ML18130A592

From kanterella
Jump to navigation Jump to search
Independent Spent Fuel Storage Installation 2017 Annual Radiological Environmental Operating Report
ML18130A592
Person / Time
Site: Surry, 07200002, 07200055  Dominion icon.png
Issue date: 04/30/2018
From:
Virginia Electric & Power Co (VEPCO)
To:
Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation
References
Download: ML18130A592 (77)


Text

ATTACHMENT 1 Serial No.18-151 Docket Nos.: 50-280 50-281 72-2 72-55 2017 Annual Radiological Environmental Operating Report SURRY POWER STATION UNITS 1 AND 2 VIRGINIA ELECTRIC AND POWER COMPANY

I I

I I

I I

I I

I I

I I

I I

I I

I I

I 2017 Annual Radiological Environmental Operating Report Surry Power Station

r I

I I

I I

Dominion Energy I

Surry Power Station Radiological Environmental Monitoring Program I

January 1, 2017 to December 31, 2017 I

I I

I I

I I

I I

I I

I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I Annual Radiological Environmental Operating Report Surry Power Station January 1, 2017 to December 31, 2017 Prepared by: ------~

(}-~~-*__.,.,_tJ,.,.) _ _,.~~"""~"""""-"'---1---'n'/J"---------

~ iw.Abbott$.1/

2 Health Physicist Reviewed by: ~

..!. ~~::::==--___.-==-----

--=---------------------

A. E. Hairston Supervisor Radiologicai Analysis Reviewed by: _____ )Q__

___ ~~~~-;.=-/~~.:::"--....::-_______ _

T. L. Ragland Manager Radiological Protection and Chemistry

I I

I I

I I

I I

I I

I I

I I

I I

I I

I Table of Contents PREFACE.............................................................................................................................................. 4

1. EXECUTIVE

SUMMARY

.............................................................................................................. 5

2. PROGRAM DESCRIPTION............................................................................................................ 7 2.1 Introduction............................................................................................................................. 7 2.2 Sampling and Analysis Program............................................................................................. 8
3. ANALYTICAL RESULTS............................................................................................................ 20 3.1 Summary of Results.............................................................................................................. 20 3.2 Analytical Results of2017 REMP Samples......................................................................... 28
4.

DISCUSSION OF RESULTS..................................................................................................... 49 4.1 Gamma Exposure Rate......................................................................................................... 49 4.2 Airborne Grdss Beta............................................................................................................. 50 4.3 Airborne Radioiodine............................................................................................................ 52 4.4 Air Particulate Gamma......................................................................................................... 52 4.5 Animal Milk.......................................................................................................................... 52 4.6 Food Products....................................................................................................................... 53 4.7 Well Water............................................................................................................................ 53 4.8 River Water........................................................................................................................... 53 4.9 Silt......................................................................................................................................... 54 4.10 Shoreline Sediment............................................................................................................. 56 4.11 Fish...................................................................................................................................... 56 4.12 Oysters................................................................................................................................ 56 4.13 Clams.................................................................................................................................. 56 4.14 Crabs................................................................................................................................... 57

5. PROGRAM EXCEPTIONS........................................................................................................... 58
6. CONCLUSIONS............................................................................................................................. 59 REFERENCES.................................................................................................................................... 61

. APPENDICES..................................................................................................................................... 63 APPENDIX A: LAND USE CENSUS........................................................................................... 64 APPENDIX B:

SUMMARY

OF INTERLABORATORY COMPARISONS............................... 66 3

I I I

,1 I

I I

I I

I I

I I

I I

I I

I I

I PREFACE This report is submitted as required by Technical Specification 6.6.B.2, Annual Radiological Environmental Operating Report, for Surry, Units 1 and 2, Virginia Electric and Power Company Docket Nos. 50-280 and 50-281, and the Surry Independent Spent Fuel Storage Installation (ISFSI) Technical Specifications, Appendix C, Item 1.3.1.

4

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

1. EXECUTIVE

SUMMARY

This document is a detailed report of the 201 7 Suny Power Station Radiological Environmental Monitoring Program (REMP). Radioactivity levels from J anuaiy 1 through December 31, 2017, in air, water, silt, shoreline sediment, milk, aquatic biota, food products and direct exposure pathways have been analyzed, evaluated and summarized.

The REMP is designed to confirm that radiological effluent releases are As Low As (is)

Reasonably Achievable (AI.ARA), no undue environmental effects occur and the health and safety of the public are protected.

The program also detects any unexpected environmental processes that could allow radiation accumulations in the environment or food pathway chains.

Radiation and radioactivity in the environment are monitored within a 20-mile radius of the station. Suny Power Station personnel collect a variety of samples within this area. A number of sampling locations for each medium are selected using available meteorological, land use, and water use data.

1\\vo types of samples are obtained. The first type, control samples, is collected from areas that are beyond the measurable influence of Suny Power Station or any other nuclear facility. These samples represent normal background radiation levels. Background radiation levels can be compared to the environment surrounding the station.

Indicator samples are the second sample type obtained. These samples show how much radiation is contributed to the environment by the station.

Indicator samples are taken from areas close to the station where any station contribution will be at the highest concentration.

Prior to station operation, samples were collected and analyzed to determine the amount of radioactivity present in the area. The resulting values are used as a "pre-operational baseline." Analysis results from the indicator samples are compared to control sample values and the pre-operational baseline to determine if changes in radioactivity levels are attributable to station operations, or natural variation, or other causes such as the Chernobyl and Fukushima Daiichi accidents that released radioactive material to the environment.

Teledyne Brown Engineering, Inc. (TBE) provides radioanalyses for this program and Mirion Technologies provides thermoluminescent dosimetry (TLD) services.

Participation in an Interlaborato:ry Comparison Program provides an independent check of sample measurement precision and accuracy. Typically, radioactivity levels in the environment are so low that analysis values frequently fall below the minimum detection limits of state-of-the-art measurement methods. Because of this, the United States Nuclear Regulato:ry Commission (USNRC) requires that equipment used for radiological environmental monitoring must be able to detect specified minimum Lower Limits of Detection (LLDs). This ensures that analyses are as accurate as possible. The USNRC also mandates a reporting level for radionuclides. Licensed nuclear facilities must report the radionuclide activities in those environmental samples that are equal to or greater than the specified reporting level.

Environmental radiation levels are sometimes referred to as a percent of the reporting level.

5

I I

I I

I I

I I

I I

I I

I I

I I

I I

I Analytical results are reported for all possible radiation exposure pathways to man. These pathways include airborne, aquatic, terrestrial and direct radiation exposure. The airborne exposure pathway includes radioactive airborne iodine and particulates. The 2017 airborne results were similar to previous years. No station related radioactivity was detected and natural radioactivity levels remained at levels consistent with past years' results.

Aquatic exposure pathway samples include well and river water, silt and shoreline sediments, crabs, fish, clams and oysters. Naturally occurring radionuclides such as beryllium-7, potassium-40, radium-226, thorium-228 and thorium-232 were detected at average environmental levels. No man-made radionuclides were detected in well water.

This trend is consistent throughout the operational environmental monitoring program. No man-made radionuclides were detected in river water. Silt samples indicated the presence of cesium-137 and naturally occurring radionuclides. The cesium-137 activity was present in the control location and is attributable to global fallout from past nuclear weapons testing and nuclear accidents such as Chernobyl. Shoreline sediment, which may provide a direct exposure pathway, contained no station related radionuclides. Naturally occurring radionuclides potassium-40, radium-226 thorium-228 and thorium-232 were detected at average environmental levels. The terrestrial exposure pathway includes milk and food products. Iodine-131 was not detected in any 2017 milk samples and has not been detected in milk prior to or since the 1986 Chernobyl accident.

Strontium-90 was detected in milk and this activity is attributable to past atmospheric nuclear weapons testing. No man-made radionuclides were detected in food product samples. Consistent with historical data, naturally occurring potassium-40 was detected in milk. Naturally occurring potassium-40 was detected in food products. The direct exposure pathway measures environmental radiation doses using TLDs. TLD results have remained relatively constant over the years.

During 201 7, as in previous years, the operation of Surry Power Station has created no adverse environmental effects or health hazards. The maximum total body dose calculated for a hypothetical individual at the station site boundary due to liquid and gaseous effluents released from the station during 201 7 was 0.055 millirem. For reference, this dose may be compared to the 620 millirem average annual exposure to every person in the United States from natural and man-made sources. Natural sources in the environment provide approximately 50% of radiation exposure to man, while nuclear power contributes less than 0.1 %. These results demonstrate compliance with federal and state regulations and also demonstrate the adequacy of radioactive effluent controls at Surry Power Station.

6

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

2. PROGRAM DESCRIPTION 2.1 Introduction This report documents the 201 7 Surry Power Station operational Radiological Environmental Monitoring Program (REMP).- Dominion Energy's Surry Power Station is located on the Gravel Neck peninsula adjacent to the James River, approximately 25 miles upstream of the Chesapeake Bay. The site consists of two units, each with a pressurized water reactor (PWR) nuclear steam supply system and turbine generator furnished by Westinghouse Electric Corporation. Each unit is designed with a nominal gross electrical output of 910 megawatts electric (MWe). Unit 1 achieved commercial operation on December 22, 1972, and Unit 2 on May 1, 1973.

The United States Nuclear Regulatory Commission regulations (10CFR50.34a) require that nuclear power plants be designed, constructed and operated to keep levels of radioactive material in effluents to unrestricted areas As Low As (is)

Reasonably Achievable. To ensure these criteria are met, the operating license for Surry Power Station includes Technical Specifications that address the release of radioactive effluents.

In-plant monitoring is used to ensure that these release limits are not exceeded.

As a precaution against unexpected or undefined environmental processes, which might allow undue accumulation of radioactivity in the environment, a program for monitoring the station environs is also included in Surry Power Station Technical Specifications.

Dominion personnel are responsible for collecting the various indicator and control environmental samples. Mirian Technologies is responsible for processing the TLDs. Teledyne Brown Engineering is responsible for sample analyses. The results of the analyses are used to determine if changes in radioactivity levels may be attributable to station operations. Measured values are compared with control values, which vary with time due to external events, such as cosmic ray bombardment, nuclear weapons test fallout and seasonal variations of naturally occurring radionuclides.

Data collected prior to station operation is used to indicate the degree of natural variation to be expected. This pre-operational data is compared with data collected during the operational phase to assist in evaluating any radiological impact of station operation.

Occasionally, samples of environmental media may show the presence of man-made radionuclides. As a method of referencing the measured radionuclide concentrations in the sample media to a dose consequence to man, the data is compared to the reporting level concentrations listed in the USNRC Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants",

(December, 1975) and VPAP-2103S, Offsite Dose Calculation Manual (Surry).

These concentrations are based upon the annual dose commitment recommended by 10CFR50, Appendix I, to meet the criterion of "As Low As (is) Reasonably Achievable."

7

I I

I I

I I

I I

I I

I I

I I

I I

I I

I This report documents the results of the REMP for 201 7 and satisfies the following objectives of the program:

~ To provide measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposure of the maximum exposed member of the public resulting from station operations.

~ To supplement the radiological effluent monitoring program by verifying that radioactive effluents are within allowable limits.

~ To identify changes in radioactivity in the environment.

~ To verify that station operations have no detrimental effect on the health and safety of the public.

2.2 Sampling and Analysis Program Table 2-1 summarizes the 201 7 sampling program for Surry Power Station. All samples listed in Table 2-1 are taken at indicator locations except those labeled "control." Dominion Energy personnel collect all samples listed in Table 2-1.

Table 2-2 summarizes the analysis program conducted by Teledyne Brown Engineering and Mirion Technologies for Surry Power Station.,All samples, with the exception of the TLDs, are shipped to Teledyne Brown Engineering, located in Knoxville, TN, for analysis. The TLDs are shipped to Mirion Technologies, located in Irvine, CA, for processing.

The Surry Radiological Monitoring Locations maps (Figures 1 - 5) denote sample locations for Surry Power Station. The locations are color coded to designate sample types.

8

Table 2-1 SURRY-2017 RADIOLOGICAL SAMPLING STATIONS DISTANCE AND DIRECTION FROM UNIT NO. 1 Pg. 1 of3 Distance Collection Sam~le Media Location Station Miles Direction Degrees Freguenc;y Remarks Environmental Control (00)

Quarterly Onsite (Stored in a lead shield outside the protected area)

TLDs West North West (02) 0.2 WNW 293° Quarterly Site Boundary Surry Station Discharge (03) 0.4 NW 321 ° Quarterly Site Boundary North North West (04) 0.2 NNW 329° Quarterly Site Boundary North (05) 0.3 N

40 Quarterly Site Boundary North North East (06) 0.3 NNE 28° Quarterly Site Boundary North East (07) 0.3 NE 44° Quarterly Site Boundary East North East (08) 0.4 ENE 67° Quarterly Site Boundary East (09) 0.3 E

89° Quarterly Site Boundary West (10) 0.1 w

271° Quarterly Site Boundary West South West (11) 0.4 WSW 252° Quarterly Site Boundary South West (12) 0.3 SW 228° Quarterly Site Boundary South South West (13) 0.3 SSW 201° Quarterly Site Boundary South (14) 0.4 s

182° Quarterly Site Boundary South South East (15) 0.6 SSE 157° Quarterly Site Boundary South East (16) 0.9 SE 135° Quarterly Site Boundary Station Intake (18) 1.6 ESE 115° Quarterly Site Boundary Hog Island Reserve (19) 2.0 NNE 26° Quarterly Near Resident Bacon's Castle (20) 4.5 SSW 202° Quarterly Apx. 5 mile Route 633 (21) 4.9 SW 227° Quarterly Apx. 5 mile Alliance (22) 5.1 WSW 247° Quarterly Apx. 5 mile Surry (23) 7.7 WSW 256° Quarterly Population Center Route 636 and 637 (24) 4.0 w

270° Quarterly Apx. 5 mile Scotland Wharf (25) 5.0 WNW 284° Quarterly Apx. 5 mile Jamestown (26) 6.3 NW 308° Quarterly Apx. 5 mile Colonial Parkway (27) 3.8 NNW 333° Quarterly Apx. 5 mile Route 617 and 618 (28) 4.9 NNW 340° Quarterly Apx. 5 mile Kingsmill (29) 4.6 N

20 Quarterly Apx. 5 mile Williamsburg (30) 7.8 N

oo Quarterly Population Center Kingsmill North (31) 5.5 NNE 12° Quarterly Apx. 5 mile Budweiser (32) 5.8 NNE 27° Quarterly Population Center Water Plant (33) 5.0 NE 46° Quarterly Apx. 5 mile 9

Table 2-1 SURRY - 2017 RADIOLOGICAL SAMPLING STATIONS DISTANCE AND DIRECTION FROM UNIT NO. 1 P. 2 of3 Distance Collection Samele Media Location Station Miles Direction Degrees Freguenc;y Remarks Environmental BASF (34) 5.1 ENE 70° Quarterly Apx. 5 mile TLDs Lee Hall (35) 7.1 ENE 75° Quarterly Population Center Goose Island (36) 5.1 E

90° Quarterly Apx. 5 mile Fort Eustis (37) 4.9 ESE 104° Quarterly Apx. 5 mile Newport News (38) 19.3 SE 130° Quarterly Population Center James River Bridge (39) 17.1 SE 142° Quarterly Control Location Benn's Church (40) 17.0 SSE 159° Quarterly Control Location Smithfield (41) 13.4 SSE 167° Quarterly Control Location Rushmere (42) 5.3 SSE 156° Quarterly Apx. 5 mile Route 628 (43) 5.1 s

177° Quarterly Apx. 5 mile Air Charcoal Surry Station (SS) 0.3 NNE 18° Weekly Site boundary location with highest D/Q and Particulate Hog Island Reserve (HIR) 2.0 NNE 26° Weekly Bacon's Castle (BC) 4.5 SSW 202° Weekly Alliance (ALL) 5.1 WSW 247° Weekly Colonial Parkway (CP) 3.8 NNW 333° Weekly BASF (BASF) 5.1 ENE 70° Weekly Fort Eustis (FE) 4.9 ESE 104° Weekly Newport News (NN) 19.3 SE 130° Weekly Control Location River Water Surry Station Discharge (SD) 0.4 NW 323° Monthly Scotland Wharf (SW) 4.9 WNW 284° Monthly Control Location Well Water Surry Station (SS) 0.1 SW 227° Quarterly Onsite Hog Island Reserve (HIR) 2.0 NNE 28° Quarterly Construction Site (CS) 0.3 E

87° Quarterly Shoreline Hog Island Reserve (HIR) 0.6 N

70 Semi-Annually Sediment Chickahominy River (CHIC) 11.2 WNW 301 ° Semi-Annually Control Location Silt Chickahominy River (CHIC) 11.2 WNW 300° Semi-Annually Control Location Surry Station Discharge (SD) 1.3 NNW 341° Semi-Annually Surry Station Intake (SI) 1.8 ESE 112° Semi-Annually 10

Table 2-1 SURRY - 2017 RADIOLOGICAL SAMPLING STATIONS DISTANCE AND DIRECTION FROM UNIT NO. 1 P. 3 of3 Distance Collection SamEle Media Location Station Miles Direction Degrees Freguencl'.

Remarks Milk Colonial Parkway (CP) 3.7 NNW 336° Monthly Lover Retreat (LRD) 30.6 NNW 50 Monthly Control Location Epps (EPPS) 4.8 SSW 200° Monthly Oysters Point of Shoals (POS) 6.4 SSE 157° Semi-Annually Mulberry Point (MP) 4.9 ESE 124° Semi-Annually Swash Hole Island (SHI) 6.8 SE 130° Semi-Annually Clams Chickahominy River (CHIC) 11.2 WNW 300° Semi-Annually Control Location Surry Station Discharge (SD) 1.3 NNW 341 ° Semi-Annually Jamestown Island (JI) 3.9 NW 324° Semi-Annually Fish Surry Station Discharge (SD) 1.3 NNW 341° Semi-Annually Crabs Surry Station Discharge (SD) 1.3 NNW 341° Annually Crops Brock's Farm (BROCK) 3.8 s

183° Annually (Corn, Peanuts, Slade's Farm (SLADE) 3.2 s

179° Annually

/

Soybeans) 11

I I

Table 2-2 SURRY -2017 SAMPLE ANALYSIS PROGRAM I

Pg. 1 of3 REPORT SAMPLE MEDIA FREQUENCY ANALYSIS LLD*

UNITS mR/Std.

I Thermoluminescent Quarterly Gamma Dose 2

Month Dosimetry (TLD)

Air Iodine Weekly I-131 0.07 pCi/m3 I

Air Particulate Weekly Gross Beta 0.01 pCi/m3 Gamma I

Quarterly (a)

Isotopic pCi/m3 Cs-134 0.05 Cs-137 0.06 I

River Water Quarterly Tritium (H-3) 2000 pCi/L Composite of monthly sample I

Monthly 1-131 10 pCi/L Gamma I

Isotopic pCi/L Mn-54 15 Fe-59 30 Co-58 15 I

Co-60 15 Zn-65 30 Zr-95 30 Nb-95 15 I

Cs-134 15 Cs-137 18 Ba-140 60 I

La-140 15 Well Water Quarterly Tritium (H-3) 2000 pCi/L 1-131 1

I Gamma Isotopic pCi/L Mn-54 15 I

Fe-59 30 Co-58 15 Co-60 15 I

Zn-65 30 Zr-95 30 Nb-95 15 Cs-134 15 I

Cs-137 18 Ba-140 60 La-140 15 I

Footnotes located at end of table.

