ML18078A942
ML18078A942 | |
Person / Time | |
---|---|
Site: | Salem |
Issue date: | 03/06/1979 |
From: | Public Service Enterprise Group |
To: | |
Shared Package | |
ML18078A941 | List: |
References | |
NUDOCS 7903080326 | |
Download: ML18078A942 (112) | |
Text
{{#Wiki_filter::~ ;*. 7903 080 3,;;,_ft I 11EVALUATION OF THE REACTOR COOLANT SYSTEM CONSIDERING SUBCOMPARTMENT PRESSURIZATION FOLLOWING A LOCA FOR SALEM UNITS NO. 1 AND 211
~ TABLE OF CONTENTS Section Title 1.0 Introduction 2.0 ~~.~ Subcompartment RCS Breaks 2.1 Localized Loads on the Pressurizer Enclosure 3.0 Steamline Break 4.0
- Conversion of TMD Pressures to Forces 5.0 Reactor Coolant Loop Piping Evaluation 6.0 7.0 R.G.S.
6.1 6.2 6.3 6.4 Equipment Supports Steam Generator and Reactor Coolant Pump Lower Supports Steam Generator Upper Lateral Supports Pressurizer Supports, Reactor Vessel Supports Interior Concrete Structures 7.1 .Introduction 7.2 Evaluation Criteria for Subcompartment Pressure 7.3 Analytical Model and Method of Analysis 7.4 Results and Conclusions 8.0 References l
I ,1 LIST OF ILLUSTRATIONS ~:~ Title 1-3 Reactor Containment 4-17 Break Compartment Pressure Transients 18-35 Pressu~e Differentials Across the Steam Generators and Pressurizer 35A Section through the Pressurizer Boundary 358 Pressure Difference Across Pressurizer Enclosure 35C Section Through Steam Generator Boundary 35D Pressure Difference Across Steam Generator Vessel 35E Pressure Difference Across Steam Generator Vessel 35F Pressure Difference Across Steam Pipe Chase 35G Pressure Difference Across Pipe Trench 36 Axial Force on Steam Generator 37 Vertical Force on the Steam Generator 38 Moment to Overturn the Steam Generator 39 Axial Force on the Pressurizer 40 Vertical Force on the Pressurizer 41A Moment to Overturn the Pressurizer 418 Reactor Coolant Loop Model 42-47 Interior Structure 48-51 Pressure Time History in Subcompartments 52A Summary of Reinforcement 528 Accumulator Compartment Wall 53 Sample Deflection Plot
LIST OF TABLES Tab-le Title 1 Containment Geometric Data 2 Break Mass and Energy Flow 3
- Hot Leg Break Releases 4
Peak Pressures 4A TMD Input for Pressurizer Enclosure 48 Pressure Differentials Across Pressurizer Enclosure Walls 4C TMD Input for Steam Generator Asymmetric Pressurization 40 Doub 1 e Ended Stearnl i ne Break Mass and Energy Re 1 eases 4E Double Ended Steaml i ne Break in Steaml i ne Pipe* Chase* - Mass and Energy Releases 4F TMD Input for Steaml i ne Pipe Chase 4G Single Ended Steamline Break Mass and Energy Releases 5 Areas for Force Calculations 6 Peak Forces Acting on Steam Generator 7 Peak Forces Acting on the Pressurizer 8 Steam Generator/R.~. Pump Lower Supports 9 Reactor Coolant Loop Piping Stress Summary 10 Maximum RCL Piping Stresses Due to Main Steamline Break
- 1. 0 INTRODUCTION To assure the safety of the Salem Nuclear Plant the possibility of pipe ruptures must be considered. This report presents an. evaluation of the
- reactor coolant system and the concrete for the loads induced by a loss-of-coolant accident
- 2.0 SUBCOMPARTMENT RCS BREAKS
,C..n analysis has been performed utilizing the latest version of the TMD computer code. An 18 node containment model was used to calculate the pressure differentials across the containment structures, steam gener-ators and the pressurizer for a spectrum of RCS breaks. The nodal boundaries used are illustrated in Figures 1 to 3. The reactor coolant system breaks analyzed were double ended hot and cold leg breaks. These break releases represent a significant conservatism since existing pipe restraints limit break sizes. The nodalization used is similar to that utilized on other Westinghouse plants recently analyzed and reviewed by the NRC, the only significant difference being the division of node 4 into two nodes, 4 and 18. This additional nodalization was necessary because of a restriction between these node qoundaries. The geometric data used is given in Table 1. The mass and energy releases used are given in Tables 2 and 3. Figures 4 to 17 give the break co_mpariment pressure transients for the various breaks analyzed. Table 4 gives the maximum calculated pressure for each node. Figures 18 to 35 show the pressure differentials across the steam generators and pressurizer for the various breaks. The maxi-mum equipment pressure differential is always less than 7.5 psi. 2.1 LOCALIZED LOADS ON THE PRESSURIZER ENCLOSURE The possibility exists for pressure loads to act on the pressurizer enclosure following a RCS pipe break in one of the 7-loop compartments (nodes 1 to 6 and 18). Since the pressuriz*2r and its enclosure are on the boundary between compartments 1 and 2, breaks in these adjacent compartments will be limiting. In order to calculate the pressure loads on the enclosure wall, an additional node was added to the TMD model. The element's (node 19) orientation with respect to nodes 1 an~ 2 is shown schematically in Figure 35A. Table 4A gives the charges made to the ~10 nodal model presented in Section 2.C.
Table 48 gives the peak pressure differentials for the four calculations performed, and Figure 358 illustrates the maximum pressure differential transient.
. ) I,, 3.0 STEAMLINE BREAK The region immediately surrounding the steam generator for the Salem Units is not conducive to asymmetric pressurization due to steam line breaks because of the openness of the design. The steamline exits the secondary shield wall at an elevation above the steam generator and not
- at the side of an enclosed steam generator as in so~e designs.
Conse-quently, a rupture in the vertical run parallel to the steam generator would be on the opposite side of the secondary shield wall* as the steam generator and would cause no steam generator asymmetric pressurization. There would be little side or vertical force exerted on the steam gener-ator from asymmetric pressurization as a result 'of the steam 1 ine rupturing at the top because the Salem steam generators are not enclosed at the top. However, to insure the adequacy of the steam generator supports and the associated concrete, the forces from the steamline break must be included in the design verification. In order to model this effect, an additional node was added to the TMD model presented in Section 2.0. The relative location of this new element (node 19A) is illustrated in Figure 35C. The changes to the TMD input are given. in Table 4C. Double ended bleak mass and energy releases were used to calculate the asymmetric pressure transient. These mass and energy releases are given in Table 40. The peak pressure differential was found to be 4.04 psi occurring at.013 seconds. The pressure differential transient is shown in Figures 350. This s&ne transient is also given in Figure 35E on an expanded scale. The possibility also exists for steamline pipe ruptures in other loca-tions. These are the hm steamline pipe chases below elevation 130, and the nodes adjacent to the pipe chases between the crane wall and the containment shell. The pipe chases correspo~d to the geometrically identical TMD nodes 11 and 12. and the nodes adjacent to the pipe chases correspond to the geometrically identical n~o nodes 15 and 16 (see Figures 1 & 3). TMD calculations 1vere performed for both locations. The results from these ca 1 cul at ions are important for concrete 1 oadi ngs
. ) near the break. Due to the locations of these elements, any asymmetric p;essure l aad generated across the steam generatqr v.~ssel wi 11 be insignificam;. A double ended steamline break was assumed in the steamline pipe chase. TMD node 11 was the break compartment. Since the flow direction for the flow paths which are entering or exiting node 11 may be different from the flow direction for the RCS breaks analyzed in Section 2.0, some changes were made to the TMD mode 1. Tab 1 e 4E gives these changes. Table 4F gives the mass and energy releases. The peak pressure differ-ential was found to be between 11 and 17, 18.3 psi at.024 sec. Figures 35F gives the maximum pressure differential trqnsient. The final steamline break analyzed was in TMD node 16. Due to existing pi~e restraints and sleeves the size of the pipe rupture will be con-siderably less than a single ended rupture. Howevef, for conservatism, a single ended break was assumed. Table 4G gives these mass and energy releases. The TMD input.used was the same as in Section 2.0. The peak differential pressure was found to be 3.05 psi, occurring at.0366 seconds. Figure 35G gives this pressure differential transient.
- 4. 0 CONVERSION OF TMD PRESSURES TO FORCES Transformation of the pressures into corresponding forces and moments acting on the primary components must be made in order to assess the impact of the transient subcompartment pressures on the supports.
Figures 1 to 3 show the TMD mode1. Table 5 presents the appropriate projected areas and the other geometric data necessary for the trans-formations. All transformation data are consistent with TMD data. A TMO post processor converts the pressures from TMD into elemental forces to be applied to the structural model of the component. The
- coordinate system used has its positive x-axis directed away from the break location through the appropriate primary component, its y-axis vertically upward, and its z-axis established by the right-hand rule.
The fundamental equation u*sed to calculate forces is where* F is the force in the x coordinate direction x P is the (TMD) pressure on the element being considered. A is the projection of the area of the element with its normal x vector in the x-direction e is the angle measured counterclockwise from the break loca-tion (negative x-axis) to the element centroid. A similar eq~ation is written to account for the vertical force com-ponents caused by pressures on area with vertical normal vectors: F. = PA y
J The asymmetri~ distribution of vertical force contributes to a moment about the z-axis in accordance with the equation: where Mz is the moment about the z axis. FY is the vertical (y) force on the element. R is the radius from the component center line to the element centroid. e ' is as defined previously The resultant horizontal force, vertical force, and moment time his-tories acting on the steam generator are presented in Figure 36, 37 and 38 for the hot leg break in element 4 case. When all possible combina-tions of all the loop compartment breaks were investigated, it was found that the peak horizontal force acting on the steam generator was 314 kips. This peak occurred at 0.0251 seconds for both the hot leg break in element 4 case and the hot leg break in element 18 case. The resultant horizontal force, vertical force, and moment time htsto-ries acting on the pressurizer are presented in Figures 39, 40 and 41a for the hot leg break in element 2 case. When all possible combinations of all the loop compartment breaks were investigated, it was found that the peak horiiontal force acting on the ~ressurizer was 141 kips. This peak occurred at 0.00813 seconds. Table 6 presents the peak horizontal forces for the appropriate breaks for the steam generator loads. Table 7 present the peak horizontal forces for the appropriate breaks for the pressurizer loads.
5.0 REACTOR COOLANT LOOP PIPING EVALUATION The reactor coolant loop (RCL) piping was analyzed for the effect of asyrrrnetric pressure loads acting on the Steam Generator (SG) due to LOCA in the RCL. A conservative forcing function was used for the analysis. The forcing function consisted of a ramp up to a peak load of 500 kips in 0.001 seconds and.remained constant thereafter (i.e., ramp-plateau). This -~arcing function enveloped the force-time curve developed later. (See Section 4.0.) The RCL pipe stresses were calculated using Equation 9 of the ASME Code Section III. The resulting pipe stresses due to the SG subcompartment pressure loads were found to be insignificant when
- compared with the other faulted condition pipe stresses due to dead-weight, pressure, Design Basis Earthquake and LOCA loop hydraulic forces and reactor vessel motion.
The faulted condition stress limit of 3.0 Sm was satisfied with the additional pipe stress due to the Steam Generator subcompartment pressure loads. Table 9 provides an indication of the relative magnitude of the RCL piping stresses due to the asymmetric pressure loads acting on the Steam Generator with the RCL piping stresses due to the other faulted condi-tion loadings discussed above. The RCL piping stresses listed in Table 9 due to the other faulted condition loadings are the maximum RCL piping stresses resulting from postulated breaks at the reactor vessel inlet, reactor vessel outlet, and reactor coolant pump outlet nozzles. These stress values were taken from Table 3-1 of Reference 4. Asyrrmetric pressure loads acting on the pressurizer are reacted almost entirely by the pressurizer supports. The pressurizer surge line is also very flexible and therefore there are no significant stresses developed in the reactor coolant loop piping from the pressurizer loading. The loop p1p1ng stresses are controlled almost entirely by the hydraulic forces on the loop piping itself and all other loadings such as asym-metric loads on the steam generator are insignificant.
The RCL piping was also analyzed for the effect of a postulated break in the main ste1m line at the outlet of the first elbow coming out of the top of the steam generator (i.e. in the horizontai run of the main steam line). The loading applied to the steam generator consisted of the thrust force at the break location and the asymmetric pressure loads. The RCL pipe stresses were calculated using Equation 9 of the ASME Code Section III. These stresses were found to be within the allowable stress limit of 3.0 Sm. Table 10 lists the maximum RCL piping stresses due to the main steam line break. The mathematical model of the reactor coolant loop is shown in Figure 4lb. The complexity of the reactor cooJant loop/supports system required the use of a computer code to obtain the displacements, forces, and stresses in the piping and support members. WESTDYN, the computer code used for piping system analysis, is capable of performing an elastic analysis of redundant piping systems subjected to thermal, static and dynamic loads. It is concluded from this evaluation that the reactor coolant loop piping meets the faulted condition requirements of ASME Section III and is capable of withstanding the additional pipe stresses resulting from asymmetric pressure loads on the Steam Generator and Pressurizer due to LOCA in the primary loop and due to main steam line break.
