ML16127A483

From kanterella
Jump to navigation Jump to search
006_03 REACTOR-Figures
ML16127A483
Person / Time
Site: Crane Constellation icon.png
Issue date: 04/11/2016
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML16127A520 List: ... further results
References
TMI-16-035
Download: ML16127A483 (57)


Text

x A

B C

0 E

F G

w-H K

L M

N 0

P R

1 6

1 3

5 5

3 7

8 7

8 7

3 5

4 4

5 3

1 8

6 2

6 8

I 5

4 2

2 4

5 6

7 2

7 2

7 6

5 4

2 2

4 5

1 8

6 2

6 8

I 3

5 4

4 5

3 7

8 7

8 7

3 5

5 3

I 6

I I

2 3

4 5

6 7

8 9

10 I I 12 13 14 15

-y No.of I"'ods FuncTloo Z

WORTH-HZP

(/. ~ k/k)

BOC EOC SEE TABLE 3.2-7 D

Group Number Gr'OUP I

8 2

8 3

8 4

8 5

12 6

8 7 (TRANSIENT) 9 8

8 TOTAL # 69 Sofety Sofety Sofety Sofety ControL Contl"'oL ControL APSRs

.N......

TM! ~tt I Update-12 3/94 p.3.FIG-1 Control Rod Locatton and Group O** tgnatton. For TMI-I.Curr.nt Cycl*.

CAD FILE:SIA,SKM.OO,0343,OOO-,0001 Ftg.3.2-1 Rev. 21, 04/12 61

x A

B C

D E

F G

W-_H__

K L

M N

o p

R 111213141516H81911~111~1~14 15

-y RODS IN I.

GROUPS 5-7.

Or. WD 2.

GROUP 8 AT HFP NOMINAL POSITION.

BOC AND EOC EJECTED ROD Z

HZP WORTH OF EJECTED ROD (" A k/k)

SEE TABLE 3.2-4

.N......

TMI Untt I Upaote-12 3/94 p.3.FIG-2 E,ected Rod Location BOC and ECC Co4 File SIA.SIOI.OO.DIR.GOO-.OOOI F1,.3.2-2

TMI-1 UFSAR RODS IN HZP WORTH OF STUCK ROD (%k / k)

Groups 1-7, 0% WD See Table 3.2-4 BOC Maximum Worth Stuck Rod EOC Maximum Worth Stuck Rod

p. 3.FIG-3 A

B C

D E

F G

H K

L M

N O

P R

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 TMI-1 UPDATED FINAL SAFETY ANALYSIS REPORT Stuck Rod Location BOC and EOC FIGURE 3.2-3 Rev. 23, 04/16

r

  • 2.0 r
  • 1.0 rfa 1200 I 1&

I I

10 loa l..rr. -liiO IlOIUS S I SLOPf (II P)

SLOPE (EIPEIIIENT)

Ie.)

(C~ 1-)

(I 10,2)

(110.2) 25

.7143 I 00 O. 11

~

01

.25 50

.3921 o 83 o 11

~

0&

I 0 19&1 o 71 0.&1

~

.05 2.0

.0910 o &1 0.13

~

05

__ liP

- - - HEllSTllNO IlO.IEI'.

HOINEI 02

.IM

.0&

.01

.10

.12

.14

.16

.11

.20

~--

0....

~--

0....

~Nucl..r TMI Unit 1 Update* 5 7/86

p. 3.FIG-4 Fractions of Change in the Reasonance Integral as Function of Vf:v'BJ for UO 2 Rod (T in Degrees K)

Fig. 3.2-4

0.00

-0.02

-0.04

-0.0&

-0.08

~ -0.10 0

~u

~~

..0

~~

JH

~i 20 C) tjI-0

\\

\\

\\

\\\\

\\\\.....-V-2.4 % 6k/k(wtth Stuck Rod}

\\\\\\ ~......_-----

5.40/. 6 kl1l.J

-~-- -~- --

I o

2 e

Ttme.sec 6

7 8

p.3.FIG-6 I£a]!J Nuclear TMI Unit 1 Percent Neutron Power Versus Time Following Trip, BOC Update* 9 7/90 Fig. 3.2-6

TMI-1 UFSAR Core Loading Diagram for TMI-1 Cycle 21 1

2 3

4 5

6 7

8 9

10 11 12 13 14 15 A

21C3 G11 21F2 D05 21E2 H02 21F2 D11 21C3 G05 B

22B O11 21D P12 23F F

23G F

22E O04 23G F

23F F

21D P04 22B O05 C

21F2 N04 23F F

23H F

23E F

22A2 O10 23B F

22A2 O06 23E F

23H F

23F F

21F2 D04 D

22B M13 23F F

22E O12 22D K02 22B F07 23B F

22E L14 23B F

22B F09 22D K14 22E N03 23F F

22B M03 E

21D N14 23H F

22D B09 22B K08 23A F

22C K04 22E B06 22C K12 23A F

22B H07 22D B07 23H F

21D N02 F

21C3 M07 23F F

23E F

22B G06 23A F

22C C08 23C F

22A2 E06 23C F

22C H13 23A F

22B G10 23E F

23F F

21C3 M09 G

21F2 E04 23G F

22A2 L13 23B F

22C D09 23C F

21C1 F11 19 23D F

21C1 M10 19 23C F

22C D07 23B F

22A2 L03 23G F

21F2 E12 H

21E2 P08 22E N13 23B F

22E B10 22E L02 22A2 L05 23D F

20A2 H15 19 23D F

22A2 F11 22E F14 22E P06 23B F

22E D03 21E2 B08 K

21F2 M04 23G F

22A2 F13 23B F

22C N09 23C F

21C1 E06 19 23D F

21C1 L05 19 23C F

22C N07 23B F

22A2 F03 23G F

21F2 M12 L

21C3 E07 23F F

23E F

22B K06 23A F

22C H03 23C F

22A2 M10 23C F

22C O08 23A F

22B K10 23E F

23F F

21C3 E09 M

21D D14 23H F

22D P09 22B H09 23A F

22C G04 22E P10 22C G12 23A F

22B G08 22D P07 23H F

21D D02 N

22B E13 23F F

22E D13 22D G02 22B L07 23B F

22E F02 23B F

22B L09 22D G14 22E C04 23F F

22B E03 O

21F2 N12 23F F

23H F

23E F

22A2 C10 23B F

22A2 C06 23E F

23H F

23F F

21F2 D12 P

22B C11 21D B12 23F F

23G F

22E C12 23G F

23F F

21D B04 22B C05 R

21C3 K11 21F2 N05 21E2 H14 21F2 N11 21C3 K05 Key xxx yyy zzz Batch ID Previous Cycle Location Previous Cycle Number (N/A for Feed, Cycle 20 if blank)

Note: F denotes Fresh Fuel

p. 3.FIG-7 ECR TM 14-00484, Rev. 0 Page 21 of 30 TMI-1 UPDATED FINAL SAETY ANALYSIS REPORT Core Loading Diagram TMI-1 Current Cycle FIGURE 3.2-7 Rev 23, 04/16

TMI UFSAR Figure 3.2-8 Deleted

2. 7 4:1

~

2.8 2.5 2.4

~**:I 2.3 0.-..,

~

GI:

CD ZCI 2.2

2. 1 2.0 1.9 1.8 10 90 110 130 150 Distance fro. bottaM ot active lenlth.

in.

0:imNuclear 1MI Unit 1 Update* 6 7/87 p.3.FIG-9 Typical DNB Ratios (BAW-2) in the Hot Unit Cell (Cycle 5)

Fig. 3.2-9

~~

""'lIIIIIiI~ "-."

~

\\.

~

~"-"-

"""'Ill",

~'

1,"

1..1 1.21

~

u*....

~-- I..

e: *

~ -

u

I

~.

D.II

~z::

4 I

D.Io 0.40 0.21 D.*

a 10 20 30 40 5.

