ML19282C601
| ML19282C601 | |
| Person / Time | |
|---|---|
| Site: | Millstone |
| Issue date: | 03/22/1979 |
| From: | Counsil W NORTHEAST UTILITIES |
| To: | Reid R Office of Nuclear Reactor Regulation |
| References | |
| TAC-46174, NUDOCS 7903300376 | |
| Download: ML19282C601 (52) | |
Text
{{#Wiki_filter:. IWMtTHI!AST UTILITIIIS 5 ,:Z;"4TZC7~ @n*ro*nE CONNECTICUT 06101 lll,?:::::,T:: ".' 7"~~ am) ess-se" L c > 7 W'
- "?
- ' ~,~
March 22, 1979 Docket No. 50-336 Director of Nuclear Reactor Regulation Attn: Mr. R. Reid, Chief Operating Reactors Branch #4 U. S. Nuclear Regulatory Commission Washington, D. C. 20555
References:
(1) W. G. Counsil letter to R. Reid dated February 12, 1979. (2) W. G. Counsil letter to R. Reid dated December 28, 1978. (3) W. G. Counsil letter to R. Reid dated January 27, 1979. Gentlemen: Millstone Nuclear Power Station, Unit No. 2 Small Break LOCA ECCS Performance Results In Reference (1), Northeast Nuclear Energy Company (NNECO) provided the results of the non-LOCA Safety analyses necessary to support Cycle 3 operation at 2700 MWt. The small break LOCA/ECCS performance analysis has now been completed and the results are provided as Attachment 1. These results have not as yet been QA-verified by Combustion Engineering, the NSSS and fuel supplier. This verification is expected on or about April 10, 1979 and you will be notified promptly when this process has been completed. A final safety evalua-tion of the Cycle 3 reload will also be forwarded at that time. NNECO is forwarding these non-QA results in our continued efforts to assist and expe-dite NRC Staff review of our power uprating application. Concerning the ECCS performance results, the following points are noted : (1) The small break analysis assumes 500 plugged steam generator tubes per steam generator. This is less than the number currently plugged, which is 350 and 412 in Steam Generators 1 and 2, respectively. (2) As proposed in Reference (2), credit has been taken for charging pump flow in the small break analysis. NNECO has reviewed these results pursuant to the requirements of 10CFR170 and has determined that no additional fee is required. The basis for this deter-mination is provided in Reference (3). Very truly yours, NORTHEAST 'UCLEAR E GY COMPANY bOOg .f4 tw'/ YW QO 04\\ . G. Counsil Vice President Attachment
DOCKET NO. 50-336 ATTACHMENT 1 MILLSTONE NUCLEAR POWER STATION, UNIT NO. 2 SMALL BREAK LOCA ECCS PERFORMANCE RESULTS MARCH, 1979
Hillstone Unit 2 Small Dreak ECCS Perfornance Evaluation 1.0 Introduction and Su ary The ECCS perforcance evaluation for the small break loss-of-coolant accident (LOCA) for liillstone 2, presented herein, demonstrates appropricte conformance with 10Cri:50.46 which presents the Acceptance Criteria for II) The Emergency Core Cooling Systems for Light-!!ater-Cooled Reactors evaluation demonstrates acceptable small break LOCA ECCS performance for Hillstone 2 at a pcuer level of 2754 thit and a peak linear heat generation The nethod of analysis and results are presented rate (PLH3R) of 16.0 kw/f t. in the following sections. 2.0 liethod of Analysis The calculations' reported in this section were performed using Combustion Engineering's Small Break Evaluation !!odel which is described in References 2 and.3. Evaluation of small break transients involves the use of four computer Blowdown hydraulics are calculated using the CEFLASH-4ASI4) code. codes. Reflood hydraulics are calculated using the COMPERC-II code (5) Fuel rod temperatures and clad oxidation percentages are calculated using the STRIKIN-11(6) and PARCHI7) codes. Details of the interfacing of these codes are discussed in Reference 2. As discussed in Reference 2, the worst single failure for analyses of the small break LOCA is the failure of one of the emergency diesel generators to This failure results in the minimum safety injection available to start. Therefore, based on this assumption, the following injection cool the core. were credited in the small break LOCA analysis: pumps one high pressure safety injection pump a. b. one luw pressure safety injection pump c. one charging pump In addition to the pumped injection, three of the four available safety i k were credited in the analysis.