'\\.. i L ___ _ 6.0 R.C.S. EQUIPMENT SUPPORTS 6.1 Steam Generator and Reactor Coolant Pump Lower Supports The supports were analyzed for the effects of asymmetric pressure loads combined with LOCA loads using computer program WESAN. Table 8 gives maximum member stresses in members of the steam generator and reactor coolant pump supports expressed as a per-centage of permissible stress limits for the faulted condition. Of the break cases considered, only the governing (maximum) member stress is given for the columns and fram~ members. The permis-sible stresses, as defir.ed in the ASME Boiler and Pressure Vessel Code Section III and Subsection NF, are below the limiting values for all members. Member 31 on the reactor coolant pump support had a stress percentage of allowable of 99%, however due to the conservatism with which the stress allowables were determined, being close to the allowable stress is not an indication of being close to failure. A significant margin exists prior to the expectation of failure, therefore the supports are stable and adequate for all loading conditions
- 6.2 Stearn Generator Upper Lateral Supports The steam generator upper lateral supports were analyzed for the effects of asymnetric pressure loads combined with LOCA loads due to breaks in the reactor coolant loop and the main steam line.
The total loads from the effect of postulated pipe breaks were combined with normal loads and seismic loads.
- 1. loop Break The analysis shows that for the breaks in the primary loop, the maximum stress in the support ring band is 43% of allowable and maximum load on the snubbers is 20% of rated capacity.
2.. Main Steam line Break The analysis shows that the maximum stress in the upper support ring is 81% of allowable. The snubber loads wer 9% over their rated capacity of 1000 kips, however, due to the conservatism in the loads considered for asymmetric pressure and the fact that the actual snubber capacity is. greater than the rated capacity, the snubbers are adequate. Since the allowable stress limts, as defined in ASME Boiler and Pressure Vessel Code Section III Subsection NF in the ring band, are all greater than the actual stresses, the steam generator upper lateral support is considered adequate for a 11 1 oa_dings cons; dered. I. '/
6.3 Pressurizer Supports Evaluation of the pressurizer lower supports for the effects of asymmetric pressure loading combined with seismic loading was done using the STRUDL and WESAN programs. The analysis results showed the maximum column stress to be 41% of allowable and the maximum frame stress to be 79% of allowable. The member stress percentages are based on stress limits as defined in the ASME Boiler and Pres-sure Vessel Code, Section III, Appendix XVII, Subsection NF. Based on the above, the supports are stable and adequate for all loadings considered.
6.4 Reactor Vessel Supports The reactor vessel supports were analyzed using program* WECAN with the maximum loads obtained from the reactor pressure vessel LOCA analysis combined with normal loads and seismic. loads. The maximum stresses expressed as a percentage of permissible stress limits are 62% which occurs in the vertical plates of the box and 77% which is the maximum shear occurring in the pins. The stress limits are as defined in the ASME Boiler and Pressure Vessel Code, Section III, Subsection NF. For conservatism, no increase factors for the faulted condition were used as allowed by the Code
- 7.0 INTERIOR CONCRETE STRUCTURES
7.1 INTRODUCTION
This section of the report deals with the evaluation of the ade- *
- quacy of the containment interior concrete structures due to the subcompartment pressurization.
In the event of an accident condi-tion, i.e., the postulated accident from any one of the primary loop breaks or steam line break in.the steam generator or reactor coolant pump compartments, the pressures in these compartments rise rapidly. The affect of this pressu~e on the interior con-crete structures is mainly from the differential pressures across the partitions that comprise the interior concrete.
- The containment interior concrete structures provide support to the floors, piping and equipment, and also provide radiation shielding to personnel during plant operation.
The major features of the structures are (a) Primary shield structure, forming the reactor cavity, (b) Secondary shield structure, forming the steam generator and pump compartments, (c) Operating floor. slab, (d) Refueling canal and (e) Removable missile shield slab aJove the reactor. The primary shield wall is a 4-9.5 foot thick reinforced concrete structure that completely surrounds the reactor vessel and pro-vides biological shielding. It provides support to the r~actor vessel, and lateral restraints to the steam generators and reactor coolant pumps. It is located in the center of the containment, and e~tends vertically from the foundation slab to the operating floor. Radiation shielding, protection of the reactor coolant system and support for the pola~ gantry crane are provided by the secondary shield wall (crane wall). The reactor* coolant system is enclosed by this 3-foot thick continuous reinforced concrete structure from the foundation slab to the operating floor.
The operating floor consists of a 3 to 5-foot thick reinforced concrete slab that covers the reactor coolant system compart-ments. Four steam generators, pressurizer and various pipes penetrate the floor. The floor also provides lateral res~raint to the steam generators. The refueling canal connects the reactor cavity by way of the fuel transport tube to the spent fuel pool. The floor and wall of the canal are massive concrete structures which, along with water, provide the equivalent shielding of 6-foot thick concrete. The floor is 4 1/2 feet thick. Structural drawings of the interior concrete structures are as follows: Salem Dwgs:
- 1.
201167 A 8709-6
- 2.
208058 A 8811-3
- 3.
208059 A 8811-1
- 4.
208060 A 8811-5
- 5.
208063 A 8811-1
- 6.
208064 A 8811-1 Note: These drawings are contained in Reference 4 Appendix A
7.2 EVALUATION CRITERIA FOR CONCRETE INTERIOR STRUCTURE To evaluate the structural integrity of the interior concrete structure due to pressure differential, the following load com-binations for abnormal condition are considered.
- 1. D + L + T + R + 1.5 P a
a a
- 2.
D + L + T + R + 1.25 P + (Y + Y + y.) + 1.25 E a a a r* m J o
- 3. D + L + T + R + P + (Y
+ Y + Y.) + 1.0 E. a a a r m J
- s with the following load definitions:
D L = Dead loads or their related internal moments and forces. = Applicable live loads or their related internal moments and forces. Ta = Loads under thermal condition generated by a postulated break and including T0 (thermal effects and loads during normal operating or shutdown conditions). Ra = Pipe reactions under thermal conditions generated by a postualted break and including R0 (pipe reactions during normal operating or shutdown conditions). Pa = maximum differential pressure load across a compartment generated by postulated break. E0 = Loads generated by operating basis earthquake (OBE). Es = Loads generated by safe shutdown earthquake (SSE).
= Loads on the structure generated by the reaction on the broken pipe during a postulated break. =*Missile impact loads on the structure generated by or during a postulated break. Yj = Jet impingement load on a structure generated by a postu-lated break. For the load combinations where D or L reduces the effect of the pressure and other asso~iated accident loads, the corresponding coefficients are taken as 0.9 for dead load and zero for live load. Appropriate dynamic load factors are used for the accident loads, P, Y. and Y in the three load combinations. a J r Since the peak loads from cross-wall differential pressure along with other dynamic loads from the postulated accident diminish in a few seconds and the thermal loads on the structure from the accident will not become effective until a much later time, the load Ta in the load combinations above will degenerate to the value T0
- Westinghouse SSDC 1.19(l) document indicates that catastrophic failure of the reactor vessel, steam generators, pressurizer, reactor coolant pump casings and piping leading to generation of missiles is not postulated.
Compor.~nts within the reactor coolant accident boundary whose failure may result in postulated missiles are instrument wells and thimbles, nuts and bolts, control rod drafts shats and/o~ housings, and pressurizer heaters. Because of the localized effect of some of these postulated missiles that are designed to be contained in a local region or because of the small amount of the kinetic energy associated with some of these mis-siles, the effect of the postulated missile are small and are neglected in the evalulation.
<_j ,1 In load combinations (2) and (3), local section strengths and stresses may be exceeded under the concentrated loads Yr and Yj' provided there will be no loss of function of any safety-related system.
7.3. ANALYTICAL MODEL AND METHOD OF ANALYSIS The analytical model used in the evaluation of the structure is based on the finite element approach, using program NASTRAN( 2), and supplemented by post-processors. as shown in Figures 42 thru 47 is an walls and slabs within and including foundation slab. To reduce the size This finite element model, integral of all concrete the crane wall, above the of this complex and detailed model, symmetry about the center line of* the east-west containment was employed so that only the southern half of the interior con-crete structures were actually modeled. Proper boundary condi-tfons were applied at the plane of symme.try to generate both symmetric and asymmetric models thereby accounting for any loading that is not in the nature of symmetry. The coordinate system of the model is x-along south, y-vertical up and z-along west with the.origin at the intersection of the con-tainment centerline and the plane of elevation 77' 11". The model consists of 905 quadrilateral plate elements, 184 triangular plate elements and has approximately 5850 degrees of freedom. All elements are isoparametric,.and nodal displacements/rotation and element forces/moments can be calculated. As previously mentioned in the criteria section all loads associated with compartment pressurization during an accident condition are considered. Dead loads are calculated from a given concrete density and the element geometry while live loads are applied at the nodes. Thermal induced loads are considered as a uniform temperature rise throughout the structure. Equivalent static "g" loads are applied to the model to account for the seismic effects. Accident pres-sures, jet forces and equipment support reactions are applied as equivalent static loads with appropriate dynamic load factors for each one of them * 'I I
Accident pressure loads are of primary interest in this analysis. Figure 48 shows a typical plot of pressure differential across a concrete wall immediate to a break in a hot leg. Figure 49 shows a simi1ar plot for a wan away from the same hot leg break. Two corresponding plots for a cold leg break are given in Figures 50 and 51. Since a static analysis method was employed, the maximum pressure differentials were used in the NASTRAN input with dynamic load factors of 1.2 for all hot leg and 1.1 for all cold leg breaks. The value of 1.2 was arrived from the curve in the book by Biggs, (3) with a rise time of t = 0.035 seconds and r natural period of T = 0.04. seconds. The value of 1.1 was calcu-lated from the same curve for a rise time of 0.2 seconds and a natural period of 0.04 seconds. After the flexibility analysis by NASTRAN, a post processor is used to combine the element forces/moments of various ioadings consider.ed for all the loading combinations. Then a second post-processor is used to calculate the required reinforcement in a11 elements of i,.1alls and slabs. This post processor uses the ultimate strength design method for reinforced concret2. The results of the present analysis are compared to the reinforcement as specified on the design drawings to show the adequacy of the structure.
,1 7,4 RESULTS AND CONCLUSIONS It is found that the containment interior concrete structures are adequate to sustain the accident pressure loads, based on the evaluation criteria set forth in Section II, in the event of pipe breaks in the subcompartments. Shown in Figure 52A and 528 is a sample of tabulated computer out- ' put to compare the calculated required reinforcement in the con-crete with what has been provided in the existing design. In place~ such as the top of the primary shield wall at operating floor slab junction and the slab around the steam generator upper supports area, the calculated reinforcement may exceed the rein-fo.rcement available in design in certain elements due to the con-centric application of local loads. Engineering calculations were performed to demonstrate the adequacy of desing in concrete. A sample deflection plot is shown in Figure 53. This is the cross section view of a N-S section from the symmetric model. Deflec-tions from dead load and accident pressure indicate that good flexibility analyses were obtained from the finite element analyses.
- 8. 0 REFERENCES
- 1.
Westinghouse System Standard Design Criteria 1.19, "Criteria for Protection Against Dynamic Effects Resulting from *Pipe Rupture, 11 Westinghouse Proprietary Class 2, Revision 0, March 1978, West-inghouse Electric Corporation, Pittsburgh, PA.
- 2.
MSC-NASTRAN Level 15.5, The MacNeal-Schwendler Corporation. MSC-51 Version, September 8, 1978.
- 3.
John M. Biggs, "Introduction to Structural Dynamics, 11 McGraw-Hill, Inc., New York, 1964. 4 *. "Dynamic Analysis of the Reactor Coolant System for Loss of Coolant Accidents: Salem Nuclear Generating Stations I and II 11 December 1, 1978, NS-TMA-1996
TABLE 1 CONTAINMENT GEOMETRIC DATA TMD Node Volume. (ft3) 1 19000 2 14400 3 27900 4 29900 5 27900 6 29400 7 25700 8 34200 9 40600 10 38800 11 5700 12 5700 13 37000 14 32800 15 52900 16 52900 17 2068000 18 29900 '/
- ')
i.l TABLE 1 (Continued) SALEM NUCLEAR GENERATING STATION REACTOR CONTAINMENT SUBCOMPARTMENT DATA EQUIV. INERTIA EQUIV. HYDRAULIC MINIMUM MAXIMUM LENGTH LENGTH DIAj\\lETER AREA AREA FLOW PATH K F LI -1:§ DHEQ
- AMM AMAX 1-2 0.19 0.0095 9.44ft 8.0lft
- 23. 95ft 1094.0ft2 1548.8ft2 2-3 0.262 0.0095 18.40 17.15 21.50 1044.3 1548.8 3-4
.506 0.0095 23.02 18.85 19.67 757. 1377.2 (1) 4-18 1.13 0.0095 31.34 28.54 14 201.8 1377. 2 (1) 18-5 .506 0.0095 23.03 18.85 19.67 757. 1377. 2 ( 1) 5-6 0.215 0.0095 23.84 20.91 24.56 1044.3 1353. 6-1 1.23 0.0095 21.42 19.16 5.78 72.4 1372.8 1.3 0.0095 5.57 5.01 1.80 12.9 14,940 1.36 0.0095 14.31 8.23
- 4. 77 93.9 14,940 1.37 0.0095 14.22 7.95 8.42 162.1 14,940 4-17 1.4 0.0095 8.58 5.44 6.54 81 14,940 (1) 18-17 1.4 0.0095 8.58 5.44 6.54 81 14,940 (1) 5-17 1.37 0.0095 14.22 7.95 8.42 162.1 14,940 6-17 1.39 0.0095 7.10 5.15 6.32
- 81. l 14,940 1-7 1.3 0.0095 7.58 4.68 3.03 33.3 1098.l 7-14 1.21 0.0095 2.93 0.733 2.29 105.1 1098.l 14-17 1.4 0.0095 2.49 1.008 5.24 102.7 14,940 6-8 1.28 0.0095 7.42 4.46 6.48 45.0 1168. 0 8-13 1.15 0.0095.
