ML17334A814

From kanterella
Jump to navigation Jump to search
Application for Amend to License DPR-58,revising Tech Specs to Extend Fuel Peak Pellet Burnup & Increase Fq Value Limit in Fuel.Fee Paid
ML17334A814
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 08/23/1984
From: Alexich M
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML17334A815 List:
References
AEP:NRC:0745M, AEP:NRC:745M, NUDOCS 8409050167
Download: ML17334A814 (130)


Text

1 ~

REGULATOR'r INFORMATION DISTRIBUTION SYSTEM (RIDS)

'ACCESSION NB/ 8009050167, DOC ~ DATE e 84/08/23 NOTARIZED!"'O DOCKET ¹ FACIL:50 315 Donald C ~ Cook Nuclear Power Pl anti Unf t 1, Indiana- 8 05000315 AUTH ~ NAME AUTHOR AFFILIATION ALEXICHiM~ P. Indiana L Michigan Electric Co.

RECIP, NAME RECIPIENT AFFILIATION SUBJECT! Application for amend to License OPR 58 revising Tech Specs to extend fuel peak pellet burnup L increase FQ value limit in fuels Fee paido Qs~ fly&

DISTRIBUTION CODE: A001D COPIES .RECEIVED:LTR g' ENCL SIZE:~ 3 TITLE: OR Submittal! General Distribution NayES .P>< P4f ~

get oc 05000315 OL i 1 0/25/74,',. >>

REC I'P-I:.EN,T COPIES RECIPIENT COPIES ID COOg/NAME LTTR ENCL ID CODE/NAME LTTR ENCL>>

NRR ORBi BC 01 7 7 INTERNAL: ADM/LFMB 1 0 ELO/HDS3. 1 0 NRR/DE/MTEB 1 1 NRR/DL DIR 1 '1 NRR/OL/ORAB 1 *0 N - 4ETB 1 1 NRR/OS I/RAB 1- 1 EG FI E 00 1 1 ~

RGN3 1 1

'XTERNALS ACRS 09 6 6 LPDR 03 1 1 NRC POR 02 1 1 NSIC 05<< '1 NTIS 1

~4ww tC TOTAL NUMBER OF COPIES REQUIRED: LTTR 26 ENCL 23

E E lf K

ll

'K I

)

~

V

$ 1",

Kg t K ll y

V'.V>>

~ ~

It

)i j VI t" q<<l K ll Kl

INDIANA & MICHIGAN ELECTRIC COMPANY P.O. BOX 16631 COLUMBUS, OHIO 43216 August 23, 1984 AEP: NRC: 0745M Donald C. Cook Nuclear Plant Unit No. 1 Docket No. 50-315 License No. DPR-58 TECHNICAL SPECIFICATION CHANGE REQUESTS Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D. C. 20555

Dear Mr. Denton:

By this letter and its attachments, we request changes to the Technical Specifications for the Donald C. Cook Nuclear Plant Unit No. 1. The proposed revised Technical Specification pages are contained in Attachment A. The reasons for the proposed changes to the Technical Specif'ications, and the Justifications that the changes do not involve significant hazards considerations, are contained in Attachments B and C to this letter. The changes described in Attachment B involve extending the peak pellet burnup in fuel supplied by Exxon Nuclear Company from 42,200 MWD/MTU (42.2 %0)/KG) to 48,000 MWD/MTU (48.0 MWD/KG). These changes are supported by a LOCA Analysis and additional information regarding mechanical design, which was sent to you directly by Exxon Nuclear Company with letter JCC:113:84, dated August 21, 1984. The current burnup limit is expected to be reached on November 30, 1984. Without this burnup extension, we would be unable to continue operation of Cycle 8 because of the requirements of Technical Specification Section 3.2.2. The changes proposed in Attachment C and supported by Attachment D involve an increase in the F limit in fuel supplied by Westinghouse f'rom 1.97 to 2.10. It should be noted that part of this analysis is based on use of the BART code, which has not been previously used for the Donald C. Cook Nuclear Plant, Unit 1 ~

These proposed changes have been reviewed by the Plant Nuolear Safety Review Committee (PNSRC) and will be reviewed by the Nuclear Safety and Design Review Committee (NSDRC) at their next regularly scheduled meeting.

In compliance with the requirements of 10 CFR 50.91(b)(1), a copy of'his letter and its attachments have been transmitted to Mr. R. C. Callen of the Michigan Public Service Commission.

8409050167 840823 PDR ADOCK F'

050003l5

. PDR

k,

'I

'I II 0

Mr. Harold R. Denton AEP: NRC: 0745M Pursuant to 10 CFR 170.12, we have enclosed a check in the amount of $ 150.00 as payment for the application fee for the proposed amount.

This document has been prepared following Corporate procedures which incorporate a reasonable set of controls to insure its accuracy and completeness prior to signature by the undersigned.

Very truly yours, M . Ale ich Vice Preeidect

4 t

I, c h, '\ Ir h

~

0

  • I" I

,h l, Jt.> I h,'j h

h I I I ~ c hr

Mr. Harold R. Denton ~ \3 AEP: NRC:0745M Attachments: A. Proposed Revised Technical Specifications Pages for D.C. Cook Unit 1.

B. Reasons for the extension of the peak pellet burnup allowed in fuel supplied by Exxon Nuclear Company and Justification that the changes do not involve significant hazards considerations.

C. Reasons for the increase in F~ for fuel supplied by Westinghouse.

D. "D.C. Cook Unit 1 3411 MWt Large Break LOCA Analysis", Westinghouse Electric Corporation, June, 1984.

cc: John E. Dolan W. G. Smith, Jr. - Bridgman R. C. Callen G. Charnoff E. R. Swanson, NRC Resident Inspector - Bridgman

~ E'""

~ ~

) a l

J~~~

c E.

~ 3 k...> Z I

J

' $ 0

~

)

1 t

~ ~

) hP I 4

Mr. Harold R. Denton AEP: NRC: 0745M Attachment D "D.C. Cook Unit 1 3411 MWt Large Break LOCA Analysis",

Westinghouse Electric Corporation, June, 1983.>>

'This document has been piepared by Westinghouse Electric Corporation in a format foi eventual inclusion in the Donald C; Cook Nuolear Plant FSAR. Although this is ~o intended for that purpose at this time, the format has been retained for convenience.

14.3.1.1 Major LOCA Analyses Applicable to Westinghouse Fuel Identification of Causes and Fre uenc Classification

-A loss-of-coolant accident (LOCA) is the result of a pipe rupture of the RCS pressure boundary. For the analyses reported here, a major pipe break ( large break) is defined as a rupture with a total cross-sectional area equal to or greater than 1.0 ft . This event is considered an 2

ANS Condition IV event, a,limiting fault, in that it is not expected to occur during the lifetime of D. C. Cook Unit 1, but is postulated as a conservative design basis.

The Acceptance Criteria for the LOCA are described in 10 CFR 50.46 (30 CFR 50.46 and Aopendix K of 10 CFR 50 1974) as follows:

1. The calculated peak fuel element clad temperature is below the requirement of 2,200'F.

2, The amount of fuel element cladding that reac;s chemically with water or steam does not exceed 1 percent of:he total amount of 2ircaloy in the reac or.

3. The clad temoerature transient is terminated at a time when the core aeometry is still amenable to cooling. The locali-ed cladding oxidation limit of 17 percent is not exceeded d ring or af er quenching.
4. The core remains amenable to cooling during and after :he break.
5. The core temperature is reduced and decay heat is removed for an 'I period of time, as required by he long-lived "radioactivity". ..'xtended remaining in the core.

These criteria were established to provide significant margin in emergency core cooling system (ECCS) performance following a LOCA.

WASH-1400 (USNRC 1975) presents a recent study in regards to the probability of occurrence of RCS pipe ruptures.

Se uence of Events and S stems 0 erations Should a major break occur, depressurizaton of the RCS results in a pressure decrease in the pressurizer. The reactor trip signal subsequently occurs when the pressurizer low pressure trip setpoint is reached'. A safety injection signal is generated wnen the appropriate setpoint is reached. These countermeasures will limit the consequences of the accident in two ways:

1. Reactor trip and borated water injection supplement void formation in causing rapid reduction of power to a residual level corresponding to fission product decay heat. However, no credit is taken in the LOCA analysis for the boron content of the injection water. In addition, the insertion of contr".'. rods to shut down the reactor is neglected in the large break analysis.
2. Injection of borated water provides for heat transfer rrom the core and prevents excessive clad temperatures.

Oescr ation of Large Break Loss-of-Coolant Accident Transient The sequence of events following a large break LOCA is p".esen ed in Table 14. 3. 1-6.

Before the break occurs, the unit is in an equilibrium condition; that is, the heat generated in the core is being removed via the secondary system. Ouring blowdown, heat from fission product decay', hot internals and the vessel, continues to be transferred to the reactor coolant. At the beginning of the blowdown phase, the entire RCS contains subcooled liquid which transfers heat from the core by forced convection with some fully developed nucleate boiling. After the break develops, the time to departure from nucleate boiling is calculated, consistent with (1)

Appendix K of 10 CFR 50.( 'hereafter the core heat transfer is unstable, with both nucleate boiling and film boiling occurring. As the core becomes uncovered, both turbulent and laminar forced convection and radiation are considered as core heat transfer mechanisms.

