ML19273B549

From kanterella
Jump to navigation Jump to search
Forwards Results of Large Break Loca/Eccs Performance Analysis.Qa Verification by C-E,NSSS & Fuel Supplier Is Expected on 790410.W/basis for no-fee Determination
ML19273B549
Person / Time
Site: Millstone Dominion icon.png
Issue date: 03/30/1979
From: Counsil W
NORTHEAST UTILITIES
To: Reid R
Office of Nuclear Reactor Regulation
References
TAC-46174, NUDOCS 7904090159
Download: ML19273B549 (88)


Text

y

, Y 4

MULTrHIIR!Tr IFFII.ITIIIS

- i , , a w . .. . o

  • P O BOX 270

) ' ' .[. [., $[e n I . 7. . . HAAT F ORD. cONNE CTICUT 06101

' ; "ll G '}"?'-.; * " "

g L ,

March 30, 1979 Docket No. 50-336 Director of Nuclear Reactor Regulation Attu: Mr. R. Reid, Chief Operating Reactors Branch #4 U. S. Nuclear Regulatory Commission Washington, D. C. 20555

References:

(1) W. G. Counsil letter to R. Reid dated February 12, 1979.

(2) W. G. Counsil letter to R. Reid dated March 22, 1979.

(3) W. G. Counsil letter to R. Reid dated January 27, 1979.

Gentlemen:

Millstone Nuclear Power Station, Unit No. 2 Large Break LOCA ECCS Performance Results In Reference (1), Northeast Nuclear Energy Company (NNECO) provided the results of the non-LOCA safety analyses necessary to support Cycle 3 operation at 2700 MWt. The large break LOCA/ECCS performance analysis has now been completed and the results are provided as Attachment 1. These results have not as yet been QA-verified by Combustion Engineering, the NSSS and fuel supplier. This verification is expected on or about April 10, 1979 and you will be notified promptly when this process has been completed. Non-QA results of the small break LOCA analysis were provided in Reference (2).

No te t ha t thr. large break analysis assumes 500 plugged steam generator tubes per steam generator. This is less than the number currently plugged, which is 350 and 412 in Steam Generators 1 and 2, respectively.

NNECO las reviewed these results pursuant to the requirements of 10CFR170 and has determined that no additional fee is required. The basis for this determination is provided in Reference (3).

Very truly yours, NORTHEAST NUCLEAR ENERGY COMPANY

/ / ONAU W'. G. Counsil Vice President Attachment 7 9 0 4 0 9 015ct

7 k DOCKET No. 50-336 ATTAClfMENT 1 MILLSTONE NUCLEAR POWER S'IATION, UNIT NO. 2 LARGE BREAK LOCA ECCS PERFORMANCE RESULTS MARCH, 1979

r. p Millstone Unit 2 Cycle 3 Large Break LOCA ECCS Performance Results 1.0 Introduction and Summary The large break loss-of-coolant accident ECCS performance evaluation for Millstone 2, cycle 3, presented herein demonstrates appropriate conformance with the Acceptance Criteria for LigFt-Water-Cooled Reactors as presented in 10CFR50.46 0) .

The evaluation demonstrates acceptable ECCS perfomance for Millstone 2 during cycle 3 at a reactor power level of 2754 Mwt and a peak linear heat generation rate (PLHGR) of 15.6 kw/f t. The method of analysis and results are presented in the following sections.

2.0 Method of Analysis The calculations performed for this evaluation used Combustion Engineering's Large Break Evaluation Model which is described in References 2 through 8 Blowdown, refill /reflood, and temperature calculations were performed to incorporate the cycle 3 fuel characteristics and reactor power level of 2754 fint into the ECCS performance evaluation. The blowdown hydraulic calculations were performed with the CEFLASH-4A(4) code while the refill /

reflood hydraulic calculations were performed with the COMPERC-II(5) code.

The hot rod clad temperature and clad oxidation calculations were performed with the STRIKIN-II(6) and PARCH (0} codes. Core wide clad oxidation calculations were also performed in this analysis.

The ECCS analysis assumptions are the same as those stated in Reference 9 The core and system parameters which differ from the previous analysis (9 I are shown in Table Al which is consistent with the PLHGR of 15.6 kw/ft.

The containment parameters pertinent to this analysis are listed in Table A2.

v .

In general, all possible break locations are considered in a LOCA analysis. However, it was demonstrated in Reference 2 that ruptures in the cold leg pump discharge location produce the highest clad temperatures.

This is due to the minimization of core flow for this break location.

Since core flow is a function of the break size, the Millstone Unit 2, cycle 3, large break calculations have been performed for the cold leg pump discharge breaks for both guillotine and slot breaks over a range of break sizes from 5.89 ft2 to twice the flow area of the cold leg.

3.0 Resul ts_

Included in the cycle 3 core are 72 partially depleted and 72 undepleted stable high density fuel assemblies (Batches D and E), and 73 unstable high density, partially depleted fuel assemblies (Batches B and C).

Burnup dependent calculations for the various fuel types were performed with the FATES (7) and STRIKIN-II(0) codes. The results demonstrated that the most limiting fuel rod during cycle 3 operation is a rod in one of the partially depleted batch B assemblies retained from cycle 2.

For the limiting batch B assembly rod, clad rupture was predicted to occur during the blowdown period. Clad rupture during blowdown leads to the highest clad temperatures because of a degradation in the cooling of the fuel rod during the blowdown period and a decrease in the effectiveness of rod-to-rod thermal radiation during the reflood period, as well as increased clad oxidation. In this analysis blowdown rupture for the limiting batch B fuel was first predicted to occur toward the end of the third fuel cycle. Earlier in the cycle at the time of minimum fuel-clad gap conductance, when the fuel stored energy is at-a maximum, the fuel pin pressure was not high enough to cause rupture during blowdown. For this reason the highest clad temperatures were not predicted at the time of minimum gap conductance, but at the time when the fuel pin pressure first became high enough to cause blowdown

s .,

rupture. The spectrum of break sizes was therefore analyzed at a burnup of 49,988 MWD /MTU, the time-in-life when blowdown rupture first occurred, to maximize the initial stored energy in the fuel rod. However, for the 0.6 x DES /PD* and 0.6 x DEG/PD** breaks, blowdown rupture did not occur even at the very end of the fuel cycle when the fuel-clad gap pressure was highest. Therefore, these two breaks were analyzed at the time-in-life of minimum gap conductance (6582 MWD /MTU).