I I

12

I Table 2-2 I

SURRY-2017 SAMPLE ANALYSIS PROGRAM Pg. 2 of3 SAMPLE MEDIA FREQUENCY ANALYSIS LLD*

REPORT UNITS I

Shoreline Sediment Semi-Annually Gamma Isotopic pCi/kg-dry Cs-134 150 Cs-137 180 I

Silt Semi-Annually Gamma Isotopic pCi/kg-dry Cs-134 150 I

Cs-137 180 Milk Monthly 1-131 1

pCi/L I

Gamma Isotopic pCi/L Cs-134 15 Cs-137 18 I

Ba-140 60 La-140 15 I

Quarterly Sr-89 NA pCi/L Composite of CP Sr-90 NA monthly sample I

Oysters Semi-Annually Gamma Isotopic pCi/kg-wet Mn-54 130 Fe-59 260 I

Co-58 130 Co060 130 Zn-65 260 Cs-134 130 I

Cs-137 150 Clams Semi-Annually Gamma Isotopic pCi/kg-wet I

Mn-54 130 Fe-59 260 Co-58 130 I

Co-60 130 Zn-65 260 Cs-134 130 Cs-137 150 I

Crabs Annually Gamma Isotopic pCi/kg-wet Mn-54 130 I

Fe-59 260 Co-58 130 Co-60 130 I

Zn-65 260 Cs-134 130 Cs-137 150 I

Footnotes located at end of table.

I I

13

I I

I I

I I

I I

I I

I I

I I

I I

I I

I Table 2-2 SURRY - 2017 SAMPLE ANALYSIS PROGRAM P. 3 of3 SAMPLE MEDIA FREQUENCY ANALYSIS LLD*

REPORT UNITS Fish Semi-Annually Gamma Isotopic pCi/kg - wet Mn-54 130 Fe-59 260 Co-58 130 Co-60 130 Zn-65 260 Cs-134 130 Cs-137 150 Food Products Annually Gamma Isotopic pCi/kg - wet I-131 60 Cs-134 60 Cs-137 80 ote: This table is not a complete listing ofnuclides that can be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, are also identified and reported.

  • LLD is the Lower Limit of Detection as defined and required in the USNRC Branch Technical Position on an Acceptable Radiological Environmental Monitoring Program, Revision l, November 1979. LLDs indicate those concentrations to which environmental samples are required to be analyzed. Actual analysis of samples may be lower than these listed values.

(a) Quarterly composites of each location's weekly air particulate samples are analyzed for gamma emitters.

A None assigned 14

Vl I

WSW SW Legend Air Sampling Stations

  • TLD Sampling State Environmental Monitoring Sites
  • State TLD Sites Figure 1. Surry Radiological Monitoring Locations I

ESE

-°'

~\\*\\ -\\ ej;i~:~;~lin:~::~o~sm. gN::~:.t:~~~e~t=p

"'r.. '..............

J -

    • ~*/}\\

w TLD Sampling w Nearest Milk Animal

..JI!'..,,.......

°V ~

(;;'.'.{::\\...

e Nearest Garden Aquatic Samples

~r,...

~....

  • *::\\/)}: Original © 1991 by ADC of Alexandria, Inc., 6440 General Green Way, N E
      • t, Alexandria, VA 22312. USED WITH PERMISSION. No other reproduction

' may be made without the written permission of ADC.

t

-..J Gl iil i;i" irS co

)>

c,

a:.

00 w

WSW

.;@f ii

.~:

.l

'\\!_~

-~-

\\.

f§) :~

,g'..

Figure 4. Surry Emergency Plan Map

! e Nearest Garden Crop Samples

"'\\

.Jl \\

,1 \\ s !

~ L--------------------------l

.) SER YM,tS

\\

i, gi Original © 1991 by ADC of Alexandria, Inc., 6440 General Green Way,

, COR El

): ~~af{/:-::* j."'-<<,,.,,.~.-.

. /

ii ILIG*

~

Alexandria, VA 22312. USED WITH PERMISSION. No other reproduction

  • ,~

rt,i

/

ctr\\:/-=**

(626) *:~~o.,

}

~

may be made without the written permission of ADC.

/.*

  • "~'".*-.-.. /

Figure 5. Surry Emergency Plan Map e Air Sampling Stations e Nearest Residents e TLD Sampling e Nearest Milk Animal e Nearest Garden Aquatic Samples Original © 1991 by ADC of Alexandria, Inc., 6440 General Green Way, Alexandria, VA 22312. USED WITH PERMISSION. No other reproduction may be made without the written permission of ADC.

,/~ WNW",(

I

./

0 Wrf\\

iil !

- ~~ *.

?

0

~

(D J

G'rovs

.i-.-~

....\\.

\\\\c~ -

I I

I I

I I

I I

I I

I

,1 I

I I

I I

I I

3. ANALYTICAL RESULTS 3.1 Summary of Results In accordance with the Surry Offsite Dose Calculation Manual (ODCM), a summary table of the analytical results has been prepared and is presented in Table 3-1. This data is presented in accordance with the format of the USNRC Branch Technical Position, Acceptable Radiological Environmental Monitoring Program", Revision 1, November 1979. A more detailed analysis of the data is given in Section 4.

20

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-1: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY

Surry Power Station, Surry County, Virginia - 2017 Docket No. 50-280-281 Page 1 of7 Medium or Indicator Pathway Analysis Locations Location with Highest Mean Sampled (Units)

Type Direct Gamma Radiation TLD (mRI Std Month)

Air Gross Particulate Beta Mean ITotal No.

LLD Range I

Distance I Name Direction 164 2

5.6 (150/152)

STA-9 (4.0 - 8.0) 416 10 13.9 (362/364)

BASF (2.05 - 27.2) 0.3mi E

5.1 mi ENE Mean Range 7.8 (4/4)

(7.3 - 8.0) 15.5 (52/52)

(4.5 -27.2)

Control Locations Mean Range 6.0 (12/12)

(4.9 - 7.6) 12.8 (52/52)

(4.5 - 21.1)

Non-Routine Reported Measurements 0

0 (1 E-3 pCilm3)

Gamma 32 Be-7 32 144.2 (28/28)

BASF 5.1 mi 163 (4/4) 134 (4/4) 0 (97.8 - 201)

ENE (122 - 201)

(122 -150)

K-40 32 23.7 (1/28) 55 0.3mi 23.7 (1/28)

< LLD 0

(23. 7 - 23. 7)

NNE (23.7 - 23.7)

Cs-134 32 50

< LLD N/A

< LLD

< LLD 0

Cs-137 32 60

< LLD N/A

< LLD

< LLD 0

Air Iodine 1-131 416. 70

< LLD N/A

< LLD

< LLD 0

(1E-3 pCilm3)

Milk Strontium 4

(p Ci/Liter)

Sr-89 4

< LLD N/A

< LLD

< LLD 0

Sr-90 4

1.27 (3/4)

CP 3.7mi 1.27 (3/4)

< LLD 0

(0.97 -1.73)

NNW (0.97 - 1.73)

Gamma 36 K-40 36 1361 (24/24)

LR 30.6mi 1610 (12/12) 1610 (12/12) 0 (1110 -1620)

NNW (1280 -1870)

(1280 -1870)

Th-228 36

< LLD N/A

< LLD

< LLD 0

1-131 36

< LLD N/A

< LLD

< LLD 0

Cs-134 36 15

< LLD N/A

< LLD

< LLD 0

Cs-137 36 18

< LLD N/A

< LLD

< LLD 0

Ba-140 36 60

< LLD N/A

< LLD

< LLD 0

21

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-1: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY

Medium or Pathway Sampled (Units)

Milk (pCi!Liter)

Food Products (pCi/kg wet)

Surry Power Station, Surry County, Virginia - 2017 Docket No. 50-280-281 Page 2 of7 Indicator Analysis Locations Location with Highest Mean ITotal Mean I Distance I Mean Type No.

LLD Range Name Direction Range Gamma 36 La-140 36 15

< LLD N/A

< LLD Gamma 3

K-40 3

10453 (3/3)

Slade 3.2mi 21700 (1/1)

(4170

  • 21700) s (21700-21700)

Be-7 3

< LLD N/A

< LLD Th-228 3

< LLD N/A

< LLD 1-131 3

60

< LLD N/A

< LLD Cs-134 3

60

< LLD N/A

< LLD Cs-137 3

80

< LLD N/A

< LLD Control Locations Non-Routine Mean Reported Range Measurements

< LLD 0

N/A 0

N/A 0

N/A 0

N/A 0

N/A 0

N/A 0

Well H-3 12 2000

< LLD N/A

< LLD N/A 0

Water (pCi!Liter)

Gamma 12 Mn-54 12 15

< LLD N/A

< LLD N/A 0

Co-58 12 15

< LLD N/A

< LLD N/A 0

Fe-59 12 30

< LLD N/A

< LLD N/A 0

Co-60 12 15

< LLD N/A

< LLD N/A 0

Zn-65 12 30

< LLD N/A

< LLD N/A 0

K-40 12 84.2 (1/8)

HIR 2.0mi 84.2 (1/4)

N/A 0

(28.5

  • 84.2)

NNE (28.5

  • 84.2) 22

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-1: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY

Surry Power Station, Surry County, Virginia - 2017 Docket No. 50-280-281 Page 3 of7 Medium or Indicator Control Pathway Analysis Locations Location with Highest Mean Locations Non-Routine Sampled

'Total Mean I Distance I Mean Mean Reported (Units)

Type No.

LLD Range Name Direction Range Ran!=le Measurements Well Nb-95 12 15

< LLD N/A

< LLD N/A 0

Water (pCVLiter)

Zr-95 12 30

< LLD N/A

< LLD N/A 0

1-131 12

< LLD N/A

< LLD N/A 0

Cs-134 12 15

< LLD N/A

< LLD N/A 0

Cs-137 12 18

< LLD N/A

< LLD N/A 0

Ba-140 12 60

< LLD N/A

< LLD N/A 0

La-140 12 15

< LLD N/A

< LLD N/A 0

Th-228 12 19.8 (1/12) cs 0.3mi 19.8 (1/12)

N/A 0

(19.8 - 19.8)

E (19.8 -19.8)

River H-3 8

2000

< LLD N/A

< LLD

< LLD 0

Water (pCVLiter)

Gamma 24 K-40 24 96.6 (7/12)

SW 4.9mi 104.5 (3/12) 104.5 (3/12) 0 (69.1 -143)

WNW (81.0 -142)

(81.0 - 142)

Ac-228 24 17.4 (1/12)

SD 0.4mi 17.4 (1/12)

< LLD 0

(17.4 -17.4)

NW (17.4 - 17.4)

Ra-226 24

< LLD N/A

< LLD

< LLD 0

Th-228 24

< LLD N/A

< LLD

< LLD 0

Mn-54 24 15

< LLD N/A

< LLD

< LLD 0

Co-58 24 15

< LLD N/A

< LLD

< LLD 0

Fe-59 24 30

< LLD N/A

< LLD

< LLD 0

Co-60 24 15

< LLD N/A

< LLD

< LLD 0

Zn-65 24 30

< LLD N/A

< LLD

< LLD 0

23

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-1: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY

Surry Power Station, Surry County, Virginia - 2017 Docket No. 50-280-281 Page 4 of7 Medium or Indicator Control Pathway Analysis Locations Location with Highest Mean Locations Non-Routine Sampled ITotal Mean I Distance I Mean Mean Reported (Units)

Type No.

LLD Range Name Direction Range Range Measurements River Nb-95 24 15

< LLD N/A

< LLD

< LLD 0

Water (p Ci/Liter)

Zr-95 24 30

< LLD N/A

< LLD

< LLD 0

1-131 24 10

< LLD N/A

< LLD

< LLD 0

Cs-134 24 15

< LLD N/A

< LLD

< LLD 0

Cs-137 24 18

< LLD N/A

< LLD

< LLD 0

Ba-140 24 60

< LLD N/A

< LLD

< LLD 0

La-140 24 15

< LLD N/A

< LLD

< LLD 0

Silt Gamma 5

(pCi/kg dry}

Be-7 5

1430 (1/3)

SD 1.3 mi 1430 (1/3)

< LLD 0

(1430 -1430)

NNW (1430 -1430)

K-40 5

16067 (3/3)

CHIC 11.2 mi 17100 (2/2) 17100 (2/2) 0 (15400-16500)

WNW (16600-17600) (16600-17600)

Cs-134 5

150

< LLD N/A

< LLD

< LLD 0

Cs-137 5

180 135 (2/3)

SI 1.8 mi 162 (1/1) 170 (2/2) 0 (108-162)

ESE (162

  • 162)

(132

  • 207)

Ra-226 5

2547 (3/3)

SI 1.8 mi 2570 (1/1) 3115 (2/2) 0 (1940

  • 3130)

ESE (2570

  • 2570)

(2950

  • 3280)

Th-228 5

1487 (3/3)

SD 1.3 mi 1625 (2/2) 1435 (2/2) 0 (1210 -1790)*

NNW (1460 -1790)

(1390

  • 1480)

Th-232 5

1297 (3/3)

SD 1.3mi 1365 (2/2) 1370 (2/2) 0 (1020 -1710)

NNW (1020 -1710)

(1310 -1430) 24

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-1: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY

Surry Power Station, Surry County, Virginia - 2017 Docket No. 50-280-281 Page 5 of7 Medium or Indicator Control Pathway Analysis Locations Location with Highest Mean Locations Non-Routine Sampled ITotal Mean I Distance I Mean Mean Reported (Units)

Type No.

LLD Range Name Direction Range Range Measurements Shoreline K-40 4

6190 (2/2)

HIR 0.6mi 6190 (2/2) 2645 (2/2) 0 Sediment (5050

  • 7330)

N (5050

  • 7330)

(1100

  • 4190)

(pCi/kg dry)

Cs-134 4

150

< LLD N/A

< LLD

< LLD 0

Cs-137 4

180

< LLD N/A

< LLD

< LLD 0

Ra-226 4

1210 (1/2)

CHIC 11.2 mi 6150 (1/2) 6150 (1/2) 0 (1210

  • 1210)

WNW (6150

  • 6150)

(6150

  • 6150)

Th-228 4

505 (2/2)

CHIC 11.2 mi 2225 (2/2) 2225 (2/2) 0 (126

  • 884)

WNW (1010

  • 3440)

(1010

  • 3440)

Th-232 4

842 (1/2)

CHIC 11.2 mi 2161 (2/2) 2161 (2/2) 0 (842

  • 842)

WNW (861 - 3460)

(861

  • 3460)

Fish Gamma 4

(pCilkg wet)

K-40 4

2740 (4/4)

SD 1.3mi 2740 (4/4)

N/A 0

(1980

  • 2335)

NNW (1980

  • 2335)

Mn-54 4

130

< LLD N/A

< LLD N/A 0

Co-58 4

130

< LLD N/A

< LLD N/A 0

Fe-59 4

260

< LLD N/A

< LLD N/A 0

Co-60 4

130

< LLD N/A

< LLD N/A 0

Zn-65 4

260

< LLD N/A

< LLD N/A 0

Cs-134 4

130

< LLD N/A

< LLD N/A 0

Cs-137 4

150

< LLD N/A

< LLD N/A 0

25

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-1: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY

Surry Power Station, Surry County, Virginia - 2017 Docket No. 50-280-281 Page 6 of7 Medium or Indicator Control Pathway Analysis Locations Location with Highest Mean Locations Non-Routine Sampled ITotal Mean I

Distance I Mean Mean Reported (Units)

Type No.

LLD Range Name Direction Range Range Measurements Oysters Gamma 6

(pCi/kg wet)

K-40 6

< LLD N/A

< LLD N/A 0

Mn-54 6

130

< LLD N/A

< LLD N/A 0

Fe-59 6

260

< LLD N/A

< LLD N/A 0

Co-58 6

130

< LLD N/A

< LLD N/A 0

Co-60 6

130

< LLD N/A

< LLD N/A 0

Zn-65 6

260

< LLD N/A

< LLD N/A 0

Cs-134 6

130

< LLD N/A

< LLD N/A 0

Cs-137 6

150

< LLD N/A

< LLD N/A 0

Clams Gamma 6

(pCi!kg wet)

K-40 6

859 (2/4)

JI 3.9mi 859 (2/4)

< LLD 0

(735 - 983)

NW (735 -983)

Mn-54 6

130

< LLD N/A

< LLD

< LLD 0

Co-58 6

130

< LLD N/A

< LLD

< LLD 0

Fe-59 6

260

< LLD N/A

< LLD

< LLD 0

Co-60 6

130

< LLD N/A

< LLD

< LLD 0

Zn-65 6

260

< LLD N/A

< LLD

< LLD 0

Cs-134 6

130

< LLD N/A

< LLD

< LLD 0

Cs-137 6

150

< LLD N/A

< LLD

< LLD 0

26

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-1: RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

SUMMARY

Surry Power Station, Surry County, Virginia - 2017 Docket No. 50-280-281 Page 7 of7 Medium or Indicator Control Pathway Analysis Locations Location with Highest Mean Locations Non-Routine Sampled ITotal Mean I

Distance I Mean Mean Reported (Units)

Type No.

LLD Range Name Direction Range Range Measurements Crabs Gamma (pCilkg wet)

K-40 1450 (1/1)

SD 1.3 mi 1450 (1/1)

N/A 0

(1450 - 1450)

NNW (1450 - 1450)

Mn-54 130

< LLD N/A

< LLD N/A 0

Co-58 130

< LLD N/A

< LLD N/A 0

Fe-59 1

260

< LLD N/A

< LLD N/A 0

Co-60 130

< LLD N/A

< LLD N/A 0

Zn-65 260

< LLD N/A

< LLD N/A 0

Cs-134 130

< LLD N/A

< LLD N/A 0

Cs-137 150

< LLD N/A

< LLD N/A 0

27

I I 3.2 Analytical Results of 2017 REMP Samples I

Radiological analyses of environmental media characteristically approach and frequently fall below the detection limits of state-of-the-art measurement methods. The reported error is two times the standard deviation (2cr) of the net activity. Unless otherwise noted, the I

overall error (counting, sample size, chemistry, errors, etc.) is estimated to be 2 to 5 times that listed.

Results are considered positive when the measured value exceeds 2cr uncertainty.

I Teledyne Brown Engineering analytical methods meet the Lower Limit of Detection (LLD) requirements given in Table 2 of the USNRC Branch Technical Position, "An Acceptable I Radiological Environmental Monitoring Program", (November 1979, Revision 1) and the SurryODCM.

I Data are given according to sample type as indicated below.

1.

Gamma Exposure Rate I

I I

I I

I I

I

2.

Air Particulates, Weekly Gross Beta Radioactivity

3.

Air Particulates, Weekly I-131

4.

Air Particulates, Quarterly Gamma Spectroscopy

5.

Animal Milk

6.

Food Products

7.

Well Water

8.

River Water

9.

Silt

10.

Shoreline Sediment

11.

Fish

12.

Oysters

13.

Clams

14.

