L-14-285, Revision of Overall Integrated Plan in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049)

From kanterella
(Redirected from ML14268A214)
Jump to navigation Jump to search

Revision of Overall Integrated Plan in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049)
ML14268A214
Person / Time
Site: Perry FirstEnergy icon.png
Issue date: 09/25/2014
From: Harkness E
FirstEnergy Nuclear Operating Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
EA-12-049, L-14-285, TAC MF0962
Download: ML14268A214 (86)


Text

{{#Wiki_filter:Perry Nuclear Power Plant 70 Center Road FirstEnergy Nuclear Operating Company Pe^ Ohio 44081 Ernest J. Harkness 440-280-5382 Vice President Fax: 440-280-8029 September 25, 2014 L-14-285 10 CFR 2.202 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-001

SUBJECT:

Perry Nuclear Power Plant Docket No. 50-440, License No. NPF-58 FirstEnergy Nuclear Operating Company's (FENOC's) Revision of Overall Integrated Plan for Perry Nuclear Power Plant in Response to March 12. 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Bevond-Design-Basis External Events (Order Number EA-12-049) (TAC No. MF0962) On March 12, 2012, the Nuclear Regulatory Commission (NRC or Commission) issued an order (Reference 1) to FENOC. Reference 1 was immediately effective and directs FENOC to develop, implement, and maintain guidance and strategies to maintain or restore core cooling, containment, and spent fuel pool cooling capabilities in the event of a beyond-design-basis external event. Specific requirements are outlined in Attachment 2 of Reference 1. Reference 1 required submission of an overall integrated plan pursuant to Section IV, Condition C. The final interim staff guidance (Reference 2) endorses industry guidance document Nuclear Energy Institute (NEI) 12-06, Revision 0 (Reference 3) with clarifications and exceptions identified in Reference 2. Reference 4 provided the FENOC overall integrated plan for Beaver Valley Power Station (BVPS), Unit Nos. 1 and 2, Davis-Besse Nuclear Power Station (DBNPS), and Perry Nuclear Power Plant (PNPP). As indicated in the FENOC status report provided by letter dated August 28, 2014 (Reference 5), planned strategy changes for PNPP were being incorporated into a revision of the PNPP Overall Integrated Plan (OIP). The purpose of this letter is to provide Revision 1 of the PNPP OIP (Enclosure). The extent of changes made to the OIP as a result of the revised strategies preclude the use of revision bars; therefore, the document has been revised in its entirety.

Perry Nuclear Power Plant L-14-285 Page 2 Revision 1 of the PNPP OIP includes the following three significant changes to the coping strategies:

  • Change from 480 volts alternating current (Vac) to 4160 Vac alternate power source
  • Change from Suppression Pool "Feed and Bleed" to Suppression Pool Closed Loop Cooling
  • Change from portable pumps at the barge slip to portable pumps in the Emergency Service Water Pumphouse (ESWPH)

The strategy changes incorporated into this revision do not impact compliance with Reference 3. This letter contains no new regulatory commitments. If you have any questions regarding this report, please contact Mr. Thomas A. Lentz, Manager - Fleet Licensing, at 330-315-6810. I declare under penalty of perjury that the foregoing is true and correct. Executed on September J T . 2014. Ernest J. Harkness

Enclosure:

Overall Integrated Plan for Perry Nuclear Power Plant, Revision 1

References:

1. NRC Order Number EA-12-049, Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events, dated March 12, 2012
2. NRC Interim Staff Guidance JLD-ISG-2012-01, Compliance with Order EA-12-049, Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events, Revision 0, dated August 29, 2012
3. NE112-06, Diverse and Flexible Coping Strategies (FLEX) Implementation Guide, Revision 0, dated August 2012
4. FirstEnergy Nuclear Operating Company's (FENOC's) Overall Integrated Plan in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049), dated February 27, 2013
5. FirstEnergy Nuclear Operating Company's (FENOC's) Third Status Report in Response to March 12, 2012 Commission Order Modifying Licenses with Regard to Requirements for Mitigation Strategies for Beyond-Design-Basis External Events (Order Number EA-12-049), dated August 28, 2014

Perry Nuclear Power Plant L-14-285 Page 3 cc: Director, Office of Nuclear Reactor Regulation (NRR) NRC Region III Administrator NRC Resident Inspector (PNPP) NRC Project Manager (PNPP) Ms. Jessica A. Kratchman, NRR/JLD/PMB, NRC

ENCLOSURE L-14-285 Overall Integrated Plan for Perry Nuclear Power Plant, Revision 1 (82 pages follow)