The break spectrum analysis described in Section 2.0 was performed for the limiting B assembly rod. It was determinee from this analysis that the peak linear heat generation rate (PLHGR) for the B assembly rod is 15.6 kw/ft.

The 0.8 DEG/PD break produced the highest clad temperature of 2081 F.

The highest local clad oxidation percentage was less than 16.0%. The 0.8 DEG/PD also resulted in the highest core wide clad oxidation which was less than 0.727%. The PLHGR of 15.6 kw/f t is therefore demonstrated to be an acceptable limit for cycle 3 operation.

The rupture strain model employed in the performance of this analysis is currently being reviewed by the NRC. Potential changes to the strain model, which could result following the NRC review, are not expected to impact the results and conclusions of the analyses presented in this report.

  • DES /PD = Double-Ended Slot at Pump Discharge
    • DEG/PD = Double-Ended Guillotine at Pump Discharge

The times of interest for each of the breaks are presented in Table A3.

The new rupture ti..es are included in Table A4, which contains a sunnary of the peak clad temperatures and oxidation percentages for the break spectrum. Table A5 contains a list of the pertinent variables plotted for each break in this analysis. Table A6 contains a list of additional parameters plotted for the 0.8 DEG/PD break. Mass and energy release to the containment during blowdown is presented in Table A7 for the worst break.

Also presented in this table is the steam expulsion data during reflood.

Figure A7 shows the peak clad temperature plotted versus break size and type, demonstrating that the worst break is the 0.8 DEG/PD rupture. The ECC water spillage and containment spray flow rates are presented graphically in Figure A8.

4.0 Conclusion The results of the ECCS perfonr.ance evaluation for Millstone 2, cycle 3 demonstrate conformance with the Acceptance Criteria for Light-Water-Cooled Reactors as presented in 10CFR50.46 0) . The results of the analysis identified the peak clad temperature of 2081 F, a peak local clad oxidation percentage of <l6.0%. The peak core wide clad oxidation percentage was calculated to be less than 0.727%. Therefore, it can be concluded that operation of Millstone 2 at a reactor power level of 2754 Mwt and a PLHGR of 15.6 kw/ft is acceptable for cycle 3.

5.0 Computer Code Version Identification The following code versions were used in this analysis:

CEFLASH-4A Version 76041 COMPERC-II Version 75097 STRIKIN-II Version 77036 PARCH Version 77004 IL

6.0 References

1. Acceptance Criteria for Emergency Core Cooling Systems for Light-Water Cooled liuclear Power Reactors, Federal Register, Vol. 39,fio. 3 -

Friday, January 4, 1974.

2. CEf1PD-132, " Calculative Methods for the CE Large Break LOCA Evaluation Model", August 1974 (Proprietary).

CEf1PD-132, Supplement 1, "Updcted Calculative Methods for the CE Large Break LOCA Evaluation Model", December 1974 (Proprietary).

3. CEf1PD-132, Supplement 2, " Calculational Methods for the CE Large Break LOCA Evaluation Model", July 1975 (Proprietary).
4. CEf1PD-133, "CEFLASH-4A, A FORTRAft IV Digital Computer Program for Reactor Blowdown ',.alysis", April 1974 (Proprietary).

CEf1PD-133, Supplement 2, "CEFLASH-4A, A FORTRAfi IV Digital Computer Program for Reactor Blowdown Analysis (Modification)", Dc ember 1974 (Proprie tary) .

5. CEf1PD-134, "COMPERC-II, A Program for Emergency Refill-Reflood of the Core", April 1974 (Proprietary).

CEf1PD-134, Supplement 1, "COMPERC-II, A Program for Emergency Refill-Reflood of the Core (Modification)", December 1974 (Proprietary).

6. CEf1PD-135, "STRIKIfi, A Cylindrical Geometry Fuel Rod Heat Transfer Program, April 1974 (Proprietary).

CEf1PD-135, Supplement 2 "STRIKIft-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program (Modification)", February 1975.

e ,

CENPD-135, Supplement 4, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program", August 1976 (Proprietary).

CENPD-135, Supplement 5-P, "STRIKIN-II, A Cylincrical Geometry Fuel Rod Heat Transfer Program", April, 1977 (Proprietary).

7. CENPD-139, "CE Fue 2 valuation Model", July 1974 (Proprietary).

8 CENPD-138, and Supplement 1 " PARCH, A FORTRAN IV Digital Program to Evaluate Pool Boiling, Axial Rod and Coolant Heatup",

February, 1975.

9 Letter, D. C. Switzer (NNECO) to R. Reid (NRC) Docket No. 50-336, March 3, 1978.

TABLE Al Millstone Unit II Cycle III Core Parameters Quanti ty Value 2754 Mwt Core Power Level (102% of Nominal)

Average Linear lieat Rate (102% of Dominal) 6.396 kw/ft Peak Linear lleat Generation Rate (PLitGR) 15.6 kw/ft Core Inlet Temperature 551 F 0

Core Outlet Temperature 602 F 6

SystemFlowRate(total) 138.9x10 lbm/hr 6

Core Flow Rate 133.8x10 lbm/hr 2

Gap Conductance at PLliGR* 2000 BTU /hr-f t - F Fuel Centerline Temperature at PLilGR* 3484 F U

Fuel Average Temperature at PLilGR* 2082 F Hot Rod Gas Pressure

  • 1971 psia flot Rod Burnup* 49988 MWD /MTU 1393 BTU /hr-ft 2_op Gap Conductance at PLHGR**

Fuel Centerline Temperature at PLHGR** 3685 F Fuel Average Temperature at PLilGR** 2304 F Hot Rod Gas Pressure ** 1392 psia Hot Rod Burnup** 6582 MWD /MTU

  • At Time-In-Life Of Maximum Gap Pressure
    • At Time-in-Life Of Minimum Gap Conductance
  • e Table A2 Millstanc Unit 2 Containrent Physical Parameters 6 3 1.938 x 10 gt Net Free Volume

. Containment Initial Conditions: . ,

100%

Humidity

"~

Containment Temperature 60 F Enclosure Building Tecperature 60 F Ground Temperature 40 F 14.7 psia Initial Pressure Initial Time for:

26 seconds Spray Flow 0.0 seconds Fans (3)

. 14.0 seconds Additional Fan .

Containment Spray Water:

50 F Temperature 3300 gpm Flow Rate (Total, 2 pumps)

Fan Cooling Capacity (Per Fan)

Vapor Temperature ( F) Capacity (BTU /Sec) 60 0.0 145 3360.0 165 5280.0 300 28800.0 350 32400.0 Containment Heat Absorbing Surfaces

1. Surface Areas and Thicknesses
a. Shell and doec - 71,870 Ft (one side exposed to contain=ent accosphere)

(1) Paint - 0.003 In. '

(2) Carbon steel - OI25 r In. .

