+02 2.75E-03 1.09Fr03 2.74E-04 4.43Fr04 1.90E-03 1.00E+02 1.00E+02 0.0 FFe59 4.56E+01 8.00E+02 4.31E+01 4.34Fe03 3.40Fr02 3.81E-03 3.91Fe03 1.02Fr02 1.00E+02 1.00E+02 0.0 CD-58 7.13E+01 9.50E+00 8.38E+00 1.69Fr03 1.51E-02 1.69Fe03 1.67Fr03 7.45E-04 5.00E+01 2.08E401 1.00E+02 Q>-60 1.92E+03

9. 50E+00 9.45E+00 4.73Fe03 4.02E-02 4.73Fe03 4.72Fr03 2.14Fe03 5.00E+01 4.75E+01 1.00E+02 NI-65 1.07d-01 6.67E+02 1.075-01 5.28EL14 1.74Fe03 3.27Fe05 3.13Fr05 6.86Fr05 1.00E+02 1.00E+02 0.0 CD-64 5.31Fe01 0.00E401 5.27FrC1 3.91E-05 7.10Fe03 3.91Fe05 3.91& OS 8.33Fr05 5.00E+01 5.00E+01 0.0 2N-65 2.45E+02
9. 33E+02 1.94E+02 4.84E-03 9.70B-03 7.13FA 3 6.%E-03 1.54Fr02 2.00E+03 1.42E+03 1.00E+02 2N-69M 5.75E-01 9.33E+02 5.75Fe01 1.55Fe04 2.91Fe03 3.64Fe05 3.64D05 4.09FA 4 2.00E+03 1.14E+01 1.00E402 ZN-69 3.%Fe02 9.33E+02 3.96Fe02 1.03Fr05 2.96E-06 1.37E-06 1.37Fe06 1.97Fr05 2.00E+03 7.92E-01 1.00E+02 BR-82 1.48E+00 8.00E+00 1.25E+00 2.26E-03 2.59Fe03 2.26Fe03 2.268-03 2.26Fe03 4.20E+02 4.20E+07 0.0 BR-83 1.00FAl 8.00E+00 9.88E-02 3.55Fr05 5.79E-05 3.55Fr05 4.02Fe05 4.02Fe05 4.20E+02 4.20E+02 0.0 BR-84 2.21FA 2 8.00E+00 2.20Fe02 6.04E-05 4.09Fr10 6.04Fr05 5.21FA 5 5.21E-05 4.20E+02 4.20E+02 0.0 BR-85 2.08Fe03 8.00E+00 2.08E-03 5.17Fe07 1.00Fr21 5.17E-07 2.148-06 2.14Fr06 4.20E+02 4.20E+03

'.0 KR-8 h 7.758-02 1.00L,00 7.19Fr02 0.0 1.46Fe04 0.0 0.0 0.0 1.00E+00 1.00E+00 0.0 KR-85M 1.83Fr01 1.00E+00 1.55FA1 0.0 3.30Fe03 0.0 0.0 0.0 1.00E+00 1.00E+00 0.0 KW85 3.93E+03 1.00E+00 1.00E+00 0.0 4.62Fr02 0.0 0.0 0.0 1.00E+00 1.00F+00 0.0 IB-86 1.87E+01 4.50E+01 1.32E+01 9.53Fr03 4.16Fe03 9.8 Tc03 9.833-03 2.llFA2 2.00E+03 2.00E+03 0.0 10-88 1.24 E-02 4.50E+01 1.24E-02 3.14Fr05 8.36Fr16 8.34Fe05 3.21FA 5 6.058-05 2.00E+03 2.00E+13 0.0 le-89 1.07Pe02 4.50E+01 1.0's 02 2.866-05 2.33Fr18 2.86Fe05 2.82Fe05 4.01Fe05 2.00E+03 2.00EW3 0.0 SR-89 5.27E+01 1.30E+04 5.2SE+01 3.08Fe01 4.94Fe02 9.22Fe03 8.84Fe03 8.84Fr03 3.00E+01 1.04E+01 1.00E+02 SR-90 1.01E+04 1.30E+04 5.68E+03 7.58E+00 2.19Fr01 1.76E+00 1.86E+00 1.86E+00 3.00E+01 2.97E+01 1.00E+02 S't-91 4.03Fe01 1.30E+04 4.^3Fr01 5.67E 03 2.70Fe02 1.92Fe04 2.29Fe04 2.298-04 3.00E+01 1.20E-01 1.00E+02 SR-92 1.13Fe01 1.30E+04 1.13E-01 2.15E-03 4.26Fe02 6.89FA S 9.30Fe05 9.30FA 5

'.00E+01 3.39Fe02 1.00E+02 SR-93 5.%E-03 1.30E+04 5.%E-03 6.393-05 1.89Fe03 8.90Fe06 8.90Fe06 8.90Fr06 3.00E+01 1.67Fe03 1.00E+02 Y-90 2.67E+00