As described if P,crcrence 2, the small break LOCA ar,alyses conservatively assumed that offsite power is lost upon reactor trip. The ECCS performance analysis considered a spectrum of cold leg bre:iks in the reactor coolant pump discharge icg. The break sizes analyzed 2 include the 0.5, 0.2, 0.1, 0.05, and 0.02 f t cold icg breaks. The significant general system parameters used in the small break calculations are presented in Table 1. 3.0 Results 2 The analysis demonstrated the 0.1 f t break to be the limiting small break with a peak clad temperature and peak zirconium oxidation percentage of 1971 F and 10.3%, respectively. The analysis also demonstrated that 2 break sizes 0.02 ft and smaller will not result in core uncovery. The transient values of parameters which most directly affect fuel rod performance are shown in Figures 1 (A through II) through 5 (AthroughH). The following aprameters are graphically presented for each break size: (A)NormalizedTotalCorePower (B)InnerVesselPressure (C)BreakFlowRate (D)InnerVesselInletFlowRate (E) Inner Vessel Two-Phase Mixture Volume (F) Hot Spot Heat Transfer Coefficient (G) Channel Coolant Temperature at Hot Spot (H)llotSpotCladSurfaceTemperature S G
s The thaes at which significant events in the performance of the ECCS ~ A summary of occurred for cach brcak sizc are listed in Table 2. the but fuel rod performance is provided in Tabic 3 wf;.crein arc given the calculated peak clad outside surface teeperatures and locations as well as the amount of core vide zirconium oxidation and the peak local oxidation on the hot rod. Figure 6 summarizes the peak clad temperatures results of the spectrum analysis. 4.0 Evaluation of Results Peak clad temperatures during a small break LOCA are produced by different phenomena depending on the break size. 2 break, the tenperature transient is terminated during For_the 0.5 ft the.reflood period which is controlled primarily by the Safety Injection Tanks (SITS) with some assistance from the Safety Injection (SI) pumps. break is characterized by a relatively slow depressurization 2 The 0.2 ft rate and recession of the two-phase level in the core. The depletion of the two-phase level and subsequent recovery 15; controlled by the boiloff rate due to decay heat and the rate at which the coolant is replenished by the high pressure safety injection (HPSI) and charging The transient is terminated shortly after recovery of the pump flows. core tuo phase level with injection from the SITS. The 0.1 f t and the 0.05 ft breaks experience similar behavior as the 2 2 0.2 ft break, however, the recovery of the core two phase level 2 and termination of the clad temperature transient is controlled entirely by the llPSI and charging pump flows. 2 break does not experience core uncovery since the boiloff The 0.02 ft rate is exceeded by the lipSI and charging pump flows at a time when the two-phase level in the inner vessel is well above the top elevation of the core. e
