ML19007A042
ML19007A042 | |
Person / Time | |
---|---|
Site: | La Crosse File:Dairyland Power Cooperative icon.png |
Issue date: | 05/28/2018 |
From: | Fauver D Energy Solutions |
To: | Office of Nuclear Material Safety and Safeguards |
M VAALER DUWP | |
Shared Package | |
ML19007A031 | List: |
References | |
RS-TD-313196-004, Rev 4 | |
Download: ML19007A042 (183) | |
Text
EnergySolutions Technical Support Document RS-TD-313196-004 LACBWR Soil DCGL, Basement Concrete DCGL, and Buried Pipe DCGL Revision 4 Originator: Date: 05/28/18 David Fauver Reviewer: _ Date: 05/29/18 Terry Sullivan Reviewer: _______________________________ Date: 05/29/18 Eric Darois Approval: _ Date: 05/29/18 Robert Yetter
RS-TD-313196-004 Revision 4 Summary of Changes in this Revision:
Revision 0 - Initial Issuance.
Revision 1 - Changed Title, added basement concrete DCGL and Area Factor for WTB BFM Groundwater Scenario, revised insignificant contributor dose percentage to 5% in calculation of adjusted DCGLs for basements, soil, and buried pipe Revision 2 - Various revisions in response to NRC request for additional information Revision 3 - Revised Buried Group DCGLs due to addition of Low Pressure Service Water Pipe to group.
Revision 4
- Three corrections as a result of two transcription errors from soil uncertainty analysis reports in Table 3.
o Revised Depth of Soil Mixing Layer from 0.34 to 0.23. Changed has no effect on soil DCGL but new RESRAD report generated for administrative purposes to ensure parameters match Table 3.
o Deleted Fe-55 as sensitive to Wind Speed and entered as sensitive to Runoff coefficient.
No change in soil RESRAD parameters required.
o Revised Depth of Soil Mixing Layer from 0.34 in Buried Pipe RESRAD analyses to 0.15 and reran RESRAD reports. Minor changes to DCGLs for certain radionuclides in Tables 26, 27, and 28 (Excavation Scenario only)
- Corrected transcription error in Table 29: replace soil DCGLs with correct values from Table 5. No change to conclusions.
Page 2 of 183
RS-TD-313196-004 Revision 4 TABLE OF CONTENTS
- 1. Purpose ...................................................................................................................................... 7
- 2. RESRAD Modeling for Soil DCGL Determination .................................................................. 9 2.1. Soil Uncertainty Analysis ................................................................................................. 9 2.2. Soil Deterministic Analysis and Soil DCGLs ................................................................ 12 2.3. Soil Insignificant Contributor Dose and ROC ................................................................ 13
- 3. Basement Fill Model................................................................................................................ 14 3.1. BFM Insitu Scenario ....................................................................................................... 14 3.1.1. BFM Insitu Groundwater Scenario Conceptual Model .................................... 14 3.1.2. BFM Insitugw RESRAD Uncertainty Analysis for Initial Suite ........................ 15 3.1.3. BFM Insitugw RESRAD Deterministic Analysis .............................................. 18 3.1.4. BFM Insitugw Scenario DCGLs......................................................................... 19 3.1.5. BFM Insitu Drilling Spoils Scenario DCGLs ................................................... 21 3.2. BFM Excavation Scenario DCGLs ................................................................................ 22
- 4. Reactor Building and WGTV DCGLs for Radionuclides of Concern .................................... 24 4.1. Radionuclides of Concern and Insignificant Contributor Dose Adjustment .................. 24 4.2. BFM Groundwater Scenario Mixing Volume Sensitivity Analysis for ROC ................ 25 4.3. Reactor Building and WGTV DCGL ............................................................................. 26
- 5. Soil Area Factors ..................................................................................................................... 28
- 6. Groundwater Exposure Factors ............................................................................................... 29
- 7. Buried Piping Dose Assessment and DCGL ........................................................................... 29 7.1. Exposure Scenario and Critical Group ........................................................................... 29 7.2. Buried Piping Dose Assessment ..................................................................................... 30 7.3. RESRAD Results and Buried Piping DCGLs for Initial Suite ....................................... 31 7.4. Buried Pipe Radionuclides of Concern and Adjusted DCGLs ....................................... 33
- 8. Concentrations in Excavated Fill Material .............................................................................. 34
- 9. Alternate Land Use Scenario Dose .......................................................................................... 35 9.1. Resident Gardener Dose: Soil ......................................................................................... 35 9.2. Resident Gardener Dose: Reactor Building and WGTV ................................................ 39 9.2.1. Resident Gardener Dose: Basement Insitu Groundwater .................................. 39 9.2.2. Resident Gardener Dose: Basement Drilling Spoils ......................................... 43 9.2.3. Resident Gardener Dose: Basement Concrete Excavation Scenario ................ 43 9.2.4. Total Resident Gardener Alternate Scenario Dose: Reactor Building and WGTV ............................................................................................................... 43 9.3. Resident Gardener Dose from Excavated Basement Fill ............................................... 44 9.4.
Conclusion:
Resident Gardener Alternate Scenario Dose .............................................. 44
- 10. Summation DCGLs (DCGLB) For Initial Suite Radionuclides for Insignificant Contributor Dose Evaluation ....................................................................................................................... 44
- 11. Conclusion ............................................................................................................................... 45
- 12. References................................................................................................................................ 46
- 13. Attachments ............................................................................................................................. 47 RESRAD Input Parameters for Soil DCGL Uncertainty Analysis ................................. 49 RESRAD Output Report File Names............................................................................. 72 Sand Kd Distributions, 25th Percentile and 75th Percentile ............................................ 80 Fill Material Mixing Volume Sensitivity Analysis ........................................................ 82 Page 3 of 183
RS-TD-313196-004 Revision 4 BFM Insitugw RESRAD Uncertainty Analysis Input Parameters .................................. 95 Calculation of BFM Insitu Groundwater DCGL Reactor Building ............................. 117 Calculation of BFM Insitu Groundwater DCGL Waste Gas Tank Vault .................... 121 BFM Drilling Spoils DCGL Calculation ..................................................................... 124 BFM Excavation DCGL Calculation .......................................................................... 127 0 Buried Pipe DCGL Calculation ................................................................................ 132 1 Check Calculation for Maximum Concentration in Fill Material ............................. 142 2 Alternate Scenario Uncertainty Analysis Input Parameters ....................................... 146 3 Alternate Scenario Dose Calculation ........................................................................ 168 LIST OF TABLES Table 1 - LACBWR Initial Suite of Radionuclides and Mixture Fractions ............................................. 8 Table 2 - Deterministic Kd Values Selected for Soil DCGL Calculation. ............................................. 11 Table 3 - Soil Uncertainty Results and Deterministic Values Selected for Non-Nuclide Specific Parameter Distributions .......................................................................................................................... 12 Table 4 - LACBWR Soil DCGLs Initial Suite of Radionuclides ........................................................... 13 Table 5 - Soil DCGLs for ROC Adjusted for IC Dose and Alternate Scenario Dose ........................... 14 Table 6 - Basements to Remain in LACBWR End State. Ground Surface Elevation is 639 Feet AMSL.
................................................................................................................................................................ 14 Table 7 - Deterministic Geometry RESRAD Parameters Used in the Uncertainty Analysis for the Two BFM Insitugw Configurations ................................................................................................................. 15 Table 8 - BFM Insitugw Rx Building and WGTV Deterministic Values Selected for Distribution Coefficients (Kd) .................................................................................................................................... 16 Table 9 - Rx Building: BFM Insitugw Uncertainty Analysis Results .................................................... 17 Table 10 - WGTV: BFM Insitugw Uncertainty Analysis Results and Deterministic Values Selected for Non-Nuclide Specific Parameter Distributions ...................................................................................... 18 Table 11 - BFM Insitugw DSRs ............................................................................................................... 19 Table 12 - BFM Insitugw DCGLs ............................................................................................................ 21 Table 13 - BFM Insituds DCGLs (same values for both basements) ...................................................... 22 Table 14 - BFM Concrete Excavation SA/V Ratios for Full and Partial Excavation ............................ 23 Table 15 - BFM Excavation DCGLs (same values for both basements) ............................................... 24 Table 16 - WGTV Mixing Sensitivity RESRAD Source Term Geometries ......................................... 25 Table 17 - Reactor Building Mixing Sensitivity RESRAD Source Term Geometries .......................... 26 Table 18 - Mixing Sensitivity Analysis Results Summary. ................................................................... 26 Table 19 - ROC DCGLs for Each Basement and Individual BFM Scenarios (DCGLBS). Adjusted for IC Dose, Mixing Sensitivity and Alternate Scenario Dose .................................................................... 27 Table 20 - ROC DCGL Summation Values for each Basements (DCGLB). Adjusted for IC Dose, Mixing Sensitivity and Alternate Scenario Dose. ................................................................................... 28 Table 21 - RESRAD Results for Area Dependent pCi/g value corresponding to 25 mrem/yr .............. 28 Table 22 - Soil Area Factors ................................................................................................................... 29 Table 23 - Groundwater Exposure Factors for a Water Concentration of 1 pCi/L ................................ 29 Table 24 - Buried Pipe to Remain in LACBWR End State .................................................................... 30 Table 25 - RESRAD Source Term Parameters for Buried Piping DCGL Calculations ......................... 31 Table 26 - Buried Piping DCGLs ........................................................................................................... 33 Table 27 - Buried Pipe DCGLs for ROCs Adjusted for IC Dose ........................................................... 34 Table 28 - Summed Buried Pipe DCGLs for ROC Adjusted for IC Dose ............................................. 34 Table 29 - Maximum Fill Concentration for Full and Partial Mix ........................................................ 35 Page 4 of 183
RS-TD-313196-004 Revision 4 Table 30 -Additions/Revisions to Industrial Use Parameters Required for Resident Gardener Scenario
................................................................................................................................................................ 36 Table 31 - Soil Alternate Scenario Resident Gardener Uncertainty Analysis Results .......................... 37 Table 32 - Soil Alternate Scenario Resident Gardener Uncertainty Analysis Results for Distribution Coefficients (Kd) and .............................................................................................................................. 38 Table 33 - BFM Insitugw Alternate Scenario Resident Gardener Uncertainty Analysis Results and Deterministic........................................................................................................................................... 41 Table 34 - BFM Insitugw Alternate Scenario Resident Gardener Uncertainty Analysis Results for Distribution Coefficients (Kd) and .......................................................................................................... 42 Table 35 - Summed Basement DCGL (DCGLB) for Initial Suite Radionuclides .................................. 45 LIST OF FIGURES Figure 1 - RESRAD Parameter Selection Process ................................................................................. 48 Page 5 of 183
RS-TD-313196-004 Revision 4 LIST OF ACRONYMS AND ABBREVIATIONS AF Area Factor ALARA As Low As (is) Reasonable Achievable AMCG Average Member of the Critical Group ANL Argonne National Laboratory BFM Basement Fill Model BFM Insitugw BFM in-situ Groundwater Scenario BFM Insituds BFM in-situ Drilling Spoils Scenario bgs Below Ground Surface DCGL Derived Concentration Guideline Level DCGLB Derived Concentration Guideline Level Basement Concrete DCGLBS Derived Concentration Guideline Level Basement Concrete Scenario DF Dose Factor DSR Dose to Source Ratios FSS Final Status Survey IC Insignificant Contributor Insitu in situ LACBWR La Crosse Boiling Water Reactor LSE LACBWR Site Enclosure LTP License Termination Plan PDF Probability Density Function PRCC Partial Rank Correlation Coefficient RESRAD RESidual RADioactive materials ROC Radionuclides of Concern SA Surface Area SOF Sum of Fractions SRRC Standardized Rank Regression Coefficient TSD Technical Support Document V Volume WGTV Waste Gas Tank Vault Page 6 of 183
RS-TD-313196-004 Revision 4
- 1. Purpose This Technical Support Document (TSD) provides the dose assessment calculations required for the La Crosse Boiling Water Reactor (LACBWR) License Termination Plan (LTP) including RESRAD input parameters, modeling results and spreadsheet calculations.
The scenarios, RESRAD parameters, RESRAD results and spreadsheet calculations used to produce Derived Concentration Guideline Levels (DCGL) for Soil, Backfilled Basements, and Buried Pipe are provided. The dose assessment of backfilled basements includes the groundwater and drilling spoils scenarios under the assumption of an in situ basement geometry, i.e., the as left configuration at the time of license termination. The dose from the excavation of backfilled concrete is also included in the basement dose assessment. The Basement Fill Model (BFM) is the terminology used in this TSD to describe the dose assessment of all three basement dose scenarios, i.e., in situ groundwater, in situ drilling spoils and excavation. Note that the term Insitu is used in this TSD to represent in situ to simplify descriptions and presentation. DCGLs for existing groundwater are also calculated as a contingency in the event that groundwater contamination is identified during continuing characterization (see LACBWR LTP Chapter 5 for discussion of continuing characterization).
RESRAD was not required to calculate existing groundwater DCGLs.
The justification for selection of the Industrial Land Use scenario and the Industrial Worker as the Average Member of the Critical Group (AMCG) is provided in LACBWR LTP Chapter 6. The dose from alternate land use scenarios are also evaluated in this TSD and documented in LACBWR LTP Chapter 6. All parameters and derivations necessary to allow independent review of the dose calculations and DCGL calculations are provided in this TSD. In some cases, additional details regarding parameter derivation and/or justification are provided in LACBWR LTP Chapter 6 to support stakeholder review.
The Industrial Use Scenario includes the following exposure pathways:
Direct exposure to external radiation, Inhalation dose from airborne radioactivity, Soil ingestion, Direct exposure, inhalation dose and ingestion dose from drilling spoils that are brought to the surface during installation of the onsite water supply well into the fill and concrete of backfilled structures, and Direct exposure, inhalation dose and ingestion dose from concrete that is brought to the surface by excavation after license termination.
RESRAD Version 7.0 was used for the assessment. RESRAD Version 7.2 was used for the uncertainty analysis of some actinides to decrease run time. The file names of the RESRAD output reports are listed for reference in this TSD. The full reports are provided electronically. Separate documentation of the RESRAD output reports in this TSD facilitates independent review and verification of the RESRAD input parameters and results. Providing the RESRAD reports in this TSD, as opposed to in Chapter 6 of the LTP, also allows revision of the RESRAD parameters and reports, if necessary, without full revision, replacement and resubmittal of a large number of LTP attachments. Only the summary tables in the LTP would be revised as necessary. The following RESRAD modeling was required to support the dose assessment:
Uncertainty Analysis for Soil DCGL Uncertainty Analysis for Dose to Source Ratios (DSR) required to calculate BFM Insitu Groundwater DCGLs Page 7 of 183
RS-TD-313196-004 Revision 4 Deterministic Calculation of Soil DCGLs Deterministic Calculation of BFM Insitu Groundwater DSRs Deterministic Calculation of Soil Area Factors (AF)
Deterministic Calculation of BFM Insitu Drilling Spoils AF Uncertainty Analyses and Deterministic Calculations for Alternates Scenarios The following Excel spreadsheet calculations were performed to support the dose assessment:
BFM Excavation Scenario DCGLs BFM Insitu Groundwater (BFM Insitugw) Scenario DCGLs BFM Insitu Drilling Spoils (BFM Insituds) Scenario DCGLs Buried Piping DCGLs Existing Groundwater Exposure Factors Alternate Scenario Dose A soil DCGL and BFM DCGL (including the dose from the Insitu Groundwater, Insitu Drilling Spoils and Excavation scenarios) was calculated for each radionuclide in the initial suite of radionuclides. The process for selecting the initial suite radionuclides is described in EnergySolutions TSD RS-TD-313196-001, Radionuclides of Concern During LACBWR Decommissioning. [1]. Reference [1] also calculates the radionuclide mixture fractions for the initial suite which are listed in Table 1.
Table 1 - LACBWR Initial Suite of Radionuclides and Mixture Fractions Radionuclide Half Life 75th Percentile Mixture (Years)
Rx Building WGTV Soil H-3 1.24E+01 2.36E-02 2.52E-01 1.51E-01 C-14 5.73E+03 1.27E-03 9.37E-03 1.72E-03 Fe-55 2.70E+00 1.40E-02 -8.13E-03 2.36E-02 Ni-59 7.50E+04 2.48E-04 4.74E-02 7.40E-04 Co-60 5.27E+00 4.58E-02 4.76E-03 3.43E-02 Ni-63 9.60E+01 2.77E-01 1.89E-01 2.64E-01 Sr-90 2.91E+01 7.59E-02 9.12E-03 5.22E-02 Nb-94 2.03E+04 1.07E-04 1.01E-03 1.68E-04 Tc-99 2.13E+05 2.16E-03 6.91E-03 2.06E-03 Cs-137 3.00E+01 4.92E-01 4.49E-01 4.41E-01 Eu-152 1.33E+01 1.84E-03 4.49E-03 2.93E-03 Eu-154 8.80E+00 2.49E-03 1.60E-03 1.50E-03 Eu-155 4.76E+00 6.61E-04 4.56E-03 2.08E-03 Np-237 2.14E+06 2.17E-06 0.00E+00 2.15E-06 Pu-238 8.78E+01 2.27E-03 7.95E-04 1.16E-03 Pu-239/240 2.41E+04 3.17E-03 1.90E-04 7.80E-04 Pu-241 6.60E+03 4.58E-02 2.35E-02 1.56E-02 Am-241 1.44E+01 1.03E-02 3.25E-03 3.56E-03 Am-243 4.32E+02 6.18E-04 4.55E-04 5.85E-04 Cm-243/244 7.37E+03 1.58E-04 1.78E-04 1.65E-04 The Soil DCGLs and BFM DCGLs calculated in this TSD for the initial suite radionuclides were used in conjunction with the radionuclide mixture fractions to eliminate the radionuclides that have insignificant dose contributions as defined in NUREG-1757, Volume 2, Revision 1, "Consolidated Decommissioning Guidance: Characterization, Survey and Determination of Radiological Criteria" (NUREG-1757) [2]. The radionuclides remaining after the insignificant contributors have been eliminated are designated as the Radionuclides of Concern (ROC). In accordance with NUREG-1757 Page 8 of 183
RS-TD-313196-004 Revision 4 guidance, the dose contribution attributed to the eliminated insignificant radionuclides is accounted for by adjusting the Soil DCGLs and BFM DCGLs for each ROC. The assessment of insignificant contributor (IC) dose and selection of ROCs is provided in Reference [1]. The resulting IC dose and ROC selection, and adjustment of DCGLs for Soil ROC and BFM ROC, are described in sections 2.3 and 4.1, respectively.
- 2. RESRAD Modeling for Soil DCGL Determination Site-specific DCGLs, in units of pCi/g, were developed for residual radioactivity in surface soil. The DCGLs are the concentrations in soil that correspond to the 10 CFR 20.1402 dose criterion of 25 mrem/yr and are used to demonstrate compliance during the Final Status Survey (FSS). The industrial scenario exposure pathways listed in Section 1 are evaluated. The surface soil conceptual model assumes a one meter depth of contamination is present from the surface downward.
2.1. Soil Uncertainty Analysis Uncertainty analysis was performed to ensure that conservative values are selected for parameters that have a relatively high correlation to dose. Attachment 1 provides the input parameter set used to perform the uncertainty analysis for soil DCGL parameters. The parameter selection process is discussed below.
NUREG/CR-6697 "Development of Probabilistic RESRAD 6.0 and RESRAD-BUILD 3.0 Computer Codes" (NUREG/CR-6697) [3], Appendix B, evaluates the relative sensitivity of the approximately 200 parameters in the RESRAD model. The results of the evaluation are provided in NUREG/CR-6697, Appendix B, Table 4.2 which categorizes parameters as Priority 1, 2 or 3 with 1 being most sensitive and 3 being least sensitive. Consistent with NUREG-1757 guidance, deterministic parameters were selected for behavioral, metabolic and Priority 3 physical parameters in accordance with the process flow chart provided in Figure 1. The Priority 1 and 2 physical parameters were evaluated through uncertainty analysis to determine their sensitivity. A number of the Priority 1 and 2 physical parameters were assigned the Parameter Distribution Functions (PDF) from NUREG/CR-6697 in accordance with the flow chart in Figure 1. Several Priority 1 and 2 parameters were assigned site-specific deterministic values. A few parameters were assigned site-specific PDFs.
The Partial Rank Correlation Coefficient (PRCC) value reported in the RESRAD Uncertainty Report is used to evaluate parameter sensitivity. The number of sample runs ranged from 300 to 500 to manage run time. Soil parameters with PRCC values greater than the absolute value of 0.25 are considered sensitive with respect to dose. This PRCC threshold is consistent with the methods used for parameter sensitivity analysis in NUREG/CR-6676, Probabilistic Dose Analysis Using Parameter Distributions Developed for RESRAD and RESRAD-BUILD Codes (NUREG/CR-6676) [4].
The RESRAD Uncertainty Report provides PRCC calculations for each parameter evaluated. The uncertainty analysis was performed for each radionuclide individually. This conservatively disregards the reduced influence of low abundance radionuclides on the total dose and eliminates the potential impact of uncertainty in mixture fractions. lists the deterministic values and Probability Density Functions (PDFs) selected for the uncertainty analysis and the reference or justification for the selections. The reference for the behavioral and metabolic parameters is NUREG/CR-5512, Volume 3, Residual Radioactive Contamination from Decommissioning Parameter Analysis (NUREG/CR-5512) [5]. The median values from the NUREG/CR-6697 parameter distributions were assigned as deterministic values for the Priority 3 physical parameters. The PDFs from NUREG/CR-6697 were selected for the Priority 1 and 2 physical parameters that were not site-specific. The Kd PDFs for the contaminated zone, Page 9 of 183
RS-TD-313196-004 Revision 4 unsaturated zone and saturated zone were correlated in the uncertainty analysis with Rank Correlation Coefficients of 0.99. The bases for the Priority 1 and 2 physical parameters that were assigned site-specific deterministic values or PDFs are discussed below.
The contaminated area was assumed to be the full 7500 m2 area inside the LACBWR Site Enclosure (LSE) fence. The site-specific soil type was determined to be sand in the Haley & Aldrich Inc. report, Hydrogeological Investigation Report, La Crosse Boiling Water Reactor, Dairyland Power Cooperative, Genoa Wisconsin [6]. The depth of soil contamination was conservatively assumed to be 1 m. This allows for a more efficient remediation (if necessary) and FSS process because a single DCGL applies to the soil depths from 0 to 1 m as opposed to requiring separate DCGLs for 0.0 to 0.15 m and 0.15 m to 1.0 m. Site-specific deterministic values from Reference 6 were applied to the following hydrogeological parameters:
Contaminated Zone Hydraulic Conductivity, Soil Density, Soil Porosity, Soil Effective Porosity, Saturated Zone Hydraulic Gradient.
A site-specific deterministic value was also selected for the Saturated Zone Field Capacity parameter based on a calculation performed for a sand soil type in ZionSolutions Technical Support Document 14-006 Conestoga Rovers & Associates Report, Evaluation of Hydrological Parameters in Support of Dose Modeling for the Zion Restoration Project [7].
A similar process was followed to determine the Drinking Water Intake Rate parameter for the industrial worker. NUREG/CR-5512, Table 6.87, provides a water intake rate of 478 L/yr for a residential user which corresponds to 1.31 L/d. This rate was conservatively applied as the intake rate for a worker as follows: 1.31 L/d
- 250 work days/yr = 327 L/yr.
The RESRAD parameters Indoor Time Fraction and Outdoor Time Fraction were derived from NUREG/CR-6697 Att. C, Table 7.6-1 which recommends a median indoor work day of 8.76 hour8.796296e-4 days <br />0.0211 hours <br />1.256614e-4 weeks <br />2.8918e-5 months <br />s/day. Assuming 5 days a week and 50 weeks per years, this equates to 2190 hours0.0253 days <br />0.608 hours <br />0.00362 weeks <br />8.33295e-4 months <br /> per year. The majority of industrial work is expected to be indoors. Consistent with Table 2-3 of the Argonne National Laboratory (ANL) report Users Manual for RESRAD Version 6 [8], 75% of work time is assumed to be indoors and 25% outdoors. The corresponding RESRAD Indoor Fraction parameter =
(2190*0.75)/(24*365)= 0.1875. The Outdoor Time Fraction is then calculated as (2190*0.25)/(24*365)
= 0.0625.
The Inhalation Rate parameter for the industrial worker AMCG was derived from NUREG/CR-5512, Section 5.3.4 which recommends an inhalation rate for workers in light industry of 1.4 m 3/hr. . The annual inhalation rate was then calculated as follows: Annual Inhalation Rate (m3/yr) = 1.4 m3/hr*2190 hr/yr = 3066 m3/yr.
Site-specific PDFs were developed for the Well Pump Intake Depth and Well Pumping Rate Parameters. There are two existing onsite industrial water supply wells supporting LACBWR with depths of 116 feet and 129 feet below the ground surface (bgs) [6]. The 129 foot depth equals 36.3 m below the maximum water table elevation of 629 feet [6]. The 36.3 m depth is assumed to be the maximum well depth. The minimum well depth is represented by a nominal 20 foot screen depth (6.1 m) starting at the maximum water table elevation. NUREG/CR-6697 recommends a triangular distribution for the Well Pump Intake Depth parameter. The mode of the triangular distribution was assumed to be mid-point between 6.1 m and 36.3 m which is 21.2 m. Note that the site-specific Page 10 of 183
RS-TD-313196-004 Revision 4 distribution is reasonably similar to the NUREG/CR-6697 distribution values of 6, 10, and 30 for the triangular distribution.
NUREG/CR-6697 does not provide a recommended value for well pumping rate due to high variability. For an industrial use scenario, the pump rate depends on the industry. To ensure that well pumping rate is evaluated in the uncertainty analysis a nominal uniform distribution was developed.
NUREG-6697, Table 3.10-1 applies a sanitary and potable water usage rate for four persons of 328.7 m3/yr. This value is assumed to be a nominal minimum industrial well pumping rate assuming four workers. A maximum rate is assumed based on supply to 20 workers which equates to 1643.5 m3/yr.
These minimum and maximum values are not intended to predict actual water use at an assumed future industrial facility on the site after license termination but to provide a range that can be used to determine if the dose is sensitive to well pumping rate. provides the file names of the RESRAD Uncertainty Analysis Reports for Soil. The Uncertainty Reports are provided electronically.
The site-specific soil type is sand. The Kds assigned to radionuclides that are sensitive to Kd are the 75th or 25th percentile values for the sand distributions from Sheppard and Thibault, Default Soil/Solid
/Liquid Partition Coefficients, Kds, for Four Major Soil Types: A Compendium [9], as listed in . The Kds assigned to radionuclides that are not sensitive to Kd are the mean deterministic values for sand from Reference 9 as listed in NUREG/CR-6697, Table 3.9-2.
The uncertainty analysis results and the selected deterministic values for Kds are provided in Table 2.
The results for non-nuclide specific parameters are provided in Table 3. If a non-nuclide-specific parameter is sensitive for any radionuclide the corresponding deterministic value (75th or 25th percentile depending on the correlation) is assigned to all radionuclides Table 2 - Deterministic Kd Values Selected for Soil DCGL Calculation.
Radionuclide Correlation Basis of to Dose Deterministic Selected Deterministic Parameter Value(cm3/g)
Selection1 H-3 NS2 mean 0.06 C-14 NS mean 5 Fe-55 NS mean 220 Ni-59 Positive 75th 1110 Co-60 NS mean 60 Ni-63 Positive 75th 1110 Sr-90 NS mean 15 Nb-94 NS mean 160 Tc-99 Negative 25th 0.04 Cs-137 NS mean 280 Eu-1523 NS mean 825 Eu-1543 NS mean 825 Eu-1553 NS mean 825 Np-237 Negative 25th 1 Pu-238 NS mean 550 Pu-239 NS mean 550 Pu-240 NS mean 550 Pu-241 NS mean 550 Am-241 NS mean 1900 Am-243 NS mean 1900 Cm-243 NS mean 4000 Cm-244 NS mean 4000 Page 11 of 183
RS-TD-313196-004 Revision 4 Note 1: Mean values for sand from NUREG/CR-6697 Table 3.9.2. The 75th and 25th values for sand from Reference 9 (see Attachment 3)
Note 2: NS indicates non-sensitive parameter. Note 3: Sand Kds not listed in NUREG-6697 Table 3.9-2 for this radionuclide. The mean value from NUREG-6697.
Table 3 - Soil Uncertainty Results and Deterministic Values Selected for Non-Nuclide Specific Parameter Distributions Basis of Selected Correlation to Deterministic Parameter Radionuclide Deterministic Dose Parameter Value Selection Contaminated zone erosion rate Positive Nb-94 75th 0.0029 Contaminated zone b parameter NS NA median 0.97 th Evapotranspiration coefficient Negative H-3, Tc-99 25 0.56 Am-241, C-14, Minimum Site-Cm-243, Cm- Specific 244, Ni-59, Ni- Monthly Wind Speed Negative 3.7 63, Pu-238, Pu- Average1 239, Pu-240, Pu-241, Fe-55 Negative H-3, Np-237, 25th 0.27 Runoff coefficient Tc-99 Saturated zone b parameter NS NA median 0.97 H-3, Np-237, minimum site-Well pump intake depth Negative 6.1 Tc-99 specific value b Parameter of Unsaturated zone NS NA median 0.97 Cm-243, Cm-244, Fe-55, Ni-59, Ni-63, Pu-Mass loading for inhalation Positive 75th 2.87E-05 238, Pu-239, Pu-240, Pu-241, Cm-243, Cm- 75th 244, Fe-55, Ni-Indoor dust filtration factor Positive 59, Ni-63, Pu- 0.75 238, Pu-239, Pu-240, Pu-241 Am-241, Am-243, Cm-243, Co-60, Cs-137, External gamma shielding factor Positive Eu-152, Eu- 75th 0.40 154, Eu-155, Nb-94, Np-237, Pu-241, Sr-90 Well Pumping Rate NS NA median 986.1 Depth of Soil Mixing Layer NS NA median 0.23 (1) Site-specific average wind speed data from Wisconsin State Climatology Office converted to m/s (Web Address:
http://www.aos.wisc.edu/~sco/clim-history/7cities/la_crosse.html) 2.2. Soil Deterministic Analysis and Soil DCGLs The soil DCGLs were calculated using the parameter set provided in Attachment 1 with the listed PDFs replaced by the deterministic values in Table 2 and Table 3.
Page 12 of 183
RS-TD-313196-004 Revision 4 The file name for the Soil DCGL RESRAD Summary Report is listed in Attachment 2. The RESRAD Summary report is provided electronically.
The Soil DCGLs for the initial suite are provided in Table 4.
Table 4 - LACBWR Soil DCGLs Initial Suite of Radionuclides Radionuclide Soil DCGL (pCi/g)
H-3 1.746E+04 C-14 2.448E+05 Fe-55 1.018E+07 Ni-59 2.594E+07 Co-60 1.281E+01 Ni-63 9.478E+06 Sr-90 6.586E+03 Nb-94 2.018E+01 Tc-99 3.563E+02 Cs-137 5.812E+01 Eu-152 2.844E+01 Eu-154 2.636E+01 Eu-155 1.122E+03 Np-237 7.991E-01 Pu-238 1.660E+03 Pu-239 1.494E+03 Pu-240 1.496E+03 Pu-241 3.637E+04 Am-241 1.089E+03 Am-243 1.868E+02 Cm-243 2.884E+02 Cm-244 2.668E+03 2.3. Soil Insignificant Contributor Dose and ROC Reference [1] calculates the relative dose from the radionuclides in the initial suite using the LACBWR radionuclide mixture and the DCGLs in Table 4. The radionuclides that in total represent less than 10% of the dose criterion are eliminated for detailed consideration during implementation of FSS. The radionuclides remaining are the Radionuclides of Concern (ROC). The soil DCGLs for the ROC are adjusted by the total dose attributed to the insignificant radionuclides that were removed to account for the dose from the insignificant radionuclides. Reference [1] determined that the ROC for LACBWR are Co-60, Sr-90, Cs-137, Eu-152 and Eu-154. Using the conservative 75th percentile mixture in Table 1, the insignificant contributor (IC) dose for soil is 0.34% of the 25 mrem/yr dose criteria. To account for variability in radionuclide mixture data used to calculate the IC dose, the 0.34% value is increased to 10%. The 10% value is used to calculate the adjustment factor which is 1-0.10 or 0.90. The ROC soil DCGLs are multiplied by 0.90 to calculate the adjusted ROC DCGLs and are provided in Table 5. The ROC DCGLs in Table 5 were also adjusted to account for the maximum Resident Gardener Alternate Scenario soil dose of 27.07 mrem/yr (see section 9.1) by multiplying the DCGLs by an additional factor of 0.92 (25/27.07).
Page 13 of 183
RS-TD-313196-004 Revision 4 Table 5 - Soil DCGLs for ROC Adjusted for IC Dose and Alternate Scenario Dose ROC Adjusted DCGL (pCi/g)
Co-60 1.06E+01 Sr-90 5.47E+03 Cs-137 4.83E+01 Eu-152 2.36E+01 Eu-154 2.19E+01
- 3. Basement Fill Model The BFM conceptual model assumes that all structures are removed to a depth of three feet below grade surface (bgs), which is at the 639 elevation, and backfilled. There are parts of two structures that are three feet or greater bgs and will remain after LACBWR license termination as listed in Table 6.
Table 6 - Basements to Remain in LACBWR End State. Ground Surface Elevation is 639 Feet AMSL.
Material Floor and Wall Floor Elevation Basement/Structure remaining Surface Area (m2) (feet AMSL)
Reactor Building Concrete 511.54 612 Waste Gas Tank Vault Concrete 310.56 621 The site groundwater is in direct communication with the Mississippi river and fluctuates with river stage. The maximum groundwater elevation is 10 feet bgs at 629 [6]. Although seasonal, the water table is assumed to be at 629 elevation. An onsite water supply well is assumed to be installed below the 629maximum water table elevation.
The BFM includes two scenarios; in-situ (designated as Insitu in this TSD) and Excavation. The BFM Insitu scenario includes two exposure pathways; ingestion of drinking water from an onsite well and direct exposure to drilling spoils that are brought to the surface during the installation of the onsite well. The BFM Excavation scenario assumes large scale industrial excavation of all or a portion of the backfilled concrete and spreading the concrete over a 1 m layer on the ground surface. The dose from the Insitu and Excavation scenarios are summed in the DCGL calculation.
3.1. BFM Insitu Scenario 3.1.1. BFM Insitu Groundwater Scenario Conceptual Model The BFM Insitu Groundwater (BFM Insitugw) scenario assumes that residual radioactivity in the backfilled structure concrete is instantly released to adjacent fill upon contact with rainwater or groundwater. The released activity mixes with the fill. The fill mixing volume is proportional to the distance that the activity moves from the concrete surface into the fill. The concrete structures are assumed to provide no resistance to groundwater flow.
The two remaining basements (Reactor Building and WGTV) have different geometries and contamination potential and are therefore modeled as separate contaminated zones with portions above and below the water table after backfill. This configuration is addressed in the RESRAD model using Page 14 of 183
RS-TD-313196-004 Revision 4 the contaminated fraction below the water table parameter. The conceptual model assumes full mixing over the fill volume. For the portions of the Reactor Building and WGTV that are below the maximum water table elevation of 629, full mixing over the entire fill volume below 629 is a reasonable assumption given that the fill is saturated and the conceptual model assumes unrestricted groundwater flow. Mixing within the fill that is above the 629 water table elevation is more uncertain because the source of the water is vertical rainwater infiltration as opposed to horizontal flowing groundwater. To evaluate the effect of mixing volume, a sensitivity analysis was conducted to determine the dependence of dose on the mixing distance into the fill (see section 3.1.5).
The BFM conceptual model applies a conservative screening approach. One hundred percent of the inventory in the backfilled basement concrete is assumed to instantly release and mix with the fill material. RESRAD is used to perform the dose modeling for the BFM Insitugw scenario assuming that the source term is in the fill and that the structures provide no resistance to groundwater flow, i.e., are not present. RESRAD produces a DSR (in units of mrem/yr per pCi/g) for each radionuclide. The DSRs are used in conjunction with unitized fill material concentrations (i.e., the pCi/g concentration in fill resulting from the release of 1 pCi/m2 from the structure concrete) to calculate DCGLs for the BFM Insitugw scenario in units of pCi/m2 (see section 3.1.4).
3.1.2. BFM Insitugw RESRAD Uncertainty Analysis for Initial Suite The process for determining the input parameters for the BFM Insitugw RESRAD uncertainty analysis was the same as that used for the soil DCGL uncertainty analysis (see process flowchart in Figure 1).
The parameter set applied to soil DCGL uncertainty analysis is also applicable to the BFM Insitugw assessment with changes to account for the geometries of the structures. The affected RESRAD geometry parameters are cover depth, area of contaminated zone, thickness of contaminated zone, length parallel to aquifer flow, unsaturated zone thickness, and contaminated fraction below the water table.
The uncertainty analysis was performed for the two structures to remain at license termination; Reactor Building and WGTV. The parameters used for the two BFM Insitugw uncertainty analyses are listed in . The parameters listed as Variable in Attachment 5 were assigned the values shown in Table 7.
Table 7 - Deterministic Geometry RESRAD Parameters Used in the Uncertainty Analysis for the Two BFM Insitugw Configurations Parameter Rx Building WGTV Above 619 Cover Depth (m) 0.91 0.91 Area of Contaminated Zone (m2) 262.68 86.33 Thickness of Contaminated zone (m) 7.32 4.57 Length Parallel to Aquifer Flow (m) 18.29 9.6 Unsaturated Zone Thickness (m) 0 0 Contaminated Fraction Below the 0.71 0.53 Water Table The uncertainty analysis was performed for each radionuclide individually. This conservatively disregards the reduced influence of low abundance radionuclides on the total dose and eliminates the potential impact of uncertainty in mixture fractions. The RESRAD Uncertainty Report file names for Page 15 of 183
RS-TD-313196-004 Revision 4 the Rx Building and the WGTV BFM Insitugw analyses are listed in Attachment 2. The Uncertainty Reports are provided electronically.
The Kd values are radionuclide-specific. The uncertainty analyses for all radionuclides, except Nb-94 which had a positive PRCC value near zero, showed a negative correlation between dose and Kd. With a few exceptions, the negative correlation exceeded the PRCC l0.25l threshold. The predominance of negative correlation with Kd was expected because the majority of the contamination is below the water table and the primary dose pathway in the BFM Insitugw scenario is through the ingestion of well water. To ensure conservatism, the deterministic Kd values selected for all negatively correlated radionuclides, in both the Rx Building and WGTV, were the 25th percentile values from Reference 9.
The positive correlation to the Nb-94 Kd was investigated further primarily because a cross-check of the Standardized Rank Regression Coefficient (SRRC) indicated more significant positive correlation than the PRCC. The cause of the positive correlation was found to be direct dose from the water independent pathway after long term cover erosion. The maximum Nb-94 dose occurs when the 75th percentile Kd is applied, as opposed to the 25th percentile, for both the Rx and WGTV. The time of maximum dose is year 312. This result is due to the unique decay characteristics of Nb-94 which include gamma emission with a very long half-life. Although the maximum dose from Nb-94 occurs at year 312, the 75th percentile Kd was applied to ensure conservatism.