1. 40E+04 2.67E+00 9.62E-06 1.02FA l 2.57FA 7 2.58Pr07 2.58PA 7 2.50E+01 2.50E+01 0.0 Y-91M 3.47Fr02 1.40E+04 3.47E-02 9.09Fe08 2.07Fe07 1.72Fr09 3.52Fr09 3.52Fe09 2.50E+01 2.50E+01 0.0 Y-91 5.88E+01 1.40E+04 5.8CE+01 1.41Fe04 7.76FA 2 3.66FA 6 3.77Fr06 3.77Fr06 2.50E+01 2.50E+01 0.0 Y-92 1.47Fr01 1.40E+04 1.475-01 8.45Fe07 1.48Fr02 2.47Fe08 2.47Fe08 2.47Fe08 2.50E+01 2.50E+01 0.0 t 93 4.29Fe01 1.40E+04 4.298-01 2.68Fr06 8.50E-02 5.51Fr08 7.40Fe08 7.40E-08 2.50E+01 2.50e+01 0.0 zwS 6.55E+01 4.50E+02 5.72E+01 3.04E-05 3.09Fr02 6.38E-06 6.60E-06 9.75Fe06 3.33E+00 3.33E+0G 0.0 ZR-97 7.08Fr01 4.50E+02 7.078-01 1.68Fe06 1.05Fe01 1.55Fr07 1.55Fr07 3.39Fr07 3.33E+00 3.33E600 0.0 IG-95M 3.75E+00 7.60E+02 3.73E+00 5.86Fr07 3.55E-02 2.E9FA 7 2.88Fe07 4.63FA 7 3.00E+04 3.00E+04 0.0 te-95
3. 50E+01 7.60E+02 3.3 m+01 6.22Fe06 2.108-02 1.e3Fe06 1.86Fe06 3.46Fr06 3.00E+04 3.00E+04 0.0 te-97 5.00Fe02 7.60E+02 5.005-02 4.90FA8 2.10E-03 4.60Fr09 4.60E-09 1.27Fr08 3.00E+04 3.00B+34 0.0
  • Ihis effective ecmcentraticm fa: tor inchries an aMustnnt of 0.25 for the fraction of the toal phosphorus found in edible

' porthms.

Revision 3 (sheet 1 of 3)

O O

O

~

r T G*.E 2.1 DTE CD,egyp rag rIggyang;tm rgy__

4 F;SR PAODta.

U%X; ICE WITrris 2IOCfmCE FXI G T<I-!.IFE HEF/1.IFE EDW DOSE COtCMC F;CTRS iRLN *CI)

CDGFM""N FAC':".

REF-I!TE W 1IDE CAB CAYS)

(CP S)

, Bor:E 1:JS "NY:0!D "TE Bri LIVER N_2 PJ0!OCO.

FAYS

% 103 3.96E+01 7.30E+00 6.16E+00 1.35E-04 2.16E-02 7.935-05 7.9 W 05 7.9'E-05 1.00D01 1.00 M 1 0.0 RD-106 3.68902 7.30E+00 7.16E+00 2.75E-03 1.79E-01 3.50E-04 3.43E-04 3.4SE-04 1.00E41 1.00E+0! 0.0 RH103M 3.96E-02 7.30D00 3.94E-02 1.67E-07

. 21E-04 4.9 h 09 4.94E-03 7.~1E-07 1.00D01 1.00 D01 0.0 M110M 2.53E+0.'~

5.00E+v0 4.90E+0S 1.60Fe04 5.04E-02 8.78E-05 0.79E-05 1.49E-04 2.00900 2.00E+00 0.0 SB-124 6.02E+01 1.8CD01 2.33E+01 2.SOE-d 7.95E-02 6.79E-06 1.11E-03 5.30E-05 1.00E+00 1.00E+00 0.0 SB-125 9.96E+02 3.80E+01 3.66E+01 1.7 h 03 1.9'E-02 1.82E-06 4.26E-04

2. 40E-05 1.00 N O 1.00E+00 0.0 M125M 5.80E+01 1.50901 1.19901 2.68E-03 1.07E-02 8.0 @ 04 3.5 & O4 9.71E-04 4.00E+02 4.00E+02 0.0 E12'M 1.09902 1.50E+01 1.32E W 6.77E-03 2.27E-02 1.73E-03 S.25E-04 2.42E-03 4.00E+02 4.00E+02 0.0 2-127 3.92601 1.50 N 1 2.82E-01 1.10E-04 9.68E-03 8.15E-05 2.38E-05 3.95E-05 4.00E+02 4.00E+02 0.0 2129M 3.41E+01 1.50E+01 1.04 D01 1.15F-02 5.79E-02 3.95E-03 1.82E-03 4.29E-03 4.00E+02 4.00 N 2 1.0

