ML18025A094

From kanterella
Jump to navigation Jump to search
Ecological Studies of the Susquehanna River in the Vicinity of the Susquehanna Steam Electric Station - Annual Report for 1977
ML18025A094
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 05/23/1978
From:
Ichthyological Associates, Pennsylvania Power & Light Co
To:
Office of Nuclear Reactor Regulation
References
Download: ML18025A094 (349)


Text

ECOLOGICAL STUDIES OF~THE SUSQUEHANNA RIVER IN THE VICINITY OF THE SUSQUEHANNA STEAM ELECTRIC STATION Annual Report for 1977 Theodore V. Jacobsen, M.S., Project Director and Editor Ichthyological Associates, Inc.

R. D. 1, Berwick, Pennsylvania 18603 For Pennsylvania Power and Light Company Two North Ninth Street Allentown, Pennsylvania 18101 Ichthyological Associates, Inc.

Edward C. Raney, Ph.D., President 301 Forest Drive, Ithaca, New York 14850 April 1978

(

4

'e E

CONTENTS Page INTRODUCTION by Theodore V. Jacobsen.................... ~ ~ ~ ~ ~ ~ ~ ~ 1 PHYSICOCHEMICAL ANALYSES by Walter J. Soya and Theodore V. Jacobsen...... 3 ALGAE by Andrew J. Gurzynski and William F. Gale......................... 35 BENTHIC MACROINVERTEBRATES by William G. Deutsch......................... 68 MACROINVERTEBRATE DRIFT by Lynn Sabin.................................... 120 DEVELOPMENT OF LARVAL FISHES by Gerard L. Buynak and Harold W. Mohr, Jr.. 152.

LARVAL FISHES by Gerard L. Buynak and Harold W. Mohr, Jr ......... . . .. 185 ELECTROFISHING OF FISHES by Gerard L. Buynak, Andrew J. Gurzynski, and Harold W. Mohr, Jr.................................................. 220 SEINING OF FISHES gy Gerard L. Buynak, Andrew J. Gurzynski, and Harold

0. Mohr, Jr.... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 243 AGE AND GROWTH OF SMALLMOUTH BASS by Gerard L. Buynak and Andrew J.

G urzynski o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 258 LERNAEA CYPRINACEA ON TWO CATOSTOMIDS by William G. Deutsch.............. 268 FLORA AND VEGETATION by James D. Montgomery.............................. 279 BIRDS by Robert M. Ruhe.................................................. 311 PERSONNEL INVOLVED IN THE PROJECT IN 1977........ ~........... ~ ~ ~ ~ ~ ~ 343 ACKNOWLEDGMENTS. ........................................................ 345

INTRODUCTION The Pennsylvania Power and Light Company (PP&L) has contracted Ichthyological Associates, Inc. (IA) since 1971 to conduct ecological studies near the Susquehanna Steam Electric Station (Susquehanna SES).

This is the seventh annual. progress report on these studies which has been done as part of the preinvestigative ecological monitoring program at the Susquehanna SES. The Susquehanna River has been under investigation since the beginning of the studies; whereas terrestrial investigations of the Station site were initiated in 1972; discontinued in 1975, and reinitiated in the spring of 1977.

Since 1971, the overall objective of the ecological studies has been to establish a baseline of existing conditions in, the River and on the site before the Susquehanna SES begins operation. When completed the- Station will consist of two, nuclear-powered units, each with a generating capac'ity" of 1,050 megawatts. Commerical operation of Unit,l is scheduled to begin in February 1981 and Unit 2 in May 1982.

Throughout 1977, data on water chemistry, algae, macroinvertebrates, and larval and adult fishes were gathered to describe and evaluate the River ecosystem. Terrestrial studies wete conducted to obtain information about the flora, vegetation, and birds found on the site. Descriptions of sampling procedures and analyses of results, including detailed tabulation of data, are presented in this report.

Most of the aquatic studies were conducted near the intake structure and discharge diffuser of the Susquehanna SES. In this area, the slope of the River bed is about 0. 3 m/km, the maximum depth is 5 m, and the width varies from 100 to 480 m. During periods of low flow, which normally occur in late summer and early autumn, abandoned eel walls help maintain pools, some of which are several kilometers long. In times of high flow the River level commonly increases 3 m or more, and its flow characteristics resembles an open channel., Upriver the "Wyoming Region" of the northern anthracite coal field lies beneath or adjacent to the River. Acid mine drainages from this area, which enter from abandoned strip and shaft mines, degrade the water quality at the site (Gale et al. 1976) .

Terrestrial studies were done on the 435.0-ha site of the Station in Salem Township, Luzerne County, approximately 8 km northeast of Berwick, Pennsylvania. The site is within the Ridge and Valley Section of the Appalachian Valley Province (Fenneman 1938). About 40X of this area is flat and the remainder is hilly rather than mountainous. Elevations range from 150 m above mean sea level on the flood plain to a maximum of 325 m near the northwest property line.

REFERENCES CITED Fenneman, N. M. 1938. Physiography of the eastern United States.

McGraw-Hill Book Co., New York, N.Y.

Gale, W. F., T. V. Jacobsen, and K. M. Smith. 1976. Iron, and its role in a river polluted by mine effluents. Proc. Pa. Acad.

Sci. 50: 182-195.

PHYSICOCHEMICAL ANALYSES by Walter J. Soya and Theodore V. Jacobsen TABLE OF CONTENTS Page ABSTRACT ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5 INTRODUCTION... 5 PROCEDURES ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 6 RESULTS AND DISCUSSION.............................................. 9 REFERENCES CITED......'............. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 15 LIST OF TABLES Table A-l. Physicochemical parameters and methods of analyses, 1 977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 17 Table A-2. Daily, minimum, maximum, and mean temperature (C) of the Susquehanna River at Ichthyological Associates Laboratory, 1977.............. 18 Table A-3. Daily . . . level (m above msl) . . . 1977.............. 21 Table A-4. Daily flow (m 3 /s) of the Susquehanna River at Ichthyological Associates Laboratory, 1977.............. 24 Table A-5. Physicochemical data collected at SSES-A on the Susquehanna River, January, February, and March 1977....

Page Table A-6. Physicochemical data collected at SSES-A on the Susquehanna River, April, May, and June 1977........... 26 Table A-7. Physicochemical . . .'uly, August, and September 1977. 27 Table A-8. Physicochemical . . . October, November, and December 1 977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 28 Table A-9. Quality control comparison of physicochemical data from water samples collected quarterly at SSES-A on the Susquehanna River, 1977. 29 Table A-10. Physicochemical data collected monthly at Ichthyological Associates boat ramp on the Susquehanna River, 1977.

Samples were collected and analyzed by the Pennsylvania Pow'er and Light Company, Hazleton, Pennsylvania......... 30 LIST OF FIGURES Eig. A-l. Sampling stations on the Susquehanna River near the Susquehanna SES, 1977...... 31 Fig. A-2. The relationship between flow (m 3 /s) and level (m above msl) of the Susquehanna River at Ichthyological Associates Laboratory from July 1973 through December 1 976 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 32 Fig. A-3. Trends in monthly mean values of pH, River temperature, specific conductance, and. turbidity in the Susquehanna River near the Susquehanna SES from 1972 th'rough 1977. 33 Fig. A-4. . Trends in monthly mean concentrations of dissolved oxygen, total alkalinity, dissolved iron, and total iron in the Susquehanna River near the Susquehanna SES from 1972 through 1977..... 34

ABSTRACT In 1977, physicochemical data were collected from the Susquehanna River near the Susquehanna SES. Data have been collected since 1971 to evaluate the effects of the Susquehanna SES upon the water quality of the River.

River temperature ranged from -0.1 C to 30.8 C (the highest recorded at the site since 1971) . River flow was calculated with the formula:

River f5~ = 228.8 +,322.3 (River'eve2 - 149) + 206.4 (River Eeve2 749) .

3 3 River flow and level ranged from 49 m /s and 148.34 m above, msl to 3,422 m /s and 153.18 m above msl, respectively.

S ta tis t ical analyses o f the physicochemical data from 1973 through 1977 showed improved water quality. The pH (P<0.001), dissolved oxygen (P<0.01), and alkalinity (P<0.05) increased, whereas total iron (P<0.01),

dissolved iron (P<0. 01), turbidity (P <0. 01), and specif ic conductance (P<0.05) decreased. There are indications, however, that this trend may be leveling off.

INTRODUCTION This report presents physicochemical data collected from the Susque-hanna River near the Susquehanna SES in 1977. The objective since 1971 has been to establish a baseline of water quality .parameters for evaluation of possible effects on the River as a result of the operation of the F

Susquehanna SES. Records of similar physicochemical data are in annual reports from 1971 through 1976 (Ichthyological Associates 1972, 1973, 1974; Smith and Soya 1976; Jacobsen and Soya 1976, 1977).

Near the Susquehanna SES, the River is polluted by coal mine drainages (Gale et al. 1976) which enter upriver through several seeps, boreholes, and creeks. However, the River's water quality improved from 1973 through 1976 when total iron, sulfate, specific conductance, and turbidity decreased and pH and dissolved oxygen increased at the site (Jacobsen and Soya 1977).

PROCEDURES Throughout 1977, physicochemical data were collected at the IA Laboratory and the SSES-A sampling station (Fig. A-1). The Laboratory is located on the River's west bank, 1,220 m east of the Susquehanna SES. SSES-A is 270 m downstream from the Laboratory, about 40 m from the west bank.

River temperature and depth were recorded continuously on seven-day graphs at the Laboratory (Table A-1). Sensors for both recorders were located on the River bottom within 30 m of the shore. River temperature (C) was read directly from the graph, whereas River depth (ft) was converted to River level (m) above mean sea level'(msl) . River level data 3

were used to calculate the River flow (m /s) past the Laboratory (Table A-1). Daily means of the temperaure and level recordings were determined by averaging hourly values from 0100 through 2400 h. In, addition, daily minimum and maximum values and their respective hours of occurrence were tabulated. When either a minimum or maximum value remained constant for several hours in a day only the first hour of occurrence was recorded.

At SSES-A, a3.8-liter surface grab sample of water was'o'llected twice per week during April, May,, June, July, August, and September, and twice per month for the remainder of the year. =

Samples were collected at 1300 +

1 h. With each grab sample, air and surface water temperatures and Secchi disc depth were determined and a 300-ml surface dissolved oxygen sample was collected (Table A-1). Prevailing weather conditions were also recorded.

Surface grab samples were usually taken from a boat as it drifted over the station. However, both of the January, samples and the first February sample were obtained through ice which covered the station. Prior to collection a hole was bored through the ice layer and cleared (to a depth of 0.5 m) of slush ice and flocculent ferric precipitates which, filled the water column. Samples were obtained after most flocculent matter settled out.

Samples were immediately transported to .the Laboratory and analyzed for dissolved oxygen, pH, alkalinity, turbidity,- sulfate, specific conductance, and total, fixed total, nonfiltrable, and fixed nonfiltrable residues (Table A-1). Each laboratory analysis was performed at least twice and the value recorded was a mean of the determinations. All calculations were maintained in bound notebooks. Portions of the grab sample were fixed for total and dissolved iron analyses (Table A-1) which were determined by personnel from the Pennsylvania Power and Light (PP&L) .Water Laboratory, Hazleton, Pennsylvania.

All analyses were conducted within the holding time interval recommended by the U.S. Environmental Protection Agency (EPA 1974).

The 1977 physicochemical data at SSES-A were compared with those obtained at the site in previous years. Nonparametric statistics were used to determine if: 1) year to year changes had occurred in each parameter, and 2) a trend among years was present. Friedman's two-way analysis of variance test (S) was used in the first determination and Page's distribution-free test (L) for ordered alternatives in the second (Hollander and Wolfe 1973) . The tests were based on monthly mean values but only complete sampling years (1973-77) were used.

Quality control -cross-checks of water samples collected at SSES-A were conducted quarterly. During each cross-check, triplicate surface grab samples were collected at the same time the routine sample was taken.

Analyses of the cross-check samples were begun within 24 h at the Schuylkill P

River Ecological Study (SRES) Laboratory, Pottstown, Pennsylvania. Eight parameters were'analyzed in each of the three samples according to EPA approved procedures. The mean of the three determinations was recorded.

Physicochemical data were also collected in conjunction with algal and fisheries studies. These data are presented in the Algae, Electro-fishing of Fishes, and Seining of Fishes sections of this report.

Once each month, personnel from the PP6L Water Laboratory collected physicochemical data from the River at the IA boat ramp (Fig. A-1). No sample was collected in January because ice covered the sampling location.

Water temperature and dissolved oxygen were measured in the field; all other "

determinations were made at the PP&L Laboratory according to Standard Methods (APHA 1975) or Methods for Chemical Anal sis of Water and Wastes (EPA 1974).

Analyses for total and dissolved nickel were initiated in July.

RESULTS AND DISCUSSION River temperature ranged from -0. 1 C, recorded at various times from 27 through 30 December, to 30.8 C on 21 July at 1500 h (Table A-2). This maximum was the highest recorded at the site since sampling began in 1971.

The minimum daily mean temperature (also -O.l C) occurred on 28 December and the maximum daily mean temperature (29.0 C) on 21 July. The daily mean temperature varied least (Standard Error = 0.03) in January and most (SE = 0.78) in May. The minimum monthly mean temperature (0.6 C) occurred in January and February and the maximum,(25.5 C) in July.

Daily water temperature ranges of 0.5 C or, greater occurred in each month except January (Table A-2). These fluctuations occurred 93X of the days from April through September. The, maximum daily fluctuation in each of these months was 3.0, 2.2, 3.9, 3.8, 3.2, and 3.1 C, respectively. These maxima were more numerous and greater in range than those recorded in 1975 and 1976 (Jacobsen and Soya 1976, 1977).

The River level at the site ranged from 148.34 m above msl for the period 1000-0600 h on 15 and 16 September to 153.18 m above msl at 0100 h on 27 September (Table A-3). The minimum daily mean River level (148.35 m "

above msl) occurred on 15 September and the maximum (152.94 m above msl) on 15 March. The daily mean River level varied least in June (SE = 0.012) and most in September (SE = 0.272). The lowest monthly mean level (148.55 m above msl) occurred in July and the highest (151.18 m above msl) in March.

River flow,(m3 /s) at the IA Laboratory was calculated with the formula:

River f70' 218.8 + 322. 3 (Rive> ZeveZ - 149) + 106.4 (River level - 149)

10 This polynomial regression equation was based on mean, daily River flow and level data (Fig. A-2) collected from July 1973, when the continuous monitoring of River level was initiated, through December 1976 (Ichthyo-logical Associates 1974; Smith and Soya 1976; Jacobsen and Soya 1976, 1977). The equation was found to be the best empirical fit since it explained 99.5X of flow variation. Both instantaneous and mean daily flows were calculated with the polynomial regression equation; in past

-years only mean daily flows could be calculated from U. S. Geological Survey data with a formula (Ichthyological Associates 1974) provided by Mr. 0. D. White, National Weather Service, Harrisburg, Pennsylvania.

3 In 1977, River flow ranged from 49 m /s on 15 and 16 September to 3

3,422 m /s on 27 September (calculated from the minimum and maximum 3

River level). Daily mean flow was least (51 m /s) on 15 September and greatest (3,137 m 3

/s)'n 15 March (Table A-4) .. The daily mean flow-varied least (SE = 3.0) in June and most (SE = 158.0) in September.

3 The monthly mean flow was lowest (93 m /s) in July and highest (1,480 3

m /s) in March.

Surface water grab samp'les were collected at River levels from 3

148.37 to 152.70 m above msl and River flows of 55 to 2,860 m /s. The surface water temperautre at collection time ranged from 0.0 to 29.0 C (Tables A-5 through A-8).

The limit of visibility of Reer water, determined with a Secchi disc, ranged from 8 cm on 28 February, 15 March, 27 September, and 16 December to 138 cm on 17 May (Tables A-5 through A-8). The Secchi disc

depth was not measured for either of the January samples or the first February sample because of ice cover.

Turbidity ranged from 6.4 NTU on 16 February to 270 NTU on 15 March e

(Tables A-5 through A-8). Water clarity was greatest in May when the monthly mean Secchi disc depth and turbidity were 113 cm and 9.8 NTU, respectively, and 4

least (x = 12 cm and 165 NTU) in March.

Dissolved oxygen concentrations, ranged from 7. 05 mg/1 on 8 July to 14.95 mg/l on 21 April (Tables A-5 through A-8) . The concentration on 21 April was the highest recorded at the site since sampling began in 1971. The monthly mean concentration was lowest (8.69 mg/l) in September and highest (12.78 mg/1) in December. The percent saturation was lowest (82%) on 27 January and highest (153%) on 2 August.

Total alkalinity ranged from 20 mg/1 on 15 March to 72 mg/1 on 12 August (Tables A-5 through r A-8) . The minimum monthly mean concentration (22 mg/l) was recorded in March and the maximum (69 mg/1) in January.

'o phenolphthalein alkalinity was found.

River pH ranged from 7.2, recorded. on numerous occasions throughout the year, to 8.1 on 17 June and 19 July )Tables A-5 through A-8)., The minimum monthly mean pH (7.3) occurred in January, February, March, 1

October, November, and December and the maximum (7.7) in July. Overall; the pH of the River was more alkaline than during any of the past sampling years (Fig. A-3).

12 Specific conductance ranged from 95 pmhos/cm on 15 March to 445 pmhos/cm on 29 July (Tables A-5 through A-8). The minimum monthly mean specific conductance (109 pmhos/cm) occurred in March and the maximum (396 umhos/cm) in July.

Sulfate ranged from 16 mg/1 on 6 April and 23 September to 224 mg/1 on 22 July (Tables A-5 through A-8). The minimum monthly mean concentration (23mg/1) occurred in December and the maximum (110 mg/1) in July.

Total iron concentrations ranged from 1.36 mg/1 on 13 May and 17 November to 12.9 mg/1 on 27 September (Tables A-5 through A-8). The minimum monthly mean concentration (1.64 mg/1) occurred in May and the maximum (5.94 mg/1) in December. The 1.5 mg/1 limit of total iron established for the River by the Pennsylvania Department of Environmental Resources (DER 1971) 1 was exceeded in 60 of 64 samples.

The ranges of dissolved tron concentrations (0.02 mg/1 to 0.70 mg/1),

monthly means (0.05 mg/1 to 0.44 mg/1), and percent compositions (1% to 43%) were the smallest recorded at the site since sampling began (Tables A-5 through A-8).

Maximum values for total (526 mg/1), fixed total (480 mg/1), non-filtrable (497 mg/1), and fixed nonfiltrable (442 mg/1) residues occurred on 15 March(Tables A-5 through A-8). The minimum of total (104 mg/1),

fixed total (77 mg/1), nonfiltrable (8'mg/1), and fixed nonfiltrable (4 mg/1) residues occurred on 5 December, 27 October, 16 February, and 22 and 25 August, respectively.

Statistical analyses of the physicochemical data from 1973 through 1977 showed improved water quality of the River similar to that observed from 1973 through 1976 (Jacobsen and Soya 1977). Using Friedman's test, significant differences were found in pH (S = 23.083, DF = 4, P<0.001),

dissolved oxygen (S = 14.183, DF = 4, P<0.01), total iron (S = 11.667, DF = 4, P<0.05), and dissolved iron (S = 13.367, DF = 4, P<0.01).

Page's test confirmed that pH (L = 622.5, P<0.001) and dissolved oxygen (L = 587.0, P<0.01) increased, whereas total iron (L = 589.0, P<0.01) and dissolved iron (L = 591.0, P<0.01) decreased. Also, alkalinity (L = 319.0, P<0.05) increased, and turbidity (L = 589.5, P<0.01) and specific conductance (L = 579.0, P<0. 05) decreased, even though the Friedman analysis of these parameters could find no significant differences in the annual results (Figs. A-3, A-4) .

Tnese trends are associated with the termination of pumping mine water into the River after Tropical Storm Agnes in 1972. The amounts of acid, dissolved solids, iron, and sulfate in the River diminished as the volume of mine water decreased. Mine pollution has not completely ceased because some effluents continue to enter by gravity flow. The pH and alkalinity of the River increased as acid decreased. Dissolved oxygen also increased, at least partially because less dissolved iron was oxidized in the River. The specific conductance of the River decreased with the occurrence of fewer dissolved solids, and turbidity decreased due to the smaller amounts of suspended ferric precipitates.

14 There are indications in the data analyses that further improvements in water quality may not occur as rapidly in future years as during the past five or six years. Although Jacobsen and Soya (1977) showed that sulfate concentrations. decreased significantly from 1972 through 1976 (P<0.01), high concentrations found in 1977 terminated the trend.

Significant decreases (P<0.01) occurred in total iron concentrations during the periods 1973-76 and 1973-77, but the annual mean concentration increased in both 1976 and 1977. The decrease in specific conductance was statistically less significant in 1973-77 (P<0.05) than in 1973-76 (P<0.001).

The quality control cross-check values determined at the SRES Laboratory were similar to those obtained at the IA Laboratory in most instances (Table A-9). Differences in specific conductance, total iron, and nonfiltrable residue results on 16 February were probably caused by ferric precipitate contamination during sample collection through the River ice. Also, the turbidity result of the SRES Laboratory on 25 August was found to be in error because of a faulty meter. Minor discrepancies were attributed to transportation of the sample, the interval between collection and analysis, different instrumentation, and different methods of analysis.

A total of 50 water quality parameters was analyzed each month, except January, from samples collected't the IA boat ramp..by personnel of the PP&L Water Laboratory (Table A-10) . The high concentrations of iron, sulfate, aluminum, manganese, and magnesium indicated that coal mine drainage pollution persisted at the site. Total iron concentrations in 6 of the 11

15 samples exceeded the 1.5 mg/l limit established for the River by the DER (1971). Total manganese concentrations, however, did not surpass the DER limit of 1.0 mg/l in any month.

Calcium was the dominant cation in each sample (x = 1.28 me/l) .

Bicarbonate was the dominant anion in all samples (x = 0.89 me/1), except in June and July when sulfate was greatest.

Phenolphthalein alkalinity (5 mg/l), carbonate ions (6.0 mg/l), and calcium carbonate saturation (+0.34 pH units) were found in the July sample.

These were not present in any sample since August 1975.

REFERENCES CITED Chain and Cable Company, Bristol Division. 1971. Instruction

'merican manual for indicating and recording liquid-level bubbler-type gauges in series "500" case. Bristol Division, Waterbury, Conn. Loose-leaf publ. n.p.

American Public Health Association. 1975. Standard methods for the examination of water and wastewater. 14th ed. APHA, Washington, D.C. 874 pp.

Environmental Protection Agency. 1974. Methods for chemical analysis of water and wastes. EPA, Cincinnati, Ohio. 312 pp.

Gale, W. F., T. V. Jacobsen, and K. M. Smith. 1976. Iron, and its role in a river polluted by mine effluents. Proc. Pa. Acad. Sci. 50:

182-195.

Hewlett-Packard. 1972. HP-9830A STAT PAC. Vol. 1. Hewlett-Packard, Loveland, Col. 75 pp.

Hollander, M. and D. A. Wolfe. 1973. Nonparametric statistical methods.

John Wiley and Sons, Inc., New York, N.Y. 503 pp.

16 Ichthyological Associates. 1972. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1971). Pa. Power and Light Co.,

Allentown, Pa. 232 pp.

1973. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1972). Pa. Power and Light Co., Allentown, Pa. 658 pp.

1974. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1973). Pa. Power and Light Co., Allentown, Pa. 838 pp.

Jacobsen, T. V. and W. J. Soya. 1976. Physicochemical analyses. Pages 3-47 in T. V. Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1975). Ichthyological Associates, Inc.,

Berwick, Pa.

'977. Physicochemical analyses. Pages 3-35 in T. V. Jacobsen (ed.), Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1976).

Ichthyological Associates, Inc., Berwick, Pa.

Millipore Corporation. 1973. Suspended solids analysis. Cat. No. LAP 3120/U. Millipore Corp., Bedford, Mass. Loose-leaf publ. n.p.

Pennsylvania Department of Environmental Resources. 1971. Water quality criteria, chapter 93. Rules and Regulations, title 25. Article II, water resources. DER, Harrisburg, Pa. 98 pp.

Smith, K. M. and W. J. Soya. 1976. Physicochemical analyses. Pages 3-41 in T. V. Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Progress report for the period January-December 1974).

Ichthyological Associates, Inc., Berwick, Pa.

Welch, P. S. 1948. Limnological methods. McGraw-Hill Book Co., Inc.,

New York, N.Y. 318 pp.

17 Table A-1. Physicochemical parameters and methods of analyses, 1977.

Parameter Method Reference River level (depth) Seven-day continuous recordings from an ACCO ACCO (1971)

Bristol, Model No. G500-15 bubbler-type water level gauge.

River flow River flow 215 ' + 106.4 (river level -149) HP (1972)

+ 322.3 (river level -149)

River temperature Seven-day continuous recordings from a EPA (1974) calibrated, Leeds and Northrup Speedomax Thermistor-type, Model R temperature Recorder.

Calibrated, mercury thermometer. EPA (1974)

Air temperature Calibrated, mercury thermometer. EPA (1974)

Dissolved oxygen Modified Winkler full-bottle technique, EPA (1974) proprietory reagents.

pH Glass electrode. EPA (1974)

Total alkalinity Potentiometric titration. EPA (1974)

Specific conductance Self-contained conductance meter at 25 C. EPA (1974)

Sulfate Turbidimetric. EPA (1974)

Total iron Atomic absorption spectrophotometric EPA (1974) determination of soluble iron.

Dissolved iron Atomic absorption spectrophotometric EPA (1974) determination of dissolved iron.

Total residue Evaporation at 105 C. EPA (1974)

Fixed total residue Ignition of total residue at 550 C. APHA (1975)

Nonfiltrable residue Suspended~.solids analysis by membrane filter Millipore (1973) technique (matched-weight filters).

Fixed nonfiltrable residue Ignition of nonfiltrable residue at 550 C. APHA (1975)

Turbidity Nephelometric. EPA (1974)

Secchi disc depth Limit of visibility. Welch (1948)

18 Table A-2. Daily minimum, maximum, and mean temPerature (C) of the Susquehanna River at Ichthyological Associates Laboratory,.1977.

DATE H IN INUM t TINE) HAXINUN (TINE) H BAN DATE NININUH tTINE) NAXINUM (TINE) HEAN JAM PEB 1 0 7 0100 0. 9 1300 0.8 1 0<<5 0100 0. 5 0100 0 5 2 0.8 0100 0. 8 0100 0 8 2 0~4 2000 0.5 0100 0 5 3 0 8 0100 0 8<< 0100 0 8 3 0~4 0100 0.4 0100 0 4 4 0~8 0100 0.9 1300 0~8 4 0~4 0100 0 4 0100 0 4 5 0.8 0100 0. 9 1400 0.8 5 0 4 0100 0 4 0100 0 4 6 0<<8 0100 0.9 1300 0 8 6 0<<4 0100 0. 4 0100 0.4 7 0.8 0100 0 9 1300 0 8 7 0. 4 0100 0 0100 0.4 8 0 7 1300 0.8 0100 0~8 8 0.4 0100 0.4 0100 0<<4 9 0.7 0100 0<<8 1300 0 ' 9 '0<<4 0100 0 ' 0100 0 '

10 0~7 1100 0 8 0100 0.8 10 0.4 0100 0 4 0100 0<<4 11 0<<8 0100 0<<9 1300 0' 11 0 ' 0100 0. 4 0100 0 4 12 0.8 0100 0.8 0100 0 8 12 F 4 0100 0 4 0100 0~4 13 0 ' 0100 0~9 1200 0<<8 13 0<<4 0100 0~ 4 0100 0. 4 14 0<<7 0900 0~8 0100 0 7 14 0.4 0100 0 4 0100 0 4 15 0~6 1800 0.7 0100 0.7 15 0,4 0100 0. 4 0100 0.4 16 0<<6 0100 0.6 0100 0' 16 0.4 0100 0~4 0100 0' 17 0<<6 0100 0 7 1300 0 ' 17 0,4 0100 0~ 4 0100 0 4 18 0.7 0100 0. 7 0100 0.7 18 0. 4 0100 0 5 1200 0 5 19 0~7 0100 0~8 1200 0 8 19 0. 5 0100 0<<5 0100 0<<5 20 . 0. 4 0900 0. 8 0100 0 6 20 0~5 0100 0. 5 0100 0.5 21 0<<4 0100 0.5 0900 0 5 21 0 5 0100 0.8 1500 0' 22 0 4 0900 0. 5 0100 0.4 22 0<<4 0900 0 7 1900 0.6 23 0<<4 0100 0. 5 2400 0 4 23 0 7 0100 1 7 1900 1.1 24 0<<5 0100 0~ 5 0 100 0.5 24 1<<7 0100 2. 1 1300 1.9 25 0<<5 0100 0.6 1300 0 ' 25 0' 2300 2 ' 0100 1.7 26 0<<5 0100 0~ 5 0100 0 ' 26 0.6 0400 0. 8 1600 0.7 27 0~ 4 0900 0~ 5 0100 0~4 21 0 8 0100 1<<l 1400 0.9 28 0 4 0100 0 0100 0. 4 28 1.0 0100 1<<2 120 0 1.1 29 0<<4 0100 0<<4 0100 0~4 30 0 4 0100 0 ' 0100 0 4 31 0.4 0100 0<<5 1200 0~5 0~6 NEAN 0~6 0<<03 SE 0. 07 HAR 1 0. 9 0800 1<<1 0100 1~0 1 8 4 1000 9.1 0100 8.8 2 0<<8 0900 1.1 2200 1.0 2 7 9 2200 8.8 0100 8 3 3 1.0 0800 1<<7 2100 1 3 3 1.7 0500 8 ' 1700 8.0 4 1.7 0100 2<<3 2200 1~9 4 7~3 2000 8<<2 0100 7 8 5 2~ 3 0100 3<<0 1600 2 7 5 6.9 1200 1~3 0100 7.0 6 3 0 0100 3. 1 1400 3.0 6 6 6~ 1800 6. 9 0900 6<<7 1 2.4 2400 3~ 1 0100 2 ' 7 6.1 0600 6 ' 0100 6.2 8 2 1 0600 2<<8 2400 2,4 8 5.9 0900 6<<3 1500 6.2 9 2~8 0100 3. 8 2200 3 2 9 5.8 0500 6' 0800 6 1 10 3<<9 0100 5.1 2400 4 4 10 6.1 0500 7~ 1 1700 6<<6 11 5.1 0100 6~2 1800 5~8 11 7 1 0100 8<<8 2400 7 '

12 6.3 0100 6<<7 2400 6<<5 12 8.8 0100 10. 9 2300 9.7 13 6.7 0100 6.8 200 0 6.7 13 10. 9 0100 12.9 2400 11<<9 14 6.7 1800 6.9 0200 6<<8 14 12 <<9 0100 13<<4 1300 13.2 15 6.3 1100 6<<7 0100 6<<5 15 13<<0 0600 13 ~ 8 1500 13.4 16 6 1 0800 6 ' 1600 6 ' 16 13. 2 0600 14. 2 1400 13.7 1/ 6 '0 1000 6.5 0100 6.2 17 13. 3 0500 14<<3 1500 13 '

18 4,9 230 0 6.1 0100 5<<3 18 13 3 0600 14. 7 1400 14.1 19 4 1 0800 4 8 0100 4<<3 19 13 ~ 9 0500 14<<6 1600 14<<3 20 3.8 1900 4 ~ 3 0100 4 ' 20 14.2 0100 15. 3 1500 14.8 21 3 3 0700 3. 8 1600 3.6 21 15 ' 0100 16 1 1400 15 ~ 5 22 3.8 010 0 3<<9 1000 3.8 22 15.7 0200 17. 3 1500 16 <<6 23 3.0 1400 3~ 7 0100 3 2 23 17 ~ 2 0100 18 4 1600 11. 4 24 3.0 0100 3~ 2 1400 3. 1 24 16.2 2400 18 ~ 0 0100 17.3 25 2<<8 0700 3. 2 0100 3~0 25 13. 1 2200 16.1 0100 14 6 26 2 9 0600 3. 4 1800, 3.2 26 ll<<9 2400 13 ~ 1 0100 12 <<5 27 3 4 0100 4 4 2000 3 9 27 11. 2 0700 11. 8 0100 11 ~ 4 28 4.4 0100 5<<0 1500 4,8 28 11. 2 0600 11.9 1300 11 4 29 5.0 0100 7 0 2000 5<<9 29 11. 2 0500 11. 8 1600 11 ~ 5 30 7 0 0100 8<<2 2100 7~5 30 11. 3 0800 12. 4 2000 11<<9 31 8<<2 0100 9.1 1600 8 ~7 4~3 NEAR 11. 3

0. 36 SE 0.66

-19 Table A-2 (cont.)

DATE MINIMUM (TIME) MAXIMUM (TIME) MEAN DATE MINIMUM (TIME) MAXINJH (TIME)

HAY JUN 1 12>> 1 0700 13. 2 2200 1 20>> 9 0600 21.5 1900 21.1 2 13>> 2 0700 13. 6 2400 13.3 2 20>> 8 0700 22>>7 1500 21.6 3 13>> 2 0700 14 ~ 8 1700 14 ' 3 20 1 0700 22. 4 1500 21.2 14>>0 2000 14. 9 1100 14 ~ 3 20 ~ 2 0600 23. 2 1500 21.7 5 13. 8 0600 14. 2 2300 14.0 5 gl. 1 0600 2 3~ 2 1500 22 0 6 14 ~ 1 0600 15. 9 2400 14.8 . 6 '20. 1 2400 21,8 0100 21.0 7 15. 4 1000 15.9 1800 15.7 7 18.9 2400 20 0 1100 19.6 8 15>> 1 0800 15 ~ 9 1600 15 6 8 17>>9 0700 20. 1 1400 19 '

9 13 5~ 2400 15 7 0100 14. 7 9 17 2 2400 18.6 0100 18.0 10 12. 1 2400 13. 3 0100 12.7 10 16>>8 2400 17. 2 1700 17. 1 11 12 ~ 0 0400 13>> 0 1700 12. 5 11 16>>2 0700 18. 5 IGLOO 17. 4 12 12. 3 0700 13. 4 2400 12.9 12 17>>8 0700 19. 2 '1600 18.4 13 13. 3 0100 14. 9 2400 14 2 13 18 F 2 0700 20 7 1600 19.5 14 14>>8 0800 15.4 1700 15>>0 14 19 ' 2400 '20. 1 0100 20.0 20 '

15 15>> 1 0800 16. 0 1600 15>>6 15 19 ' 0700 21.7 1600 16 15 ' 0700 16>>8 1700 16 ~ 2 16 20>> 1 '0700 22.9 1500 21 ~ 6 17 16.0 0700 17. 9 2100 16.9 17 22>> 0 0100 23. 8 1500 22 5 18 17. 3 0700 19.3 1500 18.3 18 22. 0 0700 24>> 4 1600 23.1 1500 24 0 19 20 18>>3 19>>2 0700 0700 19.8

21. 0 0100'2.7 2100 1900 19.1 20,2 19 20
22. 8 22.8 0700 0700 25 2 25,2 150 0 23.9 21 20. 4 0600 22 5 1800 21.5 21 22 ~ 9 2400 24 ~ 2 1600 23 ~ 4 22 21. 6 0700 23.2 1600 22 <<4 22 22>>0 0700 24 2 1400 23. 1 23 22 ~ 2 0700 23.9 150 0 23. 2 23 21.9 0700 24>> 9 1500 23.'3 24 23. 0 0600 24 ~ 9 1500 23>>8 24 22>>8 0700 24>>6 1600 23.6 25 23. 4 0700 25. 1 1500 24 3 25 23 ~ 1 0700 23. 5 1900 23.2 26 23. 3 0700 25. 7 1500 24 ~ 3 26 22.3 0700 24. 1 1500 g3 ~ 2 27 22.9 0700 24>>7 1600 23 ~ 9 27 22. 1 0700 26. 0 1600 23~9 28 23>>3 0700 25 ~ 0 1600 24>> 2 28 23. 3 0700 24. 3 1500 23>>8 29 23.1 0800 24.6 1500 23,8 29 23 ~ 7 0700 25. 8 1500 24. 5 30 22 ~ 3 2400 23 ~ 3 0100 22.9 30 23 ~ 3 0700 26.0 1500 24 7 31 21. 1 2400 22. 2 21>>6 MEAN 18.0 MEAN 21>> 7 SE 0 '8 SE 0>>40 JUL AUG 1 24.2 0600 26.3 1600 25 ~ 1 1 23 ~ 7 0700 25 9 1500 24,7 2 23. 9 0700 26. 4 150 0 25 0 2 24.0 0600 27. 1600 25 ~ 3 3 23. 3 0700 26>>3 1500 24. 8 3 23. 9 0800 2'25.1 1600 24>>6 4 24. 1 0600 25 ' 1600 24>>9 4 24.0 0700 27. 1 1600 25 ~ 3 5 24>>l 0600 26. 1 1800 25 ~ 1 5 24.1 0700 26 ~ 8 1700 25 ~ 4 6 24. 3 2100 26>> 8 1400 25>>l 6 24 ' 0800 26>>7 1700 25 5 7 23.6 2300 24. 2 0100 24 ~ 1 7 24 ' 0600 26. 8 1800 25 7 8 23 ~ 2 0700 25. 1 1500 24,2 8 24.9 0700 27. 6 1600 26.1 9 23.8 0500 25. 5 1600 24 ' 9 25.7 0700 27>> 0 1400 26 6.1 10 24. 8 0500 26 ' 1500 25 ' 10 25>>9 0700 26. 4 1400 1500 26>>3 11 24.9 2400 25.8 0100 25>>3 11 25>>7 0700 27 3 12 24. 3 0800 25 4 1700 24 ' 12 25.9 0700 27. 1 1500 26 '

13 24. 3 0700 26. 0 1500 25 ' 13 25>>3 0800 26.4 1500 25>>8 14 24 4 0700 27 ~ 3 1500 25 ' 14 24>>8 2400 25. 3 1700 25. 0 15 25 ~ 3 0700 28,1 1600 25>>8 15 24.1 0700 25.6 1400 24>>8 16 25.9 0700 29.0 1600 26.3 16 24>>2 0800 24>> 8 1700 24.6 17 26 2 0700 29 ' 1700 27 ' 17 23. 8 2400 24>>7 0100 24 '

18 26 ' 0700 29 ' 1600 28>>l 18 23. 0 0700 24. 4 1500 1500 23>>6 23 '

19 27>> 2 0700 30 2 1600 28>>3 19 22 4 0800 24 2 20 27 3 0700 29>>7 1600 28>>3 20 22>> 1 0800 23 ~ 2 1500 22>>6 21 27 9 0600 30. 8 1500 29>>0 21 21 F 4 1000 22. 0 1400 21.8 22 26 ' 2400 29 ~ 2 1400 27>>8 22 21,4 0700 23>> 1 1500 22 '

23 25.4 0700 28 ~ 1 1400 26>>7 23 21. 7 07 00 23. 0 1500 22 F 2 24 25.0 0700 28 ~ 4 1500 26>>7 24 21. 3 2400 22. 3 1300 22 '

25 24 ' 2400 26.3 0100 25,6 25 20.9 0500 23>> 1 1500 21>>6 26 23.2 0600 26. 1 1600 24 ' 26 20. 8 0900 22. 8 1500 21.6 27 21 6 0700 25>> 3 1700 23 ' 27 21 0 0700 22>> 3 1600 21>>6 28 21 2 0700 25. 0 1500 23. 1 28 21. 7 0700 24. 3 1500 22 F 9 29 21. 6 0700 24>> 4 1400 23 ~ 0 29 23. 1 0700 25. 0 1300 24>>l 30 22 8 0800 24. 1 1400 23 3 30 24.1 0500 26. 0 1500 24>>9 31 22.9 0400 26>>0 1700 24 ~ 2 31 24.3 0900 25. 3 1500 24.9 25>>5 MEAN 24>>2 0 '9 SE 0.29

20=

Table A-2 (cont. )

DA'I'8 MINIMUM (TIME) MAXIMUM (TIME) MEAN DATE MINIMUM (TIME) MAXIMUM (TIME)

SEP. OCT 1 24. 6 2400 25 7 1700 25 0 1 14. 1 0700 14 4 0100 14. 1 2 24. 1 0700 26 ~ 7 1700 25 ~ 2 2 14 ~ 0 2400 14. 3 0900 14. 2

13. 2 2400 14>> 0 0100 13 ~ 7 3

4 3

4 '2 ~ 9 0700 13. 2 0100 13. 1 5 5 12>>4 0800 12. 9 0100 12>>8 6 6 12. 4 0800 12>>8 1700 12 ~ 6 7 23. 5 0800 25. 9 1500 24.5 7 12>>2 0800 12.7 1900 12.5 8 23. 3 0800 24. 4 1300 23>>9 8 12.1 0700 12 ' 0100 12>>l 9 22. 4 0800 24 ~ 9 1500 23 ' 9 12>>0 0100 12>>2 1600 12 1 10 22 ~ 7 2400 24.9 1600 23 ' 10 11 ~ 8 0800 12.0 0100 11>>9 11 20. 9 2400 23. 3 1500 22 ' 11 11>> 7 0700 12 ~ 0 1700 11 ~ 9 12 20. 0 0800 23. 1 1700 21. 4 12 11>>8 0800 12. 0 1500 11.9 13 14

20. 2
19. 8 0900 2400 21 ~ 1 21 9 1600 1700 20.7 20.9 13 14 ll.

10>>8 6 0800 2400

11. 9
11. 6 0100 0100 11.8
11. 1 15 18.6 0700 20>> 9 1600 19>>6 15 10>> 3 1000 10>>8 0100 10. 6 16 19 ~ 0 0600 19 ' 0100 19 4 16 9.9 2400 10.7 0100 10>> 2 17 19. 1 0200 19.9 1500 19>>5 17 9.1 2400 10 ~ 5 0300 9.8 18 19. 2 2400 19 ' 0100 19.6 18 8 7 2400 9.0 0100 8>>8 19 18>>8 0800 19>>2 1700 19 ' 19 8 ' 0700 8.7 2400 8 ~5 20 19>> 0 0800 19>>8 2200 19.3 20 8.5 0700 9~0 1600 8.8 21 18.9 2400 19'>> 4 0100 19>>l 21 8.8 0700 9.1 1700 9.0 22 18>>2 2400 18. 9 0100 18.7 22 9 1 0100 10.0 1800 9.5 23 17. 4 2 100 18>> 2 0100 17>> 8 23 9 ' 0800 10. 1 1800 10 0 24 16.9 2400 17. 4 0100 17 1 24 9 ' 0800 10. 1 0100 10 0 25 15.8 2400 16 9 0100 16 3 25 9 9 0700 10 ~ 1 1600 10.0 26 15>> 0 2400 15 ' 0100 15.2 26 10. 2 0100 10 ~ 8 1400 10 ~ 5 27 14 ~ 9 0800 15>>2 1700 15. 1 27 10>>8 0100 11 ~ 9 2400 11 3 28 15. 0 0800 15.4 1800 15. 2 28 11. 9 0100 12>> 4 1600 12 ~ 1 29 15>> 0 0700 15 ' 2000 15 ~ 3 29 11. 8 0900 12. 1 0100 12. 0 30 15>> 1 0800 15>>7 2000 15. 4 30 ll. 8 0900 12 0
11. 8 1500 11>>9
11. 5 31 11. 3 0900 0100 MEAN 19.7 MEAN 11.3 se 0.63 SE 0.28 NOV DEC 1 10>> 1 0900 10. 6 1400 10. 4 1 3.6 0100 4~ 3 2300 4~0 2 10. 5 0100 11 0 2300 10 7 2 4 3 0200 4 ~ 7 1700 4.5 3 11>> 0 0100 11 ~ 8 2300 11. 3 3 4~7 0100 4 ~ 7 0100 4.7 4 11. 8 0100 12 8 2100 12 4 4 4 ~2 2200 4~7 0100 4.4 5 12 ~ 9 0100 13. 9 1600 13 ~ 5 5 3.1 1800 4~2 0100 3' 6 13. 4 1200 13 ~ 9 0100 13 7 6 2 3 2400 3.1 0100 2.8 7 13. 1 2400 13. 8 010 0 13. 4 7 ' 1.2 2400 2 3 0100 1.8 8 12 ' 2400 13. 1 0100 12. 7 8 ~ 9 1400 1>>2 0100 1>>0 9 12.1 0400 12.2 0100 12 1 9 0.1 20 00 0.9 0100 0 5 10 11. 9 2400 12 ~ 1 0100 12.0 10 0~ 1 0100 0.3 1300 0 2 11 10 5 2400 11.9 0100 11. 2 11 0. 0 1900 0. 1 0100 0.1 12 8.9 2400 10. 3 0100 9.7 12 0.0 0100 0 2 2400 0.1 13 7~3 2400 8 8 0100 8.0 13 0 2 0100 0>>4 1400 , 0>>3 14 6.5 1900 7. 2 0100 6.7 14 0.2 0600 0. 3 0100 0.3 15 6.1 0700 6>>5 0100 6 ' 15 0.1 0700 0 ' 2300 0>>2 16 6;2 0700 6.8 2200 6.5 16 0.3 0100 0.9 2400 0.6 17 6.8 0100 7>>6 2000 7>>2 17 1~ 0 0100 1.7 2000 1>>4 18 7~2 0800 7~ 6 0100 7 ' 18 1.7 0100 2.0 2200 1 8 19 6.9 2400 7 3 1500 7 ' 19 1.7 0600 2. 3 2400 2.0 20 6.9 0100 7.1 1600 7.0 20 2>> 3 0100 2. 5 2200 2 4 21 6.8 0700 7.0 0100 6.8 21 2.4 0800 2. 5 0100 2 ~5 22 6.8 0100 6.9 0800 6.8 22 1.8 2000 2>>4 0100 2.1 23 6 ~7 1400 6.9 0100 6.8 23 l. 7 0900 1.9 0100 1.8 24 6.7 0100 6~8 1400 6.7 24 1.6 0900 2>>1 2400 1~8 25 6>>l 2400 6.8 0100 6.5 25 2.0 0100 2. 5 1500 2 '

26 5.1 2400 6.0 0100 5.8 26 1.0 2300 2.0 0100 1 3 27 4>>2 2300 5.0 0100 4.7 27 0 1 1900 0 9 0100 0.2 28 3.8 2300 4.2 0100 4 0 28 "0. 1 0100 0.0 1400 0 I~

29 3. 3 0800 3. 8 0100 3.5 29 -0>> 1 1800 0 0 2400 0.0 30 3. 4 0800 3. 7 2400 3 ' 30 "0.1 2200 0.1 0100 0>>0 31 0. 0 1800 0~ I 0100 0.1 8~5 HEAH 1.6 0 58 se 0. 27

21 Table A-3. Daily minimum, maximum, and mean level (m above msl) of the Susquehanna River at Ichthyological Associates Laboratory, 1977.

DATE HI NI HUH (TINE) HAXIHUH (TINE) HINIHUH (TINE) HAXIHUH (TINE)

JAN eEE 1

2 148.74 148.77 1800 1000 148 '6 148 93 0100 1900 148.80 148.83 1

2 149.

149.

23 20 0900 2000 149.26 149 23 0100 0100 149.23 149.23 3 148.77 1800 148 .83 1000 148.80 3 149. 17 0600 149 20 0100 149.17 4

5 148.77 148.80 0100 0100 148 '0 148.86 0700 1200 148.77 148.83 4

5 149.

149 14 14 1500 0100 149.17 149 '7 0100 1800 149.17 149.14 6 148.80 1500 148.83 0100 148>>83 6 149. 14 0100 149. 14 0100 149.14 7 148 80 0100 148.86 2300 148>>80 7 149. 14 1800 149.17 0100 149>>17 8 148.83 1800 148.93 0700 148>>89 8 149 14 1500 149.17 0100 149.17 10 9 148 80 148.77 1600 0400 148 '9 148 .93 0700 2400 148>>83 148 ~ 80 9

10 149. 11 149. 08 1600 1800 149.14 149.11 0100 0100 149 14 149 11 11 148.96 0100 149. 11 1200 149 02 11 149 08 0100 149 08 0100 149.08 12 148.99 1600 149.11 0800 149 F 05 12 149 08 0100 149.08 0100 149.08 13 148.86 1800 149.08 0100 148 99 13 149. 08 0100 149.14 1900 149 11 14 148.83 1800 148>>96 0100 148.89 14 149.17 0100 149.23 2000 149.20 15 16 148.86 148.93 0100 1700 148>>93 148.99 1000 1200 148.89 148.96 15 16 149>>23 149. 50 0100 0100 149. 50 149.63 2400 1900 149 '5 149.57 17 148.99 0100 149>>ll 2400 149.02 17 149.63 0100 149.53 0900 149.57 18 149 ~ 11 0100 149>> 20 2200 149 ~ 14 18 149. 41 0900 149. 53 0100 149 ~ 44 19 20 149.14 148.89 1700 1800 149 23 149.17 0 100 0100 149 ~ 20 149 '5 19 20 149. 35 149. 32 1600 1800 149.41 149>>35 0100 0100 149 '8 149. 35 21 22 149. 05 149.08 1800 1800 149 ~ 11 149.11 1000 0100 149.08 149.11 21 22 149 '9 149.23 0600 0800 149 32 149.29 0100 0100 149.29 149>> 23 23 24 149. 11 149. 29 0100 0900 149>>14 149.29 0700 0900 149.14 149. 29 23 24 149 ~ 17 149. 08 2300 1300 149.23 149.17 0100 0100 149 '0 149.11 25 149. 26 1800 149.29 0100 149.29 25 149>>17 0100 151. 36 2400 149.81 26 149. 23 1800 149.29 0700 149>>26 26 150>>96 2400 151 ~ 46 0300 151 ~ 17 27 28 149.23 149. 23 0100 1300 149.29 149.26 1200 0100 149 149

'3

'6 27 28 150. 78 150. 78 0800 0100 150.93 151.26 0100 2200 150.84 151.02 29 149. 20 0700 149.23 0100 149 ~ 23 30 149. 26 0100 149.29 2100 149.26 31 149>> 26 0600 149>>29 0100 149>>26 HEAN 149 03 HEAR 149.45 SE 0. 033 SE 0. 109 HAR APR 1 151.26 0100 151. 38 1000 151 ~ 32 1 151.93 0500 151. 96 0100 151 ~ 96 2

3 150. 71 150.32 2400 2400 151.23 150. 71 0100 0100 150 '9 150 ~ 50 3 2 151. 81 151. 87 1300 0100 151.93 152.12 0100 1200 151. 84 152>> 02 4 150. 26 0600 150. 59 2400 150. 32 151>> 48 2300 151>>87 0100 151. 66 5 150.65 0100 151.66 2400 151. 29 5 151, 14 2200 151>>45 0100 151.26 6 151. 72 0100 151.87 0900 151.81 6 150.96 2200 151.14 0100 151.02 8

7 151. 38 150.87 2400 2300 151.72 151. 35 0100 0100 151.60 151.11

.7 8

150 71 150. 50 2200 2400 150 '3 150, 68 0100 0100 150. 81 150 ~ 59 9 150. 53 2200 150.84 0100 150.68 9 150. 29 220 0 150>> 50 0100 150. 38 150.44 1300 150.47 2200 0100 150.17 ll 10 12 150 '4 150>>81 0100 0100 150 ~ 50 150. 81 151>> 08 0100 2400 1700 150. 53 1 50 ~ 99 10 11 12 150 ~ 07 149>>92 149. 80 1900 2200 150 ~ 29 150>> 04 149.89 0100 0100 149 ~ 95 149>>86 151.08 0100 151.63 2400 151.26 13 149. 74 1700 149.80 0100 149.77 13'4 15 151>>69 152.79 0600 2300 153 F 00 153 '3 2400 0300 152.45 152.94 14 15 149. 59 149.50 2400 2400 149 149

'4

'9 0100 0100 149.68 149.56 16 152 ~ 42 2200 152>>76 0100 152.57 16 149. 40 1900 149.50 0100 149 ~ 46 17 152. 02 2400 152. 39 0100 152.24 17 149.34 150 0 149. 40 0100 149 37 18 19 151>> 42 150.96 2400 2400 151.99 151 38 0100 0100 151. 69 151. 17 18 19 149.28 149. 22 1900 1400 149 34 149.28 0100 0100 149 '1 149.25 20 150.65 2400 150.93 0100 1 50 ~ 78 20 149.16 1100 149.19 0100 149.16 21 150 50 2100 150 65 0100 150 ~ 56 21 149.10 2000 149>>16 0100 149.13 22 150>> 47 0300 150. 93 2400 150. 59 22 149. 04 1700 149. 10 0100 149.07 23 150>>96 0100 151 20 1400 151>> 14 23 149. 01 0700 149>>04 0100 149.01 24 150 96 2400 151.20 0100 151.11 24 149. 04 0100 149 53 2400 149 22 25 26 150>> 59 150.38 2300 2100 151>>93 150 ~ 59 0100 0100 150>> 78 150. 47 25 26 149>>59 151.20 0100 0100 151 '0 151.32 2400 1000 150 55 151>>29 150>> 23 1900 150>> 35 0100 150.29 27 150. 99 2400 151>>26 0100 151.14 28 150.23 0100 150.47 2400 150. 32 28 150. 53 2300 150 96 0100 150>>74 29'0 150>>47 0100 151>> 35 2400 150>>84 29 150. 17 2400 150. 50 0100 150. 32 151.42 0100 152. 02 2400 151.87 30 149.92 2200 150. 14 0100 150>> 01 31 151 ~ 96 2300 152.09 0800 152 ~ 02 HEAR 1 51 ~ 18 HEAN 150.25 SE 0. 129 SE 0. 173

22 Table A-3 (COnt.)

DATE MINIMUM (TINE)MAXIMUM (TINE) MEAN DATE NI HIHUN (TINE) MAXIMUM (TIME)

JUN 149. 74 2400 149.89 0100 149>> 80 148,67 2400 148.73 0100 148.70 1

2 3

149 59 149.53 2400 2400 149.71 149. 59 0100 0100 149>>65 149>>56 1

2 3

148 '1 148>> 58 2400 2400 148.67 148.61 0100 0100 148.64 148.61 4 149. 43 149 43 2400 0100 149 '3 149 ~ 53 0100 2400 149>>46 149>>46 4 148 ~ 55 148 F 55 2400 0100 148.58 148 55 0100 0100 148>>58 148.55 5

6 7

149 '3 150 07 0100 2400 150 ~ 17 150 '9 2400 0700 149>>77 150.20 5

6 7

148 '5 148 ~ 58 0100 0100 148 58 148.61 2400 2400 148 58 148 >>61 8

9 149.83 149>>65 2400 2400 150 '7 149.80 0100 0100 149.92 149>>71 8

9 148. 58 148 58 2400 0100 148.61 148 ~ 61 0100 2400 148.61 148 ~ 61 10 149.65 0100 149.65 0100 149. 65 10 148.64 0100 148 73 2400 148.67 11 149 ~ 65 0100 149. 77 2400 149>> 71 11 148 73 0100 148.79 0900 148.76 12 13 149 80 149 77 0100 2400 149 86 149 ~ 83 1200 0100 149.83 149>>77 12 13 148 148

'0

>>67 2400 1200 148>>76 148 '0 0100 0100 148 ~ 73 148.70 14 149>>68 2400 149.77 0100 149. 71 14 148 67 2400 148>>70 0100 148.67 15 149.56 2400 149.68 0100 149>>62 15 148 67 0100 148 '7 0100 148 67 16 149>>46 2400 149 ~ 56 0100 149 F 50 16 148. 58 2400 148 67 0100 148.61 17 149,34 2400 149.46 0100 149.40 17 148 ~ 55 2400 148>>58 0100 148 55 18 19 149 '5 149.16 2400 2400 149.34 149.25 0100 0100 149 '8 149 ~ 19 18 19 148 ~ 52 148. 55 2300 2400 148>>55 148.64 0100 0600 148.52 148 58 20 21 149 ~ 10 149>> 07 2400 2400 149.16 149.10 0100 0100 149 '3 149.07 20 21 148 ~ 55 148.55 0100 0100 148 ~ 55 148.55 0100 0100 148.55 148.55 22 149. 07 0100 149 07 0100 149 07 22 148.55 0100 148.61 2400 148.58 23 149 ~ 01 2400 149 07 0100 149 04 23 148 58 2400 148>> 61 0100 148 61 24 148.95 2400 149 01 0100 148. 98 24 148 >> 55 , 2400 148.58 0100 148.58 25 148.92 2400 148 95 0100 148 92 25 148 52 2400 148 55 0100 148 52 26 27 148 >>85 148 >>82 0900 1500 148 148 92 92 0100 0100 148 ~ 89 148 85 26 27 148 148

'2

'9 0100 0600 148 << 52 148>>52 0100 0100 148.52 148.49 28 29 148 89 148 ~ 82 0100 2400 148 148 95 92 1200 0100 148.92 148 >>85 28 29 148 '9 148>> 52 0600 0100 148.52 148 ~ 61 2400 1500 148 ~ 49 148.58 30 31 148>>76 148 70 1200 2400

~

148.82 148 76 0100 0100 148 79 148 ~ 73 30 148 '8 2400 148 ~ 61 0100 148.58 NEAH SE 149 '7 0 ~ 072 HEAH SE 148.60 0>> 012 JUI AUG 1

2 148 '5 148 55 0900 0100 148 ~ 58 148 58 0100 1000 148 ~ 55 148 .58 1

2 148.43 148. 46 0100 0100 148.43 148>>46 0100 0100 148 43 148 ~ 46 3

4 148. 52 148.49 2100 1500 148>>58 148 >>52 0100 0100 148.55 148.52 3 148 '6 148.43 0100 1800 148 148

'2

'2 1800 0100 148 49 148 ~ 47 5 148 148 '9

~ 49 0100 0100 148 <<52 148.49 1900 0100 148 49 148.49 5

6 148 148

'0

'0 0900 0100 148 '3 148>>40 0100 0100 148>>41 148 ~ 40 148 '3 6

7 8

148 148

'261 0100 0100 148 148 58

>>70 2400 2100 148.55 148 >>67 7

8 148.40 148>>43 0100 0100 148 46

~

1200 1000 148 '2 148 45 9 148 70 0100 148 >>82 2400 148.73 9 148.46 0100 148>>82 1800 148 >>66 10 148 85 0100 149 07 1200 149 01 10 148 73 1900 148.82 0100 148.77 11 148.79 2000 148 >>98 2000 148.85 11 148.58 2100 148 ~ 73 0100 148 65 12 148 70 0100 148>>76 1500 148 73 12 148.52 1800 148 58 0100 148.55 13 14 148 148 e 55 64 2200 2200 148 >>79 148.64 0700 0100 148 73 148.61 13 14 148.49 148 49 0100 0100 148 '9 148>>55 0100 2400 148 49 148 .50 15 16 148 148

'949 2100 0100 148 '5 148 ~ 49 0100 0100 148 52 148 >>49 15 16 148 58 148>>70 0100 0100 148.73 148 ~ 70 1500 0100 148.68 148 '0 17 148 49 0100 148 49 0 100 148 49 17 148 73 0100 148 ~ 79 2100 148 76 18 19 148

~

~ 49 148>>49 0100 0100 148>>49 148.49 0100 0 100 148 '9 148.49 18 19 148 ~ 79 148. 61 0100 2100 148.82 148 '6 120 0 0100 148>>80 148 68 20 21 148 148

'9 0100 0100 148 148 49 49 0 100 0100 148 49 148 ~ 49 20 21 148 61 148.82 0100 2000 148>>85 148.89 2400 0400 148 148

'0

'6 22 23

>>49'48 148 '3

~ 49 0100 2400 148 148

'949

~

0100 0100 148.49 148 .46 22 23 148 '0 148.61 2100 1800 148.79 148 '0 0100 0100 148 '4 148>>65 24 148.43 0100 148 ~ 43 0100 14S ~ 43 24 148,58 1300 148 ~ 61 0100 148 ~ 60 25 148 >>43 0100 148 ~ 43 0100 148 43 25 148>>55 0900 148.61 2400 148 57 26 148 43 0100 148 46 0300 148 43 26 148 58 2000 148.61 0100 148.61 27 148>>40 2100 148.43 0100 148 ~ 43 27 148.58 0100 148>>58 0100 148.58 28 148 ~ 40 0100 148 e 40 0100 148 40 28 148 58 0100 148 ~ 58 0100 148 >>58 29 30 148.40 148 46 0100 0100 148 .46 148 '6 2400 0100 148 148

'3

'6 29 30 148 '5 148. 52 0600 1800 148>>58 148 ~ 58 0100 0900 148.56 148 ~ 54 31 148>>43 0600 148 '6 0100 148 ~ 43 31 148 52 0100 148>>55 1500 148 ~ 53 H EAN 148.55 148.59 SE 0. 025 0 022

23 Table A-3 (cont.)

DATE HI NINON (TINE) HAXINUN (TINE) DATE NI NIHUN (TINE) HAXIHUH (TINE)

SEE.

1 148 46 1600 148.52 0100 >>148 48 150.47 2400 150.71 0100 150>>56 2 148.43 0600 148.46 0100 148 44 150>> 47 0100 150, 56 2400 150.51 3 148 .43 0100 148.49 1800 148 46 150>>56 0100 150. 78 1600 150.71 4 148 ~ 49 0100 148 49 0100 148.49 150.74 0100>> 150 ~ 74 0100 150>>74 5 148.49 0100 148 49 0100 148.49 150.56 2400 150 74 0100 150>>66 6 148.49 0100 148.49 0100 148.49 150.29 2400 150. 53 0100 150>> 40 7 148>>49 0100 148 .49 0100 148 ~ 49 150. 14 2400 150. 29 0100 150.20 8 148.43 1800 148>>49 0100 148.46 149.95 2400 150.14 0100 150>> 03 9

10 148.43 148.40 0100 0700 148.43 148.43 0100 0100 148.43 148.41 10 149.89 149.89 1200 0100 149.95 150.01 0100 2400 149 149.93

'0 11 148 >>37 1000 148.40 0100 148 .38 11 150. 01 0100 150 ~ 38 2000 150. 25 12 148.37 0100 148.37 0100 148 37 12 150. 20 2400 150 35 0100 150. 30 13 148'37 0100 148 37 0 100 148 ~ 37 13 149. 98 2400 150.20 0100 150. 07 14 148.37 0100 148 37 0100 148 ~ 37 14 149. 83 1800 149>>98 0100 149>>88 15 16 148 34 148 34 1000 0100 148 '7 149.13 0100 2400 148.35 148.61 15 16 149>> 89 150. 38 0100 1300 150, 44 150. 65 2400 2400 150.11 150. 45 17 149. 04 1900 149.16 0200 149.09 17 1 50 ~ 68 0100 152.33 2400 151. 51 18 19 "'0 149. 07 150.10 0100 2400 150 26 150.26 2400 0100 149 '3 150.20 18 19 152>> 39 152.63 0100 2200 153.06 153.03 1700 0100 152.88 152.79 150.07 0100 150 68 2400 150. 23 20 152>> 63 0100 152.88 1900 152.76 21 22 150.74 151.38 0100 2400 151.

151.

38 54 2400 1000 151. 05 151 47 21 22 152. 42 151. 60 2400 2400 152>> 85 152>>39 0100 0100 152 '0 151>> 99 23 151>> 11 2400 151. 38 0100 151.25 23 151>> 02 2300 151.57 0100 151 26 24 25 150.74 150>>68 2400 1000 151. 11 151 ~ 38

.0100 2400 150 '5 150. 84 24 25 150>>68 150>>44 2400 2300 150.99 150>>68 0100 0100 150.84 150>>56 26 151.48 0100 153.15 2400 .

152 49 26 150.26 2400 150. 44 0100 150 ~ 35 27 152.39 2400 153.18 0100 152. 81 27 150. 10 2400 150. 26 0100 150 ~ 19 28 29 151.78 151. 20 2400 2400 152.39 151>>78 0100 0100 152 ~ 13 151.47 28 29 149 '2 149. 71 2300 2400 150>> 10 149 92 0100 0100 150 02 149.81 30 150.74 2400 151.20 0100 150. 96 30 149>>59 2200 149 71 0100 149 64 31 149.50 2200 149.59 0100 149>>56 NEAN 149 66 HEAN 150.70 SE 0 272 SE 0 ~ 174 NOV DEC 149 ~ 43 1900 149>> 50 0100 149 ~ 46 1 149. 56 0100 150. 17 2400 149.77 1

2 3

149.34 149. 28 1900 1900 149 '3 149 ~ 34 0100 0100 149. 38 149 ~ 31 2

3 150 ~ 23 151. 05 0100 20 00 151 08 151. 11 2400 0100 150 76 151. 09 4 149.25 1100 149 28 0100 149. 26 4 150 ~ 84 2300 151 F 05 0100 150.95 149. 19 1200 149 ~ 53 2400 149 23 150>> 56 2300 150,84 0100 150.68 5

6 7

149.71 149.98 0100 2100 150. 47 150 ~ 38 1500 0100 150 33 1 50 12 5

6 7

150>> 32 150. 17 2300 2100 150. 56 150 ~ 32 0100 0100 150 150.24

'3 8

9 149.98 151 08 0100 0100 150.99 151.72 2400 1600

~

150. 31 151. 56 8

9 149 '8 149.92 2100 1400 150. 17 149 98 0100 0100 150 ~ 07 149.95 10 151.14 2100 151>>63 0100 151>> 33 10 149>>83 1600 150. 01 0400 149.93 11 151.14 0100 151 87 2400 151 ~ 45 11 149 74 1800 149 89 0100 149.82 12 13 151.90 151.35 0100 2400 152 '4 151.96 1300 0100 152>> 12 151.63 12 13 149.40 149.34 1600 1300 149 '4 149 77 0100 1800 149 ~ 57 149 '7 14 150. 93 2300 151. 35 0100 151>> 14 14 149 ~ 40 0400 149 68 2000 149.47 15 150 ~ 53 2200 150 90 0100 150 ~ 69 15 149>>71 0100 151 F 81 2400 150 75 16 150. 29 2200 150>>53 0100 150>> 39 16 151. 90 0100 152 ~ 42 1100 1 52 ~ 28 17 150. 17 2400 150. 29 0100 150 ~ 21 17 151. 63 2400 152. 24 0100 151.92 18 150. 10 1000 150. 17 0100 150>>14 18 151. 23 2300 151.63 0100 151. 40 19 150.17 0100 150. 26 1200 150.21 19 151. 14 0900 151>> 20 0100 151. 16 20 150. 04 2200 150. 17 0100 150. 10 20 150>>96 2400 151 ~ 20 0300 151. 11 21 149.92 2100 150. 04 0100 149 ~ 98 21 150.84 1100 150. 93 0100 150 88 22 149.83 2000 149.92 0100 149. 87 22 150. 68 2300 150. 84 0100 150 ~ 78 23 149.74 2100 149.83 149 78 23 2300 0100 150 24 25 149.71 149.62 1200 2000 149.74 149 '1 0100 0100 0100 149 '2 149.66 24 25 150>> 50 1 50 ~ 29 150 ~ 26 2200 0300 150>> 68 150. 50 150. 41 0100 2400 150 150

'95930 26 149.62 0100 149.65 0300 149>>65 26 150 ~ 44 0100 150.68 2400 150. 59 27 149 62 0900 149.65 0100 149. 63 27 150 ~ 29 2400 150.68 0100 150 51 28 149.62 0100 149.62 0100 149.62 28 150. 17 1800 150.32 0800 150. 24 29 149. 56 1500 149. 59 0 100 149 ~ 58 29 149.89 1700 150. 17 0100 150 00 30 149>>53 1500 149 '6 0100 149>>55 30 31 149 68 149.62 1800 1800 149 89 149 68 0100 0100 149>>77 149 65 H SAN 150>> 18 NEAN 150. 47 SE 0 ~ 144 SE 0 ~ 124

Table A-4. Daily flow (m 3

/s) of the Susquehanna River at ZchthyoloSical Associates Laboratory, 1977.

JAN PEB NAR APR NAY JVN JVL AVG SEP OCT NOV DEC 1 156 296 1536 2102 542 129 92 67 77 978 387 527 2 164 296 1279 1989 470 114 99 73 69 945 354 1113 3 156 274 939 2160 430 106 92 79 73 1078 326 1354 4 147 274 827 1826 387 99 86 75 79 1099 307 1249 5 164 263 1512 1488 387 92 79 63 79 104 4 296 1058 6 164 263 1962 1301 527 99 79 61 79 876 833 894 7 156 274 1773 1148 756 106 92 65 79 756 710 779 8 182 274 1370 997 602 106 121 71 73 661 821 682 9 164 263 1058 863 498 106 137 119 67 592 1738 618 10 156 253 920 739 470 121 219 147 63 608 1544 608 11 222 242 958 618 498 145 170 116 57 785 1644 552 12 232 242 1279 572 557 137 137 92 55 815 2257 434 13 213 253 1488 527 527 129 137 79 55 682 1799 391 14 182 285 2594 484 498 121 106 81 55 582 1393 391 15 182 342 3137 430 45 I 121 86 124 51 705 1064 1106 16 203 434 2722 387 404 106 79 129 106 907 869 24 18 17 222 434 2377 350 362 92 79 145 246 1695 762 206 4 18 263 378 18 53 326 314 86 79 156 508 3068 721 1602 19 285 354 14 16 303 281 99 79 124 756 2966 762 1408 20 232 342 1127 270 259 92 79 129 773 2932 699 1370 21 242 318 978 259 239 92 79 173 1324 2865 634 1198 22 253 296 997 239 239 99 79 139 1661 2131 577 1127 23 263 285 1393 219 229 106 73 116 1480 1488 532 997 24 318 .153 1370 292 209 99 67 104 1249 1169 503 869 25 318 547 1127 971 191 86 67 97 1 169 978 475 815 26 307 1416 920 1512 182 86 67 106 2637 845 470 997 27 296 1169 809 1393 170 79 67 99 2988 750 461 945 28 307 1301 827 1099 191 29 61 99 2267 655 457 779 29 296 1 169 827 170 99 67 95 1661 547 439 645 30 307 2017 650 153 99 73 90 1256 466 425 527 31 307 2160 137 67 88 430 470 BEAN 228 415 1480 878 366 104 93 103 703 1164 809 96'7 SE 10.8 60 ~ 5 109 ~ 6 109e6 29 ' 3m 0 6~ 3 5 3 158.0 141 ~ 2 94m 5 85 ~ 0

25 Table A-5. Physicochemical data collected at SSES-A on the Susquehanna River, January, February, and Narch 1977.

DATE 14 JAN 27 JAH TINE DISCHARGE 1230 1330 RIVER LEVEI (N ABOVE HSL) 148.93 149.26 (N3/S) 194 307 TENPERATU RE (C)

AIR 2 ' -3. 0 WATER 0.0 0.0 WEATHER OVERCAST SUNNY MEAN

'IURBIDITY(NTU) 12 8.0 10 1~6 OXYGEN I

D S SOLV ED (HG/L) 13. 32 12. 10 12.71 0 '98 PERCENT SATURATION 91 82 87 3 '

ALKALINITY(NG/I ) 69 68 69 0 4 PH 7. 3 7 ' 7>>3 0.04 SPECIPIC CONDUCTANCE AT 25 C(UNHOS/CN) 395 370 383 10>>2 SVI PATE(HG/L) 82 71 77 4 '

IRON(NG/I)

TOTAL 3. 20 2 ~ 72 2. 96 0.196 DISSOLVED 0. 04 0 ~ 05 0. 05 0 004 PERCENT DISSOLVED 1 2 2 0,4 RE SIDU E (NG/L)

TOTAL 257 236 247 8>>6 FIXED TOTAL 184 186 185 0~8 NON FILTRABLE 11 10 11 0.4 FIXED NONFILTRABLE 8 7 8 0,4 DATE 16 PEB 28 PEB TINE 1240 1 315 RIVER LEVFL(N ABOVE MSL) 149>> 53 151. 05 DISCHARGE(43/S) 417 1320 TENPERATVRE(C)

AIR -2.0 5>>0 WATER 0 0 l>>0

'WEATHER P>>CI,OVDY P.CLOUDY SE SECCNI DISC(CH) 8 8 1'URBIDITY(NTU) 6.4 77 42 28>>8 OXYGEN D IS SOLV ED (NG/L) 12 20 12,70 12. 45 0.204 PERCENT SATURATION 84 89 87 2 '

AIKALINITY(NG/L) 66 26 46 16 '

PN 7. 4 7~2 7~ 3 0 08 SPECIFIC CONDUCTANCE AT 25 C(UNBOS/CN) 420 143 282 113. 1 SVLYATE (NG/I ) 78 21 50 23 3 IROa(NG/L)

TOTAL 2. 24 2>>08 2.16 0.057 DISSOIVED 0. 12 0 F 08 0. 10 0.016 PERCENT DISSOLVED 5 4 5 0.5 RE SI DU E (NG/I,)

TOTAL 252 220 236 13>>1 FIXED TOTAL 194 184 189 4.1 NONPILTRABLE 8 121 65 46>>l PIXED NGNPILTRABI 8 6 112 59 43 ~ 3 IRON DATE 15 NAR 30 NAR TINE 1330 1340 RIVER LEVEI (N ABOVE NSL)

DISCHARGE(N3/S) 152 ~ 00 3140 151 '6 2100 TENPERATURE (C)

AIR 12 0 21. 0 MTER 6~0 7>>0 WEATHER SUNNY SQNN Y NEAN SECCBI DISC(CH) 8 16 12 3.3 TURBIDITY(NTV) 270 60 165 85>>7 OXYGEN D I S SO I V ED (NG/L) 11. 40 13>> 45 12. 43 0.837 PERCENT SATURATION 91 110 101 7.8 ALKALINITY(NG/L) 20 24 22 1>>6 PH 7 ' 7. 3 7~3 0 ~ 04 SPECIPIC CONDUCTANCE AT 25 C(UNNOS/CH) 95 122 109 11>>0 SVI.FATE (HG/L) 21 74 48 21. 6 (NG/L)

TOTAL 5>>38 4.56 4 ~ 97 0.335 DISSOLVED 0.07 0 04 0. 06 0 ~ 012 PERCENT DISSOLVED 1 1 1 0>>0 RESIDUE(NG/L)

TOTAL 526 230 378 120.8 PIXED TOTAL 480 198 339 115>>1 NOHPILTRABLE 497 163 330 136.4 PIXED NONPILTRABLE 442 151 297 118.8 a Our determination Nean of 3 quality control cross-check values.

(15.3 mg/1) was not used because of suspected contamination during sample collection.

26 Tablo A-6. Physicochemical data collected at SSES-A on tho Susquahanna River, Apr'1, Nay, and Juno 1977.

DATE 6 APR 8 APR 12 APR 15 APR 19 APR 21 APR 26 APR 28 APR TINE 1315 1200 1330 13 50 1315 1 350 1340 I 330 RIVER LEVEI,(H ABOVE NSL) 151. 02 150.59 149.83 149.56 149.02 149 13 151.35 150 11 DISCHARGE (N3/S) 1300 991 557 430 222 259 1560 1080 TENPE RATU RE (C )

AI R 5.5 6.0 22. 0 14.0 18e0 24+0 15.0 18.0 WATER 5.5 5 ' 9~5 13.0 14 ' 160 130 12 ~ 0 WEATHER P.CLOUDY SUNNY SUNNY SU)C(Y OVERCAST SUNNY P.CLOUDY OVERCAST WEAN SE SECCHI DISC(CN) 28 89 111 89 78 19 33 70 12 ~ 5 TURBIDITY(H'lU) 26 14 12 17 18 44 24 21 3.6 OXYCEH DISSOLVED(NG/L) 13 ~ 05 13. 60 12.90 11. 30 13 ~ 55 14 95 10.85 11. 45 12.71 0. 467 PERC&T SATURATION 103 107 114 107 132 151 102 106 115 5+8

'6' ALKALINITY(llG/L) 30 34 39 46 53 56 38 28 41 3 PB 7~ 3 7~ 3 7 2 7 3 7 4 7.8 7.5 7 ~ 3 7 4 0 SPECIPIC CONDUCTANCE AT 25 C(tuu(OS/CH) 134 150 200 231 254 294 161 ,119 193 '20. 8 SULl'ATE(NG/L) 16 39 52 67 69 76 21 27 46 7.8

~ IRON(NG/L)

TOTAL 2. 63 l. 86 1~ 98 .,2 ~ 23 2.74 2 ~ 77 3 78 2. 11 2. 52 0. 205 Dl SSOLV ED 0.53 0. 16 0.03 0.11 0. 069 PERCENT DISSOLVED RESIDUE(NG/L)

Oe 39 15 28 0 ~ 54 27 7 0 ~ 05 2 1 3 0 24 ll 0. 26 12 3~6 TOI'AL 140 127 143 164 184 199 202 128 161 10 ~ 3 PIXED TOTAL 108 100 18 122 146 146 161 102 120 9.5 NON P ILT RAB LE 45 22 14 16 21 24 100 38 35 9. 4 PIXED NONPILTRABLE 37 21 11 14 14 18 92 34 30 8 ~9 DATE 3 NAY 6 NAY 10 NAY 13 llAY 11 NAY 19 NAY 24 NAY 26 NAY 31 NAY TINE 1335 1335 1355 1315 1355 1355 1350 1325 1340 RIVER LEVEL(N ABOVE HSI,) 149o56 149.80 149.62 149 +77 149o40 149m 19 148.95 148 F 85 148,73 DISCHARGE(H3/S) 430 542 457 527 362 281 200 170 137 TENPERATVRE (C)

AIR 17.0 25.0 16 0 23.0 24 ' 29 ' 25.0 23. 5 21. 0 WATER 10.0 16.0 13.0 15.0 17 0 20.0 24.0 25. 0 22.0 WEA'IllER P.CLOUDY P.CLOUDY OVERCAST P.CLOUDY SUNNY P . CLOUDY P.CLOUDY SUNNY OVERCAST WEAN SE SECCHI DISC(CH) 128 118 138 103 97 94 80 113 TURBIDITY (NIU)

OXYCEN 8~1 128 10'0.

9. 3 130 1~8 8 ~7 ll 11 9.6 13 9 8 6~3 0~5 DISSOLVED(HG/L) 10. 60 70 10. 40 11. 20 12. 20 1 l. 00 10. 40 11.60 9. 60 10. 86 0 ~ 240 PERCENT SATURATION 95 106 91 109 126 131 124 138 110 115 4 ~8 ALKAfINITY (NG/L) 40 46 45 40 48 58 58 66 50 2 '

PB 7. 4 7 ' 7 4 7 ~5 1 9 7.8 7 8 7.8 7e6 7 6 Oe06 SPECIPIC CONDUCTANCE A'I'5 C()jNHOS/CN) 200 218 191 198 211 225 289 300 339 241 17 0 SULFAT E (NG/L) 55 48 48 113 54 80 44'e 66 162 14 12 ~ 4 IRON (HG/L)

TOTAL lo 62 1. 78 l. 64 le 36 lo 48 l. 61 62 1. 68 1 ~ 98 i+64 0~ 055 DISSOLVED 0. 70 0.11 0. 58 0.21 0 ~ 05 0 ~ 05 0. 02 0.05 0 03 0+20 0 082 PERCENT DISSOLVED 43 6 35 15 3 3 1 3 2 12 5.0 RESIDUE(llG/L)

TOTAL 133 123 116 135 144 148 180 190 220'54 154 11 ~ 0 PIXED TOTAL 100 104 96 103 100 106 133 138 115 6 '

NONPll I'RABLE 12 16 17 12 10 12 16 13 14 14 0.7 FIXED NLWPILTRABLE 8 12 12 8 8 8 10 8 8 9 0 6 DA'I'E 3 JUN 7 JUN 10 JVN 14 JUN 17 JUN 21 JUN 24 JUN 28 JUN TINf 1345 1340 1340 1345 1350 1 340 1325 13 30 RIVER LEVEL(N ABOVE NSL) 148 58 148. 61 148.64 148.64 148.55 148.55 148.55 148.49 DISCHARGE (N3/S) 99 106 114 114 92 92 92 79 TENPERATU RE (C)

AI R 160 180 160 180 260 210 23e0 230 llATER 22.0 20 ~ 0 18 ~ 0 20 0 23 0 24.0 24.0 24e0 WEATllER SUNNY OVERCAST LT.RAIN LT RAIN P.CLOUDY P.CLOUDY P.CLOUDY OVERCAST WEAN SE SECCBI DISC(CH) 86 78 73 44 34 46 40 45 56 6.6 TURBIDITY(N'IV) 13 16 18 13 14 14 13 13 14 0~6 OXYC EN DISSOLVED (HC/L)

PERCENT SATURATION

10. 25 117 9.20 99 8 ~ 80 93
10. 95 116
12. 00 139 8 ~ 90 105 9.50 113 8 20 97 9 '3 110
0. 421 4 ~9 ALKALINITY(NG/L) 66 68 66 64 68 60 65 60 65 lol PH SPECIPIC CONDUCTANCE 7~7 7~5 7.4 7.8 8.1 7 ' 1.7 72 7.6 0 09 AT 25 C(uk)(OS/CN) 353 391 376 344 378 382 390 400 311 6 4 SULFATE (MG/L) 89 93 95 78 90 77 75 105 88 3 5 IRON(NG/L)

TOTAL DISSOLVED 2.05

0. 04
2. 56 0 ~ 02

,2.97

0. 04 2 ~ 08 0 ~ 06 2.18 0.10 2.38
0. 03
2. 36 Oe05 2.64 Oel4 2 '0 Oe06
0. 104 0 ~ 013 PERCENT DISSOLVED 2 1 1 3 5 1 2 5 3 0.6 I

RE S DV E ( HGfl )

TOTAI 232 260 274 255 262 274 261 277 262 4 '

PIXED TOTAL 164 186 194 166 200 204 187 206 188 5+4 NONPlf TRABLE 14 14 13 16 20 14 14 15 15 0~1 PIXED NONPILTRABLE 8 10 10 9 10 8 7 7 9 0 4

27 Table A-7. Physlcochemlcal data collected at SSES-A on the Susquehanna River, July, August, and September 1977.

DATE 1 JUL 5 JUL 8 JUL 12 JUI 15 JUI 19 JUL 22 JUL 26 JUL 29 JUL TINE 1345 1345 1330 1 330 1330 1345 1315 1315 1315 RIVER LEVEL(N ABOVE HSL) 148 ~ 55 148 49 148 64 148.73 148. 52 148. 49 148.52 148.46 148 43 DISCHARGE(H3/S) 92 79 114 137 86 79 86 73 67 TENPERATV RE (C)

AIR 24 ~ 0 29 5 29 ~ 0 29 ~ 0 29 ~ 0 29 0 19. 0 20. 0 23. 0 bATER 25 0 25e0 24.0 24.5 26 0 29. 0 27. 5 25 ' 24.0 WEATHER P,CLOUDY OVERCAST P.CLOUDY OVERCAST P.CLOUDY SUNNY SUNNY SUNNY OVERCAST NEAR SE SICCNI DISC(CH) 44 40 42 40 35 30 35 40 30 37 1.6 TURBIDITY(NTU) 11 12 13 11 15 12 10 9 0 15 12 0 7 OXYGEN DISSOLVED (HG/L) 9 ~ 10 9.20 7.05 9.00 9.00 11. 55 8. 60 9.30 12 00 9 42 Oe 414 PERCENT SATURATION 108 110 83 107 111 149 108 111 142 114 6e2 ALKALINITY(HG/L) 66 68 62 68 54 60 58 60 57 61 1.6 PH 7e6 7~7 7e4 7.7 7~5 Sel 7 ' 7.6 7~7 7~7 0.06 SPECIPIC CONDUCTANCE AT 25 C(VNBOS/CH) 385 412 385 355 345 400 400 435 445 396 10. 5 SULFATE(HG/L) 91 123 86 71 77 93 224 107 114 110 14.6 IRON(NG/I)

TOTAL 2 ~ 18 2e08 2 ~ 21 I ~ 65 2 ~ 73 2.00 l. 86 1. 56 2 ~ 55 2. 09

0. 07 Oe 121
0. 020 DISSOLVED 0. 03 0 20 0 03 0. 13 0. 13 0 04 0. 03 0 03 0. 03 PERCENT DISSOLVED 1 10 1 8 5 2 2 2 1 4 le 1 RE SI DU E (NG/L)

TOTAL 276 291 185 241 231 272 269 317 310 266 13. 1 FIXED TOTAL 196 210 127 170 173 200 204 226 238 194 10. 5 NON P ILTRABLE 17 15 15 16 15 16 14 14 22 16 0,8 FIXED NONPILTRABLE 1 7 8 12 12 10 8 12 12 10 0 7 DATE 2 AVG 5 AUG 9 AVG 12 AUG 15 AUG 19 AUG 22 AUG 25 AUG 30 AUG TINE 13 30 1315 1330 1315 1315 1315 1315e 1315 1315 RIVER LEVEL(H ABOVE NSL)

DISCHARGE (H3/S )

148 e 46 73 148 e40 61 148 ~ 40 61 148.55 92 148e73 137 148. 67 121 148.73 137 148 '592 148.55 92 TEHPE RATV RE (C)

AIR 23. 0 32. 0 30. 5 27 ~ 0 27 ~ 0 19 ~ 0 20 ~ 5 22. 0 27. 0 HATER 26 0 26 0 21e0 26 ~ 0 25. 0 23. 5 22. 5 23. 0 25. 0 HEATHER SUNNY OVERCAST P.CLOUDY OVERCAST SUNNY P,CIOUDY P,CLOUDY P,CLOUDY OVERCAST BEAN SE ssccHI Disc(cN) 30 40 35 35 40 40 45 45 50 40 l. 9 1VRBIDITY(NTV) 13 11 16 11 15 11 10 11 9~ 0 12 0.7 OXYGEN DISSOLVED(AG/L) 12 ~ 45 9 40 8 ~ 80 8 90 7 ~ 80 9. 80 9 80 10 ~ 70 8.55 9e 58 0. 432 PERCENT SATURATION 153 116 109 109 94 115 111 124 103 115 5 2 ALKALINITY(NG/L) 66 64 61 72 67 70 66 64 61 66 1.2 PB 7.8 7e6 7.4 7es 7e4 7' 7~6 7~4 7eS 7.6 0,05 SPECIFIC CONDUCTANCE AT 25 C(PNBOS/CH) 430 420 410 370 375 310 300 338 344 366 14. 9 SULFATE (NG/L) 100 93 107 78 86 64 57 78 75 82 Sel I RON (HG/L)

TOTAL DISSOIVED 2 ~ 37

0. 02 le96
0. 03 3~

0 '300 2.16 0.04 3 ~ 05

0. 04
2. 02
0. 04
1. 78 0 03 2 '3 0.23 1 ~ 81 0 03 2.25 0 05 Oe 150 0 ~ 021 PERCENT DISSOLVED 1 2 1 2 1 2 2 11 2 3 l. 0 RES I DU E (HG/L)

TOI'AL 300 262 278 244 262 2 24 221 253 264 256 7 9 FIXED TOTAL 216 200 210 179 196 150 144 171 174 182 8.0 NONFILTRABLE 20 15 22 18 20 18 14 15 12 11 1 0 FIXED NONFILTRABLE 9 6 13 11 11 10 4 4 5 8 1.1 DATE 2 SEP 6 SEP 9 SEP 13 SEP 16 SEP 20 SEP 23 SEP 27 SEP 30 SEP TINE 1315 1315 1315 1345 1315 1330 1315 1330 1315 RIVER LEVEL(N ABOVE NSL) 148 ~ 43 148 49 148.43 148.37 148.40 150.23 151.23 152 70 150 96 DISCHARGE(N3/S) 67 79 67 55 61 773 1460 2860 1260 TENPERATURE (C)

MR 30 ~ 0 27 ~ 5 24 ~ 5 22 ~ 0 19e0 22e0 18 ~ 0 21 0~ 22.0 HATER 25 5 25.5 24.5 21 0 20.0 19 ~ 0 18.0 15 0 15.0 WEATHER P CLOVDY OVERCAST P,CLOUDY OVERCAST LT RAIH OVERCAST OVERCAST P.CLOUDY P,CLOUDY HEAH SE SECCHI DISC(CH) 72 50 50 50 40 28 20 8 25 38 6.2 TURBID/TY(NTV) 7~ 4 9e0 9 4 9.4 12 31 56 170 30 37 16.6 OXYGEN DISSOLVED (HG/L)

PERCENT SATURATION 9 40 114 8 ~ 20 99 8.80 105 9.00 100 Be70 96 7e80 83 8e20 87 8 e90 87 9 '090 8.69 96

0. 165 32 ALKALINITY(HG/L) 68 63 67 67 64 40 31 25 30 51 5~9 PB 7eS 7es 7.5 7~5 7 4 7 4 7 4 7~3 7. 4 7 4 0.02 SPECIPIC CONDUCTANCE AT 25 C(uHBOS/CH) 376 380 405 435 440 165 120 105 130 284 46e9 SULFATE(NG/L) 86 86 93 93 100 22 16 20 24 60 11 ~ 9 IRON(NG/L)

TOTAL l. 57 1. 80 1. 66 1. 80 2.26 3e60 5. 20 12e90 2 55 3,70 1.152 DISSOLVED PERCENT DISSOLVED 0,03 2

0. 07 0. 04 2
0. 02 1

Oe 03 I

0 '6 4

0. 24 5

0 F 08 I

0. 22 9

0.10 3

Oe027 0 8 RESIDUE(NG/L)

TOTAL 268 260 280 294 311 184 210 382 146 259 22 ~ 5 PIXED TOTAL 187 191 184 222 235 135 170 338 114 197 20. 5 NONPILTRABLE 10 14 12 13 20 76 124 298 54 69 29,8 PIXED NONFILTRABLE 6 8 6 6 11 69 112 249 41 56 25. 6

28 Tahle A-8. Fhyslcochemlcal data collected at SSES-A on the Susquehanna River, October, Novenher, and beccalher 1977.

DAT I. 12 OCT 27 OCI'330 TINE 1315 RIVER LEVEL(N ABOVE )lSL) 150%29 150 ~ 20 DISCHARGE(N3/S) 809 756 TENPI.RAT ORE (C)

AIR 14 ~ 0 18 o0 WA'I'ER 1240 11 ~ 0 WEATHER PeCLOUDY SONNY SE SECCHI DISC(CN) 40 94 67 22 ~ 0 TURBID I'I'Y (NTU) 17 6+8 12 4 ~ 2 OXYGI.N DISSOLVED(NG/L)

PERCENT SATURATION 9 '092 10 '094 10'5 93 0 ~ 204 0 '

AI,KA( IN I'I'Y(NG/L) 47 37 42 4~ I PH 7~ 3 7~2 7~3 0 ~ 04 SPECIPIC CONDUCTANCE AT 25 C(UNHOS/CN) 180 182 181 Oa8 SULPATE(NG/I ) 25 36 31 4 ~ 5 I RON (NG/L)

'I'OTAL 7 ~ 70 1 ~ 51 4 ~ 61 2 '27 DISSOLVED PERCEN'l'ISSOLVED 0+ 25 3

0 '241 0 '422 0 ~ 151 15 ~ 5 RESIDUE(NG/L)

'IOTAL 149 116 133 13+ 5 FIXED TOTAL 118 77 98 16 ~ 7 NONFILT&ABLE 37 12 25 10m 2 FIXED hGNFILTRABLE 30 8 19 9~0 DATE 9 NOV 17 NOV TINE 1315 1230 RIVER LEVEL(al ABOVE PISL)

DISCHARGE(N3/8) 151 '9 1853 150 '0 756 TENPERATURL (C)

AIR 13 ~ 5 11 ~ 0 WATER 12 ~ 0 7~5 WEATHER OVERCAST P,CLOUDY NEAN SE SECCHI DISC(CN)

'I'URBIDITY(N'IU) 15 84 90 53 46 30 '

7 ~8 31+ 1 OXYGEN DISSOLVED(MG/L) 9 ~ 60 1 i+60 10+ 60 Oo 816 PERCENT SATURATION 92 95 94 I ~ 2 ALKAIINITY(NG/L) 34 39 37 2~0 Ph 7~4 7 ~ 2 7~3 0 ~ 08 SPEC IP IC CONDUCTANCE AT 25 C(uNHOS/CN) 132 160 146 I lo 4 SULFATE(NG/L) 20 31 26 4~5 IRON(NG/I )

'I OTAI 2 ~ 07 le 36 I ~ 72 Oe 290 LISSOIVED Os 09 0 ~ 58 0 ~ 34 0 ~ 200 I'LRCENT DISSOLVED 4 43 24 15+ 9 RESIDUE(NG/ )

'lOTAL 304 118 211 75+9 I'IXI,D TGTAL 264 90 177 71+0 WONFILT&ABLE 208 12 110 80+0 I IXED NONFILTKABLE 196 8 102 76 ~ 8 DAT E 5 DEC 16 DEC TINE 1300 1230 RIVER LEVEL(N ABOVE NSL)

DISCHARGE(N3/S) 150+ 65 1037 152 '9 2530 TENPERATURE (C)

AIR Oo0 7 ~0 WATER 4~0 0 ~5 WEATHER SNOW SUNNY WEAN SE SECCHI DISC(CN) 60 8 34 21o 2 TURBIDI'I'Y(N'IU) 11 110 61 40m 4 OXYGEN DISSOLVED (NG/I )

PERCENT SATURATION 12 ~ 40 94 13 ~ 15 92 12 '893 Oo 306 0~8 ALKALINITY ( NG/L) 42 45 44 I ~ 2 PH 7~2 7~3 7~ 3 0 ~ 04

'PECIFIC CONDUCTANCE A'I'5 C(uNHOS/CN) 124 130 127 2~4 SULFATE (NG/I ) 25 21 23 i+6 I)ON (NG/I )

TOTAL la 38 10 ~ 50 5 ~ 94 3 ~ 723 DISSOLVED Oa47 0 ~ 08 0 ~ 28 Oa159 PERCENT DISSOLVED 34 1 18 13 ~ 5 RES IDU E (NG/L)

'IOTAL 104 382 243 113,5 FIXED TOTAL 81 346 214 108 F 2 NONFILT&ABLE 19 319 169 122 ~ 5 FIXED RONFILTRABLE 16 287 152 110+ 6

Table A-9. Quality control comparison of physicochemical data from water samples collected quarterly at SSES-A on the Susquehanna River, 1977.