The heat transfer between the RCS and the secondary system may be in either direction, depending on the relative temperatures. In the case of continued heat addition to the secondary system, the secondary system pressure increases and the main steam safety valves may actuate to limit the pressure. makeup water to the secondary side is automatically provided by the emergency feedwater .system. The safety injection signal ac uates a feedwater isolation signal which isoiaies normal feedwater flow by closing the main feedwater isolation valves, and also initiates emergency feedwater flow by starting the emergency feedwater pumps. The secondary flow aids in the reduction of RCS pressure.

'>)hen the RCS depressurizes to 600 psiz, the accumulators begin to inject borated water into the reactor coolant loops. The conservative assumption is made that accumulator water injec ed bypasses the core and goes out through the break until the termination of bypass. This conservatism is again consistent with Appendix K of 10CFRSO. Since loss of offsite power (LOOP) is assumed, the RCPs are assumed to trip at the inception of'the accident. 'The e'ffects of'ump coastdown are i'nc'luded

'n the blowdown analysis.

The blowdown phase of the transient ends when the RCS pressure (initially assumed at 2280 psia) falls to a value approaching that of the containment atmosphere. Prior to or at the end of the blowdown, the

mechanisms that are responsible for the emergency core cooling water injected into the RCS bypassing the core are calculated not to be effective. At this time (called end-of-bypass) refill of the reactor vessel lower plenum begins. Refill is completed when emergency core cooling water has filled the lower plenum of the reactor vessel, which is bounded by the bottom of the fuel rods (called bottom of core recovery time).

The reflood phase of the transient is defined as the time period lasting from the end-of-refill until the reactor vessel has been filled with water to the extent that the core temperature rise has been terminated.

From the latter stage of blowdown and then the beginning-of-reflood, the safety injection accumulator tanks rapidly discharge borated cooling water into the RCS, contributing to the filling of the reactor vessel downcomer. The downcomer wa'ter elevation head provides the driving force required for the reflooding of the reactor core. The low head and high head safety injec ion pumps aid in the filling of the downcomer and subsequently supply water to maintain a full downcomer and complete the reflooding process.

Cont'inued operation of the ECCS pumps supplies wa er during longterm cooling. Core temperatures have been reduced to longterm steady state levels associated with dissipation of residual heat generation. After tne water level of the residual water s orage tank (RWST) reaches a minim m allowable value, coolant for long-tern cooling of the core is obtained by switching to the cold recirculation phase of opera ion, in which spilled borated wa er is drawn from the engineered safety ea ures (ESF) containment sumps by the low head safety injection (residual heat removal) pumps and returned to the RCS cold legs. The containment spray system continues to operate to further reduce containment pressure.

r r.

Approximately 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 'after initiation of the LOCA, the ECCS is realigned to supply water to the RCS hot legs in order to control the boric acid concentra-ion in the reactor vessel.

Core and S stem performance Mathematical Model:

The requirements of an acceptable CCS evaluation model are presented in of 10 CFR 50 (Federal Register 1974).

(1)

Appendix K Large Break LOCA Evaluation Model The analysis of a large break LOCA transient is divided into three phases: (1) blowdown, (2) refill, and (3) ref lood. There are three distinct transients analyzed in each phase, including the thermal-hydraulic transient in the RCS, the pressure and temperature transient within the containment, and the fuel and clad temperature transient of the hottest fuel rod in the core. Based on these considerations, a system of interrelated computer codes has been developed for the analysis of the LOCA.

A description of the various aspects of the LOCA analysis methodology is given by Bordelon, Massie, and 2ordan ( 1974). (6) Tnis document describes the major pnenomena modeled, the inter-.aces among the computer codes, and the features of the codes which ensure comoliance with the Acceptance Criteria. The SATAN-'ll, WREFLGO0, BART and LOCTA-IV codes, wnich are used in the LOCA analysis, are described in detail by Bordelon et al. (1974)((5) 'elly ';

et al. (1974) (9) Young et al.

(4)

(1980); /~X Bordelon and Murphy (1974)( '; and Bordelon et al.

( 1974). Code modifications are specified in References 2, 7 and

13. These codes assess the core heat transfer geometry and determine if the core remains amenable to cooling throughout.and subsequent to the blowdown, refill, and reflood phases of the LOCA. The SATAN-V1 computer,

~ , ' co'de'nalyzes the thermal-hydraul'ic;'transi'ent in 'the RCS during blowdow'n and the WREFLOOO computer code calculates thi's transient during the refill and reflood phases to the accident. The LOTiC computer code, described by Hsieh and Raymund in

0 WCAP-8355 ( 1975) and WCAP-8345 ( 1974)

(3) , calculates the containment pressure transient. The containment pressure transient is input to WREFLOOO for the purpose of calculating the reflood transient. The LOCTA-IV computer code calculates the thermal transient of the hottest fuel rod during the three phases. The standard Pad Fuel Thermal Safety Model, described in Reference 15, generates the initial fuel rod conditions input to LOCTA-IV.

SATAN-VI calculates the RCS pressure, enthalpy, density, and the mass and energy flow rates in the RCS, as well as steam generator energy transfer between the primary and secondary systems as a function of time during the blowdown phase of the LOCA. SATAN-VI also calculates the accumulator water mass and internal pressure and the pipe break mass and energy flow rates that are assumed to be vented to the containment during blowdown. At the end of the blowdown phase, these data are transferred to the WREFLOOD code. Also, at the end-of-blowdown, the mass and energy release rates during blowdown are input to the LOTIC code for use in the determination of the contai.",".ien pressure response during <<his first phase of the LOCA. Additiona', SATAN-VI outout data from the end-of-blowdown, including the core inlet flow rate and enthalpy, the core pressure, and the core power decay transi'ent, are input to the LOCTA-IV code.

With input from the SATAN-VI code, WREFLOOO uses a system thermal-hydraulic model to determine the core flooding rate (".hat is, he rate at wnich coolant enters the bottom of'he core), he cool-ant pressure and"temperature, and the quench front height during the reflood phase of the LOCA. WREFLOOO also calculates the mass and energy flow addition to the containment through the break. WREFLOOO is also linked to the BART and LOCTA-IV codes. The heat transfer calculation for the I 7 II

, average fuel channel in the hot assembly during the ref lood phase of the

~

(16)

LOCA is performed by the BART'omputer code using a mechanistic core heat transfer model. This information is then used by LOCTA-IV throughout the analysis of the LOCA transient to calculate the fuel clad temperature and metal-water reaction of the hottest rod in the core.

The large break analysis was performed with the December 1981 version of (16) computer the Evaluation Model modified to incorporate the BART code.

Input Parameters and Initial Conditions:

The analysis presented in, this section was performed with a reactor vessel upper head temperature equal to the RCS hot leg temperature.

The bases used o select the numerical values that are input parameters to the analysis have been conservatively determined from extensive sensitivity studies (Westinghouse 1974 (12) .; Salvatori 1974 (11).

~

Johnson, Hassle, and Thompson 1975 (8) ). In addition, the requirements of Appendix K regarding specific model 'features were met by selecting models which provide a significant overall conservatism in the analysis. The assumptions which were made pertain to the conditions of the reactor and associated safety system equipment at the time that the LOCA occurs, and include such items as the core oeaking factors, the containment pressure, and the performance or the =CCS. Gecay heat generated throughout the transient is also conservatively calculated.

A meeting was held at :he Mestinghouse Licensing Office in Bethesda on Oecember 17, 1981 between members of the U. S. Nuclear Regulatory Commission and members of tne Mestinghouse Nuclear 'Safety Oepartment to discuss the impac. of maximum safety injection on the large break ECCS analysis on a generic basis. Further discussion of this issue is provided in a letter from E. P. Rahe, Manager of Westinghouse Nuclear Safety Oepartment, to Robert L. Tedesco of the U. S. Nuclear Regulatory (14) A brief description of this issue is given below.

Commission.(,

analyses currently: assume. minimum s'afeguards for the

~

.,Mestihghause ECCS ~

~

safety injection flow, which minimizes the amount of flow to the RCS by ~

assuming maximum injection line resistances, degraded ECCS pump performance, and the loss of one residual heat removal (QHR) pump as the most limiting single failure. This is the limiting single failure assumption when offsite power is unavailable for most Westinghouse

plants. However, for some Westinghouse plants including 0. C. Cook Unit 1, the current nature of the Appendix K ECCS evaluation models is such that it may be more limiting to assume the maximum possible ECCS flow delivery. In that case, maximum safeguards which assume minimum injection line resistances, enhanced ECCS pump performance, and no single failure, result in the highest amount of flow delivered to the RCS.

Current LOCA analysis for 'the 0. C. Cook Unit 1 has demonstrated that, maximum safeguards assumptions result in he highest peak clad temperatur'e. Therefore, the worst break for O. C. Cook (CO = 0.6) was re-analyzed, assuming maximum safeguards.

Results:

Based on the results of the LOCA sensitivity studies (Westinghouse 1974  ; Salvatori 1974  ; Johnson, Massie, and Thompson 1975 ) the limiting large break was found to be the double ended cold leg guillotine (OECLG). Therefore, only the OECLG break is considered in the large break ECCS performance analysis. Calculations were performed for a range of Moody break discharge coefficients. The results of these calculations are summarized in Tables 14.3. 1-5 and 14.3.1-6.

The containment data used to generate the LOTIC backpressure transient are shown in Table 14.3. 1-1. The mass and energy release data ror the minimum and maximum safeguards cases are shown in Tables 14.3. 1-2 and 14.3. 1-3 respectively. Nitrogen release rates to the containment are given in Table 14.3.1-4.