(one side exposed to enclosure buildirg atmosphere)

(3) Concrete - 3.0 Ft.

. s Table A 2 (con't)

Hillstone Unit 2 Cont aintien t Physical Parameters

b. U.tlined Concrete - 62,800 Ft (1) Concrete - 2.0 Ft. (onc side exposed to containment atmosphere, one side insulated) ,
c. Galvanized Steel - 120,100 Ft (1) Zine - 0.0036 In. (one side exposed to containment atmosphere)

(2) Carbon steci - 0.20 In. (ona side insulated)

d. Painted Thin Steel - 56,850 Ft (1) Paint - 0.003 In. (onc side exposed to containment atmosphere)

(2) Carbon steel - 0.2 In. (onc side insulated)

c. Painted Steel - 32,600 Ft -

(1) Paint - 0.003 In. (one side exposed to containment atmosphere)

..(2) Carbon steel - 0.26 In. (onc side insulated)

f. Painted Steel - 22,425 Ft (1) Paint - 0.003 In. (onc side exposed to containment atmosphere)

(2) Carbon steel - 0.86 In. (one side insulated)

g. Painted Thick Steel - 4,250 Ft (1) Paint - 0.003 In. (one side exposed to containment atmosphere)

(2) Carbon steel - 2.94 In. (one side insulated)

h. Containment Penetration Area - 3,000 Ft (1) Paint - 0.003 In. (one side exposed to containment atmosphere)

(2) Carbon steel - 0.75 In.

(3) Concrete - 3.75 Ft. (one side exposed to enclosure building atmosphere)

i. Stain 1 css Steel Lined Concrete - 8,340 Ft (1) Stainless steel - 0.25 In. (one side exposed to containment atmosphere)

(2) Concrete - 2.0 Ft. (one side insulated)

l Tabic A 2 (Con ' t)

!!illstone t' nit 2 Containment Physical Parameters

j. Base Slab - 11,130 Ft (1) Concretc - 8.0 Ft. (one side exposed to containment sump, one side exposed to ground) ,
k. Neutron Shield - 1400 Ft (1) Stainless Steel - 0.024 Ft (both sides exposed to containment atmosphere)
2. Thermeti Properties llcat Capacity Materfal Conductivitg (BTU /hr-ft- F ) (BTU /ft3_op)
a. Concretc 2.0 36
b. Carbon Steel 35.0 55
c. Stainless Steel 10.0 62
d. Paint 1.5 32
c. Zinc 70.0 45
3. IIcat Transfer Coefficients
a. ' Containment atmosphere to sump - 500 BTU /hr-ft - F
b. Sump to base slab - 50 BTU /hr-ft -F
c. Containment structure to enclosure building atmosphere - 5.0 BTU /hr-ft - F

TABLE A3 MILLSTONE UNIT 2 CYCLE 3 TIMES OF INTEREST (SECONDS)

START OF TIME OF ANNULUS CONTACT TIME SAFETY BREAK SAFETY INJECTION DOWNFLOW TIME " -CTION TANKS EMPTY 1.0 DES /PD 16.1 19.1 33.2 60.7 0.8 DES /PD 16.7 19.8 33.9 61.3 0.6 DES /PD 18.3 21.4 35.5 63.0 1.0 DEG/PD 16.0 19.0 33.1 60.5 0.8 DEG/PD 16.8 19.8 33.9 61.3 0.6 DEG/PD 18.9 22.0 36.1 63.5

TABLE A4 Millstone Unit 2 Cycle 3 Hot Rod Rupture Peak Local Core-Wide Break Peak Clad Temperature (UF) Time (sec) Clad 0xidation (%) Clad 0xidation (%)

2079 9.68 <16.0 <.704 1.0 x DES /PD 2077 9.46 <16.0 < 695 0.8 x DES /PD 28.05 8.61 - ,96 0.6 x DES /PD* 1950 1.0 x DEG/PD 2080 9.40 <16.0 <.720 2081 9.64 <16.0 <.727 0.8 x DEG/PD 1948 32.17 8.44 <.446 0.6 x DEG/PD*

6.

  • Analyzed at time of minimum gap conductance

I Table A5 Variables Plotted as a Function of Time for Each large Break in the Spectrum Figure yariable _ Designation

~ '

.A.

~

Core Po.ier .

Pressure in Center !!ot Assembly liode B Leak Flo'./ C~

!!at Assembly Flow (below hot spot) -

D.1 lbtAssemblyFlo.i(abovehotspot) ,

D.2' Ifot Assembly Quality ,

E .

Containc.cnt Pressure -

F l' ass Added to Core During P,eflood G Peak Clad Tempcrature - ,  !!

s -

4 e

  • 4 e

e e e a

e 4

e e

9 e

Table A6 Additional Variables Plotted as a function of Time for the large Break Having the Highest Clad Temperature Figure Va riables _ .,

Desionation

~ ~

L . -

Mid Annulus Flow f Qualities Above.and Below the Core J Core Pressure Drop K Safety Injection Tank Flow into Intact Discharae Legs L Water Level in Downccmer During Reflood 11 Hot Spot Gap Conductance H Peak Local Clad 0xidation- 0 Clad Tenperature, Centerline Fuel Temocrature, Average F'uel Temperature and Coolant Temperature for Hottest flode P Hot Spot Heat Transfer Coefficient Q Containment Temperature R Sump Temperature S Hot Rod' Internal Gas Pressure ,

T Core Bulk Channel Flow Rate U a

h

laDie A/

MILLST0fiE UflIT 2 CYCLE 3 BLOWDOWil AND REFLOOD MASS Af1D EliERGY RELEASE DA'la 0.8 DEG/PD h . _ , - . . _ _ _. I _ _ _ _ _ ___

" _ _I=f~ ------ =I

=m-I

- ,- - , - = ---

IflTEGRAL OF

,=

M^b

. _ . _ _ _5_ } S$d. .__{RG{RELEASEI__INTEGRALOF Ef MASS FLOW EllERGY RELEASE _

SEC LBfGSEC BTV/SEC LBli BTU i l

, E l I l l i .

l i

Mo  !

ao i aoi i

j ao i

!. do l c  !

l A c<S- l2 998 W /c4i%35.2 r/O !!1 tL M x /o' '

/ J& # x /6 6 1 i .