Crabs 28

I TABLE 3-2: GAMMA EXPOSURE RATE Surry Power Station, Surry County, Virginia-2017 I

MDDQ:: 3 X O"Q = 3 X 1.0 = 3 (5)

Note: IF MDDQ < 5 mR, THEN MDDQ rounded to 5 mR (ANSI N13.37)

MDDA = 3 x (JA

3 X 2.8 = 8.8 (10)

Note: IF MDDA < 10 mR, THEN MDDA rounded to 10 mR (ANSI N13.37)

I Moni-Quarterly Normalized Quarterly Quarterly Facility Annual Annual Annual toring

Baseline, Monitoring Data, MQ Dose,-

Base-Moni-Facility Loca-BQ (mrem per standard FQ:: MQ-BQ line, BA toring Dose,-

I tion

Baseline, quarter)

(mrem)

(mrem)

Data, FA::

(mrem)

MA MA-BA 1

2 3

4 1

2 3

4 (mrem)

(mrem)

I 2

19.8 19.7 18.2 V

20.9 ND ND N/A ND 79.4 78.5 ND 3

19.1 19.7 18.8 20.6 20.3 ND ND ND ND 76.2 79.5 ND 4

17.7 18.2 17.3 19.4 18.8 ND ND ND ND 71.0 73.7 ND 5

18.9 19.1 17.3 20.6 20.3 ND ND ND ND 75.6 77.4 ND I

6 18.4 17.9 16.7 19.4 20.3 ND ND ND ND 73.6 74.3 ND 7

18.6 18.5 17.9 19.7 20.0 ND ND ND ND 74.2 76.1 ND 8

16.9 17.3 16.4 19.1 17.9 ND ND ND ND 67.8 70.7 ND I

9 23.1 23.7 22.1 24.3 24.0 ND ND ND ND 92.5 94.0 ND 10 18.2 18.2 16.4 18.8 18.8 ND ND ND ND 72.6 72.2 ND 11 16.0 16.1 15.5 17.3 17.0 ND ND ND ND 63.8 65.8 ND I

12 16.6 16.4 15.2 17.6 17.9 ND ND ND ND 66.2 67.0 ND 13 18.5 19.4 17.6 20.0 20.0 ND ND ND ND 73.8 77.0 ND 14 17.8 18.2 17.0 19.1 19.1 ND ND ND ND 71.1 73.4 ND 15 18.4 18.8 17.9 20.0 20.0 ND ND ND ND 73.5 76.7 ND I

16 16.9 17.0 16.4 18.2 17.6 ND ND ND ND 67.3 69.2 ND 18 14.3 15.2 14.9 15.8 15.8 ND ND ND ND 57.1 61.6 ND 19 15.4 15.8 14.9 16.7 16.7 ND ND ND ND 61.6 64.0 ND I

20 14.3 14.6 13.3 14.9 15.5 ND ND ND ND 57.1 58.2 ND 21 15.0 16.1 14.6 16.1 16.4 ND ND ND ND 59.8 63.1 ND 22 13.0 13.7 12.7 14.3 14.0 ND ND ND ND 52.2 54.6 ND I

23 17.8 18.8 17.9 19.4 19.7 ND ND ND ND 71.4 75.8 ND 24 14.7 14.9 14.3 15.8 15.8 ND ND ND ND 58.9 60.7 ND 25 18.1 17.3 16.7 18.5 19.4 ND ND ND ND 72.4 71.9 ND 26 15.6 16.1 14.9 16.4 16.7 ND ND ND ND 62.3 64.0 ND I

27 14.6 15.2 14.3 15.5 15.5 ND ND ND ND 58.3 60.4 ND 28 14.1 14.6 13.7 14.9 15.2 ND ND ND ND 56.5 58.2 ND 29 13.1 13.3 12.4 14.0 14.3 ND ND ND ND 52.6 54.0 ND I

30 14.4 14.3 13.7 14.9 15.5 ND ND ND ND 57.6 58.2 ND 31 12.2 12.1 12.1 m

13.3 ND ND N/A ND 49.0 50.2 ND 32 15.2 15.2 14.0 15.5 16.1 ND ND ND ND 60.7 60.7 ND I

33 14.0 14.6 14.0 15.8 16.4 ND ND ND ND 56.2 60.7 ND 34 15.9 16.4 15.5 17.6 17.3 ND ND ND ND 63.5 66.7 ND 35 18.3 19.7 17.6 20.3 20.6 ND ND ND ND 73.4 78.3 ND 36 18.5 18.8 17.9 19.7 20.3 ND ND ND ND 73.8 76.7 ND I

37 15.3 15.8 14.6 16.4 16.4 ND ND ND ND 61.3 63.1 ND 38 21.0 21.2 18.8 20.6 21.8 ND ND ND ND 83.9 82.5 ND 39 14.8 15.5 14.9 16.1 15.8 ND ND ND ND 59.1 62.2 ND 1*

40 16.1 16.4 15.5 17.0 17.0 ND ND ND ND 64.4 65.8 ND 41 21.7 21.5 21.2 23.1 22.8 ND ND ND ND 86.9 88.6 ND 42 16.2 17.3 16.7 17.3 17.3 ND ND ND ND 64.8 68.6 ND I

43 14.3 14.6 13.3 15.5 14.9 ND ND ND ND 57.1 58.2 ND

  • No= Not detected, where MQ < (BQ + MDDQ) bND = Not detected, where MA< (BA+ MDDA)

I d = Damaged TLDs; m = Missing TLDs; v = Vendor reports TLD not received N/ A= Missing or Damaged TLD Reading Not Available for Calculation Note: Table formatted in accordance with ANSI/HPS N13.37-2014, Environmental Dosimetry-I Criteria for system Design and Implementation.

29

TABLE 3-3: GROSS BETA CONCENTRATION IN FILTERED AIR Surry Nuclear Power Station, Surry County, Virginia - 2017 1.0E-3 pCi/m3 +/- 2 Sigma Page 1 of2 COLLECTION SAMPLING LOCATIONS DATE ss HIR BC ALL CP BASF FE NN-C January 03 13.4 +/- 2.46 9.8 +/- 2.23 10.3 +/- 2.30 8.21 +/- 2.11 9.91 +/- 2.26 7.82 +/- 2.07 9.45 +/- 2.18 13.5 +/- 2.4 January 10 20.5 +/- 3.03 13.5 +/- 2.64 13.5 +/- 2.70 13.1 +/- 2.62 11.9+/-2.62 11.5 +/- 2.54 13.3 +/- 2.68 14.0 +/- 2.7 January 17 15.2 +/- 2.71 13.8 +/- 2.63 16.3 +/- 2.83 11.5 +/- 2.48 11.9 +/- 2.57 11.4 +/- 2.49 9.80 +/- 2.41 11.1 +/- 2.44 January 24 9.41 +/- 2.47 6.66 +/- 2.29 9.60 +/- 2.52 9.68 +/- 2.46 9.18 +/- 2.44 9.23 +/- 2.44 6.54 +/- 2.27 8.80 +/- 2.42 January 31 10.9 +/- 2.55 11.5 +/- 2.57 11.2 +/- 2.51 9.54 +/- 2.36 12.1 +/- 2.52 12.1 +/-2.51 11.3 +/- 2.48 13.1 +/- 2.59 February 07 16.7 +/- 3.04 16.1 +/- 3.02 20.0 +/- 3.27 19.6 +/- 3.18 19.9 +/- 3.20 18.4 +/- 3.08 19.2 +/- 3.15 18.1 +/- 3.06 February 14 19.0 +/- 3.03 19.6 +/- 3.08 19.1 +/- 3.10

. 17.5 +/- 2.95 22.4 +/- 3.21 18.0 +/- 3.68 17.2 +/- 2.99 16.8 +/- 2.95 February 21 12.1 +/- 2.59 12.2 +/- 2.58 12.8 +/- 2.67 11.4+/-2.51 13.3 +/- 2.65 13.8 +/- 2.66 10.3 +/- 2.49 10.4 +/- 2.52 February 28 10.8 +/- 2.40 11.8 +/- 2.46 11.4 +/- 2.49 13.0 +/- 2.54 12.2 +/- 2.50 14.6 +/- 2.62 10.9 +/- 2.43 12.3 +/- 2.51 March 07 11.2 +/- 2.46 11.5 +/- 2.47 11.4 +/- 2.53 11.0 +/- 2.44 12.8 +/- 2.57 13.1 +/- 2.56 13.3 +/- 2.60 11.3+/-2.47 March 13 11.6 +/- 2.85 12.9 +/- 2.93 14.9 +/- 3.11 10.2 +/- 2.75 12.8 +/- 2.93 14.0 +/- 2.99 10.3 +/- 2.80 11.4 +/- 2.85 March 20 10.5 +/- 2.50 12.8 +/- 2.64 13.6 +/- 2.75 9.63 +/- 2.44 14.8 +/- 2.77 16.3 +/- 2.84 12.2 +/- 2.64 13.2 +/- 2.70 March 27 20.9 +/- 3.00 22.0 +/- 3.05 21.5 +/- 3.08 19.0 +/- 2.88 21.1+/-3.01 25.0 +/- 3.20 19.1 +/- 2.92 18.6 +/- 2.87 Qtr. Avg. +/- 2 s.d.

14.0 +/- 8.0 13.4 +/- 8.0 14.3 +/- 7.7 12.6 +/- 7.6 14.2 +/- 8.5 14.3 +/- 8.9 12.5 +/- 7.7 13.3 +/- 5.9 April 04 7.22 +/- 2.09 7.74 +/- 2.11 7.55 +/- 2.12 6.94 +/- 2.04 7.90 +/- 2.10 7.54 +/- 2.05 5.67 +/- 1.95 6.53 +/- 2.01 April 11 12.1 +/- 2.45 10.6 +/- 2.37 2.05 +/- 1.76 11.0 +/- 2.40 11.5 +/- 2.42 12.9 +/- 2.51 11.0 +/- 2.39 12.4 +/- 2.50 April 18 13.8 +/- 2.75 17.0 +/- 2.93 14.8 +/- 2.85 13.8 +/- 2.76 14.7 +/- 2.83 15.7 +/- 2.84 25.1 +/- 3.34 13.5 +/- 2.75 April 25 7.70 +/- 2.17 8.39 +/- 2.22 9.80 +/- 2.35 8.48 +/- 2.23 8.17 +/- 2.21 8.78 +/- 2.22 5.58 +/- 2.02 10.0 +/- 2.34 May02 11.3 +/- 2.67 10.7 +/- 2.63 11.8 +/- 2.75 10.0 +/- 2.58 9.74 +/- 2.57 12.6 +/- 2.68 9.03 +/- 2.51 10.0 +/- 2.55 May09 9.42 +/- 2.32 9.34 +/- 2.30 7.68 +/- 2.23 8.09 +/- 2.23 7.89 +/- 2.22 9.84 +/- 2.36 8.07 +/- 2.29 9.46 +/- 2.33 May 16 9.67 +/- 2.44 9.28 +/- 2.40 9.61 +/- 2.45 9.89 +/- 2.44 10.2 +/- 2.46 10.6 +/- 2.50 8.65 +/- 2.39 7.66 +/- 2.28 May23 16.2 +/- 2.72 15.8 +/- 2.68 16.4 +/- 2.76 12.7 +/- 2.51 15.1 +/- 2.65 16.0 +/- 2.68 12.1 +/- 2.50 13.9 +/- 2.57 May30 10.2 +/- 2.61 12.4 +/- 2.74 11.3 +/- 2.71 9.39 +/- 2.55 11.4 +/- 2.68 12.4 +/- 2.71 10.0 +/- 2.62 11.6 +/- 2.68 June 06 18.2 +/- 3.03 17.8 +/- 2.99 17.6 +/- 3.01 15.4 +/- 2.85 17.6 +/- 2.97 20.9 +/- 3.12 14.6 +/- 2.82 16.2 +/- 2.87 June 12 10.3 +/- 2.84 9.16 +/- 2.75 10.2 +/- 2.86 9.88 +/- 2.80 9.26 +/- 2.78 10.6 +/- 2.85 8.52 +/- 2.77 8.48 +/- 2.74 June 20 15.5 +/- 2.53 17.9 +/- 2.65 12.4 +/- 2.38 14.4 +/- 2.45 17.8 +/- 2.64 19.3 +/- 2.70 14.9 +/- 2.50 13.6 +/- 2.40 June 26 13.3 +/- 2.99 11.8 +/- 2.89 13.0 +/- 3.03 10.9 +/- 2.82 13.0 +/- 2.97 16.3 +/- 3.15 13.1 +/- 3.00 10.4 +/- 2.81 Qtr. Avg. +/- 2 s.d.

11.9 +/- 6.7 12.1 +/- 7.4 11.1 +/- 8.2 10.8 +/- 5.1 11.9 +/- 7.0 13.3 +/- 8.1 11.3 +/- 10.2 11.1 +/- 5.6 30

TABLE 3-3: GROSS BETA CONCENTRATION IN FILTERED AIR Surry Nuclear Power Station, Surry County, Virginia - 2017 1.0E-3 pCi/m3 +/- 2 Sigma Page 2 of2 COLLECTION SAMPLING LOCATIONS DATE ss HIR BC ALL CP BASF FE NN July 03 14.3 +/- 2.67 11.5 +/- 2.49 11.7+/-2.56 10.2 +/- 2.39 13.4 +/- 2.62 13.1 +/- 2.56 10.9 +/- 2.45 9.94 +/- 2.37 July 11 14.8 +/- 2.44 14.4 +/- 2.40 12.0 +/- 2.30 13.6 +/- 2.36 12.3 +/- 2.28 14.7 +/- 2.41 12.5 +/- 2.31 12.6 +/- 2.31 July 18 12.1 +/- 2.83 13.7 +/- 2.92 13.1 +/- 2.94 11.7+/-2.77 16.1 +/- 3.05 19.2 +/- 3.20 14.7 +/- 3.01 10.1 +/- 2.75 July 24 19.0 +/- 3.26 19.5 +/- 3.26 19.4 +/- 3.33 19.3 +/- 3.25 20.5 +/- 3.32 24.1 +/- 3.48 18.1 +/- 3.19 16.5 +/- 3.09 August 01 10.0 +/- 2.19 8.40 +/- 2.07 10.2 +/- 2.24 8.98 +/- 2.10 12.8 +/- 2.34 11.1 +/- 2.21 8.03 +/- 2.03 7.12 +/- 1.97 August 08 10.6 +/- 2.58 12.6 +/- 2.69 11.7+/-2.70 9.28 +/- 2.49 12.5 +/- 2.71 14.9 +/- 2.84 10.5 +/- 2.59 11.8+/-2.70 August 15 14.9 +/- 2.57 12.6 +/- 2.42 14.0 +/- 2.56 10.6 +/- 2.29 13.4 +/- 2.48 14.1 +/- 2.51 9.97 +/- 2.25 11.7 +/- 2.36 August 22 17.1 +/- 2.89 17.3 +/- 2.90 15.5 +/- 2.93 17.7 +/- 2.97 17.0 +/- 2.94 20.6 +/- 3.12 18.6 +/- 3.05 17.3 +/- 2.95 August 29 14.9 +/- 3.00 14.3 +/- 2.95 13.8 +/- 2.92 12.6 +/- 2.78 16.5 +/- 2.99 18.9 +/- 3.10 16.9 +/- 3.04 13.7 +/- 2.84 September 05 13.2 +/- 2.68 10.8 +/- 2.52 12.5 +/- 2.69 10.5 +/- 2.50 15.0 +/- 2.82 15.0 +/- 2.75 15.2 +/- 2.79 14.3 +/- 2.73 September 11 11.9 +/- 2.78 10.7 +/- 2.69 10.4 +/- 2.74 9.23 +/- 2.60 11.5+/-2.74 14.5 +/- 2.96 12.8 +/- 2.89 12.5 +/- 2.86 September 18 15.7 +/- 2.76 13.4 +/- 2.62 14.4 +/- 2.75 12.6 +/- 2.57 15.1 +/- 2.72 17.1 +/- 2.81 16.1 +/- 2.78 12.8 +/- 2.58 September 25 18.4 +/- 2.98 16.0 +/- 2.85 16.8 +/- 2.94 13.9 +/- 2.72 19.4 +/- 3.02 20.2 +/- 3.05 18.4 +/- 2.99 15.6 +/- 2.81 Qtr. Avg. +/- 2 s.d.

14.4 +/- 5.6 13.5 +/- 5.9 13.5 +/- 5.2 12.3 +/- 6.4 15.0 +/- 5.6 16.7 +/- 7.3 14.1 +/- 7.1 12.8 +/- 5.6 October 03 10.8 +/- 2.25 3.68 +/- 1.75 9.83 +/- 2.22 9.88 +/- 2.18 10.3 +/- 2.20 11.9 +/- 2.27 12.1 +/- 2.31 9.25 +/- 2.10 October 10 8.68 +/- 2.37

-1.37 +/- 1.59 E 11.3 +/- 2.59 7.59 +/- 2.29 12.6 +/- 2.61 4.50 +/- 2.09 11.2 +/- 2.56 10.4 +/- 2.49 October 17 7.26 +/- 2.31 2.45 +/- 1.89 A 4.36 +/- 2.16 5.04 +/- 2.14 5.54 +/- 2.19 6.91 +/- 2.28 5.87 +/- 2.24 4.50 +/- 2.13 October 24 25.1 +/- 3.42 19.2 +/- 3.21 19.4 +/- 3.27 18.5 +/- 3.16 21.8 +/- 3.30 27.2 +/- 3.55 22.2 +/- 3.35 18.0 +/- 3.12 October 31 11.3 +/- 2.47 12.6 +/- 2.55 10.9 +/- 2.44 11.5 +/- 2.43 13.6 +/- 2.56 13.5 +/- 2.54 12.5 +/- 2.49 11.6 +/- 2.43 November 07 16.6 +/- 2.83 16.7 +/- 2.84 17.2 +/- 2.91 19.1 +/- 2.95 19.9 +/- 2.98 17.9 +/- 2.85 17.3 +/- 2.85 16.3 +/- 2.76 November 14 12.9 +/- 2.39 12.3 +/- 2.35 12.3 +/- 2.38 12.6 +/- 2.37 12.6 +/- 2.37 14.0 +/- 2.45 16.7 +/- 2.64 11.6 +/- 2.30 November 21 15.6 +/- 2.82 14.5 +/- 2.74 15.5 +/- 2.87 18.5 +/- 2.96 15.9 +/- 2.84 18.0 +/- 2.92 17.2 +/- 2.93 11.9 +/- 2.60 November 28 23.4 +/- 3.14 19.1 +/- 2.92 20.1 +/- 3.02 25.1 +/- 3.23 21.3 +/- 3.02 25.6 +/- 3.22 22.1 +/- 3.10 21.1 +/- 3.03 December 05 21.6 +/- 3.13 24.0 +/- 3.23 23.2 +/- 3.26 24.5 +/- 3.27 25.0 +/- 3.30 23.0 +/- 3.14 20.8 +/- 3.10 16.5 +/- 2.87 December 12 19.2 +/- 2.87 19.1 +/- 2.86 16.8 +/- 2.86 14.6 +/- 2.68 16.8 +/- 2.81 22.7 +/- 3.12 16.9 +/- 2.87 14.8 +/- 2.70 December 19 15.6 +/- 2.81 17.4 +/- 2.88 16.6 +/- 2.84 18.1 +/- 2.86 16.7 +/- 2.78 20.4 +/- 2.95 17.1 +/- 2.82 17.2 +/- 2.82 December 26 16.3 +/- 2.76 22.7+/-3.11 19.1 +/- 3.03 20.9 +/- 3.06 17.5 +/- 2.88 22.4 +/- 3.13 20.5 +/- 3.07 18.1 +/- 2.92 A= <MDC; E = Air sample pump running, but no flow or vac.

Qtr. Avg. +/- 2 s.d.

16.0 +/- 11.4 14.0 +/- 15.9 15.1 +/- 10.3 15.8 +/- 12.5 16.1 +/- 10.5 17.5 +/- 14.0 16.3 +/- 9.6 13.9 +/- 9.1 Ann. Avg. +/- 2 s.d.