10 70 10 10 1DO

'.rclnta***f fu.1 I'ds with Hilhlr

'.akinl factlrs Thin 'lint ValUls. I 0:iElNuclear TMI Unit 1 Update* 5 7/86

p. 3.FIG-IO Distribution of Fuel Rod Peaking (Initial Cycle)

Fig. 3.2*10

Alial Peaks 2.0 1.7 1..8

    • G 1.4

-;c I.2

~

1 I..0 J 0..8

J

~

0..6 0..4 0..2 0.0 20 40 60 80 100 120 140 Active fuei lenath. Inches Bil!lNuclear 1MI Unit 1 Update* 5 7/86

p. 3.FIG-l1 Maximum Allowable Axial Power Distributions for a Radial-Local Peaking Factor of 1.78 Fig. 3.2-11

A.I.' 'I.ILS "I

1.4

~~~--+-----TlI.J 2.'

1.1 e.*

1.4

~

1.2 1.1

-I ***

J I.'

I

~

'.4

'.2

'.0 0

20 41 80 10 101 120 148

'ct*** fUll Llnat** IlehlS BimNuciear 1MI Unit 1 Update* 5 7/16

p. 3.FIG-12 Equivalent Axial Power Distribution for a Radical Local Pelklng Factor 01 1.65 (Initial Cycle)

Fig. 3.2-12

2.0

,,-...... 1.8 0-nJ

~

~

uc CD 1.6 z

Q 99% Confidence Basi s 0-

'0 aJ U

'0

1. 4 aJ...

a.

aJ I

c c::

~

oJ:

u

1. 2

~

en aJ

~

~

0 c::-

1. 0 0

~

~ Design Overpower nJ ex CD (114")

z Q

0.8 100 110 120 130 140 150 REFERENCE DESIGI IIOWER (2568.1t ). %

p. 3.FIG-13 BimNuclear 1MI Unit 1 DNB Ratios (W-3) in Hot Unit Cell Versus Reactor Power (Initial Cycle)

Update* 5 7/86 Fig. 3.2-13

20 II 16 14 12 10

~..... B

~

CI 8

4 2

0

-2

-4

/

V 2120 pS11 ~

LV I

V/

I

/

A21.5 pSle I V/

/ /

v /

I""

/

vV'

//

QUill ty V

I SuDcooled r-oOSII" Ove rpower I

15 17

'"c:..

90 93 c::L

a CI Q

N

~6

.c:

U N

.c: -

99

.c:...

GI u

c

a.-

103

... -t-.-

0

~-

~...

109 c

U C

.c:

U c:

116 o

-t

  • o e:t 127 -

.c:...

GI C..

144

-t 100 110 120 130 140 150 160 REFEREIKE DESIGII flOWER (2561.1 t).,

Bi!JNuclear TMI Unit 1 Maximum Hot Channel Exit Quality Versus Reactor Power (Initial Cycle)

p. 3.FIG-14 Update* 5 7/86 Fig. 3.2-14

an N

C N

g Cat

~

I ca. ca.

Ba

sa CD A.~

CoD C

an ca N

~

~

A.

Z

\\:J M

C CIt

....a uz

~

lAo

~

a..

DNIR In Hot Channel BimNuclea, TMI Unit 1 Update* 5 7/86 p.3.FIG-15 Hot Channel DNB Ratio (W-3) Versus Power for Partial Pump Operation (Initial Cycle)

Fig. 3.2-15

~

&It CL E

~

~'

A-S CL aa

~

N I

CL 0

E eft

~

~

I A-N CD 1ft N.

W-i

~..

5

~

~

wa w

0 u*

w*w"-

w*

o.

2 o.

o.

2 o.'"

o o

Coolant Quality At Point of liniMU. DNIR In Hot Channel Bil!JNuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-16 Hot Channel Quality at Point 01 Minimum ONBR Versus Power lor Partial Pump Opel'ltion (Initial Cycle)

Fig. 3.2-16

..*"...---....---.-----...--....._,....----.....~

"OJ II tts I

I altl 'ISld On laD.

I£A'-4124

( I k de

  • II -/C8 )

I I

~*a...

N

... 0

-=>>....

M c:

Q..U-..

=-'".-

I 2** t-----+-........---+-~---+-----+-----+;-...

u 3.**t---_-......---~t__---_+_---__I----_....._-_I

..-I w-I

~

~

~

Ta..*

50**

.00.

l***

2.1

1.....

......._...1

~Nucl..r 1MI Unit 1 Update* 5 7/86 Thermal Conductivity of U02

p. 3.FIG-17 Fig. 3.2-17

1.8 1.6 Gaussian Distribution 1.4 1.2 1.0 70

&0 lit SO

~c:-

0 Go-40 0

u.a 30 Ii

~z 20 10 0

0.6 0.8

~Nucl..r TMI Unit 1 Update* 5 7/86 Number of Data Points vs. <t>E/<t>C p.3.FIG-18 Fig. 3.2-18

1.6 1.5 1.4 1.3 Finite Sample 90~ Confidence 1.2 Finite Sample 99% Confidence 1.1 Infinite Sample 100S Confidence 50....

~

..L-

..L..

..J 1.0 60 90 100 DNS Ratio (SAI-2) 0]2]Nuclear TMI Unit 1 Update* 5 7/86

p. 3.FIG-19 DNB Ratio (BAW-2) vs. Population for Various Confidence Levels Fig. 3.2-19

L 025 l.020 I.015 I.010 1.005 Q-U ftI w.

I. 000 60 70 80 90 100 GJ C

C l'Q 0.995

.s=

Co)-

Qz 0.990 0.985 FA (Interior Alllmbly Channel) 0.980 o 975 0.970 FA (Wall A_mbly Channln 0.965 0.960 Population Protected.,

p. 3.FIG-20 BiI!lNuclear 1MI Unit 1 Hot Channel Factors vs. Percent Population Protected Update* 5 7/86 Fig. 3.2-20

~-

16 14 12 10 8

6

-f?

<J 4

CQ 2

~

c 0

  • 2
  • 4
  • 6
  • 8
  • i th 5'Yo Flow Factory /

Dis t r i bu t i on

/

r., /

/ " V

/

v<-:.

No Flo.

~

uV V

DIs t r I bu t I on Factor

/

I V

V I

I

/

/

QuaJlt~

/

/~

~

SuDcooled

/,

/

/'

7'

~

DeSign O~erpo.er I

100 11 0 120 130 140 150 p.3.FIG-21 Rated Power (2568 MWt>. \\>

B:il!lNuclear TMI Unit 1 Hot Channel and Nominal Channel Exit Qualities Versus Reactor Power (Without Engineering Hot Channel Factors)

(Initial Cycle)

Update* 5 7/86 Fig: 3.2-21

  • Bundle Burnout rest Conditions Where Stable Operations Were Observed

~ MaxiMuM Design Conditions, 11~1o Power

  • MaxiMum Design Conditions, 13010 Power tt Most Pr.obable Conditions, 11~1o Power Most Probable Co~itions, 130~ Power

\\

3.0 1o-----4-----+-----+------ir---+---+--------I o

5 10 15 20 Qual i t1 (I It

".,or/t~t.1 lit),

~

25 30 Ia:ENuclear 1MI Unit 1 Update* 5 7/86 Flow Regime Map for the Hot Unit Cell p.3.FIG-22 Fig. 3.2-22

3.0 2.5 w

I 0

)(

N.,

2.0

~

I

~

.I:-

4 u

0..

1.5

>--..s 1.0

.5

+

Bundle Burnout Test Conditions 'here Stable Operations lere Observed

  • MUlmum Deslin Conditions. 114' Power Maximum Deslin Conditions, 130' Power \\
  • Most Probable Conditions, 114' Power Most Probable Conditions. 130' Power f'+

+

+

to

.+ +~...,..

  • +

ft*

\\

+..

... ~

+

r+

t t

't'+

~

.t

.ubbl. To

~.....

~

~ +

~

Annular

(**k.r)

++

+

... !'t+....

+

++

++

.+ *....4A +,

+

.... +

~~

to

)

'u~~I. To r~

SI ug (.'k.r)

'9' L/

~

-5 o

5 10 15 20 Quality (Ib vapor/total Itt).

~

Ia:il!lNuclear 1MI Unit 1 25 Update* 5 7/86 p.3.FIG-23 Flow Regime Map for the Hot Control Rod Cell Fig. 3.2-23

3.0 2.5 I9 III N..

2.0 I

~

.I:

~

u0..

1.5

.~

s 1.0

.5 Bundle Burnout Test Conditions Ihere Stable Operations lere Observed.

MUIIIlum Deslin Conditions.

114\\ Power MUlmum Deslin Conditions.

130\\ Power

\\

4t Most Probable Conditions.