16 Feb 26 Ma 25 Au 17 Nov Parameter IA SRES IA SRES IA SRES IA SRES Turbidity (NTU) 6.4 6.5 9.6 11 7.8 7.6 Total Alkalinity (mg/l) 66 68 58 61 64 58 39 43 Specific conductance at 25 C (umhos/cm) 420 352 300 294 338 357 160 173 Sulfate (mg/l) 78 75.4 66 59.2 78 75.3 31 32.0 Total iron (mg/1) 15.3 2. 24 1. 68 1. 73 2. 13 2. 00 1. 36 l. 36 Total residue (mg/l) 252 259 190 209 253 243 118 137 Fixed total residue (mg/l) 194 188 138 136 171 191 90 82 Non filtrable residue (mg/1) 13 10 15 15 12 a

Ichthyological Associates grab sample results (Tables A-5, A-6, A-7, and A-8).

b Schuylkill River Ecological Study cross-check results.

Table A-10. Physfcochenfcal data collected nonthly at Ichthyologfcal Associates boat rasp on the Susquehanna River, 1977. Sanples were collected and anslysed by the Pennsylvania Power and Lfght Conpany> Hasleton, Pennsylvania.a 164 165 166 167 168 169 170 171 L72 173 174 Sanple Nuaber 12 Dec Date 16 Feb 28 Mar 12 Apr 16 May 14 Jun 18 Jul 10 Aug 2S Sep 24 Oct 28 Nov 1425 L 445 1440 1419 1453 1428 1445 1400 1452 1445 1400 Tine River tenperature (P) 32 ' 40. I 50. 0 62.2 67.0 85 ' 78.8 58. I 46.4 37 ' 30. 2 Color (Pt-Co units) 16.2 37.8 37.8 14.9 74.3 9.5 L0.8 35. I 27.0 39.2 35. I Turbidity (PTU) 7.7 9.8 11. 0 7.5 12.0 8.0 8.2 62. 0 9.6 6.7 6.0 pH at 25 C 7.40 7 '0 7.30 7.90 7.80 8.65 7.80 125 7.40 150 7.30 210 7.55 215 7.45 Specfffc conductance at 25 C (ushas/cn) 325 180 195 200 325 365 340

~AI ~ i Lt 9.9 8.4 127.6 11. 8 10.5 6.1 Suspended natter 7.3 16. 2 21 ~ I 12. 9 20. 0 Aunonis nitrogen (as N) 0. 81 0.37 0.2L 0.12 0. 32 0. 28 0. 11 0.20 0. 13 0.24 0. 34 Nitrate nitrogen (as N) 1. 58 0.81 0. 87 0.37 0. 67 0. 40 0. 59 0.56 0. 52 0.84 0. 89 Phenolphthalefn slkalfnity (as CaC03) 5 37 47 Methyl orange alkalinity (as CaCOJ) 68 35 40 47 63 57 70 29 52

)Lardness (ss CaC03) 121. 5 67 ~ 0 77. 5 80. 5 131. 5 148.1 131. 0 47.1 62. 2 88. 5 84. 0 Total dissolved solids at 103 C, 199. 2 110. 6 121.8 123.4 208.4 249. 2 220. 8 85.6 100. 6 134.2 131. 6 Loss on ignition 63.6 36. 8 36.8 38.0 61. 2 68. 8 70. 4 27 ' 34. 6 39.6 32. 4 Silicon dfoxide (SLOZ) 2. 80 4.63 4. 17 0.91 0. 91 0. 46 1.94 5.54 5.82 4 '7 5.37 24.7 Calcfua (Ca) 38.8 20. 4 23 ~ 2 61. 0 38.8 40. 0 36.6 14.4 18.8 26.2 Hsgnesfuu (Mg) 6.0 3.9 4.7 19. 5 8.4 L1.7 9.6 2.7 3.7 5.6 5' Sodiun (Na) 14. 7 7.1 6.1 6.5 11.4 13.6 15. 0 4.8 4.3 6.7 6.8 Potassfun (K) 2.0 I ~ 5 1.4 1.5 0.5 2.6 2.3 2.2 1.7 2.25 1.70 Carbonate (C03) 6.0 Bfcarbonate (HC03) 83.0 42. 7 48.8 57.3 76.9 57.3 85.4 35 ' 45.1 63 ' 57.3 Sulfate (SOA) 46.0 28.1 34. 7 31. 3 63.6 92.5 54.0 20.5 25.0 33.0 38.4 Chloride (CL) 21.8 9.7 7.9 8.5 16.4 17.0 21. 8 5' 4.8 8.5 9.7 Nitrate (NOt) 7.00 3.60 3.86 1.64 2.96 1.76 2. 64 2.48 2. 30 3.72 3. 94 phosphate (P04) 0.31 0. 18 0. 15 0. 13 0.16 0.23 0. 28 0.43 0.18 0. 05 0. 06 Total nfneral solids 222.4 121. 6 134. 9 136.8 220.1 243. I 229. 6 93 ~ 9 111.8 154. 3 153. 4 13.2 12.1 11. 4 10.8 0 12. 8 8.6 9.1 11.4 13 ~ 0 L5+

Dfssolved oxygen (02) 11 ~

Ion Anal sis ne/I Positive fons 1.23 Calcfun (Ca) 1.94 1.02 1. 16 1.22 1.94 2.00 1.83 0.72 0.94 1.31 Magnesiun (Mg) 0.49 0.32 0. 39 0. 39 0. 69 0.96 0.79 0.22 0.30 0.46 0.44 Sodiun (Na) 0.64 0.31 0. 27 0.28 0.49 0.59 0.65 0.21 0.19 0.29 0.30 Potassiun (K) 0.05 0.04 0. 04 0.04 0. 01 0.07 0.06 0.06 0.04 0.06 0.04 Total 3 '2 1.69 1. 86 I. 93 3. 13 3.62 3.33 1. 21 I ~ 47 .2. 12 2. 01 Negative fons Carbonate (C03) 0. 20 Bfcarbonate (HC03) 1. 36 0. 70 0. 80 0. 94 I. 26 0.94 1.40 0.58 0.74 1.04 0.94 Sulfate (SO4) 0.96 0. 58 0. 72 0. 65 I. 32 1. 92 1. 12 0.43 0.52 0.69 0.80 Chlorfde (CL) 0.61 0. 27 0. 22 0.24 0. 46 0.48 0.61 0.15 0.14 0.24 0.27 Nitrate (NO3) 0. 11 0.06 0.06 0.03 0.05 0.03 0.04 0.04 0.04 0.06 0.06 Phosphate 0. OI 0. Ol 0.00 0. 00 0. 00 0.01 0.01 O.OL 0.01 0.00 0.00 Total (PO4)

3. 05 I. 62 1.80 l. 86 3. 09 3.58 3.18 1.21 L.45 2 '3 2.07 Trace Metal Anal sis n /I I. 18 I. 55 I. 38 tron (Pe), total Iron (Fe), dissolved ALunfnun (Al) s total 2.08 0.58 0.35 L.40
0. 67
0. 73 1.64
0. 60
0. 50 I. 96
0. 07 0.87
1. 54
0. 03 0.45 1.09 0.02 0.45

'.02 1.42 0.42 3.58 0.23 2.1 0.38 0.4 0.68 0.2 0.71 0.2 Aluninun (Al), dfssolved 0.03 0.10 0. 09 0.02 0. 12 0.24 0.07 0.3 0.0 O.l Oi05 Hanganese (Nn), total

'.33 0.17 0.20 0.23 0.40 0.38 0.31 0.21 O. 13 0.24 0.25 Manganese (Hn), dfssolved 0.00 0. 15 0.03 0.01 0. 27 0. 14 0. 16 0.05 0. 13 0.26 0.25 Copper (Cu), total 0.00 0. 00 0.00 0.02 0.01 0. 01 0. 01 0.01 0.00 0.01 0.01 0.00 0. 00 0.00 0.00 0.01 0 ~ 00 0. 01 0.01 0.00 0.01 0.01 Copper (Cu), dfssolved 0.01 0.04 Zfnc (Zn), total 0.00 0. 01 0.02 0.04 0.03 0. 10 0. 01 0.04 0.01 Zfnc (Zn), dissolved 0.00 0. 00 0.01 0.01 trace 0.01 0.01 0.02 0.01 0.03 0.02 Nfckel (Nl), total 0.04 0.03 0.02 0.00 0.01 0.02 Nickel (Nf), dissolved 0.04 0.02 0.00 0.00 0.01 0.02 No sanple was collected in January because fce covered the samplfng location.

31 SUSQUEHANNA STEAM I Tz ELECTRIC STATION SSES TRANSECT pp BOAT RAMP ICHTHYOLOGICAL8 ll T Tl f ASSOCIATES WAPWAllOPEN LABORATORY CREEK SSES-A O y INTAKE OISCNARGE NORTH SAMPLING STATIONS 0 PHYSICOCHEMICAL & 'LARVAL FISH PERIPHYTON & PHYTOPLANKTON H BENTHIC MACROINVERTEBRATE

~ EEl WALL BELL BENO IP 0 300 METERS SUSQUEHANNA RIVER Fig. A-1. Sampling stations on the Susquehanna River near the Susquehanna SES, 1977.

32 7000 5600 2

4200 V=2158+ 322 3 (X-149)+1064 (X-149)

R2 0 995 2800 1400 148 149 150 151 152 153 154 155 156 RIVER lEVEl {M A80v6 MSL I 3

Fig. A-2. The relationship between flow (m /s) and level (m above msl) of the Susquehanna River at I.chthyoloI:ical Associates Laboratory from July 1973 throuph December 1976..

33 10 pH 35 RIVER TEMPERATURE 15 700 SP ECIF IC C OND UCT ANCE CD 400 10 300 200 TU R 8 ID IT Y 100 3

1972 0 A 3 1973 0: A 3 1974 0 A

=

3 1975 0 A 3 1976 0 A 3 1977 0 0 Ei j. A-3. Trends in monthly mean values of pH, River temperature, specific conductanc'e., and turbidity in the Susquehanna River near the Susquehanna SES from 1972 through 1977.

34 19 OISSOLVED OXYGEN 13 80 TOTAL ALK-ALINITY Ao D IS S OLVE 0 IRON TOTAL IRON 10 J 0 J A J 0 J A J 0 J A J 0 J A J 0 0 A J 0 J A 1972 1973 1974 1975 1976 1977 Pig. A-4. Trends in monthly mean concentrations of dissolved oxygen, total alkalinity, dissolved iron, and total iron in the Susquehanna River near'he Susquehanna SES from 1972 through 1977.

35 ALGAE by Andrew J. Gurzynski and William F. Gale TABLE OF CONTENTS Page ABSTRACT ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ 38 INTRODUCTION........... ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 38 PROCEDURE S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 39 RESULTS AND DISCUSSION........................................ 41 Colonization of Bimonthly and Cumulative'Acrylic Plates.. 42 Density of Algae on Bimonthly and Cumulative Plates...... 43 REFERENCES CITED. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 45 LIST OF TABLES Table B-l. Periphyton species composing at least 5% of the total units counted in samples at two stations on the Susquehanna River, 1977.............. . ................ 47 Table B-2. Physicochemical analyses of River water collected upriver from the Susquehanna SES intake structure and downriver from the discharge diffuser, 25 August 1977.. 48 Table B-3. Phytoplankton species composing at least 5% of the total units counted in samples at two stations on the Susquehanna River, "1977...,............................. 49

Page Table B-4. Units of periphytic algae in three replicate samples from bimonthly acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977............................................. II 50 Table B-5. Units . . . downrivez . . . discharge diffuser 1 977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 50 F

Table B-6. Units... upriver... intake structure... 1977... 51 Table B-7. Units . . . upriver . ... intake structure . . . 1977... 52 Table B-8. Units . . . downriver . . . discharge diffuser Table B-9. Units... upriver... intake structure... 1977... 53 Table B-10. Units . . . downriver . . . discharge diffuser 1 977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 53 Table B-ll. Units... upriver... intake structure... 1977... 54 Table B-12. Units ~ ... downriver . . . discharge diffuser 1 977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 54 Table B-13. Units . . . upriver . . .- intake structure . . . 1977... 55 Table B-'14. Units . . . downriver . . . discharge diffuser 1 977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 55 Table B-15. Units of periphytic algae in three replicate samples from cumulative acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna R iver, 1977 ................................ ~ ~ ~ ~ ~ ~ ~ ~ ~ 56 Table B-16. Units downriver . . . discharge diffuser 1977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t 56 Table B-17. Units . . . upriver . . . intake structure . . . 1977... 57 Table B-18., Units downriver . . . discharge diffuser 1977.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Table B-19. Units upriver... intake structure... 1977... 58 Table B-20. Uni ts downriver . . . discharge diffuser .

1977.. 58 Table B-21. Units upriver... intake structure... 1977... 59 Table B-22. Units ~ downriver . . . discharge diffuser .

1977.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 59

37 Page Table B-23. Units of periphytic algae in three replicate samples from cumulative acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna R iver, 1977.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 60 Table B-24. Units . . . downriver . ~ . discharge diffuser 1 977 o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

o'

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 60 Table B-25. Units of phytoplankton in three subsamples collected bimonthly upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977...;........... 61 Table B-26. Units downriver . . . discharge diffuser 1977.... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 62 Table B-27. Units upriver . . . intake structure . . . 1977.. 63 Table B-28. Units downriver . . . discharge diffuser 1977.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 64 LIST OF FIGURES Fig. B-l. Detritus-free apparatus for periphytic,algae studies... 65 2

Fig. B-2. Standing crop of algae (units/mm ) on bimonthly and cumulative acrylic plates upriver, from the intake structure and downriver from the discharge diffuser of the Susquehanna SES on the Susquehanna River, 1977 (the bimonthly plate below the discharge was lost in April).............. ~ ~ ~ 66 Fig. B-3. Standing crop of algae (units/liter) from bimonthly samples taken upriver from the intake structure and downriver from the discharge diffuser of the Susque-hanna SES on the Susquehanna River, 1977. ... . . . II

. 67

38 ABSTRACT Periphyton and phytoplankton samples were collected upriver from the Susquehanna SES intake structure and downriver from the discharge diffuser throughout 1977. Diatoms composed 63% of the algae collected and were most abundant in April (phytoplankton) and June (periphyton). Green algae were second in abundance. Standing crops of algae peaked in April (29,321,000 phyto-2 plankton units/liter) and in June (2,855 periphyton units/mm on bimonthly plates) . Standing crops of algae were extremely low in winter and colonization 2

rates of periphyton averaged only 61 and 190 units/mm /month in October and December on bimonthly and cumulative plates, respectively. At both stations there was an average of 106,900 and 128,100 phytoplankton units/liter in October and December, respectively.

INTRODUCTION Numbers of algae in periphyton samples from Susquehanna River stones varied widely in 1973 (Ichthyological Associates 1974) and subsequently, artificial substrates were used to reduce sample variability. The artificial substrates provided a more homogeneous surface than River stones for algae to colonize. Five kinds of substrates were tested in 1974 and frosted acrylic was found to be the most desirable (Gale and Gurzynski 1976).

The primary objective in the 1977 study was to describe seasonal changes in the periphyton community colonizing frosted (sandblasted) acrylic plates at two stations near the Susquehanna SES (Fig. A-1). One station was 463 m upriver from the Susquehanna SES intake structure, 135 m from the west bank; the other was 397 m downriver from the discharge diffuser, 30 m from the west bank.

39 P ROCEDURES Acrylic plates (22 x 30 cm) were fastened by brass pins to an acrylic holder (Fig. B-1) on the River bottom. The holder lacked projections that 0

would catch drifting detritus. The plates faced upstream at 5 from, horizontal so that they offered little resistance to the current. The holder was situated near the channel where minimum and maximum water depths ranged from about 2.5 to 6. 0 m, respectively. The concrete-filled holder was too bulky for a scuba diver to handle in the strong current and had to be lowered to the River bottom on a submersible raft (Gale and Thompson 1974). It was fastened in position with steel stakes driven into the substrate. The front of the holder and the stakes were covered with small stones to keep detritus from catching on them.

Eight plates were placed in the holders at each station on 16 December

,1 1976. Three plates were randomly selected for sampling at two-month intervals at each station. One of the three plates was a spare that could be sampled if a plate was lost. Three replicate samples were taken from each plate.

Slots where plates were removed were filled with clean plates that would be sampled the following month. The remaining five plates provided cumulative samples of 2 to 12 months duration. Plates removed for'umulative samples were replaced by clean ones to maintain a constant current pattern.

A scuba diver collected samples from the plates with a bar-clamp sampler (Gale 1975). The sampler included a collecting cup w6ich delimited a circular 2

sampling area (415 mm ) and prevented loss of cells while the plate was retrieved and while it was processed in the Laboratory.

40 Samples were cleaned by vibration (Gale 1975) with an ultrasonic dental cleaning probe. Almost all cells were loosened within a few minutes vibration.

Dislodged cells were flushed into a collecting jar with "cooling" water

,sprayed inside the collecting cup by the dental cleaning probe. Vibration was continued for a total of 10 minutes to reduce the chances of missing some cells. After 10 minutes vibration, the surface of the plate had a "fresh" appearance where the sample was taken. Some cells may have been damaged by vibration, but tests in which samples were cleaned by: 1) scraping and brushing, and 2) scraping and vibration, more cells/unit area were obtained by the second method (Gale 1975). Samples were then preserved with formalin and, after settling 10 days, were concentrated to 50 ml by decanting. One half of the concentrate was sent to Dr. Rex L. Lowe, Department of Biology, Bowling Green State University, Bowling Green, Ohio, for identi-fication and enumeration. The remainder was placed in our reference collection.

One phytoplankton sample (1 liter) was collected near the River surface at each periphyton sampling station on the same day periphyton samples were collected. The samples were preserved, concentrated, and processed in the same manner as the periphyton samples.

Algal cells in periphyton and phytoplankton samples that contained chloroplasts were enumerated in terms of units (Gale and Lowe 1971). In most instances, at least 1,500 units were enumerated and identified ig each sample, (about 500/each of 3 subsamples) . Extremely low algal densities"in some subsamples made it impractical to count 500 units. Counts were made using a Palmer counting cell at 430 X magnification. Higher magnification,

41 including electron microscopy, was used for some identifications. Periphyton was identified to genus and "the more abundant forms to species using keys by Hustedt (1930) and Prescott (1962).

Physicochemical data were collected on 25 August both up- and downriver from the Susquehanna SES sewage effluent to determine if the effluent affected the periphyton communities. The effluent enters the River between the Station's intake structure and discharge diffuser. Grab samples of surface water were collected at SSES-A, upriver from the sewage effluent. Both surface and bottom samples were taken at the periphyton station, downriver from the sewage effluent. The bottom sample was collected with a bilge pump.

Water temperatures, nonfiltrable and "fixed nonfiltrable residues, pH, dissolved oxygen, turbidity, and Secchi disc were determined according to methods in Table A-1. Free and total residual chlorine were determined by the DPD method of analysis (APHA 1975) . Nitrate nitrogen and orthophosphate phosphorus were determined using the automated method in Methods for Chemical Anal sis of Water and Wastes (EPA 1974). River current was measured with a direct reading current meter, Gurley (Price) Model No. 665, suspended to

0. 6 total depth. The current was a mean of readings at 5-s intervals for 2 minutes.

RESULTS AND DISCUSSION Raw data tables (B-4 through B- 28) have been presented last because there are many of them and they are needed infrequently in this discussion. Numbers of algal units/mm 2 and units/liter can be determined in periphyton and phyto-plankton tables by multiplying the total number of units in subsamples A, B, and C, by the conversion value listed for the sample.

42 A total of 60 genera of algae was collected in 33 samples from acrylic plates above the intake; 64 genera were collect;ed in 30 samples taken below the discharge (Tables B-4 through B-28).

Twenty-seven species of algae were identified that composed 5/ or more of the total units counted in samples from the two sampling stations (Table B-1) . As in 1972 and..1973, diatoms were more abundant below the discharge than other forms. Green algae were more abundant s

than diatoms in samples taken above the intake. Three species of diatoms that composed over 5/ of the total units counted above the intake composed less than 5/ of the total below the discharge (Table B-1). Blue green algae were relatively scarce at both stations but sometimes composed',over 5/ of the total units counted. Only were identified.

Most of the algae found were "cleari water" forms and only four of the abundant species were listed by Palmer (1969) in the top 10 species of u

those tolerating much organic pollution. Included were Nitzschia ~alea, 1 of 18 species of abundant diatoms (Table B-1) were rated as acidophilous by Lowe (1974). Some of the others were rated "indifferent" but most were alkaliphilous.

Colonization of Bimonthly and Cumulative Acrylic Plates It is obvious from Fig. B-2 that algal colonization of clean substrates at both stations was extremely slow in winter as it was at Falls and SSES in 1972-73. Diatoms rapidly colonized substrates between April and June as

43 the River warmed. The colonization rate remained high between June and August but dropped sharply in October and remained low in December.

Colonization rates on cumulative plates followed trends observed on bimonthly plates. Cumulative acrylic plates, which were placed in the River in winter, when colonization was slow, had not been heavily colonized by mid-April at either station (Fig. B-2). Colonization increased sharply between April and June, and remained high into August. Colonization rates fell to near zero by October and remained low through December.

Density of Algae on Bimonthly and Cumulative Plates There was an average of 340 algal units/mm 2 on bimonthly acrylic plates 2 Densities and 372- units/mm on cumulative acrylic plates above the intake.

below the discharge were much higher with an average of 1,795 algal units/mm 2

,2 on cumulative plates.

on bimonthly plates and 1,401 units/mm The higher standing crop below the discharge may have been a result of organic enrichment that entered the River from the Susquehanna SES sewage treatment facility. Physicochemical conditions, however, at the two sites were similar when they were measured on 25 August (Table B-2). The major differences were the greater depth and current velocit'y at the site above the intake. Orthophosphate and nitrate concentrations were only slightly higher at the site below the discharge.

crops of algae at both stations were much lower 'than those

'tanding encountered in the cleaner water at Falls in earlier studies (Gale and Gurzynski 1976). Iron from mine drainage seems to impair the development of the periphyton community by: 1) shading the water and reducing light

4'4 penetration; 2) coating River stones so that cells could not attach to them and were lost when iron was scoured away during periods of increased River discharge.

It is of interest that the standing crop of algae on bimonthly plates exceeded the standing crop of algae on cumulative plates in June and August.

The plates seemed to become less suitable for colonization after prolonged exposure to the water. The plates may have become coated with silt and miscellaneous detritus which deterred colonization. Patrick et al. (1954) indicated that such accumulations make a surface a "less favorable habitat for diatoms." The difference in standing crop might also have been due to a greater number of macroinvertebrates on cumulative plates. Macroinvertebrates may reduce algal density by grazing, drifting, molting, and by other activi.ties.

Grazing in some systems has, been shown to reduce the standing crop of periphyton and to lower production (Elwood and Nelson 1972). Also, fish may have selected the cumulative plate for feeding, because of a greater abundance of macro-invertebrates on it, and removed algae while feeding.

Phytoplankton in samples collected upriver from the intake structure was nearly identical to that in samples taken downriver from the discharge diffuser (Fig. B-3). There was a total of 50 genera of algae in 6 samples from above the intake and 55 genera in 6 samples taken below the discharge (Tables B-24 through B-28).

Twenty species of algae were identified that composed 5% or more of j

the total units counted in samples from the two sampling stations (Table B-3);

Overall, diatoms were the most abundant form at both stations. Three species

45 of diatoms that composed over 5% of the total units above the intake composed less than 5% of the total below the discharge (Table B-3) ~

In June and August green algae was abundant at both sites (Fig. B-3).

Similar trends were observed in summer, 1972-73 (Ichthyological Associates 1974).

Most of the algae found were "clean water" forms and only three of the abundant species were listed by Palmer (1969) in the top 10 species of those tolerating much organic pollution. Included were Nitzschia palea, diatoms (Table B-4) were rated as acidophilous by Lowe (1974). Some were rated "indifferent" but most were alkaliphilous.

Standing crops of phytoplankton were low in February but increased by about 24-fold to the season's high in April when there were about 28,000,000 phytoplankton units/liter above the intake and 30,700,000 phytoplankton units/

liter below the discharge. The standing crop at both stations dropped sharply in June and continued to decline through December.

REFERENCES CITED American. Public Health Association. 1975. Standard methods for the examination of water and wastewater. 14th ed. APHA, Washington, D.C. 874 pp.

Elwood, J. W. and D. J. Nelson. 1972. Periphyton production and grazing rates in a stream measured with a 3 P material balance method. Oikos 23: 295-303.

Environmental Protection Agency. 1974. Methods for chemical analysis of water and wastes. EPA, Cincinnati, Ohio. 312 pp.

Gale, W. F. 1975. Ultrasonic removal of epilithic algae in a bar-clamp sampler. J. Phycol. 11: 472-473.

46 Gale, W. F. and A. J. Gurzynskie 1976. Periphyton. Pages48-122 in T. V.

Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1975). Ichthyological Associates, Inc., Berwick, Pa.

Gale, W. F. and R. L. Lowe. 1971. Phytoplankton ingestion by the fingernail clam, ~Shaerium rransversum (Say), in Pool 19, Mississippi River.

Ecology 52: 507-513.

Gale, W. F. and J. D. Thompson. 1974. Aids to benthic sampling by scuba divers in rivers. Limnol. Oceanogr. 19: 1004-1007.

Hustedt, F. 1930. Bacillariophyta (Diatomeae). In A. Pascher (ed.) Die Su'sswasser Flora Mitteleuropas. Heft 10. Gustav Fisher Verlag, Jena.

viii. 466 pp.

Ichthyological Associates, Inc. 1974. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1973). Pa.

Power and Light Co., Allentown, Pa. 838 pp.

Lowe, R. L. 1974. Environmental requirements and pollution tolerance of freshwater diatoms. Nat. Environ. Res. Cent., EPA-670/4-74-005. U.S.

Environ . Prot. Agency, Cincinnati, Ohio. 334 pp.

Palmer, C. M. 1969. A composite rating of algae tolerating organic pollution. J. Phycol. 5: 78-82.

Patrick, R., M. H. Hohn and J. H. Wallace. 1954. A new method for determining the patterns of the diatom flora. Not. Nat. Acad. Nat. Sci. Philadelphia.

259: 1-12.

Prescott, G. W. 1962. Algae of the western Great Lakes area. William C.

Brown Co., Dubuque, Iowa. 977 pp.

47 Table B-1. Periphyton species composing at least 5% of the total units counted in samples at two stations on the Susquehanna River, 1977. Numbers following diatoms indicate the species affinity for pH as rated by Lowe (1974): 1 = alkaliphilous; 2 = acidophilous; 3 = indifferent to pH; and 4 = unknown.

Species Above Intake Below Discharge CHLOROPHYTA Actinastrum .hantzschii Jun Jun Ankistrodesmus falcatus Jun, Aug Jun Cerasterias actinastroides Jun C. staurastroides Jun Jun Jun

'un z

Jun Jun, Aug, Oct Jun, Aug BACILLARIOPHYTA (4) Jun, Aug, Oct Jun, Aug (1) Oct C. seudostelli era (1,3) Jun Jun (1) Feb Feb (1) Feb Feb, Dec G. simus (4) Dec Melusira ~ranulata (1) Oct Oct M. varians (1) Oct Meridion circulare (1) Dec Feb (1) Dec Dec (1) Feb N. ~re aria (4) Dec N. salinarum var. intermedia (4) Oct N. viridula (1,2) Jun Jun, Dec Nitzsuhda ~dlssi ata (1) Dec Dec N. Nalea (1,3) Feb, Oct *>> Feb, Aug, Oct, Dec (4) Apr, Jun Apr, Jun, Aug

~Snedra ulna (1) Dec (3) Jun CYANOPHYTA-Feb Feb Schizothrix calcicola Jun, Aug, Oct, Dec Apr, Oct, Dec RHODOPHYTA Rhodochorton sp. Oct

48 Table 'B-2. Physicochemical analyses of River water collected upriver from the Susquehanna SES intake structure and downriver from the discharge diffuser, 25 August 1977.

Parameter Above Intake Below Discharge River depth (m) 3.75 2.50 Temperature (C) 23.0 22.0 b 22.0 Velocity (m/s) 0. 57 0. 20 Secchi disc (cm) 45 Turbidity (NTU) 10 10 12 Dissolved oxygen (mg/1) 10. 7 9.3 8.8 pH 7.5 7.4 7.4 Residue (mg/1)

Nonfiltrable 10 13 Fixed nonfiltrable 3 7

Nitrate nitrogen (mg/l) 0.68 0. 70

0. 60 Or thophosphate phosphorus (mg/1) 0. 00 0. Ol
0. 01 Chlorine (mg/l)

Free 0. 00 0. 00

0. 00 Total residual 0. 35 0.35 0.35 a

Surface b

Bottom

49 Table B-3. Phytoplankton species composing at least 5% of the total units counted in samples at two stations on the Susquehanna River, 1977'. Numbers following diatoms indicate the species affinity for pH as rated by Lowe (1974): 1 = alkaliphilous; 2 acidophilous; 3 = indifferent to pH; and 4 unknown.

Species Above. Intake Below Discharge CHLOROPHYTA Actinastrum hantzschii Jun Jun Jun Aug Aug Kirchneriella subsolitaria Aug Jun, Aug Jun, Aug

'BACILLARIOPHYTA Asterionella formosa (1) Dec

~nbella ventricosa (3) Feb (4) Jun, Aug, Oct Jun, Aug C. seudostelli era (1, 3) Jun Aug (1) Feb, Dec F. vaucheriae (1) Feb Feb (1) Feb, Dec Feb, Dec Malasira ~ranulata (1) Aug-(1) Dec Dec N. ~dissi ata (1) Dec Dec Nitzschia acicularis (1) Oct , Aug N. Nalaa (1,3) Oct, Dec Aug, Dec Ste hanodiscus invisitatus (4) Apr, Jun Apr, Jun

~dnadra ulna (1) Feb CYANOPHYTA Phormidium sp. Feb Feb

50 Table B-4. Units of periphytic algae in three replicate samples from bimonthly acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 24 FEB 24 FEB 24 FEB REPLICATE 1 2 3 CONVERSION FACTOR 0 ~ 40 0 '0 0,40 TAXON A B C A B C CHLOROPHYTA CRUCIGENIA 0 0 SCENEDESMUS 0 0 STIGEOCLONIUM 0 0 I

HACILLARIOPHYTA ASTERIONELLA 0 0 1 0 0 1 CYMBELLA 0 0 0 1 1 DIATOMA 0 3 2 0 5 3 PRAGILARIA GOhlP HONEMA HANNAEA 6

1 0

16 5

0 10 8

0 ll 33 0

64 27 1

87 29 0

MELOSIRA 0 2 0 0 0 4 MERIDION 1 0 0 1 5 NAVICULA 2 3 2 3 4 7 N ITZSCHI A 1 6 3 6 13 16 STEPHANODISCUS 0 0 0 1 0 .0 SURIRELLA 0 1 2 0 0 1 SYNEDRA 0 0 0 0 4 2 CYANOPHYTA PHORMIDIUM 10 10 2 13 26 15 CHRYSOPHYTA DINOBYRON 0 0 TOTAL 9 13 21 34 38 64 147 175 Table B-5. Units of periphytic algae in three replicate samples from bimonthly acrylic plates downriver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1977.

DATE 25 FEB 25 FEB 25 FEB PLICATE 1 2 3 RE CONVERSION FACTOR 0 ~ 40 0 '0 0 ~ 40 TAXON A B C A B C A B C BACILLARIOPHYTA CYMATOPLEURA 0 0 0 0 0 0 CYMBELLA 1 2 0 2 1 0 DIATOMA 2 1 0 2 6 3 EUNOTIA 0 0 1 0 0 1 I

FRAG LARIA 11 15 11 25 24 26 GOMPHONEMA 6 12 8 10 11 10 MERI DION 2 0 1 0 6 NAVICULA 1 1 1 4 3 4 NITZSCHIA 2 4 3 7 6 8 RHOICOSPHENIA 0 0 0 1 0 0 SURIRELLA 0 0 0 0 0 1 SYN EDRA 0 4 0 0 1 1 CYANOPHYTA PHORMIDIUM TOTAL 25 39 26 60 56 66 13 4 11

Table B-6. Units of periphytic algae in three replicate samples from bimonthly acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 18 APR 18 APR 18 APR REPLICATE 1 2 3 CONVERSION FACTOR 0.59 0 ~ 59 0 ~ 59 TAXON A B C A B C A B C CH LOROPHYTA ANKISTRODESNUS 1 2 0 2 0 CHLANYDONONAS 2 0 1 1 3 SCHROEDERIA 0 0 0 0 0 TETRASTRUN 0 0 1 0 0 UNIDENTIFIED CHLOROPHYTA 3 5 3 0 0 BACILLARIOPHYTA ACHNANTHES 1 0 0 1 1 0 0 0 0 COCCONEIS 1 0 1 1 0 0 1 1 0 CYNBELLA 1 2 1 1 6 0 1 0 0 DI ATOMA 0 0 0 0 0 0 0 0 1 EUNOTIA 0 0 0 0 1 0 0 0 0 PRAGILARIA 3 0 3 0 0 0 2 1 0 GONPHONENA 3 5 1 3 3 4 4 4 6 GYROSIGNA 0 0 0 1 0 0 0 0 0 NELOSIRA 3 0 0 0 2 6 0 14 NERIDION 2 1 1 1 0 2 0 0 1 NAVICULA 1 3 3 2 2 2 2 1 NITZSCHIA STEPHANODISCUS SURIRELLA 10 88 0

6 96 0

ill 2

0 4

91 1

80 0

0 3

84 0

4 57 1

86 1

0 6

62 0

SYNEDRA 1 1 4 1 1 1 1 3 6 THALASSIOSIRA 4 4 4 4 2 3 2 CYANOPHYTA CH ROOCOCCUS 0 3 0 4 0 SCHIZOTHRIX 0 0 0 0 0 EUGLENOPHY'I'A TRACHELONONAS 0 0 0 0 0 124 128 136 121 107 109 81 106 107

52 Table 8-7. Units of poriphytic algao in throe replicate samples from bimonthly acrylic plates uprivor from the Susquehanna'SES Intake structure on tho Susquehanna River, 1977.

DAT E 15 JUN 15 JUN 15 JUN REPLICATE I 2 CONVERSION PACTOR 2 36 3 '9 2)36 3

TAXON CttLOROPHYTA ACTINASTRUN 3 5 3 32 19 23 10 ANKISTRODESHUS I 3

'7 1 19 16 17 6 .

8 12 CERASTERIAS 5 9 0 0 0 16 21 22 CBLAHYDOHONAS CHODATELLA 5

0 2

I 3

I 2l 6

11 1 5 18 li2 .14 9 11 9

CLOSTERI OPSIS 0 0 0 0 0 0 0 DICTYOSPHAERIUH 0 6 6 I 1 1 9 COLENKINIA 0 0 0 0 0 0 1 KIRCHNERIELLA 0 0 0 1 2 0 2 NICRACTINIUH 0 0 0 6 6 3 I OOCYSTIS 0 0 0 I 0 0 0 PHACOIUS 0 0 0 0 I 0 0 SCENEDESHUS 2 I I 11 13 17 10 SCHROEDERIA 0 0 0 I 0 0 0 TETRAEDRON 0 0 0 0 0 0 0 TETRASTRUH 1 0 0 0 1 0 0 UNIDENTIPIED CHI OROPHYTA 12 13 BACIILARIOPHYTA At1 PHD RA CYCLOTELLA 0 0 0 0 0 0 I 2 20 24 21 21 13 21 CYHHELLA 0 1 I 2 0 0 I Dl ATOHA 0 1 0 0 0 r 0 COttPHONENA 0 I 0 0 2 0 0 tlELOSI RA I 0 I )

0 0 0 NAVICUE.A 5 6 6 6 5 9 7 NITISCttIA 1 8 13 14 7 5 5 STEPHANCDISCUS 3 12 13 12 13 8 13 SYNELRA 0 2 7 2 4 2 TABE LLARIA THALASS IOS RA I 0

0 l0 5 0

5 0

0 6

0 0 7

CIANOIBYTA CH RGt)COCCUS 1 6 I SCttlEOTt)RIX 19 20 18 TOTAL 21 39 38 197 '91 119 141 131 155 Table 8 8. Units of poriphytic algae ln throe rcplicato samplos from bimonthly acrylic plates dcwnriver from the Susquohanna SES discharge diffuser on the Susquehanna River, 1917.

DATE 16 JUN 16 JUN 16 JUN REPLICATE I 2 3 CONVERSION 9ACTOR 46 8 ~ 61 F 02

'TAxott B CttLOROPttYTA ACT INASTRUtt 16 10 13 3 5 17 10 16 ANKISTRODESttUS '8 25 24 I 16 13 6 12 15 CERASTERIAS 27 35 21 13 18 22 21 16 34 CHLAttYDOHONAS 20 12 20 3 5 5 11 11 11 CHODATELLA 19 16 5 3 21 19 15 CLOSTERIOPS IS 0 0 I I 0 0 0 1 COSHARIUtt 0 1 0 0 0 2 0 0 DICTYOSPHAERIUtt 4 '10 10 I 3 7 5 L'LAKATOTttRIX 0 0 0 0 I 0 0 0 COLENKINIA 0 1 0 0 0 0 0 0 KIRCBNERILLLA 0 1 2 0 I 0 0 6 ttlCRACPINIUtt l 0 5 0 0 0 2 3 PEDI ASTRUH 0 0 0 I 0 0 0 0 SCENEDESttUS 28 21 28 12 25 2o 23 27 37 SCBROEDERIA 2 0 0 0 0 0 1 0 0 SELENASTRt)tt 0 I 0 0 0 0 G 2 0 SWAURASTI)UH 0 I 0 0 0 0 0 0 0 TETRAEE&ON 1 0 2 0 0 0 0 I 0 I E)E I) BA t)l A 0 I 0 0 0 0 0 0 0 UNIDLhTIPIFL CHLOROPttYTA 12 16 10 t ACILIARIOPBYTA AQthANTBES 0 0 0 0 I 0 0 0 0 COCCONEIS I 3 0 0 I 2 0 0 CYCLO'EELLA 15 17 21 22 27 25 30 23 26 CYttt)ELLA I I 3 7 10 4 6 2 3 LIATONA 0 0 1 2 0 0- 1 0 0 Lt'ITBEtlIA 1 0 0 0 0 0 0 0 0 Ht)NOT I A .0 0 0 0 I 0 0 0 0 I'RACI LANIA 0 0 2 0 0 2 2 0 0 COHPBONLHA 1 0 2 I I 2 4 1 I tlLLOSIRA t)AVICULA 10 2 0 2 l 2 3 0 0 14 10 32 23 21 19 25 11 t)ITESCBIA 1 16 18 1 9 8 8 11 1

)tt)GICOSPHI'hlA 0 0 0 I 0 0 0 0 0 SPEPBANODISCUS 43 48 60 51 60 58 30 23 26 SURIRBLLA 1 I 0 0 0 0 1 I SYN L'DRA THALASS IOSIRA 8 3 3 5 19 8 l 24 10 5 5 1 7 7 8 18 21 CYANOPttt)TA APt)ANOTI)CCE 0 0 2 0 Ctt ROOCOCCUS 13 6 15 6 ttlCRCCYS'I IS I 0 0 0 OSCILLATE RI A 0 2 2 0 SCHIEOII)NIX I 1 3 I LUCLL'hOPttYTA EUCILNA 0 0 0

'YRAQ)ELOttONAS 0 0 I TO'I'AL 252 252 318 193 256 252 252 226 259

Table 8-9. Units of periphytic algae in three replicate samples from bimonthly acrylic plates upriver from tho Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 15 AUG 15 AVC 15 AUC RE PI )CATE 1 2 3 CONVERSICN PACTOR 2 36 2 36 2. 36 TAXON C:

CHIA)&OPHYTA ACTIHASTRUH 0 0 0 0 0 0 1 0 1 ANKISTRODESNVS 3 6 3 12 6 7 1 2 9 CERASTERIAS 0 0 0 1 0 0 0 0 1 CHLAI)YUONOHAS 0 1 0 0 0 2 0 0 0 CHOEATELIA 0 0 0 5 0 0 0 0 0 COELASTRUH 3 1 1 0 1 5 2 0 1 COSHARIUN 0 0 0 0 0 0 0 1 0 CRUCICQ)IA 0 0 0 0 0 3 0 0 DICTYOSPHAERIUH 1 4 I 4 2 2 2 6 hlRCHHCRI ELLA 0 2 2 1 3 1 3 2 NICRACTI NIGH 0 0 0 I 0 1 0 0 0 OOCYST IS 1 0 0 1 0 0 0 0 0 PEDI ASY RUN 0 1 0 1 1 0 I 1 2 SCEHEDESHUS 34 31 28 32 41 35 24 21 '28 1ETRAEDROH 0 1 1 0 0 0 0 0 0 1ETRASP HUll 0 0 2 0 1 0 0 0

'TREUUARIA 0 2 0 0 0 0 0 0 VH IDENT IP ED I CHLOROPHYTA 10 SAC ILLARIOPHYTA COCCOHE IS 0 0 1 1 0 1 1 0 0 C'YCLOTELLA 13 22 17 19 18 18 16 17 20 CYHBELLA 0 0 0 I 0 0 0 0 0

))EIA>SIRA 0 0 0 0 0 3 2 0 2 HAYICULA 3 4 0 0 4 5 2 8 H ITS SCH I A 2 5 2 3 3 1 4 2 1' STEPHANODISCUS 2 4 3 0 0 0 1 2 THALASSIOSIRA 1 1 1 3 3 3 0 0 0 UHIDEHTIPIEO SAC ILLARIOPSY'TA CYAHOPHYTA CHROOCOCCUS 0 0 1 0 0 0 HERISNOPEDIA 1 0 0 0 0 0 l)ICROCYSTIS 0 0 0 0 0 0 SCHIZOTHRIX 23 14 10 13 13 15 LUCLEHOPHYTA TRACHELONONAS P'YRRHOPHYTA PERIDIHIUH 84 118 84 100 100 104 74 75 104 I

Table B 10. Units of poriphytic algae in throe replicate samples from bimonthly acyrlic plates dovnriver from the Susquohanna SES discharge diffusor on tho Susquehanna Rivor, 1977.

DATE 16 AVC 16 AUG 16 AVG REPLICATE 1 2 3 COHV ERSI OH PACTOR 2 36 7 09 7. 09 TAXON CH LOROPHYTA ACT IHASTRUN 0 1 0 1 0 0 0 I AHKIST)ODESHQS 5 3 9 3 5 6 8 6 CH LANYDOHONAS 1 0 0 0 0 1 2 0 CHODATELLA 0 0 0 0 0 0 4 COELASTRUN 0 0 2 I 5 6 7 COSNARIUN 0 0 0 0 I 0 1 0 CRUCIGEHI A 0 0 0 0 0 0 0 DICTYOSPHAERIUN I 3 3 0 0 0 3 2 2 PRAHCEIA 0 2 0 0 0 0 0 0 0 KIRCHHERI ELLA 2 2 4 2 3 3 .2 OOC I STI S 0 1 1 0 0' 1 0 2. '2 i'EDIASTRUN 4 6 2 3 3 3 3 1 SCEHEDES)4)S 48 82 58 71 67 83 79 57 70 STAURASTRUN 0 0 2 0 0 1 0 0 0 TETRAEDROH 0 1 0 0 1 0 0 I 0

'TETRASTRVN 1 0 0 0 0 0 0 0 1 TREUBARIA 1 0 0 0 0 0 0 0 0 UHIDEHTIP I ED CHLOROPHYTA 19 6 BACILLARIOPHYTA AHPROSA 0 0 0 0 2 0 0 0 COCOOHEIS 1 4 0 3 1 I I CYCLOTELLA 90 105 89 106 90 111 120 112 92 CYNSELLA 1 1 2 0 I 3 0 EUHOTIA 0 0 1 0 0 0 0 CONPHOHENA 1 1 0 l 2 1 2 2 NELOSIRA 10 5 5 3 0 1 I NE RID ION I

N AV COLA 0

5 0

4 0

6

' .0 0 7

0 7

0 4

NITZSCHIA 13 7 11 17 14 9 6 9 RHOICOSPHEHIA 0 1 0 0 0 0 0 0 Sf EPHANODISCUS 8 10 8 20 18 23 17 16 13 SURI BULLA 1 0 0 0 0 0 0 0 0

'IllALASS IOSI RA 4 5 5 5 6 5' 4 CYAHOPHYTA CHROOCOCCUS 0 I HERISHOPEDIA 0 0 OSCILLATORIA ,0 0 SCHIZOTHRIX 1 1 PYRRHOPHYTA CLEHODI HI)r) 0 CRYPTOPHYTA CRY PTONO HAS TOTAL 223 261 220 249 237 262 274 250 222

54 Table B-11. Units of periphytic algae in three replicate samples from bimonthly acrylic pl'ates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 14 OCT 14 OCT 14 OCT REPLICATE 1 2 3 CONVERSION FACTOR 2. 36 1. 18 1 18 TAXON A 8 C A E C CHLOROPHYTA ACTIHASTRUM 0 0 0 0 0 0 ANKISTRODESMUS 1 0 0 0 0 0 SCENEDESMUS 1 0 1 3 0 1 UNIDENTIFIED CHLOROPHYTA 0 0 0 2 0 1 BACILLARIOPHYTA ACHNANTHES 0 0 2 0 1 1 1 AflPHORA 0 0 0 0' 0 0 0 COCCONBIS 0 0 1 2 0 0 CYCLOTELLA 2 2 1 3 3 3 CYMBBLIA 0 0 0 0 0 0 0 GOMPHONERSA 0 0 0 0 1 2 1 MELOSIRA 0 0 0 0 16 0 MERIDION 0 0 0 0 0 0 0 NAVICULA 1 2 3 3 6 4 2 NlrzscHIA 2 1 3 3 0 1 0 PINNULARIA 0 0 0 0 0 1 1 RHOICOSPHENIA 0 0 0 0 0 0 0 S'I'BPHANODISCUS 0 1 - 0 0 2 1 1 SYNEDRA 1 0 0 3 1 2 1 CYANOPHYTA APHANOCAPSA 0 0 0 0 0 SCHI/OTHRIX 2 2 2 6 2 CHRYSOPHYTA, DINOHYRON 0 0 0 0 EUGLENOPHYTA UNIDENTIFIED '

EUGLENOPHYTA 0 0 0 0 0 RHODOPHYTA RHO DOC HO RT ON 0 0 10 0 0 TOTAL 14 8 13 44 18 41 22 25 19 Table B-12. Units of periphytic algae in three replicate samples from bimonthly acrylic plates downriver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1977.

DATE 14 OCT 14 OCT 14 OCT RB PLICATE 1 2 3 CONVERSION FACTOR 1~18 1 ~ 18 1 ~ 18 TAXON A B C BACILLARIOPHYTA ACHNANTHBS 0 1 0 0 AMPHORA 1 0 0 0 CYCI OTELLA 0 1 2 0 CYMHBLLA 1 0 1 -0 GOMPHONEMA 1 1 1 0 MELOSIRA 0 0 0 2 NAYICULA 1 2 0 NITZSCHIA" 4 1 2 0 CYANOPHYTA SCHIZOTHRIX 4 2 0 1 3 rorAL 12 9 11 1 3 6 3

55 Table 8-13. Units of periphytic algae in three replicate samples from bimonthly acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 13 DEC 13 DEC 13 DEC RE PLICATE 1 2 3 CONVERSION FACTOR 1 18 1 o 18 1.18

'1'AXON A 8 A 8 C CII LORD PH YTA UNIDENTIFIED CHLOROPHYTA 0 0 0 0 0 0 BACILLARIOPHYTA GOHPHONEHA 1 0 0 0 0 HERIDION 0 0 0 1 0 NAVICUfA 3 2 0 0 0 ttI'I'ZSCHIA 2 0 0 0 0 SYNEDRA 0 0 0 0 0 C YANOPHYTA SCHIZOTHRIX 2 1 0 2 8 3 1 2 1 2 Table 8-14. Units of periphytic algae in three replicate samples from bimonthly acrylic plates downriver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1977.

DATE 13 DEC 13 DEC 13 DEC RE PLICATE 1 2 3 CONVERSI Off FACTOR 1 18 1,18 1 ~ 18

'1'AXON A 8 C A 8 C A 8 Ctlf OROPHY'1'A SCENEDESHUS ULOTHRIX uACILLARIOPHY'1'A ACHttAN'1'HES 0

0 0, 1 0 0

0 0

0 0

1 1 2 0 0 1 1 2 0 AS'1'ERIONL'I LA COCCON El 8 CYCLOTELLA 0

0 0

2 0

0 0

0 0

0 0

0 0

0 3 0 0

1 0

1 0

0 1,0 1

0 C Yt4it ELLA 1 2 1 1 2 2 2 2 0 ul A'I'VtIA 2 0 1 1 0 0 0 0 2 F IiAGI LARIA 0 2 0 0 0 0 0 0 0 GOHi'tiONEtIA 6 2 9 4 2 5 3 I ll;LOS I RA 0 0 2 0 2 0 0 0

,IEttl DlON 1 0 0 0 1 1 0 0 '

NAVICULA 22 NITZSCII1A bURl RELLA 0 5

13 5

2 15 5

1 13 4

1 9

14 1

6 9

0 6

1 0

ll 9

1 8

8 3

bYNLUIIA 5 2 1 0 1 4 5 0 4 C YANOPHY'i'A OSC ILLA'lOR1A 0 0 SCH I ZOTHR X I 0 0 Chfi YSUPIIYTA tt lr UU Yf<Uii 0" 1

'iO'1'AL 44 37 31 32 42 32 18 32 29

56 Table B-15. Units of periphytic, algae in three replicate samples from cumulative acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DAT E 18 APR 18 APR 18 APR REPLICATE 1 2 3 COHVERSIOH FACTOR l. 18 0 ~ 59 0 ~ 59 rAXON CnlOROI'HYTA UnIDEHTIFIEO CHLOROPBYTA x>ld.'ILLARIOPHYTA CQCCONEIS 0 0 0 0 0 0 1 1 0 CYHBELLA 0 0 2 0 0 2 0 0 0 1'I ATO11A 0 0 0 0 0 0 0 1 0 FttAGI I ARIA 0 0 2 0 0 2 0 0 3 uot1PHONEttA 0 1 1 1 0 2 4 1 0 HELOSIRA 0 0 0 0 0 0 0 2 0 aiERIDIOH 0 0 0 0 0 1 0 0 0 t<AVICULA 1 1 2 2 1 0 2 1 1 N ITZSCHI A 2 0 0 2 1 0 3 1 1 S'I'EPHAHOOISCUS 48 46 54 39 53 44 24 29 29 s 0 R I BE Ll A 1 0 0 0 0 0 0 0 0 SYtl t.ttttA 2 0 0 0 0 1 4 0 THALASSIOSIRA 2 2 2 2 2 2 1 I 1 CYANOltlYTA CttROOCOCCDS S"HI'lO'IBRIX P Y RltBOFHYTA Gl ENODINIUt4 0 0 TO'I'AI, 56 52 63 55 37 35 Table B-16. Units of periphytic algae in three replicate samples from cumulative acrylic plates downriver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1977.

DATE 18 APR 18 APR 18 APR RE 1 2 ,3 PLICATE'ONVERSION FACTOR 0.59 0 ~ 59 0.59 T AXON Ctll OROPHYTA ANKISTRODESHUS 1 CH LAtlYOOtlONAS 0 UNIDENTIFIED CHLOROPHYTA 0 lsACILLARIOPHYTA ACHHANTHES 2 0 0 0 0 '0 0 0 0 COCCOHEIS 2 1 4 1 1 5 2 1 0 CYttBELLA 3 4 1 2 4 2 1 0 1 DI ATDNA 2 0 1 1 0 0 0 0 1 EUNOTIA 1 1 0 0 0 0 0 0 0 FRAGI LARIA 2 6 2 0 0 4 0 2 2 GOHPHONEHA 12 4 2 6 8 3 3 6 1 NELOSIRA 9 0 0 0 0 1 2 0 0 HERIDIOH NAVICULA NITZSCHIA 0

13 7,

2 6

3 ll 0

2 ll 1

1 10 0

1 0

3 7

0 9

3 1

4 0

0 1

3 RHOICOSPHENIA 1 1 1 0 0 0 1 0 1 STEPHANODISCUS 40 32 23 62 40 36 43 52 54 SURIRELLA 0 1 0 1 3 0 0 0 2 SYNEDRA 2 3 1 2 1 0 4 1 I TABEI LARIA 0 0 1 0 0 0 0 0 0 THALASSIOSIRA 2 1 1 2 2 1 2 2 2 CYANOPt!YTA SCHI'I Of ttRIX 46 71 69 170 170 189 TOTAL 147 137 122 262 243 255 85 83 78

Table B-17. Units of periphytic algae in three replicate samples from cumulative acrylic plates upriver from the Susquehanna SES Intake structure on the Susquehanna River, 1977.

DATE 15 JQN 15 JVH 15 JUN REPI ICATE I 2 3 COhVERSION PACIOR 2+36 2 36 2 36 TAXON CHLOROPBYTA ACT INASTRQN 13 7 8 9 20 15 8 8 11 ANKISTRODKSNVS 5 4 8 10 13 17 12 5 11 CKRASY ERIAS 23 18 24 19 22 31 23 15 21 CBLANYDCNONAS 9 7 15 14 13 17 11 20 13 CHOO AT E LLA 8 6 3 14 8 12 14 19 14 CLOSTKRIOPSIS 0 0 0 0 0 0 0 2 I DICTYOSPHAKRIVH 3 3 10 10 6 1 2 GOLENKINIA 0 2 0 0 1 0 3 2 5 KIRCBNERIELLA 0 I 2 2 0 2 4 2 IIICRACTINION I 3 I 2 6 2 2 I GOCYST IS 0 0 0 0 0 0 I I 0 P ED I A ST RUN 0 0 0 I 0 0 0 0 0 SCKNKDESNVS 7 6 11 9 19 11 15 20 17 SCBROKDERIA I 0 0 2 0 0 0 0 0 SELKNASTRUN 0 I 0 0 0 2 0 0 I

'IKTRAEDRON 1 I 0 0 0 I 2 I T ETRAST RUN 0 0 0 0 3 2 0 0 0 TREUBARIA 0 0 0 0 0 0 0 0 1 I N IDKNT IF I ED CHLOKOPHYTA 10 13 12 nhCILLARIOPHYYA ACHNANTHKS 0 0 I 0 0 0 0 I I CYCLOTKLLA 8 7 8 11 18 15 20 24 27 CD1BELLA 0 0 0 0 0 I 0 I I GONPBONEHA 0 0 I 0 0 0 0 0 0 NAVICULA 2 7 3 14 1 10 5 8 NITZSCHIA 2 4 2 11 11 1 6 2 7 RHOICOSPBI.NIA 0 0 0 I 0 0 0 0 0 STKPHANODISCVS 20 18 22 18 28 23 12 15 16 SYhEDRA 3 I 0 3 0 3 3 THALASSIOSIRA 3 7 10 9 6 7 8 CYhaOPBYTA APBANOTHECE 0 3 CHROOCOCCUS 11 15 NI C ROC YST IS 0 0 SCHIZOTBRIX 3 12 KVGLENOPHYTA TRACHELCNONAS 124 113 142 176 216 211 182 185 217 Table 8-18. Units of periphytic algae in three replicate samples from cumulative acrylic plates downriver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1917.

DA'IE 16 JVN 16 JVN 16 JUN I

RE PLICATE CONVERSION PACTOR 6e02 2

6o 02 2 '63 TAXON CHLOROPHYTA ACT INASTRVN 6 6 9 15 9 20 8 5 9 ANKISTRODESNUS 8 18 23 14 20 24 14 12,, 7 CERASTERIAS 5 10 9 13 20 18 18 14 16 CHLAHYDONONAS I 0 8 5 6 6 3 9 10 CHODATELLA 2 3 3 I 2 10 17 8 CLOSTERIOPSIS 0 0 0 I 2 0 0 0 0 CRVCIGENIA 2 0 0 0 0 0 0 0 0 DICTYOSPBAKRIUN I 4 3 1 I I 6 6 '2 GOLENK IN IA 0 0 0 0 I 0 0 I 0 KIRCBHERIELLA 0 0 I 2 2 0 I 0 HICRACTINIQN 0 0 0 2 0 0 0 I I OOCYSTIS 0 2 1 0 0 0 1 0 I PEDI ASTRUN 0 0 0 I 0 0 0 0 0 SCKNEDESNUS 30 16 24 26 29 24 36 26 20 SCHROEDKRIA 0 0 0 0 0 0 I 0 0 TE'IRAEDRON 0 0 0 I 2 I I 0 I TETRASTRQN 3 4 2 0 0 0 3 , I I TREUBARIA 0 0 0 I 0 0 0 0 0 UN ID EST I P I ED CHLOROPBYTA 12 6 3 DACILLARIOPHYTA ACHNANTBES 0 0 0 1 0 0 0 0 COCCONEIS 0 1 I I I 5 1 l 0 CYCIOTELLA 22 26 20 28 21 28 13 20 16 CYNBELLA 11 5 6 5 5 12 5 3 DIATONA 1 0 0 I 0 0 2 I 0 P RAG I LARIh 20 0 0 0 0 0 0 0 0 GONI'HONENA 2 5 3 3 5 0 I 0 0 BANNAEA 0 0 0 0 I 0 0 0 0 NELOSI RA 0 12 7 0 7 0 3 4 2 NKRIDION 0 0 0 I 0 0 0 0 0 i NAYICULA 37 27 31 29 37 48 27 16 18 NITZSCHI A 23 20 19 11 19 22 17 19 9 RHOICOSPHKNIA 0 0 0 0 0 0 0 I 0 STEPHANODISCVS 33 41 30 52 50 53 27 45 35 SURI RE I LA 1 0 0 1 1 0 I 0 0 SYNEDRh 15 12 14 14 8 13 13 16 16 THALASSIOSIRA 22 26 20 6 7 8 13 20 16 CYANOPH'YTA CHROOCOCCUS 11 12 LYNGBYA I 0 OSCILLATORIA I 0 SCHIZOTHRIX 0 0 EUGLEhOPBYTA PBACUS 0 0 TRACHELONONAS 0 0 252 253 240 252 212 307 235 256 211

58 Table 8-19. Units of periphytic algae in three replicate samples from cumulative acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 15 AUG 15 AUG 15 AUG RCPI ICATE 1 2 3 COHVERSICN PAC'FOR 2 36 2 ~ 36 2 '6 TAXON CBLOROPHYTA ACTINASTRUN 0 I 0 0 0 0 0 ANKISTRODESNVS 2 3 12 3 2 4 CN IANYDUHONAS 0 0 0 0 I 0 0 CB ODATEL LA 0 0 0 0 0 0 COCLASTRUN 8 2 3 1 2 2 I COSNARIU H 0 0 0 0 0 0 0 ~

CRUCIGENIA 0 0 1 11 3 0 0 DICTYOSPBAERIUN 0 1 4 2 2 2 KIRCHNERIELIA 3 2 0 2 0 3 OOCYSTI S 0 0 0 0 I 0 0 PEDI ASTRUN I I I 0 0 2 4 SCCNEDESNUS 31 32 49 28 23 30 22 26 ~27 TCTRAELRON I 1 0 0 0 I 0 0 0

'I'ETRASTRVN 0 0 0 1 0 2 0 I 1 VNIDENTIPIED CB LOROPBYTA BACILLARIOPBYTA ACBNAHTHES 1 0 0 0 0 2 0 0 0 COCCONEIS 0 0 0 0 0 I I 0 0 CYCIOTELLA 26 29 26 12 14 17 11 14 13 I'RAGILARIA 0 0 0 0 0 2 0 0 0 FRUS'IV LIA 0 0 1 0 0 0 0 0 0 GONPBOHCHA 1 0 0 0 0 0 0 0 1 NCLOSIRA 5 0 0 2 1 0 0 0 HAYICULA 0 2 4 0 5 1 0 1 I NITZSCBIA 2 5 4 3 6 3 1 I STCPBANODISCUS I 1 I 1 1 2 I I I

'INALASSIOS I RA 0 0 0 I 1 '2 0 0 0 CYANOPBYTA CBROOCOCCUS 2 1 0 SCHIZO'IBRIX 13 10 6 PYRRBOPNYTA PERIDIN ION 100 106 130 73, 83 62 56 65 Table 8-20. Units of periphytic algae in three replicato samples from cumulative acrylic plates downrlver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1977.

DATE 16 AVG 16 AUG 16 AUG REPI ICATE 1 2 3 CONVERSION FACTOR 7 09 6 02 4~ 46 TAXON CHLOROPBYTA ACTINASTRUN 0 0 0 0 0 1 0 0 ANKISTRODESNUS 3 10 7 2 10 9 12 CBLANYDONONAS 0 0 0 0 0 0 1 0 CGELASTRVN 3 3 2 3 4 3 0 2 COSHARIVll 0 0 0 0 0 0 1 1 CRVCIGINIA 0 0 0 0 0 0 0 1 DICTYOSPHAERIUN 0 2 5 0 3 I 3 K I RCBN C RI ELLA 1 4 3 3 7 2 0 2 OOCYSTIS 0 0 I 1 0 3 0 0 FED IASTRUN 2 2 3 6 3 5 1 SCCHCDESNUS 48 40 51 78 88 83 65 58 81 SC LENAS'F RUN 0 0 0 0 0 0 SYAVRASTRUH I 0 0 1 0 I TETRAEDRON E 1 2 1 0 4 0 I TETRAS'YRUH 1 I 1 3 0 0 I

'TREU SARI A 0 I 0 I 0 1 1 UNIV EHFIF EDI CHLOROPBY'Fh 10 13 14 14 10 10 SAC ILLARIOPBYTA ACBNANTBES 0 0 0 0 1 0 0 1 I

~ ANP BONA 0 0 0 0 0 0 0 0 1 COCCONEIS 2 I 0 1 1 1 0 0 3 CYCLOTELLA 71 75 65 102 96 87 96 83 91 CYNSEILA 0 1 1 0 0 1 1 2 0 FRAGI LARIA 0 0 0 0 0 2 0 0 0 PRUSTVLIA 0 0 0 0 0 0 1 0 0 GONPBONEHA 2 0 0 1 0 I 0 2 1 NELOSI RA 2 0 0 0 0 0 4 I 2 NAY ICULA 6 8 7 2 3 3 12 6 12 N ITZSCBIA 8 9 4 10 7 14 9 10 14 RBOICOSPBENIA 0 1 0 0 0 2 0 0 0 STEPBANODISCUS 14 14 12 13 12 8 7 8 SY NEDRA 0 0 1 0 0 0 0 0 0 TASELLARIA 0 0 0 0 0 0 1 0 0 TNALASSIOS I Rh 0 0 0 0 0 0 5 CYANOPHYTA CBROOCOCCUS 1 1 0 NERISNOPEDIA I 0, 0 HICROCYSTIS I 0 0 SCBIZOTHRIX I 8 PYRRBOPBYTA PERIDINIVN 1'79 188 179 244 236 244 256 209 259

59 Table B<<21. Units of periphytic algae in three replicate samples from cumulative acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

LATE 14 OCT 14 OCT 14 OCT RE Pl I CA'I'E 1 2 3 CVNVt RSIVN FAC'I'VR 2 36 2 ~ 36 2.36 l'AXON A B C A B C A B C Cnf VKOPHYTA COSilARI Uli 0 0 0 0 0 Kl RCH NERI ELLA 0 0 0 ,1 0 OOCYSTIS 0 1 0 0 0 PEDI ASTRUtl 0 0 0 0 0 SCLNEDESHUS 1 0 1 4 2 SELENASTRUtt 0 0 0 0 0 uNIUEN'I'IFIBU CilLOROPHYTA 0 1 0 0 1 2 aACILLARIOPHYTA ACHhANTHES 0 0 0 0 0 1 CVCCONEIS 0 1 0 0 1 0 CYCLOTELLA 3 5', 3 0 7 8 CYHBEllA 0 0 1 0 0 1 GOHPHOilEHA tiELOSI RA ill:KIUIOil 0,

1 0

0 0

0 0

0 0

1 4

0 0

3 0

1 0

4 NAYICUl A 1 4 4 2 3 2 N ITZSChIA 3 1 3 5 0 5 STBPHANODISCUS 0 1 0 0 0 0 SYNEDRA 1 1 0 0 1 CYANOPHYTA VSC ILLA'I'ORIA 0 0 1 0 SCHIZOTHRIX 1 24 24 22 RHVDOPHYTA RHODOCHORTON 0 0 0 0 0 13 16 15 40 45 52 15 18 26 Table B-22. Units of periphytic algae in three replicate samples from cumulative acrylic plates downriver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1977.

DATE OCT 14 OCT 14 OCT RE PLICATE 1 2 3 CONVERSION FACTOR 1 ~ 18 2 ~ 36 18 T AXON A B C A B C CHLOROPHYTA SC hN E DES l lUS UNIUEtlTIFIED CHLOROPHYTA 1

0 1

0 0

0 0

0 0

0 0

2 0, 0 0 QACILLARIOPHYTA COCCONEIS 0 0 0 0 GOtlPHONEHA 0 1 0 0 HBLOSIRA 0 0 0 NAVICULA 2 1 0 0

'I'OTAL'434'1 NITZSCHIA SYNEDRA C YANO PH Y TA SCHIZOTHRIX 22 27 0

25 2 2 1

26 152 156 156 157 1

0 14 0 14 7 ll 0

0 1

60 Table B-23. Units of periphytic algae in three replicate samples from cumulative acrylic plates upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 13 DEC 13 DEC 13 DEC REPLICATE 1 2 3 COtiVERSION I"ACTOR I ~ 18 1 ~ 18 1 ~ 18 TAXON A B C A B C A B C CHLOROPHYTA SCENEDESHUS 0 1, 0 BACILLARIOPHYTA CYtlBELLA 0 0 0 0 0 1 0 GOttPHOhENA NAVICULA NITZSCHIA 0

1 0

0 0

1 0

0 0

0 0

2 0,0, 0

0 0

0 1

0 1

SYNEDRA 0 0 0 0 0 0 0 C YANOPHYTA SCHIEOTHRIX 4 2 3

'10'I'AL 4 4 2 6 1 3 4 4 5 Table B-24. Units of periphytic algae in three replicate samples from cumulative acrylic plates downriver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1977.

DA'1'I'E 13 DEC 13 DEC 13 DEC PI ICATE 1 2 3.

CONVERSION PACTOR 1 ~ 18 1 ~ 18 1.18

'I'AXON A B C A B A B C C 8 I v ROiiH YTA AilKI ST ROD ES thUS 0 0 0 0 r LiDIAS'I'RUN 0 0 0 0 SC ENI-'DES liUS 1 0 0 0 ULOTHRlX 0 0 0 0 UN IDEN'I'Il" I ED Ctl LOROPHYTA 1 -

0 0 0 0 0 L,AC I LI AklOPHY'I'A 0' ACHNAN'I'HES ni'I'ERIONLLLA 0

0 0 0 0

0

, 0 1 1 2

1 0 0 0 0 0

COCCO>EIS 0 2 1 0 0 0 0 0 0 CYCLOTl'LLA 2 0 2 2 0 0 0 0 1 C YtlllELLA 0 2 1 0 1 0 1 1 0 U I A'I'OtlA 0 0 0 0 0 0 0 0 1.

I'HAGI LARIA 0 0 0 0 7 0 0 2 0 Gott PttOi% Et l A 2 -3 1 1 3 3 4 6 2

lELOSI RA

'I lt:RID IOtt 0

0 0

0 1

0 0

0 0

0 0

0 0

0 1,

1 2 0

nAVICULA 13 10 10 10 20 34 26 N IT'lSCti I A aTLPBANOUISCUS 18 10 0

15 0

ll 26 0

5 0 0 5 10 0

9 0

9 0

10 1

SYNLDRA 4 2 3 0 1 1 3 6 2 C YANVPHY'I'A OSCII Lh'I'ORI A 0 0 SCHI 't O'I'ttR I X LUGLENoptiYTA ll 0 0 2 3 4 0

6 Utl I UL'tt'I' l Li D LiUGLLtuOPtiYTh 0 0 0 0 0 0 0

'IQ'I'AL 48 47 50 26 30 31 45 64 52

Table B-25. Units of phytoplankton in three subsamples collected bimonthly upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 24 FEB 18 APR 15 JUN CONVERSION FACTOR 1961 35714 11905 T AXON CHLOROPHYTA ACTINAMRUM 0 0 83 87 72 I

AN K ST ROD ESMU S 0 0 15 13 11 CHLAMYDOMONAS 1 4 32 29 19 CHODATELLA 0 0 18 12 25 CRUCIGENIA 0 0 0 0 1 DICTYOSPHAERIUM 0 0 19 18 18 GOLEN KI N I A 0 0 2 1 3 KIRCHNBRIELLA 0 0 2 3 5 MICRACTINIUM 0 0 29 12 12 OEDOGONIUM 0 0 0 0 0 OOCYSTI S 0 0 1 0 1 PEDIASTRUM 0 0 1 0 0 SCENBDESMUS 0 0 21 29 23 SCHROBDERIA 0 0 0 0 1 SBLENASTRUM 0 0 2 5 2 TETRAEDRON 0,. 0 1 1 1 TETRASTRUM 0 0 1 5 0 TREUBARIA 0 0 0 1 1 UNIDENTIFIED CHLOROPHYTA 10 BACILLARIOPHYTA ACHNANTHES 0 0 0 0 0 1 0 0 0 CYCLOTELLA 0 0 0 9 10 10 38 39 48 CYMBELLA 10 1 5 1 0 1 0 DIATOMA 1 1 1 0 0 0 0 BUNOTIA 0 0 0 0 0 0 0 FRAGILARIA 29 20 33 18 0 0 0 GOMPHONEMA 23 20 16 0 0 0 0 HAN NAEA 1 0 0 0 0 0 0 I

MB LOS RA 0 0 0 0 0 3 0 MERIDION 2 1 1 1 0 0 NAVICULA 2 2 3 0 0 1 '

NITESCHIA 6 7 4 1 2 RHOICOSPHENIA 0 0 0 0 0 STEPHANODISCUS 0 1 0 222 237 236 36 36 44 SURIRELLA 0 0 2 0 0 0 0 0 0 SYNBDRA 8 6 0 0 1 1 1' CYANOPHYTA CHROOCCCCUS 0 0 0 0 29 17 17 PHORMIDIUM 13 16 15 0 0 0 0 CHRYSOPHYTA DINOBYRON TOTAL 96 77 96 263 260 261 337 325 319

62 Table 8-26. Units of phytoplankton in three subsamples collected bimonthly downriver from the Suscuehanna SES discharge diffuser on the Susquehanna River, 1977.

DATE 25 FBE 18 APR 16 JON CONVERSION FA TOR 2564 35714 11905'8 TAXON CHLOROPHYTA ACTIttASTRUN 79 74 ANKISTRODESttOS 12 14 12 CART BRI A 0 1 0 CH LhllYDONOttAS 31 39 38 CHOOATELLA 42 27 68 CLOSTB RI OPS IS 0 0 0 D IC'I'YOSP HAERI UH 9 22 21 ELAKATOTtlRIX 0 0 1 FRANCEIA 3 1 0 GOLBttKINIA 0 1 0 KIRCHttBRI ELLA 2 2 4 llIC R ACT I N IU t 1 10 10 14 SCENEOEStlUS 23 29 18 SE LEN ASTRO ll 0 3 0

'1'BTRAEDRON 0 2 3

'1'ETRASTRUtl 1 1 0 TREUOARIA 0 1 0 UN IDL'NTIF BO I Cll lA)kOP HY'1 A 15 13 ttAC ILLARIOPHYTA ACHNANTHES 1 0 0 0 0 0 0 ANPItUkh 1 0 0 0 0 0 0 ASTERIONELLA 0 0 1 0 0 0 0 COCCONBIS CYCLOTEI,LA CYctd B LLA 0

0 13 0

10 10 0

0 ll 1

2 0

30 0

31 0

1 0

29 0

D I ATO! lA 0 0 0 0 0 EUNOTIA 1 0 0 0 0 0 FRAGILARIA 87 147 121 0 0 0 0 0 GOHPHONL'tlh 33 36 28 1 0 0 0 0 HANNAEA 0 1 0 0 0 0 0 0 NE LOS I RA 0 0 0 14 1 0 0 0 tlERIDION 3 4 1 0 0 0 0 0 NAV ICUl A 16 27 11 0 0 1 1 0 NITZSCHIA 20 24 15 2 1 1 4 3 RHO IC OSP H t'N I A 1 1 1 0 0 0 0 0 0 Sr EPHANOOISCUS 6 2 3 243 256 267 35 37 35 SURIREl LA 0 1 5 0 0 0 0 0 SYNEDRA 15 13 4 2 1 0 THALASSIOSIRA 0 0 0 0 3 3 3 CYANOPHYTA CYAN ARCO S 4 1 1 PHORllIDIUtt 13 24 22 UNIDENTIFIED CYANOPttYTA 10 CHRYSOPHY'1A DINOHYRON BOGLENOPHYTA TRACHEl ONONAS PYRRHOPHYTA UNIDENTIl'IED PYRRHOPHYTA TOTAL 212 305 234 275 293 291 308 330 333

63 Table B-27. Units of phytoplankton in three subsamples collected bimonthly upriver from the Susquehanna SES intake structure on the Susquehanna River, 1977.

DATE 15 AUG 14 OCT 13 DEC CONVERSION PACTOR 11905 1961 490 TAXON CH LOROPHYTA ACTINASTRUM 1 0 0 1 ANKISTRODBSMUS 7 5 3 0 2 CHLAMYDOMONAS 1 1 1 0 0 COELASTRUM 7 7 10 0 0 0 CRUCIGENIA 5 1 0 0 0 0 DICTYOSPHAERIUM 11 14 13 0 0 0 GOLENKINIA 0 0 1 0 0 0 K I RCHN BRI EL LA 20 11 18 0 0 0 OOCYSTIS 1 1 4 0 0 p PAN DORI NA 1 0 0 0 0 0 PEDIASTRUM 1 1 0 0 0 0 SCENEDESMUS 52 52 52 0 2 0 SELENASTRUM 1 0 0 0 0 0 TBTRAEDRON 3 2 1 0 0 0 TETRASTRUM 1 2 2 0 0 UNIDENTIPIED CHLOROPHYTA ,

18 19 23 BACILLARIOPHYTA ACHNANTHES 0 0 0 1 AMPHORA 0 0 0 2' A STERI ON ELLA 0 0 0 COCCONEIS 0 0 0 1 CYCLOTBLLA 87 75 60 2 CYMBELLA 0 0 0 3 DIATOMA 0 0 0 0 PRAGI LARIA 0 0 0 2 GOMPHONBMA 0 0 0 7 8 10 MELOSIRA 0 0 4 0 ~ 2 MERIDION 0 0 0 1 0 2 NAVICULA NITZSCHIA STEPHANODISCUS 1

3 4

0 4

4 1

6 3

7 0

ll 1

8 17 0

19 15 0

16 11 1

SURIRELLA 0 0 0 0 0 0 2 0 SYNBDRA 0 0 0 0 0 0 6 0 THALASSIOSIRA p 0 0 0 0 0 0 0 CYANOPHYTA ANABAENA 0 CHROOCOCCUS 1 ME RI SHOP ED I A 2 OSCILLATORIA 0 SCHIZOTHRIX 0 CHRYSOPHYTA DINOBYRON 0 MALLOMONAS 0 SYNURA '1 PYRRHOPHYTA GLENODINIUM TOTAL 230 207 206 27 32 39 65 68 73

64 Table B-28. Units of phytoplankton in three subsamples collected bimonthly downriver from the Susquehanna SES discharge diffuser on the Susquehanna River, 1977.

DATE 16 AUG 14 OCT 13 DBC CONVERSION FACTOR 11905 1961 490 TAXON CHLOROPHYTA AH K I STRODESMUS 3 5 2 1 0 CHLAMYDOMONAS COBLASTRUM COSMARIUM 0

21 1

3 14 3

ll 1

0 0

0 0

0 0

0 DICTYOSPHABRIUM 6 6 17 0 0 FRANCEIA 0 1 0 0 0 KIRCHHBRIELLA 15 6 8 0 0 PBDIASTRUM 1 1 0 0 0 SCENEDBSIIUS 33 49 48 2 0 TBTRAEDRON 0 1 5 0 0

.. TREUBARIA 0 2 0 0 0 UNIDENTIFIED CHLOROPHYTA 12 BACILLARIOPHYTA ACHNANTHES 0 0 0 1 1 1 3 2 8 ASTBRIONBLLA 0 0 0 0 0 0 3 8 COCCONBIS 0 0 0 1 0 0 1 0 3

'CYCLOTELLA 149 141 133 8 7 9 6 7 1 CYMBBLLA 2 1 2 2 4 7 DI ATOllA 0 0 0 1 1 0 DIPLONEIS 0 0 0 0 1 0 FRAGILARIA 0 4 2 0 17 0 GOMPHONBMA 1 1 0 12 10 8 HANTZSCHIA 0 0 0 0 0 1 MELOSIRA 30 9 0 1 0 9 MBRIDIOH 1 0 0 0 2 0 NAVICOLA 6 ,4 7 23 25 20 NITZSCHIA 6 9 6 25 24 21 STEPHANODISCUS 0 1 0 0 1 0 SURIRELLA 1 0 0 0 1 1 SYNEDRA 1 1 2 6 4 4 TABELLARIA 0 0 0 1 0 0 THALASSIOSIRA 1 0 0 0 0 0 CYANOPHYTA AN ABAENA 0 CHROOCOCCUS 0 MBRISMOPEDIA 0 OSCILLATORIA 8 SCHIZOTHRIX 1 CHRYSOPHYTA DINOBYRON 2 11ALLOMONAS 0 1.

SY NURA 0 0 CRYPTOPHYTA CRYPTOMONAS TOTAL 264 262 255 65 42 39 95 121 104

65 CURRENT CURRf NT e ~mr Pig. B-l. Detritus-free apparatus. for pexiphy'tic algae studies.

A. Acrylic holder with two plates removed (top view):

1) metal retaining strap; 2) deflecting shield, acryli'c;
3) brass pin; 4) acrylic plate; 5) pin retaining slot.

B. Acrylic holder (end view) with sampler in place:

1) steel st'rap (buried); 2) concrete ballast: 3) brass pin; 4) bar-clamp sampler.

66 ABOVE INTAKE K

O O X 5 UJ C9 IS DIATOMS BIMONTHLY CUMULATIVE TOTAL

--DIATOMS 4

El BLUE BELOW DISCHARGE GREENS I-z:

CL 3

ul Q.

U O /

I CA //

I- /

/

,// /

/

/

//

//

//

//

///

/

FEB APR JUN AUG OCT DEC Fig. 8-2. Standing crop of algae (units/mm ) on bimonthly and cumulative acrylic plates upriver from the intake structure and downriver from the discharge diffuser of the Susquehanna SES on the Susquehanna River, 1977 (the bimonthly plate below the discharge was lost in April).

67 30 25 ABOVE INTAKE 20 VJ 15 O 10 X

5 O

.I-o cz CC . 35 Q.

O I- 3O CL 25 Q DIATOMS CIGREENS BELOW DISCHARGE 20 H BLUE GREENS CA 15 10 FEB APR JUN AUG OCT DEC Fig. B-3. Standing crop of algae (units/liter) from bimonthly samples taken upriver from the intake structure and dovnriver from the discharge diffuser of the Susquehanna SFS on the Susque-hanna River, 1977.

68 BENTHIC MACROINVERTEBRATES by William G. Deutsch TABLE OF CONTENTS Page ABS TRACT ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 72 INTRODUCTION...,...........,........................................, 73 P RO C E DURE S ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 74 RESULTS AND DISCUSSION. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~, ~ ~, ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ l ~ ~ ~ ~ ~ ~ ~ ~ ~ 76 Macroinvertebrates from 1977 Dome Sampl es.................... 76 Chironomidae from 1972 Basket Samples.. 79 REFERENCES CITED.................................................... 82 LIST OF TABLES Table C-l. Description and location of benthic macroinvertebrate sampling stations on the Susquehanna River, 1977....... 85 Table C-2. Description . . . 1972.....,........................... 86 Table C-3. Number and percent total of benthic macroinvertebrates collected with a dome sampler at SSES I on the Susquehanna River, 13 April 1977....................... 87 U

Table C-4. Number . . . 6 June 1977...,........................... 87 Table C-5. Number . . . 26 October 1977.............,............. 88

69 Page Table C-6. Number and percent total of benthic macroinvertebrates collected with a dome sampler at SSES II on the Susquehanna River, 13 April 1977....................... 88 Table C-7. Number . . . 7 June 1977............................... 89 Table C-8. Number . . . 26 October 1977........................... 90 Table C-9. Number and percent total of benthic macroinvertebrates collected with a dome sampler at Bell Bend I on the Susquehanna River, 12 April 1977...................... 91 Table C-10. Number . . . 8 June 1977............................. 5

~ . 92 Table C-ll. Number... 26 October 1977........................... 93 Table C-12. Mean density and percent total of major macroinver-tebrate groups collected at SSES I, SSES II, and Bell Bend I on the Susquehanna River, 1977............. 94 Table C-13. Mean density (No. org/m 2 ) of naidid worms and three chironomids at SSES I, SSES II, and Bell Bend I on the Susquehanna River, 1975-77..............'........... 94 Table C-14. Macroinvertebrates collected in the study area of the Susquehanna River 1971-77.............................. 95 Table C-15. Percent similarity among macroinvertebrate populations collected at SSES I, SSES II, and Bell Bend I in April, June, and October on the Susquehanna River, 1977....... 98 Table C-16. Coefficient of community . . . 1977..............;..... 98 Table C-17. Biomassof macroinvextebrates (damp and dry weights and percent total) collected with a dome sampler at SSES I on the Susquehanna River, 13 April 1977......,;. 99 Table C-18. Biomass . . . 6 June 1977............................. 99 Table C-19. Biomass . . . 26 October 1977......................... ~ 99 Table C-20. .Biomass of macroinvertebrates (damp and dry weights and percent total) collected with a dome sampler at SSES II on the Susquehanna River, 13 April 1977........ 100 Table C-21. Biomass . . . 7 June 1977...... ............... . ..... 100 Table C-22. Biomass . . . 26 October 1977.......................... 100

70 Page Table C-23. Biomass of macroinvertebrates (damp and dry weights and percent total) collected with a dome sampler at I

Bell Bend on the Susquehanna River, 12 April 1977.... 101 Table C-24. Biomass... 8 June 1977............................. 101 Table C-25. Biomass . . . 26 October 1977..............'............ 101 Table C-26 Number per sample and percent total of chironomids collected in basket samples at SSES-D on the Susquehanna River, 11-12 April 1972.................... 102 Table C-27. Number SSES-E . . . 12 April 1972................ 102 Table C-28. Number . . . SSES-C . . . 22, 26, 29 May 1972...... ~ ~ ~ ~ 103 Table C-29. Number Falls... 26 July 1972.............. ~ ~ ~ ~ 103 Table C-30. Number... Wilkes-Barre (2)... 24 July 1972..... ~ . 104 Table C-31. Number . . . Nanticoke . . . 21 July 1972.............. 104 Table C-32. Number . . . SSES-A . . . 16-17 July 1972...;.......... 105 Table C-33. Number . . . Nescopeck . . . 28 July 1972.............. 105 Table C-34. Number Falls . . . 5 September 1972....... ~ ~ ~ ~ ~ ~ ~ 106 Table C-35. Number . Wilkes-Barre (2) . . . 7 September 1972... 106 Table C-36. Number . Nanticoke . . . 7 September 1972... ~ ~ ~ ~ ~ ~ ~ 107 Table C-37. Number . SSES-A . . . 11 September 1972............ 107 Table C-38. Number... Nescopeck... 11 September 1972......... 108 Table C-39. Number... Wilkes-Barre (2)... 9 October 1972..... 108 Table C-40. Number . . . Nanticoke . . . 11 October 1972........... 109 Table C-41. Number . . . SSES-A . . . 16 October 1972.............. 109 Table C-42. Number . . . Nescopeck .' . 16 October 1972........... 109 Table C-43. Number . . . Falls . . . 21 December 1972.............. 110 Table C-44. Number . . . Nanticoke . . . 22 December 1972.......... 110 Table C-45. Number . . . SSES-A . . . 4-5 December 1972............ 111

71 Page Table C-46. Number per sample and percent total of chironomids collected in basket samples at Nescopeck on the Susquehanna River, 6 December 1972... . ............... 111 Table C-47. Chironomids collected in basket samples from Falls to Nescopeck on the Susquehanna River, 1972............... 112 2

Table C-48. Monthly and total mean density (No. org/m ) and percent total of chironomids collected in basket samples at Falls on the Susquehanna River, 1972................... 113 Table C-49. Monthly . . . Wilkes-Barre (2) . . . 1972.............. 113 Table C-50. Monthly . . . Nanticoke . . . 1972..................... 114 Table C-51. Monthly . . . SSES . . . 1972.......................... 114 Table C-52. Monthly . . . Nescopeck . . . 1972..................... 115 Table C-53. Mean density (No. org/m 2 ) of some macroinvertebrates collected in basket samples from Falls to Nescopeck on the Susquehanna River, 1972......................... 115 2

Table C-54. Monthly,and total mean density (No. org/m ) and percent total of chironomids collected in basket samples from Falls to Nescopeck on the Susquehanna River, 1972...... 116 Table C-55. Correlations of physicochemical parameters and density of macroinvertebrates collected in basket samples from Falls to Nescopeck on the Susquehanna River, J uly 1972..................,........................... 117 Table C-56. Correlations . . . September 1972....... . . .,........ 117 Table C-57. Correlations . . . October 1972......................., 118 LIST OF FIGURES Fig. C-l. Location of benthic macroinvertebrate sampling stations on the Susquehanna River, 1972......................... 119

72 ABSTRACT The benthic macroinvertebrate community that inhabits the 'Susque-hanna River near the Susquehanna SES was sampled at three sites. in April, June, and October 1977. Two sites were on a transect upriver from the intake structure, and the other was below the discharge diffuser.

Overall mean density of macroinvertebrates at sites above the intake was 3,350 organisms/m 2

, and below the diffuser it was 5,108 org/m 2

Oligochaetes (especially Nais spp. and Limnodrilus sp.), mayflies tarsus sp.) composed more than 93% of the total number of macroinvertebrates at all sites. There were 3-fold fewer macroinvertebrates collected in 1977 than in 1976, primarily due to smaller populations of naidid worms, Chironomids from 121 basket samples collected at five stations on the Susquehanna River in 1972 were identified to genus or species, and populations of them were described. Of, the 116,240 chironomids collected, the 38 collected, composed more than,2% of the total number.

73 INTRODUCTION Benthic macroinvertebrates are one of the most useful groups of organisms for the study of aquatic environments. In recent studies of European rivers (Clarke et al. 1977), they were the most frequently used community in biological classification. Because populations of macroinvertebrates are often large and relatively sessile, they are useful in the detection of pollution sources (Gaufin 1958, Goodnight 1973) . Certain species are highly selective in their choice of habitat, and "are, therefore, important indicators of both environmental quality and change (Paine and Gaufin 1956) .

Environmental evaluations have been made by identification of macroinvertebrates to order or family (Mackenthum and Ingram 1967), but it has been shown that species within these groups have'wide ranges of physicochemical tolerances (Resh and Unzicker 1975). For 'this reason, the trend has been toward species identifications for accurate inter-pretation of macroinvertebrate data Lack of taxonomic keys (especially for immature insect stages) was a problem. However, a recent influx of new literature (Lewis 1974; Beck 1976; Edmunds et al.'976; Resh 1976; Saether 1976, 1977a, 1977b; Wiggins 1977) has been helpful, not only for identification purposes, but also for the study of the dis'tribution, ecology, and pollution tolerances of many species.

The objective of this study was to monitor seasonal changes in the benthic macroinvertebrate community of the Susquehanna River near the Susquehanna SES. In addition to the collection and analyses of 1977 dat'a,

74 chironomids (Dip tera: Chironomidae) collected in 1972 basket samples were identified to genus or species and populations of them were described.

PROCEDURES Benthic macroinvertebrates were collected at three sites near the Susquehanna SES. Two sites (SSES I and SSES II) were on a transect upriver from the intake structure, and the other (Bell Bend I) was below the di'scharge diffuser (Fig. A-1). The Jocation of these stations was unchanged from 1976. Stations were remeasured in 1977 with a Watts Microptic Alidade (Model SA lOOTS) and,are described in Table C-l.

Three replicate dome suction samples (Gale and Thompson 1975) were collected at each site on 12-13 April, 6-8 June, and 26 October 1977.

After the dome, sampler was lowered from a boat to the River bottom, a scuba diver moved it upriver or laterally to the first undisturbed area encountered, where an adequate seal between the sampler band and the 2

substrate could be established. The area 4

(0.163 m ) enclosed by the sampler was vacuumed I

for 5 minutes with a hose leading to a bilge pump mounted on the sampler. Sand, gravel, and organisms were pumped into a nylon net ( 216-p mesh); larger stones were carefully vacuumed and discarded. When all three replicates were collected, they were returned to the boat by the diver.

One of the three replicate samples was used for biomass estimates.

It was washed, sieved (U.S. Standard No. 60 sieve), and sorted immediately

75 after it was colle'cted (Deutsch 1976). Damp weights were determined after freshly-sorted organisms were centrifuged on screens (3,200 rpm for 15 s), and dry weights were determined after organisms were dehydrated't 100 C for at least 12 h.

The other two replicates were washed, sieved, and preserved in 10% buffered formalin. After a sample was sorted, 1/4 of the residue was randomly selected in an acrylic subsampler (Ichthyological Associates 1973). Each subsample was examined with a dissecting microscope (30 X), and macroinvertebrates removed. The number of subsampled organisms was multiplied by 4, and added to the number of organisms picked when the sample was initially sorted, to obtain the total number of organisms/sample. Number/square meter'was determined by multiplying the total number of organisms/sample by 6. 135. All data were stored in and processed with a Hewlett-Packard 9830A computer.

Organisms were identified with the keys of Ross (1944), Pennak (1953),

Parrish (1968), Hilsenhoff (1970), Lewis (1974), Beck (1976), and Resh (1976) .

To more thoroughly describe chironomid populations of the River, specimens collected in 121 basket samples at five stations (Table C-2; Fig. C-1) from April through December 1972 (Ichthyological Associates 1973) were identified to genus or species. Both cement spheres and stones were used as artificial substrates in the baskets, but a non-parametric sign test revealed no significant difference in either the number of taxa or the total abundance of organisms which colonized the

76 two substrates. Therefore, data from all basket samples were combined for analysis. Large samples, which contained up to 11,000 organisms, were randomly subsampled before they were sorted.

Mature chironomid larvae of some genera could be identified at 70 X V

magnification, but others had to be dissected and examined with a compound microscope at 100-400 X. The head capsule of those in the latter group was dissected from the body with "minuten nadeln" probes (size 000 insect pins) and mounted ventral-side up in polyvinyl lactophenol on microscope slides. Enough pressure was applied to the coverslip to partially squash the head capsule and spread apart the mouthparts which are needed for identification.

RESULTS AND DISCUSSION Macroinvertebrates from 1977 Dome Samples Overall mean density of macroinvertebrates was higher at Bell Bend I 2

(5,108 org/m ) than at SSES I 2 (3,039 org/m ) or SSES II (3,661 org/m 2

).