~:C-129 4.77E-02 1.5CE+01 4.75E-02 3.14 905 2.3?E-05 2.41E-C5 7.65E-06 1.18E-03 f 00D02 4.00D02 0.0 2131M 1.25D00 1.50E+01

,.15 N O 1.*i:-03 8.47E-02 1.34E-03 7.05E-04 8.46E-04 4.00E+02 4.00E+02 0.0 m-131 1.72Fr02 1.50E+01 1.72E-02 1.97Fe05 2.79E-06 1.62E-05 6.22E-06 8.23E-06 4.00D 02 4.00E+02 0.0 7

M-132 3.24 D00 1.50D01 2.66E+00 2.52Fe03 7.71E-02 1.80D03 1.53E-03 1.63E-03 4.00E+02 4.00E+02 0.0 1s-134 2.92E-02 1.50E+01 2.91E-02 2.10E 5 8.93E-05 2.00E-05 1.57E-05 2.13E-05 4.00E+02 4.00E+02 0.0 I-129 6.21E+09 1.38E+02 1.38E+02 3.10E-03 0.0 9.61E+C3 1.24E-02 2.8;Fe03 5.00E+01 5.00E+01 1.00 N O I-130 5.17E-01 5.17Fe01 2.5W01 7.56E-04 1.92E-03 1.8 % C1 8.80E-04 2.23E-03 5.00E401 1.70E+01 1.00D00 i

I-131 8.05D00 1.38E+02 7.61E+00 4.16E-03 1.57E-03 1.45E+00 V E-03 5.95E-03 5.00901 4.45E+01 1.00D00 I-132 9.42Fe02 1.38E+02 9.41E-02 2.03E-01 1.02E-04 1.90Fe02 1.90E-04 5.43E-04 5.00 N 1 4.30E+00 1.00D00 I-133 8.46Fr01 1.18E+02 8.41Fe01 1.42E-03 2.22E-03 3.63E-01 7.53E-04 2.47E-03 5.00E+01 2.29 Dv1 1.00E+0a I-134 3.61E-02 1.38E402 3.61Fe02 1.06E-04 2.51E-07 4.99E-03 1.03E-04 2.9 W O4 5.00E 01 1.74900 1.00900 I-133 2.7 b 01 1.38E+02 2.77E-01 4.43904 1.31E-03 7.65E-02 4.29E-04 1.16E-03 5.00E+01 1.09901 1.00E+00 XE 13JM 2.26E+00 1.00E+00 6.93E-01 0.0 2.45E-02 0.0 0.0 0.0 1.00 N 0 1.00E+00 0.0 i

XE-133 5.27E+00 1.00E+00 8.41601 0.0 2.58E-02 0.0 0.0 0.0 1.00&CO 1.00D00 0.0 XE 135M 1.08E-02 1.00 D 00 1.07Fe02 0.0 3.2 W O4 0.0 0.0 0.0 1.00E+00 1.00E+00 0.0 YE-135 3.83Fe01 1.00E+00 2.77E-01 0.0 1.005-02 0.0 0.0 0.0 1.00D00 1.00E+00 0.0 CS-134 7.47E+02 7.00E+01 6.40E+01 6.22E-02 2.59E-03 1.20Fe01 1.21E-01 1.48E-01 2.00E+03 2.00E+03 1.00D00