114" Power Most Probable Conditions.

13Q~ Paler

\\

~

Ie

.u....,. To Annu'ar

(.ak.r)

~

.-..~

.u....,. To j

Slug (.ak.r)

/

~

-5 o

5 10 15 20 Qua'it, ('" vapor/total Ib),

~

Bi!JNuclear TMI Unit 1 25 30 Update* 5 7/86 p.3.FIG-24 Flow Regime Map lor the Hot Wall Cell Fig. 3.2-24

3.0 2.5

.0*2

)(

2.0 N...

'P*

~

.I:.-*

u 1.5 0

U

~

........z 1.0

.5

~undle Burnout Test ConditIons Where Stabl! Operations Were Observed

  • Maximum Des1in Conditions.

114\\ Power

  • Maximum Deslin Conditions, 130'\\ Power \\

Most PrObable Conditions, 114\\ Power Most Probable Conditions, 130~~ Power

\\

  • .~. * -.
  • 4 Bubble To Annular

( Baker)

~

  • . ~.

--~

'ubbl. To

\\

J Slul (.....r)

~l/

-5 o

5 10 15 20 Qual i ty (I b vapor/ total I b).

IJ.

Bil!INuclear 1MI Unit 1 25 30 Update* 5 7/86 p.3.FIG-25 Flow Regime Map for the Hot Corner Cell Fig. 3.2-25

150

/

DNBR (1-3).1.30 I

I 90 140 Desia" Flow Ratl

~

J.. (131.32 I

1D6 Ib/hr)

I

~

130

-- -I--

-~ -,t.

~..

I/~

120 Ii I~

Dlsia" Overpower

~

110

~ (1141 I 2568 **t)

~

100

/

I I

I 2400 2600 2800 3000 3200 3400 3600 Reactor Core Po.er,.It BENue.ear 1MI Unit 1 Update* 5 7/86 p.3.FIG-26 Reactor Coolant System Flow Versus Power (Initial Cycle)

Fig. 3.2-26

2.4 2.2 LINE flOI MIXING COEff.

1 1101

.02 cJ 2

1001

.02 u

2.0 3

901

.02 II 100S

.0&

Il 5

1001

.01 Il C"")

I*

1.8 Q

~

ftI ac CD

z Q

1.6 cu c

C ftI

.c

~

~

1.4 0:c 1.30 (1-3)-

1.2 1.0 o I 100 110 120 130 140 150 REFERENCE DESIGN IIOWER (2511 Btl. I BENuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-27 Hot Channel DNB Ratio (W-3) Versus Power with Reactor System Flow and Energy Mixing as Parameters (Initial Cycle)

Fig. 3.2-27

5200 4800 4400

.; 4000

~.-

~a.

E lU.-'-

3600

~.-c

~

u

~

~

u..

3200 2800 2400 O.0095"Clearance uo

~oeSIRn r

Overpower (114',

~ 100' Power

'-- Maximum Design Clearance Nominal Clearance 6

8 10 12 14 16 18 20 22 24 26 28 30 linear Heat Rate, kw. ft BiI!INuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-28 Fuel Center Temperature for Beginning-of-Cycle Conditions (Initial Cycle)

Fig. 3.2-28

5200 3600 cu....

c:

cu c....)

3200 2800

.0095" Clearance

~ Design Overpower (1141) 100~ Power

"- Maximum Design Clearance Nominal Clearance 6

8 10 12 16 18 20 22 28 30 linear Heat Rate, kw/ft

~Nuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-29 Fuel Center Temperature lor End-ai-Cycle Conditions (Initial Cycle)

Fig. 3.2-29

5200 1ft--

a-N 4800 4400 4000*

BOC (100 IIO/ITU) 3&00

~-....

3200 Q,*..

to-

~...

2800

~

2400 2000 1608 1200 IZ!imNuclear TMI Unit 1 Update* 6 7/87 p.3.FIG-30 Typical Post-Initial Cycle - Center Line Fuel Temperature vs. Linear Heat Rate Hot Pin (Cycle 5)

Fig. 3.2-30

5000

""" 4800 u...

~-

lW...u i

4600

...u...

c::

u U

u

~

""" 4400 4200 o 8

16 11.63 kwlt tHat Spot (1001 Power) 24 32 40 5000 u...

~-

lW...

4000 I....

U-c::u u

3000 Burnup (l.llrU I 10 -3)

EOl 110 40.900 iTii 2000 o

12 16 20 24

p. 3.FIG-31 llnllr Hilt Rltl, kw/tt

~Nuclear TMI Unit 1 Burnup Effect on Fuel Center Temperature (Initial Cycle)

Update* 5 7/86 Fig. 3.2-31

3600 3200 2800 lL 2400

&)

~

)-

~

&)

a.

E 2000

&)

~

&)

I 1600 1200 800

\\

\\

\\

~....

~'"

~

o 20 40 60 80 100 YOIU.' Fraction of Totll Fuel.,

(at or IDove Fuel T.perature)

BENuclear 1MI Unit 1 Update* 5 7/86

p. 3.FIG-32 Fuel Temperature Versus Total Fuel Volume Fraction for Equilibrium Cycle at End-ol-Cycle Fig. 3.2-32

BimNuclea, TMI Unit 1 l+--"-

0.119 NU.'lr erells Iurn.d Update* 5 7/86 p.3.FIG-33 Typical Reactor Fuel Assembly Power Distribution at End-ol-Cycle Equilibrium Cycle Conditions lor 1/8 Core Fig. 3.2-33

10kwi t t FueI 1200....--------+----------+--~----+---

2400 2800 1----------~-------_+_--_;__-~~-_____4 3200

.... 2000 0

lU...

~

6 kwIt t to...

lU

/---

~

E 1600 lU to-0.24 0.20 0.16 0.12 0.08 0.04 S80 0

F_TIVIl COOl:::!

800 400 "-

...A..-

~___""___6__""'___.....

0.0 fuel Radius, in BiI!lNuclear TMI Unit 1 Update* 5 7/86 Fuel Rod Temperature Profiles at 6 and 10 KW/Ft p.3.FIG-34 Fig. 3.2-34

§...

I...

I...

I

~

I u-

I.....-

§..a.

I!

N

~

§......-

N U:.

C

§ N..

I 0:-

I-

§ I

§

~

l-

-- ~

p l-I.. ~

0

!iII i*'".-

I-0-

I-N-

rb

... '- l-I-

4

.. ~ -' i

+

~

U.

ut... 4U 0-+4-I-l

~~

1 4

~ -

~

1II

~

.J.. *

~~ \\ *

\\.(1)

II

,,~

if'.

r"\\

~~

~

~

~

~

I~~

"""~*""'"

~

t'\\

--... j'"---.......

~"'"

~

4 hp 8

8 8

8 8

o o-o V'o o

fi ** ten c** 1111.'ld, I

~Nuclear TMI Unit 1 Update* 5 7/86 p.3.FIG-35 Percent Fission Gas Released as a Function of the Average Temperature of the U02 Fuel Fig. 3.2-35

d-of-Life lUll;

3. DI,I-IIVIU 1.10 (partial Rod Insertion)

I I

---~ FUll lidplln.

Cor. I.ttll I

PIP - 1. 50 (Iodifi.d COlin.)

1. 4'---~---+--~~-r-.....-~.........

1.1--....-

....-~..............

I

....-._--t--I--/-...'~,£.. PIp*

1.1

\\1

/

\\

1-I

o. 0....~_~_..........,j~....._..A..-_........._....._....-._~

0.' ~..,...-......---...+---t---+--+-----t~.....-

......~-+...............

I I

a. 4....--.....----....t~--+_-.....--I---+----+~-~....__t O. 2....--......--~~--+_-.....--t---.....---+--~...--tI

'L Iii

~

~

D.' ~~~-+-....._~..---+--...........--.......+---......~+-......t-t.......

20 40

&0 10 110 120 14a Dlltlnc. trGl lott.. of Acti,. FUll. in.

Iml!]Nuclear 1MI Unit 1 Update* 5 7/86 Axial Local to Average Burnup and Instantaneous Power Comparisons

p. 3.FIG-36 Fig. 3.2-36

Maximum DeSii" Diametral Gap "0

800

~

u 0-600 lU

)

400 200 0

0 8

12 16 20 24 linear Heat Rate,.

kw/ f t 2400 2200 2000

~

0 1800 I

~-

I... J600

l-CD Noml na I lU 1400 DI a.e t raI Gap u="'