Macroinvertebrates were most abundant in June at SSES I (x = 8,141 org/m )

2 and Bell Bend I (x = 9,518 org/m 2 ), and,densities of them at SSES II 2

were highest in October (x = 5,899 org/m ) . Minimum macroinvertebrate densities were found at all sites in April (Tables C-3 through C-ll).

Oligochaetes (especially Nais spp. and Limnodrilus spp.), mayflies

(~fson chin sp. and Stenonema spp.), caddlsf ides (Chenmato s che sp. and m

sp.) composed more than 93/ of the total number of macroinvertebrates at

77 all sites (Table C-12). A total of 61 macroinvertebrate taxa was found at Bell Bend I, 59 at SSES II, and 50 at SSES I.

Macroinvertebrate densities in April 1977 were much lower than in April 1976. The ll-fold reduction was primarily due to smaller numbers number of organisms at all sites (Tables C-3, C-6, C-9) .

Between April and June, there was a sharp increase in densities of naidid worms, mayflies, and chironomids at all sites (Tables C-4, C-7, G-10). Mayflies were particularly abundant (2,322 org/m ) at 2

SSES I, and 10 species of 7 families were collected. The most common mayflies were ~Ison this spr t immature Stenonema sppr t and Caenis sp.. Of the composed more than half the number of chironomids at SSES II and Bell Bend I, and densities of it reached 1,770 org/m 2

at the latter station.

By October, numbers of macroinvertebrates declined to much lower levels than those of 1976, especially at SSES I where there was a 30-fold reduction. The chironomid, Nanocladius sp ., which was abundant in June, was absent from SSES I and SSES II, and scarce at Bell Bend I 2

(12 org/m ), probably due to the emergence of the adults. Whereas sp. increased from 2- to 4-fold at SSES II and Bell Bend I (Tables C-S,

78 There were 26 additions to the 1976 macroinvertebrate species list (Table C-14). Most of these organisms had been collected in previous years but were more specifically identified in 1977. Identifications of 16 additional chironomids were verified by Mr. William M. Beck (Florida A & M University). Because of revisions in taxonomy, names of three chironomids from previous species lists were changed:

1. Psectrocladius now is Nanocladius
2. Chironomus attenuatus now is C. decorus
3. Lobodiamesa sp. now is Diamesa sp. //4 Four species of heptageniid mayflies were identified in 1977 and verified by Dr. Philip A. Lewis (National Environmental Research Center, Cincinnati).

This resulted in three revisions of previous lists:

2. Stenonema sp. I/2 now is S. inter unctatum
3. Srenoneme sp. (/3 now 1s 3. rubrum The community indices of percent similarity and coefficient of community (Whittaker and Fairbanks 1958) were generally higher between SSES II and Bell Bend I, than between SSES I and other sites (Tables C-15, C-16) . There is a finer substrate at SSES I than at SSES II or Bell Bend I, and this difference may be reflected in the macroinvertebrate communities at these sites. Rheotan tarsus sp. seemingly preferred the gravel-pebble substrate of SSES I, and densities of it there were from 2- to 5-fold greater than at SSES II or Bell Bend I in 1975-76 (Deutsch 1976, 1977) .

pebble-cobble substrate of SSES II. Buscemi (1964) noted that optimum

79 crevices with low current velocities.

Overall mean damp weight of macroinvertebrates was greater at SSES II (44.7 kg/ha) than at SSES I (10.5 kg/ha) or Bell= Bend I (28.6 kg/ha).

'Damp weight was greatest at SSES II (47.9 kg/ha) and Bell Bend I (45.2 kg/ha) in April, when density of macroinvertebrates was lowest. Greatest damp weight was found at SSES I (18.9 kg/ha) in June (Tables C-17 through C-25) . Hydropsychid caddisflies, heptageniid mayflies, and oligochaetes composed from 62/ (SSES I) to 73/ (Bell Bend I) of the tota1 damp weight at all sites, although late instat ~Ison ohia sp. and Potamanthus sp.

composed a large portion of the June biomass. At SSES I and Bell Bend I, biomass was from 2- to 5-fold less than in 1976, but at SSES II, a 25/

increase in damp weight of hydropsychids resulted in a greater mean b'iomass than in 1976 . Dry weights were from 19/ to 30/ (x = 23/) of damp weights at all sites.

Chironomidae from 1972 Basket Samples total of 116, 240 chironomids was collected from 121 basket samples (Tables C-26 through C-46). Of these, 19,655 were individually examined and identified; about 4,800 of them were mounted on microscope slides generic names were not counted as separate taxa if species within them were identified, and no family or subfamily names were counted as taxa.

Data from all sites of the SSES station were combined for analysis.

80 Thirty-eight chironomid taxa were collected, and 13 identified to species (Table C-47). The subfamily Chironominae comprised the most taxa (20), followed by the Orthocladiinae (,13), and Tanypodinae (5).

The greatest variety of chironomids (29 taxa) was found at SSES, probably due to more intensive sampling there. Falls, Milkes-Barre (2), and Nanticoke had a moderate number of taxa (18-24), and Nescopeck had the least (12 taxa).,

Mine drainage and sewage pollution had a harmful effect on most chironomid populations. At Nanticoke, the most polluted station, total mean density of chironomids was only 8% of that at Falls and Wilkes-Barre (2), 20% of that at SSES, and 2% of that at Nescopeck (Tables C-48 through C-52). At Nescopeck, chironomids were extremely abundant dn spite of pollution because of large amounts of filamentous algae which accumulated in the basket samplers. Chironomids were generally more sensitive to mine drainage and sewage pollution than oligochaetes, but less sensitive than mayflies and caddisflies (Table C-53). This difference in sensitivity was most obvious in late summer, when water quality was poorest.

Rheotan tarsus sp. composed about 70% of the chironomid populations (Table C-54), and it was the most abundant genus at Falls (62%), Milkes-Barre (2) (29%), and Nescopeck (85%). Overall mean density (x = 14,798 2

org/m ) of Rheotan tarsus sp. was highest at Nescopeck; Rheotan tarsus sp.

was especially abundant there in September (45,089 org/m 2 ), when the largest amounts of the filamentous alga, ~nedo onium sp., accumulated in the basket samplers. This abundant food supply, coupled with the

81 relatively shallow riffles of the station, seemed to make an ideal environment for this chironomid. Low diversity of other chironomids at Nescopeck was .probably due to the success of Rheotan tarsus sp. as a competitor for food and space. In July, September, and October, when Rheotan tarsus sp. was most abundant, density of it was positively correlated with density of hydropsychid caddisflies; it was negatively correlated with oligochaete density and concentrations of total iron (Tables C-55 through C-57).

Only-four other taxa composed more than 2X of the total number of In September, density of 2

/

2 2 and SSES (3,276 org/m ) and exceeded those at Falls (516 org/m ) and 2

/

Wilkes-Barre (2) and SSES may have been due to less competition from Rheotan tarsus sp.

and composed 36.8X of the total number. In December, densities of it 2

I predaceous chironomids collected, and its prey included water mites and four kinds of chironomids. Rheotan tarsus sp. was the most common

82 (10X), and Nanocladius sp. (5X). These species occur in about the same nonselective feeder. About 70/ of all occurrences of predation were in September.

REFERENCES CITED Beck, W. M. 1976. Biology of the larval chironomids. State of Florida.

Dept. Env. Reg. Tech. Serv. Vol. 2, No. l. 57 pp.

Buscemi, P. A. 1964. The importance of sedimentary organics in the distribution of benthic organisms. Pages 79-86 in K. W. Cummins, C. A. Tryon, Jr., and R.. T. Hartman (eds.), Organism-substrate relationships in streams. Spec. Pub. No. 4, Pymatuning Laboratory of Ecology, Univ. of Pittsburgh.

Clarke, R. McV., H. A. Hawkes, and R. T. Oglesby. 1977. Summary of papers presented. Pages 207-214 in J. S. Alabaster (ed.),

Biological monitoring of inland fisheries. Barking, Essex:

Applied Science Publishers.

Cummins, K. W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters.

Am. Midi. Nat. 62: 477-504.

Deutsch,. W. G. 1976. Macroinvertebrates. Pages 123-161 in T. V. Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1975). Ichthyological Associates, Inc., Berwick, Pa.

1977. Macroinvertebrates. Pages 36-'69 in T. V. Jacobsen (ed.), Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1976).

Ichthyological Associates, Inc., Berwick, Pa.

Edmunds, G. F., S. L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. Univ. of Minnesota Press, Minneapolis. Minn.

330 pp.

83 Gale, W. F. and J. D. Thompson. 1975. A suction sampler for quantita-tively sampling benthos on rocky substrates in rivers. Trans. Am.

Fish. Soc. 104: 398-405.

Gaufin, A. R. 1958. The effects of pollution on a midwestern stream.

Ohio J. Sci. 56(4): 197-208.

Goodnight, C. J. 1973. The use of aquatic macroinvertebrates as indicators of stream pollution. Trans. Am. Microsc. Soc. 92(1):

1-13.

Hilsenhoff, W. L. 1970. Key to genera of Wisconsin Plecoptera (stonefly) nymphs, Ephemeroptera (mayfly) nymphs, Trichoptera (caddisfly) larvae.

Dept. Nat.= Resour. Res. Rept. 67, Madison, Wis. 68 pp.

Ichthyological Associates, Inc. 1973. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1972). Pa. Power and Light Co., Allentown, Pa. 658 pp.

Lewis, P. A. 1974. Taxonomy and ecology of Stenonema mayflies (Heptageniidae: Ephemeroptera). Nat. Environ. Res. Cent.,

PB-241, 235, EPA-670/4-74-'006. U. S. Environ. Prot. Agency, Cincinnati, Ohio. 80 pp.

Mackenthum, K. M. and W. M. Ingram. 1967. Biological associated problems in freshwater environments. U. S. Govt. Printing Office, Washington, D.C. 287 pp.

Paine, G. H. and A. R. Gaufin. 1956. Aquatic diptera as indicators of pollution in a midwestern stream. Ohio J. Sci. 56 (5): 291-304.

Parrish, F. K. (ed;). 1968. Keys to water quality indicative organisms (southeastern United States). F.W.P.C.A., U.S. Dept. Interior.

192 pp.

Pennak, R. W. 1953. Fresh-water invertebrates of the United States.

The Ronald Press Co., New York, N.Y. 769 pp.

Resh, V. H. 1976. The biology and immature stages of the caddisfly genus Ceraclea in eastern North America (Trichoptera: Leptoceridae).

Ann. Entomol. Soc. Am. 69(6): 1039-1061.

Resh, V. H. and J. D. Unzicker. 1975. Water quality monitoring and aquatic organisms: the importance of species identification.

J. Water Pollut. Control Fed. 47(l): 9-19.

84 Ross, H. H. 1944. The caddis flies, or Trichoptera, of Illinois.

Bull. Ill. Nat. Hist. Surv. 23. 326 pp.

Zalutschia, Paratrissocladius, and some related genera (Diptera:

Chironomidae). Fish. Res. Board Can. Bull. 195. 287 pp.

1977a. Taxonomic studies on Chironomidae: Nanocladius, Pseudochironomus, and the Harnischia complex. Fish. Res. Board Can. Bull. 196. 143 pp.

1977b. Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys. Fish. Res. Board Can. Bu13. 197. 209 pp.

Whittaker, R. H. and C. W. Fairbanks. 1958. A study of plankton copepod communities in the Columbia Basin, southeastern Washington.

Ecology 39: 46-65.

Wiggins, G. B. 1977. Larvae of the North American caddisfly genera (Trichoptera). Univ. Toronto Press, Toronto, Ont. 410 pp.

85 Table C-1. Description and location of benthic macroinvertebrate sampling stations on the Susquehanna River, 1977 (see Fig. A-l).

Station Depth Substrate Type b Location (m)

SSES Transect The 0

Transect follows a line E2 S from the west bank, 354 m upriver from the dock at Ichthyological Associates Laboratory.

SSES I 0.6 gravel-pebble Along Transect 32 m from the west bank.

SSES II 1.0 pebble-cobble Along Transect 103 west bank.

m from the Bell Bend I 1.3 gravel-pebble 35 m from the west bank, with boulders 1,467 m downriver from the dock at Ichthyological Associates Laboratory.

a Station depths when River surface elevation is 148.6 m above msl at Ichthyological Associates Laboratory.

b Based on predominant particle size (Cummins 1962).

86 Table C-2. Description and location of benthic macroinvertebrate sampling stations on the Susquehanna River, 1972.

Station Distance (km) Depth b

Substate Type c Distance (m) from from SSESa (m) West Bank East Bank Falls +64 2.3 cobble-boulder 90 Wilkes-Barre (2) 1.0 gravel-cobble 15 Nanticoke +22 1.6 gravel-cobble 110 SSES A 1. 3 gravel-cobble 75 2.2 gravel-cobble 110 1.0 gravel-cobble 15 1.0 mud-sand 1.3 mud Nescopeck -10 0.5 gravel-bedrock 50 a

A plus (+) indicates upriver from SSES; a minus (-) indicates downriver from SSES.

b Station depths when River surface elevation is 148.9 m above msl at Xchthyological Associates Laboratory.

c Based on predominant particle size (Cummins 1962).

87 Table C-3. Number and percent total of benthic macroinvertebrates collected with a dome sampler at SSES I on the. Susquehanna River, 13 April 1977.

REPLICATE 1 2 AREA SANPLED(N2) 0. 163 0.163 NO ~ NO ~ BEAN 8 TOTAL TUBIPICIDAE l. 0 6.1 POTANAHTNU S 1.0 6.1 EPHENERELLA 0. 5 3.0 BEPTAGENIIDAE 0.5 3 '

STENONENA 0. 5, 3.0 STEHOHENA PULCBELLUN 0.5 3' POLYCENTROPUS 0. 5 3 '

CHEUNATOPSYCBE 4.0 24 F 2 HYDROPSYCHE PHALERATA 2 ' 12.1 PSEPHENUS BERRICKI 0~ 5 3.0 STEHELNIS l. 5 9.1 ENPIDIDAE 0. 5 3.0 CBIRONONI DAB (PUPM) 0. 5 3~0 COHCHAPELOPIA GRP 2~0 12. 1 POLYPEDILUN 0.5, 3.0 UNIDENTIFIED TERRESTRIAL 0. 5 3.0 TOTAL ORGAN ISHS 21 12 17 ORGAN ISNS/H2 129 74 101 Table C-4.' Number and percent total of benthic macroinvertebrates collected with a dome sampler at SSES I on the Susquehanna River, 6 June 1977.

RE Pl I CATE 0. 163 1

0. 163 2

AREA SANPLED(N2)

TAXA NO ~ NEAR 8 TOTAL PROSTONA RUBRUN 0 6 3.0 0~2 NENATODA 10 6 8 ' 0.6 N AIDIDAE 446 345 395 ' 29 '

TUBIFICIDM 3 6- 4.5 0.3 TAEH IOPTERYX 0 1 0. 5 0.0 HEOPERLA 7 3 5. 0 0.4

,EPHORON 7 10 8 ' 0.6 POTANANTBUS 12 2 7 ' 0.5 CAENIS 86 37 61. 5 4 '

EPBENERELLA 17 1 9.0 0.7 EPBENERELLA DEPICIENS 9 6 7~ 5 0.6 BAETIS 3 0 1. 5 0.1 PSEUDOCIOEON 1 2~5 0 '

ISOHYCHIA 180 35 107. 5 8~1 HEPTAGEN'I IDM 0 128 64. 0 4 '

HEPTAGEHIA 0 24 12. 0 0.9 STEHONEHA 185 3 94 ~ 0 7.1 STENONENA NEPOTELLUN 2 1 l. 5 0.1 STENONENA PULCBELLUN 3 1 2.0 0~ 2 TRICHOPTERA (PUPAE) 0 3 1. 5 0.1 HYDROPSYCHIDAE (PUPAE) 3 0 l. 5 0.1 CHEUNATOPSYCHE 241 281 261. 0 19 ~ 7 HYDROPSYCHE BIPIDA GRP 6 0 3~ 0 0.2 HYDROPSYCBE PHALERATA 22 1 11. 5 0~9 HYDROPTILIDM 12 12 12+ 0 0~ 9 CERACLEA 1 0 0.5 0.0 CERACLEA HEPHA 0 7 3~ 5 0.3 CERACLEA TARS IPUHCTATA 0 1 0.5 0.0 OECETIS 1 5 3.0 0.2 OECETIS CINERACEHS 4 4 4.0 0.3 DUBI RAPE IA 0 1 0. 5 0.0 STPNELNIS 26 29 27.5 2. 1 STEHELNIS (ADULTS) 5 0 2 ' 0~ 2 SINULIIDAE 14 1 7.5 0.6 ENPID IDAE 1 1 1. 0 0.1 ENPID IDAE (PUPAE) 1 0 0. 5 0.0 CBIRONONIDAE (PUPAE) 2 8 5.0 0.4 ABLABESNYIA NALLOCHI 0 2 1. 0 0.1 CONCHAPELOPIA GRP 4 12 8 ' 0.6 CRYPTOCHIROHONUS PUIVUS 0 1 0. 5 0~0 GLYPTOTENDIPES 0 1 0.5 0.0 PARACHIRONONUS PECTINATELLAE 17 57 37 ~ 0 2.8 POLYPEDILUN 1 16 8.5 0.6 RHEOTANYTARSUS 96 45 70. 5 5.3 TANYTARSUS 0 3 1. 5 0.1 ZAVRELIA 0 2 l. 0 0.1 CRICOTOPUS 5 6 5. 5 0 4 CRICOTOPUS BICINCTUS 1 0 0. 5 0.0 EUKIEFPERIELLA SP(l 4 0 2.0 0.2 I

NAN0CL AD 0 S 70 28 49. 0 3.7 TOTAL ORGAN ISNS 1508 114 6 1327 ORGAN ISNS/N2 9252 7031 8141

88 Table C-5. Number and percent total of benthic macroinvertebrates collected with a dome sampler at SSES I on the Susquehanna River, 26 October 1977.

RE PLICATE 1 2 AREA SAHPLED(H2) 0. 163 0. 163 NO. BEAN 4 TOTAL TURBCLLARIA 5 2 3. 5 2~ 5 k'ROSTOHA RUBRUH 9 1 5.0 3.5 HCHA1QDA 5 1 3.0 2.1 NAIDIDAE 8 2 5.0 3~ 5 TUBIFICIDAE 19 14 16. 5 11. 6 POTAklANTBUS 6 4 5.0 3~ 5 ISONYCBIA 0 1 0.5 0 4 HCPTAGENIIDAE 4 2 3.0 2.1 RBITBROGENA 4 0 2. 0 1~4 STCNONEHA 3 0 l. 5 l. 1 STEi%0NEHA FUSCUkl 1 0 0.5 0.4 STENONEHA ITHACA 1 0 0.5 0~ 4 CBEU(4ATOPSYCBE 24 20 22 ~ 0 15 ~ 4 BYDROPSYCBE BIFIDA GRP 1 1 1. 0 0~7 BYDROPSYCBE PHALERATA 3 5 4.0 2.8 STEHELkkIS 10 1 5. 5 3.9 EHP ID I DAB 9 10 9.5 6 '

CHIRGNOf(IDAC (PUPAE) 1 0 0. 5 0~ 4 CONC ilAPE LOP IA 25 8 16.5 11.6 GRI'RYPTOCBIRONOfiUS PULVUS 5 7 6.0 4e2 DICROTE!iDIPCS 4 0 2 ' 1.4 Gl YPTO'IENVII'k'S 2 2 2.0 1.4 flICRO'I'ENUIPCS 0 1 0.5 0 4 POLYPEDILUH 36 10 23. 0 16 ~ 1 RBEOTANYTARSUS 1 6 3. 5 2.5 CUKIEPPERIBLLA COERULBSCENS GRP SPII 0.5 0.4 T(MAL ORGAN I SfkS 186 99 143 ORGAN IS HS/H2 114 1 607 874 Number and percent total Table C-6.

a dome sampler at SSES ilofon benthic macroinvertebrates the Susquehanna River, 13 collected with April 1977.

RC PLICATE 1 2 AREA SAfiPLED(H2) 0. 163 0. 163

'I'AXA hO ~ BEAN 4 TOTAL TVRBBLLARIA 1 1 l. 0 0.5 H EHA'IO0A 10 6 8.0 4.0 NAIDIDAk 4 4~0 2.0

'I'VBkk'ICIDAC 20 7 13. 5 6.8 POTAfkANTkiUS 4 4 4.0 2.0 EPBEYiERCLLA 0 4 2~ 0 1~0 EPBEHERCLLA 8 ICOLOR 1 0 0.5 0.3 ISONYCB IA 1 0 0. 5 0~ 3 BEPTAGEN I IDAf: 0 5 2~ 5 1.3 S'I'EhONEHA PULCBELIVH 0 4 2+0 1.0 CBCUHATUPSYCBE 63 140 101. 5 51. 3 BYDRUPSYCBE BIPIDA GRP 1 3 2.0 1.0 BYDROPSYCBC PBALERATA 6 17 11 ~ 5 5.8 OECBTIS CINBRACENS 3 12 7.5 3.8 BEROSUS 1 0 0.5 0.3 FLHIDAB (ADVL'rS) 8 r ENCLH IS 2 1 l. 5 0.8 2 6 4~0 2.0 I

EHP ID DAE 24 10 17 ' 8.6 CB IRONONIDAE (PUPAE) 1 0 0. 5 0.3 CONCBAPCLOPIA GRP 8 2 5.0 2 5 DICROTENDIPES 1 0 0.5 0.3 RBEOTANYTARSUS 2 0 l. 0 0.5 BRILLIA 0 1 0~ 5 0.3 CRICOTUPUS 2 0 l. 0 0.5 EUKIEPPERIEI LA SPf1 1 0 0. 5 0.3 HANOCI AD VSI 4 1 2. 5 l. 3 UNIDENTIPIED TERRESTRIAL 0 1 0.5 0 3 PISIDIUH 2 0 1.0 0.5 SPBAERIUH 3 0 1.5 0.8 TOTAL ORGANI SHE 167 229 198 ORGAN ISYS/H2 1025 1405 1215

89 Table C-7. Number and percent total of benthic macroinvertebrates collected with a dome sampler at SSES ZI on the Susquehanna River, 7 June 1977.

REPLICATE 1 2 AREA'AMPLED(M2) 0. 163 0. 163 TAXA HO NO ~ MEAN  % TOTAL TURBELLARIA 1 0 0.5 0.1 PROSTOMA RUBRUl4 0 8 4.0 0.6 HEMMODA 5 10 7.5 1~ 2 HAIDIDAE 106 152 129. 0 20 ~ 5 TUBIPICIDAE 8 25 16.5 2.6 TAEHIOPTBRYX 0 1 0.5 0.1 EPHOROH 1 9 5.0 0.8 POTAMAHTHUS 2 7 4~ 5 0.7 CAEH IS 0 27 13. 5 2.1 BPHEMERBLLA DBPICIENS 0 1 0.5 0.1 BAETIS 1 0 0.5 0.1 I SOH YCH IA 4 5 4 5 0.7 HBPTAGEN IIDAE 0 26 13. 0 2.1 ST EHO N EMA 3 0 1.5 0.2 STBHOHEMA NEPOTELLUM 0 1 0.5 0.1 SJALIS 0 17 8.5 1.3 TRICHOPTERA (PUPAE) 4 5 4.5 0.7 PROTOPTILA 0 1 0.5 0.1 CHEUMATOPSYCHE 9 169 89.0 14. 1 HYDROPSYCHE PHALERATA 1 0 0.5 0.1 HYDROPTILIDAE 0 8 4.0 0 6 CBRACLEA 3 0 1.5 9.2 CBRACLEA AHCYLUS 2 0 1.0 0.2 CBRACLBA MACULATA 16 1 8.5 1.3 CERACLEA HEPHA 14 5 9~ 5 1.5 OECETIS OECETIS CIHERACEHS 0 5 2.5 0 '

1 1 1.0 0~ 2 OECETIS INCOHSPICUA 3 1 2.0 0~ 3 OPTIOSERVUS 0 1 0 5 O. 1 STENELMIS 1 10 5 5 0.9 ST EH BLMIS (ADULTS) 1 '0 0.5 0.1 S JMU LI I DAB 1 1 1.0 0.2 BMPIDIDAE 3 13 8.0 1.3 CHIROHOMIDAE (PUPAE) 33 7 20.0 3~2 CONCHAPELOPIA GRP 2 3.0 0.5 TAHYPODIHAE SPf 1 0 9 4.5 0~ 7 CHIROHOMUS 1 0 0.5 0.1 CRYPTOCHIROHOMUS PULVUS 0 1 0~5 0.1 DICROTEHDIPBS MODESTUS 0 1 0.5 0.1 GLYPTOTEHDIPES 35 8 21. 5 3.4 PARACHIROHOMUS MONOCHROMUS 0 1 0.5 0 1 PARACHIROHOMUS PECTINATELLAB 13 13 13. 2.1 POLYPEDILUM RHEOI'AHYTARSUS ll 35 18 39 14 0

5 37 ~ 0 2.3 5.9 TAHYTARSUS 0 1 0.5 0.1 DIAMESA SP4 4 0 1 0.5 0.1 CRICOTOPUS CRICOI'OPUS BICIHCTUS 14 21 17. 5 2 '

0 2 1.0 0~2 EUKIBPPBRIELLA SPI1 1 1 1.0 0 2 HAHOCLADIUS 124 162 143 0 22 7 SPHAERI Ul'1 1 2 1.5 0.2 TOTAL ORGAHI SMS 460 801 631 ORGAN ISllS/M2 2822 4914 3868

90 Table C-8. Number and percent total of benthic macroinvertebrates collected with a dome sampler at SSES IZ on the Susquehanna River, 26 October 1977.

REPLICATE 1 2 ARE A SAI!PLED (H2) 0. 163 0. 163

'I'h XA HO. NO. HEAR 0 TOTAL TUBING 12. 1.3 TURBEI LARIA 11 14 5 PRGSTOHA RUBRUH 9 18 13. 5 1.4 iiEl.lATODA 11 36 23. 5 2.4 RAID IDAE 24 16 20. 0 .2. 1 ICIDAE 15 23 19 ~ 0 2. 0

'I'At'N I OP '1'E IiYX 0 5 2~ 5 0.3 PUTAHANThUS 14 12 13. 0 l. 4 EPHEiiERELIA 1 1 1.0 0.1 ISONYCHIA 2 3 2.5 0 ~ 3 HEP'I'AGEHI IDAE 22 4 13. 0 1.4 S'I'EHONEi!h 13 16 14 ~ 5 1.5 STEilONEhh POSCUI4 0 1 0. 5 0.1 3.0 S'I'EHONEHA ITlihCA BTENONENA PULCHELIUll SIALIS ll4 1

2 8

0 9.5

0. 5 0~ 3 1~ 0 0.1 PGLYCENTRO&VS 0 1 0.5 0.1 CHEUilhTOPSYChE 326 421 373. 5 38. 8 HYDROPSYCHE UIPIUA GRP 9 21 15. 0 1.6 HYDROPSYCHE &HALERATA 76 76 76.0 7.9 NACROHEHA CAROLIHA 1 0 0.5 0.1 HYDROPTILIDAE 0 4 2.0 0.2 OECETI S 4 36 20 ~ 0 2. 1 DEC ET I S GIN ERACEii 8 0 8 4.0 0 EI NIDAE, (ADVLTS) 0 2 l. 0 0.1 LUolRAPHIA 0 1 0~ 5 0.1 OI. TIOSERVUS 0 1 0.5 0.1 ST EH ELi 1 I S 7 6 6.5 0.7 S II4ULIIDAE 1 0 0.5 0.1 EHPIDIUAE 39 47 43. 0 4' CliIROHOHIDAE (k'UPAE) 0 2 1.0 0.1 COiiCHAPEI OPIA GRP 70 90 ~ 5 9 '

CRYPTOCliIRONGHOS ULARIHA 4 1 2~ 5 0.3 CRYPTOCHIROHGKUS FULVUS 0 1 0.5 0.1 DICROTEHDIPLS HODESTUS ' 5 3 0 0.3 GLYP'I'GTEHDIPES 3 4 3.5 0 '

i'1ICROTENDIPES 2 0 1.0 0. 1

&ARACHIROHOhUS CARIHATOS 0 2.0 0 2 POLYPEDILUil 58 29 43. 5 4 '

RHEOTAHYTARSOS 59 141 100. 0 10.4 TANYTARSU S 0= 4 2.0 0~ 2 CRICOTGPUS 0 1 0. 5 0~ 1 EUKIEI'YERIELIA SPI1 6 ~ 2 4.0 0.4 SPHAERI UM 30 1 15. 5 1.6 TOTAL ORGAH ISNS 834 1089 962 GRGAH I SHS/N2 5117 6681 5899

91 Table C-9. Number and percent total of benthic macroinvertebrates collected with a dome sampler at Bell Bend I on the Susquehanna River, 12 April 1977.

RB PLICATE 1 2 AREA SAMP LED (M2) 0. 163 0 ~ 163 TAXA NO NO ~ MEAN  % TOTAL N EHATODA 43 23. 5 13.6 NAIDIDAE 21 0 10. 5 6 '

TUBIFICIDAE 40 1 20. 5 11. 8 E PHE11B RA 1 0 0.5 0~3 POTAHANTHUS 7 0 3.5 2.0 EPHEHERBLLA 5 2 3.5 2~ 0 I SON YCH I A 2 4 3.0 1.7 HEPTAGENIIDAE 8 1 4 5 2.6 STENONEHA 1 2 1.5 0.9 STENONBHA INTERPUNCTATUH 0 2 1.0 0.6 CHEUHATOPSYCHB 109 8 58. 5 33.8 HYDROPSYCHB BIPIDA GRP 3 0 l. 5 0.9 HYDROPSYCHE PHALERATA 13 1 7.0 4.0 OECETIS 0 1 0.5, 0.3 OECETIS CINERACENS 9 3 6.0 3~ 5 STENELHIS 5 0 2.5 1~4 S IHULIIDAE 1 0 0.5 0.3 EHPIDIDAE 9 3 6.0 3.5 CERATOPOGONIDAB 1 0 0.5 0.3 CONCHAPELOPIA GRP 8 0 4 ~ 0 2.3 HIC RO P SECT RA 1 0 0.5 0.3 RHEOTAN YTARSU S 8 1 4.5 2.6 CRICOTOPUS 2 1 1.5 0.9 BUKIEFPERIBLLA COERVLESCENS GRP SP51 l. 5 0.9 EUKIEFFBRIELLA SPf1 1.0 0.6 NANOCLADIUS 2.5 1.4 SPHAERIUM 2 ' 1 4 TOTAL ORGANISHS 307 39 173 ORGAN ISMS/H2 1883 239 1061

92 Table C-10. Number and percent total of benthic macroinvertebrates collected with a dome sampler at Bell Bend I on the Susquehanna River, 8 Juno 1977.

RE PLICATE 1 2 AREA SAMPLED(M2) 0. 163 0. 163 TAXA NO ~ NO ~ MEAN (I TOTAL PROSTOllA RUB RUM 8 26 17. 0 1.1 N EMATODA 1 8 4.5 0.3 NAIDIDM 556 578 567. 0 36.5 TOBIFICIDM 58 54 56.0 3o6 NEOPERLA 2 2 2.0 0~ 1 3.0 EPHORON POTAllANTHUS CAENIS ll 110 59 2

5 8.0

84. 5 0~ 2 0.5 5~4 EPHEMERELLA 1 0 0. 5 0~0 PSEUDOCLOEON 1 0 0 ' 0.0 I SON YCH IA 81 8 44.5 2.9 HEPTAGENIIDAE 124 112 118. 0 7.6 HEPTAGENIA 5 15 10. 0 0~ 6 STENONEMA 1 0 0.5 0~0 STENONEMA INTERPONCTATOM 1 0 0.5 0.0 STENONEMA NEPOTELLUM 0 1 0. 5 0.0 SIALIS 2 33 17. 5 1~ 1 TRICHOPTERA (PUPAE) 2 0 1.0 0.1 7.0 CHEUMATOPSYCHE HYDROPSYCHE BIFIDA GRP 137 1

1 79 0

0

'.5 108.0 0.5 0.0 0~0 HYDROPSYCHE PHALERATA CERACfEA NEPHA 1 1 l. 0 0.1 OECETIS 2 0 1.0 0.1 OECETIS CINERACENS 1 6 3.5 0.2 DUBIRAPHIA 0 1 0.5 0.0 OPTIOSERVUS 0 1 0.5 0.0 STENELMIS 6 8 7.0 0.5 S IMOLIIDAE 1 2.5 0.2 EMPIDIDAE 2 3 2.5 0~2 EMPIDIDM (PUPAE) 3 0 l. 5 0.1 CERATOPOGONIDAE 0 2.0 0.1 CHIRONOMIDAE (PUPAE) 30 26 28 ~ 0 1.8 ABLABESMYIA MALLOCHI 13 21 10 9 ll.

15.

0 5

0.7 1~ 0 CONCHAPELOPIA GRP ,

TANYPODINAE SPfl 13 13 13. 0 0.8 CRYPTOCHIRONOMUS FOLVUS 10 1 5.5 0.4 DEMICRYPTOCHIRONOMUS 0 1 0. 5 0.0 GLYPTOTENDIPES 0 5 2.5 0.2 MICROTENDIPES 2 6 4~0 0.3 PARACHIRONOMUS MONOCHROMUS = 4 0 2~ 0 0.1 PARACHIRONOMOS PECTINATELLM 3 0 1.5 0.1 POLYPEDILUM 24 23 23. 5 1.5 RllEOTANYTARSUS 41 22 31. 5 2.0

'AN YPA RSU S 5 2 3.5 0.2 ZAVRELIA 3 11 7.0 0.5 DIAMESA SP44 2 0 1.0 0.1 CRICOTOPOS 40 41 40. 5 2.6 CRICOTOPUS BICINCTOS 0 2. 0 0.1 EOKIEFFERIELLA SP41 1 0 0.5 0.0 NANOCLADIUS 305 272 288 ~ 5 18.6 S PHAERI OM 2 5 3.5 0.2 TOTAL ORGANISMS 1642 1461 1552 ORGAN IS YS/M2 10074 8963 9518

93 Table C-ll. Number and percent total of benthic macroinvertebrates collected with a dome sampler at Bell Bend I on the Susquehanna River, 26 October 1977.

RE PLICATE 1 2 AREA SAHPLED(H2) 0. 163 0. 163 TAXA NO. ho. Hf Ah  % TOTAL

'I'ORB EL( ARI A 9 35 22.0 2.8 P RO STD HA RUB RO H 1 30 15. 5 2.0 N Ei4MGDA 4 20 12. 0 1.6 ORNATELLA GRACILIS 1 1 1.0 0.1 NAIDIDAE 3 21 12 ~ 0 1.6 TOBI1"ICIDAE 63 174 118. 5 15.3 hEOPHASGANOPHORA 0 0.5 0.1 POTAHANTHUS 23 15. 5 2.0 CAEN IS 4 2.0 0 ~ 3 ISGN YCH IA HEP'I'AGEN I IDAE 10 6.0 0 '

50 27.0 3.5 ST ENON 811A S'I'ENGNEi"A PUSCOH 20 13. 0 l. 7 1 0~ 5 0.1 S'I'ENOhEHA Ii4TERPUKCTATUH 2 1.0 0.1 STENONEHA ITHACA 5 3.5 0.5 STENONEHA PVLCHEI LUH 18 28 23. 0 3.0 COENAGRI Oh IUAE 0 1 0.5 0.1 SIALIS 1 8 4.5 0 '

NEURECI IPSIS 0 2 1.0 O. 1 CH EOHATO PSYCH E 97 377 237 ~ 0 30. 6 HYDROPSYCHE BIPIDA GRP 1 3 2.0 0.3 HYDROPSYCHE PHALERATA 2 23 12. 5 1~ 6 hECTOPSYCHE 0 2.0 0.3 OECETIS 0 19 9.5 1.2 OECETIS CINERACENS 0 6 3.0 0 '

ELHIDAE (ADULTS) 0 4 2.0 0 '

DOBIRAPHIA 1 1 1.0 0.1 STENELHIS 0 6 3~ 0 0.4 EHiPIDIDAE 17 59 38.0 4.9 CH IROiQOHIDAE (PUPAE) 0 1 0.5 0.1 CONCHAPELOPIA GRP 17 96 56. 5 7.3 CHIRONOHUS DECORUS 0 1' 0.5 0.1 CRYPTGCH IROhOHOS BLARINA 0 0.5 0.1 DICROTENDIPES HODESTOS 1 8 4~ 5 0.6 GLYPTGTENLIPES 3 72 37. 5 4.8 POLYPEDILVH 22 20 21. 0 2.7 RH EOTAN Y TARS U S 6 90 48.0 6.2 CRICGTOPUS 1 1 1~ 0 O. 1 EUKI Et" PERI ELLA SP5 1 0 1 0.5 0.1 NANGCI ADI OS 0 4 2.0 0 '

ONIDENTIPIED TERRESTRIAL(ADULTS) 1 0.5 0.1 PISIDIOH 2 1. 5 0.2 SPHAERI U.'1 14 10 ~ 0 1.3 TGTAI ORGAhISHS 298 1249 774 ORGAN ISHS/H2 1828 7663 4745

94 Tablo C-12. Mean density and percent total of ma5or macroinvertebrate groups collected at SSES I, SSBS II, and Boll Bend I on the Susquehanna River, 1977.

APRIL JUNE OCTOBER SITE TAXA NO /H2 0, TOT NO /H2 t TOTe, NOt/H2 0 TOT TOTAL/YEAR SEES I OLIGOCHABTA 6 6 1 2454 30 ~ 1 132 15. 1 28.4 EPHEMEROPTERA 18 18 2 2322 28 5 80 9 1 26 ~ 6 TRICHOPTERA 40 , 39 4 1853 22.8 166 18.9 22 ~ 6 COLEOPTERA 12 12 1 187 2.3 34 39 2~6 DIPTERA 21 21. 2 1224 15. 0 393 44 9 18 0 MISCELLANEOUS 3 3 ' 101 1. 2 71 8 1 1 9 SEES II OLIGOCHAETA 107 8 8 893 23 1 239 4 1 11. 3 EPHENEROPTERA 71 5.8 267 6.9 350 5. 9 6.3 TRICHOPTERA 752 61 9 764 19 7 3015 51. 1 41 3 COLEOPI'ERA 37 3 ' 40 1 0 52 F 9 1 2 DI PTERA 175 14 4 1767 45.7 1825 30 ' 34 3 MISCELLANEOUS 74 61 138 3 6 417 7. 1 5 7 BELL SEND I OLIGOCHAETA 190 17 ~ 9 3822 40.2 801 16.9 31.4 EPHEHEROPTERA 107 10. 1 1659 17 4 561 11. 8 15. 2 TRICHOPTERA 451 42 5 709 7 4 1638 34 5 18 3 COIEOPTERA 15 14 49 0~5 37 0 ' 0 7 DIPIBRA 138 13 ~ 0 3006 31. 6 1291 27. 2 28 9 MI SCELLANEOUS 160 15 0 273 2 9 417 8.8 5.5 Table C-13. Mean density (No. org/m 2 ) of naidid worms and three chironomids at SSES I, SSES II, and Boll Bond I on tho Susquehanna River, 1975-77.

Year 1975 1976 1977 Taxa Month ar un pr un t Apr Jun Oct Naididae b 4473 1436 2742 30 2232 76 Rheotan tarsus 646 716 29 369 1140 3431 11 284 309 C~tt 121 32 1317 0 224 5 137 1011 10 982 3'anocladius 22 41 17 164 16 4 October 1975 samples were collected about 24 weeks after Hurricane Eloise.

Oligochaotes were not identified to family in 1975.

95 Table C-14. Macroinvertebrates collected in the study area of the Susquehanna River, 1971-77 (an asterisk denotes 1977 additions) .

Porifera Arthropoda (cont.)

Spongillidae Decapoda

~Son illa lacustris Cambarus bartoni Coelenterata Orconectes limosus Hydroida 0. ~ro in uus

~Hdra sp. Arachnoidea Trachylina Hydracarina Insecta Platyhelminthes Collembola Turbellaria Sminthuridae

~Du asia ~tf rfna Sminthurides ~a uaticus Nemertea Isotomidae Tetrastemmatidae lsotomurus palustrfs Prostoma rubrum* Plecoptera Nematoda Pteronarcidae Bryozoa ~Allonare s biloba Lophopodidae ~pteronarc s sp.

Nemouridae Pectfnatella ~zm nf.flea ~dm hinemura delosa Plumatellidae Nemoura sp.

~Halfnella punctate* Taeniopterygidae Plumatella ~te ens Endoprocta Capniidae Urnatelle Hracflfs ~Alfoca nfa sp.

Annelida Perlidae Oligochaeta Acroneuria abnormis Lumbricidae A. arida Aeolosomatidae A. ~lcorias Aeolosoma sp. A. ruralis Naididae ~Neo eris ~cl mene Neo hes ano bore ~ca itata Naia ~behnfn 1 ~pars netina media N. ~effn ufs Perlesta sp.

N. pardalis Perlodidae Pristina schmiederi ~fso erie richardsoni P. sima Ephemeroptera Ephemeridae Tubificidae ~E hemera Euttulata Branchiura ~sowerb 1 ~Hexa enia limbata Limnodrilus hoffmeisteri Potamanthidae Peloscolex multisetosus Potamanthus verticus Lumbriculidae Polymitarcidae Lumbriculus ~saris atua ~Shoran leukon Hirudinea Caenidae Rhynchobdellida Caenis sp.

Glossiphoniidae Tricorythidae Actinobdella ine uiannulata Helobdella ~sta nolle Ephemerellidae Placobdella ornata ~Ehemere11a bicolor P. Harasf tfcn E. coxalis Piscicolidae E. deficiens,

~Mzobde11a ~lu ubrfs E. dorothea Pharyngobdellida E. invaria Erpobdellidae E. needhami

~Er obdella punctate E. se tentrionalis Arthropoda E. verisimilis Crustacea E. walkeri Branchiura Leptophlebiidae

~Ar ulus sp. ~thoroter es sp.

Isopoda Asellus communis Parale to hlebia sp.

Amphipoda Baetidae Gammarus sp. Baetis sp.

~Befalls azteca Callibaetis sp.

96 Table C-14 (cont.)

Insecta (cont.) Hydropsychidae (cont.)

Siphlonuridae Macronema carolina

~leon chin bicolor* M. zabrata

'Sf hlonurus Huebecensfs ~Fotam ia sp.

Hep tageniidae Hydroptilidae

~Scorns sp. ~Ara lea sp.

Limnephilidae

~khithro ena sp. ~Lfmne hilus sp.

Stenonema carolina ~pano s che Huttfifearr S. fuscum Leptoceridae S. inter unctatum Ceraclea ~anc lus*

S. ithaca C. maculata S. ~ne otellum* C. ~ne ha*

S. Hulcheflume

.S. rubrum* Msecto e che sp S. terminatum* Oecetis cineracens Odonata 0. ~1ncons fcua*

Gomphidae Triaeno1des ~fn usta Lepidostomatidae Aeschnidae ~Le idostoma sp.

~Bo eris vfnosa Lepidoptera Libellulidae Pyralidae

~Did m~o s transversa ~Nm hula sp.

Macromia illinoiensis Somatochlora sp. Coleoptera Agrionidae Haliplidae

~drfon sp. ~Pelcod tes sp.

Coenagrionidae Dytiscidae

~Ar ia sp. Gyrinidae Hemiptera Dineutus sp.

Gerridae Hydrophilidae Gerris sp. Berosus ~ere rinus Metrobates sp. ~Halo horus sp.

~Tre obates sp. ~Hdrobfus sp.

Notonectidae Notonecta sp. Psephenidae Nepidae ~pse henus herr 1ckf.

Ranatra sp. Dryopidae Belostomatidae Helichus sp.

Belostoma sp. Elmidae Megaloptera ~Dubfra h1a vfttata Sialidae ~Macron chus Hlabratus S1a11s ~vh ans ~stfoservus sp.

Corydalidae Promoresia tardella Chauliodes sp. Stenelmis bicarinata Corodalus cornutus Diptera Trichoptera Tipulidae Glossosomatidae Antocha saxicola

~Aa etus sp. ~Tf ula spp.

Glossosoma ~nf rior Psychodidae

~proto tfla sp. Chaoboridae Philopotamidae Chaoborus sp.

Chimarra obscura Simuliidae Psychomyiidae Simulium vittatum Stratiomyiidae Rhagionidae

~ps cham fa flavfda Atherfx ~varfe ata Hydropsychidae Tabanidae Cheumato s che ~cam la Empididae C. ~secfosa Hemerodromia sp.

~sdro s che bettenf Roederiodes sp.

H. bifida grp. Chironomidae H. cheilonis Tanypodinae H. morose Ablabesmvia aur(L'usia H. ~halerata A. mallochi

97 Table C-14 (cont.)

Ta nypodinae (cont.) Mollusca

~Ablabesm la Eeleensis Gastropoda, Physidae

~rha he

~ph sa ~rina

~llacro elo la sp.e Lymnaeidae Procladius sp. ~Lusus hmailis Ch ironominae Planorbidae Chironomus decorus ~crau)us parvus C. ~sti meterus Helisoma trivolvis Cladotan tarsus sp., Ancylidae Cr tochironomus 'blarina* Ferrissia sp.

C. fulvus Pelecypoda Sphaeriidae Demicr tochironomus sp.* Pisidium sp.

~Shaeei t striatinu Endochironomus grp. S. transversum Vnionidae

~Mtcto starts sp. Alasmidonta undulata A. varicose Parachironomus carinatus Anodonta cataracts P. monochromus ~Elli tio ~co lanatus

~La ellis cerioaa Pedionomus beckae* ~Lasmt onia s bviridls

~Pol edilu convictum P. fallax*

P. halterale P. illinoense*

Stenochironomus sp.

~Tan tarsus sp.

Tribelos fusicornis T. ~ueunduse Zavrelia sp.

Diamesinae Diamesa sp. 81 Diamesa sp. 82*

Diamesa sp. //3+

Diamesa sp:. 84*

Pseudodiamesa sp.

Or thocladiinae Bri11ia sp.*

Cardiocladius obscurus

~Cor none ra teria

~Clicoto us bici atua

~Cricoto us spp.

~DA locladius sp Eukiefferiella coerulescens grp. sp. 81

.E. coerulescens grp. sp. 82 Eukiefferiella sp.

Eetarotrissocladius (nr. mercid s)

Na ocladius (nr. racei ervis)e Orthocladius sp.

Parametriocnemus sp.

  • Smittia grp.*

S northocladius sp.

Thienemanniella sp.

Cerat opogonidae Bezzia sp.

98 Table C-15. Percent similarity among macroinvertebrate populations collected at SSES I, SSES XI, and Bell Bend 1 in April, June, and October on the Susquehanna River, 1977.

APRIL JUNE OCTOBER SSES I VS. SSES II 49.5 58,4 54. 4 SSES I VS. 'ELL BEND I 48.7 61. 1 61.6 SSES II VS. BELL BEND I 70. 1 67.8 71. 2 Table C-16. Coefficient of community among macroinvertebrate populations collected at SSES I, Susquehanna SSES II, and Bell River, 1977.

Bend I in April, June, and October on the APRIL JUNE OCTOBER SSES I VS. SSES II 32 ~ 3 60. 3 48.9 SSES I VS. BELL BEND I 32 ~ 3 69. 1 43.5 SSES II VS'ELL BEND I 54.3 60. 0 59. 6

99 Table C-17. Biomass of macroinvertebrates (damp and dry weights and percent total) collected with a dome sampler at SSES I on the Susouehanna River, 13 April 1977.

HUHBER OP ORGAN I SNS l TOTAL (hUNBERS)

DAMP MI'NG) 4 TOTAL (DAMP WT)

DRY WT (NG)

\ TOTAL (DRY WT)

TAXA H EHATODA 1 5.3 <0. 1 <0.1 OLIGOCHAETA 4 '1.1 <0 ~ 1 <0.1 EPHEMEREI IIOAE 1 5. 3 <0 ~ 1 <0. 1 SIPHLOHURIOAE 2 10. 5 5.9 37. 6 1.2 27. 9 HYOROPSYCBIDAE 4 21.1 7~ 2 45m 9 2~0 46.5 EHPIO IDAE 3 15.8 1.7 10 ~ 8 0.6 14. 0

<<8 I RO>ONI DAE 4 21.1 0. 9 5+7 0.5 11. 6 rOTAL 19 15. 7 4+3 TOI'AL/N2 117 96.3 26. 4 BI(14ASS (KQ/HA) 1. 0 0~ 3 Table C-18. Biomass of macroinvertebrates (damp and dry weights and percent total) collected with a dome sampler at SSES I on the Susquehanna River, 6 June 1977.

NUMBER OP t TOTAL DAMP Mr 'L TOTAL DRY WT \ TOTAL ORGANISMS (NUMBERS) (MG) (DAMP MT) (NG) (DRY WT)

TURBELLARIA 1 0.1 <0. 1 <Oe 1 HEHATOOA 3 0~ 3 <0 ~ 1 <Oe 1 OLIGOCHAETA 530 46.1 29+ 6 9 ~6 6 ' 10. 4 PERI IOAE 8 0~7 2 ' 0.8 0 ' 0.9 POLYMITARCIDAE 6 Oo5 2e9 0.9 l. 3 2.0 poT)u( ~THIDAE 3 0~ 3 41+ 4 13.4 12 ~ 0 18.4 EPHENERELLIDAE 17 1.5 9. 5 3.1 2~4 3.7 BAETIDAE 3 0.3 2~0 0.6 0.4 0.6 SIPHLOHURIDAE 125 10+ 9 56e5 18.3 9~0 13. 8 HEPTAGEHIIOAE 201 17. 5 78 ' 25. 5 12. 6 19. 4 8 IALIOAE 2 0~2 <0 ~ 1 <0. 1 HYOROPSYCHIOAE 88 7 ~7 26 ' 8.6 4 7 70 2 LfPI'OCERI DAB 5 0,4 15m 5 5.0 4.8 7 '

dYOROi Hlf IDAE 5 0.4 <0 1 <0. 1 EL:IIDAB 9 0.8 So 1 1.7 2 4 30 7 ELHIDAE (ADULTS) 2 0.2 3 1 1.0 l. 5 2~ 3 SIHUIIIDAE 8 0.7 9. 1 3.0 1.8 2.8 EMPIDIDAE 1 0.1 <0 ~ 1 <0. 1 ENPIOIDAE (PUPAE) 2 0.2 0.9 0~3 0~ 2 0.3 CHIROHONIOAE 123 10' 22. 5 7~3 4 0 6.1 CHIROHONIDAE (PUPAE) 8 Oo7 2~ 3 0 7 0.6 0. 9 POT AL 1150 308 el 65. 1 TOTAL/H2 7055 1890. 2 399 '

81(X(ASS (KG/HA) 18 ' 4~0 Table C-19. Biomass of macroinvertebrates (damp and dry weights and percent total) collected with a domo sampler at SSES I on thc Susquehanna River, 26 October 1977.

HUMBER OP 4 TOTAL DAMP Mr 1 TOTAL DRY MT 9 TOTAL TAXA. ORGANISMS (NUMBERS) (HG) (DAMP Mr) (NG) (DRY MT)

HEHERPEA 1 0~ 4 <0. 1 <0 ~ 1 HENATODA 1 0~4 <Oo 1 <0. 1 OLIGOCHAETA 163 63. 2 111. 1 58.2 24 ' 59. 7 HYDRACARINA 1 0,4 <0 ~ 1 <0. 1 TASH IOPTERYGI DAB 1 0.4 <0. 1 <0. 1 POTAi(AHTHIDAE 1 0 4 <0 ~ 1 <0 ~ 1 SIPBLOHURIDAE 1 Oo4 <0 ~ 1 <0. 1 HEPPAQEH I IDAE 6 2.3 7. 8 4 1 1.8 4 5 HYDROPSYCBIDAE 39 15.1 57+ 7 30 ' 10. 7 26.6 ELHIDAE 8 3.1 4 ' 2 3 1.9 4 7 ENPIDIDAE 13 5.0 4e7 2.5 0 9 2~2 CH IROHONIDAE 22 8.5 5. 2 2 7 Oe9 2 2 SPHAERI IOAE 1 0.4 <0. 1 <Oe 1'0.

'rorAI 258 190+ 9 2 TOTAL/82 1583 1171 ~ 2 246 '

BIOii(ASS (KG/BA) lie 7 2.5

100 Table C-20. Biomass of macroinvortebrates (damp and dry weights and percent total) collected with a domo sampler at SSES II on the Susquehanna River, 13 April 1977.

NUMBER OP 4 TOTAL DAMP WT 4 TOTAL DRY WT 4 TOTAI TAXA 0 RGAN I SNS (NUMBERS) (MG) (DAMP WT) ( NG) (DRY WT)

HEMATODA 14 4.1 <0. 1 <0 1 OI IGOCHAETA 7 2.1 <0. 1 <0. 1 HYDRACARIHA 5 1~5 <Oo 1 <0. 1 EPBEHERIDAE 1 0~3 <0 1 <0. 1 POTAMANTBIDAE 5 1.5 6.7 Oo9 2 ' 1.3 EPBEMEREI LIDAE 5 1~5 0 ' 0.1 0.4 0.2 SIPHLOHORIDAE 3 0.9 24.6 3 ' 6' 3.6 HEPTAGENIIDAE 7 2.1 10 ~ 7 lo4 2 ' 1.4 HYDROPSYCBIDM 222 65.3 710+ 5 91m 1 157. 2 89. 3 LEPTOCERIDAE 7 2~1 2o9 0.4 0.8 0.5 BLMIDAE 11 3 2 8.1 1.0 3.5 2 '

EI MIDAE (ADULTS) 1 0.3 le 2 0~2 0.6 0.3 EMPIDIDAE 24 7.1 ~9.0 F 2 2.4 1 4 CBIRONONIDAE 23 6+8 So 4 0 7 0.2 0.1 CH IRONOMIDM (PUPM) 3 0 9 <0. I <0 1 SPBAERI IDAE 2 0.6 <OI1 <Oe1 TOP A( 340 780. 0 176.1 TOTAL/H2 2086 4785, 3 1080.4 BIOMASS (KG/BA) 47,9 10. 8 Table C-21. Biomass of macroinvortebratos (damp and dry weights and percent total) collected with a domo sampler at SSES II on tho Susquehanna Rivor, 7 Juno 1977.

BOBBER OF 4 TOTAL DAMP WT 4 TOTAL DRY WT 8 TOTAL TAXA I ORGAN SMS (NO)GERS) (MG) (DAMP WT) (MG) (DRY WT)

HEMATODA 5 0.6 <0 ~ 1 <0 ~ 1 OLIGOCBAETA 333 42.5 85. 8 11. 4 17.4 9.9 PERLIDAE 4 0.5 31. 5 4 ~ 2 So4 3o1 POLYHITARO I DAB 5 0.6 6eS 0~9 1.6 Oo9 POTAMAHTBIDAE 16 2eO 186. 8 24.9 52.9 30. 0 EPBENERELLIDAE 15 1.9 3~0 0 ' 0~3 0.2 BAETIDAE 2 0.3 <0 ~ 1 <0 ~ 1 SIPBLOHURIDAE 24 3.1 20. 2 2 7 2.8 1.6 BEP TAGEHI IDAE 28 3.6 13. 6 1~8 le 8 1.0 COENAGRI OHIDAE 1 0.1 40. 8 5.4 9. 0 5.1 SIALIDAE 5 0.6 <0 ~ 1 <Owl TRICBOPTERA (PUPAE) 15 1.9 84 4 11. 2 14 ~ 9 8 '

HYDROPSYCBIDM 59 7.5 94 ~ 3 12. 6 25 ~ 5 14 ~ 5 LCPI'OCERIDAE 31 4 ' 44 ~ 2 5 ' 8 ' So 1 BYDROPBIIIDAE 3 Ot4 <0 ~ 1 <Oe 1 ELMIDAE 17 2~2 16. 4 2~2 F 2 3eS E( NIDAE (ADULTS) 4 0,5 9.1 i+2 4.9 2.8 EMPIDIDAE 13 1.7 9.2 1.2 2~1 1~2 EMPID IDAE (PUPAE) 2 0~ 3 <0. 1 <0 ~ 1 CHIRONOMIDAE 176 22 ~ 5 41+ 4 Se5 7~2 4.1 CHIROHOMIDAE (PUPAE) 21 2 07 6.7 0.9 0.8 0.5 SPBAERIIDAE 4 Oo5 56e9 7 ' 14 ~ 4 8.2 TOTAL 783 750m 8 176 el TO'1 AL/H2 4804 4606. 1 1080 ~ 4 BIOMASS (KG/BA) 46 ~ I 10a8 Table C-22. Biomass of macroinvertebrates (damp and dry woights and percent total) collected with a domo sampler at SSES II on tho Susquehanna River, 26 October 1977.

NUMBER OF \ TOTAL DAMP WT 4 TOTAL DRY WT 8 TOTAL TAXA ORGANISMS (NUMBERS) (MG) (DAMP WT) (MG) (DRY WT)

NENATODA 8 1.9 <0 ~ 1 <Oo 1 OLIGOCBAETA 19 4 ' <0 ~ 1 <0 ~ 1 PERLIDAE 2 0+5 22 ~ 7 3.5 5. 5 4 '

POTAMAHTBIDAE 6 1.4 8.5 1.3 1.8 1.4 SIPHLOHORIDAE 2 Oe5 7 4 1.1 le 1 Oe9 BEPTAGEHIIDAE 26 6e3 23. 6 3.6 4 ' 3.4 SIALIDAE 1 Oe2 34 ~ 4 5.3 7.5 SI9 BYDROPSYCBIDAE 251 60I6 505. 0 77 ' 93IS 74 ~ 0 LEPTOCERIDAE 9 2 ~2 <0 ~ 1 <0 ~ 1 PSEPHEHIDAE 2 0+5 8 ~ 7 1.3 2e0 1.6 ELMIDAE 5 Ie2 <0 ~ 1 <0 ~ 1 ELMIDAE (ADULTS) 4 i+0 7. 5 1.1 3~8 3.0 BNPIDIDAE 6 1.4 4.9 0.7 1.2 0.9 CBIROHQMIDAE 73 17r6 32.0 4.9 Se7 4~5 TOTAL 414 654. 7 126.7 TOTAL/H2 2540 4016. 6 777 ~ 3 BIOMASS(KG/BA) 40.2 7 '

101 Table C-23. Biomass of macroinvertebrates (damp and dry weights and percent total) collected with a dome sampler at Bell Bend I on the Susquehanna River, 12 April 1977.

TAXA HUMBER OP ORGANISMS 4 TOTAL (NUMBERS)

DAMP WI'MG) 1 TOTAL DRY WT \ TOTAL (DAMP. WT) (MG) (DRY WT)

'I'URBELLARIA 1 0.3 <0. 1 <0. 1 NEMATODA 14 3 ~7 <0. 1 <0. 1 OLIGOCHAETA 21 5.5 1.6 0.2 0.6 0. 4 AMPH IPODA 1 0.3 <0 1 <0. 1 HYDRACARINA 5 l. 3 <0. 1 <0. 1 PERLIOAE 1 0.3 39. 9 5.4 10.7 6 '

POTAHAHTHIDAE 8 2 1 6.7 0.9 1.8 1.1 EPHEMERELLIDAE 5 1.3 0.3 0.0 0 ' 0.2 SIPHLONURIDAE 3 0~8 19. 4 2 ' 4 0 2. 4

  • HEPI'AGEHI IDAE 15 3.9 10. 8 1.5 2 0 1.2 PHI LOPOTAMIDAE 1 0.3 <0 1 <Oo 1 PS YCHOHYI3 DA E 1 0.3 <Oo 1 <0 ~ 1 HYDROPSYCHIDAE 234 61. 1 631. 3 85.7 142, 2 84 ~ 5 LEPTOCERIDAE 9 2~ 3 2.9 0.4 0.7> 0+4 ELHIDAE 2 0.5 <0. 1 <0 ~ 1 ELMIDAE (ADULTS) 1 0.3 l. 6 0.2 0 ' 0~ 4 EMP ID IDA 8 23 6.0 6.3 0.9 1.7 1.0 8 IRONOHIDAE 34 8 9 13. 1 1.8 2~8 1.7 SPHAERI.IDAE 4 1.0 2. 5 0.3 0.8 0. 5 FOTAL 383 736 ~ 4 168. 2 TOTAL/M2 2350 4517 ~ 8 1031.9 BIOMASS(KG/BA) 45. 2 10.3 Table C-24. Biomass of macroinvertebrates (damp and dry weights and porcent total) collected with a dome sampler at Bell Bend I on the Susquehanna River, 8 0une 1977.

NUMBER OP 1 TOTAL DAMP WT 4 TOTAL DRY WT 4 TOTAL TAXA ORGANISMS (NUMBERS) (MG) (DAMP WT) (MG) (DRY WT)

TURBELLARIA 1 0.1 <0. 1 <0 ~ 1 H Ei(ATODA 2 0.2 <Oo 1 <0. 1 OLIGO HAETA 198 22 ' 161. 3 33 ~ 9 32+ 1 30 2 HAIDIDAE 1 0 1 <0. 1 <0. 1 PERI IDAE 1 0.1 0.7 0~1 0.5 0.5 POIYHITARCIDAE 3 0.3 2.6 0.5 1.4 1.3 POFAMAHTHIDAE 8 0~9 34. 7 7 3 10r4 9~8 EPHEHERELLIDAE 15 1.7 4.5 0.9 1.3 1.2 SIPHLONURIDAE 3 0~ 3 l. 5 0.3 0.8 0.8 dEPTAGENIIDAE 57 6.3 67. 9 14 ~ 3 14. 0 13. 2 SIALIDAE 10 1.1 7~ 7 1.6 1.6 l. 5 TRICHOPTERA (PUPAE) 5 0.6 30. 0 6.3 5.8 5.5 HYOROPSYCHIDAE 48 5.3 46. 0 9.7 13. 5 12. 7 LEPPOCERIDAE 10 1.1 13. 4 2.8 3~0 2.8 HYOROPHII IDAE 1 0.1 <0. 1 <0 ~ 1 ELalIOAE 13 1.4 7~ 7 1.6 3.6 3,4 ELMIDAE (ADDITS) 1 0~ 1 1.8 0.4 0~ 9 0.8 EHPID IDAE 1 0.1 <0. 1 <0. 1 CHIRONOHIDAE 454 50. 3 72. 7 15. 3 12e4 11. 7 CBI RONOMIDAE (PUPAE) 67 7~4 11. 8 2.5 1~ 5 1.4 SPHAERIIDAE 3 0.3 ll. 4 2 ' 3~ 4 3~ 2 TOTAL 902 475. 7 106 ~ 2 TOTAL/M2 5534 2918.4 651' BIOMASS(KG/HA) 29. 2 6.5 Table C-25. Biomass of macroinvertebrates (damp and dry weights and percent total) collected with a dome sampler at Bell Bend I on the Susquohanna River, 26 October 1977.

NUMBER OP 4 TOTAL DAMP WT 4 TOTAL DRY WT 4 TOTAL

'I'AXA ORGANISMS (NUYBERS) (MG) (DAMP WT) (MG) (DRY WT)

'I'URSEI,LARIA 5 4+3 <0 ~ 1 ~ <0. 1 NEMERPEA 3 2.6 <0 1 <0."1 HEMATODA 1 0.9 <0. 1 <0. 1 Ol IGOCHAETA 13 11. 3 5. 7 3.0 1.6 3~9 POTAMANTHIDAE 4 3e5 2~2 1.2 0.9 2~ 2 SIPHLONURIDAE 4 3.5 41' 22. 1 8.7 21. 2 HEPFAGENIIDAE 11 9.6 19. 1 10m 2 4.0 9.8 SIALIDAE 1 0.9 20. 8 11. 1 4.8 11. 7 HYDROPS YCH I DAB 42 36. 5 76.9 41.0 14. 6 35 ~ 6 LEPI'OCERIOAE 2 1.7 <0. 1 <0. 1 d YDROPB I LIDA 8 1 Oe9 4 ' 2. 2 1.3 3.2 ELMIDAE 3 2 ' 2~ 9 1.5 1.7 4 1 EMPID IDAE 7 6.1 3~2 1~ 7 1.1 2.7 CHI ROND)lIDAE 13 11. 3 11. 0 5.9 2-3 5.6 CHIRONOMIOAE (PUPAE) 1 0 9 <0. 1 <0.1 SPHAERI IDAE 4 3.5 <0 ~ 1 <0. 1 T0 I'AI 115 187.4 41. 0 TOTAL/i(2 706 1149. 7 251. 5 BIOMASS(KG/HA) ll.5 2 5

102 Table C-26. Number per sample and percent total of chironomids collected in basket samples at SSES-D on the Susquehanna River, 11-12 April 1972.

REPLICATE 1 2 3 GEAR SPHERES SPHERES SPHERES TAXA NO NO. NO. MEAN TOTAL 0,

CH I RONOMIDAE 0 1 3 5 0

l. 3 ABLABESMYIA RHAMPHE CONCHAPELOPIA GRP PROCLADIUS 21 0

6 1

6 1

0,4.0' 0

1 0.3 7

15.

28.

0 8

CHIRONOMOS 0 2 0 0~7 2.5 CHIRONOMOS DECORUS 14 0 0 4.7 17. 5 ENDOCHIRONOMUS GRP 0 0 1.3 5.0 I

POLYP ED LUM 2 0 0 0.7 2.5 RHEOTANYTARSOS 2 0 2 1.3 5.0 ORTHOCLADIINAE 0 0 1 0.3 1:3 CRICOTOPUS 6 1 0 2.3 8.8 EUKIEFPERIELLA SPI1 4 0 0 1.3 5.0 NANOCLADIOS 1 1 0 0.7 2.5 TOTAL ORGANISMS 64 12 4 26 '

ORGANISMS/M2 315 59 20 131.4 TOTAL TAXA 9 6 3 6.0 Table C-27. Number per sample and percent total of chironomids collected in basket samples at SSES-E on the Susquehanna River, 12 April 1972.

REPLICATE 1 2 3 GEAR SPHERES SPHERES SPHERES TAXA NO. NO. NO. MEAN  % TOTAL CONCHAPELOPIA GRP 3 2~ 3 17. 9 PROCLADIUS 1 0.3 2.6 CHIRONOMOS 2 1.7 12 ~ 8 DICROTENDIPES 1ODESTUS 1 0.3 2.6 ENDOCHIRONOMUS GRP 0 0.3 2.6 POLYPEDILUM 0 1.0 7.7 RHEOTAN YTARSUS 0 0.3 2.6 CRICOTOPUS 2 1~ 3 10.3 EUKIEPPERIBLLA SP41 '0 3 ' 23. 1 NANOCLADIOS 2 1.0 7.7 RHEOCRICOTOPUS 0 1.3 10. 3 TOTAL ORGANISMS 21 7 11 13.0 ORGAN ISMS/M2 103 34 54 64.0 TOTAL TAXA 7 4 6 5.7

103 Table C-28. Number per sample and percent total of chironomids collected in basket samples at SSES-C on the Susquehanna River, 22, 26, 29 May 1972.

RCPLICATE 7 9 C CAR NOa NOa NOa NOa NO ~ NO ~ Noa NO ~ NO, NCAN I 'IGIAL C H1 laON GN ID AL 0 4 1 0 0 0 0 0 0 0~6 Da6 CH IRONOHIDAL (PUPAE) 3 8 2 l 2 13 0 0 5 4 ~ I 4a1 AELABESHYIA NALLOCBI 0 0 0 0 0 0 0 '0 1 Oa I Oal coacBApELUpIA GRp 64 67 40 87 I 20 7 6 37 36a6 4 la9 TANYPODINAt'PII 0 0 0 0 0 0 0 0 I Oa I Oa1 DICKOTCNDIPCS 0 0 0 1 0 0 0 0 0 Gal Gal DICKOIEND) PCS NODESTUS 0 0 0 0 0 0 0 0 Gal Oa I CNDOCBIRONONUS GRP 0 7 0 0 ,0 0 0 0 2 1~ 0 la I GI YPTO'TCNDI PCS I 0,4 POLYPCDILUH RHEO'I'ANYTARSUS ll 28 3

14 0

9 10 0

13

"'0 0

15 13 0

1 17 14 0

10 12 0

4 49 10 0

16 ~ 2 12a0 18 0~ 5 13 8

'I'ANYTARSUS 1 16 9 15 0 6 3 5 6~2 7~ I TRIBELOS PUSICORN IS 0 0 0 0 0 0 I 0 0 Oa I 0~ I OKTBOCLADIINAE 0 0 I 0 0 0 0 0 0 Oa I Oa1 CRICGIOPUS 0 1 0 0 I 0 0 0 0 Oa2 0~3 CRICOTGPUS BICINCTUS 0 0 4 4 1 21 11 0 20 6~ 8 '7 ~ 8 EUKIEFPERIELLA CGERUI ESCENS GRP SP)1 0 0~2 Oa3 LOKI CPPERIEI LA SPI 1 6 la 3 1~ 5 NANOCLADIUS 0 0,4 Oa5 ORIBOCLADIUS 0 Oa 1 Oa I PA RANE IR I OCN ENU 5 Oa 1 Oa I RBCOCRICO1OPUS 0 Oa2 0~ 3

'IQTAL ORCAN ISNS 113 129 81 152 20 93 46 16 135 87 ~ 2 ORGAN I SHE/H2 557,635 399 749 99 458 227 79 665 l29,7 TOTAL TAXA 7 8 5 13 77 Table C-29. Number per sample and percent total of chironomids collected in basket samples at Pails on the Susquehanna River, 26 July 1972.

RCPLICATC 1 2 3 4 5 1 2 3 C EAR SPHERES SPHERES SPHERCS - SPHERES SPHERES STONES STONES STONES TAXA NO NO, NO, NO, NO, NO, NO, NO, BEAN 8 TOTAL CH IRONOHIDAE, 2 0 0 0 0 0 0 0 0.3 0.1 CHIRONONIDAE {PUPAE) 18 0 32 0 0 7 0 0 7~1 1.1 CONCHAPELOPIA GRP 182 23 225 121 200 94 110 36 123 ~ 9 29 a 0 TANYPODINAE SPIL 0 0 0 8 .0 0 0,, 0 1.0 0~2 POLYPEOILUN 91 10 96 137 40 7 25 41 55. 9 13. 1 RHCOTAMYTARSUS 288 441 193 243 80 29 331 168 221 ~ 6 51.9 STF'lOCHIRONOMUS 2 0 0 0 0 0 0 0 0.3 0.1 CORYNONEURA TARIS 0 0 0 0 0 0 12 0 1.5 0.4 CRICOTOPUS BICINCTUS 0 0 0 0 0 0 0 5 0.6 0.1 EUKIEPPCRIELLA SPIL 18 3 0 30 0 12 10 9~ 6 2~3 NANOCLADIUS 2 3 32 8 0 0 0 0 5. 6 1.3 TOTAL ORGAN ISNS 603 480 578 547 320 141 490 260 421. 4 ORGAN ISNS/N2 2910 2365 2841 2695 1576 695 2414 1281 2105. 3 TOTAIa 'TAXA 6 5 4 '3 4 5 4,8

104 Table C-30. Number per sample and percent total of chironomids collected in basket samples at Wilkes-Harre'2) on the Susquehanna River, 24 July 1972.

RCPl ICAi'B 1 2 3 1 2 3 GEAR Sphd)BS SPHERES SPHERES STONES STONES STOhES

'I'AXA HO. HO ~ NO. NO ~ HO NO ~ NEAN 4 TOTAL I

CH fVHONIJAE 0 0 0 1 0 0 0 ' 0.3 I

CH RONOIII DAB (PUP'Ab) 0 1 0 14 0 0 2.5 3' COHCHAPBLO2IA GRP 28 50 19 92 18 0 34 ' 53.8 BHDOCiiiROHONJS GRP 0 0 0 2 0 0 0 ' 0.5 HICRJ2SECi'RA 1 0 0 1 0 0 0.3 0.5 POI YPBDI I ii(1 7 12 0 14 0 0 5.5 8.6 RHEOI'AHT1'ARSUS 6 6 0 19 3 0 5.7 8.8 CRICOTOfuS 1 4 0 0 3 0 1.3 2.1 CRICOZOPUS HICIHCI'US 1 12 9 26 1 0 8.2 12.7 EUKIEFFERIELLA SPgl 0 2 0 0 0 0 0.3 0.5 I

H AHOC LAD VS 1 2 19 9 1 0 5.3 8.3 TO'I'Al ORGAHISNS 45 89 47 178 26 0 64.2 ORGAN ISHS/i12 222 438 232 877 128 0 316. 1 TOTAL TAXA 7 7 3 7 5 0 4- ~ 8 I

Table C-31. Number per sample and percent total of chironomids collected in basket samples at Nanticoke on the Susquehanna River, 21 July 1972.

REPl ICATE 1 2 3 1 2 3 GEAR SPHERES SPHERES SPHERES STONES STONES STONES TAXA HO. HO. HO ~ NO ~ HO ~ HO ~ NEAN TOTAL CHIROHOllIDAB (PUPAE) 0 4 Di 0 0 0.7 2.5 ABLAHESHYIA 0 1 0 0 0 0.2 0.6 AHLA8ESHYfA NALLOCHI 0 1 0 0 0 0.2 0.6 CONCHAPELOPIA GRP 3 22 0 6 0 6.0 22.6 DEHICRYPZO HIROHOHUS 0 1 0 0 0 0.2 0.6 FNDOCHIROHOHUS GRP 31' 20 0 16 6 13.0 49.1 POl YPEDI LUH 17 1 0 2 3 ' 12.6 RHEOI'AHYI'ARSUS 0 6 4 3 0 2.2 8.2 TRIHBLOS J VCUHDUS 0 1 0 0 0 0.2 0.6 EVKIEFFERI ELLA SPf 1 0 1 0 0 0 0.2 0.6 NAHOCLADIUS 0 3 0 0 0 0.5 1.9 TOTAL ORGAHISNS ORGAN ISNS/N2 34 167 77 379 '910 25 5 25 123 39 8 26.5 130.5 TOTAL TAXA 2 10 2 3 2 3.5

105 Table C-32. Number per sample and percent total of chironomids collected in basket samples at SSES-A on the Susquehanna River. 16-17 July 1912.

REI'I ICATC 1 2 3 4 5 6 1 2 3 GEAR SPHERES SPHERES SPBEAES SPHERES SPHERES SPHERES STONES STONES STONES TAXA HO. NO. NO. NO, NO ~ NO, NO. NO BEAN t TOTAL CHIRJta)BIDAE'B'IRONOHIDAE 2 0 0 0 0 0 0 0 0.2 0' (PUPAE) 2 0 0 0 0 3 0 0 9 le6 2.2 CONCHAPELOPIA GRP 5 0 0 0 0 5 5 3 6 2. 7 3.8 TA4YPOOINAC SPI 1 0 0 0 0 0 0 5 0 0 Oo6 0~8 EHDOCBIAOHOBJS GRP 0 0 7 0 3 0 0 I 3 1.6 2.2 POIYPEDILUH 23 4 0 20 0 15 11 5 11 9' 13.9 RHCOTAi YTARSUS 12 0 0 21 6 9 0 1 0 5.4 7 7 CAICOTVPUS 29 24 0 0 12 5 11 19 3 11 ~ 4 16.1 CRICOTOPUS BICINCTUS 0 0 0 20 32 11 31 0 6 11. 1 15. 6 EUKIEPFERIELLA COCRUIESCENS GRP SPll 0 0 0 0 17 1 16 0 0 3~8 5 ~ 3 EUKIEPPCAI ELLA SPI 1 21 20 0 20 9 9 31 6 0 12. 9 18.2 NA4OCIADIUS 8 0 13 0 0 8 26 1 26 9. 1 12.8 ORI'BO LADIUS 0 0 0 0 0 1 0 0 0 0~1 0.2 ABCOCQICO'POPUS 0 0 0 0 0 3 0 0 0 0.3 0.5 TBIENCBA4NIELLA 0 0 0 0 0 0 0 0' 3 0 ' 0 '

'TOTAL ORGAN I SBS h 102 48 20 81 19 10 136 36 bl 71. 0 ORGAN ISBS/N2 502 236 99 399 389 345 670 177 330 349.8 TOTAL TAXA 6 3 2 4 6 10 8 7 1 5.9 Table C-33. Number per sample and percent total of chironomids collected in basket samolcs at Ncscopeck on the Susquehanna River, 28 July 1912.

REPI ICATE 1 2 3 1 2 3 GEAR SPBCRES SPBEAgS SPHERES STONES STONES STONES NO, NO ~ NO ~ NO ~ NO ~ BEAN 1 TOTAL CHIRONOBIDAE (PlJPAE) 0 0 17 5 0 0 3~7 8.2 CONCHAPELOPIA GRP 19 29 25 29 48 18 28.0 62.7 PARACBIRONQBUS CARINATUS 0 0 0 0 0 2 Oo3 0.7 POLYPEDII Uli 0 0 0 0 15 0 2 ' 5.6 RB COT AN YTARSVS 0 0 8 10 15 0 So5 12.3

,CRICOI'OPUS BICINCTUS 0 0 0 8 15 2 4.2 9.3 NAHUCI AD)US 0 0 0 3 0 0 0.5 1.1 TOTAL ORGAN I SBS 19 29 50 55 93 22 44 '

ORGAN ISBS/B2 94 143 246 211 458 108 220.0 TOTAL TAXA 1 1 3 2'

106 Table C-34. Number per sampie and percent total of chironomids collected i,n basket samples at Falls on the Susquehanna River, 5 September 1972.

REsssLICATE 1 2 3 1 . 2 3 GEAR SPHERES SPHERES SPHERES STONES STONES STONES rAXA NO ~ NO. NO. NO. NO. MEAN 4 TOTAL CHIROHOHIOAB (PUPAB) 56 99 40 43 0 31 44.8 3~2 A8 LAMS l 1 Y I A 0 0 0 3 0 0 0.5 0.0 AHLABBSHYI* i4A( LOCH I 10 6 7 11 0 31 10 ' 0~8 COlsCHAPBLOPIA GRP 95 284 159 191 96 178 167.2 11. 9

'I'AHYPODIHAE SPI 1 10 6 7 8 7 0 , 6.3 0.5 0.1 CRYP1'O HIROHOHUS 0 0 6 0 0 0 1.0 DICROTBHDIPES 1 0 0 6 0 0 1.2 0' EHOOCillROHOla)S GRP 0 6 0 0 0 0 1.0 0.1 41.8 3.0 PARACHIROHOHUS CARINATUS POIYPBDILUH RHEOTAHYI'ARSUS 1056 17 73 192 1347 56 73 119 860 85 60 457 74 621 8

ill 1228 12 104.8 928 .2 7

66.0 TAHYrARSIHI SP41 1 0 0 0 0 0 0.2 0.0 TAHYTARSUS 0 0 6 2 0 0 1.3 0~ 1 EAVE'EI IA 0 0 6 0 .0 0 1.0 0.1 OR'I'ilO LADI INAE 0 0 6 0 0 6 2.0 0.1 CRicoropus 0 0 20 0 0 12 5.3 0'.4 CRIC~i POS BICINCTUS 4 6 0 0 0 0 1.7 0~1 HAHOCLA DIG S 53 198 106 114 0 49 86.7 6.2 TV'TAL ORG.WI SHS 1376 2200 1415 980 806 1658 1405.8 ORGAN ISllS/H2 6778 10837 6970 4828 3970 8167 6925.3 TOTAL TAXA 10 12 10 9.0 Table C-35. Number per sample and percent total of chironomids collected in basket samples at Wilkes-Barre (2) on the Susquehanna River, 7 September 1972.

RBPI ICATE 1 2 3 1 2 3 GEAR SPHERES SPHERES, SPHERES STOHES STOHES STONES

'I'AXA NO. NO. NO. NO NO ~ NO. MEAN 4 TOTAI CHIRONOHIOAB (Pl)PAE) 63 .96 31 89 71 139 81. 5 5 '

ABLABES11YIA 2 0 0 0 0 0 0.3 0.0 AH(ABBE.'lYIA HALLOCHI 17 31 0 8 7 21 14.0 0.9 COHCHAPELOPIA GRP 192 297 153 175 249 445 251.8 16.8 PROCLADIUS 2 4 3 0 0 1.5 0 '

TAHYPODINAE SP41 2 1 0 0 0 0,8 0. 1 CHIROHOHUS 4 0 0 0 0 Os7 0.0 CHIROHOHUS DECORUS 0 1 0 0 0 0.2 0.0 CRYPTO HIROHOHUS FULVOS 0 0 4 0 0 0.7 0.0 EHDOCHIROHOHUS GRP 0 0 4 8 0 2.0 0.1 HICROPSECTRA 0 0 0 3 0 0.5 0.0 PEDIOs(ONAS MCKAE 0 0 0 7 0 1.2 0.1 POLYPEOILOH 193 624 309 549 422 662 459.8 30,6 RHBOTAHYTARSUS 68 961 76 1193 357 544 533.2 35. 5 TAHYTARSUS 1 0 0 0 5 1+7 0.1 CRICOTOPUS 9 221 0 192 15 0 72.8 4.8 CRICOTOPUS BICIHCTOS 11 0 42 0 60 284 66.2 4.4 EUKIEFFERIELLA SP41 0 0 0 0 0 2 0.3 0.0 NAHOCI ADIUS 2 34 0 17 15 5 12.2 0.8 SYHORI'HOCLAP US I 0 10 0 2 0 0 2.0 0.1 TOTAL ORGAHISHS 569 2281 622 2227 1214 2107 1503.3 ORGAN I SHS/H2 28 03 11236 3064 10970 5980 10379 7405.6 TOTAL TAXA 12 10 9 ~ 3

107 Table C-36. Number per sample and percent total of chironomids collected in basket samples at Nanticoke on the Susquehanna River, 7 September 1972.

REPLICATE 1 2 3 1 2 3 GEAR SPHERES SPHERES SPHERES STONES STONES STONES TAXA NO ~ NO. NO. HO. NO. NO. MEAN 4 TOTAL CHIROHOMIDAE (PUPAE) 1 3 2 0 0 1 1.2 2.5 ABLABBSMYIA MALLOCHI 0 0 0 1 0 0 0.2 0~4 ABLABBSMYIA RHAMPHE 0 0 0 0 1 0 0.2 Oe4 COHCHAPELOPI A GRP 0 12 1 1 5 3 3 ' 7.7 TAHYPODIHAE SPfl 0 0 0 3 0 0 ,0.5 1.1 DICROTEHDIPES 0 1 0 0 0 0 0.2 0.4 GLYPI'Ol'EHDIPES 0 1 0 0 0 0 0.2 0.4 PARACHIROHOMOS CARINATUS 0 0 3 1 0 1 0.8 1.8 POI YPEDI BUM 16 24 10 7 19 13.3 28.2 RHEOIAHYTARSUS 8 15 2 13 5 7.8 16. 5 TAHYTARSOS 0 0 1 0 0 0 0 ' 0.4 CRI COTOP US 0 1 0 0 0 0 0.2 0.4 CRICOTOPUS BICIHCTOS 3 7 3 0 3 2 3.0 6.3 HAHOCI ADIOS 15 32 15 9 17 8 16.0 33. 8

~ TO'I'AL ORGAHISMS 43 96 39 21 46 39 47.3 ORGAH ISl48/M2 212 473 192 103 227 192 233. 2 TOTAL TAXA 4 8 7 6 6 6.3 Table C-37. Number per sample and percent total of chironomids collected in basket samples at SSES-A on the Susquehanna River, 11 September 1972.

REPI ICATE 1 2 3 1 2 3 GEAR SPHERES SPHERES SPHERES STONES STONES STONES NO. NO ~ NO. NO. NO. NO. MEAN 4 TOTAL CH IROllOMIDAB (PUPAE) 37 37 28 21 18 18 26.5 2.2 ABLABESMYIA MALLOCHI 4 2 2 0 2 3 2.2 0.2 COHCHAPBLOPIA GRP 12 7 8 19 8 22 12.7 1.1 TAHYPQD INAB SP 5 1 2 0 0 0 1 0 0 ' 0,0 DICROTEHDIPES MODESTUS 6 0 0 0 7 0 2~ 2 0+2 MICROPSECTRA 0 0 0 0 5 0 0.8 0.1 PARACHI ROHOMUS CARI NATUS 18 5 8 0 14 7 8.7 0.7 POIYPBDILUM 1118 753 597 441 4 52 629 665.0 56.3 RHEO'I'AHYTARSUS 418 265 140 124 224 546 286 ~ 2 24. 2 TAHYTARSUS 8 2 0 3 0 0 2.2 0.2 CRICOTOPOS 124 65 207 61 124 0 96 ~ 8 8 '

CRICOTOPUS BICINCTUS 31 0 0 5 0 107 23 ' 2.0 EUKIBPPERIELLA SPgl 0 0 0 0 0 2 0.3 0.0 HANOCI ADIOS 82 17 53 45 68 50 52e5 4.4 SYHORIHO I ADIOS 0 0 2 0 0 0 0.3 0.0 TOTAL ORGAH ISMS 1860 1153 1045 719 923 1384 1180.6 ORGANISMS/M2 9163 5680 5148 3542 4547 6818 5816.1 TOTAL TAXA 7 10 8 8.7

108 Table C-38. Number per sample and percent total of chironomids collected in basket samples at Nescopeck on the Susquehanna River, 11 September 1972.

REPLICATE 1 2 3 1 2 3 GEAR SPHERES SPHERES SPHERES STONES STONES STONES TAXA NO. NO. NO ~ NO. NO ~ NO ~ MEAN 4 TOTAL CHIRONOMIDAE (PUPAE) 145 90 95 140 308 129.7 1.3 ABLABESMYIA MALLOCHI 15 90 0 0 7 0 18.7 0.2 CONCHAPElOPIA GRP 29 90 451 143 10 51 129.0 1.2 CRYP1'OCHIRONOMUS PULVUS 0 0 113 0 0 0 18.8 0.2 0ICROTENDIPES 15 0 0 0 0 0 2.5 0.0 DICROTENDIPES MODESTUS 15 0 338 0 0 0 58 .8 0.6 PARACHIRONOMUS PECTINATELLAE 0 0 0 48 0 26 12.3 0.1 POLYPEDILUM 14 5 358 788 667 262 205 404.2 3.9 RHEOTANYPARSUS 6890 7442 11153 11051 10591 7792 9153.2 88 '

CRICOTOPUS 87 269 113 0 27 128 104.0 1.0 CRICOTOPUS BICINCTUS 102 179 225 190 279 154 188.2 1.8 EUKIEPPERIELLA SP51 29 0 0 0 10 51 15.0 0.1 I

NANOCI AD US 116 90, 225 95 160 102 131. 3 1.3 TOTAL ORGAN I SMS 7588 8608 13406 12289 11486 8817 10365.5 ORGANISMS/M2 37379 4 2404 66039 60537 56581 43433 51062 .4 TOTAL TAXA 10 8 8 7.8 Table C-39. Number per sample and percent total of chironomids collected in basket samples at Wilkes-Barre (2) on the Susquehanna River, .9 October 1972.

REPLICATE 1 2 3 1 2 3 GEAR SPHERES SPHERES SPHERES STONES STONES STONES TAXA NO. NO. NO. NO ~ NO. NO. MEAN S TOTAL CHIRONOMIDAE (PUPAE) 5 10 11 23 5 8 10. 3 2.9 ABLABESMYIA 0 1 0 0 0 0 0.2 0.0 AB LABES MY I A MM LOCH I 3 6 9 0 2 7 4.5 1.3 AHLABESMYIA RHAMPHE 2 0 0 0 0 0 0.3 0.1 CONCHAPELOPIA GRP 144 109 158 70 113 91 114 ~ 2 32.4 PROCl ADIUS 2 0 0 0 0 0 0.3 0.1 CHIRONOMINAE 0 0 0 0 0 1 0.2 0.0 CHIRON05US 28 1 16 0 0 15 10. 0 2.8 Cfll RONOMUS DECORUS 0 0 0 0 112 0 18 o7 5.3 ENDOCHIRONOMUS GRP 7 0 5 0 0 5 2.8 0.8 POIYPEDIlUM 5 0 1 6 0 0 2.0 0.6 RHEorANYrARsus 16 29 11 0 0 23 13.2 3.7 ORTHOCLADIINAE 0 0 0 0 0 1 0 ' 0.0 CRICOTOPUS 48 10 0 0 17 5 13.3 3.8 CRICOTOPUS BICINCTUS 93 182 232 139 54 214 152.3 43.3 EUKIEl'PERIE( LA SP41 3 4 0 0 0 0 1.2 0.3 NANOCf ADIUS 5 10 8 6 13 6 8.0 2.3 SYNORTHOCl ADIOS 3 0 0 0 0 0 0 ' 0.1 TOTAL ORGANISMS 364 362 451 244 316 376 352.2 ORGANISMS/M2 1793 1783 2222 1202 1557 1852 1734 .8 TOTAl TAXA 13 4 6 10 8.3

109 Table C-40. Number per sample and percent total of chironomids collected in basket samples at Nanticoke on the Susquehanna River, 11 October 1972.

RE P L ICATE 1 2 3 1 2 3 GEAR SPHERES SPHERES SPHERES STONES STONES STONES TAXA NO ~ NO, NO ~ NO+ HO+ NO ~ HEAN 0 TOTAL CHI ROHOHI DAB 0 12 0 0 2+0 18 ~ 5 PROCLADIUS 6 0 0 0 1~ 2 10 ~ 8 CRICO'lOPUS 0 3 0 0~ 5 4 ~6 CRICO'IOPUS BICIHCTUS 0'3 0 0 19 5~3 49 '

HAHOCLADIUS 0 0 10 0 1~8 16 ~ 9 TOTAL ORGAN I SHE 2 19 12 13 19 10 ~ 8 ORGANISNS/H2 10 94 59 64 94 53 ~ 4 TOTAL TAXA 2 0 2 1 2 1 1~ 2 Table C-41. Number per sample and percent total of chironomids collected in basket samples at

'SSBS-A on the Susquehanna River, 16 October 1972.

REPLICAI'E 1 2 3 1 2 3 GEAR SPHERES SPHERES, SPHERES STOHES STONES STONES 06741 TAXA HO. HO ~ NO ~ HO ~ HO. NO ~ JEAN  % TOTAL CHIROHOHIDAB (PUPAE) 0 0 0 0 40 COHCHAPELOPIA GRP EHDOCHIROHOHUS GRP 0 0 0 51 0 25 127 78 0 0 0 0 0 8 1.3 0.8 RHEOTAH Yi'ARSUS 02817 48.7 63 86 0 43 41 59 30.0 TAHYTARSUS CRICOTOPUS 0 0 0 8 0 0 13 08 0 0 0 17 0 CRICOTOPUS BICIHCTUS 127 0 283 17 0 9 72.7 44.8 EUKIEFFBRI El LA SPl 1 0 0 0 0 40 0 6.7 4.1 HAHOCLADIQS 0 0 0 17 40 0 9 ' 5.9 TOTAL ORGAH ISHS 190 86 283 153 161 101 162.3 ORGAHISHS/H2 936 424 1394 754 793 498 799.7 TOTAL TAXA 6 3 4 2.8 Table C-42. Number per sample and percent total of chironomids collected in basket samples at Nescopeck on the Susquehanna River, 16 October 1972.

REPLICATE GEAR SPHERES 1,. SPHERES 2

STONES 1

STOHES 2

STONES 3

TAXA HO. HO ~ HO. NO ~ NO ~ HEAN 't TOTAL CHIROHOHIDAE (PUPAE) 29 0 36 0 9 14e8 0 ~ 4 ABLABBSHYIA HALLOCHI 0 0 0 0 28 5.6 0.1 COHCHAPELOPIA GRP 59 58 74 0 55 49+2 1.3 DICROTEHDIPES HODESTUS 0 58 0 0 0 11.6 0 '

PARACHIRONOHUS CARINATUS 0 0 0 150 0 30.0 0.8 POl YPEDILUH 30 0 0 0 9 7.8 0.2 RHEOTAH YPARSU 8 5010 810 737 3148 4 539 2848. 8 75.9 CRI COTO PV S 0 174 0 150 9 66.6 1.8 CRICOTOPUS BICI HCTUS 1032 521 74 750 73 490. 0 13. 1 EUKIBFFBRIELLA SPf 1 59 0 0 0 0 ii+8 0 '

HAHOCI ADIUS 29 347 74 450 174 214. 8 So7 TOTAL ORGANISHS 6248 1968 995 4648 4896 3751.0 ORGAN ISHS/H2 30778 9695 4901 22897 24118 18477 ~ 8 TOTAL TAXA 6 6 4 5 7 5.6

110 Table C-43. Number per sample and percent total of chironomids collected in basket samples at Falls on the Susquehanna River, 21 December 1972.