- t. t break was determined to be the limiting small break." Fbr 2
The 0.10 f t core unco. cry begins later when the fis, ion 2 breaks smaller than 0.10 f t product decay heat generation is less, and hence the depth of uncovery 2 will not experience In fact, break sizes less than 0.02 f t will be less. 2 For breaks greater than 0.10 f t the depressurization rate core uncovery. is faster such that the clad temperture rise is terminated carly in the transient by SIT actuation. b 5.0 Conclusions _ Ar, analysis of a spectrum of small breaks in the cold leg at the reactor pump discharge for Millstone 2, demonstrates an acceptable ECCS perfor The at a reactor power level of 2754 Mut and a PLHGR of 16.0 ku/ft. 2 small break resulted in a peak clad results of the limiting 0.1 ft temperature of 19710F and peak local clad oxidation percentaDe of thereby demonstrating the small break LOCA ECCS performance to be less lim'i. ting than th. t for the large break LOCA performance. a 6.0 Computer Code Version Identification The following versions of the Combustion Engineering ECCS Evaluation Model computer codes were used for this analysis: CEFLASH-4AS: Version No. 77019 STRIKIH-II: Version Ho. 7703G COMPERC-II: Version No. 74223 ? ARCH: Version No. 77004 M 6 4
7.0 References, Acceptance Criteria for Emergency Core Cooling Systems for Light-1. klater Cooled !!uclear Pc.:cr Reactors, Federal Register, Vol. 39, llo. 3 - Friday, January 4,1974. CEllPD-137, " Calculative liethods for the C-E 5:aall Dreak LOCA 2. Evaluation 1 odel", August,1974 (Propri.ctory). CEllPD-137, " Calculative liethods for the C-E Small Break LOCA 3. Evaluation flodel", Supplement 1, January 1.977 (Proprietary). ' CEllPD-133, Supplement 1, "CEFLASH-4AS, A Computer Program for 4. Reactor B1cwdown Analysis of the Small Break Loss-of-Coolant Accident", August,1974 (Proprietary). .CENPD-133, Supplement 3, "CEFLASH-4AS, A Computt$r Program for ' Reactor Blow ~down Analysis of the Small Break Loss-of-Coolant Accident", January 1977 (Proprietary). CENPD-134, "C0;1PERC-II, A Program for Emergency Refill-Reflood of 5. ~ the Core", April, 1974 (Proprietary). CEHPD-135, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer 6. Program," April,1974 (Proprietary). CENPD-135, Supplement 2-P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program (!!odification)", February,1975 (Proprietary). CEllPD-135, Supplement 4-P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program", August,1976 (Proprictary). CENPD-135, Suppicment 5-P, "STRIKIH-II, A Cylindrical Geometry Fuel Rod lleat Transfer Program", April 1977 (Proprietary).