' i

!6:/d l9./30 LF.9&f'; Id.3<// k' /o' O.7.20 l V. Ar 14 3/.z 3.97aN , dVB s/s # 7s/

V..a l u 9s s.od ws u+)l y ,

2d  ! 7, /J8 L5. EEd A ?d.2 9dS</x so ' l ,

I I l p.3S d.949 J,788 ' 2. 44 7 l A3'A2 u /s 7 l YsWS d' BS-;/ 3746 3, AS7 l l ld.suo s.7so e/sf lV.sso A 7/9 l \

baso I i

\

O..80 &.7fo 3. 96 4 SSV& 3.s23 I  ;

Q -

A 60 ,h. 73 4 . \3.sB 7 1

s. 297; Y 1

L3 7/.2 i

' A '/O ed. 40 / 3.dd f fM /0 J20' l/:80 ld'Ys.2 , 3.293 A .rs& el /o f J. dPB- ,

i I  !  !  !  ;

J. 2o Gn.7,ys; 'J. 880 / </)8 ' l 2 Bao l l

J. s6 4 238 J17c A d.28 I5. 9.2 h Y  !

l l i i 3.00 ' /' d54 L2.4 W A 8/9 '

9,900.k'/O I I

j l i J. '/'O l4347 LP. '/JJ A 99.9 lAO98 2 /0 0  !

f I  !

3.80 l 4 /06 , l729.2;

. J./4 9 ; A / 9.2 , ,

,V90 J.746 l i I

.2. /2r l l..Voh J

/.3n 3.~.2 o 3.2 73 ;

l A 904 l 2.dBf A v'8S 4.60 2.95 7 i A 799 l 2.933 l/. 43 / '

d.!O '2.g7/l

!  !  ! I A 744 l 2.40 l / & 6 9 'l 3./S8'l i .

.2.453 / 483 3.362 V889

hI 8.40 l  !

I i

'.J. 2 ?'& l lA37/ l3.ss/ , J.so3 Y .30 .2. $ d .2- / .238 . -

Y -

3 7.2d' .) /08 l 1 l l l a/0 O A 8/6b'/d W /. /.2 / A' /O Y

3. 280 K /0 5 J. 203 a' /C

Table A7 (cont'd)

Q.

I

= ._ . - - - - = - - - - _ _

_ -.=T.

i IflTEGRAL OF IflTEGRAL OF l TIME g MASS FLOW ENERG{ RELEASE _ MASS FLOW....___..ENERGYyELEASE_

I LBM I B"U SEC LBM/SEC  !

BTV)SEC l l l l

\ //. O / 434 x /o # 9 6;S B.< <s ' lM D-W/x /O 2.3c 7 a /0 8 l l l l

' /2. 0 2 784xl /d 3 7 460l 4 AS& l

l. 2.392  ;
/3. O t

?. /2 9 d. 4 / / -4.254 /. 44/

h/d.0 ad9'/ 3 67/ M360 2. d ?d

./d& 3.BS.Z 4386 4346 .2,J 7Y

/d o 2.83 9 3.9'3o 9'379 J. &/3 V ayo.7

/ 7. O J./81 .2. s ,g Q.s4

/8. O A 390 ,p /0 42/9 44.2.2 J.sdf

/2O f 23/ W /0# A/df Jc /0 ' 4 Y 3' 3 2d79

,/98 d./ N X/O ' 9.d.2 8 X /O S 4 WJ9 x /0 # ,2, dSd ,.g /C E

!

  • TIME OF AfifiULUS DOWriFLOW

! 1 l i . -START lOF REFLOOD (VALUES BELOW ARE FOR STEAM I  ;

4, . , ss so ser v i .

s6s a I

so 6. o 4 439\ sssp

93. 9 l I I L53. 9 sio 6. O MVJ9 ! Ls.sf4 i l 43.9 2./ssz.m i

J a. me /s' d4& i 2 493l i

I i

$J. 9 J. //7 U" 8s47  :

WWd6:

i O.22/' i  :

j h5< f ./$b .2.$3 b h? .2. /Yf , l

. i ,

fd. f &fS i

?Y$l  :

(kW0f: J fl7, l i

/'s3.f N624 h.7/8 i i

4429l  ;

Y Bod i l I i t [2.d83 '

f2/ ' O.83d! '

l

@.; /JJ.9 2.62f6jl/'VJ. f L?. !o.ro v/ l l - l lJ.so&'!

l 9/.z l, l j'd 3. 9 ,2 c o r Y 2.4.?4l l Mn&'

i V 's.rs<? V  ;

h]. f 0. E i E /$ . $)$ .X /db bY /0 3.8/l /$

Table A7 (cont'd) g y.~,-- ,- y s_ _ '

IllTEGRAL OF IllTEGP,AL OF

TIME MASS FLOW EllERGY RELEASE ' .. ASS FLOW _ _ . EliERGY RELEASE .

SEC tDr)SEC BTU)SEC I LBM  ! BkV j l I

, Jo3 9 2.co/ x / c = s . 6 2 /:x / or .y' 73.2 x /s' !s. ors !x /s a;

! i I

l l  ! I JJ3 9 J.62'/ fdf/ W 7f.2 l [3 / ?.2 l  ;

i 2+67 9! 2o35 l 7.ss4

.- +t8/3 &l/7f I h/3 9 2.dV.2 3.JXf f853 3229 IJ23 9 2,s'/3 J.476 -9'899' 3.28z 303,9 2o3.z 2.JJ.2 '/93s" 3 33&

!3?3 9 ls.ds3 s. 7s3 # 9 74 339o 3+G.9 2dd7 2. 70 8 56/7 . 'AJ JJ3. 9 s.scri e

sJ9/ 1sd9 l3. 9'98 VB3,9 J.s74 J. 7/ 9 &/60 3. s S z-0l '//3 9 L2s7 z V ,.,7x , \l x,szlV , ,. s s ,' V  ;

I WJ3. 9 J.676 x /s 2 t

J. //2 x /oS &Jsb /o3 488 x /o " i i I

l 0 -

i~

l

..+.e ~ ~ . . . -

, - ~ . - - . . - - .

FICURE A-1/.

MhLST0:4E U;4lT 2 CYCLE 3 1.0 x DOUBLE ELIDED SLOT BREAK IN PUMP DISCilARGE LEG CORE P0llER l

1.2001 ,

1.0000 -

i

.8000 ,

i 03 5

" i k .6000 e

.4000

.2000 -

0.00000 o o o o a 8 8 8 8 8 8 9 8 9 9 3 o -< <a m n to.