T" 1200 u

)

l:'c:

0 u

1000 c.

ftI e.,:,

0:imNuclear 1MI Unit 1 Update* 6 7/87 Fuel to Clad Gap Conductance 'or End-O'-Cycle Conditions (Initial Cycle)

p. 3.FIG-37 Fig. 3.2-37

2D I

I I

~

I I

lalimull DesiRR Clearance 1.1 Alial Power and EDl Burnup Snape with Closed Pores 1.7 Ilill Power Ind EDl Bu rnup Shape

  • ith Op.en ~

'ores 1.5 Ilial POler Ind EDL Burnup Snape with Closed PQres 5

15

~

10 1:1 U

~..u o

o 2

4 6

I Initial Cold Diametral Clearance. in I

103 10 BimNuclear TMI Unit 1 Update* 6 7/87

p. 3.FIG-38 Fission Gas Release for 1.5 and 1.7 MaxlAvg. Axial Power Shapes (Initial Cycle)

Fig. 3.2-38

3500 3000 Desi an l illi t 114" Overpower 100~ Power 2500

&Ita.

c Closed u

m 2000

=.-

1.7 AI I aI Po.er an uc EDt Bu rnup Snape

&Itc 1.5 Axial Power ana u

EDl Burnup Snape

~

)

&It Pores

&It 1500 u

~

1.7 Ali al Power and Q,.

&It EDl Burnup Snape CoD 1000 MIII.U. Desie" Cleara"Ce~

500 o

2 4

6 8

10 Initial Cold Diaetral Clearance.

in I 103 BiE]Nuclear TMI Unit 1 Update* 6 7/87 p.3.FIG-39 Maximum Gas Release to Pressure Inside the Fuel Clad for Various Axial Burnup and Power Shapes (Initial Cycle)

Fig. 3.2-39

t _.-

.t I

I

, I Ik In. Fie tor CD HO' UN I' Cfll (ntllllp, IIISI Flctor CD "OJ UU CELL CD HO' CO'NlI CELL

HOT COhUOl 100 ULL Bil!INuclear TMI Unit 1 Update* 6 7/87

p. 3.FIG-40 Nominal Fuel Rod Power Peaks and Cell Exit Enthalphy Rise Ratios (Initial Cycle)

Fig. 3.2-40

~--

t I

hclllr "1 flCtor Q)

NOT UNIT CEll (nUIII" ** 11 'acur

~

MOT tAll CEll OJ MOT CUNEa CEll

~

MOT CONTaOl 100 ell l BENuelear TMI Unit 1 Update - 6 7/87

p. 3.FJG-41 Maximum Fuel Rod Power Peaks and Cell Exit Enthalphy Rise Ratios (Initial Cycle)

Fig; 3.2-41

1.1 1.5 1.4 1.3 1.2 1.1 CD 1.0 I

CI-..

N 0.9 I...

a 0.1 0.7 IC
a-

~...

0.&

z-..

0.5 u

0

~

0.4 0.3 0.2 011

\\

G* 2.21 I 101 IIi/tH-f t2

\\.'\\

I\\:

1-3 DNa Milt Flu.

!\\.

(DISII" Lillit)

'\\

~'\\

r\\.

lin IIIUII ON** 1.55

'\\

\\

\\

~

\\

~

/

V

~~

\\

~ I

/

1\\

V V

Calculatld Surflc.

\\

Milt Flu.

~

J'

\\I o

540 5&0 510 600 620 140 110

&10 100 120 LOCII Enthalpy, Itu/III BimNuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-42 Calculated and Design Limit Local Heat Flux Versus Enthalpy in the Hot Unit Cell at the Most Probable Condition (Initial Cycle)

Fig. 3.2-42

1.1 1.5 1.4 1.3 1.2 1.1 UI 1..0 I

0-

)(

0.9 N...-I 0.8 s::"-

~...

CD O. 7

I-..-

0.6 O.~

lQ U

Q

~

0.4 0.3 0.2 O. 1

~\\

\\

,.2.5' I 10' Ib/tH-f t2

~

I I

I I

~

1 r

I 1

~

1-3 ONI H**t Flu.

(D.Slln l'.' t)

~

\\

1\\

\\

~

.inl~u. ON'** 1.12

\\

\\

~ I

~

V V

~

I

\\

V "1

Calculated Surface

~

J J

....t Flul

\\,

o

~40 560 510 600 620

&40 6&0 680 700 720 local Enthalpy, Itu/lb 0ENuclear TMI Unit 1 Update* 5 7/86 p.3.FIG-43 Calculated and Design Limit Local Heat Flux Versus Enthalpy in the Hot Unit Cell at the Maximum Design Condition (Initial Cycle)

Fig. 3.2-43

CONTF,OL ROO ASSEMBLY PL ENUM ASSEMBLY OUTLET NOZ ZLE

~;URvE ILLANCE 5PECI~I1EN HOLDE R TUBE

LOWEP, GRID FLO W OJS TR IfurOR CONTROL P,OD DRIVES STUDS INTERNALS VENT VALVE CONTROL

~OD GUIDE TUBE CORE SUPPORT SHIELD INLET NOZZLE FuEL ASSEMBLY REACTOR VESSEL THERMAL SHIELD GUIDE LUGS INCORE INSTRUMENT GUIDE TUBES

________ IN CO REI NS TRUM EN T N 0 ZZ L E S Bil!1NucIe.r TMI Unit 1 Update*5 7186 p.3.FIG-44 Reactor VI_lind Intlmlll

CONTROL ROD ASSEMBLY LDCATION INCORE INSTRUMENT LOCATION REACTOR VESSEL THERMAL SHIELD CORE BARREL SURVEILLANCE SPECIMEN HOLDER TUIE BimNuclea, TMI Unit 1 Update* 5 7/86

p. 3.FIG-45 Reactor Vessel and Internals - Cross Section Fig. 3.2-45

0imNuclear 1MI Unit 1 Core Flooding Arrangement p.3.FIG-46 COlE fL ODD IN&

NOZZLE Update* 5 7/86 Fig. 3.2-46

1-,

--+----+++---tr---- t ---~--+;---+--

rn I

eMf I....'

MilL.

SICT** I-I Bi!lNucl.r 1MI Unit 1 UI'C..I lie

.u".

'URl

.IU Update* 5 7/86

p. 3.FIG-47 Internals Vent Valves Fig. 3.2-47

BimNuclear 1MI Unit 1 SEE SECTION BELOW Update* 5 7/86 p.3.FIG-48 Internals Vent Valve Clearance Gaps Fig. 3.2-48

TOP VIEW Update* 5 7186

~NucIe8r TMI Unit 1 FUll AlUmbly COHTROl. ROO GUIDE TUH

,'NSTRUMENTATION I

TUM I

r i

i J

, ',',r.

I i

i

' \\,

9-~

FUEL ROO ASSEMILY i

I r::

1:7' Ir1I n

'n I

r I I

I T

1 1 CROSS SECTION I

1

, i I

1

\\

I [

i ] 1 *

[

J l!

I r LOWER END FITTING

~

Ii I

-'-~--'

r-'---I'ir '~

I INSTRUMNTATION TUH.-l CONNECTION SNeER GRID U"O ENO trlTTING

)

)

Fig. 3.2-49 p.3.FIG-49

SPIDER TOP VIIW COUPLINt NEUTRON ~IING MATERIAL CONTROl. ROD p.3.FIG-50 ra::imNuclea, TMI Unit 1 Control Rod Assembly Update* 5 7/86 Fig. 3.2-50

SPIDER TOP VI!W NEUTRON ABSORItNG MATERIAL~

CONTROL ROD

~Nucl..r 1MI Unit 1 Axial Power Shaping Rod Assembly Update* 5 7/86 p.3.FIG-51 Fig. 3.2-51

SPIOfR ----

IURNAILI POISON ROD TOP VIIW

.URNA.LI POIION MATIRIAL

p. 3.FIG-52 0iI!JNuclear 1MI Unit 1 Burnable Poison Rod Assembly Update* 5 7/86 Fig. 3.2-52

TOP VIEW SPIDER-----....

ORIFICE ROO

p. 3.FIG-'53 Bil!lNuclear TMI Unit 1 Orifice Rod Assembly Update* 5 7/86 Fig. 3.2-53

tOJSING ASSY LOAD ARM ASSDfSl.Y p.3.FIG-54 0:W!lNuclear TMI Unit 1 Side View of BPRA Retainer Update* 5 7/86 Fig. 3.2-54

UPPER CORE PLAT! ASSY PAD TYP p.3.FIG-55

~Nucl..r TMI Unit 1 Top View of BPRA Retainer During Operation Update* 5 7/86 Fig. 3.2-55

POsmoN INDICATQIIt AlIDIILY STATOR.IIIMLV

p. 3.FIG-56 I

I CCUIL.NI AlIDIILV i i BimNuclear TMI Unit 1 Control Rod Drive - Gen. Arrangement Update* 5 7/86 Fig. 3.2-56

\\)

SECII** Z*Z SECII** I-I SIC"'I,.,

/E

//

.c:...- WlI' VALl( ASSEI.U

/IIT.I "Il lUI SUI' II' USEI.U L. l,l, Slell.. 1*1 SECII** 1*1 lUI SCll' **.*l **S*.I.

-r~j L

lUI SCIII II"'"

'U. sml......"

r~

~:=