CDlPD-138, "PARCil, A TbRTRAft-IV Digital Program to Evaluate Pool 7. Dolling, Axial Rod and Coolar.: llcatup", August,1974 (Proprietary). CEllPD-138, Supple::ent 1, "PARCil, A FORTitAll-IV Digital Prograra to Evaluate Pool Boiling, Axial Rod. and Coolant Heatup" (Modification), February 1975 (Proprietary). CEllPD-138, Supple:acnt 2,."PARCif, A FORTRAff-IV Digital Program to Evaluate Pool Boiling, Axial Rod and Coolant Heatup" (iiodification), January 1977(Proprietary). e e e O 8 e e e 0 e e e o e
Tafile 1 General Systen Parameters Hi11 stone Unit 2 Cycle 3 Value Quantity 2754 luft Reactor power level (102" of flominal) Average linear heat rate (102% of i::2minal) 6.306 kw/ft 16.0 kw/ft Peak linear heat rate 1388. BTU /hr-f t - F Gap conductance at peak linear heat rate Fuel centerline temperature at peak linear heat rate 3700.UF 2358. F Fuel average temperature at peak linear heat rate 1392 psia Hot rod gas pressure -4 Moderator temperature coefficient at initial density +0.2 x 10 4/ F 6 138.9 x 10 lbm/hr System flow rate (total) 6 133.8.x 10 lbm/hr Core flow rate 2250 psia Inner vessel initial pressure 0 551 F Reactor vessel inlet temperature 598 F Reactor vessel outlet temperature 11.39 f t Active core height 0.44 in Fuel rod OD 4 Number of cold legs 2 Humber of hot legs 30 in Cold leg diameter 42 in Hot leg diameter 1728 psia Low pressurizer pressure scram setpoint Safety injection actuation signal setpoint 1578 psia Safety injection tank pressure 215 psia High pressure safety injection pump shutoff head 1225 psia Low pressure safety injection pump shutoff head 209 psia HPSI pump flow delivered to reactor vessel 0.75 pump 0.5 pump LPSI pump flow delivered to reactor vessel Safety injection tank flow delivered to reactor vessel 3 Charging pump flow delivered to reactor vessel 0.5 pump O
Table 2 Millstone Unit.2 Cycle 3 Times of Interest for Small Breaks (seconds) Hot Spot Peak Time for SI H O Clad Temperature 2 HPSI and Break Sire Charging _ Pump On_ LPSI Pump On SI Tanks On To Reach Bottom of Fuel Occurs (f t ) (sec) (sec) (sec) (sec) sec 2 0.5 40 168 168 b 203-b 583 0.2 48 598 59g b 1437 c 0.1 60 a b 2129 0.05 96 a c e d 0.02 350 a c a - calculation terminated before time of LPSI pump activation b - core never totally uncovered c - calculation terminated before SIT actuation d - top of core never uncovers e - clad temperature during transient never exceeds initial fuel clad temperature
9 Table 3 Fuel Rod Perfokance Sumary Maximum Clad Elevation of Hot Spot Core Wide Peak Percent Break Size Surface Temperature (from bottom of core) Zirconium Oxid. Zirconiua 0xid. ft