TIME, SECONDS

FIGURE A-1B HILLSTONE UillT 2 CYCLE 3 1.0 x DOUBLE ErlDED SLOT BREAK Id PUMP DISCl!ARGE LEG PRESSURE Ill CEllTER fl0T ASSEMBLY WODE 2.4 .0-2000.0 1600.0 E

- 1200.0 E

E 800.0 400.0 0.0 o o c c 8 8 8 8 8 8 9 9 a a

Ja Jm Jm o to TIME, SECONDS

FIGURE A-1C llILLST0ilE UillT 2 CYCLE 3 1.0 x DOUBLE EilDED SLOT BREAK IN PUf1P DISCHARGE LEG LEAK FLOW 120000.

100000.

80000.

O C

5 N 60000.

Ei 5

d 40000.

N 20000, s 0

5 E S $ Z 0 TIME, SECONDS

FIGURE A-1D.1 tilLLST0iiE UillT 2 CYCLE 3 1.0 x DOUBLE EiiDED SLOT BREAK Ii1 PUMP DISCilARGE LEG FLOW Ill ll0T ASSEMBLY-PATH 16, BELOW li0T SPOT 30.000 20.000 ,

1

}

10.000 'l, "

W -

2 I

N 0.000  !

-10.000 i V

-20.000

-30.000 o o o a 8 8 8 8 8 8 5 5 $ $ $ $

TIME, SECONDS

FIGURE A-1D.2 HILLST0ilE UNIT 2 CYCLE 3 1.0 x DOUBLE EilDED SLOT BREAK Iil PUMP DISCHARGE LEG FL0ll IN HOT ASSEMBLY-PATH 17, AB0VE HOT SPOT 30.000 y i

1 l

20.000 I

't I

10.000 f3 l s

O.000

= a e -10.000

\e y

r

-20.000 l

-30.000 b b 5 E S 0 2 0 TIME, SECONDS

FIGUI!E A-lE lilLLST0i1E U:llT 2 CYCLE 3 1.0 x DOUBLE EilDED SLOT BREAK lil PUilP DISCHARGE LEG HOT ASSEilBLY OUALITY fl0DE 13, BELOW HOT SPOT


N0DE 114, AT HOT SPOT

- - - N0DE 15, AB0VE HOT SPOT 1.0000 , f

.8000

\l V '

[iI 1 \\ j i

- I Il //

, 'l I

ll

i es

, \' / f

/

.6000 j i t f b i I /

E I '

/ ~' './

8 l '

.4000 J ' I.

\ \!'

I h

.2000 E l

D I

0.0000 a a a a 8 8 8 8 8 8 2 3 5 $ $ $

TIME, SECONDS

FIGURE A-1F MILLSTCl1E UrlIT 2 CYCLE 3 1.0 x DOUBLE EilDED SLOT BREAK lil PUMP DISCilARGE LEG C0i1TAliiMEi1T PRESSURE 60.000 50.000 40.000 d 30.000 8

23 o"_

20.000 10.000 0.000 a a o a a 8 9 9 9 9 9 J 8 Z (v) 8

+

o c- .-4 oJ TIME AFTER RUPTURE, SECONDS

FIGURE A-16 filLLST0flE UillT 2 CYCLE 3 1.0 x DOUBLE Ei1DED SLOT BREAK Irl PUI1P DISCHARGE LEG MASS ADDED TO CORE DURIilG REFLOOD 1

90000.

75000.

y ~ 60000.

u3 8

S 45000. /

S 8

30000. '

15000. .

0.

o g g g g 8 9 a a a J J 8 "; ;5 s

TIME AFTER C0f1 TACT, SECONDS

FIGURE A-lH NILLST0:1E U: LIT 2 CYCLE 3 1.0 x DOUBLE ElDED SLOT BREAK Ill PUilP DISCHARGE LEG PEAK CLAD TEMPERATURE 2200 x

2000 '

\

N 1800 1600

  1. - 1400 -,

E" 25 E 1200 '

g .

1000 800 600 400 0 140 280 420 560 700 840 9E:

TIME, SEC0llDS

FIGURE A-2A NILLSTONE UillT 2 CYCLE 3 0.8 x DOUBLE EilDED SLOT BREAK IN PUMP DISCliARGE LEG CORE POWER 1.2001 1.0000

.8000 83 i5 o_

p .6000 t5 r

.4000 l

.2000

\

a a 0.00000 o a o 8 8 8 8 8 8 9 9 9 9 9 9 + r>

a <a c>

o TIME, SECONDS

FIGURE A-2B MILLSTONE UillT 2 CYCLE 3 0.8 x DOUBLE EilDED SLOT BREAK lil PUI4P DISCilARGE LEG PRESSURE Ii1 CEilTER l10T ASSEMBLY l'10DE 2400.0 2000.0 1600.0 1 E

E 1200.0 0

E 800.0 x 400.0 3 0.0 a o a a S S S -

S S S 2 3 $ $ 5 $

TIME, SEC0t1DS.

FIGURE A-2C MILLSTOWE Ui1IT 2 CYCLE 3 0.8 x DOUBLE EilDED SLOT BREAK Iil PUMP DISCHARGE LEG LEAK FLOW 120000.

100000.

80000.

Ed l' R

S j 60000.

E cd 40000.

N 20000, s N

!S $

5 S Q Z E TIME, SECONDS

FIGURE A-2D.1 MILLST0rlE UillT 2 CYCLE 3 0.8 x DOUBLE EilDED SLOT BREAK Iii PUMP DISCilARGE LEG FLOW Ii1 Il0T ASSEMBLY-PATil 16, BEL 0\l ll0T SPOT 30.000 l l

20.000 i i

I

' I 10.000 d

  • A

, 0.000

= 'N of b -10.000 j

-20.000

-30.000 o o a o 8 8 8 8 8 8 2 3 5 5 5 $

TIME, SECONDS

FIGURE A-20.2 MILLST0;4E UiilT 2 CYCLE 3 0,8 x DOUBLE EWDED SLOT BREAK Iil PURP DISCHARGE LEG FLOW Ill HOT ASSEilBLY-PATH 17, AB0VE HOT SPOT 30.000 ll 20.000 i

i 10.000 f lIl hw R tl 0

N 0.000 fi

=

\ /b

-10.000 j,A[

-20.000

-30.000 a o a c 8 8 8 8 8 8 o $ $ $ $

TIME, SECONDS

FIGURE A-2E MILLST0i1E UtilT 2 CYCLE 3 0.8 x DOUBLE EiiDED SLOT BREAK Ii1 PUMP DISCHARGE LEG HOT ASSEMBLY QUALITY ,

N0DE 13, BELOW HOT SPOT


N0DE 14, AT HOT SPOT

- - N0DE 15, AB0VE H0T SP0T i 1.0000 i ', i

. l!

i I l 0 l 1.

l

' 'Il r j ii t

. .8000 .

iy vv i I is t t I I i

[ /

I ll; fx l /

.6000  ;

s, c -s v /

C l \s'

/

C25 I I s *-

./

f

.4000  ; i-I \l#

I i ,

i  !