+

CS-135 1.10D09 1.15E+02 1.15E+02 1.%E-02 0.0 8.06& 03 8.06E-03 1.80E-02 2.00E+03 2.00D03 1.00E+00 i

CC-136 1.37E+01 7.0CE+01 1.15E+01 6.51E-03 2.92E-03 2.03E-02 1.85Fe02 2.57E-02 2.00903 1.86E+03 1.00D00 CS-137 1.10E+04 7.00D01 6.96E+01 7.97E-02 2.11E-03 7.29E-02 7.14E-02 1.09E-01 2.00E+03 2.00E+03 1.00E+00 CS-138 2.24 Fro 2 7.00E+01 1.24E-02 5.52E-05 4.65E-10 5.72E-05 5.40Fr05 1.09&O4 2.00 N 3 4.38E+01 1.00D00 W 139 5.76E-02 6.50F+01 5.75Fe02 9.70Fe05 1.72E-04 3.07F-06 2.84E-06 6.91E-08 4.00E+00 4.00E 00 0.0 W 140 1.28E+01 6.50E+01 1.07D01 2.03Fe02 4.lCE-02 1.23E-03 1.33E-03 2.5 W 05 4.00D00 4.00 N 0 0.0 IA-140 1.66 900 5.00E+02 1.67E+00 2.50E-06 9.25E-02 3.09E-07 3.33E-07 1.26E-06 2.50E+01 2.50E+01 0.0 IA-141 1.63Ec01 5.alD01 1.62Fe01 3.90E-07 9.60E-01 2.03Fe08 2.03E-09 9.91E-08 2.50E+01 2.50D01 0.0 CE-141 3.25E+01 5.63E+02 3.07E 01 9.36E-06 2.42E-02 7.72Fr07 7.18E-07 6.33E-06 2.50D01 2.50E+01 0.0 CFel43 1.38E+00 5.63E+02 1.38E+00 1.65E-06 4.%E-02 3.%E-08 1.35E-07 1.22E-03 2.50E+01 2.50E+01 0.0 CFel44 2.84E+02 5.63E+02 1.89E+02 4.88E-04 1.65E-01 2.64E-05 2.62Fe05 2.04E-04 2.50D Cl 2.50E+01 0.0 PR-143 1.36E+01 ' 7.50E+02 1.34E+01 9.20Fr06 4.03E-02 4.60?e07 4.56Fe07 3.69E-0C 2.50E+01 2.50E+01 0.0 PR i44 1.2 & O2 7.50E+02 1.20Fe02 3.01F-08 4.333-15 1.54E-09 1.53Fe09 1.25E-06 2.50E+01 2.50E+01 0.0

?O-147 1.11D01 6.56E+02 1.09901 6.290-06 3.4 & O2 4.55E-07 4.35Fe07 7.27E-06 2.50901 2.W;+01 0.0 m-147

9. 57E+02 6.56D02 3.89E+02 7.60E-05 1.33Fr02 2.89E-06 2.8 W 06 7.10E-06 2.50E+01 2.5?+01 C.0 m-149 2.21E+00 6.56E+02 2.20E+00 1.54E-06 4.86E-02 8.875-08 8.87E-08 2.15E-07 2.50E 01 2.50E+01 0.0 m-151 1.16E+00 6.56E+02 1.16E+00 6.74Fe07 3.17Fe02 5.91E-08 5.91Fe08 L l7E-07 2.50E+01 2.50E+01 0.0 SM-151 3.18D04 6.565+02 6.43E+02

.6.09Fr05

4. 37E-03 1.56Fe06 1.56Fr06 1.1 % 05 2.50E+01 2.50E+01 0.0 SM-153 1.95E+00 6.56E+02 1.94E+00 1.035-06 3.58E-02 6.6 W 08 6.665-08 7.168-07 2.50D01 2.50e+01 0.0 (Sheet 2 ob

~

f f'

,~

\\ )

,,l

%'E :

1]GE CONI'Mac RC F:F4 72CCFAN N FAC'.Tf6 l

FISH FJOIMD.

B!OZ!CE. MTTI.'E B!:U )IICAL 4XI-LFE %II-LIFE FXI " IFE

FR3 DCEE COfd'M'? FK"0RS (PDd/I.I)

COGCFATIO3 FAC".

TIME-LIFE

' ]T]

pA3: ',

RO!p4.

'%)1,

[

, _ DAYS)_

(DAYS)

'Edd GI W A':

Wed 77"AL Bn0Y

    • T*.IDE

("A IS)

(

h 156 3.92E-01 6.56E+::

3.92E-01 4.63E-07 5.86E-03

.33E-03 5.33E-08 5.33E-05 2.50E+01 2.50E+01 0.0 123-155 6.61E+02 6.35E+02 3.24E+02 5.75E-05 1.35E-0; 3.35E-06

3. 35E-06 1.22E-05 2.50E+01 2.50E41 0.0 EU-156 1.54E+01 6.35E+02 1.50E+01 1.312-C5 1.02E-C 1.65E-06 1.65E-06 1.06E-05 2.50E+01 2.50E+01 0.0 W-187 9.96E-01 1.00E+00 4.998-01 1.03E-04 2.922-02 2.70E-05 3.01E-05 1.038-04
1. 20E+03
1. 20E+03 0.0 NP-239 2.35E+00 3.90E+04 2.35E+00 1.19E-06 2.40E-02 7.74E-08 6.45Fr08 1.19E-06 1.00E+01 1.00E+01 0.0 4

i L

i l

Revision 3 i

(Sheet 3 of 3)

3.0 Radiological Environmental Monitoring

.3.1 Monitoring Program I

An environmental radiological monitoring program shall be conducted-in accordance with Technical Specification 3.12.1.

The monitoring program described in Tables 3.1-1, 3.1-2, and 3.1-3, and in Figures 3.1-1, 3.1-2, 3.1-3, and 3.1-4 shall be conducted.