The assigned Kd values for all radionuclides are listed in Table 8. The parameter distributions for the site-specific soil type of sand [9] were used to generate the median, 25th and 75th percentile deterministic values (see Attachment 3). Note that Reference [9] does not contain values for Europium; the 25th percentile from the NUREG-6697 Kd parameter distribution was used.
Table 8 - BFM Insitugw Rx Building and WGTV Deterministic Values Selected for Distribution Coefficients (Kd)
Kd in Contaminated Zone and Radionuclide Saturated Zone (No Unsaturated Zone Present)
H-3 Negative 0.05 C-14 Negative 1.8 Fe-55 Negative 38 Ni-59 Negative 147 Co-60 Negative 9 Ni-63 Negative 147 Sr-90 Negative 5 Nb-94 Positive 611 Tc-99 Negative 0.04 Cs-137 Negative 50 1
Eu-152 Negative 95 1
Eu-154 Negative 95 1
Eu-155 Negative 95 Np-237 Negative 1 Pu-238 Negative 173 Pu-239/240 Negative 173 Pu-241 Negative 173 Am-241 Negative 329 Page 16 of 183
RS-TD-313196-004 Revision 4 Kd in Contaminated Zone and Radionuclide Saturated Zone (No Unsaturated Zone Present)
Am-243 Negative 329 Cm-243/244 Negative 881 Table 9 and Table 10 provide the uncertainty analysis results for the parameters that are not radionuclide-specific and the selected deterministic parameters. If a parameter is sensitive for any radionuclide the corresponding deterministic value (75th or 25th percentile depending on the correlation) is assigned to all radionuclides.
Table 9 - Rx Building: BFM Insitugw Uncertainty Analysis Results and Deterministic Values Selected for Non-Nuclide Specific Parameter Distributions Correlation Radionuclide Basis of Selected to Dose1 Deterministic Parameter Deterministic Parameter Value Selection Contaminated zone erosion rate NS NA median 0.0015 Contaminated zone b parameter NS NA median 0.97 Evapotranspiration coefficient NS NA median 0.62 Wind Speed 2 NS NA median 4.5 Runoff coefficient NS NA median 0.45 Saturated zone b parameter NS NA inactive NA Negative H-3, C-14, Fe-55, Ni-59, Co-60, Ni-63, Sr-90, Tc-99, Cs-137, Eu-152, Eu-25th Percentile 154, Eu-155, Np-Well pump intake depth 6.1 237, Pu-238, Pu-239, Pu-240, Pu-241, Am-241, Am-243, Pu-241, Cm-243, Cm-244 Mass loading for inhalation NS NA median 2.35E-05 Indoor dust filtration factor NS NA median 0.55 External gamma shielding factor NS NA median 0.27 Well Pumping Rate NS NA median 986.1 Depth of Soil Mixing Layer NS NA median 0.15 Positive Nb-94, Cs-137, Eu-75th Percentile Cover Erosion Rate 152, Eu-154, Am- 0.0029 243 (1) NS = Not Sensitive (2) Site-specific annual average wind speed from Wisconsin State Climatology Office converted to m/s ( Web Address http://www.aos.wisc.edu/~sco/clim-history/7cities/la_crosse.html)
Page 17 of 183
RS-TD-313196-004 Revision 4 Table 10 - WGTV: BFM Insitugw Uncertainty Analysis Results and Deterministic Values Selected for Non-Nuclide Specific Parameter Distributions Correlation Radionuclide Basis of Selected to Dose1 Deterministic Parameter Deterministic Parameter Value Selection Contaminated zone erosion rate NS Median 0.0015 Contaminated zone b parameter NS Median 0.97 Evapotranspiration coefficient NS Median 0.62 Wind Speed 2 NS Median 4.5 Runoff coefficient NS Median 0.45 Saturated zone b parameter NS Inactive NA Negative H-3, C-14, Fe-55, Ni-59, Co-60, Ni-63, Sr-90, Tc-99, Cs-137, Eu-152, Eu-Minimum 154, Eu-155, Np-Well pump intake depth Depth 6.1 237, Pu-238, Pu-239, Pu-240, Pu-241, Am-241, Am-243, Cm-243, Cm-244 Mass loading for inhalation NS Median 2.35E-05 Indoor dust filtration factor NS Median 0.55 External gamma shielding factor NS Median 0.27 Well Pumping Rate NS Median 986.1 Depth of Soil Mixing Layer NS Median 0.15 Positive Nb-94, Cs-137, Eu-75th Percentile Cover Erosion Rate 152, Eu-154, Am- 0.0029 241, Am-243 (1) NS = Not Sensitive (2) Site-specific annual average wind speed data from Wisconsin State Climatology Office converted to m/s (Web Address:
http://www.aos.wisc.edu/~sco/clim-history/7cities/la_crosse.html) 3.1.3. BFM Insitugw RESRAD Deterministic Analysis As discussed above, the BFM Insitugw RESRAD dose assessments were performed separately for the Reactor Building and WGTV. The deterministic parameters provided in Attachment 5 were applied to both analyses. The parameters identified as Variable in Attachment 5 were replaced by the values in Table 7 for each basement. The PDFs listed in Attachment 5 were replaced with the deterministic values in Table 8 through Table 10.
Page 18 of 183
RS-TD-313196-004 Revision 4 The file names for the BFM Insitugw deterministic RESRAD Summary Reports are listed in . The Summary Reports are provided electronically. The resulting DSRs are provided in Table 11.
Table 11 - BFM Insitugw DSRs Rx Building WGTV Radionuclide (mrem/yr per pCi/g) (mrem/yr per pCi/g)
H-3 5.916E-03 2.703E-03 C-14 1.581E-01 8.069E-02 Fe-55 3.787E-03 1.852E-03 Ni-59 3.940E-04 2.032E-04 Co-60 6.691E-01 3.759E-01 Ni-63 1.079E-03 5.003E-04 Sr-90 6.440E+00 3.661E+00 Nb-94 1.546E-01 6.640E-02 Tc-99 1.355E-01 6.195E-02 Cs-137 2.674E-01 1.295E-01 Eu-152 1.824E-02 8.675E-03 Eu-154 2.649E-02 1.260E-02 Eu-155 4.112E-03 1.955E-03 Np-237 3.887E+02 1.854E+02 Pu-238 5.089E+00 2.398E+00 Pu-239 5.652E+00 2.911E+00 Pu-240 5.651E+00 2.907E+00 Pu-241 1.090E-01 5.311E-02 Am-241 3.066E+00 1.499E+00 Am-243 3.054E+00 1.567E+00 Cm-243 7.831E-01 3.658E-01 Cm-244 6.260E-01 2.924E-01 3.1.4. BFM Insitugw Scenario DCGLs The BFM Insitugw DCGLs were calculated using Equation 1 where the inputs and calculation results are provided in Attachments 7 and 8. The BFM Insitugw DCGLs are listed in Table 13.
Page 19 of 183
RS-TD-313196-004 Revision 4 Equation 1 25
() =
()
Where:
BFM Insitugw DCGL(i) = DCGL for radionuclide (i) (pCi/m2)
DSR (i) = RESRAD Dose to Source Ratio for radionuclide i (mrem/yr per pCi/g)
FCunit = Basement-specific unit fill concentration (pCi/g) assuming release of unit inventory of 1 pCi/m2 from concrete (pCi/g per pCi/m2).
Page 20 of 183
RS-TD-313196-004 Revision 4 Table 12 - BFM Insitugw DCGLs Rx Building WGTV BFM Insitugw DCGL BFM Insitugw DCGL Radionuclide (pCi/m2) (pCi/m2)
H-3 2.16E+10 1.60E+10 C-14 8.08E+08 5.35E+08 Fe-55 3.37E+10 2.33E+10 Ni-59 3.24E+11 2.13E+11 Co-60 1.91E+08 1.15E+08 Ni-63 1.18E+11 8.63E+10 Sr-90 1.98E+07 1.18E+07 Nb-94 8.26E+08 6.50E+08 Tc-99 9.43E+08 6.97E+08 Cs-137 4.78E+08 3.34E+08 Eu-152 7.00E+09 4.98E+09 Eu-154 4.82E+09 3.43E+09 Eu-155 3.11E+10 2.21E+10 Np-237 3.29E+05 2.33E+05 Pu-238 2.51E+07 1.80E+07 Pu-239 2.26E+07 1.48E+07 Pu-240 2.26E+07 1.49E+07 Pu-241 1.17E+09 8.13E+08 Am-241 4.17E+07 2.88E+07 Am-243 4.18E+07 2.76E+07 Cm-243 1.63E+08 1.18E+08 Cm-244 2.04E+08 1.48E+08 3.1.5. BFM Insitu Drilling Spoils Scenario DCGLs The residual radioactivity in the concrete is assumed to be brought to the ground surface during the installation of a well that randomly hits backfilled structural concrete. The driller is assumed to be unaware that the backfilled structure is present. The residual radioactivity in the concrete surfaces is brought to the surface with the drilling spoils which includes the fill material above the structure floor.
The source term for the BFM Insituds scenario is the residual radioactivity remaining in concrete at the time of license termination assuming no decay or release to the fill. The BFM Insituds DCGLs are calculated with units of pCi/m2.
There are a number of ways that installers handle and dispose of drilling spoils, including the use of slurry pits, tanks, and dumping the drilling spoils on the existing surface soils. The use of pits would likely involve additional dilution by refilling the pit with the material excavated during its construction. As a conservative assumption, no dilution of the spoil material is assumed after being brought to the surface.
Page 21 of 183
RS-TD-313196-004 Revision 4 The well is assumed to be drilled into the basement fill down to the concrete floor where refusal is met and drilling stopped. The extent of drilling into concrete is assumed to be sufficient to capture 100 percent of the remaining residual radioactivity in the concrete surface within the borehole area. The volume of spoil material brought to the surface is calculated based on the borehole diameter and depth of drilling which is conservatively assumed to be the minimum fill depth of 3 feet for all basements in order to minimize the mixing volume. The concrete and fill are uniformly mixed and spread over a circular area on the ground surface to a depth of 0.15 m.
The dose from the circular area at the surface was calculated using the surface soil DCGLs and AFs for an area of 0.457 m2. The AFs were calculated using the deterministic parameters applied for soil DCGLs. The file name for the RESRAD Summary Report for the AF calculation is listed in . The RESRAD Summary report is provided electronically. The AFs and BFM calculation inputs and results are provided in Attachment 8. The BFM Insituds DCGLs are listed in Table 13.
Table 13 - BFM Insituds DCGLs (same values for both basements)
Reactor Building WGTV BFM Insituds BFM Insituds Radionuclide DCGL DCGL (pCi/m2) (pCi/m2)
H-3 5.09E+13 5.09E+13 C-14 4.40E+15 4.40E+15 Fe-55 4.53E+16 4.53E+16 Ni-59 6.15E+16 6.15E+16 Co-60 6.00E+08 6.00E+08 Ni-63 2.52E+16 2.52E+16 Sr-90 3.41E+11 3.41E+11 Nb-94 8.72E+08 8.72E+08 Tc-99 1.37E+12 1.37E+12 Cs-137 2.45E+09 2.45E+09 Eu-152 1.27E+09 1.27E+09 Eu-154 1.19E+09 1.19E+09 Eu-155 3.44E+10 3.44E+10 Np-237 9.83E+09 9.83E+09 Pu-238 5.59E+11 5.59E+11 Pu-239 5.07E+11 5.07E+11 Pu-240 5.11E+11 5.11E+11 Pu-241 4.95E+12 4.95E+12 Am-241 9.68E+10 9.68E+10 Am-243 7.21E+09 7.21E+09 Cm-243 1.17E+10 1.17E+10 Cm-244 8.90E+11 8.90E+11 3.2. BFM Excavation Scenario DCGLs The BFM Excavation scenario assumes that some or all of the backfilled structure concrete is excavated and spread on the surface at some time after license termination. A typical excavation Page 22 of 183
RS-TD-313196-004 Revision 4 process for a backfilled structure would entail using a medium sized excavator with a 1.0 to 1.5 cubic yard bucket to excavate and stockpile fill. After removing the fill to the planned excavation depth, a hoe-ram would be used to pound out the concrete walls and floor (if the excavation reaches the floor).
The concrete would be segregated, the rebar removed, and remaining concrete size reduced. The excavation scenario assumes that the size reduced concrete is used as onsite fill. Large-scale industrial excavation of the entire basement may require different methods but the result would be the same, i.e.,
a volume of sized concrete to be used as onsite fill.
The excavation scenario takes no credit for decay. The assessment provides BFM Excavation DCGLs in units of pCi/m2. The DCGLs are calculated to ensure that the average radionuclide concentrations in the excavated, mixed, and sized concrete do not exceed the soil DCGLs which is a conservative approach given that the surface area of excavated concrete, assuming 1 m spread depth, would be less than the 7500 m2 area assumed in the calculation of the soil DCGL (see section 2.1). Due to differences in geometry and contamination potential, the BFM Excavation DCGLs are calculated separately for the Reactor Building and WGTV.
The radionuclide concentrations (pCi/g) in the inadvertently mixed, excavated concrete that is assumed to be spread on the site surface is a linear function of the ratio of concrete surface area (SA) to concrete volume (V). The SA/V ratio was calculated in two ways; 1) assuming full excavation of the entire basement, and 2) assuming partial excavation that includes only the walls with the minimum thickness (0.75 feet for both the Reactor Building and WGTV). The walls with minimum thickness will have the maximum SA/V ratio and will result in the maximum concentration in the excavated concrete.
The SA/V ratios and BFM Excavation DCGLs are provided in Attachment 9. As seen in Table 14, the SA/V ratios for the partial excavation of the minimum thickness wall is greater than the SA/V ratio assuming full excavation. To ensure conservatism, the maximum SA/V ratio was used in the DCGL calculation which results in the maximum radionuclide concentrations in the excavated concrete.
Table 14 - BFM Concrete Excavation SA/V Ratios for Full and Partial Excavation Partial Excavation SA/V Full Excavation SA/V Structure (Minimum Wall Thickness) Partial SA/V Full SA/V (m2/m3)
(m2/m3)
Waste Gas 2.55 4.37 1.72 Tank Vault Reactor 0.95 4.37 4.61 Building The BFM Excavation DCGLs are listed in Table 15 and are the same for the Reactor Building and WGTV because the concentrations in the excavated concrete are both based on the same partial (i.e.,
maximum) SA/V ratio of 4.37 (see Table 14).
Page 23 of 183
RS-TD-313196-004 Revision 4 Table 15 - BFM Excavation DCGLs (same values for both basements)
Rx Building WGTV Radionuclide Excavation DCGL Excavation DCGL (pCi/m2) (pCi/m2)
H-3 9.38E+09 9.38E+09 C-14 1.32E+11 1.32E+11 Fe-55 5.47E+12 5.47E+12 Ni-59 1.39E+13 1.39E+13 Co-60 6.88E+06 6.88E+06 Ni-63 5.09E+12 5.09E+12 Sr-90 3.54E+09 3.54E+09 Nb-94 1.08E+07 1.08E+07 Tc-99 1.91E+08 1.91E+08 Cs-137 3.12E+07 3.12E+07 Eu-152 1.53E+07 1.53E+07 Eu-154 1.42E+07 1.42E+07 Eu-155 6.03E+08 6.03E+08 Np-237 4.29E+05 4.29E+05 Pu-238 8.92E+08 8.92E+08 Pu-239 8.03E+08 8.03E+08 Pu-240 8.04E+08 8.04E+08 Pu-241 1.95E+10 1.95E+10 Am-241 5.85E+08 5.85E+08 Am-243 1.00E+08 1.00E+08 Cm-243 1.55E+08 1.55E+08 Cm-244 1.43E+09 1.43E+09
- 4. Reactor Building and WGTV DCGLs for Radionuclides of Concern 4.1. Radionuclides of Concern and Insignificant Contributor Dose Adjustment Reference [1] calculates the dose for the radionuclides in the initial suite using the LACBWR radionuclide mixture and the DCGLs in Table 12, Table 13, and Table 15. The radionuclides that in total represent less than 10% of the dose criterion are eliminated for detailed consideration during implementation of FSS. The radionuclides remaining are the Radionuclides of Concern (ROC). The DCGLs for the ROC are adjusted by the total dose attributed to the insignificant radionuclides that were removed to account for the dose from the insignificant radionuclides. Reference [1] determined that the ROC for LACBWR are Co-60, Sr-90, Cs-137, Eu-152 and Eu-154. Using the conservative 75th percentile mixture in Table 1, the IC dose is 2.13% and 7.14% of the 25 mrem/yr dose criteria for the Reactor Building and WGTV, respectively. To provide additional margin, the IC dose assigned to both basements was increased to 10%. The 10% value is used to calculate the adjustment factor which is 1-0.10 or 0.90. The DCGLs are multiplied by 0.90 to calculate the adjusted DCGLs for ROC.
Page 24 of 183
RS-TD-313196-004 Revision 4 4.2. BFM Groundwater Scenario Mixing Volume Sensitivity Analysis for ROC The BFM DCGLgw are based on a conceptual model that assumes instant release of all activity and uniform mixing throughout the entire fill volume. The concentration in fill is a function of the mixing volume which is proportional to the distance away from the wall that the released activity is assumed to mix. The fill concentration increases with decreasing mix distance but the source term geometries, and dose per pCi/g in fill, also change with mixing distance. A sensitivity analysis was performed for the ROC to evaluate the impact of mixing distance on the dose from the BFM Groundwater scenario.
Mixing distance does not impact the dose from the BFM Drilling Spoils scenario which assumes all activity remains in the concrete.
The mixing distance sensitivity analyses for the BFM Groundwater scenario were performed assuming that released activity mixes over distances of 1 m, 2 m, and 3 m from the floor and wall surfaces, as opposed to full mixing. A mixing distance of 1 m was assumed to conservatively represent a minimum width from which a well drawdown zone would not include dilution with adjacent, uncontaminated, groundwater.
Separate analyses were performed for the Reactor Building and the WGTV. For the WGTV, three fill mixing geometries were evaluated including; 1) mixing in fill adjacent to the two walls perpendicular to groundwater flow, 2) mixing in fill adjacent to a wall parallel to groundwater flow, and 3) mixing in fill adjacent to the floor. RESRAD modeling was performed with the deterministic parameters used to calculate the BFM Insitugw DCGLs (see section 3.1.4) but changing the source term parameters to represent the three mixing geometries, for 1, 2, and 3 m distances, as shown in Table 16.
Table 16 provides the geometric input values and Attachment 4 provides the additional inputs and results of this calculation.
Table 16 - WGTV Mixing Sensitivity RESRAD Source Term Geometries Parameter Mixing Perpendicular Parallel Wall Floor Distance Walls Area of 1 18 9.6 86.4 Contaminated 2 36 19.2 86.4 Zone (m2) 3 54 28.8 86.4 Thickness of 1 4.57 4.57 1 Contaminated 2 4.57 4.57 2 zone (m) 3 4.57 4.57 3 Length Parallel to 1 2 9.6 9.6 Aquifer Flow (m) 2 4 9.6 9.6 3 6 9.6 9.6 The values in Table 16 are directly related to the WGTV structure geometry with the exception of the values listed for the perpendicular walls. There are two walls perpendicular to groundwater flow and the activity in each wall is assumed to mix in the layer of fill immediately adjacent to the wall. The fill layers from each of the two perpendicular walls are assumed to be contiguous resulting in a length parallel to flow of 2 times the mixing distance.
The Reactor Building is circular as opposed to rectangular. Therefore, there is no geometry equivalent to the Parallel Wall geometry in the WGTV. The Perpendicular Walls and Floor geometries were evaluated. The Reactor Building mix sensitivity source term geometries for 1, 2, and 3 m distances are provided in Table 17.
Page 25 of 183
RS-TD-313196-004 Revision 4 Table 17 - Reactor Building Mixing Sensitivity RESRAD Source Term Geometries Parameter Mixing Perpendicular Floor Distance Walls Area of 1 102.34 262.68 Contaminated 2 179.55 262.68 Zone (m2) 3 231.62 262.68 Thickness of 1 7.32 1 Contaminated 2 7.32 2 zone (m) 3 7.32 3 Length Parallel to 1 2 18.29 Aquifer Flow (m) 2 4 18.29 3 6 18.29 The RESRAD file names for the analyses of the 15 mixing sensitivity geometries in Table 16 and Table 17 are listed in Attachment 2. The RESRAD Summary Reports are provided electronically.
The impact of mixing distance on dose was evaluated by calculating the ratio of the dose factor (mrem/year per pCi/m2) for each partial mixing distance (1, 2, and 3 m) to the dose factor under the full mixing assumption. The maximum values of the ratios of Partial/Full mixing dose, for all ROC, and all 15 geometries listed in Tables 16 and 17 are provided in Table 18. The dose from the perpendicular wall and floor geometries were summed, for each partial mixing distance, to determine the maximum ratio because both the floor and perpendicular wall fill source terms can contribute to a well simultaneously under partial mixing. The parallel wall source term (WGTV only) includes the fill from the top of the wall down to the floor. The residual radioactivity in the floor is therefore included in the calculation of fill concentration. The well is assumed to be placed at the downstream edge of the parallel wall source term.
Table 18 - Mixing Sensitivity Analysis Results Summary.
Maximum Ratio of Dose Factor Partial Mix/Full Mix ROC Rx Building WGTV Wall + Floor Wall + Floor Co-60 1.25 1.19 Cs-137 1.91 1.42 Sr-90 1.08 1.18 Eu-152 2.03 1.41 Eu-154 2.03 1.40 To ensure a conservative and bounding DCGLgw for ROCs in backfilled basement surfaces, The DCGLgw values calculated for each ROC under the full mixing assumption (Table 12) were reduced by the ratios in Table 18.
4.3. Reactor Building and WGTV DCGL The DCGLs for each ROC, each basement, and each dose scenario (Groundwater, Drilling Spoils, Excavation), after adjusting for the IC dose fraction (and the mixing volume sensitivity for the groundwater scenario), are provided in Table 19. These values are designated as the DCGL Basement Scenario (DCGLBS). The DCGLBS for the ROC, including the IC dose adjustment, and mixing sensitivity adjustment for the groundwater scenario, are calculated using Equation 2.
Page 26 of 183
RS-TD-313196-004 Revision 4 Equation 2
, =
, = ,
, =
Where:
DCGLBS,i GW = BFM Insitu Groundwater, for ROC (i), adjusted for IC dose and mixing sensitivity BFM Insitugw,i DCGL = BFM Insitugw DCGL, for ROC (i), from Table 12 IC Dose Adjust = Insignificant contributor adjustment factor of 0.9 (see section 4.1)
MS Ratioi = Maximum Mixing Sensitivity ratio, for ROC (i), from Table 18.
DCGLBS,i DS = DCGLBS, for ROC (i), adjusted for IC dose.
BFM Insituds,i DCGL = BFM Insituds DCGL, for ROC (i), from Table 13 DCGLBS,i Excavation = BFM Excavation DCGL, for ROC (i), adjusted for IC dose BFM Excavation DCGLi = BFM Excavation DCGL, for ROC (i), from Table 15.
The final correction to the ROC DCGLs is to account for the maximum alternate scenario dose for each basement which is 28.4 mrem/yr and 34.9 mrem/yr for the Rx Building and WGTV, respectively (see section 9.2). The values generated by Equation 2 were multiplied by a factor = 25/28.4 and 25/34.9 for the Rx Building and WGTV, respectively. The adjusted DCGLBS are provided in Table 19.
The three adjusted DCGLBS for each basement are summed using Equation 3 to calculate the Basement DCGL (DCGLB) for the ROCs as listed in Table 20.
Table 19 - ROC DCGLs for Each Basement and Individual BFM Scenarios (DCGLBS).
Adjusted for IC Dose, Mixing Sensitivity and Alternate Scenario Dose Reactor Building DCGLBS Waste Gas Tank Vault DCGLBS Drilling Drilling Groundwater Excavation Groundwater Excavation ROC Spoils Spoils Scenario Scenario Scenario Scenario Scenario Scenario (pCi/m2) (pCi/m2)
Co-60 1.21E+08 4.75E+08 5.45E+06 6.23E+07 3.86E+08 4.43E+06 Sr-90 1.46E+07 2.70E+11 2.80E+09 6.42E+06 2.20E+11 2.28E+09 Cs-137 1.98E+08 1.94E+09 2.47E+07 1.52E+08 1.58E+09 2.01E+07 Eu-152 2.73E+09 1.00E+09 1.21E+07 2.28E+09 8.16E+08 9.84E+06 Eu-154 1.88E+09 9.43E+08 1.12E+07 1.57E+09 7.67E+08 9.12E+06 Page 27 of 183
RS-TD-313196-004 Revision 4 Table 20 - ROC DCGL Summation Values for each Basements (DCGLB). Adjusted for IC Dose, Mixing Sensitivity and Alternate Scenario Dose.
Rx Bldg DCGLB WGTV DCGLB ROC (pCi/m2) (pCi/m2)
Co-60 5.16E+06 4.10E+06 Sr-90 1.45E+07 6.40E+06 Cs-137 2.17E+07 1.76E+07 Eu-152 1.19E+07 9.69E+06 Eu-154 1.10E+07 8.97E+06 Note that the DCGLBS values in Table 19 are all larger than the DCGLB values for the same basement in Table 20. This is because the values in Table 19 are the DCGLBS values that lead to a dose of 25 mrem/yr for each scenario individually. For conservatism, the DCGLB is the value that leads to a dose of 25 mrem/yr under the assumption that all three exposure scenarios occur simultaneously, which is not physically possible. The DCGLB,i,j for basement j and nuclide i as shown in Error! Reference source not found. is determined from each of the DCGLBS,i, j values from Table 19 using Equation 3 as follows.
Equation 3
,, =
[ ]
Where:
DCGLB,i,j = DCGLB for radionuclide (i) and basement (j)
DCGLBS = DCGL Basement Scenario for (i) and basement (j)
- 5. Soil Area Factors The RESRAD modeling for soil assumes a large source term area of 7500 m 2. Isolated areas of contamination that are smaller than 7500 m2 will have a lower dose for a given concentration. To address small, isolated elevated areas of soil contamination AFs were developed. An Area Factor is defined as the ratio of the dose from the full source term area to the dose from a smaller area.
Area Factors were calculated for each ROC [1] using RESRAD with the deterministic parameter set used to calculate soil DCGLs. The Area of Contaminated Zone parameter was varied from 1.0 m2 to 100 m2 as shown in Table 21. The need to apply AFs to contaminated areas greater than 100 m2 is unlikely. The AFs are calculated by dividing the concentrations corresponding to 25 mrem/yr for each of the areas evaluated by the soil DCGLs in Table 4.
The RESRAD Summary Report file names for the RESRAD AF runs are listed in Attachment 2. The full RESRAD Summary Reports are provided electronically. The results are summarized in Table 21 and the corresponding area factors are provided in Table 22 Table 21 - RESRAD Results for Area Dependent pCi/g value corresponding to 25 mrem/yr Page 28 of 183
RS-TD-313196-004 Revision 4 Concentration Corresponding to 25 mrem/yr (pCi/g)
ROC 1 m2 2 m2 5 m2 10 m2 100 m2 Co-60 1.209E+02 7.128E+01 3.929E+01 2.609E+01 1.520E+01 Cs-137 5.294E+02 3.152E+02 1.749E+02 1.164E+02 6.873E+01 Sr-90 7.384E+04 4.387E+04 2.428E+04 1.615E+04 9.284E+03 Eu-152 2.646E+02 1.565E+02 8.642E+01 5.744E+01 3.358E+01 Eu-154 2.473E+02 1.460E+02 8.055E+01 5.351E+01 3.122E+01 Table 22 - Soil Area Factors Area Factor (Unitless)
ROC 1 m2 2 m2 5 m2 10 m2 100 m2 Co-60 9.44 5.56 3.07 2.04 1.19 Cs-137 9.11 5.42 3.01 2.00 1.18 Sr-90 11.21 6.66 3.69 2.45 1.41 Eu-152 9.30 5.50 3.04 2.02 1.18 Eu-154 9.38 5.54 3.06 2.03 1.18
- 6. Groundwater Exposure Factors Groundwater Exposure Factors were calculated to address the possibility of low concentrations of groundwater contamination to present at the time of license termination. Groundwater Exposure Factors were calculated for the five ROCs identified in Reference [1]. H-3 was also included because H-3 has been identified in past groundwater samples. Because the industrial scenario does not include irrigation, the only exposure pathway from groundwater is drinking water from onsite well. The GW Exposure factors were therefore calculated directly using Ingestion Dose Conversion Factors from [10]
and the assumed drinking water intake rate of 327 L/yr (see Attachment 1). The GW Exposure factors are provided in Table 23.
Table 23 - Groundwater Exposure Factors for a Water Concentration of 1 pCi/L FGR 11 Dose Water GW Exposure Conversion ROC Intake Rate Factor (mrem/yr Factor (L/yr) per pCi/L)
(mrem/pCi)
Co-60 2.690E-05 327 8.80E-03 Cs-137 5.000E-05 327 1.64E-02 Sr-90 1.420E-04 327 4.64E-02 H-3 6.400E-08 327 2.09E-05 Eu-152 6.480E-06 327 2.12E-03 Eu-154 9.550E-06 327 3.12E-03
- 7. Buried Piping Dose Assessment and DCGL Buried piping is defined as below ground pipe located outside of structures and basements. This section describes the buried pipe dose assessment methods and provides the resulting DCGLs for the initial suite radionuclides.
With the exception of a portion of the Circulating Water System Pipe, none of the buried piping to remain at LACBWR was associated with contaminated systems and therefore contamination potential is minimal. Table 24 provides the list of buried pipe planned to remain following license termination.
The High Pressure Service Water from LACBWR Crib House to G-3 and Well water piping for Well
- 3 are considered non-impacted because they only contacted clean river water or groundwater with no potential for contamination.
Page 29 of 183
RS-TD-313196-004 Revision 4 7.1. Exposure Scenario and Critical Group The dose assessment approach was generally consistent with the guidance for buried material in NUREG-1757, Appendix J in that two exposure scenarios were considered; 1) inadvertent intrusion due to construction of a structure with a basement which results in the buried pipe being excavated and spread across the surface (Excavation scenario), and 2) assuming buried pipe remains in situ (Insitu scenario).
NUREG-1757, Appendix J states that it should be appropriate to use the arithmetic average of the radionuclide concentration in the analysis, including any interspersing clean soil. The buried piping at LACBWR is a minimum of 1 m below grade. The LACBWR excavation scenario is more conservative than recommended in NUREG-1757 in that no mixing is assumed to occur between the residual radioactivity in the buried pipe and interspersing clean soil during excavation.
Table 24 - Buried Pipe to Remain in LACBWR End State Description of Piping Quantity Pipe Elevation (Bottom)
Remaining portion of Circulating Water 525 of 60 steel pipe 630.5 Discharge Pipe1 Deicing Line 105' of 18" 630.5 South Storm Drain 630' of 48" 625.0 100' of 10" 635.0 North Storm Drain 435' of 24' 632 .0 250' of 32" 626.0 Remaining Portion of High Pressure Service 863' of 6" 632.75 Water Supply to LACBWR Fire Suppression System Remaining Portion of Low Pressure Service 44' of 16" 632.0 Water Pipe Remaining portion of Circulating Water Intake 40' of 60" 630.5 Pipe High Pressure Service Water from LACBWR 40 of 6", 222 of 8" 627 Crib House to G-32 Well Water piping for Well #32 438 of 3", 115 of 2", 285 of 1.5" well water #3 pipe installed vertically to depth of 129 Note 1: CW Discharge drops 10 to 620.5 at the outfall.
Note 2: G-3 service water supply pipe and well water supply pipe considered non-impacted. No FSS will be performed.
The conceptual models for the buried pipe Insitu and Excavation scenarios are similar to those developed for the BFM. In both the Insitu and Excavation scenarios the residual radioactivity on the internal surfaces of the pipe is assumed to instantaneously release and mix with a layer of soil in an area equal to the internal surface area of the pipe. The Insitu scenario model assumes that the released radioactivity is a below ground 2.54 cm layer of soil with no credit taken for the presence of the pipe to reduce environmental transport and migration. This is a conservative assumption, particularly for the Circulating Water Discharge Pipe which will be filled with a flowable fill material.
The Excavation scenario model assumes that the released radioactivity is mixed in a 15 cm layer of soil on the ground surface after excavation with no cover. Assuming a 15 cm layer is considered the minimum plausible mixing depth given the large scale industrial process required to excavate the pipe.
The Industrial Worker is exposed to the Insitu and Excavated soil via the same pathways applicable to the BFM and soil DCGL models.
Page 30 of 183
RS-TD-313196-004 Revision 4 7.2. Buried Piping Dose Assessment Dose assessments were performed to calculate DSRs which are the basis for determining DCGLs for the internal surfaces of the pipes after converting units to dpm/100 cm2.
The buried piping was separated into two categories. The first category included the summation and grouping of all impacted buried pipe other than the Circulating Water Discharge piping and is designated as the Group. The second category consisted of the Circulating Water Discharge piping only. The separation of the Circulating water piping was necessary because the geometry was significantly different from the other piping and the pipes are in distinctly different areas of the site.
The Insitu dose calculation for the buried piping Group (which as stated above does not include the Circulating Water Discharge pipe) was performed by RESRAD modeling using the RESRAD parameters applied to the BFM Insitu Groundwater scenario with adjustments to the source term geometry. The lowest elevation at the bottom of the Group piping is 625 (excluding water well #3 piping which is considered non-impacted). Using the lowest elevation maximizes the Insitu dose, which is driven by the groundwater pathway, by minimizing the distance to the water table. The RESRAD parameters Area of Contaminated Zone and Length Parallel to Flow were calculated assuming that the all of the pipe in the Group was located in one circular area equal in size to the summed internal surface area of all Group pipes. The RESRAD parameters applied were the same as listed for the BFM Groundwater Insitu model with the exception of the source term parameters listed in Table 25. The internal surface area of the High Pressure Service Water from LACBWR Crib House to G-3 Well and water piping for Well #3 are conservatively included in the calculation of total area for the Group piping notwithstanding their classification as non-impacted (i.e., no FSS to be performed).
The Insitu dose for the Circulating Water Discharge pipe was also calculated using the BFM Insitu Groundwater parameters with the elevation of the thin contaminated layer being set at the elevation of the bottom of the piping (630.5 foot). The Circulating Water Discharge pipe drops 10 to 620.5 elevation at the outfall but this 10-foot length is trivial compared to the total 525 length at 630.5 elevation. In addition, it is not plausible to locate a well between the location where the pipe drops and the outfall. The contaminated area was set equal to the internal surface area of the pipe.
The dose from the Excavation scenarios (and corresponding DCGLs) for both the Buried Pipe Group and the Circulating Water Discharge pipe were calculated using the RESRAD parameters applied to calculate surface soil DCGLs with source term adjustments as listed in Table 25.
Table 25 - RESRAD Source Term Parameters for Buried Piping DCGL Calculations Parameter Buried Pipe Buried Pipe Circulating Water Circulating Water Group Group Discharge Pipe Discharge Pipe Insitu Excavation Insitu Excavation Cover Depth (m) 3.02 0 2.59 0 Area of Contaminated Zone (m2) 1552.70 1552.70 766.14 766.14 Thickness of Contaminated zone (m) 0.0254 0.15 0.0254 0.15 Length Parallel to Aquifer Flow (m) 44.46 44.46 160.02 160.02 Unsaturated Zone Thickness (m) 0 2.90 0.43 2.90 Depth of Soil Mixing Layer (m) 0.15 0.15 0.15 0.15 Page 31 of 183
RS-TD-313196-004 Revision 4 7.3. RESRAD Results and Buried Piping DCGLs for Initial Suite The RESRAD Summary Report file names for the RESRAD Buried Piping runs are listed in . The full RESRAD Summary Reports are provided electronically. The buried pipe DCGLs are provided in Table 26.
The calculation of the buried pipe DCGLs, including RESRAD source term parameter calculations, the DSRs generated by the RESRAD model, insignificant contributor dose adjustment, and all unit conversions are provided in Attachment 10.
Page 32 of 183
RS-TD-313196-004 Revision 4 Table 26 - Buried Piping DCGLs Circulating Circulating Buried Pipe Buried Pipe Group Water Discharge Water Discharge Group Radionuclide Insitu Pipe Pipe Excavation (dpm/100 cm2) Insitu Excavation (dpm/100 cm2)
(dpm/100 cm2) (dpm/100 cm2)
H-3 4.59E+08 9.65E+08 1.61E+08 1.34E+09 C-14 4.65E+07 4.81E+09 2.60E+07 4.81E+09 Fe-55 1.27E+09 5.98E+10 2.03E+26 7.81E+10 Ni-59 1.15E+10 1.52E+11 2.03E+26 1.99E+11 Co-60 6.37E+06 8.44E+04 2.51E+08 8.62E+04 Ni-63 4.61E+09 5.56E+10 1.11E+11 7.26E+10 Sr-90 5.81E+05 4.03E+07 8.55E+05 4.29E+07 Nb-94 1.02E+08 1.27E+05 1.02E+08 1.29E+05 Tc-99 2.00E+07 2.41E+07 6.50E+06 3.43E+07 Cs-137 1.82E+07 3.60E+05 6.53E+08 3.67E+05 Eu-152 2.71E+08 1.82E+05 5.08E+14 1.86E+05 Eu-154 1.87E+08 1.70E+05 9.89E+17 1.73E+05 Eu-155 1.20E+09 6.62E+06 2.03E+26 6.71E+06 Np-237 6.52E+03 1.52E+04 4.34E+03 2.09E+04 Pu-238 9.79E+05 9.79E+06 6.82E+07 1.27E+07 Pu-239 8.06E+05 8.81E+06 8.15E+05 1.14E+07 Pu-240 8.10E+05 8.82E+06 8.57E+05 1.14E+07 Pu-241 4.56E+07 3.58E+08 2.45E+08 4.37E+08 Am-241 1.62E+06 6.46E+06 8.88E+06 7.84E+06 Am-243 1.51E+06 1.11E+06 1.90E+06 1.16E+06 Cm-243 6.41E+06 1.71E+06 6.78E+08 1.79E+06 Cm-244 8.02E+06 1.57E+07 3.11E+08 2.04E+07 7.4. Buried Pipe Radionuclides of Concern and Adjusted DCGLs The Buried Pipe DCGLs in Table 26 were used in Reference [1] to: calculate the relative dose contributions from the initial suite radionuclides, identify the insignificant dose contributors, select the final ROCs, and adjust the ROCs for the dose fraction attributable to the removed insignificant contributors. To date, no characterization has been performed in buried piping due to the very low contamination potential and lack of access. The dose percentages for the initial suite radionuclides were calculated using the summed DCGLs, which include the Insitu and Excavation scenarios, using the 75th percentile mixture for Soil from Table 1.
The IC dose percentage was 0.5% of the 25 mrem/yr dose limit for both the Group and Circulating Water Discharge Pipe. However, consistent with the approach used for concrete and soil, the IC dose adjustment was made using a value of 10% to provide additional margin. Table 27 provides the Buried Pipe DCGLs for the ROC adjusted for IC dose.