14.0 +/- 8.4 13.3 +/- 9.9 13.5 +/- 8.4 12.9 +/- 8.9 14.3 +/- 8.5 15.5 +/- 10.3 13.5 +/- 9.3 12.8 +/- 6.9 31

TABLE 3-4: IODINE-131 CONCENTRATION IN FILTERED AIR Surry Power Station, Surry County, Virginia - 2017 1.0E-3 pCi/m3 +/- 2 Sigma Page 1 of2 COLLECTION SAMPLING LOCATIONS DATE 55 HIR BC ALL CP BASF FE NN-C January 03 3.41 +/- 15.4 3.38 +/- 15.3 3.45 +/- 15.6 3.33 +/- 15.1

-6.18 +/- 15.7

-5.93 +/- 15.0

-5.94 +/- 15.1

-5.87 +/- 14.9 January 10

-8.34 +/- 27.2

-8.34 +/- 27.2

-8.58 +/- 28.0

-8.33 +/- 27.2

-7.71 +/- 19.4

-7.47 +/- 18.8

-7.57 +/- 19.0

-7.46 +/- 18.7 January 17 5.73 +/- 16.3 5.73 +/- 16.3 5.89 +/- 16.8 5.68 +/- 16.2 4.01 +/- 13.3 3.90 +/- 12.9 3.94 +/- 13.1 3.81 +/- 12.6 January 24 6.35 +/- 18.8 6.35 +/- 18.7 6.47 +/- 19.1 6.25 +/- 18.5 4.35 +/- 18.8 4.32 +/- 18.7 4.33 +/- 18.7 4.30 +/- 18.6 January 31 17.1 +/- 18.8 16.9 +/- 18.7 16.6 +/- 18.3 16.0 +/- 17.7 2.89 +/- 13.0 2.86 +/- 12.9 2.90 +/- 13.1 2.88 +/- 13.0 February 07 1.12 +/- 16.8 1.13 +/- 16.9 1.15 +/- 17.2 1.12 +/- 16.7 12.9 +/- 15.5 12.6 +/- 15.1 12.7 +/- 15.3 12.4 +/- 15.0 February 14

-3.85 +/- 24.3

-3.89 +/- 24.5

-3.97 +/- 25.1

-3.85 +/- 24.3 5.56 +/- 18.9 7.42 +/- 25.3 5.62 +/- 19.2 5.57 +/- 19.0 February 21 3.58 +/- 24.4 3.56 +/- 24.3 3.65 +/- 24.9 3.49 +/- 23.8 0.48 +/- 15.8 0.47 +/- 15.6 0.48 +/- 15.9 0.49+/-16.1 February 28

-1.23 +/- 17.8

-1.23 +/- 17.7

-1.26 +/- 18.2

-1.22 +/- 17.6 9.04 +/- 16.4 8.91 +/- 16.2 9.06 +/- 16.5 8.96 +/- 16.3 March 07 1.68 +/- 23.0 1.67 +/- 22.9 1.72 +/- 23.6 1.67 +/- 22.8 16.5 +/- 19.8 16.2 +/- 19.4 16.4 +/- 19.7 16.3 +/- 19.6 March 13 1.61 +/- 15.6 1.61 +/- 15.6 1.66 +/- 16.0 1.59 +/- 15.4 1.64 +/- 19.8 1.63 +/- 19.6 1.66 +/- 19.9 1.64+/-19.7 March 20

-5.16 +/- 13.9

-5.16 +/- 13.9

-5.33 +/- 14.3

-5.14 +/- 13.8 0.66 +/- 18.5 0.65 +/- 18.3 0.66 +/- 18.6 0.66 +/- 18.5 March 27

-0.39 +/- 14.2

-0.38 +/- 14.1

-0.40 +/- 14.6

-0.38 +/- 14.1 5.96 +/- 10.4 5.91 +/- 10.3 5.97 +/- 10.4 5.88 +/- 10.2 April 04

-5.65 +/- 18.4

-5.63 +/- 18.3

-5.68 +/- 18.5

-5.51 +/- 17.9 19.2 +/- 16.0 A 7.27 +/- 6.07 A 19.0 +/- 15.8 A 18.9 +/- 15.8 A April 11 2.11 +/- 4.58 5.02 +/- 10.9 5.12 +/- 11.1 5.03 +/- 10.9 2.57 +/- 9.67 2.56 +/- 9.63 2.56 +/- 9.63 2.58 +/- 9.73 April 18 2.17 +/- 10.3 2.17 +/- 10.3 2.20 +/- 10.4 2.16 +/- 10.3 1.67+/-10.6 1.63 +/- 10.4 1.65 +/- 10.5 1.65 +/- 10.5 April 25

-5.11 +/- 13.8

-5.11 +/- 13.8

-5.20 +/- 14.0

-5.11 +/- 13.8 5.96 +/- 14.4 5.85 +/- 14.1 5.95 +/- 14.4 5.95 +/- 14.4 May02 0.02 +/- 18.3 0.02 +/- 18.2 0.02 +/- 18.7 0.02 +/- 18.1

-4.55 +/- 20.8

-4.40 +/- 20.1

-4.47 +/- 20.4

-4.42 +/- 20.2 May09 5.37 +/- 14.9 5.32 +/- 14.8 5.42 +/- 15.1 5.32 +/- 14.8 5.65 +/- 19.2 5.65 +/- 19.2 5.80 +/- 19.7 5.63 +/- 19.1 May 16 3.79 +/- 14.8 3.76 +/- 14.7 3.82 +/- 15.0 3.75 +/- 14.7

-3.48 +/- 13.1

-3.51 +/- 13.2

-3.53 +/- 13.2

-3.43 +/- 12.9 May23 3.28 +/- 9.08 3.25 +/- 8.99 3.33 +/- 9.21 3.26 +/- 9.01 2.86 +/- 9.95 2.81 +/- 9.78 2.89 +/- 10.1 2.82 +/- 9.81 May30 0.46 +/- 15.4 0.46 +/- 15.4 0.47 +/- 15.6 0.46 +/- 15.3

-0.79 +/- 16.0

-0.30 +/- 6.09

-0.80+/-16.1

-0.78 +/- 15.7 June 06 3.04 +/- 8.88 3.00 +/- 8.77 3.05 +/- 8.90 2.99 +/- 8.73

-0.68 +/- 11.2

-0.67 +/- 11.0

-0.29 +/- 4.72

-0.66 +/- 11.0 June 12

-6.09 +/- 12.1

-6.03 +/- 12.0

-6.15 +/- 12.2

-6.03 +/- 12.0 1.92 +/- 7.44 1.89 +/- 7.34 1.94 +/- 7.52 1.90 +/- 7.39 June 20

-0.46 +/- 13.2

-0.46 +/- 13.1

-0.47 +/- 13.4

-0.46 +/- 13.0

-12.8 +/- 14.0

-5.32 +/- 5.82

-0.13 +/- 14.1

-12.7 +/- 13.9 June 26 4.77 +/- 21.6 4.75 +/- 21.5 4.90 +/- 22.2 4.72 +/- 21.4

-8.10 +/- 15.4

-8.02 +/- 15.2

-8.14 +/- 15.5

-8.05 +/- 15.3 A: <MDC 32

TABLE 3-4: IODINE-131 CONCENTRATION IN FILTERED AIR Surry Power Station, Surry County, Virginia - 2017 1.0E-3 pCi/m3 +/- 2 Sigma Page 2 of2 COLLECTION SAMPLING LOCATIONS DATE ss HIR BC ALL CP BASF FE NN-C July 03

-5.15 +/- 15.7

-5.10 +/- 15.6

-5.26 +/- 16.0

-5.04 +/- 15.4

-9.20 +/- 21.6

-8.93 +/- 21.0

-9.04 +/- 21.3

-8.95 +/- 21.0 July 11 8.92 +/- 18.7 8.86 +/- 18.6 9.00 +/- 18.9 8.83 +/- 18.5 15.6 +/- 25.0 15.4 +/- 24.7 15.7 +/- 25.1 15.6 +/- 24.9 July 18 0.44 +/- 13.1 0.44 +/- 13.1 0.45 +/- 13.3 0.43 +/- 12.8

-9.61 +/- 14.7

-9.53 +/- 14.6

-9.69 +/- 14.8

-9.66 +/- 14.8 July 24 1.74 +/- 20.7 1.71 +/- 20.4 1.77+/-21.1 1.71 +/- 20.3

-3.36 +/- 16.7

-3.32 +/- 16.5

-3.36 +/- 16.7

-3.34 +/- 16.6 August 01

-5.21 +/- 20.2

-5.17 +/- 20.0

-5.31 +/- 20.6

-5.14 +/- 19.9 3.81 +/- 16.7 3.72 +/- 16.3 3.74 +/- 16.4 3.74 +/- 16.4 August 08 12.5 +/- 13.3 12.5 +/- 13.2 12.8 +/- 13.6 12.4 +/- 13.1

-3.75 +/- 16.9

-3.73 +/- 16.8

-3.72 +/- 16.8

-3.77 +/- 17.0 August 15

-8.20 +/- 15.9

-8.15 +/- 15.8

-8.40 +/- 16.3

-8.14 +/- 15.8 7.10+/-17.5 7.05 +/- 17.3 7.07 +/- 17.4 7.02 +/- 17.3 August 22

-2.51 +/- 14.1

-2.50 +/- 14.1

-2.69 +/- 15.1

-2.. 60 +/- 14.6

-6.69 +/- 13.4

-6.67 +/- 13.4

-6.74 +/- 13.5

-6.62 +/- 13.3 August 29

-14.7 +/- 23.1

-14.5 +/- 22.8

-14.6 +/- 23.0

-14.1 +/- 22.2

-4.62 +/- 17.4

-2.49 +/- 9.39

-4.67 +/- 17.6

-4.57 +/- 17.3 September 05

-6.28 +/- 22.2

-6.25 +/- 22.1

-6.47 +/- 22.9

-6.23 +/- 22.0 2.05 +/- 21.3 1.97 +/- 20.4 2.00 +/- 20.8 1.98 +/- 20.6 September 11 8.21 +/- 19.3 8.14 +/- 19.1 8.41 +/- 19.7 3.41 +/- 7.98

-5.21 +/- 14.9

-5.27 +/- 15.1

-5.33 +/- 15.2

-5.29 +/- 15.1 September 18 5.04 +/- 16.8 4.99 +/- 16.6 5.17 +/- 17.2 4.99 +/- 16.6

-0.34 +/- 13.3

-0.34 +/- 13.2

-0.34 +/- 13.4

-0.34 +/- 13.3 September 25 0.56 +/- 16.4 0.55 +/- 16.4 0.57 +/- 16.8 0.55 +/- 16.2 3.13 +/- 13.2 3.11 +/- 13.1 3.15 +/- 13.3 3.10 +/- 13.1 October 03 6.45 +/- 13.9 6.38 +/- 13.7 E 6.59 +/- 14.2 6.39 +/- 13.7

-10.3+/-11.7

-10.0 +/- 11.3

-10.2 +/- 11.6

-9.96 +/- 11.3 October 10

-12.2 +/- 23.3

-12.2 +/- 23.2

-12.5 +/- 23.9

-12.1 +/- 23.1

-23.1 +/- 20.7

-22.9 +/- 20.5

-23.3 +/- 20.9

-22.9 +/- 20.5 October 17

-1.11 +/- 16.1

-1.05 +/- 15.3

-1.14 +/- 16.5

-1.09+/-15.9 6.75 +/- 9.94 6.72 +/- 9.89 6.83 +/- 10.1 6.76 +/- 9.95 October 24 3.09 +/- 19.0 3.15 +/- 19.4 3.28 +/- 20.2 3.20 +/- 19.7 1.27 +/- 13.6 1.26 +/- 13.6 1.28 +/- 13.7 1.27 +/- 13.6 October 31

-0.18 +/- 12.6

-0.19 +/- 12.6

-0.19+/-12.7

-0.18 +/- 12.3 15.9 +/- 17.0 15.7 +/- 16.8 15.8 +/- 16.9 15.7 +/- 16.8 November 07 10.3 +/- 20.3 10.4 +/- 20.3 10.6 +/- 20.7 10.2 +/- 20.1 1.17 +/- 15.2 1.15 +/- 14.9 1.16 +/- 15.1 1.14 +/- 14.8 November 14

-2.29 +/- 15.9

-2.28 +/- 15.8

-2.32 +/- 16.1

-2.28 +/- 15.8

-3.88 +/- 11.4

-3.86 +/- 11.4

-3.93 +/- 11.6

-3.84 +/- 11.3 November 21 1.00 +/- 14.6 0.99 +/- 14.5 1.02 +/- 15.0 0.99 +/- 14.5 2.84 +/- 11.2 2.80 +/- 11.0 2.86 +/- 11.3 2.80 +/- 11.1 November 28

-12.2 +/- 16.2

-12.2 +/- 16.2

-12.5 +/- 16.6

-12.2 +/- 16.2 8.23 +/- 11.1 8.16 +/- 11.0 8.36 +/- 11.3 8.27 +/- 11.2 December 05 4.73 +/- 16.8 4.68 +/- 16.6 4.82+/-17.1 4.70 +/- 16.7 5.22 +/- 12.4 5.04 +/- 12.0 5.20 +/- 12.4 5.16 +/- 12.3 December 12 14.8 +/- 17.2 14.7 +/- 17.2 15.8 +/- 18.4 15.4 +/- 17.9 1.43 +/- 10.5 1.43 +/- 10.4 1.46 +/- 10.7 1.42 +/- 10.4 December 19 4.62 +/- 14.8 4.54 +/- 14.5 4.57 +/- 14.6 4.42 +/- 14.2 3.04 +/- 10.2 3.00 +/- 10.0 3.06 +/- 10.2 2.55 +/- 8.53 December 26

-3.08 +/- 8.60

-7.32 +/- 20.5

-7.78 +/- 21.8

-7.56 +/- 21.1 20.2 +/- 20.0 A 20.2 +/- 19.9 A 20.5 +/- 20.3 A 20.2 +/- 20.0 A A: <MDC; E: Air sample pump running, but no flow or vac.

33

I I

TABLE 3-5: GAMMA EMITTER CONCENTRATION IN FILTERED AIR I

Surry Power Station, Surry County, Virginia - 2017 I

1.0E-3 pCi/m3 +/- 2 Sigma Page I of I SAMPLING FIRST SECOND THIRD FOURTH AVERAGE LOCATIONS NUCLIDE QUARTER QUARTER QUARTER QUARTER

+/-2SIGMA I

ss Cs-134

-0.32 +/- 0.85

-0.24 +/- 0.65

-0.62 +/- 1.58

-0.35 +/- 0.65 Cs-137

-0.15 +/- 0.71 0.16 +/- 0.52

-0.49 +/- 1.34 0.06 +/- 0.56 Be-7 200 +/- 29.3 142 +/- 23.2 128 +/- 40.8 115 +/- 19.9 146 +/- 75.0 I

K-40 23.7 +/- 21.6

+/-

23.7 21.6 HIR Cs-134 0.74 +/- 1.01

-0.14 +/- 0.73

-0.38 +/- 0.69

-0.87 +/- 0.88 Cs-137

-0.22 +/- 0.89

-0.42 +/- 0.70 0.04 +/- 0.63

-0.45 +/- 0.62 I

Be-7 171 +/- 27.1 148 +/- 30.0 127 +/- 23.7 137 +/- 25.7 146 +/- 37.8 BC Cs-134

-0.74 +/- 0.73 0.44 +/- 1.47

-0.34 +/- 1.07

-0.24 +/- 1.54 Cs-137 0.09 +/- 0.51

-0.49 +/- 1.06 0.35 +/- 0.85 0.22 +/- 1.09 I

Be-7 168 +/- 24.4 157 +/- 36.4 97.8 +/- 29.2 132 +/- 31.4 139 +/- 62.3 ALL Cs-134

-0.55 +/- 0.81

-0.17 +/- 0.97

-0.005 +/- 1.27

-0.41 +/- 0.83 I

Cs-137 1.05 +/- 0.63A 0.19 +/- 0.84

-0.31 +/- 1.06

-0.31 +/- 0.66 Be-7 181 +/- 30.8 125 +/- 27.1 102 +/- 39.9 136 +/- 24.6 136 +/- 66.4 I

CP Cs-134 0.41 +/- 0.88 0.44 +/- 1.11 0.11 +/- 0.93 0.01 +/- 1.27 Cs-137 0.28 +/- 0.72

-0.19 +/- 0.96

-0.76 +/- 0.81

-0.03 +/- 1.12 Be-7 150 +/- 23.8 143 +/- 35.7 135 +/- 27.4 102 +/- 34.7 133 +/- 42.5 I

BASF Cs-134

-0.65 +/- 1.38

-0.36 +/- 0.87

-0.41 +/- 0.73

-0.17 +/- 0.77 Cs-137

-0.40 +/- 1.27

-0.78 +/- 0.85 0.03 +/- 0.52 0.69 +/- 0.76 Be-7 175 +/- 41.8 201 +/- 28.7 154 +/- 24.5 122 +/- 21.8 163 +/- 66.8 I

FE Cs-134

-0.57 +/- 0.88 0.76 +/- 0.64 0.59 +/- 0.83 0.00 +/- 0.87 Cs-137 0.37 +/- 0.68

-0.18 +/- 0.53 0.11 +/- 0.66 0.78 +/- 0.88 I

Be-7 159 +/- 27.1 138 +/- 23.3 140 +/- 27.0 153 +/- 24.1 148 +/- 20.3 NN-C Cs-134

-0.27 +/- 1.39

-0.39 +/- 0.80 0.25 +/- 0.85

-0.05 +/- 0.63 I

Cs-137 1.09 +/- 1.11

-0.65 +/- 0.82

-0.33 +/- 0.70

-0.20 +/- 0.61 Be-7 139 +/- 34.0 150 +/- 25.9 122 +/- 24.2 124 +/- 20.3 134 +/- 26.5 I

A: <MDC I

I I

I 34

I I

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK I

Surry Power Station, Surry County, Virginia - 2017 pCi/Liter +/- 2 Sigma Page 1 of3 I

COLONIAL LOVERS NUCLIDE EPPS PARKWAY RETREAT-C I

JANUARY Cs-134

-8.28 +/- 6.80

-4.44 +/- 3.74

-2.01 +/- 4.70 Cs-137 2.08 +/- 5.98 1.10 +/- 3.88 4.04 +/- 5.09 Ba-140 14.1 +/- 21.4

-3.48 +/- 12.9 0.49 +/- 19.9 I

La-140 1.90 +/- 5.11

-0.86 +/- 4.15

-0.49 +/- 4.22 1-131

-0.13 +/- 0.33 0.10 +/- 0.44 0.06 +/- 0.36 K-40 1,310 +/- 223 1,170 +/- 143 1,560 +/- 184 I

FEBRUARY Cs-134

-7.61

+/- 5.63 3.68 +/- 6.52

-1.76 +/- 6.57 I

Cs-137 2.03 +/- 5.25 1.41 +/- 6.48 3.15 +/- 5.54 Ba-140

-2.61

+/- 17.2

-2.96 +/- 22.2

-1.39 +/- 18.4 La-140 2.24 +/- 5.98 5.16 +/- 7.35

-3.57 +/- 4.69 I

1-131 0.19 +/- 0.28 0.43 +/- 0.33A

-0.05 +/- 0.23 K-40 1400 +/- 208 1280 +/- 219 1820 +/- 209 I

MARCH Cs-134 4.10 +/- 4.75 2.69 +/- 5.02 1.99 +/- 5.55 Cs-137

-2.01 +/- 5.83 0.19 +/- 5.48

-2.63 +/- 5.05

. Ba-140 20.1 +/- 21.7

-2.66 +/- 18.8

-4.37 +/- 16.7 I

La-140 3.85 +/- 5.92

-0.30 +/- 5.52 3.36 +/- 6.42 1-131

-0.10 +/- 0.21 0.10 +/- 0.32 0.25 +/- 0.22A K-40 1450 +/- 210 1280 +/- 190 1520 +/- 196 I

Sr-89 1.85 +/- 1.89 Sr-90 1.12 +/- 0.33 I

APRIL Cs-134 2.59 +/- 4.73 1.83 +/- 5.14 4.70 +/- 5.32 Cs-137

-0.74 +/- 3.95 0.81

+/- 4.15 3.42 +/- 5.06 I

Ba-140

-0.95 +/- 15.8 2.58 +/- 26.2

-9.35 +/- 21.9 La-140 1.18 +/- 5.07 3.50 +/- 6.47 4.64 +/- 7.56 1-131 0.04 +/- 0.09