Figures 14.3. 1-1 through 14:3. 1-54.present the transients for the

'I principal parameters 'for the break size's analyzed. The following items are noted:

Fi ures 14.3.1-1 The following quantities are presented at the clad throu h 14.3.1-12 burst location and at the hot spot (location of maximum clad temperature), both on the hottest fuel rod (hot rod):

1. fluid quality;
2. mass velocity;
3. heat transfer coefficient.

The heat transfer coefficient shown is calculated by the LOCTA-IV code.

Fi ures 14.3.1-13 The system pressure shown is the calculated throu h 14. 3. 1-24 pressure in the core. The flow rate from the break is plotted as the sum of both ends for the guillotine break cases. The core pressure drop shown is from the lower plenum, near the core, to the upper plenum at the core outlet.

Figures 14.3.1-25 These figures show the hot spot clad temperature throu h 14. 3. 1-36 transient and the clad temp rature transient at the burst location. The fluid emperature shown is also for the hot spot and burst location. The core flow (top and bottom) is also snown.

Figures 14.3. 1-37 These figures show he core rerlood transient.

through 14.3. 1-44 Figures 14.3. 1-45 These figures show the mergency Core Cooling throu h 14. 3. 1-52 System flow for all of the cases analyzed. As described earlier, the accumulator delivery during blowdown is discarded until the.end of bypass is calculated. Accumulator 'flow:, however, is established in the refill and the reflood calculations. The accumulator flow assumed is the sum of that injected in the intact cold legs.

Fi ures 14.3. 1-53 The containment pressure transient used in the throu h 14.3.1"54 analysis is also provided for the minimum and maximum SI cases.

Figures 14.3.1-55 These figures show the heat removal rates of the heat and 14.3.1-60 sinks found in the lower compartment and the heat removal by the lower containment drain, andthe heat removal by the sump and LC sprays (minimum and maximum SI cases).

Fi ures 14.3.1-61 These figures show the temperature transients in throu h 14. 3. 1-64 both the upper and lower compartments of the containment and flow from the upper to lower compartments. Total heat removal in the lower compartment is the sum of all the heat removal rates shown (for minimum and maximum SI cases).

The maximum clad temperature calculated for a large break is 2163 F, which is less than the Acceptance Criteria limit of 2200~F. The maximum local metal-water reaction is 9.65,percent, which is well below the embrittlement limit.of 17 percent as required by 10 CFR 50.46. The

otal core metal-water reaction is less than 0.3 percent for all breaks, as compared with the 1 percent criterion of 10 CFR 50.46. The clad temperature transient is terminated at a time when the core geometry is still amenable to cooling. As a result, the core temperature will continue o drop and the ability to remove decay heat generated in the fuel for an extended period of time will be provided.

10

References for Section 14.3. 1. 1

1. "Acceptance Criteria for Emergency Core Cooling System for Light Water Cooled Nuclear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50, Federal Re ister 1974, Volume 39, Number 3.
2. Rahe, E. P. (Westinghouse), letter to J. R. Miller (USNRC); Letter No. NS-EPRS-2679, November 1982.
3. Hsieh, T., and Raymund, M., "Long Term Ice Condenser Containment LOTIC Code Supplement 1," WCAP-8355, Supplement 1, May 1975, WCAP-8345 (Proprietary), July 1974.
4. Bordelon, F. M. et "al., "LOCTA-IV Program: Loss-of-Coolant Transient Analysis," WCAP-8301 (Proprietary) and WCAP-8305 (Non-proprietary), 1974.
5. Bordelon, F. M. et al., "SATAN-VI Program: Comprehensive Space, Time Oependent Analysis of Loss-of-Coolant," WCAP-8302 (Proprietary) and WCAP-8306 (Non-proprietary), 1974.
6. Bordelon, F. M.; Massie, H. W.; and 2ordan, T. A., "Westinghouse ECCS Evaluation Model - Summa'ry," WCAP-8339, 1974.
7. Rahe, E. P., "Westinghouse ECCS Evaluation Model, 1981 Version,"

WCAP-9220-P-A (Proprietary Version), WCAP-9221-?-A (Non-proprie~ry version),. Revision 1, 1981.

8. Johnson, W. J.; Massie, H. W.; and Thompson, C. M., "Westinghouse ECCS - Four Loop Plant (17x17) Sensitivity Studies," WCAP-8565-P-A (Propr'ietary) and WCAP-8566-A (Non-proprie't'ary), 1975.

PP

9. Kelly, R. 0. et al., "Calculational Model for Core Ref looding After" a Lo'ss-of-Coolant Accident (WREFLOOO Code)," WCAP-8170 (Proprietary) and WCAP-8171 (Non-proprietary), 1974.

10 U. S. Nuclear Regulatory Commission 1975 "Reactor Safety Study - An Assessment of Accident Risks in U. S. Commercial Nuclear Power Plants," WASH-1400, NUREG-75/014.

11. Salvatori, R., "Westinghouse ECCS - Plant Sensitivity Studies,"

WCAP-8340 (Proprietary) and WCAP-8356 (Non-proprietary), 1974.

12. "Westinghouse ECCS - Evaluation Model Sensitivity Studies,"

WCAP-8341 (Proprietary) and WCAP-8342 (Non-proprietary), 1974.

13. Bordelon, F. H., et al., "Westinghouse ECCS Evaluation Model-Supplementary Information," WCAP-8471 (Proprietary) and WCAP-8472 (Non-proprietary), 1975;
14. Rahe, E. P. (Westinghouse). Letter to Robert L. Tedesco (USNRC),

Letter No. NS-EPR-2538, Oecember 1981.

15. Letter from J. F. Stoltz (NRC) to T. M. Anderson (Westinghouse);

subject: Review of WCAP-8720, Improved Ana'.ytical 4lodels Used in Westinghouse Fuel Rod Oesign Computations.

16. Young, 4I. Y., et al., "BART-Al: A Computer Code for he Best Estimate Analysis of Reflood Transients, "WCAP-9561-P-A (Proorietary) and WCAP-9695"A (Non-Proprietary) January 1980.

12

TABLE 14.3 1-1

~

LARGE BREAK CONTAINMENT DATA

( ICE CONDENSER CONTAINMENT)

NET FREE VOLUME

( Includes Distribution Between Upper, Lower, UC 746,829'ft.

and Dead-Ended Compartments) LC 249,446 OE 116,168 IC 122,400 Initial Conditions Pressure 14.7 psia Temperature for the Upper, Lower and UC 100~ F Dead-Ended Compartments LC 120~ F OE 120oF RWST Temperature 70~F Service Mater Temperature 40oF Temperature Outside Containment 7oF Initial Spray Temperature 70~F Spray System Burnout Flow for a Spray Pump 3600 gpm Number of Spray Pumps Operating 2 Post-Accident Initiation of Spray System 40 secs Ois ribution of the Spray Flow to the LC 2835 gpm Upper and Lower Compartments UC 43o5 gpm Deck Fan Post-Accident Initiation of Deck Fans 600 secs Flow'at,e Per Fan ~

39,000 cfm per'ran

'I Hydrogen Skimmer System Flow Rate 2800 cfm per ran Assumed Spray Efficiency of Mater from 100'o Ice Condenser 'Drains 13

TABLE 14. 3 1 ~ 1

'continued)

STRUCTURAL HEAT SENKS 2

i blateri a 1

1. LC 12,105 0.0469/2.0 steel/concrete
2. LC 11,700 2.0 concrete
3. LC 65,980 1.35 concrete
4. LC 5,481 0.0833 steel
5. LC 4,735 0.01147 steel
6. LC 289 0.25 lead
7. LC 14,690 0.0079 steel
8. LC 3,439 0.1561 steel
9. LC 5,775 0.009 steel
10. LC 4,966 0.0096 steel
11. LC 7,013 0.037 steel
12. LC 2,457 0.0334 steel
13. UC 378 .1667/.0365 steel/concrete
14. UC 29,772 .0092 steel
15. UC 8,033 .0209 steel
16. UC 420 .0052 .

s eel

17. UC 29,330 1.47 concrete
18. UC 34 125 0.0469/2.0 steel/concrete
19. UC 2'10 .0052 steel UC: Upper Compartment

~:...... LO: ..Lower. Compartment OE: Oead-Ended Compartment 1C: lce Condenser Compartment

ASS AiND 9  ?"=Y RE':-~SE ?~iES u!,.<IMUM Si i@SS 'tE?GY i !!ME (jb/sac) (~is/sec)

(sec)