.2000 I I . l l

0.0000 o o o a 8 8 8 8 8 8 b b b b b b TIME, SECONDS

FIGURE A-2F MILLST0ilE UilIT 2 CYCLE 3 0.8 x DOUBLE Ei10ED SLOT BREAK IN PUMP DISCHARGE LEG C0itTAlr1MEi1T PRESSURE 60.000 .

50.000 40.000 E

$ 30.000 is 20.000 10.000 0.000 a a o a o 8 9 9 9 9 9 J 8 Z 8 o m a cu m +

TIME AFTER RUPTURE, SECONDS

FIGURE A-2G filLLST0ilE U;11T 2 CYCLE 3 0.8 x DOUBLE EdDED SLOT BREAK lii PUMP DISCHARGE LEG flASS ADDED TO CORE DURIi16 REFLOOD I

l 90000.

75000.

b

~  !

60000. 1 en iS O 45000.

R i S

8 30000. '

l g i n i i

15000.

o 8 k k k k 5 8 Z 8 w a =

15000. .

e = = =

8 9 J J J J J 8  % Z W TIME AFTER CONTACT, SECONDS

FIGURE A-4H HILLST0,iE UillT 2 CYCLE 3 1.0 x DOUBLE EilDED GUILLOTI:lE BREAK I;l PUMP DISCHARGE LEG PEAK CLAD TEMPERATURE 2200 2000 N

N N

1800 1600 g- 14 0 0 -

0 0

g1200 ,

?

3 1000 800 600 400 0 140 280 420 560 700 840 98:

TIME, SEC0i1DS

FIGURE A-5A IllLLSTONE UNIT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTIllE BREAK IN PUflP DISCHARGE LEG CORE POWER 1.2001 1,0000 4

.8000 ,

6 -

B-

.G000 d

ts n

.4000 -

l I

k

.2000 j i

I 0.00000 o a o o o l

S S S S S S 8 8 8 8 8 o a w n 4 m flME, SECONDS

FIGURE A-5B HILLSTONE UilIT 2 CYCLE 3 0.8 x DOUBLE EllDED GUILLOTli1E BREAK lil PUMP DISCHARGE LEG PP,tSSURE Ill CEllTER HOT ASSEMBLY il0DE 2400.0 - - - - - - - - -

2000.0 1600.0 -- - --l- --

5 E

d 1200.0 0

E 800.0 --

1-400.0 - - - -

0.0 o g --- - ---- 5 a 8 8 8 8 8 8 2 3 $ $ $ $

TIME, SECONDS

FIGURE A-5C flILLST0i1E UillT 2 CYCLE 3 0.8 x DOUBLE EiiDED GUILLOTIi1E' BREAK lit PUMP DISCHARGE LEG LEAK FLOW PUMP SIDE REACTOR VESSEL SIDE j 120000.

100000.

80000.

U.

s B

N 60000.

5 '

E cd 40000. "' s

\s

's .

20000.

V 'x he_.

O. O c a o 8 8 8 8 8 8 Ja Ja Jw Jw o to TIME, SECONDS

FIGURE A-5D.1 MILLSTONE UillT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTINE BREAK lil PUMP DISCllARGE LEG FLOW Iil [10T ASSEflBLY-PATil 16, BEL 0ll HOT SPOT i

30.000 ,

l l

20.000

\l 10.000 R

5 0 000 '

% / -

-10.000

-20.000

-30.000 a a a g 8 8 8 8 8 8 8 8 a a a a w

o m a a a TIME, SECONDS

FIGURE A-5D,2 MILLST0r!E UillT 2 CYCLE 3 0.8 x DOUBLE EiiDED GUILLOTIi1E BREAK lil PUMP DISCllARGE LEG FLOW Ii1 HOT ASSEMBLY-PATH 17, AB0VE HOT SPOT 30.000 20.000 l i

4l 10.000 b

N 0.000

\

25 5

a hf d

-10.000

-20.000 j i

-30.000 a o a a 8 8 8 8 8.

8.

0 0 J J S Q Z U TIME, SECONDS

FIGURE A-5E (11LLST0ilE UillT 2 CYCLE 3 0,8 x DOUBLE EilDED GUILLOTIilE BREAK lil PUMP DISCHARGE LEG HOT ASSEllBLY QUALITY N0DE 13, BELOW HOT SPOT


N0DE 14, AT HOT SPOT

- N0DE 15, ABOVE HOT SPOT 1.0000 , , ,

i i ,

!i

' /!,

l

) i lI

!, Ii , ,

I /

.8000 Jl' l. 7 i-Ji ,

e' /

i N ,' /

( s t'  %- j I' ' '

.6000 7 ij b ['

I

)

/

y  ; r, '

/

@ f I '

.4000 f \/

I

)

i

.2.000 ','

l)

?)

0.0000 o o a o 8 8 8 8 8 8" 9 9 Ja a Jw w o in TIME, SECONDS 8

FIGURE A-5F filLLST0i1E UillT 2 CYCLE 3 0.8 x DOUBLE EllDED GUILL0TIllE BREAK Ill PullP DISCliARGE LEG C0l1 Tali 1MEllT PRESSURE 60.000 50.000 40.000 Q 30.000 8

0 E

20.000 10.000 a 8 k k k k 3 5 8 8 8 8 o w a w m +

TIME AFTER RUPTURE, SECONDS

FIGURE A-5G MILLST0i1E UillT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTlilE BREAK Ill PUMP DISCHARGE LEG MASS ADDED TO CORE DURIi1G REFLOOD 90000.

75000.

$ 60000.

u3 -

b S 45000.  !