Page 33 of 183
RS-TD-313196-004 Revision 4 Table 27 - Buried Pipe DCGLs for ROCs Adjusted for IC Dose Circulating Water Circulating Water Buried Pipe Group Buried Pipe Group Discharge Pipe Discharge Pipe Radionuclide Insitu Excavation Insitu Excavation (dpm/100 cm2) (dpm/100 cm2)
(dpm/100 cm2) (dpm/100 cm2)
Co-60 5.73E+06 7.60E+04 2.26E+08 7.76E+04 Sr-90 5.23E+05 3.63E+07 7.70E+05 3.86E+07 Cs-137 1.64E+07 3.24E+05 5.88E+08 3.30E+05 Eu-152 2.44E+08 1.64E+05 4.57E+14 1.67E+05 Eu-154 1.68E+08 1.53E+05 8.90E+17 1.56E+05 The final DCGLs to be used during FSS account for the fact that the dose from the Insitu and Excavation scenarios must be summed in the conceptual model for buried pipe dose assessment since the Insitu and Excavation scenarios may occur concurrently to some extent. The summed Buried Pipe DCGLs are provided in Table 28.
Table 28 - Summed Buried Pipe DCGLs for ROC Adjusted for IC Dose Buried Pipe Circulating Water Radionuclide Group Discharge Pipe (dpm/100 cm2) (dpm/100 cm2)
Co-60 7.50E+04 7.75E+04 Sr-90 5.16E+05 7.55E+05 Cs-137 3.18E+05 3.30E+05 Eu-152 1.64E+05 1.67E+05 Eu-154 1.52E+05 1.56E+05
- 8. Concentrations in Excavated Fill Material A final check calculation was performed to determine the maximum hypothetical concentrations of each ROC in fill material after excavation. The calculation was performed for each ROC separately.
Each ROC was assumed to be present in basement concrete at their respective DCGLB values. 100% of the residual radioactivity in the concrete was assumed to instantly release and uniformly mix with fill.
Consistent with the discussion in section 3.2 regarding the excavation of concrete, the concentrations in the fill are calculated for two excavation and mixing scenarios; 1) full excavation of fill and mixing of all activity in concrete (100% release) with all of the fill in the basement, and 2) partial excavation of fill and mixing of the activity in concrete (100% release) with the fill adjacent to the concrete that is excavated. The concentration in fill subject to partial excavation is calculated assuming that the minimum mixing volume is 1 m3 based on a typical fill excavation process which entails using a 1.0 to 1.5 cubic yard bucket (see discussion in section 3.2). The partial excavation fill concentration is calculated assuming that all of the activity in a 1 m2 concrete surface area is captured and mixed in a single 1 m3 bucket load (1 m distance from a 1 m2 surface). To ensure conservatism, several worst-case bucket loads are assumed to be stockpiled together such that area over which the excavated fill is spread results in a soil AF of 1. A single bucket load would have an AF >1.
The fill concentrations from the two excavation scenarios are compared to the soil DCGLs. All maximum fill concentrations were less than their respective soil DCGLs. Therefore, if all activity in basement surfaces is instantly released, mixed with the fill, and excavated, the dose will be less than the dose assigned to the basement concrete.
Page 34 of 183
RS-TD-313196-004 Revision 4 The calculation inputs and results are provided in Attachment 11. The fill concentrations for the Full and Partial excavation assumptions are provided in Table 29. The partial mix fill concentration for the WGTV are slightly less than the full mix concentrations. This is due to the relatively small size of the WGTV and the presence of a center wall and concrete tank support structures which result in a slightly greater ratio of surface area to fill volume for full mix as compared to the 1/1 ratio assumed for partial mix.
Table 29 - Maximum Fill Concentration for Full and Partial Mix Radionuclide Soil DCGL Reactor Building WGTV (pCi/g)
Full Mix Partial Mix Full Mix Partial Mix (pCi/g) (pCi/g) (pCi/g) (pCi/g)
Co-60 10.6 1.15E+00 3.33E+00 3.31E+00 3.25E+00 Sr-90 54.73 3.23E+00 9.37E+00 5.18E+00 5.08E+00 Cs-137 48.3 4.83E+00 1.40E+01 1.42E+01 1.39E+01 Eu-152 23.6 2.65E+00 7.69E+00 7.83E+00 7.69E+00 Eu-154 21.9 2.45E+00 7.11E+00 7.25E+00 7.12E+00
- 9. Alternate Land Use Scenario Dose Two alternate less likely but plausible land use scenarios were considered, Resident Gardener with onsite well and Recreational Use with onsite well. In accordance with NUREG-1757, the less likely but plausible scenarios were not analyzed for compliance, but were used to risk-inform the decision.
NUREG-1757 states that if the peak dose from a less likely put plausible scenario is significant then greater assurance that the scenario is unlikely would be necessary.
A quantitative evaluation of the dose from the Recreational Use scenario was not required. A simple qualitative evaluation concluded that the dose than the Recreational Use scenario will be less than the dose from the Industrial Use scenario because the occupancy time and well water intake rate would be less.
A dose assessment of the Resident Gardener (with onsite well) scenario was performed. The assessment was performed for soil, for the in situ geometry of two backfilled basements to remain (Reactor Building and WGTV), and for the excavation concrete (and fill) from the basements. The doses were calculated assuming that a resident gardener could not plausibly occupy the LACBWR site until after the G-3 plant ceased operation and was decommissioned which was conservatively assumed to be 30 years after license termination.
The full initial suite of radionuclides was evaluated to determine the dose from insignificant contributor (IC) radionuclides specifically for the Resident Gardener scenarios. The Resident Gardener dose was calculated using the ROC (which are the same as selected for the Industrial Use scenario),
after adjusting the ROC for the Resident Gardener - specific IC dose. The dose was calculated using worst-case ROC source terms as described in sections 9.1 through 9.3.
9.1. Resident Gardener Dose: Soil The RESRAD assessment of Resident Gardener dose from soil applied the Industrial Use deterministic parameters with nine parameter changes or additions as listed in Table 30. The contaminated zone thickness was changed to 0.15 m to more closely represent actual site conditions as opposed to the 1 m depth assumed in the screening approach used in the Industrial Use scenario. The remaining parameter changes in Table 30 are metabolic and behavioral. The reference or basis for the selected parameters are also listed in Table 30.
Page 35 of 183
RS-TD-313196-004 Revision 4 Table 30 -Additions/Revisions to Industrial Use Parameters Required for Resident Gardener Scenario Parameter Value Basis Contaminated Zone Thickness 0.15 m Standard surface soil contamination depth assumption and consistent with expected site conditions Inhalation Rate 8400 m3/yr NUREG/CR-5512, Vol. 3 Table 6.29 (23 m3/d x 365 d)
Fraction of Time Spent Indoors 0.649 NUREG/CR-5512, Vol. 3 Table 6.87 Fraction of Time Spent Outdoors 0.124 NUREG/CR-5512, Vol. 3 Table 6.87 (outdoors +
gardening)
Fruit, Vegetable and Grain 112 kg/yr NUREG/CR-5512, Vol. 3 Table 6.87 (other vegetables Consumption + fruits + grain)
Leafy vegetable Consumption 21.4 Kg/yr NUREG/CR-5512, Vol. 3 Table 6.87 Drinking Water Intake 478 L/yr NUREG/CR-5512, Vol. 3 Table 6.87 Well Pumping Rate 530 m3/yr NUREG/CR-6697, Att. C Section 3.10 method assuming 7500 m2 land area and Wisconsin irrigation rate.
Plant Food Contaminated Fraction 1 All plant food assumed to be grown onsite An uncertainty analysis was performed specifically for the soil Resident Gardener Scenario including all radionuclides in the initial suite. The process outlined in Figure 1 was used to perform the uncertainty analysis and to select deterministic parameters for each radionuclide in the initial suite. 2 lists the deterministic parameters and parameter distribution functions (PDF) used for the uncertainty analysis.
A separate uncertainty analysis was performed for each radionuclide, ignoring the effect of radionuclide mixture fractions. This conservatively ensures that all sensitive parameters are identified for low abundance radionuclides regardless of actual impact on total dose given the mixture. The results of the uncertainty analyses are provided in Table 31 and Table 32.
The RESRAD Uncertainty Report file names for the soil Resident Gardener scenario are listed in . The RESRAD Uncertainty Reports are provided electronically.
Page 36 of 183
RS-TD-313196-004 Revision 4 Table 31 - Soil Alternate Scenario Resident Gardener Uncertainty Analysis Results and Deterministic Values Selected for Non-Nuclide Specific Parameter Distributions Correlation Radionuclide Basis of Selected to Dose1 Deterministic Parameter Deterministic Parameter Value Selection Contaminated zone erosion Negative Ni-59, Ni-63, Pu-25th 7.6E-04 rate 241 Contaminated zone b NS NA median 0.97 parameter th Evapotranspiration Positive Tc-99 75 0.69 coefficient Wind Speed Negative C-14 25th 3.6 Runoff coefficient Positive H-3, Tc-99 75 th 0.62 Well pump intake depth NS NA mode 21.2 b Parameter of Unsaturated NS NA median 0.97 zone Mass loading for inhalation NS NA median 2.35E-05 Indoor dust filtration factor NS NA median 0.55 Positive Co-60, Nb-94, Cs-External gamma shielding 137, Eu-152, Eu-75th 0.4 factor 154, Eu-155, Am-243, Cm-243 Negative Fe-55, Pu-238, Pu-239, Pu-240, Pu-Depth of Soil Mixing Layer 25th 0.15 241, Am-241, Cm-243, Cm-244 Negative H-3, Fe-55, Ni-59, Ni-63, Sr-90, Tc-99, Cs-137, Np-237, 25th 1.22 Depth of roots Pu-238, Pu-239.Pu-240, Pu-241, Am-241, Am-243, Cm-243, Cm-244 Wet weight crop yield of NS NA median fruit, grain, and non-leafy 1.75 vegetables Weathering removal NS NA median 33 constant for all vegetation Wet foliar interceptions NS NA median 0.58 fraction of leafy vegetables (3) NS = Not Sensitive Page 37 of 183
RS-TD-313196-004 Revision 4 Table 32 - Soil Alternate Scenario Resident Gardener Uncertainty Analysis Results for Distribution Coefficients (Kd) andDeterministic Values Selected Kd in Contaminated Zone, Radionuclide Unsaturated Zone and Saturated Zone (cm3/mg)
H-3 NS 0.06 C-14 NS 5 Fe-55 NS 220 Ni-59 NS 400 Co-60 NS 60 Ni-63 NS 400 Sr-90 NS 15 Nb-94 NS 160 Tc-99 NS 0.1 Cs-137 NS 280 1
Eu-152 NS 825 1
Eu-154 NS 825 1
Eu-155 NS 825 Np-237 NS 5 Pu-238 NS 550 Pu-239/240 NS 550 Pu-241 NS 550 Am-241 NS 1900 Am-243 NS 1900 Cm-243/244 NS 4000 Note 1: Sand Kds not listed in NUREG-6607 Table 3.9-2 for Europium.
The mean value from NUREG-6697, Table 3.9-1 was used.
Resident Gardener Alternate Scenario DCGLs for soil (pCi/g per 25 mrem/yr) were calculated for each initial suite radionuclide using the deterministic parameters in Attachment 13, with the PDFs replaced by the deterministic values from Table 31 and Table 32. RESRAD default deterministic Plant Transfer Factors were used for the uncertainty analysis. However, the Plant Transfer Factors are expected to be positively correlated for most, if not all radionuclides. The Plant Transfer Factors for all initial suite radionuclides were therefore conservatively assigned the 75th percentile of the NUREG-6697 distribution.
The IC dose was determined specifically for the soil Resident Gardener scenario. The 75th percentile probabilistic radionuclide mixture in Table 1 was used in the analysis. The calculation inputs and calculation results are provided in Attachment 12. The ROC were adjusted to account for the Resident Gardener-specific soil IC dose which was 0.31% of the 25 mrem/yr limit.
Two soil source terms were used to calculate the dose from the Resident Gardener scenario. The first source term is comprised of the maximum ROC soil concentrations identified during characterization.
The second source term is comprised of the ROC soil concentrations corresponding to 25 mrem/yr in the Industrial Use Scenario based on the IC adjusted Industrial Use soil DCGLs (Table 5), the 75th percentile radionuclide mixture (Table 1), and the unity rule.
Page 38 of 183
RS-TD-313196-004 Revision 4 The RESRAD Summary Report file names for the Resident Gardener soil dose calculations for each of the two source terms are listed in Attachment 2. The full reports are provided electronically. The calculation inputs and results are provided in Attachment 13.
The dose from the Resident Gardener alternate scenario, after 30-year decay, using the maximum soil concentrations identified during characterization is 1.13 mrem/yr.
The dose from the Resident Gardener alternate scenario, after 30-year decay, using the hypothetical maximum soil concentrations that could remain under the Industrial Use Scenario is 27.07 mrem/yr.
The Soil DCGLs reported in Table 5 (section 2.3) were adjusted to ensure that the Alternate Scenario soil dose does not exceed 25 mrem/yr.
9.2. Resident Gardener Dose: Reactor Building and WGTV The Resident Gardener dose was also calculated using the backfilled Reactor Building and WGTV basement concrete as the source terms. As for soil, the Resident Gardener scenario is assumed to occur after 30 years. The dose assessment includes the three BFM dose scenarios, Insitu Groundwater, Insitu Drilling Spoils, and Excavation.
9.2.1. Resident Gardener Dose: Basement Insitu Groundwater This section provides the Resident Gardener dose from the basement Insitu Groundwater scenario and maximum hypothetical radionuclide concentrations.
An uncertainty analysis was performed specifically for the Reactor Building and WGTV as source terms using the Resident Gardener Scenario parameter set. All radionuclides in the initial suite were included. The uncertainty analysis process outlined in Figure 1 was followed. 2 provides the deterministic parameters and PDFs used for the uncertainty analysis.
Certain parameters, as listed below, relate to the geometry of each basement. These were changed to the deterministic values listed in Table 7. The affected RESRAD geometry parameters are:
cover depth, area of contaminated zone, thickness of contaminated zone, length parallel to aquifer flow, unsaturated zone thickness, and contaminated fraction below the water table.
A separate uncertainty analysis was performed for each initial suite radionuclide, ignoring the effect of radionuclide mixture fractions. This conservatively ensures that all sensitive parameters are identified for low abundance radionuclides regardless of actual impact on total dose given the mixture.
The RESRAD Uncertainty Report file names for the Reactor Building and WGTV Resident Gardener scenario are listed in Attachment 2. The RESRAD Uncertainty Reports are provided electronically.
The results of the uncertainty analyses are provided in Table 33 and Table 34.
The Kds were negatively correlated for all but two radionuclides, Tc-99 and Nb-94. The absolute values of the PRCC were less than the 0.25 threshold for a number of radionuclides. However, A cross-check with the SRRC in the uncertainty analysis report indicates that the correlation may be more significant than indicated by the PRCC. A sensitivity analysis was performed using the 25th percentile Kds and the median Kds for the radionuclides with PRCC < l0.25l. The 25th percentile Kds resulted in higher dose for the negatively correlated radionuclides and were therefore assigned to all Page 39 of 183
RS-TD-313196-004 Revision 4 negatively correlated radionuclides. The cause of the positive correlation to the Tc-99 Kd was the effect on the plant dose, primarily the water independent pathway. The 75th percentile Kd resulted in the highest dose and was assigned to Tc-99. The cause of the positive correlation to the Nb-94 Kd was found to be direct dose from the water independent pathway after long term cover erosion. The maximum Nb-94 dose occurs when the 75th percentile Kd is applied but the time of maximum dose is year 312. This result is due to the unique decay characteristics of Nb-94 which include gamma emission with a very long half-life. Although the maximum dose from Nb-94 occurs at year 312, the 75th percentile Kd was applied.
Resident Gardener Alternate Scenario Basement Groundwater DCGLs (pCi/g per 25 mrem/yr) were calculated for each initial suite radionuclide using the deterministic parameters in Attachment 12, with the PDFs replaced by the deterministic values from Tables 33 and 34 and the basement geometry parameters replaced with the values in Table 7. The RESRAD default deterministic Plant Transfer Factors were used for the uncertainty analysis. However, the Plant Transfer Factors are expected to be positively correlated for most, if not all radionuclides. The Plant Transfer Factors for all initial suite radionuclides were therefore conservatively assigned the 75th percentile of the NUREG-6697 PDF.
The RESRAD Summary report file names for the calculation of the Reactor Building and WGTV DCGLs and DSRs for the alternate scenario are listed in Attachment 2. The full reports are provided electronically.
Page 40 of 183
RS-TD-313196-004 Revision 4 Table 33 - BFM Insitugw Alternate Scenario Resident Gardener Uncertainty Analysis Results and Deterministic Values Selected for Non-Nuclide Specific Parameter Distributions Correlation to Radionuclide Basis of Selected Dose1 Deterministic Parameter Rx Building WGTV Deterministic Parameter Value Selection Positive Ni-59, Nb-94, Pu-241, Pu-239, Am- Ni-59, Ni-63, Nb-94. Pu-239, Pu-Cover erosion rate 75th 2.9E-03 241 241, Am-241 Contaminated zone b NS median 0.97 parameter Contaminated Zone Erosion NS median 0.00015 Rate th Positive H-3 75 0.69 (Rx Building) (Rx Building) (Rx Building)
Evapotranspiration coefficient NS Median 0.62 (WGTV) (WGTV) (WGTV)
Wind Speed NS median 3.6 Positive H-3 75th 0.62 (Rx Building) (Rx Building) (Rx Building)
Runoff coefficient NS Median 0.45 (WGTV) (WGTV) (WGTV)
H-3, C-14, Fe-55, Sr-90, Np-237, H-3, C-14, Fe-55, Sr-90, Np-237, Minimum Well pump intake depth Negative 6.1 Pu-241, Pu-239, Pu-239, Depth b Parameter of Unsaturated NS median 0.97 zone Mass loading for inhalation NS median 2.35E-05 Indoor dust filtration factor NS median 0.55 External gamma shielding NS median 0.4 factor Depth of Soil Mixing Layer NS median 0.15 C-14, Fe-55, Co-60, Ni-59, Ni-63, H-3, C-14, Fe-55, Ni-59, Co-60, Ni-Sr-90, Tc-99, Cs-137, Eu-152, Eu- 63, Sr-90, Tc-99, Cs-137, Eu-152, Depth of roots Positive 75th 3.07 154, Eu-155, Np-237, Pu-241, Pu- Eu-154, Eu-155, Np-237, Pu-239, 239, Am-241 Pu-241, Am-241 Wet weight crop yield of fruit, NS median 1.75 grain, and non-leafy vegetables Weathering removal constant NS median 33 for all vegetation Wet foliar interceptions NS median 0.58 fraction of leafy vegetables (1) NS = Not Sensitive Page 41 of 183
RS-TD-313196-004 Revision 4 Table 34 - BFM Insitugw Alternate Scenario Resident Gardener Uncertainty Analysis Results for Distribution Coefficients (Kd) and Deterministic Values Selected Rx Building WGTV Kd in Contaminated Zone Kd in Contaminated Zone Radionuclide and Saturated Zone and Saturated Zone (cm3/mg) (cm3/mg)
H-3 Negative1 0.05 Negative1 0.05 C-14 Negative 1.8 Negative 1.8 Fe-55 Negative 38 Negative 38 Ni-59 Negative 147 Negative 147 Co-60 Negative 9 Negative 9 Ni-63 Negative 147 Negative 147 Sr-90 Negative 5 Negative 5 1
Nb-94 Positive 611 Negative 611 Tc-99 Positive 0.46 Positive1 0.46 Cs-137 Negative 50 Negative 50 2
Eu-152 Negative 95 Negative 95 2
Eu-154 Negative 95 Negative 95 Eu-155 Negative 95 Negative 95 Np-237 Negative 1 Negative 1 Pu-238 Negative 173 Negative 173 Pu-239/240 Negative 173 Negative 173 Pu-241 Negative 173 Negative 173 Am-241 Negative 329 Negative 329 Am-243 Negative 329 Negative 329 Cm-243/244 Negative 881 Negative 881 Note 1: 25th and 75th percentile values for sand from Reference 9 (see Attachment 3)
Note 2: Sand Kds not listed in NUREG-6697 Table 3.9-2 for Europium. The mean value from NUREG-6697, Table 3.9-1 was used.
The IC dose is calculated specifically for the Insitu Groundwater Reactor Building and WGTV using the Alternate Scenario Groundwater DCGLs. The Resident Gardener scenario-specific IC dose calculations and inputs are provided in Attachment 13. The Resident Gardener-specific IC doses for the Reactor Building and WGTV are 7.0% and 14.1%, respectively, and the Alternate Scenario Groundwater DCGLs were adjusted using these values.
The Resident Gardener dose is calculated separately for the Reactor Building and WGTV using the Alternate Scenario Groundwater DCGLs for ROC (adjusted for the Resident Gardener-specific IC dose). The radionuclide concentrations used for the calculation were the maximum values in concrete that would be allowed to remain in each basement under the BFM Industrial Use scenario. The maximum concentrations are those corresponding to 25 mrem/yr using the BFM DCGLB values in Page 42 of 183
RS-TD-313196-004 Revision 4 Table 20, the 75th percentile mixture in Table 1, and all ROC contributions using the unity rule. The inputs and calculation results of the maximum ROC concentrations used for the source term and the corresponding Resident Gardener dose are provided in Attachment 13.
The Resident Gardener Insitu Groundwater doses, after 30-year decay, for the Reactor Building and WGTV are 7.51 mrem/yr and 8.72 mrem/yr, respectively.
9.2.2. Resident Gardener Dose: Basement Drilling Spoils This section provides the Resident Gardener dose from the Reactor Building and WGTV basements Insitu Drilling Spoils scenario.
The Resident Gardener dose from the drilling spoils scenario is calculated using the methods described in section 3.1.5 but replacing the Industrial Use soil DCGLs, and the 0.457 m2 soil area factors, with corresponding Resident Gardener Alternate Scenario Soil DCGLs and area factors. The Alternate Scenario Basement Drilling Spoils DCGLs for the ROC were adjusted for IC dose using a conservative assumption that the IC dose percentage was 10% as was used for the BFM Drilling spoils adjustment. The actual IC dose is expected to be the same as that calculated for the Resident Gardener soil scenario (i.e., 0.35%). The radionuclide concentrations applied in the Insitu Drilling Spoils Resident Gardener dose assessment were the same maximum allowable ROC concentrations that were calculated in section 9.2.1.
The alternate scenario drilling spoils dose inputs and calculation results are provided in Attachment 13.
The name of the RESRAD Summary report that provides the Resident Gardener soil areas factors for the 0.457 m2 drilling spoils area is listed in Attachment 2. The Summary Report is provided electronically.
The Resident Gardener Insitu Drilling Spoils doses (after 30-year decay) for the Reactor Building and WGTV are 0.25 mrem/yr and 0.35 mrem/yr, respectively.
9.2.3. Resident Gardener Dose: Basement Concrete Excavation Scenario This section provides the Resident Gardener dose from the Reactor Building and WGTV basement Excavation scenarios.
The BFM Industrial Use Excavation DCGLs are derived by limiting the concentrations in the excavated concrete to the concentrations of the Industrial Use soil DCGLs (see section 3.2). To calculate the Resident Gardener dose from excavated concrete, the BFM Excavation DCGLs are multiplied by the ratio of the Industrial Use Soil DSR to the Resident Gardener Alternate Scenario Soil DSR. Note that the Alternate Scenario Soil DSR are adjusted for Resident Gardener - specific IC dose as discussed in section 9.1. The Alternate Scenario Excavation DCGLs are used to calculate the Resident Gardener dose from excavated basement concrete using the maximum concrete ROC concentrations calculated in section 9.2.1.
The alternate scenario concrete excavation dose calculations and the corresponding inputs are provided in Attachment 13.
The Resident Gardener Concrete Excavation dose (after 30-year decay) for the Reactor Building and WGTV are 20.7 mrem/yr and 25.9 mrem/yr, respectively.
9.2.4. Total Resident Gardener Alternate Scenario Dose: Reactor Building and WGTV The total Resident Gardener doses from the Reactor Building and WGTV are calculated by summing the dose from the Insitu Groundwater, Insitu Drilling Spoils and Excavation scenarios. The Total Page 43 of 183
RS-TD-313196-004 Revision 4 Resident Gardener doses from the Reactor Building and WGTV, assuming maximum allowable concentrations in the basement concrete (see section 9.1), are 28.4 mrem/yr and 34.9 mrem/yr, respectively. To ensure conservatism, the BFM DCGLBS and DCGLB values reported in Table 19 and Table 20 (section 4.3) were adjusted to ensure that the Alternate Scenario dose does not exceed 25 mrem/yr.
The Total Resident Gardener alternate scenario dose calculations and inputs are provided in 3.
9.3. Resident Gardener Dose from Excavated Basement Fill The Resident Gardener dose was also calculated using the maximum hypothetical fill concentrations in the Reactor Building and WGTV from Table 29. The doses from excavated fill (after 30-year decay) were 6.3 mrem/yr and 8.0 mrem/yr for the Reactor Building and WGTV, respectively.
The Resident Gardener Excavated Fill dose calculations and inputs are provided in Attachment 13.
9.4.
Conclusion:
Resident Gardener Alternate Scenario Dose The Resident Gardener dose, after 30 years decay, was evaluated for soil and basements. The maximum soil dose is 27.07 mrem/yr. The maximum basement doses are 28.4 mrem/y r and 34.9 mrem/yr, for the Reactor Building and WGTV, respectively. These doses are not considered significant and therefore greater assurance that these scenarios will not occur is not necessary. However, adjustments were made to the soil and basement DCGLs to ensure that no Alternate Scenario dose exceeds 25 mrem/yr.
- 10. Summation DCGLs (DCGLB) For Initial Suite Radionuclides for Insignificant Contributor Dose Evaluation One of the evaluations in Reference [1] determines the insignificant contributor radionuclide dose for the BFM. To support this evaluation, the DCGLBS values in Table 12, Table 13, and Table 15 are summed to calculate a DCGLB for the initial suite of radionuclides in each of two basements. The DCGLB values are provided in Page 44 of 183
RS-TD-313196-004 Revision 4 Table 35.
Page 45 of 183
RS-TD-313196-004 Revision 4 Table 35 - Summed Basement DCGL (DCGLB) for Initial Suite Radionuclides Rx Building WGTV Radionuclide DCGLB DCGLB (pCi/m2) (pCi/m2)
H-3 6.54E+09 5.91E+09 C-14 8.03E+08 5.33E+08 Fe-55 3.35E+10 2.32E+10 Ni-59 3.17E+11 2.09E+11 Co-60 6.57E+06 6.42E+06 Ni-63 1.16E+11 8.49E+10 Sr-90 1.97E+07 1.18E+07 Nb-94 1.06E+07 1.05E+07 Tc-99 1.59E+08 1.50E+08 Cs-137 2.90E+07 2.82E+07 Eu-152 1.51E+07 1.51E+07 Eu-154 1.40E+07 1.39E+07 Eu-155 5.81E+08 5.77E+08 Np-237 1.86E+05 1.51E+05 Pu-238 2.44E+07 1.77E+07 Pu-239 2.20E+07 1.46E+07 Pu-240 2.20E+07 1.46E+07 Pu-241 1.11E+09 7.81E+08 Am-241 3.89E+07 2.75E+07 Am-243 2.94E+07 2.16E+07 Cm-243 7.89E+07 6.66E+07 Cm-244 1.79E+08 1.34E+08
- 11. Conclusion This TSD documents the RESRAD modeling and calculations required for the dose assessment to determine the BFM DCGLs for backfilled concrete, Soil and Buried Pipe required in LTP Chapter 6 to demonstrate compliance with the 25 mrem/yr dose criteria.
The following RESRAD modeling was required to support the dose assessment:
Uncertainty Analysis for Soil DCGL Uncertainty Analysis for Dose to Source Ratios (DSR) required to calculate BFM Insitu DFs Deterministic Calculation of Soil DCGLs Deterministic Calculation of BFM Insitu DSRs Deterministic Calculation of Soil AFs Deterministic Calculation of Groundwater Exposure Factors Uncertainty Analysis and Deterministic Calculations for Alternates Scenarios Page 46 of 183
RS-TD-313196-004 Revision 4 The following calculations were performed to support the dose assessment:
BFM Excavation DCGLs BFM Insituds DCGLs BFM Insitugw DCGLs Buried Piping DCGLs Groundwater Exposure Factors Alternate Scenario Dose
- 12. References
[1] "EnergySolutions Technical Support Document (TSD) RS-TD-313196-001, Radionuclides of Concern During LACBWR Decommissioning".
[2] "U.S. Nuclear Regulatory Commission, NUREG-1757, Volume 2, Revision 1, "Consolidated Decommissioning Guidance - Characterization, Survey, and Determination of Radiological Criteria, Final Report" - September 2006".
[3] "Argonne National Laboratories, NUREG/CR-6697 "Development of Probabilistic RESRAD 6.0 and RESRAD-BUILD 3.0 Computer Codes" - December 2000".
[4] "Argonne National Laboratories, NUREG/CR-6676, Probabilistic Dose Analysis Using Parameter Distributions Developed for RESRAD and RESRAD-BUILD Codes, July 2000".
[5] "Sandia National Laboratory, NUREG/CR-5512, Volume 3, Residual Radioactive Contamination From Decommissioning Parameter Analysis - October 1999".
[6] "Haley & Aldrich Inc., Hydrogeological Investigation Report, La Crosse Boiling Water Reactor, Dairyland Power Cooperative, Genoa Wisconsin, File No. 38705-008, January 2015".
[7] "ZionSolutions Technical Support Document 14-006, Conestoga Rovers & Associates (CRA)
Report, Evaluation of Hydrological Parameters in Support of Dose Modeling for the Zion Restoration Project".
[8] "Argonne National Laboratory, Users Manual for RESRAD Version 6, ANL/EAD-4, July 2001".
[9] "Sheppard and Thibault, Default Soil/Solid /Liquid Partition Coefficients, Kds, for Four Major Soil Types: A Compendium, Health Physics, Vol. 59 No 4, October 1990".
[10] K. F. Eckerman, A. B. Wolbarst and A. C. Richardson, "Federal Guidance Report No. 11; Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," Oak Ridge National Laboratory and Office of Radiation Programs, US EPA, Oak Ridge TN, and Washington DC, 1988.
Page 47 of 183
RS-TD-313196-004 Revision 4
- 13. Attachments 13.1. Attachment 1: RESRAD Input Parameters for Soil DCGL Uncertainty Analysis 13.2. Attachment 2: RESRAD Output Report File Names 13.3. Attachment 3: Sand Kd Distributions, 25th Percentile and 75th Percentile 13.4. Attachment 4: Fill Material Mixing Volume Sensitivity Analysis 13.5. Attachment 5: BFM Insitugw RESRAD Uncertainty Analysis Input Parameters 13.6. Attachment 6: Calculation of BFM Insitu Groundwater DCGL Reactor Building 13.7. Attachment 7: Calculation of BFM Insitu Groundwater DCGL Waste Gas Tank Vault 13.8. Attachment 8: BFM Drilling Spoils DCGL Calculation 13.9. Attachment 9: BFM Excavation DF Calculation 13.10. Attachment 10: Buried Pipe DCGL Calculation 13.11. Attachment 11: Check Calculation for Maximum Concentration in Fill Material 13.12. Attachment 12: Alternate Scenario Uncertainty Analysis Input Parameters 13.13. Attachment 13: Alternate Scenario Dose Calculation Page 48 of 183
RS-TD-313196-004 Revision 4 Figure 1 - RESRAD Parameter Selection Process Select model parameter Classify as Behavioral, Metabolic, or Physical Priority 1 or 2 Behavioral parameter Metabolic parameter Physical parameter Assign default value Assign default value from NUREG/CR 5512 from NUREG/CR 5512 Site data Vol. 3 Vol. 3 available?
N Yes Input parameter Input parameter o value value No Input parameter value Classify as Priority 1, 2 or 3 Priority 1 or 2 Priority 3 Assign distribution from Assign Median value NUREG/CR-6697, Att C from RESRAD v7.0 Complete sensitivity analysis Input parameter using RESRAD v7.0 value Classify parameter as Sensitive or Non-sensitive Sensitive, lPRCCl > 0.25 Non-sensitive, lPRCCl 0.25 Assign 75% quartile value if Assign 25% quartile value if Assign 50% value TEDE is positively correlated TEDE is negatively correlated distribution with the parameter with the parameter Input parameter Input parameter Input parameter value value value Page 49 of 183
RS-TD-313196-004 Revision 4 Attachment 1 RESRAD Input Parameters for Soil DCGL Uncertainty Analysis Page 50 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Soil Concentrations Basic radiation dose limit (mrem/y) 3 D 25 10 CFR 20.1402 NR NR NR NR Initial principal radionuclide (pCi/g) P 2 D 1 Unit Value NR NR NR NR Distribution coefficients (contaminated, unsaturated, and saturated zones) (cm /g) 3 Mean Kd Value for sand Ac-227 (daughter of Cm-243 and NUREG/CR-6697, Table P 1 D 450 NA NA NA NA 825 Pu-239) 3.9-2, Sheppard and Thibault Am-241 (also daughter of Cm-245 Lognormal-N 7.28 3.15 NA NA 1445 P 1 S NUREG/CR-6697 Att. C and Pu-241)
Lognormal-N 7.28 3.15 NA NA 1445 Am-243 P 1 S NUREG/CR-6697 Att. C C-14 P 1 S Lognormal-N NUREG/CR-6697 Att. C 2.4 3.22 NA NA 11 Lognormal-N 8.82 1.82 NA NA 6761 Cm-243 P 1 S NUREG/CR-6697 Att. C Lognormal-N 8.82 1.82 NA NA 6761 Cm-244 P 1 S NUREG/CR-6697 Att. C Co-60 P 1 S Lognormal-N NUREG/CR-6697 Att. C 5.46 2.53 NA NA 235 Cs-137 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.1 2.33 NA NA 446 Eu-152 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.72 3.22 NA NA 825 Eu-154 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.72 3.22 NA NA 825 Eu-155 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.72 3.22 NA NA 825 Fe-155 P 1 S Lognormal-N NUREG/CR-6697 Att. C 5.34 2.67 NA NA 209 Mean Value NUREG/CR-6697, Att. C Gd-152 (daughter for Eu-152) P 1 D 825 NA NA NA NA 825 (No sand value listed in Table 3.9-2)
H-3 P 1 S Lognormal-N NUREG/CR-6697 Att. C -2.81 0.5 NA NA 0.06 Nb-94 P 1 S Lognormal-N NUREG/CR-6697 Att. C 5.94 3.22 NA NA 380 RESRADv.7.0 Default Nd-144 (daughter for Eu-152) P 1 D 158 Nd not listed in NA NA NA NA NA NUREG/CR-6697 Ni-59 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.05 1.46 NA NA 424 Ni-63 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.05 1.46 NA NA 424 Np-237 (also daughter for Am-241, P 1 S Lognormal-N NUREG/CR-6697 Att. C NA NA NA NA NA Cm-245, and Pu-241)
Page 51 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median 550 Mean Kd Value for sand Pa-231 (daughter for Cm-243 and NUREG/CR-6697, Table P 1 D NA NA NA NA NA Pu-239) 3.9-2, Sheppard and Thibault 270 Mean Kd Value for sand NUREG/CR-6697, Table Pb-210 (daughter for Pu-238) P 1 D NA NA NA NA NA 3.9-2, Sheppard and Thibault 150 Mean Kd Value for sand NUREG/CR-6697, Table Po-210 (daughter Pu-238) P 1 D NA NA NA NA NA 3.9-2, Sheppard and Thibault Lognormal-N < 0.1% of radionuclide Pu-238 P 1 S 6.86 1.89 NA NA 953 mixture Lognormal-N < 0.1% of radionuclide Pu-239 (also daughter for Cm-243) P 1 S 6.86 1.89 NA NA 953 mixture Lognormal-N < 0.1% of radionuclide Pu-240 (also daughter for Cm-244) P 1 S 6.86 1.89 NA NA 953 mixture Pu-241 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.86 1.89 NA NA 953 Mean Kd Value for sand NUREG/CR-6697, Table Ra-226 (daughter Pu-238) P 1 D 500 NA NA NA NA NA 3.9-2, Sheppard and Thibault Mean Kd Value for sand Ra-228 (daughter Cm-244 and Pu- NUREG/CR-6697, Table P 1 D 500 NA NA NA NA NA 240) 3.9-2, Sheppard and Thibault Mean Kd Value for sand NUREG/CR-6697, Table Sm-148 (daughter Eu-152) P 1 D 245 NA NA NA NA 825 3.9-2, Sheppard and Thibault Sr-90 P 1 S Lognormal-N NUREG/CR-6697 Att. C 3.45 2.12 NA NA 32 Tc-99 P 1 S Lognormal-N NUREG/CR-6697 Att. C -0.67 3.16 NA NA 0.51 3200 Mean Kd Value for sand Th-228 (daughter Cm-244 and Pu- NUREG/CR-6697, Table P 1 D NA NA NA NA NA 240) 3.9-2, Sheppard and Thibault Mean Kd Value for sand Th-229 (daughter Am-241, Cm-245, NUREG/CR-6697, Table P 1 D 3200 NA NA NA NA 5884 Np-237, and Pu-241) 3.9-2, Sheppard and Thibault Page 52 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median 3200 Mean Kd Value for sand Th-230 (daughter Cm-246 and Pu- NUREG/CR-6697, Table P 1 D NA NA NA NA NA 238) 3.9-2, Sheppard and Thibault 3200 Mean Kd Value for sand Th-232 (daughter Cm-244 and Pu- NUREG/CR-6697, Table P 1 D NA NA NA NA NA 240) 3.9-2, Sheppard and Thibault Mean Kd Value for sand U-233 (daughter Am-241, Cm-245, NUREG/CR-6697, Table P 1 D 35 NA NA NA NA 126 Np-237, and Pu-241) 3.9-2, Sheppard and Thibault C Mean Kd Value for sand NUREG/CR-6697, Table U-234 (daughter Pu-238) P 1 D 35 NA NA NA NA NA 3.9-2, Sheppard and Thibault C Mean Kd Value for sand U-235 (daughter Cm-243 and Pu- NUREG/CR-6697, Table P 1 D 35 NA NA NA NA NA 239) 3.9-2, Sheppard and Thibault C Mean Kd Value for sand U-236 (daughter Cm-244 and Pu- NUREG/CR-6697, Table P 1 D 35 NA NA NA NA NA 240) 3.9-2, Sheppard and Thibault C Initial concentration of radionuclides No existing groundwater P 3 D 0 NR NR NR NR present in groundwater (pCi/l) contamination Calculation Times Start of dose calculation Time since placement of material (y) P 3 D 0 immediately after license NR NR NR NR termination 0, 1, 3, 10, 30, 100, 300, Time for calculations (y) P 3 D RESRAD Default NR NR NR NR 1000 Contaminated Zone Size of LACBWR Licensed Area of contaminated zone (m2) P 2 D 7500 NR NR NR NR Site Exclusion (LSE) area Surface Soil contamination Thickness of contaminated zone (m) P 2 D 1 thickness not expected to NR NR NR NR exceed 1 m.