REPLICATE 1 2 1 GEAR SPHERES SPHERES STONES TAXA NO NO. NO. MEAN '8 TOTAL COHCHAPELOPIA GRP 61 9 2 24. 0 46.5 I

CH RONOMU S 3 0 0 1.0 1.9 DICROTBHDIPSS MODESTUS 6 0 0 2.0 3.9 GLYPTOI'BHDIPES 1 0 0 0.3 0.6 POLYPEDILUM 3 0 2 1~7 3.2 RHEOTANYTARSUS 7 9 10 8.7 16 '

CRICOTOPUS 0 1 0 0 ' 0.6 CRICOTOPUS BICINCTUS 0 1 0 0.3 0.6 EUKIEFFERI ELLA SP4 1 13 18 6 12.3 23. 9 PARAMETRI OCHEMUS 3 0 0 1.0 1~ 9 TOTAL ORGANISMS 97 38 20 51.7 ORGAHISMS/M2 478 187 99 254 ~ 5 TOTAL TAXA 8 5 4 5.7 Table C-44. Number per sample and percent total of chironomids collected in basket samples at Nanticoke on the Susquehanna River, 22 December 1972.

REPLICATE 1 2 1 2 3 GEAR SPHERES SPHERES STONES STONES STONES HO+ NO NO ~ NO. HO ~ MEAN 8 TOTAL COHCHAPEIOPIA GRP 40 13 55 105 135 69.6 53 2 CHIROHOMUS 0 0 5 21 14 8.0 6.1 DICROTEHDIPZS 1 0 5 0 16 4.4 3.4 DICROTBHDIPES MODESTUS 2 4 2 5 0 2.6 2.0 GLYPTOTEHDIPES 0 0 0 3 0 0.6 0 5 PARACHIROHOMJS MOHOCHROMUS POLYPEDILUM 1 0 0 0 0 0 ' 0.2 4 0 0 0 5 1~8 1.4 RHEOTAN YI'ARSUS 36 12 34 17 20 23.8 18.2 TAN YTARSO S TRIBBLOS JUCUHDUS 1 0 0 2 0 0.6 0 '

0 0 5 0 5 2.0 1.5 ORTHOCLADIINAE 0 0 4 0 2 1 2 0.9 BRILLIA 0 0 0 0 2 0~ 4 0.3 CRICOTOPU S 1 0 0 0 0 0 ' 0~2 CRICOTOPUS BICIHCTUS DIPLOCLADIUS 0 0 0 0 2 0 ' 0 '

1 2 0 0 0 0.6 0.5 EUKIEFFERI ELLA SPI I 16 2 19 5 16 11. 6 8.9 PARAMBTRIOCNEMUS 0 0 5 2 5 2.4 1.8 RHEOCRICOTOPUS 0 0 0 0 2 0.4 0 3 TOTAL ORGANISMS 103 33 134 16 0 224 130 '

ORGAH ISMS/M2 507 163 660 788 1103 644.3 TOTAL TAXA 10 5 9 8 12 8 8

Table C-45. Number per sample and percent total of chironomids collected in basket samples at SSBS-A on the Susquehanna River, 4-5 December 1972.

REPLICATE 1 2 3 1 2 3 GEAR SPHERES SPHERES SPHERES STONES STONES STONES TAXA HO. HO ~ NO. NO NO. NO ~ MEAN  % TOTAL COHCHAPBLOPIA GRP 10 145 31 58 12 67 53.8 46. 3 CHIROHOMUS 0 15 0 2 0 0 2.8 2 '

DICROTEHDIPES 2 8 0 0 0 12 3.7 3 '

DICROTEHDIPES MODESTOS 0 15 12 9 0 0 6.0 5.2 GLYPTorEilDIPBS 0 0 0 1 0 2 0.5 0' MICROTEHDIPBS 0 8 0 0 0 0 1.3 1.1 POLYPEDI LUM 2 0 1 1 2 3 1.5 1.3 RHEOTAHY'I'ARSUS 16 15 18 83 6 15 25.5 22.0 TRIBBLOS JUCUHDUS 1 0 1 0 0 0 0.3 0.3 ORTHO" LADIIHAB 3 0 0 3 1 2 1 5 1.3 CRICOTOPUS 0 8 2 0 3 2.P 2 '

CRICOTOPUS BICIHCTUS 0 0 0 1 0 3 0.7 0.6 DIPLOCLADIVS 0 ,0 1 0 0 .0 0.2 0.1 EVKIEPPERIELLA,SP41 8 8 8 16 1 35 12.7 10. 9 PARAMETRIO H BMUS 0 7 1 1 1 5 2.5 2.2 RHEOCRICOTOPUS 2 0 0 0 0 0 0~3 0.3 TOTAL ORGAN ISMS 44 229 75 179 23 147 116.2 ORGAH ISMS/M2 TOTAL TAXA 217 8

1128 9

369 9

882 ll 113 61088 724 572 ~ 2 Table C-46. Number per sample and percent total of chironomids collected in basket samples at Nescopeck on the Susquehanna River, 6 December 1972.

I RB Pl CATE 1 2 1 2 GEAR SPHERES SPHERES STONES STOHES HO+ HO. HO. NO. MEAN  % TOTAL COhCHAPEfOPIA GRP 3 0 0 08 83 RHEOTAHY rARS(lS 0 10 17 8 ~ 3 91.7 TOTAL ORGANISMS 6 3 10 17 9.0 I

ORGAN SMS/112 30 15 49 84 44. 3 TOTAL TAXA 1 1 1 1 1~ 0

112 Table C-47. Chironomids collected in basket samples from Falls to Nescopeck on the Susquehanna River, 1972.

STATION Falls NS42 NAN'IICOKE SEES NESCOPECK ABLABESMYIAb ABLABESMYIA MALLOCHI ABLABESMYIA RHAMPHE CONCHAPELOPIA GRP PROCI ADIOS TANYPODINAE SP41 CHIROhOMINQE c CHIROhOMUS CHIRONOMUS DECORIjS CRY P TOCH I RUNG M'V S CRYPTGCHIRONGMUS FULVUS DEMICRYP TOCH I QONOMU S DICROTENDIPES DICROTENDIPES MODESTOS ENDOCHIRONGMUS GRP GLYPTOTENDIPES MICROPSECTRA MICROTENDIPES PARACHIRONOMUS CARINATOS PARACHIROhOMUS MOhOCHROMUS PARACHIRONOMOS PECTINATELI AE PEDIONOMUS BECKAE POLYPEDILUM RHEOTANYTARSUS STENOCHIRONOMUS TANYTARSINI SI'4l TANYTARSUS TRIBELOS FUSICORNIS TRIBELOS JUCUNDUS ZAVRELIA ORTHOCLADI INAE BRILLIA CORYNONEURA TARIS CRICOTOPUS CRICOTOPUS BICINCTUS DIPLOCLADIOS EOKIEFFERIELLA COEROLESCENS GRP SP41 EUKIEFFERIELIA SP$ 1 X NANOCLADIOS X ORTHGCLADIOS PARAMETRIGCNEMOS RHEOCRICOTOPOS SYNORTHOCI ADIUS THIENEMANNIELLA Wilkes-Barre (2).

These genera were not counted as separate taxa if species within them were identified.

Subfamilies were not counted as separate taxa.

113 Table C-48. Monthly and total mean density (No. org/m 2 ) and percent total of chironomids collected in basket samples at Falls on the Susquehanna River, 1972.

APR HAY OUH AUG ocr Hov DEc I, 'le CHIBOHOJiIDAE 1.2 0.0 0.0 0,4 0.0 CHI BONOL~lIDAE (PUPAE) 35.1 220. 9 0.0 85.3 2.8 ABIABESHYI A 0.0 2.5 0.0 0.8 0,0 ABIABESMYIAHALLOCHI 0.0 53. 4 0.0 17.8 0.6

- OONCHAPELOPIA GRP 610.2 823. 5 118.2 517.3 16.7

'lhNYPODIHAE SP41 4.9 31. 2 0.0 12.0 0.4 CHI BONG JUS 0.0 0.0 4.9 1.6 0.1 CRYP'1OCHI RJNOEIJS 0.0 4.9 0.0 1.6 0.1 DICRD'IENDIPES 0.0 5.7 0.0 1.9 0.1 DICJOIEHDIPES KGESIUS 0.0 OoO 9.9 3.3 0.1 EHDOCHIBONOEIJS GBP 0.0 4.9 0.0 1.6 0.1 GLYP'101'EHDIPES 0.0 0,0 1.6 0.5 0.0 PARA(MBONOEIJS CARINA%IS 0.0 206. 1 0.0 68.7 2.2 EOI YPQJILUH 275.2 516. 4 Bo2 266.6 8,6 BHEOPAHYi'ABSUS 1091.7 4572. 2 42.7 1902. 2 61.5 SrEHOCHI BOHC4 IJS 1.2 0.0 0.0 0 ~4 0.0 TAHYTARSIHI SP41 0.0 0.8 0.0 0.3 0.0

'JAHYTABSUS 0.0 6.6 0.0 2.2 Owl cAVRELIA 0.0 4.9 0.0 1.6 0.1 ORIHQCLADIINAE 0.0 9.9 0.0 3.3 0.1 CORYHOHEURA TAMS 7.4 0.0 0.0 2.5 0.1 CRICO1OPUS 0.0 26,3 1.6 9.3 0.3 CRICOIOPUS BICINCIUS 3.1 8.2 1.6 4 ' 0.1 EUKIEF PERI ELLA SPE 1 47.4 0.0 60.8 36.1 1.2 NAHOCLADIUS 27 F 7 426.9 0.0 151.5 4.9 PABAELTRIOCHEEIJS 0.0 0.0 4.9 1.6 0.1

'lorAL ORGAN ISES 2105.2 6925. 2 254.5 3095.0

'IQPAL TAXA 9 17 10 12 Table C-49. Monthly and total mean density (No. org/m 2

) and percent total of chironomids collected in basket samples at Wilkes-Barre (2) on the Susquehanna River, 1972.

APR MAY 0 Ql JUL AUG OCT HOV DEC TAKA'HIBOHOMI DAE 0.8 0.0 0.0 Oo3 0.0 CHIBOHOHIDAE (PUPAE) 12.3 401.5 50o9 154.9 4 ~9 ABLABESHYIA 0.0 1.6 0.8 0.8 0.0 ABLABESHYIA EJALIOCH I 0.0 69.0 22. 2 30.4 1.0 ABLABESHYIA RHAHPHE 0 ' 0.0 1.6 0 0.0 CCHCHAPELOPIA GRP 170.0 1240.6 562.4 657.6 20. 9 PHXLADIUS 0.0 7.4 1.6 3.0 O. 1 TAHYPODIHAE SP41 0.0 4~1 0.0 1.4 0.0 CHIBOHOMIHAE 0.0 0.0 0.8 0.3 0.0 CHIBOHONS 0.0 3~3 49' 17.5 0.6 CHIBOHOMJS DECOHJS 0 ' 0+8 92.0 30.9 LO CRYPPOCHIBOHOESS FULVUS 0' 3.3 0.0 1.1 0.0 EHDXHIBCHOMJS GBP 1.6 9.9 14.0 8.5 0.3 MICKJPS ECIElh 1.6 2.5 0.0 1.4 0,0 PEDIQGHAS BECKAE 0.0 5.7 0.0 1.9 0.1 EOLYFED ILUM 27.1 2265.2 9.9 767.4 24.3 RHEOTAHYTARSUS 27.9 2626.4 64.9 906.4 28.8 TANYl'ABSUS 0;0 8.2 0.0 2.7 0.1 ORIHOCLADIINAB 0.0 0.0 0.8 0.3 0.0 CRICOIOPUS 6.6 358.8 65.7 143.7 4.6 CRICOIOPUS BICIHCIUS 40.2 325. 9 750.4 372. 2 1LB E2}KIEFFERIELLA SP51 1.6 1.6 5.7 3.0 0.1 HAHOCLADIUS 26.3 59.9 , 39.4 41.9 1.3 SYHOR1HOCLADIUS 0.0 9.9 2.5 4.1 O. 1 TO1'AL ORGAH 164IS 316.1 7405.5 1734.8 3152. 1 mrhL rAKA 9 19 17 15

114 Table C-50. Monthly and total mean density (No. org/m ) ana percent total of chironomids collected in basket samples at Nanticoke on the Susquehanna Riv'er, 1972.

TAXA APR HAY OCI'09 CBI ICNCHIDAB 000 000 0,0 205 009 CHIRONOHIDAE (PUPAE) 303 507 0. G 000 203 0 '

ABIABESHYIA 008 0,0 000 000 002 001 AB IABESHYI A HALILCHI 0,8 008 0 ' 0,0 004 002 ABIABESHYIA EHAMP)lE 0,0 008 000 000 002 001 (ENCHAPELOPIA GRP 2906 1801 000 34209 9706 36,8 HCCIADIUS 000 000 5,7 0,0 104 0,5 TANYPODINAE SPE1 000 2,5 0. G 0,0 006 002 CHIR)NOD)S 0,0 000 1 0 3904 909 307 DEHICRYPIOCHIKRtSS 0,8 0 0 I~ 0 000 0~2 001 DICMYIENDIPES 0,0 0,8 0,0 21,7 506 2,1 DI~IPES EGDESIUS 000 0,0 000 1208 302 102 ENDOCHIKNCH(S GRP 6400 000 000 000 16,0 6,0 (I YPIOI'END IPES 0,0 0,8 0.0 300 009 004 PAFACHIBONCH(S CARI NATUS 0,0 4,1 000 0,0 1,0 004 PAFACHIKNCHUS

&ONOQ)RCHUS 000 0,0 00G 100 0,2 001 EOLYPEDILEM 16 10,7

' 6507 3806 0 '

O.G 8

1170 2

' 2207 4106 8,6 1507 RHEO'TARSUS TANYEARSUS 000 0,8 0.0 3,0 009 0,4 TRIBELCH J(EUNDUS 008 000 0~ 0 909 207 1,0 ORTH)CLADIINAE 000 0,0 000 509 105 0,6 BRILLIA O.O 000 0.0 200 0 ' 002 CRICOIOPUS 000 008 205 I 0 101 004 CRICOIOPUS BICINCIUS 000 1408 26 ~ 3 200 1008 4,1 DIPIOCIADIUS 0 0 000 000 300 007 003 EUKIEFFERIELIA SPE1 008 0.0 O.G 5701 1405 S,S NANOCLADIUS 205 7808 900 000 2206 8,5 PARVlETRICCN EHUS RHEOCRICOIOPUS 000 0,0 0 0 000 0,0 000 1118 200 300 0 '

l,l 002

'IOTAL ORGAN ISHS TOTAL 'JBXA 13005 10 2330 2 13 5304 4

64403 18 ll 26504 Table C-51. Monthly and total mean density (No. org/m 2 ) and percent total of chironomids collected in basket samples at SSES on the Susquehanna River, 1972.

'JUL QG BO(0%HI DAE CHIKNOElIDAE (PUPAE) 30 3 207 2003 101 0,0 0 ' 000 1,2 0,1 000 707 13005 3208 000 3109 204 ABIABESEE(IA HALIOQII 000 005 000 1007 0~0 0,0 1 9 001 ABIABESHYIA FE(AEH)E 008 000 000 0,0 0~0 0,0 001 000 GXlQ)APELOPIA CRP 1506 1800 1 13,1 62 ' 620 4 2650 2 9908 704 PBOCIADIUS 1907 0,0 000 , 000 0,0 0,0 30 3 002 TANYPODINAE SPf 1 000 0,5 207 2,5 0,0 000 1,0 0,1 Q>IKEK)EX)S 5,7 000 0,0 000 0~0 1400 3~3 0 '

QIIKNOHUS DECORUS 1105 0,0 000 000 0~0 0,0 1,9 0,1 DI~IPES 0,0 .0,5 0,0 0,0 0.0 1801 301 002 DICK)TENDIPES l GCESIUS 08 005 000 10.7 000 29,6 6 ' 0,5 ENDXHIKNCH(El GKP 4,1 4~9 707 000 606 000 309 003 CLYPIOTENDIPES 0,0 20 2 000 0,0 0 0 205 008 O,l hICFOESE,CTRA 0,0 000 0,0 401 000 000 0,7 O,l ViICFOIEN)IPES 0,0 000 0,0 000 000 6,6 101 001 PARACHIFONCKUS CARINA'IUS 0 0 0,0 000 4207 0~0 0 0 701 0,5 EOLYPEDI Ll14 4,1 7909 4807 3275,8 0,0 704 56903 4204 RhEOTANYTARSUS 4 ' 5901 2608 140907 239,7 12506 310,8 2301

'IANYIARSUS 0,0 30,7 0,0 1007 6,6 000 8,0 006 TRI BELOS FUSICOKN IS 000 005 0,0 000 000 0,0 0~1 0,0 TRIBEIL6 JUC(MX)S 0,0 000 0 0 0,0 0,0 16 0,3 0,0 ORIBOCLADI NAEI 0.8 0,5 000 0,0 0,0 704 1',5 O,l CRICOIOPVS CRICOIOPUS BICINCIUS 9,0 0,0 33 l,l4 0 5604 5407 47700 11704 1400 35800 14 0 30 3 95 2 94 '

7 7

DIPLCCLADIUS 0 0 0~0 0,0 0,0 0,0 008 001 0,0 ZUKIEFFERIELIA COEEULESCENS GRP SN1 0 0 1 1 18,6 000 0,0 000 303 0~2 EUKIEFFERIELIA SPEl 1007 6,6 6305 1,6 3208 62.4 29 6 202 NANOCLADIUS 4 1 2\2 44 ' 25S ~ 6 4608 000 5904 4,4 OBI BOCLADIUS 0,0 005 005 000 000 000 002 0 0 PAFAElETRIOCNEFNS 000 0 5 000 0,0 0~0 1203 2,1 0,2 RbEOCRICOIOFUS 30 3 1.1 1,6 0,0 000 106 1 3 O,l SYNOBIHOCLADIUS 00 0,0 0,0 1,6 0,0 0,0 0,3 0,0

'IHIENEHANNIELIA 0 0 000 1,6 0,0 0,0 000 003 0,0

'IOTAL ORGAN ISHS 9707 429 7 349,7 581600 79907 '572 2 134402 1OTAL 'I'AXA 14 20 13 14 8 16 14

115 Table C-52 'onthly and total mean density collected in basket samples at (No. org/m ) and percent total ot'hironomids 2

Nescopeck on the Susquehanna River, 1972.

TAXA APR MAY JUN JUL AUG SEP OCI'OV DEC MEAN  % 'IOT CBIKNOIIIDAE (PUPAE) 18.1 638.7 72.9 0.0 182.4 1.0 ABIA3E&(YIA) IALIlXZI 0.0 92.0 27.6 0.0 29.9 0.2 OON(HAPEIDPIA GRP 137. 9 635. 5 242.4 3.7 254.9 1.5 CRYPIOQH KNO)DS P ULVUS 0.0 92.8 0.0 0.0 23.2 0.1 DIGGIENDIPES 0.0 12.3 0.0 0.0 3.1 0.0 DICRMENDIPES KODESIUS 0.0 289.8 57.1 0.0 86.7 0 ~5 PARAGIIKNO)US CARINA'AS 1.6 0.0 147.8 0.0 37.4 0.2 PARA(ZIKNO) US P ECZINATELLAE '0.0 60.8 0.0 0.0 15. 2 0.1 POLYP H) IUR4 12. 3 1991.0 38.4 0.0 '510.4 2.9 RHEOVN YPA&Sl8 27.1 45089. 1 14033.4 40.6 14797.5 84.8 CRIO01OPUS 0~0 512. 3 328.1 0.0 210.1 1.2 CRIGVIOPUS BICINCZUS 20.5 926 ~ 9 2413.8 0.0 840' 4.8 EUKIEFFERIELLA SPf1 0.0 73.9 58.1 0.0 33.0 0.2 NANOCLADIUS 2.5 647.0 1058.1 0.0 426.9 2.4

'IOM, ORGANISMS 220.0 - 51061.7 18477.5 - 44.3 17450.9 KYRIE TAXA 6 - 12 10 2 8 I

Table C-53. Mean density (No. org/m 2 ) of some macroinvertebrates collected in basket samples from Falls to Nescopeck on the Susquehanna River, 1972.

Station Taxa a s x es-Barre Nan xco e SSES Nescopec Oligochaeta 26 1014 229 185 52 Heptageniidae 618 32 34 18 Hydropsychidae 1844 113 125 5581 Chironomidae 3095 3152 263 1344 17451

116 Table C-54. Monthly and total mean density (No, org/m 2 ) and percent total of chironomids collected in basket samples from Falls to Nescopeck on the Susquehanna River, 1972.

TAXA %JUN JUL QJI BGNOYZ DAE 3% 3 2% 7 0,'7 0%0 2,6 0 ~0 1.5 0 '

QJIRONCMIDAE (PUPAE) 0~0 20% 3 15,8 279%5 37 ~ 7 0 ~0 58%9 1%7 ABIABESEJY A I 0 ' 0,0 0.1 0,8 0,2 0,0 0 2 0%0 ABIABESMYIA MALLCCHI 0%0 0%5 0.1 45,2 1LB 0 0 9%6 0%3 ABIABESMYIARJJAEJPJJE, 0 8 0,0 0,0 0,2 0,4 0%0 0,2 0,0 COHCHAPELOPIA GBP 15%6 180% 1 200,7 556%0 215 ~ 7 204%2 228%7 6%7 PRGCLADIUS 19,7 0%0 0,0 1%5 1%9 0,0 3 ' 0%1 TANYKDINAE'PI1 0%0 0%5 1,8 8%0 0.0 0,0 1.7 O,l QlIRONQJINAE 0 ' 0 0 0,0 0%0 0,2 0%0 0 0 0%0 CHI RCb ONUS 5%7 0%0 0,0 0%7 12%9 16%4 5,9 0,2 CHIRONCNJS DECGBUS 11,5 0 ' 0,0 0%2 24,0 0%0 5%9 0%2 CRYP1GCJJI RONOMUS 0%0 0%0 0 ' 1,0 0,0 0,0 0%2 0,0 CRYFIGQJIRONOMUS EULVUS 0,0 0%0 0,0 19,2 0%0 0,0 3 ' 0%1 DEI4ICRYPIGQJI BOEGEIJS 0,0 0,0 0%1 0,0 0%0 0%0 0,0 0,0 DICBOl'KNDIP ES 0 ' 0,5 0%0 3,8 0%0 12%0 2%7 0%1 DICBOI'KNDIPKS EImESIUS 0,8 0%5 0%0 60,1 12,4 15 ' 14%8 0 '

HJ DOCH I RONOMUS 'GBP 4,1 4~9 13%2 3%0 5,4 0%0 5 1 O,l GLYPIOIKNCIPES 0~0 2% 2 0%0 0%2 0%0 1%9 0%7 0%0 MICROPSECTRA 0%0 0,0 0 ' 1%3 0%0 0%0 0%3 0,0 MICBOI'EÃDIPKS 0 ' 0 0 0,0 0,0 0.0 2~2 0%4 0,0 PARACJJIRONCMUS CARINATUS PAPACHI RON&JUS 0%0 0~0 0 ' 50,6 32%1 0,0 13,8 0,4 EJGt4XHROMUS PAPACHI RCNCESS 0 0 0.0 0 ' 0 0 0 0 0%3 0%0 0,0 PKC1'NATKLIAE 0 ' 0,0 0.0 12,2 0.0 0,0 2%0 O,l PHil(h&iUS 0,0 0%0 0 ' 1%1 0%0 0~0 0%2 0,0 PKUI UJM BECKAL'GLY 4%1 79. 9 85,0 1622,8 10% 9 6 ' 301,5 8,8 RJKVI'AHYTAI SOS 4%1 '59,1 267 ' 10747,1 3130. 2 90 6 2383%1 69,4

$ 1 ENOQJI EYJNOEIJS 0 0 0,0 0,3 0,0 0 ' 0~0 0 0 0,0 TJNYTARSINI SP$ 1 0 0 0,0 0,0 0,2 0,0 0.0 0%0 0,0 TANYTARKS ~ 0 0 30,7 0.5 0 0 5 3 1%7 0 ' 6.4 0 2 TRIBEIIJS EUSICOBNIS 0 0 0%0 0,0 0%0 0%0 0.1 0.0 TRIBEIXS JUCUNLUS 0 0 0 0 0 1 0.0 0 0 3% 3 0 6 0 0 YAVBELIA 0.0 0 0 0 0 1,0 0,0 0,0 0 ' 0,0 ORl'l JOCLAIJI INAE 0,8 0 5 0 ' 2.0 0 2 4 ' 1 3 0,0 BRILLIA 0,0 0,0 0 0 0.0 0.0 0.5 0.1 0.0 COBYNONEURA TABIS 0,0 1,7 0 0 0,0 0,0 0.3 0,0 CRICOIOPUS 9.0 15,6 275.0 92,7 5 ' 66.5 1.9 CRICOIOPUS BICINCLUS 00 33 4 25.2 278% 7 820 7 1 9 193. 3 5.6 DIP UJCIADIUS 0 0 0 0 0,0 0.0 0,0 1 1 0,2 0.0 KUKIEPFERI ELIA CGERULESCKNS GRP SP41 0,0 1.1 4,8 0 ' 0 0 0,0 10 0.0 EUKIEPEERIKLLA SH1 10.7 6,6 27%6 15.4 22% 7 46.8 21.6 0.6 NAHXLADIUS 4,1 0.0 2.2 23 2 294 ~ 2 254 9 0 0 96 ' 2 8 ORI'KCIADIUS 0 5 0.1 0.0 0.0 0~0 O,l 0.0 PARAME'IBIOCNEEXJS 0 0 0.5 0,0 0.0 0 0 8 ~2 15 0,0 RHEGCRICOIGPUS 3.3 1.1 0,4 0 0 0 0 1.1 1 0 0.0 SYNORI'I JOCLADI US 0 0 0 0 0 0 2.3 0.6 0 ' 0 5 0 0 TJJI ENEEINHIELLA 0.0 0 0 0 ' 0 0 0 0 0 0 0 1 0 0 1OI'AL OBGAHI US 97 7 429.7 685,4 14287 6 4691.9 422.0 3435.8

'IOPAL TAXA 14 20 21 29 20 19 21

R5g Rggjgggg pygmy gag~

'5~g Rgggg~R5g~ggg g ~Rgggggjg~~

~REg~gggg~~

~85gggg~~~

~Kggggggg~

H~~~~L~~~~aa gag~

555gg~ggg~ Egngggg,g Rggg~ggg~ ~

@am Rgg~g~~

REg~

~~K@~gg@

~'Rggggg~g~'g~~

Rgggg/Q~

+8%5g~g~~~RWgggggg

~+SKggjg~g~~R%5@ggjgg Qgggggggg Qggggg Kggggggg ggg Kggggggg~@

Rggggg+Q ggggggggg ~

118 Table 0-57. Correlations of physfcochenfcal pares>>ters and densitp of nacroinvertebrates collected in basket >>>>>>plea fron Falls to Nescopeck on the Susquehanna River, October 1972 (>> P<.05; ** P<.01) ~

so S c

gu o<"

~orb o>u Ggo e

e 740 ot4c tob Ob

.753 . 720 c bo c tko c o<>>

. 961*>> . 826 . 633 0 co c>

.936>> .832 .929* ~ 874* pe kGO

- ~ 165 .439 . 401 ~ 129 ~ 170

,o>'<

e T gG TO

. 549 ~ 92S* .797 . 591 .'766 .722 GO%'o

.865 .685 363 .950>> .682 .-.349 . 367 o+

fbi

~

o+

-.635 -.536 971>>>> -.462 .833 -. 381 -.670 -. 175 qo uGO o>

-. 831 . 634 -.972>>>> .684 .942* -.179 -.656 -.445 ~ 956>>

~ 530 -.021 ~ 108 . 530 . 201 ,'908>> -.371 ~ 172 ~ 099 o+~

-. 144 . 361 ~ 491 -.171 .211 .975"* .684 -.428 -.517 -. 291 -.91S>> 9 o~

c>~

.847 .567 - ~ 295 .912* -.624 .490 -.228 '.987** .126 .410 .810 .553

FALLS LACKAWANNA RIVER 10 0 SAMPLING STATIONS MILL CREEK WILKES-BARRE NANTICOKE STUDY SSES AREA-,

PA NESCOPECK Fig. C-1. Location of benthic macroinvertebrate sampling stations on the Susquehanna River, 1972.

120 MACROINVERTEBRATE DRIFT by Lynn Sabin TABLE OF CONTENTS Page ABSTRACTe ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 123 INTRODUCTION..... ~ . ~ ~.... ~.... ~.........

~ ~ ~ ~... ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 23 PROCEDURES.......... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

124 RESULTS AND DISCUSSION.... 126 Composition of Drift. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

126 Density 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 126 Seasonal Fluctuations ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 127 SSES ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 127 Falls..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 128 Iift

~ ~

D Ra 't e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 129 Diel Periodicity..... 129 RE FERENCES CITED.'............'........................,......., .. 130 LIST OF TABLES Table D-l. Sampling dates, River flow, volume of water filtered, and number of replicate drift samples collected during diel pumping at SSES and Falls on the Susquehanna River, June 1973 through May 1974...................... 132 Table D-2. Number, mean, and percent total of drifting macro-invertebrates in samples collected near the River surface and bottom during diel pumping at SSES on the Susquehanna River, June 1973....................... 133

121 Page Table D-3. Number, mean, and percent total of drifting macro-invertebrates in samples collected near the River surface and bottom during diel pumping at SSES on the Susquehanna River, July 1973....................... 134 Table D-4. Number... August 1973...........................'..., 135 Table D-5. Number . . . September 1973.. 136 Table D-6. Number . . . October 1973.............................. 137 Table D-7. Number . . . November 1973............................. 138

.Table D-8. Number... December 1973........................;.... 139 Table D-9. Number . . . January 1974... 140 Table D-10. Number . . . February 1974............................. 141 Table D-ll. Number... March 1974.......... 142 Table D-12. Number... April 1974............................. ~ ~ ~ 143 Table D-13. Number . . . May 19740 ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \~~~~~~~~~~ ~ ~ ~ ~ ~ 144 Table D-14. Mean number of drifting macroinvertebrates/10 m 3 and percent total in samples collected near the River surface during diel pumping at SSES on the Susquehanna River, June 1973 through May 1974...................... 145 Table D-15. Mean . . . collected near the River bottom . . . at SSES . . . June 1973 through May 1974.................. 146 Table D-16. Mean . . . collected near the River surface . . . at Falls . . . June 1973 thxough May 1974................. 147 Table D-17. Mean . . . collected near the River bottom . . . at Falls . . . June 1973 through May 1974................. 148 LIST OF FIGURES Fig. D-l. Mean number of drifting macroinvertebrates/10 m3 collected monthly during diel pumping, at Falls and SSES on the Susquehanna River, June 1973 through May 1974...................,........ 149

122 Page River flow and mean number of drifting macroinverte-brates/s collected monthly during diel pumping at Falls and SSES on the Susquehanna River, June 1973 through May 1974................................................ 150 3

Mean number of chironomids/10 m collected at 3-h intervals during diel pumping at Falls and SSES on the Susquehanna River, June and July 1973, and April and May 1974...................... 151

123 ABSTRACT Macroinvertebrate drift collected in the Susquehanna River at both Falls and SSES in 1973-74 was composed primarily of chironomids. Naidid worms and hydracarinids were also important components of the fauna at SSES. May-flies and caddisflies were abundant at Falls. More taxa were collected at SSES (51) than at Falls (36) . Macroinvertebrate density near the River bottom was about one-third greater than near the surface, although taxonomic composition was similar. Macroinvertebrate density at SSES was about twice that at Falls. Density was high a't both stations in June, July, and August. Maximum density occurred in June and minimum density in March. Macroinvertebrates at Falls were usually most abundant at night, whereas at SSES, periodicity was erratic.

INTRODUCTION Most benthic macroinvertebrates in streams and rivers enter the water column and drift downstream at some time in their life. The rate at which this occurs is affected by changes in light intensity, current velocity, water temperature,'stages of life cycle, and population density (Waters 1969). These and other factor's regulate both seasonal and diel fluctuations in macroinvertebrate drift density.

During the past 20 years, many descriptions of'macroinvertebrate drift in" streams have been published (Waters 1961, 1962; Elliot 1965),

but little work has been done in large rivers, such as the Susquehanna.

Objectives of this study'ere to describe seasonal and diel fluctuations of macroinvertebrate drift at two sites on the Susquehanna River.

124 PROCEDURES Macroinvertebrate drift in the Susquehanna River was sampled monthly from June 1973 through May 1974 near the Susquehanna SES (SSES) and at a "control" station, 64 km upriver at Falls, Pennsylvania (Fig. C-1) .

SSES was located near the periphyton station, 240 m upriver from SSES-A (Fig. A-1) .

A gasoline-powered, 10-cm (4-inch) trash pump was used to collect samples. The pump was mounted on a pontoon boat anchored in midchannel.

The pump intake was positioned 1 m upriver from the boat and could either be lowered or raised, using a small hand winch, to collect bottom or surface samples. Water was pumped through an interchangeable 216-y mesh net on which an ABS quick-opening bucket (Gale 1975) was attached.

Initially, pumping rate was determined by timing the'illing of a 1,280-liter trough five times; thereafter, the rate was checked monthly by filling it twice.

Each month, samples were collected at 3-h intervals throughout a 24-h period. In all months except June, four replicates were, collected near the River surface (about 50 cm below the surface) and near the bottom (within 10-20 cm of the substrate) during each sampling interval (Table D-1). By releasing dye near the mouth of the intake, a scuba diver was able to observe that benthic organisms were not drawn from the substrate, when the intake was 10 cm or more above it. Sampling began near the mid-point of the following intervals: 2231-0130, 0131-0430, 0431-0730, 0731-1030, 1031-1330, 1331-1630, 1631-1930, and 1931-2230 h.

125 Both SSES and Falls were sampled in the same 72-h period, usually when River flow was either stationary or decreasing. This negated possible effects of "catastrophic drift," a mechanical response of organisms to the disturbance of the substrate initiated by a rapid increase in current velocity (Waters 1965), and better isolated the behavioral drift.

Pump failure interrupted sampling at Falls in August 1973. Heavy ice floes prevented sampling at Falls in December 1973 and January 1974 ...

and interrupted sampling in December 1973 at SSES.

Samples were preserved in 10/ buffered formalin. Later, macroscopic organisms were removed from the samples and tabulated. The entire residue (or 1/3 of it, if dense) was examined with a dissecting microscope at 10 X magnification to remove minute specimens. The number of organisms in the residue (adjusted by a factor of 3, if subsampled) was added to the number of macroscopic organisms previously removed. In most instances, inverte-brates were identified to the family level with keys of Claassen (1931),

Johannsen (1934-37), Ross (1944), Burks (1953), and Pennak (1953) .

In 1977, a second series of surface and bottom replicates from SSES was examined (Tables D-2 through D-13) and, to date, two complete series of replicates from Falls and SSES have been examined. Data from both 1976 (Sabin 1977) and 1977 were stored in and processed with a Hewlett-Packard 9830A computer.

126 RESULTS AND DISCUSSION Composition of Drift 5

Composition of macroinvertebrate drift at SSES and Falls reflected differences in water quality at the two stations. Chironomids predominated at SSFS (67.2/ of the total drift), where acid mine drainage was a major pollutant (Tables D-14, D-15). Other major components of the drift were naidid worms '(11.0/) and hydracarinids (8.0/). Mayflies (5.1/) and caddisflies (2.2/) were collected frequently, but not in large numbers.

At Falls, where water quality was superior to all other sampling sites in 1973 (Ichthyological Associates 1974), chironomids (40.0/) were-not as abundant as at SSES (Tables D-14 through D-1'7). But mayflies and caddisflies, traditionally 'considered "clean water" taxa, were more abundant and composed 25.7/ and 24.3/ of the total, r'espectively.

Total number of taxa collected at SSES (51) was much greater than at Falls (36). 'Zhe mean number of taxa was slightly greater near the River'ottom than near the surface at both stations. At SSES, the range was II from 14 taxa collected in October to 39 in January, and at Falls, from 19 in November to 26 in July (Tables D-14 through D-17).

Density Mean density of drifting macroinvertebrates at SSES (209 organisms/

3 3 10 m of water) was nearly twice that at Falls (121 org/10 m ). Mean 3

monthly density at SSES ranged from 39 to 687 org/10 m (Tables D-14, D-15),

3 and at Falls, from 5 to 414 org/10 m (Tables D-16, D-17).

127 Density of drifting macroinvertebrates near the River bottom was about one-third greater than near the surface at both stations. However, differences within individual taxa were usually not evident, probably because of high variability between samples. Taxonomically, the composition of the drift was similar in surface and bottom samples (Tables D-14 through D-17).

Seasonal Fluctuations SSES Macroinvertebrate density fluctuated widely at SSES. Density was high in June, July, and August and then declined through November. It increased in December and January and declined again in February, March, 3

and April. Maximum mean density was observed in. June (579 org/10 m ) and 3

minimum mean density in March (43 org/10 m ) (Tables D-14, D-15).

Chironomids, naidid worms, mayflies, and nematodes were abundant in spring and summer. Chironomid density was high in June (x = 358 org/

3 3 3 10 m ), July (x = 308 org/10 m ), and August (x = 386 org/10 m ). Naidid 3

worms were most abundant in May (x = 91 org/10 m ) and June (x = 135 org/

3 10 m ) (Fig. D-1). Ephemerids, baetids, and heptageniids composed over 90.0X of the mayflies. Baetids were most abundant in May (x = 18 org/

3 3 3 10 m ) and June (x = 15 org/10 m ), ephemerids in June (x = 18 org/10 m ),

3 and heptageniids in July (x = 18 org/10 m ). Density of nematodes was 3

high in June (x = 15 org/10 m ) ~

128 Hydracarinids, hydropsychids, and empidids were abundant in autumn.

3 Density of hydracarinids was greatest in November (x = 54 org/10 m );

3 mean monthly density from July through November was 33 org/10 m (Fig; D-1). Hydropsychids were abundant in" August (x = ll org/10 m 3

), September 3 3 (x ~ 8 org/10 m ), and October (x = 9 org/10 m ) . Density of empidids 3

was greatest in October (x 14 org/10 m ).

In winter, densities of chironomids, naidid worms, and nematodes 3

were high. Nematodes were most abundant in January (x = 17 org/10 m ).

Density of chironomids and naidid worms decreased in autumn, but rose 3

again in December (x = 78 and 27 org/10 m , respectively) (Fig. D-l).

Falls As at SSES, macroinvertebrate density at Falls was high in June, July, and August. It decreased from September through March and then increased in April and May. Maximum mean density occurred in June 3 3 (350 org/10 m ) and minimum mean density'n March (8 org/10 m ).

Unlike at SSES, almost all taxa were most abundant in summer at Falls.

Chironomids were most abundant in July (x = 197 org/10 m ) and August (x 3 3 3 88 org/10 m ). Caenids (x 42 org/10 m ), ephemerids (x 39 org/10 m ),

3 and heptageniids (x = 24 org/10 m ) were most abundant in June. Density E

of hydropsychids was greatest in June (x 138 org/10 m ) and August (x =

3 74 org/10 m ) (Fig. D-1). Elmid beetles were most abundant in July (x =

26 org/10 m 3.); simuliids were abundant in June (x = 16 org/10 m 3

), July 3 3 (x 14 org/10 m ), and August (x 12 org/10 m ) (Tables D-16, D-17).

129 Drift Rate Drift rate, the total number of macroinvertebrates in the River passing a given point in one second (org/s), was calculated to compensate for changes in River flow. At SSES, 'drift rate ranged from 545 to 11,808 org/s and was greatest in January, as was River flow. Drift rate was also high in June and August and was low in October and November. Chironomid rate of drift fluctuated widely. In November, less than 20 chironomids were passing per second, but by January, over 8,000 chironomids/s were drifting (Fig. D-2).

Drift rate at Falls ranged from 109 to 6,576 org/s. It was high in June (x = 6,576 org/s), July (x ~ 3,154 org/s), and August (x =,2,690 org/s). It was low in November and February, but increased in spring.

Seasonal fluctuations in rate of drift of chironomids, mayflies, and 3

hydropsychids were similar to those observed in density (org/10 m )

(Figs. D-l, D-2) .

Diel Periodicity At SSES, fluctuations in macroinvertebrate density throughout the 24-h sampling periods varied from month to month. Periodicity of chironomids, hydracarinids, mayflies,'and caddisflies was erratic. In April and May, for instance, density of chironomids remained relatively V

stable throughout each sampling period. But in June, they were most 3

abundant during the afternoon'x ~ 555 org/10 m ) and least so in the 3

morning (x = 246 org/10 m ). By July, density was greatest near dusk (x ~ 560 org/10 m ) and least in late afternoon (x ~ 202 org/10 m ) (Fig.

130 Periodicity was more stable throughout the year at Falls than at SSES. Mayflies, caddisflies, elmids, and simuliids were most abundant at night. Periodicity of chironomids was also more stable at Falls; during April, May, and June, density ranged from ll to 80 org/10 m3 . The range in July, though greater than in other months (146 to 290 org/10 m 3 ), was still much less than at SSES (Fig. D-3) .

REFERENCES CITED Burks, B. D. 1953. The mayflies, or Ephemeroptera, of Illinois. Bull.

Ill. Nat. Hist. Surv. 26. 216 pp.

Claassen, P. W. 1931. Plecoptera nymphs of North America. Charles C.

Thomas Publ. Co., Springfield, Ill. 199 pp.

Elliott, J. M. 1965. Daily fluctuations of drift invertebrates in a Dartmoor stream. Nature (London). 205: 1127-1129.

Gale, W. F. 1975. A quick-opening bucket for plankton and larval fish nets. Frog, Fish-Cult. 37: 164.

Ichthyological Associates, Inc. 1974. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1973). Pa. Power and Light Co., Allentown, Pa. 838 pp.,

Johannsen, 0. A. 1934-37. Aquatic diptera. Parts I through IV.

Memoirs 164, 177, 205, and 210. Cornell University Experimental Station, 1934, 1935, 1937, and 1937, respectively. Reprinted in 1970 by Entomological Reprint Specialists, Los Angeles, Calif.

Pennak, R. W. 1953. Fresh-water invertebrates of the United States.

The Ronald Press Co., New York, N.Y. 769 pp.

Ross, H. H. 1944. The caddis flies, or Trichoptera, of Illinois. Bull.

Ill. Nat. Hist. Surv. 23. 326 pp.

131 Sabin, L. 1977. Macroinvertebrate drift. Pages70-120 in T. V. Jacobsen (ed.), Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1976).

Ichthyological Associates, Inc., Bexwick, Pa.

Waters, T. F. 1961. Standing crop and drift of stream bottom organisms.

Ecology 42: 532-537.

1962. Diurnal periodicity in the drift of stream inverte-brates. Ecology 43: 316-320.

1965. Interpretation of invertebrate drift in streams.

Ecology 46: 327-334.

1969. Invertebrate drift-ecology and significance to stream fishes. Pages 121-134 in T. V. Northcote (ed.), Symposium on salmon and trout streams. H. R. MacMillan Lectures in Fisheries, Univ. B.C.

132 Table D-1. Sampling datos, River flow, volume of water filtered, and number of raolicate drift samples collected during dial pumping at SSES and Falls on the Susquehanna River, June 1973 through May 1974.

/s) Vol. Filtered of Replicates Sampling Date SSES Falls Mean River Plow (m SSESa Pails pumping Rate (1 iter/min) (min/rap) 'm3/rep) pumping Duration No.

Surface Bottom Jun 13-14 12-13 193.8 188.0 1, 150 5.5 6.3 Jul 26-27 27-28 87.8 105.2 2,250 5. 0 11. 3 Aug 21-22 22-23 131. 3 105.7 2,250 5.0 11. 3 Sep 21-22 22-23 123. 6 93. 3 2,250 5.0 11. 3 Oct 12-13 13-14 68.7 60.0 2,250 5. 0 11.3 Nov 16-17 17-18 94.6 100.9 2,250 5.0 11. 3 Dec 20 222.3 2,250 5.0 11. 3 Jan 26-27 964.5 2,250 5.0 11.3 Feb 18 19 19-20 263. 0 212. 5 2,250 5.0 11. 3 Mar 18-19 19-20 531.9 483.0 2,250 5.0 11. 3 Apr 24-25 '5-26 503.0 439.0 2,250 5.0 11.3 Nay 28-29 29-30 284. 5 218. 0 2,250 5.0 11. 3 River flow at tho IA Laboratory (see physicochemical Analypes) was calculated with the formula:

Mver )'tan ~ 213.8 t 322.3 ('Mver level - 149) + 199.4 Wver level - H9)4 ~

b Rivor flow at Falls was calculated with data provided from tho Tcwanda, Old Forge, and Wilkos-Barro by tho USGS gauging stations (Ichthyological Associates 1974).

Table D-2. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface and bottom during diel pumping at SSES on the Susquehanna River, June 1973.,

DATE 13 'JUN 13 JUN 13 JVH 14 JUN 14 JUN 14 JUN 14 JUN 14 JUN STARTING Tl HE 1700 2000 2300 0200 0500 0800 1100 1400 VOI ~ FlLTERED (i(3) 6 '0 6 '0 6 '0 6 '0 6 ~ 30 6 30 SURFACE 6 '0 SURFACE 6 '0 SURFACE DEPTH SVRPACE SVRP ACE SVRPACE SURFACE SU RP ACE NOe NOe NOe NO ~ NOe NO, NO NO BEAN I TOTAL NEHATODA 9 37 3 0 3 12 8 16 11. 0 4' NAIDIDAB 24 105 6 41 46 66 64 57 51 ~ I 21 ~ 6 BRANCHIURA 0 3 0 0 0 0 0 0 Oe4 Oe2 HYDRACARINA 21 6 0 0 0 0 0 12 4~9 2~ I El'HENERIDAE 6 12 3 20 2 3 8 4 7~3 3~ 1 CAE N IDAE 6 6 0 0 0 3 0 6 2~6 le 1 BAETIDAE 0 11 3 I 4 6 2 7 4~3 I ~ 8 HEPTAGEHIIDAE 3 6 0 . 1 , 0 I 9 5 3~ 1 le3 BYDROPSYCBIDAE 3 0 0 9 0 3 0 0 le9 Oe8 BYDROPTII IDAE 0 3 0 0 0 0 0 0 Oe4 Oe2 PSYCBGDIDAE 0 0 0 3 3 0 0 3 le I Oe5 SIHULIIDAE 0 I 0 0 '0 1 0 2 Oe5 0~ 2 CHIRONONIDAE 57 285 44 95 70 154 196 252 144,1 60e 8 CH I RONOHIDAE (PUPAE) 9 3 0 4 2 8 7 4e3 le8 TOTAL ORGANISHS/SA)1PLE 138 478 59 174 130 250 295 371 236 ~ 9 ORGANISHS/IOH3 219 759 94 276 206 397 468 589 376 '

DATE 13 JUN 13 JUN 13 JUN 14 JUN 14 JVH 14 JVN 14 JUN 14 JVN SI'ARTIHG TINE 1700 2000 2300 0200 0500 0800 1100 1400 VOLe PILTERI D (N3) 6e30 6 ~ 30 6 '0 BOI'TOH 6 '0 BOTTOH 6 '0 BOI"ION 6 '0 BOITCtl 6 '0 B(YITGH 6 '0

'OITOle DEPTH BUTTON BOTTOHe NG ~ HO ~ NOe NOe NO ~ NO NOe NOe llEAN I TOTAL NEHATGDA 12 9 12 10 16 1 9 20 11. 1 3' NAIDIDAE 146 136 33 48 89 0 76 181 88 6 27 '

HYDRACARINA 0 6 3 3 0 2 0 6 2 ' 0~ 8 COLLEHBOLA 0 I 0 0 0 0 0 23 0 0.1 11 ~ I 0,0 3~ 4 EPBEHERIDAE 4 4 3 33 17 0 5 CAB NIDAE 0 0 3 6 12 I 0 0 2 ' 0~8 EPHEHERELLIDAE 0 0 0 0 0 I 0 0 0.1 Oe0 2'

BAL TIDAE 5 5 19 12 9 7 0 3 ~ 7~5 BEPTAGENIIDAE 3 9 21 14 24 9 6 17 12 ~ 9 4 '

PSYChOHYI IDAE 0 0 0 0 0 4 0 0 0~5 0 '

HYDROPSYCBIDAE 0 3 0 0 0 11 0 0 I ~ 8 0~ 5 LEPIDOPTERA 0 0 0 0 0 0 0 3 0~4 0. I DYTISCIDAE 0 0 0 I 0 0 0 0 0~ I 0~ 0 ELHIDAE 0 0 3 1 0 2 0 0 Oe8, 0~ 2 EL(IIDAE (ADULTS) 0 0 0 0 0 0 0 2 Oe3 0~ I TII'UlIDAE 0 1 0 0 0 0 0 0 0.1 0. 0 SIHULIIDM 3 I 3 0 6 I 0 4 2 ~ 3 0~ 7 CHI RONOHIDAE 217 217 95 176 199 36 60 371 171.4 52 ~ 8 CHIRGNGHIDM (PUPAF) 8 6 15 5 22 I I 27 10 ' 3~3 TOTAL ORGANI SHE/SANPLE 398 398 210 309 394 76 157 657 324 ~ 9 I

ORGAN SHE/10113 632 632 333 490 625 121 249 1043 515 ~ 7

134 Table D-3. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface and bottom during diel pumping at SSES on the Susquehanna River, July 1973.

DATE 26 JUL 26 JUL 26 JUL 26 JVL 26 JUL 26 JUL 27 JUL 27 JUL STARTING 'I'II4F 0830 1130 1430 1730 2030 2330 0230 0530 VOL ~ FILTERED (II3) 11. 30 11. 30 I l. 30 11 30 11 ~ 30 11. 30 11. 30 11. 30 DEPTH SVRPACB SVRPACB SURPACE SURFACE SURPACB SURFACE SURFACE SURPACB NO ~ NO~ NO ~ NO, NO ~ NOo BEAN 1 TOTAI NEHA'IODA 3 1

'2 2 2 I 1 3 8 2 ' i+2 i+6 NA ID IDM BYDRACARINA 4

24 9 7

29 3

10 2

18 2

4 11 3

'85 3+5 20,4 9~5 CABNIDAE 0 2 2 0 0 0 I 2 0 ' 0+ 4 BPHEHERELLIDAB 0 0 0 0 0 0 I 0 0~ I 0. 1 BAETIDAE 0 0 1 0 1 2 1 2 0' 0.4 HEPTAGENIIDAE 8 14 11 5 24 20 28 14 ~ 3 6+7 PSYCHOHYIIDAE 0 0 1 2 0 2 1 0~ 9 Oo4 HYDROPSYCHIDAE 0 4

0 1 0 0 2 0 ' 0~ 4 IIYDROPTILIDAE 0 I 2 I 0 0 1 0 ' 0+4 EIHIDAB 1 0 0 0 0 1 0 0' Oo3 ELHIDAE (ADULTS) 0 0 0 0 0 5 0 0' Oo4 CULICIDM 0 0 0 0 0 0 0 0~ 3 0. I SIHUI I IDM 6 5 3 I 6 10 12 6.0 2e8 EHPIDIDAE 1 0 2 1 4 0 6 2 ' 0~ 9 CHIRONOHIDM 111 102 123 90 101 116 '133 293 133m 6 62 ~ 6 CBIRONOHIDAE (PUPAE) 4 6 10 4 14 47 36 80 25 ~ I 11 '

TOTAL ORGANISHS/SAHPLE 162 135 196 126 152 214 225 498 213m 5 ORGANISHS/10H3 143 119 173 112 135 189 199 441 188 ~ 9 DATE 26 JUL 26 JUL 26 JUI 26 JUL 26 JUL 26 JUL 27 JUL 27 JUL STARTING TINE 0830 1130 14 30 1730 2030 2330 0230 0530 VOL ~ FILTERED (H3) 11 ~ 30 11. 30 11~ 30 11 30 11 ~ 30 11 ~ 30 11 ~ 30 11 ~ 30 DEPTH BUTTON 801'TOH SOTi BOT'IOH B OTTO II BOTTOH BOTTOH BOI"ION NO ~ NOe NOo NO ~ NO+ NO+ NO+ HEAN 4 TOTAL NEHATODA 10 8 19 6 7 5 12 5 9 ' 2~0 I~ 0 NAIDIDM 4 8 7 3 3 2 4 4 4 '

HYDRACARINA 30 33 54 40 80 12 16 30 36 ' 8 ~3 PERIIDAB 0 0 0 0 0 0 2 0 0~3 0. 1 CAENIDAE 0 3 1 1 0 I I 0 0~9 Oo2 EPBEHERELLIDAE 0 0 0 0 1 0 I 0 0~ 3 0~ I BMTIDM 2 0 1 1 6 0 1 3 1.8 0~ 4 HBPTAGENIIDAE 19 13 9 17 83 9 35 12 24 ' 5 '

PSYCBOHYIIDAB 1 0 1 0 1 0 0 0 0 ' Oe 1 HYDROPSYCIIIDAE 2 4 1 0 2 2 1 0 1.5 0~ 3 HYDROPTILIDAE I 2 4 1 0 0 0 0 0

1 0 0+2 0.2 ELHIDAE 0 1 0 0 2 0 3 0~8 EIIIIDAB (ADULTS) 0 0 0 0 2 7 6 0 1.9 Oe4 CULICIDM 0 0 0 0 0 0 1 6 0 ' 0.2 SIHULIIDAE 2 2 4 2 12 15 11 13 7.6 i+7 I I DAB EHP D 4 1 9 2 5 3 0 2 3~ 3 Oo7 CHIRONOHIDAE 293 260 308 149 455 152 236 144 249 ~ 6 56 ~ 5 CH IRONOHI DAB (PUPAE) 49 35 31 25 526 28 39 42 96.9 21 ~ 9 TOTAL ORGANISHS/SAHPLE 417 370 449 247 1185 236 369 261 441 '

ORGAN I SHS/IOH3 369 327 397 219 1049 209 327 231. 390 ~ 9

135 Table D-4. Number, mean, and percent total of drifting macroinvertobrates in s'amples collected near tho Rivor surface I

and bottom during diel pumping at SSES on thc Susquehanna River, August 1973.

k DATE 21 AUG 21 AUG 21 AUG 21 AUG 21 AUG 21 MG 22 AUG 22 AUG STARTIHG TINE 0900 1200 1500 1800, 2100 2400 0300 0600 VOL ~ FILTERED(H3) 11 ~ 30 11 30 11 ~ 30 11 ~ 30 11>>30 11>> 30 11 30 11 30 DEPTH SURPACE SURFACE SURFACE SURPACE SURFACE SURFACE SURF ACE SURPACE NO>> NO, NO>> NO>> NO ~ NO>> NO>> HEAN 0 TOTAL NEHATODA 3 0 1 0 0 0 1 0 0.6 0>>2 NAIDIDAE HYDRACARIHA 30 0

36 0

21 0 0 0 0 0 3 0~ 4 0~ I 37 21 12 9 22 23>> 5 7 ~8 COLLENBOLA 0 0 0 0 0 0 3 0 0~ 4 0~1 CAEN IDAE 0 0 0 1 4 0 0 0 0~ 6 0>>2 BAETIDAE PSYCHCHYI IDAE 11 0 0 12 0 6 0 1 0 0 0 ' 0~3 1 6 1 0 0 10 5>>l 1~7 HYDROPSYCHIDAE 0 8 2 11 3 5 5 10 5 5 1,8 ELHIDAE (ADULTS) 0 0 0 0 0 1 0 0~3 0~ 1 CULICIDAE SIHULI IDAE 0

4 0

9 0 0 2

0 0 2

0 6 0~8 0 '

5 7 9 7 5. 6 1>>9 EHP ID IDAE 4 2 1 9 4 4 1 0 3>> 1 1~0 E)IPIDIDAE (PUPAE)

CERATOPOGONIDAB 0

0 0

0 0

0 0

0 0

0 0

0 0 1 0~1 0 '

1 0 0 1 0~0 I

CH ROHO>>MIDAS 122 334 123 195 161 133 229 140 179 ' 59 '

CHIROHOHIDAE (PUPAL) 107 70 12 47 67 31 31 220 73 ~ 1 24 '

TOTAL ORGAHISHS/SAHPLE 281 471 166 314 268 189 290 419 299 8 ORGAHISNS/10M3 249 417 147 278 237 167 257 371 265. 3 DATE 21 AUG 21,AUG 21 AUG 21 MG 21 AUG 21 AUG 22 AUG 22 AUG STARTING TINE 0900 1200 1500 1800 2100 2400 0300 0600 VOL ~ FILTERED (H3) 11 ~ 30 11. 30 11. 30 11.30 11>> 30 11 30 11.30 11 DEPTH BO1'TOH BUTTON DOT TCH BOY)H BOT'IOH BOTTCH BOITOH 30'O1'10H

'I'A XA HO>> NO>> NO>> NO>> NO ~ NO>> NO ~ NO, HEAR 8 TOTAL NEH ATODA NA IDIDAE 16 1 0 0

.0 3

0 0

1 0 0 0 0 ' 0~ 0 0 0 0 0 2>>4 0>>3 HYDRACARINA 21 i2 126 ,57 36 18 46 90 50 ~ 8 6 ~4 COLLEHBOLA 0 "3 6 0 0 I 0 1>>3 0~2 CAEN IVAE IIASTI VAE 0

0 0

0 0

0 0

0 0

0 3

1 0 0 ' 0 0 3 0~ 5 0~ 1 IIBPTAGEHIIVAE 0 0 0 0 0 0 0 1. 1 0. 1 COFNAGRIVNIDAE PSYCHOHYIIDAE 0

13 0 3 0 >> 3 0 I I.

~ 0>>1 HYVROI'SYCHIVAB 2 6 3 9 0 5.1 0>>6 15 ,17 6 14 5 6 9~0 1.1 hYDROPTII IDAt: 0 0 0 6 0 0 0 0 ' 0>> 1 LEPTOCERIVAt: 0 0 0 0 0 0 0 ,0 ' 0>>0 t LHIDAt 0 0 0 3 0 0' 0>>0 LIIIIVAE (ADULTS) 0' 0>>l SIHVLIIDAt.

SltVLIIVAt: (PUPAE) 10 0

2 10 0

0 ll0 0

25 4

0 1

5 0

1 6

0 0

5 0

9' 0'

l>>2 0~ 0 I'III'IV I 48 25 8 13 13 7 19 16 ' 2 '

DAL'HPIDIDAF (PUPAE) 3 2 0 0 1 2 0 0 1.0 0>>1 CH IRONUIIIDAB 2092 686 530 505 371 222 182 343 616 ~ 4 77>>9 CHIRONQHIVAE (PUPAE) 141 71 61 101 74 18 23 92 72 ' 9~2 TOIAI 0RGAHI SIIS/SAtlPLE 2351 824 775 684 557 296 281 558 790 ~ 8 ORGAN I SF S/10H 3 2081 729 686 605 493 262 249 494 699.8

136 Table D-5. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface and bottom during diel pumping at SSES on the Susquehanna River, September 1973.

DATE 21 SEP 21 SEP 21 SBP 21 SFP 21 SEP 21 SEP 21 SEP 22 SEP STARI'I HG TINE 0600 0900 1200 1500 1800 2100 2400 0300 VOL ~ t'I LTLRED I H3) lie 30 1 le 30 11. 30 11. 30 11. 30 11 ~ 30 11 ~ 30 11 ~ 30 DEFI'll SURFACE SURFACE SURPACB SURPACB SURFACE SURFACE SURFACE SURFACE IIOe HOe HO ~ NOe NO ~ NO NOe WOe tEAN 4 TOTAL H IR IATODA 3 9 0 0 0 0 4 I 2~ I le3 HAIDIDAE 0 0 7 0 0 0 10 3 2 ' le5 HYDRACARINA 9 24 27 9 12 16 9 12 14 ~ 8 8e9 COILEHBOLA 0 0 0 0 0 3 0 0 0~4 0~2 BAETIDAB 0 0 0 0 0 1 0 0 0.1 0 I COENAGRI Ctt I DAB 0 0 0 0 3 0 eO 3 0~8 'Oe 5 PSYCHOIIYI.IDAB 0 6 0 3 3 3 1 3 2 4 NYOROPSYCIIIDAB 0 7 10 0'

1 18 9 2 16 7 ' o.'e LEF'IOCERI DAB 0 0 1 3 0 0 0 Oe5 EltIIDAB 0 0 0 0 0 0 1 0 1 CULICIDAS 0 0 3 0 0 0 0 0 0 ' Oe2 SIIIULIIDAE 1 4 0 2 1 0 2 0 1.3 0 '

Sf elUf I IIIAC (PUPAE) 0 0 0 0 0 0 1 0 0.1 0.1 EHF ID IDAE 4 3 15 1 0 I 0 3~ 4 2 '

CBI ROltOIIIDAB CIIIROHOIIIOAE (PUIeAE) 69 16 126, 49 130 17 3'6 16 164 25 98 18 103 13 82 15 108 '

21 ~ 1 65 '

12 '

'I'Ol'AL ORGANISNS/SAHPLB 102 228 209 131 230 148 146 136 166 '

ORGAN I SHS/I III3 90 202 185 116 204 131 129 120 147 ~ I DATV 21 SEP 21 SEP 21 SEP 21 SEP 21 SEP 21 SBP 21 SBP 22 SEP STARTItIC 0600 0900 1200 1500 1800 2100 2400 0300

~

Tltlt'oL PIf 1'ERt.D (H3) 11 ~ 30 1 le 30 1 le 30 1 le 30 I1 ~ 30 11 ~ 30 1le30 11 ~ 30 DEPTII 8 OPTOII DOTTOH BOP TQtl BOTTOH BOTTOH 8 OZTCII BOTI'Otl BOP'1OII NO ~ NO, NOe NO ~ tiO NOe NOe tIEAN t TOTAL lt F t I ATOUA 0 0 0 3 3 1 0 0 0 ' 0~3 NA ID IDAE 3 0 1 0 0 0 3 1 1~ 0 0~ 4 IIYDRACARINA 22 21 27 27 30 18 15 14 21 ~ 8 8 ~0 BAE'I'IDAE 0 0 0 0

  • 0 0 I 0 0.1 Oe0 COEt<AGRIOIIIDAE 0 0 0 0 0 0 3 2 0~6 0~2 PSYCIIOLIYI IDAE 0 3 3 9 I 0 0 0 2 ' 0~7 HYORVPSYCIIIDAE 4 5 5 1 8 3 3 2 3' 1 4 I BPTOCLRIDAE 0 0 0 0 0 0 0 I Oe 1 Oe0 SltlUL'IIDAB 1

' 0 1 0 2 0 0 2 0~8 Oe3 EHf'IDIDAE 1 17 6 3 0 0 3 4 ~ I 6 CERATOPOGOHIDAE 0 0 0 0 0 1 0 0 'e1

0. 0 CIIIRUHONIDAE 156 148 421 222 292 119 146 108 >01 ~ 5 74 ~ 1 CHIRONOIIIDAB (PUPAE) 23 47 64 43 54 20 12 16 34 ~ 9 12 ~ 8 TOTAI 0RGANI SHS/SANPLE 210 228 539 311 393 162 183 149 271e9 ORGANISIE/10H3 186 202 477 275 348 143 162 132 240.6

137 Table D-6. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface andbottomduring diel pumping at SSES on the Susquehanna River, October 1973.

12'OCT 13 OCT DATE STARTING TINE 12 OCT 0600 '900 12 OCT lle30 1200 lie 12 OCT 1500 llo30 12 OCT 1800

11. 30 12 OCT 2100 lie 30 12 OCT 2400 11 30 0300
11. 30

'O VOLe PI(TERED(H3) 11 ~ 30 30 DEPTH SURFACE SURFACE SURFACE SURPACE SURPACE SURFACE SORPACE SO RPAC E NOo .NOo, NOe, NO NOo NO ~ NO llEAN 8 TOTAL TARDIGRADA 0 2 0 0 0 0 0 0 0~3 0~5 NAIDIDM 1 0 0 0 0 0 0 0 0~ 1 0~2 HYDRACARINA 18 12 5 23 38 53 29 30 26.0 51. 6 PSYCBQ(YI.IDAE 0 0 0 1 2 1 0 0~ 6 1~2 HYDROPSYCHIDAE 0 6 1 5 11 19 8 7 7.1 14 1 BYDROPTILIDAE 0 0 0 0 0 0 1 0 0~1 0~2 EHP IDIDAE CBIRONOHIDAE CHIROaOHIDM (PUPAE) 2 7

0 10 9

0 4

3 0

1 2

0 9

18 2

14 4

3 ll 9

1 7

13 0 .

7 8

0' 13 16.6 1.5 TOTAL ORGAN I SHS/SAHPLE 28 39 14 31 79 95 60 57 50 '

ORGANISl(S/10H3 25 35 12 27 70 84 53 50 44 '

DATE 12 OCT 12 OCT 12 OCT 12 OCT 12 OCT 12 OCT 12 OCT 13 OCT STARTING TINE 0600 0900 1200 1500 1800 2100 2400 0300 VOLe FILTERED (H3) 11%30 llo30 11 ~ 30 llo30 lie 30 11 ~ 30 lle30 lie 30 DEPTH 8 OI'TQ'l BOTTOH BOITOH BUTTON BOI'YOH BOTTQ( BOTTOH BOI"IOH NOo" NO ~ NOe NOe NOe NOo NOe NOo )(EAN 4 TOTAL NAIDIDM 1 0 0 0 0 0 0 0~ I 0.1 BYDRACARINA 24 26 23 45 75 53 57 33 42 ' 49 '

COENAGRIONIDAE 0 0 0 0 0 0 1 0 0~1 0.1 PSYCBOHYIIDAE 0 0 2 0 2 0 1 1 0 ' 0 9 HYDROPSYCHIDAE 3 5 6 13 19 21 15 10 lie 5 13o 7 HYDROPTILIDM 1 0 0 0 0 0 2 1 0.5 0.6 S I HO LI I DAB 1 0, 0 0 0 0 13 24 0

14 0 0 1 17 ~ 3 0~ 1 20 ~ 5

.EHPIDIDAE 8 4 15 21 39 o CH I RON I D AE 10 5 5 13 27 9 9 5 10 ~ 4 12.3 OH CllIRONOHIDAE (PUPAE) 1 0 2 2 3 1 I 1~4 1.6 TOTAL ORGANISHS/SAHPLE 49 40 53 94 165 97 110 65 84 ~ I ORGAN ISHS/ION3 43 35 47 83 146 86 97 58 74 ~ 4

138 Table D-7. NuWer, mean, and percent total oE drifting macroinvortebrates in samples collected near tho River surFace and bottom during dial, pumping at SSES on tho Susguehanna River, November 1973.

DATE STAR1'ING TINE 16 NOV 0600 16 HOV 0900 16 NOV 1200

'6 NOV 1500 16 NOV 1800 16'NOV 2100 16 NOV 2400 17 NOV 0300 VOL, FILTERED(N3) 11>>30 11>>30 11 ~ 30 11 ~ 30 11>> 30 11>> 30 11>>30 11>> 30 DEPTH SURPACE SURFACE SURFACE SURPACE SURPACE SURPACE 'URFACE SURFACE NO ~ HO>> NO>> NO>> NO>> NO ~ NO NO>> BEAN 4 TOTAL HAIDIDAE 0 0 0 0 0 Q 0 0~1 0 '

NYDRACARIHA 30 26 121 253 54 15 13 64 ' 91 '

COLLEHBOLA 0 0 0 I 0 0 0 0~ 1 0 '

PERLIDAE 0 0 0 1 0 0 0 0~ 1 0 '

NEPTAQEHIIDAE 0 0 0 0 0 1 0 0~1 0 '

BYDROPSYCHIDAE 0 0 2 1 0 0 0 0 ' 0 '

SIHULIIDAE 0 1 0 0 0 0 1 0>>3 0 '

EHP ID I DAB 2 0 1 12 7 6 2 3>>8 5 '

'I'>>6 l>>1

'17 CBIROHONIDAE 0 1 0 4 2 0 1 TOTAL ORQAHISNS/SAHPLE 32 28 124 272 63 22 9 70 9 ORQAHISHS/10N3 28 25 110 241 56 19 8 15 62 '

DATE STARTING TINE VOL>> PILTERED(N3) 16 NOV 0600 11>> 30

'900 16 NOV 11>> 30 16 NOV 1200 11 ~ 30 16 NOV 1500 11 ~ 30 16 NOV 1800 11 30 16 NOV 2100 11 ~ 30 16 NOV 2400 ll>> 30 17 NOV 0300 11>> 30 DEPTH BOi'TOH BOTTON BOZTON BOTTOH . BO1'TOM BOTT(Y( B OTTO N BOT'B)N

>NO. NO>> 'O>> NO ~ NO, NO, NO>> NEAN 4 TOTAL HENATODA 0 0 0 1 0 0 0 0 0~ 1 0>>2 NYDRACARINA 51 113 109 134 29 17 25 22 62 ~ 5 88 '

COLLENBOLA 0 0 0 0 0 0 1 0 0~ 1 0>>2 ODONATA 0 0 0 0 1 0 0 0 0~ I 0>>2 NYDROPSYCBIDAE 1- 1 0 1 1 4 1 0 1~1 1>>6 BYDROPTILIDAE 1 0 0 0 . 0 0 0 0 0 ~ I 0>>2 ELHIDAE 0 0 0 0 0 0 1 0 0.1 0>>2 ELHIDAE (ADULTS) 0 0 0 0 0 0 1 0 0 I 0~ 2 SINULIIDAE. a 0 0 0 0 0 I 0 0~ I 0>>2 I

E) )P ID DAB 5 3 1 9 4 4 3 4 4 ' 8 5

-3 '

I CB ROHONI DAB 0 1 0 4 2 5 3 2 2 I TOTAL ORGANISHS/SAHPLE 58 118 110 149 37 30 36 28 70>>8 ORGANISNS/10N3 51 104 97 132 33 27 32 25 62 '

139 Table D-8. Number, mean, and percent total, of drifting macroinvertebrates in samples collected near the River surface and bottom during diel pumping at SSFS on the Susquehanna River, December 1973.

DATE 20 DEC 20 DBC 20 DBC 20 DEC 20 DEC STAR1IHG TIME 0900 1200 1500 1800 2400 VOLe FILTERED(M3) 11 30 11. 30 11 ~ 30 11. 30 11,30 DEPTH SU RF ACE SURFACE SURFACE SURFACE SURFACE TATA HO, HO ~ NOe 'O ~ NO ~ MEAN  % TOTAL H E)IATODA 1 12 6 9 6e4 3.8 TARDIGRADA 0 3" 0 0 0 0.6 0~ 4 HAIDIDAB 2 49 74 3 47 35 ~ 0 20.8 HYDRACARINA 8 28 33 3 7 15 ~ 8 9.4 COLLEMBOLA 1 0 0 0 5 1~ 2 0 '

HEPTAGENI IDAE 3 6 3 6 7 5~0 3~0 HYDROPSYCHIDAE 0 3 1 0 1.6 1~ 0 HYDROPTILIVAE 0 6 0 0 0 1~ 2 0 '

EIN41 DAB 0 0 0 3 0 0~ 6 0.4 TIP UI IDAE 0 0 0 0 1 0.2 0 ~ 1 PSYCHODIDAB 1 3 0 3 1 1,6 1~ 0 EMPIDIDAB 1 3 3 0 3 2~ 0 1~2 CHI RON OMIDAE 28 186 88 54 129 97 ~ 0 57. 7 TOTAI ORGAN I SllS/SAMPLE 45 299 208 81 208 168.2 ORGANISMS/10l43 40 265 184 72 184 124 ~ 0 DATE 20 DEC 20 DEC 20 DEC 20 DEC 20 DEC S'1'ARTING TIME 0900 1200 1500 1800 2400 VOL ~ FILTERED(M3) 11. 30 11. 30 lie 30 11.30 lie 30 DEPTH HOT'1'OM BOTTOM BOTTOM BOTTOM BO1'TOM NOe NO ~ NO ~ NOe NO ~ MEAN 4 TOTAL HEMATODA 9 6 0 0 9 4 ' 2 ~8 RAID IDAB 23 129 0 58 42.8 24 '

HYDRACARIHA 21 24 12 3 21 16.2 9 '

COLLEMBOLA 3 3 0 9 12 5.4 3 '

BAETIDAE 0 0 0 0 3 F 6 0 3 HEPTAGBHIIDAE 12 21 6 12 6 11.4 6.6 PSYCHOMYI IDAE 0 0 0 1 0 0 ' 0~ 1 11YDROPS YCHI DAB '1 0 0 4 l. v 0 '

,HYDROPTILIDAE 6 0 0 3 0 1~h 1~0 PSYCHODIDAE 0 3 0 0 12 3 0 1 7 CHAOBORIDAE 0 0 0 1 0 0~2 0~1 EMPIDIDAE 0 6 0 0 9 3 ' 1 7 CERATOPOGONIDAB 0 0 0 0 0.8 0~5 CHIROHOMIDAE 80 95 31 45 154 81 ~ 0 47 ~ 0 SPHAERIIDAE 0 1 0 0 0 0 ' 0.1 TOTAL ORGANISMS/SAMPLE 154 289 53 74 292 172 ~ 4 ORGANISMS/10M3 136 256 47 65 258 127 ~ 1

140 Table D-9. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface and bottom during diel pumping at SSES on the Susquehanna River, JanuarY 1974.

DATE 26 JAN 26 JAH 26 JAN 26 JAN 27 JAN 27 JAN 27 JAN 27 JAN STARTI HG TINE 1400 1700 2000 2300 0200 0500 0800 1100 VOL ~ PIL TERED (H3) 11. 30 Ii+30 11 30 Ii+30 1 le 30 11. 30 11. 30 11. 30 DEPTH SURPACE SURPACE SURPACE SURPACE SURFACE SURPACE SURFACE SURPACE HO ~ NO ~ NO ~ NOe NO ~ NOe NO, NOe b TOTAL NCHATODA 28 36 22 20 29 45 16 36 29 ~ 0 21 ~ 6 TARDIGRADA 0 0 0 0 0 1 0 0 0~I Oo I NAIDI DAB 2 4 5 1 "7 14 5 5 5 ' 4 '

TUSIPICIDAE 0 0 0 3 ,0 5 0 3 1~4 i+0 BYDRACARIHA 0 3 1 4 2 5 2 1 2 ' lo7 COLLEHBOLA 0 3 4 0 3 1 5 1 2 ' lo6 CAPHI IDAE 1 0 0 0 0 0 0 0 0~1 Oe 1 CAEN IDAE 0 0 0 0 0 0 1 1 0~3 0~ 2 EPllEHERCLLIDAE 0 0 0 0 0 1 I 0 0.3 0~2 BAETIDAE 1 0 2 0 0 0 0 1 0 ' 0~ 4

)lEPTAGEHIIDAE 3 6 5 2 3 5 5 2 3 ' 2o9 PSYCBOHYIIDAE 1 0 0 0 0 0 1 2 0 ' 0~ 4 NYDROPSYCHIDAE 2 4 2 4 0 0 3 0 i+9 I+ 4 HYDROPTILIDAB 3 3 0 2 0 2 0 1 1.4 leO COLEOPTERA 0 0 0 1 0 0 0 0 0.1 0.1 ELHIDAB 0 2 0 1 0 0 1 I 0~ 6 Oo5 TIPULIDAE 0 0 0 0 0 0 1 1 0~ 3 0~2 PSYCBODIDAE 0 0 1 0 0 I 0 0 0~3 0~2 CilAOBORIDAE 0 0 0 0 0 0 1 0 0~1 0.1 SIHULIIDAE 0 0 0 1 0 1 0 0 0~ 3 0~ 2 TABANIDAE 0 0 0 1 0 0 0 0 0~1 Owl EHPIDIDM 1 0 5 1 0 3 1 0 I ~ 4 i+0 CERATOPOGONIDAE 0 0 2 0 1 0 1 0 0~5 0~4 CB I ROHOHIDAE 46 118 59 57 75 143 55 99 81 ~ 5 60. 8 TOTAL ORGANISHS/SAHPLE 88 179 108 98 120 227 99 154 134 ~ 1 ORGAN ISHS/10H3 78 158 96 87 106 201 88 136 118 ~ 7 DATE STARTING TINE VOL ~ FILTERED (H3) 26 JAH 1400

11. 30 26 JAN 1

1700 le 30 26 JAH 2000 11 ~ 30 26'JAN 2300 Ii+30

'200 27 JAH 11 ~ 30 27 JAN 0500 lie 30 27 JAH 0800 glo 30 27 JAH 1

1100 la 30 DEPTli BOTTOH BOTTOH B(KTOH BOTTOH BOTTOH BOTTCH BCT'LOH BUTTON HO NO ~ HO ~ HOe NOo HOe 4 TOTAL NEHATODA 18 46 36 78 23 40 42 45 41 ~ 0 '22. 3 HA ID IDAE 0 4 1 6 6 3 7 8 4~4 2~4

'1ULIFICIDAE 0 0 7 0 0 6 6 0 2~4 1~ 3 NYDRACARIHA 0 0 3 6 0 15 3 0 3~4 I ~ 8 COL(,E)BOLA 0 3 6 12 0 3 3 0 3~ 4 I ~ 8 CAPHIIDAE 0 0 0 0 1 0 0 0 0~ I Oo I I'ERLIDAE 0 0 0 1 0 0 0 0 0~ I 0. I CPHENERELLIDAC 0 0 3 0 0 0 0 0 0 ' 0.2 BAETIDAI. 4 0

'3 I 0 0 1 0 6 I 5

~ 0~ 8 BEPTAGCN II DAB 3 7 3 0 7 4 9 4' 2.4 COENAGRIOHIDAE 0 0 0 0 I 0 0 0 0.1 0.1 HO'IOH ECT ID M 0 0 1 0 0 0 0 0 ~ I 0,1 PSYCH(r(YIIDAE '1 0 0 0 0 0 0 0 0.1 Oo I ilYDROPSYCHIDAE 3 11 6 6 3 3 0 4 4 ' 2~ 4 HYDROPTILIDAF 0 0 3 3 0 3 0 0 I I

~ 0,6 ELHI DAB 3 0 1 I 0 0 0 0

'0 0~G 0.3 ELIIIDAE (ADULTS) 0 0 0 0 0 0 0~4 0~ 2 PSYCBOOIDAE 3 1 0 6 0 0 0 1.3 Oo7 C(iPIDIDAE 0' gl

  • 7 0 0 0 0 I ~ 0 0,5 CERATOPOGOHlDAE 0 0 0 0 0 0 0~4 Oe2 CHI RONOHIDAL 105 91 116 157 62 91 112 172 113. 3 Gl ~ 5 SPBAFRI I DAB 1 0 0 0 0 0 0 0 0~ I 0~ I TOTAL ORGAHI SHE/SA)iPLE ORGAHI SHE/10H3 141 125 160 142 198 175 279 247 96 85 178 158 177 157 244 21G

'84 ~ I 162 ~ 9

141 Table D-10. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface and bottom during diel pumping at SSES on the Susquehanna River, Februarf 1974.

DATB 18 PEB 18 PEB . 18 FEB 18 PED 18 fEB 19 PBB 19 FIB 19 FEB STARTING TINE 1200 1500 1800 2100 2400 0300 0600 0900 VOL ~ FIITBRED(N3) 11. 30 11. 30 11. 30 11 ~ 30 1 lo 30 11. 30 1 1 e 30 11. 30 DEPTll SURPACE SURPACB SURFACE SURPACE SURPACE SURFACE SURF lICE SVRPACE HOo NOe NO ~ NOe NO ~ NOo NO, BEAN 8 TOTAL HEBATODA 0 6 0 3 0 4 6 12 3 ' 5.9 HAIDIDAE 0 1 0 3 4 6 6 0 2 ' 3~8 BYDRACARINA 0 6 0 0 0 3 6 0 1.9 2.8 COI LEHDOLA 3 3 0 6 0 0 9 7 3+5 5.3 CAP HI IDAB 1 0 0 1 0 0 0 0 0.3 0 '

BPBENERELLIDAE 3 0 0 0 0 3 1 0 0 ' 1.3 DAtTIDAB 0 0 0 0 0 0 6 0 0' 1.1 BBPTAGENI IDM 4 2 3 0 3 0 1 1 1.8 2 Q7 HYDROPS YCH IDAE 3 3 0 3 0 0 1 0 i+3 i+9 EI'lIDAE 0 0. 0 0 1 0 0 0 0~ 1 Oo2 PSYCBODIDAE 0 0 0 0 0 0 0 3 0~ 4 0 '

EIIPIDIDAE 0 0 3 3 3 3 3 4 2 ~4 3 '

CBIROHOHIDAB 45 56 47 49 40 27 65 43 46 ' 70 '

'I%PAL ORGAN ISNS/SAtlPLB ORGAN ISNS/ION3 59 77 53 68 51 46 104 70 66 '

52 68 47 60 45 41 92 62 58 ~ 4 DATE 18 FEB 18 PEB 18 fEB 18 FED 18 FEB 18 PEB 18 FEB 18 FEB STARTIHG TIllB 1200 1500 1800 2100 2400 0300 0600 0900 VOLe FILTERED (N3) 11. 30 1 lo 30 11 ~ 30 1 1+ 30 1 le 30 lie 30 lie 30 11+30 DEFI'B BOITON BOTION BOZTCN BUTTON BOT'IOH BOTTCH BOXTON BOX'1QN TA XA NO+ HO ~ NOo HO I NO ~ HOo NOI NO BEAN t TOTAL N EN A'1'OD A 9 7 6 15 15 12 39 21 15.5 lie 8 TARDIGRADA 3 0 0 0 0 0 0 0 0 ' 0 3

~

NAIDIDM 10 1 2 0 4 0 6 7 3 ' 2' rub I F I CIDAE ISUPODA 0

I 0

0 0

0 0

0 0

0 0 3 0 0 ' 0,3 0 0 0 0 1 Oo 1 HYDRAC*RINA 6 12 0~ 3 0 0 3 6 3' 2 '

COI I EIDOLA 3 3 0 0 3 0 0 6 1+9 i+4 CAPNIIDAE 0 3 0 3 1 3 0 2 i+5 I ~ 1 EPBBNERt,l LIDAB 3 1 0 0 0 0 0 0 0 ' 0~4 tIAETIDAB 0 0 0 1 1 0 0 1 0 ' Oa3 BEPTAGEHI I DAB 4 8 3 19 10 8 4 7 7o9 6 '

BYDROPSYCBIDAE 10 5 1 3 1 0 1 1 2 ' 2o 1 BYDROPTILIDAE 3 0 0 0 0 0 3 0 0' 0~ 6 ELNIDAE

'I'I PUI IDAE 0

0 0

0 0

0 1

0 0

I 0

0 0

0 0

0 Or Owl i 0,1 0.1 PSYCBODIDAE 0 0 0 0 0 3 0 0 0 ' 0+ 3 BNPIDIDAE 1 3 0 1 0 6 0 1 1~ 5 I ~ 1 I

CB RONONI DAB 123 142 54 67 49 67 1 31 89 90 ~ 3 68 ~ 4 TOTA I ORGAN I SNS/SANPLE 176 185 66 113 85 99 190 141 131 '

ORGAN ISNS/IOH3 156 164 58 100 75 88 168 125 116 ~ 7

142 Table D-11. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface and bottom during diel pumping at SSES on the Susguehanna River, Harch 1974.

DATE STARI'ING TINE 18 HAR 1100 18 HAR 1400

  • 18 HAR 1700 18 HAR 2000 18 HAR 2300

'9 HAR 0200 19 IIAR 0500 o 19 IIAR 0800 VOLe PILTERED(H3) 11 30 lle30 11 ~ 30 11 30 11 30 11 ~ 30 lle30 11 30 DEPTH SURPACE SVRPACB SVRPACB SURPACE SURFACE SURPACE SVRPACE SVRPACE TAXA NOe NOe NO ~ NO ~ NOe NO ~ WOe ttOe HEAtt t 'TOTAL NEHATODA 3 0 8 0 1 0 6 3 2 6 4 ~4 ttAIDIDAB 5 6 11 3 6 5 2 2 Se0 8 ~3 TUB II'ICIDAB 1 0 0 4 3 0 4 0 le 5 2~5 NYDRACARINA 0 0 0 3 0 0 0 0 0 ' 0 '

COIIEHBOLA 4 3 0 0 0 0 3 0 1~3 2 1 Ei'BBHBREI LIDAE 0 0 0 0 0 0 0 3 0 ' 0.6 o)ABTIDAB 0 0 0 0 0 0 0 1 0 1 0 2 HBPTAGBNI IDAE 0 3 0 1 3 6 1 3 2 1 3 '

NYDROPSYCIIIDAE 1 0 1 0 I 0 0 0 0 ' 0 '

PSYCBOOIDAE 0 I 0 3 0 0 0 0 0~5 0 '

BotP ID )DAB 3 0 0 0 0 0 0 0 0' 0 '

CIIIROtiOHIDAB 34 40 85 52 31 56 29 36 45e4 75 '

TOTAl ORCANISHS/SAHPLE 51 53 105 66 45 67 45 48 60 ~ 0 O&iGAttISHE/1083 45 47 93 58 40 59 40 42 53el bATE 18 NAR 18 IIAR 18 HAR 18 HAR 18 HAR 19 IIAR 19 HAR 19 )IAR Sl'ARTING TINE 1100 1400 1700 lle30 2000, lle30 2300 11 ~ 30 0200 11 ~ 30 0500 11 '0 "

11 0800

'0 VVI ~ P I I 'I'BRED (113) 11. 30 11 ~ 30 LLPTh BOT 1OII BOP'IOP 8OI'TCH "

8OTTOH BOTTOH BOT'ICH 8 OTTO)I DOT TON

'I'A XA toO ~ NO, IIVe NOe NO, NOe NOe NOe HEAN  % TOTAI t4EHATODA 0 0 3 9 15 9 6 18 7 ' "11 ~ 1 ttA ID)DAB 0 0 0 8 6 6 3 5 3~ 5 5 '

'I'UBI PIC IOAE 3 1 4 0 0 0 0 0 1 0 I ~ 5 N YD BACARl N A 0 0 3 0 6 0 0 3 1~5 i 2e2 COI LEMOLA 9 9 3 0 9 3 0 9 5~3 7~8 Nut)3URIDAE 0 0 0 0 lo 0 0 0 0~ I Oe2 BlttstimkLLliuAto 0 0 3 I 0 0 1 0 0 ' 0,9 UAETIDAL 0 0 0 0 0 1 0 0 0~ I Oe2 NEII'ACCNIIDAE 0 0 3 I 3 0 0 6 I 1.6 2 4 ttYDRO&SYCIIIDAE 1 I 3 4 I 0 0 I ~ 5 2~2 IIY(oROPl'ILIOAB 3 0 3 3 0 0. 0 0 I ~ 1 le7 LEa'ILC&TERA 0 0 0 0 1 0 0 0 0~ I 0. 2 L'LtI I D AE 0 0 0 0 0 0 3 0 0 ' 0.6 Oe2 TIPULlDAI! (I'Ui'AB) 0 0 0 0 0 0 1 0 0~ 1 PSYCIIOuIDAB 0 0 0 0 0 0 3 I 0~5 0.7 k.ttPIDIIIAE 0 0 3 0 3 0 0 3 1. I le7 CIII ROAOIIIDAB 52 11 G2 64 46 23 15 59 41 ~ 5 61 '

'KOTAL Of CAN I SIIS/SAIIPLE 68 22 90 92 89 43 38 99 67. 6 ORGAIIIStiS/10113 GO 19 80 81 79 38 34 88 59 ~ 8

143 Table D-12. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface and bottom during dial pumping at SSES on the Susquehanna River, April 1974.

DATE 24 APR 24 APR 24 APR 24 APR 24 APR 24 APR 24 APR 25 APR STARFING TIHB 0600 0900 1200 1500 1800 2100 2400 0300 VOL, FILTERED(M3) 11 30 11% 30 11. 30 11 ~ 30 11. 30 11. 30 11. 30 11 30 DEPTH SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURPACE SURPACB TAXA NOe NOe NOo NO+ NO ~ NO+ NOo NO, MEAN 6 TOTAL NEHATODA 15 12 15 33 21 6 6 13. 6 9 '

MAID IDAB 7 0 1 25 1 16 -7, 7 ' 5 '

TUBIFICIDAE 2 3 0 0 3 0 0 1 1. 1 0~8 HYDRACARINA 12 3 18. 21 6 6 0 6 9. 0 6 '

COLLEM&OLA 6 3 0 0 3 3 0 3 2.3 Io6 PBRLIDAB 0 0 0 0 0 6 0 3 1~ 1 0' EPHEHBRELLIDAB 0 0 0 0 0 0 0 I 0.1 0 1 BAETIDAB 0 0 0 0 0 0 1 0 0.1 0~ 1 BEPTAGENIIDAB 1 0 0 0 0 3 8 9 2,6 1~9 PSYCBOHYI IDM 0 0 0 0 0 1 0 0 0.1 0.1 HYDROPSYCBIDAE .

1 1 2 0 0 0 0 1 0.6 Oe4 HYDROPTILIDM 3 3 3 0 9 9 3 3 4~ 1 3+0 ELMIDM 1 0 0 0 3 3 0 0 0 ' 0 '

EHP ID I DAB 0 4 11 3 1 3 3 8 4 1 3 '

CHIRONOMIDAB 117 104 88 84 110 75 70 71 89.9 64 ~ 5 CHI RONOMIDAB (PUPAE) 3 6 0 2 3 0 1 0 1.9 1~3 TOTAL ORGAN ISItg/SAMPLE "

168 139 138 116 196 131 108 119 139. 4 ORGAH I SHE/10H3 149 123 122 103 173 116 96 105 123+ 3 DATE 24 APR 24 APR 24 APR 24 APR 24 APR 24 APR 24 APR 25 APR Sl'ARTING TIHB 0600 0900 1200 150 0 1800 2100 2400 0300 VGA FIL'IBRED(H3) 11 ~ 30 11 ~ 30 11+30 11 30 1 la 30 I 1 ~ 30 11 ~ 30 lie 30 DEPTH BOTTOM BOTTOM 001'TOM BOTTOM DOT TOM DOT'TOH BOTTOM 801'TOM NO ~ NO ~ NO, NO ~ , NO, NO, NO+ MEAN 6 TOTAL NEIIATODA ~

14 15 18 10 8 12 - 9 9 11 ~ 9 6e7 NAIDIDAB 6 26 9 17 13 18 24 3 14 ~ 5 Se2 TUB II'ICluAB 0 0 0 2 0 3 0 3 1~0 0~ 6 HYDRACARINA 21 18 30 12 6 0 ,6 Oi 11. 6 6o5 COLLBIIIOLA 0 3 3 0 0 0 0.8 0. 4 BPHBHBRIDAE 0 0 3 0 0 0 0 ' 0~2 BPHEHEkELLIUAE 3 0 0 6 1 0 i+3 0~7 0 0 0 0 1 1 0 ' 0 1 bAB'1'IDAt'EPTAGENIIDAB q6 4 '0 6 0 17 2 7 5' 3~0 PSYCBOHYIIDAE 0 0 0 0 0 0 1 1 0' 0~ 1 HYDROPSYCHIDAE 1 2 3 4 0 5 1 0 2 ' 1.1 HYDROPTILIDAF 3 3 0 3 0 9 6 0 3~0 1.7 EI HI DAB 0 3 1 0 0 0 0 0 0' 0~ 3 PSYCHODlDAE 0 ,0 0 0 0 0 1 0 0~ I Oo 1 Et)PIDIDAB I 14 4 10 12 6 3 6 ' 3,8 CHIRONOMIDAE 84 160 225 83 113 107 77 90 1 17 ~ 4 66.1 CBIRONOMIDM (PUPM) 0 0 0 1 4 0 1 0 0.8 0~4 TOTAL ORGANI SHS/SAMPLE 139 248 296 148 148 189 136 117 177+ 6 ORGANISMS/10M3 123 219 262 131 131 167 120 104 157 ~ 2

Table D-13. Number, mean, and percent total of drifting macroinvertebrates in samples collected near the River surface and bottom during dial pumping at SSES on the Susquehanna River, Nay 1974.