O. ~ 57888>05 30jiZc F08

.2GGGE.Q1 4783E G5 .24,78E ~GS

.cuGQEiyl .34228~05 .179'E i08

.6GGGE'v I .2563Ei05 ~ 1377E iCjS

.8GijGE~Gl .2225c+05 .1223E G8

~ 10GC;E 02 .ZQ4cC+05 .114GE'08

, 1 ZC'C E '02 .18GCE+05 .1037E+08

.124ciE 02 .16558+05 .9762E +07

.140QE'02 . 1561E>05 .9229E ipr

.14368 ~G5 SCQ3Eipr

'1s15GGE+GZ

~

OE-02 .1319E +05 .799GE+07

.18GQE+02 .1134E'05 .6925Eipr

.190GE+02 .1061E 05 .6491E 07

.200GE'02 ~ 991 7E ~04 .6106E'07

.21QQE>02 .8999E ipc .5628E+07

.220GE 02 .8183E +04 .5086Eipr

.24,0QE.OZ .64G7E+04 .40cZE>07

.25CQE+02 .5476Eipc .34CZE.07

.26GPE~QZ .445GEipc .2730E'07

.270QEip2 .6099E+04 .2983E+07

'28GGE'02 68i09EtP4 .3GGcE+Gr

.292GE'02 .7005E nc .2753E .Qr

.3QGQE'02 .c>31E+0>> ~ 5 1 38 ~ vr

.31GGE+02 .5248E Gc .ZG'73E'Gr

.32GGEi02 .6371E.Qc 19~ '-.07

.33 GGEiQZ .4858E~G4 ,1391= Or

,35GQE~G2 .4315Eipc .1019E Gr

.37GOE'02 .2298Eipc .6255c Gb

.38GQE+02 .667CE.03 . 1 7 '> 4E -C'6

.3849E~QZ .6587E~Q3 ,fbt9E 05 F

.c5QOE+02 . 173GE.G3 .6583E 04

~ 50QGEi02 ,1730E, v3 ~ 6583Eipc

.5265E+G2 , 1 730 E. > 03 .6583E~04 5325EiQZ .1rb8E 03 .114&E'05

.5355E+02 .1768E i03 .1145E+G5

.5375E+02 ~ 1767E+03 .1135E+05

. ".5385E+02. .'.1rbrE;03 .- .1134E+05'.c>>GE

. 5973EQ2 .205GE+03 05

.7020E 02 ~

.5402E G3 .2098E 06

.864OE+02 .5729E+03 . 2153E+06

~ 10698 03 .5850E.03 .2128E Gb

.1302E+03 .5947E+03 . 2081 E ipb

. 156OE i03 .6022E+03 .2027E 06

.2152E.03 ,616GE.03 .19G7E i'c

.2887E+03 .5317E 03 .17.>= 05

.4107E~Q3 . 6535c -'-'3 . 1631E 'Gb

.4434c+03 ,659~c 03 .1635E+05

TnQL:- 14.-"'. l-3

~SS neo .qrvI4Y <e. -45@

l4AX.HUH Si il.i 7VL' "ASS (Sac} (ib/SIC) 0

, 2COOE 0l . 6776Ei05

. lCQOE nl . 5500Ei05 <<3607E QS

.5CCCE Ol ~ 388 lEi05 ,2874E~QS ROCQEiol ~ 304 l E F05 ~ ZC69Eioe

. lQCOE F02 ,2738Ei05 >> l687EiCS

. l ZOCE ~02 ~ 2382Ei05 l54ZE~OS

~ l 24OE ~02 ~ l888Ei05 . l 379E ioe

~ I 400E ~02 . ISOZEi05 l l29Eioe

. lSCCE402 , 1455E+05 . lC84E~CS

. l60nE F02 , lZSZEi05 :9098E-07

. l 7CCE '02 . l 120E F05 .SZZSEi07

. lSCCEi02 .9375Ei04 .7433Eio7

. lsQOEi02 ,8597E'04 .6562E 07

.ZCOPEi02 . 7564Ei04 5CSSE 07

. 2 lCCE ~02 .5880Eio4 .54 lSE 07

.220CE'02 . 4Q47E F04 444 7E 07 2300Ei02 . 5 l 298~04 29 lSE '07

.240CE '02 .6880Ei04 .283ZE i07

.25QQE'QZ .7206Ei04 , 2968 E i07

.2600E~OZ . 60 lOEi04 , 2679 E i07

.2700E'02 . 4829E F04 . l877E~07

.Z8CCE 02 .4337Ei04 . l 282E F07

.2895E 02 .3670Ei04 , l059E<<07

. 2900E F02 .2623Ei04 ,8232E'06

.3CCQE 02 ,24 lSE<<04 .44CSEiC6 30 l35-02 ~ 2380E i04 , 3675E F06

. 3 lCOE '02 ,2357E 04 .3406E~C6

,38COE 02 , 'I 54'2E F04 ,3f95E'06

,4Q'.43Eio2 , 34'2 5E 03 8 l54E F05

,4248EiPZ .3425Ei03 . l303E iPS

,4308E~CZ .3425Ei03 l 3CZE PCS

.4328Ei<<32 .3470Ei03 l 303E '05 4338E 02 . 3410E~03 .l892ciPS

,4348E 02 ,3470Ei03 189 lE "PS

<<4358Ei02 .3470E~03 l 89OE 05

,4885EiCZ ,3469Ei03 lSSSE-OS c<4 l E Q2 .3762Ei03 <579E CS

. 7796E 02 .4579E~O4 5683E OS lQ IZC b03 l 486E i04 44 lSE 06

, l309E i03 , lSOSE 04 2:36c 06

, l639Ei03 . lS lSEi04 '.iCSE'C6

.25l6E 03 . l 524 E 04 "352E ~6

. f545Ei04 23 l 7c <<06 2240'-06

TABLE 14.3.1-A-3 NITROGEN MASS AND ENERGY RELEASE RATES

~Time sec Flow Rate lbs/sec 37.5 71.9'0.7 39.5 45.5 37.2 47.5 31.6 53.5 18.8 55.5 15.6 61.5 8.5 63.5 6'. 9 70.3 186.0 72.3 158.0 78.5 97.3 80.5 82.4 86.3 48.5 88.3 40.0 94.3 21.9 96.3 18.2 102.2 11.7 104.2 10.5 110.2 7.6 112.2 6.8 126.2 3.3 128.2 2.9 138.2 1.8 140.2 1.6

~

146.2 1.2'.1 148.2 174.2 0.25 176.2 0.075 l7 0329L:6/840727

TABLE 14.3.1-A-4 LARGE BREAK OECLG C0=0.4 Results Max SI Peak Clad Temp. 'F 2162 Peak Clad Location Ft. 7,. 50 Local Zr/H20 Reaction (Max)i~ 6.58 Local 2r/H20 Location Ft. 7.50 Total 2r/H20 Reaction,'o'ot

( 0.3 Rod Burst Time sec. 71.4 Hot Rod Burst Location Ft. 6.75 Calculation Licensed Core Power (Mwt) 102;o'f 3250 Peak Linear Power (kw/ft) 102;o'f 13.225 Peaking Factor (at License Rating) 1.97 Accumulator Water Volume (ft3

) per Accumulator 950

. Cycle Analyzed.,:Cycle 8 18 0329L:6/840727

TABLE 14.3. 1-A-5 LARGE BREAK TIME SEQUENCE OF EVENTS Max SI OECLG CO=0.4 (sec)

START 0.00 Reactor Trip Signal 0.60 Safety Injection Signal 4.05 Accumulator Injection 20'. 50 End of Blowdown 38.70 Bottom of Core Recovery 52.78 Accumula'tor Empty 67.45 Pump Injection 29.05

~ ~

19 0329L: 6/840727

TABLE 14. 3.1-4 NITROGEN MASS AND ENERGY RELEASE RATES Time sec Flow Rate lbs/sec 37.5 71.9 39.5 60.7 45.5 37.2 47.5 31.6 53.5 18.8 55.5 15.6 57.5 12.8 60.7 266.81 66.7 159.7 68.7 135.7 74.7 83.2 76.7 70.3 78.7 58.9 80.7 49.1 86.7 27.2 88.7 22.3 98.7 10.7 100.7 9.6 110.7 5.6 112.7 5.1 122.7 3.0 124.7 2.7 130.7 2.0 132.7 1.8

'146. 6 ~ 0,8 145.5 0.7 20 0329L:6/840727

TABLE 14.3.1-5 LARGE BREAK OECLG DECLG OECLG OECLG C

D

=0.8 CD=0.6 ~

C 0

=0.4 'O='6 Results Min SI Min SI Min SI Max SI Peak Clad Temp., F 1942 2014 1956 2163 Peak Clad Location, ft . 7.00 5.75 7.00 6.00 Local Zr/H20 Reaction (Max) 2.85 5.65 3.84 9.65 Local Zr/H20 Location, ft 7.00 5.75 5.75 5.75 Total Zr/H20 Reaction <0.3 <0.3 <0.3 <0.3 Hot Rod Burst Time, sec 43.8 37.8 47.4 37.8 Hot Rod Burst Location, ft 6.00 5.75 5.75 5.75 Calculation Licensed Core Power (MWT) 102;< of 3411 Peak Linear Power (kw/ft) 102;~ of 14.796 Peaking Factor (at License Rating) 2.10 Accumulator Water Volume (ft 3

) per Accumulator 950 21

~

0329L:6/840727

TABLE 14.3. 1-6 LARGE BREAK TIME SEQUENCE OF EVENTS Min SI Min SI Min SI Max SI OECLG OECLG OECLG OECLG CO=0.8 CO=0.6 CO=0.4 CO=0.6 (sec) (sec) (sec) (sec)

START 0.00 0.00 0.00 0.00 Reactor Trip Signal 0.62 0.63 0.64 0. 63.