- F ft
~ 2 0.5 1629 9.7 <.063 .48 0.2 1612 10.3 <.07 .41 0.1 1971 9.7 <.317 <10.3, 0.05 1824 9.7 <.274 < 6.29 0.02 558 9.7 <.00010 .0001 a 9 9 D G e
~ FIGURE 1-A MILLST0i!E 2 2 COLD LEG EREAK AT PU;iP DISCl!ARGE 0.50 FT NORMAllZED TOT /il CORE P0h'ER (SMALL BREAK AUALYS!S) 1.2 1.0. 5 s 0.8 W-8 d ~0.6 ui Sdd is 0.4 e 0.2 0.0 0.0 10.0 20.0 30.0 40.0 50.0 TIME, SEC
FIGURE 1-li filLLST0;!E 2 2 COLD LEG EP.EAK AT PU;;P DISCllARGE 0.50 FT IllNER VESSEL PRESSURE (SiiALL liREAK Ai!ALYSIS) 2400 0 2000.0 5E 1G00.0 s U M O' 85 1200.0 aM' W g-E 800.0 400.0 h c c 0.0 o o o o o o a o o o N co + m a o a w e o o TillE, SEC ~
l FIGbRE 1-C HILLSTO."E 2 2 COLD LEG I;!!E/.K AT l' UMP DISCllA!!GE 0.50 F1 BREAK FLO'.,' RATE (SMALL BREAK AliALYSIS)
- 10000, 8000.
i o R b 6000. lE 25 11000. =u m 2000. I D. d d 6 6 6 8 N 2 R T1HE,SEC
I FIJb!:1. 1-D filLLSTO:'E 2 2 COLD LEG LEI." AT PU;'iP DISCHARGE 0.50 FT IK!!ER YLSLEL li!LET FLO'd RATE (SIiALL BREAK AI'ALYSIS) 40000.
- 32000, h
24000. R s-B 'd 16000 t G m r, g if 8000. O. 5 5 5 5 -8000. 6 ~ m m o e ~ Tll1E,SEC
FIGURE 1-E filLLST0ilE 2 2 0.50 FT COLD LEG BREAK AT PUFiP DISCllARGE liff!ER VESSEL Th'0-PilASE MIXTURE VOLUME (SilALL BREAK AflALYSIS)
- 6000, 5000.
m !Z ' 14000. g Es w E 3000. ?Sr a o-
- 2000, v
TOP OF CORE r /
- 1000, v
BOTTOM OJ CORE 0, o a a a 5 5 5 o 6 8 N R Tlf1E, SEC
r s s FIGURE 1-F MILLST0i!E 2 2 COLD LEG EREAK AT PuiiP DISCllAliGE 0.50 F7 HEAT TUJ:SFER COEFFICIEi!T AT ll0T SPOT (SiiALL BREAK Ai'ALYSIS) 100000,. 10000 = u_ =:: ,i ~
- P "r
t ~d 1000 = n ~u u_ 8 100 u n e [ g yg w 10 6 n = O l 1 I i 0.0 60.0 120.0 180.0 2f40.0 300.0 Til1E, SEC
FIGilRE 1-G 111LLST0:iE 2 0.50 FT2 COLD LEG DiiE/JC AT PUi;P DISCHARGE C00LAi:T TE:-;PERAlDRE AT HOT SPOT (SMALL BREAK A! ALYSIS) 1200.0-- 1000.0 - E 800.0 -- 0 ~ P EE 600.0 -- R !E$ 400.0 - 200.0 -- 0.0 0.0 60.0 120.0 180.0 240.0 300.0 Til1E, SEC
FlGl>RE l-l' MILLST0!iE 2 2 COLD LEG BREAK AT PUtiP DISCllARGE 0.50 FT HOT SPOT CLAD SilRFACE TEMPERATURE (SMALL BREAK Ai!ALYSIS) 2400.0 - 2000.0-SF u) 1600.0-x ?? o_ !E 1200.0-- iS US s E w 800.0 - ca3 7 o 400.0 0.0 0.0 60.0 120.0 180.0 240.0 300.0 TIME, SEC
FIGui[ 2-A t. MILLST0i!E 2 2 COLD LEG BREAK AT PU:iP DISCilARGE 0.20 FT !!0!'JiAli2ED TOTAL CORE POWER (SliALL BREAK A!!ALYSIS) 1.2 1.0 m B 0.8 a_ WS. f 0.6 B s3g 0.4 e I 0.2 0.0 0.0 10.0 20.0 30.0 40.0 50.0 TiliE, SEC
. FIGURE 2-B lilLLST0llE 2 2 COLD LEG DREAK AT PU!iP DISCilARGE 0.20 FT lil!![R VESSEL PRESSURE (SliALL DREAK Ai:ALYSIS) E400.0 .2000n0 i v>
- 1600.0 l
- ul$ M. y ".1200.0 E. eE 800.0 5. \\ i 400.0 N N o o o o o 0.0 3 3 3 3 3 3 S .8 8 8 o o e co m + w TIllE, SEC G w e. M # 9 "4" M *** ** * **