DATE 28 HAY 28 HAY 28 NAY 28 NAY 28 NAY 28 HAY 28 NAY 29 NAY STARPING TINE 0600 0900 1200 1500 1800 2100 2400 0300 VOLe PI LTERED (N3) lie 30 11. 30 lie 30 11. 30 11. 30 lie 30 1 lo 30 11. 30 DEPTH SURFACE SURPACE SURPACE SURFACE SURPACE SURPACE SURPACE SURFACE NO+ HO ~ NO, NO ~ NOo NO+ NO+ NO>> BEAN \ TOTAL HEHATODA 4 11 6 6 3 3 6 3 5+3 I ~ 8 NAIDIDAE 121 133 114 75 80 119 120 82 105 ~ 5 36+9 BYDRACARINA 1 5 4 0 12 0 0 0 2 ~8 loO COLLENOOLA 1 2 0 0 0 0 0 0 0 ' 0 1 PERLIDAE 1 0 0 0 0 0 0 0 0~ 1 0 '

EPBENERIDAE 0 0 0 0 0 0 6 3 1.1 Oi4 CAENIDAE 1 0 0 0 0 0 0 0 0 1 OoO BAETIDAE 34 23 36 14 5 18 21 36 23. 4 8,2 HEPTAGEHIIDAE 30 14 19 0 11 24 16 15 l6ol 5 ~6 BYDROPTILIDAB 0 1 3 0 0 0 0 0 0~5 0 ~2 ELNIDAB 1 0 0 0 0 0 0 0 0~ I 0~0 ELNIDAE (ADULTS) 0 3 0 0 0 0 0 2 0 ' Oo2 TIPUIIDAE 0 1 3 0 0 0 0 0 0' 0 '

CULICIDAE 0 1 0 0 0 0 0 0 0 1 0 '

SINULIIDAE 4 1 0 0 0 3 1 5 lo8 0 '

ENP IDIDAE 0 0 3 4 0 0 1 0 1+0 0' CBIROHONI DAB 124 144 159 87 89 148 ~ 125 117 l24 ~ 1 43 ~ 4 CHIRONOHIDAE (PUPAE) 4 1 3 0 7 2 1 1 2~4 0 ~8 TOTAL ORGAHISNS/SANPLE 326 340 350 186 207 317 297 264 285 9 ORGAN ISNS/10N3 288 301 310 165 183 281 "

263 234 253 ~ 0 DATE 28 HAY 28 NAY 28 NAY 28 HAY 28 HAY 28 NAY 28 NAY 29 NAY STARTIHG TINE 0600 0900 1200 150 0 1800 2100 2400 0300 VOL+ PILTERED (N3) lie 30 11 ~ 30 lie 30 11. 30 1 le 30 lie 30 1 le 30 11 ~ 30 BOT'ION DEPTH BOfTON BUTTON BOP TON BOTTOH BUTTON BUTTON BOTTOM NO ~ NO NO, NO+ HO+ NO+ NO+ BEAN 0 TOTAL NENATODA 4 3 9 0 6 0 12 0 4 ~ 3 1 3 NAI DIDAE 120 167 186 195 143 58 129 84 135 ~ 3 42 '

BY D RACA RI NA 12 9 6 0 3 0 0 3 4 ~ 1 1~ 3 COLlENOOLA 3 3 0 0 0 0 0 0 0~8 0~2 PERLIDAE 0 0 0 0 0 0 0 1 0~ I 0+ 0 EPBEHERIDAE '3 0 0 0 0 0 0 0 0 ' Oo 1 BAETIDAE 26 21 22 8 5 23 24 18 18 ' 5 '

HEPTAGEHIIDAE 25 28 3 6 9 16 30 5 15 ' 4 '

BYDROPTILIDAE 0 3 0 0 0 0 0

0 5

0 0 0'

' Oo Oo2 I

ELNIDAE (ADULTS) 1 0 0 0 0 0 PSYCNODIDAE .0 0 0 3 3 0 0 0 0' 0~ 2 SINULIIDAE 1 1 3 1 0 2 0 I 1 ~ I 0+4 ENPIDIDAE 0 0 6 3 0 0 1 0 1 ~ 3 0~ 4 CERATOPOGONIDAE 0 0 0 3 0 0 0 0 0 ' 0~ 1 CHI RONOHIDAE 129 120 177 112 141 112 100 138 128 ~ 6 40 ~ 3 CBIRONOHIDAE (PUPAE) 10 12 8 '3 3 5 10 10 7~ 6 2~ 4 TOTAL ORGAN I SNS/SANPLE 334 367 420 334 313 216 311 260 319 ~ 4 ORGAN IS(18/10H3 296 325 372 296 277 191 275 230 282 '

145 Table D-14. Mean number of drifting macroinvertebratos/10 m 3 and porcent total in samples collected near tho River surface during diel pumping at SSES on the Susquehanna River, Juno 1973 through May 1974.

SEP IEB APR MAY NDATQJA 13e9 2e5 0 5 le 3 Oe0 Oel 4,2 14e2 2e2 le7 6e5 2e3 4;1 2,5 TMOIGRAM Oe0 OeO Oe0 0.0 0.1 Oe4 Oe8 Oel Oe0 Oe0 OeO Oe0 Oel 0,1 NAI DIME 104.6 3e3 0 ' le 3 0.3 Oel 23e8 3e6 2.0 2e9 4.6 76.2 0.0 18.6 11.4 0,2 T(S IPICI DC 0.1 0.0 0.0 OeO Oe0 0,0 1,2 Oe6 Oe0 le5 0,7 Oe3 BRAICBI0 RA Oe3 0,0 OeO Oe0 Oee Oe0 OeO OeO Oe0 OeO OeO OeO 0,0 OeO I

AMPH P(XA OeO Oe0 0,0 Oe0 0.0 Oe0 0.0 Oel OeO OeO OeO Oe0 OeO OeO HYDFACARI HA 5 7 22e6 24.5 9e7 18e8 49e3 13. 1 le 3 le 2 Oe5 6e5 le4 12,9 7e9 COLIPe&OLA Oe7 Oe0 Oe7 Oe2 0.0 Oel 2e7 le8 L9 Oe6 le2 Oe2 Oe8 Oe5 PIECCPIEPA Oe0 Oe0 0,0 ~

OeO 0.0 OeO Oe3 OeO 0.0 Oe2 0,0 Oe0 OeO Oe0 HC DURI BAE 0,0 OeO OeO Oe0 OeO OeO OeO 0,1 Oe0 OeO OeO 0.0 OeO 0.0 CAPNI IWE 0,0 Oe0 0.0 OeO 0.0 OeO OeO 0,1 0.1 Oe0 OeO Oe0 0,0 Oe0 PBRLI ME 0'0 0e0 0.0 Oe0 Oe0 Oel Oe0 OeO Oel Oe0 0,5 Oel Oel OeO EIBEHBROPIHIA OeO OeO 0 ' Oe0 OeO Oee le6 Oe7 Oe5 0.0 OeO '0,0 Oel OeO Oe5 Oe2 1,1 Oel EBKHEMME 12e6 Oe0 OeO OeO OeO Oel OeO OeO OeO Oe7 GCNI ME Sel 1,4 Oe7 Oel OeO Oe0 Oe0 Oel OeO Oe0 OeO Oel Oe6 0,4 EIBBHERBLLICAE Oe0 Oel OeO OeO OeO Oe0 Oe0 Oel Oe4 Oe2 Oel 0,0 Oel Oe0 BAETIME 10 e5 0e9 0.4 Oel OeO Oe0 0,4 Oe3 0,3 Oel 0 2 16e9 2,5 1,5 BE Pl'AXNI IDC , 8.0 12e0 Oe2 e

Oe2 Oel Oel 3e4 2e7 1.5 le2 le6 lie 7 3e6 2e 2 CDOHAPA 0,0 OeO .OeO Oel Oe0 OeO 0.0 OeO Oe0 0,0 Oe0 Oe0 0.0 Oe0 C(XHAGRIONIME Oel Oee 0,5 Oe4 Oe0 Oe0 OeO Oe0 OeO OeO OeO OeO Oel Oel WGAIDPIKRh Oe0 0,0 0,0 Oe0 0.0 Oe0 OeO OeO 0,0 0.0 OeO Oe3 Oe0 Oe0 PBI IOPO1'JHI DC OeO OeO 0.0 OeO 0.0 OeO OeO Oel 0.0 Oe0 OeO OeO 0,0 Oe0 PS YQJCHY I IDIC OeO 0.4 2e3 lel Oe3 0,0 0.0 Oe4 0 0 0,1 Oe2 Oe0 Oe4 Oe2 IJYDROPSYCBI ME 2 e7 2e2 lleO 7e9 6eO Oe4 2e7 2e0 0,9 Oe3 Oe3 0,3 3,1 19 (PUPAE)

BYDROPTI DIME Oe3 Oe3 Oe0 Oe0 Oel OeO Oe5 0,6 0.2 OeO 2e2 Oe2 0 ' 0.2 0,0 0,0 0.1 0,0

~RA IEPIOCERI ME JBDROPBI LIDIC Oe0 0 el OeO Oe2 Oe0 OeO OeO 0,1 0.0 Oe2 OeO OeO Oel 0.0 OeO 0.0 OeO Oe0 0.0 Oe3 0,3 Oel OeO Oe0 0.0 OeO OeO Oe0 OeO 0,0 OeO OeO 0,0 Oe0 0,0 Oe0 Oe0 0,0 BIMIDC Oe3 Oe3 Oe0 Oel 0.0 0 el Oe9 0.6 Oel Oe0 0.9 Oel Oe3 Oe2 E(MIDIC (ADULIS ) 0,6 Oe9 Oe2 OeO 0,0 OeO OeO 0,0 0,0 OeO Oe2 Oe3 Oe2 0,1 DIPIERA OeO 0,0 Oel OeO 0,0 OeO OeO OeO Oe0 Oe0 Oe0 0.0 OeO 0.0 TI PULI MB Oe0 Oe2 0.0 Oe0 0,0 OeO 0.1 Oel Oe0 OeO OeO 0.2 Oe0 Oe0 TIPULIME(BJPAE) Oe0 0,0 Oe2 OeO 0.0 OeO Oe0 OeO 0.0 OeO Oe0 OeO 0.0 0,0 PSYQYJ DIDC 1,2 OeO 0.0 Oe0 Oe0 OeO le 2 Oel 0.3 Oe3 OeO -Oe2 Oe3 0.2 CULICIDC 0 el Oe3 0 ~4 Oe2 Oe0 OeO OeO OeO Oe0 OeO 0,0 0,1 Oel 0,1 QJMJBORI DC 0,0 OeO OeO OeO 0,0 OeO 0.0 Oel I'.0 OeO 0,0 OeO 0.0 Oe0 SINJI IIME ;2e6 7e8 5e9 le 2 Oel 0,2 Oe3 0,1 0,0 OeO Oeo 1,2 le 6 leO SMJLIIME(PUPAE) 0,0 OeO Oe0 Oel OeO Oe0 0.0 0,0 0.0 OeO OeO OeO 0,0 0,0 TABANIDAE 0,0 OeO OeO OeO OeO Oeo 0.0 Oel OeO OeO Oee 0,0 Oe0 0,0 B(PI DI DAE 0,1 2e4 2~7 3 ' 6.2 3e4 3el le 1 1,3 Oe3 2e4 Oe7 2.3 le 4 IMP I DIME(HJPAE) 0.0 OeO Oe3 OeO OeO OeO 0.0 0.0 Oe0 Oe0 OeO 0,0 OeO OeO 0.0 0,0 Oe0 CERATOPOGO NI ME Oe0 OeO Oel OeO OeO Oe0 Oe2 Oe0 OeO OeO OeO QIIKH(MIIAE 281e5 216 ~ 4 203e6 IOL 8 7e7 le5 80e4 64,2 44e2 29.4 62e8 91e 5 98e8 60e4 QB RON(MIME(PUPAE) 20,2 28e6 56.4 20e 1 Oe6 OeO 0,0 Oe0 Oe0 OeO Oe9 28 10e8 6e6 PHYSI DAE Oe0 Oel OeO OeO OeO OeO OeO OeO Oe0 OeO 0,0 OeO Oe0 0,0 TEAL ORGANISHS 471e2 302e8 310e7 149e3 40 e4 55e9,141. 1 95 3 57e2 39e3 91e7 207e2 163e5

146 Table D-15. Mean number of drifting macroinvertebrates/10 m 3 and percent total in samples collected near the River bottom during diel pumping at SSES on the Susquehanna River, June 1973 through May 1974.

SEP NOV TRICLADIDA 0 0 Oo0 OoO 0 0 0.1 0.1 0.0 OeO OoO OoO OoO 0 0 Oo0 0.0 NBNeTDDA 16.2 9o2 0 ~4 0 4 OoO 0.1 3o4 19o5 7o2 3o4 So3 2o2 So6 2o2 TARDIGRADA 0o0 0 0 0.0 0.0 0.0 0.0 Oo3 Oo0 0 2 Oo0 0.0 Oo0 0.0 0.0 HAIDIISB 165.3 3o 7 1.2 2o2 1.2 Oo0 30o7 4oS 2o 7 203 9.0 105ol 270 3 10. 7 T(SIP ICI WE 0 2 0.0 0.0 0.0 OeO OoO Oo2 1.2 0.2 Oo8 0.9 Oo4 0.3 0.1 MIRUDINBA 0,0 0 0 0,0 0.0 0.0 Oo0 0,1 Oo0 0.0 0.0 0.0 Oo0 0.0 0.0 ISOPCDA '0 0 0.0 OoO 0.0 Oo0 OoO 0.0 0.0 0.1 Oo0 Oo0 0.2 OoO 0.0 AHPBI POIR Oo0 0 0 0,0 Oo0 0.0 0.0 Oo0 Ool 0.0 0.0 0~1 Oo0 Oo0 00 JmRACARI NA 4,0 35o2 44.2 21o 2 48.5 58.9 14o6 2oS 2eO 1,0 10ol 3.7 20oS 8 0 CCLIBJ4)DLA 0.8 Oo0 0.9 0.0 OoO Oo2 4'o8 202 2o0 30 2 0.3 0.8 le 3 0.5 PIZCCPTBRA 0.0 0.2 Oo0 0 0 0,0 Oo0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 0,0 NE)YJURI IAB OoO OoO 0.0 OoO 0.0 0,0 Oo0 Oo0 0.0 Ool 0.0 0,0 OoO 0,0 CAPHI IDAE 0,0 Oo0 0.0 0.0 Oo0 0,0 Oo0 Ool 0,7 OoO OoO OoO 0.1 0.0 IERLIDAB Oo0 0.1 Oo0 0 0 Oee Oo0 0.1 0,0 0.1 Ool 0.0 EPI JBHBROPKRA '.0 0.0 0,0 Oo0 OoO 0.0 OoO lol le 5 Oe4 0.9 Oo2 0 0 0.1 Oo0 0,3 0.

EPJIEMERI WE 23. 1 0,0 OoO 0.0 OoO Oo0 Oo0 0.1 0.0 OoO 0.2 Oo2 2e0 1'.8 CAENI WC 6,2 3e3 Oo8 0.0 OoO 0.0 0,0 Oo0 0.3 0,0 0,2 0.2 0.9 Oo4 BB(EHERBLLIDAE (PUPAE Ool 0 1 Oo0 0 0 0.0 Oo0 OoO 0F2 0 3 Oo3 Oo7 0.0 Ool 0 1 BAETI WE 20.0 2.6 Oo2 0.2 Oo0 0,0 0,4 Oo8 Oo6 0,1 Oo3 19 o4 307 1.5 BEPTAG(2) I IJIC 23. 5 23o6 Oo6 0 1 OoO 0,0 7o2 3.8 4~2 1.4 3 1 12o1 6.6 2.6 CDCHPG'A OoO 0,0 0.3 OoO 0,0 Ool OoO 0.0 0.0 0,0 0.0 0.0 Oo0 0.0 CCEYJAGRI QJI BC 0,1 OoO Oo8 Oo3 Ool 0oO 0 0 Ool 0.0 Oo0 Oo0 OoO Ool 0.0 JOIQI ECTI DAB 0 0 0.0 0.0 0.0 0,0 OoO 0.0 Ool 0.0 Oo0 0.0 0.0 Oo0 0.0 CCRI XIDAE 0.3 OeO Oo0 0.0 Oo0 0 0 0,0 Ool Oo0 0.0 0.0 OoO 0,0 Oo0 T JIICJ J3PKRA ) Oo0 0.0 0,0 0,2 0.0 OoO Oo0 OoO Oe0 Oo0 Oo0 Oo0 Oo0 0.0 QDSSX JCMATIEAR Oo0 0,0 OeO Oe0 Oe0 Oo0 0.0 0.1 0.0 Oo0 0 0 0,0 0.0 Oo0 IM11OBEAJB DAE 0,0 0,0 OoO 0.0 Oo0 0.0 Oo0 Ool 0,0 0,0 Oo0 0 0 Oo0 OoO PSYQYJMY I IDIC Oo4 0.2 2o3 Oo9 0.3 OoO Ool 0,1 Ool OoO 0.2 0,0 0 ' 0.1 Jm)CPSYCBIDAE 3o4 3o7 10.9 7 6 12,7 0,9 1,9 4 0 2o 2 1.2 2o3 0.2 4 ' 1.7 JJYDRDPTI LIDIC OoO 0.4 Oo3 0 0 Oo2 0.1 0.8 lol Oo3 Oo5 1.8 0.2 OeS 0,2 IEPICCERI DAE Ool 0 0 0,2 Oe7 0.2 Oo0 Oo0 0.2 0.0 Oo0 0.2 0,0 Ool 0.0 IBPIJDPKRA 0,3 Oo0 OoO 0.0 OoO 0.0 0.0 Ool 0 0 0,1 0,0 0.0 0,0 OoO CXBCPTERA 0,1 0.0 OoO OoO 0.0 0.0 0.0 0,0 0,0 0.0 0.0 Oo0 OoO Oo0 DYTIKZ DXE 0.1 Oo0 0 0 0.0 OoO 0,0 0,0 0.0 0.0 Oo0 OoO 0.0 Oo0 0 0 PS EPH Bl IIRB Oo0 0.0 Oo0 Oo0 OoO OoO 0 0 Oo2 Oe0 Oo0 OoO 0.0 Oo0 Oo0 EQ JIDIC 15 0.9 Oo8 0 1 OoO 0.2 Oo0 Oo7 0.1 Oo2 OoB 0,3 0 ' 0 2 ELMIWC (ADULTS) le 1 1,8 -

Oe8 Oo0 Oo0

'oO Oel 0.0 0.2 0.0 OoO 0,2 lo2 0 ' 0.2

'o0 DIPKRA (PUPAE) OoO 0.0 0.3 0,0 Oo0 0.0 0,0 0,0 OoO Oo0 0,0 Oo0 TI PULI DAB 0 ' 0.0 Oo0 0.1 Oo0 0,0 0,0 0,2 Oo3 Oo0 Oo0 0 0 0,1 0.0 TIPULIWE (PUPAE) 0.0 OoO OoO OeO OoO Oo0 Oo0 OoO 0.0 Ool 0 0 0.0 Oo0 0,0 PSYQ JGDI WC Oe8 0.0 OoO 0 0 OoO OoO 2.1 le 1 0 2 Oo6 Oo2 Oo3 0,4 0,2 QJLICI DAB Oo4 Oo4 Oo2 OoO 0.0 0.0 Oo0 OoO 0.2 Oo0 0,0 Oo0 Ool 0.0 QJAC(ORI(YC Oo0 0.0 OoO 0.0 OeO Oo0 0.1 Oo2 Oo0 OoO OoO 0.0 Oo0 Oo0 SIJNLI IWE Sol Bo9 Bo4 1.1 Ool 0 1 0.3 Oe0 0.0 Ooe OoO 1,9 2,1 OoB SINU Ll I WE (PUPAE) OoO Oo0 "0,1 0,0 Oo0 OoO 0.0 0,0 0,0 Oo0 OoO 0.1 OoO 0.0 SIRAYI(mIIDIC O.n OoO 0,0 OeO 0.0 OoO 0 0 0,1 0.0 "OoO 0,0 Oo0 0.0 Oe0 QP IDIDAE 0o4 3o4 12ol 6.8 22o5 Sel 2,9 Oe9 L2 0.7 4o2 Oo9 5.1 2oO EMPIDIWC (PUPAE) OoO Ool 0.9 0.0 OoO 0,0 OeO 0 0 0.0 0.0 'oO 0.0 Ool 0.0 CERATDPCGDNI DAB Ool 0.0 OoO 0,1 0.0 0,0 0.6 Oo7 Oo0 Oo0 0.0 0.2 Ool 0.1 QJIIYY((MIDAB 392oS 300o3 452o 5 21L 3 30.5 2o0 75.4 103o 3 66 el 29o9 86.3 110.7 155o 1 60e9 QJI KNQ4I IAE(PUPAE) 21oO 70.7 59o 7 34o0 lo9 Oo3 Oo0 Oo2 0.1 0 0 1.0 So6 16,2 6 '

PHYSI Dll E OoO Oo0 Oo0 Oe3 0.1 0o0 OoO 0 0 OoO Oo0 OoO 0,0 OeO 0.0 SP}JAERI IDAE 0,0 Oo0 0.0 0.0 0,0 OoO 0.1 Ool 0.0 0,0 OoO 0 0 Oo0 Oo0 T01'AL ORGAN ISHS '687o4 468o9 599 0 287e3 118o4 68,0 146o9 149o6 92.1 45o8 127o3 265o8 254,7

147 Table D-16. Mean number of drifting macroinvertebrates/10 m and percent total in samples collected near the River surface during diel pumping at Falls on the Susquehanna River, June 1973 through May 1974.

JIB JUL AUG SEP OCT NOV DEC JAN FEB HAR APR HAY MEAN 'L 'IOT N )2(AICeA 1.2 0.2 0.3 0.2 0.1 0.2 0.1 ,0 0 0.0 0.2 0.2 0.2 NAIDIDAE 1.8 1.6 0 9 0.4 0.6 0.6 0.3 0.1 0.4 2.8 0.9 0.9 TUBIPICI DAE OD 0.3 0 0 0.0 0.0 0.2 0.0 0 0 0.0 0.1 0.1 0.1 HIMOINEA 09 0.0 0.0 0.0 0.0 0.0 0.0 0 ' 0.0 0.0 0.0 0.0 ISO KOA 0.1 0.0 0.0 0 0 0.0 0.0 0.0 0 ' 0.0 0.0 0.0 0.0" 0.0 Ai)PHIPOD A 0.0 1,0 2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0 0 HYOBAOARINA 3.7 1.3 3.1 0.8 0.5 0.3 0.1 ,0.1 0.3 0 4 1.1 1.1 COLl&BOLA 0.1 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1 0.1 PLECO PIE RA 0.0 0.3 0.0 0 ' 0.1 0.0 0.1 0.1 0.2 0.0 0.1 0.1 GEhl II DAE 0.0 0 ' 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0 0 0.0 0.2 P EEL IDAE 0.4 0.4 0.3 0.0 0.0 0.0 0.2 0.0 0.2 0.5 0 2 BPK) KROPKrlA . 0.1 0.0 0.0 1.0 1.1 0.2 0.1 0.0 0.0 0.4 0.3 0.3 EPEE)RRI DAE 30. 9 1.3 0.5 0.2 0.2 O. 1 0.0 0.0 0.1 2.9 3.6 3.6 CAB NIDAE 29.7 14 ' 4.8 3.2 0.1 0.0 0.1 0.0 O. 1 1.2 ,53 5.3 EP)B! KRELLICAE 3.1 0.2 0~1 0 ' 0.1 0.2 0.1 0.0 0.1 0.1 19 0.0 0.4 0.1 0.5 0.0 0.5 0.0 LEPIOPH LG) I IDAE 0 (L 0 0 0.0 0.0 0.0 0.0 HAETIDAE 15.9 4.2 29.6 11.1 0.9 0.0 0 1 O.l 1.1 6.0 6.9 6.9 HBPI ASENI IDAE 20. 3 7.2 16 9 16.3 12 ~ 0 1.8 1.6 0.5 1.9 3.8 8.2 8.2 QXNATA 0.0 0.3 '.3 0 ' 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 COBlAGRICHIDAE 0 4. 0.3 . 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 1 I

PSKKX)Y IDAE 0.0 0.8 2 4 2.1 0.6 0.2 0.1 0.1 0.7 0.2 0.7 0.7 19 HYDIOPSKhlIDAE 120. 4 12.7 73 ~ 3 20 1 13. 5 1~7 0.1 , 0.3 2.5 24.6 24.6 HYDIPZILIDAE 09 0.4 0.2 0.1 0.0 0.1 0 0 0.0 0.6 0.0 0.2 0.2 LEPIOCIRIDAE 0.1 1.1 0.4 0.4 0.6 0.0 0.0 0 0 0.2 0.2 0.3 0.3 COLEOPIERA 0.0 0.0 0.0 0.0 0 ' 0.1 0 0 0.0 0.0 0.0 0.0 0.0 HALIPLIDAE 0.0 0.0 0.0 0.0 0 ' 0.0 0.0 0.0 0.0 0.1 0.0 0.0

~i)IOM 2 4 13.2 1.9 0 4 0.2 0.1 0 1 0.1 0,4 0.3 1.9 1.9 EL)G DAB (ADUL79) 1.4 1.2 1.0 0.0 0 0.0 0.0 0.0 0.0 0.1 0.4 0.4 TIPUL IDAE 0.0 0.1 0.0 0 0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0 0 SIN) I I IOAE 12. 5 9.5 10.7 1.1 0 ~4 0.0 0.1 0.0 0.0 1.7 3.6 3.6 SIHUI IIDAE(PUPAE) ,0. 0 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.1 0.1 EHP IDIDAE 0.0 0.3 0.7 0 0 0 ' 0.2 0.0 0 '

0.0 0 3 0.0 0 0 0.1 0.2 0.2 CERAIOPXXNIDAE 2.2 0.3 i 0.3 0.0 0.1 0.1 0 0 0 3 0 CHIR)NOHIDAE 33. 1 151.5 60.3 38.4 19.4 4.8 3.0 ,3.7 12.8 19.6 34.6 34.6 CHIIQNOHIDAE (PUPAE) 5.2 19.5 14.9 4.5 1.1 0.1 0.0 0.2 5.4 4.6 5 5 5.5

'IOI'AL OKANIS()S 285.5 243 ~ 1 223.1 100.0 51.6 10.7 6.1 5.2 26.7 48.9 100.1

148 Table D-17. Bean number of drifting macroinvertebrates/10 m and percent total in samples collected near the River bottom during dial pumping at Falls on the Susquehanna River, June 1973 through May 1974.

JIÃ JUL AUG SEP OCT NOV DEC JAN PEB HAR APR NAY BEAN 0 0.4 TO1'FPMCDA 3.3 0 7 0.5 0.2 0.2 0.2 0.1 0.1 0.2 0.8 0.6 HAIDIDAE 1.7 2 6 1.2 0 0 0,7 0 7 0.2 00 0.8 3.0 1.1 0.8

'1081FICIDAE 0,3 0.7 0.4 Or'1 0.1 0.0 0 0 0.2 0.1 0.0 0 2 0.1 BIPUDINEA 0.2 0.0 0,0 0.0 0.1 0,0'.0 0.1 0.0 0.0 0.0 0.0 0.0 BIP?HQ)IUPA 0.0 0.0 0.0 0,0 OrO 0 0 0.1 0.0 0.0 0.0 0;0 ISOKDA 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 EklPIBPODA 0 0 0.2 OrO 0.0 0.1 Or0 0.0 0.1 0.1 0.0 0.0 0.0 50 0.7 BYDNQUG NA GXLE)BOLA PLECOPIERA 6.6 0,4 0 0 1 5 OrO 0.0 0.0 0.3

'r01,3 0.2 0.8 0.0 Or3 0.3 0?0 0 0 0,1 0.1 0.1 0.2 0.1 Or0 0.5 0.0 0.1 0.0 0.2 1,7 0.1 0.1 1 2 0,0 0 1 CAPNIIDAE 0.0 0.0 0,0 0.0 0,0 0.0 0.1 0.0 0.0 0.0 0.0 0 0 PERLIDAE 0 4 0.1 0.2 0.2 0.0 OrO 0.4 0.1 0.2 0.6 0.2 0.2 BPIE)EROPIERA 0.0 0.2 0.0 2 7 2,9 0 3 0 7 0.1 0.1 0.1 0.7 0 5 EPHBERIDAE 47. 1 1.8 0.0 0.4 0.2 OrO 0.0 0.1 0 1 2\3 5 2 3.7 CAEHIDAE 54.0 21.9 7 9 6 7 0.3 0.0 0.0 0.1 0.0 0.8 9 2 6.5 EH IEIERELLIDAB 1~4 0.6 0,3 0.0 0.2 0.1 0.3 0.4 1.3 0 2 0.5 0.3 IZPIOPBLEBI IDAE 0.0 0.0 Or 0 Orl 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 BALTIDAE 22.6 7.2 45.0 21. 5 1.4 0.2 0.6 0.6 1.2 4.4 10.5 7 4 HEPTAGEN IIDAB 27 2 12r8 21.7 28.2 13r2 14 2.4 LO 3.1 2 9 11.4 8.0 ODCHATA , OrO 0 2 0.1 0.0 0.0 0 0 0.0 0.0 0.0 0.0 00 0.0 OOEHAGRIQlIDAE Or2 0.0 0.0 0,0 0 0 0.0 0.0 0.0 0<<0 0,1 0.0 0.0 ISYQE) Eh I IDAE 0.0 2r7 6 5 3 0 0.9 0.1 0.0 0.1 0.6 0.1 1.4 1.0 BYDIOPSYQlIDAE 154.6 23.8 75. 6 27,2 17.8 1 2 0.4 0.4 2.0 1.8 30.5 21. 5 HIDIOPTILIDAE 0,3 1.2 0.8 0 0 0.1 0 2 Or0 0.0 0.5 0.0 0.3 0.2 0.1 0.1 0.5 0.6 0.7 0.5 IZPIOCERI DAE LEPIDOPIERA 2r2 OrO 0.3 0 '

1.3 0,0 0.9 00 0.9 0.0 0.1 0.0 '.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0 0 0.0 CCLBOPTERA 0.4 0.0 Or 1 0.0 0,0 0,0 0.0 0,0 BALIPLIDAE 0.1 0.0 0.0 0.0 OrO 0.0 0 0 0,0 0.0 0.0 0.0 0 0 EIkBDAE 4.0 35 2 3.7 1,3 0,2 0.2 0 3 0.2 0.9 0.3 4.6 3 3 EL)BOAS IADULTS) 2.1 1.4 1,0 0.4 Or0 0.0 0.0 01 0 0 0.4 0.5 0.4 0.0 0.0 00 00 0.0 0.0 0.0 00 0.1 0.0 0 0 0 0 Tl EULIDAE PSYQKDIDAE OrO 0 0 00 00 0.0 0.0 0.1 '.0 0.0 0,0 0.0 "5

0.0 SIWLIIDAE 18.8 17.8 12.6 1 3 0.5 0 1 Orl 0.1 0.1 0.7 2 3r7 SINULI IDAE (PUPAE) OrO 0.1" 0,0 0 0 0,0 0~0 OrO 0.0 0.0 0.0 0,0 0 0 ENPIDIDAE 0 0 0.4 0.4 0.3 0.4 0.0 0.1 0.3 0.1 0.0 0.2 0.1 CERATOPOXN IDAE 1.0 0 3 0.0 0.0 0.0 0.0 Or0 0.0 Orl 0.1 0.1 0.1 CHIKt4GUDAB 59. 3 194.7 89.0 60.0 29.3 5.9 4,6 6.1 19rl 22r4 49.0 34.6 Ql IKNOBIDAE (EUPAE) 5.7 28. 3 12.7 5.8 3~0 Orl 0.0 0.3 6.9 lL4 7,4 5 2 R? HAERI IDAB 0 0 OrO 0.0 0.0 0.0 0 0 0,0 0.1 0,3 0.0 0.0 0,0 TO?IAL ORGANISNS 414 1 356 ~ 6 '85r9 161r5 73 3 llr0 10 6 10 7 38r8 53 8 141 6

149 24 FALLS 18 ORIRONOMIOAE

--HYDROPSYCHIDAE EPHEMEROPTERA 12

- HYDRACARINA NAIOIOAE Ol 0

CD 42 SSES 36 CD CD 30 24 18 12 r X'~

I 15 I 15 I 15 I 151 15 I 15 I 15 I 15 115 I 15 I 151 15 J J A S 0 N 0 J F M A M

)973 1974 3

Fig. D-1. Mean number of drifting macroinvertebrates/10 m collected monthly during diel pumping at Falls and SSES on the Susquehanna River, June 1973 through May 1974.

150 1200 SSES 800 o 800 300 FALLS CHIRONOMIOAE HYDROPSYCHIOAE 200 EPHEMEROPTERA

- HYORACARINA 100 NAIOIOAE A~P 1~

0 800 SSES 100 600 O

500 O

X 800 300 I

200 /

/

100 /

I 15 I 15 I 15 I 15 I 15 I 15 I 15 I 15 I 15 I 15 I 15 I 15 J J A 6 0, N D J F M A M 1913 1928 Fig. D-2. River flow and mean number of drifting macroinvertebrates/s collected monthly during diel pumping at Falls and SSES on the Susquehanna River, June 1973 thiough May 1974.

151 30 FALLS 20 10 0

eo SSES c/l 50 MAY CD CD 40 r

I r

JUN JUL 30 20 10 1200 1500 1800 2100 2400 0300 0600 0900 Fig. D-3. Mean number of chironomids/10 m3 collected at 3-h intervals during diel pumping at Falls and SSES on the Susquehanna River, June and July 1973, and April and May 1974.

152 DEVELOPMENT OF LARVAL FISHES by Gerard L. Buynak and Harold W. Mohr, Jr.

TABLE OF CONTENTS Page e'

ABS TRACT ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 154 INTRODUCTION.....................-.................... .... ~ ~ ~ 154 P RO C E DURE S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 154 RESULTS ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 156 Northern Pike....... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 156 Prolarvae...... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 156 Postlarvae..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 156 Late Postlarvae ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 157 Juvenile....... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ]57 Muskellunge......... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ] 5g Prolarvae...... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 158 Postlarvae..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 158 Late Postlarvae ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 159 Juvenile....... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 159 Longnose Dace....... ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ 16O Prolarvae...... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 16O Postlarvae..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ 16P Late Postlarvae ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 161 Juvenile ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 161 Creek Chub.......... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 162 Prolarvae...... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Postlarvae..... ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 163 Late Postlarvae ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 163 Juvenile.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 164 Fallfish............ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 64 Prolarvae...... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 164 Postlarvae..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 165 Late Postlarvae ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ] 65 Juvenile....... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 166

153 Page White Sucker.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

166 Prolarvae........... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 166 Postlarvae.......... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

167 Late Postlarvae..... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

167 Juvenile...... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ 168 REFERENCES CITED....-.......................... 168 LIST OF TABLES Table E-l. Morphometri,cs and meristics of artificially p ropagated northern pike. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

170 Table E-2. Morphometrics muskellunge........................ 170 Table E-3. Morphometrics . . . longnose dace...................... 17 Table E-4. Morphometrics . . . creek chub......................-.. 171 Table E-5. Morphometrics and meristics of fallfish reare d from a natural spawn; ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

172 Table E-6. Morphometrics and meristics of artificially p ropagated white sucker..... 172 LIST OF FIGURES Fig. E-l. Development of northern pike........................... 173 Fig. E-2. Development of muskellunge............................. 175 Fig. E-3. Development of longnose dace........................... 177 Fig. E-4. Development of creek chub......'.... 179 Fig. E-5. Development of fallfish.. 181 Fig. E-6. Development of white sucker............................ 183

154 ABSTRACT Eggs of northern pike, .muskellunge, longnose dace, creek= chub, II fallfish, and white sucker were hatched and the, larvae reared in the Laboratory. A reference series of each species was preserved and the larval development of each described. Included in the descriptions were various morphometrics, meristics, and illustrations of each developmental stage.

INTRODUCTION.

Identification of fish larvae to species is a difficult problem because many have not been adequately described or illustrated. The purpose of this study was to describe the larval development of six

,species found near the Susquehanna SES. These included: northern pike, muskellunge, longnose dace, creek chub, fallfish, and white sucker.

PROCEDURES Five of the six fishes were artificially spawned by stripping eggs from one or more females of each species into a plastic pan. Eggs were fertilized by mixing them with milt taken from males of the same species.

. The eggs were rinsed and allowed to water harden for, about 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

Fallfish eggs were taken from a nest.

The eggs were hatched and larvae reared in a miniature aquarium system (Gale 1977) using recirculated pool water. Free-swimming larvae were fed brine shrimp and a powdered dry food (Tetramin E) to supplement

155 natural foods which entered aquaria with the pool water. As larvae grew, they were given a more granular food (Tetramin L) . Northern pike and muskellunge were also fed small sucker and minnow larvae daily. A reference series of each species was preserved in 10/ buffered formalin.

Definitions of prolarvae, postlarvae, late postlarvae, and juvenile stages were taken from Hubbs (1943) and May and Gasaway (1967) with minor modifications. Prolarvae were those bearing yolk. Postlarvae were those which had absorbed all yolk material but did not have visible fin rays in all fins. Late postlarvae were those which had visible fin rays in all fins but had not formed scales. Juveniles were those resembling the adult.

Total length (TL), standard length, postanal length, head length, eye diameter, and body depth of larvae were measured to the nearest 0.1 mm using an ocular micrometer. All definitions were those of Snyder et al.

(1977) except postanal length which was taken from Hogue and Buchanan (1977>.

All lengths reported in the text are total lengths except when stated otherwise. Myomere counts were made on pro-, post-, and late postlarvae using polarizing filters (Berry and Richards 1973). All myomeres posterior to an imaginary vertical line at the posterior margin of the anus were considered postanal (Siefert 1969). The other myomeres, including those bisected by the imaginary line, were considered preanal.

Lateral, dorsal, and ventral illustrations of fish, ranging from newly hatched through early juveniles, were traced from images projected onto drawing paper with a Bausch and Lomb Tri-Simplex Micro-Projector (Buynak and Mohr 1978). Details were added to the illustrations by examining the fish with a dissecting microscope.

156 RESULTS Northern Pike Prolarvae Northern pike eggs hatched 10 days after fertilization at a mean temperature of 10.9 C. Newly hatched larvae ranged from 7.9 to 8.5 mm (x = 8.3 mm); standard length ranged from 7.8 to 8.4 mm (x = 8.2 mm).

Their heads were decurved over a large spherical yolk sac. These larvae had pectoral fin buds, straight urostyles, and incomplete mouths (Fig.

E-lA). Pigmentation in these larvae consisted of a lateral band of brown pigment beginning near the head and extending into the caudal fin fold. This band was faded in most of our specimens. The dorsal fin fold, which originated about 35% of TL behind the snout, was continuous with

. the caudal and ventral fin folds.. Preanal length was greater than postanal length (Table E-l).

'yes were pigmented around the outer margins and melanophores were present on all body surfaces, including the yolk sac by 9.3 mm (Fig. E-1B).

By 12.0 mm, the mouth opened, swim bladder began to inflate, and the eyes were completely pigmented (Fig. E-1C).

Postlarvae The postlarval stage began by 13.2 mm (Table E-1). In 13.4 mm larvae (Fig. E-1D), caudal fin rays were visible and the snout began to elongate.

By 15.9 mm (Fig. E-lE), pectoral fin rays were visible, pelvic fin buds were present, and the location of the dorsal and anal fins became evident.

157 Dorsal and anal fin rays were visible in 18.2 mm larvae (Fig. E-1F), and the urostyle, which was previously straight, began to flex slightly upward.

Pigmentation was found on all body surfaces. Preorbital bars and two concentrations of melanophores on the occipital region were present. In addit'ion, melanophores extended from each concentration along the dorsal body surface to the caudal. fin fold. From the head to the dorsal fin area there was a narrow melanophore-free area. The lateral band of brown pigment observed in prolarvae was still present. Melanophores on the lateral and ventral areas of the gut increased in number.

Late Postlarvae 4

The late postlarval stage began by 19.1 mm (Table E-1). In 22.8 mm (Fig. E-1G) and 26.6 mm larvae (Fig. E-1H) pigmentation increased. The narrow, melanophore-free area on the dorsal body surface observed in younger larvae was covered with numerous small melanophores." By 38.6 mm (Fig. E-lI),

lateral concentrations of melanophores formed several bands which extended from the dorsal surface to the gut. The snout was elongated and relatively broad. Fin ray development in all fins was nearly completed.

Juvenile The bodies of juveniles were long and slender (Fig. E-1J). The greatest body depth occurred near the head and was about 13/ of TL (Table E-l).

In these fish, the head was long and broad; head length was about 33/ of TL. The eyes were large and situated high, near the center of the head.

158 Body pigmentation consisted of irregularly-shaped concentrations of melanophores and melanophore-free areas on the lateral surfaces.

Muskellunge Prolarvae Muskellunge eggs hatched eight days after fer'tilization at a mean temperature of 16.9 C. Newly hatched larvae ranged from 7.9 to 9.2 mm (x = 8.7 mm ); standard length was only slightly smaller (<0.05 mm).

Their heads were decurved over a large ovoid yolk sac (Fig. E-2A).

These larvae had pectoral fin buds, straight urostyles, and incomplete mouths. A band of brown pigment extending from the head to the caudal fin fold was present laterally. The dorsal fin fold, which originated about 30% of TL behind the snout, was continuous with the caudal and ventral fin folds. Prea'nal length was greater than postanal length (Table E-2).

Eyes were pigmented in 10.6 mm larvae (Fig. E-2B) and no melano-phores were present on the dorsal or ventral body surfaces. By 11.4 mm (Fig. E-2C), the mouth opened. Melanophores were present on the head, pectoral fin rays were visible, the swim bladder began to inflate, and the snout .began to elongate in 14.0 mm larvae (Fig. E-2D). Also, the lower jaw extended slightly beyond the upper jaw.

Postlarvae The postlarval stage began by 14.4 mm (Fig. E-2E). In larvae 17.4 mm (Fig. E-2F), dorsal, anal, and caudal fin rays were visible and pigmentation

159 was found on all body surfaces. On the occipital region, a narrow melano-phore-free area separated two concentrations of melanophores. This unpigmented area continued from the head to the dorsal fin area. Small melanophores were scattered on both sides of the melanophore-free area.

The lateral band of brown pigment found in the younger larvae was still present. Very few melanophores were present on the ventral portions of the gut. Pelvic fin buds were present and the urostyle was flexed upward in 24.9 mm larvae (Fig. E-2G).

Late Postlarvae The late postlarval stage began by 21. 8 mm (Table E-2). In 25.7 mm larvae (Fig. E-2H), the lower jaw extended beyond the upper jaw. The snout was broad and very long. Pigmentation had increased on all surfaces, especially the ventral portion of the gut. Laterally, concentrations of melanophores formed several bands that extended from the dorsal body surface to the gut. By 37.5 mm (Fig. E-2I), development of fin elements was nearly completed and the lower jaw extended well beyond the upper jaw.

Juvenile The bodies of juveniles were long and slender (Table E-2; Fig. E-2J) ~

Greatest body depth (9X of TL) occurred between the paired fins. The head was long (30/ of TL) and the eyes were large and situated high, near the center of the head. Body pigmentation consisted of a band of melanophores on the upper lateral portion of the body extending from the

160 head to the caudal fin. This band was separated from a second lower band by a relatively melanophore-free area along the entire body of the fish.

Longnose Dace Prolarvae Longnose dace eggs hatched six days after fertilization at a mean temperature of 18.3 C. Newly hatched larvae ranged from 5. 8 to 6. 0 mm (x = 5.9 mm); standard length ranged from 5.6 to 5.8 mm (x 5.7 mm).

Their heads were slightly decurved over a bulbous yolk sac. They were unpigmented, had pectoral fin buds, straight urostyles, and incomplete mouths (Fig. E-3A). Preanal length was greater than postanal length (Table E-3) ~

Eyes of larvae 7.7 mm (Fig. E-3B) were pigmented and melanophores were present'n the dorsal surface of the head and body. No pigmentation occurred on the ventral portion of the body. The dorsal fin fold, which originated about 45% of TL behind the snout, was continuous with the caudal and ventral fin folds. The mouth opened and the swim bladder began to inflate in 8.7 mm larvae (Fig. E-3C) .

Postlarvae The postlarval stage began by 9.4 mm (Table E-3). In 9.5 mm larvae (Fig.

E-3D), caudal fin rays were visible and the urostyle began to flex upward.

By 11.6 mm (Fig. E-3E), pelvic fin buds were present and dorsal, anal, and

161

-pectoral fin rays were visible. The origin of the pelvic fin began slightly ahead of the dorsal fin. The snout elongated in these larvae and the mouth was slightly inferior and nonprotractile. Dorsal pigmen-tation consisted of melanophores in the occipital region and two rows extending from the head to the dorsal fin. Between these rows a subsurface row was also observed. Pigmentation along the entire lateral line area was evident, melanophores there ended in a caudal spot which extended into the caudal fin. A row of melanophores started near the p'ectoral fins and extended dorsally along the gut, over the anal fin, to the caudal fin. This pigmentation could also be seen ventrally.

By 14.0 mm (Fig. E-3F), fin ray development, except in the pelvic fins, was more advanced than in 11.6 mm larvae and pigmentation continued to

,increase.

Late Postlarvae The late postlarval stage began by 14.0 mm (Table E-3). In 15.8 mm larvae (Fig. E-3G), the snout was long and overhung the mouth. Dorsal, ventral, and lateral pigmentation patterns in 17.8 mm larvae (Fig. E-3H) were similar to those described for younger larvae, except that melano-phores were more numerous on all surfaces. By 20.6 mm (Fig. E-3I), fin ray development in all fins was nearly completed.

Juvenile In juveniles the head was large, about 20/ of TL (Table E-3; Fig.

E-3J). The snout was long and extended well beyond the mouth. In

162 these fish, a hump occurred at the nape where body depth was greatest, about 16X of TL. A lateral band of melanophores was present from the head to the caudal fin where it ended in a caudal spot. The spot extended into the caudal fin.

Creek Chub Prolarvae Creek chub eggs hatched six days after fertilization at a mean temperature of 18.3 C. Newly hatched larvae ranged from 6.0 to 6.2 mm (x = 6. 1 mm); standard length ranged from 5. 8 to 6. 0 mm (x = 5.9 mm) .

Their heads were slightly decurved over a relatively large bulbous yolk sac (Fig. E-4A). These unpigmented larvae had pectoral fin buds, straight urostyles, and incomplete mouths. The dorsal fin fold, which originated about 45/ of TL behind the snout, was continuous with the caudal and ventral fin folds. Preanal length was greater than postanal length (Table E-4).

The mouths of larvae 8.2 mm (Fig. E-4B) opened and their eyes and bodies were pigmented. Dorsal pigmentation consisted of melanophores on the occipital region and a few on the snout. Two surface rows of melanophores extended from the head to the origin of the dorsal fin fold; between these two rows, a subsurface row was also present. Behind the dorsal fin fold, the surface rows fused and continued to the caudal fin fold. Laterally, a few melanophores were present in the anterior part of the lateral line area. Ventrally, two rows of melanophores were present

163 on the margins of the yolk sac (Fig. E-4B). By 8.3 mm (Fig. E-4C), the swim bladder had begun to inflate, caudal fin rays were visible, and the urostyle began to flex upward.

Postlarvae The postlarval stage began by 9.2 mm (Table E-4). The location of the dorsal and anal fins was evident and pectoral fin rays were visible in 9.8 mm larvae (Fig. E-4D) . Dorsal and anal fin rays were visible in larvae 11.8 mm (Fig. E-4E) . In 14.0 mm larvae (Fig. E-4F), the pelvic fin buds appeared; they originated in front of the dorsal fin origin.

These larvae 'were more densely pigmented than prolarvae, especially on the lateral body surfaces; pigmentation patterns, however, remained similar. A faint caudal spot was evident at 14.0 mm; it did not extend into the caudal fin. Dorsal pigmentation patterns were similar to those described above.

Late Postlarvae The late postlarval stage began by 14.2 mm (Table E-4) . Small melanophores were present on all fins, and a defined caudal spot was apparent by 15.2 mm (Fig. E-4G). Dorsal and lateral pigmentation was dense (Fig. E-4H). The distinct rows of dorsal melanophores- seen in earlier stages were no longer noticeable in larvae of this size. Ventral patterns were similar to those of postlarvae. By 18.6 mm (Fig. E-4I);

fin ray development was nearly completed. A distinct lateral band originated behind the eye and ended on the caudal peduncle.

164 Juvenile Juveniles had large heads (23% of TL) and relatively small eyes (Table E-4; Fig. 'E-4J), Pelvic fins originated slightly in front of the dorsal fin. Greatest body depth, 20% of TL, occurred in front of the dorsal fin. These fish had a wide lateral band that terminated in a large black caudal spot on the caudal peduncle. This spot did not extend into the caudal fin. Premaxillaries were protractile.

Fallfish Prolarvae Fallfish eggs were collected from a nest and thus the exact time of fertilization was not known. The eggs hatched within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after collection. Newly hatched larvae ranged from 6.8 to 7.5 mm (x = 7.1 mm);

standard length ranged from 6.6 to 7.3 mm (x = 6.9 mm). At hatching, the heads were decurved over a relatively large bulbous yolk sac. By 7.4 mm (Fig. E-5A), larvae had pectoral fin buds, straight urostyles, and incomplete mouths. The dorsal fin fold, which originated about 42% of TL behind the snout, was continuous with the caudal and ventral fin folds.

Preanal length was greater than postanal length (Table E-5).

By 9.3 mm, the eyes and dorsal body surface of larvae were pigmented (Fig. E-5B). Pigmentation consisted of melanophores on the occipital region and a few extended about half way to the caudal fin fold. All other portions of the body lacked pigmentation. By 10.5 mm (Fig. E-5C),

the mouth opened, the swim bladder began to inflate, the urostyle flexed

165 upward, and the location of the dorsal fin was evident. Dorsal pigmentation in these larvae increased, and lateral and ventral pigment was found for the first time. A line of lateral melanophores extended from the pectoral fin, over the dorsal surface of the yolk, to the anus.

Postlarvae The postlarval stage began by 9.7 mm (Table E-5). In 12.2,mm larvae (Fig. E-5D), fin rays were visible in the pectoral, dorsal, caudal, and anal fins. In 13.4 mm larvae (Fig. E-5E), all body surfaces were becoming more densely pigmented. Dorsal pigmentation consisted of two rows of melanophores which extended from the occipital region to the dorsal fin. Between these two rows, a subsurface row was present. From the dorsal fin, the three rows fused and continued to the caudal fin.

Lateral pigmentation consisted of a row of melanophores along the lateral line area and a second row,(also seen ventrally) which extended from the pectoral fin, dorsally along the gut, over the anal fin, to the caudal fin. A few melanophores were present on the ventral surface of the head and gut. Pelvic fin buds and a lateral band of dark pigment were present in 15.6 mm larvae (Fig. E-5F). The pelvic fins originated directly under the origin of the dorsal fin. A caudal spot occurred in these larvae, but it did not extend into the caudal fin.

Late Postlarvae The late postlarval stage began by 14.8 mm (Table-E-5). Dorsal and lateral pigmentation had become more dense and the caudal spot was very

166 distinct in 16.8 mm (Fig. E-5G) and 18.4 mm larvae (Fig. E-5H). The rows of dorsal melanophores described in earlier stages were no longer noticeable in these larvae. Ventral patterns of melanophores were more dense, but basically unchanged from the postlarval stage. By 20.1 mm (Fig. E-5I), fin ray development was nearly completed. The dark lateral band widened and ended in a caudal spot that did not extend into the caudal fin.

Juvenile Juveniles had large (21% of TL) blunt heads, large scales, and a wide lateral band that terminated in a black caudal spot on the caudal peduncle (Table E-5; Fig. E-5J). The mouth was slightly subterminal and overhung by the snout. Premaxillaries were protractile. Pelvic fins originated directly under the dorsal fin origin. Maximum body depth (18% of TL) occurred in front of the dorsal fin.

White Sucker Prolarvae White sucker eggs hatched eight days after fertilization at a mean temperature of 14.3 C. Newly hatched larvae ranged from 8.7 to 9.2 mm (x = 8.9 mm); standard length ranged from 8.5 to 9.1 mm (x = 8.7 mm).

Their heads were decurved over a bulbous yolk sac. These larvae were unpigmented, had pectoral fin buds, straight urostyles, and incomplete mouths (Fig. E-6A). The dorsal fin fold, which originated about 30% of TL behind the snout, was continuous with the caudal and ventral fin folds.

167 Preanal length was greater than postanal length (Table E-6).

The eyes of larvae 11.4 mm (Fig. E-6B) were pigmented, but the body remained unpigmented. Melanophores began forming on the dorsal surface of the head by 11.9 mm (Fig. E-6C) . By 13.9 mm (Fig. E-6D), the mouth had opened and concentrations of melanophores occurred on the dorsal and ventral surfaces of the body. The swim bladder had begun to inflate and the caudal fin rays were visible in 14.4 mm larvae (Fig. E-6E). In larger prolarvae (Figs. E-6D, E-6E), pigmentation along the lateral line area above the pectoral fins branched back and down toward the gut. This pigment pattern was found to be characteristic of these larvae.

Postlarvae The postlarval stage began by 14.4 mm (Table E-6). The location of the dorsal fin became evident, the urostyle began to flex upward, and pigmentation on the body increased in 14.7 mm larvae (Fig. E-6F).

Lateral pigment patterns remained the same as that found in the larger prolarvae. By 15.5 mm (Fig. E-6G), the urostyle was flexed upward and a substantial number of caudal fin rays was presenr. Pectoral fin rays first occurred by 16.8 mm (Fig. E-6H). The location of the anal fin was evident, pelvic fin buds appeared, and the dorsal fin rays became visible in larvae 17.9 mm (Fig. E-6I).

Late Postlarvae The late postlarval stage began by 17.9 mm (Table E-6). Lateral pigment patterns observed in younger larvae were not seen in 20.4 mm

168 larvae (Fig. E-6J). Body pigmentation became more diffused in 23.8 mm larvae (Fig. E-6K).

Juvenile Heads of juveniles were large (23% of TL) and scaleless (Table E-6; Fig. E-6L). Maximum body depth occurred near the origin of the dorsal fin and was 17% of TL. Melanophores were scattered over the entire body and on all fins. Each.,scale margin was outlined with pigment. Several spots or blotches of dark pigment were present on the dorsal and lateral l

surfaces.

REFERENCES CITED Berry, F. H. and W. J. Richards. 1973. Characters useful to the study of larval fishes. Pages 48-65 in A. L. Pacheco, ed. Proceedings of a workshop on egg, larval and juvenile stages of fish in Atlantic Coast estuaries. U. S. Nat. Mar. Fish. Serv., Mid. Atl.

Coastal Fish. Cent., Tech. Publ. No. l.

Buynak, G. L. and H. W. Mohr, Jr. 1978. Micro-projector for drawing larval fishes. Prog. Fish-Cult. 40(1): 37-38.

Gale, W. F. 1977. Miniature aquarium system for rearing small numbers of fish larvae. Prog. Fish-Cult. 39(1): 10-13.

Hogue, J. J., Jr. and J. P. Buchanan. 1977. Larval development of spotted sucker (~Min trams ~melano s). Trans. Am. Pish. Soc. 106(4):

347-353.

Hubbs, C. L. 1943. Terminology of early stages of fishes. Copeia.

1943 (4): 260.

May, E. B. and C. R. Gasaway. 1967. A preliminary key to the identi-fication of larval fishes of Oklahoma, with particular reference to Canton Reservoir, including a selected bibliography. Okla.

Fish. Res. Lab. Bull. 5, Contrib. 164. 33 pp.

169 Siefert, R. E. 1969. Characteristics for separation of white and black crappie larvae. Trans. Am. Fish. Soc. 98(2): 326-328.

Snyder, D. E., M. B. M. Snyder, and S. C. Douglas. 1977. Identification J. Fish. Res. Board Can. 34(9): 1397-1409.

170 Table E-l. Morpbometrics and meristics of artificially propagated northern pike (R ~ range, x ~ mean, and M ~ mode).

Nusber of Len th mm Eye Diameter Createsc Body Life Stage Pish Total Standard Postanal Head (s ) Depth (mm) Preanal Poscanal Total 20 x 10.4 10.2 3.1 1.8 0.8 2.5 prolarvae H 42 21 63 R 8.0-13.2 7.9-12.9 1.9 4 ~ 3 1 ~ 3-3.3 0.6-1.0 2.0-2.9 R 41-46 20-24 61-68 20 x 160 157 51 4.3 1.3 2~3 postlarvae M 43 20 63 R 13.2 18 ' 12.9-18 ' 4.2 6' 3 '-5.7 1.0-1 5 ~ 1.9 3.0 R 42-45 19-22 62-66 20 x 27.7 25.4 8.7 8.4 2.1 4.2 lace M 40 18 60 R 19. 1-44.6 18 '-40.0 F 7-14.6 5 '-13 ' 1 ~ 5-2.8 2 ' 6' postlarvae R 40-44 17-19 57 63 65.0 57.0 22.4 21.6 3.8 8.4 juvenile Table E-2. Morphomocrics and moristics of artificially propagated muskellunge (R range, x ~ mean, and M ~ mode).

Nosher of Len th mm Eye Diameter Greatest Body Life Stage H omere Number Fish Total Standard Postanal Head (sm) Depth (sm) Preansl Postanal Total 20 x 11.9 11.8 3.5 2.2 0.8 2. 3 prolarvae H 47 19 69 R 7.9-15.6 7.9-15.4 2.1-4.7 1.2-3.4 0.6-0.9 1.7 3.3 R 44-48 18-24 64-70 20 x 17.0 16.8 4.8 4.4 1 ~ 0 2.1 postlsrvae H 47 ~ 21 67 R 15. 1-20. 8 14. 9-20. 5 4. 2-5.6 3. 7-5. 6 0.9 1.1 1.9-2.5 R 45-48 19-21 64-68 20 x 36.6 33.8 10.7 11. 3 1.8 4. 1 late M 45 19 64 R 21 ~ 8-56. 5 21. 5-50. 5 5. 7-18. 8 6. 1-17. 9 1. 2-2. 8 2.3-6.2 postlarvae R 44-47 17-20 61-66 75.0 65.0 25.6 22.8 3.6 7.0 5uvenile

Table E-3. Morphonetrics and meristics of artificially propagated longnose dace (R i range, x ~ mean, and M ~ mode).

Nusbcr of Lcn th nm Eye Diameter Greatest Body Life Stage omerc Number Pish Total Standard Postanal Heed (s ) Depth (nm) Preanal Postanal Total 20 x 7.8 7.4 2.8 1.3 0.6 1.5 prolarvac M 26 14 39 R 6.0 9.5 5.8-8.9 1.8-3.6 1.0-1.7 0.5-0.7 1.2-2.2 R 25-27 13-15 39-41 20 x R

11.6 9.4 14.2

10. 4 8.9-12.1 4.5 3.6-5.9 2.3 1.7-3.0 0.9 0.7-1 ~ 0 1.9 1.3-2.4 postlarvae M R

'625-26 13 12 14 39 38-40 20 x 176 146 7.9 3.7 1.1 3.1 late M 24 13 37 R 14.0-21.2 11.8-17.4 5.9-10.0 3.0-4.4 1.0-1. 2 2.4-3.9 postlarvae R 24-26 12-14 37-39 31.8 25.6 14.2 6.4 1.4 5.2 5uvcnile Table E-4. Horphonetrics and meristics of at'tificially propagated crock chub (R u range, x ~ mean, and M ~ mode).

Nuubcr of Lcn th nm Eye Diameter Crcatest Body Life Stage onerc Nunbcr Pish Total Standard Postanal Heed (nm) Depth (mm) Preanal Postanal Total 20 x 7.7 7.3 2. 7 1.3 0.6 1.3 prolarvae M 28 14 42 R 6.0-8.9 5.8-8.3 1.8 3.3 0.9-1.8 0.4-0.7 1.1-1.9 R 27-30 11-1 5 41-43 20 x 12.3 10. 8 4.6 2.6 0.9 2.1 postlsrvae M 28 12 41 R 9.2 15.4 8.5-13.2 3.3-6.2 1.7-3.5 0.7 1.2 1.3-2.7 R 28-29 11-14 40 42 20 x 18.0 15. 1 8.0 4.1 1. 3 3.4 late M 27 13 40 R 14.2-20.2 11.8 17.0 5.8 9.4 3. 3-4. 5 1.1 1.5 2.7 4.2 postlarvae R 26-29 12-14 40 41 27.8 23.8 11.8 6.4 1,8 5.6 juvenile

172 Table E-5. Horphometrics and meristics of fallfish reared from a natural spavn (R range, x >> mean, and M ~ mode).

Number of Len th mm Eye Diameter Greatest Body Life Stage omere Number Fish Total Standard Postanal Head (ms) Depth (nm) Preanal Postanal Total 20 x 9.0 8.6 2.8 1.5 0.7 1.8 prolsrvae M 30 13 43 R 6.8-10.6 6 '-10.0 1.7-3 ' 0.9 2 ' 0.5-0.9 1.5"1 ~ 9 R 30-32 11 15 41-45 20 x 12.7 11.3 4.6 2.7 1.0 2.0 postlarvae M 30 12 42 R 9.7-15 ' 9.2-13.2 3.4-5.7 1.9-3.5 0.8-1.2 1. 3-2. 6 R 29-31 10-14 41 44 20 x 18.5 15.4 7.6 4.2 1.4 3.2 late M 29 12 41 R 14.8-22.4 12.6-18.0 5.4 9.6 3.3-4.9 1.2 1.6 2.4-4.0 postlarvae R 29-31 11-12 40 42 26.2 21.2 11.0 5.6 1.8 5uvenile fable E-6. Morphonetrics and meristics of artificially propagated uhite sucker (R range, x mean> snd H ~ mode).

Nuaber of Len th mm Eye Diameter Createsr Body Life Stage onere Number Fish Total Standard Postsnal Bead (mm) Depth (nm) Preanal Postanal Total 23 x 12:6 12.2 2.9 1.6 0.8 1.6 prolsrvae M ,

37 9 46 R 8. 7-14. 8 8. 5-14. 2 1. 6-3. 8 0.9-2. 2 0. 6-1. 0 1~ 4-1. 8 R 36-38 8 10 43 47 20 x 16.1 14.9 , 4.3 2.8 1.1 2.0 postlarvae M 37 9 46 R 14.4-18.4 13.8-16.2 3.7-5.4 2.0-3.8 0.9-1.2 1.5-2.7 R 37-38 7-9 45-47 20 x 218 185 71 4.8 1.4 3.5 late H 36 9 45 R 17.9-28.5 15.6-23.3 5.1-10.3 3.8-6.5 1.2-1.7 3.0-4.8 postl'arvae R 35-39 7-10 44-46 30.0 24.6 11.2 6~8 1.8 5.2 5uvenile

)73 (8.3;8.2)

( 9.3; 9.1)

P el,'.h" i

~ Eg 8 ~ ~

4t (12.0;11.7 )

T+a If~Cjpl'

~ .. girt (13.4;13.1)

(15.9;15.6)

Development of northern pike. A-C. prolarvae. D-F. postlarvae.

G-I. late postlarvae. J.. juvenile. B, F, and H show lateral, dorsal, and ventral views. Numbers in parenthesis are lengths (total; standard).

174 (18.2;17.8)

F G (22.8;22.0)

(2 6.6; 24A )

(38.6;36.4)

(65.0;57.0)

Fig. E-l. (cont.)

175 Qo,,

(9.2; 9.2 )

(10.6;10.6 )

(11.4;11.4 )

(14.0;13.8)

(14.4;14.2)

Development of muskellunge. A-D. prolarvae. E-G. postlarvae.

H-I. late postlarvae. J. )uvenile. B, F, and H show lateral, dorsal, and ventral views. Numbers in parenthesis are lengths (total; standard).

(17.4;17.1)

G (24.9;23.7)

(25.7;24.5)

(37.5;34.9)

(75.0;65.0)

Fig. E-2 (con t. )

177 (6.7; 6.4)

(7.7;7.3)

Qi (8.7:8.2) y (9.5;8.9)

(11.6;1P 5)

I~

Development of longnose 'dace. A-C. prolarvae. 'D-F. postlarvae.

G-I. late postlarvae. J. )uvenile. B, E, and H'how lateral, dorsal, and ventral views. Numbers in parenthesis are lengths (total; standard) .

17')

(14.0;12.1)

G (15.8;13.4 )

(1 7.8;1 4.8 )

(20.6;11.8)

(31.8;25.6)

Fig. E-3 (cont. )

179 (6.1;5.8)

"~

(8.2;7.7) rf/i-"

~ ~

(8.3;7.7 )

(9.8;9.0)

(11.8;10.4)

Development of creek chub. A-C. prolarvae. D-F. postlarvae.

G-T.. late postlarvae. J. )uvenile. B, F, and H show lateral, dorsal, and ventral views. Numbers in parenthesis are lengths (total; standard).

180 (14.0;12.1 )

( 1 5.2 l1 2.8 )

(18.2;15.2)

J%

~ wg

~ ~ ~

4~

(1 8.6;1 5.8 )

~

+qylr lg (27.8;23.8)

Fig. E-4 .(cont:.)

181 (7.4;7.2)

(9.3;8.9)

(1 0.5; 1 0.0 )

(12.2;11.2 )

~ Y (13.4;11.8)

Development of fallfish. A-C. prolarvae. D-F. postlarvae.

G-I. late postlarvae. J. juvenile. B, E, and G show lateral, dorsal, and ventral views. Numbers in parenthesis are lengths (total; standard) .

182 (15.6;13.2) 4x' (1 6.8; 1 4.3 )

(18.4;15.6)

(20.1;16.8)

( 2 6.2;21.2 )

Fig. E-5 (con t. )

183 (9.2; 9.1)

(114; 112)

S (13.9; 13.4)

(14.4; 13.7)

(14.7; 14.1)

(15.5; 14.6)

Development of white sucker. A-E. prolarvae. F-l. postlarvae.

J-K. late postlarvae. L. )uvenile. D, H, and J show lateral, dorsal, and ventral views. Numbers in parenthesis are lengths (total; standard).

184 (16.8; 15.4)

(17.9; 15.6)

(20.4; 17.8)

>A<

V p (23.8; 19.8)

(30.0; 24.6)

Fig. E-6 (cont.)

185 LARVAL FISHES by Gerard L. Buynak and Harold W. Mohr, Jr.

TABLE OF CONTENTS Page ABSTRACTo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 188 INTRODUCTION.............................. 188 P ROCEDURES. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 189 RESULTS AND DISCUSSION............................. 191 Seasonal Fluctuation.......................... 191 Vertical Distribution................. 193 REFERENCES CITED. ~ .............. 195 LIST OF TABLES Table F-1. Larval fishes collected on the Susquehanna River, 1977. 197 Table F-2. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 5 May 1977. 198 Table F-3. Number . . . 11 May 1977..............,,....,.......... 198 Table F-4. Number . . . 19 May 1977............................... 199 Table F-5. Number . . . 26 May 1977............ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 200 Table F-6. Number . . . 2 June 1977....................,.......... 201 Table F-7. Number . . . 8 June 1977............................... 202

186 Page Table F-8. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 15 June 1977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

203 Table F-9. Number . . .,'23 June 1977 . .. ........................ 204 Table F-10. Number . . . 30 June 1977.... .. . . ...... ........ 205 Table F-ll. Number . . . 7 July 1977..............,....,,....,...,. 206 Table F-12. Number . . . 21 July 1977.... . ......,............ 206 Table F-13. Number . . . 4 August 1977....... , . ................ 207 Table F-14. Number . . . 17 August 1977...... ..................... 207 Table F-15. Mean density of larval fishes/10 m 3 captured near the surface during the day at SSES-A on the Susquehanna River, 1977............................ ~ ~ ~ ~ ~ ~ ~ 208 Table F-16. Mean . . . bottom during the day . . . 1977............

Table F-17. Mean . . . surface at night . . . 1977.............,... 209 Table F-18. Mean . bottom at night . . . 1977...

Table F-19. Mean density of larval fishes/10 m 3 captured at SSES-A on the Susquehanna River, 1977......................... 210 Table F-20. Results (F values) of six analysis of variance tests comparing catch/unit effort among replicates, sampling dates (1), day and night (2), and surface and bottom (3) at SSES-A on the Susquehanna River, 1977........... 211 Table F-21. Number of larval fishes captured in three replicate samples during diel, vertical-distribution studies at SSES-A on the Su'squehanna River,'0-11 June 1976....

3 Table F-22. Mean density of larval fishes/10 m . . . at SSES-A 10-11 June 1976...;............................., 213 Table F-23. Number of larval fishes captured in three replicate samples during diel, vertical-distribution studies at SSES on the Susquehanna River, 17-18 June 1976...... 214 3

Table F-24. Mean density of larval fishes/10 m . . . at SSES 17-18 June 1976.................. ~..................... 215

187 Page Table F-25. Results (F values) of six analysis of variance tests compar'ing catch/unit effort among replicates, time periods (1), and depths (2) at SSES-A on the Susque-hanna River, 10-11 June 1976........'................... 216 Table F-26. Results . . . at SSES . . . 17-18 June 1976............ 216 LIST OF FIGURES Fig. F-l. Mean density of larvae captured during each sampling period on the Susquehanna River, 1975-77............... 217 Fig. F-2. Mean density of larval fishes captured during diel, vertical-distribution studies at SSES-A on the Susquehanna River, 10-11 June 1976..................... 'l21l 8 Fig. F-3. Mean . . . at SSES . . . 17-18 June 1976............... 219

188 ABSTRACT In 1977, a total of 1,219 larvae of at least 15 fishes was collected at SSES-A from 5 May through 17 August to study the seasonal fluctuation of drifting larvae near the Susquehanna SES intake structure. Quillback composed about 57/ of the total catch. Significantly more larvae (P<0.001) were taken near the surface of the River than near the bottom and more (P<0.001) were taken at night than during the day.

A total of 5,085 larvae of at least 9 fishes was captured in diel studies at SSES-A and SSES on 10-11 and 17-18 June 1976, respectively.

These studies were conducted to determine the vertical distribution of drifting larvae near the Station's intake structure. Overall, the number of larvae drifting downriver at the different depths varied with time. In most instances, fewer larvae drifted during the day (0600-1800 h) than at night (2100-0300 h) . During the day, most were found at 1 m or below. Between 1800 and 2100 h, larvae began to move toward the surface and at night, more larvae were found at 1 m or above. Number of larvae remained greater near the surface and at 1 m than at the other depths from 2100 through 0300 h.

INTRODUCTION The relative abundance and density of drifting larval fish near the Susquehanna SES intake structure has been monitored since 1974 (Gale and Mohr 1976a, 1976b; Buynak and Mohr 1976, 1977). This monitoring was conducted to evaluate entrainment losses which will occur because River water will be used as a coolant in the Station.

189 Analyses of data collected in the 1977 monitoring program and in two diel studies conducted in 1976 are presented in this report. The monitoring program was designed to study the seasonal fluctuation in density of drifting larvae. Diel studies were conducted to determine vertical distribution of larvae drifting downriver past the Susquehanna SES.

PROCEDURES In the monitoring and diel studies, larval fish were sampled by pumping River water through a 216-p mesh net with a high-capacity, gasoline-powered trash pump. The pump was mounted on a pontoon boat (Gale and Mohr 1978). The pump intake was positioned upriver directly in front of the anchored pontoon boat and could be lowered to the River bottom and raised with a hand winch. Pumping rate was approximately 2,500 liters/min. The volume of, water sampled was determined by multi-plying pumping duration (3 or 5 min) by pumping rate. Pumping rate was determined-with a hand-held tachometer (Stewart-Warner, Model 757-W).

3 About 2,900 revolutions/min resulted in pumping 11.3 m of water/5 min 3

(6.8 m /3 min). Tachometer readings remained constant throughout the sampling season. Pumping rate was checked in 1977 by filling a 1,280-liter trough to assure'hat impellar wear had not reduced pump efficiency.

The rate was identical to that measured in 1976.

In the 1977 monitoring program, samples were taken on 5, ll, 19, and 26 May; 2, 8, 15, 23, and 30 June; 7 and 21 July; and 4 and 17 August at

190 SSES-A (Fig. A-1) . On each date, three replicate surface and bottom samples (5 min each) were taken at 0900 and 2100 h.

The diel studies were conducted on 10-11 and 17-18 June 1976 at SSES-A and SSES, respectively. The SSES sampling station was located 240 m upriver from SSES-A near the periphyton station. At both stations, h

three replicate samples (3 min each) were taken near the surface and at each 1-m interval until the bottom was reached. Sampling began at 0600 h and continued at 3-h intervals through 0600 h the next day.

Each sample was preserved in the field with 10% formalin containing rose bengal stain, and transported to the Laboratory where larvae were sorted. After sorting, identifications and life stages (prolarva or postlarva) of all larvae were determined using a'dissecting microscope (10-70 X). Prolarvae were defined as fish with yolk and postlarvae were those without yolk until scalation began (Hubbs 1943). Identifications were made by comparing larvae to a reference series of laboratory-reared specimens and by using keys of Fish (1932), Norden (1961), Mansueti (1964),

Mansueti and Hardy (1967), May and Gasaway (1967), Taber (1969), Meyer (1970), and Lippson and Moran (1974). In a few instances, positive identifications to species could not be made, either because of damaged specimens or a lack of adequate keys. These fish were identified as minnow spp., sucker spp., crappie spp., or perch spp.. Severely damaged fish which could not be identified were tabulated as fish (fragments). Names and order of listing(Table F-1) conform to Bailey et al. (1970).'ll specimens were stored in 10% buffered formalin.

191 Data collected in the monitoring program and diel studies were analyzed using a three-way and a two-way analysis of variance (Hewlett-Packard 1974), respectively. Prior to analysis, data underwent a log (X + 1) transformation. Upon completion of the analysis of variance, Bartlett's test for homogeneity of variances was applied. Non/ignificant results in Bartlett's test indicated that variances were suitably homo-geneous for significance testing. The 5/ probability level was used to determine significance in each test.

RESULTS AND DISCUSSION Seasonal Fluctuation A total of 1,219 larvae of at least 15 fishes was collected from 5 May through .17 August at SSES-A in 1977 (Tables F-2 through F-19).

Fishes in three of the five families collected composed about 98/,of the total catch (Table F-19) . Suckers were most abundant (62.3/), followed by minnows and carp (25.4X), and perches (10.1X). Sucker larvae were taken earliest and white sucker were collected first. Three species of sucker were captured from 5. May through 30 June. Minnows and carp were found over the'ongest time period; larvae were captured from 19 May through 17 August. Perches were captured from 11 May through 30 June and most of these were tessellated darter. Sunfishes were taken from 26 May through 21 July. Crappie were the first sunfishes collected. Fishes in the catfish family were the last to begin spawning. Catfishes were found over the shortest time period and were collected between 23 June and 21 July.

192 The total catch at SSES-A in 1977 was similar to that in 1975-76 (Buynak and Mohr 1976, 1977). In all three years, maximum densities occurred between 20 May and 20 June (Fig. F-1). In 1977, larval fish 3

densities increased from O.l fish/10 m on 5 May to a maximum of over 3

33.0 fish/10 m on 26 May (Table F-19), when carp, minnow spp., and 3

quillback were abundant. Mean densities then decreased to 1.0 fish/10 m or less from 7 July through 17 August.

Of the 15 species captured in 1977, larval quillback were the most abundant, as they were from 1974 through 1976 (Gale and Mohr 1976a, 1976b; Buynak and Mohr 1976, 1977), and composed 56.7/ of the total catch (Table F-19) . Minnow spp. were next in abundance (13.1X), followed by carp (11.2/)

and tessellated darter (9.4X) . Maximum densities of quillback and 3

tessellated darter occurred on 19 May when 26.5 and 1.8 fish/10 m were taken, respectively (Table F-19). Maximum densities of carp and minnow spp.

3 occurred on 26 May when 7.0 and 4.8 fish/10 m were collected, respectively.

Significantly more larvae (P<0.001) were taken near the surface of the River than near the bottom (Table F-20) . Mean larval fish density 3

was over 3-fold greater near the surface (10.8 fish/10 m ) as compared 3

to the bottom (3.1 fish/10 m ). Significantly more carp (P<0.001),

quillback (P<0.001), and shorthead redhorse (P<0.001) were captured near the surface.

No significant surface-bottom differences were found for minnow spp.

and tessellated darter. However, signific'ant differences (P<0.001) were found for the statistical interaction of surface-bottom and sampling. dates

193 (Table F-20) . This revealed that there were differences in the number of these fishes collected at the surface and bottom on certain dates.

This probably occuired as a result of differences in drifting behavior of pro- and postlarvae. For example, 60/ of the prolarval minnow spp.

were captured near the bottom, whereas 75/ of the postlarvae were found near the surface. For tessellated darter, 71/ of the prolarvae were captured near the surface, whereas 95/ of the postlarvae were captured near the bottom.

Significantly more larvae (P<0.001) were taken at night than during 3

the day (Table F-20). The mean density at night (11.7 fish/10 m ) was 3

over 5-fold greater than during the day (2.2 fish/10 m ). Significantly more (P<0.001) minnow spp., quillback, shorthead redhorse, and tessellated darter were captured at night (Table F-20).

No significant day-night differences occurred in the number, of drifting carp larvae. Significant interaction differences (P<0.001),

however, were found between day-night and sampling dates (Table F-20).

This revealed that day-night differences existed on certain sampling dates. For example, differences did occur on 26 May (Table F-5) when 63/ of the carp were captured at night, and on 2 June (Table F-6) when 76/ were taken during the day.

Vertical Distribution A total of 5,085 larvae of at least 9 fishes (Tables F-21 through F-24) was captured in the vertical-distribution studies at SSES-A and

194 SSES in 1976. Overall, the number of larvae drifting at the different depths varied with time (Tables F-25, F-26; Figs. F-2, F-3).

In most instances at SSES-A, fewer fish drifted during the day (0600-1800 h) than at night (2100-0300 h). During the day, either very few larvae (tessellated darter and shorthead redhorse) drifted at all depths, or if larvae (carp and quillback) continued to drift, more were captured at 1 m or below. Larvae of all species captured moved toward the surface between 1800 and 2100 h. Peak number of drifting larvae occurred between 2100 and 0300 h when more larvae were captured near the surface and at 1 m than in deeper water. In most instances, during this period the number of drifting larvae decreased with depth. The number of larvae remained greater near the surface and at 1 m than at the other depths until 0600 h of the next day when more fish were usually found below 1 m. Trends were similar at the shallower SSES.

The vertical distribution of drifting carp larvae differed on 10-11 and 17-18 June. On 10-11 June, the behavior observed was similar to that described above for other larvae. However, on 17-18 June, the number of larvae at all depths decreased throughout the day and a peak in number, which usually occurred between 2400 and 0300 h, was not observed. It probably did not occur because carp were past their peak hatching period by 17-18 June.

195 REFERENCES CITED Bailey, R. M., J. E. Fitch, E. S. Herald, E. A. Lachner, C. C. Lindsey, C. R. Robins, and W. B. Scott. 1970. A list of common and scientific names of fishes from the United States and Canada. 3rd ed., Spec.

Publ. No. 6, Am. Fish. Soc. 150 pp.

Buynak, G. L. and H. 'W. Mohr, Jr. 1976. Larval fishes. Pages 162-174 in T. V. Jacobsen (ed.), Ecological'tudies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1975). Ichthyological Associates, Inc.,

Berwick, Pa.

1977. Larval fishes. Pages 151-166 in T. V. Jacobsen (ed.),

Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1976).

Ichthyological Associat'es, Inc., Berwick, Pa.

Fish, M. P. 1932. Contributions to the early life histories of sixty-two species of fishes from Lake Erie and its tributary waters. U. S.

Fish. Bull. 47(10): 293-398.

Gale, W. F. and H. W. Mohr, Jr. 1976a. Larval fishes. Pages 141-171 in T. V. Jacobsen (ed.), Ecological studies of- the North Branch Susque-hanna River in the vicinity of the Susquehanna Steam Electric Station (Progress report for the period January-December 1974). Ichthyological Associates, Inc., Berwick, Pa.

1976b. Spawning and larval-fish drift. Pages 172-230 in T. V.

Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Progress report for the period January-December 1974). Ichthyological Associates, Inc., Berwick, Pa.'978.

Larval fish drift in a large river with a comparison of sampling methods. Trans. Am. Fish. Soc. 107(1): 46-54.

Hewlett-Packard. 1974. HP-9830. Analysis of Variance Pac. Hewlett-Packard, Loveland, Colo. 88 pp.

Hubbs, C. L. 1943. Terminology of early stages of fishes. Copeia. 1943(4):

~

260.

196 Lippson, A. J. and R. L. Moran. 1974. Manual for identification of early developmental stages of fishes of the Potomac River Estuary. Martin Marietta Corp., Environ. Tech. Cent., Baltimore, Md. 282 pp.

Mansueti, A. J. 1964. Early development of the yellow perch, Perca flavescens. Chesapeake Sci. 5(1-2): 46-66.

Mansueti, A. J. and J. D. Hardy, Jr. 1967. Development of fishes of the Chesapeake Bay region. An atlas of egg, larval, and juvenile stages. Part I. Nat. Resour. Inst., Univ. of Maryland, B'altimore.

202 pp.

May, E. B. and C. R. Gasaway. 1967. A preliminary key to the identification of larval fishes of Oklahoma, with particular reference to Canton Reservoir, including a selected bibliography. Okla. Fish. Res. Lab.

Bull. 5, Contrib. 164. 33 pp.

Meyer, F. A. 1970. Development of some larval centrarchids. Prog. Fish-Cult. 32(3): 130-136.

Norden, C. R. 1961. The ldentlffcatlon of larval yellow perch, Parce flavescens and walleye, Rtfzostedfon vftrenm. Copeda 1961(31:

282-288.

Taber, C. A. 1969. The distribution and identification of larval fishes in the Buncombe Creek arm of Lake Texoma with o'bservations on spawning habits and relative abundance. Ph.D. Thesis, Univ. of Okla. 106 pp.

197 Table F-1. Larval fishes collected on the Susquehanna River, 1977.

Cyprinidae Minnows and Carp gfgrinus ~car io carp

~Notre is amoenus comely shiner N. hudsonius spottail shiner Unidentified Cyprinidae minnow spp.

Catostomidae Suckers

~Car iodes ~crinus quillback Catostomus commersoni white sucker Moxostoma macrole idotum - shorthead redhorse Unidentified Catostomidae sucker spp.

Lctaluridae Freshwater Catfishes Ictalurus catus white catfish I. punctatus channel catfish Noturus ~insi nis margined madtom Centrarchidae Sun fishes

~he omis macrochirus bluegill Pomoxis spp. crappie spp.

Percidae Perches Etheostoma olmstedi tessellated darter Unidentified Percidae perch spp.

198 Table F-2. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 5 May 1977.

DAY DAY SURFACE BOTTOM SPECIES MEAN HEAN WHITE SUCKER PROLARVA 0 0.0 0 0.0 TOTAL 0 0+0 0 0~0 NIGHT NIGHT SURFACE BOTTOM SPECIES HEAN WHITE SUCKER PROLARVA 0 0.3 0 0.0 TOTAL 0 0.3 0 0.0 Table F-3. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, ll May 1977.

DAY DAY SURFACF. DOT TOH SPECI BS HEAN QUI LLUACK 0'EAN PROLARVA 0 0.0 0.0 WHITE SUCKER PROLARV A 0 0 ' 0.0 TESSELl ATED DARTER PROLARVA 0 0.0 0.0

'iOTAL 0 0.0 0 0 '

N IGHT NIGHT SURFACE BOTTOM SPECIES HEAN MEAN GUILLBACK PROLARVA 0 0.7 0 0 0.0 WHITE SUCKER PROLARVA 1 0~ 7 0 0 0.0 TESSELLA'1'ED DARTER PROLARVA 3 1.7 0 2 1~0 TOTAL 3 ' 2 1 1.0

199 Table F-4. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 19 Hay 1977.

DAY DAY SURPACE BOTTOH SPECI ES HE AN llINNOW SPP, PROLARVA 0.0 0.3 QUILLBACK PROLARVA 7.0 3.0 WHITE SUCKER PROLARVA 0.0 0.0 TESSELLATED DARTER PROLARVA 0.0 1 1 0.7 FISH (PRAGHENTS) 0.0 0 0 0.3 TOTAI 9 7.0 5 4.3 N IGHT NIGHT SURPACE BOT'IOH SPECI ES HEAN HINNOW SPP ~

PROLARVA 2 1.3 1 1.0 QUI I LBACK PROLARVA 93 110 118 107.0 2 2 ~ 7 WHITE SUCKER PROLARVA 0 0.3 0 0~0 TESSEl LATED DARTER I'ROl ARVA 8 6.0 0 2 2 1.3 l'ISH (PRAGHENTS) 0 0.3 0 0 0 TO'1'Al 97 120 128 115. 0 5 5 '

200 Table p-5. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 26 May 1977.

DAY DAY SURFACE BOTTOM SPECIES MEAN CARP P ROLARVA 7 ' 3.7 POSTI ARVA 0.3 0.3 MINNOW SPP ~

PROLARVA 0.3 4,0 POSTLARVA 0.3 0.3 QUILLBACK PROLARVA 1 0 ' 4 3.0 POSTLARVA 0 0 ' 0 0.3 SHORTHEAD REDHORSE P ROLARVA 0.0 0 1.0 POSTLARVA 0 0 0 0.0 CRAPPIE SPP.

POSTLARVA 0 ' 0.3 TESSELLATED DARTER PRO I ARVA 0.0 0.0 PERCH SPP.

P BOLARVA 0.0 0 0 ~ 3 FISH (PRAGMENTS) 0.0 0 1.C

-'TOTAL 15 6 9.0 18 14 11 14. 3 NIGHT NIGHT SU RFACE BOTTOM SPECIES MEAN CARP P ROLARVA 17 15 23 18.3 1.7 POSTLARVA 0 0 0 0.0 0.0 MINNOW SPP ~

PROLARVA 4 4 3 7 10 17 10 12.3 POSTLARVA 1 0 0.7 0 0 0 0.0 QUIL LBACK PRO LARVA 39 43 64 48.7 1.3 POSTLARVA 11 23 33 22 3 0~ 7 SHORTHEAD REDHORSE P ROLARVA 4 5 4.3 0 0 0.0 POSTLARVA 7 4 4.0 0 0 0.3 CRAPPIE SPP.

POSTLARVA 0 0 0.0 0.0 TESSELLATED DARTER PROLARVA 4 7 5.0 2 ~7 PERCH SPPo PROLARVA 0~ 0 0 0.0 PISH (PRAGMENTS) 0.3 0 0.3 TOTAL 80 102 140 107 ~ 3 16 26 16 19. 3

201 Table F-6. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 2 June 1977.

DAY SU RPACE BO'ITOM SPECIES MEAN CARP P ROLARVA 4' 5~3 4 '

PO ST LARVA 0~0 0 '

MINNON SPPo P ROLARVA POST LARVA 0'AY 0 3 0 '

0~3 0 '

{}UILLBACK P ROLARVA 1~ 0 3' POST LARVA 0.0 0' SHORTHEAD REDHORSE POSTLARVA 0.0 0 '

SUCKER SPP ~

POS'I'LARVA 0 ~ 3 0' CRAPPIE SPPo PROI AKVA 0 ~ 0 0'

'I'ESSEI LATED DARTER PROLA RV A 0.0 0~0 PERCH SPP ~

POS'I'LARVA 0~ 0 0~3 PISH (FRAGMENTS) 0 ~ 0 0.0 TOTAL 10 7 ' 8 ~7 N I GET NIGHT SURPACP. BO'I'T Ot l SPECIES tlEAN CARP P KOI ARVA 2 2.3 Qo3 POST LARVA MINNOW SPP.

1 0~3 0 '

PROLARVA 1 7 2 8 5 '

POSTLARVA (jUILLBACK 0.3 0 0 0 '

P ROLARV A 8 14 26 16.0 2 7 POST LARVA 1 0 1 0~ 7 1~7 SHORTHEAD REDHORSF POSTLARVA 3~7 0 0 0~3 SUCKER SPPo POSTLARVA CRAP PI E S PP 0~ 0 Q i Q 0 '

PROLARVA 0 ~ 0 0 0 0 0 TESSELLATED DARTER PROfARVA F 7 1 1 1.0 PERCH SPPa I'OSTLARVA FISH (FRAG."IENTS) 0~ 0 0 0 0 '

0~3 0 0 0~0 TOTAL 18 24 39 27 ' 5 16 15 12 0

202 Table F-7. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 8 June, 1977.

DAY DAY SURFACE BOTI'OH SP ECIES HEAR l-fEAN CARP P ROLA RVA 0.0 0 0 0.0 HINhON Sl'P. '

PROLARVA 1 1~0 2 2.0

&OSTLARVA 0 0~ 3 0 0 0.0 QUILLS ACK PBOI ARVA 0.0 1 0.7 I'OST LABV A 0.0 0 0.3 SiiORI'HEAD RL'DHOBSL POSTLARVA 0.0 0.3 CRAPPIE SPP ~

I'OS'I'LARVA 0 ~ 0 0.3 TESSELLATED DARTER PROf ARVA 0.0 0.0 1'OSTLABVA 0.0 0 '

I'EFiCH SPP.

POSTLARVA 0.0 0.0

'I'OTAL 1 1.3 5 1 5 3.7 hl GHT tfIGHT SURFACE BO'I'ION Spr CIES HEAN Chill.

P hOLA hVA filllNOi~ SPP.

0.0 0, 2 0 0.7 PBVLhkvh 2 7 2 2.3 PO5'I'LARVA 0~3 0 0.0 LulLLBACK I'ROI ABVA 1.7 0

  • 0.0 lOSTLABVA 0.7 0 0.0 SiiOkrnLAD REDHOhSE POS'1'LARVA 5.3 0 1.0.

ChhPI'lt SPP.

POSTLARVA 0.3 0 0.3 TESSEl LATID DARrER PBOLABVA 3 ' 0 0 0.0 POSr LARVA, 0.3 3 0 1.7 PLBCii SPl'.

POSTLhhvh 0.0 0 0'3

'1 (/I'AL 10 16 18 14.7 ~

10 7 2 6+3

203 Table F-8. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 15 June 1977.

DAY DAY SURFhCE BOTTOI!

SPECIES NiEAN l!EAN IIINNOh SPP.

PROLARVA POSTLARVA QUI LIBACK 0

0

, 1 0

0.3 0.0 1, 2 1.3 0.3 P ROLARVA 1~7 0 0.0 I'OSTLARVA 0.0 1 0.3 TESSEI IATED DARTER PRO! ARVA 0.0 1 0 0.3 POSTLARVA 0.0 0 0 0 '

PERCll SPP.

P IK)LARVh POS'I'ARVA 0.0 0.0 0

1

'.0 0.3 1'OT*l 3 2.0 4 2.7 iiI Gli1 N I Gll'I'0'I"I SURFACE Oli SPECIES NEAR l!EAR HIERO!l SPP.

P ROLARVA POS'I'LARVA 2

0 1.7 0.0 0,0.30.0 0 .

QUILMACK P ROLARVA 2.0 0.0 I OSTLARVA 0.0 0~0 TESSELLATED DARTER PRO! Al(VA 2 3.3 1.0 POSI'LARVA 0 0.0 0.3 PSliClt SPP ~

P ROLARVA 0. 0 0.3 0.0 0.3 1'2 POS'I'I ARVA TOTAL 11 7.0 ~ 3

204 Table F-9. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 23 June 1977.

DAY DAY SURFACE BOTTOH SPECIES HEAN SPOTFIN SHINER POSTLARVA 0 0 0.3 0'IEAN

~

NltINOW SPP.

PROI ARVA 0 ~ 0 0.3 POST LARVA 0.3 0.0 QUILLBACK P ROLARVA 0.0 0.0 SHORTHEAD RBDHORSE POSTLARVA 0 ' 0.0 CHANNEL CATFISH POSTLARVA 0 0.0 0.0 HARGINED HADTOH POSTLARVA 0.0 0~0 CRAPPIE SPP.

POSTLARVA TESSELLATED DARTER 0 0.0 0 '

PROLARVA 0 0.0 0.3 POSTLARVA 0 0 ' 0.3

'ZOTAL 1 0 0 0.3 1.3 NIGHT NIGHT SURFACE BOTTOH SPECIES 5lBAN SPOTFIN SHINER POSTLARVA 0.7 0 0 0.0 HINNOW SPPo

'PROLARVA 0.0 0.0 POSTLARVA 0.0 0.0 QUILLBACK PROLARVA 0.7 1 0 0.3 SHORTHEAD REDHORSE POSTLARVA 0.0 1 1 0.7 CHANNEI'. CAT F ISH POSTLARVA 0 ' 0 0 0.3 IlARGINBD HADTOH POSTLARVA 0.0 0 1 0.3 CRAPPIE SPP.

POSTLARVA 0.3 0 0 0.0 TESSELLATED DARTER PROI ARVA l. 0 0 1 0.7 POSTLARVA 0.0 2 0 1.3 TOTAL 3 2.7 4 3 3 7

205 Table F-10. Number'of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 30 June 1977.

DAY DAY SURFACE DOTTOH SPECIES llEAH llEAH COHBLY SHINER POSTLARVA SPOTTAI L SliIHER 0 ' 0 0 0.0 POST LARVA 0.0 0.0 0

0 0 SPOTFIN SHINER POSTLARVA 0 ' 0 0.0 HIhNOW SPP.

P ROLARVA 0.0 0 '

POSTLARVA 0.0 0.0 SHORTHEAD REDHORSE POSTLARVA 0.0 0.0 WHITE CATFISH POSTLARVA 0.0 0.0 ROCK BASS POSTLARVA TESSBLLA'I'ED DARTER 0 ~ 0 0 0 '.