Results of this program shall be reported in accordance with Technical Specifications l

6.9.1.6 and 6.9.1.7.

l The atmospheric environmer.tal radiological monitoring program shall consist of 12 monitoring stations from which samples of air palticulates, atmospheric radioiodine, rainwater, and heavy particle fallout shall be collected.

l The terrestrial monitoring program shall consist of the collection of I

milk, soil, ground water, drinking water, and food crops.

In addition, direct gamma radiation levels will be measured in the vicinity of the plant.

The reservoir sampling program shall consist of the ecliection of samples of surface water, sediment, and - fish.

Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, sample unavailability, or to malfunction of sampling equipment.

If the latter, every effort shall be made to complete corrective action prior s

to the end of the next sampling period.

3.2 Detection Capabilities Analytical techniques shall be such that the detection' capabilities listed in fable 3.2-1 are achieved.

l l

1 26 i

(~

~

b k.)

C)

TABLE 3.1-1 RADICLOGICi; ENVIRONMENTAL MONITORING PROGRAM Exposure Pathway Sampling and Type and frequency and /or Sample Sample Locations' Collection Frequency of Analysis 1

AIRBORNE a.

Particulates 2 samples from locations Cmntinuous sampler Gross beta weekly, gamma (in different sectors) at operation with sample isotopic analysis if or near the site boundary collecticn weekly gross beta 10 times mean (LM and 2) of control sample.

Composite quarterly (wy location) for gamma scan.

8 samples from communities approximately 6-10 miles distance from the plant (PM 1-8) 2 samples frca control locations greater than 10 miles from the plant (RM i and 2) b.

Radioiodine Samples froz same locations Continuous sampler 1311 weekly as air particulates operation with filter collectic a weekly.

c.

Fallcut Samples f.,m same locations Heavy particulata Cross beta monthly as air particulates fallout collected continuously on gummed acetate paper with paper collection monthly.

' Sample locations are shown on Figures 3.1-1, 3

1-2, 3.1-3, and 314

Samples shall be collected by collecting an aliquot at intervals not exceeding 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

(Sheet 1 of 4)

)

(

)

i l

wJ

\\J'

_/

TABLE 3.1-1 (cont'd)

PADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM Exposure Pathway Saupling and Type and Frequency and/or Sa=ple Sample Locations

  • Collection Frequency of Analysis d.

Rainwater Samples from same locations R?.inwater collected con-Lamma scan monthly as air particualtes tinuously with composite samples analyzed mon'.hly, e.

Soil Samples from same locations Once per 3 years Gamma scan, 89.90Sr as air particulates once each 3 years 2.

DIRECT RADIATION 2 or more dosimeters placed Quarterly Gamma dose quarterly at 10 of the air particulate sampling stations (PM 1-8 and RM 1 and 2) 2 or more dosimeters placed at each of at least 3 other locations (in different sectors) at or near the site boundary (Figure 3.1-2) 3.

WATERBORNE a.

Surface TRM 497.0 Collected by automatic Gas +3 scan monthly.

(Figure 3.1-4)

TRM 483.4 sequential-type sampler **

Co posite for tritium TRM 473.2 with composite sampler quarterly.

taken monthly.

b.

G-ound 1 sample adjacent to Quarterly Gamma scan and tritium (Figure 3 1-2) plant (location W-6) quarterly.

1 s a r.p le from ground water source upgradient c.

Drinking 1 sample at the first Collected by automatic Gross beta and gamma scan (Table 3.1-3) pntable surface water sequential-type sampisr**

monthly.

Com osite for (Figare 3.1 4) supply downstream from with composite sample tritium, 39.9 Sr the plant (TRM 473.0).

taken monthly.

quarterly.

1 sample at the next 2 Monthly grab sample downstrera potable surface water supplies (greeter than 10 miles downstream)

(TRM 470.5 and 466.3).

(Sheet 2 of 4)

7"N

/T f 'S

)

(

)

I i

'%s'

%,l N)

TABLE 3.1-1 (cont'd)

RADIOLOGICAL ENbIRONMENTAL MONTTORING P30GPAM Exposure Pathway Sampling and Type and Frequency and/cr Sample Sample Locations

  • Collection Frequency of Analysis 2 samples at control locaticus Monthly grab sample (Little Soddy Creek Mile 0.5 and TRM 503.8).

d.

Sediment TRM 496.5 Semiannually Gamma scan semiannually TRM 483.4 TEM 430.5 TRM 472.8 INGESTION a.

Milk 1 sample from milk producing Semimonthly when animals 131I analysis semi-(Figure 3.1-3) animals in each of 1-3 areas are on pasture, monthly monthly on collection.

iL,li c a t e d by the cow census at other tires.

Camma scan, 39,903r where deses are calculated

monthly, to be highest.

If samples are not available froe an area, doses to that area will be estimated by projecting the doses from concentrations detee*,ed in milk frca other sectors er by sampling vegetation where milk is not availabla.

At least 1 sample from a control 1ccation.

b.