3.83 0.935 7.44 152.6 1171. 8 13-17 1.39 0.0095 4.39 1.370 10.88 211.6 14,940 4-9 1.24 0.0095 6.59 4.35 6.37 45.0 1805.0 ( 1) 18-10 1.24 0.0095 6.59 4.35 6.37 45.0 1805.0 ( 1) 9-15 1.03 0.0095 5.61 1.519 3.24 359.7 1805.0
TABLE 1 (Continued) SALEM NUCLEAR GENERATING STATION REACTOR CONTAINMENT SUBCOMPARTMENT DATA EQUIV. INERTIA EQUIV. HYDRAULIC MINIMUM MAXIMUM LENGTH LENGTH DIAMETER AREA AREA FLOW PATH K F LI __!lg_ DHEQ AMM AMAX 15-17 1.31 0.0095 5.16ft l.447ft 11. 63ft 338.7ft2 14,940ft2 10-16 1.03 0.0095 5.61 1.519 3.24 359.7 1805.0 16-17 1.31 0.0095 5.16 1.447 11.63 338.7 14,940 7-9 0.72 0.0095 87.29 84.07 16.64 329.3 505.3 9-10 0.27 0.0095 93.39 74.64 12.86 236.5 331.5 10-8 1.8 0.0095 94.50 87.26 15.27 329.3 590.3 8-7 1.03 0.0095 26.90 14.10 8.29 130.l 590.3 415 0.0095 95.5 95.5 20.23 451.1 451.l 6 0.0095 117.4 117.4 20.23 451.1 451.l 16-13 0.0095 100.0 100.0 20.23 451.l 451.1 13-14 0.0095 84.90 81.48 20.20 428.6 451.1 9-11 1.19 0.0095 14.11 9.27 8.48 97.9 1805 10-12 1.19 0.0095 14.11 9.27 8.48 97.9 1805 11-17 1.4 0.0095 7.07 5.33 2.51 52.2 14,940 12-17 1.4 0.0095 7.07 5.33 2.51 52.2 14,940 11-15 1.4 0.0095 3.46 3.04 2.95 42.2 3,415 12-16 1.4 0.0095 3.46 3.04 2.95 42.2 3,415 3-11 1.25 0.0095 4.87 2.59 6.46 50.5 1071.3 5-12 1.25 0.0095 4.87 2.59 6.46 50.5 1071. 3 2-11 1.22 0.0095 4.63 2.49 8.23 37.4 572. 6-12 0.66 0.0095 13.86 8.75 11.85 37.4 1,163 '/
TABLE 2
- . SHORT TERM SLOWDOWN COLD LEG OEG - INLET TEMP z 544
$\\R'!MARY z BREAK MASS FLO~ ANO ENERGY FLOW TIME CS)= .00000 .00100 .00201 .00300 .00401 ~00501 .006{)1 .00701 .* 00800 .OC901 .01001 .01101 .01200 .* 01301 .01400 .* 01501 .* 01603 001702 .01801 .* 01903. .02002 .02102 002200. .* 02303 .* 02400 .* 02505 .* 02601 .02702 .* 02804 .02904 .* 03003 .* 03102 ~03200 .03306 .03401 .03500 .03601 .03701 .038QI) .03901.. MASS FLOW(LS/S) 9.SOOOOCOE+D3 2.9666790E+04 4.0341319E+04 4.7292569~+04 5.Hl555G5E+04 5.465303'1E+04 . 5.6291837E+04 5.709?976E+04 5.731572l:.E+04 5.711W,3Sf.+04 . 5.66375~9E+04 S.5933401E+04 5.5247761E+C4 5.45038J1E+04 5.3346875E+04 5.331CC05E+04 5.2950440E+04 5.277C0G2E+04 5.2754332E+04 5.2858107E+04 S.3023612E+04 5.3231.459E+04 5.3466582E+04 5.3714259E+04 S.3956454E+04 5.4212232Ev04 S.44480.55E+04 5.46314091:+04 S.4911461E+04 S.512%47E+C4 S.S335714E+04 5.5539019E+04 5.5737229E+04 5.5929617E+04 5.610~120'.::+04 5.6280454E+04 5.6449272E+04 5.6603133E+04 S.6761247E+04 5.6955331E+04 ENERGY FLOW(STU/S) S.1269600E+06 1.585222SE+07 2.15576%E+07
- 2.527217iC:+07 2.770%37E+07
- 2. 920201 OE+07 3.0074307E+07 3.0501515£+07 3.0611493~+0?
3.05COZ';*9E-<-07 3.023796.'-,(:+!J?
- 2. 93ul;Q!i5E +07 2.9l,~0342E*~Q?
2.9090483E+07 2.8741308E+07 2.845S560E+O? 2.8270547E+07
- 2.8179426E+G7 2.8175356E+07 2.8234001E+07 2.8325097E+07 2.843998:SE+07 2.8565871E+07 2.869~J11E+07 2.83306.35E+07 2.8%2'984E+07 2.9015732E+Q7 2.92214S1E+07 2.93455\\31 E+07 2.9463501Et07 2.957413GOE+07 2.9684798E+07 2.9791916E+07 2.939S<tt+7E+07 2.9993176E+07 3.0035995E+07
. 3.0177540E+07 3.0263324E+O? 3.0347309E+07 3.0471290E+07 AVG ENTHALPY(BTU/LB) 539.68 . 534.34 . 534.38 534 *.38 . 534.36 534.32
- 534.26 534.18 534.09 533.93 533.89 533.80 533.75 533.73 533.76 533.82 533.91 534.00 534.08 534.15 534.20 534.24 534.28
. 534.30 534.33 534.36 534.33 534.l.Q 534.42 534.44 534.46 534.49 534.51 534.53 534.55 534.57 534.60 534.62 534.65 535.00
TABLE 2 (Continuedl .04001 5.7269953E+04 3.0643925E+Q7 535.08 .04101 S.7656602E+04 . 3.0853823E+07 535.13 .04201 S.807Sl,63E+04 3.1079767E+07 535.16' .04301 .5.85051SSE+04 3.1311344E+07 535.19
- 04401.
. 5.8921332E+04. 3.1535556E+07 535.21 .04501 5.9320544E+04 3.1750407E+07 535.23 .04601 6.363.'+541E+04 3.4316400E+07 538.85 .04700 7.9566765£+04 4.2643593E+07 535.95 .04800 7.7726402E+04 4.1695644E+07 536.44 .04900 8.0215430E+04 4.2993834E+07 535.98 .05001 8.0361150E+04 . 4.3070354E+07 535.96 .05101 8.1357361E+04 4.362368GE+07 536.20 ~05201 8.2793t.02E+04 4.4339343E+07 536.15 .05301 8.3044482E+04* 4.4491091 E+07 535.75 .05401 7.956~07iE+04 4.2612590c:+o7 535.58 .05501 8.0271996£+04 4.3029610E+O? 536.05 .05601 8.1231675E+04 4.3543654E+07 . 536.04 .05702 8.24031J89E+04 4.4167075E+07 535.98 .05802 8.2107341E+04 4.39G6645E+07 535.72 .05901 8.2391149E+04 4.4172250E+07 536.13 e06002 8.4055816E+04 4.50745£0E+07 536.25 .06102 8.4874937E+04 4.5498522E+07 536.07 006202 8.4939713E+04 4.5526324E+07 535.98 .06301 8.48L,6055E+04 4.5475601E+07 535.98 .06401 8.49G6107E+04 4.5556161E+07 536.04 .06504 8.52545.!_, 71: +04 4.56985COc+07 536.02 .06602 8.5209319E+04 4.5c64637E+07 535.91 .06702 8.4737522E+04 4.5433617E+07 535.91 .06802 8.4931443E+04 4.5526572E+07 536.04 .06902 8.5359472E+04 4.5760620E+07 536.09 .07002 8.58301l4E+04 4.6041832E+07 536.12 .07102 8.6181768E+04 4.6200564E+07 536.08 .07203 8.6362700:::+04 4.6293757E+07 536.10 .07303 8.6593759E+04 4.6423590::+07 536.11 .07404 8.6729G97E+04 4.6493i94E+07 536.07 .07501 8.6664177E+04 4.6452127E+07 536.00 .07603 . 8.64 73291 E+04 4.6350647E+07 536.01 .07701 8.6541939E+04 4.639003~E+.07 536.04 .07804 8.6646380E+04 4.6445776E+07 536.04 .. 07902 8.6Tl22'22E+04 4.6513130£+07 536.03 .08000 8.6S~1-4137E+04 4.6559071E+07 536.02 .08105 8.6914262E+04 4.6535817E+07 536.00 .08201 8.6932CJOE+04 4.6593090~+07 535.97 .08301 8.6823136E+04 4.6523552E+07 535.90 .08405 8.6470445E+04 4.6334585E+07 535.84 .08501 8.6248120E+04 4.6217448E+07 . 535.87 .08604 8.6188126E+04 4.6182932E+07 535.84 f
') ~.. TABLE 2 (Continued) .08703 S.6013969E+04 4.6084447!::+0? 535.78 .08803. 8.5859193E+04 4.6001745E+07 535.78 .08903 8.5840264E+04 4.5939739!:+07 535.76 .09003
- 8. 5691+045 E+04 4.5904662E+O?
535.68 .09100 8.5419[173~+04 4.57541376E+OI' 535.65 .09207 8.5222317E+04 4.5647741+E+Ol 535.63 .09302 8.5019145E+04 4.5533616E+07 535.57 .09402
- 8.4737715E+04 4.5330167E+O?
535.54 .09503 8.4591554E+04 4.S301821E-~O? . 535.54 .09605 8.4520122E+04 4.52599831:+07 535.49 .09702 8.44070102+04 4.51964702+07 535.46 .09806 8.4363157E+04 4.517130i E-1-07 535.44 .09904 8.433743iE+04 4.5155015£+07 535.41 .10006 8.4329226E+04 4.514c437E+07 535.38 .10204 3.4337i30::+04 4.5147633!:+07 535.32 .10404 . 8.422;~50DE+04 4.511402.)E+O? 535.25
- 1(1~0' IL411907f>E+04 4.501f..7"i()f+(l7 "j"'\\";., 5 910804 8.3955618E+04 4.4924168E+07 535.09
.. 11006 8.3899711E+04 4.4888<;*34E-:-07 535.03 .11201. 8.3964362E+04 4.4919316E+07 534.98
- 11403
- 8.4056578E+04 4.4963018'.:+07 534.91
.. 11602 8.4097144E+Q4 4.4973441JE+C/ 534.84 .11802 8.4129106E+04 4.4989533E+07 534.77 .12006 8.4230813E+04 . 4.503-3735<:+07 534.71 .12201 8.4429354E+04 4.51403'11E+07 534.65 .12404
- 8. 468[l~:99E+04 4.527432i',;::+Q7 534.60
.12607. 8.4941925E+04 4.54036'./Ji:+O? 534.53 ... 12811 8.51456Li9E+04 4.55o.;cc:i£+07 534.45 .13008 8.5320055E+04 . 4.5592714E+07 534.37 .13207 a.ssc:;.s?sE+04 4.5637133;:+07 534.30 013408 8.5731095E+C4 4.57997t..7E+07 534.23 .13609 8.5970S32E+04 4.5921497E*~C7 534.15 .13808 8.6202351E+04 4.6033561E+07 534.08 .14008. 8.64i3482E+04 4.6147133E+07 534.00 .. 14209 8.6619274E+04 4.6247339C:+07 533.92 014401 8.6795341E+04* 4.6334.1.GSE+O? 533.84 .14608 8.696178CE+04 4.M 15772E+07 533.75 .14808 8.7094774E+04 4.64792/6E+07 533.66 .15002 8.7193£..54E+04 4.6Szt,S lSE+07 533.58
- 15205 8.7260375E+04 4.6552293E+07 533.49
.15409 . 8. 72U33l,E+04 4.655<;{. 0::H~+07 533 *'*0 .15607 8.7287495E+04 4.655i077E+07 533.31 .15eos
- 8. 7272c*O*~E+04 4.6535i'55E+O?
533.22 .16007
- 8. 725[1463E+04.