POST LARVA 0.0 0.0 TOTAL 0 0.3 0 0 1 0.3 HI GH'I'URFACE NIGHT BOTTOl:.

SPECIES HBAH COHBLY SHINER POSTLARVA 0 ~ 3 0 0.0 SPOTTAIL SHIHBR POST LARVA 0.0 1 0.3 SPOTFIN SHINER POSTLARVA 0.3 0 0~0 HINhOW SPP:

PROLARVA 0 0.0 0 0 0 0.0 POSTLARVA 0 0.3 0 0 w 0 0.0 SHORTHBAD REDHORSE POS'ILARVA 0.0 0 0.3 WHITE CATFISH POST LARVA 0.0 0 0.3 ROCK BASS POSTLARVA 0.0 1 0.3 TESSELLATED DARTER POSTLARVA 0 ' 3 3.3 TOTAL 2 0 1.0 4 ' 5 4.7

206 Table F-11. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 7 July 1977.

DAY DAY SURFACE BGTI'OY.

SPECIES HEAN HEAN SPOTFIN SHINER POSTLARVA 0.0 0.3 HINNOlt SPP.

PROLARVA 0.0 0.0 CH ANN EL I CAT F S H POSTLARVA 0.0 0,0 CRAPPIE SPP.

POSTLARVA 0.0 0.0 0 0.0 0 0.3 NIGHT NIGH'I'OTTOY.

SURFACE SPECIES MEAN HEAN SPOTFIN SHINER POSTLARVA 0 ' , 0 0.0 HINNON SPP.

PROLARVA 0.7 0.0 CHANNEL CATFISH POST LARVA 0.0 0.7 CRAPPIE SPP.

PO ST LARVA 0.3 0.0 TOTAL 0 1~ 3 1 0.7 Table F-12. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 21 July 1977.

DAY DAY SURFACE BOTTOH SPECIES MEAN SPOTFIN SHINER POSTLARVA: 0.0 0.0 HINNON SPPo P ROLARVA 0 ~ 0 0.0 POSTLARVA 0.0 0.0 CHANNEL CATFISH POSTLARVA 0 ' 0.0 BLUEGI LI POSTLARVA 0 ~ 0 0~0 TOTAL 0 0.0 0.0 NIGHT N IGHT SURFACE BOT'I'OH SPECIES HEAN MEAN SPOTFIN SHINER POSTLARVA 1 0.7 0.0 HINNON SPPo PROLARVA POSTLARVA CHANNEI CATFISH 5

0 '.3 3.0 0.0 0.0 POSTLARVA 0 0 ' 0.3 BLUEGI Ll POSTLARVA 0 0.3 0.0 TO'I'AL 6 4.3 0 0.3

207 Table P-13. Number of larval fishes captured in three replicate samples at SSES-A on the Susquehanna River, 4 August 1977.

DAY DAY SURFACE BOTTOH SPECIES MEAN MEAN SP01FIN SHINER POSTLARVA 0 0.0 0 0.0 HIiVNOW SPP.

P ROLARVA 0 0.0 0 0 '

PISH (FRAGMENTS) 0 0.0 0 0 '

TOTAL 0.0 0 0 0 0 ~ 0 NIGHT NIGHT SURP ACE BOTTOM SPECIES MEAN SP01'PIN SHINER POSTLARVA 0 0.3 0.0

.MINNOW SPP.

P ROLA RVA 3 3 ' 0.0 PISH (FRAGMENTS) 2 0.7 0.0 TO'I'AL 5 4.0 0.0 Table F-14. Number of larval fishes captured in three replicate samples at SSBS-A on the Susquehanna River, 17 August 1977.

DAY DAY SU RP ACE BOTTOH SPECIES MEAN SPOTFIN SHINER POSTLARVA 0 0.3 0 0.0 MINNOW SPPo P ROLARV A 0 0.3 0 0, 0.0 TOTAL 0 0 ' 0 0~0 NIGHT NIGHT SURFACE BOTTOM SPECIES HEAN MEAN SPOTPIN SHINER POS1'LARVA 0 0.0 0 0.0 HINNOW SPP.

PROLARVA 0 0.0 0 0.0 TOTAL 0 0 ' 0 0.0

208 3

Table F-15. Hean densl,ty of larval fishes/10 m captured near the surface during the day at SSES-A on the Susquehanna River, 1977.

SPICIIS 5 HAY 11 HAY 19 HAY 26 HAY 2 JUH 8 JRl 15 JIH 23 JIB 30 JUN 7 JUL 21 JUL 4 AUG 17 BC FZVVI \ TOT CARP PRXAWA 0.0 0.0 0.0 6.5 4e7 OoO 00 00 00 OoO OeO Oe0 0. 0 Oe9 45.8 K6TIAWA 0.0 Oe0 Oe0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 OeO 0.0 0.0 1.2 SMIFIH SBIHER K81'IAWA 0.0 0.0 0.0 0.0 0.0 "

0.0 0.0 0.0 0.3 0.0 0.0 0.0 03 00 24 HIRQW SPP.

PRXARVA 0.0 0.0 0.0 0.3 0.3 0.9 0.3 Oe0 0.0 0.0 0.0 0.0 0 3 0.2 Se4 KSIIAWA 0.0 0.0 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.1 3e6 QUILIBACK PROIAWA 0.0 '.0 6.2 0.6 0.9 0.0 lo5 0.0 0.0 0.0 0.0 0.0 0,0 Oe7 37e3 SUCIIER SPP.

PCSTLAWA 0.0 '.0 0.0 0.0 0. 3 0.0 Oe0 Oe0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 6.2 Se0 6.2 1.2 1.8 0.3 0.3 0.0 0.0 0.0 0.6 1.9 3

Table F-16. Hean density of larval fishes/10 m captured near the bottom during the day at SSES-A on the Susquehanna River, 1977.

SPECIIS 5 HAY 11 HAY 19 IoAY 26 HAY 2 JW 8 JLS 15 JIÃ 23 JW 30 JUH 7 JUL 21 JUL 4 AUG 17 NG HEAH CARP PBXARVA 0.0 0.0 0.0 3. 2 3.8 Oe0 0e0 0.0 0.0 OoO 0.0 OoO Oe0 Oe5 22.4 KsrlAWA 0.0 0.0 0.0 0.3 0.0 0.0 Oe0 'o0 0.0 0.0 Oe0 0.0 0.0 0.0 0.9 SMIFIH SHIHER K8TIARVA 0.0 0. 0 0.0 0oO 0.0 0.0 0.0 0.3 0 ' Oe3 Oo0 0.0 0.0 0.0 1.9 HIRQW SPP PIGLAWA 0.0 0.0 0.3 3.5 . 0.3 1.8 1.2 03 03 00 00 0,0 0.0 0.6 24.3 K8TIAWA 0.0 0. 0 0.0 0.3 Oe3 Oe0 0.3 Oo0 Oo0 Oe0 0 0 0.0 0.0 0.1 2.8 QUI L18ACK PfGLAWA PC81'LAWA 0.0 0.0

'.0 0.0 2.7 0.0 2.7 0.3 2.7 0.0 0.6 0 3 0.0 0.3 OoO 00 Oo0 Oe0 0.0 00 0.0 00 Oe0 0.0 0.0 0.0 0.7 0.1 27.

2.8 1

SIIORBIEAD REQtIORSE PRXAWA 0.0 0.0 0.0 0.9 0.0 0.0 0o0 0.0 0.0 OoO 0.0 0.0 0.0 0.1 2.8 PC6TIAWA 0.0 0.0 0.0 0.0 0.0 0.3 0.0 Oee Oo0 0.0 0.0 Oe0 0.0 0.0 0.9 CRAl'PIL SPPe PMLAWA OeO 0.0 0.0 0.0 Oe3 Oe0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 MSTIARVA 0.0 OoO OoO 0.3 0.0 0.3 Oe0 Oe0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 TESSILIATID DARTER PRXARVA 0.0 0.0 0.6 0.0 OeO 0.0 0.3 Oo3 0 ' OoO 0 0 0.0 0.0 0.1 3o7 K81'IAWA 0.0 0.0 0.0 0.0 OeO 0.0 0.0 0 3 0~0 OoO 0.0 0.0 0.0 0.9 PERQI SPP. Oe0'.0 PICLAWA 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 Oo0 Oe0 0.0 0.0 0.0 0.9 POSTIAWA 0.0 0.0 0.0 0.0 0.3 0.0 Oe3 0.0 0.0 0.0 OoO Oo0 0.0 Oe0 1.9 PISH (FIAGNWTS) 0.0 0.0 0;3 0.9 Oe0 0.0 0.0 , 0.0 0.0 OoO 0.0 0.0 0.0 0.1 3.7 0 0 Oe0 3 8 12 7 7 7 3 2 2 4 le2 0 3 0~3 0 0 0 0 0 0 2 4

209 3

Table P-17. Mean density of larval fishes/10 m captured near the surface at night at SSES-A on the Susquehanna River, 1977.

SPECIES 5 MAY 11 HAY 19 HAY 26 I4IY 2 JW 8 JW 15 JW 23 JW 30 JVN,7 JUL 21 JUL 4 AUG 17 AUG IRAN G>>>>RP PIOLAWA 0.0 0.0 0.0 16.2 2.1 0.0 0.0 0.0 0.0 0.0 0>>0 0>>0 0>>0 1.4 7.2 PQSI'IAWA 0.0 0.0

  • 0.0 0.0 0.3 0.0 0,0 0 0 0 0 0,0 0.0 0.0 0.0 0.0 0.1 CQKLY SHI HER BXRIAWA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.1 SKHPIN SHINER PQHI'IARVA 0.0 0>>0 0>>0>> 0.0 0' 0.0 0.0 0.6 ~

0.3 0.3 0.6 0.3 0.0 0.2 0.8 HINR)H SPPe PRXAWA 0.0 0.0 1>>2 3.2 1.5 2.4 1>>5 0.0 0>>0 0.6 2.7 2.7 0. 0 .

1>>2 6.1 PQSTIAWA 0.0 0.0 0.0 0,6 0 3 0,3 0>>0 0.0 0>>3 0.0 0.3 0.0 0.0 0.1 0.7 QUI LIBACK PROLAWA 0.0 0.6 94.7 43>>1 14 ~ 2 1.5 1.8 0>>6 0.0 0.0 0.0 0.0 0.0 12.0 61.4 PQIZIAWA 0.0 0>>0 0.0 19.8 0.6 0>>6 0>>0 0.0 0.0 0.0 0>>0 0>>0 0.0 l. 6 8>>2 IIIITE SUCKER PRCLAWA 0.3 0>>6 0>>3 0.0 0.0 0>>0 0>>0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.5 SHJRIHEAD RIDIII8 PKLAWA 0.0 0>>0 0>>0 3.8 0.0 0.0 0.0 0.0 0.0 -

0.0 0.0 0.0 0>>0 0.3 1.5 POSTIAWA 0.0 0.0 0>>0 3.5 3>>2 4>>7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 4.5 BU)EGILL PCSTIAWA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0>>0 0.0 0.0 0,3 0.0 0,0 0.0 0.1 CNPPIE SPPe PQSTIAWA 0.0 0.0 0>>0 0.0 0.0 0>>3 0.0 0 ' 0 0 0 3 0>>0 0 0 0 0 0.1 0>>3 TESSILIA'IID DARIER PRXAWA 0.0 1.5 5>>3 0.0 4 '

0.0 1.5 0.0 29 0>>3 2.9 0>>0 0>>9 0.0 0>>0 0.0 0.0 0.0 0 0 0.0 0 0 0.0 0

0.0 0, 1>>5 0.0 7>>6 0.1 POSIIAWA 0>>0 0>>0 PISH (PRAQENTS) 0.0 0.0 0.3 0.3 0>>3 0>>0 0.0 0.0 0.0 0>>0 0>>0 0.6 0.0 0.1 0.6 0~3 2 7 10L8 95 0>>23 9 13>>0 6 2 2 4 0>>9 1>>2 3>>8 3 5 0 0 19 6 3

Table P-18. Mean density of larval fishes/10 m captured near the bottom at night at SSES-A on the Susquehanna River, 1977.

SPECI ES 5 HAY 11 HAY 19 HAY 26 HAY 2 JUN 8 JUN 15 JUN 23 JUN 30 JUN, 7 JUL 21 JVL 4 AUG 17 AVG IIE)N 4 TOI'ARP PRXAW* 0>>0 0>>0 0>>0 le5 0>>9 0>>6 0>>0 0>>0 0>>0 0.0 0>>0 0>>0 0.0 0>>2 6>>0

>>SB)ITAIL SHINER POSTIAWA 0.0 0>>0 0.0 0>>0 0.0 0.0 0>>0 0>>0 0>>3 0>>0 0>>0 0 0 0,0 0>>0 0.6 MINN)W SPPe sPRQIAWA 0>>0 Oe0 0>>9 10>>9 4>>i 2 1 0>>3 0.0 0>>0 0>>0 0,0 0,0 0.0 1 4 37.3 VVII IBACK PKKAWA 0>>0 0.0 2,4 le 2 2>>4 0>>0 0>>0 0,3 0>>0 0>>0 0>>0 0>>0 00 0.5 12.7 POSZIAWA 0.0 0>>0 0,0 0>>6 1.5 0>>0 0.0 0>>0 0.0 0,0. 0>>0 0.0 0.0 0>>2 4e2 SBQRPIKAO RIDIDRSE KSTIAWA I411'K CA'IP ISH 0.0 0>>0 0.0 0>>3 0 ' 0.9 0>>0 0>>6 0>>3 0>>0 '>>0 0 0 0>>0 0>>2 4>>8 POSILARVA '0 0 0>>0 0>>0 0>>0 0.0 0>>0 0>>0 0.0 Oe3 0>>0 0>>0 0>>0 0.0 0>>0 0>>6 CHANIEL CATPIBI

. POSriAWA 0>>0 0>>0 0.0 OeO 0.0 0>>0 0.0 0>>3 0>>0 0.6 0>>3 0>>0 0.0 Oel 2>>4 HARGINID HAPIQH POSTIAWA 0.0 Oe0 0.0 0,0 0>>0 0>>0 0.0 Oe3 0.0 0.0 0.0 0>>0 0>>0 0.0 0.6 BASS 'CCK PQSIIAWA 0>>0 0>>0 0>>0 0.0 0>>0 0>>0 0>>0 0>>0 0>>3 0,0 0,0 0>>0 0.0 Oe0 V>>6 CRAPPIE SPPe POSTIAWA TESSILIATED GEIGER 0>>0 0>>0 0>>0 0>>0 0.0 0>>3 0>>0 0,0 0>>0 0>>0 0.0 0>>0 '.0 0.0 0.6

~A PRCLAWA PERCH SPPe Oee 0>>0 0>>9 0.0 le 2 0>>0 2 ~4 0>>0 0>>9 0.0 0>>0 1.5 0>>9 0 '

0>>6 le2 0>>0 2e9 0,0 Oee 0,0 0>>0 0>>0 0.0 0>>0 Oee 0>>5 0>>5 13>>9 12 0 plrxAwA 0.0 0>>0 0.0

'.0 0.0 0>>0 OeO Oe0 Oe3 0>>0 0>>0 0>>0 0>>0 Use 0>>0 0>>6 PCSTIAWA 0>>0 0>>0 0>>0 0>>0 0 6 0>>3 0 ' 0.0 0>>0 0,0 0,0 0>>0 0>>0 Oel 2,4 PISH (PRAQKNIS) 0>>0 0>>0 0.0 0>>3 0>>0 0>>0 Oe0 0>>0 0>>0 0,0 0 0 0>>0 0.0 0.6 0>>0 0>>9 4 ' 17el 10>>6 5>>6 2el 3>>2 4el Oe6 0 ' 0.0 0>>0 3,8

210 3

Table F-19. Hean density of. larval Fishes/10 m captured at SSFS-A on the Susquehanna River, 1977.

SPECIES 5 HAY 11 HAY 19 ISY 26 HAY 2 JW 8 JUN 15 JUN 23 JW 30 JW 7 JUL 21 JUL 4 AUG 17 IIIG HEAN CARP PRDIANA Oe0 0.0 Oe0 6e9 2'9 0.1 0 eO 0.0 0.0 Oe0 0.0 OeO 0.0 Oe8 1LO POSZIARVA OoO 0.0 Oe0 Oel 0.1 Oe0 0.0 OoO OeO Oe0 , Oe0 0.0 0.0 Oo0 Oo2 COMELY SHINER PQSZIANA 0.0 Oe0 Oe0 OeO 0.0 OeO Oe0 Oe0 0.1 Oe0 OoO 0.0 Oe0 Oo0 01 SPOITAIL SHINER POSZIAWA Oe0 OoO OeO OoO Geo 0.0 Oe0 OoO Ool OoO 0.0 0.0 Oo0 Oo0 Oel SKIZFIN SllINER POSZIAWA OoO OoO OeO OoO OeO Oo0 OeO Oo2 Ool Ool 0,1 Ool Ool 0,1 Oe9 HINNJW SPPe PRXAWA Oe0 OoO Oo6 4o5 I ~ 5 lo8 Oo8 Ool 0.1 0 ~1 Oo7 Oo7 Ool Oe8 12 1 POSZIAWA OoO Oe0 Oe0 Oo3 Ool Ool Ool 0.1 Ool OoO Ool OeO Oo0 Ool lo0

~A OUILIBACK PRXAWA 0oO Ool 26e5 11 9 5.0 Oe5 Oo8 0 2 OoO 0.0 Oe0 Oe0 0.0 3e5 50 1 0.0 OoO OoO 5.2 Oe5 Oo2 Oel OoO 0.0 Oe0 OoO Oe0 Oe0 Oos 6 6 NHI'1E SUCKER SI~PRQLARVA PICIARVA RHXKE6E 0.1 Oo0 Oel 0.0 0 1 Oe0 OoO 1.2 0.0 OoO 0.0 0.0 0,0 Oe0 0.0 OoO 0.0 Oe0 0.0 0.0 Oe0 0.0 0.0 0.0 OoO 0.0 OoO Ool 0.3 1.3 POSTIAWA OeO Oe0 OeO 1.0 0.9 1.5 OoO 0.1 Ool 0.0 Oe0 0.0 Oe0 Oe3 3.9 SUCKER SPPo POSZLAWA 0.0 Oo0 OoO 0.0 0 1 Oe0 OeO 0.0 OeO 0 0 Oo0 OeO 0.0 Oe0 0.1 l4lITE CATPI Sll IOSZIANA Oo0 OoO 0,0 OoO 0.0 0.0 Oe0 0.0 Ool 0.0 0.0 Oe0 0.0 Oe0 0 1 QIIANkKL CAIPI SH o IDSZIAWA OeO OoO OoO OoO Oe0 0.0 Oe0 Ool OoO Ool Ool Oe0 0.0 0.0 0.3 HIQtGINED HADICH IOSZIANA OoO Oe0 OeO OoO OoO Oe0 Oe0 Ool Oe0 OoO Oe0 OeO OoO OoO 0.1 KCK BASS POSZIAWA OeO Oe0 OoO 0,0 Oo0 OoO 0.0 OoO 0.1 OoO OoO Oe0 Oe0 OoO 0.1 BIUEGILL KSTIAWA 0.0 0.0 Oe0 OoO Oe0 0.0 Oe0 OoO Oo0 0,0 Ool Oo0 OoO Oe0 0.1 CRAPPIE SPP ~

PZ>LANA Oe0 OeO 0,0 0.0 Ool Oo0 Oe0 Oe0 OeO 0.0 OeO 0,0 Oo0 OeO 0.1 PQGZIAWA Oe0 OeO Oe0 Ool OoO 0,2 0.0 Oel 0.0 0 ~1 0.0 OeO 0,0 0,0 Oo5 YES SILIATED DARZER PICIAWA Oe0 0.6 lo8 1.7 0.6 Oo7 1oO 0.4 Oe0 0,0 0 0 OoO 0 0 Oe5 7,6 POSZIANA 0,0 OoO OoO OoO OoO 0,4 Oel Oe4 0.7 Oe0 0,0 0.0 Oe0 0.1 lo8 PERCH SPPe m>ZAN AAe 0.0 0.0 OoO Ool OoO Oe0 Ool 0.0 OoO 0.0 Oe0 Oe0 0.0 Oo0 0.2 POSZIAWA 0.0 Oe0 Oe0 OoO 0 2 Ool 0.1 0.0 OeO Oe0 0.0 0.0 OoO Oe0 0 5 FISH (FPAGHWIS) Oe0 Oe0 0.1 Oo4 Oo1 OoO 0.0 Oe0 0.0 Oo0 0.0 Ool OoO 0 1 Oe8 0.1 0e9 29. 1 $3 2 12ol 5.8 3.1 1.8 1.4, Oo5 1.0 Oo9 0.1 6.9

Table F-20. Results (F values) of six analysis of varia'nce tests comparing catch/unit effort anong replicates, sanpling dates (1), day s** ~ <0.001, and night. (2)> and surface and bottce> (3) at SSES-h on the Susquehanna River, 1977 (N.S. ~ not significant,

  • <<0.05).

Hain Effects Interaction Effects Bartlett's Replicates 1 2 3 1X2 1X3 2X3 1X2X3 Test Degrees of Freedon (2> 102) (12> 102) (1, 102) (1, 102) (12> 102) (12> 102) (1> 102) (12, 102)

~Secies Conbined 0.52 80.69"aa 139.03*as 23.56a** 3,910*% 5,91*as 43,57*a* 4,85*** N.S.

0.95 106.07a** 1.36 14.06*a* 3.42a** 10.99**" 4. 18* 4, Pl*** N.S.

Mnnov spp. 0.68 20.83*<* 28.84*as 0.02 4,30aas 4,22*a* 13.95*** 1.71 N.ST Quillback 0.55 89.03a** 57.58aaa 57.18*"* II 83as>t

~ 13.07**a 83 '4aa>t 15.72*** N.S.

'9aa* 26,51*as 80*4* N.S.

Shorthead redhorse l. 14 17 52 13**a

~ 12.93a** 11,09**a 6,28%*% 11 3.34* 12.90*a< 156 ~ 15*a* 0.04 9,93aa* 3,09*** 3 81 201*4 N.ST Tessellated dartor

212 Table F 21. Hunber of larval fishes captuted in three replfcate saaples during dfel, vertical-distributfon studies et SSRS h on the Susquehanna Rfver, 10-11 June 1976.

Tine 0600 0900 12004 1500 1800 Species Depth Sur In 2 a 3 n Sot Sur I n 2n 3n Sot Sur I n 2n 3n Sot Sur In 2n,3n Sot Sur I n 2n 3n Sot Carp prolatva 41 74 72 65 65 41 46 42 41 32 13 2L 29 29 19 41 56 57 38 36 29 39 47 64 34 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hinnov spp.

prolarva 6- 10 31 '26 4$ 11 10 12 20 19 2 8 9 18 14 4 10 5 14 14 3 5 13 16 16 postlatva I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Oufllback prolarva I 16 16 14 5 3 5 10 7 0 0 7 7 4 0 I 6 6 2 2 I 6 6 2 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shotthead tedhorse prolatva 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 Crappfe spp.

ptolarva postlarva 0

I 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 00 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 T4444114ted dotter ptolarva 0 0 0 I 0 0 I 3 0 0 0 0 I 0 0 I I 0 I 0 I I 0 2 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Yeffov perch pto14tva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 L 0 0 0 0 0 Fish (fragnents) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 50 87 119 109 130 Sy S9 60 74 SS 15 29 45 5$ 37 4S 68 70 58 S4 35 46 67 86 54 Tine 2100 2400 0300 0600 Specfes Depth Sur I n 2n 3n Sot Sur In 2n 3n Sot Sut In 2 n 3 n Sot Sur In 2 n 3 n Sot Total I Total Carp prolarva 80 108 78 $0 8 173 185127 57 30 212 174 108 46 L8 76 110 150 146 77 3084 70. 8 pcs t14rva 0 0 0 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 Hinnou epp ~

prolarva 15 8 15 16 17 32 25 26 28 Lpi 24 24 31 27 7 9 13 42 33 33 776 17 ~ 8 postlarva 0 0 0 0 0 I 0 I 0 0 3 0 I 0 0 0 0 4 3 2 17 0.4 Qufllback frolarva 7 10 8 2 3 29 17 9 2 I 17 Ll 10 2 I 0 0 11 6 280 6.4 postlarva 0 0 I 0 0 I 3 0 I 0 4 I I I 0 0 0 0 I 14 0.3 Shotthead redhorse prolarva 0 2 0 0 0 0 I 0 0 0 I I 0 0' 0 0 0 0 0 6 0.1 postlatva 3 3 I I 0 3 2 5 2 0 4 0 I 0 0 0 0 0 29 0.7 Ctsppfe epp.

prolarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 postlatva 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 <O. I Tessellated darter prolarva 38 36 6 8 9 4 2 I 4 I I 0 I 0 0 141 3' postlarva 0 0 0 0 0 0 p 0 0 0 0 0 0 0 0 I <<0. I Yellov perch ptolstv4 0 0 0 "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 postlarva 0 0 0 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 <0.1 Fish (frageents) 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 <0. L Total 143 167 109 78 33 248 237 169 92 42 269 214 152 78 27 86 123 208 190 122 4354 Due to peep faf lure only one replicate uas taken near the outfaced't I n 4nd at 2 n and tvo replicates et 3 n and near the button.

213 Table F 22. Hean density of larval fishes/IO A3 captured in three tcplicate sanples during diel, vertical-distribution studies at SSES-4 on the Susquehanna River> 10-11 June 1976.

Tine 0600 0900 1200 4 1500 1800 Species Depth> Sur I A 2 A 3 A Bot Sur I A 2 A 3 A BoC Sur I A 2 A 3 A Bot Sur I A 2 A 3 A Bot Sur I A 2 A 3 A Bot Carp prolarva 20.1 36.3 3$ .3 31.9 31.9 20.1 22.$ 20.6 20.1 15.7 19 ~ I 30.9 42.6 21.3 14.0 20.1 27.$ 27.9 18.6 17.6 14.2 19.1 23.0 31'.4 16.7 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 '0 0 0 0 0 0 0 Hinnov spp.

prolatva 2.9 4.9 1$ .2 12.7 22.1 5.4 4.9 5~9 9.8 9.3 2.9 11 ~ 8 13 ~ 2 13 ~ 2 10.3 2.0 4.9 2.$ 6.9 6.9 1.$ 2.5 6.4 7.8 7.8

'posclatvs 0.$ 0.$ 0 0 0 0 0, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Puillbsck prolatva 0.$ 1.0 7.8 7.8 6.9 2.5 1.5 2.5 4.9 3.4 0 0 10.3 5~I 2~9 0 0.$ 2.9 2.9 1.0 I 0 0.5 2.9 2.9 I 0 postlsrva 0 0 0 0 0 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0 0

~

0 0 0 0

~

Shorthead redhorse prolarva 0 0 , 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postlatva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.$ 0 0 0 0 Crappie spp.

prol atua 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postlsrva 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Tessellated darter prolarva 0 0 0 0.5 2.9 0 0 0~5 I 5 0 0 0 0 07 0 0 0.5 0.5 0 0.5 0 0.5 0~5 0 1.0 posclsrvs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Yellov perch prolatva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,0 0 0 0 0 0 0 0 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.$ 0 0 0 0 0 Fish (fratnents) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 24.5 42.6 58>3 S3.4 63.7 27.9 28.9 29.4 36.3 28.C 22.1 42.6 66.2 40.4 27.2 22.1 33.3 34.3 28.4 26.S 17.2 22.S 32.8 42.2 26.S Tine 2100 2400 0300 0600 Species Depth Sut I A A A Bot ur A A A t ur A A, A ot ur A A A Ot Carp pro larva 39. 2 S2. 9 38 2 24.

~ S 3. 9 84.8 90.7 62 ~ 3 27.9 IC.7 103.9 85.3 S2.9 22.S 8.8 37.3 $ 3.9 73.5 71.6 37 ~ 7 postlsrva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Hinnov spp.

prolarva 7.4 3.9 7.4 7~8 8.3 1$ .7 12.3 12.7 13.7 4.9 11.8 11.8 15.2 13.2 3.4 4.4 6.4 20.6 16.2 16.2 postlarva 0 0 0 0 0 0$ 0 0$ 0 0 I ~ 5 0 0.$ 0 0 0 0 2.0 1.5 1.0 Quillb4ck prolarva 3.4 4.9 3.9 1.0 1.$ 14,2 8~3 4.4 I.O 0.5 83 54 49 10 0$ 0 0 S.4 2.9 2.5 postlarva 0 0 0.5 0 0 0' 1.$ 0 0.$ 0 2.0 0.5 0.5 0.$ 0 0 0 0 0$ 0 Shorthcad rcdhorse prolarva 0 10 0 0 0 0 0$ 0 0 0 0.5 0' 0 0 0 0 0 0 0 0 postlarva 15 15 05 05 0 15 10 2$ 10 0 2' 1.0 0 0.$ 0 0 0 0 0 05 Crappie spp.

prolarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $ 0 0 0 0 0 0 Tessellated dartet ptolarva 18. 6 17. 6 2.9 3. 9 2. 0 4. 4 2. 0 0. 5 1.0 0. 5 2.0 0.5 0.$ 0 0.$ 0.5 0 0 0.5 2.0 postlarva 0 0 0 05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Tel lov perch prolarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fish (fray>ants) 0 0 0 0 05 0 0 0 0 0 0 0 0 0 0 0 0 05 0 0 Total 70.1 81.9 53.4 38.2 16.2 121.6116.282 ~ 8 4$ .1 20.6 131 ~ 9104.974.S 38 ~ 2 13.2 C2.2 60.3102.093.1 $ 9.8 4

Due to puap failure only one replicate vas taken near the surface> ac I t> end st 2 A and tvo replicates at 3 A and near the botton.

214 Table P-23. Nunber of larval fishes captured in three replicate saeples durinS dial, vortical-distribution studies at SSES on the Susquehanna River, 17-18 June 1976.

Tine 0600 0900 1200 1500 1800 Species Depth Sur I n Sot Sur Ia Sot Sur I n Sot r I Carp prolarva L2 9 9 17 15 9 10 8 5 12 9 7 6 I postlatv4 0 0 I I 0 0 I 0 0 I 0 0 0 Minnou spp.

prolsrv4 16 14 10 5 5 3 7 13 11 9 7 12 8 9 9 postlarva 0 0 0 0 0 0 0 I 0 I I I I Quillback prolarva 2 4 IL 0 0 5 I 2 0 I 3 I 4 11 postlarva 0 0 I 0 0 0 0 0 0 0 0 0 0 White sucker ptolatva 0 0 '0 0 0 0 0 0 0 0 0 0 0 0 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Shorthead tedhorse prolarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postl4'rv4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Crappie spp.

prolarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postletv4 0 0 0 0 0 0 I 0 0 0 0 0 0 0 Tessellated darter prolarva 0 0 0 0 0 0 0 0, 0 0 0 0 0 po4t14rv4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Perch spp.

prolsrva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 post larva I 0 0 0 0 0 0 0 0 0 0 0 0 0 Pish (frateents) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 31 28 33 24 21 18 19 24 16 23 20 24 17 20 22 Tine 2100 2400 0300 0600 Species Depth Sur I l0 Sot Sut I n Sot Sur In Sot Sur I n Sot Total 2 Total Carp prolarva 8 2 I 0 161 22. 0 postlarva 0 0 p 0 0 0 7 1.0 Minnov spp,

40. 9 p t'0 14 t v4 28 21 8 19 23 9 15 22 299 postlarva 0 I p 2 0 0 0 4 15 2.1 Quillback prolsrva 41 17 0 19 7 22 166 22.7 post latva 0 0 p '

4 3 0 0 14 I. 9 White suc'ker prolatv4 0 0 O 0 0 0 0 0.0 postlarva o o 0 0 0 0 0.1 Shorthead redhorss prolarva 0 0 0 0 0 0 0 0.0 postlarva I 0 0 2 I 0 0 0.8 Crappie spp.

prolarva 0 0 0 0 0 0 0 0.0 t

po 4 14 tva 0 0 0 0 0 0 0 0.1 Tessellated darter prolarva 22 24 2 2 I 0 0 56 7. 7 postlarva 0 o I I 0 I 3 0.4 Perch spp.

prolarva postlarva 0

0, 0

0 p 0 0

0 0 0, 0 0 O

0 O

0.0 0.1 Pish (frafsents) 0 0 0 0 0 0 0. I Total 93 69 12 55 21 59 12 21 29 731

215 3

Table F 24. Bean density of larval fishes/lo a captuted in three replicate sassples durlnS dlel> vertical-distribution studies at SSES on che Susquehanna River, 17 18 June 1976 ~

Thee 0900 1200 1500 1800 Species Depth Sur 1 a Bot Sur 1 a Bot Sur 1 a Bot Sur 1 a Boc Sur 1 a Bot Carp prolarva 5.9 4.4 4.4 8.3 7.4 4.4 4.9 3.9 2 ' 5.9 4.4 2.0 3.4 2.9 0.5 postlatva 0 0 05 0.5 0.5 0 0 '05 0 0 0.5 0 0 0 0 Binnov spp.

prolsrva 7.8 6.9 4.9 2.5 2.5 1.5 3.4 6.4 5.4 4.4 ,3.4 5.9 3.9 4.4 4.4 po s t 1 s tv 0 0.5 0.5 0 0 0 0 0 0 0.5 0 0.5 0.5 0.5 0.5 n

a Ouillbsck prolarva 1.0 2.0 5.4 0 2.5 05 10 0 0.5 1.5 2.9 0.5 2.0 5.4 postlarva 0 0 0 5 0 0.5 0 0 0 0 0 0

(

White sucker prolarva 0 0 0 0 0 0 0 0 0 0 0 0 0 postlarva 0 0 0 0 0 0 0 0 0 0 0 0 0 Shorthead redhotse prolarva 0 0 0 0 0 0 0 0 0 0 0 0 0 0 postlarva 0 0 0 0, 0 0 0 0 .0 0 0 0 0 0 Crappie spp.

prolarva 0 0 0 0 0 0 0 0 0 0 0 0 0 Postlatva 0 0 0 0 0 05 0 0 0 0 0 0 0 Tessellaced darter prolarvs pos t larva 0

0 0

0 0

0 0.5 0

0 0

0

-0 0

0 0

0 0

0 0, 0 0.5 0

0 0

0 0

0 0

Parch spp.

prolarvs 0 0 0 0 0 '0 0 0 0 0 0 0 0 posclsrva 0 5 0 0 0 0 0 0 0 0 0 0 0 0 Fish (frafsants) 0 0 0 0 0 0 0 0 0 0 0 0 0 To eel 15. 2 13.7 16.2 11.8 10.3 8.8 9.3 11 ~ 8 7.8 11.3 9.8 11.8. 8.3 9.8 10.8

'ine 2100 2400 0300 0600 Species Depth Sur 1 a Bot Sur 1 a Bot Sur 1 a Bot Sut 1 A Bot Carp prolatva 0. 5 2.9 0.5 3.9 1.0 1.5 2.0 0 0.5 0.5 0 0.5 posclarva 0 0 0 0 0 0 05 0 0 05 0 0 Minnov spp.

prolarva 13.7 10.3 3.9 9.3 2.5 1.5 11.3 2.0. 2.0 4.4 7.4 10.8 posclsrva 0 05 0 1 0 0 0 1.0 1.0 0 0 0 0 5 Quillback prolarvs 20.1 8.3 0 9.3 3.4 0 10.8 0 0 0.5 2~ 5 1.5 post larva 0 0 0 1.0 2.0 0.5 15 0 0 0 0 10 White sucker prolarva 0 0 0 0 0 0 0 0 0 0 0 postl&tvs o o ns 0 0 0 0 0 0 s 0 0 Shorthand rcdhorse ptolstvs 0 0 0 0 0 0 0 0 0 0 0 0 posclarva 0 5 0 0 1.0 0.5 0 10 0 0 0 0 0 Crappie spp.

prolarva 0 0 0 0 0 0 0 0 0 0 0 postlatvs 0 0 0 0 0 0 0 0 0 0 0 Tessellaced darcer ptolstva 10.8 11,8 1 ~ 0 1.0 0.5 0 1.0 0.5 0 0 0 0 postlarva 0 0 0 0 5 0' 0 0 0 0 0 05 0 Perch spp.

prolsrva 0 0 0 0 0 0 0 0 0 0 0 posclatva 0 0 0 0 0 0 0 0 0 0 0 Fish (ftataents) ~ .0 0 0 0 0.5 0 0 0 0 0 0

- Total 45.6 33.8 5.9 27.0 10.3 3.9 28.9 3.4 2.5 5.9 10.3 14.2

216 Table F-25. Results (F values) of six analysis of variance tests comparing catch/unit effortamong replicates, time periods (1), and depths (2) at SSES-A on the Susquehanna River, 10-11 June 1976 (N.S. ~ not significant, +"" ~ <0.001, ** ~ <0.01) ~

Main 'Effects Interaction Effect Bartlett's Replicates 1 2 1X2 Test Degrees of Freedom (2, 78) (7,,78) (4, 78) (28, 78)

~Sectes Combined l. 05 30.334*% 23.83*** 10.75%A* N.S.

Carp 0.58 27.11**" 42.31+** 8.37*%* N.S.

Minnow spp. 0.81 11,02*a* 9,58*%* 3.81**@ N.S ~

Quil'lback 0. 69 4.55k** 4,54'* 4 62*** N.S.

Shorthead redhorse 1.22 8,44*A* 3,59%* l. 62 N.S.

Tessellated darter 0.79 39, 60%*k 4e13A* 5,58***

Table F-26. Results (F values) of six analysis of rariance tests comparing catch/unit effortamong replicates, time periods. (1), and depths (2) at SSES on the Susquehanna River, 17-18 June 1976 (N.S. ~ not significant, ~~* <0.001, ~* <0.01, * ~ <0.05).

c Main 'Effects" Interaction Effect Bartlett's Replicates 1 2 1X2 Tes't Degrees of Freedom (2, .52) (8, .52) (2, 52) (16, 52)

~eecees Combined 0. 69 4,6P*** 12 31*44 5.61*** N.S.

Carp 0. 72 8,55*%* 7 1PA* l. 26 N.S.

Minnow spp., 0. 56 3, 56** 2.49 2. 28* N.S.

Quillback 0. 17 4.19*"+ 1.81 5.64**~ N.S.

Shorthead redhorse l. 22 1.86 3.19* 0.94 N.S.

Tessellated darter 0.22 22,67k** 6.94*a 3.32*** N.ST

217 50 40

~ - - 1975 K

O 30 I'

/ l.

/1 1


1977 1976 I

I I

I I I O I 20 '

O I K

'II I

I I

I I

10 I I

I I

I I

I i,U I

0 1 10 20 1 10 20 1 10 20 1 10 20 MAY JUN JUL AUG Fig. F- 1. Mean density of larvae captured during each sampling period on the Susquehanna Ri.'ver, 1975-77.

218 GUILLBACK 20 TESSELLATED DARTER x

120 CARP SURFACE l

100 1 METER Ch U 2 METERS L1 3 METERS I I

kg 60 BOTTOM O

CZ i

60 40

/

//

I I

I I

20 0600 0900 1200 1500 1600 2100 2400 0300 0600 Fig. F-2. Mean density of larval fishes captured during diel, vertical-distribution studies at SSES-A on the Susquehanna River, 10-11 June 1976.

219 CARP 20 TESSELLATED DARTER C) cn 4 40 O

GUILLBACK x SURFACE K 1 METER BOTTOM 20 0600 0900 1200 1500 1800 2100 2400 0300 0600 Fig. F-3. Mean density of larval fishes captured during diel, vertical-distribution studies at SSES on the Susquehanna River, 17-18 June 1976.

220 ELECTROFISHING OF FISHES Gerard L. Buynak, Andrew J. Gureynski, and Harold W. Mohr, Jr.

TABLE OF CONTENTS Page TRACT............................................................

1(

ABS 222 INTRODUCTION........................................................ 222 P ROCEDURES.......................................................... 222 RESULTS AND DISCUSSION.............................................. 224 REFERENCES CITED. ~ ~ ~ . ~ ~ ~ ~ ~ ~ ............. ...

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 227 LIST OF TABLES Table G-l. Descriptions of electrofishing runs on the Susquehanna River, 1977. . .. .'. . .. ...................;......... 229 Table G-2. Fishes collected or observed a t SSES and Bell Bend on the Susquehanna River, 1977... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 230 Table G-3. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 29 March 1977................. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 231 Table G-4. Number . . . 28 April 1977. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 232 Table G-5. Number... 26-27 May 1977............................ 233 Table G-6. Number... 22 June 1977........... ~ ~ ~ ~ ~ ~ 234

221 Page Table G-7. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 13 July 1977............................................ 235 Table G-8. Number . . . 18 August 1977................. ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ 236 Table G-9. Number . . . 24 October 1977............................ 237 Table G-10. Number . . . 16 November 1977............. ~ ............. 238 Table G-ll. Mean catch/1,000-m electrofishing run and species composition (% total) of fish observed at SSES on the Susquehanna River, 1977............................. 239 Table G-12. Mean . . . at Bell Bend . . . 1977...................... 239 Table G-13. Physicochemical data collected in conjunction with day electrofishing runs at SSES east on the Susquehanna River, 1977........... ..................... 240 Table G-14. Physicochemical . . . SSES west . . . 1977.............. 240 Table G-15. Physicochemical data collected in conjunction with night electrofishing runs at SSES east on the Susquehanna River, 1977.............................. 240 Table G-16. Physicochemical . . . SSES west . . . 1977............. 240 Table G-17. Physicochemical data collected in conjunction with day electrofishing runs at Bell Bend east on the Susquehanna River, 1977.. . ...... ..................... 241 Table G-18. Physicochemical . . . Bell Bend'est . . . 1977......... 241 Table G-19. Physicochemical data collected in conjunction with night electrofishing runs at Bell Bend east on the Susquehanna River, 1977................................ 241 Table G-20. Physicochemical . . . Bell Bend west . . . 1977........ 241 LIST OF FIGURES Fig. G-1. Sampling stations for electrofishing (EL) and seining (SN) on the Susquehanna River near the Susquehanna SES, 1 977 ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 242

222 ABSTRACT At SSES and Bell Bend, a combined total of 1,368 specimens of at least 24 fishes was observed. Quillback, white sucker, northern hog Y sucker, shorthead redhorse, smallmouth bass, and walleye composed 70/

of the total catch. White sucker was the most abundant specimen observed at both stations. Significantly more specimens were observed/

unit effort in the east shore runs at both SSES (P<0.01, n = 16) and Bell Bend (P<0.05, n = 16) than in the west shore runs. More specimens/

unit effort (P<0.001, n = 31) were observed at night than during the day at both stations. No significant differences were found between Bell Bend and SSES when data from sampling runs were combined.

INTRODUCTION Electrofishing was conducted in 1977 to determine species composition and relative abundance of large fish near the Susquehanna SES. Included here are data gathered at the SSES and Bell Bend sampling stations in 64 electrofishing collections. These baseline data will be used to assess environmental impact during operation of the Susquehanna SES.

PROCEDURES The AC-DC electrofisher has been used to sample fish since 1972. The major components are a 4-KW Onan generator, a variable voltage pulsator (Power Control Corporation, Pittsburgh, Pennsylvania), and a 20-ft flat-bottomed boat Designs and operational guidelines of electrofishing boats are given in Novotny and Priegel (1974) .

223 Electrofishing was conducted monthly from March through November (excluding September) at SSES and Bell Bend (2 runs at each station) using DC current. The two runs at SSES, one near each shore, were upriver from the Susquehanna SES intake structure and those at Bell Bend, also near each shore, were downriver from the discharge diffuser (Table G-1; Fig. G-l).

Runs were electrofished once during the day and once at night.

Each 1,000-m run was considered one unit of effort. Day sampling was usually conducted between 0900 and 1130 h; night sampling began one hour after sunset. On a run, the electrofishing boat was driven slowly downriver, parallel to the current and from 1 to 15 m from shore. All species of stunned fish larger than about 10 cm were identified and counted by two observers on the bow of the boat. Fish that surfaced in the water behind the observers were enumerated by the boat operator.

These data were recorded on a cassette tape recorder (Craig No. 8108) by one of the observers on the bow. Fish which could not be positively identified in the water were captured for closer examination, and those that escaped were recorded as unidentified. Names and order of listing (Table G-2) conform to Bailey et al. (1970) .

During each electrofishing run, a separate crew collected physico-chemical data. At the downriver end of the run, a 1-liter surface grab sample and a 300-ml surface dissolved oxygen sample were collected. In addition, air and surface water temperatures were measured. The samples were transported to the Laboratory where analyses were performed for

224 dissolved oxygen, pH, turbidity, and specific conductance according to methods in Table A-l.

Fisheries data were analyzed using a "nonparametric sign test" (Siegel 1956) to determine if there were significant differences in the number of specimens captured. The 5X probability level was used to determine significance in each test.

RESULTS AND DISCUSSION At SSES, a total of 665 specimens of at least 21 fishes was observed (Tables G-3 through G-10) . Six fishes (white sucker, shorthead redhorse, northern hog sucker, quillback, walleye, and smallmouth bass) composed 73.0X of the total catch at SSES (Table G-11). As was found in 1976 (Buynak and Gurzynski 1977), white sucker was the most abundant fish observed in 1977 and composed 27.1/ of the total catch. It was followed in abundance by shorthead redhorse (13.4/), northern hog sucker (10.2X),

quillback (10.1X), walleye (6.2/), and smallmouth bass (6.0/).

The number of fishes observed at SSES was low in March (8) and April (8), increased in May (12), remained high throughout the summer, and peaked in August (13). The number then declined sharply to 7 in October and 8 in November (Table G-ll). White sucker and walleye were the only species observed in all months sampled. Northern hog sucker and shorthead redhorse were observed in 7 of 8 months sampled.

225 The catch/unit effort at SSES was low in March; it increased in April and May, and then decreased in June. In July and August, it increased again, whereas in October and November it decreased. Most specimens were observed in May, 'and fewest in October (Table G-ll).

A significantly higher (P<0.01, n = 16) catch/unit effort was observed at the SSES east shore run as compared to the west shore run (Tables G-3 through G-10). Totals of 390 specimens of at least 21 fishes and 275 specimens of at least 12 fishes were observed at the east and west runs, respectively. Quillback, white sucker, northern hog sucker, and shorthead redhorse were the most abundant specimens observed at both runs. Brown trout, northern pike, muskellunge, chain pickerel, brown bullhead, pumpkinseed, largemouth bass, black crappie, and yellow perch were observed only at the SSES east run; all other species observed at the east run were also seen at the west run.

At Bell Bend, a total of 703 specimens of at least 19 fishes was observed (Tables G-3 through G-10). White sucker was the most abundant fish observed and composed 26.7X of the total catch (Table G-12).

It was followed in abundance by quillback and smallmouth bass (both 11.8X),

shorthead redhorse (9.5X), and rock bass (4.8X).

The number of fishes observed at Bell Bend was low in March (9) and April (8), increased markedly in May (15), and remained high (11-15) through August. The number then decreased sharply to 9 in October and 4 in November (Table G-12). The largest number of fishes was observed in May and July. White sucker was observed in all months sampled.

226 guillback, northern hog sucker, and walleye were observed in 7 of 8 months sampled.

The catch/unit effort at Bell Bend was low in March, increased in April and May, then decreased in June. It peaked in July and then decreased and remained low in August, October, and November (Table G-12).

In 1977, as in 1975 and 1976 (Buynak and Gurzynski 1976b< 1977),

significantly more (P<0.05, n = 16) specimens were observed at the Bell Bend east shore run as compared to the west shore run. Totals of 423 specimens of at least 17 fishes and 280 specimens of at least 17 fishes were observed at the east and west runs, respectively (Tables G-3 through G-10). Yellow bullhead and pumpkinseed were observed only at the Bell Bend east run; brown trout and white crappie were only observed at the west run.

At SSES and Bell Bend, a combined total of 1,368 specimens of at least 24 fishes was observed (Tables G-3 through G-10). Of the 24 fishes, six (quillback, white sucker, northern hog sucker, shorthead redhorse, smallmouth bass, and walleye) composed 70/ of the total catch.

Similar results were obtained in 1976 (Buynak and Gurzynski 1977) when the same six species composed 77/ of the catch. Northern pike, river chub, largemouth bass, black crappie, and yellow perch were observed only at SSES, whereas yellow bullhead, redbreast sunfish, and white crappie were observed only at Bell Bend. No significant differences in catch/unit effort were found at SSES east and Bell Bend east runs or at SSES west and Bell Bend west runs. White sucker was the most abundant fish observed in the east and west runs at both stations.

227 Significantly more (P<0.001, n = 31) fish/unit effort were observed at night than during the day at both SSES and Bell Bend. Totals of 536 specimens of at least 21 fishes and 832 specimens of at least 21 fishes were observed during the day and night, respectively (Tables G-3 through G-10). At both stations, percent composition of the total catch of northern hog sucker, smallmouth bass, and walleye tended to increase from 1974 through 1977 (Buynak and Gurzynski 1976a, 1976b, 1977) . This trend might be due to the improved water quality near the Susquehanna SES site in 1973-76 (Jacobsen and Soya 1977).

No significant difference was found between Bell Bend and SSES when data from sampling runs were combined at each station; a difference, however, did exist between sides of the River. Significantly more specimens were observed at the SSES east (P<0.01, n = 16) and Bell Bend east (P<0.05, n = 16) shore runs that at the west shore runs at both stations. It is believed that these differences are related to the creek mouths which enter the River on the east shore, even though no major differences were found in water quality parameters in 1977 (Tables G-13 through G-20). In 1975 and 1976 (Buynak and Gurzynski 1976b 1977),

fish seemed to congregate near these areas.

REFERENCES CITED Bailey, R. M., J. E. Fitch, E. S. Herald, E. A. Lachner, C. C. Linsey, C. R. Robins, and U. B. Scott. 1970. A list of common and scientific names of fishes from the United States and Canada.

3rd ed., Spec. Publ. No. 6. Am. Fish. Soc. 150 pp.

228 Buynak, G. L. and A. J. Gurzynski. 1976a. Fishes. Pages 231-279 in T. V.

Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Progress report for the period January-December 1974). Ichthyological Associates, Inc., Berwick, Pa.

1976b. Electrofishing of fishes'. Pages 175-200 in T. V.

Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1975). Ichthyological Associates, Inc., Berwick, Pa.

1977. Electrofishing of fishes. Pages 167-188 in T. V.

Jacobsen (ed.), Ecological studies of the Susquehanna River in the vicin'ity of the Susquehanna Steam Electric Station (Annual report for 1976). Ichthyological Associates, Inc., Berwick, Pa.

Jacobsen, T. V. and W. J. Soya. 1977. Physicochemical analyses. Pages 3-35 in T. V. Jacobsen (ed.), Ecological studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1976). Ichthyological Associates, Inc., Berwick, Pa.

Novotny, D. W. and G. R. Priegel. 1974. Electrofishing boats: Improved designs and operational guidelines to increase the effectiveness of boom shockers. Tech. Bull. No. 73. Dept. of Nat. Resour., Madison, Wis. 48 pp.

Siegel, S. 1956. Nonparametric statistics for the behaviorial sicences.

McGraw-Hill Book Co., Npw York, N.Y. 312 pp.

229 Table G-1. Descriptions of electrofishing runs on the Susquehanna River, 1977.

Station Run Location SSES EL 1 East shore from gas-line crossing to approximately 230 m downriver from the mouth of Little Wapwallopen Creek.

SSES EL 2 West shore from gas-line crossing to approximately 250 m downriver from Ichthyological Associates dock.

Bell Bend EL 3 East shore from 225 m upriver from eel wall to 200 m upriver from Wapwallopen Creek.

Bell Bend EL 4 West shore from 275 m upriver from eel wall to 175 m upriver from small stream directly across from Wapwallopen Creek.

230 Fishes collected or observed at SSES and Bell Bend on the Susquehanna River, 1977.

Salmonidae Trouts Salmo trutta 'brown trout Esocidae Pikes Esox lucius northern pike E ~ni er chain pickerel Esox spp. pike spp.

Cyprinidae Minnows and Carp Cyyr ious ~car io carp

~Notro is amoenus comely shiner N. hudsonius spottail shiner N. Erocne swallowtail shiner

~Notre is spp. shiner spp.

Catos tomidae Suckers

~Car iodes cyyrfnus quillback Catostomus commersoni white sucker Moxostoma macrole idotum shorthead redhorse Ictaluridae Freshwater Catfishes Ictalurus natalis yellow bullhead I. nebulosus brown bullhead I. punctatus channel catfish Centrarchidae Sunfishes

~le ernie auritus redbreast sunfish L. Eibbosus pumpkinseed L. macrochirus bluegill Lepomis spp. sunfish spp.

M. salmoides largemouth bass Pomoxis annularis white crappie P. ni romaculatus black crappie Percidae Perches Etheostoma olmstedi - tessellated darter Perca flavescens yellow perch Stizostedion vitreum walleye

231 Table G-3. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 29 March 1977.

STATION SSBS SHORE EAS'I'AST WEST WE 1ME 2000-2030 0955-1010 2050-2060

'I'919-G937 SPECIES tlBAN BROWlv '1'ROUT 0 0 0 0.0 NOR'1'H BR N P KEI 1 0 0 G.3 MUSKELLUNGE 0 1 0 0.3 CARP 2 0 1 0.8 PAL LF ISH 0 0 0 0.0 4UILLLACK 0.0 WHITE SUCKBR NORTHERN HGG SUCKER ll 1

0 2

2 1

0 2

0 3.0 0.3 SHOR'1'HEAD RBUHGRSE 1 2 0 0.8 HALI EYE 0 1 0 0.3 FISH (UNIDENTIFIED) 0 2 1 0.0 TOTAL 7.0 STAT ION BELL BEND SHORE EAST E AST WEST . WEST

'I'l1f 1037-1050 1945-1960 1011-1024 1925-1938 SPECIES MEAN BROWtv 1 ROUT 0 0 0 1 0.3 NGP.'I'HERN PIKE 0 0 0 0 0.0 llUSKBLLUNGE 1 0 0 0 0.3 CARP 0 0 2 0 0.5 FALLFISH 0 0 0 1 0.3 4UILLBACK 0 0 1 1 0.5 WHITE SUCKER 3 13 12 20 14.0 NORThERN HOG SUCKER 0 0 1 0 0.3 SHOR'1'HEAD REDHORSE 0 1 0 1 0.5 WALLBY 0 1 0 0 0.3 (UNIDENTIFIED)

E'ISH 0 0 0 1 0.3 TOTAL 15 33 17.0

232 Table G-4. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 28 April 1977

'TAT ION SSES SHORE EAST EAST WEST WEST TIME 1021-1035 2250-2303 1001-1012 2235-2245 SPECIES MEAN BROWN TROUT 1 0.3 MUSKELLUNGE 0 0.0 CARP 0 0.3 FALLFISH 0 0.8 I

{}U LLBACK 6 2.5 WHITE SUCKER 9 4.3 NORTHERN HOG SUCKER 1 0.3 SHORTHEAD REDHORSE 10 4.5 WALLEYE 0 0.3 FISH (UNIDENTIFIED) . 2 2.0 TOTAL 12 29 14 15.0 STAT ION BELL BEND SHORE EAST EAST WEST WEST TIME 1037-1051 2106-2126 0927-0940 2129-2143 SPECIES MEAN BROWN TROUT 0 0 0.3 MUSKELLUNGE 1 0 0.5 CARP 3 0 1.8 0.5 FALLFISH QUILLBACK WHITE SUCKER ll 1

1 0

2 3

5.0 3.5 NORTHERN HOG SUCKER 0 1 0.3 SHORTHEAD REDHORSE 5 4 5~5 WALLEYE 0 0 0~0 FISH (UNIDENTIFIED) 2 1 2.0 TOTAL 24 11 20 22 19.3

233 Table G-5. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 26-27 Hay 1977.

S'I'T ION SSES SHORC EAS'I'AST NEST NL'ST

'I'INE 0933-0956 2340-2360 1009-1025 0010-0030 I

S PL'C ES tlL'AN CARP 0 2 2 0 1.0 R1VER CHUb 0 0 1 0 0.3 PAL LF ISH 1 0 0 1.3 QUILLBACK 2 2 1 6 2.8 NH1'I'E SUCKER 7 8 15 9 9.8 NOR'1'liERN HOG SUCKER 2 5 12 0 4.8 SHORTHEAD RL'DHORSE 2 11 5 5.5 YELLOW UULLliEAD 0 0 0 0 0.0 BRONti BULLHEAD 1 1 0 0 0.5 ChANNFL CATFISH 0 0 0 0 0.0 ROCK BASS 1 7 0 3 2.8 RE DBREAS'I'UNFISh 0 0 0 0 0.0 PUI1PKINSEED 0 0 0 0 0.0 BLUEGILL 1 0 1 1 0.8 SNALLtlOUTH BASS 0 1 1 1 0.8 SUNFISH SPP. 0 1 0 1 0.5 WALLEYE 0 3 1 2 1.5 FISH (UNIDENTIPIED) 17 6 11 9.5 TOTAL 21 51 55 39 41.5 STATION BELL BEND SHORE EAST EAST NEST NEST TItlE 1058-1124 2221-2245 1031-1050 2306-2325 SPECIES NEAN CARP 0 1 2 2 1.3 RIVER CHUB 0 0 0 0 0.0 FALLFISH 5 5 0 3.5

{}UILLBACK 1.3 WHITE SUCKER 1&RTHERN HOG SUC KE R ll1 1

1 7

0 13 2

-1 0 1

3 8.5 0.5 SHORTHEAD REDHORSE 0 0 3 0 0.8 YELLON BULLHEAD 0 1 0 0 0.3 BROWN BULLHEAD 0 0 0 1 0.3 CHANNEL CATFISH 0 0 0 1 0.3 ROCK BASS 0 2 0 1 0.8 REDBREAS'I'UNFISH 0 1 0 0 0.3 PUHPKINSEED 2 1 0 0 0.8 BLUEGI LL 0 3 1 0 1.0 StlALIHOUTH BASS 3 23 2 3 7.8 SUNFISH SPP. 0 1 0 1.3 WALLEYE 1 1 2 3 1.8 FISH (UNIDENTIFIED) 5 9 5 7 6.5 TOTAL 29 36 22 36.5

234 Table G-6. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 22 June 1977.

STAT ION SSES ShORE EAST EAST WEST WEST Tlt4b 1100-1120 2153-2212 1032-1052 2222-2236 SPECIES tlEAH CARP 1 0.8 FALLF ISH 0 0.0 QU I LLBACK 3 2.0 WHITE SUCKER 7 4.5 HORTHERH HOG SUCKER 11 4.3 SHORTHEAD REDHORSE 12 5.0 BROWN BULLHEAD 0 0.0 CHANNEL CATFISH 0 0.3 kOCK &ASS 0 0.0 PUHPKINSEED 0 0.0 BLUEGI LL 1 0.3 St4ALMOUTH BASS 2 0.5 LARG Et lOUTH BASS 1 0.3 SUHFISh SPP. 0 0.0 WALLEYE 1 0.3 FISh (UNIDENTIFIED) 6 2.3 TOTAL 12 20 20. 3 STAT IOH BELL BEHD SHORE EAST E AST HEST 'WEST TINE 0957-1017 2240-2255 0930-0950 2304-2320 SPECIES tlEA H CARP 0 0.0 PAL LP I SH 0 0.3 QUILLBACK 0 2.5 WHITE SUCKER 5 5.0 NORTHERN HOG SUCKER 1 1.0 SHOkTHEAD REDHORSE 2 2.5 bROWN BU LLHEAD , 0 0.3 CHANt<EL CATFISH 0 0.0 ROCK BASS 0 0.8 PUHPKINSEED 1 0.3 BLUEGILL 0 0.5 SHALLHOUTH BASS 1 1.5 l ARGEYOUTH bASS 0 0.0 SUHPISH SPP. 0 1.0 WALLEYE 0 0.8 PISH (UNIDENTIFIED) 0 2.8 TOTA L 10 37 22 19.0

235 Table G-7. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 13 July 1977.

STATION SSES SHORE EAST, EAST NES'I'i'iEST T I ilE 0910-0928 2304-2325 0935-0953 2334-2350 SPECIES klEAH CHAIN PICKEREL 0 0 0 0 0.0 CARP 0 0 0 0 0.0 FALLF I Sfl 0 0 3 2 1.3 QUILLBACK 4 10 0 7 5.3 HfklTL SUCKER 2 0 17 5 6.0 HORTkiERN HGG SUCKER 8 3 13 0 6.0 SHOR'I'HLAD REDHORSE 2 2 10 0 3.5 BROHN BULLHEAD 0 0 0 0 0.0 CHANNEL CATf ISH 0 0 0 1 0.3 ROCK BASS 0 5 0 1 1.5 REDBREAST SUNFISH 0 0 0 0 0.0 PUilPKIHSEED 0 0 0 0 0.0 BLUEGILL 0 0 0 0 0.0 SHALLilOUTH BASS 3 4 1 0 2.0 SUNFISH SPP. 0 1 0 1 0.5 HALLEYE 0 3 0 1 1.0 FISH (UNIDENTIFIED) 2 5 6 1 3.5 TOTA L 21 33 50 19 30.8 STAT ION BELL BEND SiiORE EAST EAST HEST HEST TINE 1020-1046 2225-2252 0957-1015 2200-2220 SPECIES k'lEA N CHAIN I'ICKEREL 0 2 0.8 CARP 1 0 0.5 FALLFISH 1 0 0.3 QUILLBACK 2 20 9.0 ViHI'iE SUCKER 5 8 3.5 HORTkiERN iiGG SUCKER 8 2 2.8 SHORTHEAD REDHORSE 8 5 4.5 BRGViH BU LLliEAD 0 1 0.5 CkiANNEL CArFlskk 0 1 0.3 ROCK BASS 1 11 4.3 REDBRt.AST SUHFISli 1 0 0.3 PUHPKINSEED 1 1 0.5 BLVEGI LL 1 3 1.0 SllhLLLlGUTH BASS 5 8 4.5 SUHFISH SPP. 0 1.3 A'ALLEYE 0 '2 1.0 FISH (UNI DEHTIF IED) 9 1 3 ~ 3 TOTAL 43 69 22 38.0

236 Table G-8. NunC>er of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 18 August 1977.

STAT ION SSES SHORE EAST EAST WEST WEST TIME 0849-0910 2220-2244 0919-0936 2251-2309 SPECIES MEAN CHAIN PICKEREL 0 0 0 0 0.0 PIKE SPP. 0 0 0 0 0.0 CARP 0 2 0 0 0.5 RIVER CHUB 0 1 0 0 0.3 FALLFISH 1 0 0 0 0.3 QUILLBACK 1 5 2 6 3.5 WHITE SUCKER 5 11 7 10 8.3 NORTHERN HOG SUCKER 4 0 1 0 1.3 SHORTHEAD REDHORSE 3 1 6 1 2.8 CHANNEL CATFISH 0 2 0 1 0.8 ROCK BASS 0 0 0 1 0.3 REDBREAST SUNFISH 0 0 0 0 0.0 PUMPKINSEED 1 0 0 0 0.3 BLUEGILL 0.3 SMALLMOUTH BASS SUNFISH SPP. 0 0

2 ll 1

3 0 0

5 0

9 0

6.8 0.8 WALLEYE 1 10 0 7 4.5 FISH (UNIDENTIFIED) 3 7 2 6 4.5 TOTAL 21 23 41 34.8 STAT ION BELL BEND SHORE EAST EAST WEST WEST TIME 1010-1031 2145-2211 0942-0960 2121-2140 SPECIES MEAN CHAIN PICKEREL 1 0 0.3 PIKE SPPo 1 0 0.5 CARP 0 0 0.0 RIVER CHUB 0 0 0.0 FALLFISH 0 ,0 0.0 QUILLBACK 0 0 2.3 WHITE SUCKER 5 0 4 ~ 3 NORTHERN HOG SUCKER 3 1 1.3 SHORTHEAD REDHORSE 5 4 3.0 CHANNEL CATFISH 0 0 0.3 ROCK BASS 0 0 2.8 REDBREAST SUNFISH 1 1 0.5 PUMPKINSEED 0 0 0.0 BLUEGILL 0 1 0.5 SMALLMOU'l'H BASS 9 3 5 '

SUNFISH SPP. 1 0 1.0 WALLEYE 0 0 1.8 FISH (UNIDENTIFIED) 2 2 4.0 TOTAL 28 12 26 27. 3

237 Table G-9. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 24 October 1977.

STAT ION SSES SHORE EAST EAST WEST bEST TIHE 1052-1110 1940-2000 1036-1046 2012-2024 SPECIES HEAN NORTHERN PIKE 0 0 0.3 HUSKELLUNGE 1 0 0.3 CARP 0 0 0.0 QUILLBACK 0 0 0.0 WiHITE SUCKER 1 0 2.3 NORTHERN HOG SUCKER 0 0 0.3 BROWN BULLHEAD 1 0 0.3 I

CHAN NE L CAT F SH 0 0 P P SHALIllOUTH BASS 0 0 0.0 WHITE CRAPPIE 0 0 0.0 BLACK CRAPPIE 2 0 0.5 WALLEYE 1 0 0.5 FISH (UNIDENTIFIED) 1 0 0.8 TOTAL 13 0 5.0 STAT ION BELI BEND SHORE EAST EAST WEST WEST TIHE 1010-1021 2015-2036 0949-1001 2055-2110 SPECIES 'EAN NORTHERN PIKE 0 0 0 0 0.0 HUSKELLUNGE 0 2 0 ] 0.8 CARP 0 1 0 0.5

{}UILLBACK 0 0 0 1 0.3 WHI'I'E SUCKER 0 6 0 2.5 NORTHERN HOG SUCKER 0 1 0 0 0.3 BRObN BULLHEAD 0 0 0 0 0.0 CHANNEL CATFISH 0 1 0 0 0.3 SHALLHOUTH BASS 0 5 2 1 2.0 WHITE CRAPPIE 0 0 1 0 0.3 B LACK C RAP PI E 0 0 0 0 0.0 WALLEYE 0 0 1 0 0.3 FISH (UNIDENTIFIED) 0 5 1 1 1.8 TOTAL 21 9 8.8

238 Table G-10. Number of fish observed in day and night electrofishing runs at SSES and Bell Bend on the Susquehanna River, 16 November 1977.

STATION SSES SHORE EAST EAST WEST WEST

'I'IME 0919-0940 1921-1947 0900-0913 1910-1921 SPECIES MEAN MUSKELLUNGE 0 0 0 0.0 CHAIN PICKEREL 1 0 0 0.3 WHITE SUCKER 10 14 0 6.3 SHORTHEAD REDHORSE 0 1 0 0.3 REDBREAST SUNFISH 0 0 0 0.0 PUMPKINSEED 0 1 0 0.3 LARGEMOUTH BASS 1 1 0 0.5 BLACK CRAPPIE 1 0 0 0 ~ 3 CRAPPIE SPP. 2 0 0 0.5 YELLOW PERCH 1 0 0 0.3 WALLEYE 0 8 0 2.0 FISH (UNIDENTIFIED) 2 1 0 0.8 TOTAL 18 26 11. 3 STATION BELL BEND SHORE EAST EAST WEST WEST TIME 0944-1002 1830-1855 1005-1022 1803-1825 SPECIES MEAN MUSKELLUNGE 1 1.5 CHAIN PICKEREL 0 0.0 WHITE SUCKER 2 5.8 SHORTHEAD REDHORSE 0 0.0 REDBREAST SUNFISH 0 0.3 PUMPKINSEED 0 0.0 LARGEMOUTH BASS 0 0.0 BLACK CRAPPIE 0 0.0 CRAPPIE SPP ~ 0 0.0 YELLO1'1 PERCH 0 0.'0 WALLEYE 0 1.8 FISH (UNIDENTIFIED) 0 0.8 TOTAL 12 18 10 '

239 Table G-ll. Mean catch/1,000-m electrofishing run and species composition (S total) of fish observed at SSES on the Susquehanna River, 1977.

SPECIES HAR APR MAY JUL OCT HOV MEAN  % TOT BROWN TROUT 0. 0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 NORTHERH PIKE 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.1 0.3 l4USKELLUNGE 0. 3 0.0 0.0 0.0 0.0 -0.0 0.3 0.0 0.1 0.3 CHAIN PICKEREL 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.2 CARP 0. 8 0.3 1.0 0.8 0.0 0.5 0.0 0.0 0.4 2.0 RIVER CHUB 0. 0 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.1 0.3 FALLFISH 0.0 0.8 1.3 0.0 1.3 0.3 0.0 0.0 0.4 2.1

{}UI I IBACK 0. 8 2.5 2.8 2.0 5.3 3.5 0.0 0.0 2.1 10 '

WHITE SUCKER 3.8 4.3 9.8 4.5 6.0 8.3 2.3 6.3 5.6 27. 1 NORTHERN HOG SUCKER 0. 3 0.3 4 8 4.3 6.0 1.3 0.3 0.0 2.1 10. 2 SHORTHEAD REDHORSE 0. 8 4.5 5.5 5.0 3~ 5 2. 8 0.0 0.3 2.8 13. 4 BROWN BULLHEAD 0. 0 0.0 0.5 0.0 0.0 0.0 0.3 0.0 0.1 0.5 CHAHHEI CATFISH 0. 0 0.0 0.0 0.3 0. 3 0.8 0.0 0.0 0.2 0.8 ROCK BASS 0~ 0 0 ~ 0 2.8 0.0 1.5 0.3 0.0 0.0 0.6 2~7 PUMPKINSEED 0. 0 0.0 0.0 0.0 0.0 0.3 0.0 0.3 0. 0.3 BLUEGILl 0. 0 0.0 0.8 0.3 0.0 0.3 0.0 0.0 1'.2 0.8 SMALLMOOTH BASS 0.0 0.0 0.8 0.5 2.0 6.8 0.0 0.0 l. 3 6.0 LARGEMOU'I'H BASS 0. 0 0.0 0.0 0.3 0.0 0.0 0.0 0.5 0. 1 0.5 SUHPISh SPP. 0.0 0.0 0.5 0.0 b.s 0.8 0.0 0 ' 0+2 1.1 BLACK,CRAPPIE 0. 0 0.0 0.0 0' 0.0 0~0 0.5 0.3 0.1 0.5 CRAPPIE SPP. 0.0 0.0 0.0 0.0 0.0 0~0 0.0 0.5 0.1 0.3 YELLOW PERCH 0. 0 0.0 0.0 0.0 "0.0 0.0 0.0 0.3 0.0 0.2 WAI LEYE 0. 3 0,3 1,.5 0.3 1.0 4.5 0.5 2.0 1.3 6.2 PISH (UNIDENTIFIED) 0.8 2.0 9.5 2 ' 3.5 4.5 0.8 0.8 3.0 14.4 TOTAL 7.8 15.0 41.5 . 20.3 30.8 34.8 5.0 11.3 ~ 20. 8 Table G-12. Mean catch/1,000-m electrofishing run and species composition (4 total) of fish observed at Bell Bend on the Susquehanna River, 1977.

SPECIES l lAR l I AY JUL OCT NOV MEAN 't TOT BROWH TROUT 0. 3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 llUSKELIOHGE 0+ 3 0.5 0.0 0.0 0.0 0.0 0.8 l.' 0.4 1.7 CHAIN PICKEREL 0. 0 0~0 0.0 0.0 0.8 0.3 0.0 0.0 0.1 0.6 PIKE SPP. 0. 0 0 ' 0.0 0.0 0.0 0. 5 0,0 0.0 0.1 0.3 CARP 0. 5 1.8 1.3 0 ' 0.5 0.0 0.5 0.0 0.6 2.6 PALI FISH 0+ 3 0.5 3.5 0.3 0. 3 0.0 0.0 0.0 0.6 2.7 OUI LLBACK 0.5 5.0 1.3 2' 9.0 2.3 0.3 0.0 2.6 11. 8 WHITE SUCKER 14. 0 3.5 8.5 5' 3.5 4.3 2.5 5.8 5.9 26.7 NOR'I'HERH HOG SUCKER 0~ 3 0.3 0.5 1.0 2.8 1.3 0.3 0'0 0.8 3.6 SHORTHEAD REDHORSE 0.5 5.5 0.8 2.5 4.5 3.0 0~0 0.0 2.1 9.5 YELLOW BULLHEAD 0. 0 0.0 0.3 0.0 0.0 0.0 0.0 0 ' 0.0 0.1 BROWN BULLHEAD 0.0 0.0 0~3 0.3 0.5 0.0 0.0 0.0 0.1 0.6 CHANNEL CATP ISH 0.0 0.0 0+3 0.0 0.3 0.3 0.3 0.0 0.1 0.6 ROCK BASS 0.0 0.0 0.8 0.8 4.3 2.8 0.0 '0.0 4.8 REDBREAST SUNFISH 0,0 0.0 '.3 0.0 0.3 0.5 0.0 0.3 0.2 0' POMPKIHSEED 0. 0 0.0 0.8 0~3 0.5 0.0 0~0 0.0 0.2 0' BI OEGILL 0~0 0.0 1.0 . 0.5 1.0 0.5 0.0 0 ' 0.4 1.7 SMALLNOOTH BASS 0~0 0.0 7.8 1.5 4.5 5.0 2. 0 0.0 2.6 11. 8 SUNFISH SPP. 0'0 0 0

~ 1.3 1.0 1.3 1.0 0.0 0 ~ 0- 0.6 2.6 WHITE CRAPPIE 0. 0 0.4 0.0 0.0 0.0 0 ' 0.3 0.0 0~0 0.1 WALLEYE 0~3 0.0 1.8 0 ' .1. 0 1.8 0.3 1.8 0.9 4.3 FISH (UNIDENTIFIED) 0.3 2.0 6.5 2.8 3;3 4+0 1.8 0.8 2.7 12.1 TOTAL 17. 0 19. 3 36.5, 19.0 38,0 27. 3 8.8 10.0 22.0

240 Table G-13. Physicochemical data collected in con)unction with day electrofishing runs at SSES east on the Susquehanna River, 1977.

DATE 29 HAR 28 APR 26 HAY 22 JUH 13 JUL 18 AUG 24 OCT 16 NOV TIlE 0919 1021 0933 1100 0910 0849 1110 0940 TEHPERATURE (C)

AIR 11. 0 14 ' 21. 0 24.0 23. 0 19. 0 8.0 7 '

bATER 5.5 11. 0 23. 0 23. 5 25. 0 22.0 8.0 6.5

'IURBIDITY(NTU) 12 19 10 11 13 15 11 9.7 OXYGEN D I SSOLV ED ( HG/L) 12.20 11. 50 10. 10 10. 30 8. 70 7. 40 10. 80 11. 40 PH 7.2 7.2 7.6 7.6 7.5 7.6 7.4 7 '

SPECIFIC COHDUCTANCE AT 25 c(UHHos/cH) 188 120 299 391 3 30 315 140 147 Table G-14. Physicochemical data collected in con)unction with day electrofishing runs at SSES west on the Susquehanna River, 1977

'AT E 29 HAR 28 APR 26 HAY 22 JUH 13 JUI 18 AUG 24 OCT 16 NOV TINE 0955 1001 1009 1032 0935 0919 1046 0913 TCHPERATURE (C)

AIR 11. 0 13. 5 24.0 22.0 24. 0 20. 0 8.0 7.0 HAT ER 5.0 1.1. 0 24 ~ 0 23. 0 25. 0 23. 0 9.0 6 '

TURBIDITY(HTU) 14 22 9.3 11 11 15 12 11 OXYGEN DISSOLVED(HG/L) 12. 10 11.60 9.20 8.70 7.80 7. 60 10. 80 11. 80 PH 7~ 4 7 ' 7.8 7.5 7 ' F 7 7.4 7.4 SPECIFIC COHDUC'I'ANCE AT 25 C(NHHOS/CH) 170 117 301 388 339 325 135 159 Table G-15. Physicochemical data collected in con5unction with night electrofishing runs at SSES east on the Susquehanna River, 1977.

DATE 29 HAR 28 APR 26 HAY 22 JUH 13 JUL 18 AUG 24 OCT 16 HOV TI HE 2008 2250 2340 2153 2304 2220 2000 1946 TEHPE&ATURE(C)

AIR 13. 0 8 ' 17.0 18 ' 20. 0 16.0 9.0 12. 0 WATER 6.0 11. 0 23. 0 23. 0 25. 0 22. 0 8.5 7.0 TURBIDITY(I'TU) 19 15 11 12 11 8.3 5.8 OXYGEH I

D SSOLV ED ( HG/L) 13. 40 11. 70 11 60 10 00 11. 60 10.80 10. 50 PH 7.3 7~ 3 8.1 7 ' 7 ' 7 ' 7.4 7.6 SPECIFIC COHDUCTANCE AT 25 C(pHHOS/CH) 162 128 300 388 311 317 140 142 Table G-16. Physicochemical data collected in con)unction with night electrofishing runs at SEES west on the Susquehanna River, 1977.

DATE 29 HAR 28 APR 27 HAY 22 JUN 13 JUL 18 AUG 24 OCT 16 HOV TI HE 2050 2235 0010 2222 2334 2251 2024 1921 TEHPERATURE (C)

AIR 14. ' ' 20016090120 HATER TURBIDITY(HTU)

OXYGEN DISSOLVED(HG/L) 6.5 19

13. 60 0 8
11. 0 11.60 18 17+0 24.0 13 10.80 18 23.

12 9.20 0 25 0 19149264

7. 20 22 0 10.20 8 5 10.80 7 0 Ii+80 PH 7~ 4 7 ' 8.0 7.5 7.3 7 4 7 5 7 6 SPECIFIC COHDUCTANCE AT 25 C(uHHOs/cH) 159 123 307 391 309 330 145 150

241 Table G-17. Physicochemical data collected in con)unction with day electrofishing runs at Bell Bend east on the Susquehanna River, 1977.'ATE 29 HAR 28 APR 26 HAY 22 JUN 13 JUL 18 AUG 24 OCT 16 NOV TIME 10 37 10 37 1058 0957 1020 1010 1021 1002 TE)1PERATURI, (C )

AI Ii 11. 0 12. 0 23. 5 18.0 23 5 19.0 5.0 8.5

22. 0 22.0 9.0 6.5 HATER

'IURBIDIJY(N'IU)

OXYGEN 5.0 14 11.

24 0 23. 5 9.6 ll 25.

9.7 0

10 11 8.7 D ISSOLV Eb(HG/L) 12. 60 11. 60 9.60 8.60 8. 90 7. 50 10. 80 11. 60 PH 7.4 7 ' 7.7 7 ' 7 6 7 7 "

7 4 7.7 SI'ECIPIC CONDUCTANCE AT 25 "C(u HHos/cH) 185 121 301 388 3 33 327 150 15 5 Table G-18. Physicochemical data collected in conjunction with day electrofishing runs at Bell Bend west on the Susquehanna River, 1977.

DATE 29 HAR 28 APR 26 HAY 22 JUN 13 JUL 18 AUG 24 OCT '6 NOV TI HE 1011 0927 1031 0930 0957 0942 1001 1025 TEMPERATURE (C)

AIR 11. 0 11. 0 23.5 17. 0 23. 5 20. 0 5.0 9 '

HATER 5.0 11. 0 24 ' 22.5 25. 0 23. 0 9.0 6.0 TURBIDITY(NTU) 13 25 8.4 13 10 18 12 9.2 OXYGEN I

D SSOLV EU ( HG/L) 12.80 11. 60 io. 20 8.70 8.00 8.50 10. 80 11.70 I'H 7.4 7 ~ 3 7.9 7.5 7 ' 7.8 7.4 7.7 SPECIPIC CONDUCTANCE

  • AT 25 c(UHHos/cH) 172 117 303 390 340 332 135 160 Table G-19. physicochemical data collected in con)unction with night electrofishing runs at Bell Bend east on the Susquehanna River, 1977.

29 HAR '-28, APR 26 HAY 22 JUN 13 JUL 18 AUG 24 OCT 16 NOV DATE TI HE 1945 '106 2221 2240 2225 2145 2036 1855 TE,HPERATURE (C)

AIR 14. 0 8.0 19.0 15. 5 21. 0 17. 0 7.0 P3.0 bAT ER 6.0 11. 0 24. 0 23. 0 25. 0 22. 0 8.5 7.0 TURBIDITY( NTU) 18 19 8.3 11 13 11 9.7 6.9 OXYGEN DISSOLVED(HG/L) 13. 50 11.60 11. 40 10. l0 8.70 12.40 10. 80 11. 60 PH 7.3 7.2 8.4 7 ' 7 ' 7 ' 7.4 7.7 SPECI PIC CONDUCTANCE AT 25 C(pHHOS/CH) 170 121 295 391 319 326 150 155 Table G-20. Physicochemical data collected in con5unction with night electrofishing runs at Bell Bend west on the Susquehanna River, 1977.

DAT E 29 HAR 28 APR 26 MAY 22 JUN 13 JUL 18 AUG 24 OCT 16 NOV TI Ht 1925 2129 2306 2304 2200 2121 2110 1825 TEMPERATURE(C)

AIR 15 ' 8.0 19.0 15. 0 21.0 17 0 7.5 14.0 HATER 6.0 11. 0 24.0 23. 0 25.0 22.0 8.5 .7.0 TURBIDITY(NTU) 18 18 8.7 17 15 9.3 7.0 OXYGEN DISSOLVED(HG/L) 13. 30 11. 60 12.70 9. 50 7.80 10. 70 10. 80 11. 60 PH 7.4 7~3 8 ~2 7 ' 7.3 7.7 7.5 7~7 SPECI PIC CONDUCTANCE AT 25 C(UHHOS/CH) 160 123 302 321 328 150 150

242 6AS-LIOf CROSSIO6 SUSQUEHANNA STEAM ELECTRIC STATION Sl S SL 1 ICHTHYOLOGICA ASSOCIATES LIE ILL LABORATORY WAOWALLOJEO s I CREEK S TE X'IOEAKE OISCHAA6E NORTH 0 300 METERS EEL WALL SL SN l~

SUSIIUEHANNA RI VER WAOWALLOOEO COEEK SS S Of KNICK OOAI CLOS Fig. G-1. SaLRpling stations for 'electrofishiffg (Fl,) and seining (SV) on the Susquehanna River near the Susquehanna SFS, l.977.

243 SEINING OF FISHES by Gerard L. Buynak, Andrew J. Gurzynski, and Harold W. Mohr, Jr.

TABLE OF CONTENTS Page ABSTRACT o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ ~ h ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 245 INTRODUCTION...................................- ~ ........ 245 PROCEDURES ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

245 RESULTS AND DISCUSSION ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 247 REFERENCES CITED...... ~ ~........ ~...... ~ ~ ~ . ~... ~ ~ . ~ ~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

249 LIST OF TABLES Table H-l. Descriptions of seining stations on the Susquehanna River, 1977............................................ 251 Table H-2. Number of fish captured/haul with a 7.6-m bag seine at SSES and Bell Bend on the Susquehanna River, 18 April 1977...................................... 252 Table H-3. Number . . . 17 May 1977............................... 252 Table H-4. Number . . . 16 June 1977..............................

Table H-5. Number . . . 21 July 1977.............................. 253 Table H-6. Number . . . 17 August 1977........................ ~ ... 254

244 Page t

Table H-7. Number of fish captured/haul with a 7.6-m bag seine at SSES and Bell Bend on the Susquehanna River, 31 October 1977...................................... 255 Table H-S. Mean catch/haul and species composition (/ total) of fish captured with a 7.6-m bag seine at SSES on the Susquehanna River, 1977............................'.... 255 Table H-9. Physicochemical data collected in conjunction with seining collections at SSES east on the Susquehanna River, 1977........................ , .. . . . . . 256 Table H-10. Physicochemical . . . SSES west . . . 1977............. 256 Table H-11. Physicochemical . . . Bell Bend east . . . 1977,....... 256 Table H-12. Physicochemical . . . Bell Bend west . . . 1977........ 256 Table H-13. Mean catch/haul and species composition (/ total) of fish captured with a 7.6-m bag seine at Bell Bend on the Susquehanna River, 1977..........................,. 257

245 ABSTRACT At SSES and Bell Bend, a combined total of 2,916 specimens of at least 19 fishes was captured by seine. Shorthead redhorse was the most abundant specimen taken at SSES; at Bell Bend, white sucker was the most abundant. At both stations, most fishes were captured in August and most'pecimens were taken in June. As was found in 1976, no significant differences in the catch/unit effort were found within and between sampling sites at SSES and Bell Bend in 1977.

INTRODUCTION The seining program in 1977 was conducted to determine species composition and relative abundance of fish near the Susquehanna SES.

Included are data gathered at the SSES and Bell Bend sampling stations in 48 collections. These baseline data will be used to assess environmenta1 impact during operation of the Susquehanna SES.

PROCEDURES A 7.6-m bag seine with 0.64-cm mesh, was used monthly from April through October (excluding September) at SSES and Bell Bend (two sites each). Both sites at SSES, one on each shore, were upriver from the Susquehanna SES intake structure and the two sites at Bell Bend, also on each shore, were downriver from the discharge diffuser (Table H-1; Fig. G-1). Sites were selected in areas free of underwater obstructions that might decrease sampling efficiency. Seining began about one hour

246 after sunset. At each site, seining consisted of two onshore hauls, one immediately after the other. Each haul was considered one unit of effort.

During an onshore haul, one of the seine brails was held on the, River bank while'the other was taken into the River to a distance of 'about 6 m or to a depth of 1.3 m.'he brail on the River bank was held stationary while the other one was pulled slowly upriver and then to shore.'pecimens were preserved in 10% formalin in the field after each haul.

In the Laboratory, K

all specimens were identified and stored in vials containing 40% isopropyl alcohol. Identifications were made using keys by Pflieger (1968), Eddy (1969), and Scott and Crossman (1973) . Names and order of 'listing (Table G-2) conform to Bailey et al.

(1970).

At each sampling site, a separate crew collected physicochemical data. A 1-liter surface grab sample and a 300-ml surface dissolved oxygen sample were collected. In addition, air and surface water temperatures were measured. The samples were transported to the Laboratory where analyses were performed for dissolved oxygen, pH, turbidity, and specific conductance according to methods in Table A-l.

All catch data were analyzed using a "nonparametric sign test" (Siegel 1956) to determine if there were significant differences in the number 'of specimens captured. The 5% probability level was used to determine significance in each test.

247 RESULTS AND DISCUSSION At SSES, a total of 678 specimens of at least 15 fishes was captured by seine (Tables H-2 through H-7). Five fishes (shorthead redhorse, spottail shiner, spotfin shiner, bluntnose minnow, and tessellated darter) composed 87.8/ of the total catch (Table H-8). In 1975 and 1976, spotfin shiner was the most abundant specimen taken (Buynak and Gurzynski 1976, 1977); in 1977, however, shoxthead redhorse was the most abundant (39.5/) . All of the shorthead redhorse were small, young-of-the-year fish captured in June. Spottail shiner was the second most abundant (17.7/), followed by spotfin shiner (13.7/), bluntnose minnow (11.1/),

and tessellated darter (5.8/) .

At SSES, the total number of fishes captured in each month was highest in August (13) and lowest in May (3) (Table H-8) . Spottail shiner was the only fish taken in each month sampled. Spotfin shiner was captured in 5 of 6 months sampled. The mean catch/unit effort was greatest in June (86.0 fish/haul) and least in May (7.0 fish/haul).

Totals of 74 specimens of at least ll fishes and 604 specimens of at least 15 fishes were captured at the SSES east and west shore sites, respectively (Tables H-2 through H-7). These results were similar to those observed in 1976. Swallowtail shiner, rock bass, smallmouth bass, and white crappie were captured only at the west site; all species captured at the east site were also taken at the west site. No significant difference was found between the number of fish at the east and west sites even though 8-fold more fish were captured at the west site. While sampling at the east site, large numbers of small

248 fish were observed in the relatively clear water, but few were captured.

The low turbidity measured at this site (Tables H-9 through H-12),

especially during low water levels, was caused by the dilution of turbid River water with clear water from Little Wapwallopen Creek which enters about 15 m upriver. The smaller'atches at the east site probably occurred because the fish could see the seine and therefore avoid it more easily than at the west site.

At Bell Bend, a total of 2,238 specimens of at least 19 fishes was captured '(Tables H-2 through H-7). Four fishes (white sucker, spotfin shiner, spottail shiner, and shorthead redhorse) composed 89.5% of the total catch (Table H-13). White sucker was the most abundant specimen captured and composed 39.3% of the total catch. Spotfin shiner (23.8%)

was the 'second most abundant followed by spottail shiner. (20.6%) and shorthead redhorse (5.8%) .

At Bell Bend, the greatest number of fishes was taken in August (17). and the smalle'st number in May (3) (Table H-13). No single species was collected in all months sampled. Spottail shiner, spotfin shiner, and tessellated darter were captured in 5 of 6 months sampled. The mean catch/unit effort was greatest in June (332.8 fish/

haul) and least in July (3.5 fish/haul).

No significant difference was found in the number of specimens captured/unit effort at the east and west shore sites at Bell Bend.

Totals of 742 specimens of at least 15 fishes and 1,496 specimens of at least 17 fishes were captured at the east and west sites, respectively

249 (Tables H-2 through H-7) . Carp, longnose dace, northern hog sucker, and yellow bullhead were captured only at the west site, whereas white crappie and black crappie were only taken at the east site.

As was found in 1976, no significant difference occurred in the number of specimens captured/unit effort at SSES and Bell Bend. Carp, quillback, northern hog sucker, and yellow bullhead were taken only at Bell Bend; no additional fishes were captured only at SSES. Over 50K of the total number of specimens captured at both stations were taken in June, when high River levels flooded terrestrial vegetation along the shore at all sites. Large numbers of fish moved into vegetation, and were more vulnerable to seining than they were at other times.

REFERENCES CITED Bailey, R. M., J. E. Fitch, E. S. Herald, E. A. Lachner, C. C. Lindsey, C. R. Robins, and W. B. Scott. 1970. A list of common and scientific names of fishes from the United States and Canada.

3rd. ed., Spec. Publ. No. 6. Am. Fish. Soc. 150 pp.

Buynak, G. L. and A. J. Gurzynski. 1976. Seining of fishes. Pages 201-213 in T. V. Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1975). Ichthyological Associates, Inc., Berwick, Pa.

~ 1977. Seining of fishes. Pages 189-203 in T. V. Jacobsen (ed.), Ecological. studies of the Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Annual report for 1976).

Ichthyological Associates, Inc., Berwick,'a.

Cummins, K. W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am. Midi. Nat. 67(2): 477-504.

250 Eddy, S. 1969.. How to know the freshwater fishes. 2nd ed., William C.

Brown Co., Dubuque, Iowa. 286 pp.

Pflieger, W. L. 1968. Checklist of the fishes of Missouri, with keys for identification. Mo. Dept. of Cons., -D-J Series No. 3. 64 pp.

Scott, W. B. and E. J. Crossman. 1973. Freshwater fishes of Canada.

Fish. Res. Board Can., Bull. 184. 966 pp.

Siegel, S. 1956. Nonparametric statistics for the behavioral sciences.

McGraw-Hill Book Co., New York, N.Y. 312 pp.

251 Table H-1. 'escriptions of seining stations on the Susquehanna River, 1977.

Station Site Location Substrate 'egetation Typea SSES SN 1 East shore 15 m downriver from fine sand none Little Wapwallopen Creek. and clay SSES SN 2 West shore 75 m downriver from pebble and moderate quantity the dock at Ichthyological gravel of emergent Associates Laboratory.

Bell Bend SN 3 East shore directly downriver coarse and moderate quantity from launching ramp at medium sand of emergent Berwick Boat Club.

Bell Bend SN 4 West shore300 m upriver from pebble and none mouth of small stream directly gravel opposite Wapwallopen Creek.

Classification modified from Cummins (1962) .

252 Table H-2. Number of fish captured/haul with a 7 6-m bag seine at

~ SSES and Bell Bend on the Susquehanna River, 18 April 1977.

STAT ION SSES SHORE EAST EAST WEST WEST TINE 2030 2035 204 5 2050 HAUL 1 2 1 2 SPECIES WEAN CQlELY SHINER 1 1 0.5 SPOTI'AI L SHINER 0 2 0.5 SPOTFIN SHINER 0 24 7.5 SHINER SPPo 2 0 0.5 BLUNTNOSE NINNOW 0 1 0.3 FALLFISH 3 0 0.8 ROCK BASS 0 0 0' TESSELLATED DARI'ER 0 0 0.0 TOTA L 28 10.0 STAT ION BELL BEND I SHORE EAST EAST WEST WEST TINE 2010 2015

' 195 5 2000 HAUI 1 1 2 SPECIES BEAN CQlELY SHINER 2 0 1 1.0 SPOT1'Al L SHINER 6 0 5 2.8 SPOTPIN SHINER 179 21 41 61. 5 SHINER SPP. 0 0 0 0~3 BLUNTNOSE HINNOW 0 0 1 0 '

FALLFISH 6 0 0 1.5 ROCK BASS 0 0 0 0.3 TESSEILATED DARTER 0 0 4 1.0 TEAL 193 21 52 7 68.3 Table H-3. Number of fish captured/haul with a 7.6-m bag seine at SSES and Bell Bend on the Susquehanna River, 17 flay 1977.