~~~:ZZ~~~~'~. /

c-~ -~

tE:.-~

w~I.tiSii5iSi~~~~~~~

l

~ _~-=:-O~

~'IICTI' Cllllll.... ""1lI

"" CII"

L~."-

L S

SEC"" 1111 SEC 110.,.,

SEC""

S-S Bil!INucI**r TMI Unit 1 UpdItI. 5 7111 p.3.FIG-57 Fig. 3.2*57 TMI-UNIT 1 REV.

19, APRI L 2008 p.3.FIG-3 Stuck Rod Location BOC and EOC FIGURE 3.2-3

x A

B C

0 E

F G

w-H K

L M

N 0

P R

1 6

1 3

5 5

3 7

8 7

8 7

3 5

4 4

5 3

1 8

6 2

6 8

I 5

4 2

2 4

5 6

7 2

7 2

7 6

5 4

2 2

4 5

1 8

6 2

6 8

I 3

5 4

4 5

3 7

8 7

8 7

3 5

5 3

I 6

I I

2 3

4 5

6 7

8 9

10 I I 12 13 14 15

-y No.of I"'ods FuncTloo Z

WORTH-HZP

(/. ~ k/k)

BOC EOC SEE TABLE 3.2-7 D

Group Number Gr'OUP I

8 2

8 3

8 4

8 5

12 6

8 7 (TRANSIENT) 9 8

8 TOTAL # 69 Sofety Sofety Sofety Sofety ControL Contl"'oL ControL APSRs

.N......

TM! ~tt I Update-12 3/94 p.3.FIG-1 Control Rod Locatton and Group O** tgnatton. For TMI-I.Curr.nt Cycl*.

CAD FILE:SIA,SKM.OO,0343,OOO-,0001 Ftg.3.2-1 Rev. 21, 04/12 61

x A

B C

D E

F G

W-_H__

K L

M N

o p

R 111213141516H81911~111~1~14 15

-y RODS IN I.

GROUPS 5-7.

Or. WD 2.

GROUP 8 AT HFP NOMINAL POSITION.

BOC AND EOC EJECTED ROD Z

HZP WORTH OF EJECTED ROD (" A k/k)

SEE TABLE 3.2-4

.N......

TMI Untt I Upaote-12 3/94 p.3.FIG-2 E,ected Rod Location BOC and ECC Co4 File SIA.SIOI.OO.DIR.GOO-.OOOI F1,.3.2-2

TMI-1 UFSAR RODS IN HZP WORTH OF STUCK ROD (%k / k)

Groups 1-7, 0% WD See Table 3.2-4 BOC Maximum Worth Stuck Rod EOC Maximum Worth Stuck Rod

p. 3.FIG-3 A

B C

D E

F G

H K

L M

N O

P R

1 2

3 4

5 6

7 8

9 10 11 12 13 14 15 TMI-1 UPDATED FINAL SAFETY ANALYSIS REPORT Stuck Rod Location BOC and EOC FIGURE 3.2-3 Rev. 23, 04/16

r

  • 2.0 r
  • 1.0 rfa 1200 I 1&

I I

10 loa l..rr. -liiO IlOIUS S I SLOPf (II P)

SLOPE (EIPEIIIENT)

Ie.)

(C~ 1-)

(I 10,2)

(110.2) 25

.7143 I 00 O. 11

~

01

.25 50

.3921 o 83 o 11

~

0&

I 0 19&1 o 71 0.&1

~

.05 2.0

.0910 o &1 0.13

~

05

__ liP

- - - HEllSTllNO IlO.IEI'.

HOINEI 02

.IM

.0&

.01

.10

.12

.14

.16

.11

.20

~--

0....

~--

0....

~Nucl..r TMI Unit 1 Update* 5 7/86

p. 3.FIG-4 Fractions of Change in the Reasonance Integral as Function of Vf:v'BJ for UO 2 Rod (T in Degrees K)

Fig. 3.2-4

0.00

-0.02

-0.04

-0.0&

-0.08

~ -0.10 0

~u

~~

..0

~~

JH

~i 20 C) tjI-0

\\

\\

\\

\\\\

\\\\.....-V-2.4 % 6k/k(wtth Stuck Rod}

\\\\\\ ~......_-----

5.40/. 6 kl1l.J

-~-- -~- --

I o

2 e

Ttme.sec 6

7 8

p.3.FIG-6 I£a]!J Nuclear TMI Unit 1 Percent Neutron Power Versus Time Following Trip, BOC Update* 9 7/90 Fig. 3.2-6

TMI-1 UFSAR Core Loading Diagram for TMI-1 Cycle 21 1

2 3

4 5

6 7

8 9

10 11 12 13 14 15 A

21C3 G11 21F2 D05 21E2 H02 21F2 D11 21C3 G05 B

22B O11 21D P12 23F F

23G F

22E O04 23G F

23F F

21D P04 22B O05 C

21F2 N04 23F F

23H F

23E F

22A2 O10 23B F

22A2 O06 23E F

23H F

23F F

21F2 D04 D

22B M13 23F F

22E O12 22D K02 22B F07 23B F

22E L14 23B F

22B F09 22D K14 22E N03 23F F

22B M03 E

21D N14 23H F

22D B09 22B K08 23A F

22C K04 22E B06 22C K12 23A F

22B H07 22D B07 23H F

21D N02 F

21C3 M07 23F F

23E F

22B G06 23A F

22C C08 23C F

22A2 E06 23C F

22C H13 23A F

22B G10 23E F

23F F

21C3 M09 G

21F2 E04 23G F

22A2 L13 23B F

22C D09 23C F

21C1 F11 19 23D F

21C1 M10 19 23C F

22C D07 23B F

22A2 L03 23G F

21F2 E12 H

21E2 P08 22E N13 23B F

22E B10 22E L02 22A2 L05 23D F

20A2 H15 19 23D F

22A2 F11 22E F14 22E P06 23B F

22E D03 21E2 B08 K

21F2 M04 23G F

22A2 F13 23B F

22C N09 23C F

21C1 E06 19 23D F

21C1 L05 19 23C F

22C N07 23B F

22A2 F03 23G F

21F2 M12 L

21C3 E07 23F F

23E F

22B K06 23A F

22C H03 23C F

22A2 M10 23C F

22C O08 23A F

22B K10 23E F

23F F

21C3 E09 M

21D D14 23H F

22D P09 22B H09 23A F

22C G04 22E P10 22C G12 23A F

22B G08 22D P07 23H F

21D D02 N

22B E13 23F F

22E D13 22D G02 22B L07 23B F

22E F02 23B F

22B L09 22D G14 22E C04 23F F

22B E03 O

21F2 N12 23F F

23H F

23E F

22A2 C10 23B F

22A2 C06 23E F

23H F

23F F

21F2 D12 P

22B C11 21D B12 23F F

23G F

22E C12 23G F

23F F

21D B04 22B C05 R

21C3 K11 21F2 N05 21E2 H14 21F2 N11 21C3 K05 Key xxx yyy zzz Batch ID Previous Cycle Location Previous Cycle Number (N/A for Feed, Cycle 20 if blank)

Note: F denotes Fresh Fuel

p. 3.FIG-7 ECR TM 14-00484, Rev. 0 Page 21 of 30 TMI-1 UPDATED FINAL SAETY ANALYSIS REPORT Core Loading Diagram TMI-1 Current Cycle FIGURE 3.2-7 Rev 23, 04/16

TMI UFSAR Figure 3.2-8 Deleted

2. 7 4:1

~

2.8 2.5 2.4

~**:I 2.3 0.-..,

~

GI:

CD ZCI 2.2

2. 1 2.0 1.9 1.8 10 90 110 130 150 Distance fro. bottaM ot active lenlth.

in.

0:imNuclear 1MI Unit 1 Update* 6 7/87 p.3.FIG-9 Typical DNB Ratios (BAW-2) in the Hot Unit Cell (Cycle 5)

Fig. 3.2-9

~~

""'lIIIIIiI~ "-."

~

\\.

~

~"-"-

"""'Ill",

~'

1,"

1..1 1.21

~

u*....

~-- I..

e: *

~ -

u

I

~.

D.II

~z::

4 I

D.Io 0.40 0.21 D.*

a 10 20 30 40 5.