- 4.652"l15*~E+C7 533.14
.16208 8.72~J444E+04 4.65101 ?2E+07 533.07 .16408 S.72t0267E+04 4.64931 i'5E+07 532.99
- 16611
. 8.7213B13E+04 4.64774*10::+07 532.91
TABLE 2 (Continued) .16807 8.7163091E+04 4.6443890E+07 532.84 .17005 8.7084311E+04 4.6395328E+07 532.76 .17202 8.69i33057E+04 4.6334995E+07 532.69 .17408 8.6854780E+04 4.6260071E+07 532.61 .17601 8.67i4169E+04 4.6179117E+07 532.54 .17805 8.6539577E+04 4.6079761E+07 532.47 .18002 8.6329322E+04 4.596174SE+07 532.40 .18204 8.6096770E+04
- 4.5832244E+07 532.33
.18403 8.5857(379E+04 4.S699859E+07 532.27 .18600 8.5623957E+04 4.S570126E+07 . 532.21 .*, ~802 8.5369156E+04
- 4.5429133E+07
. 532.15 .19003 8.;5090251E+04 4.S275347E+07 532.09 .19202 8.483354CE+04 4.5134363E+07 532.03 .19406 8.4593o94E+04 4.5002058E+07 531.98 .19603 8.435970SE+04 4.4873242E+07 I 531.93 .19802. 8.4ln3447E+04 4.4774896E+07 531.87 .20006 . 8.4032968E+04-4.4691204E+07 531.83 .20509 8.3857325E+04 4.453GD31 E+07 531.72 .21004 8.4011389E+04 4.46645GOE+07 531.65
- 21501 8.4363720E+04 4.48!,6246E+D7 531.58
.22007 8.4807331E+04 4.5076633E+07 531.51 .22507. 8.5232560!:+04 4.5296344E+07 531.44 .23012 8.5616797E+04 4.5494115E+07 531.37 .23510 8.5923865E+04 4.5650540E+07 531.~9 .24016 a o6152t,24E+04 4.5764925E+07
- 531.21
.24509 8.6303290E+o4 4.5Sl,0610E+07 531.13 .25008 8.6423271E+04 4.5894593E+07 531.04 .25502 8.6470G17E+04 4.5912302E+07 530.96 .26002 8.6417673E+04
- 4.5875924E+07 530.86
.. 26512 8.6256230E+Ot. 4.5781266E+07 530.77 .27007 8.6019512E+04
- 4.56l,3362E+07 530.67
.27506 8.5726680E+04 4.541JSl,19E+07 530.59 .28002 8.5395036E+04 4.5302387E+07 530.50 .28505 3.5040!,06E+04 4.5107676E+07 530.43 .29010 8.4705346E+04 4.492i..192Ev07 530.36 .29502 8.44.!.l.056E+04 4.47809!SE+07 530.30 .30003 8.42ll5i91E+04 4.46930~2E+07 530.26 .30503 8.426i.926E+04 4.4679901::+07 530.23 .31009 8.4399729E+04 4.4749S!31E+07 530.21 .31501 a.4ca792E+C4 4.48901+D4E+07 530.20 .32012 8.5031550E+04 4.508 4 '317E+07 530.18 .32503 8.53e5963E+04 4.526763n+o7 530.15 .33010 8.5632D36E+04 4.5422Q!,6E+07 530.12 .33508 8.586596LtE+04 4.55153c;'OE+07 530.07 .. 34019 8.5936584£+04 4.5548477::+07 530.02 .34505 8.5913760E+04 4.5531371!:+07 529.97 m3SQ19 8.5832577E+04 4.5484482E+07 529.92
- )
- *.1 TABLE 2 (Continued)
.35505 8.5731292E+04 4.5426833E+C7 529.87 .36010 8.562532QE+04 4.5366933E+07 529.83 .36505 8.5514111E+04 4.5304534E+IJ7 529.79 .37002.. 8.5390123E+04 4.523535l,E*HJ7 529.75 .37504 8.5245221E+04 4.5155071 E-t*O? 529.71 .38005 8.5097514E+04 4.5073422E-?07 529.67 .38503 8.49634i>0E+04 4.4999291,£+07 529.63 .39013 8.4857789E+04 4.4940359E+07 529.60 .39513 8.4~Q4927E+04 4.4909847E+07 529.57 .40004 8.480J465E+04 4.4909522!:707 529.54 .405US 8.4876388E+04 4.49433532+07 529.52 .41010 8.4994445E+04 4.50037971:+07 529.49 .41506 8.5118758:::+04 4.5067.!t15:.+07 529.47 .42013 8.5219014E+04 4.511e01i E+07 529.44. .42505 8.5264604E+04 . 4.51393lt5~+07 529.40 .43005 8.5236661E+04 4.5121222E+Q7 529.36 .43511 8.5125910E+04 4.S059053c"07 529.32 .44013 8.4961C64E+04 4.4968565E+07 529.28 .44519 8.4835516E+04 4.4899%3E+07 529.26 .45009 8.4756623E*~04
- 4.48561022+07 529.23
.45510 8.4564491E+04 4.4762220::+07 529.20 .46012. 8.4441036E+04 4.4684310C:'-07 529.18 .46516 8.4310392E+04 4.4613QL,SE+07 529.15 .47005 8.41e260.;E+04 4.4543461 :::+{)7 529.13 .47505 8.4065130E+04 4.4479405E+07 529.11 .48011 8.40027G2E+Q.;. 4.44451C~E+07 529.09 .48506 8.4039Gt,s:::+04 4.4464C53E+07 529.08 .49007 8.4102951E+04 4.4496177E+07 529.07 .49511 8.4153770E+04 4.4521i~76E-V07 529.05 .50013 8.4233692E+04 4.4562779E+07 529.04 .51014 8.4352637E+04 .4.46223t,2E+07 529.00 .. 52017 8.4326383E+04 4.4636229E+07 528.95 .53008 8.4375G91E+04 4.4626S92E+07 528.91 .54011 8.4212453E+04 4.4535621E+07 528.85 .55012 8.393721 l,E+Ol+ 4.4385361E+07 523.79 .56001 8.3629112E+04 4.42506L>:SE +07 528.75 .57005 8.3603D03E+04 4.4203!.12E707 528.72 .58010 8.35611<;0E+04 . 4.4170551 ~l*Q? 528.70 .59017 8.356~940E+04 . 4.41:::C~.~:;~+C7 523.67 .60005 8.3616i42E+04 4.42038)31:+07 528.65 .61008 8.3.!>3C!,Q5E+04 4.420~S3.'.,E+07 523.62 .62004 8.3553425E+04 4.416<'.fGi.5E+07 528.58 .63007 8.342t.072E+04 4.409352cE+07 528.55 .64001 8.326~037E+04 4.40QS74SE+07 528.51 .65011 8.3095!374E+04 4.391f,933E+07 528.49 .66002 8.2972551E+04 4.384~C:02E+07 523.46 067006 8.2914367E+04* 4.3815921E+07 528.45
TABLE 2 (Continued) .68002 8.2910933E+04 4.3813023E+07
- 528.43
.69014 8.2905583E+04 4.3803932E+07 528.42 .70011 8.2E62832E+04 4.3785099E+07 528.40
- 71005 8.2795168E+04.
4.374ij31 t,E+07 528.39 .72004 8.2704208£+04 4.3699205£+07 528.38 .73006 8.25134379E+04 4.3635018.':+07 528.37 .. 74019 8.2462327E+04 4.35701iGE+07 528.36 .75011 8.2364652E+04 4.35178ME+07 528.36 .76010 8.2291312E+04 4.347S'031E+07 528.36 .77001
- 8. 22'* 7739::::+04 4~3456202E+07 528.36
.78004 8.2229975E+04 4.3447237E+07 528.36 .. 79003 8.21976-!.4E+04 4.3430541E+07 528.37 .80018 8.2117324E+04 4.338:3549E+07 528.37 .81001 8.2006973E+04 4.3331037E+07 528.38 .82006 8.1890459E+04 4.3275020:::+07 528.40 .83020 a.rn06127E+04 4.3227372 i:+07 528.42 .84009 8.1729137E+04 4.318';.000:=:+07 528.44 .85002
- 8. 17C0349E+04 4.321919l.E+07
- 523.43
.86002 8.19010~9:::+04 4.32u570~E+07 528.51 .87011 8.2001242E.,.04 4~33411711::+07 528.54 .88019 8.2074635E+04 4.3332777E+07 528.S~ .89010 8.21'.2618E+04 4.3421797E+07 528.61 .90003 8.2172i)!,2E+04 4.344o:.:.i;:i~+o7 523.65 .91009 8.2191??CE+04 4.34549392,'07 523.70 .92023
- 8. 22l! 2299E+04 4.3435722;:+07 s;s.75
.93009 8.2263925E+04 4.35011u5E+07 s,a.so .94002 8.22l.6366E+04 4.3t.96337:::+o7 528.85 .. 95025 8.2256954E+04 4.3507095E+07 528.92 .96008 8.2293310E+04 4.35317541.:+07 528.98 .97009. a.22n1111:;+04 4.3530713c->07 529.05 .98001 8.223127Q:;+o4 4.351027iE+07 529.12 .. 99008 8.21%025E+04 4.3498416E+07 529.20
- 1.00003 a.218107SE+04 4.3497811E+07 529.29
TABLE 3 HOT LEG BREAK RELEASES TIME (sec) MASS ENERGY
- 0.
9.3750E+03 5.8335E+06 l.OlOOE-03 5.5087E+04 3.4119£+07 3.0lOOE-03 7.9703E+04
- 4. 9325E+07 4.0lOOE-03 7.8060E+04 4.8261E+07 7.0200E-03 6.7104E+04 4.1413£+07 9.0lOOE-03 6.4921E+04 4.0104£+07 l.3010E-02 6.7063E+04 4.1445E+07 3.9000E-02 7.3665E+04 4.5653E+07
- 4. 6010E-02 7.6558£+04 4.7449E+07
- 4. 7010£-02 8.3708£+04 5.1930£+07 4.8000£-02 7.9944E+04 4.9548E+07 4.9010£-02 8.3571£+04 5.l808E+07 5.lOlOE-02 8.2752E+04 5.1289E+07 5.3000E-02 8.3052E+04 4.1464E+07 6.lOlOE-02 7.9698E+04 4.9380E+07 6.3020E-02 8.1442E+04 5.0470E+07 6.5020E-02 8.0335E+04 4.9790E+07 6.8010E-02 8.1702E+04 5.0642E+07 7.1030E-02 8.1540E+04 5.0546E+07 7.3000E-02
- 7. 9443E+04 4.9239E+07 7.4010E-02 8.2200E+04 5.0975E+07 7.BOOOE-02 8.1408E+04 5.0452E+07 8.5020E-02 8.0270E+04 4.9727E+07 8.9030E-02 7.9714E+04
- 4. 9372£+07 9.3010E-02 7.9600E+04 4.9290E+07 9.6050E-02 7.9762£+04 4.9386E+07 9.9050£-02 7.9915E+04 4.9473E+07 l.1507E-Ol 8.0404E+04 4.9736£+07 1.2501£-01 7.9716E+04 4.9279E+07
- 1. 5510£-01 7.3877E+04 4.5592E+07
- 1. 7003E-Ol 7.1882E+04 4.4340E+07 l.9001E-Ol 7.1161E+04 4.3848E+07 2.1019E-Ol 7.1253E+04 4.3826E+07 3.1006E-Ol
- 6. 7553£+04 4.1184£+07 3.5006E-Ol 6.7145E+04 4.0788E+07 4.2017E-Ol 6.5554£+04 3.9622E+07 6.8026E-:-Ol
- 6. 2077E+04 3.7088E+07 1.0002E+OO 5.8637E+04 3.4954E+07 2.0002E+OO 5.0525E+04 3.0421E+07 3.0002E+OO 4.2150E+04 2.5800E+07
PEAK PRESSURES (PSIG) (HL terminated at 3.0 sec and CL terminated at J.O sec, unless noted) DEHLl ** DEHL2
- DEl!L3 DEHL4 DEHL5 DEHL6 DEHL18** DECLl DECL2 DECL3 DECL4 DECL5 DECL6*
DECLHl* 1 14.6 16.2 16.1 2 14.2 16.2 16.l 3
- 13. 7 16.l 16.l 4
13.3 15.9 16.0 5 4.5 13.9 13.9 6 4.5 13.9 13.9 7 2.5 13.4 13.4 8 2.4 13.4 13.4 9 2.5 13.4 13.4 10 2.4 13.4 13.4 11 4.3 13.9 13.9 12 2.8 13.5. 13.5 13 2.3 13.4 13.4 14 2.3 13.4 13.4 15 2.3 13.4 13.4 16 2.3 13.4 13.4 17. 2.2 13.4 13.4 18 4.6 13.9 13.9 Run terminated at 3.0 sec.
- Run terminated at 0.5 sec.
15.9 13.9 13.8 4.6 15.9 13.9 13.8 4.6 15.9 13.9 13.8 .4.5 16.2 13.9 13.8 4.6 14.0 16.l 16.0 13.6 14.0 16.1 16.0 13.7 13.5 13.4 16.l 2.5 13.5 13.4 13.3 2.6 13.5 13.4 13.3 2.6 13.5 13.4 13.3 2.5 13.9 13.5 13.3 2.8 13.5 14.0 13.4 4.4 13.4 13.4 13.9 2.3 13.4 13.4 13.3 2.3 13.4 13.4 13.3 2.4 13.4 13.4 13.3 2.3 13.4 13.4 13.3 2.2 14.0 ~6.0 i5.9 14.7 18.5 18.2 17.9 17.1 7.2 15.7 15.8 18.2 18.2 17.9 17.2 7.2 15.7 15.8 17.8 17.8 17.9 17.3 7.2 15.7 15.8 17.3 17.3 17.4 18.3 7.4 15.7 15.9 7.3 7.3 7.4 7.5 18.2 18.9 18.6 7.3 7.3 7.4 7.4 18.1 19.l 18.6 5.3 5.3 5.4 5.3 5.2 15.0 15.l 5.3 5.3 5.3 5.3 5.2 15.0 15.1 5.2 5.3 5.3 5.2 5.2 15.0 15.l 5.3 5.3 5.3 5.2 5.2 15.0 15.1 7.3 7.4 7.4 7.2 5.4 15.0 15.2 5.6 5.6 5.6 5.6 7.6 15.8 15.8. 5.2 5.2 5.2 5.1 5.1 14.9 15.0 5.1 5.2 5.2 5.1 5.1 14.9 15.l 5.1 5.1 5.1 5.1 5.1 14.9 15.0 5.2 5.2 5.2 5.1 5.0 14.9 15.0 5.0 5.1 5.1 5.0 4.9 14.9 15.0 7.4 7.5 7.5 7.6 17.7 18.6 19.2 ,., ~ *---~---*---**-.,.,_. _____ _,,.....,...~-4AA_i_N.,.,.,..M..._, ....,~-*----
TABLE 4A TMD INPUT FOR PRESSURIZER ENCLOSURE Node # Volume (ft3l 17 2068000 19 4510 Inertial Equiv. Min Hydraulic May Length Length Area Diameter Area Flow Path K f (ft) (ft) (ft2l (ft) (ft2l 2 -. 19 1.40 .0095 8.75 5.38 12.86 1.89 357.2 19 - 17 1.00 .0095 13.4 10.1 103.6 7.38 17300 I J l - 19 1.36 .0095 8.05 5.33 12.86 1.88 535.8 2 - 17 1.40 .0095 10.84 6.27 59.3 6.91 14940 1 - 17 (Removed from Model)
TABLE 48 PRESSURE DIFFERENTIALS ACROSS PRESSURIZER ENCLOSURE WALLS Peak ~P Case P19 - P17 (psi) Time (sec) DEHL 1 1.95 .063 DEHL 2 1.95 .066 DECL 1 L55 .070 DECL 2 1.63 .074
) ,:.1 ) \\' TABLE 4C TMD INPUT FOR STEJ1.M GENERATOR ASYMMETRIC PRESSURIZATION Node # Volume (ft3l 19a 17500 17 2050500 Inertial Equivalent Hydraulic Min May Length Length Diameter Area Area Flow Path K f (ft) (ft) (ft) (ft2l (ft2l 2 - 17 1.37 0.0095 12.69 7.21 4.1 78.l 14940 3 - 17 1.38 0.0095 11.4 6.42 7.1. 112.5 14940 15 - 17 1.38 0.0095 4.48
- 1. 29 6.37 284.5 14940 11 - 17 1.40 0.0095 6.38 5.13 2.36 34.8 14940 19A - 17 0.51 0.01 22.57 13.24 16.46 2882 17300 19A - 2 1.24 0.0095 7.83 5.21 6.79 21.8 506 19A - 3 1.19 0.0095 9.35 5-. 45 7.13 49.7 675 19A - 11 1.30 0.0095 6.23 5.06 2.61 17.4 506 19A - 15 1.29 0.0095 3.25 1.13 1.0 54.2 1805
Time (sec) 0 .042
- 043
.917 . 918 1.11 1.12
- 10.