FIGURE 2-C MILLST0i!E 2 2 COLD LEG BREAK AT PUMP DISCllARGE 0.20 FT BREA!' FL0i! RATE (SMALL BREAK A'!ALYSIS) 4800. 4000. \\ 3200. I
- d k'
lE g 2400. Bd u Y 0 1600' E 800. 0, d 6 6 6 d 3 N TiliE,SEC e # 94
s ~- FIGURE 2-0 MILLST0ilE 2 2 COLD LEG BREA!.' AT PUMP DISCllARGE 0.20 FT Ilh1ER VESSEL li1LET FLO!! RATE (SMALL BREAK Ai:ALYSIS) 40000 32000 24000 S R E. a 16000 g& =5 u. 8000 0 -8000 R 9 8 e 8 c> ~ m m r o TIME, SEC
! ~I _.._.... _. FIGURE 2-E MILLST0ilE 2 2 0.20 FT COLD LEG BREAK AT PUMP DISCl%RGE ll!!!ER VESSEL T1,'0-Pl!ASE MIXTURE VOLU.iE (SMALL BREAK AilALYSIS) 6000.0 5000,0-m lZ 11000.0 g Ed w E 3000.0 ts s-w m 2000.0 o_ TOP OF CORE _J-1000.0 BOTTOM OF CORE 0.0 o o o e o 5 5 5 5 5 o 5 M 9 5 8 TIME, SEC
'FlGURE 2-F MILLST0f1E 2 2 COLD LEG EREAK AT PU'iP DISCliARGE 0.20 FT liEAT TRAilSFER COEFFICIEi!T AT liOT SPOT (SMALL DREAK A!!ALYSIS) 100000,:- LL. o 10000.c i h bb m W. s co, 10 0 0. ::. b U LLJ O U 100. oc
- t g
D ~~ E g 6-6 10. m i i _1 6 6 6 6 6 o o o 1. o. o. o o o o o O o o N O CO s a + n a a + o TIME, SEC
FI6lil:E 2-G HILLST01E 2 0.'20 FT2 COLD LEG l'REAK AT PU;1P DISCllARGE C00LAi!T TEM!U.ATilRE AT !!0T SPOT (SHALL D'. TEA!( Ai'ALYSIS) 1200.0-j1000.0- ,800u0 - U E'N E G00.0 - - E s !E 5 400.0 - 200.0 i i i i i 0.0 O O O O a O a a a O a o O O O O O O N LD CO s a w m n O TIME,SEC M weM e-
- DWMtM99. M M S Np MgW A9 %* # #
FIGURE 2-li lilLLST0i!E 2 0'.20 FT2 COLD LEG E!!EAK AT PU:iP DISCllhi;GE It0T SPOT CLAD Sil!! FACE TEMPERATURE (SHALL BREAK AllALYSIS) 21:00.0 -- 1 2000.0 -- ~ l 1600.0'- g. ei w a ra [ 1200.0 -- M hh in a@ 800.0 ~ \\- J 1100.0 00 i L 9 9 9 9 9 9 8 Z 8 8 o 5 H nj + in o TIME, SEC
MILLST0HE 2 2 C0i.D LEG BREAK AT PUFiP DISCllARGE 0.10 FT N0PJ1AllZED TOTAL CORE POWER (SMALL BREAK ANALYSIS) t 1.2 1.0 5 0.8 u8 g. (E; 0.6 dE 0.4 e. 0.2 1 k w 0.0 0.0 10.0 20.0 30.0 40.0 50.0 TIME, SEC
-~~ FIGURE 3-B MILLST0ilE 2 2 COLD LEG BREAi AT PUMP DISCllARGE 0.10 F1 lii;ER VESSEL PRESSURE (SiiALL DREAl AilALYSIS) ~ 2400.0 2000.0 5 <n .1G00.0 h w5 W-x [ 1200.0 mW ME !800.0 g O 400.0 s 0.0 o a o o 9 E a E a 9 8 8 8 8 8 -t =-4 N N o tn TIME, SEC
FIGURE 3-C l11LLST0!:E 2 2 0.10 FT COLD LEG BREAK AT PU;7 DIScilARGE BREAK FLO',l RATE (SilAll. EREAK Ai!ALYSIS) 6000,,0 5000.0 M' R 4000.0 s-B. d N,3000.0 Ed u c5$ E000.0 I 1000,,0 y' t 9 9 9 9 e a 8 8 8 8 8 l 0 Z E o J TIl1E, SEC
FIGURE 3-D MILLST0!!E 2 2 COLD LEG DREAK AT PUi'.P DISCIIARGE 0.10 FT INI1ER VESSEL il!LET FLOW RATE (SMALL BREAK Ai!ALYSIS) 40000 8 32000 24000 S R ~ 16000 ,W& Bd 8000 j b 0 -8000 8 8 8 8 o8 W R N o TIME, SEC
~~ ~ ~~ ~ FIGURE 3-E l)ILLST0llE 2 2 0"10 FT COLD LEG BREAK AT PUliP DISCllARGE lill!ER VESSEL Th'0-Pila 3E lilXTURE VOLU;1E (SF1ALL BREAK Al!ALYSIS) 6000 0 l. 5000.0 7-u. J 4000.0 Ed I E R 3000.0 x 2: N' Et 2000.0 Ys TOP OF-- ye, CORE op X i 1000.0 BOTT0f4 0F CORE o 0.0 o o o a E E E o o o o o o E S E Z U TiliE, SEC