STAT I ON SEES SHORE EAST EAsr wssr wssr TINE 20 55 2100 2108 2112 HAUL 1 2 1 2 SPECIES WEAN CONELY SHINER 0 0.0 SPOXTAII SHINER 3 1.3 SPOTFIN SHINER 15 5' FALLFISH 0 0 '

TOTAL 18 3 7.0 STATION BELL BEND SHORE EAST EAST WEST WEST TINE 2134 2139 2121 2126 HAUL 1 2 1 2 SPECIES MEAN CQ'lELY SHINER 0 2 0 0.5 SPOTI'AIL SHINER 0 0 0 0~0 SPOTFIN SHINER 5 22 14 10.8 FALLF ISH 0 1 1 0.5 25 15 2 11.8

253 Table H-4. Number of fish captured/haul with n 7.6-m bag seine at SEES and Bell Bend on the Susquehanna River, 16 June 1977.

STAT ION SEES SHORE EAST EAST WEST WEST TIHB 2130 2133 2140 2149 HAUL 1 2 1 2 SPECIES hlEAN SPOTTAIL SHINER 0 18 9 7 '

SPOTFIN SHINER 0 11 3 3.5 BLUNTNOSE HINNOW 0 0 0 0.0 LONGNOSE DACE 0 1 1 0.5 FM LFISH 0 0 1 0.3 QUILLBACK 0 0 0 0.0 WHITE SUCKER 0 8 3 2. 8 SHORTHEAD REDHORSE 0 255 10 67.0 SMALLHOVTH BASS 0 0 1 0.3 TESSELLATED DARTER 0 9 9 4.5 TOTAL 302 37 86.0 STATION BELL BENiD SHORE EAST EAST WE WEST T I11E 2230 2202 SL'243 2 210 HAUL 1 2 1 2 SPECIES HEAN SPOTTAIL SHINER 130 55 88 15 72.0 SHINER 'POTFIN 2 0 18 4 6.0 BLVNTNOSE HINNOWi 0 0 1 0 0.3 LOhGNOSE DACE 0 0 0 1 0~ 3 FALLl'ISH 0 0 8 1 2.3 QVILLBACK 3 3 5 3.8 WHITE SUCKER 2 666 181 213. 3 SHORTHCAD REDHORSE 63 17 38 1 29.8 SHALLHOUTH BASS 0 0 0 0 0.0 TESSELLATED DARTER 2 1 11 7 5.3 TOTAL 204 78 835 214 332.8 Table H-5. Number of fish captured/haul with a 7.6-m bag seine at SSES and Bell Bend on the Susquehanna River, 21 July 1977.

STAT 1(kl SSES SHORB BAST EAST WEST 'NEST TIHE 2200 220 4 2145 2151 HAUf 1 2 1 2 SPECIES 11EAN COHFLY SHINER 1 2 1.0 SPOTTAI L SHINER 0 12 5.0 BLUNThOSB HINNOW 0 6 3.0 FALLF I SH 2 0 1.0 WHITE SUCKER 0 0 0.5 ROCK BASS 0 0 0.0 BLUEGILL 0 0 0.0 SF1ALIHOVTH BASS 0 0 0.3 TESSCI LATED DARTER 0 0 0.3 TOTA I 20 16 11. 0 S'I'AT IGh BELL BEND SHORE EAST BAST WEST WEST TINE 2120 2123 2131 2135 HAVI 1 2 I 2 SPECIES 1 lCAN CQ1BLY SHINER 0.0 Sl'OTTAI L SHINER 0.3 iiLUNTNOSB HINNOW 0.3 FALLFISH 0.8 WHITE SUCKER 1.5 ROCK BASS 0~ 3 BLUEGILL 0~3 SHALLHLL1H BASS 0.0

'I'FSSELLATCD DARTCR 0.3

'I OTAL 3.5

254 Table H-6. Number of fish captured/haul with a 7.6-m bag seine at SSES and Bell Bend on the Susquehanna River, 17 August 1977.

STAT IOH SEES SHORE BAST EAST WEST NEST TINE 2105 2108 2115 2120 HAUL 1 2 1 2 SPECIES HEAN CARP 0 0 '

CONF LY SHI HER 1 0 '

SPOITAI L SHINER 50 14.3 SWALLON1'AIL SHINER 10 2.5 SPOTFIN SHINER 9 3.0 BLUR%NOSE HINHOW 41 12 0 LONGNOSE DACB 0 0.3 QUILLBACK 0 0.0 WHITE SUCKER 9 2.5 NOR'I'HERR HCG SUCKER 0 0~0 SHORTHEAD RBDHORSE 0 0.0 YELLOW BULLHEAD 0 0.0 ROCK BASS 1 0.5 BLUEGILL 5 1.3 SHALLHOU'I'H BASS 3 0.8 SUNPISH SPP. 0 0.0 WHITE CRAPPIE 1 0.5 BLACK CRAPPIE, 2 0.5 TESSELLATED DARI'ER 13 4.8 TOTAL 145 26 43. 5 STATION BELL BEND SHORE EAST EAST WE ST NESI'142 TINE 2153 2159 2135 HAUL 1 2 1= 2 SPECIES HEAR CARP 0 1 0.3 COHELY SHINER 0 38 10. 0 SPOTTAIL SHINER 9 109 29.8 SWALLONTAII SHINER 1 6 1.8 SPOTFIN SHIHER 1 135 34.8 BLUNTNOSE HINHOW 5 14 4.8 LONGNOSE DACE 0 0 0.0 QUILLBACK 0 1 0. 3 WHITE SUCKER 1 17 5.0 NORTHERN HOG SUCKER 0 1 0.3 SHORTHEAD REDHORSE 0 10 2 '

YELLOW BULLHEAD 0 0 0~ 3 ROCK BASS 1 3 l. 3 BLUEGILL 2 1 0~ 8 SMALIklCU'IH BASS 3 6 2~ 5 SUNPISH SPP. 0 1 0.3 NBITB CRAPPIE 5 0 1.3 BLACK CRAPPIE 10 0 2.5 TESSELLATED DARTER 0 5 1.3 TOTAL 38 348 10 99. 3

255 Table H-7. Number of fish captured/haul with a 7.6-m bag seine at SSBS and Bell Bend on the susquehanna River, 31 October 1977.

ST A'I'0 SEES SHORE BAST EAS'I'EST WEST TINE 214 0 2145 2153 2158 HAUL 1 2 1 2 SPECIES HEAN COHELY SHINER 0 1.0 Sl'O'I"IAIL SHINER 2 1.8 SWALLOWTAIL SHINER 0 0.0 S&OTPIN SHINER 1 3.8 BLUN'I'NOSE HINNOW 1 3.5 WHITE SUCKER 0 0.3 BIUEGILL 2 1.0 SHALLllOUTH BASS 0 0 '

BLACK CRAPPIE 0 0.3 TESSELLATED DANI'ER 1 0.3

'IOTAL 21 10 10 12.0 STAT ION BELL BEND Sl ORI EAST EAST WEST WEST TIHL 2217 2224 2207 2210 HAUl 1 2 I 2 SPECIES HEAN COHELY SHINER 14 1 0 3.8 SPO1'IAI L SllINBR 32 11 0 10. 8 SWALLOh'I'AIL SHINER 1 1 0 0.5 SPO1'FIN SHINER 70 10 0 20.0 BLUNTNDSE HINNOW 15 12 0 6 '

WHITE SUCKER 1 0 0 0 '

BLUEGILL 0 0 0 0.0 SHALLHOUTH BASS 0 1 0 0.5 BLACK CRAPPIE 0 0 0 0.0 TESSELLATED DARTER 1 5 0 1.5 TOTAL 134 44.0 Table H-8. Hean catch/haul and species composition (1 total) of fish captured with a 7.6-m bag seine at SSES on the Susquehanna River, 1977.

SPECIES APR HAY J UH JUL AUG OCT BEAN 1 TOT COHELY SHINER 0. 5 0.0 0~ 0 1.0 0.8 1~ 0 0.5 1.9 SP01'TAIL SHINER 0.5 1.3 7.3 5.0 14. 3 1~8 5.0 17. 7 SWALLOWTAIL SHINER 0. 0 0.0 0.0 0.0 2 ' 0. 0 0.4 I ~ 5 SP01'PIN SHINER 7. 5 5.5 3.5 0.0 3.0 3.8 3.9 13.7 SHINER SPP. 0.5 0.0 0.0 0~0 0. 0 0.0 0.1 0.3 BLUNTNOSE HINNOW 0.3 0.0 0' 3~0 12.0 3. 5 3.1 11.1 LONGNOSE DACE 0.0 0~0 0.5 0 ' 0.3 0.0 0~1 0. 4 PALLP ISH 0.8 0.3 0 ' 1~0 0.0 0.0 0.4 1.3 WHITE SUCKER 0. 0 0.0 2.8 0.5 2.5 0.3 1.0 3.5 SHORTHEAD REDHORSE 0. 0 0.0 67.0 0.0 0~0 0.0 11.2 39.5 ROCK BASS 0~0 0~0 0.0 0 ' 0 ' 0.0 0 I 0~ 3 BLUEGILL 0.0 0.0 0.0 0.0 l. 3 l. 0

~

0~ 4 1.3 SHALLHOUTH BASS 0.0 0.0 0 ' 0 ' 0.8 0.3 0.3 0.9 WHITE CRAPPIE 0.0 0.0 0 ' 0 ' 0.5 0.0 0.1 0. 3 BLACK CRAPPIE 0.0 0.0 0~0 0 ' 0.5 0.3 0.1 0~ 4 TESSELLATED DARTER 0. 0 0.0 4.5 0.3 4.8 0~ 3 1. 6 5 '

TOTAL 10. 0 7.0 86.0 11.0 43.5 12. 0 28.2

256 Table H-9 ~ Physicochemical data collected in con)unction with seining collections at SSES east on the Susquehanna River, 1977.

DATE 18 APR 17 HAY 16 JUN 21 JUL 17 AUG 31 OCT TIHE 2030 2055 2130 220 0 2105 214 0 TE)(PERATURE (C)

AIR 16.0 19. 0 20. 5 23. 0 18.0 8.0 WATER 12 ' 18.0 23. 0 29. 0 22. 5 10 '

'IURBIDITY(NTU) 1.7 '7. 3 13 9.7 21 4.6 OXYGEN PH DISSOLVED(HG/L)

ID ll.6.840 11 80

7. 7
15. 40 8.9
10. 40 7~ 8
8. 10 7~ 4
10. 80 7.3 I

SP ECI P C CONDUCTANCE AT 25 C(uMHOS/CH) 65 202 340 385 167 123 ITY(

Table H-10 'hysicochemical data collected DATE TIME at SSES west on the Susquehanna 18 APR 2050 17 HAY 2108 in con)unction with seining colleotions River, 1977.

16 JUN 2140 21 JUL 2145 17 AUG 2115 31 OCT 2153 TEMPERATURE (C)

AIR 16.0 19 0 19. 0 23. 0 17.0 8.0 WATER 14. 0 18. 0 23. 0 29. 0 24. 0 10. 5

'IURB N'I U) 12 7.8 16 10 14 12 OXYGEN DISSOLVEU(MG/I ) 13. 10 12. 20 13.50 8.90 8 ~ 40 10. 40 PH 7 ' 7.9 8 ' 7.6 7.7 7.5 SPECI PIC CONDUCTANCE AT 25 C(UHHOS/CH) 218 375 389 335 230 Table H-II. ~

Physicochemical data collected in con)unction with seining collections at Bell Bend east on the Susquehanna River, 1977.

DAT E 18 APR 17 HAY 16 JUN 21 JUL 17 AUG 31 OCT TIME 2010 2134 2230 2120 2153 2217 TEMPERATURE (C)

AIR 17.0 19. 0 20. 0 23 ~ 0 17. 5 7.0 hAT ER 13. 0 18. 0 22. 0 29.0 22. 5 9 0

~

TURBIDITY(NTU) 5.5 6.8 7.7 25 2.6 OX'YGEN DISSOLVED (HG/I ) 12. 60 12.20 13. 50 10. 20 8.40 11. 40 PH 7.4 8 ' 8.5 7.8 7.8 7.5 SPECIPIC CONDUCTANCE AT 25 C(uHHOE/CH) 123 172 370 360 247 98 Table H-12 'hysicochemical data collected in conjunction with seining collections at Bell Bend west on the Susquehanna River, 1977, DATE 18 APR 17 HAY 16 JUN 21 JUL 17 AUG 31 OCT TlHE 1955 2121 2202 2131 2135 2207 TEMPERA'I'URE(C)

AIR 17.0 19+0 19.0 23. 0 17. 0 7.5 hATEN 14 0 18 ~ 0 23. 0 29. 0 24 ~ 0 11. 0 TURBIDITY(N1'U) 9.8 8.8 13 8.9 17 9.1 OXYGEN DISSOLVED (HG/L ) 13 ~ 50 12. 10 13. 60 9.40 8 ~ 60 10. 20 PH 7.5 8.0 8 ' 7 ' 7.7 7.5 SPECIPIC CONDUCTANCE AT 25 C(pHHOS/CH) 250 217 370 390 337 231

257 Table 'H-13 ~ Nean catch/haul and species composition (0 total) of fish captured with a 7.6-m bag seine at Bell Bend on the Susquehanna River, 1977.

SPECIES APR NAY JUN JUL AUG OCT WEAN  % TOT CARP 0.0 0 ' 0.0 0.0 0.3 0.0 0.0 0.0 COHELY SHINER 1.0 0.5 0.0 0.0 10. 0 3.8 2.5 2.7 SPOTPAIL SHINER 2.8 0 ' 72.0 0.3 29. 8 10. 8 19.3 20. 6 SWALLOWTAIL SHINER 0. 0 0.0 0.0 0.0 1.8 0.5 0.4 0. 4 SPOTFIN SHINER 61. 5 10.8 6.0 0.0 34.8 20. 0 22.2 23. 8 SHINER SPP ~ 0~3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 BLUNTNOSE MINNOW 0.0 0.0 0.3 0.3 4.8 6.8 2.0 2.1 LONGNOSE DACE 0.0 0.0 0 ' 0.0 0.0 0 ' 0 ' 0.0 PALLF ISH 1.5 0.5 2.3 0' 0 ' 0.0 0.8 0.9 QUILLBACK 0.0 0.0 3.8 0.0 0.3 0.0 0.7 0.7 WHITE SUCKER 0 ' 0.0 213.3 l. 5 5.0 0 ~ 3 36.7 39 3

~

0.0 NORTHERN HOG SUCKER 0.0 0.0 0.0 0.0 0.3 0.0 0.0 SHORTHEAD REDHORSE 0.0 0 ' 29.8 0.0 2.5 0.0 5.4 5.8 YELLOW BULLHEAD 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 ROCK BASS 0.3 0.0 0.0 0.3 l. 3 0.0 0. 3 0.3 BLUEGI LL 0.0 0' 0.0 0~3 0 ' 0.0 0.2 0.2 SNALLNOUTH BASS 0.0 0.0 0.0 0.0 2.5 0.5 0.5 0. 5 SUNPISH SPP. 0.0 0~0 0.0 0.0 0.3 0.0 0.0 0~ 0 WHITE CRAPPIE 0.0 0.0 0.0 0.0 1.3 0.0 0.2 0.2 BLACK CRAPPIE 0.0 0.0 0 ' 0.0 2.5 0.0 0.4 0.4 TESSELLATED DARTER 1. 0 0.0 5.3 0. 3 l. 3 l. 5 l. 5 1.7 TOTAL 68.3 11.8 332.8 3.5 99.3 44.0 93.2

258 AGE AND GROWTH OF SMALLMOUTH BASS by Gerard L. Buynak and Andrew J. Gurzynski TABLE OF CONTENTS Page A BSTRACT.............................,................................ 259 INTRODUCTION............... .. .. .. .. .. .. .. . . ............... 259 P ROCEDURES......................................................... 260 RE SULTS s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 261 D ISCUSSION............................................................ 262 REFERENCES CITED.......................,........,...,.......,.....,... 264 LIST OF TABLES Table I-l. Calculated mean fork length (mm) of smallmouth bass collected in the Susquehanna River, 1976. 266 Table I-2. Calculated . . . male smallmouth bass . . . 1976.........

Table I-3. Calculated . . . female smallmouth bass . . . 1976.......

Table I-4. Calculated mean fork length (mm) of smallmouth bass collected near the Susquehanna SES on the Susquehanna iver, 1976..............................................

I-5.

R'able Calculated . . . at Falls . . . 1976..................... 267

259 ABSTRACT Growth rates of smallmouth bass collected in the Susquehanna River near the Susquehanna SES (heavily polluted by acid mine drainage) and near Falls, Pennsylvania (slightly polluted) were studied in 1976.

Ninety percent of the specimens collected were between 2 and 5 years old; the oldest was 8 years. No significant difference in growth rates was found between males and females. At both stations growth rates were similar and most rapid during the first 2 years, but in 3- and 4-year-old fish, growth near the Susquehanna SES was significantly slower (P<0.05) than at Falls. The difference was probably due to a scarcity of food that resulted from mine drainage pollution.

INTRODUCTION The Susquehanna River near the Susquehanna SES is heavily polluted by acid mine drainage rich in dissolved iron. The effluents reduce pH only slightly but disrupt the ecosystem by greatly increasing turbidity and by coating the substrate with ferric compounds (Gale et al. 1976).

Ferric iron seemed to reduce the standing crop of periphyton 10-fold and macroinvertebrates, excluding chironomids, 4-fold near the Susquehanna SES as compared to Falls, Pennsylvania, where the River is slightly polluted (Gale et al. 1976) . Iron not only has a detrimental effect on these fish foods, but it can also affect fish directly. Sykora et al.

(1972), for example, concluded that "the most important effect of suspended iron on aquatic fauna is of a physical nature, producing high

260 turbidities which prevent fish from eating (in high concentrations) or exerting some effect on the most susceptible stages of the life cycle-the eggs and hatching fry in low concentrations."

The objectives of this study were to: 1) describe the age and growth of smallmouth bass in the Susquehanna River near the Susquehanna SES and at Falls, about 64 km upriver, and 2) determine if acid mine drainage has an effect on the growth and abundance of this important game species near the power station.

P ROCEDURES In 1976, smallmouth bass were captured near the Susquehanna SES and at Falls, Pennsylvania (Fig. C-l), with a boat-mounted AC-DC electrofish'er. Fork length (mm) and weight (g) of each fish,were measured. The sex of each fish was determined, when possible, from external characteristics. Scales were removed from the left side, below the lateral line, near the tip of the extended pectoral fin.

Three to six scales from each fish were pressed on cellulose acetate slides with a flat rolling mill (No. 191-1, William Dixon, Inc.).

Impressions were read at 24 X with a Bausch and Lomb Tri-Simplex Micro-Projector. Annuli were recognized by the criteria of Lagler (1961).

Age was read as the number of annuli along the longitudinal anterior axis through the focus. Anterior scale radius and growth fields between annuli were recorded separately for each fish. Impressions were read twice, and if they differed, a third time. In a few instances, no

261 agreement was found in the third reading, and results from those fish were discarded leaving a total of 112 fish in the sample from near the Susquehanna SES and 114 from Falls.

Body-scale and length-weight relationships were determined with 95X confidence intervals at each annulus for calculated lengths and weights. Body-scale relationships were derived by fitting a straight line, by the least squares method, to the length of the fish and the projected scale radius (Ricker 1971). The formula was L -C = ~n >

(L-G'),

where L = length of fish when annulus 'n'as formed, L = length of fish at time scale sample was obtained, S radius of annulus 'n'at length 'lz') and S total scale radius. .Length-weight relationships were calculated by fitting a straight line, by the least squares method, to logarithms of the lengths and weights. The resulting formula was log V = log a + b (log l), where V = weight of the fish, L = length of the fish, a = intercept on the weight axis, and b = slope of the line.

RESULTS The body-scale and length-weight relationships found for all smallmouth bass collected from the River were L = -29.4338 + 0.9778 S and Log V = -4. 7440 + 3.0610 log L, respectively. Correlation coefficients of 0.94 for the body-scale relationship and 0.98 for the length-weight relationship indicated that linear regression was adequate to compute growth histories.

Ninety percent of the 226 specimens captured were between 2 and 5 years old; the oldest was 8 years. Growth was greatest during the first

262 2 years (Table I-1). No significant differences in growth rates were found between males. and females (Tables I-2, I-3).

The calculated lengths at each annulus near the Susquehanna SES and Falls were similar for the first 2 years (Tables I-4, I'-5). However, the mean'alculated length of 3- and 4-year-old fish was significantly greater (P<0.05) at Falls. Too few fish older than 4 years were collected to allow meaningful comparisons of growth rates at the two sampling stations.

DISCUSSION Acid mine drainages which enter upriver from the Susquehanna SES have disrupted the ecosystem. The abundance of organisms in the food chain has been seriously reduced,'nd as a result, the growth rates and abundance of smallmouth bass near the Susquehanna SES seems to have suffered.

Although growtn rates of smallmouth bass were similar at Falls and near the Susquehanna SES in the first 2 years of life, studies of young-of-the-year bass at'both stations in 1973 revealed substantial differences in their food habits (Ichthyological Associates 1974). Small fish.,

'composed about 40X of the volume of food eaten near the Susquehanna SES; few mayflies and no caddisflies were consumed. At Falls, no fish were consumed and about 40X of the food eaten was mayflies and caddisflies.

Mayflies and caddisflies are more numerous at Falls than near the Susquehanna SES (Gale et al. 1976). The near lack of these benthic

263 macroinvertebrates in the stomach of bass near the Susquehanna SES was probably due to their low abundance.- Comsumption of either small macroinvertebrates or fish is probably sufficient for good growth rates in younger smallmouth bass, but as they become older, larger forage organisms are necessary for rapid growth to occur.

Other studies have shown that there were differences in the abundance of large forage organisms at the two sampling stations (Ichthyological Associates 1974, Gale et al. 1976). At Falls, crayfish were much more abundant than near the Susquehanna SES and probably composed a more important part of the fish's diet. Crayfish can compose up to 67/ of the food eaten by smallmouth bass (Carlander 1977) . Large sucker populations, have also been correlated with good smallmouth bass growth (Sullivan 1956). In 1973 (Ichthyological Associates 1974),

suckers were 5-fold more abundant at Falls than near the Susquehanna SES (3,121 vs. 636).

Smallmouth bass not only grew faster at Falls, but were more abundant there. Results of electrofishing runs from January through November 1973 (Ichthyological Associates 1974) revealed that smallmouth bass were 70-fold more abundant at Falls .than near the Susquehanna SES. The greater food supply at Falls is probably capable of supporting a larger population of smallmouth bass.

From 1973 (Ichthyological Associates 1974) through 1977 (see Electrofishing of Fishes), the relative abundance of smallmouth bass near the Susquehanna SES has increased from 0.8 to 8.9/ of the total

264 electrofishing catch. In part, this may be due to improvement in the water quality near the Susquehanna SES. After Tropical Storm Agnes in 1972', the pumping of mine water into the River ceased. From 1973 through 1977, significant annual increases occurred in dissolved oxygen concen-trations, alkalinity concentrations, and pH, whereas significant annual decreases occurred in total iron. concentrations, specific conductance, and turbidity (see Physicochemical Analyses).

In summary, it is believed that growth rates and abundance of smallmouth bass near the Susquehanna SES have been severely affected by pollution from acid mine drainages. This pollution has probably reduced the food supply. enough near the Susquehanna SES to cause slower growth and lower abundance of smallmouth bass than at Falls. It is expected that if water quality continues to improve, growth rates and abundance of smallmouth bass near the Susquehanna SES will increase over that observed in 1976.

REFERENCES CITED Carlander, K. D. 1977. Handbook of freshwater fishery biology., Vol.

2. Iowa State Univ. Press, Ames, Iowa. 431 pp.

Gale, W. F., T. V. Jacobsen, and K. N. Smith. 1976. Iron, and its role in a river polluted by mine effluents. Proc. Pa. Acad. Sci.

50(2):, 182-195.

Ichthyological Associates, Inc. 1974. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1973). Pa. Power and Light Co., Allentown, Pa. 658 pp.

265 Lagler, K. F. 1961. Freshwater fishery biology. William C. Brown Co.,

Dubuque, Iowa. 421 pp.

Ricker, W. E. (ed;). 1971. Methods for assessment of fish production in freshwaters. IBP Handbook No. 3, 2nd ed. Blackwell Scientific Publ., Oxford and Edinburgh. 348 pp.

Sullivan, C. R. 1956. Population manipulation studies on West Virginia smallmouth bass streams. W. Va. Conserv.'omm. Final Rep. Proj.

F-1-R-(1-5) . 53 pp.

Sykora, J. L., E. J. Smith, M. A. Shapiro, and M. Synak. 1972. Chronic effect of ferric hydroxide on certain species of aquatic animals. Pages 347-.369 in Fourth symposium on coal mine drainage research, Proceedings. Mellon Institute, Pittsburgh, Pa.

266 Table I-l. Calculated mean fork length (mm) of smallmouth bass collected in the Susquehanna River, 1976 (CI ~ confidence interval) .

STD STD 95% CI AGE ERE{} HIN IIAX N SAN DEV ERR LOW HIGH 226 43.74 121.42 76.35 13 ~ 56 0+90 74 '9 78 '2 221 82.42 195.99 131m 40 19 ~ 72 1.33 128.80 134. 00 155 114 ~ 73 247 ~ 55 176+ 47 21.92 1.76 173.02 179.93 76 157.17 301.59 224+14 26+20 3. 01 218.19 230. 09 41 204 ~ 59 329. 30 260m 51 24+52 3+83 252~77 268 '5 17 228 ~ 72 337. 75 279 ~ 08 25 ~ 19 6oll 266~13 292.03 8 261.18 361.49 317+90 31.71 11.21 291.39 344 ~ 41 2 344.24 395 11 369 ~ 68 35+97 25 ~ 43 46+52 692 ~ 83 Tablo I-2. Calculated mean fork length (mm) of male smallmouth bass collected in the Susquehanna River, 1976 (CI ~ confidence interval).

STD STD 95% CI AG1'REQ NIN IIAX tlEAN DEV ERR LOW HIGH 49 Slo86 121 ~ 42 76.13 14 ~ 73 F 10 71 '2 80 '4 49 88. 56 189,41 135. 55 20. 47 2.92 129.71 141,40 38 133. 35 226 ~ 88 178. 63 20.10 3 ~ 26 172. 04 185. 22 13 166.84 262 ~ 46 218+55 27 73 7 ~ 69 201 ~ 79 235+31 4 220+41 280.39 259+63 27 62 13.81 215 ~ 69 303.57 Table I-3. Calculated mean fork length (mm) of female smallmouth bass collected in the Susquehanna River, 1976 (CI ~ confidence interval).

S1 D STD 95% CI AGE FREQ NIN NAX IIEAN DEV ERR LOW H IGH 34 54o48 103+52 75.43 11.65 2+00 71+39 79.46 34 90. 60 161. 73 130. 02 18. 30 F 14 123+67 136.36 30 114 ~ 73 210.51 170 98 15 75 F 88 165.10 176 86 11 157 ~ 17 ~ 238 ~ 26 206. 68 22. 77 6.87 191.38 221.97 6 204+59 270 ~ 83 245.66 22.60 9.23 221.93 269 '8 4 228+72 308.24 274.33 33.79 16.89 220 ~ 57 328.09 4 261+18 354 ~ 09 312+62 39 ~ 19 19.60 250 ~ 27 374.98 1 395 ~ 11 395 o 11 395 ~ 11

267 Table I-4. Calculated mean fork length (mm) of smallmouth bass collected near the Susquehanna SES on the Susquehanna River, 1976 (CI ~

confidence interval) .

STD STD 95% CI AGE FREQ BIN WAX NEAN DEV ERR LON HIGH 112 43 74 110 ~ 56 78 16 14 83 I ~ 40 75+39 80e94 107 82 ~ 42 195.99 129.58 20 ~ 94 2 o 02 125 ~ 57 133 ~ 59 59 114 ~ 73 215 ~ 42 167 ~ 78 16 ~ 83 2 .19 163.40 172 '6 15 157 ~ 17 243 ~ 88 202 ~ 22 24 ~ 41 6.30 188 ~ 71 215.74 4 204 ~ 59 271.63 244.47 28 ~ 95 14. 47 198 ~ 42 290 ~ 52 2 228 ~ 72 288 ~ 15 258 ~ 44 42 ~ 02 29.71 -119ell 635 ~ 98 2 261 ~ 18 307 ~ 81 284 ~ 49 32 ~ 98 23.32 -Ii+78 580 ~ 77 Table I-5. Calculated mean fork length (mm) of smallmouth bass collected at Falls on the Susquehanna River, 1976 (CI ~ confidence interval) .

STD STD 95% CI AGE FREQ MIN NAX DEAN DEV ERR LON HIGH 114 53~ 23 121 ~ 42 74 ~ 58 Ii+97 I ~ 12 72. 36 76+ 80 114 93 86 189 '1 133. 11 18 '3 1.73 129 ~ 69 136. 52 96 141 ~ 47 247m 55 181. 82 23+ 02 2+ 35 177. 17 186. 47 61 175.80 301 ~ 59 229.52 23+87 3 '6 223 '1 235 64 37 219 46 329.30 262+24 23 F 80 3 e 91 254. 34 270 ~ 15 15 247 '3 337 75 281 '3 23.03 5 95 269.08 294+59 6 302e31 361 '9 329 '4 24 '8 9 ~ 95 303 ~ 45 354 ~ 63 2 ,344 '4 395 '1 369+68 35'97 25+43 46 '2 692 '3

268 LERNAEA CYPRINACEA ON TWO CATOSTOMIDS by William G. Deutsch TABLE OF CONTENTS Page ABSTRACT ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 269 INTRODUCTION..... ~ ~ ~ ~ 269 P ROCEDURES ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 270 RESULTS AND DISCUSSION............................................... 271 RE FERENCES CITED............................................... ~ ~ ~ ~ ~ 274 LIST OF TABLES (C) and adults (A) on white sucker and quillback, June through November 1973............................. ..... 276 Table J-2. Seasonal changes in infection site of adult Lernaea LIST OF FIGURES adults on quillback and white sucker, with mean monthly River temperature....................................... 278

269 ABSTRACT sucker and 32/ of quillback collected in the Susquehanna River from June through November 1973. Numbers of copepodids were high on both fishes from August through October (in September, 90/ of white sucker were infected), but declined sharply with River temperature in November.

Infection rates of adult copepods were highest in November (64/ of white sucker, 27/ of quillback), when parasite reproduction was interrupted.

Intensities of copepodids ranged from 1 to 104/host (x = 10/host) on white sucker and from 1 to 5/host (x = 2/host) on quillback; those of adult copepods varied from 1 to 28/host (x = 4/host) on white sucker and from 1 to 2/host (x = 1/host) on quillback. The gills of white sucker were infected more frequently than the body surface or any fin; only the gills of quillback were infected.

INTRODUCTION Lernaea ~c prinacea is a nonspecific, ecroparasitic copepod of worldwide distribution (Fryer 1961). Epizootics of it have killed large numbers of North American freshwater fish (Tidd 1934), and it is a serious pest in fish culture (Hoffman 1970). The copepod's complex life cycle is well documented (Bauer 1962, Grabda l963), and it has been found that both the copepodid and adult female may complete development on the same fish host. Several workers have surveyed fish populations from relatively shallow streams to determine copepod infection rates (Demaree 1967, Amin

270 et al. 1973, Whitaker and Schlueter 1975), but fish from large rivers have received little attention. Also, most studies have dealt with adult parasites,,and information, concerning copepodid infections is scarce.

Pennsylvania, and was observed on 20 fishes (Deutsch 1978; Timmy B. Hess, Ichthyological Associates, pers'onal communication) and bullfrog tadpoles, Rang catesbeiana (William F. Gale,'Ichthyological Associates, personal communication). The purpose of this study was to observe changes in the incidence (percent of fish infected), intensity (number of parasites/

white sucker and quillback from the Susquehanna River. These fishes are very common in the study area and were selected because of their ease of capture. River depth ranged from 1 to 5 m and width varied from 100 to

'I 350 m.

PROCEDURES From June through November 1973, 98 white sucker (7-47 cm fork length; age class I-VII+) and 69 quillback (29-47 cm; IV-VII+) were examined for L. cvrr1nacea infections. Pish were collected from two River stations established for various ecological investigations (Ichthyological Associates 1974). One station was in relatively clean water at Falls, Pennsylvania (Wyoming'ounty), and the other was,in polluted water (acid mine drainage) near the Susquehanna SES (Luzerne County) (Fig. C-1) . Fish were captured both near shore and in deco water with a boat-mounted AC electrofisher, trapnet, or seine.

271 Most fish were processed immediately, but some were held in a live box for up to 24 hours before they were measured, aged, sexed, and examined for parasites. After gross examination of the fins and body surface, the gills were removed and examined under a dissecting micro-scope (7-30 X). Copepods were preserved in 10X formalin for reference and species identification. Adult specimens were identified with the key of Harding (1950).

RESULTS AND DISCUSSION There were large seasonal fluctuations in the percentage of fish earlier, and were more common on white sucker than on quillback. B'ecause the parasite occurred at Falls and near the Susquehanna SES, with no observable difference in infection rates, data from both stations were combined for analysis. Overall, 66X of white sucker and 32X of quillback were infected with the copepod (adults, copepodids, or both). Based upon temperature requirements for L. cVVrinacea development (Grabda 1963),

there could have been three generations produced in the River in 1973.

Copepodids were most abundant from August through October; in September, 90X of white sucker were infected with them (Table J-1) .

Overall, copepodids infected 44X of white sucker and from 1 to 104/host were found (x = 10/host) . Only 20X of quillback were infected, and from 1 to 5 copepodids/host were found (x tm 2/host) . Copepodid abundance on both fishes declined sharply by November, probably due to low River temperature. Grabda (1963) noted that 14 C was the minimum temperature for embryonic development of L. ~c ~rinacea.

272 Adult copepods infected 41/ of white sucker, and intensities ranged from 1 to 28/host (x = 4/host). About 4-fold fewer adults were found on infected white sucker in streams of jndiana (Demaree 1967) and Wisconsin (Amin et al. 1973). Only lOX of quillback from the Susquehanna River were parasitized, and from 1 to 2 adults/host were found (x = 1/host) .

Demaree (1967), Amin et al. (1973), and Whitaker and Schlueter (1975) observed peak incidence of adult copepods in mid to late summer, but in this study, incidence was highest in November (Fig. J-1). Parasite reproduction declined in colder months, however, and copepods, which usually bore egg sacs in summer, infrequently bore them in October and November.

The gills of white sucker were infected with adult copepods more frequently than the body surface or the fins (Table J-2); adult copepods on quillback were found only on the gills. During respiration, bottom-feeding fishes may draw infective cyclopoids into gill chambers from the substrate, and be more susceptible to infection on the gills. Amin et al.

(1973) noted that white sucker from Wisconsin were often infected with L.

~crinacea in the "head region."

The gills may also be more infected than other areas because parasites on them cannot be removed by accidental or intentional rubbing, or by symbiotic cleaning behavior of fishes. In the Laboratory, infected blue-gill, rock bass, and smallmouth bass were observed twitching infected parts of their body and rubbing parasites against stones (Deutsch 1974). In one instance, a smallmouth bass infected between the pelvic fins was observed

273 rubbing these fins together, as if attempting to dislodge the parasite.

Adult copepods on infected fish disappeared before host tissue became necrotic, perhaps as a result of rubbing, or by cleaning symbiosis between fish. The presence of an adult copepod in the stomach of a bluegill taken in the River also indicated that fish may remove parasites from themselves or other fish. Both Spall (1970) and Kabata (1970) observed "mutual assistance behavior," when one freshwater fish cleaned another of the ectoparasite ~dr ulus sp. (Crustacea: Brauchiura).

A chi square test (Schefler 1969) indicated a highly significant (P<0.01)

( . ) seasonal change in the infection site of adult copepods on white sucker (Table J-2). ). The gills became progressively more infected, and in November, 75/ of adult copepods were found on them. Also, the total number of different sites infected decreased from 9 in October to 5 in November. This seasonal change in infection site may have been the reason why previous workers, who did not examine the gills, found heaviest infections in summer.

Copepods infected significantly more (P<0.05) female white sucker than males (Deutsch 1974). ) ~ Female vertebrates are usually less parasitized than males, probabl y due to the presence of estrogen, but the trend tends to be reversed during the breeding season (Pennycuick 1971) . Male and female quillback were about equally parasitized.

The ubiquity of L. ~criuacea may be partly attributed to the durabilit of its egg. An adult copepod, with egg sacs intact, was found on a nearly digested minnow in the stomach of a smallmouth baass. Th e eggs were cultured in a dish of aerated R iver water, and most hatched and developed through several instars. Copepod eggs in fish feces might also be viable

274 REFERENCES CITED Linn. (Copepoda: Crustacea) from Root River, Wisconsin, fishes. Am.

Midi. Nat. 89(2): 484-487.

Bauer, 0. N. 1962. Parsites of freshwater fish and the biological basis for their control. Translated from the Russian (1959) by the Israel Program for Scientific Translations, Jerusalem. 236 pp.

Demaree, R. g. 1967. Ecology and external morphology of Lernaea c~rinacea.

Am. Midi. Nat. 78(2): 416-427.

Deutsch, W. G. 1974. An ecological survey of the parasites of fishes of the North Branch Susquehanna River near Berwick, Pennsylvania.

M. A. Thesis, State Univ. New York at Binghamton. 111 pp.

1978. Fish parasites from the Susquehanna River in Pennsylvania, with new host records. Proc. Pa. Acad. Sci. (in press).

Fryer, G. 1961. Variation and systematic problems in a group of lernaeid copepods. Crustaceana. 2(4): 275-285.

L. Acta Parasitol. Polonica. 11(14): 169-198.

Harding, J. P. 1950. On some species of Lernaea (Crustacea: Copepoda:

parasites of freshwater fish). Bull. Br. Mus. (Nat. Hist.) Zool.

1: 1-27.

Hoffman, G. L. 1970. Parasites of North American freshwater fishes.

Univ. of California Press, Berkeley, Calif. 468 pp.

Ichthyological Associates, Inc. 1974. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for t!he period January-December 1973). Pa. Power and Light Co., Allentown, Pa. 838 pp.

Kabata, Z. 1970. Crustacea as enemies of fishes. 2n Diseases of fish.

S. F. Snieszko and H. R. Axalrod, eds. T. F. H. Publications, Jersey City, N.J. 171 pp.

275 Pennycuick, L. 1971. Differences in the parasite infections in three-age and size. Parasitology. 63: 407-418.

Schefler, W. C. 1969. Statistics for the biological sciences. Addison-Wesley Publ. Co., Reading, Mass. 231 pp.

Spall, R. D. 1970. Possible cases of cleaning symbiosis among fresh-water fishes. Trans. Am. Fish. Soc. 99(3): 599-600.

Tidd, W. M. 1934. Recent infestations of goldfish and carp by the "anchor parasite" Lernaea carassi. Trans. Am. Fish. Soc. 63:

176-180.

Whitaker, J. 0. and R. A. Schlueter. 1975. Occurrence of the crustacean Petersburg, Indiana. Am. Midi. Nat. 93(2): 446-450.

Table J-1. Incidence and intensity of Letnaea cvyrinacea copepodids (C) and adults (A) on white sucker and quillback, June through November 1973.

No. Examined  % Infected Mean No. Parasites/Host White sucker Quillback White sucker Quillback White sucker Quillback C A C A C A C A Jun 0 0 0 0 0 0 0 0 Jul 27 18 0 0 1 1 0 0 Aug 67 33 0 0 18 8 0 0 Sep 30 20 90 40 30 10 11 4 2 1 Oct 26 18 39 35 44 ll 8 7 2 1 Nov 25 4 64 0 27 3 2 0 1 Total 98 69 44 41 20 10 10 4 2 1

277 on white sucker.

Jul-Aug Sep Oct Nov Total No. adult Lernaea found 10 47 64 36 157

% Infection Gills 10 34 30 75 40 Fins pectoral 10 9 9 0 7 dorsal 50 23 14 8 18 pelvic 10 4 13 0 7 anal 10 0 3 11 5 caudal 0 15 9 3 9 Body head 0 0 dorsal surface 10 0 lateral surface 0 0 ventral surface 0 3

278 60 COPEPODIDS-ADULTS -- QUILLBACK 40 HgO TEMP. (C) "-

20 0

O 100 I- WHITE SUCKER O

Z 80 30 O

60 20 40 I-10 20 I-0 0 JUN JUL AUG SEP OCT NOV adults on quillback and white*sucker, with mean monthly River-temperature.

279 FLORA AND VEGETATION by James D. Montgomery TABLE OF CONTENTS Page ABSTRACTo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 281 INTRODUCTION..................................................... 281 p RO CE DURE S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 282 F lora.............. ~ ~ ~ ~ ~ ~ ~

282 283 Vegetation.

RESULTS AND DISCUSSION.. 286 F lolae ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

286 Vegetation...................... 289 REFERENCES CITED................... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

LIST OF TABLES Table K-l. Woody plants observed on the Susquehanna SES site, 1972-74 and 1977 . .................................. 294 Table K-2. Herbaceous vascular plants observed on the Susquehanna SES site, 1972-74 and 1977............. ........... 297 Table K-3. Vegetation analysis for trees in the Council Cup forest, 1977 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 306 Table K-4. Vegetation . . . saplings . . . 1977.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 306 Table K-5. Vegetation . . . tree seedlings ~ ~ 1977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 307 Table K-6. Vegetation . . . shrubs, herbs, and ground cover 1 977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 307

280 Page Table K-7. Vegetation analysis for trees in the Township Road 419 forest, 1977............. ... ,.................... 308 Table K-8. Vegetation . . . saplings . . . 1977...............,... 308 Table K-9. Ages and diameter breast height (dbh) of selected trees in the Council Cup forest, 1977........................ 309 LIST OF FIGURES Fig. K-l. Location of vegetation and bird census plots and flora survey routes near the Susquehanna SES, 1977........... 310

281 ABSTRACT A total of 568 species of vascular plants was observed on the Susquehanna SES site from 1972 through 1974 and 1977. Nore than half of this total was first observed in the 1977 survey. Five general types of plant communities occur on the site: river flood plain forest, upland forest, abandoned field, agricultural field, and open marsh. The phenology of the plants of the site was reported.

Two upland forest communities were sampled quantitatively using nested quadrats for trees, saplings, seedlings, shrubs, herbs, and the important trees (measured by relative frequency, relative density, and relative dominance). Sweet birch (Betula lenta) was important in the Council Cup forest but was absent in the Township Road 419 forest.

Sapling composition was similar to tree composition of the forests.

INTRODUCTION Terrestrial ecological studies were conducted on the Susquehanna SES site from 1972 through 1974 (Ichthyological Associates 1973, 1974; Burton 1976) . These studies were conducted on the construction site and in the immediate vicinity. Results included lists of plants and animals observed, quantitative vegetation studies, and systematic bird counts.

No terrestrial studies were conducted in 1975 or 1976. In January 1977, terrestrial studies were initiated to gather additional baseline information on plants and birds to compare with information to be collected during operation of the Susquehanna SES.

282 The purpose of the flora and vegetation studies in 1977 was to obtain information on the vascular plants of the Susquehanna SES site, including an inventory, habitat information, phenological data about the plants on the site (flora), and quantitative information about selected plant communities (vegetation) . These studies are designed as part of a continuing monitoring program.

P ROCE DURE S Flora Floristic studies were conducted from March through November 1977.

Observations were made throughout the Susquehanna SES site, on both sides of the Susquehanna River (Fig. K-1). An effort was made to visit different habitats at least once a month. Identificatibns were made using Gleason and Cronquis't (1963), Fernald (1950), Peterson and McKenny (1968), and Wherry (1961) for ferns, and Hitchcock (1950) for grasses. Nomenclature follows Gleason and Cronquist (1963), except for ferns and fern-allies, for which Wherry (1961) is used. Because of the confusion of some common names of plants, scientific names are used at first reference in the text and in all tables. Species not previously collected from the site were collected and added to the reference herbarium.

Notes on abundance and habitat were made. Phenology data were collected in two ways: random surveys of the Susquehanna SES property, and systematic surveys of several selected routes in different community

283 types. The routes were selected to be useful for observing possible effects of salt drift from the Susquehanna SES cooling towers during operation. Observations were made approximately once a month. All plants in flower were noted. The routes used in 1977 were (Fig. K-1):

along the Susquehanna River from the IA Laboratory north to the southern tip of Gould Island, along the western shore of Gould Island, on T.R. 419 from U.S. 11 to T.R. 438, on the Council Cup Nature Trail and Overlook, on a trail from PA. 239 (quarry trail) to the transmission line along a ridge to the transmission line down the slope of Little Wapwallopen Valley to a trail past an abandoned spring house ending at PA.'39, in the field north of the IA Laboratory, in the fiegd in the transmission corridor south of Susquehanna SES, in the field nor'th of the switching station east of PA. 239, in the cornfield north of the IA Laboratory, in the marsh along U.S. 11 west of the IA Laboratory, and in the marsh south of the Susquehanna SES intake.

Vegetation Quantitative vegetation studies were conducted, in two upland forest areas in 1977: the Council Cup forest (CC), and the forest on the hillside above Township Road 419 (TR419) (Fig. K-1). The CC forest is located east of the Council Cup Overlook, in Conyngham and Hollenback Townships, Luzerne County, approximately 3 km southeast of the Susquehanna SHS.

The survey area is nearly level to gently east-facing, at elevation of approximately 335 m. The CC forest is a mixed oak-pine forest. The

284 TR419, forest is located on a steep south-facing hillside above a dirt road (Township Road 419), just north of the Susquehanna SES fence, ir. Salem Township, Luzerne Co. The plot is 0.2-0.5 km north of the generating station. Elevation ranges from 200 to 250 m. The TR419 forest is also mixed oak-pine, with several other hardwood species.

The areas were surveyed in the spring and marked into permanent transects parallel with the long direction, of the plot. Points were located at approximately 50-m intervals on CC and 75-m intervals on TR419.

At each point, a 10-m x 10-m quadrat was marked for sampling trees and saplings (Cain and Castro 1959) . Trees were defined as 10-cm diameter breast height (dbh) or greater, saplings as 1.0-9. 5-cm dbh, and seedlings less than 1.0-cm dbh. All trees and saplings in the 10 x 10-m quadrat were identified, counted, and the dbh measured to the nearest cm with a diameter tape. Two 1 x 1-m quadrats were established in diagonally opposite corners of the 10 x 10-m quadrat for sampling tree seedlings, shrubs, herbs, and ground cover (litter, moss, rock, and bare soil were defined as ground cover). Plants were identified and an estimate was made of the percent cover in the quadrat for each species. Stems were not counted in this investigation because many of the shrubs and herbs are colonial, and stem number was judged not to be useful. Sampling was completed in mid-July to early August on both plots. Only trees and saplings were sampled in 1977 on TR419; all data were collected for CC.

285 The following were calculated for trees and saplings:

Frequency =

number of uadracs in which ~as acies occurs total number of plots Relative frequency = fre uenc of a ~s ecies total frequency of all species Density = number of seems of a ~secies hectare Relative density densit of a s ecies X 100 total density off all 11 species Dominance =

basal area of hectare a s ecies

, where basal area = m

/

(~

/dbh3 2 J Relative dominance total dominance for a sfacias dominance for all species Importance Value = relative frequency + relative density + relative dominance (maximum value = 300)

The following were calculated from the quadrat data for tree seedlings, shrubs, herbs, and ground cover (calculated separately for each):

Frequency and relative frequency = same as above Dominance total cover value for a s ecies area sampled in m dominance for a s ecies Relative dominance =

total f dominance for all species X 100 Importance value = relative frequency + relative dominance

286 In early fall, increment borings were made on selected trees in the CC forest (Smith 1966). Increment cores were stored in soda straws.

Annual rings were counted in the Laboratory with a dissecting microscope at 10-30 X.

RESULTS AND DISCUSSION Flora A total of 568 species of vascular plants was observed on the Susquehanna SES site from 1972 through 1974 and 1977. This total included 112 woody plants (Table K-l),

~

and 456 herbaceous plants (Table K-2). The herbaceous plants included 36 ferns and fern-allies, and 420 flowering plants. The largest families were Asteraceae (66 species), Gramineae (49),

Rosaceae (29), Cyperaceae (27), and Leguminosae (23). The largest genera were Carex (19), Aster (12), Po~vconum (12), ~Solida o (10), and Viola (10) .

None of the plants observed on the site has been proposed as endangered by the U. S. Department of the Interior (1975, 1976) .

Five general types of plant communities are present on the site:

river flood plain forest, upland forest, abandoned field, agricultural field, and open marsh. A brief description of each of these plant communities follows; plants found in each community are indicated in Tables K-1 and K-2.

River flood plain forest occurs along the banks of the Susquehanna River and on Gould Island. Where undisturbed, the forest is dominated by large trees of silver maple (Acer saccharinum), river birch (Betula n~i ra),

and red oak ((Luercus borealis). Important associates are American elm

287 (Ulmus. americana), bitternut hickory (~Car a cordifomuis), black maple (Acer nigrum), basswood (Tllia americana), and sycamore (Platanus occidentalis) . Spicebush (Lindera benzoin) is the only common shrub, mermaid (Floerkia roser inacoides) were the most abundant. Many spring herbs become dormant in the summer and are replaced as dominant herbs by ostrich fern (Matteuccla struthio teria), dame's rocket ~ges eris Upland forests on the Susquehanna SES site are mixtures of pine and hardwoods, especially oaks. Composition depends on slope and exposure, which in turn affect soil moisture. Ridge tops and steep south-facing birch (Betula ~lenta, red oak, and black oak (guercus velutina). Common associates include red maple (Acct ~rubrum, white pine (Pinus strobus),

pignut hickory (~Car a glabra), and black cherry (Prunus aerating).

Flowering dogwood (Comus florida) is a conspicuous understory tree.

The shrub layer may be dense and is chiefly ericaceous, with low-bush blueberry (Vaccinium vacillans), deerberry (V. ~stamlneum, and black

288 On the valley floors, Virginia pine and black oak are less common, and more abundant. Hemlock ~Tsu a canadensis) is dominant in ravines and on north-facing slopes. Dogwood is abundant in the understory except in hemlock stands, and the ericaceous shrub layer is replaced by maple-leaved viburnum (Viburnum acerifolium) and spicebush. The most conspicuous herbs are common blue violet, gill-over-the-ground (<lechoma Abandoned fields in various stages of secondary succession are found on the site. Earlier stages are dominated by perennial herbs, including heath aster (Aster ericoides), goldenrods (~Solids o spp.),

sheep sorrel (Rumex acetosella), cinquefoil, sedges (Carex spp.), and and Panicum spp.). Later stages have more shrub species, and may have scattered trees, including gray birch (Betula ~o ulifolia), red maple, dogwoods (Cereus spp.), blackberry (Rubus alla heniensis), and dewberry Agricultural fields include chiefly cornfields and associated "weeds."

The latter are mostly annual herbs (Table K-2).

Two marsh areas and two small ponds are also present on the site.

Marshes are dominated by wool-grass (~Soir us cyyerfnus), cat-tail (1~ha latifolia), rush (Juncos effusus), rice cutgrass (beersia orlzofdes),

Phenology data are presented in Tables K-1 and K-2. Most forest species flower in the spring or early summer. Field species flower throughout the growing season with many composites (Asteraceae) flowering in the fall. The majority of marsh species flower in late summer and early fall.

The number of vascular plant taxa reported for the site was more than doubled in the 1977 survey. The study area was expanded considerably to include the large area east of the Susquehanna River and the transmission corridor south of the plant site (Fig. K-1). Also, two major families, Gramineae (49 sp.) and Cyperaceae (27 sp.), were not. included in the 1972-74 survey. The diversity of habitats on the site accounts for the relatively large number of plant species. Of the 112 woody plant species, 44 (39.3%)

occurred in the river flood plain forest, 77 (68.8%) in the upland forest, 27 (24.1%) in the abandoned fields, and 8 (7.1%) in the marshes; of the 456 herbaceous species, 157 (34.4%) occurred in the river flood plain forest, 267 (58.6%) in the upland forest, 143 (31.4%) in the abandoned fields, 25 (5.5%) in agricultural fields, and 99 (21.7%) in open marshes.

Vegetation The most important (highest importance value) tree in the CC forest was sweet birch (Table K-3). Oaks (chestnut, ~uercus pr1nus, black, red, and white), red maple, white pine, and Virginia pine were important associates-. Fourteen tree species were encountered, Tota1 density was

290 585 trees/ha. The most important saplings were sweet birch and red maple, with red oak, chestnut oak, and black oak important associates (Table K-4); 18 species were encountered as saplings. Red maple was the most important seedling, with chestnut oak, black cherry, red oak, and sweet birch of secondary importance. Thirteen species were encountered as seedlings (Table K-5).. The shrub layer was dominated by ericaceous plants, with low-bush blueberry and mountain laurel (Kalmia latifolia) the most important (Table K-6). Ground pine, wild sarsaparilla (Aralia nudicaulis),

of the l6 herbaceous species in quadrats (Table K-6). Herbs were unevenly distributed in the forest; some quadrats had nearly complete coverage and several species present, others had almost no herbaceous cover. Frequencies were low for all herbs except ground pine (Table K-6). Litter was the most important ground cover, with low coverage of moss, rock, and bare soil in some quadrats.

In the TR4'19 forest, black oak was the most important tree, with s

Virginia pine the next most important (Table K-7). Flowering dogwood, red maple, and white pine were associates; 17 species were encountered.

Total density was 576 trees/ha. Dogwood was the most important sapling, si'th black oak, ted maple, and mocketnut bdckoty (~Cat a tomentose) as associates (Table K-8). Dogwood is a small tree, which seldom reaches tree c'anopy size (hawthorne and shadbush are similar species) (Braun 1950).

There were 1,183 saplings/ha (Table K-S).

291 Increment borings were made on 15 trees of 8 species in the CC forest.

Ages ranged from 20 to more than 105 years (Table K-9). Oaks were older than other species aged.

Both of the forests sampled were similar in the importance of hardwood, especially oaks, and Virginia pine. The composition is similar to that described for this region of the oak-chestnut forest by Braun (1950). Of the 14 species present in the CC forest, ll (78.6/) were found in the TR419 forest; of the 17 species present in the TR419 forest, 11 (64.7/)

were present in the CC forest. The most important difference between the forests was the absence of sweet birch in the TR419 forest. Virginia pine and dogwood were more important in the TR419 forest. Saplings in both forests were similar in composition to the canopy. Red maple was more-important as a sapling (and seedling in CC forest). Pines were less important in the sapling class (and seedlings in the CC forest) indicating a long-term lowered importance of pines in the forest. Shrubs were typical of the ridge-top forest as described by Braun (1950).

Insufficient data were obtained for aging comparisons.

292 REFERENCES CITED Braun, E. L. 1950. Deciduous forests of eastern North America.

Blakiston Co., Philadelphia, Pa. 596 pp.

Burton, J. R. 1976. Terrestrial ecology. Pages 280-314 in T. V.

Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station.

Ichthyological Associates, Inc., Berwick, Pa.

Cain, S. A. and G. M. 0. Castro. 1959. Manual of vegetation analysis.

Harper and Brothers, New York, N.Y. 325 pp.

Fernald, M. L. 1950. Gray's new manual of botany, 8th ed. American Book Co., New York, N.Y. 1632 pp.

Gleason, H. A. and A. Cronquist. 1963. Manual of vascular plants of northeastern United States and adjacent Canada. D. Van Nostrand Co., Princeton, N.J. 810 pp.

Hitchcock, A. S. 1950. Manual of the grasses of the United States, 2nd ed. Revised by A. Chase. U. S. Govt. Printing Office, Washington, D.C. 1051 pp.

Ichthyological Associates. 1973. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1972). Pa. Power and Light Co., Allentown, Pa. 658 pp.

1974. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1973). Pa. Power and Light Co.,

Allentown, Pa. 838 pp.

Peterson, R. T. and M. McKenny. 1968. A field guide to wildflowers of northeastern and northcentral North America. Houghton Mifflin Co.,

Boston, Mass. 420 pp.

Smith, R. L. 1966. Ecology and field biology. Harper and Row, New York, N.Y. 686 pp.

293 U. S. Department of the Interior. 1975. Threatened or endangered fauna or flora: Review of status of over 3,000 vascular plants and determination of critical habitat. Federal Register 40(127):

27824-27924.

1976. Endangered and threatened wildlife and plants:

Proposed endangered status for some 1,700 U. S. vascular plant taxa. Federal Register 41(117): 24524-24572.

Wherry, E: T. 1961. The fern guide. Doubleday and Co., Inc.

Garden City, N.Y. 318 pp.

294 Table X-i. Woody plants observed on the Susquehanna SES site, 1972-74 and 1977.

Arranged within phyla alphabetically by family; nomenclature follows Gleason and Cronquist (1963).

Habitat: RF river flood plain forest UF upland forest AF BN abandoned field OM ~ open marsh and pond

  • dominant in community indicated No habitat is listed for species observed 1972-74 for which no habitat was given.

Flowering Date: dates observed flowering are indicated by month (4 ~ April, 5 BB May, etc.);

- ~ not applicable; n.o. not observed.

Scientific Name Common Name Habitat Flowering RF UF AF OM Date PINOPHYTA CUPRESSACEAE

~Jt

~Thu a

~tt t occidentalis red cedar arbor vitae PINACEAE Picea ~lauca white spruce Picca rubens red spruce Pinus ~ri ida pitch pine X Pinus Pt Pt

~tc strobus

~t t

white pine scotch pine Virginia pine X

X X* X

~Tsu a canadensis eastern hemlock X X MAGNOLIOPHYTA-DICOTYLEDONEAE ACERACEAE 1

d

~11 Acer ~ni rum Bt c ttdd black maple striped maple Norway maple X

X n.o.

n.o.

n.o.

Acer rubrum red maple X X X 3-4 Acer saccharinum silver maple Xs X 3-4 Acer saccharum sugar maple X n.o.

d ~S*c mountain maple n.o.

ANACARDIACEAE Rhus ~labra smooth sumac n.o.

Rhus radicans poison ivy X X 5 Rh ~tht staghorn sumac X X 6 Rhus vernix poison sumac n.o.

BERBERIDACEAE B b t ~ch b Japanese barberry 4-5 BETULACEAE Ainus ~ru osa speckled alder X X 3-4 Betula lcnta sweet birch X* n.o.

Betula lutea yellow birch X n.o.

Betula ~ni ra river birch X* X 4 tf B

B*C

~Co c 1 1

t

~lii li BuB 11 paper birch gray birch American hornbeam X

X X

X n.o.

n.o.

n.o.

~C1

~OC ~tt t 1 hazel-nut hop-hornbeam X n.o.

n.o.

BIGNONIACEAE

~dc 1 b~t* 1 td catalpa X X 6-7 CAPRIFOLIACEAE Dl 111 1 bush-honeysuckle X B 1 d coction elder X X Viburnum acerifolium maple-leaf viburnum X Viburnum dentatum arrowwood X CELASTRACEAE C 1 c d bittersweet n.o.

CORNACEAE Comus alternifolia alternate-leaf dogwood X n.o.

Comus amomum silky dogwood X X 6 Comus florida flowering dogwood X* X 4-5 Comus racemose gray dogwood X n.o.

Comus ~ru osa round-leaf dogwood X 5

~Nmt ct black gum X n. o.

295 Table K-I (cont.)

Scientific Name Common Name Habitat Flowering RF UF AF OM Date ERICACEAE

~C1 t* b black huckleberry X 5 K 1 1* ~stjf Kalmia latifolia I.

ljc sheep laurel mountain laurel X

X X n.o.

5-6 Rhododendron maximum rhododendron n.o.

Rhd d d* ~dj l*r pinxter-flower X 5 v c 1 1 rp b high-bush blueberry X X 5 Vaccinium stamineum deerberry X X 5-6 V I 1 Il ill low-bush blueberry X X 5 FAGACEAE Castanea dentate American chestnut X n.o.

~P ~~dt 11 American beech X X 'n.o.

c lb white oak X X* n.o.

Q r eh 11 red oak X* X" 5 Q r apl cts pin oak X n.o.

Quercus ~rinus chestnut oak X 4-5 1 tt black oak X* 5 HAMAMELIDACEAE ll its ~jt 1 witch hazel n.o.

JUGLANDACEAE

~Car a cordiformis bitternut hickory 6

~Car a ylabra pignut hickory X n.o.

~Car a ovata shagbark hickory X n.o.

~Car a tomentose mockernut hickory X n.o.

Juglans cinerea butternut X n.o.

Juglans ~ni ra black walnut X X 5 LEGUMINOSAE Gleditsia triacanthos honey locust n.o.

R bt t R d 8 a ati black locust 6 LAURACEAE Lindera benzoin spicebush X X Sassafras albidum sassafras X X MAGNOLIACEAE Ltldnd n~tjtif tulip-tree X X*

MORACEAE Morus rubra red mulberry n.o.

MYRICACEAE

~nrj ~jentf lt sweet fern

~li OLEACEAE

~Fight p. forsythia X 4 Pa*i t white ash X X X 4 P 1 s red ash X n.o.

L~tst ~j common privet X 6 PLATANACEAE Platanus occidentalis sycamore n.o.

RHA? BACEAE c el el New Jersey tea 6-7 ROSACEAE Amelanchier arborea shad-bush X X 4 a I ~1 chokeberry X 5

~cc R t hawthorne X 5 hawthorne

~CR p

~jtf*1 X X X 5

~ph Prunus avium P

Prunus P

~lf serotina

~t 1 nincbark sweet cherry pin cherry black cherry choke cherry X

X X

X X

X X

X X

X 6

4 4

5 4-5 "

~Prus communis pear X 4

~prus malus apple X X X 4 5 Pttruusssp, crabapple X Rosa multiflora multiflora rose n. o.

Rpl R ~ll tt1 swamp rose wild rose X X

X 7

6-7 Rubus elle heniensis blackberry X X X* 5-6

296 Table K-I (cont.)

Scientific Name Common Name Habitat Flovcring RF UF AF OM Date ROSACEAE (cont.)

Sb ~E1 11 1 devberry X X X* 5-6 Rubus occidentalis black raspberry X X 5

~St 1 tlf ll meadow-sveet X 7-8

~bt t stceplebush 7 RUBUACEAE

~Chl th ld t ll buttonbush n.o.

RUTACEAE

~fth 1 1 prickly ash n.o, SALICACEAE

~bl df t

dfd t t big-toothed aspen X bn.o.

~P1 1 ld quaking aspen X n.o.

Salix ~ni ra black willow 4 SAXIFRAGACEAE

~Hd b hydrangea X X STAFHYLEACEAE

~bt h 1 t lf 11 bladder-nut 4-5 TRILIACEAE Tilia americana bassvood X X ULMACEAE Ccltis occidentalis hackberry X n.o.

Ulmus americana American elm X X n.o.

Ulmus rubra slippery elm X n.o.

VITACEAE P th 1 Vitis aestivalis

~ff 11 Virginia creeper summer grape X X X

n.o.

6 Pltl 1 bt fox-grape X X 6 MAGNOLIOPHYTA-MONOCOTYLEDON EAR LILIACEAE Smilax rotundifolia greenbrier X n.o.

297 Table K-2. Herbaceous vascular plants observed on the Susquehanna SES site, 1972-74 and 1977.

Arranged within phyla, alphabetically by families; nomenclature follows Wherry (1961) for ferns and fern allies and Gleason and Cronquist (1963) for flowering plants.

Habitat: RF bh river flood plain forest UF ~ upland forest AF abandoned field AG agricultural field OM ~ open marsh and pond

  • ~ dominantin indicated community No habitat is listed for species observed 1972-74 for which no habitat was given.

Flowering Date: dates observed flowering (shedding spore for ferns) arc indicated by month (3 March, 4 April, etc.); n.o. not observed.

Scientific Name Common Name Habitat Flowering RF UF AF AG OM Date EQVISETOPHYTA EQVISETACEAE

~El I field horsetail X X X

~lt LYCOPODIOPHYTA ISOETACEAE I *t Engelmann's quillwort 6-9 LYCOPODIACEAE

~Ldf

~LBI I t fl b lllf staghorn clubmoss ground pine X

X* X n.o.

10

~Ldt II id tI

~Ldf d bog clubmoss shining clubmoss X n.o.

n.o.

~I. di b tree clubmoss X X n.o.

~LAI ~t\ t h ground cedar X 9 SELAGINELLACEAE

~BI I 11 ~d meadow spike-moss n.o.

POLYPODIOPHYTA OPHIOGLOSSACEAE

~Bt 11 di t grape fern X X X 9-10

~bt hl I I t lanceolate grape fern X 5-6

~Bt hi t I i*f11 daisy-leaf grape fern X 5

~bt hi ~II rattlesnake fern X

X n.o.

OSMUNDACEAE cinnamon fern Osmunda D d ~lt cinnamomea I interrupted fern X X

X POLYPODIACEAE Adi

~A1 I t Ddt Dttt maidenhair fern ebony speenwort X

X X n.o.

6-7

~AIB I fill -I I lady fern X X 6-7

~tt

~tt t I I ~ftlf B t silvery spleenwort fragile fern lowland fragile fern X

X X

X 6-7 6

6-7 tll b

~Dl D

~Dt t dti P cristata intermedia I hay-scented fern crcstcd wood fern evergreen wood fern X

X X*

7 n.o.

~bl DWI I ui I I li marginal wood fern spinulose wood fern X

X 6

6-7 6

~Dt I x boottii

~DI I ~tl I id Boott's wood fern hybrid wood fern X

X n.o.

n.o.

Matteuccia ~lthk I ostrich fern X* 10-11 Onoclea sensibilis sensitive fern X X n.o.

~PI I ~I polypody

~III tl hid d common X 7

~PI tl h Christmas fern X 6 Pt idl bracken X n.o.

I t I

~ih

~fhi t I Woodsier obtuse Bl b

tl New York fern marsh fern blunt-lobed woodsia X 7 9-10 6-7 MAGNOLIOPHYTA-DICOTYLEDONEAE AIZOACEAE

~Mollu o vcrticcllata carpet-weed APOCYNACEAE

~A d lf li dogbane X 6-8

~A bl Indian hemp X 6-7 Vinea minor periwinkle X 4-5

298 Table K-2 (cont.)

Scientific Name Common Name Habitat Plowering UF AF AG OM Date ARALIACEAE Aralia nudicaulis wild sarsaparilla n.o.

Panax trifolium dwarf ginseng 5 ASCLEPIADACEAE

~A) 1

~A. I t

~)*i t

11 blunt-leaved milkweed milkweed 6

~A) t I t ~t E dtflt swamp four-leaved milkweed common milkweed X

7 5

6-7

~A. X X

~A) 1 tb butterfly-weed X X 7 ASTERACEAE Achilles nillefolium yarrow X X 6-10 Ambrosia artemisiifolia ragweed X

~tt X 8 Anbrosia trifida giant ragweed X 8

~dh lt At Antennaria 1 ~)tlanta inifolia pearly everlasting pussytoes pussytoes X

X X

X 8

4 4-5 Anthemis cotula mayweed X 6 Arctium minus burdock X 8 Aster aeuminatus whorled wood aster X 9 Aster cordifolius heart-leaved aster X X X 9-10 Aster divericatus white wood aster X X 8-10 Aster dunosus aster X 10 Aster ericoides heath aster X X* 9-10 Aster lateriflorus calico aster X X X 9-10 A I - f)l)lt New England ester 9-10 Aster ~atcns late purple aster X 9 A t E I aster X 7-8 A t t purple-stemmed aster 9-10 A t ~t)

E Aster undulatus aster aster X X X

X X* 9-10 10 Bidens cernua beggar.-ticks X X 9-10 Bidens frondosa beggar-ticks X 9 Etd ~tt ttt beggar-ticks X 9 Cacalia suaveolens Indian-plantain X 9 Centaurca maculosa spotted knapweed X 8

~ch th 1 th ox-eyc diasy X X 6-8 Cth 1 ~ttb chicory X 7 Cirsium arvense Canada thistle 7 Cl I ~) bull thistle X X 8-9

~Con za canadensis horsewecd X X 8-9 Erechtites hieracifolia fireweed X X 9-10

~st

~st

~st 1

1 lt fitt diasy fleabane spotted Joe-Pye-weed boneset X X X X

X 6-10 7-8 7-9

~st

~sfi 1

E tlt t white snakeroot X X X 7-10 galinsoga X 8-10

~sh lt bt if lt cudweed X X X 9-10 Helcnium autunnalc sneezeweed X X X 8-10 Helianthus divaricatus woodland sunflower X 7-8 Hehlianthus tuberosus Jerusalem artichoke X X 8-9 lt I bit thtd ox eye X 9

)It t E t ) t hawkweed X 8 Ei t E t hawkweed X 5-6 Hieracium venosun rattlesnake-weed 5-6

~Ki 1 ~tt Lactuca canadensis dwarf dandelion wild lettuce X

X X

5-6 6-10 Matricaria natricarioides pineapple-weed X X 6-7 Prenanthes alba tall white lettuce X 8 Rudbeckia hirta black-eyed susan X X X 6-10 Rudbeckia laciniata coneflower X 8-9 Senecio aureus golden ragwort X X 5,

~S) ld

~S) td

~t Senecio obovatus b) I roundleaf ragwort sharp-leaved goldenrod silvcrrod X,

X X

4-6 7

8-10

~S) id blue-stemmed goldenrod X 9-10

~S)td d 1 Canada goldenrod X X X 9 fl li

~S)td

~S)ld

~s)id

~tt \

f tf li zigzag goldenrod late goldenrod flat-topped goldenrod X

X X

X X 9-10 8-10

~

E X X X 8-10

~Elf d J early goldenrod X X X X 7-9

~S))d. 11 little grey goldenrod X X 8-10

~S*)id

  • rough goldenrod X X X* X 8-10 Taraxacun officinale dandelion X X X 4-6

~T)1

  • f 1 coltsfoot X 3-4 Vernonia noveboracensis ironwecd 9 Xanthiun strumarium cocklebur X X n.o.

299 Table K-2 (cont.)

Scientific Name Common Name Habitat Flowering AF'G RP UF OM Date BALSAMINACEAE

~let* btfl jewelweed X X X 6-10

~lt1 1 llid pale Jewelweed X 8 BERBERIDACEAE

~tel hll thitt id blue cohosh X 5

~Pd h 11 ~lt t May apple X* X 4<<5 BORAGINACEAE S

M kit t 1

~ff

~ff t 1 beggar's lice Virginia bluebells X

X 7

4-5

~Mtti 1 forget-me-not X 7

~Mt ~*1 id forget-mc-not X 5-6 CALLITRICHACEAE C litt lb h ~hll e water stazw'ort CAMPANULACEAE Ttd 1 P flit Venus'ooking-glass X X 6-7 CANNABINACEAE Cannabis sativa mariguana n.o.

CAPRIFOLIACEAE 1 1 ap f Japanese honeysuckle n.o.

CARYOPHYLLACEAE Cerastium arvensc field chickweed c ti Dianthus

~le armeria o mouse-ear chickweed deptford pink X X X

X X 5

5 6-8

~Lh lb white campion X 5-6

~Phf

~Si 1

ff1 1 d

li 1 vhitlov-vort bouncing bet X

X X 7

7-10 Silcne stellata starry campion X 7 Stll 1 m ef chickweed X 5-8 St ll \ ff 1 connaon stitchwort n.o.

Se ll 1 Stellaria media

~ltf lt chickweed connaon chickweed X X X X 5-6 5-6 CHENOPODIACEAE

~ch d1 lb lamb's quarters 8

~ch di b 1 id Mexican tea 7-8 CISTACEAE Helianthenufm canadense frostwced CONVOLVULACEAE Convolvulus ~se ium hedge bindveed 6 C t*A fi dodder 7-10 CRASSULACEAE S d ~tl hi orpinc n.o.

CRUCIFERAE Alliaria officinalis garlic mustard X* 4-7

~fbid lli 4-5 A hi Arab is

~ll 1

~Irate eh e

mouse-car cress rock cress rock cress X

X X

X X

X X 5

4-5 Arabis shortii rock cress X 5 S b Brassica

~fkaber wintercress charlock X

X X X X X 4-5 6

Brassica n~i rn black nnistard X 6-7

~Cl 1 b - t 1 shepherds bitter purse 5-6 Cardamine C

C d

d 1

1

~1t bulbose P 1 bitter cress cress cuckoo-flower X

X X

5 4-6 5

h 1 ~dt h 11 pepperwort X 5 Dentaria laciniata cut-leaf toothwort X 4-5

~Et hf thtd

~ll

~Ltdf t

Nasturtium

~ti b

~t

~lt t* 11 officinale wormseed mustard dame's rocket field cress water-cress yellov cress X*

X X X 6

5-6 5

6 5-6

~Sl 1 ltl 1 t tumble mustard 6

~Th1 1 field pennycress 6

300 Table K-2 (cont.)

Scientific Name Common Name Habitat Flowering RF VF AF AG OM Date CUCURBITACEAE I t bur-cucumber 8-9 ERICACEAE

~ma >tLila maculate spotted wintergreen X 7 gRiiaaa~re ens trailing arbutus X 4

~C* I h 1 wintergreen X n.o.

~Mt t fl Indian pipe X 7

~PI ~tlt tl shinleaf X 7 EVP HORBIACEAE

~AI ~tdhjf r three-seeded mercury X X 9-10

~fh hi P ltt spurge X 8 CERAM IACEAE 1 lf 1 Carolina cranesbill 6 Geranium maculatum wild geranium 5-6 GUTTIFERAE

~ll 1 t l1 St. John's wort X 7-8 1 D f* t common St. John's werc X X X 6-8

~Mt M I I spotted St. John's wort X X X X .X 6-8

~ll 1 DT jd t great St. John's wort X X 6-7 Ttd ~j marsh St. John's wort X 7-9 HYDROPHYLLACEAE

~ll d h 11 ~jt watcrleaf LABIATAE C

~CI tl ~lid 1 t t hjt dittany hemp-nettle X X 8 8

II d ~li Gleccma hederacea Leonurus cardiaca fd gill-over-the-ground American pennyroyal motherwort X

X X*

X X

4-5 8

6-7 water horehound

~L. ~lt

~L M d

~t* 1 1 di water horehound wild bergamot X 7-9 6-9 7

~Ne eta cataria catnip X P

~Pth 11 ~l self-heal mountain-mint X X X 7

7-9

~Pth

~dt ~1

~jt t 1

mountain-mint wild basil X

X X X 7-8 7

6-8 Scutellaria lateriflora skullcap t ll t X 8 1 M j* j I t skullcap Xi 7

~dt h ~hi id rough hedge-nettle X X X 6 Teucrium canadensc wood-sage X X X 7-8 Trichostema dichotomum blue curls X 9 LEGUMINOSAE

~IM hi h* t t* hog-peanut 8

~A ios americana groundnut n.o.

~Btt t tl t wild indigo X 6-8 Coronilla varia crown vetch X 6-8 Desmodium canescens tick-trefoil X 8 Desmodium dillenii tick-trefoil X X X 7-8 D dl Pl tl tick-trefoil X 7 Desmodium lincatum tick-trefoil X 8 Ddt ftfft ltlt Desmodium

~1th nudi florum tick-trefoil tick-trefoil X

X 8

7-8

~ld 1

~jj t Lotus corniculatus everlasting bush clover pea bird'-foot trefoil X

X 6

~Mdt Melilotus alba

~jlt black mcdick white sweet clover X

X X

7 5-6 6-8 Melilotus officinalis yellow sweet cover Ttflt T tf aj *t td hop-clover X X

X X 6 6-7 11 ~hd alsike clover Tif it P*t red clover X X

X 6

5-7 Trifolium ~re ebs white clover X .

X 5-7 Vicia cracca cow vetch n.o.

LIEIANTHACEAE Floerkia rose inacoides false mermaid X*

LINACEAE Lt ~ji 1 wild flax

301 Table K-2 (cont.)

Scientific Name Common Name Habitat Flowering RF UP AF AG OH Date LOBELIACEAE L b Lobelia lt ~dli inflata cardinal-flower Indian-tobacco X X X

X 8

7-8 L b 11 ~fhffftf great lobelia X 8-10 MA1 VACEAE Ab ttl ~th

  • h ti 8-10 velvet-leaf'nchanter's ONAGRACEAE Ci dpi 1 bl Caura biennia R

~lt df I t willow-herb biennial gaura nightshade X X X X X

6-8 8

8

~di ~lt f I seed-box X 7-9 7-9 Oenothera biennia evening-primrose X X X OROBANCHACEAE Orobanche uniflora cancer-root OXALIDACEAE Oxalis dillenii yellow wood sorrel X X X 5-9 Oxalis stricta yellow woqd sorrel X X 6-8 Oxalis violacca violet wood sorrel X 5 PAPAVERACEAE Chelidonium ~ma us celandine X X 5-6

~ti Dicentra cucullaria I *d Dutchman's breeches bloodroot X*

X 4-5 4

PHYTOLACCACEAE ape I 1 pokeweed X X 7-9 P LANTAGINACEAE

~PI t I I t English plantain X X POLEMONIACEAE

~P1 ~bl moss-pink 4-5 POLYGALACEAE

~p*1 I if lt fringed polygala 5

~PI I p

ti ill t whorled milkwort 7-9 POLYCONACEAE

~pol ~onu

~pl ari folium P~IR ""R ~*

fit d*

halberd-leaved tearthumb long-bristled bindwecd smartweed X X X 9

6 5-8

~PI

~P1

~fd I h d fd Mexican bamboo mild water pepper X X X 8-9 7-10

~pol P~I

~pl 1p~onu

~1I Hatans R I water smartweed smartweed smartwced X X

X X

X X

9 7-10 6-10

~pl smartwced

~pl

~PI

~ftt p

~d 1

t arrow-leaved tearthumb false buckwheat X

X X 7 6-10 9-10

~pl

~tf ~ffI 1 Virginia knotweed sheep sorrel X

X*

X X

X X+

7-9 4-7

~R R

Rumex

~i obtusifolius curly dock bitter dock X X X 6 6-7 X

R *Rtf tf patience dock X 5-6 PORTULACACEAE

~CI t I ~fi f spring beauty PRIMULACEAE

~Lt hi tli t fringed loosestrife 6-7

~bf hi R dfflt whorled loosestrifc 6

~LI hf t t I yellow loosestrife 5-7

~ff hf Trientalis borealis

~l garden loosestrife starflower 7

5 RANUNCULACEAE Anemone A

A ~lE canadensis

~lf I li Canada anemone wood anemone thimblcweed X

X 6

5 7

Anemonella thalictroides rue anemone X 4-5

~Ail I d I columbine X . 4-5

~ci 1 if bugbane X 7-8

302 Table K-2 (cont.)

Scientific Name Common Name Habitat Flowering RF UP AF AG ON Date (cont.)

RANUNCULACEAE CI

~Co tl ~fi tis trifolia I virgin's goldthread bower X X

8 5

~ll tl I hepatica X 3-4 Ranunculus aerie S I ~lf Ranunculus abortivus Ranunculus recurvatus Ranunculus ~re ens kidneyleaf buttercup common buttercup buttercup buttercup creeping buttercup X

X X

X X

X 4-5 5-7 6-7 5

5-10 Vh li t ~1 tall meadow rue X X 6-7 ROSACEAE

~Al I

~l' i*~IfI~*1 agrimony wild stravberry avens X

X X

X X*

X 7-8 4-5 6-7 Gaum canadense X X Ceum .laciniatum evens 6 P

Potentilla recta P t till

~l Gillenia trifoliata Potentilla canadensis t till

~fl bowman's root dwarf cinquefoil rough cinquefoil rough-fruited cinquefoil cinquefoil X

X X

X X

X*

X X

X*

X 6

4-5 6-8 6-8 4-6 RUBIACEAE G li li ~11 cleavers bedstraw X

X X 5-6 7

G Calium circaezans bedstrav X 6-7 Gli S I t bedstraw X 6 Galium trifidum bedstraw 6-7 Calium triflorum bedstrav X 7-8 Houstonia caerulea bluets X X 4-6 Hitchclla ~re ens partridge-berry X n.o.

SANTALACEAE Commandra umbellata bastard toad-flax SAXIFRAGACEAE

~S*I f Mlt ll ~iill I

~di h I carly saxifrage mitervort X X X

4-5 5

SCROPHULARIACEAE A

Chalone I I ~fi I

~labra downy false foxglove turtle-head 7-8 9

Gerardia Li I ~lf Lindernia dubia tenuifolia slender gerardia buttex and-eggs false pimpernel X X

X X

9 7-10 7

~M1 11 cov-wheat X 6-8 Mi I ~f monkey-f lover X 7-9 Pedicularis canadcnsis lousewort X 5 Pcnstemon hirsutus hairy beardtongue 5-6

~Shl Vcrbascum

\ I blattaria It 'figvort moth-mullein X

X X

X X 5-6 6

V V

h I ~11\

~ch Veronica arvcnsis

-~I common mullein water speedvcll speedwell X X X

X X

6 7-8 4-6 Veronica V I ~lllf officinalis 11 common speedwell speedwell X

X 5-6 5

SOLANACEAE Solanum carolinense horse-nettle X X X 6-8 Solanum dulcamara nightshade X X 6-8 Solanum ~ni rum black nightshade X 8 UHBELLIFERAE Cicuta maculata water hemlock X 7

~tt*t Daucus carota

\ d I honevort Queen Anne's lace X X

X X 6

7-10 G

P ti h I ~lt ti sweet cicely vild parsnip X X X

5-6 7

S I I 11 Ai black snakeroot X 6 URTICACEAE S h Pilea yumfla I ~lfdi false nettle clearwecd X

X 7

8 Urtica dioica stinging nettle X 6-8

303 Table K-2 (cont.)

Scientific Name Common Name Habitat Plowering RF UF AF AG OM Date VERBENACEAE Verbena hastata blue vervain X X X 6-8 Verbena urticifolia white vervain X X X 7-8 VIOLACEAE Viola blends sweet white violet X X 4-5 Vt I American dog-violet X 4-5 Viola cucullnta blue marsh violet X 5 Vt I ~t smooth yellow violet 4 Viola fimbriatula northern downy violet X X 4-5 Vl I I t wood-violet X 4>>5 Vt Vtl I ~tlt*

S common blue violet downy yellow violet X* X* X 4<<5 Db X X 4-5 Viola sorioria woolly blue violet X X 4-5 Viola striata pale violet X 5 MAGNOLIOPHYTA-MONOCOTYLEDONEAE ALISMACEAE Alisma subcordatum water-plantain X 7-9

~dttt I I ttf It arrow-head X>> 7-8 AMARYLLIDACEAE

~fi

  • I hl stargrass ARACEAE Arisaema dracontium green dragon X At ~tthll jack-in-the-pulpit X X 5 5

~dl I* ttd skunk cabbage X n.o.

COMMELINACEAE Commclina communis day-flower 6-10 CYPERACEAE

~BIB Carex t It annectens

~ttl SCdgC SCdgC X

X*

7 n.o.

Carex bromoides sedge 5 Carcx comosa sedge X n.o.

Carex crinite sedge X X* 5 Carcx debilis sedge X n.o.

Carcx intumescens C

Carex

~ti laxiflora I t sedge sedge sedge X 5 n.o.

~li 5

Carex lurida sedge X '6 C *~hi b* lt sedge X X 6 C sedge X 4 Carex roses sedge X X X 5 C sedge X X* n.o.

Cd ~ti t sedge X X 5 Carex stricta sedge 'X 6 Carex swannii sedge X>> X 5-6 Carcx tribuloides C ~lt(unidentified)

Carex sp.

id:

SCdgC sedge sedge 5

6 5

I yellow nut-grass n.o.

~c Cvt flit I \ galingalc n.o.

~C ~t galingale X n.o.

Eleocharis ovata spike-rush X 6

~ft t I bulrush X 6

~SI mfItd t wool grass X* 6

~ft great bulrush X 6 DIOS COREACEAE Dioscorea villosa wild yam 6-7 GRAHINEAE

~dt I

~dtt

~dd ~t t I Anthoxanthum odoratum Aristida dichotoma tf autumn bent bentgrass little bluestcm sweet vernal grass three-awn X

X X

X X>>

X*

X 5

n.o.

n.o.

5 n.o.

B Japanese chess X n.o.

Bromus mollis soft chess 1X n.o.

Bromus tectorum downy chess X n.o.

Cinna arundinacca stout woodrccd X n.o.

~Dt lt BI t orchard grass X X n.o.

D th 1 ut t poverty oatgrass X X>> 6

304 Table K-2 (cont.)

Scientific Name Common Name Habitat Flowering RP UP AP AG OM Date GRAMINEAE (cont.)

~Dh fl

  • hairgrass

~lit 1 X 6

~Dtit 1 t*h crabgrass X n.o.

~Di tt t crabgrass X X n.o.

~E1 ~tt Echinochloa muricate villosus barnyard grass wild rye wild rye X

X X X X n.o.

n.o.

6

~E* ~if

~EI mus X

~E1 1 wild rye X n.o.

tt ~111 t n.o.

~Ett

~R* tt f

~htd hit lovegrass lovegrass lovegrass X

X n.o.

~R* tt ~tbtlf X n 0 ~

purple lovegrass 7 Festuca obtuse nodding fescue 5

~G1

~OL 1

t Holcus lanatus ttt d t rattlesnake mannagrass fowl mannagrass velvet grass X X

X 6

6 n.o.

~Hti L** t Ett

~td bottlebrush rice cu'tgrass X n.o.

8 L t ~11 t white grass 8 L lt perennial ryegrass 5

~Mhl b 1 f d wirestem muhly n.o.

~Mhl b

~Mht b P 1 ~f1 1

1 ~lti 1

h* b 1 nimblewill muhly witchgrass X X

X X X+

n.o.

n.o.

n.o.

Panicum commutatum panic-grass X 6 Panicum dichotomiflorum panic-grass X n.o.

~11 P

P t

1 Panicum spp.

~tt panic-grass switchgrass panic-grass X

X X

X X

X n.o.

8 n.o.

Phalaris arundinacea reed canary grass X 5-6 Ph1 P t timothy X X X* 6 P Canada bluegrass X X 7 P E 1 t fowl bluegrass X n.o.

P E t Kentucky bluegrass X X X 5 Setaria faberii nodding foxtail X X 8 Setaria ~lauca foxtail grass X X 8 Setaria italics foxtail millet X n.o.

~Sh hit 1 t dl wcdgegrass X 6 Triodia flava purpletop X X 8 HYDROCHARITACEAE Anaehhris canadcnsis water-weed IRIDACEAE Iris versicolor

~St 1 hi ~ttf li blue flag blue-eyed grass X X 5-6 5-6 JUNCACEAE Juncus articulatus rush X 6 L

LEMNACEAE 1 ~ti Juncus effusus Juncus tenuis rush path rush wood rush X

X X

Xtn 6 6

4-5 Lemna minor duckweed LILIACEAE Allis@ canadense wild garlic 6 Alliurn vineale field garlic 7

~A *fff t 11 asparagus 6

~Eth

  • t ibid white trout-lily X 4

~Eth*t 1 trout-lily X* 4-5 Hemerocallus fulva day-lily 6-7 Lilium canadense Canada lily 7 Maianthemum canadense wild lily-of-the-va'lley X 5 Md 1 ~t Indian cucumber X 5

~Oith 1 b 11 t star of Bethlehem X 4

~PL t o btf1 Soloman's seal X X 4-5 Ptttf t S b Soloman's seal X 5 Smilacina racemose false Soloman's seal X 5-6 Trillium crectum purple trillium 4-5 U 1 1 ~fit t Uvularia sessilifolia perfoliate bellwort sessile-leaved bellwort X

X X

X 4-5 4-5 Veratrum viride fels~ hellebore X n.o.

Table K-2 (cont.)

Favoring Scientific Name Common Name Habitat RR UR AF AG OH Date NAJADACEAE Pe Ee ~till pondweed t~

ORCHIDACEAE Cypripedium acaule pink lady's slipper ee~

~et el he~lb I hellebor inc 7

~eee pb rattlesnake plantain 7 II b* ragged fringed orchid 7

~Set e e e e e e ladies'resses 9-10 SPARGANIACEAE

~SS I ~a bur-reed TYPHACEAE Typha angustifolia narrow-leaf cat-tail X EPPh ~Ct I cat-tail K*

306 Table K-3. Vegetatfon analysis for trees in the Council Cup forest, 1977 ~

Species Common Name Frequency Relative Densfty Relative Dominance Relative importance Fre uenc No. ha Densit ba ha Doufnance Value Betula lenta sweet birch 0. 70 26.4 225 38.5 52635 32. 7 97. 6

~uereus grfnus chestnut oak 0. 25 9.4 65 1 l. 1 17490 10.9 31. 4

~nereus velutina black oak 0. 35 13.2 55 9.4 10440 6.5 29. 1 Pinus strobus white pfno 0. 25 9.4 50 8.5 16305 10. 1 28.0

~nereus borealis red oak 0. 20 7.5 45 7 ' 11615 7.2 22.4 Acer rubrum red maple 0. 25 9.4 40 6.8 9400 5.8 22. 0 Pt ~ft 1 Virginia pine 0.15 5.7 40 6.8 12855 8.0 20. 5 9uercus alba white oak 0.10 3.8 15 2.6 21240 13.2 19. 6 Comus florida Ef owering dogwood 0.10 3.8 15 2.6 3030 1.9 8.3

~Pl ~dft big-tooth aspen 0.10 3.8 15 2.6 2840 1.8 8.2

~Prus malus apple 0.05 1.9 5 0.9 1135 0. 7 3.5 Carya ~labra pignut hickory 0.05 1.9 5 0.9 1005 0.6 3.4 Sassafras afbfdum sassafras 0.05 1.9 5 0.9 475 0.3 3.1

~Tsu a canadensis hemlock 0.05 1.9 5 0.9 395 0.2 3.0 Total 100.0 585 100. 2 160860 99 ~ 9 300. 1 Table K-4. Vegetation analysis for saplings in the Council Cup forest, 1977.

Species Common Name Frequency Relative Densfty Relative Dominance Relative Importance Fre uonc No. hs Densit ba/ha Domfnance Value Betula lenta sweet birch 0. 70 11. 7 655 24.2 9515 23. 2 59.1 Acer rubrum red maple 0. 85 14.2 665 24.6 7550 18.4 57.2 Quercus borealis red oak 0. 60 10.0 285 10.5 5580 13.6 34. 1

~nereus grinus chestnut oak 0. 45 7.5 275 10.2 4755 11. 6 29. 3

~nereus velutfna black oak 0. 50 8.3 180 6.7 4170 10. 2 25.2 B I ~llf ll~ gray bfrch 0. 45 7.5 135 5.0 2985 7.3 19 ~ 8 Pinus strobus white pine 0. 55 9' 120 4.4 1825 4.4 18.0 Carre fflabra pignut hickory 0. 40 6.7 75 2.8 1150 2.8 12. 3

~ercus alba uhfte oak 0.30 5.0 100 3.7 645 1.6 10. 3 Comus florida flowerfng dogwood 0.20 3.3 50 1.8 450 1 ~ 1 6.2 Prunus serotfna black cherry 0.20 3.3 45 1.7 230 0.6 5.6 Sassafras P

Pi

~lf

~lf albfdum i

sassafras pin cherry Vfrginia pine 0.20 0.10 0.10 3.3 1.7 1.7 30 15 15 1.1 0.6 0.6 455 575 505 1.1 1.4

l. 2 5.5 3.7 3.5 Fraxfnus americana uhfte ssh 0.15 2.5 15 0.6 25 0.1 3.2 Amelanchfer arbores shad bush 0.10 1.7 15 0.6 135 0. 3 2.6

~Tau a canadensfe hemlock 0. 05 0.8 20 0.7 450 1.1 2.6 Castanea dentate chestnut 0. 10 1.7 10 0.4 80 0. 2 2~3 Total 100. 1 2705 100. 2 41080 100. 2 300. 5

307 Table K-5. Vegetation analysis for tree seedlings in the Council Cup forest, 1977.

Species Coaaon Rane Frequency Relative Doainance Relative Iaportance Fre uenc cover/a2 Doainance Value

~Ac r ~rubru red asple 0. 52 30.4 l. 38 24.4 54.8 Ouercus grfnus chestnut oak 0. 18 10.1 1. 10 19.5 29.6 Prunus serotina 'lack cherry 0. 30 17.4 0. 55 9.7 27.1 Ouercus borealis red oak 0. 20 11. 6 0.85 15. 0 26. 6 Betula lenta sveet birch 0. 15 8.7 0. 75 13.3 22. 0 auercus velutina black oak 0.08 4.3 0. 25 4.4 8.7

~rra 11labra pignut hickory 0. 05 2.9 0. 20 3.5 6.4 Fraxinus aaericana uhito ash 0.05 2.9 0. 20 3.5 6.4 Pinus strobus uhite pine 0.05 2.9 0.18 3.2 6.1 Sassafras albidua sassafras 0.05 2.9 0. 10 1.8 4,7 9uercus alba white oak 0.05 2.9 0. 05 0.9 3.8 1 1 uhfffll gray birch 0.02 1.4 0. 02 0.4 1.8

~po ulus treauloides quaking aspen 0.02 1.4 0. 02 0.4 1.8 Total 99. 8 5.65 100. 0 199.8 Table K-6. Vegetation analysis for shrubsp herbs, and ground cover in tho Council Cup forest, 1977.