10 70 10 10 1DO

'.rclnta***f fu.1 I'ds with Hilhlr

'.akinl factlrs Thin 'lint ValUls. I 0:iElNuclear TMI Unit 1 Update* 5 7/86

p. 3.FIG-IO Distribution of Fuel Rod Peaking (Initial Cycle)

Fig. 3.2*10

Alial Peaks 2.0 1.7 1..8

    • G 1.4

-;c I.2

~

1 I..0 J 0..8

J

~

0..6 0..4 0..2 0.0 20 40 60 80 100 120 140 Active fuei lenath. Inches Bil!lNuclear 1MI Unit 1 Update* 5 7/86

p. 3.FIG-l1 Maximum Allowable Axial Power Distributions for a Radial-Local Peaking Factor of 1.78 Fig. 3.2-11

A.I.' 'I.ILS "I

1.4

~~~--+-----TlI.J 2.'

1.1 e.*

1.4

~

1.2 1.1

-I ***

J I.'

I

~

'.4

'.2

'.0 0

20 41 80 10 101 120 148

'ct*** fUll Llnat** IlehlS BimNuciear 1MI Unit 1 Update* 5 7/16

p. 3.FIG-12 Equivalent Axial Power Distribution for a Radical Local Pelklng Factor 01 1.65 (Initial Cycle)

Fig. 3.2-12

2.0

,,-...... 1.8 0-nJ

~

~

uc CD 1.6 z

Q 99% Confidence Basi s 0-

'0 aJ U

'0

1. 4 aJ...

a.

aJ I

c c::

~

oJ:

u

1. 2

~

en aJ

~

~

0 c::-

1. 0 0

~

~ Design Overpower nJ ex CD (114")

z Q

0.8 100 110 120 130 140 150 REFERENCE DESIGI IIOWER (2568.1t ). %

p. 3.FIG-13 BimNuclear 1MI Unit 1 DNB Ratios (W-3) in Hot Unit Cell Versus Reactor Power (Initial Cycle)

Update* 5 7/86 Fig. 3.2-13

20 II 16 14 12 10

~..... B

~

CI 8

4 2

0

-2

-4

/

V 2120 pS11 ~

LV I

V/

I

/

A21.5 pSle I V/

/ /

v /

I""

/

vV'

//

QUill ty V

I SuDcooled r-oOSII" Ove rpower I

15 17

'"c:..

90 93 c::L

a CI Q

N

~6

.c:

U N

.c: -

99

.c:...

GI u

c

a.-

103

... -t-.-

0

~-

~...

109 c

U C

.c:

U c:

116 o

-t

  • o e:t 127 -

.c:...

GI C..

144

-t 100 110 120 130 140 150 160 REFEREIKE DESIGII flOWER (2561.1 t).,

Bi!JNuclear TMI Unit 1 Maximum Hot Channel Exit Quality Versus Reactor Power (Initial Cycle)

p. 3.FIG-14 Update* 5 7/86 Fig. 3.2-14

an N

C N

g Cat

~

I ca. ca.

Ba

sa CD A.~

CoD C

an ca N

~

~

A.

Z

\\:J M

C CIt

....a uz

~

lAo

~

a..

DNIR In Hot Channel BimNuclea, TMI Unit 1 Update* 5 7/86 p.3.FIG-15 Hot Channel DNB Ratio (W-3) Versus Power for Partial Pump Operation (Initial Cycle)

Fig. 3.2-15

~

&It CL E

~

~'

A-S CL aa

~

N I

CL 0

E eft

~

~

I A-N CD 1ft N.

W-i

~..

5

~

~

wa w

0 u*

w*w"-

w*

o.

2 o.

o.

2 o.'"

o o

Coolant Quality At Point of liniMU. DNIR In Hot Channel Bil!JNuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-16 Hot Channel Quality at Point 01 Minimum ONBR Versus Power lor Partial Pump Opel'ltion (Initial Cycle)

Fig. 3.2-16

..*"...---....---.-----...--....._,....----.....~

"OJ II tts I

I altl 'ISld On laD.

I£A'-4124

( I k de

  • II -/C8 )

I I

~*a...

N

... 0

-=>>....

M c:

Q..U-..

=-'".-

I 2** t-----+-........---+-~---+-----+-----+;-...

u 3.**t---_-......---~t__---_+_---__I----_....._-_I

..-I w-I

~

~

~

Ta..*

50**

.00.

l***

2.1

1.....

......._...1

~Nucl..r 1MI Unit 1 Update* 5 7/86 Thermal Conductivity of U02

p. 3.FIG-17 Fig. 3.2-17

1.8 1.6 Gaussian Distribution 1.4 1.2 1.0 70

&0 lit SO

~c:-

0 Go-40 0

u.a 30 Ii

~z 20 10 0

0.6 0.8

~Nucl..r TMI Unit 1 Update* 5 7/86 Number of Data Points vs. <t>E/<t>C p.3.FIG-18 Fig. 3.2-18

1.6 1.5 1.4 1.3 Finite Sample 90~ Confidence 1.2 Finite Sample 99% Confidence 1.1 Infinite Sample 100S Confidence 50....

~

..L-

..L..

..J 1.0 60 90 100 DNS Ratio (SAI-2) 0]2]Nuclear TMI Unit 1 Update* 5 7/86

p. 3.FIG-19 DNB Ratio (BAW-2) vs. Population for Various Confidence Levels Fig. 3.2-19

L 025 l.020 I.015 I.010 1.005 Q-U ftI w.

I. 000 60 70 80 90 100 GJ C

C l'Q 0.995

.s=

Co)-

Qz 0.990 0.985 FA (Interior Alllmbly Channel) 0.980 o 975 0.970 FA (Wall A_mbly Channln 0.965 0.960 Population Protected.,

p. 3.FIG-20 BiI!lNuclear 1MI Unit 1 Hot Channel Factors vs. Percent Population Protected Update* 5 7/86 Fig. 3.2-20

~-

16 14 12 10 8

6

-f?

<J 4

CQ 2

~

c 0

  • 2
  • 4
  • 6
  • 8
  • i th 5'Yo Flow Factory /

Dis t r i bu t i on

/

r., /

/ " V

/

v<-:.

No Flo.

~

uV V

DIs t r I bu t I on Factor

/

I V

V I

I

/

/

QuaJlt~

/

/~

~

SuDcooled

/,

/

/'

7'

~

DeSign O~erpo.er I

100 11 0 120 130 140 150 p.3.FIG-21 Rated Power (2568 MWt>. \\>

B:il!lNuclear TMI Unit 1 Hot Channel and Nominal Channel Exit Qualities Versus Reactor Power (Without Engineering Hot Channel Factors)

(Initial Cycle)

Update* 5 7/86 Fig: 3.2-21

  • Bundle Burnout rest Conditions Where Stable Operations Were Observed

~ MaxiMuM Design Conditions, 11~1o Power

  • MaxiMum Design Conditions, 13010 Power tt Most Pr.obable Conditions, 11~1o Power Most Probable Co~itions, 130~ Power

\\

3.0 1o-----4-----+-----+------ir---+---+--------I o

5 10 15 20 Qual i t1 (I It

".,or/t~t.1 lit),

~

25 30 Ia:ENuclear 1MI Unit 1 Update* 5 7/86 Flow Regime Map for the Hot Unit Cell p.3.FIG-22 Fig. 3.2-22

3.0 2.5 w

I 0

)(

N.,

2.0

~

I

~

.I:-

4 u

0..

1.5

>--..s 1.0

.5

+

Bundle Burnout Test Conditions 'here Stable Operations lere Observed

  • MUlmum Deslin Conditions. 114' Power Maximum Deslin Conditions, 130' Power \\
  • Most Probable Conditions, 114' Power Most Probable Conditions. 130' Power f'+

+

+

to

.+ +~...,..

  • +

ft*

\\

+..

... ~

+

r+

t t

't'+

~

.t

.ubbl. To

~.....

~

~ +

~

Annular

(**k.r)

++

+

... !'t+....

+

++

++

.+ *....4A +,

+

.... +

~~

to

)

'u~~I. To r~

SI ug (.'k.r)

'9' L/

~

-5 o

5 10 15 20 Quality (Ib vapor/total Itt).

~

Ia:il!lNuclear 1MI Unit 1 25 Update* 5 7/86 p.3.FIG-23 Flow Regime Map for the Hot Control Rod Cell Fig. 3.2-23

3.0 2.5 I9 III N..

2.0 I

~

.I:

~

u0..

1.5

.~

s 1.0

.5 Bundle Burnout Test Conditions Ihere Stable Operations lere Observed.

MUIIIlum Deslin Conditions.

114\\ Power MUlmum Deslin Conditions.

130\\ Power

\\

4t Most Probable Conditions.

114" Power Most Probable Conditions.

13Q~ Paler

\\

~

Ie

.u....,. To Annu'ar

(.ak.r)