Diameter of 7500 m2 Length parallel to aquifer flow (m) P 2 D 98 NR NR NR NR contaminated zone Does the initial contamination Contaminated zone at NA NA NA No NA NA NA NA penetrate the water table? surface Page 53 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Contaminated fraction below water Contaminated zone at P 3 D 0 NR NR NR NR table surface Cover and Contaminated Zone Hydrological Data Cover depth (m) P 2 D 0 No cover NR NR NR NR Density of cover material P 2 D NA No cover NR NR NR NR Cover erosion rate P,B 2 D NA No cover NR NR NR NR Density of contaminated zone e P 1 D 1.76 Site-specific NR NR NR NR (g/cm3)
Contaminated zone erosion rate NUREG/CR-6697 Att. C P,B 2 S Continuous Logarithmic 5E-08 0.0007 0.005 0.2 0.0015 m/y) Table 3.8-1 Contaminated zone total porosity P 2 D 0.31 Site-specifice NR NR NR NR Calculated values for sand Contaminated zone field capacity P 3 D 0.066 NR NR NR NR soil typef Contaminated zone hydraulic Site specifice P 2 D 34822 NR NR NR NR conductivity (m/y) 313 feet/day = 34822 m/y Site specific soil type sand Contaminated zone b parameter P 2 S Lognormal-N NUREG/CR-6697 Att. C -.0253 0.216 NA NA 0.97 Table 3.5-1 Median Humidity in air (g/m3) P 3 D 7.2 1.98 0.334 0.001 0.999 7.2 NUREG/CR-6697 Att. C NUREG/CR-6697 Att. C Evapotranspiration coefficient P 2 S Uniform 0.5 0.75 NR NR 0.625 Figure 4.3-1 NUREG/CR-6697 Att. C Average annual wind speed (m/s) P 2 S Bounded Lognormal - N 1.445 0.2419 1.4 13 4.2 Figure 4.5-1 NUREG/CR-6697 Att. C Precipitation (m/y) P 2 D 0.78 La Crosse, WI NR NR NR NR Table 4.1-2 Irrigation (m/y) B 3 D NA Industrial Scenario NR NR NR NR Irrigation mode B 3 D NA Industrial Scenario NR NR NR NR NUREG/CR-6697 Att. C Runoff coefficient P 2 S Uniform 0.1 0.8 NR NR 0.45 Figure 4.2-1 Watershed area for nearby stream P 3 D 1.00E+06 RESRAD Default NR NR NR NR or pond (m2)
Accuracy for water/soil
- 3 D 1.00E-03 RESRAD Default NR NR NR NR computations Saturated Zone Hydrological Data Density of saturated zone (g/cm3) P 2 D 1.76 Site-specifice NR NR NR NR Page 54 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Saturated zone total porosity P 1 D 0.31 Site-specifice NR NR NR NR Saturated zone effective porosity P 1 D 0.28 Site-specifice NR NR NR NR Calculated values for sand Saturated zone field capacity P 3 D 0.066 NR NR NR NR soil typef Site-specific valuee Saturated zone hydraulic P 1 D 34822 NR NR NR NR conductivity (m/y) 313 feet/day = 34822 m/y Saturated zone hydraulic gradient P 2 D 0.0045 Site-specifice NR NR NR NR Site specific soil type sand Saturated zone b parameter P 2 S Lognormal-N NUREG/CR-6697 Att. C -.0253 0.216 NA NA 0.97 Table 3.5-1 Assumed zero due to Water table drop rate (m/y) P 3 D 0 hydraulic connectivity with NR NR NR NR Mississippi river.
Page 55 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Well pump intake depth (m below P 2 S Triangular Site-specific distribution 6.1 21.2 36.3 NR 19.6 water table)
Existing industrial water supply wells onsite at depth of 116 and 129 below ground surface (the 129 depth equals 36.3 m below the water table). 36.3 m assumed to be maximum well depth.
Minimum well depth assumed to be represented by a nominal 20 screen depth (6.1 m) starting at the maximum seasonal water table elevation of 629 and extending to 10 below 619 elevation where water table continuously present.
Mode is assumed to be mid-point between 6.1 m and 36.3 m which is 21.2 m.
Note that the site-specific distribution is reasonably similar to the NUREG-6697 distribution values of 6, 10, and 30 for the triangular distribution.
Model: Nondispersion (ND) or Mass- Applicable to flowing P 3 D ND NR NR NR NR Balance (MB) groundwater Page 56 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Well pumping rate (m3/y) P 2 S Uniform NUREG/CR-6697, Att. C 328.7 1643.5 NR NR 986.1 provides no recommended value due to high variability.
Industrial Scenario pump rate depends on industry.
NUREG-6697, Table 3.10-1 applies a sanitary and potable water usage rate for four persons of 328.7 m3/yr.
This value is assumed to be the minimum industrial rate.
Maximum industrial rate assumed to supply 20 workers which equates to1643.5 m3/yr.
Unsaturated Zone Hydrological Data Number of unsaturated zone strata P 3 D 1 Site-specifice NR NR NR NR Site Specifice Calculated assuming ground surface 639 elevation, Unsat. zone thickness (m) P 1 D 2.05 m NR NR NR NR Contaminated Zone Thickness 1 m, and maximum water table elevation of 629.
Unsat. zone soil density (g/cm 3) P 2 D 1.76 Site-specifice NR NR NR NR Unsat. zone total porosity P 2 D 0.31 Site-specifice NR NR NR NR Unsat. zone effective porosity P 2 D 0.28 Site-specifice NR NR NR NR Calculated values for sand Unsat. zone field capacity P 3 D 0.066 NR NR NR NR soil typef Unsat. zone hydraulic conductivity Site-specifice P 2 D 34822 NR NR NR NR (m/y)
Unsat. zone soil-specific b parameter Site specific soil type sand 0.97 P 2 S Lognormal-N NUREG/CR-6697 Att. C -.0253 0.216 NA NA Table 3.5-1 Page 57 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Occupancy Inhalation rate (m3/y) M,B 3 D 3066 NUREG-6697 Att. C, Table NR NR NR NR 7.6-1 recommends a median indoor work day as 8.76 hour8.796296e-4 days <br />0.0211 hours <br />1.256614e-4 weeks <br />2.8918e-5 months <br />s/day. Assuming 5 days a week and 50 weeks per years this equates to 2190 hours0.0253 days <br />0.608 hours <br />0.00362 weeks <br />8.33295e-4 months <br /> per year.
NUREG/CR-5512, Vol. 3, Section 5.3.4 recommends an inhalation rate for workers in light industry of 1.4 m3/hr.
Industrial Scenario m3/yr =
1.4 m3/hr
- 2190 hr/yr =
3066 m3/yr.
Mass loading for inhalation (g/m3) P,B 2 S Continuous Linear NUREG/CR-6697, Att. C See See See See 2.35E-05 NUREG- NUREG- NUREG- NUREG-6697 6697 Table 6697 6697 Table Table 4.6-1 Table 4.6-1 4.6-1 4.6-1 RESRAD Users Manual Exposure duration B 3 D 30 parameter value not used NR NR NR NR in dose calculation NUREG/CR-6697, Att. C Indoor dust filtration factor P,B 2 S Uniform 0.15 0.95 NR NR 0.55 Figure 7.1-1 NUREG/CR-6697, Att. C Shielding factor, external gamma P 2 S Bounded Lognormal-N -1.3 0.59 0.044 1 0.2725 Table 7.10-1 Page 58 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Fraction of time spent indoors B 3 D 0.1875 NUREG-6697 Att. C, Table NR NR NR NR 7.6-1 recommends a median indoor work day as 8.76 hour8.796296e-4 days <br />0.0211 hours <br />1.256614e-4 weeks <br />2.8918e-5 months <br />s/day. Assuming 5 days a week and 50 weeks per years this equates to 2190 hours0.0253 days <br />0.608 hours <br />0.00362 weeks <br />8.33295e-4 months <br /> per year.
Majority of industrial work is expected to be indoors.
Consistent with Table 2-3 of the Users Manual for RESRAD Version 6g 75%
of work time is indoors and 25% outdoors.
The corresponding RESRAD indoor Fraction parameter =
(2190*0.75)/(24*365) =
0.1875 Fraction of time spent outdoors (on B 3 D 0.0625 As explained in the basis for NR NR NR NR site) the Indoor Fraction parameter, the indoor time fraction was set at 75% and outdoor time fraction at 25%.
(2190*0.25)/(24*365) =
0.0625 Circular contaminated zone Shape factor flag, external gamma P 3 D Circular assumed for modeling NR NR NR NR purposes Ingestion, Dietary Fruits, non-leafy vegetables, grain M,B 2 D NA Industrial Scenario NR NR NR NR consumption (kg/y)
Leafy vegetable consumption (kg/y) M,B 3 D NA Industrial Scenario NR NR NR NR Milk consumption (L/y) M,B 2 D NA Industrial Scenario NR NR NR NR M,B Meat and poultry consumption (kg/y) 3 D NA Industrial Scenario NR NR NR NR M,B Fish consumption (kg/y) 3 D NA Industrial Scenario NR NR NR NR M,B Other seafood consumption (kg/y) 3 D NA Industrial Scenario NR NR NR NR Page 59 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median M,B NUREG/CR-5512, Vol. 3 Soil ingestion rate (g/y) 2 D 18.3 NR NR NR NR Table 6.87 Drinking water intake (L/y) M,B 2 D 327 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Industrial Scenario water supply assumed to be from an onsite well.
478 L/y from NUREG/CR-5512 corresponds to 1.31 L/d which is considered a conservative value for 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> work day.
1.31 L/d
- 250 work days =
327 L/y Contamination fraction of drinking All water assumed B,P 3 D 1 NR NR NR NR water contaminated Contamination fraction of household B,P 3 1 All water from well water (if used)
Contamination fraction of livestock B,P 3 D NA Industrial Scenario NR NR NR NR water Contamination fraction of irrigation B,P 3 D NA Industrial Scenario NR NR NR NR water Contamination fraction of aquatic B,P 2 D NA Industrial Scenario NR NR NR NR food Contamination fraction of plant food B,P 3 D NA Industrial Scenario NR NR NR NR Contamination fraction of meat B,P 3 D NA Industrial Scenario NR NR NR NR Contamination fraction of milk B,P 3 D NA Industrial Scenario NR NR NR NR Ingestion, Non-Dietary Livestock fodder intake for meat M 3 D NA Industrial Scenario NR NR NR NR (kg/day)
Livestock fodder intake for milk M 3 D NA Industrial Scenario NR NR NR NR (kg/day)
Livestock water intake for meat M 3 D NA Industrial Scenario NR NR NR NR (L/day)
Livestock water intake for milk M 3 D NA Industrial Scenario NR NR NR NR (L/day)
Livestock soil intake (kg/day) M 3 D NA Industrial Scenario NR NR NR NR Mass loading for foliar deposition P 3 D NA Industrial Scenario NR NR NR NR (g/m3)
Page 60 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median NUREG/CR-6697, Att. C Depth of soil mixing layer (m) P 2 S Triangular 0 0.15 0.6 NR 0.15 Figure 3.12-1 Depth of roots (m) P 1 D NA Industrial Scenario NR NR NR NR Drinking water fraction from ground B,P 3 D 1 Industrial Scenario NR NR NR NR water Household water fraction from B,P 3 1 Industrial Scenario NR NR NR NR ground water (if used)
Livestock water fraction from ground B,P 3 D NA Industrial Scenario NR NR NR NR water Irrigation fraction from ground water B,P 3 D NA Industrial Scenario NR NR NR NR Wet weight crop yield for Non-Leafy P 2 D NA Industrial Scenario NR NR NR NR (kg/m2)
Wet weight crop yield for Leafy P 3 D NA Industrial Scenario NR NR NR NR (kg/m2)
Wet weight crop yield for Fodder P 3 D NA Industrial Scenario NR NR NR NR (kg/m2)
Growing Season for Non-Leafy (y) P 3 D NA Industrial Scenario NR NR NR NR Growing Season for Leafy (y) P 3 D NA Industrial Scenario NR NR NR NR Growing Season for Fodder (y) P 3 D NA Industrial Scenario NR NR NR NR Translocation Factor for Non-Leafy P 3 D NA Industrial Scenario NR NR NR NR Translocation Factor for Leafy P 3 D NA Industrial Scenario NR NR NR NR Translocation Factor for Fodder P 3 D NA Industrial Scenario NR NR NR NR Weathering Removal Constant for P 2 D NA Industrial Scenario NR NR NR NR Vegetation (1/y)
Wet Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Non-Leafy Wet Foliar Interception Fraction for P 2 D NA Industrial Scenario NR NR NR NR Leafy Wet Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Fodder Dry Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Non-Leafy Dry Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Leafy Dry Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Fodder Storage times of contaminated foodstuffs (days):
Fruits, non-leafy vegetables, and B 3 D NA Industrial Scenario NR NR NR NR grain Page 61 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Leafy vegetables B 3 D NA Industrial Scenario NR NR NR NR Milk B 3 D NA Industrial Scenario NR NR NR NR Meat and poultry B 3 D NA Industrial Scenario NR NR NR NR Fish B 3 D NA Industrial Scenario NR NR NR NR Crustacea and mollusks B 3 D NA Industrial Scenario NR NR NR NR Well water B 3 D NA Industrial Scenario NR NR NR NR Surface water B 3 D NA Industrial Scenario NR NR NR NR Livestock fodder B 3 D NA Industrial Scenario NR NR NR NR Special Radionuclides (C-14)
C-12 concentration in water (g/cm3) P 3 D NA Industrial Scenario NR NR NR NR C-12 concentration in contaminated P 3 D NA Industrial Scenario NR NR NR NR soil (g/g)
Fraction of vegetation carbon from P 3 D NA Industrial Scenario NR NR NR NR soil Fraction of vegetation carbon from P 3 D NA Industrial Scenario NR NR NR NR air C-14 evasion layer thickness in soil P 2 D NA Industrial Scenario NR NR NR NR (m)
C-14 evasion flux rate from soil P 3 D NA Industrial Scenario NR NR NR NR (1/sec)
C-12 evasion flux rate from soil P 3 D NA Industrial Scenario NR NR NR NR (1/sec)
Fraction of grain in beef cattle feed B 3 D NA Industrial Scenario NR NR NR NR Fraction of grain in milk cow feed B 3 D NA Industrial Scenario NR NR NR NR Dose Conversion Factors (Inhalation mrem/pCi)
Ac-227 M 3 D 6.70E+00 FGR11 NR NR NR NR Am-241 M 3 D 4.44E-01 FGR11 NR NR NR NR Am-243 M 3 D 4.40E-01 FGR11 NR NR NR NR C-14 M 3 D 2.09E-06 FGR11 NR NR NR NR Cm-243 M 3 D 3.07E-01 FGR11 NR NR NR NR Cm-244 M 3 D 2.48E-01 FGR11 NR NR NR NR Cm-245 M 3 D 4.55E-01 FGR11 NR NR NR NR Cm-246 M 3 D 4.51E-01 FGR11 NR NR NR NR Co-60 M 3 D 2.19E-04 FGR11 NR NR NR NR Page 62 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Cs-134 M 3 D 4.62E-05 FGR11 NR NR NR NR Cs-137 M 3 D 3.19E-05 FGR11 NR NR NR NR Eu-152 M 3 D 2.21E-04 FGR11 NR NR NR NR Eu-154 M 3 D 2.86E-04 FGR11 NR NR NR NR Gd-152 M 3 D 2.43E-01 FGR11 NR NR NR NR H-3 M 3 D 6.40E-08 FGR11 NR NR NR NR I-129 M 3 D 1.74E-04 FGR11 NR NR NR NR Nb-94 M 3 D 4.14E-04 FGR11 NR NR NR NR Nd-144e M 3 D 7.04E-02 ICRP60 NR NR NR NR Ni-59 M 3 D 2.70E-06 FGR11 NR NR NR NR Ni-63 M 3 D 6.29E-06 FGR11 NR NR NR NR Np-237 M 3 D 5.40E-01 FGR11 NR NR NR NR Pa-231 M 3 D 1.28E+00 FGR11 NR NR NR NR Pb-210 M 3 D 1.36E-02 FGR11 NR NR NR NR Po-210 M 3 D 9.40E-03 FGR11 NR NR NR NR Pu-238 M 3 D 3.92E-01 FGR11 NR NR NR NR Pu-239 M 3 D 4.29E-01 FGR11 NR NR NR NR Pu-240 M 3 D 4.29E-01 FGR11 NR NR NR NR Pu-241 M 3 D 8.25E-03 FGR11 NR NR NR NR Pu-242 M 3 D 4.11E-01 FGR11 NR NR NR NR Ra-226 M 3 D 8.58E-03 FGR11 NR NR NR NR Ra-228 M 3 D 4.77E-03 FGR11 NR NR NR NR Sm-148e M 3 D 7.34E-02 ICRP60 NR NR NR NR Sr-90 M 3 D 1.30E-03 FGR11 NR NR NR NR Tc-99 M 3 D 8.32E-06 FGR11 NR NR NR NR Th-228 M 3 D 3.42E-01 FGR11 NR NR NR NR Th-229 M 3 D 2.15E+00 FGR11 NR NR NR NR Th-230 M 3 D 3.26E-01 FGR11 NR NR NR NR Th232 M 3 D 1.64e+00 FGR11 NR NR NR NR U-233 M 3 D 1.35E-01 FGR11 NR NR NR NR U-234 M 3 D 1.32E-01 FGR11 NR NR NR NR Page 63 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median U-235 M 3 D 1.23E-01 FGR11 NR NR NR NR U-236 M 3 D 1.25E-01 FGR11 NR NR NR NR NR U-238 M 3 D 1.18E-01 FGR11 NR NR NR Dose Conversion Factors (Ingestion mrem/pCi)
Ac-227 M 3 D 1.41E-02 FGR11 NR NR NR NR Am-241 M 3 D 3.64E-03 FGR11 NR NR NR NR Am-243 M 3 D 3.62E-03 FGR11 NR NR NR NR C-14 M 3 D 2.09E-06 FGR11 NR NR NR NR Cm-243 M 3 D 2.51E-03 FGR11 NR NR NR NR Cm-244 M 3 D 2.02E-03 FGR11 NR NR NR NR Cm-245 M 3 D 3.74E-03 FGR11 NR NR NR NR Cm-246 M 3 D 3.70E-03 FGR11 NR NR NR NR Co-60 M 3 D 2.69E-05 FGR11 NR NR NR NR Cs-134 M 3 D 7.33E-05 FGR11 NR NR NR NR Cs-137 M 3 D 5.00E-05 FGR11 NR NR NR NR Eu-152 M 3 D 6.48E-06 FGR11 NR NR NR NR Eu-154 M 3 D 9.55E-06 FGR11 NR NR NR NR Gd-152 M 3 D 1.61E-04 FGR11 NR NR NR NR H-3 M 3 D 6.40E-08 FGR11 NR NR NR NR I-129 M 3 D 2.76E-04 FGR11 NR NR NR NR Nb-94 M 3 D 7.14E-06 FGR11 NR NR NR NR Nd-144e M 3 D 1.51E-04 ICRP60 NR NR NR NR Ni-59 M 3 D 2.10E-07 FGR11 NR NR NR NR Ni-63 M 3 D 5.77E-07 FGR11 NR NR NR NR Np-237 M 3 D 4.44E-03 FGR11 NR NR NR NR Pa-231 M 3 D 1.06E-02 FGR11 NR NR NR NR Pb-210 M 3 D 5.37E-03 FGR11 NR NR NR NR Po-210 M 3 D 1.90E-03 FGR11 NR NR NR NR Pu-238 M 3 D 3.20E-03 FGR11 NR NR NR NR Pu-239 M 3 D 3.54E-03 FGR11 NR NR NR NR Pu-240 M 3 D 3.54E-03 FGR11 NR NR NR NR Page 64 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Pu-241 M 3 D 6.84E-05 FGR11 NR NR NR NR Pu-242 M 3 D 3.36E-03 FGR11 NR NR NR NR Ra-226 M 3 D 1.32E-03 FGR11 NR NR NR NR Ra-228 M 3 D 1.44E-03 FGR11 NR NR NR NR Sm-148e M 3 D 1.58E-04 ICRP60 NR NR NR NR Sr-90 M 3 D 1.42E-04 FGR11 NR NR NR NR Tc-99 M 3 D 1.46E-06 FGR11 NR NR NR NR Th-228 M 3 D 3.96E-04 FGR11 NR NR NR NR Th-229 M 3 D 3.53E-03 FGR11 NR NR NR NR Th-230 M 3 D 5.48E-04 FGR11 NR NR NR NR Th-232 M 3 D 2.73E-03 FGR11 NR NR NR NR U-233 M 3 D 2.89E-04 FGR11 NR NR NR NR U-234 M 3 D 2.83E-04 FGR11 NR NR NR NR U-235 M 3 D 2.66E-04 FGR11 NR NR NR NR U-236 M 3 D 2.69E-04 FGR11 NR NR NR NR U-238 M 3 D 2.55E-04 FGR11 NR NR NR NR Plant Transfer Factors (pCi/g plant)/(pCi/g soil)
Ac-227 P 1 D NA Industrial Scenario NR NR NR NR Am-241 P 1 D NA Industrial Scenario NR NR NR NR Am-243 P 1 D NA Industrial Scenario NR NR NR NR C-14 P 1 D NA Industrial Scenario NR NR NR NR Cm-243 P 1 D NA Industrial Scenario NR NR NR NR Cm-244 P 1 D NA Industrial Scenario NR NR NR NR Co-60 P 1 D NA Industrial Scenario NR NR NR NR Cs-134 P 1 D NA Industrial Scenario NR NR NR NR Cs-137 P 1 D NA Industrial Scenario NR NR NR NR Eu-152 P 1 D NA Industrial Scenario NR NR NR NR Eu-154 P 1 D NA Industrial Scenario NR NR NR NR Fe-55 P 1 D NA Industrial Scenario NR NR NR NR Gd-152 P 1 D NA Industrial Scenario NR NR NR NR H-3 P 1 D NA Industrial Scenario NR NR NR NR Page 65 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Nb-94 P 1 D NA Industrial Scenario NR NR NR NR Nd-144 P 1 D NA Industrial Scenario NR NR NR NR Ni-59 P 1 D NA Industrial Scenario NR NR NR NR Ni-63 P 1 D NA Industrial Scenario NR NR NR NR Np-237 P 1 D NA Industrial Scenario NR NR NR NR Pa-231 P 1 D NA Industrial Scenario NR NR NR NR Pb-210 P 1 D NA Industrial Scenario NR NR NR NR Pm-147 P 1 D NA Industrial Scenario NR NR NR NR Po-210 P 1 D NA Industrial Scenario NR NR NR NR Pu-238 P 1 D NA Industrial Scenario NR NR NR NR Pu-239 P 1 D NA Industrial Scenario NR NR NR NR Pu-240 P 1 D NA Industrial Scenario NR NR NR NR Pu-241 P 1 D NA Industrial Scenario NR NR NR NR Ra-226 P 1 D NA Industrial Scenario NR NR NR NR Ra-228 P 1 D NA Industrial Scenario NR NR NR NR Sb-125 P 1 D NA Industrial Scenario NR NR NR NR Sm-148 P 1 D NA Industrial Scenario NR NR NR NR Sr-90 P 1 D NA Industrial Scenario NR NR NR NR Tc-99 P 1 D NA Industrial Scenario NR NR NR NR Th-228 P 1 D NA Industrial Scenario NR NR NR NR Th-229 P 1 D NA Industrial Scenario NR NR NR NR Th-230 P 1 D NA Industrial Scenario NR NR NR NR Th-232 P 1 D NA Industrial Scenario NR NR NR NR U-233 P 1 D NA Industrial Scenario NR NR NR NR U-234 P 1 D NA Industrial Scenario NR NR NR NR U-235 P 1 D NA Industrial Scenario NR NR NR NR U-236 P 1 D NA Industrial Scenario NR NR NR NR Meat Transfer Factors (pCi/kg)/(pCi/d)
Ac-227 P 2 D NA Industrial Scenario NR NR NR NR Ag-108m P 2 D NA Industrial Scenario NR NR NR NR Am-241 P 2 D NA Industrial Scenario NR NR NR NR Page 66 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Am-243 P 2 D NA Industrial Scenario NR NR NR NR C-14 P 2 D NA Industrial Scenario NR NR NR NR Cm-243 P 2 D NA Industrial Scenario NR NR NR NR Cm-244 P 2 D NA Industrial Scenario NR NR NR NR Co-60 P 2 D NA Industrial Scenario NR NR NR NR Cs-134 P 2 D NA Industrial Scenario NR NR NR NR Cs-137 P 2 D NA Industrial Scenario NR NR NR NR Eu-152 P 2 D NA Industrial Scenario NR NR NR NR Eu-154 P 2 D NA Industrial Scenario NR NR NR NR Fe-55 P 2 D NA Industrial Scenario NR NR NR NR Gd-152 P 2 D NA Industrial Scenario NR NR NR NR H-3 P 2 D NA Industrial Scenario NR NR NR NR Nb-94 P 2 D NA Industrial Scenario NR NR NR NR Nd-144 P 2 D NA Industrial Scenario NR NR NR NR Ni-59 P 2 D NA Industrial Scenario NR NR NR NR Ni-63 P 2 D NA Industrial Scenario NR NR NR NR Np-237 P 2 D NA Industrial Scenario NR NR NR NR Pa-231 P 2 D NA Industrial Scenario NR NR NR NR Pb-210 P 2 D NA Industrial Scenario NR NR NR NR Po-210 P 2 D NA Industrial Scenario NR NR NR NR Pu-238 P 2 D NA Industrial Scenario NR NR NR NR Pu-239 P 2 D NA Industrial Scenario NR NR NR NR Pu-240 P 2 D NA Industrial Scenario NR NR NR NR Pu-241 P 2 D NA Industrial Scenario NR NR NR NR Ra-226 P 2 D NA Industrial Scenario NR NR NR NR Ra-228 P 2 D NA Industrial Scenario NR NR NR NR Sb-125 P 2 D NA Industrial Scenario NR NR NR NR Sm-148 P 1 D NA Industrial Scenario NR NR NR NR Sr-90 P 2 D NA Industrial Scenario NR NR NR NR Tc-99 P 2 D NA Industrial Scenario NR NR NR NR Th-228 P 2 D NA Industrial Scenario NR NR NR NR Page 67 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Th-229 P 2 D NA Industrial Scenario NR NR NR NR Th-230 P 2 D NA Industrial Scenario NR NR NR NR Th-232 P 2 D NA Industrial Scenario NR NR NR NR U-233 P 2 D NA Industrial Scenario NR NR NR NR U-234 P 2 D NA Industrial Scenario NR NR NR NR U-235 P 2 D NA Industrial Scenario NR NR NR NR U-236 P 2 D NA Industrial Scenario NR NR NR NR Milk Transfer Factors (pCi/L)/(pCi/d)
Ac-227 P 2 D NA Industrial Scenario NR NR NR NR Am-241 P 2 D NA Industrial Scenario NR NR NR NR Am-243 P 2 D NA Industrial Scenario NR NR NR NR C-14 P 2 D NA Industrial Scenario NR NR NR NR Cm-243 P 2 D NA Industrial Scenario NR NR NR NR Cm-244 P 2 D NA Industrial Scenario NR NR NR NR Co-60 P 2 D NA Industrial Scenario NR NR NR NR Cs-134 P 2 D NA Industrial Scenario NR NR NR NR Cs-137 P 2 D NA Industrial Scenario NR NR NR NR Eu-152 P 2 D NA Industrial Scenario NR NR NR NR Eu-154 P 2 D NA Industrial Scenario NR NR NR NR Fe-55 P 2 D NA Industrial Scenario NR NR NR NR Gd-152 P 2 D NA Industrial Scenario NR NR NR NR H-3 P 2 D NA Industrial Scenario NR NR NR NR Nb-94 P 2 D NA Industrial Scenario NR NR NR NR Nd-144 P 2 D NA Industrial Scenario NR NR NR NR Ni-59 P 2 D NA Industrial Scenario NR NR NR NR Ni-63 P 2 D NA Industrial Scenario NR NR NR NR Np-237 P 2 D NA Industrial Scenario NR NR NR NR Pa-231 P 2 D NA Industrial Scenario NR NR NR NR Pb-210 P 2 D NA Industrial Scenario NR NR NR NR Po-210 P 2 D NA Industrial Scenario NR NR NR NR Pu-238 P 2 D NA Industrial Scenario NR NR NR NR Page 68 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Pu-239 P 2 D NA Industrial Scenario NR NR NR NR Pu-240 P 2 D NA Industrial Scenario NR NR NR NR Pu-241 P 2 D NA Industrial Scenario NR NR NR NR Ra-226 P 2 D NA Industrial Scenario NR NR NR NR Ra-228 P 2 D NA Industrial Scenario NR NR NR NR Sm-148 P 2 D NA Industrial Scenario NR NR NR NR Sr-90 P 2 D NA Industrial Scenario NR NR NR NR Tc-99 P 2 D NA Industrial Scenario NR NR NR NR Th-228 P 2 D NA Industrial Scenario NR NR NR NR Th-229 P 2 D NA Industrial Scenario NR NR NR NR Th-230 P 2 D NA Industrial Scenario NR NR NR NR Th-232 P 2 D NA Industrial Scenario NR NR NR NR U-233 P 2 D NA Industrial Scenario NR NR NR NR U-234 P 2 D NA Industrial Scenario NR NR NR NR U-235 P 2 D NA Industrial Scenario NR NR NR NR U-236 P 2 D NA Industrial Scenario NR NR NR NR Bioaccumulation Factors for Fish ((pCi/kg)/(pCi/L))
Ac-227 P 2 D NA Industrial Scenario NR NR NR NR Am-241 P 2 D NA Industrial Scenario NR NR NR NR Am-243 P 2 D NA Industrial Scenario NR NR NR NR C-14 P 2 D NA Industrial Scenario NR NR NR NR Cm-243 P 2 D NA Industrial Scenario NR NR NR NR Cm-244 P 2 D NA Industrial Scenario NR NR NR NR Cm-245 P 2 D NA Industrial Scenario NR NR NR NR Cm-246 P 2 D NA Industrial Scenario NR NR NR NR Co-60 P 2 D NA Industrial Scenario NR NR NR NR Cs-137 P 2 D NA Industrial Scenario NR NR NR NR Eu-152 P 2 D NA Industrial Scenario NR NR NR NR Eu-154 P 2 D NA Industrial Scenario NR NR NR NR Gd-152 P 2 D NA Industrial Scenario NR NR NR NR H-3 P 2 D NA Industrial Scenario NR NR NR NR Page 69 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median I-129 P 2 D NA Industrial Scenario NR NR NR NR Nb-94 P 2 D NA Industrial Scenario NR NR NR NR Ni-59 P 2 D NA Industrial Scenario NR NR NR NR Ni-63 P 2 D NA Industrial Scenario NR NR NR NR Np-237 P 2 D NA Industrial Scenario NR NR NR NR Pa-231 P 2 D NA Industrial Scenario NR NR NR NR Po-210 P 2 D NA Industrial Scenario NR NR NR NR Pb-210 P 2 D NA Industrial Scenario NR NR NR NR Pu-238 P 2 D NA Industrial Scenario NR NR NR NR Pu-239 P 2 D NA Industrial Scenario NR NR NR NR Pu-240 P 2 D NA Industrial Scenario NR NR NR NR Pu-241 P 2 D NA Industrial Scenario NR NR NR NR Pu-242 P 2 D NA Industrial Scenario NR NR NR NR Ra-226 P 2 D NA Industrial Scenario NR NR NR NR Ra-228 P 2 D NA Industrial Scenario NR NR NR NR Sr-90 P 2 D NA Industrial Scenario NR NR NR NR Th-228 P 2 D NA Industrial Scenario NR NR NR NR Th-229 P 2 D NA Industrial Scenario NR NR NR NR Th-230 P 2 D NA Industrial Scenario NR NR NR NR Th-232 P 2 D NA Industrial Scenario NR NR NR NR U-233 P 2 D NA Industrial Scenario NR NR NR NR U-234 P 2 D NA Industrial Scenario NR NR NR NR U-235 P 2 D NA Industrial Scenario NR NR NR NR U-236 P 2 D NA Industrial Scenario NR NR NR NR U-238 P 2 D NA Industrial Scenario NR NR NR NR Bioaccumulation Factors for Crustacea/ Mollusks ((pCi/kg)/(pCi/L))
Ac-227 P 3 D NA Industrial Scenario NR NR NR NR Am-241 P 3 D NA Industrial Scenario NR NR NR NR Am-243 P 3 D NA Industrial Scenario NR NR NR NR C-14 P 3 D NA Industrial Scenario NR NR NR NR Cm-243 P 3 D NA Industrial Scenario NR NR NR NR Page 70 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Cm-244 P 3 D NA Industrial Scenario NR NR NR NR Cm-245 P 3 D NA Industrial Scenario NR NR NR NR Cm-246 P 3 D NA Industrial Scenario NR NR NR NR Co-60 P 3 D NA Industrial Scenario NR NR NR NR Cs-137 P 3 D NA Industrial Scenario NR NR NR NR Eu-152 P 3 D NA Industrial Scenario NR NR NR NR Eu-154 P 3 D NA Industrial Scenario NR NR NR NR Gd-152 P 3 D NA Industrial Scenario NR NR NR NR H-3 P 3 D NA Industrial Scenario NR NR NR NR I-129 P 3 D NA Industrial Scenario NR NR NR NR Nb-94 P 3 D NA Industrial Scenario NR NR NR NR Ni-59 P 3 D NA Industrial Scenario NR NR NR NR Ni-63 P 3 D NA Industrial Scenario NR NR NR NR Np-237 P 3 D NA Industrial Scenario NR NR NR NR Pa-231 P 3 D NA Industrial Scenario NR NR NR NR Pb-210 P 3 D NA Industrial Scenario NR NR NR NR Po-210 P S D NA Industrial Scenario NR NR NR NR Pu-238 P 3 D NA Industrial Scenario NR NR NR NR Pu-239 P 3 D NA Industrial Scenario NR NR NR NR Pu-240 P 3 D NA Industrial Scenario NR NR NR NR Pu-241 P 3 D NA Industrial Scenario NR NR NR NR Pu-242 P 3 D NA Industrial Scenario NR NR NR NR Ra-226 P 3 D NA Industrial Scenario NR NR NR NR Ra-228 P 3 D NA Industrial Scenario NR NR NR NR Sr-90 P 3 D NA Industrial Scenario NR NR NR NR Th-228 P 3 D NA Industrial Scenario NR NR NR NR Th-229 P 3 D NA Industrial Scenario NR NR NR NR Th-230 P 3 D NA Industrial Scenario NR NR NR NR Th-232 P 3 D NA Industrial Scenario NR NR NR NR U-233 P 3 D NA Industrial Scenario NR NR NR NR U-234 P 3 D NA Industrial Scenario NR NR NR NR Page 71 of 183
RS-TD-313196-004 Revision 4 RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS a
Parameter (unit) Type Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median U-235 P 3 D NA Industrial Scenario NR NR NR NR U-236 P 3 D NA Industrial Scenario NR NR NR NR U-238 P 3 D NA Industrial Scenario NR NR NR NR Graphics Parameters Number of points 32 RESRAD Default NR NR NR NR Spacing log RESRAD Default NR NR NR NR Time integration parameters Maximum number of points for dose 17 RESRAD Default NR NR NR NR Notes:
a P = physical, B = behavioral, M = metabolic; (see NUREG/CR-6697, Attachment B, Table 4.)
b 1 = high-priority parameter, 2 = medium-priority parameter, 3 = low-priority parameter (see NUREG/CR-6697, Attachment B, Table 4.1) c D = deterministic, S = stochastic d Distributions Statistical Parameters:
Lognormal-n: 1= mean, 2 = standard deviation Bounded lognormal-n: 1= mean, 2 = standard deviation, 3 = minimum, 4 = maximum Truncated lognormal-n: 1= mean, 2 = standard deviation, 3 = lower quantile, 4 = upper quantile Bounded normal: 1 = mean, 2 = standard deviation, 3 = minimum, 4 = maximum Beta: 1 = minimum, 2 = maximum, 3 = P-value, 4 = Q-value Triangular: 1 = minimum, 2 = mode, 3 = maximum Uniform: 1 = minimum, 2 = maximum e Sm-148 an ND-144 not listed in RESRAD FGR 11 DCF file e
Reference:
Haley and Aldrich, Inc., "Hydrogeological Investigation Report La Crosse Boiling Water Reactor, Dairyland Power Cooperative, Genoa, WI January 2015 f ZionSolutions Technical Support Document 14-003, Conestoga Rovers & Associates (CRA) Report, Zion Hydrogeologic Investigation Report g Argonne National Laboratory, Users Manual for RESRAD Version 6, ANL/EAD 4, July 2001 Page 72 of 183
RS-TD-313196-004 Revision 4 Attachment 2 RESRAD Output Report File Names Page 73 of 183
RS-TD-313196-004 Revision 4 RESRAD Output Report File Names Soil DCGL Uncertainty Analysis Soil DCGL Page 74 of 183
RS-TD-313196-004 Revision 4 BFM Insitugw Reactor Building Uncertainty Analysis Reports BFM Insitugw Reactor Building RESRAD Summary Report Page 75 of 183
RS-TD-313196-004 Revision 4 BFM Insitugw WGTV Uncertainty Analysis Reports BFM Insitugw WGTV RESRAD Summary Report Drilling Spoils Area Factor Calculation Soil Area Factors Page 76 of 183
RS-TD-313196-004 Revision 4 Buried Pipe DCGLs Alternate Scenario Dose Assessment AS Soil Page 77 of 183
RS-TD-313196-004 Revision 4 AS BFM Rx Page 78 of 183
RS-TD-313196-004 Revision 4 AS BFM WGTV AS Drilling Spoils Area Factor Fill Mixing Sensitivity Analysis Page 79 of 183
RS-TD-313196-004 Revision 4 Page 80 of 183
RS-TD-313196-004 Revision 4 Attachment 3 Sand Kd Distributions, 25th Percentile and 75th Percentile Page 81 of 183
RS-TD-313196-004 Revision 4 Sand soil Kd values (Sheppard and Thibault, Table A-1, 1990).
Number 25%
of Standard value, Kd Mean, Kd 75% Value, Kd Element Samples ln (mean) Deviation (cm3/g) (cm3/g) (cm3/g)
Am 29 7.55 2.6 329 1900 10978 C 3 1.1 0.8 1.8 5 5.2 Cm 2 8.4 2.4 881 4000 22444 Co 33 4.1 2.8 9 60 399 Cs 81 5.6 2.5 50 280 1460 Eu
- 6.72 3.22 95 832 7302 Fe 16 5.4 2.6 38 220 1279 H 3 -2.7 0.4 0.05 0.06 0.09 I 22 0.04 2.2 0.24 1.04 4.59 Nb
- 5.1 1.95 44 160 611 Ni 11 6 1.5 147 403 1110 Np 16 1.4 1.7 1 4 13 Pu 39 6.3 1.7 173 550 1714 Sr 81 2.6 1.6 5 15 40 Tc 19 -2 1.8 0.04 0.10 0.46 Th 10 8 2.1 723 3200 12289 U 24 3.5 3.2 3.8 35 287
- Eu, Nb Kds not provided in Sheppard and Thibault, 1990; values from NUREG CR-6697.