FIGUPE3-F lilLLSTO::E 2 0.10 FT C0i.D LEG BREAK AT Pui;P DISCllEGE 2 HEAT TRAi!SFER COEFFICIEllT AT 110T SPOT ~ (Si;ALL BREAK Ai;ALYSIS) 10 0 0 0 0 c.-_ . i. b u. i g 10000.n W i H D, ~- F' go I s, W '1000 53 W: u E' b -~ Ou 5 100. u_g; g g6
- C 10.
6 9 1. o. a. o o o o o o o o o o a o o N w N e a o a Til4E, SEC
FIGURE 3-G 111LLSTONE 2 0'l10 FT2 COLD LEG BREAK AT PUMP DISCl!ARGE C00Ud!T TEMPERATURE AT 110T SPOT (SMALL BREAl( AtlALYSIS) 1200.0- '1000.0-- 5. g ' 800.0 -- g' ~ 5 o_ . E 600.0 - i-- M 3 8 " 400.0 -- 4 200.0 k I I 0.0 8 o o o 9 b 8 3 o + w TIME, SEC
F]GURE 3-11 filLLST0i!E 2 0.10 FT COLD LEG DREAK AT PUMP DISCl!ARGE 2 HOT SPOT CLAD SURFACE TEMPERATURE (SMALL EREAK At!ALYSIS) 2400.0 -- 2000.0 -- t j g ,1600.0 - - g E LLJ 1200.0 - E w 8 g E ~ 800.0 -- o N
- 400.0 0.0 i
5 5 5 3 9 5 5 5 O O O O O O O Gl LO N a O O a a O + O TIME, SEC
I ~~~ ~~ FIGURi :1-it l. IllLLS~lDI:E2 2 COLD LEG BREA!' AT PU iP DISCl!AIGE 0.05 FT liORiiAL! ZED TOTAL C0fsE l'0'lD: (SMALL BREAK A!:ALYSlS) ~ 1.2 1.0 55 0.8 o. W8 s 0.6 P S N D 0.4 Ee 0.2 0.0 0.0 10.0 20.0 30.0 40.0 50.0 TIME, SEC
~ FIGUREfi-D MILLST0ilE 2 2 COLD LEG BREAK AT PU;iP DISCilAR3E 0.05 FT IlillER VESSEL PRESSURE (S!1ALL BREAK Ai!ALYSIS) E400.0 i E000.0 a G o_ Q 1G00.0 E N Mi - (- o. d 1200.0 m E:' 5 \\ 5 800.0 400.0 o o o 0.0 o R S E E E 9 8 8 e E H N o = TIME, SEC
FIGtlRE li-C lilLLSTO'lE 2 2 COLD LEG DRE/d AT PU!iP 1)lSCHARGE 0.05 FT BREAK FLO'd RATE (SMALL BREAK Ai:ALYSIS) e .1200.0 1000.0; !d wn'800.0 -1 ul^ D' l ".600.0 -~\\ x3 u 0 2$ i a: A " 400.0 i .... i 200.0 L ~ N 9 9 9 5 8 8 8 8 e J 8 Z o Tif1E, SEC
FIGUl:L li-D HILLST0!!E 2 2 COLD LEG BREAK AT PUliP DISCl!ARGE 0,05 F1 IlliiER VESSEL li!LET FLO!! RATE (SHALL BREAK Ai!ALYSIS)
- 40000, t
32000. 24000. M RE a u]
- 16000, s
Eli s cd 8000. 0. -8000. 5 5 5 5 8 8 9 R 8 a co m m TIME, SEC
I FIGURE li-E MILLSTO E 2 2 0.05 FT COLD LEG I;REAK AT PU:iP DISCl!!,RGE II:llER VESSEL T!.'0-PilASE iilXTURE VOLU;iE (SHALL l'REAK A!!ALYSIS) 6000.0 ~l i. '5000.0 m . W E 4000.0 5 E' W
- oy 3000.0
- s:
ei c_. hb D TOP Of CORE ex.- rg 1000 0 BOTT0f4 0F CORE o o o 0.0 o 9 a 5 5 S 9 8 8 Z E a co m o o TIME, SEC -N" em_
FIGbl: Ell-F lilLLST0iiE 2 2 0.65 FT COLD LEG EREAK AT PU:i? DISCHI,'lGE . llEAT TRA:;3FER COEFFICIEl:T AT !!0T SPOT (SliALL D!!EAK Al:ALYSIS) 100000c-u_'10000 c O e
- z:
m[ Lt-o $ 10 0 0. :.- i 53 u wg 100. y w g e-g10. w i 6 6 Q 1. 6 = e a o o. o o o o o o o o o C N CO + a a w m a o o co TiliE, SEC
FIGUREIl-G HILLST0llE 2 0.05 FT COLD LEG BREAK AT PUMP DISCHARGE 2 COOLA!:T TEi?ERATURE AT HOT SPOT (SHALL EREAK Ai!ALYSIS) 1200.&- ~ 1000.0-- I ~ el 800 a0 -- s U i2 25 W15 600.0" ( w g " 400.0 -- 200.0 Da0 s 5 A 5 a a a a O O O O a o O O O O O O O w O + .-i -i w m a O O O TIME,SEC