Safety Injection Signal 3.83. 3.95 4.20 3.95 Accumulator Injection 12.90 15.50 20.80 15.50 End of Blowdown 29.68 30.43 38.49 30.43 Bottom of Core Recovery 40.66 43.29 52.64 42.47 Accumulator Empty 56.89 59.29 65.65 60.58 Pump Injection 28.83 28.95 29.20 28.95 22 0329L: 6/840727

I.l000 COOR UHITI LAIP) 0.8 OKCLC HI)LSI 3aIIHMt UPR*IIKG ECCS LBLOCA MIIH BARf ANO OLO PAD f0=2.10 OUALIIY OF fLUID BURSl. 6.00 f1< ) PEAR. 1.00 fl)~ )

1.2500 IC W

CL 1.0000 CI

0. 7500 0.5000 0.2500 0.0 0 0o 00 0 OOOO CI 0 00 04000 00 o aaaoao 0 oooo o0 o 00 oooo 000 0 0 OOOO0 CI ~

CI CI 0 0 0 0 0 OOOO 0 oooo 000 0 O OOOO 00000 CI CI 0 0 4aoa ~

0~ ~ ~

0 0000 Cl O 0 oooo CI CI CI m III III OIea S

0~

CI 0m o ~

aII ooooo

~ ~ ~ ~

IO l IO III CI 0Aa m + & Olfl>>

0. " ' 0 0 ~

0 0 OOO>> ~ ~

~ II

~ ~ ~ ~

gl EP A OIII>> ~ 0

)IHI )SEC)

Fl@l,N'j I/.3. /-l Flue> QftRt.layJ ~~pl g. ( QP 4 8) +t~ S+

I.F000 COOK UNITI tAEPI O.C OECLC HINSI )L IIHVT UPRATINC ECCS LBLOCA VITN BART ANO OLO PAO fO 2. IO OUALITY Of fLUIO BuRSt, 5.75 ftC ) PEAK. 5.15 ftrii I l.2500 EJ CC 4i CL l.0000 0.?500 C

0.5000 0.2500 0.0 DDDDD D . D D D D OOOO D D 8 DDDDD D o y o8 8o aooo D

~

DDDD D O D oD D o D D Dog@ 8 o 8 8 8 S58F. ~

Doooo

~ ~ ~

~

o a Cno uS

~ ~

pP a o o ~

D QDO

~ ~ ~ ~

v cn p~ m pre

~ ~ ~ ~

nJ TINE tSECI (ED=> =O.a'l rnir Si C

FLutC> QuRuC'y . DECC C

'.F000 COOK UNIII (AEP) O.l OECLC HINSI 3) I IHMT UPAAIINC ECCS L8LOCA MIIH BARF ANO OLO PAO F0=2.)0 QUALIFY'F FLUIO 8UASfa 5.75 FTI ) PEAK ~ 7 ~ 00 Fll ~ )

I.2500 I

cc l.0000 0.7500 0.5000 0.2500 0.0 0 0 0O 0 0 O 00 O0 OOOO Cl 0 0 O OOOO 00000 00 0000 Cl 0 o0 Oo OOOO 0 ooa 00 OOOO O O Cl 00 00000 0 O O OOOO Cl

~

00000 o O0n oac0 toooo 0~ ~

0 Cl Cl 0 n 3 O 3 3 OQOOO0 Cl Cl 0 0 ~

0 00000

~ ~ ~ ~

~

Cl Cl OOOO

~ aaa a CO Caaa r o an e m Cl Cl 0 0 0000

~ a ~ ~ ~

caa

~ ~

an au

~

c

~ ~

raaca Cal a caen ~

IIHE )Sf C)

i

1. Boo COOK URlT 1 lAEP) 0.6 DECLC HAX Sl 3i 1 lMMT UPRATlNG ECCS LBLOCA MlTN BART ARD OLD PAD F0=2. 10 DUALITY OF FLUIO BURST, 5. 75 FA l PEAK ~ 6.00 FTl ~ l
1. 2500 CL W

CL 1 .0000 Ci 0~ 0. 7500 I

0 0.5000

~~

0.2500 0.0 00 0 0 CIOQO O OOOO O OQDQ CI 0 Q0 ODOQCDOC:

00 0OD D 0 O D

O OOOO D DODO OOOO O

0O OD D ODDOO O OOOO~

Ci 0~ D D D0 0000 ~

CI ~

0 OD~ ~ ~ ~

DODO Al II1 4) ~ CACAO CI CI 0 0 0000 ~ ~ K5 0 0 IOOOO

~

me>>

CI CI CI 0gp 0400 w EON>>

0 0 0 0 0 OOO~ ~ ~ ~ ~ ~ 0 ~ ~

IP ID ~CO~

1Q cu CM m TlHE lSECl F[PLIQE I$ .3.I-) FLUID GICALIjg CIECLC CI'-U =CI C) <M

50.000 COOK LIHIfl (AEPI O.B OECLG HINSI 3i IIHV1 LIPAAIIHC ECCS LBLOCA ullH SARf ANO OLO PAO fOC2. IO HASS VELOCIIY RSI 6.00 f1l l Pf. AK. l.00 f ft ~ )

Vl I

I-la.

0.0

-50.000 VI -100.00 X

- l50.00

'I

-200. 00 0 00 0 0 O 0 OOOOO 0O O 0 0 0OOOO OOOO CI O 00V 0 OOOOO OOOO 0 0O OOOO CI 0 0O h OOOO OOOO CI CI CI 00 0 0 0 OOOCI 0000 O 0~

C 0 ~ ~ ~

O OOOO 0 O0 OOOOO CI CI Ci VI IO & VIVIO 0000 0 ~

CI 4 sn0

~ ~

00000

~ ~ ~

0 O 0 0 ~OOOO lp O CI 0 0 0000

~ ~ 4 ~ ~

r~ ~

VI

~ ~

aP~VIe

~

~ V P7 IO ~ coo Al VIIP I IHE ISEC I

50.000 COOK Vltl lAEPl O.C OECLC HIIISI 31lIHVT UPRAISING ECCS LOCA VITH QARE ANO OLO PAO f082 ~ IO HAS ELOCIIY URSI ~ 5 75 fl( l PEAK o 5. 75 ffl I~

I LI 0

CI Cl CI 0 0 0 00 00000OOOO 0 0 0 0 00000 0 O O OOOOO 0

0 O 0 OOOO CI g 0 3 00000 0r 0 O00000 3 5 8 33303 Cl 0 OOOO 0 ~

CI 8 8 8888@

Al IA III r SaIO ~ ~

0 0 4000

~

nor

~ ~ ~

se CI Cl CI 0 ~

0 OOOO

~ ~ ~ ~

AJ e% r rl VIA CI~ CI AI AI tIHE ISECI P/scca@ u~LOeir V DA.CL~CeJ =O.I) ~~ a~

300.00 COOX uvltl IAEP) O.a OECLC )IIRSI ta) I)IMt uPRAIIRC ECCS LBLOCA MIIH BARf ANO OLO PAO f0c2. IO HASS VELOCItV BURSt. 5.75 fthm i PEAR. I.00 Fti ~ )

200.00 I00.00 0 0 0 0 0 O OOOO 0 0 0 O OOOOO 0 0 0 OOOO 0 0 0 0 00 OOOOO OOOO~

Ca 0 0 00 3 0 0 O 0000 ODOO 0 0 D 0 0 0Og@

~

O 0 0n 0 tClDDO

~ ~ ~ ~ ~ 0~

g CI Caa 0

Caa 0 0 0~

0000

~ ~ ~ ~ ~

an us ale ~ CCC COOl lj a CO~

tIVE )SEC)

+~6Lc~w /5.B J 7 AS VELDT/7 l lG C<D=O y) ~IN 8Z.

1 50.000 N!1'1 lAEP) 0.6 OECLC HAXS1 3i11Hur uPRATIOC COOK ECCS LOCA MlTH BARl'HO OLO PAO F0=2.10 HAS ELOC 11Y URSte 5.7S FT( ) PEAK l 6. 00 Fl) ~ )

LP

~ al ttt I

At 0 0 Ctl

-$ 0.000 I

EJ CI W

0 v -100.00 X

-100.00

-200.00 0Cl O O OOODD D 0 Ct 0000 0 OOOO CI 0 00 ODDO 0 0 0 OC 0 DDDP O O OOOO CI DDOO Cl 0 0O Itt CI 0 tOCl OOOO O D 0 OODQO 0 CI Ct QDQ0~ 0 00

~ ~ ~

0 0 OOOO ~ O At A ttt ttIO Ct CI 0 CI

~ ~

0 t0000 0 Itt~ ~ ~

Ct Ct O ODD 0'>>'

Ct 0 0 0 0 0OO~

~ ~ ~ ~ ~ ~

At

~ ~

ao cO ~

0 ~

tttctt<< CIA At m ttt ~ Ctt Y1HE )SEC)

I SORE N.3. I 8 YlASS VELOC.t 7'I ltt:CICr (g.[>= O.ta) NItX SI

COOK UNITl lAEPl 0.$ OECLi I4SI 3%I lHUf UPRAllNC ECCS LSLOCA UIIH SARf ANO OLO PIIII ~ . 2.10 600.00

,SOO.OO HEA1 1RANS.COEfflCIEN1 SURS1. 6.00 fl. 1 PEAK. 1.00 flf l

~

%00.00 300.00 200.00

~ ao.ooo 30.000

" 2O.O00 6.0000 S.0000 A . 0000 3.0000'.0000 I. 0000

/Q-Lipid CI CI CI CI Cl CI CI

~ II Ci CI III 1lHE (SEC>

t- /p $ / 9 //Ep7 7gp~f zw QDEws. z&znl CQb=D- &) ~<N S~ T'EaIG

I COOK UKITI IAEPI 0.6 DECLC HIKSI )lllHVT UPRATIKG ECCS LBLOCA VITH BART AKO OLO I'AD f0 2. IO 600.00 500.00 HEAT TRAKS.COEfflCIEKT BURST. 5.15 fTl I PEAK ~ S.T5 fll I

~

i LOO.OO i00.00 Ai 200.00 10.000 30.000 20.000 IMII 6.0000 5.0000 l.0000 3.0000 2.0000

1. 0000 CI CI IA T I HE ISE C I h'EJP 7 7NSF~~ C oEFFICV~~ T D~a.G.(Cs = d~)