Spccics Coaaon Naae Frequency Relative Doainanc~ Relative Iaportance Fre uenc cover a Desinence Value SHRVBS Vacciniua vacillans lou-bush blueberry 0.50 50. 0 8.15 59. 5 109. 5 Kslaia latifolia aountain laurel 0. 15 15. 0 3.32 24. 3 39. 3 Rhododendron nudiflorua pinxter-flover 0. 10 10. 0 1.32 9.6 19. 6 Rhus radicans poison ivy 0. 15 15. 0 0.38 2.8 17. 8 Rubus allegheniensis blackberry 0. 05 5.0 0.12 0.9 5~9 P

Viburnua HERBS h 1 ~lf acerifoliua 11 aslpe-les I viburnua Virginia creeper'round

0. 02
0. 02 2.5 2.5
0. 38
0. 02 2.8 0.1 5.3 2.6

~L&i fl b lllf pine 0.38 35. 7 4. 58 48 ~ 4 84.1 Aralia nudicaulis vild sarsaparilla 0.12 11. 9 2. 80 29. 6 41. 5 1 dl 1 ffbf hay-scented fern 0.08 7.1 1. 28 13.5 20. 6

~Pl 1 1 *ff ll fringed polygala 0. 08 7 ~ 1 0.18 1.9 9.0 Itaiantheaua canadense uiid lily-of-the-valley 0. 05 4.8 0.25 2. 6 7.4

~Chf hl 1 1 spotted vintergreen 0. 05 4.8 0.05 0.5 5.3

~LL *hf d d if li vhorled loosestrife 0. 05 4.8 0.05 0.5 5.3

~Pl ~ill 1 shinlesf 0.05 4.8 0.05 0.5 5.3

~OI f fl hairgrass 0.02 2.4 0.08 0.8 3.2 Carcx svannii sedge 0. 02 2.4 0.02 0.2 2.6 Caliua circaesans bedstrav 0. 02 2.4 0.02 0.2 2.6 G 1 h 1 vintergreen 0. 02 2.4 0.02 0.2 2.6 Md 1 ~fff Indian cucuaber 0. 02 2.4 0.02 0. 2 2.6 Mitchella ~re ens partridge berry 0. 02 2.4 0.02 0. 2 2. 6 Prensnthes alba tall uhite lettuce 0. 02 2.4 0. 02 0.2 2.6 Crass (unidentified) 0. 02 2.4 0. 02 OP2 2.6 CRODddD COVER bitter 1. 00 65 ~ 6 97 ~ 80 98. 2 163. 8

)fess 0. 32 21. 3 0. 55 0.6 21. 9 Rock 0. 12 8.2 0.88 0.9 9.1 Bare Soil 0. 08 4.9 0.32 0.3 5.2

308 Table K-7. Vegetation analysis for trees in the Township Road 419 forest, 1977.

Species Common Name Frequency Relative Density Relative Dominance Relative Importance Fre uenc No./hs Densit ba ha Dominance Value

~ercus velutfna black oak 0. 50 16.5 112 19.4 75758 35.7 71.6 Pl ~jj l Virginia pine 0.38 12. 5 125 21. 7 50654 23.9 58.1 Comus florfda flowering dogvood 0.46 15. 2 75 13. 0 8775 4.1 32.3 Reer rubrun red maplo 0.29 > 9.6 50 8.7 12338 5.8 24. I Plnus strobus white pine 0. 21 6.9 46 8.0 12783 6.0 20. 9 Quereus rjrfnus chestnut oak 0. 29 9.6 42 7.3 8533 4.0 20. 9 Prunus serotina black chorry 0. 17 5.6 33 5.7 10492 4.9 16.2 Carra tomentose mockernut hickory 0. 21 6.9 29 5.0 5842 2.8 14. 7

~nereus alba vhfte oak 0.08 2.6 8 1.4 8917 4.2 8.2

~prus malus apple 0.08 2.6 12 2.1 2554 1.2 5.9 Praxinus americana white ash 0.08 2.6 8 1.4 3788 1.8 5.8 Prunus avfum sveot cherry 0.08 2.6 8 1.4 3775 1.8 5.8

~Tsu a canadensis hemlock 0.04 1.3 8 1.4 3942 1.9 4.6 B l up jjff ljjj gray bfrch 0.04 1.3 8 1.4 1196 0.6 3.3 Ll ld d ~jj lf tulip-tree 0.04 1.3 4 0. 7 2046 1.0 3.0 Sassafras albidum sassafras 0.04 1.3 4 0.7 642 0.3 2.3

~rrfa ~labra pfgnut hickory 0. 04 1.3 4 0.7 329 0. 2 2. 2 Total 99. 7 576 100.0 212364 100.2 299. 9 Table K-8. Vegetation analysis for saplings in the Tovnship Road 419 forest, 1977.

Species Coxmon Name Frequency Relative Density Relative Dominance Relatlvo Importance Fre uenc No. ha Densit ba/ha Dominance Value Comus florida flovering dogwood 0.79 24. 9 567 47.9 14250 55P5 128.3 fruercus velutina black oak 0. 29 9.1 208 17.6 3008 11.7 38.4 Acer rubrum red maple 0. 50 15.8 67 5.7 1167 4. 5 26.0 Carrfa tomentosa mockernut hickory 0.25 7.9 75 6.3 2150 8.4 22. 6 Carrra ~labra plgnut hickory 0. 21 6.6 42 3.6 1108 4.3 14.5 B l Bu jffll gray birch 0. 12 3.8 46 3.9 946 3.7 11. 4 Prunus serotfna black cherry ,0. 21 6.6 33 2.8 467 1.8 11.2 Pi ~jl i Vlrginfa pine 0. 12 3.8 29 2' 1146 4.5 10.8 P hawthorne 0. 12 3.8 25 2.1 246 1.0 6.9

~nereus grinus chestnut oak 0. 12 3.8 25 2.1 188 0.7 6.6

~nereus alba whfte oak 0. 08 2.5 21 1.8 404 1.6 5.9 tuselanchfer arborea shed-bush 0. 08 2.5 17 1.4 317 1.2 5.1

~P f dlf ll Aoerfcsn beech 0. 08 2.5 8 0.7 42 0.2 3.4

~nereus borealis red oak 0. 08 2.5 8 0.7 58 0.2 3.4 Fraxinus americana white ash 0.04 1.3 4 0.3 83 0.3 1.9 Pinus strobus vhlte pine 0.04 1.3 4 0.3 83 0.3 l. 9 Sassafras albidum sassafras 0.04 1.3 4 0. 3 0.0 1.6 Total 100.0 1183 100. 0 '15667 99.9 299. 9

309 Table K-9. Ages and diameter breast height (dbh) of selected trees in. the Council Cup forest, 1977.

S ecies Common Name A e ears)a dbh cm)

Acer rubrum red maple 20 14. 5 34+ 18.0 Betula lenta sweet birch 24+ 23.0 tulip-tree 59 28.5 s

Pinus strobus white pine 95+ 45. 0 56 30.5 47+ 30. 5 44+ 37.0 Virginia pine 52 19. 5 50+ 24. 0 big-toothed aspen 17 14. 0 h

~cereus alba white oak 10 1+ 42. 5 60+I- 34.0 guercus ~riuus chestnut oak 105+ 42.0 92~ 31. 5 a

+ indicates center of tree not reached, less than 5 years additional.

++ indicates center of tree not reached or rotten center, more than 5 years additional.

310 LEGEND ggg VIIANOIORT ST VSCSTATION ANO gg ASANOONTO IITIO ~ IRO CTNSVS

~ (OTS I- 'TTN NA~ SN GDULD TIONA SV ~ VIV NOCTIS ISLAND RRSS ~ ROIIRTT SOVNOART I

I I NORTH T

I 0 III T

I I I flflO A

/

I I

TI ll0 f005$ 5 l OO

~ I~ 0$ II t OO MAITN SUSQUEHANNA 1

Q III IA P

0 IA~ ORATOR I

I I

N 0 'l I

~ IIIII(NTAI0 flfl0 I I / I

/ I L I i ) I I;:;.'

C ~$ 0050 i I / MAIIN /

CCf005$ 5 I  !

/II I I I I

l NO A>>T

~ I~ R ~~~ RO VITSRS Fig. K-1. Location of vegetation and bird census plots and flora survey routes near the Susquehanna SES, 1977.

311 BIRDS by Robert M. Ruhe TABLE OF CONTENTS Page ABSTRACT.......................... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 313 INTRODUCTION ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 313 PROCEDURES.......... ~ ~ .. ~........ o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 314 Study Plots... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 314 Summer Breeding Bird Census.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 315 Migrant Bird Census.......... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 316 Summer and Winter Bird Census ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 316 River Bird Census.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 316 RESULTS AND DISCUSSION............... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 317 S 'tudy P 1 0'ts ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 317 Summer.................... ~ 317 F all ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 319 Nonsystematic Counts............ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 321 Winter.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ 321 Spring.................. 321 S Umme 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . "322 all.......................

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

F ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 322 Nonsystematic Count Analysi s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 323 River Bird Census............... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 324 Spl ingo ~ ~ ~ ~ ~ ~ 324 all.......................

o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

F ~ ~ ~ 324 Phenological Occurrence.... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 325 REFERENCES CITED.................................................... 326 LIST OF TABLES Table L-1. Species of birds observed near the Susquehanna SES site, 1 977 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 328

312 Page E

Number, density (No./km 2 ), and relative density (R.D.)

of breeding bird territories observed on Council Cup and Township Road 419 forests, and US ll marsh during the breeding bird survey, May through July 1977........ 331 Mean density (No./km 2 ), relative density (X), frequency of occurrence (/), and relative frequency (/) of birds observed on Council Cup and Township Road 419 forests, and US ll marsh during the breeding bird survey, May through July 1977. .. ............................. 332 Mean . . . fall migration census, August through December 1977.. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 333 Frequency of occurrence and relative frequency of birds observed on nonsystematic counts near the Susquehanna SES, 1977............ ~ ~ ~ ~ ~ ~ ~ ~ 334 Number of birds observed during five censuses on the Susquehanna River, 11 March through 19 April 1977...... 336 Number . . . 11 censuses . . . 21 September through 19 December 1977................ . . . . . . . 336 LIST OF FIGURES Mean number of species/count and species/h observed on nonsystematic bird counts (4-11/mo) near the Susquehanna SES, 1977.. ... ......................... 337 Phenological occurrence of birds observed near the Susquehanna SES, 1977.................................. 338

313 ABSTRACT In 1977, 179 species of birds, 42 of which had not been seen previously, were observed near the Susquehanna SES. Included were 18 species of waterfowl seen during the spring and fall migrations.

Breeding bird surveys revealed that a total of 26 species maintained territories on three study plots (two wooded, one marsh) . Considering other available habitats, an estimated 67 species may nest on the site.

abundant species on both wooded plots and the red-winged blackbird

(~Sinus tristful were the two most abundant species in the fall was the most frequently observed species during the year. The endangered locally on 9 and 20 September. Three threatened species were also seen.

INTRODUCTION Preliminary studies of the bird life on the Susquehanna SES site were begun in 1971 and terminated in 1974. During this period, the literature was surveyed, a species list compiled, and the relative abundance of resident and transient bird species monitored (Ichthyological Associates 1973, 1974; Burton 1976).

314 The current preoperational studies were begun in January 1977 to gather information on birds with regards to their numbers, behavior, occurrences, and habitats during the final construction of the Susquehanna SES.

h These baseline data will be compared with similar information which will be collected after the power station begins operation.

PROCEDURES Study Plots Three permanent study plots were located in 1977. Two were wooded areas, Council Cup forest (CC) and the hillside above Township Road 419 (TR419), and one was a maxsh along U.S. 11 (Fig. K-1). The CC and TR419 plots are identical to the forest plots discussed in the Flora and Vegetation section of this report.

Criteria considered in selection of the plots were: 1) the vegetation be representative of the Susquehanna SES; 2). the areas remain relatively undisturbed throughout construction; and 3) the plots be a minimum of 6 ha of unifoxm habitat (Hall 1964).

All plots were surveyed and measured using a Brunton pocket transit on a tripod and a 30-m engineer's tape. The boundaries of each plot were marked with flagged stakes. Transect lines were surveyed within each plot at distances dependent upon vegetation density. Enough lines were surveyed to provide coverage of all parts of the plots when sampling by the strip census method (Kendeigh 1961). A polar planimeter was used to calculate plot areas.

315 Summer Breeding Bird Census Plots were censused eight times between 1 May and 15 e

July. Each census began within 30 minut'es before sunrise, a period that coincides with the beginning of intense singing by most passerines (Hall 1964).

Starting locations were altered on each plot from census to census to minimize bias that might result from changes in singing intensity.

Censuses were not conducted during periods of high winds or heavy rains.

During'each visit to a plot the locations of singing males were marked on a daily census map. All birds were identified and recorded with a symbol that designated species and behavioral activity (i.e.

singing, aggression, nest building, etc.) . After a census, data on the daily "census map. were transferred to.a similar map for each species.

Breeding densities of a species were estimated by counting the clusters of daily census points on the species map; each cluster represented a territory. This technique is known as,.territory mapping and is described by Hall (1964) and Oekle (1967).

Relative densities (number of individuals of one species/total number of individuals of all species) were calculated from breeding densities. The frequency of occurrence (number of counts one species was observed/total number of counts) and relative frequency of occurrence (number of observations of one species/total number of observations of all species) were also calculated.

The number of individuals of each species observed on both wooded I

plots was compared statistically using the nonparametric Spearman Rank

316 Correlation Coefficient Test (Siegel 1956). This test is a measure of association which requires that the variables be measured in at least an ordinal scale so that the objects or individuals under study may be ranked in two ordered series.

Migrant Bird Census Migrant bird populations were sampled in the spring (Mar-May) and in the fall (Aug-Dec). Spring populations were sampled from 7 to ll times/month, using nonsystematic walks. During the fall each study plot was sampled monthly from 4 to 8 times using the strip census method and from 2 to 4 times by nonsystematic walks. Only species identifications were recorded in the spring whereas both the identity and numbers of individuals were recorded in the fall.

Summer and Winter Bird Census Summer and winter bird populations were studied by conducting nonsystematic walks through various habitats located near the site from 1 January through 28 February. Counts were usually conducted after midmorning. Species observed were recorded and their frequency of occurrences calculated.

River Bird Census Waterfowl and other water associated birds were censused from a boat on a 16-km section oi'he Susquehanna River. The census route

317 extended from the Shickshinny-Mocanaqua Bridge to the Berwick-Nescopeck Bridge.

The identity and number of birds observed on each census were recorded. Censuses were conducted in spring and fall, usually during the morning hours. Data were not collected due to low water levels in the summer (May-Jul) and because of River ice in winter (Jan-Feb). Results are presented as indices of River usage, i.e. birds/km and waterfowl-days (average number of Anatidaeon the River for two consecutive counts X the number of days between counts) .

RESULTS AND DISCUSSION A total of 195 species of birds was observed near the Susquehanna SES from 1972 through 1974 and throughout 1977 (Table L-1) . During 1977, 179 species were observed on the site. Forty-two of these species had not been reported in 1972-74. The following five familes composed 51.9/

of the species observed: Parulidae (27 species), Fringillidae (24),

Anatidae (22), Accipitridae (11), and Scolopacidae (9). Data were catagorized by either study plots or seasons.

Study Plots Summer CC Forest A total of 15 species'composing 10 families and 35.5 territories was observed nesting on the CC plot (Table L-2) . Four of these species occupied 56.4/ of the territories. The wood thrush

318

(~H locichla mustelina) occupied seven territories, the ovenbird (Seiurus were 24 additional species observed on the plot during the summer. These species were considered visitors as they were not observed in any pattern that indicated an occupied nesting territory.

TR419 Forest There were 41 species observed on TR419 during the summer; 14 of them representing 9 families, maintained 37.5 territories (Table L-2) . The three most abundant species, wood thrush (6.0 territories),

occupied 45.4% of the territories. Low shrub and ground dwelling species occupied 31.5% of the territories observed; the Paridae occupied 22.7%

and the Turdidae 21.3%.

US ll Marsh The marsh supported only 10 nesting species but had the greatest density of territories/km 2 (Table L-2). The red-winged black-38.9% (14.0) of the territories. The song sparrow (~Malus isa maladie) was second in abundance with 13.9% (5.0) of the territories. Each of the other species held no more than three territories. The red-winged black-bird was the most frequently observed species (7.1%) in the marsh. The yellow warbler (Dendrolca Hetechka), American goldfinch (~S inus tristis),

and song sparrow were also observed with a relative frequency of 7. 1%

(Table I 3). Twenty-three other snecies were observed visiting the area.

319 Two broods each of mallards and wood ducks were seen utilizing the marsh and surrounding wetlands as brooding habitat; exact locations of nests were not di'scovered.

Study Plot Analysis The avian communities of both wooded plots were similar in species composition during the summer. Of the total birds observed on CC, 66.7% were also seen on TR419; likewise, 63.4% of the birds, observed on TR419 were also observed, on CC. The blue jay and rufous-sided towhee (ppl lio e thro hthalmus) were the, most Brequently observed birds on both CC (6.0% each) and TR419 (6.9% each) (Table L-3) .

There was a significant, positive correlation (r = 0.39, P<0.05) between the ranking of species by mean number of individuals on each wooded plot.

This similarity yields a basis for future comparisons of breeding bird populations on these plots No comparisons for species'imilarity were made between either of the wooded plots and the marsh plot.

Fall CC Forest In the fall, a total of 46 species was observed on CC.

The three most abundant species, indicated by relative density, were the black-capped chickadee (22;2%),,dark-eyed lance (Junco ~h emalis) (9.0%),

and blue jay (7.9%) (Table L-4). The most frequently observed species (relative frequency) were the black-capped chickadee (8.3%), white-breasted nuthatch (Sitta carolinensis) (7.4%), blue jay (6.5%), and downy woodpecker t.'c.

south with the majority passing through between 1 September and ll October,

320 relatively few individuals'ere observed. The eastern wood pewee

(~Conto us vireos) was an early migrant and was not observed after l September. The dark-eyed junco was first observed on ll October in low .

numbers but by the end of October this common wintering bird was abundant.

TR419 Forest Thirty-two species of birds were observed during the fall migration. The most abundant species were the black-capped chickadee (22.3%) and the dark-eyed junco (12.6%). The most frequently observed species were the downy woodpecker, blue jay, and black-capped chickadee; each had a relative frequency of 9.3% (Table L-4). As on CC, few warblers migrated through in September and early October; only seven species were observed. The dark-eyed junco was first observed in large concentrations on 22 November. The sighting of a solitary vireo (Vireo solitarius) on 14 November represented a late date for the species to be in the area.

US 11 Marsh The marsh supported fewer bird species (24) during the fall migration than the other plots. The most abundant species were the American goldfinch (18.7%), song sparrow (13.8%), and. red-winged blackbird (ll. 1%). The most frequently observed species were the song sparrow (10.8%), cardinal (Cardinalis cardinalis), American goldfinch, and white-throated sparrow (Zonotrichia albicollis), each 8.1%. The family Fringillidae includ'ed ll (46. 0%) of the 24 species observed.

Study Plot Analysis Avian communities in the two wooded plots were very similar in the fall as they were in the summer. Of the 46 species of birds observed on CC, 52.2% were also observed on TR419, and of the 32 species observed on TR419, 75.0% were seen on CC. There were

321 17 and 15 families observed on CC and TR419, respectively, with a total of 19 families observed on both plots. The ranking of species according to mean number of individuals on each wooded plot was also significantly correlated (r = 0.28, P<0.05) in the fall.

)

The blue jay, black-capped chickadee, and American goldfinch were the three most frequently observed species on all three plots during the fall and the black-capped chickadee and American goldfinch were the most abundant species. No statistical comparisons were made between the marsh and the wooded plots.

Nonsystematic Counts Winter A total of 45 species was observed in the winter. The most common species included the common crow (Corvus brach rh nchos), downy woodpecker, cardinal, and brown creeper (Certhia familiaris) (Table L-5). Due to the prolonged severe winter weather a few species, including the yellow-rumped warbler (Dendroica coronata) and chipping sparrow (Syizella passerina),

were only observed in early January and were not seen again until the spring migration.

~Srin Nearly twice as many species (81) were observed in the spring compared to the winter. Again the common crow was the most common species observed followed by the song sparrow and red-winged blackbird (Table L-5). A

322 concentration of about 2,000 red-winged blackbirds was observed on 23 March. Four species of warblers migrated north from 7 April through u

hawk observed during the spring migration; the second most common raptor Summer A total of 76 species was observed in the summer (Table L-5) . The 0

~c anea), and song sparrow were observed most frequently T.here was a dispersal of common crows during the summer as they were observed less often than any other time of the year. A few species including yellow-rumped warbler, brown creeper, and dark-eyed junco probably migrated to a higher altitude or farther north because they, were absent only during the summer breeding period.

Fall The number of species observed in the fall (81) was identical to that observed during the spring migration, but the species differed (Table L-5). The common crow, black-capped chickadee, and white-breasted nuthatch were the most frequently seen species followed by the blue jay, American goldfinch, and song sparrow. Compared to summer, the number of wading Mrds increased greatly as did red-tailed hawk and broad-

323 Nonsystematic Count Anal sis The average number of species observed/count increased from the beginning of January (winter) through May (spring) (Fig. L-1). The numbers decreased slightly in summer as birds became more sedentary.

The sudden decrease in species during October probably occurred because fewer counts were made at that time. The number of species observed/hour increased through summer and then decreased slightly until December.

The maximum of 15 species/hour observed during the summer was due to the more sedentary populations in the-area. Also during the summer individuals were more vocal and easier to observe .

The common crow was the most frequently observed species during the year with an average relative frequency of 5.1X. The song sparrow was the second most frequently observed species with an average relative frequency of 4.2/. Many species (22) were observed throughout the year (Fig. L-2) although the majority (93) were observed during the migration seasons.

Four species of birds, classified as endangered or threatened by the U. S. Department of the Interior (1977) were observed during 1977.

was seen twice. One immature eagle was observed flying south over the River at Berwick on 9 September, and one adult was observed flying south-east over an abandoned quarry above PA. 239 about 1 km southeast of Gould Island on 20 September. The threatened species. marsh hawk (Circus

~c aneus), osprey (Pandion haliaetus), and merlin (Falco columbarius) were each observed several times on the site throughout the year (Fig. L-2).

324 River Bird Census Spring The majority of the 15 species observed (Table L-6) during spring migration counts passed through the area between ll March and ll April.

A few species, including the canvasback (A~th~a valisineria), migrated through in February and others, such as the American bittern (Botaurus River in the spring, with greater numbers observed during March. Common mergansers (~Mer us ~mer anser overwintered and remained in the area until 21 March at which time they migrated north. Hooded mergansers until 15 May. Wood ducks (Air ~sensa) were first observed on 28 February and remained throughout the spring and early summer. Other birds seen commonly in the spring migration included American wigeons (Anas (Actitis macularia).

Large flights of Canada geese (Bronte canadensis) were observed on 9 and 10 March and ll April. In 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> of observations, 7,300 geese were counted.

Fall Of the 21 species observed during the fall migration period (Table L-7), the wood duck made up the majority of the early numbers observed from 19 September through 18 October. Black ducks (Anas r~ubri es) were

325 more abundant than mallards during the fall. Common mergansers arrived late in the period, 7 December, and remained throughout the winter. A small migration of sea ducks composed mostly of common scoters (Melanitta

~ni ra) passed through on 10 November.

The peak of the fall migration occurred between 21 October and 20 November. The great blue heron (Ardea herodias) and belted kingfisher F

(Megaceryle alcyon) were the two most abundant and frequently observed water birds near the Susquehanna SES during this period.

A small concentration of 30 to 37 brant (Branta bernicla) was observed from 7 to 10 November on the River. Approximately 2,200 Canada geese were seen flying overhead on 3, 4, and 6 October.

P~henolo ical Occurrence Comparisons between both migration seasons revealed that the spring migration was much shorter and more concentrated than the fall migration.

The index of birds/km for the River survey was 3s94 in the spring and 3.06 in the fall. There were 2,486 waterfowl-days in the spring and 3,255 in the fall.

Location of birds on the River were similar in both seasons. Ducks tended to concentrate in the shallows along the islands between Beach Haven and Berwick. Of all the waterfowl observed, 65% were seen in this section of the River.

The phenological occurrence of all species of waterfowl and related water birds is included in Fig. L-2. Mallards and black ducks occurred during all seasons, and wood ducks were observed from fall through spring.

326 Common mergansers overwintered (in flocks of 10-30 individuals) and remained into March. Other species were strictly migrants and appeared in the area only briefly. The Canada goose was the most prominent of these. Although few were seen on the River, thousands flew over during both migration seasons.

REFERENCES CITED American Ornithologist's Union. 1957. Checklist of North American Birds.

5th ed. AOU, Baltimore, Md. 691 pp.

Burton, J. R. 1976. Terrestrial ecology. Pages 280-314 in T. V. Jacobsen (ed.), Ecological studies of the North Branch Susquehanna River in the vicinity of the Susquehanna Steam Electric Station (Progress report for the period January-December 1974). Pa. Power and Light Co ~ , Allentown, Pa.

Hall, G. A. 1964. Breeding-bird censuses why and how. Am. Birds.

18: 413-416.

Ichthyological Associates, Inc. 1973. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1972). Pa. Power and Light Co., Allentown, Pa. 658 pp.

1974. An ecological study of the North Branch Susquehanna River in the vicinity of Berwick, Pennsylvania (Progress report for the period January-December 1973). Pa. Power and Light Co., Allentown, Pa. 838 pp.

Kendeigh, S. C. 1961. Animal ecology. Prentice Hall, Inc., Englewood Cliffs, N.J. 468 pp.

Oekle, H. 1967. Thirty-five years of breeding-bird census work in Europe.

Audubon Field Notes. Dec. 635-641.

327 Siegel, S. 1956. Nonparametric statistics. McGraw-Hill Book Co., New York, N.Y. 312 pp.

U. S. Department of Interior. 1977. International trade in endangered species of wild fauna and flora; implementation of convention.

Federal Register 42(35): 10462-10488.

328 Table L-1. Species of birds observed near the Susquehanna SES site, 1973-74 and 1977.

An asterisk denotes new species observed in 1977. Nomenclature follows AOU Checklist (1957).

Gaviidae Tetraonidae Gavia immer - common loon Bonasa umbellus - ruffed grouse Podicipedidae Phasianidae

~Bodice s ritus horned grebe Phasianus colchicus - ring-necked pheasant

~Podtl b sg~dtce s - plod-bf lied grebe Meleagrididae Phalacrocoracidae ~Males ris Mealie avo turkey Phalacrocorax auritus double-crested cormorant*

Rallidae Ardeidae Porzana carolina - sora Ardea herodias - great blue heron Fulica americana - American coot Butorides virescens - eastern green heron Florida caerulea - little blue heron Charadriidae Bubulcus ibis cattle egret Charadrius vociferus killdeer Casmerodius albus - common egret

~E retta thula - snowy egret* Scolopacidae

~gctfcorax ~nctfc rax - black-crowned night heron Philohela minor - American woodcock lxobryehus exflis - least bitterns ~Ca ella ~alltna o - comson snipe Buts r s ~fatti fnos s - American bittern Actitis macularia - spotted sandpiper

~Trin a solitaria solitary sandpiper Anatidae T. melanoleucus greater yellowlegs*

Olor columbianus - whistling swan Branta canadensis - Canada goose T. flail es lesser Calidris melanotos yellowlegs

- pectoral sandpiper*

B . bernicla brant+ Larus marinus - great black-backed gull Chen hvverborea sno goose L. ~aeneat s - herring gull L. delawarensis ring-billed gull A. ~rbri es - black d rk L. ~btlad I hfo - Bonaparte's g 11 A. acuta pintail Sterna hirundo - common tern A. carolinensis green-winged teal A. discors - blue-winged teal Columbidae A. americana American wigeon Columba livia rock dove Aix ~s onsa - wood duck Zenaidura macroura - mourning dove

~A th a americ na - redhead A. collaris ring-necked duck Cuculidae A. valisineria canvasback ~Coac *us american s yellow-billed cuckoo A. marila - greater scaup C. e thro thalmus black-billed cuckoo*

A. affinis - lesser scaup

~gute hola ~clan la - corsson goldeneyc Strigidae B. albeola bufflehead Otus asio - screech owl

~glen la ~hermffs - oldsquew B bo ~viz Inia s - great-horned o 1 Mel <<ftto ~de londf white- inged scoter Asio otus - long-eared owl*

M. ~ni ra black scoter Caprimulgidae OxXura ~amaicensis ruddy duck Chordeiles minor - common nighthawk

~Lo hod tes cucullatus - hooded merganser

~Mer s moor sneer American merganser Apodidae M. serrator red-breasted merganser Cho t ra ~la fca chimney swift Cathartidae Trochilidae Cathartes aura - turkey vulture Archilochus colubris - ruby-throated hummingbird Accipitridae Alcedinidae

~Accf fter ~coo erf1 - Cooper'p hawks ~Me scar le ~ale on - belted kingfisher A. striatus sharp-shinned hawk Buteo ~a afeensis red-tailed hawk Picidae B. lineatus - red-shouldered hawk" ~tele tes curat s conrson flicker B. ~lat terus broad-winged hawk ~Dr oeo us Mileat s plicated woodpecker B. ~fc o s - rough legged hawk- Centurus carolinus red-bellied woodpecker+

~Sh ra Acus v rf s - yello -bellied saps ckere Circ s ~c ane s - marsh hawk ~nendroco os vill s s hatty woodpecker Pandion haliaetus - osprey D. p bes ens downy woodpecker Falco columbarius - merlin*

P. ~ecru ri s - American kestrel

329 Table L-1 (cont.)

Tyrannidae Sturnidae Tyran us ~tra nus eastern kingbird ge r us ~vul aria - starling

~giarchus crinit s great crested flycatcher g~aor is ph ba eastern phoebe Vireonidae

~R idonax flaviventris yellow-bellfed flycatcher* Vire grist ss white-eyed vireo*

E. virescens acadian flycatcher* V. flavifrons yellow-throated vireo E. traillii - willow flycatcher* V. solitarius solitary vireo*

E. minimus least flycatcher V. olivaceus red-eyed vireo C ~at s vi e s - eastern wood pe ee V. ~ilvus - warbling vireo Hirundinidae Parulidae

~Irido roc e bicolor - tree swallow Mniotilta varia - black and white warbler

~kf a ia ~rf Ia - bank swallow Helmitheros vermivorus worm-eating warbler*

~gtei fdo~te x r iicollis rough-winged swallow Vermivora pinus - blue-winged warbler*

Hirundo rustica - barn swallow V. ~era ri e - Tennessee warblere Pec ochelfdon pp rho oca - c1111 s allo V. ~rffta illa - Nashville warbler

~Pro ne subis purple martin De d oita Rats hhfioa - yello arbler D. ~~ nolfa - magnolia warbler Corvidae D. ~tl rina - Cape May warbler anocitta cristata - blue )ay D. caerulescens black-throated blue warbler D. coronata - yellow-rumped warbler

~C Corvus b~rach r~hnchos - common crow C. ossifragus fish crow D. virens black-throated green warbler*

D. cerulea Cerulean warbler*

Paridae D. fusca blackburnian warbler Parus atri~ca illus black-capped chickadee D. dominica - yellow-throated warbler P. bicolor tufted titmouse D. pensylvanica - chestnut-sided warbler D. castanea - bay-breasted ~arbler Sittidae D. striata - blackpoll warbler*

Sitta carolinensis white-breasted nuthatch D. discolor prairie warbler*

S. canadensis red-breasted nuthatch> D. palmarum palm warbler Seiurus ayrocanillus ovenbird Certhiidae S. noveboracensis northern waterthrush Certhia familiaris brown creeper S. motacflla - Louisiana Qaterthrush*

~Oor~ols ~allis - Connecticut warbler*

Troglodytidae 0. philadel~ia - mourning warbler

~Tro lodyees aedon house wren rc~thl is trfch.s - yello throat T. troglodytes - winter wren Wilsonia citrina - hooded warbler*

Th~r ootthorus ludovicianus Carolina wren W. canadensis - Canada warbler*

Telmatodgtes ~alustris - long>>billed marsh wren* ~g t bags r ticill - American redstart Mimidae Ploceidac Nim ~ol lot toe - mockingbf rd Passer domesticus - house sparrow Dumetella carolinensis catbird Toxostoma rufum brown thrasher .Icteridae

- bobolink Turdidae T rd s ~frarorf s - robin

~S ~p Dolichonnyx oryxivorus h~~us ibj~oc BLaggg eastern meadowlark

- red-winged blackbird

~Hlocichla mustelina - wood thrush -Z@.orchard oriole" Cather s N crate - her it thrush I. ~albula - northern oriole carolinus rusty blackbird C. ustulata Swainson's thrush ~Eu ha s C. minima gray-cheeked thrush Cuiscal s guiscula common grackle C. fuscescens veery Folothrus ater brown-headed cowbird Sialia sialis eastern bluebird Thraupidae Sylviidae ~piton a olivacea - scarlet tanager

~polio tile cger les bl e-grey gnatcatcher

~ge lus sierra s - golden-crowned kinglet Pringillidae R. calendula - ruby-crowned kinglet ~r UBBLik ~a &Laa. - cardinal Pheucticus ludovicianus - rose-breasted grosbeak Motacillidae Guiraca caerulea blue grosbeak*

Anth s ~sfn letta - water pipit'e Passerina ~c anea indigo bunting

~ges erf hone ~ves ert1na - evening grosbeak Bombycillidae ~Car odacus ~ur urcus - purple Ifnch

~go b cilia cedror m - cedar axwing C. mexicanus house finch*

330 Table L-1 (cont.)

Fringillidae (cont.)

Acanthis flammea - common redpoll*

~S inus pinus pine siskin*

S. tristis American goldfinch

~pi ilo er thro hthalmus - rufous-sided towhee Passerculus sandwichensis - savannah sparrow*

Ammodramus savannarum - grasshopper sparrow

  • Poo cetes Zra 1 cs vesper sparrow J co ~h ensile dark-eyed Jonco

~S italic arhorea tree spatro S. p sserina chippint sparrow S. p stile field sparrow Zonothrtchfa~lecco hr s '- white-crowned sparro Z. albicollis - white-throated sparrow Passerella iliaca - fox sparrow

~Males i*a Meant iona - swa p sparrow" M. melodia - song sparrow

331 Table L-2. Number, density (No./km 2 ), and relative density (R.D.) of breeding bird territories observed on Council Cup and Township Road 419 forests, and US 11 marsh during the breeding bird survey, Hay through July 1977.

Family/species CC Forest TR419 Forest US 11 Harsh Territories No. No./km2 R.D. No. No./km R.D. No. No./km2 R.D.

Tetraonidae 2.8 0.0 0.0 0.0 0.0 . 0.0 0.0 ruffed grouse 1.0 16.5 Picidae common flicker 2.0 33.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 downy woodpecker 2.0 33.0 5.6 1.0 9.0, 2.7 0.0 0.0 0.0 Tyrannidae great crested flycatcher 0.5 '.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 57.6 D.o 8.3 willow flycatcher 0.0 0.0 0.0 0.0 eastern wood pewee 0.5 8.0 1.4 0.5 4.5 1.3 0.0 0.0 0.0 Corvidae blue gay 3.5 58.0 9.8 5 5 49 5 14 7 0.0 0.0 0.0 Paridae black-capped chickadee 4.0 66.5 11.3 5.5 49.5 14.7 0.0 0.0 0.0 tufted titmouse 0.0 0.0 0.0 3.0 27.0 8.0 0.0 0 0

~ 0.0 Sittidae white-breasted nuthatch 1.0 16.5 2.8 0.0 0.0 0.0 0.0 0.0 0.0 Himidae catbird 0.0 0.0 0.0 0.0 0.0 0.0 2.0 38.4 5.6 Turdidae robin 1.0 16.5 2.8 2.0 18.0 5' 2.5 48.0 6.9 wood thrush 7.0 116.5 19.7 6.0 54 ~ 0 16.0 o.o o.o o.o Sylviidae blue-gray gnatcatcher 0.0 0.0 0.0 1.0 9.0 2.7 0.0 0.0 0.0 Parulidae yellow warbler 0.0 0.0 0.0 0.0 0.0 0.0 3.0 57.6 8.3 ovenbird 5.0 83.0 14.1 2.0 18.0 5.3 0.0 0.0 0.0 yellowthroat 0.0 0.0 0.0 1.0 9.0 2.7 2.0 38.4 5.6 Icteridae red-winged blackbird 0.0 0.0 0.0 0.0 0.0 0.0 14.0 268.8 38.9 northern oriole n.o o.o o.o 0.0 0.0 0.0 2.0 38.4 5.6 Thraupidae scarlet tanager 4.0 66.5 11.3 3.0 27.0 8.0 0.0 0.0 0.0 Fringi1 1idae cardinal 00 00 00 35 315 93 0.0 0.0 0.0 rose-breasted grosbeak 10 165 28 00 00 00 0.0 0.0 0.0 indigo bunting 10 165 28 10 90 27 0.5 9.6 1.4 rufous sided towhee 2.0 33.0 5.6 2.5 22.5 6.7 0~0 0.0 0.0 swamp sparrow 0.0 0 ~0 0.0 0.0 0~0 0.0 2.0 38.4 5.6 song sparrow 0.0 0.0 0.0 0.0 0.0 0.0 5.0 96.0 13.9 Totals 35.5 588.0 99.8 37.5 337.5 100.1 36.0 691.2 100.1

332 Table L-3. Mean density (No./km 2 ), relative density (0), frequency of occurrence (0), and relative frequency (0) of birds observed on Council Cup and Township Road 419 forests, and US 11 marsh during the breeding bird survey, May through July 1977.

CC FOREST TR419 FOREST US ll tIARSH DENSITY PBLQUENCY DENSITY FREQUENCY DENSITY FREQUENCY NE,AN RELa DC'ELa REL ~ DC'BLa HEAN REL ~ DC'ELa EASTEBH GREEH HEBOt>> Oaa 0~0 0~0 Oaa 0~0 0,0 Oaa 0~ 0 8 ~2 I ~0 28 ~ 6 2~ 0 P>>ALLAHD Oa0 0 ' 0 ' 0~ 0 0~0 Oaa 0.0 0~ 0 19 ' 2~3 57 ~ 1 4.1 Vvt>>OD I UCK

'I'URKEY VUL1 liRE Oa0 4 '

0~0 0 ~8 0~0 14 ~ 3 0~ 0 0 ~9 Oaa 0~ 0 Oaa Oaa 0.0 0~ 0 0~ 0 0~ 0 I lao 1~ 3 57 ~ 1 4 '

0~0 0~ 0 0~0 0~ 0

/RUFFED GROUSE 7 ' la3 42,9 2~6 0~ 0 Oaa 0~0 0~ 0 0~0 0~0 0~0 Oaa RING&BCK PIIEASANT Oaa 0~ 0 0,0 0~ 0 0~0 Oaa 0~0 0~ 0 2 ~7 0~ 3 14. 3 1.0 SO RA 0~ 0 0~0 0~ 0 0~ 0 0~0 Oa0 0~0 0~0 2~7 0~3 14 ~ 3 1~0 Kll LDEBR 0~ 0 0~0 0~0 0~ 0 0 ' Oaa Oaa 0~ 0 2~7 0 ' 14 ~ 3 1~0 GREA'I'Ek YELLOI>>LEGS 0~ 0 0~ 0 0~0 Oaa Oaa Oaa 0~ 0 0~ 0 2~7 0 ' 14 ~ 3 laa PECTORAL SANDPIPER Oaa 0~0 0~0 0~0 0~0 Oaa 0.0 0~ 0 2~7 0 ' 14 ~ 3 1~ 0 MOURNING DCVB Oaa 0~0 0~0 0~ 0 I ~ 3 0~ 4 14 a 3 la a 0~0 0 ' 0 0 0~ 0 YELLOl>> Bll LED CUCKOO lla 9 F 1 42 ~ 9 2 ' I ~ 3 0~ 4 14 ~ 3 1~ 0 0~0 0~0 0~ 0 0~ 0 BLACKWILLED CUCKOO 0.0 Oaa 0~0 0~ 0 0~0 0~ 0 0.0 0~ 0 2 ~7 0' 14 ~ 3 1~0 RUBY~I'I>>ROATfli HUMMINGBIRD t>>EL1'ED KINGFISHER 0~ 0 0~0 0~0 0~ 0 0~0 0,0 0.0 0~ 0 2~7 0 ' 14a3 laa Oaa 0~0 0~0 0~ 0 0~0 0~ 0 0~ 0 0~ 0 8 ~2 la a 42 ~ 9 3al COMMON FLICKEk 23 ~ 8 4 ~2 85 ~ 7 5 ' 3a9 1~ 1 28 ~ 6 2~ 0 2~7 0~ 3 14 ~ 3 laa I'ILBATED WOODPLCKI'R tlAIRY hOODi'LCKBR 4~8 2a4 0 ~8 0 '

28 ~ 6 14 ~ 3 1~7 0~0 0~ 0 0~ 0 Oaa 0 ' 0~0 0~0 0~ 0 0 ~9 1~3 0~ 4 14a3 1 0 0 0 0~ 0 0~0 0~ 0 DOhNY hOODi'ECKBR 16 ' 3' 100 ~ 0 6aa 6~5 la9 57 ~ 1 3~ 9 0 ' 0~0 0~0 Oaa CREAT CRESTLI>> I'LYCA'I'CIIER 9.5 1 ~7 57 ~ 1 3 ' la 3 0~ 4 14 ~ 3 la a 0~0 0~ 0 0 ' 0~0 ACADIAN PLYCA'I'CHER Oaa 0~0 0 ' 0~ 0 0~0 0~ 0 0 ' 0~ 0 2~7 0 ' 14 ' laa WILIOW FLYCATCHER Dao 0~0 0 0~ 0~ 0 0 ' Oa0 0~0 0.0 44 ~ 0 5a3 71 ' 5 '

LEAS1'LYCA'ICHEk Oaa 0.0 0' 0~ 0 la 3 0~ 4 14 a 3 la a 0.0 0~0 0 0 0~ 0 EAS'I E,RH WOOD PEWBE 7 ' 1~3 28 ' la7 9 ~0 2~7 28 ~ 6 2 0 2 ~7 0 ' 14 a 3 1~0 BLUE JAY 45a2 d,a 100 ' 6 ~0 45a2 13 ' 100,0 6a9 0~0 0 ' 0~0 0~0 COtiKOtl CROW 2' 0 ' 14 ~ 3 F 9 6 ~5 la 9 42 9 2~ 9 0 ' 0 ' 0~0 0~ 0 BLACK~PPEE CHICKADEE 52 ' 9a3 85 ~ 7 5 ' 33 ~ 6 10. 0 85 ~ 7 5 9 2~7 0' 14 ~ 3 la0 TUE 1'ED 'I'I'I'MOUSE 7' la3 14 ~ 3 0 ' 22 ~ 0 6 ' 57 ~ 1 3a9 0~0 0~0 0~0 0,0 hltITE-BRLASTED NU'I'HATCH 21a 4 3.8 71 ~ 4 4' ' 28.G CATS I BD BROI N 'I'HRASHEk 2~ 4 2 '

0 Oa4

' 14a3 14 ~ 3 0'

0' 2

I ~ 3 0~ 0 0~ 8 0'

I~ 0 14 ~ 3 0~0 2~ 0

l. 0 Oaa ll0~0 0~0

~ 0 0~0 la 3 0~0 42 0~0 0,0 0~ 0 3~ 1 0~ 0 ROB NI 9' 1 ~7 28 ~ 6 la7 9 ' 2.7 57a I 3~ 9 44 ' 5 ' 85 ~ 7 6 '

hOOD THRVBtl Sla 0 14 ~ 3 85a7 5 ' n.d 14 ' 100a 0 6.9 0,0 0~0 0~ 0 Oaa VEERY 2a4 0.4 14 ~ 3 0 ' 0~ 0 Oaa Oaa 0~ 0 0~0 0' 0 ' 0~ 0 BLUE GRAY GNA1'CATCHEk 2 ' 0 ' 14 a 3 0' 6a5 Iai 57 ~ 1 3a9 0~0 0 0

~ 0~0 Oaa RUBY-CBOhkl,fi KINGLET 0~0 0 ' 0 ' 0' 1 ~ 3 0~ 4 14 ~ 3 1~0 0~0 0' 0 ' Oaa CEDAR hAXVvING 0.0 Oaa 0 ' 0~ 0 0 ' Oaa 0~ 0 0~ 0 8 ' la a 42 ~ 9 3 1 RED-EYEli VIREO IAa 3 2 ' 42 ' 2 ~6 1.3 0 ' 14 ~ 3 laa 0~ 0 0~ 0 0~ 0

~

Oaa BLACK'-AND>>hHITL WABBLE.R 'J ~ 57 ~ I 3a4 5' 1~5 28 ~ 6 2~ 0 0~0 0~0 0~0 Oaa HORN-BATING BABBLER ~

'D 0 0 ' 0 ~ C Oaa 2' 0~ 8 28 ~ 6 2~ 0 0 ' 0~0 0~ 0 Oaa TENNLSSPE WARBLER 0. 0 O.e U,O 0~ 0 19 ' Sa7 28 ~ 6 2~ 0 0 ' 0~0 0~0 Oa0 NASHVILLE VihkBLER 0.0 0 ' aaa 0~0 2' 0 ' 14.3 laa Oaa 0~0 0~ 0 0~ 0 YELLOh WARBLER Oaa 0~0 0~0 0~ 0 1 3

~ 0 ' 14 ~ 3 1~ 0 46 ~ 7 5 ' 100 ~ 0 7~1 CAPE HAY hARBLER 0~ 0 0~ 0 0~0 0~0 2' OaS 0'

28 '

2~ 0 0 ' 0~0 0~0 0~ 0 YELLOh-RliHPED hARBLEH 9a5 1 ~7 14 ~ 3 0 ~9 2 14 la a 0~0 0 ' 0~0 0~ 0 CBBULBhtt WARBLL'R 2~4 0 ' 14 ~ 3 0 ' 0' 0 0

~ 0.0 0~ 0 0~0 0~ 0 0 ' 0~ 0 BLACKBURHIAH 'IIARBLER 0~ 0 0~0 0~0 0~0 1 ~ 3 0' 14 ' 1 0 0~ 0 0~0 0 ' 0~ 0 CIIESTNUT-SIDED 'WARBLER 2 0 14 ~ 3 Oa9 Oaa 0~ 0 0 ' Oaa 0 ~0 0~0 0 ' Oaa BAY BREAS'I'ED WARBLER 0~ 0 0,0 0~0 0 ' 3.9 la 1 28 ~ 6 2~ 0 Oaa 0~0 0' 0~ 0 BIACKPOLL WARBLER lla9 2al 28 ' la7 0~ 0 0~ 0 0~ 0 0~ 0 0~0 0~ 0 0' 0~ 0 PRAIBI 8 WARBI ER 4 ' 0 ~8 14 ' 0' Oaa Oaa 0~0 0~ 0 0 ' 0~ 0 0~0 0~ 0 UVENBI BD 40 ~ 5 7 ~2 71. 4 4' lla6 3~4 42a9 2~9 0~0 0~0 0.0 0~ 0 YELLOWvTHROAT 0~ 0 0 ' 0~ 0 0~ 0 3 ' la 1 42.9 2 ' 52.2 6 ' 85 ~ 7 6 '

HOODED WARBLER 4~8 0 ~8 28 ' la7 la3 0 ' 14 ~ 3 I ~ 0 0~0 Oaa 0 0 0~ 0 AttFRICAN BEDSTART 9~ 5 1 ~7 42 ~ 9 2 ~6 2' 0 ' 14 ' la a 0 ~0 0~0 0~0 0~ 0 BEDWIHGED BLACKBIRD 9 ' 1 ~7 42 ~ 9 2a6 0' 0 ' Oaa 0~ 0 294 0 35 ' 100; 0 F 1 ORCHARD ORIOLE 0. 0 0~0 0 ' 0~0 I 3~ 0,4 14 ~ 3 1~0 0~0 0~0 0~ 0 Oaa NORTHERH ORIOLE 0~ 0 0~0 0~ 0 0~ 0 0' 0~ 0 0~0 0~ 0 8 ~2 la a 42 ~ 9 3~ 1 BUSTY BLACKBIRD 7~1 I

1.3 I

28 ~ 6 la7 0~0 Oaa 0~0 0~ 0 2~7 0 ' 14 ~ 3 1~0 COHtlON GRACKLE 7 0.0

~ ~ 3 28 0.0 la7 0.0 0~ 0 0 0 0~ 0 19 ~ 2 2 ' 57. 1 4,1 BROhN HPADED COWiBIRD 0~0 0~0 1~3 0~ 4 14.3 1~ 0 0,0 0~0 Oaa 0~ 0 SChkLE'I'ANAGER 45a2 8 ~0 85 7 5 ' 15 ' 4~6 71a4 4~9 0 ' 0~ 0 0~ 0 0~ 0 CARDINAL ftOSI:-BREAS'I'BD GROSBEAK 9~5 7 ~ I 1.7 1.3 28 a6 42 ~ 9 I

2.6

~ 7 22 '

0 0~

6 ~

0~ 0 5 100a 0 0~0 6 '

0~ 0 5'

0' 0 '

0~0 28 ~ 6 0~ 0 2~ 0 0~ 0 BLUE GROSBEAK 0~ 0 0~0 0~0 0 ' 2' 0,8 14 3 1~0 Oaa 0.0 0~ 0 Oaa INDIGO UUN'I'ING 16 ' 3 ' 85a 7 5 ' 2 ~6 Oa8 14 ' laa 16 ' 2 ~0 57 ' 4.1 AMERICAN GOI DP INCH 2 ' 0 ~ 4 14 ~ 3 0 ~9 la3 0 ' 14 ~ 3 1~0 57.7 6 ~9 100a 0 7.1 Idt FUUSH II>>ED 'I'OWLBE 33 ~ 3 5.9 100 0 6 ~0 18 ' 5 ' 100 0 6.9 0' 0~0 0' 0~ 0 SAVht>>NAII SPARROW 0.0 0.0 0 ' Oaa 0~0 0.0 0.0 0~ 0 2 ~7 0 ' 14a3 1.0 CIIIPPlt>>G SPAI<ROIv 0. 0 0 ' Oaa 0~ 0 0 ~0 0~ 0 0~0 0.0 2 ~7 0 ' 14a3 1~0 ivlllTL Cttoht>>EU SPAkROW 0 ' 0' 0~0 0 ' 0~0 Oaa 0 ' 0~ 0 2 ~7 0 ' 14 ~ 3 1~ 0 ht>>ITB ZHROA'l'ED SFARRlih 0. 0 0~0 0~0 0~ 0 9 ' 2~ 7 42 ~ 9 2,9 0~0 0~0 0~0 0.0 Sivhtik Sl'hl>>ROi>> Oaa 0~0 0 ' 0~ 0 0~0 0~ 0 0.0 0~ 0 30 ' 3aG 85 ~ 7 6 ~ I SUNG Sl'ARROW 0~0 0.0 0.0 0.0 0~0 Oaa 0 0 0~0 109 ~ 9 13 ' 100 ~ 0 7.1

333 Table L-4. Mean density (No./km ), relative density (0), frequency of occurrence (kt), and relative frequency (tk) of birds observed on Council Cup and. Township Road 419 forestsi and US 11 marsh during the fall migration census, August through December 19/7.

SPECIES CC FOREST TR419 FOREST US 11 MARSH liENSITY>> FRtvQUCttCY DEHSITY F REQUENC Y DENSITY FREQUENCY tkEht>> Rbl . OCC. RBL. llEAH RELY OCC RBL. MEAN RBL>> OCC REL>>

ftBD~PAILCD HA'vlK 1.9 0.3 11 1 0. 9 1 8 0.5 20 0 1~ 9 0.4 25 0 2 7 RUt FVD GROUSC 0.0 0.0 0.0 0~ 0 1.8 0.5 20. 0 1.9 0.0 0 0 0.0 RING-tlCCK 1:9 0.3 11. 1 0.9 0.0 0 0 0.0 0.0 24 0 2>>2 25.0 2~7 COtltiON FLICKER PHEASAN'f'ELLOW-sslLLED CUCKOO 1.9 3.7 0.3 0.6 ll.

11. 1 1 0.9 0.9 0.0 5.4 0.0 1.5 0.0
20. 0 0.0 1.9 0.0 0.0 0.0 0 0 0 0 0 0 0~0 0.0 YBf LOH-BELLIED SAPSUCKER 1.9 0.3 1 l. 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 lihI BY HOOtsPECKER 3.7 0.6 11. 1 0. 9 3.6 1.0 20. 0 1.9 0.0 0 ~0 0 0 0.0 GOwts Y HOODPlCKER 25 9 4 0 77.8 6.5 18. 1 4.9 100. 0 9.3 0.0 0 0 0.0 0.0 EAS'1'VBN PHOEBE 0.0 0 0 0 0 0 0 1.8 0.5 20 0 1.9 0.0 0.0 0.0 0.0 YLLlVH-OBLI IED f'fYCATCHBR 1.9 0.3 11. 1 0 9 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 Lt'AS'1'LYCAT HBR 1.9 0 3 11. 1 0.9 0.0 0.0 0.0 0 0 0.0 0.0 0.0 0.0 1.AS'1'k'BN HOOD PEAt,E 20.4 3.1 44 4 3. 7 0.0 0~0 0.0 0.0 0.0 0.0 0.0 0.0 tkt.v.. SvvhLLOH 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.8 0 4 25 0 2.7 k'iSRI'1 ti tlARTIN 3.7 0.6 11. 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ssLVC JAY 51.9 7.9 77.8 6,5 27.1 7 3 100. 0 9. 3 4 8 0.4 25.0 2.7 CvHMON Cnoki 0.0 0.0 0.0 0 0 1.8 0.5 20. 0 l. 9 0.0 0.0 0 0 0 0 ksLACK-CAPPED CHICKADEE 151.9 23 ' 100. 0 8. 3 83.3 22 3 100 0 9.3 38.5 3.6 50.0 5~ 4 Tut"1't.O TI'1'ttUUSE 14.8 2 ' 44 ~ 4 3. 7 7 2 1.9 20.0 1.9 0.0 0.0 0.0 0.0 ni:ttt.-tskehsrBD NvrHATCH 40.7 6.2 88 9 7.4 18.1 4 9 80 0 7.4 0.0 0.0 0.0 0 0 tsku>>N CREEPER 11.1 1.7 33. 3 2.8 9 ' 2.4 40 0 3.7 0.0 0.0 0.0 0.0 iv 1n'1'f'll WREN 3.7 0.6 11. 1 0.9 0.0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 LOnG-ts1LLED tlARSH vlREN 0.0 0.0 0.0 0. 0 0 0 0.0 0 0 0.0 4.8 0 4 25. 0 2.7 kVt' tt 7.4 1.1 22. 2 1.9 19.9 5.3 80 0 7 4 4.8 0 4 25.0 2.7 bnht NSON S 'I'HRUStl 5.6 0.8 22.2 1.9 3.6 1.0 20. 0 l. 9 0.0 0.0 0.0 0.0 v Hk;kY 7 4 1.1 22 2 1.9 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 0.0 tsLOC-GRAY, GiiATCA'rCtlElt 3.7 0.6 11. 1 0.9 0.0 0 0 0.0 0.0 0.0 0.0 0~0 0.0 GVLs in-CBOHitED KIHGI ET 0 0 0 ' 0 0 O. 0 10 9 2.9 20. 0 l. 9 0.0 0.0 0 0 0 0 ktsiSY-CttkttANBO KI HGI 3.7 0.6 11. 1 0.9 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ivhXvf1i~tG B'1'uDhlt 0.0 0.0 0.0 0.0 16.3 4 ~ 4 20,0 1.9 33.7 3.1 25 0 2.7 L'r hk Lltt G 0.0 0.0 0 0 0.0 0.0 0 0 0.0 0 0 33. 7 3.1 25.0 2 7 AvLI't'ARY Vf BEO 3 7 0.6 11. 1 0.9 1.8 0.5 20 0 1.9 0.0 0.0 0.0 0.0 kBD-EYED V1REO 9.3 1.4 33. 3 2.8 5.4 1.5 20. 0 l. 9 0 ' 0.0 0 0 0 0 i'LACl(-AND-HHI'1'E HARBLCR 11.1 1.7 22. 2 1.9 3~6 1.0 20. 0 1. 9 0.0 0 0 0.0 0.0 nOBtl-L'ATING vlhRBl ER 1.9 0.3 11. 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0 ' 0 0 TENNESSEE HABBLEB 1.9 0.3 11. 1 0. 9 0 0 0.0 0.0 0.0 0.0 0 0 0.0 0.0 tihSllvkLLE ltARBLER 3.7 0.6 11. 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 vihGttul.lh WARBLER 14.8 2.3 11. 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CA1'L" llhY WARBLER 13.0 2.0 22- 2 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0.0 BLACK-TtiBOA'rED BLUE viABBLBR 7.4 33;3 2.8 0.0 0.0 0~0 0.0 0 0 0.0 0 0 0.0 YBLLvn-RtsktPEO AARitl Ek 38.9 5.9 22 ~ 2 1 9 5.4 1 5 20. 0 l. 9 0 0 0.0 0.0 0.0 is LAC i(-'1'HBOATVD GRC BH WARBLE R 5.6 0~8 I l. 1 0. 9 5.4 1.5 20 0 1.9 0.0 0.0 0.0 0.0 tsLACKti(SBNIAN WARBLER 1.9 0.3 11. 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 IshY-ssttEASTBD HABBf BR 13.0 2 0 22. 2 1.9 1.8 0. 5 20. 0 l. 9 0.0 0.0 0.0 0.0 tsLACKk'vLL vthkttLEB 18.5 2.8 22.2 1~ 9 1.8 0 5 20. 0 1.9 0.0 0 0 0.0 0.0 k'tcht klB WhktkLER 1.9 0.3 11. 0~ 9 0 0 0.0 ,0 0 0.0 0 0 0 ' 0.0 0.0
l. 1 : 33.3 1

Lvi.'NBIBO 7.'4 , 2.8 5.4 1.5 20. 0 1.9 0.0 n.o 0 0 0.0 CvHtiLC'f'ICUT WARBLER 1.9 0.3 11. 1 0.9 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 '

Y k. LLOHTt t BOAT 0.0 0 0 0.0 0.0 0.0 0.0 0. 0 0 0 9.6 0.9 25.0 2.7 Chivhbh vlhkitl ER 7.4 1'. 1 ,Ig. 1 0~ 9 0.0 0.0 0.0 0.0 0 0 0.0 0.0 0.0 AMLkfchN BEDsrhzr 1.9 0.3 ~

11.2 0. 9 1.8 0. 5 20. 0 1.9 0.0 0 0 0 0 0 0 t",AS'1'k Bt>> llVADOAIARK ~ 0.0 '0 0, 0 0 0 0 0.0 0.0 0.0 0 0 4.8 0.4 25 0 2.7 REDHlnGED HfhCKHIRO 0.0 >> 0.0 g.0.0 0.0 0 ' 0.0 0.0 0.0 120.2 11.1 50.0 5. 4 Cf 'tllsVN GRACKLE 0.0 0.0 Q 0.0 .0.0 0.0 0.0 0.0 48 1 4.4 25.0 2.7 SCAB LE'r TANAGEk 7.4 1.1 22 2 1.9 1.8 0. 5 20. 0 1.9 0.0 0 ' 0.0 0.0 CARDINAL ,, 0.0 0.0 0.0 0 0 3.6 1.0 40. 0 3 7 28.8 2 ' 75.0 8.1 lnukGO BUN'1'ItiG 0.0 >>

0 0 n:o 0.0 0. 0 0.0 0.0 0.0 24.0 2.2 25.0 2.7 VVE tv IN G GROS B EA K 14' 2 3 11>> 1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

&ukPLE VINCtt 0.0 0.0 0.0 0~ 0 5.4 1.5 20. 0 1.9 0.0 0.0 0~0 0.0

&IlsB SISKItl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 48.1 4 ~ 4 25. 0 2~ 7 AtlEktCAN GVLGVliV'll 13.0 2.0 44. 4 3.7 12 7 3 4 40. 0 3.7 201. 9 18.7 75 Q 8 '

BUt'VOS-SIDED 'IOAHBB 11 1 1.7 44.4 3. 7 3.6 1.0 20.0 1.9 0.0 0.0 0.0 0.0 Shv ANNhlt SPABROit 0.0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 9.6 0.9 25 0 2.7 LARK-EYED JUNCO 59.3 9.0 .33- 3 2~ 8 47.1 12. 6 20 ~ 0 1.9 0.0 0.0 0.0 0 0

'1'kt: 8 SPARROW 0 0 0 0 0 0 0 0 0.0 0.0 0.0 0.0 48.1 4.4 25.0 2.7 1"1ELO SPARROW 0.0 0.0 0.0 0. 0 0.0 0.0 0.0 .0. 0 '.6 0.9 25.0 2.7 HHl'1'E-CitOHHED SPARROW 0 0 0.0 (t. o 0. 0 0.0 0.0 0 0 0 ' 24.0 2~2 25.0 2.7 HHITEMHROATBD S PARROH 0~0 0.0 0. 0= 0. 0 0.0 0.0 0.0 0.0 91.3 8.4 75.0 8.1 FOX SPARROW 0 0 0.0 ~

0.0 0. 0 18.1 4.9 20. 0 l. 9 0.0 0.0 0 0 0.0 SWAMP SPARROW 0 0 0 0 0.0 0 0 0.0 0~0 0 0 0 0 96.2 8 9 50. 0 5. 4 SONG SPARROvl 0.0 0 0 0 0 0.0 0.0 0 0 0.0 0.0 149 0 13.8 100. 0 10. 8

334 Table L-5. Frequency of occurrence and relative frequency of birds observed on nonsystematic counts near the Susquehanna SES, 1977.

SPECIES WINTER SPRING SUHHER PALL OCC ~ RB L, OCC REI. ~ OCCe RELY OCCAM RBLe HORNED GREBE 14 ~ 3 0 0 0 ~0 0~0 0 ' 0 ~0 0 ~0 PIED-BILLED GREBE 0 0 0~ 0 10 ~ 0 0 ' 0,0 0 ' 0 ' 0~0 GREAT BLUE HERON 0~ 0 0~ 0 5 ' 0~2 0 ' 0 ' 16 ' 0~9 EASTBRH GRBEH HEROH 0~ 0 0~ 0 0 ' 0~0 8 3 0 ' 16 ' 0 '

BIACK-CROWHED HIGHT IIERON 0 0 0~0 5 ' 0 ' 0 ~0 0' 0 0 0 '

CAH ADA GODS B 0~ 0 0~ 0 10 ' 0 ~4 0~ 0 0' 0 ~0 0 '

I lALLARD 7 ~1 0~6 80 ' 3 ' 41 ~ 7 1 7~ 16 ~ 7 0.9 BLACK DUCK 0+0 0~ 0 40~0 1 7 0.0 0' 8 ~3 0 4 PINTAIL 0~ 0 0~ 0 10 ' 0~4 0~ 0 0 ' 0 0 0~0 GREEN-WINGED TEAL 0 0 0~ 0 10 ' 0 ~4 0~ 0 0.0 0 ~0 0 0 BLUE-WIHGED TEAL 0~ 0 0~ 0 25 ' 1 1 Oo0 0' 0 ~0 0 '

ANERICAN WIDGEON 0~ 0 0~ 0 55 ' 2,4 0~ 0 0 ' 0 ~0 0 '

WOOD DUCK 7ol 0~ 6 80 ' 3 ' 41,7 1~ 7 0 ~0 0 '

CANVASBACK 7 1 0~6 0 ' 0 ' 0,0 0 ' 0 ' 0 '

BUFFLEHEAD 7~ I 0~ 6 5 ' 0 ' 0 ' 0' 0 ' 0 '

HOODED HBRGANSER 14 ~ 3 1~ 1 20 ' 0 ~9 0~ 0 0' 0 ' 0 0 COHIIOH NBRGAHSER. 64 ' 5. 1 20 ' 0 ~9 0~ 0 0' 8 ' 0 '

RBD-BREASTED HBRGAHSBR 7 ' 0~6 0' 0 ' 0~ 0 0' 0 0 0 '

TURKEY VULTURE 0~ 0 0~ 0 25 ' 1~ 1 8 ' 0 ' 0 ~0 0 0 S)IARP SIIIHHED HAWK 0,0 0~ 0 15 ' 0.6 8 ' 0 ' 8 ' 0 '

RBDMAILED HAWK 28 ~ 6 2~ 3 55 ' 2.4 8 ' 0 ' 4li7 2~ 2 RBD-SHOULDERED HAWK 0~ 0 0~ 0 5 ' 0 ' 0~0 0 ' 0 ~0 0~0 BROAD-WINGED HAWK 0~0 0~ 0 5 ' 0 ' 0 0 0 ' 16~7 0.9 HARSH HAWK 0~ 0 0~ 0 10 ' 0 ' 0.0 0' 8 ~3 0 '

OSPREY 0 ' 0.0 10 ' 0 ~4 0~0 0' 8.3 0 '

IIERLIN 0~0 0~ 0 0' 0 ~0 0~ 0 0' 8 ~3 0 '

AHBRICAH KESTREL 14 ~ 3 1~ 1 30 ' 1 3 8 ' 0' 25 ' 1~ 3 RUFFED GRO USE 28 ~ 6 2% 3 5.0 0 ' 8' 0' 8 ~ 3 Oo4 RINGWECK PHEASAHT 35 ~ 7 2.8 45 ' 1~9 8' 0~3 8' 0 '

KILIDEER 0,0 0~ 0 55 ' 2 ' 33 ~ 3 1~4 8 ~3 0 '

COHHOH SNIPE 7~1 0~ 6 45,0 1 9~ 0~ 0 0 ' 8 ~3 0 '

SPOTTED SANDPIPER 0~0 0.0 5 ' 0' 16 ~ 7 0 ' 8 ~3 0~ 4 SOLITARY SANDPIPER 0~ 0 0~ 0 0 ~0 0' 8.3 0 ' 8 ~3 0 '

GREATER YELLOWLEGS 0~ 0 0~ 0 10 ~ 0 0 ~4 0~ 0 0.0 OoO 0~ 0 HBRRIHG GULL 14 ~ 3 1.1 5 ' 0 ' 0 ' 0' 0 ~0 0~ 0 RING-BILLED GUIL 0~ 0 0 0 0 ' 0 ' 0~ 0 0 ' 8 ~3 0 '

30 ' ' '

ROCK DOVE I4CURNIHG DOVE YELIOW-BILLED CUCKOO 14 ~ 3 35 ~ 7 0 '

1.

2~8 0~ 0 1

75 '

0' 1~3 3

0' 16 ~ 7 75 25 ~ 0

', 0 3

1

~

~

1 0

8 ~3 41 ~ 7 8 ~3 0

2~2 0.4 CHIt4NEY SWIFT 0~ 0 0~0 0 ' 0' 16 ~ 7 0 ' 16 ~ 7 0 '

RUBYMHROATBD HUHNIHGBIRD 0~ 0 0~ 0 0 ' 0' 8 ' 0 ' 16 ~ 7 0.9 BELTED KINGFISHER 0~ 0 0~ 0 10 ' 0 ~ 4 33 ~ 3 1 ~ 4 25 ' 1 3 COtiHON FLICKER 21 ~ 4 1~ 7 55m 0 2 ~ 4 58 ' 2~ 4 25 ' 1~ 3 PILEATED WOODPECKER 7 1 0 ' 0~0 0 ~ 0 0~ 0 0~0 0 ~0 0~ 0 RBD BELLIED WOODPECKER 7 ' 0 ' 0~0 0 ~ 0 -0 ~ 0 0 ~0 0 ' 0~ 0 YELLOW-BELLIED SAPSUCKER 0 0

~ 0~ 0 5~0 0 ' 0~0 0 ' 0 0 0~ 0 HAIRY WOODPECKER 7' 0~ 6 10 ~ 0 0 ' 0~ 0 0~0 0.0 0~ 0 DOWNY WOODPECKER 92 ' 7~3 80 ~ 0 3 ' 25 ~ 0 1~0 66 ~ 7 3~5 EASTBRH KIHGBIRD 0~ 0 0~ 0 0 ' 0 ~0 8 ~3 0 ' 0 ~0 0 '

GREAT CRESTED FI YCATCHER 0~ 0 0~ 0 0~0 0,0 8 ' 0 ' 0~0 0.0 EASTERH PHOEBE 0~ 0 0~ 0 15 ' 0~6 16 ' 0~ 7 16.7 0' YEI LOW-BELLIED FLYCATCHER 0~ 0 0~ 0 0' 0 ' 0 0 0' 8 ~3 0' ACALIAtt F LYCATCHBR 0~ 0 0.0 0' 0 ' 330 3 1 4 0 ~ 0 0' WILLOW FLYCATCHER 0~ 0 0,0 0' 0 ' 16.7 0' 8 3 0~ 4 I EAST FLYCATCHER 0~ 0 0~ 0 0' 0 ' ~ 0~ 0 0' 8 ' 0~ 4 EASTERH WOOD PEWBE 0~ 0 0~ 0 0' 0 ' 8 ' 0' 0 ~0 0 '

TREE SvlALLOW 0 ' 0~ 0 25 ' 1~1 16 ' 0 ' 0 ~0 0 '

BANK SWAI LOW 0 ' 0. 0 0' 0 ~0 33 ~ 3 1~4 0 ~ 0 0 '

ROUGH-WIHGBD SWALLOW 0 ' 0~ 0 0' 0 ' 33. 3 1 ~ 4 0 ~ 0 0~ 0 BARH SWAI LOW 0 ' 0 0 5' 0 ' 83 ~ 3 3 ' 16 ~ 7 0~ 9 CI IFF SWAf LOiN 0 0 0~ 0 0 0 0 ' 8 ' 0 ' 0 ~0 0~0 BLUE'AY 57.1 4 ' 80 ~ 0 3 ' 58 ' 2' 75 ~ 0 3 '

COIUION CROW 100 ' 7~ 9 100 ~ 0 4 3 ~ 75. 0 3' 9lo7 4 '

BLACK-CAPPBI'HICKADEE 42 ' 3.4 65 ~ 0 2' 25,0 i+0 91 ~ 7 4 ~ 8 TUFTED TITN)USB 28 ~ 6 2 3 40.0 1' 8~3 0' 41 7 2~ 2 WHITE-BREASTED NUPHATCH 64 ~ 3 5~1 40 ' lo7 50 ~ 0 2 1 75 ' 3 ~9 RED-BREASTED NUTHATCH 14 ~ 3 1.1 5~ 0 0' 0~0 0 ' 0 ' 0 '

BROWN CREEPER 71 4 5 ~ 6 45 ' 1 9 0 0 0 ' 8 ~3 0 '

335 Table L-5 (cont.)

SPECZES WINTER SPRING SUNNCR PALL OCCAM RBLe OCC REL ~ OCC e RE Li OCCAM RELY HCUSC WREN 0 ' 0~ 0 0 ' 0 ~0 0.0 0 ' 8~3 0~4 hINTER WREN 21. 4 l. 7 0~0 0.0 '0.0 0~0 8 ~3 0 '

I 1OCKI NGB I RD 7~ I 0 6 0 ' 0~0 16 ' 0. 7 8 ~3 0 CATB RDI 0~ 0 0 0 0,0 0 ' 100 ~ 0 4 ' 50 ' 2~ 6 BROWN THRASHER 0~ 0 0~ 0 10 ' 0.4 8 ~3 0~3 0 ~0 0~0 ROBIH 7.1 0.6 85 ~ 0 3~7 91. 7 3 ~8 41 7 2~ 2

'MOD THRUSH 0 0 0~ 0 0~0 0 ~0 25 ~ 0 1~0 16 ' 0 9 HERNIT THRUSH 0~ 0 0~ 0 10 ~ 0 0~4 0~ 0 0~0 8 ' 0 4 GRAY-CHEEKED THRUSH 0~0 0.0 5 ' 0~2 0~ 0 0.0 0 ~0 0~0 VBERY 0~ 0 0~ 0 0.0 0~0 0.0 0~0 8.3 0 '

EASTERH BLUEBIRD 0 0 0 0 10.0 0,4 0.0 0.0 0 ~0 0~ 0 BLUE-GRAY GHATCATCHER 0~0 0~ 0 5 ' 0~2 8 ' 0 ' 0 ~0 0~ 0 GOLDEN-CROWNED KING) ET 42.9 3~4 30+0 1~3 0.0 0.0 0 ~0 0~ 0 RUBY-CROWNED KINGLET 14 ~ 3 1~ 1 0~ 0 0~0 0.0 0 ' 0 ~0 0~ 0 WATCR PIPET 0~ 0 0 0 5.0 0 ~2 0,0 0 ' 0 ~0 0~ 0 CEDAR WAXWING 0.0 0,0 0 ' 0 ~0 58 ' 2~ 4 33 ~ 3 1 7 STARLIHG 14 ~ 3 1 1 25 ' 1.1 16.7 0~7 41.7 2~ 2 WHITE-EYED VIREO 0~ 0 0~ 0 5' 0 ' 16 ' 0 ' 0 ~0 0 0 YELLOWWHROATED VIREO 0~ 0 0 0 0' 0 ~ 0 8' 0 ' 0 ~0 0~ 0 RED-EYED VIREO 0 ' 0,0 0.0 0 ~ 0 50 ~ 0 F 1 25.0 1~ 3 WARBLING VIREO 0.0 0~ 0 0~0 0 ~ 0 8.3 0 ' 0 ~0 0~ 0 BLACK AHD WI1ITE WARBLER 0~ 0 0~ 0 5 ' 0 ~ 2 8.3 0~3 8~3 0~4 WOR)1-CATING WARBLER 0 0 0 0 0~0 0~0 8 3 0.3 0 ~0 0~0 BLUE-WINGED WARBLER 0~ 0 0 0 5 ' 0~2 0~0 0 ' 0.0 0~0 TENNBSSEB WARBLER 0~ 0 0~ 0 0.0 0 ~0 0~ 0 0 ' 16 ' 0 '

YELf OW WARBL'ER 0.0 0.0 0.0 0 ~0 50 ~ 0 2 1 8 ~ 3 0 '

llhGHOLIA WARBLER 0.0 0~0 0 0 0~0 0 0 0~0 8.3 0~ 4 YEI LOI')-RUtlPED 'HARB l,V R 7 1 0.6 15 ' 0 6 0,0 0.0 16.7 0~9 BLACK THROATED GRCBH 'WARBLER 0~ 0 0.0 0~0 0 ~0 8 ' 0 ' 8 ~ 3 0~4 BLACKBURHIAH WARBLER 0,0 0. 0 0.0 0.0 0~ 0 0.0 8 ~ 3 0 4 BAY-BREASTED v)ARBLER 0~ 0 0 0 0 ' 0~0 0.0 0 ' 8 ~ 3 0 '

PRA I Rl C HARB LCR 0~ 0 0~ 0 0.0 0 ~0 8~3 0 ' 0 ~ 0 0~ 0 OVEHBI RD 0.0 0~ 0 0 ' 0~0 8.3 0 ' 0 ~0 0~ 0 HORTHBRH WATER)'BRUSH 0 0 0~ 0 5 ' 0.2 8~3 0~3 0.0 0~0 LOUISIANA WATB)iTHRUSH 0.0 0 0 0 0 0~0 8.3 0~3 0 ~0 0.0 tlOURNING WARBLER 0.0 0 0 0~0 0.0 0~ 0 0 ' 8 ~3 0~4 YELf OWTHROAT 0+0 0~ 0 0~0 0.0 91 ~ 7 3.8 58 ~ 3 3~ 1 h)IERICAH REDSTART 0.0 0.0 0~0 0 0 25. 0 1~0 25 ' 1.3 HOUSE SPARROV) 7 ' 0.6 5 ' 0~2 0 0 0 0 0 0 0~0 EASTVRN NBADOWLARK 0 0 0.0 15 ' 0.6 16 ~ 7 0~7 O O 0 0 REDWIHGED BIACKBIRD 14 ~ 3 1.1 90 ' 3 ~9 91. 7 3 ' 50+0

'0 '

2 '

ORCHARD ORIOLE 0+0 0 0 0 ' 0~0 8 ' 0 ' 0~ 0 HORTHVRt) ORIOLE 0~0 0~0 0.0 0~0 66 ' 2~7 8 ' 0~ 4 RUSTY BLACKBIRD Oe0 0~ 0 25 ' 1 ~ 1 16 ' 0 ' 8.3 0~ 4 CO))NON GRACKLE 14 ~ 3 l. 1 85 ~ 0 3 ~ 7 75 ' 3 1 8 ~3 0~ 4 B))OWN-HEADED COWBIRD 0~ 0 0.0 0~0 0 ' 16 7

~ 0.7 8 ~3 0~ 4 SCA)tLCT TANAGER 0,0 0 0 0.0 0' 8' 0 ' 8 ~3 0~4 CARDINAL 7l ~ 4 5 ' 80 ~ 0 3 ' 66 ~ 7 2%7 41. 7 2~ 2 ROSE-BRCAS')'ED GROSBEAK 0~ 0 Oo0 0.0 0~0 16 ~ 7 0~7 16 ~ 7 0~ 9 INDIGO UUHTI HG 0~ 0 0 0 0 ' 0 ' 91. 7 3~ 8 33 ~ 3 1~ 7 l.'VVNIHG Gi)OSBEAK 0. 0 0 0 0' 0 ' 0 0 0.0 8 ~3 0~4 PURPf E PIH 11 0~ 0 0~ 0 10 ' 0 ~4 0.0 0 ' 0 ' 0~0 PINE SISKIH 0~0 0~ 0 0~0 0 ~0 0~0 0 ' 8 ' 0.4 htlEitlCAH GOLDV IHCtl 42 ~ 9 3~4 50 ' 2~2 66 ~ 7 2~7 83 ~ 3 4 4 RUVOUS-SIDED TOWt)BE 0 0 0 0 5' 0 2 41 ~ 7 1~ 7 16 ' 0~9 SAVAHt)AH SPARROW 0.0 0 0 25 ~ 0 1 1 8 ' 0~3 25.0 1~3 GRASSHOPPER SPARROW 0.0 0.0 5 0 0 ' 0~ 0 0 ' 0 ~0 0~0 VESPER SPARROW 0~0 0~ 0 20 ' 0 ' 0~ 0 0 ' 0 ' 0~0 DARK-EYED JUHCO 28 ' 2~3 40 ' 1 7 0~ 0 0 ' 25 ~ 0 1~3 TRBC SPARROW 57 F 1 4 ' 35 0 1.5 0~ 0 0 ' 16 ' 0 '

CHIPPING SPARROW 7 ' 0~ 6 30 ~ 0 1.3 66 ~ 7 2 ' 25 ' 1~3 I'IELD SPARROW 0~ 0 0~ 0 30 ~ 0 1 3 75 ' 3~ 1 33 ' 1~7 WIII')'E-CROi)NED SPARROW 0 ~0 0~ 0 5 ' 0 ' 0~ 0 0~0 0 ~0 0~ 0 v))I ITEMI)ROATCD SPARROW 28.6 2~ 3 20 0 0' 0~ 0 0~0 33 ' 1 7

)'OX SPARROW 0~0 0.0 15 ~ 0 0~6 0~ 0 0 ' 0 ~0 0.0 SWAt)P SPARROW 0~0 0. 0 25 ~ 0 1 1 25,0 1 0 16 ~ 7 0 '

SONG SPARROW 57' 4 5 95 ~ 0 4 ' 100 ~ 0 4 1 75 ' 3 '

336 Tablo L-6. Number of birds observed during five censuses on the Susquehanna River, 11 Narch through 19 April 1977.

11 NAR 21 EIAR 1 APR 11 APR 19 APR SPECIES tOe tQe NOe JQe tQe tEAH \ TUTM BLACK~ENID NIEtlf BSRJH 0 0 0 0 2 Oe4 Oe7 CANADA GXSE 1 20 0 0 1 4e4 7e3 DUCK SPe 4 2 2 0 0 le 6 2e1 NALIAEQ 28 44 16 16 14 23e6 39e 3 BLACK DOCK 6 1 11 8 2 6e8 lle3 PIHTAII 0 1 0 0 0 Oe2 0e3 ULU&WltQED 'KAL 0 0 3 0 2 le0 1e7 AeERICAH ttl DGEZEE 7 25 7 0 Be6 14e3 taxD tzJGK 12 2 12 6.8 lle3 RIteG~CKED feUCK 5 0 0 0 0 leO le 7 UREA'KR SCEUP 0 0 0 0 3 Oe6 1,0 IESSER SCMJP 0 0 0 3 0 Oe6 le0 EQEGED ttEBGJNSER 2 2 0 2ei 4,0 CEEOKN tgztGJNSER 5 2 0 0 0 1.4 2e3 OSEREY 0 0 0 0 1 0.2 0 e3 RIcÃrCIILLED QJLL 0 2 . 0 0 0 Oe4 0,7 ZEJIAL INDIVIDUALS 59 99 59 50 33 60e0 TOTJIL SPECIES 9 10 6 6 9 8.0 Table L-1. Number of birds observed during 11 censuses on the Susquehanna River, 21 September through 19 December 1977.

21 SEP 30 SEP 18 OCT 21OCI' trW 7 tQV 9 EQV 10 RW 20 NW 7 DEC 19 DBC SPECZES tQ, R) ~ tQ EQ, tQ tQ, EQ, NEAH 1 TEJIAL EQISED (RRBE 0 0 1 0 0 0 0 0 I 0.2 0.5 IDIEJI&CftESfED COREEJRAHT 0 0 0 0 0 0 0 0 0 01 02, GREAT BIDE BEEKN 1 2 5 3 2 4 0 0 0 le 8 ie6 EASIERH GREEN JEEQH 2 ,0 0 0 0 0 0 0 0 Oe2 Oe5 A'ILAHTIC BRJNT 0 0 0 31 37 30 0 0 0 8e9 22e4 BOCK SPe 12 0 13 1 0 0 1 1 11 3 5 Be9 ttALIAIQ 0 0 3 0 2 1 4 2 9 22 Se5 BIACK DJCK 0 0 12 1 3 10 4 0 21 5.5 13.9 GRE E&4IIHGED TEAL 0 0 1 0 0 0 0 0 0 0 1 Oe2 BIbf>SINGED 'KAI 0 0 0 0 0 0 0 0 0 0 2 Oe5 WXO DUCK 18 15 32 2 7 1 0 0 0 7 3 18e3 GREAKR SCMJP 0 0 0 1 0 0 0 0 0 0 el Oe2 EUF ELEBEAD 0 0 0 3 1 3 0 2 0 08 2el DIDSQUJEt 0 0 0 0 0 1 0 0 1 02 Oe5 COEECN SEZJKR 0 0 0 1 0 40 0 0 0 37 9ei 0 0 0 0 0 3 0 0 0 Oe3 Oe1 BUDUZ DUCK COEEIZE t%RGJNSER AEERICAH EZXJf 0

0 0

0 0

1 0

0 0

0 0

0 0

0 12 0

li0 2.4 0.1 5e9 0.2 KILIDEER 0 2 0 0 0 0 0 0 0 0.2 0.5 S EOTKD SAHOPI ERR 1 0 0 0 0 0 0 0 0 Oel Oe2 GULL SP 0 0 0 0 0 ~ 0 0 1 0 01 02 HERRING GIXL 0 0 0 0 2 0 0 0 0 Oe2 Oe5 BELTED KIHGPISBER 4 2 2 3 2 3 I 0 I le7 4 ~3 TOIAL ZNDIVZDUALS 38 21 70 17 8 46 56 96 10 18 58 39.8 TOTAL SPECZES 6 4 9 4 4 9 8 10 4 5 7 6.4

30 SPECIES / COUNT 25 SPECIES / H cn 20 D

0.

CA O IS z 10 JAN FEB MAR APR MAY JUN JU1 AUG SEP OCT NOV OEC ~

Fig. L-1. hfean number of species/count and species/h observed on nonsystematic bird counts (4-11/mo) near the Susquehanna SES, 1977.

338 HORNED GREBE PIED& ILLED GREBE DOVSLEWRESTED CORNORANT GREAT SLUE HERON EASTERN GREEN HERON LITTLE BLUE HERON SNOWY EGRET BLACKWROl¹ED NIGHT HEROH EASTFRN LEAST BITTERN ANERICAH SITTERN CANADA GOOSE A'YLANTIC BRANT HALLARD BLACK DUCK PINTAII GREENMINGED TEAI k

SLUE WINGED TEAL ANERICAN WIDGEON WOOD DOCK RING NECKED DUCK CANVASBACK GREATER SCAVP ICSSER SCAVP CONIQN GOIDENEYS BUFFLEHEAD OLDSQUAW WHITE 'WINGED SCOTER CONDOR SCOTER RUDDY DVCK HOODED HERGANSER CONNON NERGANSER RED&RFASTED NERGANSER TURKEY VULTURE SHARP SHINNED HAWK COOPER'S HAWK REDWAILED HAWK JAN FEB NAR APR NAY JVN 'UL AUG SEP OCT NOV DEC Fig. L-2. Phenological occurrence oE birds observed near the Susquehanna SES, 1977.

339 RED&HOOIDERED HANK BROAD HINGED HAWK ROUGH LEGGED BANK SAID EAGLE HARSH HANK OSPRET BERLIN ANERICAN KESTREL RUFFED GROUSE RINGWECK PHEASANT SORA ANERICAN COOT KllLDEER CONNJN SNIPE SPOTTED SANDPIPER SOLITARF SANDPIPER GREATER VELLONLEGS PECTORAL SAN DPI PER HERRING GULI RINGWILLED GULL CONS)N TERN ROCK DOVE NOURNING DOVE YELLONWILLED CUCKOO SIACMIILLED CUCKOO SCREECH ONI GREAT HORNED ONL LONG EARED ONL CHINNED SNIFT RUSIWBROATED HUNNINGSIRD BELTED KINGFISHER CONN>N FLICKER PILEATED NOOOPECKER REDWEILIED NOODPECKER TELLON&ELLIED SAPSUCKER BAIRT NOCOPECKER JAN FES NAR APR NAY JUN JUL AUG SEP OCT NOV DEC Fi,g. L-2 (cont.)

340 DOWNY WOODPECKER EASTERN K I RGB IRD GRFAT CRESTED FLYCATCHER EASTER~ PHCEBE YELLOMWELLIFD FLYCATCHER ACADIAN FLYCATCHER NILLOM FLYCATCHER LEAST FLYCATCHER EASTERN MOOD PERSE TREE SMALMW BANK SWALLOW ROICE MINCED SWALLOM BARN SWALLOW Cf IPP SMALLOM PURII.E HARTIN BLUE JAY COMMON CRCM BLACK&APPED CHICKADEE TUFTED TITMOUSE WHITEWREASTED NUTHATCH RED&REASY ED NUTHATCH BROWN CREEPER HOUSE NREM NINTER NREM CAROLINA MREN~

LONGWILLED HARSH WREN HOCK! NG BIRD CATBIRD BROWN THRASHER RGB IN MOOD THRUSII HERMIT THRUSH SMAINSON S THRUSH GRAYWHEEKED THRUSH VEERY EASTERN BLUEBIRD JAN FEB NAR APR NAY JUN JUI AUG SEP OCT NOV DEC Fig. L-2 (cont.)

341 BLVCWRAY QIATCATCBER GOLDEHWRCMHCD KINGLET RUBY&ROBBED KINGLET MATCR PIPET CEDAR MAXMIHG STARLING WHITE EYED VIREO YELIXNI~ROATED VIREO SOLITAR'I VIREO RED EYED VIREO WARBLING VIREO BIACK ANDWBITE NARBLER MORN EATING WARBLER SLUE MINGCD NARSLER TENNCSSEC MARSLER HASBVILLC HARSLER YCLLOM MARSLER HAGNOLIA NARSLER CAPC HAY WARBLER BIACKWBROATED BLUE WARBLER YCLMW RVHPED WARBLER BLACK-THROATED GRECN WARBLER CERULEAH WARBLER BLACKBURNIAN NARSLER CBCSTNUT SIDED 'WARBLER BAYWREASTED MARSLER BIACIPOLL NARSLER PRAIRIE NARBLER PALN WARSLER OV CNBIRD NORTHERN HATCRTBRUSB LOUISIANA NATCRTBRVSB COHHCCPICUT WARBLER MOURNING WARBLER YELIDWPBROAT HOODED WARBLER JAN PES HAR APR NAY JUN JVL AUG SCP OCT NOV DEC Fig. L-2 (cont.)

CANADA WARBLER AHERI CAN REDSTART HOUSE SPARROW BOBOLINK EASTERN,NEADO)ILARE REDWINCED BLACKBIRD ORCHARD ORIOLE NORTHERN ORIOLE RUSTT SLACKBIRD CONWON CRACKLE BROWN HEADED COWBIRD SCARLET TANAGER CARDINAL ROSEWREASTED GROSBEAK BLUE GROSBEAK INDIGO BUNTINC EVEHING GROSBEAK PURPLE tIHCH CONN)N REDPOLL PINE SISKIN AHERICAH COLDPINCH RUPOUS-SIDED TOWHEE SAVANNAH SPARROW GRASSHOPPER SPARROW VESPER SPARROW DARK-ETED JUNCO TREE SPARROW CHIPPINC SPARROW PIEID SPARROW WHITEWROWHEO SPARROW WHITEWHROATED SPARROW POX SPARROW SHARP SPARROH SONG SPARROW SHOW BUNTING JAN tEB NAR, APR NAT JUN JUI AUC SEP OCT NOV DEC

343 PERSONNEL INVOLVED IN THE PROJECT DURING 1977 Project Director Theodore V. Jacobsen, A.A.S. Paul Smith's College; B.S. Cornell University; M.S. Iowa State University 'I Director of Aquatic Research William F. Gale, B.A., M.S. Southern Illinois University; Ph.D.

Iowa State University Director of Terrestrial Research James D.-Montgomery, B.S. Bucknell University, M.S., Ph.D. Rutgers University Research Coordinator Gerard L. Buynak, B.S. Lock Haven State College; M.S. Southern Illinois University Research Biologists William G. Deutsch, B.S. Houghton College; M.A. State University of New York at. Binghamton-Andrew J. Gurzynski, B.S. Bloomsburg State College Harold W. Mohr, Jr., B.A. Bloomsburg State College Robert M. Ruhe, B.S. University of Tennessee; M.S. Louisiana State University Lynn Sabin, B.A., M.A. Southern Illinois University Walter J. Soya, B.A. Hiram Scott College Biometrician James M. Chance, B.A. Washington and Lee University; A.M. University of Pennsylvania Executive Secretary Marion S. Hidlay

344 Research Aids Scott J. Creveling, B.A. Grove City College; candidate for M.B.A.

Bloomsburg State College Roy A. Fern, student at Columbia-Montour Area Vocational-Technical School Cynthia A. Gale, candidate for A.A.S. Luzerne County Community College Janet L. Gale, candidate for B.S. Pennsylvania State University Mark K. Gale, student at Berwick Area High School Douglas A. Gross, B.S. Pennsylvania State University; candidate for M.S. Bloomsburg State College Bradley L. Moharter, candidate for B.S. Bloomsburg State College Susan L. Rogers, candidate for B.S. Wilkes College Dennis G. Whitesell, candidate for B.S. Bloomsburg State College Linda S. Young, B;A. Bloomsburg State College Thomas J. Zaborsky, candidate for B.S. Kings College .

Maintenance Engineer J. Charles Bredbenner Domestics Catherine C. Barski Bernadine T. Smith

345 ACKNOWLEDGMENTS Thanks are due the Pennsylvania Power and Light Company for sponsoring the studies. H. Clair Fleeger, Robert J. Perry, John W.

Weaver, and Zenas B. Bean of the Pennsylvania Fish Commission were helpful in many ways. We are indebted to Dr. David E. Fairbrothers, Rutgers University, for his assistance with identification of grasses.

Special recognition is due James M. Chance who provided help with statistical analyses and data tabulation, and Marion S. Hidlay who typed and collated the report. Dr. Edward C. Raney and John Homa, Jr.

are gratefully acknowledged for their constructive review of the report.