Fish 1 sample each from Nickajack, Semiannually. One Gamma scan on edible Chickamauga, and Watts Bar sample of each of the portion Reservoirs.

following species:

Channel Catfish White Crappie Smallmouth Buffalo (Sheet 3 or 4)

~ -

p 7-~.

(j l

N x

TABLE 3.1-1 (cont'd)

RADICLOGICAL ENVIRONMENTAL MONITORING PROGRAM Exposure Pathway Sampling and Type and Frequency and/or Sample Sample Locations' Collection Frequency of Analysis c.

Food Products 1 sample each of prinicpal Annually at time of Gamy

  • scan on edible food products grown at harvest. The types of portion.

private gardens and/or foods available for farms in the immidiate sampling will vary.

vicinity of the plant.

Following is a list of Selection of locations to typical foods which may be based on the land use be available:

censu3.

Cabbage and/or Lettuce Corn Green Beans Potatoes Tomatoes l

1 (Sheet 4 of 4)

{

i

TABLE 3.1-2 A_t m o n p_h e r i c and Terrestrial Monitorirz Station Locatione 9

i Sequoyah Nuclear Plant Locatior Approximate Distance a n 't Sample Station Direction from Plant i

L t!- 1 S 1/4 nile SW l

Ltt-2 S 1/4 mile N i

PM-1 S (Northwoods) 10 miles USW 2

PP-2 3 ( lla m il t on County Park) 3-3/4 miles WSW 4

PM-3 3 ( Da i sy )

5-1/2 milen WNW PM 4 S (Sale Creek) 10-1/2 miles N Pi!-5 S (Georgetown) 9 niles EllE Pfl-6 S (Work) 5 miles NE I

li-7 S ( lla r r ison Bay) 3-1/2 milec SE PM-8 S ( 1:a r r i s o n )

8-1/2 milca SSP 4

i RM-1 'i (Ch ttanooga, Riverside) 16 miles !!S U l

Rtt-2 S ( Day ton) 17-1/2 miles flN E (Identical with R t!-2 WB, Watts Bar fluclea r Plan t )

Farm I, 2-3/4 milen fl!W Farm M 3-1/? milen NNE t

Farm J 1-1/4 miles U Farm C (control) 16 niles NE Farn D (control) 43 miles NE Farm S (control) 12 milen NNE 4

4

.i

j.Du

()

(,/

'V TABLE 3.1-3 PUBLIC WATER SUPPLIES SAMPLED IN ENVIRONMENTAL MONITORING PROGRAM Distance Sampling Water Supply from Site _.a Source Frequency Chattanooga (C.

F.

Industries) 11.5 Tennessee River Monthly b (mile 473.0)

Chattanooga (E.

I.

DuPont and 14.0 Tennessee River Monthly Company)

(mile 470.5)

Chattanooga 19.0 Tennessee River Monthly (mile 465.3)

Daisy-Soddy-Falling Water 8.2 Little Soddy Monthly Utility District Creek Dayton 19.3 Tennessee River Monthly (mile 503.8) a.

River mile distance from TRM 484.5 except for supplies that take water from a source other than the Tennessee River which are shown as radial distance from Sequoyah Nuclear Plant.

b.

Sample collected by an automatic sequential-type water sampler with composite sample taken monthly.

i h

i.

i Figure 3.1-1

'v' ATMOSPHERIC AND t

l TERRE S TRI AL MONITORING NETWORK

~

ATf/.OSPHERIC AND TCRRESTRIAL SAMPLES COLLECTED AT EACH STATION O LOCAL f.iONITOR

@ PERT'.'ETER f.10fJirCR O REf/.OTE MONITOR D AY T O.'

N k

RM 2S i

SALE CREEKg PM 45 PM-55 G

  • #'S S000Y,

e >EORGE Town

]

[^

pM 33

// WORK

\\

\\)f D AIS Y(

LM.2 5 i

SNP i

l gg LM :S

'"~"

[W PM-7S

\\

~

f,-- _y' 3-

.,;. a :

eS c

/

pe._

g 10 MILES DAM

\\

C?A' n 3

N$

V

/

vco na,.' g Pp Loo,0u, o uuS d

GgN w _-

20 MILES O

t

\\m)

(Q

('~)h f

J

(,)

N.

l e

~

5*

S\\.f ~ " N.

8 ek.

e s,

,e p

\\

7 a49-23

)~%

(

( &%.

s

((

^

h f

I

]

.m.

./.

f1].

S'

.N f.

p.D

]

f

.r.

CD 6

l

{,;

,m) w-6

).