FIGURE 4-11 . MILLST0;!E 2 2 COLD LES BREAK AT PU;iP DISCllARGE O.05 FT HOT SPOT CLAD SURFACE TEMPERATURE (SMALL BREAK AilALYSIS) 2400.0 -- 2000.0 -- i l .i Lt. 1600.0 -- sg i? &W @ 1200.0 - tu g 'k. g, o 800.0 5 a 400.0 ,a 0.0 = 5 8 8 8 8 o 5 8 d 3 Z 8 o TIME, SEC
Hbulil. ')-li . MILLSTONE 2 2 COLD LEG EREAK AT PUMP DISCl!ARGE 0.02 FT HORiiAllZED TOTAL CODE P0',.'ER (SMALL DREAK ANALYSIS) 1.2 L G 1.0 5 0.8 W8 d 0.6 b 65dE 0. 11 e 0.2 ( 0.0 0.0 20.0 11 0. 0 60.0 80.0 100.0 TIME, SEC
FIGURE 5-D f11LLST0l!E 2 2 COLD LEG DREAK AT PU.iP DISCllARGE 0.02 FT IUiiER VESSEL PRESSURE (SfiALL DP,EAK AllALYSIS) 2400.0 2000 0 t v>' :1600n0 N iS g. ( c: 1200.0 ~_ ___ Y, g 800nD 400.30 9 e O O O 0.0 O a a a a O o O O 8 8 8 8 a O a w m O co Til1E, SEC -,MW O W 89 # pie e
t-10ust ;-t lilLLST0;;E 2 2 COLD LEG EREA:( AT PUEiP DISCliARGE 0,02 FT 11REAK FLO'.' I: ATE (SilALL 1 REAK AI'ALYSIS) __ 1200.0 1000.0 0 800.0 in a e [L600.0 S u. MN \\ E5.400.0 ) ( \\ n 200.0 j^v kt~ o 0.0 o o o J 5 5 S o a o o o o W N O n a LO a w m o co Tif1E, SEC
FIGURE S-D mea HILLST0i!E 2 2 COLD LEG DREAK AT Pi!:',P DISCllARGE 0.02 FT liti!ER VESSEL I!!LET FLO',! RATE (SMALL BREAK A!'ALYSIS) 40000 s 32000 24000 M-C s-B 16000 W ZE Ed 8000 \\ 0 -8000 8 8 8 8 e8 M M S 0 TIME, SEC
l' 1 OU.{. >L lill.LSTO !E 2 0.02 FT2 COLD ll'.G BREAK AT PU;iP I)lSCliARGE lill!El VESSEL 'l!!0-PilASE lilXTURE VOLU:iE (SiiALL D'iEAK AilALYSIS) 6000,0 5000.0 T-LL ~ 3 4000.0 !? Ei ie. x E5 3000.0 W E cu ~ ^ ~ I ~ Y 2.000uo TOP OF COPE 1000.0 BOTT0f1 0F CORE S 3 3 S 9 o v H eJ cr> o (x) Til1E, SEC
FIGUR$5-F 111LLST0';E 2 2 COLD LEG DREAK AT PUMP DISCl!l AGE 0.02 FT HEAT TRA!iSFER COEFFICIE!'T AT HOT SPOT (Sf1ALL BREAK AfDLYSIS) 10 0 00 0 c- ~ .. 3 ~ i u_ i ~ El@ 1 0 0 0 0,5_ d ?- e g w d 1000.gc w w u ib ou 5 100. 55 z b 2 r6
- 10.
5 5 5 k 1. o o o o o o o a o o o O N W a O a w a a o o TIME, SEC
8 $ FIGui:E S-G g MILLST0i!E 2 2 0.02 FT COLD LEG EREAK AT PU.'.P DISCl!ARGE C00 LAIT TEMPE.P.ATURE AT HOT SPOT (SMALL BREAK Ai!ALYSIS) 1200.0-- 1000.0-- 'l o' 800.0 -- N ' ia& y 600.0 -- N ' t; 400.0 g 200.0 - - l 0.0 3 J J J J S 8 8 8 8 o to e4 -{ nj m TIME, SEC
q ' FIGUkE 5-li MILLSTO:lE 2 2 COLD LEG BREAK AT PU:iP DISCHARGE 0.02 FT ll0T SPOT CLAD SURFACE TEMPEP.ATUP.E (SMALL DREAK Ai!ALYSIS) 2110 0. 0 -- 2000.0 -- 8-1600.0 - s R& tu g 1200.0 -- r .g e => 800. 0 a3 (_ II00.0 0.0 4 3 S. 5 5 5 9 8 Z S 8 o m -i e-4 cd cv3 TIME, SEC
FIGURE 6 MILLsT0l!E2 MAXIMUM HOT SPOT CLAD TEMPERATURE VS BREAK SIZE (SMALL BREAK ANALYSIS) 2200 - 1900 O 0 1600 0 1300 5 i-1000 100 0 400 O.0 0.1 0.2 0.3 0.4 0.5 2 BREAK AREA, FT .}}