S 8

g 30000. '

TIME (SEC) REFLOOD RATE 0.00-8.000 3.32 IN/SEC j 8.00-77.00 1.25 IN/SEC i 77.0-400.0 0.75 IN/SEC 15000. _

0. c c c c c

d 8 Z 8 o w a co m +

TIME AFTER CONTACT, SECONDS

1-lbukt /\ ' 11 HILLSTO.4E U!11T 2 CYCLE 3 0,0 x DOUBLE EilDED GUILLOTI.lE BREAK I.1 PUr.P DISCllARGE LEG PEAK CLAD TEP.PERATURE 2200 . -

2000 '[f' ,

N

~ N l ~

/ '%

i

~

~, '

x 1800 I,' ~~ _ ,

G '

l 1600 ,'

s PEAK CLAD TEMPERATURE fl0DE u_ ---- - RUPTURE il0DE 1400 o '

!d '

s ,l 25 ',

y 1200 h,+

$ il 11

]

O l'

ll 1000 *i l.

l.

It i.

800 t, -

l .

i f

600 400 0 140 280 420 560 700 840 98 TIME, SEC0 lids

FIGURE A-51 MILLSTONE UNIT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG MID ANNULUS FLOW 15000. .

10000.

5000.

tu R

u2 b l ac

-5000.

-10000. gv

-15000. O o o a 8 8 8 8 8 8 1 5 $ b b b TIME, SECONDS

FIGURE A-5J MILLSTONE UtilT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTIf1E BREAK IN PUMP DISCilARGE LEG QUALITIES AB0VE Af1D BELOW THE CORE ABOVE THE CORE BELOW TiiE CORE 1.0000 , , ; ",; ,,  ; , ,- ,, j e l,5, , f"

,' 1;l

.8000 ,

i s

1

.6000 ,' ,

g '

3 .

s' 1

.4000 Iji l .

y

/ ', ,

, i ,

.2000 '

,,/

s,

,s 0.0000 a a a a 8 8 8 8 8 8 b 5 b b b b TIME, SECONDS

s .

FIGURE A-5K MILLSTONE UNIT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG CORE PRESSURE DROP 30.000 20 000 10.000 l,

G a_.

e  :

I J l ,

O )\ 11 I \N f

    • \1 j' U

[]

9 ny

=

iTI

" l

-10.000

-20.000 a a

-30.000 o a 8

8 8 8 8 8

2 3 TIME, SECONDS

FIGURE A-5L MILLST0llE UNIT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG SAFETY INJECTIf4E FLOW If1TO INTACT DISCHARGE LEGS 7000 , , i l

l t

6000 - -

g 5000 - -

a a

4000 f

u_

5 p

u y

3000 - -

C

-t 2000 - -

1000 - -

0 ' ' ' '

0 20 40 60 80 100 TIME, SECONDS

FIGURE A-5M MILLST0f1E UNIT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG WATER LEVEL IN DOWNCOMER DURING REFInon 18.000

(  :- _ -:: _= - - -

12.000 ib ici 9.000 es .

CE

=c -

6.000 3.000 -

o 8" 8

3 m

Z m

8 o m .

TIME AFTER .C0t1 TACT, SECONDS

FIGURE A-Sil MILLST0flE UtilT 2 CYCLE 3 0,8 x DOUBLE ENDED GUILLOTIllE BREAK If4 PUFiP DISCliARGE H OT GAP CONDU UA E 900 800 700 u-c 600 a / ~

R E 500 / '

~ ~

m /

!5 5 '

$ 400 g

8 300 200 100 0

0 140 280 420 560 700 840 98 TIllE, SEC0f1DS

FibOHL A-bu MILLST0f1E UtilT 2 CYCLE 3 0.8 x DOUBLE Ef1DED GUILLOTIfiE BREAK Ill PUMP DISCHARGE PEAK LOCAL CLAD OXIDATI0ff 18

~~

1G 1 ,-

14 -

/

/

/

/

12 /

/

h PEAK CLAD TEMPERATURE liODE we

,' -- -- - RUPTURE fiODE

!$ 10 ,

5 I s '

- /

A 8 ' /

3"

/

i o

6 l

l t

4 j I

I I

2 '

O O 140 280 420 560 700 840 98L TIME, SEC0i1DS

FIGURE A-SP MILLST0tlE UtilT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTlilE BREAK lil PUMP DISCllARGE CLAD TEf1PERATURE, CErlTERLit1E FUEL TEf1PERATURE, AVERAGE FUELTEllPERATUREATIDC00LAtlTTEMPERATUREFORll0TTEST[10DE 4000 3500 3000 2500 FUEL C flTERLIr1E au o]

N g 2000 7 x_w%

g _ _

AVERAGE FUEL CLAD 1500 h

1000 C00LAt1T

\

500

\ \

0 -

0 140 280 420 560 700 840 98C TIME, SEC0tiDS

MILLST0llE UNIT 2 CYCLE 3 0.8 x DOUBLE EllDED GUILLOTIflE BREAK lli PU:lP DISCl1ARGE s 110T SPOT llEAT TRAt1SFER COEFFICIEilT 450 400 350 LL.

1 L1 J- 300 R

R m

P_5 0 s

LL d

8 g 200 Yi ik Q 150 W

100 t

50 0

0 140 280 420 560 700 840 98 TIME, SEC0 fids

FIGURE A-5R fin ' STONE UNIT 2 CYCLE 3 0.8 x DOUBLE ENDEL GUILLOTINE BREAK Ill PUMP DISCHARGE LEG LONTAINMENT TEMPERATURE 300.0 250.0 200.0 u

E 150.0 25 E

5 100.0 50.0 0.0 0 80 160 240 320 400 TIME, SECONDS

FIGURE A-5S MILLSTONE UtilT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE LEG SUMP TEMPERATURE 300.0 250.0 200.0 ['

O id y 150.0 5

100.0 50.0 0.0 0 80 160 240 320 400 TIME, SECONDS

FIGURE A-ST MILLSTONE Uf1IT 2 CYCLE 3 0.8 x DOUBLE ENDED GUILLOTINE BREAK Irl PUMP DISCHARGE LEG HOT R0D INTERNAL GAS PRESSURE 2000.0 N -P INITIAL = 1970.6 PSIA I I 1600.0 - - RUPTURE = 9.63 SEC

$ 1200.0 s

la

$ 800.0 400.0 0.0 --

0 20 40 60 80 100 TIME, SECONDS

FIGURE A-5U MILLSTONE UNIT 2 CYCLE 3 0,8 x DOUBLE ENDED GUILLOTINE BREAK IN PUMP DISCHARGE CORE BULK CHANNEL FLOW RATE i

CORE INLET i


CORE EXIT  !

30000.. - --

l p

20000.

I

('

10000. ;, - - - - - - - ---

o  : i, W  :(

s  ! '.'