('

s j

.W

,'G r/

f TS klf'//[~

'//

LEGEND l

l

.f

= %2na"'c * """"

'T V j

e TL3 STATIONS N'r j T -4 3

/

A WELLS

%.g

_.p #

- - PLANT BOUNDARY

= ROADS SEQUOYAH NUCLEAR PLANT SITE MONITORING STATIONS Figure 3.1-2

Fir,ure 3.1-3 LOCAL MONITORit1G STATIONS SEQUOYAH NUCLEAR PLANT O

i 1

b h*

j l

l

.[

/

3

)

I N

!O i

d

.4 SNP 4'

b I.

/

O o'

La i

n i

i 4 0

1 2

Q Air Monitor

{

4*

1 I

Scolo of f.hics A

TLD S t a t ion

\\

E) Milk Sample 5

-14

gare 3.1-o R E S ER VOIR MONIT ORIN G N E TWORK SEQUOYAH ttUCLE AR PL Af4T DA(TCKf (MIL E 503.0, CAY TON 1' 7

I N MILE 4 97 M'L E 4 9 6.5 SODDY (LITTLE SOD 3Y CREEK fALE 0 5, SCD9Y-DA SV)

DAtSY I

S E O.*:Y ' '4 NUCL E A R PLANT MIL E 4 8 3 4 N

SN0H HILL MnLE 4 PDE D

I CHtCK AMAUGA '

\\ g\\

DAM (UILE 470 5 F.1. DUPCNT)

' NILE 413 0. O. F. INDUSTR E S)

MIL E 4 7 3.2 MILE 4 7 2.8 l

r

-(MIL E 4 G5.3, CKA T T A *,0< 3 A )

/

e. AU T CP4 AT C W AT E R S A*> PL E R (M:LE)_.09WK:NG % AT ER SOURCE CH A T TAtiOOGA e

5

~

tules 4

i

~ _- - -

.~

1 9

6 s

L i

)

l Tatte 3.2 1 l

r.r
*::s cara?fLTTies 'OP ENVIR3u !Nia; sa=p E amaty?:s-j a.

M;ee:Tia Aasty*es I

sc-rsa;.c rm ti-r. Or et setres rtts>*

Fish.

Air Vegetation Soil ans clas flesh.

Foo3s. se61 j

Particalates Charcoal Fallout Water and grain Sett-eat p l a s'a t n a,

Clam shells p or. '. P 7

  • 1lk l

pC1/ t) p C t /a_l_

sC1/km2 201/1 pC1/g. dry DCt/s. dry pct /g. 1ry c04/r. dry 1 C 1 / '* I. *et PC1/1 1

fatal 0.01

.5 Gross 3.C05 0.05 2.0

. 05 0.35 0.1 0.7 Gros s b 0.01 2.4 0.20 0.70 0.e_

0.7 25 t

h.

333 I

I3I I

0.01 0

's Il Sr 0.005 to 0.25 1.5 0.5 s.0 43

?3 l

'3 3r 0.031 2

0.C5 0.3 0 1 1.0 9

2 I

\\

i i

i e

p 1

J l

i

[

P.

Camsa Analyses l

l

%0=t'at LOVFP LI=IT OF DFTECTION ( '.L D1 l

\\

Air Water Vegetr. tion So11 amt Clam Fles5 Feo3s. * :stoes Peat a73

)

partteulates an: stik and 3 r a i t.

  • 11 st it Fish and plankton Clas s r. e l l s
  • otatses, et:.

L3.ltry D C i I s.3 C

I L :#1 pC1/e, fr7 gh c DCt/r. dry PC1If. dry EC 13y ry p " 1 ". r *-.et

[CM3_vg i

"als c,(Lg) ee NaI JefL1?

'. a ; Cefitl Na! GML1)

Nel 3e{.11 ba!

3e(6ti

%E CetL1)

Nel

.1 h3!

Ge: L l I"I*I""Ce 0.03 36 0.55 0.35 0.35 0.35 l I""Ce 3.02 33 0.22 0.06 3.05 0.35 3.06 3' 13 StCr 3.07 3.03 6C .4 1.10 0.47 0.60 0.10 J.63 0.10 3.56 3.SC G.13 33 43 l 3311 0.01 0.01 15 5 0. 3 ", 3.39 0.20 -3.02 3. 2.' O.02 0.07 0.20 0.32 60

== 200 90 l J e 3.13 5 p.a 0.04 43 0.65 0.45 0.45 0.45 1 '- i 53 23 L 4 j 106 8u 0.03 43 0.51 0.11 0.11 0.74 0.11 40 150 i 134Cs 0.05 0.02 to 26 0.20 0 33 0.12 0.05 3.12 3.c4 0.48 2.12 0.35 43 go l l 'll 3.04 0.31 5 3.05 3.12 0.02 0.*2 0.C2 0.09 1.12 0.02 1J

s 43
  • 3 ts 1

Y52r.K: 0.01 13 0.20 C.12 0.?: 0.12 ?3 e3 k5 }$ge 0.0; ic 0,it 0,03 0,03 0,i5 a.33 tc 30 4 '5)Nb 0.01 5 0.05 0.0* 0.01 0.07 0.01 3 20 5fCo 0.02 0.01 15 5 0.23 3.05 0.20 c.01 .2 3.01 3.07 0.2e 0.01 s 15 I I S*** 0.02 0.3? 10 5 3.20 0.05 0.15 0.01 0.15 0.91 0.03 0.15 0.01 1' 55 15 r l CSIn 0.02 0.31 Ic 1

J5 0.11 7.23 0.72 0.?]