Page 82 of 183
RS-TD-313196-004 Revision 4 Attachment 4 Fill Material Mixing Volume Sensitivity Analysis Page 83 of 183
RS-TD-313196-004 Revision 4 REACTOR BUILDING Sensitivity Analysis of Mixing Distance from Reactor Building Surfaces Mixing Sensitivity Rx Building - Walls Only Inputs to Calculation1 Diameter 60 ft Diameter 18.29 m Radius 9.14 m Demolition elevation 636 ft Maximum Water Table elevation 629 ft Unit Conversion Factor 0.0929 m2 per ft2 Unit Conversion Factor 0.0283 m3 per ft3 Unit Conversion Factor 0.3048 m per ft Fill Density 1.76 g/cm3 Unit Conversion Factor 1.00E+06 cm3 per m3 Unit Conversion Factor 1.00E+09 pCi/mCi Reactor Building Fill Volume below 636 1485.16 m3 Reactor Building Fill Volume Below 629 136.67 m3 Reactor Building Fill Volume between 636-619 1348.49 m3 Backfilled Structure fill Depth 7.32 m cover depth 0.91 m Unit concentration 1 pCi/m2 Note 1: Reference TSD RS-TD-313196-002 La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces for structure dimensions and volumes Page 84 of 183
RS-TD-313196-004 Revision 4 Sensitivity Analysis of Mixing Distance from Reactor Building Surfaces Mixing Sensitivity Rx Building - Floor Only Inputs to Calculation1 Diameter 60 ft Diameter 18.29 m Radius 9.14 m Demolition elevation 636 ft Maximum Water Table elevation 629 ft Unit Conversion Factor 0.0929 m2 per ft2 Unit Conversion Factor 0.0283 m3 per ft3 Unit Conversion Factor 0.3048 m per ft Fill Density 1.76 g/cm3 Unit Conversion Factor 1.00E+06 cm3 per m3 Unit Conversion Factor 1.00E+09 pCi/mCi Reactor Building Fill Volume below 636 1485.16 m3 Reactor Building Fill Volume Below 629 136.67 m3 Reactor Building Fill Volume between 636-619 1348.49 m3 Backfilled Structure fill Depth 7.32 m cover depth 0.91 m Unit concentration 1 pCi/m2 Note 1: Reference TSD RS-TD-313196-002 La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces for structure dimensions and volumes Page 85 of 183
RS-TD-313196-004 Revision 4 Calculation: Mixing Sensitivity Rx Building Walls Only Contaminated Contam Fill contam fill mass pCi/g in fill per RESRAD Contam Length parallel to Zone Thickness pCi/g per 2
Fill Mix distance from Wall (m) Volume (m3) (g) pCi in concrete area (m ) flow (m) (m) pCi/m2 1 749.13 1.32E+09 7.58E-10 102.34 2.0 7.32 3.19E-07 2 1314.29 2.31E+09 4.32E-10 179.55 4.0 7.32 1.82E-07 3 1695.48 2.98E+09 3.35E-10 231.62 6.0 7.32 1.41E-07 DSR 11 DSR 2 2 DSR 3 3 mrem/yr per mrem/yr per mrem/yr per pci/g pci/g pci/g Co-60 2.558E-01 4.220E-01 5.158E-01 Cs-137 2.204E-01 2.447E-01 2.539E-01 Sr-90 1.546E+00 2.931E+00 3.980E+00 Eu-152 1.640E-02 1.739E-02 1.774E-02 Eu-154 2.383E-02 2.526E-02 2.577E-02 BFM DF 1.0 BFM DF 2.0 BFM DF 3.0 mrem/yr per mrem/yr per mrem/yr per pCi/m2 pCi/m2 pCi/m2 Co-60 8.16E-08 7.67E-08 7.27E-08 Cs-137 7.03E-08 4.45E-08 3.58E-08 Sr-90 4.93E-07 5.33E-07 5.61E-07 Eu-152 5.23E-09 3.16E-09 2.50E-09 Eu-154 7.60E-09 4.59E-09 3.63E-09 Note 1: RESRAD Summary Report "LACBWR Rx Mix Sensitivity Wall 1 m 100817" Note 1: RESRAD Summary Report "LACBWR Rx Mix Sensitivity Wall 2 m 100817" Note 1: RESRAD Summary Report "LACBWR Rx Mix Sensitivity Wall 3 m 100817" Page 86 of 183
RS-TD-313196-004 Revision 4 Calculation: Mixing Sensitivity Rx Building Floor Only Contaminated Contam Fill contam fill mass pCi/g in fill per RESRAD Contam area Length parallel to Zone Thickness pCi/g per Fill Mix distance from Floor (m) Volume (m3) (g) pCi in concrete (m2) flow (m) (m) pCi/m2 1 262.68 4.62E+08 2.16E-09 262.68 18.29 1 5.68E-07 2 525.35 9.25E+08 1.08E-09 262.68 18.29 2 2.84E-07 3 788.03 1.39E+09 7.21E-10 262.68 18.29 3 1.89E-07 DSR 11 DSR 22 mrem/yr per mrem/yr per DSR 33 pci/g pci/g mrem/yr per pci/g Co-60 1.448E-01 2.779E-01 3.992E-01 Cs-137 5.262E-02 1.043E-01 1.552E-01 Sr-90 1.520E+00 2.842E+00 3.996E+00 Eu-152 3.552E-03 7.071E-03 1.056E-02 Eu-154 5.159E-03 1.027E-02 1.534E-02 BFM DF 1.0 BFM DF 3.0 mrem/yr per mrem/yr per BFM DF 6.0 mrem/yr per pCi/m2 pCi/m2 pCi/m2 Co-60 8.23E-08 7.89E-08 7.56E-08 Cs-137 2.99E-08 2.96E-08 2.94E-08 Sr-90 8.64E-07 8.07E-07 7.57E-07 Eu-152 2.02E-09 2.01E-09 2.00E-09 Eu-154 2.93E-09 2.92E-09 2.91E-09 Note 1: RESRAD Summary Report "LACBWR Rx Mix Sensitivity Floor 1 m 100817" Note 1: RESRAD Summary Report "LACBWR Rx Mix Sensitivity Floor 2 m 100817" Note 1: RESRAD Summary Report "LACBWR Rx Mix Sensitivity Floor 3 m 100817" Page 87 of 183
RS-TD-313196-004 Revision 4 Rx Bldg Mixing Distance Sensitivity Analysis Results -Wall Only Ratio Ratio Ratio 1m DF/BFM DF 2m DF/BFM DF 3m DF/BFM DF Co-60 0.62 0.59 0.56 Cs-137 1.34 0.85 0.68 Sr-90 0.39 0.42 0.45 Eu-152 1.47 0.89 0.70 Eu-154 1.47 0.89 0.70 Rx Bldg Mixing Distance Sensitivity Analysis Results - Floor Only Ratio Ratio Ratio 1m DF/BFM DF 2m DF/BFM DF 3m DF/BFM DF Co-60 0.63 0.60 0.58 Cs-137 0.57 0.57 0.56 Sr-90 0.69 0.64 0.60 Eu-152 0.57 0.56 0.56 Eu-154 0.57 0.56 0.56 Page 88 of 183
RS-TD-313196-004 Revision 4 WGTV Sensitivity Analysis of Mixing Distance from WGTV Surfaces Input to Calculation WGTV length1 31.51 ft WGTV length 9.60 m WGTV width1 29.51 ft WGTV width 8.99 m Floor Elevation1 621.00 feet Demolition elevation 636.00 feet Backfilled Structure fill Depth 4.57 m Unit concentration 1 pCi/m2 Note 1: Reference TSD RS-TD-313196-002 La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces for structure dimensions and volumes Page 89 of 183
RS-TD-313196-004 Revision 4 Mixing Sensitivity Check WGTV 1.0 m mix Distance Contaminated RESRAD Contam Length parallel to Zone Thickness pCi/g per Wall or Floor Fill Mix Distance (m) Volume 4 (m3) mass (g) pCi/g per pCi area (m2) flow (m) pCi/m2 Perpendicular Wall 1.00 8.22E+01 1.45E+08 6.91E-09 18.0 2.00 4.57 5.68E-07 Parralel Wall 1.00 4.39E+01 7.73E+07 1.29E-08 9.6 9.60 4.57 6.92E-07 Floor 1.00 8.64E+01 1.52E+08 6.58E-09 86.4 9.60 1.00 5.68E-07 DSR 1.0 m1 Perpendicular DSR 1.0 m2 DSR 1.0 m3 Wall Parallel Wall Floor mrem/yr per mrem/yr per mrem/yr per pCi/g pCi/g pCi/g Co-60 2.094E-01 3.732E-01 1.425E-01 Cs-137 1.346E-01 1.292E-01 5.247E-02 Sr-90 1.330E+00 3.623E+00 1.261E+00 Eu-152 8.871E-03 8.667E-03 3.546E-03 Eu-154 1.288E-02 1.259E-02 5.151E-03 BFM DF 1.0 m BFM DF 1.0 m BFM DF 1.0 m BFM DF 1.0 m Perpendicular Parallel Wall Floor Sum Floor and Wall mrem/yr per mrem/yr per mrem/yr per Perpendicular pCi/m2 pCi/m2 pCi/m2 Wall Co-60 1.19E-07 2.58E-07 8.10E-08 2.00E-07 Cs-137 7.65E-08 8.95E-08 2.98E-08 1.06E-07 Sr-90 7.56E-07 2.51E-06 7.16E-07 1.47E-06 Eu-152 5.04E-09 6.00E-09 2.01E-09 7.06E-09 Eu-154 7.32E-09 8.72E-09 2.93E-09 1.02E-08 Note 1: LACBWR WGTV Mix Perp Wall 1m 092517 Note 2: LACBWR WGTV Mix Par Wall 1m 092517 Note 3: LACBWR WGTV Mix Floor 1m 092517 Note 4: Assumed flow through the two walls that are perpendicular to flow 2 perpendicular walls because each wall is a separate source and the two walls are therefore combined Page 90 of 183
RS-TD-313196-004 Revision 4 WGTV Mixing Depth Sensitivity Analysis Results Ratio 1.0 m Mix Ratio Depth Ratio 1.0 m Mix Ratio 1.0 Mix Sum Floor and Perpendicular Depth Parallel Depth Floor Perpendicular Wall/BFM Wall/BFM /BFM Wall Co-60 0.55 1.19 0.37 0.92 Cs-137 1.02 1.19 0.40 1.42 Sr-90 0.36 1.18 0.34 0.69 Eu-152 1.00 1.20 0.40 1.41 Eu-154 1.00 1.20 0.40 1.40 Mixing Sensitivity Check Waste Gas Tank Vault (All Basement: Saturated and Unsaturated Zones)
Input to Calculation WGTV length1 31.51 ft WGTV length 9.60 m WGTV width1 29.51 ft WGTV width 8.99 m Floor Elevation1 621.00 feet Demolition elevation 636.00 feet Backfilled Structure fill Depth 4.57 m Unit concentration 1.00 pCi/m2 Note 1: Reference TSD RS-TD-313196-002 La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces for structure dimensions and volumes Page 91 of 183
RS-TD-313196-004 Revision 4 Mixing Sensitivity Check WGTV 2.0 m mix Distance Contaminated RESRAD Contam area Length parallel to Zone Thickness pCi/g per Wall or Floor Fill Mix Distance (m) Volume 4 (m3) mass (g) pCi/g per pCi (m2) flow (m) pCi/m2 Perpendicular Wall 2 1.64E+02 2.90E+08 3.45E-09 36.0 4.00 4.57 2.84E-07 Parralel Wall 2 8.78E+01 1.55E+08 6.47E-09 19.2 9.60 4.57 4.08E-07 Floor 2 1.73E+02 3.04E+08 3.29E-09 86.4 9.60 2.00 2.84E-07 DSR 2.0 m1 Perpendicular DSR 2.0 m2 DSR 2.0 m3 Wall Parallel Wall Floor mrem/yr per mrem/yr per mrem/yr per pCi/g pCi/g pCi/g Co-60 3.116E-01 3.762E-01 2.662E-01 Cs-137 1.347E-01 1.295E-01 1.033E-01 Sr-90 2.377E+00 3.661E+00 2.314E+00 Eu-152 8.750E-03 8.675E-03 7.031E-03 Eu-154 1.271E-02 1.260E-02 1.021E-02 BFM DF 2.0 m BFM DF 2.0 m BFM DF 2.0 m BFM DF 2.0 m Perpendicular Parallel Wall Floor Sum Floor and Wall mrem/yr mrem/yr per mrem/yr per Perpendicular per pCi/m2 pCi/m2 pCi/m2 Wall Co-60 8.85E-08 1.54E-07 7.56E-08 1.64E-07 Cs-137 3.83E-08 5.29E-08 2.93E-08 6.76E-08 Sr-90 6.75E-07 1.50E-06 6.57E-07 1.33E-06 Eu-152 2.49E-09 3.54E-09 2.00E-09 4.48E-09 Eu-154 3.61E-09 5.15E-09 2.90E-09 6.51E-09 Note 1: LACBWR WGTV Mix Perp Wall 2m 092517 Note 2: LACBWR WGTV Mix Par Wall 2m 092517 Note 3: LACBWR WGTV Mix Floor 2m 092517 Note 1: Assumed flow through the two walls that are perpendicular to flow 2 perpendicular walls because each wall is a separate source and the two walls are thefore combined Page 92 of 183
RS-TD-313196-004 Revision 4 WGTV Mixing Depth Sensitivity Analysis Results Ratio 2.0 m Mix Ratio 2.0 m Mix Depth Ratio 2.0 m Mix Ratio 2.0 Mix Sum Floor and Perpendicular Depth Parallel Depth Floor Perpendicular Wall/BFM Wall/BFM /BFM Wall Co-60 0.41 0.71 0.35 0.75 Cs-137 0.51 0.71 0.39 0.90 Sr-90 0.32 0.71 0.31 0.63 Eu-152 0.50 0.71 0.40 0.89 Eu-154 0.50 0.71 0.40 0.89 Mixing Sensitivity Check Waste Gas Tank Vault (All Basement: Saturated and Unsaturated Zones)
Input to Calculation WGTV length1 31.51 ft WGTV length 9.60 m WGTV width1 29.51 ft WGTV width 8.99 m Floor Elevation1 621.00 feet Demolition elevation 636.00 feet Backfilled Structure fill Depth 4.57 m Unit concentration 1 pCi/m2 Note 1: Reference TSD RS-TD-313196-002 La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces for structure dimensions and volumes Page 93 of 183
RS-TD-313196-004 Revision 4 Mixing Sensitivity Check WGTV 3.0 m mix Distance Contaminated RESRAD Contam Length parallel to Zone Thickness pCi/g per Wall or Floor Fill Mix Distance (m) Volume 4 (m3) mass (g) pCi/g per pCi area (m2) flow (m) pCi/m2 Perpendicular Wall 3 2.47E+02 4.34E+08 2.30E-09 54.0 6.00 4.57 1.89E-07 Parralel Wall 3 1.32E+02 2.32E+08 4.31E-09 28.8 9.60 4.57 3.14E-07 Floor 3 2.59E+02 4.56E+08 2.19E-09 86.4 9.60 3.00 1.89E-07 DSR 3.0 m1 Perpendicular DSR 3.0 m2 DSR 3.03 Wall Parallel Wall Floor mrem/yr per mrem/yr per mrem/yr per pCi/g pCi/g pCi/g Co-60 3.548E-01 3.762E-01 3.705E-01 Cs-137 1.325E-01 1.295E-01 1.524E-01 Sr-90 3.036E+00 3.661E+00 3.160E+00 Eu-152 8.708E-03 8.675E-03 1.046E-02 Eu-154 1.265E-02 1.260E-02 1.519E-02 BFM DF 3.0 m BFM DF 3.0 m BFM DF 3.0 m BFM DF 3.0 m Perpendicular Parallel Wall Floor Sum Floor and Wall mrem/yr mrem/yr per mrem/yr per Perpendicular per pCi/m2 pCi/m2 pCi/m2 Wall Co-60 6.72E-08 1.18E-07 7.02E-08 1.37E-07 Cs-137 2.51E-08 4.06E-08 2.89E-08 5.40E-08 Sr-90 5.75E-07 1.15E-06 5.98E-07 1.17E-06 Eu-152 1.65E-09 2.72E-09 1.98E-09 3.63E-09 Eu-154 2.40E-09 3.95E-09 2.88E-09 5.27E-09 Note 1: LACBWR WGTV Mix Perp Wall 3m 092517 Note 2: LACBWR WGTV Mix Par Wall 3m 092517 Note 3: LACBWR WGTV Mix Floor 3m 092517 Note 4: Assumed flow through the two walls that are perpendicular to flow 2 perpendicular walls Page 94 of 183
RS-TD-313196-004 Revision 4 WGTV Mixing Depth Sensitivity Analysis Results Ratio 3.0 m Mix Ratio 3.0 m Mix Depth Ratio 3.0 m Mix Ratio 3.0 Mix Sum Floor and Perpendicular Depth Parallel Depth Floor Perpendicular Wall/BFM Wall/BFM /BFM Wall Co-60 0.31 0.54 0.32 0.63 Cs-137 0.33 0.54 0.39 0.72 Sr-90 0.27 0.54 0.28 0.55 Eu-152 0.33 0.54 0.39 0.72 Eu-154 0.33 0.54 0.39 0.72 REACTOR BUIDING AND WGTV RESULTS
SUMMARY
Mixing Sensitivity Analysis Results Summary Maximum Ratio of Dose Factor Partial Mix/Full Mix Rx Building WGTV Wall + Floor Wall + Floor Co-60 1.25 1.19 Cs-137 1.91 1.42 Sr-90 1.08 1.18 Eu-152 2.03 1.41 Eu-154 2.03 1.40 Page 95 of 183
RS-TD-313196-004 Revision 4 Attachment 5 BFM Insitugw RESRAD Uncertainty Analysis Input Parameters Page 96 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Soil Concentrations Basic radiation dose limit (mrem/y) 3 D 25 10 CFR 20.1402 NR NR NR NR Initial principal radionuclide (pCi/g) P 2 D 1 Unit Value NR NR NR NR Distribution coefficients (contaminated, unsaturated, and saturated zones) (cm3/g)
Mean Kd Value for sand Ac-227 (daughter of Cm-243 and NUREG/CR-6697, Table P 1 D 450 6.72 3.22 NA NA 825 Pu-239) 3.9-2, Sheppard and Thibault Am-241 (also daughter of Cm-245 S Not Included in Uncertainty < 0.1% of radionuclide P 1 NA NA NA NA NA and Pu-241) Analysis mixture S Not Included in Uncertainty < 0.1% of radionuclide Am-243 P 1 NA NA NA NA NA Analysis mixture C-14 P 1 S Lognormal-N NUREG/CR-6697 Att. C 2.4 3.22 NA NA 11 Not Included in Uncertainty < 0.1% of radionuclide Cm-243 P 1 S NA NA NA NA NA Analysis mixture Not Included in Uncertainty < 0.1% of radionuclide Cm-244 P 1 S NA NA NA NA NA Analysis mixture Co-60 P 1 S Lognormal-N NUREG/CR-6697 Att. C 5.46 2.53 NA NA 235 Cs-137 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.1 2.33 NA NA 446 Eu-152 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.72 3.22 NA NA 825 Eu-154 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.72 3.22 NA NA 825 Not Included in Uncertainty < 0.1% of radionuclide Eu-155 P 1 S NA NA NA NA NA Analysis mixture Fe-55 P 1 S Lognormal-N NUREG/CR-6697 Att. C 5.34 2.67 NA NA 209 Median Value NUREG/CR-6697, Att. C Gd-152 (daughter for Eu-152) P 1 D 825 6.72 3.22 NA NA 825 (No sand value listed in Table 3.9-2)
H-3 P 1 S Lognormal-N NUREG/CR-6697 Att. C -2.81 0.5 NA NA 0.06 Not Included in Uncertainty < 0.1% of radionuclide Nb-94 P 1 S NA NA NA NA NA Analysis mixture RESRADv.7.0 Default Nd-144 (daughter for Eu-152) P 1 D 158 Nd not listed in NA NA NA NA NA NUREG/CR-6697 Ni-59 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.05 1.46 NA NA 424 Ni-63 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.05 1.46 NA NA 424 Page 97 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Np-237 (also daughter for Am-241, Not Included in Uncertainty < 0.1% of radionuclide P 1 S NA NA NA NA NA Cm-245, and Pu-241) Analysis mixture Pa-231 (daughter for Cm-243 and Not Included in Uncertainty parent < 0.1% of P 1 D NA NA NA NA NA Pu-239) Analysis radionuclide mixture Not Included in Uncertainty parent < 0.1% of Pb-210 (daughter for Pu-238) P 1 D NA NA NA NA NA Analysis radionuclide mixture Not Included in Uncertainty parent < 0.1% of Po-210 (daughter Pu-238) P 1 D NA NA NA NA NA Analysis radionuclide mixture Not Included in Uncertainty < 0.1% of radionuclide Pu-238 P 1 S NA NA NA NA NA Analysis mixture Not Included in Uncertainty < 0.1% of radionuclide Pu-239 (also daughter for Cm-243) P 1 S NA NA NA NA NA Analysis mixture Not Included in Uncertainty < 0.1% of radionuclide Pu-240 (also daughter for Cm-244) P 1 S NA NA NA NA NA Analysis mixture Pu-241 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.86 1.89 NA NA 953 Not Included in Uncertainty parent < 0.1% of Ra-226 (daughter Pu-238) P 1 D NA NA NA NA NA Analysis radionuclide mixture Ra-228 (daughter Cm-244 and Pu- Not Included in Uncertainty parent < 0.1% of P 1 D NA NA NA NA NA 240) Analysis radionuclide mixture Mean Kd Value for sand NUREG/CR-6697, Table Sm-148 (daughter Eu-152) P 1 D 245 6.72 3.22 NA NA 825 3.9-2, Sheppard and Thibault Sr-90 P 1 S Lognormal-N NUREG/CR-6697 Att. C 3.45 2.12 NA NA 32 Not Included in Uncertainty < 0.1% of radionuclide Tc-99 P 1 S NA NA NA NA NA Analysis mixture Th-228 (daughter Cm-244 and Pu- Not Included in Uncertainty parent < 0.1% of P 1 D NA NA NA NA NA 240) Analysis radionuclide mixture Mean Kd Value for sand Th-229 (daughter Am-241, Cm-245, NUREG/CR-6697, Table P 1 D 3200 8.68 3.62 NA NA 5884 Np-237, and Pu-241) 3.9-2, Sheppard and Thibault Th-230 (daughter Cm-246 and Pu- Not Included in Uncertainty parent < 0.1% of P 1 D NA NA NA NA NA 238) Analysis radionuclide mixture Th-232 (daughter Cm-244 and Pu- Not Included in Uncertainty parent < 0.1% of P 1 D NA NA NA NA NA 240) Analysis radionuclide mixture Mean Kd Value for sand U-233 (daughter Am-241, Cm-245, NUREG/CR-6697, Table P 1 D 35 4.84 3.13 NA NA 126 Np-237, and Pu-241) 3.9-2, Sheppard and Thibault C Not Included in Uncertainty parent < 0.1% of U-234 (daughter Pu-238) P 1 D NA NA NA NA NA Analysis radionuclide mixture Page 98 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median U-235 (daughter Cm-243 and Pu- Not Included in Uncertainty parent < 0.1% of P 1 D NA NA NA NA NA 239) Analysis radionuclide mixture U-236 (daughter Cm-244 and Pu- Not Included in Uncertainty parent < 0.1% of P 1 D NA NA NA NA NA 240) Analysis radionuclide mixture Initial concentration of radionuclides No existing groundwater P 3 D 0 NR NR NR NR present in groundwater (pCi/l) contamination Calculation Times Start of dose calculation Time since placement of material (y) P 3 D 0 immediately after license NR NR NR NR termination 0, 1, 3, 10, 30, 100, 300, Time for calculations (y) P 3 D RESRAD Default NR NR NR NR 1000 Contaminated Zone Area of contaminated zone (m2) P 2 D Variable Structure Dependent NR NR NR NR Thickness of contaminated zone (m) P 2 D Variable Structure Dependent NR NR NR NR Length parallel to aquifer flow (m) P 2 D Variable Structure Dependent NR NR NR NR Does the initial contamination NA NA NA Variable Structure Dependent NA NA NA NA penetrate the water table?
Contaminated fraction below water P 3 D Variable Structure Dependent NR NR NR NR table Cover and Contaminated Zone Hydrological Data Structure removed to 3 feet Cover depth (m) P 2 D 0.91 NR NR NR NR below grade.
Density of cover material P 2 D 1.76 Site-specifice NR NR NR NR NUREG/CR-6697 Att. C Cover erosion rate P,B 2 S Continuous Logarithmic 5E-08 0.0007 0.005 0.2 0.0015 Table 3.8-1 Density of contaminated zone P 1 D 1.76 Site-specifice NR NR NR NR (g/cm3)
Contaminated zone erosion rate NUREG/CR-6697 Att. C P,B 2 S Continuous Logarithmic 5E-08 0.0007 0.005 0.2 0.0015 m/y) Table 3.8-1 e
Contaminated zone total porosity P 2 D 0.31 Site-specific NR NR NR NR 0.43 RESRAD default. No distribution or median value Contaminated zone field capacity P 3 D 0.2 NR NR NR NR provided in NURE/CR-6697 Att. C Page 99 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Site-specifice Contaminated zone hydraulic 34822 P 2 D NR NR NR NR conductivity (m/y) 313 feet/day = 34822 m/y Site specific soil type sand 0.97 Contaminated zone b parameter P 2 S Lognormal-N NUREG/CR-6697 Att. C -.0253 0.216 NA NA Table 3.5-1 Median Humidity in air (g/m3) P 3 D 7.2 1.98 0.334 0.001 0.999 7.2 NUREG/CR-6697 Att. C Uniform NUREG/CR-6697 Att. C 0.5 0.75 NR NR 0.625 Figure 4.3-1 Evapotranspiration coefficient P 2 S NUREG/CR-6697 Att. C Average annual wind speed (m/s) P 2 S Bounded Lognormal - N 1.445 0.2419 1.4 13 4.2 Figure 4.5-1 Precipitation (m/y) P 2 S 0.78 NUREG/CR-6697 Att. C La Crosse, WI NR NR NR NR Table 4.1-2 Irrigation (m/y) B 3 D NA Industrial Scenario NR NR NR NR Irrigation mode B 3 D NA Industrial Scenario NR NR NR NR Site-specific value to force the Precipitation parameter Runoff coefficient P 2 D 0 NR NR NR NR NR to equal to the infiltration rate.
Watershed area for nearby stream P 3 D 1.00E+06 RESRAD Default NR NR NR NR or pond (m2)
Accuracy for water/soil
- 3 D 1.00E-03 RESRAD Default NR NR NR NR computations Saturated Zone Hydrological Data Density of saturated zone (g/cm3) P 2 D 1.76 Site-specifice NR NR NR NR Saturated zone total porosity P 1 D 0.31 Site-specifice NR NR NR NR e
Saturated zone effective porosity P 1 D 0.28 Site-specific NR NR NR NR Calculated values for sand Saturated zone field capacity P 3 D 0.066 NR NR NR NR soil typef Site-specifice Saturated zone hydraulic P 1 D 34822 NR NR NR NR conductivity (m/y) 313 feet/day = 34822 m/y Saturated zone hydraulic gradient P 2 D 0.0045 Site-specific valuee NR NR NR NR Site specific soil type sand Saturated zone b parameter P 2 S Lognormal-N NUREG/CR-6697 Att. C -.0253 0.216 NA NA 0.97 Table 3.5-1 Page 100 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Assumed zero due to Water table drop rate (m/y) P 3 D 0 hydraulic connectivity with NR NR NR NR Mississippi river.
Well pump intake depth (m below P 2 S Triangular Site-specific distribution 6.1 21.2 36.3 NR 21.2 water table)
Existing industrial water supply wells onsite at depth of 116 and 129 below ground surface (the 129 depth equals 36.3 m below the 129 bgs water table).
36.3 m assumed to be maximum well depth.
Minimum well depth assumed to be represented by nominal 20 screen depth (6.1 m) starting at maximum water table elevation of 629 and extending to 10 below 619 elevation where groundwater continuously present.
Mode is mid-point between 6.1 m and 36.3 m which is 21.2 m.
Note that the site-specific distribution is reasonably similar to the NUREG-6697 distribution values of 6, 10, and 30 for the triangular distribution.
Model: Nondispersion (ND) or Mass- Applicable to moving P 3 D ND NR NR NR NR Balance (MB) groundwater Page 101 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Well pumping rate (m3/y) P 2 S Uniform NUREG/CR-6697, Att. C 328.7 1643.5 NR NR 986.1 provides no recommended value due to high variability.
Industrial Scenario pump rate depends on industry.
General water usage rate for four persons is 328.7 m3/yr (NUREG-6697, Table 3.10-1) which is assumed to be minimum industrial rate.
Maximum industrial rate assumed to supply 20 workers which equals 1643.5 m3/yr.
Unsaturated Zone Hydrological Data Number of unsaturated zone strata P 3 D 0 Site-specific NR NR NR NR Unsat. zone thickness (m) P 1 D NA No unsaturated zone NR NR NR NR Unsat. zone soil density (g/cm 3) P 2 D NA No unsaturated zone NR NR NR NR Unsat. zone total porosity P 2 D NA No unsaturated zone NR NR NR NR Unsat. zone effective porosity P 2 D NA No unsaturated zone NR NR NR NR Unsat. zone field capacity P 3 D NA No unsaturated zone NR NR NR NR Unsat. zone hydraulic conductivity NA No unsaturated zone P 2 D NR NR NR NR (m/y)
Unsat. zone soil-specific b NA No unsaturated zone P 2 S NR NR NR NR parameter Occupancy Page 102 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Inhalation rate (m3/y) M,B 3 D 3066 NUREG-6697 Att. C, Table NR NR NR NR 7.6-1 recommends a median indoor work day as 8.76 hour8.796296e-4 days <br />0.0211 hours <br />1.256614e-4 weeks <br />2.8918e-5 months <br />s/day. Assuming 5 days a week and 50 weeks per years this equates to 2190 hours0.0253 days <br />0.608 hours <br />0.00362 weeks <br />8.33295e-4 months <br /> per year.
NUREG/CR-5512, Vol. 3, Section 5.3.4 recommends an inhalation rate for workers in light industry of 1.4 m3/hr.
Industrial Scenario inhalation rate (m3/yr) = 1.4 m3/hr
- 2190 hr/yr = 3066 m3/yr See See See See NUREG- NUREG-3 NUREG- NUREG-Mass loading for inhalation (g/m ) P,B 2 S Continuous Linear NUREG/CR-6697, Att. C 6697 6697 2.35E-05 6697 Table 6697 Table Table Table 4.6-1 4.6-1 4.6-1 4.6-1 RESRAD Users Manual Exposure duration B 3 D 30 parameter value not used in NR NR NR NR dose calculation NUREG/CR-6697, Att. C Indoor dust filtration factor P,B 2 S Uniform 0.15 0.95 NR NR 0.55 Figure 7.1-1 NUREG/CR-6697, Att. C Shielding factor, external gamma P 2 S Bounded Lognormal-N -1.3 0.59 0.044 1 0.2725 Table 7.10-1 Page 103 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Fraction of time spent indoors B 3 D 0.1875 NUREG-6697 Att. C, Table NR NR NR NR 7.6-1 recommends a median indoor work day as 8.76 hour8.796296e-4 days <br />0.0211 hours <br />1.256614e-4 weeks <br />2.8918e-5 months <br />s/day. Assuming 5 days a week and 50 weeks per years this equates to 2190 hours0.0253 days <br />0.608 hours <br />0.00362 weeks <br />8.33295e-4 months <br /> per year.
Majority of industrial work is expected to be indoors.
Consistent with Table 2-3 of the Users Manual for RESRAD Version 6g 75%
of work time is indoors and 25% outdoors.
The corresponding RESRAD indoor Fraction parameter =
(2190*.75)/(24*365) = .1875 Fraction of time spent outdoors (on B 3 D 0.0625 As explained in the basis for NR NR NR NR site) the Indoor Fraction parameter, the indoor time fraction was set at 75% and outdoor time fraction at 25%.
(2190*.25)/(24*365) =
0.0625 Shape factor flag, external gamma P 3 D Circular Circular contaminated zone NR NR NR NR assumed for modeling purposes Ingestion, Dietary Fruits, non-leafy vegetables, grain M,B 2 D NA Industrial Scenario NR NR NR NR consumption (kg/y)
Leafy vegetable consumption (kg/y) M,B 3 D NA Industrial Scenario NR NR NR NR Milk consumption (L/y) M,B 2 D NA Industrial Scenario NR NR NR NR M,B Meat and poultry consumption (kg/y) 3 D NA Industrial Scenario NR NR NR NR M,B Fish consumption (kg/y) 3 D NA Industrial Scenario NR NR NR NR M,B Other seafood consumption (kg/y) 3 D NA Industrial Scenario NR NR NR NR Page 104 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median M,B NUREG/CR-5512, Vol. 3 Soil ingestion rate (g/y) 2 D 18.3 NR NR NR NR Table 6.87 Drinking water intake (L/y) M,B 2 D 327 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Industrial Scenario water supply assumed to be from an onsite well.
478 L/y from NUREG/CR-5512 corresponds to 1.31 L/d which is considered a conservative value for 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> work day.