N'4 COOK UNITI (AEP) O.A OECLC KINSI 3) IIHVT UPRAYINC ECCS LQLOCA MIIH QARF ANO OLO PAO F0~2.10 600.00 500.00 HEAl IRANS.COEffICIENT QURSTo $ .75 fll ) PEAKED lo00 FB+)

l00.00 300.00

~ II L 200.00

=IN A0.000 30.000 20.000

)%II 6.0000 5.0000 o.0000 3.0000 2.0000 CI

~ n I I HE l SE C) pt c i(c~ st.a. /- ll pg~~ ~~~~~ gos~w(et r D C~Cea=D V)

COOK UNITl TAEP) 0.6 OECLC HAXSI 31I )HAT UPRATING ECCS ie).OCA NITN BART ANO OCO PAO F0=2.)0 600.00 NEAT TRANS. COEFFICIENT BURST 5 l5 FB ) PEAK 6.00 FTT ~ )

500.00 100.00 I 300-00

'L 2OO.OO I

10.000 30.000 20.000 6.0000 5.0000 1.0000 3.0000 2.0000 l.0000 CI CI CI CI CI CI CI CI In CI IV In TIHE (SEC)

I9 3./" l2 HE'FI r TgFIPISFER QDEFF IC.IGN 7 tIFcLs (cb=g.(,) MAX 81'

2500.0 AEP LBLOEA fOR 34 II HUT UPRATIRC AHALTSIS VITH BART ISK IS OfA 215 PSIG BACKfILL 5 PET SCTP 0.8 OECLG BREAK HlkSI PRESSURE CORE BOITOH l I TOP ~ t ~ l 2000.0 l500.0 I000.0 500.00 0.0 CI CD Cl CI AJ

'1IHE (SEEi F ( &Ills gg,3. I- l3 CD PA'Essed DcCc &CeD=o8) PI~AI Zz.

2500.0 ACP LBLOCA fOR 3% II HVT uPRATIRG ARALVSIS slTH BART ISa IS Of A 215 PSIG BACKfILL 5 PCT SGlP 0.6 OCCLG BRIC@ HIRSI PRCSSURC CORC BoiloH l I TOP . l ~ l 2000."

I500.0 I000.0 Soo.on 0.0 CI CI M ~ ED C)

C)

~D ED CI m

TIHC <SCC I F t&LlRE I'3 3 ~ I I" QxokE O'REssu RE.

r)ecLI- gf-g-o,r.) ~~w 8r

2500.0 AEP LBLOCA FOR )l 1 1 HUT Ul'RATlHG AHALYS(S VTTH BART 15x15 OFA 215 PSlG BACAFIL1. S.PCT SGTP O.a OEC1G BREA< HIRSl PRESSURE CORE BOTTOH 1 1 fOP e 1~1 2000.0 1'500. 0 1000.0 500.00 0.0 CI CI CI Ct CI CI v m TIHT ISECI F l&gPE )'t.2.) - l5 CORE' R<~0<C DeC1 C ggS=OS) W<<82

2500.0 aEp loeoca foR Gill HMt upRatlRG aRalvsls Mite isxls ofa 2ls pslc aac<ftit. s ect sctp o.6 0EcLc SREAK PRCSSURE CORE BottoH 1 ) toP e 1+1 2000.0 1500.0 1000.0 sou.no 0.0 Ch CI Cl Cl Cl C)

Al tlHE <SEC)

F IC u tcF i').> I- o 1 C,ORe O'RESSuRE

~g,) P1 AX 8Z

1.00E+5 AEP LBLOCA fOR )III HMT UPRATINC AHALTSIS MITM BART ISK IS Of A 21S PSIC BACKflLI. S PCT SGTP O.B OECLC BREAK Hl'ISI BREAK fLOM v B.OOE ~04 6 ~ OOErt)a A.OOE~Oa 2.00E<a 0.0 o

C)

CI flHE ISECI F I Lt RE ['t 3 I l7 8+pgy F Lo DEC.t + (ZP PP) YLC<

I.OCE 45 HEI'BLOEA fOR 34 I I Hvl UPAAFIHC ANALYSIS ulIH BARF ISl IS OF glS PSIC BA(@Flit S PE I SCIF'.6 OEELC BREA'lhSI BAE za FEOv LJ B.OOE Ra aD 6.00I 4s C

IX

~ A

%.00E Oi a.OOE.O'.0 CI CI Cl CP C)

IIHE ISEC I F tC ups Ill.a.l- i8 BRE~y FZOW g~oz~ Cco o q)=P.~N S?'

I.OOE<5 ~

AEP LBIOCA FOR 3A Il HMI UPRATIRG ANALYSIS VlfH BAAl ISA I5 OFA 235 PSIG BACKFILL 5 PCF SGIP O.a OECLG BREAK HIIISI BREAA FLOV LJ P.OOE+4 6.00E+a C.OOE<a 2.00E<a 0.0 arcual<

ID CI CI Cl m

FlxE (SEC) t<,3.i- tS amon. su ~ ~~>

c~ccc QCr>=Or) NZN SZ

t.OOE<05 AEP LBLOCA FOR Rll l HMf UPRAftHC ANALYSIS M[TO BARf lSK l5 OFA 275 PSlC BACKFlLL 5 PC1 SCfP 0.6 OECLC BREAK BREAK FLOV v &.BOERS I

6.00E+a 1.00E+01 2.00E+Oi 0.0 Ch CI C)

TlHE lSEC)

FlCl.lee it..l-20 BVEAg rlOg RATE bECL&(PP= Q (o) l1hX SI

10.000 AEP LBLOCA FOR 3ill HMT UPRATIMC ARALYSIS MITH BART TSX l5 OFA 275 PSlC BACKFlLL 5 PCT SCTP O.B OECLG BREAK HlgSl CORE PR OROP 50.000 R 25.000 0.0 000

-'50.000

-10.000 I." ~

L

~ e FlC uRE ld ~ ~-Zl ~oRE'RE'GsuRi DROP Dcccc Ccv=o 8) .bfZN ag

i 10.000 PEP LSLOC1 fOR 3A I I HUl UPRAIIHG AHALYSIS Mild SARI ISa 15 OfA 215 PSIG OACKfILL 5 PCI SGIP 0.6 OECLG 6REAA rlvSI CORE PR.OROP 50.000 CL Cl 25.000 0.0

-25.000

<0.000

-10.000 Cl C)

CI C) o Al IIHE iSEC>

ID.000 AEP LOLOCA FOR 311l l'V1 UPRAEIHO AHALTSIS MIIH BARE ISX l5 OFA 2)5 PSIC BACHE ILL 5 PC1 SCIP D.l OECLC BREAK HIHSI CORE PR.OROP CI 25.000 CL'J 0.0

-25.000

-50.000

-70.000 CI CI CI Cl CI CI m

IIHE (SEC)

F~@~(RE'lf. B. l-28 CORe F R~uAE gpOp E>Eeoc(m= D.'/) NX kl 8Z

10.000 AEP LBLOCA FOR 31 II O'Vl UPRATINC ANALYSIS VITH BART ISX I5 OFA 215 PSIG BACKFILL 5 PCT SGTP 0.6 OECLG BREAK CORE PR.OROP 50.000 IL 25 000 R.

0.0

-25.000

-50.000 10i000 ED n

C>

C>

TIVE (SEC)

F 1 I'4RE'0-B. I- 2't C.ORE f'R<5SQRE'R~I

><C I C-PC.D=0.4) YlAX

2500.0 coo< URIII iAfP) O.a Offf6 HIKSI 3llIHQt UWRAIINC fccs <e<ocA ultu OARt ANO OLO PAO F0=2.IO flAD AVG.tfHP.HOt ROO OURSt. 6.00 Ftr > PfAA. ).00 Ftt ~ i Vl 2000.0 l500.0 T

a l000.0 EJ 0.0 CI CI CI CI CI CI CI CI CI CI III CI tlHI tSff)

>>~ficE l ),3,l-~~ P~~< C~nD- TEnll~~~Tu~~

2SOO.O COOK UNlll tAEP) 0.6 DECLC HINSI SlllHV1 UPRAllNC ECCS lRCOCA VllN BART AND 0<D PAD fO 2.IO CLAD AVG.TEHP.HOf ROD SURSf 5.1S foal I PEAK S.)S fAol I/I 2000.0 l500.0 X

a l000.0 4J 500.00 0.0 CL C3 Cl CI Cl IA O Vl CI AI I4 flHE lSECI

2500.0 COOr uKttt LAEP> O.a OECLC HtKSf SaltHVt UPRAttNC ECCS LBLOCA VltN BAR1 ANO OLO PAD F0*2.10 CLAD AVG.IEHP.VOt ROO BuRSt. 5.15 Flt > PfAr. 7.00 Ftt ~ I 2000.0 1500.0 X

IL X

tw a 1000.0 LJ 500.00 0.0 cS Cb C> CI 43 sA Cl llHE'SEC)

~ ~

2000.0 COO< uRltt <AEPt 0.& DECLC HtRSt 3otlHMt uPRAtlRC ECCS LBI.OCA MttH SARt ARD OLD PAD to=2. lo tI.Uto tEHPERA1UAE BuRSt. 6.00 ft< 1 PEA<. l,00 ft< ~ >

't50.0 l 500.0 l250.0 I

I l000.0 t50.00 500.00 250.00 0.0 CI CI Cl CI CI CI Cl CI CI

~ A ~ II CI ttHE <SEC)