TABLE 4E DOUBLE ENDED STEJl.MLINE BREAK rn STEAMLINE PIPE CHt'\\SE MASS AND ENERGY RELEASES Mass Flow Energy Rate (Lb/sec) (BTU/sec) 16738. 19.956 16738. 19.956 11907
- 14.196 11907.
14.196 24845 *. 16.024 24845. 16.024 32265. 18.439 32265. 18.439
/ Flow Path 11 - 17 12 - 17 11 - 15 12 - 16 11 - 3 12 - 5 2 - 11 5 - 12 9 - 11 15 - 12 12 \\: TABLE 4F TMD INPUT FOR STEAMLINE PIPE CHASE Contraction Area (ft2) 290.3 290.3 973.6 973.6 879.2 879.2 559.0 559.0 360.0 360.0 360.0
C* Time
- (sec) 0
.042
- 043
.971
- 972 3.08 3.09
- 10.
TABLE 4G SINGLE ENDED STEAMLINE BREAK MASS AND ENERGY RELEASES Mass Flow Energy Rate x 10-6 (lb/sec) (BTU/sec) 14778. 17.62 14778
- 17.62 8967.
10.69 8967. 10.69 28948. 15.94 28948. . 15. 94 31598. 18.06 31598 18.06
TABLE 5 AREAS FOR FORCE CALCULATIONS CENTROID llORIZONTAL VERTICAL TMD ANGLE HEIGHT AREA RADIUS AREA COMPONENT . ELEMENT (DEGREES) (ft.) (ft. 2) -1.fhl (ft. 2) STEAM GENERATOR 3 o.o 12.474 296.8 2.52 55.57 4 180.0 12.474 296.8 2.52 55.57 17 -111.14 STEAM GENERATOR 18 180.0 12.474 296.8 2.52 55.57 5 o.o 12.474 296.8 2.52 55.57 17 -111.14 STEAM GENERATOR 2 0.0 12.474 296.8 2.52 55.5Z 3 180.0 12.474 296.8 2.52 55.57 17 -111.14 STEAM GENERATOR 5 180.0 12.474 296.8 2.52 55.57 6 0.0 12.474 296.8 2.52 55.57 17 -111.14 PRESSURIZER 1 0.0 10.46 173.2 1.76 26.9 2 180.0 10.46 173.2 1.76 26.9 17 -53.8
- \\
- .1
- I BREAK TYPE*
& TMD BREAK COMPARTMENT HOT LEG IN 2 COLD LEG IN 2 HOT LEG IN 3 COLD LEG IN 3 HOT LEG IN 3 COLD LEG IN 3 HOT LEG IN 4 COLD LEG IN 4 HOT LEG IN 6 COLD LEG IN 6 HOT LEG IN 5 COLD LEG IN 5 HOT LEG IN 5 COLD LEG IN 5 HOT LEG IN 18 COLD LEG IN 18 TABLE 6 PEAK FORCES ACTING ON THE STEAM GENERATOR (LOOP COMPARTMENT BREAKS) PEAK HORIZONTAL FORCE (KIPS) 268. 191. 211. 153. 262. 182. 314. 223. 275. 192. 248. 176. 257. 179. 314. 223. TIME OF PEAK FORCE (SEC) 0.01023 0.0132 0.0134 0.0145 0.0186 0.0198 0.0251 0.0203 0.0208 0.0241 0.0165 0.0187 0.0207 0.0229 0.0251 0.0220
- FOR TMD ELEMENT 3 AND TMD ELEMENT 5 THERE ARE STEAM GENERATORS AT BOTH BOUNDARIES.
CONSEQUENTLY THERE ARE TWO ENTRIES FOR EACH BREAK FOR THESE TWO ELEMENTS.
BREAK TYPE & TMD BREAK COMPARTMENT HOT LEG IN 1 HOT LEG IN 2 COLD LEG IN 1 COLD LEG IN 2 TABLE 7 PEAK FORCES ACTING ON THE PRESSURIZER (LOOP COMPARTMENT BREAKS) PEAK HORIZONTAL FORCE (KIPS) 139 141 106 102 TIME OF PEAK FORCE (SEC) 0.01069 0.00813 0.0168 0.0116
TABLE 8 STEAM GENERATOR/R.C. PUMP LOWER SUPPORTS MAXIMUM MEMBER STRESS STEAM GENERATOR REACTOR COOLANT LOWER SUPPORTS PUMP LOWER SUPPORTS COLUMNS FRAME COLUMNS FRAME BREAK MEMBER RATIO MEMBER RATIO MEMBER RATIO MEMBER HOT LEG COLD LEG. 72 79 25.8 9 18.8 30 95% 41 26.3 89.6 41 57.6 NOTE: For models and member numbers, refer to Reference 4; Figures 3.2-1 to 3.2-11. 40 31 RATIO 49.8 99%
TABLE. 9 REACTOR COOLANT LOOP PIPING STRESS
SUMMARY
Maximum Stress Due to Maximum Stress Asymmetric Pressure Due to Other Faulted Allowable Location (KSI) Condition Loads (KSI)l,2 Stress (KSI) Hot Leg 2.6 28.5 50.l Crossover Leg 2.8 23.4 50.l Cold Leg 0.53 26.l
- 50.l (1) The 110ther Faulted Condition Loads 11 are: deadweight, pressure, Design Basis Earthquake, LOCA loop hydraulic forces and reactor vessel motion.
(2) These stresses represent the maximum RCL piping stresses resulting from postulated breaks at the reactor vessel inlet, reactor vessel outlet and reactor coolant pump outlet nozzles (Ref. 4, Table 3-1).
TABLE 10 MAXIMUM RCL PIPING STRESSES DUE TO MAIN STEAM LINE BREAK Location Hot Leg Crossover Leg Cold Leg 'I Maximum Calculated Stress (KSI) 38.6 20.7 18.7 Allowable Stress (KSI) 50.l 50.l 50.l
.... *-Do' -: ' l L ~1, ~* l I I ~ i 'l ~ I [}] c-- cr.1 ;.3 J
- --=--*
~.-.~~:~~* ~ =-~-~ --~-*~-~=~-~-_j _~~- -~;~ . i.. --~--- I................ - --. o-Ofl 7;? s L **
- -**-* **- --.... ~... -* **---*-*.. -** -.
---.-***... :... ;~--:-*-7**-7 -~*.-.;...:.~.--:... *...
- . *.... *L-
......,,_.... ; *---~---** ~..
- -*- ****--*--**---~-.. -~.,-:_.....:.... -' --*~-*
- .. _.t. *- ***---... :.. ** -~***-'-* -**-:- ---.,... I -
- ** _ *..:..., --* *- **J
--"!* *-.. ~*-= *t-- ***- -. --.. _... : -~ ---~ ---*.**.. ----*--*.. ... *-**--~-**** *.... ......... - -* -:- ---... --~---........ .. -... - ~-*.;._ -- -..... :-._ __, *..... -:-- **: -. :-"*" .---*. *--.----*--**-**.......;--;--~---****** .... _**:-*--............... -~----*~- ~
- -----........ *-.. ----~--...::.. __ ~ *---**-*-* - *---*- --* -***--**-*. - -*
--~ --:---~ I ........... --.. -*--*--*.-"'I****-~---- "'- n r.:. /.P7f/? S -- : * .I/ V' / V - ,1, /f I...L??~
- -*... -1... _~ ----!---............ -.. -*-...
**-... --~--*~ *-*
~---... __._ - :* ----.. *-r--. - -a*-***-***...... *...... ~....,:_... ** --.... :...... j
- ~- *--* ----:---* --*--*-**
. ;-*-~--.. *- *-*-
- -~-..
-:**-* *~ - i ... *--****r*---- -* -* -~--*-* **-*--. -*....... *.. *- - -~
- ~~ ;.,,,..,,/
"-- ~- ... "ll.../ ~ ***. -.... - l a.m5~.:l _:.,/:J /.:/ ;"/! !L~,'le ~A-~, V
QJ ' I. I
- I 0
~ -
- I J...
- o, F1gure 2 I
I . I ~ I '\\ .. '\\, \\. I I
i I Figure 3
- 'fi-AIJ /l Bo //6' t"L 1
, 4,,'_ 0" .. *.Sciqt,E 1**10 1~"
- I
o.o 1.0
- z.o 3.0 TJM[ AFTEfi tREAK CSECONDS>
ELEMENT 2 i . i Figure 4 PrfJ nm.ANfilVSIS, 0 HACEIJT ~rnRGlhl oE.\\-\\L;A.
.. ~-
- -~-....
. I l_ 1-'--*--
T I I.
- _____ JJ ___ w~* o.o 1.0
- .:.o J.o TIME
~FTER EREAK <SfCONDS> ELEMENT 3 Figure 5 PNJ rrm llNllLVSIS,. 0 PDICEIJT 1'1#1RGJN Dt:\\\\l °3 I I l. I
l J, I II II ~...
- .~....
)C) )(A *1'
- !~::, :;:,....:.,;:.. :1 X X l XX
- - H',__,_.,___.. _ f- *-
I I: r '
- ~*.... ~ -t-lf--lf--11--1--t-t-*:l-+-+-+-+-+-+-+--+--t--t--+--+--+--+--+--+--+-+-+---I
- *.f r+--+--+-+-+-+-+--+--+--+--+--+--+--+--+--4--+--+--+-f--+-+--4--4--l--l1-1~1--l--8 o.o 1.0 TIME AFTER 6REAK <SECONDS>
PNJ TMD ~NALVSIS, 0 PERCE~T MARGIN D~\\1 l "\\ 2.0 ELEMENT .I 3.0 ~. '; ;'.i . :.~ '~i ~:. I!...
I
- 'Figur.e 7 II II x,.
l!J - Vl 11.. L1.I a:
- J II)
Vl L1.I a: 0.. q; t-CJ t-o.o 1.0 TIME AFTER BREAK (SECONDS> PNJ TAD ANALYSIS, OE.~L\\S. 0 PERCENT MARGIN .I a.o ELE"1ENT ~. 10 .t 1. 3.0 /* / I I., ! i I i . >*fT.: ~- ;*.
~r~mmemzam*M~-~...,.-..*.... -..L...-~--~~r, .. ~ ... -*~ .. ~~~*~.-.~.~~-,w~,...,.,~-.,.~~-* \\ ~ ('" 1.. i: I.. '" fl:'\\ i I j l. I /Figure 8 I !~ ' ,... ~ ~ II II l lO.O M Cl Vl 0:. K L&I
- C(
a: f => Vl Vl L&I llC Q.. t-0 t-o.o l.O Tl~E AFTER BREAK <SECONDS> .PNJ TMD ANALYSIS, 0 PERCENT MARGIN DE..\\\\\\...S z.o ELEMENT Ir 3.0
- f.
~,.. '.f "q. '.*l =~.,......
- I
.; ~*.l' I ~.
- . (=:
I
R--~*---*-*-**~~~=--M-.-~*~ ~ *- 20~0 ~-.-.--.-_,........--J-,
- -- * --+-+--+---r--+-l---t--1 l_
r~ llJ ~1~1-1 J
- ~,__
x,xx. ). i ** ~* II 1i::.-**" ~-+-+--:-~ +F =JF~-f 1 +c~1-1~r hfF~l=FH ~.... ~----ltll ~1,-11=~ ~l_ 1-I I
- r--1~1-1-1 1*-1-1*-1-11 II r- *-~-,,-,.~"""
""(( . **r [JJ_.. ---,_ ll x H-1-+l+r 1 (([~=T] ___ l I ~Jn=: H---- -+--~~ --4-- ~ -rT*-r l r 1 1
- 1-1 :1
-* ** 1-1
- 1
- 1**1 ***,-ii ii lfTITT+TrT*-h-1-1 11111111rrrh1T~r1T
...J l-o I-l I I I I I I I I _ l_T_l_l_l_r_ll_l_I --*---------~ =- --.... * +f 1+l ~tt:tt .L: _ _LJ -tLf_'J_l_LLUJ_L_I
==~:~[ I} L~LLLL::~:i -- _ _1_tt_t_tttt ___ o.o a.o a.o J.o . TIMI.:: OHEll LREAK ( SlClJNLS > ELEl'";ElJT 6 Figure 9 . PNJ TMD ANALYSIS,. 0 P~RCEIH MllRGW \\
u.o **_:: :-: *--*. _- ::*~~~L1::_l~"'I'r**rr1i***i* ""~*".,,..M.. ~ **,.,.... -.-- * - --~+fr-=-. . :.,~ ;; :~ :,s: _.1.... :. ~* :~: J_l. K~ --Tri. *-- --~ -- ~,-......., -- -- rrrrrrrr -* .. * : **** L,_ - *-... +-l-4-+-l-+-f T Tfl Tl r1-I-! :! ~ ~ ~;; dl_IJ[~~-,__ I . - r r rJ{_1 P.