1.31 L/d
- 250 work days =
327 L/y Contamination fraction of drinking All water assumed B,P 3 D 1 NR NR NR NR water contaminated Contamination fraction of household B,P 3 1 All water from well water (if used)
Contamination fraction of livestock B,P 3 D NA Industrial Scenario NR NR NR NR water Contamination fraction of irrigation B,P 3 D NA Industrial Scenario NR NR NR NR water Contamination fraction of aquatic B,P 2 D NA Industrial Scenario NR NR NR NR food Contamination fraction of plant food B,P 3 D NA Industrial Scenario NR NR NR NR Contamination fraction of meat B,P 3 D NA Industrial Scenario NR NR NR NR Contamination fraction of milk B,P 3 D NA Industrial Scenario NR NR NR NR Ingestion, Non-Dietary Livestock fodder intake for meat M 3 D NA Industrial Scenario NR NR NR NR (kg/day)
Livestock fodder intake for milk M 3 D NA Industrial Scenario NR NR NR NR (kg/day)
Livestock water intake for meat M 3 D NA Industrial Scenario NR NR NR NR (L/day)
Livestock water intake for milk M 3 D NA Industrial Scenario NR NR NR NR (L/day)
Livestock soil intake (kg/day) M 3 D NA Industrial Scenario NR NR NR NR Mass loading for foliar deposition P 3 D NA Industrial Scenario NR NR NR NR (g/m3)
Page 105 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median NUREG/CR-6697, Att. C Depth of soil mixing layer (m) P 2 D Triangular 0 0.15 0.6 NR 0.23 Figure 3.12-1 Depth of roots (m) P 1 D NA Industrial Scenario NR NR NR NR Drinking water fraction from ground B,P 3 D 1 Industrial Scenario NR NR NR NR water Household water fraction from B,P 3 1 Industrial Scenario NR NR NR NR ground water (if used)
Livestock water fraction from ground B,P 3 D NA Industrial Scenario NR NR NR NR water Irrigation fraction from ground water B,P 3 D NA Industrial Scenario NR NR NR NR Wet weight crop yield for Non-Leafy P 2 D NA Industrial Scenario NR NR NR NR (kg/m2)
Wet weight crop yield for Leafy P 3 D NA Industrial Scenario NR NR NR NR (kg/m2)
Wet weight crop yield for Fodder P 3 D NA Industrial Scenario NR NR NR NR (kg/m2)
Growing Season for Non-Leafy (y) P 3 D NA Industrial Scenario NR NR NR NR Growing Season for Leafy (y) P 3 D NA Industrial Scenario NR NR NR NR Growing Season for Fodder (y) P 3 D NA Industrial Scenario NR NR NR NR Translocation Factor for Non-Leafy P 3 D NA Industrial Scenario NR NR NR NR Translocation Factor for Leafy P 3 D NA Industrial Scenario NR NR NR NR Translocation Factor for Fodder P 3 D NA Industrial Scenario NR NR NR NR Weathering Removal Constant for P 2 D NA Industrial Scenario NR NR NR NR Vegetation (1/y)
Wet Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Non-Leafy Wet Foliar Interception Fraction for P 2 D NA Industrial Scenario NR NR NR NR Leafy Wet Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Fodder Dry Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Non-Leafy Dry Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Leafy Dry Foliar Interception Fraction for P 3 D NA Industrial Scenario NR NR NR NR Fodder Storage times of contaminated foodstuffs (days):
Fruits, non-leafy vegetables, and B 3 D NA Industrial Scenario NR NR NR NR grain Leafy vegetables B 3 D NA Industrial Scenario NR NR NR NR Page 106 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Milk B 3 D NA Industrial Scenario NR NR NR NR Meat and poultry B 3 D NA Industrial Scenario NR NR NR NR Fish B 3 D NA Industrial Scenario NR NR NR NR Crustacea and mollusks B 3 D NA Industrial Scenario NR NR NR NR Well water B 3 D NA Industrial Scenario NR NR NR NR Surface water B 3 D NA Industrial Scenario NR NR NR NR Livestock fodder B 3 D NA Industrial Scenario NR NR NR NR Special Radionuclides (C-14)
C-12 concentration in water (g/cm 3) P 3 D NA Industrial Scenario NR NR NR NR C-12 concentration in P 3 D NA Industrial Scenario NR NR NR NR contaminated soil (g/g)
Fraction of vegetation carbon from P 3 D NA Industrial Scenario NR NR NR NR soil Fraction of vegetation carbon from P 3 D NA Industrial Scenario NR NR NR NR air C-14 evasion layer thickness in soil P 2 D NA Industrial Scenario NR NR NR NR (m)
C-14 evasion flux rate from soil P 3 D NA Industrial Scenario NR NR NR NR (1/sec)
C-12 evasion flux rate from soil P 3 D NA Industrial Scenario NR NR NR NR (1/sec)
Fraction of grain in beef cattle feed B 3 D NA Industrial Scenario NR NR NR NR Fraction of grain in milk cow feed B 3 D NA Industrial Scenario NR NR NR NR Dose Conversion Factors (Inhalation mrem/pCi)
Ac-227 M 3 D 6.70E+00 FGR11 NR NR NR NR Am-241 M 3 D 4.44E-01 FGR11 NR NR NR NR Am-243 M 3 D 4.40E-01 FGR11 NR NR NR NR C-14 M 3 D 2.09E-06 FGR11 NR NR NR NR Cm-243 M 3 D 3.07E-01 FGR11 NR NR NR NR Cm-244 M 3 D 2.48E-01 FGR11 NR NR NR NR Cm-245 M 3 D 4.55E-01 FGR11 NR NR NR NR Cm-246 M 3 D 4.51E-01 FGR11 NR NR NR NR Co-60 M 3 D 2.19E-04 FGR11 NR NR NR NR Cs-134 M 3 D 4.62E-05 FGR11 NR NR NR NR Page 107 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Cs-137 M 3 D 3.19E-05 FGR11 NR NR NR NR Eu-152 M 3 D 2.21E-04 FGR11 NR NR NR NR Eu-154 M 3 D 2.86E-04 FGR11 NR NR NR NR Eu-155 M 3 D 4.14E-05 FGR11 NR NR NR NR Gd-152 M 3 D 2.43E-01 FGR11 NR NR NR NR H-3 M 3 D 6.40E-08 FGR11 NR NR NR NR I-129 M 3 D 1.74E-04 FGR11 NR NR NR NR Nb-94 M 3 D 4.14E-04 FGR11 NR NR NR NR Nd-144e M 3 D 7.04E-02 ICRP60 NR NR NR NR Ni-59 M 3 D 2.70E-06 FGR11 NR NR NR NR Ni-63 M 3 D 6.29E-06 FGR11 NR NR NR NR Np-237 M 3 D 5.40E-01 FGR11 NR NR NR NR Pa-231 M 3 D 1.28E+00 FGR11 NR NR NR NR Pb-210 M 3 D 1.36E-02 FGR11 NR NR NR NR Po-210 M 3 D 9.40E-03 FGR11 NR NR NR NR Pu-238 M 3 D 3.92E-01 FGR11 NR NR NR NR Pu-239 M 3 D 4.29E-01 FGR11 NR NR NR NR Pu-240 M 3 D 4.29E-01 FGR11 NR NR NR NR Pu-241 M 3 D 8.25E-03 FGR11 NR NR NR NR Pu-242 M 3 D 4.11E-01 FGR11 NR NR NR NR Ra-226 M 3 D 8.58E-03 FGR11 NR NR NR NR Ra-228 M 3 D 4.77E-03 FGR11 NR NR NR NR e
Sm-148 M 3 D 7.34E-02 ICRP60 NR NR NR NR Sr-90 M 3 D 1.30E-03 FGR11 NR NR NR NR Tc-99 M 3 D 8.32E-06 FGR11 NR NR NR NR Th-228 M 3 D 3.42E-01 FGR11 NR NR NR NR Th-229 M 3 D 2.15E+00 FGR11 NR NR NR NR Th-230 M 3 D 3.26E-01 FGR11 NR NR NR NR Th232 M 3 D 1.64e+00 FGR11 NR NR NR NR U-233 M 3 D 1.35E-01 FGR11 NR NR NR NR U-234 M 3 D 1.32E-01 FGR11 NR NR NR NR Page 108 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median U-235 M 3 D 1.23E-01 FGR11 NR NR NR NR U-236 M 3 D 1.25E-01 FGR11 NR NR NR NR U-238 M 3 D 1.18E-01 FGR11 NR NR NR NR Dose Conversion Factors (Ingestion mrem/pCi)
Ac-227 M 3 D 1.41E-02 FGR11 NR NR NR NR Am-241 M 3 D 3.64E-03 FGR11 NR NR NR NR Am-243 M 3 D 3.62E-03 FGR11 NR NR NR NR C-14 M 3 D 2.09E-06 FGR11 NR NR NR NR Cm-243 M 3 D 2.51E-03 FGR11 NR NR NR NR Cm-244 M 3 D 2.02E-03 FGR11 NR NR NR NR Cm-245 M 3 D 3.74E-03 FGR11 NR NR NR NR Cm-246 M 3 D 3.70E-03 FGR11 NR NR NR NR Co-60 M 3 D 2.69E-05 FGR11 NR NR NR NR Cs-134 M 3 D 7.33E-05 FGR11 NR NR NR NR Cs-137 M 3 D 5.00E-05 FGR11 NR NR NR NR Eu-152 M 3 D 6.48E-06 FGR11 NR NR NR NR Eu-154 M 3 D 9.55E-06 FGR11 NR NR NR NR Eu-155 M 3 D 1.53E-06 FGR11 NR NR NR NR Gd-152 M 3 D 1.61E-04 FGR11 NR NR NR NR H-3 M 3 D 6.40E-08 FGR11 NR NR NR NR I-129 M 3 D 2.76E-04 FGR11 NR NR NR NR Nb-94 M 3 D 7.14E-06 FGR11 NR NR NR NR e
Nd-144 M 3 D 1.51E-04 ICRP60 NR NR NR NR Ni-59 M 3 D 2.10E-07 FGR11 NR NR NR NR Ni-63 M 3 D 5.77E-07 FGR11 NR NR NR NR Np-237 M 3 D 4.44E-03 FGR11 NR NR NR NR Pa-231 M 3 D 1.06E-02 FGR11 NR NR NR NR Pb-210 M 3 D 5.37E-03 FGR11 NR NR NR NR Po-210 M 3 D 1.90E-03 FGR11 NR NR NR NR Pu-238 M 3 D 3.20E-03 FGR11 NR NR NR NR Pu-239 M 3 D 3.54E-03 FGR11 NR NR NR NR Page 109 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Pu-240 M 3 D 3.54E-03 FGR11 NR NR NR NR Pu-241 M 3 D 6.84E-05 FGR11 NR NR NR NR Pu-242 M 3 D 3.36E-03 FGR11 NR NR NR NR Ra-226 M 3 D 1.32E-03 FGR11 NR NR NR NR Ra-228 M 3 D 1.44E-03 FGR11 NR NR NR NR e
Sm-148 M 3 D 1.58E-04 ICRP60 NR NR NR NR Sr-90 M 3 D 1.42E-04 FGR11 NR NR NR NR Tc-99 M 3 D 1.46E-06 FGR11 NR NR NR NR Th-228 M 3 D 3.96E-04 FGR11 NR NR NR NR Th-229 M 3 D 3.53E-03 FGR11 NR NR NR NR Th-230 M 3 D 5.48E-04 FGR11 NR NR NR NR Th-232 M 3 D 2.73E-03 FGR11 NR NR NR NR U-233 M 3 D 2.89E-04 FGR11 NR NR NR NR U-234 M 3 D 2.83E-04 FGR11 NR NR NR NR U-235 M 3 D 2.66E-04 FGR11 NR NR NR NR U-236 M 3 D 2.69E-04 FGR11 NR NR NR NR U-238 M 3 D 2.55E-04 FGR11 NR NR NR NR Plant Transfer Factors (pCi/g plant)/(pCi/g soil)
Ac-227 P 1 D NA Industrial Scenario NR NR NR NR Am-241 P 1 D NA Industrial Scenario NR NR NR NR Am-243 P 1 D NA Industrial Scenario NR NR NR NR C-14 P 1 D NA Industrial Scenario NR NR NR NR Cm-243 P 1 D NA Industrial Scenario NR NR NR NR Cm-244 P 1 D NA Industrial Scenario NR NR NR NR Co-60 P 1 D NA Industrial Scenario NR NR NR NR Cs-134 P 1 D NA Industrial Scenario NR NR NR NR Cs-137 P 1 D NA Industrial Scenario NR NR NR NR Eu-152 P 1 D NA Industrial Scenario NR NR NR NR Eu-154 P 1 D NA Industrial Scenario NR NR NR NR Fe-55 P 1 D NA Industrial Scenario NR NR NR NR Gd-152 P 1 D NA Industrial Scenario NR NR NR NR Page 110 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median H-3 P 1 D NA Industrial Scenario NR NR NR NR Nb-94 P 1 D NA Industrial Scenario NR NR NR NR Nd-144 P 1 D NA Industrial Scenario NR NR NR NR Ni-59 P 1 D NA Industrial Scenario NR NR NR NR Ni-63 P 1 D NA Industrial Scenario NR NR NR NR Np-237 P 1 D NA Industrial Scenario NR NR NR NR Pa-231 P 1 D NA Industrial Scenario NR NR NR NR Pb-210 P 1 D NA Industrial Scenario NR NR NR NR Pm-147 P 1 D NA Industrial Scenario NR NR NR NR Po-210 P 1 D NA Industrial Scenario NR NR NR NR Pu-238 P 1 D NA Industrial Scenario NR NR NR NR Pu-239 P 1 D NA Industrial Scenario NR NR NR NR Pu-240 P 1 D NA Industrial Scenario NR NR NR NR Pu-241 P 1 D NA Industrial Scenario NR NR NR NR Ra-226 P 1 D NA Industrial Scenario NR NR NR NR Ra-228 P 1 D NA Industrial Scenario NR NR NR NR Sb-125 P 1 D NA Industrial Scenario NR NR NR NR Sm-148 P 1 D NA Industrial Scenario NR NR NR NR Sr-90 P 1 D NA Industrial Scenario NR NR NR NR Tc-99 P 1 D NA Industrial Scenario NR NR NR NR Th-228 P 1 D NA Industrial Scenario NR NR NR NR Th-229 P 1 D NA Industrial Scenario NR NR NR NR Th-230 P 1 D NA Industrial Scenario NR NR NR NR Th-232 P 1 D NA Industrial Scenario NR NR NR NR U-233 P 1 D NA Industrial Scenario NR NR NR NR U-234 P 1 D NA Industrial Scenario NR NR NR NR U-235 P 1 D NA Industrial Scenario NR NR NR NR U-236 P 1 D NA Industrial Scenario NR NR NR NR Meat Transfer Factors (pCi/kg)/(pCi/d)
Ac-227 P 2 D NA Industrial Scenario NR NR NR NR Ag-108m P 2 D NA Industrial Scenario NR NR NR NR Page 111 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Am-241 P 2 D NA Industrial Scenario NR NR NR NR Am-243 P 2 D NA Industrial Scenario NR NR NR NR C-14 P 2 D NA Industrial Scenario NR NR NR NR Cm-243 P 2 D NA Industrial Scenario NR NR NR NR Cm-244 P 2 D NA Industrial Scenario NR NR NR NR Co-60 P 2 D NA Industrial Scenario NR NR NR NR Cs-134 P 2 D NA Industrial Scenario NR NR NR NR Cs-137 P 2 D NA Industrial Scenario NR NR NR NR Eu-152 P 2 D NA Industrial Scenario NR NR NR NR Eu-154 P 2 D NA Industrial Scenario NR NR NR NR Fe-55 P 2 D NA Industrial Scenario NR NR NR NR Gd-152 P 2 D NA Industrial Scenario NR NR NR NR H-3 P 2 D NA Industrial Scenario NR NR NR NR Nb-94 P 2 D NA Industrial Scenario NR NR NR NR Nd-144 P 2 D NA Industrial Scenario NR NR NR NR Ni-59 P 2 D NA Industrial Scenario NR NR NR NR Ni-63 P 2 D NA Industrial Scenario NR NR NR NR Np-237 P 2 D NA Industrial Scenario NR NR NR NR Pa-231 P 2 D NA Industrial Scenario NR NR NR NR Pb-210 P 2 D NA Industrial Scenario NR NR NR NR Po-210 P 2 D NA Industrial Scenario NR NR NR NR Pu-238 P 2 D NA Industrial Scenario NR NR NR NR Pu-239 P 2 D NA Industrial Scenario NR NR NR NR Pu-240 P 2 D NA Industrial Scenario NR NR NR NR Pu-241 P 2 D NA Industrial Scenario NR NR NR NR Ra-226 P 2 D NA Industrial Scenario NR NR NR NR Ra-228 P 2 D NA Industrial Scenario NR NR NR NR Sb-125 P 2 D NA Industrial Scenario NR NR NR NR Sm-148 P 1 D NA Industrial Scenario NR NR NR NR Sr-90 P 2 D NA Industrial Scenario NR NR NR NR Tc-99 P 2 D NA Industrial Scenario NR NR NR NR Page 112 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Th-228 P 2 D NA Industrial Scenario NR NR NR NR Th-229 P 2 D NA Industrial Scenario NR NR NR NR Th-230 P 2 D NA Industrial Scenario NR NR NR NR Th-232 P 2 D NA Industrial Scenario NR NR NR NR U-233 P 2 D NA Industrial Scenario NR NR NR NR U-234 P 2 D NA Industrial Scenario NR NR NR NR U-235 P 2 D NA Industrial Scenario NR NR NR NR U-236 P 2 D NA Industrial Scenario NR NR NR NR Milk Transfer Factors (pCi/L)/(pCi/d)
Ac-227 P 2 D NA Industrial Scenario NR NR NR NR Am-241 P 2 D NA Industrial Scenario NR NR NR NR Am-243 P 2 D NA Industrial Scenario NR NR NR NR C-14 P 2 D NA Industrial Scenario NR NR NR NR Cm-243 P 2 D NA Industrial Scenario NR NR NR NR Cm-244 P 2 D NA Industrial Scenario NR NR NR NR Co-60 P 2 D NA Industrial Scenario NR NR NR NR Cs-134 P 2 D NA Industrial Scenario NR NR NR NR Cs-137 P 2 D NA Industrial Scenario NR NR NR NR Eu-152 P 2 D NA Industrial Scenario NR NR NR NR Eu-154 P 2 D NA Industrial Scenario NR NR NR NR Fe-55 P 2 D NA Industrial Scenario NR NR NR NR Gd-152 P 2 D NA Industrial Scenario NR NR NR NR H-3 P 2 D NA Industrial Scenario NR NR NR NR Nb-94 P 2 D NA Industrial Scenario NR NR NR NR Nd-144 P 2 D NA Industrial Scenario NR NR NR NR Ni-59 P 2 D NA Industrial Scenario NR NR NR NR Ni-63 P 2 D NA Industrial Scenario NR NR NR NR Np-237 P 2 D NA Industrial Scenario NR NR NR NR Pa-231 P 2 D NA Industrial Scenario NR NR NR NR Pb-210 P 2 D NA Industrial Scenario NR NR NR NR Po-210 P 2 D NA Industrial Scenario NR NR NR NR Pu-238 P 2 D NA Industrial Scenario NR NR NR NR Page 113 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Pu-239 P 2 D NA Industrial Scenario NR NR NR NR Pu-240 P 2 D NA Industrial Scenario NR NR NR NR Pu-241 P 2 D NA Industrial Scenario NR NR NR NR Ra-226 P 2 D NA Industrial Scenario NR NR NR NR Ra-228 P 2 D NA Industrial Scenario NR NR NR NR Sm-148 P 2 D NA Industrial Scenario NR NR NR NR Sr-90 P 2 D NA Industrial Scenario NR NR NR NR Tc-99 P 2 D NA Industrial Scenario NR NR NR NR Th-228 P 2 D NA Industrial Scenario NR NR NR NR Th-229 P 2 D NA Industrial Scenario NR NR NR NR Th-230 P 2 D NA Industrial Scenario NR NR NR NR Th-232 P 2 D NA Industrial Scenario NR NR NR NR U-233 P 2 D NA Industrial Scenario NR NR NR NR U-234 P 2 D NA Industrial Scenario NR NR NR NR U-235 P 2 D NA Industrial Scenario NR NR NR NR U-236 P 2 D NA Industrial Scenario NR NR NR NR Bioaccumulation Factors for Fish ((pCi/kg)/(pCi/L))
Ac-227 P 2 D NA Industrial Scenario NR NR NR NR Am-241 P 2 D NA Industrial Scenario NR NR NR NR Am-243 P 2 D NA Industrial Scenario NR NR NR NR C-14 P 2 D NA Industrial Scenario NR NR NR NR Cm-243 P 2 D NA Industrial Scenario NR NR NR NR Cm-244 P 2 D NA Industrial Scenario NR NR NR NR Cm-245 P 2 D NA Industrial Scenario NR NR NR NR Cm-246 P 2 D NA Industrial Scenario NR NR NR NR Co-60 P 2 D NA Industrial Scenario NR NR NR NR Cs-137 P 2 D NA Industrial Scenario NR NR NR NR Eu-152 P 2 D NA Industrial Scenario NR NR NR NR Eu-154 P 2 D NA Industrial Scenario NR NR NR NR Gd-152 P 2 D NA Industrial Scenario NR NR NR NR H-3 P 2 D NA Industrial Scenario NR NR NR NR I-129 P 2 D NA Industrial Scenario NR NR NR NR Page 114 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Nb-94 P 2 D NA Industrial Scenario NR NR NR NR Ni-59 P 2 D NA Industrial Scenario NR NR NR NR Ni-63 P 2 D NA Industrial Scenario NR NR NR NR Np-237 P 2 D NA Industrial Scenario NR NR NR NR Pa-231 P 2 D NA Industrial Scenario NR NR NR NR Po-210 P 2 D NA Industrial Scenario NR NR NR NR Pb-210 P 2 D NA Industrial Scenario NR NR NR NR Pu-238 P 2 D NA Industrial Scenario NR NR NR NR Pu-239 P 2 D NA Industrial Scenario NR NR NR NR Pu-240 P 2 D NA Industrial Scenario NR NR NR NR Pu-241 P 2 D NA Industrial Scenario NR NR NR NR Pu-242 P 2 D NA Industrial Scenario NR NR NR NR Ra-226 P 2 D NA Industrial Scenario NR NR NR NR Ra-228 P 2 D NA Industrial Scenario NR NR NR NR Sr-90 P 2 D NA Industrial Scenario NR NR NR NR Th-228 P 2 D NA Industrial Scenario NR NR NR NR Th-229 P 2 D NA Industrial Scenario NR NR NR NR Th-230 P 2 D NA Industrial Scenario NR NR NR NR Th-232 P 2 D NA Industrial Scenario NR NR NR NR U-233 P 2 D NA Industrial Scenario NR NR NR NR U-234 P 2 D NA Industrial Scenario NR NR NR NR U-235 P 2 D NA Industrial Scenario NR NR NR NR U-236 P 2 D NA Industrial Scenario NR NR NR NR U-238 P 2 D NA Industrial Scenario NR NR NR NR Bioaccumulation Factors for Crustacea/ Mollusks ((pCi/kg)/(pCi/L))
Ac-227 P 3 D NA Industrial Scenario NR NR NR NR Am-241 P 3 D NA Industrial Scenario NR NR NR NR Am-243 P 3 D NA Industrial Scenario NR NR NR NR C-14 P 3 D NA Industrial Scenario NR NR NR NR Cm-243 P 3 D NA Industrial Scenario NR NR NR NR Cm-244 P 3 D NA Industrial Scenario NR NR NR NR Page 115 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median Cm-245 P 3 D NA Industrial Scenario NR NR NR NR Cm-246 P 3 D NA Industrial Scenario NR NR NR NR Co-60 P 3 D NA Industrial Scenario NR NR NR NR Cs-137 P 3 D NA Industrial Scenario NR NR NR NR Eu-152 P 3 D NA Industrial Scenario NR NR NR NR Eu-154 P 3 D NA Industrial Scenario NR NR NR NR Gd-152 P 3 D NA Industrial Scenario NR NR NR NR H-3 P 3 D NA Industrial Scenario NR NR NR NR I-129 P 3 D NA Industrial Scenario NR NR NR NR Nb-94 P 3 D NA Industrial Scenario NR NR NR NR Ni-59 P 3 D NA Industrial Scenario NR NR NR NR Ni-63 P 3 D NA Industrial Scenario NR NR NR NR Np-237 P 3 D NA Industrial Scenario NR NR NR NR Pa-231 P 3 D NA Industrial Scenario NR NR NR NR Pb-210 P 3 D NA Industrial Scenario NR NR NR NR Po-210 P S D NA Industrial Scenario NR NR NR NR Pu-238 P 3 D NA Industrial Scenario NR NR NR NR Pu-239 P 3 D NA Industrial Scenario NR NR NR NR Pu-240 P 3 D NA Industrial Scenario NR NR NR NR Pu-241 P 3 D NA Industrial Scenario NR NR NR NR Pu-242 P 3 D NA Industrial Scenario NR NR NR NR Ra-226 P 3 D NA Industrial Scenario NR NR NR NR Ra-228 P 3 D NA Industrial Scenario NR NR NR NR Sr-90 P 3 D NA Industrial Scenario NR NR NR NR Th-228 P 3 D NA Industrial Scenario NR NR NR NR Th-229 P 3 D NA Industrial Scenario NR NR NR NR Th-230 P 3 D NA Industrial Scenario NR NR NR NR Th-232 P 3 D NA Industrial Scenario NR NR NR NR U-233 P 3 D NA Industrial Scenario NR NR NR NR U-234 P 3 D NA Industrial Scenario NR NR NR NR U-235 P 3 D NA Industrial Scenario NR NR NR NR U-236 P 3 D NA Industrial Scenario NR NR NR NR Page 116 of 183
RS-TD-313196-004 Revision 4 BFM INSITU RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit) Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parametersd 1 2 3 4 Mean/
Median U-238 P 3 D NA Industrial Scenario NR NR NR NR Graphics Parameters Number of points 32 RESRAD Default NR NR NR NR Spacing log RESRAD Default NR NR NR NR Time integration parameters Maximum number of points for dose 17 RESRAD Default NR NR NR NR Notes:
a P = physical, B = behavioral, M = metabolic; (see NUREG/CR-6697, Attachment B, Table 4.)
b 1 = high-priority parameter, 2 = medium-priority parameter, 3 = low-priority parameter (see NUREG/CR-6697, Attachment B, Table 4.1) c D = deterministic, S = stochastic d Distributions Statistical Parameters:
Lognormal-n: 1= mean, 2 = standard deviation Bounded lognormal-n: 1= mean, 2 = standard deviation, 3 = minimum, 4 = maximum Truncated lognormal-n: 1= mean, 2 = standard deviation, 3 = lower quantile, 4 = upper quantile Bounded normal: 1 = mean, 2 = standard deviation, 3 = minimum, 4 = maximum Beta: 1 = minimum, 2 = maximum, 3 = P-value, 4 = Q-value Triangular: 1 = minimum, 2 = mode, 3 = maximum Uniform: 1 = minimum, 2 = maximum e Sm-148 an ND-144 not listed in RESRAD FGR 11 DCF file e
Reference:
Haley and Aldrich, Inc., "Hydrogeological Investigation Report La Crosse Boiling Water Reactor, Dairyland Power Cooperative, Genoa, WI, January 2015 f ZionSolutions Technical Support Document 14-003, Conestoga Rovers & Associates (CRA) Report, Zion Hydrogeologic Investigation Report g Argonne National Laboratory, Users Manual for RESRAD Version 6, ANL/EAD 4, July 2001 Page 117 of 183
RS-TD-313196-004 Revision 4 Attachment 6 Calculation of BFM Insitu Groundwater DCGL Reactor Building Page 118 of 183
RS-TD-313196-004 Revision 4 Reactor Building: BFM Insitu Groundwater DCGLs RESRAD Parameter Calculations Inputs to RESRAD Parameter Calculation ground surface 639.00 foot elevation Maximum water table level 629 foot elevation Cover Depth 3 ft conversion factor 0.3048 m per ft conversion factor 0.0283 m3 per ft3 3
Fill Density 1.76 g/cm 3 3 conversion factor 1.00E+06 cm per m 2 2 conversion Factor 9.29E-02 m /ft Bottom of Rx Building Liner 1 612.00 foot elevation Reactor Building Diameter above 619' 1 60 ft Reactor Building Diameter above 619' 18.288 m Reactor Building Diameter below 619' 1 50 ft Reactor Building Diameter below 619' 15.24 m Reactor Building Fill Volume below 52479.32 636'1 ft3 Reactor Building Fill Volume Below 4829.46 619 1 ft3 Reactor Building Fill Volume above 3
636-619 47649.86 ft Reactor Building Surface Area below 636 1 5506.36 ft2 Reactor Building Surface Area Below 619 1 2646.77 ft2 Reactor Building Surface Area above 636-619 2859.59 ft2 Note 1: Reference TSD RS-TD-313196-002 La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces Page 119 of 183
RS-TD-313196-004 Revision 4 Reactor Building Fill Volume at Various Depths Fill Volume Fill Volume Between Below 636' Fill Volume Below 636' and 619' (m3) 619' (m3) (m3)
Reactor Building 1485.16 136.67 1348.49 Calculation - RESRAD Parameters Rx (629' WT) cover depth 0.91 m Area of Contaminated Zone 262.68 m2 Source Term Thickness 7.32 m Unsaturated Zone Thickness 0m Length Parallel to flow 18.29 m Source Term Above Water Table 2.13 m Contaminated Fraction Below Water Table 0.71 Reactopr Building: Calculation of BFM Insitu gw DCGLs Inputs to BFM Insitugw DCGL Calculation Unit inventory in concrete 1 pci/m2 pCi/g fill per pCi/m2 in concrete Below 619' Elevation 1.02E-06 pCi/g per pCi/m2 pCi/g fill per pCi/m2 in concrete Between 636' and 612' Elevation 1.96E-07 pCi/g per pCi/m2 Page 120 of 183
RS-TD-313196-004 Revision 4 BFM Insitugw DCGLs for Reactor Building RESRAD DSR1 BFM Insitugw Reactor Building Radionuclide (mrem/yr per (mrem/y per BFM Insitugw DCGL pCi/g fill) pCi/m2) (pCi/m2)
H-3 5.916E-03 1.16E-09 2.16E+10 C-14 1.581E-01 3.09E-08 8.08E+08 Fe-55 3.787E-03 7.41E-10 3.37E+10 Ni-59 3.940E-04 7.71E-11 3.24E+11 Co-60 6.691E-01 1.31E-07 1.91E+08 Ni-63 1.079E-03 2.11E-10 1.18E+11 Sr-90 6.440E+00 1.26E-06 1.98E+07 Nb-94 1.546E-01 3.03E-08 8.26E+08 Tc-99 1.355E-01 2.65E-08 9.43E+08 Cs-137 2.674E-01 5.23E-08 4.78E+08 Eu-152 1.824E-02 3.57E-09 7.00E+09 Eu-154 2.649E-02 5.18E-09 4.82E+09 Eu-155 4.112E-03 8.05E-10 3.11E+10 Np-237 3.887E+02 7.61E-05 3.29E+05 Pu-238 5.089E+00 9.96E-07 2.51E+07 Pu-239 5.652E+00 1.11E-06 2.26E+07 Pu-240 5.651E+00 1.11E-06 2.26E+07 Pu-241 1.090E-01 2.13E-08 1.17E+09 Am-241 3.066E+00 6.00E-07 4.17E+07 Am-243 3.054E+00 5.98E-07 4.18E+07 Cm-243 7.831E-01 1.53E-07 1.63E+08 Cm-244 6.260E-01 1.23E-07 2.04E+08 Note 1: Reference RESRAD Report "LACBWR BFM Rx DSR 12117.pdf" Page 121 of 183
RS-TD-313196-004 Revision 4 Attachment 7 Calculation of BFM Insitu Groundwater DCGL Waste Gas Tank Vault Page 122 of 183
RS-TD-313196-004 Revision 4 Waste Gas Tank Vault: Basement Fill Model Insitu Groundwater DCGLs WGTV Specific RESRAD Parameters Inputs to Calculation WGTV Floor Elevation 621.00 ft Maximum Water Table Elevation 629.00 ft Ground Surface Elevation 639.00 ft Cover depth 3.00 ft WGTV Total Surface Area (floor, walls, ceiling) 3343.00 ft2 1
WGTV Width 29.50 ft WGTV Length1 31.50 ft 1
WGTV Fill Volume 10772.60 ft3 Conversion Factor 0.3048 m per ft Conversion Factor 0.0929 m2/ft2 Conversion Factor 0.0283 m3/ft3 Note 1: Reference TSD RS-TD-313196-002 La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces, Rev 0 WGTV RESRAD Parameters (629' GW Elevation)
Cover depth 0.91 m Thickness of Contaminated Zone 4.57 m Area of Contaminated Zone 86.33 m2 Length Parallel to flow 9.60 m Unsaturated Zone Thickness 0.00 m Depth of contamination above water table 2.13 m Depth of contamination below water table 2.44 m fraction below water table 0.53 Page 123 of 183
RS-TD-313196-004 Revision 4 WGTV: Calculation of BFM Insitugw DCGL Inputs to Calculation Fill Density 1.76 g/cm3 conversion factor 1.00E+04 cm2 per m2 conversion factor 1.00E+06 cm3 per m3 unit inventory in concrete 1 pCi/m2 pCi/g fill per pCi/m2 in concrete 5.79E-07 pCi/g per pCi/m2 BFM Insitugw DCGLs for WGTV WGTV RESRAD DSR1 BFM Insitu DF WGTV gw Radionuclide (mrem/yr per BFM Insitugw DCGL (mrem/yr per pCi/g) (pCi/m2) pCi/m2)
H-3 2.703E-03 1.56E-09 1.60E+10 C-14 8.069E-02 4.67E-08 5.35E+08 Fe-55 1.852E-03 1.07E-09 2.33E+10 Ni-59 2.032E-04 1.18E-10 2.13E+11 Co-60 3.759E-01 2.18E-07 1.15E+08 Ni-63 5.003E-04 2.90E-10 8.63E+10 Sr-90 3.661E+00 2.12E-06 1.18E+07 Nb-94 6.640E-02 3.84E-08 6.50E+08 Tc-99 6.195E-02 3.59E-08 6.97E+08 Cs-137 1.295E-01 7.50E-08 3.34E+08 Eu-152 8.675E-03 5.02E-09 4.98E+09 Eu-154 1.260E-02 7.29E-09 3.43E+09 Eu-155 1.955E-03 1.13E-09 2.21E+10 Np-237 1.854E+02 1.07E-04 2.33E+05 Pu-238 2.398E+00 1.39E-06 1.80E+07 Pu-239 2.911E+00 1.68E-06 1.48E+07 Pu-240 2.907E+00 1.68E-06 1.49E+07 Pu-241 5.311E-02 3.07E-08 8.13E+08 Am-241 1.499E+00 8.68E-07 2.88E+07 Am-243 1.567E+00 9.07E-07 2.76E+07 Cm-243 3.658E-01 2.12E-07 1.18E+08 Cm-244 2.924E-01 1.69E-07 1.48E+08 Note 1: Reference RESRAD Report "LACBWR BFM WGTV DSR 121117.pdf" Page 124 of 183
RS-TD-313196-004 Revision 4 Attachment 8 BFM Drilling Spoils DCGL Calculation Page 125 of 183
RS-TD-313196-004 Revision 4 Basement Fill Model (BFM) Insitu - Drilling Spoils Scenario Assumptions and Unit Conversion Factors Diameter Borehole 1 12.00 inch Minimum Depth to Backfilled 91.44 cm Depth of contamination within 2.54 cm unit conversion 1.00E+06 cm3/m3 Fill Density2 1.76 g/cm3 unit conversion 1.00E-09 mCi/pCi Diameter Borehole 30.48 cm Area Borehole Total Borehole Depth Including 729.66 cm2 concrete 93.98 cm Unit Concentration 1.00 pCi/g Unit Area Factor 1.00 unitless unit conversion 1.00E+04 cm2/m2 unit conversion 0.0929 m2 per ft2 unit conversion 2.54 cm per inch unit conversion 30.48 cm per ft Note 1: Based on Diameter of existing water wells at LACBWR site for industrial use Note 2: Haley & Aldrich Inc., Hydrogeological Investigation Report, La Crosse Boiling Water Reactor, Dairyland Power Cooperative, value Hydro Report Genoa Wisconsin, File No. 38705-008, January 2015.
Calculations Total Spoils Volume 6.86E+04 cm3 Total Spoils Volume 6.86E-02 m3 Total Spread Area 4.57E-01 m2 Total Drilling Spoils Mass 1.21E+05 g Total pCi in Spoils 1.21E+05 pCi (assuming Unit Concentration 1 pCi/g in spoils and AF=1) pCi/cm2 borehole 1.65E+02 pCi/cm2 (assuming unit concentration 1 pCi/g in spoils and AF=1) pCi/m2 borehole 1.65E+06 pCi/m2 (assuming unit concentration 1 pCi/g in spoils and AF=1)
Page 126 of 183
RS-TD-313196-004 Revision 4 Calculation of Area Factors and DCGLs (pCi/m 2 ) for BFM Insitu Drilling Spoils Scenario (Insitu ds )
Drilling Spoils 0.457 Soil DCGL m2 Spread Area BFM Insituds DCGLs Radionuclide (pCi/g per 25 Dose/Source Ratio Area Factor For All Basements mrem/yr) (DSR)1 (pCi/m2)
(mrem/yr per pCi/g)
H-3 1.746E+04 8.123E-07 1762.70 5.09E+13 C-14 2.448E+05 9.407E-09 10856.19 4.40E+15 Fe-55 1.018E+07 9.119E-10 2693.05 4.53E+16 Ni-59 2.594E+07 6.727E-10 1432.68 6.15E+16 Co-60 1.281E+01 6.896E-02 28.30 6.00E+08 Ni-63 9.478E+06 1.642E-09 1606.39 2.52E+16 Sr-90 6.586E+03 1.213E-04 31.29 3.41E+11 Nb-94 2.018E+01 4.742E-02 26.13 8.72E+08 Tc-99 3.563E+02 3.009E-05 2331.86 1.37E+12 Cs-137 5.812E+01 1.689E-02 25.47 2.45E+09 Eu-152 2.844E+01 3.265E-02 26.92 1.27E+09 Eu-154 2.636E+01 3.474E-02 27.30 1.19E+09 Eu-155 1.122E+03 1.201E-03 18.55 3.44E+10 Np-237 7.991E-01 4.206E-03 7438.23 9.83E+09 Pu-238 1.660E+03 7.392E-05 203.74 5.59E+11 Pu-239 1.494E+03 8.150E-05 205.32 5.07E+11 Pu-240 1.496E+03 8.097E-05 206.39 5.11E+11 Pu-241 3.637E+04 8.353E-06 82.29 4.95E+12 Am-241 1.089E+03 4.270E-04 53.76 9.68E+10 Am-243 1.868E+02 5.734E-03 23.34 7.21E+09 Cm-243 2.884E+02 3.521E-03 24.62 1.17E+10 Cm-244 2.668E+03 4.648E-05 201.60 8.90E+11 Note 1: Reference RESRAD Summary Report "LACBWR Drilling Spoils AF 092317.pdf" Page 127 of 183
RS-TD-313196-004 Revision 4 Attachment 9 BFM Excavation DCGL Calculation Page 128 of 183
RS-TD-313196-004 Revision 4 Basement Fill Model - Excavation Scenario Inputs to Calculation Unit Conversion Factor 0.0929 m2/ft2 Unit Conversion Factor 0.0283 m3/ft3 Unit Conversion Factor 0.3048 m/ft Unit Concentration 1.00E+00 pCi/g 3
Concrete Density 2.35 g/cm 3 3 Unit Conversion Factor 1.00E+06 cm per m Unit Conversion Factor 1.00E-09 mCi/pCi Unit Conversion Factor 1.00E+09 pCi/mCi Surface Area, Mass and Void Space of Backfilled End State Structures (> 3' below grade) 1,2 Floor Ceiling Void Space Floor Surface Concrete Concrete 2 2 2 3 3 3 Vol ft 3 Structure Area ft Wall Surface Area ft Ceiling Surface Area ft Volume ft Wall Concrete Volume ft Volume ft Waste Gas Tank Vault 767.00 2576.00 0.00 1027.25 2372.62 907.75 10772.60 Reactor Building 3904.15 1602.21 0.00 17816.02 1216.68 0.00 52479.32 Note 1: Reference TSD RS-TD-313196-002 "La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces" Rev 0 Note 2: TSD RS-TD-313196-002, Rev 0 assumed ceiling of WGTV would remain. A decision was made after issuance of TSD to remove ceiling All Basement Concrete Excavated: Calculation of BFM Excavation Scenario total activity assuming unit concentration in concrete mass (1 pCi/g) 1 Total Activity at Unit Total Surface Concrete Concentration Structure Total Volume ft 3 Total Volume m 3 Total Surface Area ft 2 Area m 2 (pCi/m 2 per pCi/g)
Reactor Building 19032.70 538.63 5506.36 511.54 2.47E+06 Waste Gas Tank Vault 4307.62 121.91 3343.00 310.56 9.22E+05 Note 1: Reference TSD RS-TD-313196-002 "La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces" Rev 0 Page 129 of 183
RS-TD-313196-004 Revision 4 Total Basement Concrete Excavation: Calculation of BFM Excavation Scenario DCGLs for Reactor Building, Waste Treatment Building and Remaining Structures Rx Building WGTV Soil DCGL Total Excavation DCGL Total Excavation DCGL Radionuclide (pCi/g per 25 (pCi/m2 per 25 (pCi/m2 per 25 mrem/yr) mrem/yr) mrem/yr)
H-3 1.746E+04 4.32E+10 1.61E+10 C-14 2.448E+05 6.06E+11 2.26E+11 Fe-55 1.018E+07 2.52E+13 9.39E+12 Ni-59 2.594E+07 6.42E+13 2.39E+13 Co-60 1.281E+01 3.17E+07 1.18E+07 Ni-63 9.478E+06 2.35E+13 8.74E+12 Sr-90 6.586E+03 1.63E+10 6.08E+09 Nb-94 2.018E+01 4.99E+07 1.86E+07 Tc-99 3.563E+02 8.82E+08 3.29E+08 Cs-137 5.812E+01 1.44E+08 5.36E+07 Eu-152 2.844E+01 7.04E+07 2.62E+07 Eu-154 2.636E+01 6.52E+07 2.43E+07 Eu-155 1.122E+03 2.78E+09 1.03E+09 Np-237 7.991E-01 1.98E+06 7.37E+05 Pu-238 1.660E+03 4.11E+09 1.53E+09 Pu-239 1.494E+03 3.70E+09 1.38E+09 Pu-240 1.496E+03 3.70E+09 1.38E+09 Pu-241 3.637E+04 9.00E+10 3.35E+10 Am-241 1.089E+03 2.69E+09 1.00E+09 Am-243 1.868E+02 4.62E+08 1.72E+08 Cm-243 2.884E+02 7.14E+08 2.66E+08 Cm-244 2.668E+03 6.60E+09 2.46E+09 Page 130 of 183
RS-TD-313196-004 Revision 4 Partial Basement Concrete Excavation (walls only any depth): Ratio of Partial Excavation SA/V to Total Excation SA/V (surface area to volume)
SA/V of Worst-Case SA/V ratio Total Surface Total Concrete SA/V Minimum Concrete Wall concrete (Partial Excavation/
Area m2 (m2/m3) Thickness (ft) 1 wall2 Total Excavation)
Structure (m2/m3)
Waste Gas Tank Vault 310.56 2.55 0.75 4.37 1.72 Reactor Building 511.54 0.95 0.75 4.37 4.61 Note 1: Reference TSD RS-TD-313196-002 "La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces" WGTV minimum wall thickness equal to 1/2 of center dividing wall thickness of 1.5 ft 1.5 ft Rx Building minimum wall thickness is 9 inches. 9.0 inches Note 2: Calculation based on 1m2 wall section 1.0 m2 Page 131 of 183
RS-TD-313196-004 Revision 4 Partial Basement Concrete Excavation: Calculation of BFM Excavation Scenario DCGLs for Reactor Building and WGTV Assuming Worst Case (i.e., thinnest) Concrete Wall SA/V ratio Rx Building Excavation WGTV Excavation Partial Excavation DCGL Partial Excavation DCGL Radionuclide (pCi/m2 per (pCi/m2 per 25 mrem/yr) 25 mrem/yr)
H-3 9.38E+09 9.38E+09 C-14 1.32E+11 1.32E+11 Fe-55 5.47E+12 5.47E+12 Ni-59 1.39E+13 1.39E+13 Co-60 6.88E+06 6.88E+06 Ni-63 5.09E+12 5.09E+12 Sr-90 3.54E+09 3.54E+09 Nb-94 1.08E+07 1.08E+07 Tc-99 1.91E+08 1.91E+08 Cs-137 3.12E+07 3.12E+07 Eu-152 1.53E+07 1.53E+07 Eu-154 1.42E+07 1.42E+07 Eu-155 6.03E+08 6.03E+08 Np-237 4.29E+05 4.29E+05 Pu-238 8.92E+08 8.92E+08 Pu-239 8.03E+08 8.03E+08 Pu-240 8.04E+08 8.04E+08 Pu-241 1.95E+10 1.95E+10 Am-241 5.85E+08 5.85E+08 Am-243 1.00E+08 1.00E+08 Cm-243 1.55E+08 1.55E+08 Cm-244 1.43E+09 1.43E+09 Page 132 of 183
RS-TD-313196-004 Revision 4 Attachment 10 Buried Pipe DCGL Calculation Page 133 of 183
RS-TD-313196-004 Revision 4 Calculation of Buried Piping DCGLs Inputs to Calculation conversion Factor 0.0254 m/inch 3
soil density 1.76 g/cm 3 3 conversion factor 1.00E+06 cm /m 2 2 conversion factor 1.00E+04 cm /m conversion factor 2.2 dpm/pCi conversion factor 0.3048 m/ft 2 2 conversion factor 0.0929 m /ft conversion factor 7.5 gal/ft3 pipe length 1m Pipe Area, Volume and Internal Soil Mass Calculations for 1 m Length Pipe Pipe Surface Area Pipe Volume Pipe Diameter Circumference for 1 m length for 1 m length (inch)
(m) (m2) (m3) 1.5 0.12 0.12 1.14E-03 2 0.16 0.16 2.03E-03 3 0.24 0.24 4.56E-03 6 0.48 0.48 1.82E-02 8 0.64 0.64 3.24E-02 10 0.80 0.80 5.07E-02 18 1.44 1.44 1.64E-01 24 1.92 1.92 2.92E-01 32 2.55 2.55 5.19E-01 48 3.83 3.83 1.17E+00 60 4.79 4.79 1.82E+00 Page 134 of 183
RS-TD-313196-004 Revision 4 Internal Surface Area of Buried Pipe (Group)
Total Pipe Surface Area Total Pipe Volume Pipe Description 2 3 Pipe Diameter (in) Pipe Length (ft) Pipe Length (m) (m ) (m )
1.5 285 86.87 10.40 0.10 Water Well #3 2 115 35.05 5.59 0.07 Water Well #3 3 438 133.50 31.96 0.61 Water Well #3 6 40 12.19 5.84 0.22 High Pressure Service Water from LACBWR Crib House to G-3 Remaining Portion of High Pressure Service Water Supply to LACBWR 6 863 263.04 125.94 4.80 Fire Suppression System 8 222 67.67 43.20 2.19 High Pressure Service Water from LACBWR Crib House to G-3 10 100 30.48 24.32 1.54 South Storm Drain 16 44 13.41 17.12 1.74 Low Pressure Service Water 18 105 32.00 45.97 5.25 Deicing Line 24 435 132.59 253.92 38.70 North Storm Drain 32 250 76.20 194.58 39.54 North Storm Drain 48 630 192.02 735.50 224.18 South Storm Drain 60 40 12.19 58.37 22.24 Remaining Portion of Circulating Water Intake Pipe Total 1552.70 341.19 RESRAD Parameters for Insitu Scenario for Buried Pipe DSR calculation (no Circulating Water Discharger Piping) 2 Effective Insitu Buried Piping "Area of Contaminated Zone" RESRAD Parameter 1552.70 m Effective Insitu Buried Piping "Thickness of Contaminated Zone" RESRAD Parameter 0.0254 m Effective "Length Parallel to Flow" RESRAD Parameter 44.46 m Cover Depth 3.02 m 1
Assumed "Thickness of Unsaturated Zone" 0.00 m Note 1: Depth of all pipe conservatively assumed to be equal to depth of lowest pipe @ 625 foot AMSL which is below the assumed water table elevation of 629'.