~

.-..~

.u....,. To j

Slug (.ak.r)

/

~

-5 o

5 10 15 20 Qua'it, ('" vapor/total Ib),

~

Bi!JNuclear TMI Unit 1 25 30 Update* 5 7/86 p.3.FIG-24 Flow Regime Map lor the Hot Wall Cell Fig. 3.2-24

3.0 2.5

.0*2

)(

2.0 N...

'P*

~

.I:.-*

u 1.5 0

U

~

........z 1.0

.5

~undle Burnout Test ConditIons Where Stabl! Operations Were Observed

  • Maximum Des1in Conditions.

114\\ Power

  • Maximum Deslin Conditions, 130'\\ Power \\

Most PrObable Conditions, 114\\ Power Most Probable Conditions, 130~~ Power

\\

  • .~. * -.
  • 4 Bubble To Annular

( Baker)

~

  • . ~.

--~

'ubbl. To

\\

J Slul (.....r)

~l/

-5 o

5 10 15 20 Qual i ty (I b vapor/ total I b).

IJ.

Bil!INuclear 1MI Unit 1 25 30 Update* 5 7/86 p.3.FIG-25 Flow Regime Map for the Hot Corner Cell Fig. 3.2-25

150

/

DNBR (1-3).1.30 I

I 90 140 Desia" Flow Ratl

~

J.. (131.32 I

1D6 Ib/hr)

I

~

130

-- -I--

-~ -,t.

~..

I/~

120 Ii I~

Dlsia" Overpower

~

110

~ (1141 I 2568 **t)

~

100

/

I I

I 2400 2600 2800 3000 3200 3400 3600 Reactor Core Po.er,.It BENue.ear 1MI Unit 1 Update* 5 7/86 p.3.FIG-26 Reactor Coolant System Flow Versus Power (Initial Cycle)

Fig. 3.2-26

2.4 2.2 LINE flOI MIXING COEff.

1 1101

.02 cJ 2

1001

.02 u

2.0 3

901

.02 II 100S

.0&

Il 5

1001

.01 Il C"")

I*

1.8 Q

~

ftI ac CD

z Q

1.6 cu c

C ftI

.c

~

~

1.4 0:c 1.30 (1-3)-

1.2 1.0 o I 100 110 120 130 140 150 REFERENCE DESIGN IIOWER (2511 Btl. I BENuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-27 Hot Channel DNB Ratio (W-3) Versus Power with Reactor System Flow and Energy Mixing as Parameters (Initial Cycle)

Fig. 3.2-27

5200 4800 4400

.; 4000

~.-

~a.

E lU.-'-

3600

~.-c

~

u

~

~

u..

3200 2800 2400 O.0095"Clearance uo

~oeSIRn r

Overpower (114',

~ 100' Power

'-- Maximum Design Clearance Nominal Clearance 6

8 10 12 14 16 18 20 22 24 26 28 30 linear Heat Rate, kw. ft BiI!INuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-28 Fuel Center Temperature for Beginning-of-Cycle Conditions (Initial Cycle)

Fig. 3.2-28

5200 3600 cu....

c:

cu c....)

3200 2800

.0095" Clearance

~ Design Overpower (1141) 100~ Power

"- Maximum Design Clearance Nominal Clearance 6

8 10 12 16 18 20 22 28 30 linear Heat Rate, kw/ft

~Nuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-29 Fuel Center Temperature lor End-ai-Cycle Conditions (Initial Cycle)

Fig. 3.2-29

5200 1ft--

a-N 4800 4400 4000*

BOC (100 IIO/ITU) 3&00

~-....

3200 Q,*..

to-

~...

2800

~

2400 2000 1608 1200 IZ!imNuclear TMI Unit 1 Update* 6 7/87 p.3.FIG-30 Typical Post-Initial Cycle - Center Line Fuel Temperature vs. Linear Heat Rate Hot Pin (Cycle 5)

Fig. 3.2-30

5000

""" 4800 u...

~-

lW...u i

4600

...u...

c::

u U

u

~

""" 4400 4200 o 8

16 11.63 kwlt tHat Spot (1001 Power) 24 32 40 5000 u...

~-

lW...

4000 I....

U-c::u u

3000 Burnup (l.llrU I 10 -3)

EOl 110 40.900 iTii 2000 o

12 16 20 24

p. 3.FIG-31 llnllr Hilt Rltl, kw/tt

~Nuclear TMI Unit 1 Burnup Effect on Fuel Center Temperature (Initial Cycle)

Update* 5 7/86 Fig. 3.2-31

3600 3200 2800 lL 2400

&)

~

)-

~

&)

a.

E 2000

&)

~

&)

I 1600 1200 800

\\

\\

\\

~....

~'"

~

o 20 40 60 80 100 YOIU.' Fraction of Totll Fuel.,

(at or IDove Fuel T.perature)

BENuclear 1MI Unit 1 Update* 5 7/86

p. 3.FIG-32 Fuel Temperature Versus Total Fuel Volume Fraction for Equilibrium Cycle at End-ol-Cycle Fig. 3.2-32

BimNuclea, TMI Unit 1 l+--"-

0.119 NU.'lr erells Iurn.d Update* 5 7/86 p.3.FIG-33 Typical Reactor Fuel Assembly Power Distribution at End-ol-Cycle Equilibrium Cycle Conditions lor 1/8 Core Fig. 3.2-33

10kwi t t FueI 1200....--------+----------+--~----+---

2400 2800 1----------~-------_+_--_;__-~~-_____4 3200

.... 2000 0

lU...

~

6 kwIt t to...

lU

/---

~

E 1600 lU to-0.24 0.20 0.16 0.12 0.08 0.04 S80 0

F_TIVIl COOl:::!

800 400 "-

...A..-

~___""___6__""'___.....

0.0 fuel Radius, in BiI!lNuclear TMI Unit 1 Update* 5 7/86 Fuel Rod Temperature Profiles at 6 and 10 KW/Ft p.3.FIG-34 Fig. 3.2-34

§...

I...

I...

I

~

I u-

I.....-

§..a.

I!

N

~

§......-

N U:.

C

§ N..

I 0:-

I-

§ I

§

~

l-

-- ~

p l-I.. ~

0

!iII i*'".-

I-0-

I-N-

rb

... '- l-I-

4

.. ~ -' i

+

~

U.

ut... 4U 0-+4-I-l

~~

1 4

~ -

~

1II

~

.J.. *

~~ \\ *

\\.(1)

II

,,~

if'.

r"\\

~~

~

~

~

~

I~~

"""~*""'"

~

t'\\

--... j'"---.......

~"'"

~

4 hp 8

8 8

8 8

o o-o V'o o

fi ** ten c** 1111.'ld, I

~Nuclear TMI Unit 1 Update* 5 7/86 p.3.FIG-35 Percent Fission Gas Released as a Function of the Average Temperature of the U02 Fuel Fig. 3.2-35

d-of-Life lUll;

3. DI,I-IIVIU 1.10 (partial Rod Insertion)

I I

---~ FUll lidplln.

Cor. I.ttll I

PIP - 1. 50 (Iodifi.d COlin.)

1. 4'---~---+--~~-r-.....-~.........

1.1--....-

....-~..............

I

....-._--t--I--/-...'~,£.. PIp*

1.1

\\1

/

\\

1-I

o. 0....~_~_..........,j~....._..A..-_........._....._....-._~

0.' ~..,...-......---...+---t---+--+-----t~.....-

......~-+...............

I I

a. 4....--.....----....t~--+_-.....--I---+----+~-~....__t O. 2....--......--~~--+_-.....--t---.....---+--~...--tI

'L Iii

~

~

D.' ~~~-+-....._~..---+--...........--.......+---......~+-......t-t.......

20 40

&0 10 110 120 14a Dlltlnc. trGl lott.. of Acti,. FUll. in.

Iml!]Nuclear 1MI Unit 1 Update* 5 7/86 Axial Local to Average Burnup and Instantaneous Power Comparisons

p. 3.FIG-36 Fig. 3.2-36

Maximum DeSii" Diametral Gap "0

800

~

u 0-600 lU

)

400 200 0

0 8

12 16 20 24 linear Heat Rate,.

kw/ f t 2400 2200 2000

~

0 1800 I

~-

I... J600

l-CD Noml na I lU 1400 DI a.e t raI Gap u="'

T" 1200 u

)

l:'c:

0 u

1000 c.

ftI e.,:,

0:imNuclear 1MI Unit 1 Update* 6 7/87 Fuel to Clad Gap Conductance 'or End-O'-Cycle Conditions (Initial Cycle)

p. 3.FIG-37 Fig. 3.2-37

2D I