-0.36 +/- 0.32

-0.01 +/- 0.19 I

K-40 1290 +/- 154 1390 +/- 212 1280 +/- 194 A: <MDC I

I I

I 35

I I

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK I

Surry Power Station, Surry County, Virginia - 2017 pCi/Liter +/- 2 Sigma Page 2 of3 I

COLONIAL LOVERS NUCLIDE EPPS PARKWAY RETREAT-C I

MAY Cs-134

-1.66 +/- 4.52 1.73 +/- 4.84 2.13 +/- 4.49 Cs-137

-0.33 +/- 4.07 3.69 +/- 4.34

-0.96 +/- 4.61 Ba-140 13.3 +/- 17.2 2.89 +/- 17.2

-5.74 +/- 20.8 I

La-140

-1.50 +/- 6.40 2.27 +/- 5.81 0.03 +/- 5.31 1-131

-0.34 +/- 0.46

-0.45 +/- 0.33

-0.08 +/- 0.24 K-40 1360 +/- 164 1450 +/- 167 1610 +/- 195 I

JUNE Cs-134 0.00 +/- 4.93

-3.70 +/- 4.53

-6.82 +/- 5.30 I

Cs-137

-0.85 +/- 5.53

-1.31

+/- 4.57

-0.33 +/- 5.67 Ba-140 11.4 +/- 22.1

-2.18 +/- 17.5

-0.71

+/- 22.2 La-140 0.72 +/- 6.71

-1.26 +/- 5.05

-0.95 +/- 6.24 I

1-131 0.47 +/- 0.51

-0.04 +/- 0.38

-0.08 +/- 0.39 K-40 1510 +/- 194 1510 +/- 166 1680 +/- 189 Sr-89

-5.36 +/- 2.91 I

Sr-90 1.73 +/- 0.64 JULY Cs-134

-2.71

+/- 5.03

-0.99 +/- 5.23

-1.15 +/- 5.23 I

Cs-137

-0.90 +/- 5.20 1.82 +/- 5.75 2.14 +/- 5.31 Ba-140

-9.28 +/- 18.9

-1.66 +/- 26.5 0.89 +/- 21.5 La-140

-0.89 +/- 6.92 3.17 +/- 7.26 4.45 +/- 7.59 I

1-131

-0.09 +/- 0.43 0.43 +/- 0.53

-1.01

+/- 0.53 K-40 1440 +/- 191 1360 +/- 171 1690 +/- 207 I

AUGUST Cs-134

-2.09 +/- 5.67

-0.721 +/- 5.91

-1.02 +/- 6.31 Cs-137 4.24 +/- 4.87

-1.11

+/- 5.49 1.52 +/- 5.60 Ba-140 25.0 +/- 25.9 5.95 +/- 24.5

-1.81

+/- 29.6 I

La-140

-6.10 +/- 9.75 3.88 +/- 8.01

-1.42 +/- 5.90 1-131 0.58 +/- 0.48 A 0.00 +/- 0.55

-0.14 +/- 0.34 K-40 1490 +/- 242 1410 +/- 185 1500 +/- 175 I

A: <MDC I

I I

I 36

I I

TABLE 3-6: GAMMA EMITTER AND STRONTIUM CONCENTRATIONS IN MILK I

Surry Power Station, Surry County, Virginia - 2017 pCi/Liter +/- 2 Sigma Page 3 of3 I

COLONIAL LOVERS NUCLIDE EPPS PARKWAY RETREAT-C I

SEPTEMBER Cs-134

-1.16 +/- 4.98

-1.84 +/- 4.89

-2.14 +/- 6.17 Cs-137 0.76 +/- 5.31 2.30 +/- 5.02

-1.41 +/- 5.78 Ba-140

-1.48 +/- 25.9

-3.29 +/- 25.1

-12.9 +/- 29.8 I

La-140

-2.92 +/- 8.95

-8.56 +/- 6.97

-6.23 +/- 8.53 1-131

-0.13 +/- 0.40

-0.11 +/- 0.50 0.28 +/- 0.31 K-40 1260 +/- 212 1620 +/- 212 1870 +/- 204 I

Sr-89 1.39 +/- 2.53 Sr-90 0.57 +/- 0.46 A OCTOBER I

Cs-134

-1.53 +/- 6.08

-1.54 +/- 5.22 4.44 +/- 5.66 Cs-137 1.27 +/- 5.50 2.16 +/- 4.87

-1.01 +/- 5.17 Ba-140 26.1 +/- 20.3A

-14.2 +/- 21.0 3.22 +/- 21.1 I

La-140

-2.11 +/- 7.38 1.93 +/- 5.72

-2.43 +/- 5.16 1-131 0.07 +/- 0.37

-0.05 +/- 0.38

-0.09 +/- 0.45 K-40 1470 +/- 188 1350 +/- 179 1580 +/- 180 I

NOVEMBER Cs-134 1.05 +/- 6.91 5.53 +/- 7.04 5.89 +/- 6.43 Cs-137 3.08 +/- 5.53 0.93 +/- 6.04 2.93 +/- 4.40 I

Ba-140 13.8 +/- 25.5 5.43 +/- 31.2 27.2 +/- 27.2A La-140

-0.05 +/- 6.85

-3.84 +/- 6.64

-3.49 +/- 8.71 1-131 0.02 +/- 0.34

-0.15 +/- 0.24 0.23 +/- 0.64 I

K-40 1300 +/- 207 1320 +/- 164 1730 +/- 208 DECEMBER Cs-134

-1.18 +/- 5.45 0.99 +/- 4.34 1.64 +/- 5.92 I

Cs-137

-1.96 +/- 4.70 2.24 +/- 3.64 9.62 +/- 6.12A Ba-140

-0.21 +/- 17.0 8.89 +/- 13.8 27.9 +/- 21.9A La-140 2.00 +/- 5.21

-0.67 +/- 4.22 0.05 +/- 4.62 I

1-131 0.08 +/- 0.35

-0.59 +/- 0.46 0.03 +/- 0.33 K-40 1110 +/- 190 1140 +/- 157 1480 +/- 185 Sr-89 0.77 +/- 1.89 I

Sr-90 0.97 +/- 0.63 A: <MDC I

I I

I 37

I I

I I

I I

I I

I I

I I

I I

I I

I I

I SAMPLING LOCATIONS BROCK FARM SLADE FARM TABLE 3-7: GAMMA EMITTER CONCENTRATION IN FOOD PRODUCTS Surry Power Station, Surry County, Virginia - 2017 pCi/kg (wet) +/- 2 Sigma Pa e 1 of 1 COLLECTION SAMPLE DATE TYPE ISOTOPE Cs-134 Cs-137 1-131 K-40 11/16/2017 Corn

-14.2 +/- 14.4 1.62 +/- 12.9

-16.2 +/- 34.7 4170 +/- 339 Cs-134 Cs-137 1-131 K-40 11/16/2017 Peanuts

-19.6 +/- 19.6

-3.20 +/- 17.8

-3.58 +/- 32.4 5490 +/- 578 Cs-134 Cs-137 1-131 K-40 12/6/2017 Soybeans 3.82 +/- 24.1 1.88 +/- 23.5 14.8 +/- 21.6 21700 +/- 1340 38

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-8: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN WELL WATER Surry Power Station, Surry County, Virginia - 2017 pCi/Liter +/- 2 Sigma Page 1 of2 SAMPLING COLLECTION LOCATIONS DATE ISOTOPE Mn-54 Co-58 Fe-59 Co-60 Zn-65 ss 3/7/2017 1.31 +/- 3.47

-1.54 +/- 3.28

-6.81 +/- 6.29

-1.30 +/- 3.00

-11.9 +/- 9.09 6/20/2017 0.98 +/- 3.28

-2.59 +/- 3.42

-0.90 +/- 6.87

-0.97 +/- 3.87 8.08 +/- 9.05 9/25/2017 1.28 +/- 4.52

-0.42 +/- 3.72

-3.88 +/- 8.85 0.82 +/- 4.93

-3.48 +/- 10.0 12/5/2017

-1.30 +/- 2.48

-0.91 +/- 3.17 0.74 +/- 7.26

-0.43 +/- 2.86

-5.40 +/- 6.51 Nb-95 Zr-95 1-131 Cs-134 Cs-137 3/7/2017 4.52 +/- 3.61 A

-1.01 +/- 5.83 2.17 +/- 5.54 0.55 +/- 3.59

-1.47 +/- 3.96 6/20/2017 1.79 +/- 3.90

-0.69 +/- 6.84 0.06 +/- 0.44

-1.15 +/- 3.61 4.87 +/- 4.56A 9/25/2017 1.60 +/- 5.20

-7.56 +/- 7.98 0.07 +/- 0.31 4.62 +/- 4.27 A 0.03 +/- 4.43 12/5/2017 4.13 +/- 3.06 A 0.62 +/- 5.55 0.20 +/- 0.42 0.91

+/- 3.25

-0.97 +/- 3.53 Ba-140 La-140 H-3 Ra-226 3/7/2017

-2.94 +/- 15.6

-2.75 +/- 4.62 39.4 +/- 541 86.2 +/- 134 6/20/2017

-11.6 +/- 16.6

-0.22 +/- 6.26 70.6 +/- 437 1.43 +/- 91.5 9/25/2017

-4.84 +/- 18.1 0.98 +/- 6.22

-0.76 +/- 535

-22.3 +/- 110 12/5/2017

-2.76 +/- 10.1 0.39 +/- 4.61 155 +/- 675 23.9 +/- 90.6 Mn-54 Co-58 Fe-59 Co-60 Zn-65 HIR 3/7/2017 1.80 +/- 3.09

-3.17 +/- 2.95 1.88 +/- 6.71

-0.17 +/- 2.78

-1.29 +/- 7.30 6/20/2017

-1.34 +/- 4.21

-2.80 +/- 4.08

-1.32 +/- 7.72 0.18 +/- 3.98 2.12 +/- 7.71 9/25/2017

-1.05 +/- 3.60

-0.64 +/- 3.39 3.04 +/- 7.34

-0.06 +/- 2.82

-3.38 +/- 9.00 12/5/2017

-0.50 +/- 4.12

-0.54 +/- 3.30

-2.08 +/- 8.44 3.01 +/- 4.42

-0.92 +/- 9.54 Nb-95 Zr-95 1-131 Cs-134 Cs-137 3/7/2017 2.77 +/- 3.82 3.91 +/- 5.82 3.65 +/- 5.58 0.91 +/- 3.58 0.56 +/- 3.59 6/20/2017 1.62 +/- 4.53 2.04 +/- 7.04

-0.26 +/- 0.41 4.84 +/- 4.56A 2.88 +/- 4.40 9/25/2017 2.59 +/- 4.16

-0.09 +/- 7.33 0.18 +/- 0.27

-1.29 +/- 4.11

-1.47 +/- 4.46 12/5/2017

-2.47 +/- 4.43

-2.91 +/- 6.14 0.22 +/- 0.42 4.02 +/- 4.60

-4.28 +/- 4.55 Ba-140 La-140 H-3 K-40 3/7/2017 7.16 +/- 14.8

-1.05 +/- 4.99

-133 +/- 533 47.9 +/- 55.0 6/20/2017

-2.69 +/- 16.4 2.62 +/- 6.58

-21.7 +/- 428

-44.0 +/- 58.5 9/25/2017

-4.85 +/- 16.5

-3.29 +/- 5.41 561 +/- 610 84.2 +/- 68.1 12/5/2017 0.45 +/- 15.5

-1.66 +/- 5.05 82.4 +/- 667 28.5 +/- 69.8 A:< MDC 39

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-8: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN WELL WATER Surry Power Station, Surry County, Virginia - 2017 pCi/Liter +/- 2 Si ma Pa e2 of2 SAMPLING COLLECTION LOCATIONS DATE ISOTOPE Mn-54 Co-58 Fe-59 Co-60 Zn-65 TC 3/7/2017 2.69 +/- 3.48

-0.77 +/- 3.07

-2.00 +/- 7.01 3.18 +/- 3.65

-17.5 +/- 10.1 6/20/2017 2.39 +/- 4.46 0.39 +/- 3.92

-2.68 +/- 8.00

-2.88 +/- 4.62 1.59 +/- 9.64 9/25/2017 0.70 +/- 3.87

-0.53 +/- 3.67

-6.90 +/- 6.76

-2.95 +/- 5.17 3.64 +/- 8.14 12/5/2017 1.34 +/- 4.14 0.09 +/- 4.07

-4.07 +/- 6.92 1.03 +/- 4.59

-7.73 +/- 10.5 Nb-95 Zr-95 1-131 Cs-134 Cs-137 3/7/2017 3.05 +/- 3.79

-0.02 +/- 6.10 0.02 +/- 0.26

-1.88 +/- 4.10

-0.83 +/- 3.85 6/20/2017 5.54 +/- 4.10 A -6.94 +/- 7.56 0.40 +/- 0.49

-2.34 +/- 4.72

-1.36 +/- 4.60 9/25/2017 1.43 +/- 4.12

-0.99 +/- 6.77

-0.15 +/- 0.33

-0.96 +/- 3.99

-3.48 +/- 3.93 12/5/2017 2.21 +/- 3.95 1.88 +/- 6.94

-0.21 +/- 0.40

-3.65 +/- 4.40

-5.34 +/- 4.46 Ba-140 La-140 H-3 K-40 Th-228 3/7/2017

-2.52 +/- 16.6

-2.25 +/- 3.70 13.1 +/- 539 1.72 +/- 65.4 6/20/2017 0.68 +/- 17.7 5.37 +/- 5.50

-59.7 +/- 425 24.1 +/- 63.2 9/25/2017 0.02 +/- 16.8

-0.17 +/- *6.16

-23.5 +/- 541 33.9 +/- 75.7 12/5/2017

-14.6 +/- 18.8

-0.62 +/- 5.99

-249 +/- 655

-15.1 +/- 64.3 19.8 +/- 13.3 A:< MDC 40

I I

TABLE 3-9: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN RIVER WATER I

Surry Power Station, Surry County, Virginia - 2017 pCi/Liter +/- 2 Sigma Page 1 of2 I

SAMPLING COLLECTION LOCATIONS DATE ISOTOPE Mn-54 Co-58 Fe-59 Co-60 Zn-65 I

SD 1/3/2017 0.01 +/- 2.54 0.28 +/- 2.71

-0.68 +/- 4.43 1.36 +/- 2.89

-3.79 +/- 5.61 2/7/2017 1.39 +/- 2.67

-0.76 +/- 2.69

-0.08 +/- 4.39 0.63 +/- 2.38

-3.28 +/- 5.44 3/7/2017

-0.62 +/- 3.37

-1.51 +/- 3.62 2.46 +/- 6.43

-0.25 +/- 3.09 2.47 +/- 7.67 4/18/2017

-1.11 +/- 2.23

-0.30 +/- 2.28

-0.40 +/- 5.09 3.42 +/- 2.45 A

-5.76 +/- 6.16 I

5/2/2017 0.67 +/- 2.75

-1.70 +/- 2.42

-3.22 +/- 5.42

-0.19 +/- 2.60

-7.49 +/- 6.08 6/12/2017 1.22 +/- 2.86 0.44 +/- 2.72

-2.53 +/- 6.32 3.28 +/- 3.60

-0.67 +/- 6.26 7/3/2017

-0.06 +/- 2.77

-1.41 +/- 3.32

-2.53 +/- 6.90 4.36 +/- 4.07 A

-13.1 +/- 9.44 I

8/1/2017 1.10 +/- 3.24

-3.03 +/- 3.64 1.77 +/- 7.99 3.59 +/- 3.74 0.55 +/- 7.99 9/5/2017

-2.62 +/- 3.27

-1.51 +/- 3.16 3.33 +/- 7.22

-1.03 +/- 3.46 3.13 +/- 5.93 10/3/2017

-0.19 +/- 2.97 1.12 +/- 3.41

-0.14 +/- 7.86 0.62 +/- 3.00

-7.23 +/- 8.58 11/7/2017

-0.21 +/- 3.36

-2.78 +/- 3.38 3.38 +/- 7.05 1.48 +/- 3.91

-1.89 +/- 7.61 I

12/5/2017

-0.70 +/- 2.31 0.51 +/- 2.02 3.61 +/- 4.76 0.82 +/- 2.28

-5.15 +/- 5.16 Nb-95 Zr-95 1-131 Cs-134 Cs-137 I

1/3/2017

-0.11 +/- 2.63

-1.03 +/- 5.07

-0.76 +/- 3.46 0.56 +/- 2.84

-1.16 +/- 2.73 2/7/2017

-1.09 +/- 2.83 1.34 +/- 4.34

-5.68 +/- 4.16 0.29 +/- 2.50

-0.58 +/- 2.76 3/7/2017 1.03 +/- 2.88 5.27 +/- 5.57 0.65 +/- 4.20 0.52 +/- 3.73

-0.001 +/- 3.07 4/18/2017 3.09 +/- 2.42A -0.88 +/- 4.47

-0.33 +/- 3.00 2.60 +/- 2.76

-0.95 +/- 2.84 I

5/2/2017 0.21 +/- 2.82

-0.10 +/- 4.70

-0.08 +/- 4.26

-4.06 +/- 3.00

-1.48 +/- 2.73 6/12/2017 1.30 +/- 2.75

-2.95 +/- 4.29 1.13 +/- 3.35 3.03 +/- 3.18 2.55 +/- 3.09 7/3/2017

-0.84 +/- 3.48 1.69 +/- 6.07 0.15 +/- 4.32 2.24 +/- 3.98 0.02 +/- 3.03 8/1/2017

-1.32 +/- 3.72

-2.36 +/- 6.34

-4.96 +/- 6.19

  • 0.61 +/- 3.91 2.12 +/- 3.78 I

9/5/2017 1.77 +/- 3.09 2.20 +/- 5.19

-6.20 +/- 6.67

  • -0.21 +/- 3.36 0.13 +/- 2.68 10/3/2017 2.47 +/- 3.83 3.32 +/- 6.11

-5.75 +/- 6.49

-0.08 +/- 4.12 1.03 +/- 3.33 11/7/2017

-0.66 +/- 3.85

-0.42 +/- 6.13

-1.92 +/- 6.14 0.22 +/- 3.73 1.32 +/- 3.91 I

12/5/2017 0.16 +/- 2.19

-2.89 +/- 3.31 3.43 +/- 3.53 0.80 +/- 2.26

-1.36 +/- 2.29 Ba-140 La-140 H-3 K-40 1/3/2017

-5.33 +/- 11.6

-0.22 +/- 3.19 69.1 +/- 49.5 I

2/7/2017

-3.23 +/- 10.8

-0.48 +/- 3.83 3/7/2017 6.89 +/- 13.7 2.63 +/- 4.23 72.2 +/- 62.8 4/18/2017 10.30 +/- 8.75A -0.73 +/- 2.92 3/7/2017

-469 +/- 521 I

5/2/2017

-1.27 +/- 13.2

-2.75 +/- 4.04 6/12/2017

-7.60 +/- 10.7 0.63 +/- 4.13

-135 +/- 529 7/3/2017 2.95 +/- 13.8

-2.11 +/- 4.98 I

8/1/2017

-4.57 +/- 18.6

-4.30 +/- 5.77 85.8 +/- 74.4 9/5/2017

-5.16 +/- 16.7

-1.27 +/- 2.60 5.55 +/- 665 109 +/- 68.3 10/3/2017 9.78 +/- 17.8 1.16 +/- 6.41 97.7 +/- 82.9 11/7/2017 14.4 +/- 16.7