2000.0 COOK UNITI IAEPI O.C OECLG HINSI )LIIHVT UPRATING ECCS LBLOCA VITH QART ARO OLO PAO F0=2.IO FLUIO TEHPERATURE BURST. S.1S ft>> I PEAK. S.PS fthm ~ )

a I)50.0 a ISOO.O I250.0 CL I000.0 X,

I 3 ISO.OO S00.00 2$ 0.00 0.0 E3 C3 C) vs IIHE ISECI

2000.0 COOK UNIlI lAEPI O.l OECLG HINSI 3i I IHU1 UPRAlING ECCS LBLOCA MIIN SARI ANO OLO PAO F0*2 10 fLUIO IEHPERAlURE SURSF 5.)5 fll ) PEAK ).00 fll )

~

I)50.0 lal 1500.0 1250.0 1000.0 I

3 )50.00 5'.OO 250.00 0.0 CI CI D

ofl

~

lIHE ISEC)

2000.0 COOK Ut)lTl lAEP) 0.6 OECLG HAXSl 31 l)H'LIT UPRATlNQ ECCS LBLOCA MlTH BART ANO OLO PAO F0=2. IO FLUlD TEHPERATURE BURST ~ 5.15 FT( ) PEAK 6,00 FT)0)

P l)50.0 1500.0

)250.0 I l000.0 X

750.00 500.00 250 00 0.0 CI sn TlHE lSEC)

F [G QP f ) L.3. I -32 FLL()P TF-.YIPERATLlRE DiC LCr CCb= o.lo')

1000.0 ACP LBLOCA FOR jA I I HUT UPRATIIIG AIIALYSIS VITH BART ISx IS OFA 215 PSlC BACKFILL 5 PCT SGTP 0.8 OCCLC BRf AX HIRSI 2-FLOUR>lf CORf BOlTOH I I TOP ~ I~ I 5000.0 2500.0 CI 0.0

-2500.C

-5000.0

-1000.0 Cl Cl Cl Cl Cl Cl Cl Cl Cl m CI Al TIHf <SfCI Fy@~Rg ]q g )-33 pygmy FI II~(TN &MD 3$ TTDYI)

DecLc (cI =08) N' 8T

1000.0 AEP LBLOCA FOR 3l I!. HV'I UPRAEIIIC AIIALYSIS VIIN BARf 15115 OFA 2)5 PSIG BACKFILL 5 PCI SG'IP 0.6 OECLC BREAK HIHSI 2-FLOVRAIE (OR~ 80110H I I 10P I 1 ~ 1 5000.0 2500.0 I

0.0

-2500.I3

-5000.0

-)000.0 CI CI CI C) CI 4D CI CI CI

~ II m I!HE ISE C I FZG IIRE Ig 3. (-g.'I QORE V'LOW CT boccie- (c.p= o t )

1000.0 ACP LBLOCA fOR 34 II HVT UPRATIHG AHALYSIS UITH BART ISl l5 OfA 215 PSIG BAC<fILL 5.PCT SGTP O.l OCCLG BREAK ~IHSI 2 fLOVRATK CORC BOTTOH I ) TOP, l~ I 5000.0 Ll Vl CQ 2500.0

~a I

0.0

-2SOO.O

-5000.0

-1000. 0 CI IV TIllC (SIC)

0 7000.0 AEP LBLOCA FOR 3ell HMT UPRATINC ANALYSIS MITH BART ISX l5 OFA 275 PSIG BACKFILL 5 PCT SCTP 0.6 OECLC BREAK 7-FLOMRATE CORE BOTTOH I ) TOP ~ (+)

5000.0 EJ 4%

2500.0 I

o I

0.0

-2500.0

-5000.0

-7000.0 CS C1 ID Cl Cl CI C) C) m CU T I >) 6 (5:. C )

P)QQ+E [Q 3 } Q(z Q,QQg PLDW ESTOP AND BOTTOPl)

Pggl ~ggb =O. a) M AX Bg

20.000 AEP UPRAIIHG CD D.R OECLG RK HlkSl QART-REFL000 27S RXPlLL PRESSURE lS17$ ofA UATER LEVELIfll l7.500 90MHCoWER l$ .000 l2.S00 l0.000 g

LJ 7.5000 J

~ s.oooo 2.5000 0.0 CI CI CI TIVE <SEC)

FT~upp iq.3.(-2 I 'REFLooD Y'RAASZ<PL ba+NCONER WA EaL L EVILS

~eC.~~< C,E =O.G) ~X~ aZ

20.000 AEP UPRATIHC Coco.g OECLG Ba HIHSI PART-REELOOO 2TS &<FILL PRESSVRE TSx TS OFA MATER LEVELLETT IT.500

~WHCOPlEA.

IS.OOO I2.500 IO.OCO D T.SOOO 5.0000 2.5000 9.0 CI CI CI CI CI CD CI CI CI ~ II C7 TIME iSEC'el Fggqgg l'l,3. I-SS RE'T=LOOP W A TER, LEVELS aeCLa CCO- O.r.)

tO.COO Af~ u<<<<lhC CO:0.~ Of fC 84 >I'aSI 8>>f.~(<F003

? >S 8K<I's 0 04f $ 5gkf ISi IS 0<4 Vs~i~ af Vf<iCI)

Ig SOO l

DowNComCR IS.OCO It. S03 I0.000

~ r.S000

~C

> S.OOOO t.SOOG 0.0 CI C7 C7 C7 CJ Cl n C3 nn n C7 CI IIHE ISE CI FX.GQRQ I'l.3.1-& l RE.FI OOQ TRhl4SC<H>

DoWllCornER LnJATE. R LEVEm De.C.I I I f g=O.1) frlXN SX

20.000 AEP uPRALIHC (0=0.6 OEElC Ba HAISI SART-REFL000 215 SAIILL PRESSuRE ISIls ofA MALER LEVEL{F1)

Oowgc,omEP.

11.500 L5.000 12.500 Io.ooo

~ p.sooo I

+ s.oooo 2.5000 0.0 CI CI CI CI CI CI CI Vl CI ~ fl I

f!HE ISEE>

CORE PgQ QgP )q. 3. l - QO RFFLOotO TRAHSZEH>

+ DOWNCOME'/ATES LEUEiS, P ~Cia. g C.g= O.E.)

2.0000 AEP UtRAIINC CD 0.$ OECLC BK HINSI BARI-REFLOOD 27$ REFILL tRESSORE ISX IS OFA FLOOD RAIELIIIISEC) 1.7500 1.5000 1.2500 u I.OOM

~ 0.75M CC CI CI 0.5000 0.2500 0.0 8

CI Cl ~ n fIHE (SEC)

FXC ORE Ig Q I t~ gPPLQQD TR IH I e.O~~ ZOI CT cecirCcr .=>.R)

2.0000 AEP uPRitIRC CO=0.6 OECLC Ba HIHSI SiRt-PEFL000 275 SwtlLL PRESSURE l51 IS OFA I'L000 RAIE{IR/SEC)

I.)500 I. 5000 l.2500 u I.0000 0.7500 IC CI CI 0.5000 0.2500 0.0 ID CI CI CI CI CI CI Al m tIVE LSECl F~gggE Iq,3. /- 'l2. RE I. LOO+ TRhg SX

~pl PT'E

) VlZN Sj L<<<TV'gE-I C-(gg = O.E

Z.OCTO afar uPRAIIhC CO:0.< OCCCC 8~ HIASI BA41-RIii000 81$ 84ilal. ~~ISSuAE ISl 15 Oik fa000 4AII <lb/SEC)

1. 1503
1. 5000 I.t500 I.COOQ Vl 0.1500 CC

~ 0.5000

0. Z500 0.0 CP n CI C7 CD C7 C3 C7 IV Pl

>I>E ISECI ETC QgQ(.3. l -9S RE F'LooD %RA'~1 E ~T

~ORE X.NLG T V E ~I'-Z T'/

becLc (u =o.u) mz~ SZ

2.0000 AEt'"Ra f.'i 64" f-riErt000 C.'=0.6 DECLG BK H~a 51 2fs Br e 1ll f r ESSVRE Isa 15 Cfi flDDD RAffrfrfl<EEf

1. 1500 1.5000 1.2500 1.0000 0.1500 0.5000 0.2500 0.0 Cl C)

Cl o In ffvE r5E(r

" ia.ooo PUHPED fCCS FLOM CREFLOOD) DECLC (CD 0 B) HIM 5

~ 8.0000

~ 6.0000 4.0000 2.0000 0.0 8' 8 8 8 CHIEF<>>>)

C)

,8 g g t:+SURE (~/.3.J -'I5 t 4 &PER ECC$ F<<~

DEGLc ('t" b - g.g) PlzH

~ t0.000 DECLC (CD 0.6) HIN PUHPED ECCS FLOW (REFLOOD) S

+ 8.I)00 4-

~ 8.0000

u. 4.0000 P..0000 0.0 8

T E(S )

pyt"~<g< i'l.3.> 'l4 <~urnF + Ec+S p~ CL~ (j p g, g) [AD hl

i0.000 -

PUHPED ECCS FLOM {REFLOOD) OECLC {CD 0 ~ 4) HlN S1 t e.0{NO o 6.0000 M

I-

~ 4.0000 .-

I-4.

n 2.0000 8

8

20.003 PUHPE0 CC~OT~'E fC690 g tg0=0. 6) AX Sl lal 17.500 I

15.000 CD 1Z.500 CD 10.000 l 7.5000 Caj 5.0000 2.5000 0.0 CD CD CD CD CD CD CD CD CD C)

CD C C n

gl C3 nAJ CD C CD CI'>YlPED ECeR FLEAM(REFioor)