3. 2 3.t* 0.23 3.32 13 3 1% I 00 Co 0.01 0.01 13 5 0.17 0.c6 3.11 0.01 0. .01 3.05 3.11 C.01 ,e ') 23 "OK 0.10 150 2.53 a.10 C..s 0.93 13 23 1< j '"U i Sa.L' O.02 15 0..! 0.15 0.15 3.15 tiG 25) ~ I"0 Sa 0.02 25 0 34 0.37 3.07 0.30 0.07 15 (c I"3 La 0.01 7 0.35 3.'2 0.32 0.10 0.02 '3 53 7 15 i l i j r I = -.

I l TABLE 3.2-1 (continued) (Sheet 2 of 3). TABLE NOTATIONS ) The NaI(TI) LLD values are calculated by the method developed by Pasternak and Harley as described in HASL-300 and Nucl. Instr. Methods, 533-40 (19"1). These LLD values are expected to vary depending on the activities of the components in the saaples. These figures do not represent the LLD values achievable on a [ diven sample. Water is counted in a 3 5-L Marinelli beaker. Vegetation, fish, soil, and sediment are ounted in a 1-pint container as dry weight. The average dry weight is 120 grams for vegetation and 400-500 grams for soil sediment and fish. Heat and poultry are counted ina 1-pint container as dry weignt, then corrected to wet weight using an average moisture content of 70%. Average dry welght is 250 grams. Air particulaues are counted in a well crystal. The councing system sonsists of a multichannel analyzer and either a 4" x 5" well NaI(T1) orystal. The counting } time is 4000 seconds. All calculatione are performed by the least-a squares computer program ALPHA-M. The assumption is made that the samples are analyzed within one week of the collection date. i The Ge(Li) LLD valurs are calculatad by the methods developed by Pasternak and Harley as described in HASL-300. These LLD values .are expected to vary cepending on the activities of the components in the samples. These figures do not represent the LLD values i ach*.evable on given samples. Water is counted in either a 0.5-L or 3.5-L Marinelli beaker. Solid samples such as soil, sediment, and clam shells are counted in a 0.5-L Marinelli beaker as dry I weight. The average dry weight is 400-500 grams. Air filters and L 2 very sm'll volume samples are counted in petrie dishes centered in the detector endcap. The counting system consists of a ND-4420 multichannel analyzer and either a 8%, 14%, or 18% Ge(Li) detector. The counting time is normally 8 hours. All spectral l analysis is performed using the soft-water provided with the j ND-4420. The assumption is made that all samples are analyzed ] within one week of the collection date. j a. All LLD values for isotopic separations are calculated by the method developed by Pasternak and liarley as described in HASL-300. Factors such as sample size, decay times, chemical yield, tad counting efficiency may vary for a given sample; these j variations may change the LLD value for the given sample. The assumption is made that all samples are analyzed within one week of the collection date. l The LLD is the smallest concentration of radioactive material in a sample that will be aateeted with 95% probability with 5% j probability of fasely concluding that a blank observation represents a "real" signal. 4 0 1 i v w -e. w .-4 w m,- -,,y

TABLE 3.2-1 (Continued) (Sheet 3 of 3) TABLE NOTATION For a particular measurement syatem (which may include radiochemical j separation): 4.66 sh LLD = __EV 2.22 y 6Xp(J6t) where LLD is the lcaer limit of detection as defined above (as pCi p e '- unit mass or volume) Sb is the standard deviation of the background counting rate or of the counting

==te of a blank 3 ample as appropriate (as counts per minute) E is the counting efficiency (as counts 9er trannformation) V is the sampie size (in units of mass or volume) 2.22 is the number of transformation per minute per picocuris Y is the fra.tional radiochemical yield (when applicable) h is the radioactive decay constant for the particular (' radionuclide l L J t is the elapsed time between sample collection (or end of the l sample collection period) and time of counting i The value of ab used '. n the calculation of the LLD for a detection i system shall be based on t'i e actual observed varianoe of the background counting rate o.' o f the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted I

variance, b.

The LLD values listed in this table may change slightly after routine evaluation of background, sample size, counting times, etc.. The most recently calculated values will be included in the l Annual Radiological Environmental Ope.ating Report. d}}