-6.41 +/- 4.94 99.2 +/- 87.1 I

12/5/2017 0.10 +/- 10.2

-2.16 Ac-228

+/- 3.09 35.9 715 143 +/- 44.5 2/7/2017 17.4 +/- 14.8 I

A:< MDC I

I 41

I I

TABLE 3-9: GAMMA EMITTER AND TRITIUM CONCENTRATIONS IN RIVER WATER I

Surry Power Station, Surry County, Virginia - 2017 pCi/Liter +/- 2 Sigma Page 2 of2 I

SAMPLING COLLECTION LOCATIONS DATE ISOTOPES Mn-54 Co-58 Fe-59 Co-60 Zn-65 I

SW-C 1/3/2017 3.47 +/- 3.69

-0.85 +/- 3.41 2.35 +/- 7.91 2.80 +/- 3.83

-7.63 +/- 8.82 2/7/2017

-0.48 +/- 2.85

-3.02 +/- 3.31 3.45 +/- 5.97

-0.01 +/- 2.40

-7.29 +/- 6.23 3/7/2017

-3.43 +/- 4.35 0.63 +/- 5.41 11.9 +/- 10.7 A

-1.21 +/- 4.01

-15.0 +/- 12.0 4/18/2017

-1.19 +/- 2.81

-0.36 +/- 2.76 1.01 +/- 4.65 0.01 +/- 2.54

-2.09 +/- 6.81 I

5/2/2017

-1.18 +/- 3.15 1.66 +/- 3.21

-0.61 +/- 5.95

-0.84 +/- 2.71

-4.82 +/- 7.74 6/12/2017

-2.01 +/- 2.34

-1.15 +/- 2.57 3.82 +/- 6.41 1.67 +/- 2.33

-6.75 +/- 6.56 7/3/2017 3.58 +/- 3.99

-2.73 +/- 4.45

-0.82 +/- 7.81 1.32 +/- 3.94

-8.60 +/- 9.15 I

8/1/2017 1.00 +/- 3.21

-0.90 +/- 3.44 2.38 +/- 5.82

-1.16 +/- 2.89

-5.65 +/- 7.86 9/5/2017 1.00 +/- 2.17

-0.09 +/- 2.41

-0.01 +/- 5.01 0.70 +/- 2.39 3.58 +/- 5.23 10/3/2017

-3.40 +/- 3.26

-0.49 +/- 3.02 2.86 +/- 6.24 0.41 +/- 3.29

-6.34 +/- 5.99 11/7/2017

-2.85 +/- 3.76

-0.38 +/- 3.34 6.70 +/- 7.59 3.03 +/- 4.42

-7.74 +/- 9.21 I

12/5/2017

-1.48 +/- 2.54

-0.28 +/- 2.54

-2.74 +/- 5.32 3.99 +/- 2.94A -3.44 +/- 5.22 Nb-95 Zr-95 1-131 Cs-134 Cs-137 1/3/2017

-0.28 +/- 4.14

-2.72 +/- 6.28 2.45 +/- 5.02

-12.6 +/- 4.99

-1.13 +/- 3.29 I

2/7/2017 0.97 +/- 2.97

-2.10 +/- 5.39

-0.74 +/- 4.95

-8.92 +/- 3.47

-0.30 +/- 3.21 3/7/2017 0.28 +/- 4.91

-2.51 +/- 8.48 3.47 +/- 5.43

-1.09 +/- 4.37

-4.29 +/- 4.55 4/18/2017 2.01 +/- 2.99 3.64 +/- 4.90 1.07 +/- 3.38 2.32 +/- 3.03

-0.46 +/- 3.25 I

5/2/2017

-0.84 +/- 3.04 0.44 +/- 4.71

-1.32 +/- 4.39

-0.23 +/- 3.48

-4.21 +/- 3.49 6/12/2017 0.75 +/- 2.27 2.46 +/- 3.93

-1.14 +/- 3.03 0.06 +/- 2.83

-3.72 +/- 2.96 7/3/2017 1.07 +/- 4.02

-1.33 +/- 7.53 0.08 +/- 5.20

-0.17 +/- 4.59 0.54 +/- 4.19 8/1/2017 0.19 +/- 3.05

-1.07 +/- 5.58

-5.74 +/- 6.13 3.59 +/- 3.40 A

-3.10 +/- 3.51 I

9/5/2017 0.09 +/- 2.42

-1.80 +/- 3.77 2.48 +/- 4.75 0.61 +/- 2.36

-0.82 +/- 2.46 10/3/2017

-0.60 +/- 2.97

-0.12 +/- 5.95 0.23 +/- 5.88

-0.76 +/- 3.25

-2.25 +/- 3.36 11/7/2017 4.44 +/- 4.19A -3.37 +/- 6.47 3.36 +/- 5.74 0.11 +/- 4.01 0.12 +/- 4.25 12/5/2017

-0.18 +/- 2.47 4.12 +/- 4.83

-1.00 +/- 4.14 0.95 +/- 2.76 1.29 +/- 2.78 I

Ba-140 La-140 H-3 K-40 1/3/2017 2.10 +/- 15.6

-0.29 +/- 5.25 I

2/7/2017 0.69 +/- 13.9

-0.11 +/- 3.54 3/7/2017 5.12 +/- 19.1 2.37 +/- 7.08 4/18/2017

-4.48 +/- 10.5

-1.95 +/- 3.70 3/7/2017

-474 +/- 525 I

5/2/2017

-8.37 +/- 12.9

-3.89 +/- 4.07 6/12/2017

-0.25 +/- 9.79

-1.42 +/- 2.68

-541 +/- 481 7/3/2017 5.24 +/- 17.0 2.64 +/- 4.94 I

8/1/2017

-10.4 +/- 16.6 0.87 +/- 4.85 81.0 +/- 70.4 9/5/2017

-7.68 +/- 12.6

-4.41 +/- 4.61 382 +/- 519 10/3/2017 3.29 +/- 15.2 0.84 +/- 4.82 142 +/- 59.7 11/7/2017 21.4 +/- 18.0 A

-2.19 +/- 5.48 90.4 +/- 72.2 I

12/5/2017 7.08 +/- 11.1

-1.13 +/- 3.46 283 720 A:< MDC I I I

I 42

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-10: GAMMA EMITTER CONCENTRATIONS IN SILT Surry Power Station, Surry County, Virginia - 2017 pCi/kg (dry)+/- 2 Sigma SAMPLING COLLECTION LOCATIONS DATE ISOTOPE SD CHIC-C SI 3/21/2017 9/7/2017 3/21/2017 9/7/2017 3/20/2017 9/7/2017 3/20/2017 9/7/2017 Cs-134 Cs-137 K-40 94.7 +/- 56.0 A 61.7 +/- 59.5A 15400 +/- 1700 21.2 +/- 36.9 108 +/- 43.5 16500 +/- 863 Ra-226 Be-7 Zn-65 3130 +/- 1810 1940 +/- 956 1430 +/- 456 166 +/- 88.7 B Cs-134 Cs-137 K-40 105 +/- 56.0 A 207 +/- 74.7 16600 +/- 1990 60.1

+/- 43.9 A 132 +/- 55.7 17600 +/- 1320 Ra-226 3280 +/- 1520 2950 +/- 1230 Cs-137 K-40 Pa e I of I Th-228 1790 +/- 142 1460 +/- 120 Th-228 1390 +/- 142 1480 +/- 97.1 Th-228 Th-232 1710 +/- 207 1020 +/- 111 Th-232 1430 +/- 231 1310 +/- 159 Th-232 9/7/2017 Cs-134 25.0 +/- 25.8 Ra-226 2570 +/- 797 162 +/- 35.2 16300 +/- 961 1210 +/- 64.3 1160 +/- 102 9/7/2017 A:< MDC B: Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 2 sigma.

43

I I

I I

I I

I I

I I

I I

I I

I I

I II I

TABLE 3-11: GAMMA EMITTER CONCENTRATIONS IN SHORELINE SEDIMENT Surry Power Station, Surry County, Virginia - 2017 pCi/kg (dry)+/- 2 Sigma Page 1 of 1 SAMPLING COLLECTION LOCATIONS DATE ISOTOPE Cs-134 Cs-137 K-40 Ra-226 Th-228 HIR 2/14/2017

-6.85 +/- 37.4 35.1 +/- 32.4 7330 +/- 1230 33.2 +/- 598 126 +/- 89.2 8/1/2017 26.6 +/- 35.3

-7.42 +/- 34.3 5050 +/- 816 1210 +/- 920 884 +/- 85.7 Th-232 2/14/2017 173 +/- 146 8/1/2017 842 +/- 132 Cs-134 Cs-137 K-40 Ra-226 Th-228 CHIC-C 2/14/2017 92.3 +/- 36.5 19.2 +/- 31.6 4190 +/- 677 917 +/- 744 1010 +/- 120 8/1/2017 211 +/- 64.2 A

-25.0 +/- 40.7 1100 +/- 542 6150 +/- 1830 3440 +/- 142 Th-232 Nb-95 2/14/2017 861 +/- 159 8/1/2017 3460 +/- 225 90.9 +/- 47.8 A A: Analyte not detected. Peak not identified, but forced activity concentration exceeds MDC and 2 sigma.

44

I I

I I

I I

I I

I

'I I

I I

I I

I I

SAMPLING LOCATION SD TABLE 3-12: GAMMA EMITTER CONCENTRATION IN FISH Surry Power Station, Surry County, Virginia - 2017 pCi/

(wet) +/- 2 Sigma Page 1 ofl COLLECTION SAMPLE DATE TYPE ISOTOPE K-40 Mn-54 Co-58 Fe-59 4/5/2017 Catfish 1980 +/- 552 0.04 +/- 27.4

-5.76 +/- 26.6 10.7 +/- 63.8 4/5/2017 Game fish 2480 +/- 764

-13.4 +/- 24.5 6.89 +/- 30.4 19.1 +/- 92.6 10/10/2017 Catfish 2740 +/- 1160

-32.5 +/- 57.6

-19.5 +/- 49.7 24.0 +/- 115 10/10/2017 Game fish 2140 +/- 789 21.4 +/- 41.7 5.86 +/- 44.3

-34.6 +/- 85.0 Co-60 Zn-65 Cs-134 Cs-137 4/5/2017 Catfish

-3.56 +/- 19.0

-72.0 +/- 59.1

-8.08 +/- 24.5

-19.9 +/- 24.2 4/5/2017 Game fish 10.4 +/- 28.0

-18.9 +/- 53.2

-10.1 +/- 34.9 10.3 +/- 29.9 10/10/2017 Catfish 33.1 +/- 46.7

-71.5 +/- 121

-12.7 +/- 55.8

-16.7 +/- 56.9 10/10/2017 Game fish 16.2 +/- 41.8 20.7 +/- 99.1

-65.1 +/- 45.6 2.93 +/- 43.8 45

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-13: GAMMA EMITTER CONCENTRATIONS IN OYSTERS Surry Power Station, Surry County, Virginia - 2017 pCi/kg (wet) +/- 2 Sigma Page 1 ofl SAMPLING COLLECTION LOCATIONS DATE ISOTOPE POS MP LC SHI 3/21/2017 9/7/2017 3/21/2017 9/7/2017 3/21/2017 9/7/2017 3/21/2017 9/7/2017 3/21/2017 9/7/2017 3/21/2017 9/7/2017 Mn-54

-28.8 +/- 26.9 5.57 +/- 27.0 Zn-65

-47.2 +/- 61.8 6.94 +/- 65.1 Mn-54

-16.1

+/- 30.8 17.5 +/- 35.8 Zn-65

-78.6 +/- 81.2

-59.3 +/- 75.6 Mn-54

  • +/-

3.88 +/- 35.5 Zn-65

+/-

-51.2 +/- 86.1 Co-58

-22.3 +/- 23.2

-10.2 +/- 24.4 Cs-134 6.05 +/- 27.8 10.4 +/- 23.0 Co-58 25.4 +/- 35.1 7.71 +/- 33.5 Cs-134 3.73 +/- 35.8

-7.81 +/- 37.0 Co-58

  • +/-

23.2 +/- 38.9 Cs-134

+/-

34.8 +/- 45.8

  • LC samples not collected on 3/21/17 due to lease conflict.

A: <MDC 46 Fe-59

-17.7 +/- 48.1 41.2 +/- 58.2 Cs-137

-25.3 +/- 28.5 10.4 +/- 29.8 Fe-59

-26.6 +/- 71.1 20.4 +/- 65.4 Cs-137 0.01

+/- 36.7 3.73 +/- 37.4 Fe-59

  • +/-

-27.2 +/- 77.2 Cs-137

+/-

-15.6 +/- 42.4 Co-60 1.09 +/- 22.3

-1.57 +/- 26.6 Co-60 10.5 +/- 35.1

-36.7 +/- 37.8 Co-60

  • +/-

0.73 +/- 26.5 K-40*

+/-

619 +/- 618A

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-14: GAMMA EMITTER CONCENTRATIONS IN CLAMS Surry Power Station, Surry County, Virginia - 2017 pCi/kg (wet)+/- 2 Sigma Page I ofl SAMPLING COLLECTION LOCATIONS DATE Mn-54 JI 3/20/2017

-20.5 +/- 31.8 9/7/2017

-2.19 +/- 47.0 Zn-65 3/20/2017

-12.0 +/- 62.1 9/7/2017 0.75 +/- 87.2 Mn-54 SD 3/21/2017

-6.15 +/- 42.6 9/7/2017 1.93 +/- 30.0 Zn-65 3/21/2017

-0.1 +/- 80.8 9/7/2017

-63.0 +/- 70.9 Mn-54 CHIC-C 3/20/2017

-2.93 +/- 33.5 9/7/2017 25.3 +/- 32.3 Zn-65 3/20/2017

-11.4 +/- 86.2 9/7/2017

-48.1

+/- 64.5 A: <MDC ISOTOPE Co-58 0.75 +/- 29.2 13.7 +/- 42.0 Cs-134 10.4 +/- 30.6 20.6 +/- 42.6 Co-58 0.11 +/- 41.7

-15.0 +/- 27.2 Cs-134 48.6 +/- 46.9A 7.44 +/- 30.7 Co-58 1.80 +/- 41.9 1.74 +/- 31.2 Cs-134

-12.2 +/- 45.6 6.62 +/- 32.8 47 Fe-59 6.73 +/- 57.0 33.9 +/- 91.7 Cs-137

-16.6 +/- 35.3

-18.3 +/- 47.0 Fe-59

-10.7 +/- 82.8 29.6 +/- 43.1 Cs-137 13.1 +/- 43.5

-0.40 +/- 29.9 Fe-59 20.5 +/- 73.3

-7.78 +/- 74.6 Cs-137 19.6 +/- 48.3

-0.14 +/- 29.3 Co-60

-17.4 +/- 28.3 1.05 +/- 32.5 K-40 735 +/- 509 983 +/- 763 Co-60 10.4 +/- 36.9

-3.93 +/- 35.1 Co-60

-59.2 +/- 50.3

-22.1 +/- 43.7

I I

I I

I I

I I

I I

I I

I I

I I

I I

I TABLE 3-15: GAMMA EMITTER CONCENTRATIONS IN CRABS Surry Power Station, Surry County, Virginia - 2017 pCi/kg (wet) +/- 2 Sigma SAMPLING COLLECTION LOCATIONS DATE SD 6/15/2017 K-40 1450 +/- 853 Co-60 13.7 +/- 41.6 Page 1 of 1 ISOTOPE Mn-54 5.11 +/- 36.0 Zn-65

-98.1

+/- 74.4 48 Co-58

-0.80 +/- 26.8 Cs-134

-17.8 +/- 39.1 Fe-59 17.3 +/- 60.3 Cs-137

-22.3 +/- 38.9

I I

I I

I I

I I

I I

I I

I I

I I

4. DISCUSSION OF RESULTS Data from the radiological analyses of environmental media collected during 201 7 and tabulated in Section 3, are discussed below. The procedures and specifications followed in the laboratory for these analyses are as required in the Teledyne Brown Engineering quality assurance manuals and laboratory procedures. In addition to internal quality control measures performed by the laboratories, they also participate in an Interlaboratory Comparison Program.

Participation in this program ensures that independent checks on the precision and accuracy of the measurements of radioactive material in environmental samples are performed. The results of the Interlaboratory Comparison Program are provided in Appendix B.

The predominant radioactivity detected throughout 201 7 was from external sources, such as fallout from nuclear weapons tests (cesium-137) and naturally occurring radionuclides. Naturally occurring nuclides such as beryllium-7 and potassium-40 were detected in numerous samples.

The following is a discussion and summary of the results of the environmental measurements taken during the 201 7 reporting period.

4.1 Gamma Exposure Rate A thermoluminescent dosimeter (TLD) is an inorganic crystal used to detect ambient radiation. Three TLDs, made of CaF and LiF elements and specifically designed for environmental monitoring, are deployed at each sampling location.

TLDs are placed in two concentric rings around the station. The inner ring is located in the vicinity of the site boundary, and the outer ring is located at approximately five miles from the station. TLDs are also placed in special interest areas, such as population centers and nearby residences. Additional TLDs serve as controls. Ambient radiation comes from naturally occurring radioisotopes in.

the air and soil, radiation from cosmic origin, fallout from nuclear weapons testing, station effluents and direct radiation from the station.

The results of the TLD analyses are presented in Table 3-2.

There was no detectable external dose to members of the public from Surry Power Station in 2017. The results of the TLD analysis shown in Table 3.2 comply with Section 7 of ANSI/HPS Nl3.37-2014 in order to ensure accurate environmental results. The long-term integrity of each field monitoring location is accomplished by a thorough, documented evaluation of the location for changes that could impact data quality in accordance with Section 7.1 of the ANSI Standard. Since off-site processing of TLDs is used, extraneous dose received prior to and after removal from the field is quantified in compliance with Section 7.2 of the ANSI Standard.

Data analysis for Table 3-2 was performed in accordance with Section 7.3 of the 49

I I

I I

I I

I I

I I

I I

I I

I I

I I

I ANSI Standard. This includes normalizing results to a standard 91 day quarterly monitoring period, determination of the baseline background dose for each monitoring location and determination of the smallest facility-related dose that can be detected above the baseline background.

Figure 4-1:

DIRECT RADIATION MEASUREMENT TLD RESULTS 8--.------------------------------------.

7 +-------------------------------------l

.r: 6+------------ -------.~ ~Pll~~~~*4~~~~~6t C:

~ 5~---~~----------~~~~~~~~~~~~~~Q "C...

~ 4'1'r---41--=\\--:IIP'----1,r--------,-.,:---4'--

-F-~-


A~---,~

_,__--------------~

C:

,Jg

~ 3 E 2-1-,r.----------------------------------,.---1 0

c--

0 0

N Note: In 2013 environmental TLD were changed to Panasonic UD-814 based on industry benchmarking. The field dose with the new TLDs is higher due to greater precision and accuracy of the TLD along with an improved method for calculating control dosimeter dose.