All activity asumed to be in saturated zone.
Page 135 of 183
RS-TD-313196-004 Revision 4 RESRAD Parameters for Excavation Scenario for Buried Pipe DSR calculation (no Circulating Water Discharge Piping)
Effective Insitu Buried Piping "Area of Contaminated Zone" RESRAD Parameter 1552.70 m2 Effective Insitu Buried Piping "Thickness of Contaminated Zone" RESRAD Parameter 0.15 m Effective "Length Parallel to Flow" RESRAD Parameter 44.46 m Cover Depth 0.00 m Assumed "Thickness of Unsaturated Zone" 2.90 m Soil Concentration after 100% release of unit concentration (1 dpm/100 cm 2) surface contamination layer from buried pipe conversion factor 2.2 dpm/pCi Soil Density 1.76 g/cm3 Assumed Thickness of initu mixing with adjacent soil 2.54 cm Assumed Thickness of initu mixing with adjacent soil 15 cm 2 3 2 pCi/g per 1 dpm/100 cm Insitu (assuming 1.76 g/cm density and 2.54 cm thickness) 1.02E-03 pCi/g per dpm/100 cm pCi/g per 1 dpm/100 cm2 Excavation (assuming 1.76 g/cm3 density and 15 cm thickness) 1.72E-04 pCi/g per dpm/100 cm2 Page 136 of 183
RS-TD-313196-004 Revision 4 Group Excavation Geometry: Calculation of dpm/100 cm2 corresponding to 25 mrem per year for all buried pipe combined (except Circulating Water Discharge pipe)
RESRAD DSR1 pCi/g per 25 dpm/100cm2 per Radionuclide (mrem/yr per mrem/yr 25 mrem/yr pCi/g)
H-3 1.504E-04 1.66E+05 9.65E+08 C-14 3.017E-05 8.29E+05 4.81E+09 Fe-55 2.428E-06 1.03E+07 5.98E+10 Ni-59 9.537E-07 2.62E+07 1.52E+11 Co-60 1.720E+00 1.45E+01 8.44E+04 Ni-63 2.610E-06 9.58E+06 5.56E+10 Sr-90 3.599E-03 6.95E+03 4.03E+07 Nb-94 1.145E+00 2.18E+01 1.27E+05 Tc-99 6.026E-03 4.15E+03 2.41E+07 Cs-137 4.031E-01 6.20E+01 3.60E+05 Eu-152 7.963E-01 3.14E+01 1.82E+05 Eu-154 8.565E-01 2.92E+01 1.70E+05 Eu-155 2.195E-02 1.14E+03 6.62E+06 Np-237 9.549E+00 2.62E+00 1.52E+04 Pu-238 1.483E-02 1.69E+03 9.79E+06 Pu-239 1.648E-02 1.52E+03 8.81E+06 Pu-240 1.646E-02 1.52E+03 8.82E+06 Pu-241 4.051E-04 6.17E+04 3.58E+08 Am-241 2.248E-02 1.11E+03 6.46E+06 Am-243 1.311E-01 1.91E+02 1.11E+06 Cm-243 8.491E-02 2.94E+02 1.71E+06 Cm-244 9.235E-03 2.71E+03 1.57E+07 Note 1: Reference RESRAD File "LACBWR Buried Pipe Group Excavation 052618" Page 137 of 183
RS-TD-313196-004 Revision 4 Group Insitu Geometry: Calculation of dpm/100 cm2 corresponding to 25 mrem per year for all buried pipe combined (except Circulating Water Discharge pipe)
RESRAD DSR1 2
Radionuclide (mrem/yr per pCi/g per dpm/100cm per pCi/g) 25 mrem/yr 25 mrem/yr2 H-3 5.354E-05 4.67E+05 4.59E+08 C-14 5.285E-04 4.73E+04 4.65E+07 Fe-55 1.930E-05 1.30E+06 1.27E+09 Ni-59 2.134E-06 1.17E+07 1.15E+10 Co-60 3.860E-03 6.48E+03 6.37E+06 Ni-63 5.333E-06 4.69E+06 4.61E+09 Sr-90 4.230E-02 5.91E+02 5.81E+05 Nb-94 2.417E-04 1.03E+05 1.02E+08 Tc-99 1.228E-03 2.04E+04 2.00E+07 Cs-137 1.351E-03 1.85E+04 1.82E+07 Eu-152 9.073E-05 2.76E+05 2.71E+08 Eu-154 1.318E-04 1.90E+05 1.87E+08 Eu-155 2.045E-05 1.22E+06 1.20E+09 Np-237 3.769E+00 6.63E+00 6.52E+03 Pu-238 2.512E-02 9.95E+02 9.79E+05 Pu-239 3.052E-02 8.19E+02 8.06E+05 Pu-240 3.034E-02 8.24E+02 8.10E+05 Pu-241 5.395E-04 4.63E+04 4.56E+07 Am-241 1.514E-02 1.65E+03 1.62E+06 Am-243 1.631E-02 1.53E+03 1.51E+06 Cm-243 3.835E-03 6.52E+03 6.41E+06 Cm-244 3.065E-03 8.16E+03 8.02E+06 Note 1: Reference RESRAD File "LACBWR Buried Pipe Group Insitu 031018" Page 138 of 183
RS-TD-313196-004 Revision 4 CALCULATION OF DCGL FOR CIRCULATING WATER DISCHARGE LINE Area, Volume and Depth of End State Circulating Water Discharge Pipe Internal Depth @ Pipe 2 Volume Diameter (inch) Length (m) Surface Area (m ) Bottom1,2 (ft (m3) AMSL) 60.00 160.02 766.14 291.90 630.5 Note 1: Reference Drawing "Allison-Chambers, Circulating Water Plans and Sections, LACBWR Generator Plant, Note 2: Centerline of pipe at 633 feet AMSL, Pipe Diameter 5 feet, therefore, pipe bottom at 630.5 feet AMSL.
RESRAD Parameters Circulating Water Discharge Pipe Inputs LACBWR Ground Surface 639 ft AMSL LACBWR Ground Water Level 629 ft AMSL Depth to Ground Water 3.05 m Depth to bottom of circ water pipe 2.59 m RESRAD Parameters Insitu Circulating Water Discharge Pipe Area of Contaminated Zone 766.14 m2 Length Parallel to Flow 160.02 m Thickness of Contaminated Zone 0.0254 m Cover Depth 2.59 m Unsaturated Zone Depth 0.43 m RESRAD Parameters Excavation Circulating Water Discharge Pipe Area of Contaminated Zone 766.14 m2 Length Parallel to Flow 31.23 m Thickness of Contaminated Zone 0.15 m Cover Depth 0m Unsaturated Zone Depth 2.90 m Page 139 of 183
RS-TD-313196-004 Revision 4 Circ Insitu Geometry: Calculation of dpm/100 cm2 corresponding to 25 mrem per year for Circulating Water Discharge Pipe Only RESRAD DSR1 dpm/100cm2 Radionuclide (mrem/yr per pCi/g per 25 per 25 pCi/g) mrem/yr mrem/yr2 H-3 1.527E-04 1.64E+05 1.61E+08 C-14 9.461E-04 2.64E+04 2.60E+07 Fe-55 1.536E-17 1.63E+18 2.03E+26 Ni-59 2.141E-06 1.17E+07 2.03E+26 Co-60 9.800E-05 2.55E+05 2.51E+08 Ni-63 2.213E-07 1.13E+08 1.11E+11 Sr-90 2.875E-02 8.70E+02 8.55E+05 Nb-94 2.421E-04 1.03E+05 1.02E+08 Tc-99 3.785E-03 6.61E+03 6.50E+06 Cs-137 3.763E-05 6.64E+05 6.53E+08 Eu-152 4.837E-11 5.17E+11 5.08E+14 Eu-154 2.485E-14 1.01E+15 9.89E+17 Eu-155 1.214E-22 2.06E+23 2.03E+26 Np-237 5.668E+00 4.41E+00 4.34E+03 Pu-238 3.606E-04 6.93E+04 6.82E+07 Pu-239 3.018E-02 8.28E+02 8.15E+05 Pu-240 2.868E-02 8.72E+02 8.57E+05 Pu-241 1.002E-04 2.50E+05 2.45E+08 Am-241 2.769E-03 9.03E+03 8.88E+06 Am-243 1.292E-02 1.93E+03 1.90E+06 Cm-243 3.629E-05 6.89E+05 6.78E+08 Cm-244 7.901E-05 3.16E+05 3.11E+08 Note 1: RESRAD File: "LACBWR Buried Pipe Circ Insitu 101117" Page 140 of 183
RS-TD-313196-004 Revision 4 Circ Excavation Geometry: Calculation of dpm/100 cm 2 corresponding to 25 mrem per year for Circulating Water Discharge Pipe Only RESRAD DSR1 Radionuclide (mrem/yr per pCi/g per 25 dpm/100cm2 per pCi/g) mrem/yr 25 mrem/yr H-3 1.080E-04 2.31E+05 1.34E+09 C-14 3.020E-05 8.28E+05 4.81E+09 Fe-55 1.860E-06 1.34E+07 7.81E+10 Ni-59 7.311E-07 3.42E+07 1.99E+11 Co-60 1.685E+00 1.48E+01 8.62E+04 Ni-63 2.001E-06 1.25E+07 7.26E+10 Sr-90 3.388E-03 7.38E+03 4.29E+07 Nb-94 1.123E+00 2.23E+01 1.29E+05 Tc-99 4.233E-03 5.91E+03 3.43E+07 Cs-137 3.955E-01 6.32E+01 3.67E+05 Eu-152 7.810E-01 3.20E+01 1.86E+05 Eu-154 8.396E-01 2.98E+01 1.73E+05 Eu-155 2.163E-02 1.16E+03 6.71E+06 Np-237 6.937E+00 3.60E+00 2.09E+04 Pu-238 1.143E-02 2.19E+03 1.27E+07 Pu-239 1.270E-02 1.97E+03 1.14E+07 Pu-240 1.269E-02 1.97E+03 1.14E+07 Pu-241 3.321E-04 7.53E+04 4.37E+08 Am-241 1.852E-02 1.35E+03 7.84E+06 Am-243 1.256E-01 1.99E+02 1.16E+06 Cm-243 8.120E-02 3.08E+02 1.79E+06 Cm-244 7.118E-03 3.51E+03 2.04E+07 Note 1: RESRAD File: "LACBWR Buried Pipe Circ Excavation DSR 052618" Page 141 of 183
RS-TD-313196-004 Revision 4 Buried Pipe DCGLs for Radionuclides of Concern Adjusted for Insignificant Contributor Dose Insignificant Contributor Dose Percentage 1 Buried Pipe Group Insitu 10.000%
Buried Pipe Group Excavation 10.000%
Buried Pipe Circ Insitu 10.000%
Buried Pipe Circ Excavation 10.000%
Note 1: Reference TSD RS-TD-313196-001 Revision 4 2
Adjusted Buried Pipe DCGLs for Radionuclides of Concern (dpm/100 cm )
Radionuclide Group Insitu Group Excavation Circ Insitu Circ Excavation Co-60 5.73E+06 7.60E+04 2.26E+08 7.76E+04 Sr-90 5.23E+05 3.63E+07 7.70E+05 3.86E+07 Cs-137 1.64E+07 3.24E+05 5.88E+08 3.30E+05 Eu-152 2.44E+08 1.64E+05 4.57E+14 1.67E+05 Eu-154 1.68E+08 1.53E+05 8.90E+17 1.56E+05 Combined Buried Pipe DCGL (dpm/100 cm 2)
Radionuclide Group DCGL Circ DCGL Co-60 7.50E+04 7.75E+04 Sr-90 5.16E+05 7.55E+05 Cs-137 3.18E+05 3.30E+05 Eu-152 1.64E+05 1.67E+05 Eu-154 1.52E+05 1.56E+05 Page 142 of 183
RS-TD-313196-004 Revision 4 Attachment 11 Check Calculation for Maximum Concentration in Fill Material Page 143 of 183
RS-TD-313196-004 Revision 4 Excavated Fill Material Concentration After 100% Release of Maximum Allowable Activity from Concrete Input to Calculation Adjusted BFM Individual Scenario DCGLs for ROC (DCGLBS)
Rx Bldg WGTV Rx Bldg WGTV WGTV Rx Bldg GW Drilling Drilling Excavation GW Excavation Spoils Spoils pCi/m2 pCi/m2 Co-60 1.37E+08 5.40E+08 6.19E+06 8.71E+07 5.40E+08 6.19E+06 Sr-90 1.66E+07 3.07E+11 3.18E+09 8.97E+06 3.07E+11 3.18E+09 Cs-137 2.25E+08 2.20E+09 2.81E+07 2.12E+08 2.20E+09 2.81E+07 Eu-152 3.10E+09 1.14E+09 1.38E+07 3.19E+09 1.14E+09 1.38E+07 Eu-154 2.14E+09 1.07E+09 1.27E+07 2.20E+09 1.07E+09 1.27E+07 Adjusted Summation BFM DCGLs (DCGLB)
Summation Summation Rx Bldg BFM DCGLB WGTV BFM DCGLB
( pCi/m2) (pCi/m2)
Co-60 5.86E+06 5.72E+06 Sr-90 1.65E+07 8.94E+06 Cs-137 2.47E+07 2.45E+07 Eu-152 1.35E+07 1.35E+07 Eu-154 1.25E+07 1.25E+07 Page 144 of 183
RS-TD-313196-004 Revision 4 Adjusted Soil DCGLs (pCi/g)
Co-60 11.53 Sr-90 5927.40 Cs-137 52.31 Eu-152 25.596 Eu-154 23.724 Basement Total Surface Area Total Surface Area Structure m2 Waste Gas Tank Vault 310.56 Reactor Building 511.54 Note 1: Reference TSD RS-TD-313196-002 La Crosse End State Basement Concrete Surface Areas, Volumes, and Void Spaces, Rev 0 Basement Total Fill Mass Void Void Fill Volume Volume Density Fill Mass (ft3) (m3) (g/cm3) (g) Inputs to Calculation Conversion Factor 1.00E+06 cm3/m3 Rx Bldg 52479.32 1485.16 1.76 2.61E+09 Conversion Factor 0.0283 m3 per ft3 WGTV 10772.60 304.865 1.76 5.4E+08 Conversion Factor 0.0929 m2 per ft2 Page 145 of 183
RS-TD-313196-004 Revision 4 Fill Concentration: Full Excavation and Activity Mixing with all Fill Concentration Levels for each Radionuclide (Assuming Each ROC at BFM DCGL B Concentration)
Fill Concentration Fill Concentration Rx Bldg WGTV (pCi/g) (pCi/g)
Co-60 1.15E+00 3.31E+00 Sr-90 3.23E+00 5.18E+00 Cs-137 4.83E+00 1.42E+01 Eu-152 2.65E+00 7.83E+00 Eu-154 2.45E+00 7.25E+00 Unit Area 1 m2 1 m fill distance from wall 1m Fill Concentration: Partial Fill Excavation and Activity Mixing Limited to 1 m 3 of Fill Imediately Adjacent to Wall Concentration Levels for each Radionuclide (Assuming Each ROC at BFM DCGL B Concentration)
Fill Concentration Fill Concentration Rx Bldg WGTV (pCi/g) (pCi/g)
Co-60 3.33E+00 3.25E+00 Sr-90 9.37E+00 5.08E+00 Cs-137 1.40E+01 1.39E+01 Eu-152 7.69E+00 7.69E+00 Eu-154 7.11E+00 7.12E+00 Page 146 of 183
RS-TD-313196-004 Revision 4 Attachment 12 Alternate Scenario Uncertainty Analysis Input Parameters Page 147 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Soil Concentrations Basic radiation dose limit (mrem/y) 3 D 25 10 CFR 20.1402 NR NR NR NR Initial principal radionuclide (pCi/g) P 2 D Varies based on Radionuclide Unit Value NR NR NR NR Mixture Distribution coefficients (contaminated, unsaturated, and saturated zones) (cm 3/g)
Ac-227 (daughter of Cm-243 and P 1 D 450 Mean Kd Value for sand 6.72 3.22 NA NA 825 Pu-239) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Am-241 (also daughter of Cm-245 P 1 S Lognormal-N NUREG/CR-6697 Att. C 7.28 3.15 NA NA 1445 and Pu-241)
Am-243 P 1 S Lognormal-N NUREG/CR-6697 Att. C 7.28 3.15 NA NA 1445 C-14 P 1 S Lognormal-N NUREG/CR-6697 Att. C 2.4 3.22 NA NA 11 Cm-243 P 1 S Lognormal-N NUREG/CR-6697 Att. C 8.82 1.82 NA NA 6761 Cm-244 P 1 S Lognormal-N NUREG/CR-6697 Att. C 8.82 1.82 NA NA 6761 Co-60 P 1 S Lognormal-N NUREG/CR-6697 Att. C 5.46 2.53 NA NA 235 Cs-137 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.1 2.33 NA NA 446 Eu-152 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.72 3.22 NA NA 825 Eu-154 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.72 3.22 NA NA 825 Eu-155 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.72 3.22 NA NA 825 Fe-55 P 1 S Lognormal-N NUREG/CR-6697 Att. C 5.34 2.67 NA NA 209 Gd-152 (daughter for Eu-152) P 1 D 825 Median Value 6.72 3.22 NA NA 825 NUREG/CR-6697, Att. C (No sand value listed in Table 3.9-2)
H-3 P 1 S Lognormal-N NUREG/CR-6697 Att. C -2.81 0.5 NA NA 0.06 Nb-94 P 1 S Lognormal-N NUREG/CR-6697 Att. C 5.94 3.22 NA NA 380 Nd-144 (daughter for Eu-152) P 1 D 158 RESRADv.7.0 Default NA NA NA NA NA Nd not listed in NUREG/CR-6697 Ni-59 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.05 1.46 NA NA 424 Ni-63 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.05 1.46 NA NA 424 Np-237 (also daughter for Am-241, P 1 S Lognormal-N NUREG/CR-6697 Att. C 2.84 2.25 NA NA 17 Cm-245, and Pu-241)
Page 148 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Pa-231 (daughter for Cm-243 and P 1 D 550 Mean Kd Value for sand 5.94 3.22 NA NA 380 Pu-239) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Pb-210 (daughter for Pu-238) P 1 D 270 Mean Kd Value for sand 7.78 2.76 NA NA 181 NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Po-210 (daughter Pu-238) P 1 D 150 Mean Kd Value for sand 5.20 1.68 NA NA 181 NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Pu-238 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.86 1.89 NA NA 953 Pu-239 (also daughter for Cm-243) P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.86 1.89 NA NA 953 Pu-240 (also daughter for Cm-244) P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.86 1.89 NA NA 953 Pu-241 P 1 S Lognormal-N NUREG/CR-6697 Att. C 6.86 1.89 NA NA 953 Ra-226 (daughter Pu-238) P 1 D 500 Mean Kd Value for sand 8.17 1.70 NA NA 3533 NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Ra-228 (daughter Cm-244 and Pu- P 1 D 500 Mean Kd Value for sand 8.17 1.70 NA NA 3533 240) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Sm-148 (daughter Eu-152) P 1 D 245 Mean Kd Value for sand 6.72 3.22 NA NA 825 NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Sr-90 P 1 S Lognormal-N NUREG/CR-6697 Att. C 3.45 2.12 NA NA 32 Tc-99 P 1 S Lognormal-N NUREG/CR-6697 Att. C -0.67 3.16 NA NA 0.51 Th-228 (daughter Cm-244 and Pu- P 1 D 3200 Mean Kd Value for sand 8.68 3.62 NA NA 5884 240) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Th-229 (daughter Am-241, Cm-245, P 1 D 3200 Mean Kd Value for sand 8.68 3.62 NA NA 5884 Np-237, and Pu-241) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Page 149 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Th-230 (daughter Cm-246 and Pu- P 1 D 3200 Mean Kd Value for sand 8.68 3.62 NA NA 5884 238) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault Th-232 (daughter Cm-244 and Pu- P 1 D 3200 Mean Kd Value for sand 8.68 3.62 NA NA 5884 240) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault U-233 (daughter Am-241, Cm-245, P 1 D 35 Mean Kd Value for sand 4.84 3.13 NA NA 126 Np-237, and Pu-241) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault C U-234 (daughter Pu-238) P 1 D 35 Mean Kd Value for sand 4.84 3.13 NA NA 126 NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault C U-235 (daughter Cm-243 and Pu- P 1 D 35 Mean Kd Value for sand 4.84 3.13 NA NA 126 239) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault C U-236 (daughter Cm-244 and Pu- P 1 D 35 Mean Kd Value for sand 4.84 3.13 NA NA 126 240) NUREG/CR-6697, Table 3.9-2, Sheppard and Thibault C Initial concentration of radionuclides P 3 D 0 No existing groundwater NR NR NR NR present in groundwater (pCi/l) contamination Calculation Times Time since placement of material (y) P 3 D 0 Start of dose calculation NR NR NR NR immediately after license termination Time for calculations (y) P 3 D 0, 1, 3, 10, 30, 100, 300, 1000 RESRAD Default NR NR NR NR Contaminated Zone Area of contaminated zone (m2) P 2 D 7500 Size of LACBWR NR NR NR NR Licensed Site Exclusion (LSE) area Thickness of contaminated zone (m) P 2 D 0.15 Assumed depth of NR NR NR NR surface soil Length parallel to aquifer flow (m) P 2 D 98 Diameter of 7500 m2 NR NR NR NR contaminated zone Does the initial contamination NA NA NA No Contaminated zone at NA NA NA NA penetrate the water table? surface Page 150 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Contaminated fraction below water P 3 D 0 Contaminated zone at NR NR NR NR table surface Cover and Contaminated Zone Hydrological Data Cover depth (m) P 2 D 0 No cover NR NR NR NR Density of cover material P 2 D NA No cover NR NR NR NR Cover erosion rate P,B 2 S Continuous Logarithmic NUREG/CR-6697 Att. C 5E-08 0.0007 0.005 0.2 0.0015 Table 3.8-1 Density of contaminated zone P 1 D 1.76 Site specifice NR NR NR NR (g/cm3)
Contaminated zone erosion rate P,B 2 S Continuous Logarithmic NUREG/CR-6697 Att. C 5E-08 0.0007 0.005 0.2 0.0015 m/y) Table 3.8-1 Contaminated zone total porosity P 2 D 0.31 Site specifice NR NR NR NR Contaminated zone field capacity P 3 D 0.2 RESRAD default. No NR NR NR NR distribution or median value provided in NURE/CR-6697 Att. C Contaminated zone hydraulic P 2 D 34822 Site specifice NR NR NR NR conductivity (m/y) 313 feet/day = 34822 m/y Contaminated zone b parameter P 2 S Lognormal-N Site specific soil type -.0253 0.216 NA NA 0.97 sand NUREG/CR-6697 Att. C Table 3.5-1 Humidity in air (g/m3) P 3 D 7.2 Median 1.98 0.334 0.001 0.999 7.2 NUREG/CR-6697 Att. C Evapotranspiration coefficient P 2 S Uniform NUREG/CR-6697 Att. C 0.5 0.75 NR NR 0.625 Figure 4.3-1 Average annual wind speed (m/s) P 2 S Bounded Lognormal - N NUREG/CR-6697 Att. C 1.445 0.2419 1.4 13 4.2 Figure 4.5-1 Precipitation (m/y) P 2 D 0.78 NUREG/CR-6697 Att. C NR NR NR NR La Crosse, WI Table 4.1-2 Irrigation (m/y) B 3 D 0.20 NUREG-5512, Vol. 3, NR NR NR NR Table 6-18 (Wisconsin Average)
Converted 0.56 L/m2/d to m/y Page 151 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Irrigation mode B 3 D NA Overhead irrigation is NR NR NR NR common practice in U. S.
Runoff coefficient P 2 S Uniform NUREG/CR-6697 Att. C 0.1 0.8 NR NR 0.45 Figure 4.2-1 Watershed area for nearby stream P 3 D 1.00E+06 RESRAD Default NR NR NR NR or pond (m2)
Accuracy for water/soil - 3 D 1.00E-03 RESRAD Default NR NR NR NR computations Saturated Zone Hydrological Data Density of saturated zone (g/cm3) P 2 D 1.76 Site-specifice NR NR NR NR e
Saturated zone total porosity P 1 D 0.31 Site-specific NR NR NR NR e
Saturated zone effective porosity P 1 D 0.28 Site-specific NR NR NR NR Saturated zone field capacity P 3 D 0.066 Calculated values for NR NR NR NR sand soil typef Saturated zone hydraulic P 1 D 34822 Site-specific valuee NR NR NR NR conductivity (m/y) 313 feet/day = 34822 m/y Saturated zone hydraulic gradient P 2 D 0.0045 Site-specifice NR NR NR NR Saturated zone b parameter P 2 S Lognormal-N Site specific soil type -.0253 0.216 NA NA 0.97 sand NUREG/CR-6697 Att. C Table 3.5-1 Water table drop rate (m/y) P 3 D 0 Assumed zero due to NR NR NR NR hydraulic connectivity with Mississippi river.
Page 152 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Well pump intake depth (m below P 2 S Triangular Site-specific distribution 6.1 21.2 36.3 NR water table)
Existing industrial water supply wells onsite at depth of 116 and 129 below ground surface (the 129 depth equals 36.3 m below the water table).
36.3 m assumed to be maximum well depth.
Minimum well depth assumed to be represented by a nominal 20 screen depth (6.1 m) starting at the maximum seasonal water table elevation of 629 and extending to 10 below 619 elevation where water table continuously present.
Mode is assumed to be mid-point between 6.1 m and 36.3 m which is 21.2 m.
Note that the site-specific distribution is reasonably similar to the NUREG-6697 distribution values of 6, 10, and 30 for the triangular distribution.
Model: Nondispersion (ND) or Mass- P 3 D ND Applicable to flowing NR NR NR NR Balance (MB) groundwater Page 153 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Well pumping rate (m3/y) P 2 S 530 Calculated according to NR NR NR NR method described in NUREG/CR-6697, Att. C Section 3.10 assuming 7,500 m2 land area (LACBWR site area) and Wisconsin specific irrigation rate. Resident gardener with no livestock.
Unsaturated Zone Hydrological Data Number of unsaturated zone strata P 3 D 1 Site-specifice NR NR NR NR Unsat. zone thickness (m) P 1 D 2.90 m Site Specific NR NR NR NR Assumed ground surface 639 elevation, contaminated Zone thickness 0.15 m, and maximum water table elevation of 629.