- 11 11 r 1
- 1 ---* -*- --*- *--,_ *,_ -,_ -~+-t-t-1-'l--t-~l-+-f-+-f--il
- -lH~f-t~;.J :* (
1.1 ll~.l 1 -. I --+-+-+~~--+-4->-t-+-+~-4-t-+-+-ll -. **1 i I ' !.. l_I I I__ LL --~-. _ ,_ -,_.... -.-.--t-+-t-*-+-+-*1....--..-..-.-........--+-.-+-+-+-0-tl 10.0 H-H*~ ~-1*1+H*11+-' :-:+1.<- I f*--:-~*-*--* _, ____,_,_,_,_,_._,_.'
- ~F\\ ~:11~n~-
1 1 r,T Vi~~~ ii-~=--- -+-<-<>--t-->-+~*-+-+--+-411 !. In I 11 ii f: Hl :: I nll-f : :: ~ ::::~~ -~: -=*-- --!-+-~ ':_:_1.--_!_-*.:.. -.:.*.1.-1.*~_li_'i.*.-_-_J.- 1 ,':~ 11~ rr,r1 rJi~,-~ = ~ -~=.~ - 1f I ~ I :l 111 ' ('l' Th* rl-ii --*-~ ---- --t--t--+-j~-f-~-*-
- n*1 r-1: n n r1 1
- r*
ii *** : : : I ~ : 1 l : I : ! l ! l ! J !II ! F:! I n:rir 1: :-1 :n-,: -] ~-,~1-~ T,=,~ ~,*~ ~ 1 ~ 1 1 ' 11111 n 11111 *1. 111 n ' 1 i-1 " ' I ll111*.. --I' -rrl.. --* 1~ lilllillilllllllilllllllllllllli 111 IJ_q J ~. i -***-***-*--~- --,_.- *-..... _,._,._+-+-I-*-~*
- - -* - ~ -t-t-t--t-1-t--t-+-+-i:*-+-t-+-+-tl J.
1- -
- +-1-+--f-f -t-1-9--+-t-.....-+-+-~-f-t-{-f-+-I:-
0.0 O.i O.Z 0.3 O.'f O.'J O., 0.1 0.1 0.9 1.0 Tl~E AFTER UfiE~K CSECONDS> ELEMENT I Figure 10 l'rJJ TAD AfJt)L\\'S!S, 0 PEJICEIH MARGIN VEC.Li
II .... =~JIT]J rurT-~ 0llcm+~ffilf Rmf tt~: 1-+-l--t-f~~- r~/1 ~-~r~liW::,( er* --*--~1. ---~ n I rn :-: b Ir: : : ; i i. H l :.rr_Fi hjt~t,,..
- '>___,,_--+--+-~
~:=.=*~ -~.11 , __ *i.LI i Ii!*. *1 ,; I! ii 1111 IJJJ.l IJ 11 ILU_t_* _ __ LL.I ' I I.J JJ I I I..LU _lLJJ_JJ lllJ~ f# - .._._.___._~..__._,_,_,_ l I I ; il ! ! ' I Ii ! I ! ! II I I I ~ I rrr n ._,_,_,.~._.._,,_,-<-+--+-<I ,_,_,_._r,, ~, ii ~ 1 i i ;1 r 1*1 i-1-r1-rrrrrnr -,- l--:-,cr_~~R'-_L 11 __ =:~ IO.O =~~::: I i::-: If: H hi I : : : _:: f :_ff [ffl-Hff l8+1+1. -,---- II
- --r-i:~1-rrr1i1111 i :11:111ij111i'11:11111~1111 ~Htl-h~c~-crrri--
rr1~1r1i-r-*1n11~1 rr111 *1rn1 r.1*111 rr--r1 rrn-n -rTr11-n-rn-,--- rn:: l i Ii I 1 i I ii l l I I !1 1 I ~ I Ii I I I i ii I 11 I i I. II ll1 *,r 1 U 1 ~R-l[l[l 1
- r,c~::
~ . : ii 111111111111111111. 1111111II11111111 *.. llfllTh--~- ~ t.c1lHf lU IJ: I H1: Ii: illl:H~IHJl:l~r+/-Hf~ __ -f_lit_i-_P_l_-:-__ -I-___,___~ ~ ~ 1 t 1 _L 1 t1J 11 __ ~_1J.l.JJ l __ lJ:111_~ iJ_ttUJ_J_l_JJ1L1 UJJ_ . ~ t 1 I I ~ ii I I ~ I ii l I ~ ~ !I ~ ! ! I II I I I I II I I I II I I I I II I I I 11 I I ~ 0*° CCOJ.fu 1u_11J 11i1u.ui1 r11 o i_J11_1J,-, f1l1__(11J 1_1}l.CCC~ ~ u,-,'* j'-', *1111. ! I 1 I *I j I l I I 1 ~ ~ ~ II ~ i ~ ~ !I I r l I 11 I I I i Ii I I I I II I I I I 11 ! I I I ~ r B n i i ii 1 ! 1 1 i ii n !1 1 Ii ~ n 1 i 11 r1 1 1 r11 111 1 rrr 1 rnn]J ~ fl ! I I II ~ i ~ ~ 11 J l /. ~ ! l I
- ~ !I 11 1 ii 11 ! 11 I i I I !I I I I I ii I I I I ii I ! I 111 i I [. J
~ I ! *1 I l 1j ~ I_ ~ ~-. l I I i 1 ! 11 :! i! 11 ii :I ~ ! 11 ~ II ! I I J 11 I I I I JI I I I I II I I I I_ ~ !_ I LL rrrcrn I i II '! i I ;i i I i !! ~ ~ 11 1 ~- II ' Ii I ~ ' I !I I I I ~ \\I I l I I II I I I l II I I I n ri-1 f i l ( ~ I 1 I i I 'I l ~ 11 I :I ! I i n I 11 fl ii I I ' n1 I !-'L~1,~1,_,[1U1'-~-,']111JIJ]J~ ~ ~Hff ff:ltff ::HiH:tbi=tHltH:ff t~ 1 gi=8f!=_ 1 1 c,; 1 D1 =_1 1 _=i 1 ':,'.=_l_c 1 1._1 1J,= -10.0 DIUJ[CUJ_1_*iJ_U_LLLU.ll[CCLCLUlC JJ_C JO _ ~ 0.0 0.1 O.;! 11.l 11.'f O.!S O.~ 0.7 O.li O.'f 1.0 THIE llf"fEfJ BlilEllK < S!ICONDS > ElEflENT 2 Figure 11 PNJ TAD ANALYSIS, 0 p~~CENT HOfiGJN DtCl~
II II UI a: 10.0 o.o I.I) Vl cc llL c.... a.... -10.0 'i iTTr1p1mmn 1 l 11 1 I ll 111 i II i-il -- --- l -IV)) ' I I I I - I I. I 1 r I I I r - --,_ *--,_ - -*-' --' --- w ~ ; ;, ;1 ~ J J '. * ! I 1Tl /11 ~~l I' ii-J
- >*"'""- _ L
-1 . rr-Ir r! 1/n. f - J __ -- L._. __ - T -*--* I lff ii'1 '1'1 - I f ' --
- --- -*- -I -l.. 1 :: ~.,,; >' - r --* * ---r -----* ---*--, _ * -,__ ----.__
1--+ -*-~-1L,11tl l \\rlil1--- -r - -- cJr111
- 111' 111111. 111111i-l 11 lhnr111nnTrr1 1.__ __ 1_1*1.
1 '11111t111 1111111:11111111111r11r111-1 11rr L,_ '-'- i 1 I ~ : I I ~ I I I' l i I i ii I I ' I i I I I I i! I I I I II I I ' I ! I I I I I L I 1 L*
- I I I P ~
~ ! ! I ~ I I I 1! I I I I I I I I I ~ I I 11....... l IT- *-~ ---1
- =011JJ1Jt111n11 ll!l li 11111 11 rr J -* 1f TT-----
1-" !ld lll!1illillll111 THI rir- -+- ~ -- ~i:*rr-n rri,.., n, 1 -* rr -r Tr -'T-* ---'----------- --*- - T{fflTTI ITll jl_rr lil JO-r--- ---*--* --
- '-
- r**1*---'--1rl---i*- --r-,.., J.J --
- ~ ~tj
- t!~rnf rl1i-, T1Tl-f t~f ::~,~f = :c:=1~-'- ---"
- ~_:: ______ -Tr[rJ1 rr11 r1 11 ~ r*1J1T1TrJ~1JY~r ~:d~]~... Jr-lrl~~-::
__ --+' UL1tl_U l_IJIJ_IJJJJJLIJ UJJL J_U_L J_IJ_ULLL ~==~~!I.JJ~:l_lf '::' :-: -*- l~ :~ ::*: ~~ ~ ~'-~-~'- -E lrT-
- --11-Tlnr
--1 --r- ~~IOJ - I - O;O 0.1 0.2 o.J o.'I o.5 o.6 o.r 0.11 0.9
- 1.0 TIME AFTER BREAK <SECONDS>
ELEMENT 3 igure 12 PNJ TMD ANALYSIS, 0 PERCENT MARG D~ Cl__~
~J.J 1111"' l+r~~r--_ -r*.. -4Jr1+r-rii+r._ m .. !.*! l :!1ilitH#~rl~t1-l~HltrHHt.. * .. ~fl 11*.. , ! 1 1r1 n_*Tr, !j 1*r1~1: 1 'r-'°, 1
- , i :1* 1111 fftlt1+n~cnJ
. i I I i 1: 1 ! ! ~ ~ l *
- l I 11 I I I I II I 11 1. ~ I UJ._JI LJJJ
.. : ' l l 11 !i ~ j [ .. ' ; I il I II 111 I 1. I I i 11 *1 I ~ l ' -J.... 1 L
- i l 111111 i.
~ 1 ' i I 1I~III11 LIJ_.lJJJ lJ... L *. L.~~ 1i:1ll!lll
- 'i!!
1 !lll~illl~I I 11urq I II IO.O 11 ' I 1* 1 1111111 ' ~' f I I ~ 1111 ~l fllllr!Tlll 'TJTI -r1-* 'l*~-:-H-~ ~':,ii*:-:-:: 11
- H-1+rr 1:r +1~1-H1i*
-~1 1-r- -;- 1 1 }1: r!-1111.i' 111' ! 1 I 11I,r:111.1rl1rrri-1J[J]JJ1 _ JJJJ)) *- I *i ! 1 r ! i ~
- I ! :. t i ! ~
~ i * ; i r ~ 1
- ! I I i' i l I I Ii I I 1 l i I I I I ~- I 11 I.')
V>
- 0.
I i ~ i 1 r 11 f I I f 1. : j ~ i I . t t j r ! ! i i I ;i ~ I I 11: I 11 Tll 1111 ii 1 rrr11 i." ~_IJIJ 1l~iIi1 * *;:: * ~ ! ! t I' 1 ~Ii l ~Ii I~ Ii 1 lJI I lJi llll~ 1
- 1 1 1.1 I 1 1 1 r 1 1 1 ~ r r 1 1 i 1 I i ! 1 1 1: 1 1 1 1 i 1 1 1 1 l
- UJ 1_1 JJ J I.LI 11
! ;_*, 1111111 I i.i II i I I I I i i :, f ' I ~ I 111111 II.. J JI 11111 JJI_ I ti . 1111 J l f ' i 1 1 1 ! : 1 i t 1 1 1 1 r 1 11 I ' 1 J ' ' I_ 11111 ~ 1 IJ..I_ 11111:! r !Jliii;l\\!11111111111111 1111 Ill llllll ~~ 0 t' j I I I 1 I I ! 1. I ! ) ! I I 1 1 ! \\ \\ I I I I ~ I I I I I I I I I I I I I I I I I I I 1 I I I r~ ~!. . I I ! i ! ~ !. ! I ! ; ! I ' I ' i I I ' ;* ' ! ! ! ~ ! I I I I ! I I I ' I I 1 _I_ l I I 1.1 I I I I
- 1. !!
~ ! I I I I l I I I I ' ~ I I I 11 1 I 1
- ' t -~ l ! /' ! I I I I
- I I I I t l I I I ' I I I 11 I I I 11!
1 1 i ! 1 l ~ 1 ~ 1 : i 1 1 1 t; 1 ', ! *
- 1 r ! 1 r r 1. ~ 1 1 1 1 I r 1 1 i 1 1 1 1 1 1 Ii ! 1 1 I Ii
-.I U i_: . i ' i j ~ I I ! l i I I ~ i :. I i. : ! l I I I ; l I ; i I ' i i I I i I i I I I I I I I ' I I I fi
- n 1-*
- I0,0 i. * > j.Ji Jl J:n _ -J --** J ~JtJ j.