00 0\\

s

~

~

~

\\D

~

0 0

0 0

0 0

0 0

0 0

0 0

N N

N N

N N

N N

N N

-+- Site Boundry -+- 5 Mile

_._ Avg Control 4.2 Airborne Gross Beta Air is continuously sampled by passing through glass fiber particulate filters. The filters collect airborne particulate radionuclides. Once a week the samples are collected and analyzed for gross beta activity. Results of the weekly gross beta analyses are presented in Table 3-3. A review of the results from control and indicator locations continues to show no significant variation in measured activities (see Figure 4-2 and 4-3).

The December 5, 2017 data point has a notable separation between the indicator and control trend data points. The subsequent data points returned to a typical variation. Data from Figures 4-2 and 4-3 indicate that any station contribution is not measurable.

Gross beta activity found during the pre-operational and early operating period of Surry Power Station was higher because of nuclear weapons testing. During that time, nearly 7 40 nuclear weapons were tested worldwide.

In 1985 weapons testing ceased, and with the exception of the Chernobyl accident in 1986, airborne gross beta results have remained steady.

50

I I

I Figure 4-2:

2017 GROSS BETA IN AIR PARTICULATES 0.045 I

0.040 0.035 I

0.030 1 0.025 I

0 0.020

a.

0.015 0.010 I

0.005 0.000 I

M t--

'SI" 00

'SI" 00 lr) °'

M '° 0

'SI" 00 lr) °'

N

'° 0

'SI" t--

lr) °'

S2 M

~ ---

N

~ S2 N

0 N

S2 ---

S2 ---

~

~

N S2

~ S2

~

°'

0 0

N N

M M

'SI" lr) lr) '° '° t--

t--

00 00 00

°'

N N

-+- Avg Indicator I

..._ Ave Control I

Figure 4-3:

I GROSS BETA IN AIR PARTICULATES HISTORICAL TREND l.OE+OO I

I I.OE-OJ 1

0

a.

I 1.0E-02 I

l.OE-03 00

°'

0 N

M

'SI" lr)

'° t--

00

°'

0 N

M

'SI" lr)

'° t--

°'

°'

0 0

0 0

0 0

0 0

0 0

°'

°'

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

I N

N N

N N

N N

N N

N N

N N

N N

N N

N Avg Indicator -+- Avg Control -Avg-Pre Op -

Required LLD I

I I

51

I I

I I

I I

I I

I I

I I

I I

I I

4.3 Airborne Radioiodine Air is also continuously sampled for radioiodines by passing air through charcoal cartridges. Once a week, the charcoal cartridge samples are collected and analyzed. The results of the analyses are presented in Table 3-4. All results are below the lower limit of detection. No positive iodine-131 was detected. These results are similar to pre-operational data and the results of samples taken prior to and after the 1986 accident in the Soviet Union at Chernobyl and the Fukushima Daiichi nuclear incident in 2011.

4.4 Air Particulate Gamma The air particulate filters from the weekly gross beta analyses are composited by location and analyzed quarterly by gamma spectroscopy. The results are listed in Table 3-5. The results indicate the presence of naturally occurring potassium-40 and beryllium-?, which are produced by cosmic processes.

No man-made radionuclides were identified. These analyses confirm no effects from station effluents.

4. 5 Animal Milk Analysis of milk samples is generally the most sensitive indicator of fission product existence in the terrestrial environment. This, in combination with the fact that consumption of milk is significant, results in this pathway usually being the most critical from the plant release viewpoint.

This pathway also shows measurable amounts of nuclear weapons testing fallout. Therefore, this media needs to be carefully evaluated when determining the effects from station effluents.

Results of gamma spectroscopy indicate no detectable station related radioactivity in the milk samples. The results of the analyses are presented in Table 3-6. In years past, cesium-137 had been detected sporadically. The occurrences were attributed to residual global fallout from past atmospheric weapons testing.

No positive Cesium-137 activity was detected in 2017.

At the request of the Commonwealth of Virginia, a quarterly composite sample is prepared from the monthly milk samples from the Colonial Parkway collection station. The composite samples are analyzed for strontium-89 and strontium-90.

No strontium-89 was detected in the four composites analyzed. Strontium-90 was detected in three of the four composite samples, with an average concentration of 1.27 pCi/L. Sr-90 is not a component of the station radiological effluents and is a product of nuclear weapons testing fallout which has been well documented.

52

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

4. 6 Food Products Three food product samples (corn, peanuts, and soybeans) were collected and analyzed by gamma spectroscopy. The results of the analyses are presented in Table 3-7. As expected, naturally occurring potassium-40 was detected in all samples. The potassium-40 concentration for 201 7 indicates a slight increase when compared to the previous five year average; however, remains consistent with the 2016 concentration. No station related radioactivity was detected.
4. 7 Well Water Well water is not considered to be affected by station operations because there are no discharges made to this pathway. However, Surry Power Station monitors well water quarterly at three indicator locations and analyzes for gamma radiation and for tritium. The results of these analyses are presented in Table 3-8. With the exception of natural products, no other gamma emitters were detected. The naturally occurring radionuclides detected were potassium-40 and thorium-228.

No station related radioactivity was detected. No gamma emitting isotopes were detected during the pre-operational period.

4. 8 River Water Samples of the James River water are collected monthly and the results are presented in Table 3-9. All samples are analyzed by gamma spectroscopy. The monthly samples are also composited and analyzed for tritium on a quarterly basis. Tritium was not detected and, with the exception of natural products, no other gamma emitters were detected. The naturally occurring radionuclides detected were potassium-40, and actinium-228. No station related radioactivity was detected.

53

I I

I I

I I

I I

I I

I I

I I

I I

I I

I 4.9 Silt Silt is sampled to evaluate any buildup of radionuclides in the environment due to the operation of the station. Sampling of this pathway provides a good indication of the dispersion effects of effluents to the river. Buildup of radionuclides in silt could indirectly lead to increasing radioactivity levels in clams, oysters, crabs and fish.

Samples of silt are collected from three locations, one upstream, one downstream of the station and one in the dredge area of the station intake. The station intake was added in the third quarter of 201 7 to provide data for future station intake dredging operations. The results of the gamma spectroscopy analyses are presented in Table 3-10. Naturally occurring beryllium-7, potassium-40, radium-226, thorium-228 and thorium-232 were detected. Historically, cobalt-60 has been detected in samples obtained from the indicator location (SD). Cobalt-60 has not been detected since 2003. Trend graphs of cobalt-60 and cesium-137 in silt appear in Figures 4-4 and 4-5.

The concentrations of cesium-137 detected indicate a continual decreasing trend as seen for over two decades. The detection of cesium-137 in both control and indicator samples and decreasing levels indicate that the presence of cesium-137 is the result of accumulation and runoff into the river of residual weapons testing fallout.

Its global presence has been well documented.

During the pre-operational period, cesium-137 was detected in silt samples with an average concentration as indicated in Figure 4-5.

In 2017, at the control location, cesium-137 was detected with an average concentration of 1 70 pCi/kg. In the third quarter of 201 7, an additional silt sampling location was added to the REMP. The new sample location is at the station intake in the dredge channel area. The channel is approximately 150' wide and 1 750' in length. The highest indicator location is the Station Intake at 162 pCi/kg, which is equivalent to the control location average activity. This location was added to support future station intake channel dredging operations.

54

I I

I I

I I

I I

I I

I I

I I

I I

I I

I l.OE+04 1.0E+03 c':'

"O

0)

~

1.0E+02 u

C.

J.OE+Ol l.OE+OO N,.._

°'

'-0 00 r-r-

°' °'

0 00

°'

N 00

°'

'St 00

°'

-+- Control - Chickahominy Figure 4-4:

COBALT-60 IN SILT

'-0 00 0

00 00 0,

°' °' °'

N

°' °'

Note: Station Intake added to REMP, 3rd Qtr 2017 00

°'

°'

0 N

0 0

0 0

N N

g; 0 N

'-0 0

0 N

00 0

0 N 0

N 0

0 N

N

I

0 N

_..,_ Station Discharge LLD Avg

...,_Station Intake LLD Avg

' 0 N

Chickahominy h a d detectable activity in 1982 and 1984 through 1994. Other years were <MDC, Minimum Detectable Concentration. Station Discharge was <MDC activity 1996 through 1998 and 2004 through 2017.

c':'

"O

0)

~

u C.

J.OE+03 l.OE+02 l.OE+Ol 0

00

°'

N 00

°'

Figure 4-5:

CESIUM-137 IN SILT

'<:t'-0 000 00 00 00 0\\

°' °' °' °'

N

°' °'

'-0

°'

°'

00

°'

°'

0 0

0 N

N 0

0 N

'St 0

0 N

'-0 0

0 N 00 0

0 N 0

0 N

N 0

N

'St -

0 N

-+- Control - Chickahominy

_..,_ Station Discharge Ave-Pre Op Required LLD station lntake 55

'-0 0

N

I I

I I

I I

I I

I I

I I

I I

I I

I I

I 4.10 Shoreline Sediment Shoreline sediment, unlike river silt, may provide a direct dose to humans.

Buildup of radionuclides along the shoreline may provide a source of direct exposure for those using the area for commercial and recreational uses. The results are presented in Table 3-11.

The naturally occurring radionuclides potassium-40, radium-226, thorium-228 and thorium-232 were detected at concentrations equivalent to normal background activities.

The activities of these radionuclides indicate a steady trend. There were no radionuclides attributable to the operation of the station found in any shoreline sediment samples.

4.11 Fish The radioactivity measured in fish sampled from the station discharge canal and analyzed by gamma spectroscopy is presented in Table 3-12. These results are the same as those seen over the last decade. No activity was observed in this media except for naturally occurring potassium-40.

4.12 Oysters Oysters were collected from three different locations. The Lawne's Creek oyster sampling location was replaced with Swash Hole Island in the third quarter of 2017. The results of the oyster analyses are presented in Table 3-13.

There were no gamma emitting radionuclides detected in oysters sampled. No station related radioactivity has been detected in this media since 1991. The absence of station related radionuclides is attributable to the replacement of steam generators in 1982 and past improvements made to liquid effluent treatment systems.

4.13 Clams Clams are analyzed from three different locations. The results of the gamma spectroscopy analyses are presented in Table 3-14.

Other than naturally occurring potassium-40, no station related radioactivity was detected.

56

I I

I I

I I

I I

I I

I I

I I

I I

I I

I 4.14 Crabs An annual crab sample was collected from the station discharge canal and analyzed by gamma spectroscopy. The results of the analysis are presented in Table 3-15.

Other than naturally occurring potassium-40, no other gamma emitting radionuclides related to station effluents were detected in the sample.

This is consistent with pre-operational data and data collected over the past decade.

57

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

5. PROGRAM EXCEPTIONS There were four exceptions from the REMP sampling schedule in 201 7.

The four exceptions are detailed below:

1. Oyster samples were not collected from the Lawne's Creek location during the first half of 201 7 due to the area being under a private lease for shellfish harvesting. Dominion Energy Environmental Biology located a replacement location that is monitored and stocked by the Virginia Oyster Stock Assessment and Replenishment Archive (VOSARA). The replacement location name is Swash Hole Island. Oyster samples were collected from this location during the third quarter of 201 7.
2. All three environmental TLDs were missing from location #31 (Kingsmill North) during collection of the third quarter TLDs.
3. All three TLDs from site boundary location #02 (WNW) were collected, packaged and shipped, but not received by the vendor lab. This omission was noted during review of the third quarter vendor supplied TLD results.
4. It was noted during the October 10, 2017 collection of environmental air samples, that the Hog Island Reserve (HIR) air sample had very little discoloration on the patch. This information was forwarded to the vendor and analyzed. Results from the vendor lab indicate the gross beta activity

< MDC, when positive results are typically recorded. The vendor lab was subsequently contacted and the patch was removed from the quarterly composite group.

58

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

6. CONCLUSIONS The results of the 201 7 Radiological Environmental Monitoring Program for Surry Power Station have been presented in previous sections. This section presents conclusions for each pathway.

}- Direct Radiation Exposure Pathway - There was no detectable external dose to members of the public from Surry Power Station in 2017.

}- Airborne Exposure Pathway - Radioiodine analysis of charcoal cartridge samples indicated that no positive activity was detected. Quarterly gamma isotopic analyses of the composite particulate samples identified only naturally occurring beryllium-7 and potassium-40.

Air particulate gross beta concentrations at all of the indicator locations for 201 7 trend well with the control location. The December 5, 2017 data point indicates a separation between the indicator and control trend data points. The subsequent data points returned to a typical variation. The effluent data was reviewed for the period of interest and concluded the station contribution is not measurable.

}- Milk - Milk samples are an important indicator measuring the effect of radioactive iodine and radionuclides in airborne releases. Cesium-137 and iodine-131 were not detected in any of the thirty-six samples. Naturally occurring potassium-40 was detected at a similar level when compared to the averages of the previous years.

Strontium-90 was detected in three samples at an average concentration of 1.27 pCi/L. Strontium-90 is not a component of station effluents, but rather, a product of nuclear weapons testing fallout.

}- Food Products - As expected, naturally occurring potassium-40 was detected in all three food product samples. In the past, cesium-137 had occasionally been detected in these samples and is attributable to global fallout from past nuclear weapons testing.

In the 2017 food product analyses, no positive Cesium-137 activity was detected.

}- Well Water -

Well water sample analyses indicated there was no radioactivity attributable to the operation of the station.

This trend is consistent throughout the monitoring period.

}- River Water - River water samples were analyzed for gamma emitting radionuclides and tritium. The only gamma emitting radionuclide detected was naturally occurring potassium-40.

No positive Tritium activity was detected.

59

I I

I I

I I

I I

I I

I I

I I

I I

I I

~ Silt - In 2017, at the control location, cesium-137 was detected with an average concentration of 1 70 pCi/kg. In the third quarter of 201 7, an additional silt sampling location was added to the REMP. The new sample location is at the station intake in the dredge channel area. The channel is approximately 150' wide and 1750' in length. The highest indicator location is the Station Intake at 162 pCi/kg, which is equivalent to the control location average activity. This location was added to support future station intake channel dredging operations. The presence of cesium-137 is attributable to residual weapons testing fallout and its presence has been well documented. Cobalt-60 has not been detected since 2003.

~ Shoreline Sediment - Naturally occurring radionuclides were detected at concentrations equivalent to normal background activities. There were no radionuclides attributable to the operation of Surry Power Station identified in any sample.

Aquatic Biota

~ Fish - As expected, naturally occurring potassium-40 was detected. There were no other positive gamma emitting radionuclides detected in any of the fish samples.

~ Oysters and Clams - Other than naturally occurring potassium-40, there were no other positive gamma emitting radionuclides detected in any of the oyster or clam samples.

~ Crabs - Naturally occurring potassium-40 was detected. No other positive gamma emitting radionuclides were detected.

60

I I

I I

I I

REFERENCES I

I I

I I

I I

I I

I I

I I

61

I I

I I

I I

I I

I I

I I

I I

I I

I I

I References

1.

NUREG-04 72, "Radiological Effluent Technical Specifications for PWRs",

Draft Rev. 3, March 1982.

2.

United States Nuclear Regulatory Commission, Regulatory Guide 1.109, Rev. 1, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR50, Appendix I", October 1977.

3.

United States Nuclear Regulatory Commission, Regulatory Guide 4.8, "Environmental Technical Specifications for Nuclear Power Plants",

December 1975.

4.

United States Nuclear Regulatory Commission Branch Technical Position, "Acceptable Radiological Environmental Monitoring Program", Rev. 1, November 1979.

5.

Dominion, Station Administrative Procedure, VPAP-2103S, "Offsite Dose Calculation Manual (Surry)".

6.

Virginia Electric and Power Company, Surry Power Station Technical Specifications, Units 1 and 2.

7.

HASL-300, Environmental Measurements Laboratory, "EML Procedures Manual," 27th Edition, Volume 1, February 1992.

8.

NUREG/CR-4007, "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," September 1984.

9.

NCRP Report No. 160, "Ionizing Radiation Exposure of the Population of the United States," March 2009.

10. Position paper on "Implementation of ANSI/HPS Nl3.37-2014 Environmental Dosimetry Criteria at Surry Power Station", November 2016 by John M. Sukosky, CHP.

62

I I

I

. I I

. I

I I

.1 I

I I

I I

I I

I I

I APPENDICES 63

I I

I I

I I

I APPENDIX A: LAND USE CENSUS I

Year 2017 I

I I

I I

I I

I I

I I

64

I I

I I

I I

I I

I I

I I

I I

I I

I I

I LAND USE CENSUS*

Surry Power Station, Surry County, Virginia January 1 to December 31, 2017 Page 1 of 1 Nearest Nearest Nearest Nearest Sector Direction Resident Garden**

Cow Goat A

N 4.1@ 10° (a)

(a)

(a)

B NNE 1.9 @32° (a)

(a)

(a)

C NE 4.7 @35° (a)

(a)

(a)

D ENE (a)

(a)

(a)

(a)

E E

(a)

(a)

(a)

(a)

F ESE (a)

(a)

(a)

(a)

G SE 2.8@ 142° (a)

(a)

(a)

H SSE 2.7@ 158° 2.7@ 158° (a)

(a)

J s

1.7@181° 2.0@ 183° (a)

(a)

K SSW 1.9@ 192° 1.9@ 192° 4.8@200° (a)

L SW 2.3@221° 4.7@228° (a)

(a)

M WSW 0.4 @244° 3.6@245° (a)

(a)

N w

3.1 @260° 3.4 @260° (a)

(a) p WNW 4.9@283° (a)

(a)

(a)

Q NW 4.6 @321° (a)

(a)

(a)

R NNW 3.8 @338° 4.4 @334° 3.7@336° (a)

Locations are listed by miles and degrees heading relative to true north from center of Unit #1 Containment.

    • Area greater than 50 m2 and contains broadleaf vegetation.

(a) None 65

I I

I I

I I

I I

I I

I I

I I

I I

I I

I APPENDIX B:

SUMMARY

OF INTERLABORATORY COMPARISONS Year 2017 66

I I

I I

i I

! I I

I I

I I

I I

I I

I I

I INTRODUCTION The TBE Laboratory analyzed Performance Evaluation (PE) samples of air particulate, air iodine, milk, soil, vegetation, and water matrices for various analytes. The PE samples supplied by Analytics Inc., Environmental Resource Associates (ERA) and Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP), were evaluated against the following pre-set acceptance criteria:

A.

Analytics Evaluation Criteria B.

C.

Analytics' evaluation report provides a ratio of TBE's result and Analytics' known value. Since flag values are not assigned by Analytics, TBE evaluates the reported ratios based on internal QC requirements based on the DOE MAPEP criteria.

ERA Evaluation Criteria ERA's evaluation report provides an acceptance range for control and warning limits with associated flag values. ERA's acceptance limits are established per the USEPA, National Environmental Laboratory Accreditation Conference (NELAC), state-specific Performance Testing (PT) program requirements or ERA's SOP for the Generation of Performance Acceptance Limits, as applicable. The acceptance limits are either determined by a regression equation specific to each analyte or a fixed percentage limit promulgated under the appropriate regulatory document.

DOE Evaluation Criteria MAPEP's evaluation report provides an acceptance range with associated flag values. MAPEP defines three levels of performance:

Acceptable (flag = "A") - result within +/- 20% of the reference value Acceptable with Warning (flag= "W') - result falls in the+/- 20% to+/-

30% of the reference value Not Acceptable (flag = "N") - bias is greater than 30% of the reference value Note: The Department of Energy (DOE) Mixed Analyte Performance Evaluation Program (MAPEP) samples are created to mimic conditions found at DOE sites which do not resemble typical environmental samples obtained at commercial nuclear power facilities.