I I

~

I I

lalimull DesiRR Clearance 1.1 Alial Power and EDl Burnup Snape with Closed Pores 1.7 Ilill Power Ind EDl Bu rnup Shape

  • ith Op.en ~

'ores 1.5 Ilial POler Ind EDL Burnup Snape with Closed PQres 5

15

~

10 1:1 U

~..u o

o 2

4 6

I Initial Cold Diametral Clearance. in I

103 10 BimNuclear TMI Unit 1 Update* 6 7/87

p. 3.FIG-38 Fission Gas Release for 1.5 and 1.7 MaxlAvg. Axial Power Shapes (Initial Cycle)

Fig. 3.2-38

3500 3000 Desi an l illi t 114" Overpower 100~ Power 2500

&Ita.

c Closed u

m 2000

=.-

1.7 AI I aI Po.er an uc EDt Bu rnup Snape

&Itc 1.5 Axial Power ana u

EDl Burnup Snape

~

)

&It Pores

&It 1500 u

~

1.7 Ali al Power and Q,.

&It EDl Burnup Snape CoD 1000 MIII.U. Desie" Cleara"Ce~

500 o

2 4

6 8

10 Initial Cold Diaetral Clearance.

in I 103 BiE]Nuclear TMI Unit 1 Update* 6 7/87 p.3.FIG-39 Maximum Gas Release to Pressure Inside the Fuel Clad for Various Axial Burnup and Power Shapes (Initial Cycle)

Fig. 3.2-39

t _.-

.t I

I

, I Ik In. Fie tor CD HO' UN I' Cfll (ntllllp, IIISI Flctor CD "OJ UU CELL CD HO' CO'NlI CELL

HOT COhUOl 100 ULL Bil!INuclear TMI Unit 1 Update* 6 7/87

p. 3.FIG-40 Nominal Fuel Rod Power Peaks and Cell Exit Enthalphy Rise Ratios (Initial Cycle)

Fig. 3.2-40

~--

t I

hclllr "1 flCtor Q)

NOT UNIT CEll (nUIII" ** 11 'acur

~

MOT tAll CEll OJ MOT CUNEa CEll

~

MOT CONTaOl 100 ell l BENuelear TMI Unit 1 Update - 6 7/87

p. 3.FJG-41 Maximum Fuel Rod Power Peaks and Cell Exit Enthalphy Rise Ratios (Initial Cycle)

Fig; 3.2-41

1.1 1.5 1.4 1.3 1.2 1.1 CD 1.0 I

CI-..

N 0.9 I...

a 0.1 0.7 IC
a-

~...

0.&

z-..

0.5 u

0

~

0.4 0.3 0.2 011

\\

G* 2.21 I 101 IIi/tH-f t2

\\.'\\

I\\:

1-3 DNa Milt Flu.

!\\.

(DISII" Lillit)

'\\

~'\\

r\\.

lin IIIUII ON** 1.55

'\\

\\

\\

~

\\

~

/

V

~~

\\

~ I

/

1\\

V V

Calculatld Surflc.

\\

Milt Flu.

~

J'

\\I o

540 5&0 510 600 620 140 110

&10 100 120 LOCII Enthalpy, Itu/III BimNuclear 1MI Unit 1 Update* 5 7/86 p.3.FIG-42 Calculated and Design Limit Local Heat Flux Versus Enthalpy in the Hot Unit Cell at the Most Probable Condition (Initial Cycle)

Fig. 3.2-42

1.1 1.5 1.4 1.3 1.2 1.1 UI 1..0 I

0-

)(

0.9 N...-I 0.8 s::"-

~...

CD O. 7

I-..-

0.6 O.~

lQ U

Q

~

0.4 0.3 0.2 O. 1

~\\

\\

,.2.5' I 10' Ib/tH-f t2

~

I I

I I

~

1 r

I 1

~

1-3 ONI H**t Flu.

(D.Slln l'.' t)

~

\\

1\\

\\

~

.inl~u. ON'** 1.12

\\

\\

~ I

~

V V

~

I

\\

V "1

Calculated Surface

~

J J

....t Flul

\\,

o

~40 560 510 600 620

&40 6&0 680 700 720 local Enthalpy, Itu/lb 0ENuclear TMI Unit 1 Update* 5 7/86 p.3.FIG-43 Calculated and Design Limit Local Heat Flux Versus Enthalpy in the Hot Unit Cell at the Maximum Design Condition (Initial Cycle)

Fig. 3.2-43

CONTF,OL ROO ASSEMBLY PL ENUM ASSEMBLY OUTLET NOZ ZLE

~;URvE ILLANCE 5PECI~I1EN HOLDE R TUBE

LOWEP, GRID FLO W OJS TR IfurOR CONTROL P,OD DRIVES STUDS INTERNALS VENT VALVE CONTROL

~OD GUIDE TUBE CORE SUPPORT SHIELD INLET NOZZLE FuEL ASSEMBLY REACTOR VESSEL THERMAL SHIELD GUIDE LUGS INCORE INSTRUMENT GUIDE TUBES

________ IN CO REI NS TRUM EN T N 0 ZZ L E S Bil!1NucIe.r TMI Unit 1 Update*5 7186 p.3.FIG-44 Reactor VI_lind Intlmlll

CONTROL ROD ASSEMBLY LDCATION INCORE INSTRUMENT LOCATION REACTOR VESSEL THERMAL SHIELD CORE BARREL SURVEILLANCE SPECIMEN HOLDER TUIE BimNuclea, TMI Unit 1 Update* 5 7/86

p. 3.FIG-45 Reactor Vessel and Internals - Cross Section Fig. 3.2-45

0imNuclear 1MI Unit 1 Core Flooding Arrangement p.3.FIG-46 COlE fL ODD IN&

NOZZLE Update* 5 7/86 Fig. 3.2-46

1-,

--+----+++---tr---- t ---~--+;---+--

rn I

eMf I....'

MilL.

SICT** I-I Bi!lNucl.r 1MI Unit 1 UI'C..I lie

.u".

'URl

.IU Update* 5 7/86

p. 3.FIG-47 Internals Vent Valves Fig. 3.2-47

BimNuclear 1MI Unit 1 SEE SECTION BELOW Update* 5 7/86 p.3.FIG-48 Internals Vent Valve Clearance Gaps Fig. 3.2-48

TOP VIEW Update* 5 7186

~NucIe8r TMI Unit 1 FUll AlUmbly COHTROl. ROO GUIDE TUH

,'NSTRUMENTATION I

TUM I

r i

i J

, ',',r.

I i

i

' \\,

9-~

FUEL ROO ASSEMILY i

I r::

1:7' Ir1I n

'n I

r I I

I T

1 1 CROSS SECTION I

1

, i I

1

\\

I [

i ] 1 *

[

J l!

I r LOWER END FITTING

~

Ii I

-'-~--'

r-'---I'ir '~

I INSTRUMNTATION TUH.-l CONNECTION SNeER GRID U"O ENO trlTTING

)

)

Fig. 3.2-49 p.3.FIG-49

SPIDER TOP VIIW COUPLINt NEUTRON ~IING MATERIAL CONTROl. ROD p.3.FIG-50 ra::imNuclea, TMI Unit 1 Control Rod Assembly Update* 5 7/86 Fig. 3.2-50

SPIDER TOP VI!W NEUTRON ABSORItNG MATERIAL~

CONTROL ROD

~Nucl..r 1MI Unit 1 Axial Power Shaping Rod Assembly Update* 5 7/86 p.3.FIG-51 Fig. 3.2-51

SPIOfR ----

IURNAILI POISON ROD TOP VIIW

.URNA.LI POIION MATIRIAL

p. 3.FIG-52 0iI!JNuclear 1MI Unit 1 Burnable Poison Rod Assembly Update* 5 7/86 Fig. 3.2-52

TOP VIEW SPIDER-----....

ORIFICE ROO

p. 3.FIG-'53 Bil!lNuclear TMI Unit 1 Orifice Rod Assembly Update* 5 7/86 Fig. 3.2-53

tOJSING ASSY LOAD ARM ASSDfSl.Y p.3.FIG-54 0:W!lNuclear TMI Unit 1 Side View of BPRA Retainer Update* 5 7/86 Fig. 3.2-54

UPPER CORE PLAT! ASSY PAD TYP p.3.FIG-55

~Nucl..r TMI Unit 1 Top View of BPRA Retainer During Operation Update* 5 7/86 Fig. 3.2-55

POsmoN INDICATQIIt AlIDIILY STATOR.IIIMLV

p. 3.FIG-56 I

I CCUIL.NI AlIDIILV i i BimNuclear TMI Unit 1 Control Rod Drive - Gen. Arrangement Update* 5 7/86 Fig. 3.2-56

\\)

SECII** Z*Z SECII** I-I SIC"'I,.,

/E

//

.c:...- WlI' VALl( ASSEI.U

/IIT.I "Il lUI SUI' II' USEI.U L. l,l, Slell.. 1*1 SECII** 1*1 lUI SCll' **.*l **S*.I.

-r~j L

lUI SCIII II"'"

'U. sml......"

r~

~:=

~~~:ZZ~~~~'~. /

c-~ -~

tE:.-~

w~I.tiSii5iSi~~~~~~~

l

~ _~-=:-O~

~'IICTI' Cllllll.... ""1lI

"" CII"

L~."-

L S

SEC"" 1111 SEC 110.,.,

SEC""

S-S Bil!INucI**r TMI Unit 1 UpdItI. 5 7111 p.3.FIG-57 Fig. 3.2*57 TMI-UNIT 1 REV.

19, APRI L 2008 p.3.FIG-3 Stuck Rod Location BOC and EOC FIGURE 3.2-3