0.0 0.1 O.l! 0.3 O.'I 0.5 0.(, 0.1 0.0 0.Y 1.0 T IPJE IU:lEI~ IJl1U.!< < SHmJUS > HEM~IH 'f Figure 13 PNJ TMD 1~:JllLVSJS, 0 1-'EllCEl'H l11ARGllJ
~~ LL ~. - r-- *1 I __ JI~l I ~ -{-! _ ~---; l - '_,,J.11 J-
- 1111
--'-~~:=:-.I -r i TTT 1 ~~r, f rn-l-rr rrn
- pc~n=~r-H~Fi=r l
)JcccwroJ1 JLl-f:! I rff !i ! 1 1~=~ci~ctt&I H ~lL _h;+ccrrd*~l: TIME AFTH DJl~lll< ( SEC:CiNDS > EL~f-IE.NT HJ Figure 14' PNJ rnu ANALYSIS, 0 PE~lCENT Mli~Gm D-tc.l\\B I
II II ~ - 111 0.. £0.0 10.0 U I Tl°l l 11 i i ~ i ! i 11 I 11 I° 111 I 11 !"I I°! 1 *1 I 111 i 1*111. 1l1 I 11 ~ I i I ! I ! I I I\\ ~ I I r !\\ I,-, n I Trn Tl rn1rc1_1 " *----_JIDI -- ---*-J_I_ if --r- ,__~ Ii. rr I ~~T II ~~r.. ~-; I H- ~~rn-rrrrr ~lT':( f frTI -;*.'!Tl I fl
- r**...
-ii~jl:rUH 1 1+:-+::;:: i I :1 I; I;' ( 1 .: ;II;; u N*-~* *'ti i:-1~tH~~**i I ]JlJf!! i f ! I.! :i I LI 0 'IJJ I]_ -*- ))~((IJ]~ - 111 l I } * ~ l ~ I 11 i 111 ~ 1 IJ.1 t }_ J_JJJ_((I_._,_I .\\J I. - ~ ;.. : ! 1 ,i I I_ I J.1.JJ IJ.JJ... ~1'-f-*g' LLRfLLL_LL. UJ i I
- l. l ~.I l ! : i f I l_ l l 'i I I I Lt I_ LLU_L - u UJ LU
- ' l
~ ~ ' i. ': ! 1 ! I ~ I l IJ l I IJJ I J_ - -)) -. JI JJ J _I 1 *: ~ * ' I
- 1
, ! * : * ; 1 ! I 1! I ! I ! ii I I I I ~ I I I I i I I I I ii I I I I i I : ~ 1 ! i I> i,
- i 1 i l i i '! l I j i 11 i I I.I tUJ IJLLLU.LL _ U I~ l..\\.1.1.. 11.11 i '!.1_1I~111.!1.~.~ I U lUlU_LL}..Lll~_I' 1.111 1,_1i1 ii ! 1i11:11.11u1_t~cucrJu ~1_1 1
1 J1 __ c 1,j~11 i 1111 \\ *, 111 11111. 11, n 111r,1, 111111
- 1 ti 1111 ' ~, 1 1 : 1 1*1 r 1 r -1111Tr nrrrrrr1-11n-11r:
11ill!1: ! 1 l i ! If I 11 I lll[IJJflJlfJJ[fJ(([I_! \\ !,_l_I ! i ! ; ! i l ! l 11 11_ JJJJ.l_(J_I UJJLLLLU.LLU l 11 i I I I,1 ! ; 1 l : l ! ! 1 I I I II I I I I ~ I I I I ii I I I r ii I I I I i r 11 1 1 1 ' I' 1, 1 1 i i 1, 11 1 1 1 11 1 1 11 ~ 1 1 r r
- 1 1 1 1 1 1 1 1 1 1 1
~ 0 0 ~ I 11.1 11 I I I I.I ! i l ; ! l I I i j I ! ! I I I ii I I I I if 11 i J 1r I I r1 ~ I I u I ~ -tuu1 1 1 1 : : !ii: : : : i 1 11 1
- : 1: :
1J11tk~t1-.1 mnu1 ~.t 11)111 ~ JI l I l 111 I Ii l 11 *! !,1 1 I ! 11 \\ 11 11 L U f LI J.tUJI,1IJI11 ~ _l_J_LU. I 11 U i I 11 J :t 1 ,1 ' !
- l I l
- I 11 I 11.11 'I.I. LU 'LI lJl ~ I_! I ! i
_JL.IJllJl_U i! U. j f 11 1 1 1 i ; 111
- 1 \\JI 111_ J IJ l.t LllUJl U_ I LI i
_ l_ LU.. !I.! I ~. 11 ii :1 !.! ! '1 ! : j : : I I ! I l I I I I I f I 11 I i I r 1 ~ I I I ~ I I I I 1 J_ 1.J __I.) I I ' :1. I j *I J i: ~ i i :,: I I l l '.l l I " I ~ffi-1 II l l I I ii j I I I i.I I I.' I I ~-'-H-rc'-U 1::i 1 !, :: : l; t}+l11 *ic '--*-*c' Lt -~LLLLlLLlJ'.l1LL 1 -10.0 .1-~ _L ___. __ J_l_ _______ LL_ L L_ lLLLLLLLLLLLLL o.o 0.1 o.i 0.1 o.5 o.* o.r o.a o.-. 1.0 Figure 15 Pru rnu liNALVSJS, 0 PE~CEIJT 1111r.GHI! O't.<...\\.. S \\*
lffi~, t r.
- U_U i _l__l_J_'- 1-'*-~ '- r-
!l_LU 111u. it~ rr IT~iT '"'-r ~~. ~T-11 n- n-n-1 rlT.11 ~ 1r1-1 nr~ ff!T1 I
- 1 _IJ_.L[ *--,]--
H-IH:~I 11 l ti.JU
- I
.I.L_l_I ~ p-~--"11 ~- lo-I-,_ '.I- \\,...... I I r\\-~- -r-i-->- c-"-n
- I o.o
- o. I
\\1.2 I)., O.'t O.<J o.~ 0.1 o.e O.t l.0 T Htt: AflUl1 BRl!1H; ( Sl!CC.NDS > ELIEllEfliT 6 Figure 16 PNJ Trill fil'llALVSIS, 0 t>fac;rnr minGJN Ol:CLlt,
II II l..... l.J l.l.. _j. 1-CJ I-T rME 1.F1 EJJ l RU\\K < SECCJNDS > ELEMEfH Figure 17 PNJ TMCJ llNilLVSHS, 0 PEHC:ElJT MllRGIFJ 0£\\lLI
Q. I N L 10.000 7.'5000 5.0000 2.'5000 o.o -l.5000 -5.0000 -7.5000 -10.000 j v 0. 0 PflJ HlO DECL2 P2-Pt ~,___ r=--~ 'vi I 0 0 g C) () (;) c.> () ~ . I') 0 d 0 I I lt010"i/7A 0 0 0 C> C> 0 0 C> C> C) C> C> ~ 0 0 C> () 0 0 0 C,;) C.> 0 d 0 0 0 0 0 TIME ISECI Figure 18
5.0000 -.oooo ~ 2.0000 o.o ..... 0000 0 0 PtlJ TMD DECL3 P3-P2 ~. ~~-~- g -. 0 ~. C>
- r.
Cl C'l. C> g 0 ltn1n'\\!7B g
- r.
g g 0 ~ s~ Cl C> Cl ~ w cu c C> C> C> C> THIE CSEC) Figure 19
r ___....., PiJJ Ii iO Ot::CL3 r p1:j-p3
- 1--***-
I I " ' i I o.o [\\ ~~~
/
-l.0000 v -4.0000 ..,,0000 0. 0 ri § ~~ C:* Vl" w 0 0 0 THIE ISECI Figure 20 Cl C1 Cl c:i I ln/0'179. g Cl ~. 0 g il. 0
ID.COO ~DJ ill[) LC:h2 ViH'2 7.5001) 5.0000 0.0 I ~ r-1~ If r v ~ ~ -7.50 -10.000 'I0/0'5/7R* n a n g 0 a 0 g Cl 0 fil Cl C>> C> Cl Ct CJ C> C> C> CJ Cl C> G> O> CJ ci 0 0 0 0 0 0 0 0 0 Tl"[ csco Figure 21
10.000 P[JJ mo DECL4 P4-P3 7.5000 I~ I\\ I 5.0000 Z.5000 o.o i -5.0000 I I LJ lin1n"l.1111 -7.5000 -10.000 a n C> C> .CJ CJ CJ C> g C) n ~j g c~ .C> CJ C.I C> g a .o .CJ CJ c.> CJ ~~ ~ CL! c.~ .0 0 0 0 0 0 0 C) CJ 0 .o U111£.CSUJ Figure 22
5.0000 o.o
- . -5.0000 I.. -
Q. . -10.000
- 15.000
-i?0.000 0. 0 PllJ HiO OECL4 PlO-P~ \\ ~ ~~ ~J~I H r, § fl C> C\\J u 0 0 0 0 I ltn1n'\\11a Cl ~: ~: C> C> 0 C> Cl ~l C> CJ Cl C.J Cl C> 111 w Q;J O* 0 0 CJ CJ C> CJ TIME ISECI Figure 23
ID
- a.
5.0000 ,,0000 z.oooo o.o -l.0000 -4,0000 : -5.0000 ~, Cl.. 0 PllJ TMD OECLG P6-P5 \\/\\ v ~ ~ r fl n u M 0 C> C)
~--------------
I l________J!O/Qll!i I fl 0 {} Cl g Cl c:> C> ~! C> g C> C> C:> u CL) OJ C> l(l C> 0 0 0 C> 0 TIME ISECI Figure*24 I*;
l0.000 PIJJ rno DEllll P2-Pl 7.5000 5.0000 2.~o J Q. I C\\I Q. o.o
- f\\_/
~ ./ v ...Z.5000 -15.0000 -7.5000 -10.000 ltr11n1: ~'JD
- ~
g ~ Cl ~ Cl Cl 0 ~ 0 0 ci c) C> 0 TIME CSECI Figure 25
to.000 1--*-***..............
- ~--...
- ---*~*---
/\\ -,-r I .** 1 "-I I J \\.. o.o v -7.500{) -10.000 j PNJ Tl-10 OEHL2 P2-P I
- 1 fl....
C) ~. C) TJHE <<5£() f i9ure 26
- r.
Cl... 0 JO.L{lr.nn f: "'. C>
l0.000* . 7.5000 'l.0000 Z.5000 o.o I -7.5000 -10.000 0. 0 PIU Tl-10 0Et1L2 P3-P2 I (\\ I I v v I I ll 0 I \\ It n1nr. I 1A Cl ~!. C)
- TIHE ISECJ Figure 27
10.000 o.o -5,0000 -7.5000 -10.000 0 d
- PtU HID OEHL3 P3-P2
- r.
-~-' I TIME CSECl Figure 28 g Cl M c_j 0 g u 0
10.000 l'l~J HlO UEllL3 l'4-P3 7.~000 I I . 5.0000 l.5000 o.o /~~L/~ J ____ \\ I I v -Z.5000 -5.0000 1----*
- -~*----...--..-
- lJl.LllliLZ A
-7.5000 -10.000 8 () p, 0 C) () il g () ~
- t
- ~
0 () C> o* 0 0 CJ Tl "1[ CSECI Figure 29
10.000 PNJ mo DEllL~ Pll-P3 o.o ~ ~ ~ / v--
- 7. 5-000 5.0000 Z.')000
-5.0000 I
- -------L=n~-
-7.'5000 -10.0QO g g g 8 0 ~ ~ Cl 0 0 C> 0 0 o* C> TIME ISECI Figure 30 'I
- 10.000 PllJ HIO OEHLS PS-Pl B 7.5000 o.o
/\\ I \\ \\/ 5.0000 e=> z. 5000 I I'"'°'"' -7.~0 -10.000 8 § g g f: 0 ~ m CJ 0 0 C) 0 0 0 TIME CSECJ Figure 31
10.000 PNJ HID DEHLl8 PS-P19 7.SQOO 5.0000 v ~ t-- --- o.o \\ / v I I I I L l1n1nr,17A -5.COOO -7.5000 -10.000 n g fl C) Cl
- o.
Cl g 0 () () () C> l'\\I u u 0 c 0 0 0 TIME ISECI Figure 32
10.000 PNJ rno. DEHL'5 PG-PS. 7.5000 5.0000 i!.5000 o.o ~ ~~, I ~.. ~.,_.. \\I ---~---- v -Z.5000 -5.0000 J tn I ni;, /*1 A -7.5000 -10.000 g 0 0 0 g c:> g 0 s: 0 0 (\\J 0 0 Cl 0 Cl 0 0 Cl TIME ISECI Figure 33
10.000 o.o -l.'5000 -5.0000 -7.5000 -10.000. ..--*--~* PIJJ rno DHILG PG-PS f' ~-~ ~ I'-..... I tn1nr11R 0 § - g r,.,,. 0 0 Cl Cl Cl TIHE CSECI Figure 34
5.0000 PtlJ TMD OECLI P2-P I
- .0000 2.0000 o.o
~ r v i ' v -l.0000 .... 0000 _,.0000 0 n 0 0 0 n C> ~. 0 TIM[ IS[CI Figure 35 ~1 CJ 0 i 'Ull n" l...lB 11 I ~
- o.
0
Figure 35/\\ SECTION THRU THE Pf3.ESSURIZE_R BOUiilJ;;:<':' k" EL 218-0 tL 167 ~ f tL i 30~0 EL 100*0 r El 101 EL 78~0
3.CJGOO '°'"'Ir~ PNJ TMO DECL2 P1';l-Pt7,\\.f'51\\ .2.0000 (\\ I r rl t _, Cl. t.CJOOO I er> 0.0 I \\j I I Cl. . -t.0000 -2.0000 C' 0 0 0 0 Cl 0 0 C* 0 C> 0 c 0 0 0 0 0
- =
- ~~
0 0 0 0 0 0 0 0 0 l\\J '7 ~ 00
- ,~J 0
0 0 0 0 '-~ 0 0 C>
- ~
TIM[ 15[( I
Figure 35C SECTION THRU A STEAM GENERATOR BOU~DAR~. Containment I/ Wa 11 Steam Generator 'El 218-0
- §]
C-- View A-A -,, EL 164 ( I 1 I A l I A Ii 9AI I I I I I l I I \\ (/ I I I I f EL 130-0 I I I I I I I
- 0.