67

I I

I I

I I

I I

I I

I I

I I

I I

I I

I The results are then reported to the provider for evaluation. The suite of QA/ QC samples is designed to provide sample media and radionuclide combinations that are offered by the providers and included in the REMP and typically includes:

~ milk for gamma nuclides and low-level iodine-131 analyses,

~ milk for Sr-89 and Sr-90 analyses,

~ water for gamma nuclides, low-level iodine-131, and gross beta analyses,

~ water for tritium, Sr-89, and Sr-90 analyses,

~ cartridge for I-131 analyses,

~ air filter for gamma nuclide, gross beta, and Sr-90 analyses.

RESULTS For the TBE laboratory, 168 out of 173 analyses performed met the specified acceptance criteria. Five analyses did not meet the specified acceptance criteria for the following reasons and were addressed through the TBE Corrective Action Program. TBE provided the following narrative.

1.
2.

ERA April 2017: Two nuclides in water were evaluated as Not Acceptable. (NCR 17-09)

a.

The Zn-65 result of 39.3 pCi/L, exceeded the lower acceptance limit of 47.2. The known value was unusually low for this study. The sample was run in duplicate on two different detectors. The results of each were 39.3 +/- 18.2 pCi/L (46% error and lower efficiency) and 59.3 +/- 8.23 pCi/L (13.9% error and higher efficiency). The result from the 2nd detector would have been well within the acceptable range (47.2 - 65.9) and 110.2%

of the known value of 53.8 pCi/L.

b.

The Sr-89 result of 40. 7 pCi/L exceeded the lower acceptance limit of 53.8. All associated QC and recoveries were reviewed and no apparent cause could be determined for the failure. The prior three cross-check results were from 99 - 115% of the known values and the one that followed this sample (November, 2017) was 114% of the known value.

DOE MAPEP August 2017: The air particulate U-238 result of 0.115 +/-

0.025 Bq/sample was higher than the known value of 0.087 +/- 0.002 with a ratio of 1.32, therefore the upper ratio of 1.30 (acceptable with warning) was exceeded. TBE's result with error easily overlaps with the acceptable range. MAPEP does not evaluate results with any associated error. Also, the spike level for this sample was very low (2.35 pCi) compared to TBE's normal LCS of 6 pCi. TBE considers this result as passing. (NCR 17-15) 68

I I

I I

I I

I I

I I

I I

I I

I I

I I

I

3.
4.

Analytics September 2017: The soil Cr-51 result was evaluated as Not Acceptable (Ratio ofTBE to known result at 0.65). The reported value was 0.230 +/- 0.144 pCi/g and the known value was 0.355 +/- 0.00592 pCi/ g. The sample was counted overnight for 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br />; however the Cr-51 was spiked at a very low level and had a counting error of 65%.

Cr-51 has a 27-day half-life, making low-level quantification even more difficult. The error does not appear to have been taken into consideration for this result. If it had been evaluated with the error, the highest result would have been 105% of the reference value, which is acceptable. Also, the known value is significantly lower than TBE's typical MDC for this nuclide in a soil matrix and would typically not be reported to clients (unless* specified). The results of all of the previous cross-checks have been in the acceptable (80 - 120%) range.

TBE will evaluate further upon completion of the next ICP sample.

(NCR 17-16)

ERA November 2017: The water Sr-90 sample was evaluated as Not Acceptable. TBE's result of 27.1 pCi/L exceeded the lower acceptance range (30.8 - 48.0 pCi/L). After reviewing the associated QC data for this sample, it was determined that although the spike recovery for Sr-90 was within our laboratory guidelines (70% -130%), both the spike result and our ERA result were biased low. The original cross-check sample was completely consumed and we were unable to reanalyze before submitting the result. We (TBE) have modified our preparation process to avoid this situation for future cross-check samples. We (TBE) also have enhanced LIMS programming to force a LCSD when a workgroup includes cross-check samples (as opposed to running a DUP). (NCR 17-19)

Toe Inter-Laboratory Comparison Program provides evidence of "in control" counting systems and methods, and that the laboratories are producing accurate and reliable data.

69

I I

Analytics Environmental Radioactivity Cross Check Program Teledlne Brown En!;!ineerin!;! Environmental Services I

Page 1 of 4 Identification TBE Known Ratio of TBE to MonthNear Number Matrix Nuclide Units Reported Value (a)

Analytics Result Evaluation (bl Value I

March 2017 E11811 Milk Sr-89 pCi/L 87 97.7 0.89 A

Sr-90 pCi/L 12.4 16.2 0.77 w

I E11812 Milk Ce-141 pCi/L 135 145 0.93 A

Co-58 pCi/L 153 150 1.02 A

Co-60 pCi/L 182 183 1.00 A

I Cr-51 pCi/L 258 290 0.89 A

Cs-134 pCi/L 104 120 0.87 A

Cs-137 pCi/L 142 140 1.02 A

I Fe-59 pCi/L 135 129 1.05 A

1-131 pCi/L 92.6 97.9 0.95 A

Mn-54 pCi/L 173 164 1.05 A

I Zn-65 pCi/L 208 199 1.04 A

E11813 Charcoal 1-131 pCi 92 93.9 0.98 A

I E11814 AP Ce-141 pCi 99.9 101 0.99 A

Co-58 pCi 95.4 104 0.92 A

Co-60 pCi 140 127 1.10 A

I Cr-51 pCi 211 201 1.05 A

Cs-134 pCi 82.1 83.2 0.99 A

Cs-137 pCi 92.8 97.0 0.96 A

I Fe-59 pCi 107 89.3 1.20 A

Mn-54 pCi 106 114 0.93 A

Zn-65 pCi 137 138 0.99 A

I E11816 Soil Ce-141 pCi/g 0.258 0.250 1.03 A

Co-58 pCi/g 0.241 0.258 0.93 A

I Co-60 pCi/g 0.312 0.315 0.99 A

Cr-51 pCi/g 0.439 0.500 0.88 A

Cs-134 pCi/g 0.176 0.207 0.85 A

I Cs-137 pCi/g 0.304 0.317 0.96 A

Fe-59 pCi/g 0.210 0.222 0.95 A

Mn-54 pCi/g 0.292 0.283 1.03 A

I Zn-65 pCi/g 0.353 0.344 1.03 A

E11815 Water Fe-55 pCi/L 1600 1890 0.85 A

I (a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation I

(b) Analytics evaluation based on TBE internal QC limits:

A= Acceptable - reported result falls within ratio limits of 0.80-1.20 W= Acceptable with warning-reported result falls within 0. 70-0.80 or 1.20-1.30 N = Not Acceptable - reported result falls outside the ratio limits of< 0. 70 and > 1.30 I

I 70

I I

Analytics Environmental Radioactivity Cross Check Program I

Teledyne Brown Engineering Environmental Services Page 2 of 4 TBE Known Ratio of TBE to Identification Evaluation (b)

Month/Year Number Matrix Nuclide Units Reported Value (a)

Analytics Result I

Value June 2017 E11844 Milk Sr-89 pCi/L 81.3 92.6 0.88 A

Sr-90 pCi/L 12.1 13.5 0.90 A

I E11846 Milk Ce-141 pCi/L 142 151 0.94 A

Co-58 pCi/L 147 155 0.95 A

I Co-60 pCi/L 185 191 0.97 A

Cr-51 pCi/L 321 315 1.02 A

Cs-134 pCi/L 168 188 0.89 A

I Cs-137 pCi/L 148 150 0.99 A

Fe-59 pCi/L 116 115 1.01 A

1-131 pCi/L 102 93.6 1.09 A

Mn-54 pCi/L 168 172 0.98 A

I Zn-65 pCi/L 195 204 0.96 A

E11847 Charcoal 1-131 pCi 87.9 84.8 1.04 A

I E11845 AP Sr-89 pCi 70.8 79.1 0.90 A

Sr-90 pCi 9.10 11.5 0.79 w

I E11848 AP Ce-141 pCi 112 116 0.96 A

Co-58 pCi 119 119 1.00 A

I Co-60 pCi 171 146 1.17 A

Cr-51 pCi 270 241 1.12 A

Cs-134 pCi 152 144 1.05 A

Cs-137 pCi 114 115 0.99 A

I Fe-59 pCi 94.1 88.3 1.07 A

Mn-54 pCi 139 132 1.06 A

Zn-65 pCi 141 156 0.90 A

I E11849 Water Fe-55 pCi/L 1840 1890 0.97 A

July 2017 E11901 AP GR-A pCi 50.1 44.2 1.13 A

I GR-B pCi 218 233 0.93 A

I I

(a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation I

(b) Analytics evaluation based on TBE internal QC limits:

A = Acceptable - reported result falls within ratio limits of 0. 80-1. 20 I

W= Acceptable with warning-reported result falls within 0. 70-0.80 or 1.20-1.30 N = Not Acceptable - reported result falls outside the ratio limits of< 0. 70 and > 1.30 I

71

I I

Analytics Environmental Radioactivity Cross Check Program Teledyne Brown Engineering Environmental Services I

Page 3 of4 Identification TBE Known Ratio of TBE to Month/Year Number Matrix Nuclide Units Reported Value (a)

Analytics Result Evaluation (bl I

Value September 2017 E11914 Milk Sr-89 pCi/L 84.3 82.7 1.02 A

Sr-90 pCi/L 12.6 12.1 1.04 A

I E11915 Milk Ce-141 pCi/L 93.9 87.0 1.08 A

Co-58 pCi/L 115 117 0.98 A

I Co-60 pCi/L 265 262 1.01 A

Cr-51 pCi/L 273 217 1.26 w

Cs-134 pCi/L 186 201 0.93 A

Cs-137 pCi/L 175 172 1.02 A

I Fe-59 pCi/L 137 125 1.09 A

1-131 pCi/L 78.0 71.0 1.10 A

Mn-54 pCi/L 128 123 1.04 A

I Zn-65 pCi/L 206 184 1.12 A

E11916 Charcoal 1-131 pCi 71.9 64.4 1.12 A

I E11917 AP Ce-141 pCi 80.1 86.3 0.93 A

Co-58 pCi 110 116 0.95 A

I Co-60 pCi 277 260 1.07 A

Cr-51 pCi 275 215 1.28 w

Cs-134 pCi 192 199 0.96 A

I Cs-137 pCi 165 170 0.97 A

Fe-59 pCi 122 124 0.98 A

Mn-54 pCi 120 122 0.99 A

Zn-65 pCi 175 183 0.96 A

I E11918 Water Fe-55 pCi/L 1630 1630 1.00 A

I E11919 Soil Ce-141 pCi/g 0.136 0.142 0.96 A

Co-58 pCi/g 0.179 0.191 0.94 A

Co-60 pCi/g 0.405 0.429 0.94 A

I Cr-51 pCi/g 0.230 0.355 0.65 N(1)

Cs-134 pCi/g 0.272 0.328 0.83 A

Cs-137 pCi/g 0.336 0.356 0.94 A

I Fe-59 pCi/g 0.210 0.205 1.02 A

Mn-54 pCi/g 0.210 0.201 1.05 A

Zn-65 pCi/g 0.301 0.301 1.00 A

I (a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation I

(b) Analytics evaluation based on TBE internal QC limits:

A= Acceptable - reported result falls within ratio limits of 0.80-1.20 W = Acceptable with warning - reported result falls within 0. 70-0.80 or 1.20-1.30 I

N = Not Acceptable - reported result falls outside the ratio limits of< 0. 70 and > 1.30 (1) See NCR 17-16 I

72

I I

Analytics Environmental Radioactivity Cross Check Program I

Teledyne Brown Engineering Environmental Services Page 4 of4 TSE MonthNear Identification Nuclide Units Known Ratio of TSE to Evaluation (bl Number Matrix Reported Value (a)

Analytics Result I

Value December 2017 E12054 Milk Sr-89 pCi/L 92.1 92.3 1.00 A

Sr-90 pCi/L 18.3 16.9 1.09 A

I E12055 Milk Ce-141 pCi/L 97.8 98.3 0.99 A

Co-58 pCi/L 92.3 89.9 1.03 A

I Co-60 pCi/L 176 173 1.02 A

Cr-51 pCi/L 226 242 0.93 A

Cs-134 pCi/L 118 125 0.95 A

I Cs-137 pCi/L 148 141 1.05 A

Fe-59 pCi/L 123 113 1.08 A

1-131 pCi/L 66.0 57.8 1.14 A

I Mn-54 pCi/L 173 161 1.08 A

Zn-65 pCi/L 233 211 1.10 A

I E12056 Charcoal 1-131 pCi 48.1 47.5 1.01 A

E12057A AP Ce-141 pCi 108 111 0.97 A

I Co-58 pCi 89.5 102 0.88 A

Co-60 pCi 223 196 1.14 A

Cr-51 pCi 311 274 1.13 A

I Cs-134 pCi 141 142 1.00 A

Cs-137 pCi 162 160 1.01 A

Fe-59 pCi 121 129 0.94 A

I Mn-54 pCi 177 182 0.97 A

Zn-65 pCi 203 239 0.85 A

I E12058 Water Fe-55 pCi/L 1970 1740 1.13 A

E12059 AP Sr-89 pCi 71.2 87.4 0.81 A

I Sr-90 pCi 12.9 16.0 0.81 A

I I

(a) The Analytics known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation I

(b) Analytics evaluation based on TBE internal QC limits:

A = Acceptable - reported result falls within ratio limits of 0. 80-1.20 W = Acceptable with warning - reported result falls within 0. 70-0.80 or 1.20-1.30 I

N = Not Acceptable - reported result falls outside the ratio limits of< 0. 70 and > 1. 30 I

73

I I

DOE's Mixed Analyte Performance Evaluation Program (MAPEP)

Teledyne Brown Engineering Environmental Services I

Page 1 of 1 Identification TSE Known Acceptance Month/Year Number Matrix Nuclide Units Reported Value (a)

Range Evaluation (b)

Value I

February 2017 17-MaS36 Soil Ni-63 Sq/kg

-5.512 (1)

A Sr-90 Sq/kg 571 624 437-811 A

I 17-MaW36 Water Am-241 Sq/L 0.693 0.846 0.592 - 1.100 A

Ni-63 Sq/L 13.4 12.2 8.5 - 15.9 A

Pu-238 Sq/L 0.7217 0.703 0.492 - 0.914 A

I Pu-239/240 Sq/L 0.9277 0.934 0.654 - 1.214 A

17-RdF36 AP U-234/233 Sq/sample 0.0911 0.104 0.073 - 0.135 A

I U-238 Sq/sample 0.0967 0.107 0.075 - 0.139 A

17-RdV36 Vegetation Cs-134 Sq/sample 6.44 6.95 4.87 - 9.04 A

I Cs-137 Sq/sample 4.61 4.60 3.22 - 5.98 A

Co-57 Sq/sample

-0.0229 (1)

A Co-60 Sq/sample 8.52 8.75 6.13 - 11.38 A

Mn-54 Sq/sample 3.30 3.28 2.30 - 4.26 A

I Sr-90 Sq/sample 1.30 1.75 1.23 - 2.28 w

Zn-65 Sq/sample 5.45 5.39 3.77 - 7.01 A

I August2017 17-MaS37 Soil Ni-63 Sq/kg 1130 1220 854 - 1586 A

Sr-90 Sq/kg 296 289 202 - 376 A

I 17-MaW37 Water Am-241 Sq/L 0.838 0.892 0.624-1.160 A

Ni-63 Sq/L

-0.096 (1)

A Pu-238 Sq/L 0.572 0.603 0.422 - 0.784 A

I Pu-239/240 Sq/L 0.863 0.781 0.547-1.015 A

17-RdF37 AP U-234/233 Sq/sample 0.103 0.084 0.059 - 0.109 w

U-238 Sq/sample 0.115 0.087 0.061 - 0.113 N (2J I

17-RdV37 Vegetation Cs-134 Sq/sample 2.34 2.32 1.62 - 3.02 A

Cs-137 Sq/sample 0.05 (1)

A I

Co-57 Sq/sample 3.32 2.8 2.0 - 3.6 A

Co-60 Sq/sample 2.09 2.07 1.45 - 2.69 A

Mn-54 Sq/sample 2.90 2.62 1.83 - 3.41 A

I Sr-90 Sq/sample 1.17 1.23 0.86 - 1.60 A

Zn-65 Sq/sample 6.07 5.37 3.76 - 6.98 A

(a) The MAPEP known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric I

measurements made during standard preparation (b} DOEIMAPEP evaluation:

A = Acceptable - reported result falls within ratio limits of 0.80-1.20 W = Acceptable with warning - reported result falls within 0. 70-0. 80 or 1. 20-1. 30 I

N = Not Acceptable - reported result falls outside the ratio limits of< 0.70 and> 1.30 (1) False positive test I

(2) See NCR 17-15 I

74

I I

ERA Environmental Radioactivity Cross Check Program Teledyne Brown Engineering Environmental Services I

Page 1 of 1 ldentrification TBE Known Acceptance Month/Year Number Matrix Nuclide Units Reported Value(a)

Limits Evaluation (bl Value I

March 2017 MRAD-26 AP GR-A pCi/sample 76.3 85.5 28.6 - 133 A

I April 2017 RAD-109 Water Ba-133 pCi/L 49.2 49.7 40.8 - 55.1 A

Cs-134 pCi/L 83.2 90.1 74.0-99.1 A

Cs-137 pCi/L 202 206 185 - 228 A

I Co-60 pCi/L 51.2 54.7 49.2 - 62.7 A

Zn-65 pCi/L 39.3 53.8 47.2 - 65.9 N (1)

GR-A pCi/L 53.6 75.0 39.5 - 92.3 A

GR-B pCi/L 42.7 38.5 25.5 -46.0 A

I U-Nat pCi/L 50.1 55.6 45.2-61.7 A

H-3 pCi/L 7080 6850 5920 - 7540 A

Sr-89 pCi/L 40.7 66.2 53.8 - 74.3 N (1)

I Sr-90 pCi/L 26.9 26.7 19.3-31.1 A

1-131 pCi/L 26.7 29.9 24.9 - 34.9 A

September 2017 MRAD-27 AP GR-A pCi/sample 40.9 50.1 16.8-77.8 A

I AP GR-B pCi/sample 58.0 61.8 39.1 -90.1 A

October 2017 RAD-111 Water Ba-133 pCi/L 71.3 73.7 61.7-81.1 A

I Cs-134 pCi/L 43.0 53.0 42.8 - 58.3 A

Cs-137 pCi/L 48.2 52.9 47.6-61.1 A

Co-60 pCi/L 69.0 69.5 62.6 - 78.9 A

I Zn-65 pCi/L 335 348 313-406 A

GR-A pCi/L 32.5 35.6 18.3 - 45.8 A

GR-B pCi/L 24.3 25.6 16.0 - 33.6 A

U-Nat pCi/L 36.6 37.0 30.0 -40.9 A

I H-3 pCi/L 6270 6250 5390 - 6880 A

1-131 pCi/L 26.4 24.2 20.1 - 28.7 A

I November 2017 1113170 Water Sr-89 pCi/L 57.1 50.0 39.4-57.5 A

Sr-90 pCi/L 27.1 41.8 30.8 -48.0 N (2)

I I

I (a) The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation.

(b) ERA evaluation:

I A = Acceptable - Reported value falls within the Acceptance Limits N = Not Acceptable - Reported value falls outside of the Acceptance Limits (1) See NCR 17-09 I

(2) See NCR 17-19 I

75