"M-y f w-5 d

-10000. --- -- - - - - ----

BULK CHANNEL REPRESENTS 98%

OF TOTAL CORE FLOW AREA

-20000.

-30000. O o o o 8 8 8 8 8 8 o

5 e

Ja Je Jm o

TIME, SECONDS

FIGURE A-6A iilLLST0ilE UillT 2 CYCLE 3 0.6 x DOUBLE EllDED GUILLOTIi1E BREAK Ill PUf1P DISCllARGE LEG CORE POWER 1.2001 1.0000

.8000 03 5

I .6000 R

.4000 t

.2000 0.0000o o o o o a 8 8 8 8 8 8 9 9 9 9 9 9 o a <u m + to TIME, SEC0tiDS

FIGURE A-6B HILLST0i1E UillT 2 CYCLE 3 0.6 x DOUBLE EllDED GUILLOTlilE BREAK I;1 PUI1P DISCHARGE LEG PRESSURE Ill CEilTER HOT ASSEMBLY N0DE 2400.0 2000.0

. 1600.0

<c -

E 1200.0 -

!O E

800.0 400.0

\

\

0.0 c o a o k k k k k k 5 5 S Q Z 0 TIME, SEC0f1DS

FIGURE A-6C MILLST0ilE UillT 2 CYCLE 3 0.6 x DOUBLE EilDED GUILLOTlilE BREAK lil PUMP DISCHARGE LEG LEAK FLOW PUMP SIDE i

- - - - REACTOR VESSEL SIDE 120000.  ;

100000.

80000. ~

Ed R

N 60000.

s -

E if 40000.

's

\

20000. - .

s

~

'4 %___

0.

!5 !E S $ Z 0 TIME, SEC0flDS

FIGURE A-6D.1 fllLLST0ilE UilIT 2 CYCLE 3 0,6 x DOUBLE EilDED GUILLOTliiE BREAK IN PUMP DISCHARGE LEG FLOW lli HOT ASSEMBLY-PATH 16, BELOW HOT SPOT 30.000 20,,000 j 10.000 -

o d I s" i s 0.000 '

N l /W

= , il/

d -10.000

-20.000

-30.000 o o a o 8 8 8 8 8 8" 9 9 Ja Ja J w cu o m TIME, SECONDS

FI31RE A-6D.2 MILLSTONE Ui1IT 2 CYCLE 3 0.6 x DOUBLE EilDED GUILLOTINE BREAK Ill t' IMP DISCHARGE LEG FLOW Itr HOT ASSEl1BLY-PATil 17, AB0VF r;~ SPOT 30.000 20.000 10.000 ,

0.000

~

id

\/ b/ )

-10,,000

-20.000

-30.000 o a a a 8 8 8 8, 8 8 3 3 $ $ 5 $

TIME, SECONDS

FIGURE A-6E MILLST0ilE UdIT 2 CYCLE 3 0.6 x DOUBLE EilDED GUILLOTIi1E BREAK lil PUMP DISCHARGE LEG HOT-ASSEilBLY QUALITY I

N0DE 13, BELOW HOT SPOT j


N0DE 114, AT HOT SPOT

- - N0DE 15, AB0VE HOT SPOT 1.0000 , , si 1 f

,'i ,\

Il, \, ,! I' i ,

ll

!l i ', '

/I l

.8000  !( ii l

i' I l'* '

r Ii  !

l*' n , 'n, ~

,~

l

.6000 Y . l

>- \ l 's *

/

C I,, h jl  ;

'n' 7

$ In >

8 4 i r.s.-

I '

.4000 i I

\.t' l _

i l

.2000 l l}

0.0000 o o o a 8 8 8 8 8 8 3 3 $ $ $ $

TIME, SECONDS 4

FIGURE A-GF MILLSTO,1E Ui1IT 2 CYCLE 3 0.6 x DOUBLE EilDED GUILLOTlilE BREAK lti PUMP DIScilARGE LEG C0flTAINMEitT PRESSURE 60.000 50.000 40.000 W 30.000 u

a.

2.0.000 10.000 0 8 5 8 S Z 8 o m a w m

  • TIME AFTER RUPTURE, SECONDS

FIGURE A-6G MILLST0;1E U:11T 2 CYCLE 3 0.6 x "OUBLE EilDED GUILLOTli1E BREAK lil PUMP DISCHARGE LEG MASS ADDED TO CORE DURI!!G REFLOOD 90000.

75000, y 60000.

el S

S 45000. '

S 8

g 30000.

15000. .

1 o

5 8 Z 8 e m a w m +

TIME AFTER CONTACT, SECONDS

t e FIGURE A-6H illLLSTONE U,;1T 2 CYCLE 3 0.6 > DOUBLE EllDED GUILL.0TIllE BREAK IW PUilP DISCHARGE LEG PEAK CLAD TEliPERATURE 2000. .

1800'

\ '

N

/

/ N 1600,

[y

^/ s s- 1400.

82

@1200.

b 3

" 1000, 800, 600.

400.

0 140 280 420 560 700 840 980 Ill1E, SECONDS

FIGURE A-7 MILLSTONE UNIT 2 CYCLE 3 PEAK CLAD TEMPERATURE vs BREAK AREA 2200. , , , , , , ,

O DISCHARGE LEG SLOTS AT 15.6 KW/FT o DISCHARGE LEG GUILLOTINES AT 15.6 KW/FT 2120. -

pg._ _ _ _ _ g a ,

d 2040. -

e

~

iE' i e

si '

5 i b 1960. -

a b

DISCHARGE LEG BREAKS _

1880. _

0.6 DE 0.8 DE 1.0 DE 1800.

0 2 4 6 8 10 12 14 16 BREAK AREA, FT2

FIGURE A-3 MILLSTONE UNIT 2 CYCLE 3 COMBItiED SPRAY Af4D SPILLAGE INTO CONTAINMENT 15000 , , , , , , i i 14000 -

13000 = 1 TANK SPILLING DIRECTLY INTO 12000 \ CONTAINMENT -

11000 -

_ 1. N -

s g 9000 x -

sg 8000 -

7000 g

f 6000 \  : EFFECTIVE ANNULUS SPILLAGE -

m 5000 x EFFECTIVE

\\ \ PUMP SPILLAGE 4000 -

\ x ~ - ~ ~  ;~ ~ ~ - -

llll \/ ///

SPRAY FLOW

//

~

e \

0 40 80 120 160 200 240 280 320 360 400 TIME AFTER BREAK, SEC