Unsat. zone soil density (g/cm 3) P 2 D 1.76 Site-specifice NR NR NR NR Unsat. zone total porosity P 2 D 0.31 Site-specifice NR NR NR NR e
Unsat. zone effective porosity P 2 D 0.28 Site-specific NR NR NR NR Unsat. zone field capacity P 3 D 0.066 Calculated values for NR NR NR NR sand soil typef Unsat. zone hydraulic conductivity P 2 D 34822 Site-specifice NR NR NR NR (m/y)
Unsat. zone soil-specific b P 2 S Lognormal-N Site specific soil type -.0253 0.216 NA NA 0.97 parameter sand NUREG/CR-6697 Att. C Table 3.5-1 Occupancy Inhalation rate (m3/y) M,B 3 D 8400 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.29 (23 m3/d x 365 d)
Page 154 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Mass loading for inhalation (g/m3) P,B 2 S Continuous Linear NUREG/CR-6697, Att. C See See See See 2.35E-05 NUREG- NUREG- NUREG- NUREG-6697 6697 Table 6697 6697 Table Table 4.6-1 Table 4.6-1 4.6-1 4.6-1 Exposure duration B 3 D 30 RESRAD Users Manual NR NR NR NR parameter value not used in dose calculation Indoor dust filtration factor P,B 2 S Uniform NUREG/CR-6697, Att. C 0.15 0.95 NR NR 0.55 Figure 7.1-1 Shielding factor, external gamma P 2 S Bounded Lognormal-N NUREG/CR-6697, Att. C Table 7.10-1 -1.3 0.59 0.044 1 0.2725 Fraction of time spent indoors B 3 D 0.649 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Fraction of time spent outdoors (on B 3 D 0.124 NUREG/CR-5512, Vol. 3 NR NR NR NR site) Table 6.87 (outdoors +
gardening)
Shape factor flag, external gamma P 3 D Circular Circular contaminated NR NR NR NR zone assumed for modeling purposes Ingestion, Dietary Fruits, non-leafy vegetables, grain M,B 2 D 112 NUREG/CR-5512, Vol. 3 NR NR NR NR consumption (kg/y) (other vegetables + fruits
+ grain) Table 6.87 Leafy vegetable consumption (kg/y) M,B 3 D 21.4 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Milk consumption (L/y) M,B 2 D NA No Livestock NR NR NR NR Meat and poultry consumption (kg/y) M,B 3 D NA No Livestock NR NR NR NR Fish consumption (kg/y) M,B 3 D NA No Fish consumption NR NR NR NR Other seafood consumption (kg/y) M,B 3 D NA No Seafood consumption NR NR NR NR Soil ingestion rate (g/y) M,B 2 D 18.3 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Drinking water intake (L/y) M,B 2 D 478 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Contamination fraction of drinking B,P 3 D 1 All water assumed NR NR NR NR water contaminated Contamination fraction of household B,P 3 NA Only applicable to radon water (if used) pathway Page 155 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Contamination fraction of livestock B,P 3 D NA No Livestock NR NR NR NR water Contamination fraction of irrigation B,P 3 D 1 All water assumed NR NR NR NR water contaminated Contamination fraction of aquatic B,P 2 D NA No aquatic food ingestion NR NR NR NR food Contamination fraction of plant food B,P 3 D 1 NUREG/CR-5512, Table NR NR NR NR 6.87 ingestion rates assumes source is residential garden Contamination fraction of meat B,P 3 D NA No Livestock NR NR NR NR Contamination fraction of milk B,P 3 D NA No Livestock NR NR NR NR Ingestion, Non-Dietary Livestock fodder intake for meat M 3 D NA No Livestock NR NR NR NR (kg/day)
Livestock fodder intake for milk M 3 D NA No Livestock NR NR NR NR (kg/day)
Livestock water intake for meat M 3 D NA No Livestock NR NR NR NR (L/day)
Livestock water intake for milk M 3 D NA No Livestock NR NR NR NR (L/day)
Livestock soil intake (kg/day) M 3 D NA No Livestock NR NR NR NR Mass loading for foliar deposition P 3 D 4.00E-04 NUREG/CR-5512, Vol. 3 NR NR NR NR (g/m3) Table 6.87, gardening Depth of soil mixing layer (m) P 2 S Triangular NUREG/CR-6697, Att. C 0 0.15 0.6 NR 0.15 Figure 3.12-1 Depth of roots (m) P 1 S Uniform NUREG/CR-6697, Att. C 0.3 4.0 2.15 Drinking water fraction from ground B,P 3 D 1 All water assumed to be NR NR NR NR water supplied from groundwater Household water fraction from B,P 3 D NA Only applicable to radon NR NR NR NR ground water (if used) pathway Livestock water fraction from ground B,P 3 D NA No Livestock NR NR NR NR water Irrigation fraction from ground water B,P 3 D 1 All water assumed to be NR NR NR NR supplied from groundwater Wet weight crop yield for Non-Leafy P 2 S Truncated Lognormal - N NUREG/CR-6697, Att. C 0.56 0.48 0.001 0.999 1.75 (kg/m2)
Page 156 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Wet weight crop yield for Leafy P 3 S 2.89 NUREG/CR-5512, Vol. 3 NR NR NR NR (kg/m2) Table 6.87 Wet weight crop yield for Fodder P 3 D NA Industrial Scenario NR NR NR NR (kg/m2)
Growing Season for Non-Leafy (y) P 3 D 0.246 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Growing Season for Leafy (y) P 3 D 0.123 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Growing Season for Fodder (y) P 3 D NA No Livestock NR NR NR NR Translocation Factor for Non-Leafy P 3 D 0.1 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Translocation Factor for Leafy P 3 D 1 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Translocation Factor for Fodder P 3 D NA No Livestock NR NR NR NR Weathering Removal Constant for P 2 S Triangular NUREG/CR-6697, Att. C 5.1 18 84 33 Vegetation (1/y)
Wet Foliar Interception Fraction for P 3 D 0.35 NUREG/CR-5512, Vol. 3 NR NR NR NR Non-Leafy Table 6.87 Wet Foliar Interception Fraction for P 2 S Triangular NUREG/CR-6697, Att. C 0.06 0.67 0.95 0.58 Leafy Vegetables Wet Foliar Interception Fraction for P 3 D NA No Livestock NR NR NR NR Fodder Dry Foliar Interception Fraction for P 3 D 0.35 NUREG/CR-5512, Vol. 3 NR NR NR NR Non-Leafy Table 6.87 Dry Foliar Interception Fraction for P 3 D 0.35 NUREG/CR-5512, Vol. 3 NR NR NR NR Leafy Table 6.87 Dry Foliar Interception Fraction for P 3 D NA No Livestock NR NR NR NR Fodder Storage times of contaminated foodstuffs (days):
Fruits, non-leafy vegetables, and B 3 D 14 NUREG/CR-5512, Vol. 3 NR NR NR NR grain Table 6.87 Leafy vegetables B 3 D 1 NUREG/CR-5512, Vol. 3 NR NR NR NR Table 6.87 Milk B 3 D NA No Livestock NR NR NR NR Meat and poultry B 3 D NA No Livestock NR NR NR NR Fish B 3 D NA No Aquatic Food NR NR NR NR Consumption Crustacea and mollusks B 3 D NA No Aquatic Food NR NR NR NR Consumption Page 157 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Well water B 3 D 1 RESRAD Users Manual NR NR NR NR Table D.6 Surface water B 3 D 1 RESRAD Users Manual NR NR NR NR Table D.6 Livestock fodder B 3 D NA No Livestock NR NR NR NR Special Radionuclides (C-14)
C-12 concentration in water (g/cm 3) P 3 D NA NA NR NR NR NR C-12 concentration in P 3 D NA NA NR NR NR NR contaminated soil (g/g)
Fraction of vegetation carbon from P 3 D NA NA NR NR NR NR soil Fraction of vegetation carbon from P 3 D NA NA NR NR NR NR air C-14 evasion layer thickness in soil P 2 D NA NA NR NR NR NR (m)
C-14 evasion flux rate from soil P 3 D NA NA NR NR NR NR (1/sec)
C-12 evasion flux rate from soil P 3 D NA NA NR NR NR NR (1/sec)
Fraction of grain in beef cattle feed B 3 D NA NA NR NR NR NR Fraction of grain in milk cow feed B 3 D NA NA NR NR NR NR Dose Conversion Factors (Inhalation mrem/pCi)
All Nuclides (except two listed M 3 D Values in RESRAD FGR FGR11 NR NR NR NR below) 11 DCF File Nd-144e M 3 D 7.04E-02 ICRP 107 NR NR NR NR Sm-148e M 3 D 7.34E-02 ICRP 107 NR NR NR NR Dose Conversion Factors (Ingestion mrem/pCi)
All Nuclides (except two listed M 3 D Values in RESRAD FGR FGR11 NR NR NR NR below) 11 DCF File Nd-144e M 3 D 1.51E-04 ICRP107 NR NR NR NR Sm-148e M 3 D 1.58E-04 ICRP107 NR NR NR NR Plant Transfer Factors (pCi/g plant)/(pCi/g soil)
Ac-227 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 1.1 NR NR 9.98E-04 Am-241 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Am-243 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Page 158 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median C-14 P 1 D Lognormal - N NUREG/CR-6697, Att. C -0.36 0.9 NR NR 6.98E-01 Cm-243 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Cm-244 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Co-60 P 1 S Lognormal - N NUREG/CR-6697, Att. C -2.53 0.9 NR NR 7.97E-02 Cs-134 P 1 S Lognormal - N NUREG/CR-6697, Att. C -3.22 1.0 NR NR 4.00E-02 Cs-137 P 1 S Lognormal - N NUREG/CR-6697, Att. C -3.22 1.0 NR NR 4.00E-02 Eu-152 P 1 S Lognormal - N NUREG/CR-6697, Att. C -6.21 1.1 NR NR 2.01E-03 Eu-154 P 1 S Lognormal - N NUREG/CR-6697, Att. C -6.21 1.1 NR NR 2.01E-03 Eu-155 Lognormal - N NUREG/CR-6697, Att. C -6.21 1.1 NR NR 2.01E-03 Fe-55 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Gd-152 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.21 1.1 NR NR 2.01E-03 H-3 P 1 D Lognormal - N NUREG/CR-6697, Att. C 1.57 1.1 NR NR 4.81E+00 Nb-94 P 1 D Lognormal - N NUREG/CR-6697, Att. C -4.61 1.1 NR NR 9.95E-03 Nd-144 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.21 1.0 NR NR 2.01E-03 Ni-59 P 1 D Lognormal - N NUREG/CR-6697, Att. C -3.00 0.9 NR NR 4.98E-02 Ni-63 P 1 D Lognormal - N NUREG/CR-6697, Att. C -3.00 0.9 NR NR 4.98E-02 Np-237 P 1 D Lognormal - N NUREG/CR-6697, Att. C -3.91 0.9 NR NR 2.00E-02 Pa-231 P 1 D Lognormal - N NUREG/CR-6697, Att. C -4.61 1.1 NR NR 9.95E-03 Pb-210 P 1 D Lognormal - N NUREG/CR-6697, Att. C -5.52 0.9 NR NR 4.01E-03 Pm-147 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.21 1.1 NR NR 2.01E-03 Po-210 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.9 0.9 NR NR 1.01E-03 Pu-238 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Pu-239 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Pu-240 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Pu-241 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Ra-226 P 1 D Lognormal - N NUREG/CR-6697, Att. C -3.22 0.9 NR NR 4.00E-02 Ra-228 P 1 D Lognormal - N NUREG/CR-6697, Att. C -3.22 0.9 NR NR 4.00E-02 Sb-125 P 1 D Lognormal - N NUREG/CR-6697, Att. C -4.61 1.0 NR NR 9.95E-03 Sm-148 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.21 1.1 NR NR 2.01E-03 Sr-90 P 1 D Lognormal - N NUREG/CR-6697, Att. C -1.20 1.0 NR NR 3.01E-01 Tc-99 P 1 D Lognormal - N NUREG/CR-6697, Att. C 1.61 0.9 NR NR 5.00E+00 Page 159 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Th-228 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Th-229 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Th-230 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 Th-232 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.91 0.9 NR NR 9.98E-04 U-233 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.21 0.9 NR NR 2.01E-03 U-234 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.21 0.9 NR NR 2.01E-03 U-235 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.21 0.9 NR NR 2.01E-03 U-236 P 1 D Lognormal - N NUREG/CR-6697, Att. C -6.21 0.9 NR NR 2.01E-03 Meat Transfer Factors (pCi/kg)/(pCi/d)
Ac-227 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ag-108m P 2 D NA Resident Gardener No NR NR NR NR Livestock Am-241 P 2 D NA Resident Gardener No NR NR NR NR Livestock Am-243 P 2 D NA Resident Gardener No NR NR NR NR Livestock C-14 P 2 D NA Resident Gardener No NR NR NR NR Livestock Cm-243 P 2 D NA Resident Gardener No NR NR NR NR Livestock Cm-244 P 2 D NA Resident Gardener No NR NR NR NR Livestock Co-60 P 2 D NA Resident Gardener No NR NR NR NR Livestock Cs-134 P 2 D NA Resident Gardener No NR NR NR NR Livestock Cs-137 P 2 D NA Resident Gardener No NR NR NR NR Livestock Eu-152 P 2 D NA Resident Gardener No NR NR NR NR Livestock Eu-154 P 2 D NA Resident Gardener No NR NR NR NR Livestock Fe-55 P 2 D NA Resident Gardener No NR NR NR NR Livestock Gd-152 P 2 D NA Resident Gardener No NR NR NR NR Livestock H-3 P 2 D NA Resident Gardener No NR NR NR NR Livestock Page 160 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Nb-94 P 2 D NA Resident Gardener No NR NR NR NR Livestock Nd-144 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ni-59 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ni-63 P 2 D NA Resident Gardener No NR NR NR NR Livestock Np-237 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pa-231 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pb-210 P 2 D NA Resident Gardener No NR NR NR NR Livestock Po-210 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pu-238 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pu-239 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pu-240 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pu-241 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ra-226 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ra-228 P 2 D NA Resident Gardener No NR NR NR NR Livestock Sb-125 P 2 D NA Resident Gardener No NR NR NR NR Livestock Sm-148 P 1 D NA Resident Gardener No NR NR NR NR Livestock Sr-90 P 2 D NA Resident Gardener No NR NR NR NR Livestock Tc-99 P 2 D NA Resident Gardener No NR NR NR NR Livestock Th-228 P 2 D NA Resident Gardener No NR NR NR NR Livestock Th-229 P 2 D NA Resident Gardener No NR NR NR NR Livestock Th-230 P 2 D NA Resident Gardener No NR NR NR NR Livestock Page 161 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Th-232 P 2 D NA Resident Gardener No NR NR NR NR Livestock U-233 P 2 D NA Resident Gardener No NR NR NR NR Livestock U-234 P 2 D NA Resident Gardener No NR NR NR NR Livestock U-235 P 2 D NA Resident Gardener No NR NR NR NR Livestock U-236 P 2 D NA Resident Gardener No NR NR NR NR Livestock Milk Transfer Factors (pCi/L)/(pCi/d)
Ac-227 P 2 D NA Resident Gardener No NR NR NR NR Livestock Am-241 P 2 D NA Resident Gardener No NR NR NR NR Livestock Am-243 P 2 D NA Resident Gardener No NR NR NR NR Livestock C-14 P 2 D NA Resident Gardener No NR NR NR NR Livestock Cm-243 P 2 D NA Resident Gardener No NR NR NR NR Livestock Cm-244 P 2 D NA Resident Gardener No NR NR NR NR Livestock Co-60 P 2 D NA Resident Gardener No NR NR NR NR Livestock Cs-134 P 2 D NA Resident Gardener No NR NR NR NR Livestock Cs-137 P 2 D NA Resident Gardener No NR NR NR NR Livestock Eu-152 P 2 D NA Resident Gardener No NR NR NR NR Livestock Eu-154 P 2 D NA Resident Gardener No NR NR NR NR Livestock Fe-55 P 2 D NA Resident Gardener No NR NR NR NR Livestock Gd-152 P 2 D NA Resident Gardener No NR NR NR NR Livestock H-3 P 2 D NA Resident Gardener No NR NR NR NR Livestock Nb-94 P 2 D NA Resident Gardener No NR NR NR NR Livestock Page 162 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Nd-144 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ni-59 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ni-63 P 2 D NA Resident Gardener No NR NR NR NR Livestock Np-237 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pa-231 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pb-210 P 2 D NA Resident Gardener No NR NR NR NR Livestock Po-210 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pu-238 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pu-239 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pu-240 P 2 D NA Resident Gardener No NR NR NR NR Livestock Pu-241 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ra-226 P 2 D NA Resident Gardener No NR NR NR NR Livestock Ra-228 P 2 D NA Resident Gardener No NR NR NR NR Livestock Sm-148 P 2 D NA Resident Gardener No NR NR NR NR Livestock Sr-90 P 2 D NA Resident Gardener No NR NR NR NR Livestock Tc-99 P 2 D NA Resident Gardener No NR NR NR NR Livestock Th-228 P 2 D NA Resident Gardener No NR NR NR NR Livestock Th-229 P 2 D NA Resident Gardener No NR NR NR NR Livestock Th-230 P 2 D NA Resident Gardener No NR NR NR NR Livestock Th-232 P 2 D NA Resident Gardener No NR NR NR NR Livestock U-233 P 2 D NA Resident Gardener No NR NR NR NR Livestock Page 163 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median U-234 P 2 D NA Resident Gardener No NR NR NR NR Livestock U-235 P 2 D NA Resident Gardener No NR NR NR NR Livestock U-236 P 2 D NA Resident Gardener No NR NR NR NR Livestock Bioaccumulation Factors for Fish ((pCi/kg)/(pCi/L))
Ac-227 (daughter of Cm-243 and P 2 D NA No Fish Consumption NR NR NR NR Pu-239)
Am-241 (also daughter of Pu-241) P 2 D NA No Fish Consumption NR NR NR NR Am-243 P 2 D NA No Fish Consumption NR NR NR NR C-14 P 2 D NA No Fish Consumption NR NR NR NR Cm-243 P 2 D NA No Fish Consumption NR NR NR NR Cm-244 P 2 D NA No Fish Consumption NR NR NR NR Co-60 P 2 D NA No Fish Consumption NR NR NR NR Cs-137 P 2 D NA No Fish Consumption NR NR NR NR Eu-152 P 2 D NA No Fish Consumption NR NR NR NR Eu-154 P 2 D NA No Fish Consumption NR NR NR NR Eu-155 P 2 D NA No Fish Consumption NR NR NR NR Fe-155 P 2 D NA No Fish Consumption NR NR NR NR Gd-152 (daughter of Eu-152) P 2 D NA No Fish Consumption NR NR NR NR H-3 P 2 D NA No Fish Consumption NR NR NR NR Nb-94 P 2 D NA No Fish Consumption NR NR NR NR Nd-144 (daughter of Eu-152) P 2 D NA No Fish Consumption NR NR NR NR Ni-59 P 2 D NA No Fish Consumption NR NR NR NR Ni-63 P 2 D NA No Fish Consumption NR NR NR NR Np-237 (also daughter of Am-241, P 2 D NA No Fish Consumption NR NR NR NR Cm-245, and Pu-241)
Pa-231 (daughter of Cm-243 and P 2 D NA No Fish Consumption NR NR NR NR Pu-239)
Pb-210 (daughter of Pu-238) P 2 D NA No Fish Consumption NR NR NR NR Po-210 (daughter of Pu-238) P 2 D NA No Fish Consumption NR NR NR NR Pu-238 P 2 D NA No Fish Consumption NR NR NR NR Pu-239 (also daughter of Cm-243) P 2 D NA No Fish Consumption NR NR NR NR Page 164 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Pu-240 (also daughter of Cm-244) P 2 D NA No Fish Consumption NR NR NR NR Pu-241 P 2 D NA No Fish Consumption NR NR NR NR Ra-226 (daughter of Pu-238) P 2 D NA No Fish Consumption NR NR NR NR Ra-228 (daughter of Cm-244 and P 2 D NA No Fish Consumption NR NR NR NR Pu-240)
Sm-148 (daughter Eu-152) P 2 D NA No Fish Consumption NR NR NR NR Sr-90 P 2 D NA No Fish Consumption NR NR NR NR Tc-99 P 2 D NA No Fish Consumption NR NR NR NR Th-228 (daughter Cm-244 and Pu- P 2 D NA No Fish Consumption NR NR NR NR 240)
Th-229 (daughter Am-241, Cm-245, P 2 D NA No Fish Consumption NR NR NR NR Np-237, and Pu-241)
Th-230 (daughter Cm-246 and Pu- P 2 D NA No Fish Consumption NR NR NR NR 238)
Th-232 (daughter Cm-244 and Pu- P 2 D NA No Fish Consumption NR NR NR NR 240)
U-233 (daughter Am-241, Cm-245, P 2 D NA No Fish Consumption NR NR NR NR Np-237, and Pu-241)
U-234 (daughter Pu-238) P 2 D NA No Fish Consumption NR NR NR NR U-235 (daughter Cm-243 and Pu- P 2 D NA No Fish Consumption NR NR NR NR 239)
U-236 (daughter Cm-244 and Pu- P 2 D NA No Fish Consumption NR NR NR NR 240)
Bioaccumulation Factors for Crustacea/ Mollusks ((pCi/kg)/(pCi/L))
Ac-227 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Am-241 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Am-243 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption C-14 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Cm-243 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Cm-244 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Cm-245 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Page 165 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Cm-246 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Co-60 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Cs-137 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Eu-152 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Eu-154 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Gd-152 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption H-3 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption I-129 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Nb-94 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Ni-59 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Ni-63 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Np-237 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Pa-231 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Pb-210 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Po-210 P S D NA No Crustacea/Mollusks NR NR NR NR Consumption Pu-238 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Pu-239 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Pu-240 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Pu-241 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Pu-242 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Ra-226 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Page 166 of 183
RS-TD-313196-004 Revision 4 ALTERNATE SCENARIO RESIDENT GARDENER RESRAD INPUT PARAMETERS INITIAL SUITE RADIONUCLIDES UNCERTAINTY ANALYSIS Parameter (unit)
Typea Priorityb Treatmentc Value/Distribution Basis Distribution's Statistical Parameters d 1 2 3 4 Mean/
Median Ra-228 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Sr-90 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Th-228 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Th-229 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Th-230 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Th-232 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption U-233 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption U-234 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption U-235 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption U-236 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption U-238 P 3 D NA No Crustacea/Mollusks NR NR NR NR Consumption Graphics Parameters Number of points 32 RESRAD Default NR NR NR NR Spacing log RESRAD Default NR NR NR NR Time integration parameters Maximum number of points for dose 17 RESRAD Default NR NR NR NR Page 167 of 183
RS-TD-313196-004 Revision 4 Notes:
a P = physical, B = behavioral, M = metabolic; (see NUREG/CR-6697, Attachment B, Table 4.1) b 1 = high-priority parameter, 2 = medium-priority parameter, 3 = low-priority parameter (see NUREG/CR-6697, Attachment B, Table 4.1) c D = deterministic, S = stochastic d NUREG/CR-6697 Distributions Statistical Parameters:
Lognormal-n: 1= mean, 2 = standard deviation Bounded lognormal-n: 1= mean, 2 = standard deviation, 3 = minimum, 4 = maximum Truncated lognormal-n: 1= mean, 2 = standard deviation, 3 = lower quantile, 4 = upper quantile Bounded normal: 1 = mean, 2 = standard deviation, 3 = minimum, 4 = maximum Beta: 1 = minimum, 2 = maximum, 3 = P-value, 4 = Q-value Triangular: 1 = minimum, 2 = mode, 3 = maximum Uniform: 1 = minimum, 2 = maximum e Sm-148 an ND-144 not listed in RESRAD FGR 11 DCF file e Haley and Aldrich, Inc., "Hydrogeological Investigation Report La Crosse Boiling Water Reactor, Dairyland Power Cooperative, Genoa, WI January 2015 f ZionSolutions Technical Support Document 14-003, Conestoga Rovers & Associates (CRA) Report, Zion Hydrogeologic Investigation Report g Argonne National Laboratory, Users Manual for RESRAD Version 6, ANL/EAD 4, July 2001 Page 168 of 183
RS-TD-313196-004 Revision 4 Attachment 13 Alternate Scenario Dose Calculation Page 169 of 183
RS-TD-313196-004 Revision 4 Alternate Scenario (Resident Gardener) Dose Basements and Soil Inputs to Calculation Conversion Factor 1.00E-09 mCi/pCi Dose limit 25 mrem/yr Summation BFM DCGLB (BFM Excavation + BFM Insitugw + BFM Insituds) Adjusted for IC Dose and Mixing Sensitivity Summation Rx Bldg BFM DCGLs (DCGLB) Summation WGTV BFM DCGLs (DCGLB)
(pCi/m2) (pCi/m2)
Co-60 5.86E+06 5.72E+06 Sr-90 1.65E+07 8.94E+06 Cs-137 2.47E+07 2.45E+07 Eu-152 1.35E+07 1.35E+07 Eu-154 1.25E+07 1.25E+07 Concentrations Corresponding to 25 mrem/yr in BFM Rx Bldg Based on DCGLB pCi/m2 corresponding to Relative Normalized Dose 25 mrem/yr in BFM (Dose BFM Dose Check Dose Fraction Fraction BFM DCGLB (pCi/m2) From All ROC Summed) (mrem/yr)
Co-60 7.81E-09 2.39E-01 5.86E+06 1.401E+06 5.98 Sr-90 4.60E-09 1.41E-01 1.65E+07 2.322E+06 3.52 Cs-137 1.99E-08 6.10E-01 2.47E+07 1.506E+07 15.25 Eu-152 1.36E-10 4.16E-03 1.35E+07 5.626E+04 0.10 Eu-154 1.99E-10 6.10E-03 1.25E+07 7.635E+04 0.15 sum 3.27E-08 1.00 25.00 Page 170 of 183
RS-TD-313196-004 Revision 4 Concentrations Corresponding to 25 mrem/yr in BFM WGTV Based on DCGLB pCi/m2 corresponding to 25 mrem/yr in BFM Relative Dose Fraction Normalized Dose Fraction BFM DCGL (pCi/m2) (all ROC summed) BFM Dose Check (mrem/yr)
Co-60 8.32E-10 4.03E-02 5.721E+06 2.31E+05 1.01 Sr-90 1.02E-09 4.94E-02 8.943E+06 4.42E+05 1.23 Cs-137 1.83E-08 8.88E-01 2.453E+07 2.18E+07 22.20 Eu-152 3.32E-10 1.61E-02 1.353E+07 2.18E+05 0.40 Eu-154 1.28E-10 6.21E-03 1.252E+07 7.78E+04 0.16 sum 2.06E-08 1.00 25.00 Ratio of RESRAD Alternate Scenario Rx Bldg DSR to RESRAD Rx Bldg BFM Insitu gw Scenario DSR Insignificant Contributor Rx Bldg Adjusted Rx Bldg Resident Gardener Alt Resident Gardener Alt Rx Bldg Ratio Scenario DSR1 Scenario DSR Rx Bldg BFM Insitugw DSR (Resident Gardener DSR)/
(mrem/yr per pCi/g) (mrem/yr per pCi/g) (mrem/yr per pCi/g) ( BFM Insitugw DSR)
Co-60 1.385E+00 1.49E+00 6.691E-01 2.22 Sr-90 1.698E+01 1.82E+01 6.440E+00 2.83 Cs-137 7.913E-01 8.50E-01 2.674E-01 3.18 Eu-152 3.245E-02 3.49E-02 1.824E-02 1.91 Eu-154 4.714E-02 5.07E-02 2.649E-02 1.91 Note 1: RESRAD Report "AS BFM Rx DSR 121117.pdf" Page 171 of 183
RS-TD-313196-004 Revision 4 Ratio of RESRAD Alternate Scenario WGTV DSR to RESRAD WGTV BFM Insitu gw Scenario DSR Insignificant Contributor WGTV Resident Gardener Adjusted WGTV Resident WGTV Ratio 1
Alt Scenario DSR Gardener Alt Scenario DSR WGTV BFM Insitugw DSR (Resident Gardener DSR/
(mrem/yr per pCi/g) (mrem/yr per pCi/g) (mrem/yr per pCi/g) BFM Insitugw DSR)
Co-60 8.819E-01 1.03E+00 3.759E-01 2.73 Sr-90 1.165E+01 1.36E+01 3.661E+00 3.71 Cs-137 5.592E-01 6.51E-01 1.295E-01 5.03 Eu-152 1.670E-02 1.95E-02 8.675E-03 2.24 Eu-154 2.426E-02 2.83E-02 1.260E-02 2.24 Note 1: RESRAD Report "AS BFM WGTV DSR 121117.pdf" RESIDENT GARDENER ALTERNATE SCENARIO DOSE CALCULATIONS Basement Resident Gardener Alternate Scenario Dose Insitu Groundwater Pathway (i.e., no excavaton).
Concentrations Applied Correspond to 25 mrem/yr (all ROC Summed) using BFM DCGL B and conservative site mixture Alternate Scenario Alternate Scenario Rx Bldg Insitugw Dose WGTV Insitugw Dose (mrem/yr) (mrem/yr)
Radionuclide Co-60 5.68E-01 1.81E-01 Sr-90 9.92E+00 4.56E+00 Cs-137 5.33E+00 1.29E+01 Eu-152 8.66E-04 3.82E-03 Eu-154 1.71E-03 1.98E-03 sum 1.58E+01 1.77E+01 30 year decay 7.51E+00 8.72E+00 Page 172 of 183
RS-TD-313196-004 Revision 4 Basement Resident Gardener Alternate Scenario Dose Insitu Drilling Spoils pathway (i.e., no excavaton)
Concentrations Applied Correspond to 25 mrem/yr (all ROC Summed) using BFM DCGL B and conservative site mixture Alternate Scenario Alternate Scenario Rx Bldg Insituds Dose WGTV Insituds Dose Radionuclide (mrem/yr) (mrem/yr)
Co-60 1.83E-01 3.01E-02 Sr-90 1.05E-03 2.01E-04 Cs-137 4.79E-01 6.93E-01 Eu-152 3.46E-03 1.34E-02 Eu-154 5.00E-03 5.09E-03 sum 6.63E-01 7.24E-01 30 year decay 2.46E-01 3.52E-01 Basement Resident Gardener Alternate Scenario Dose Concrete Exacavation Pathway Concentrations Applied Correspond to 25 mrem/yr (all ROC Summed) using BFM DCGL B and conservative site mixture Alternate Scenario Alternate Scenario Ratio Industrial Use Soil Rx Bldg Concrete WGTV Concrete DCGL/Resident Gardener Excavatiuon Dose Excavation Dose Radionuclide Soil DCGL (mrem/yr) (mrem/yr)
Co-60 2.33E+00 1.319E+01 2.17E+00 Sr-90 3.43E+02 6.25E+00 1.19E+00 Cs-137 2.57E+00 3.44E+01 4.98E+01 Eu-152 2.36E+00 2.41E-01 9.33E-01 Eu-154 2.35E+00 3.53E-01 3.59E-01 sum 5.45E+01 5.45E+01 30 year decay 2.07E+01 2.59E+01 Page 173 of 183
RS-TD-313196-004 Revision 4 Basement Alternate Scenario Dose Summation Insitu and Excavation Scenarios Concentrations Applied Correspond to 25 mrem/yr (all ROC Summed) using BFM DCGLB and conservative site mixture Alternate Scenario Alternate Scenario 1
Rx Bldg Summation WGTV Summation1 Radionuclide Dose (mrem/yr) Dose (mrem/yr)
Co-60 1.39E+01 2.38E+00 Sr-90 1.62E+01 5.75E+00 Cs-137 4.02E+01 6.34E+01 Eu-152 2.46E-01 9.50E-01 Eu-154 3.59E-01 3.66E-01 sum 7.04E+01 7.16E+01 30 year decay 2.84E+01 3.49E+01 Note 1: Summation of Insitu gw + Insituds + Excavation Page 174 of 183
RS-TD-313196-004 Revision 4 Soil Alternate Scenario Dose Using Maximum Soil Concentrations Identified During Characterization Maximum Soil Resident Gardener Concentration From Resident Gardener Dose 1
Radionuclide (pCi/g per 25 mrem/yr) Characterization (pCi/g) (mrem/yr)
Co-60 4.944E+00 0.52 2.63E+00 Sr-90 1.728E+01 0.44 6.37E-01 Cs-137 2.035E+01 1.07 1.31E+00 Eu-152 1.084E+01 0.10 2.31E-01 Eu-154 1.008E+01 0.25 6.20E-01 sum 4.58 30 year decay 1.13 Note 1: LTP Chapter 2 Tables 2-10 to 2-15 Soil Alternate Scenario Dose Using Soil Concentrations Corresponding to 25 mrem/yr for Industrial Scenario (summation oif dose from all ROC)
Alternate Scenario Alternate Scenairo Resident Gardener Soil Radionuclide Resident Gardener Soil Dose (pCi/g per 25 mrem/yr)
(mrem/yr)
Co-60 4.945E+00 1.49E+01 Sr-90 1.729E+01 6.51E+00 Cs-137 2.036E+01 4.68E+01 Eu-152 1.085E+01 5.81E-01 Eu-154 1.008E+01 3.20E-01 sum 68.20 30 year decay 27.07 Page 175 of 183
RS-TD-313196-004 Revision 4 Calculation of Soil Concentrations Resulting in 25 mrem/yr in Industrial Scenario Using Conservative Radionuclide Mixture Radionuclide Industrial Use Concentrations resulting in Soil Dose Industrial Use Adjusted 25 mrem/yr using Industrial Check Soil DCGLs (pCi/g) Relative Dose Fraction Normalized Dose Fraction use Soil DCGL calculation Co-60 11.53 2.97E-03 2.56E-01 2.95 6.41 Sr-90 5,927.40 8.81E-06 7.60E-04 4.50 1.90E-02 Cs-137 52.31 8.44E-03 7.28E-01 38.07 18.19 Eu-152 25.60 1.14E-04 9.85E-03 0.25 0.25 Eu-154 23.72 6.30E-05 5.43E-03 0.13 0.14 sum 1.16E-02 1.00E+00 25.00 Alternate Scenario Dose Assuming Excavation of Maximum Basement Fill Concentrations Alternate Scenairo Rx Bldg Fill Excavation Resident Gardener Soil Resident Gardener WGTV Fill Excavation Resident (pCi/g per 25 mrem/yr)
Radionuclide Dose (mrem/yr) Gardener Dose (mrem/yr)
Co-60 4.945E+00 4.02 0.67 Sr-90 1.729E+01 1.91 0.37 Cs-137 2.036E+01 10.51 15.48 Eu-152 1.085E+01 0.07 0.29 Eu-154 1.008E+01 0.11 0.11 Sum 16.44 16.53 30 year decay 6.31 8.04 Page 176 of 183
RS-TD-313196-004 Revision 4 INPUT DATA AND CALCULATIONS FOR ALTERNATE SCENARIO DOSE ASSESSMENT SOIL: Insignificant Contributor Adjustment Alternate Scenario Alternate Scenario ROC Adjusted for IC Dose Resident Gardener1 Soil 75th Percentile Radionuclide Relative Dose Dose Fraction Contribution Soil Radionculide Mixture (pCi/g per 25 mrem/yr)
(pCi/g per 25 mrem/yr)
H-3 3.312E+04 1.51E-01 1.142E-04 1.42E-04 C-14 4.348E+02 1.72E-03 9.865E-05 1.23E-04 Fe-55 1.030E+06 2.36E-02 5.734E-07 7.15E-07 Ni-59 7.839E+04 7.40E-04 2.361E-07 2.95E-07 Co-60 4.961E+00 3.43E-02 1.727E-01 2.15E-01 4.945E+00 Ni-63 2.863E+04 2.64E-01 2.306E-04 2.88E-04 Sr-90 1.734E+01 5.22E-02 7.532E-02 9.40E-02 1.729E+01 Nb-94 7.561E+00 1.68E-04 5.565E-04 6.94E-04 Tc-99 3.091E+02 2.06E-03 1.666E-04 2.08E-04 Cs-137 2.042E+01 4.41E-01 5.405E-01 6.74E-01 2.036E+01 Eu-152 1.088E+01 2.93E-03 6.721E-03 8.39E-03 1.085E+01 Eu-154 1.011E+01 1.50E-03 3.697E-03 4.61E-03 1.008E+01 Eu-155 3.986E+02 2.08E-03 1.307E-04 1.63E-04 Np-237 8.367E+00 2.15E-06 6.409E-06 8.00E-06 Pu-238 1.747E+02 1.16E-03 1.655E-04 2.07E-04 Pu-239/PU-240 1.573E+05 7.80E-04 1.239E-07 1.55E-07 Pu-241 5.737E+03 1.56E-02 6.779E-05 8.46E-05 Am-241 1.394E+02 3.56E-03 6.384E-04 7.97E-04 Am-243 5.114E+01 5.85E-04 2.861E-04 3.57E-04 Cm-243/Cm-244 7.799E+01 1.65E-04 5.303E-05 6.62E-05 Sum Relative Dose 8.014E-01 Dose Fraction Sum Check 1.00E+00 IC Dose Percentage 0.314%
Note 1: Reference RESRAD Summary Report "AS Soil DSR Initial Suite 083017" Page 177 of 183
RS-TD-313196-004 Revision 4 75th Percentile Radionuclide Mixtures 1 Rx Bldg 75th Percentile WGTV Soil Mixture 75th Percentile Mixture 2 75th Percentile Mixture H-3 2.36E-02 2.52E-01 1.51E-01 C-14 1.27E-03 9.37E-03 1.72E-03 Fe-55 1.40E-02 -8.13E-03 2.36E-02 Ni-59 2.48E-04 4.74E-02 7.40E-04 Co-60 4.58E-02 4.76E-03 3.43E-02 Ni-63 2.77E-01 1.89E-01 2.64E-01 Sr-90 7.59E-02 9.12E-03 5.22E-02 Nb-94 1.07E-04 1.01E-03 1.68E-04 Tc-99 2.16E-03 6.91E-03 2.06E-03 Cs-137 4.92E-01 4.49E-01 4.41E-01 Eu-152 1.84E-03 4.49E-03 2.93E-03 Eu-154 2.49E-03 1.60E-03 1.50E-03 Eu-155 6.61E-04 4.56E-03 2.08E-03 Np-237 2.17E-06 0.00E+00 2.15E-06 Pu-238 2.27E-03 7.95E-04 1.16E-03 Pu-239/PU-240 3.17E-03 1.90E-04 7.80E-04 Pu-241 4.58E-02 2.35E-02 1.56E-02 Am-241 1.03E-02 3.25E-03 3.56E-03 Am-243 6.18E-04 4.55E-04 5.85E-04 Cm-243/Cm-244 1.58E-04 1.78E-04 1.65E-04 Note 1: Excel Spreadsheet "LACBWR TSD RS-TD-313196-001 Rev 3" Page 178 of 183
RS-TD-313196-004 Revision 4 Decay Constants T 1/2 (years)1 Decay Const () yrs-1 H-3 1.23E+01 5.63E-02 C-14 5.70E+03 1.22E-04 Fe-55 2.74E+00 2.53E-01 Ni-59 1.01E+05 6.86E-06 Co-60 5.27E+00 1.31E-01 Ni-63 1.00E+02 6.92E-03 Sr-90 2.88E+01 2.41E-02 Nb-94 2.03E+04 3.41E-05 Tc-99 2.11E+05 3.28E-06 Cs-137 3.02E+01 2.30E-02 Eu-152 1.35E+01 5.12E-02 Eu-154 8.80E+00 7.88E-02 Eu-155 4.76E+00 1.46E-01 Np-237 2.14E+06 3.23E-07 Pu-238 8.77E+01 7.90E-03 Pu-239/240 2.41E+04 2.88E-05 Pu-241 1.44E+01 4.83E-02 Am-241 4.32E+02 1.60E-03 Am-243 7.37E+03 9.40E-05 Cm-243/244 2.85E+01 2.43E-02 (1) Reference NRC Radiological Toolbox Page 179 of 183
RS-TD-313196-004 Revision 4 Alternate Scenario Drilling Spoils - pCi/m2 per 25 mrem/yr (Adjusted for IC Dose)
Alternate Scenario pCi/g per 25 mrem/yr Alternate Scenario Area Alt Scenario Drilling Spoils (0.457 m2 area)1 Factors (0.457 m2 area) (pCi/m2 per 25 mrem/yr H-3 3.420E+07 1.03E+03 5.09E+13 C-14 2.656E+07 6.11E+04 3.95E+13 Fe-55 1.569E+09 1.52E+03 2.34E+15 Ni-59 2.998E+08 3.82E+03 4.46E+14 Co-60 1.289E+02 2.60E+01 1.92E+08 Ni-63 1.115E+08 3.89E+03 1.66E+14 Sr-90 3.700E+04 2.13E+03 5.51E+10 Nb-94 1.878E+02 2.48E+01 2.80E+08 Tc-99 1.296E+06 4.19E+03 1.93E+12 Cs-137 5.276E+02 2.58E+01 7.85E+08 Eu-152 2.730E+02 2.51E+01 4.06E+08 Eu-154 2.566E+02 2.54E+01 3.82E+08 Eu-155 7.435E+03 1.87E+01 1.11E+10 Np-237 1.302E+03 1.56E+02 1.94E+09 Pu-238 1.698E+04 9.72E+01 2.53E+10 Pu-239 1.544E+04 9.82E-02 2.30E+10 Pu-240 1.546E+04 9.83E-02 2.30E+10 Pu-241 3.910E+05 6.82E+01 5.82E+11 Am-241 9.500E+03 6.81E+01 1.41E+10 Am-243 1.429E+03 2.79E+01 2.13E+09 Cm-243 2.304E+03 2.95E+01 3.43E+09 Cm-244 2.720E+04 3.49E+02 4.05E+10 Note 1: Reference RESRAD Summary Report "Alternate Scenario Driiling Spoils 083017" Page 180 of 183
RS-TD-313196-004 Revision 4 RX BLDG: Insignificant Contributor Adjustment Alternate Scenario Alternate Scenario Rx Building 75th ROC Adjusted for IC Dose Resident Gardener1 Radionuclide Percentile Radionculide Relative Dose Dose Fraction Contribution Rx Building Mixture (pCi/g per 25 mrem/yr)
(pCi/g per 25 mrem/yr)
H-3 2.347E+03 2.36E-02 2.52E-04 1.35E-04 C-14 9.252E+01 1.27E-03 3.43E-04 1.83E-04 Fe-55 3.955E+03 1.40E-02 8.88E-05 4.75E-05 Ni-59 1.023E+04 2.48E-04 6.07E-07 3.24E-07 Co-60 1.805E+01 4.58E-02 6.34E-02 3.39E-02 16.80 Ni-63 3.736E+03 2.77E-01 1.86E-03 9.92E-04 Sr-90 1.473E+00 7.59E-02 1.29E+00 6.88E-01 1.37 Nb-94 1.023E+04 1.07E-04 2.61E-07 1.39E-07 Tc-99 4.844E+01 2.16E-03 1.11E-03 5.95E-04 Cs-137 3.159E+01 4.92E-01 3.89E-01 2.08E-01 29.39 Eu-152 7.703E+02 1.84E-03 5.97E-05 3.19E-05 716.76 Eu-154 5.303E+02 2.49E-03 1.18E-04 6.29E-05 493.44 Eu-155 3.417E+03 6.61E-04 4.83E-06 2.58E-06 Np-237 3.863E-02 2.17E-06 1.40E-03 7.51E-04 Pu-238 2.808E+00 2.27E-03 2.02E-02 1.08E-02 Pu-239/PU-240 2.528E+00 3.17E-03 3.13E-02 1.67E-02 Pu-241 1.309E+02 4.58E-02 8.74E-03 4.67E-03 Am-241 4.421E+00 1.03E-02 5.85E-02 3.13E-02 Am-243 4.438E+00 6.18E-04 3.48E-03 1.86E-03 Cm-243/Cm-244 1.465E+00 1.58E-04 2.70E-03 1.44E-03 Sum Relative Dose 1.87 Dose Fraction Sum Check 1 IC Dose Percentage 6.95%
Note 1: RESRAD Summary Report "AS BFM Rx DSR 121117.pdf" Page 181 of 183
RS-TD-313196-004 Revision 4 WGTV: Insignificant Contributor Adjustment Alternate Scenario Alternate Scenario Resident Gardener1 ROC Adjusted for IC Dose WGTV WGTV 75th Percentile Contribution Radionuclide (pCi/g per 25 mrem/yr) Radionculide Mixture Relative Dose Dose Fraction (pCi/g per 25 mrem/yr)
H-3 4.849E+03 2.52E-01 1.30E-03 3.37E-03 C-14 1.775E+02 9.37E-03 1.32E-03 3.42E-03 Fe-55 7.972E+03 -8.13E-03 -2.55E-05 -6.60E-05 Ni-59 1.195E+04 4.74E-02 9.93E-05 2.57E-04 Co-60 2.835E+01 4.76E-03 4.20E-03 1.09E-02 25.77 Ni-63 4.363E+03 1.89E-01 1.08E-03 2.81E-03 Sr-90 2.146E+00 9.12E-03 1.06E-01 2.75E-01 1.95 Nb-94 1.104E+02 1.01E-03 2.28E-04 5.90E-04 Tc-99 8.405E+01 6.91E-03 2.05E-03 5.32E-03 Cs-137 4.470E+01 4.49E-01 2.51E-01 6.51E-01 40.63 Eu-152 1.497E+03 4.49E-03 7.50E-05 1.94E-04 1360.77 Eu-154 1.031E+03 1.60E-03 3.89E-05 1.01E-04 937.18 Eu-155 6.642E+03 4.56E-03 1.72E-05 4.44E-05 Np-2372 8.069E-02 0.00E+00 0.00E+00 0.00E+00 Pu-238 5.585E+00 7.95E-04 3.56E-03 9.22E-03 Pu-239/PU-240 4.836E+00 1.90E-04 9.85E-04 2.55E-03 Pu-241 2.533E+02 2.35E-02 2.32E-03 6.00E-03 Am-241 8.404E+00 3.25E-03 9.66E-03 2.50E-02 Am-243 8.408E+00 4.55E-04 1.35E-03 3.50E-03 Cm-243/Cm-244 2.451E+01 1.78E-04 1.82E-04 4.71E-04 Sum Relative Dose 0.39 Dose Fraction Sum Check 1 IC Dose Percentage 6.25%
Note 1: RESRAD Report "AS WGTV BFM DSR 121117.pdf" Note2: Np-237 not detected in any core from LACBWR - maximum MDC used to directly calculate maximum Np-237 IC dose (and Np-237 dose fraction) for WGTV.
Page 182 of 183
RS-TD-313196-004 Revision 4 Total WGTV IC Dose using maximum Np-237 Dose Np-237 Max MDC WGTV Cores 0.239 pCi/g BFM WGTV Np-237 Max Dose using Max MDC 1.181 mrem/yr WGTV BFM DSR Np-2371 1.854E+02 mrem/yr per pCi/g Alternate Scenario WGTV BFM Np-237 DSR2 3.098E+02 mrem/yr per pCi/g Alternate Scenario BFM WGTV Max Dose using Max MDC 1.973E+00 Alyernate Scenario WGTV Np-237 Max IC Dose Fraction using Max MDC 7.894E-02 Total IC Dose Percentage WGTV 14.14%
Note 1: Reference RESRAD Report "LACBWR BFM Rx DSR 12117.pdf" Note 2: RESRAD Report "AS WGTV BFM DSR 121117.pdf" Page 183 of 183