LO ~ ~ § .£EL 106-3 EL 100-0 .0 GJ -~ El EL 78-0 f' EL 81-0 ~
~(MIOO 1;50001 S.0000 ~.5000 c.. I en c.. 0.0 v -2.5000 -5.0000 ' -7. 5000 -10.000 0 0 PN'J rno-EJESl!.f'l P 19-P 17 0 0 0 ~ 0 0 g 't\\J Tl ~;r. IS 8 0 Cl 0 0 0 0. q 0 w 0 0
~ n iV ~ ~ l~ El ~i;m.a.. =' I =,~Ch iz w...... a_ Oc. -;..__:;;;;,.:,,,- -*-* :.:.=;;..... ___ -=--------*--- ---- 0 0 0.,, .lld-61d I 0 0 0 . 0 0 Ll"I I 0 0 0 0 I 0 0 0.,, I 0 0 0 0 -I OOO!J"O OOOt"O 0002*0 0001*0 o*o
ir". I '! Z0.000 11.500 15.000 ';;. IZ. 500 0.. I 10.000 7,5000 l.5000 o.o . h'.. 1! \\ i' ~ ~ 0. 0 PNJ THO OESLllFPll P 11*P17 I I... ( I* * '. r&MI IUCI .. e.. I _4p *,~:1!4 If~-~ :.it:flt!t.. IQ,t;,_,itf~.-x. b.it\\'".*J'"f"' ~f n.. P-0...... j.£ W11f (. I * "\\. /
i j j 1 I ! l I I I I .1 i
- ~
- i 1
~ I l l l l 1 I I / j 5.0000
- .0000
,..... 2.0000 ~ Q. I <D Q. O.Q -2.0000 .-.0000 -5.0000 0. 0 I I. f, 0..1 I.~~~ c;c; PNJ TMO SESL 16 Pt6-Pt7 I v 0 0 8. -
- ,I 8
8. C\\.I 0 TiHE CSECl 0 c.:> 0 0...; J '... ~ 0 0 0 0. ~ . *1,* * ~ \\ ; :. j : :.,. I . I I I I I I I. ' I I . ~'..,I.., h \\ 0 0 0 0 v> . *1.: \\ .. J i. I l
- I I
I l i I . I. i I ' I .,, I
- z 0
LI.I u I.OE a: 0 u.. x 4:.
- 0.
'3 05
- 05
-1. OE OS 0.0 \\ \\ I \\ \\ \\ l \\ 0.1 I I I I / r--.... I/ -..-4"'"" I I \\ I ~ ) \\ I 0.2 0.3 o... TIME <SECONDS> Figure 36 /Jl\\/',t/t,. F01t:!CE ON Tll-£ STcllm l:.,EtVEtel'/TtJ..e... l l I i j I
- i I !
i ) T. ! I 1 1 I I I I l I I I l l I I V£tJl 73R.f'l1k1 'µ E~;v.,,.-- i j I i I I J I I I j i i I I j I t i ! j j l § ii l ! 5 ~ I ~ ! ! i I i i ' I I I ~ I I I I I I ' I +t-1 I e.is
3.@l+O~ Z.OE+0'5 ll'l Ul ...I ~ ~ ~ \\!) ~ ~ ~
- l. OE+05 z
0 !.LI u a: 0 LL. ...I. <C u ('--a: 0. w I/ I ' I J I I I I I I I I I ~._...... ---~:-- v / / ,~I/ i..--- I I I 0.1 0.2 O.l TIME <SECONDS> Figure 37 VF-r'GTI 1C.A L Fc-R..(E O!V r/1-£ STet4W1 GGtv6R.A'TO ~
- .~*.............
I t I I I I 0." nei+L.ER.SA'( } 1 rJ F-1-E#.E,vr v i ! i i I ,.._.__._._ j i i I I I I I I I ~ I I I I .l I I I
r i : i: I i ~ J i I ~ I t I i i ~ I i I I ! ! t l I I I I ! I ' i l : i ~ I ~ I ~ I i I ! ~ i I f ~ i ' ~ I. ~ I
- I I
~ I E I I I .h. ..J-l'V81.M973' ('J/ j tl.3CJ8,. 1113Q ~(JJ. t1~ 3/\\la-? w fl~l.Ls ? W "'>! c:J tLJ- -U) !JO a_;.. 1-U/l*WCJ /jj 8E: a.rn5 u <SCNO:l3S> 3WIJ. c*o z*o
- 1. 0 I
I l I I I I I l I I i I /, \\ I \\ I I I I I T i I I I r-... / I I I I I \\ I I i I I I i o*o \\ I
- 0+10*1-
- o 9 0*30"1 3
0 3 IT1 z -4 -4 0 0 ITI
- D
-4 c:
- D z fT1 ti' ti'
'l 0+30"l l'TI 90 +'30"E 90+3C"ii r- ':Tl -4 I r-tD VI
z 0 UJ u c: 0 LL. _J 0. c:z:: \\ / \\ I 0.0 f\\
- 0. 1 o.z O.l Tlr'IE <SECONDS>
Figure 39 /) "{ 111 t Fl1tel e o tv fh ~ -P,<,essv R.,'bef2.. I i I I I I I I \\ "DE~ L "'B !2.C' lA 1<.. ! IV E. }..8>>i--e,vt ;L
'1 IJl c:c -l
- l. OE*O '5 cJ.
/J... I"'\\> ...,i-.... _I--' I/ ~ ") <J'I l.U .~ j II I lj
- z i/
0 I.LI u a: 0 I.&...o. ...J <C u - I-a: LU I
- l.OE+0'5 0.0 0.1 I
l I I I I I ! I . I. I I ' I i i. ij ~ I I I I I 1 . I I I I I I : I I I i I I ) I . i I I i i I I I j I
- I ---
I j ! I I I !I l I I i : I I 1 I I I I I ! I i l i I I j I I l I I I. ii g I i ~ ) I I l i I I I. I I i i i ~ I I i . ! l l ~ I I i I a I ! F l I I I I I I f ~ ' I ~ I I I I i j I o.z O.J TIME <SECONDS> Figure 40 fJe~f(c14L Fof?.4:£ oJJ fl,~ ~es.Sv R.1 *~f!..- 1Jf'. H-L '8,z-t~ I<- J'iV F-L.p...,e~-f-~
3.0t*O'I I I l I l r I l l I I I l l I - I 1 I I I I I : l Z.OE*O'I I l ' ' I i I t f f \\ ' l I I I I -1 l . i I I I ~ I l I 1 I I I I,/') l.OE*O'I I m I I I ' -l I ~ j I l ~ I I I i l
- l to-l
'-; I ~ I I\\ I I I I I i I ' ' ' -l 1 I I j UJ I 1 ; T V"I I 1 I IJ) 0. UJ j / j I I l i z I i ~ I I I i ! i I a: => l
- i i
I i I i i i to-a: I UJ \\ I > -1.0E+O'I I 0 I i I I I ~ 0 I l i 'l to- ' J ~ l ' I to-I I I I ~ z I I I r ' ~ UJ I I I ' I E I I 1. T I ~ -Z.OE+O'I l l I l I I I i I I i ~ ~ -f I I I 1 I i f i ~ i 1 I ~ -3.0E*O't I ! 1 I. ri l I I i ~ f T j l T I ' I r i i I t i I I I i ~ I -lf.0£+0't 1 I i I I N 0.0
- 0. l o.z O.l o.*
Til'1E <SECONDS> Figure 41 "'-
Figure 41b Reactor Coolant Loop Model Contained in Reference 4, Figure 3-1
X(Sav'f"h) Figure 42
- .Figure 43
-~- f'Rir-tARY S1-11c: LO WAL. L (srE. Fie;, L/ ) . Figure 44 S-NIERHJR 51;:;:ti1T1)RE u KJP ff.~ T
- ~E G'!'J UL.;.
,*\\.l.. (.d~sr':.:.~KPOfNY F.r.:a SU8LRSES ..,,,.1~J._ CJ r!M1 '- ---~~-------* ---~,-r-=-*-. *---- ' -----.--.-** ~~......._..,_-.**ff*r*;--;;**......... i*., /
' I i. y z~
- Figure 45
N \\ Figure 46 J { 1
N 5.i::c.cl'JDA\\.!..Y S1-11E1...o CC.RANE)
'vv'Ac..~*
- Figure 47
- --.,---*--... --*~-A~-.._-----.-..........---*-~***... -......-.~.-----*-. --*~---
~~=-:.::::*-*
- ""1'r===*~ -====~~--=--
Pr.ts*k-K<'. T1~ H,5 /.Yd "" :51-<b li"'f~f;,,,,,.1,, I z.o, ......,) \\I) i ~ Io. \\ '\\J ~ ~ VI ~ ~
- -- _______..J_ _______
3
- Figure 4J *
'1.P.,----------___:__-~l-J.JL=-=li==1 '.J tt '\\) ~ \\..
- s
- Va "1 ~ ~ ~-.... ~. Figure 49 _____ ___t_ __ - I I j I i - I
I...*,.* * ** I t I .,'1 / I / I; l - I I ~* J 2..D ' l l I I ~ l ~ I '-' ID. L ~ ~ ~ ~ ':.I I I l it-~
- ,,cj.f';;
- :, 'I'-
I z T1rne ( :5 ec.) . - *,.. *:. -~- ~-.:... ***- :._. -~ --=- CL - lo 4/ / ... /~-~~ ~ 3 I . j
- i I
I
- I t
/ Figure 50 ---~---------~-~*;:..,#;*.rr-.----- --~--~** ***--* *... *----* --------~-,...-*--*-..,. - -~
v I 2.0 * "1 Q...._ v 10 ;. CL-Co . I I I 3 I _ :. -.,1
- 1. Figure 51.*...
i l I I .\\ \\,.. SUMM/\\RY OF REINFOf~CGlENT Area of Actual Reinf. J Area of Req'd. Reinf. (in2/ft) (in2/ft) ~ ! :*:an . Horz. Vert. Horz. Vert. . I Horz. Vert. I I i I II-i I G 3) \\0-3-2 j /i~ /]I *--c; (!12
- 0. '-I~
i /, 00 Q, L/ 5 l I I 0 I Actual Reinf. l.H 0,. ~I :II I, I l W-3-3 !l@o.0111@12
- J.,)_ r I /.. 5G 0.8~ l /Gb
. w- ~-Lt 117d 9,, !!(~~ /,J_ II
- o. s*o
- . s 6
- o. 2 \\ I / 1 '7 (tf)
', K A I~ ~ r-... /~ T'-.. /"-. ~ /'\\ /'.. /\\ ~ r. / / J A ~ ~ --. ~ ' . I .~ W-Lf-1 ~ 1JIG.I:! // 1~)~ 1::2 ~ I. 5<o-v o. 7 (1 - v /,-s7 - ~0.. 5 r*7 (I)'".-... J I ~ ltJ-L{- 2. ill el:i' "' 9 (;; ;;/' / 5 {, /' 00 /. 5 G ('!) o. (, '-/ (I)~ I:~ r /'\\ /'\\ ~ - /"'\\ /'"'\\ - l ~ - ~ - I I 6, f W-5--\\ -,,9@12" 1/fe;:.t' - loo - !5G -
- ,69 (')l o.s
- r -1 W"' 5--:J_.ti9~;j" 1'7/e 1(' l 00
- 1. 0 8
- 0. 9~ ('l O. G '--1 I '
W-5-3 111@1.:t' "'If e-1.i'I /. 00
- .5G*
l /0 ( 3 )
- 0. 8 \\-I '::
,1 I I I W-G-1 ;r7~;:/"7ef.:t O.GO O.GO 0.3;;\\ 0.57 I --1 11 7 ... 1 " 1J.;/l o " 1 / a I O LJ Li . 0: o o
- i.
w-G - J_ I I @, I**( !U (_{'.I i 0' G 0 /, b 1 I 7 I . I () I j ~.. I I i i ::.
~ l. ~ ~ 9 ~ ~ ~ ~ ~- _____ W-4-i i ! ~ ~ ~ 2 - ~ I ~ w J. ! - ~ ~ 4 I -!--~ I d ! ~ 3 ~ ~. ~ ~ ~ ~ 2 3 ~ ...... -------*---**-.:..Ji.--** ~ ! 1 ~ y ~ i ~ ~ ~ ,I 2 g 2 j 0 u Q 4 <I ~ ~ ~ g ~* ~ ~ ~ ~ a ~ ~ ~ 2 a 4 ~- ~ ~ ~ ~ ~ I ~ ~ ~ . ~ ~ ~ A c.c.u M uLA 101~ (cHPAR T t-1 i:: r--i T WAL.I... Figure 52b --.. --.._*-.. -... --~. ~
- *~.~.
- ~~~~~"*--*--*~-/ri-~-*~--.
-*-*-:-:****----.~**.w***:--<......---0-*--*r *--- *.,. __,_.
---N /~---=--~~~~~~**~ // I---------------
:\\ \\
I i '\\ \\
- 1.
\\ I I \\ I I \\ \\ \\ \\ \\ .\\ \\ P~tHA.~ y.5 Hlt;;L.D WAI.I-- D-L Dc.F1...~cf1ct-..J. Pa. D.:.;:1...i:.c. r.ct--i U,..ioEF1...£cr=.o SrI?.vcrtJil.c I I' EL '77 II z I "Z-
- Figure 53
**--------...-_,..-.,.,.----~----,--..---..... -~.--.
~----'"~***-~.,,_,.,... -*
- 1.
1* I 1 I I I_. I / / / \\ \\ \\ / I I}}