DFc.i C CC.D=O 4) MAX

I.BOERS AEP IBLOCA fOR 3i I I HVT UPRATIRG AKALTSIS VITR BARF ISA IS OFA 275 PSIG BACKFILL 5 PCT SGIP O.B OECLG BRCAK HINSI ACCUH. FLOV 8000.0

< OOOO.O EJ LJ

<000.0 2000.0 0.0 CD CD Cl Cl Cl Cl n ClC CD m

CD TIHC iSCC) sccurnuL~> Cl~~ClR 8)

~q.3.i- sl C O'g ~ZQ

OCELOT I.oot~ii AEP EBLOCA FOR tatI'HMt UPRatlHC aRAL'IS Mttn BAAt ISI IS OFA 21S PSIG BACKFILI. 5 PCt SCIP 0.6 BRE a 4IHSI ACCuH. Fcov aJ

~ e000.0 Cl

~ eooo.o LP LP oooo.o 2000.0 0.0 C) o co CD C1 CI C) m tIHE ISEC)

FXE uRE I9.3t -So ~ F.o~ Cpio~oo<<)

P

&X,H

I.QQE Rl AEP LSLOCA FOR 3%II HMI UPRAFIFIC ANALZSIS VIIH SARI I5r 1$ OFA 215 PSIC SACAFILL 5 PCI 'lGTP O.a OECLC SREAA HINDI ACCUH. FLOV EJ

v. SQOQ.Q SQOQ.O LJ LJ

'l 000. Q 2000.0 0.0 Cl CI C>> CI CI CI AJ tlHE <SEC >

F ZCrLIRE I'I.3. I 5'I h 0 0 LIAAIILA<O> FLOW (SLOWDOWN)

DCCLG. (Lb= o.'I) &EN R~

1.COEDS)4 AEP LBLOCA FOR 3tlt HMI UPRAflMG AMALVSlS MlTM BART l5X l5 DFA 275 PSIG BACKFlLL 5 PCl SGYP 0.6 OECLG BREAK ACCUH., FLOM Ek

~ -8000.0 4

Cb x 6000.0 1000.0 2000.0 0.0 C>

Cp Ci CI Cs CJ C) Ch CI YlHE (SEC)

F II'IRE I'l.3.I-S2 QCCUY)IILRTDR FLOW CaLIIWDOWN) nial C geP=O.g) MhK RX

t.0 ~ I J J I I I I . I

<<<<r<<QM4!<<s~ s<<<<r rs ' '4 ~ ~ spl rsWt% '~

I I I

, .I ~ ~ I I r I

J ~ ~

s<<I L.:I +. ~

I~

f.

Jig

~ J

~ I s

~ I ~ ~

J I ' J

~ s l s l ~J J+I J J p! JM ~

! I ~ s I I J i s J L CJ LL L I s

L QmZZI

) 0 I J I

~

~

~ ~ I rH+' J ~

I ~

J s

I J

~JI

~

I I J!

s j I, I s~)

I l I

I ~

];T. s J

T+Iz;-r.

~

~ A ~  !

~ ~ 's<<i

0.0 200 0&G.G %00.r 7

PlZhlXPl Lt M S l-53 X'<$

4RG l t.3. CDH TAI)4 fflKHT PRESSURE

i,0 0

L.O s44 ~ 0 .200.0, JIVE ( SEC) ~

CQnPAATOE4T PRESSURE,

10 I ~

I 10 4

~ C 10 s I I I 11 <1 I I 0

LO 0 ~

l00.0 200. 0 )00.0 7 lhK 1 SEC )

4l 1.4fiCI O) l I l I G.O 140. 4 jGO.O T !PIE t SEC 8X

)'YIAxrrAum F.T&4RK li ~ I. 5'4. 'WEA CptOPAATnEHT 5TAIJCTIJAAI. HEAT AEApVAL AATE

I 0

~ ~ I I I I I I ~

I I ill II I I I I I I:.

~ ~ ~ ~ ~

I I I I I I

):I;'I I

I I ) I I I ) )! I I I I i) I I I I ilit II I

~ ~

tQ I I I ~ I

~ M I I I I I I Cl 10 C

IO '

~ I ~ ~ I I I ~ I I I I I I I I I I I I I I I I I i0.

0.0 100. 0 250.0 F00. 0 YtnE ISEC)

Wzdzmum PQ@ggg )g, Q,)-Q7 'IKA I IIKnOVAI. SY I.C OIIA lH

I ~

I - I i j I I ~ ~

I I j I I s I i I I I s I s I I ~ I I I

~

I, I I

I I; I I

I g

j I

~

I I

I

~

I I I~I I I W

2.0( F 0%

Cl

~ U I

ct C) 1.0K~<A re ~

1.'E ~ ~8 100.0 400 ~ 0 ~~ J T lhf ( SEC )

rn AX ~mum SZ-

'~>>4~< l~> ~-S8 ~'Ejj'i jjKMOY4L 8.v LC OAA'lH'

~

~ll Ili!:

Ag ~

I I I I ' i I I I I I I I i I

I I i I I t! a EJ

~" l.0Atr'8 lie C

v4 CC IAJ

/

I ~ 'ACA0c 200.0 )00.0 i00,0 q

~ r IlHE t SEC )

mxv z mum sx P< &l4RE ) %3 1 Q MEAT E.ll:"A'

~ Y 5IJl& A1A 0 I ~ (. ~ P AAIy

400.0 TlhE ( SEC)

M AXZlhu> gz;

~>@LLQG )9.3. )-4Q HEAT REMOVAL 8Y 1

S~JPlP RHi3 '

W pp RBY5

F00.0 t00.0 )00.0 '<0.0 TTNE ( SCC )

WX0Z mum SZ C 0 tl P 4 A T P! K ~ T TE llP K i) h T V "..

  • ! I I 1 1

I I I

~ ~

hss I V I I I I 100. 0 TlnE (SKC)

~

mhxrmurn .zr.

CORP4ATPIENT TKhPEAATURK

I r ~ s ~ ~ ~ ~ r S ~ ~s ~ r

~ lis I:I II) s I ~

)

I s

I I

I I s I

c~ (p l >

,.s s

I'.

s ws

~ s .

sl I

~

~ s

~ .. 1

-',/

~ ~

s I

I I:: Ij..

I: 'jll ",.'ll;

~ s

,ss ,.
I iri ~ s I s (sjr + ~~ ~~

-~

/N I I

~ ~

"I 1 I:.

~ ~

s

~ ~

I I= ~  ::I. -'II',

I l

I/y si; s

I: I.:

II :s'I .".. s I'. II s :I! Is s s I s I

.a II::

Su<1 :I::

st ~

~ ~

Ij: sl jl I

~ ~~ .I: ~ I

~

is, ' s s I 'I s,

I; I:. s sssQ s

<<t s

r> I'. ~

I

~ s s

ss

' I; s

~

I

."I ~ s I I 0 ) ls.g s s

~ - I-I r~ s I

I I

I IG e I

s I

I) n I 0 0l 20 49 I

I s

I s

I Is sI.

I s j . I FL.Oii! L(F'P" 0 I.S.'Ssts I~

I e e e ~ I~ i' e ~

.I'e I:. Iii I I i I i )

I I  !

I I e

I I

I I e

e I e

I

": jl'. II I ~

I Ij .

~ ~

ee ;ll I

~

e' e ~

>:I I;I 'i,' I':

~

I e>ee I ~

":; I:

I

~ ~

~

~ ,

I I~

!I.

~ '

I

~ ~ e I

~

I~

~ ~

e I e

~> ~ ~

~: I ~

,I I" - ~

ll" iIII il'; ::

~

I ll '

I I I e' I C

\) I.; . ~ ~

~

I:; e I.

I ~ ~

,~I I;

r I,'

~ ~~ "~

l I' I~

Ie e

'"'C, je> Ir

~

le I

lie I ~-

I ~ e I I I: I e i e I

I I e

Iej er I I

I e

I e e

i I I I e e

I I j I ~

I I I I e I I

~ I 'p r e ~ l I) I I e' e"!

I I I I I I I I I

I I I I I I I gq ld riiO.I

~ ~

1>e 'll Ie/' f..jr/ Iipelel 'II. /J I I

I I

/h/I I fF li I I I I

~ I I 'l. I  :..I.. I I . ~ ~ I

ATTACHMENT 8 LOCA Rci A-"0 -."CH SPECS Plant Name: Oonald C. Cook Unit 1 (AFP)

O.lp Tyoe/Date o 0C

= ~-4 (max SI case) Large Break LOCA Analysis Analysis 'OCA Df'Qg Total Peaking Factor F~. ~ g ,'IQ Cold Leg Accumula or. 980 ft /accumulator (nominal) unchanged -,rom Water Yolume: cur rent tech specs Cold Leg Accumulator 600 psia (minimum) unchanged from current Gas Pressure: tech specs K(z) Cu. ve: See next page

1.5000 AEP 4 LOOP CALC. NOTE SEC-RFFA-1481-CO f

CURR NT LIH ITS RUN 05/15/84 K(Z) l/S. CORE KE ICHT (FICURE 1.2500 1.0000 0.7500

~V 0.5000 TOTAL FO

2. 100 CORE REICHT 0 'g<

.al'ii

~

~ s

l. Oon 0.2500 c 1.000 I I. I83 0.935 12.000 0.714 0.0 nCJ C1 nn Q ~

CD CJ ca C3 EU lO OO CORE HEICHT (FT)

~

c,~