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 GeneralIntegrated Plan Elements Determine Applicable Extreme Input the hozardsapplicable to the site; seismic,externalflood, External Hazard high winds, snow,ice, cold, high temps. Describe how NEI 12-06 Ref: NEI 12-06Sections4.0- 9.0 Sections5 - 9 were applied and the basisfor why theplant JLD-ISG-2012-01Section1.0 screenedout for certain hazards. The Perry Nuclear Power Plant (PNPP) site has beenevaluatedand the following externalhazardshave beenidentified: . Seismic . ExternalFlooding . SevereStormsWith High Winds . Snow, lce And ExtremeCold . Extreme Heat The PNPPsite hasbeenreviewedagainstthe Nuclear EnergyInstitute(NEI) Flexibleand Diverse Coping Mitigation Strategies(FLEX) guidance(Reference2) and it hasbeendeterminedthat the FLEX equipmentshouldbe protectedfrom seismic,externalflooding, severestormswith high winds, snow ice and extremecold, and extremehigh temperatures (Reference9). PNPPhasdeterminedthe functionalthreatsfrom eachof thesehazardsand identifiedFLEX equipmentthat may be affected. The FLEX equipmentis being purchasedcommercialgradeand the storagelocationswill providethe protectionrequiredfrom thesehazards.PNPPis also developingproceduresand processes to further addressplant strategiesfor respondingto thesevarioushazards. Seismic: Perthe UpdatedSafetyAnalysis Report(USAR) (Reference4, Section 2.5), SeismicInput, the seismic criteriafor PNPPincludestwo designbasisearthquakespectra:OperatingBasisEarthquake(OBE) and the SafeShutdownEarthquake(SSE). The site seismicdesignresponsespectradefinethe vibratory groundmotion of the OBE and the SSE. The maximum horizontalaccelerationfor the SSE,is 0.159. The OBE hasa maximumhorizontalacceleration of 0.075g. The maximumverticalresponse spectrafor SSEare 0.l59 and for OBE,is 0.0759. Designresponsespectrafor the SSEandOBE comply with RegulatoryGuide 1.60. Basedon the FLEX guidancein Reference2, seismicimpactmust be consideredfor all nuclearplant sites. As a result,the creditedFLEX equipmentneedsto be assessed basedon the currentPNPP seismiclicensingbasisto ensurethat the equipmentremainsaccessibleand availableafter a Beyond DesignBasisExternalEvent (BDBEE), and that the FLEX equipmentdoesnot becomea targetor sourceof a seismicinteractionfrom othersystems,structuresor components.This assessment needsto includedocumentationensuringthat any storagelocationand deploymentroutesmeetthe FLEX criteria. External Floodine: The flood assessment for the PNPPsite providedin Reference4 consideredfour prospectivesourcesof flooding: Lake Erie, intenselocal precipitation,and flooding by two small,namelessstreamsthat borderthe siteto the eastand south. Flooding from Lake Erie is extremelyimprobablebecausethe maximum monthly meanlake elevationis approxirnately45 feet below plant final gradeelevations (611 to 620feet per United StatesGeologicalSurvey). Localizedflooding from the streamsduring a ProbableMaximum Flood (PMF) will not affect plant buildingsor equipment.The PMF reachesan elevationof 620'5"; however,the site buildirrgfloor elevationsare at an elevationof 620'6". Localized I of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 pondingmay occur but the resultingincreasein surfaceelevationof water flowing over the surroundingroadsand railroads(actingas weirs) would not exceedone inch. In summary,safety-relatedequipmentis protectedfrom the PMF. Floor elevationsof safety-related structuresare abovethe PMF. Therefore,PNPPis considereda "dry" site and externalflooding is NOT applicableto the PNPPsite. PNPPis developingproceduresand strategiesfor delivery of offsite FLEX equipmentduring Phase3 that considersregionalimpactsfrom flooding. Severe Storms With Hish Winds: NEI l2-06 (Reference2), Figures7-l and 7-2 wereusedfor this assessment.Figure 7-1 indicatesthat the high wind speedfrom a hurricanedoesnot exceed130 mph. Figure 7-2 indicatesa maximum wind speedof 188 mph for PNPP. Therefore,high wind hazardsare applicableto the PNPPsite. Snow, Ice And Extreme Cold: Per the FLEX guidelines(Reference2) all sitesshouldconsiderthe temperaturerangesand weather conditionsfor their site for storingand deployingtheir FLEX equipment.That is, FLEX equipment shouldbe suitablefor use in the anticipatedrangeof conditionsfor the site,consistentwith normal designpractices. NEI 12-06(Reference2) discussesthe potentialfor blockageof the intakestructure.In extremelow temperaturesit is possiblethat the cooling lake will developfrazil ice on its surface;however,the intakestructuresto the UltirnateHeat Sink (UHS) are approximately2,600 feet offshoreand well below the surfaceof the water. The possibilityof floating ice sheetsor frazil ice blockingthe ports is very remote. For the very unlikely casewherecompleteblockageof the intakestructureswould occur, water can be drawn from the dischargetunnel.Therefore,flow blockagefrom ice is NOT applicableto the PNPPsite. Applicability of snow and extremecold: The PNPPsite is abovethe 35th parallel;therefore,the FLEX strategiesmust providethe capabilityto addressthe impedancescausedby extremesnowfall with snow removalequipment,as well as the challengesthat extremecold temperatures may present.On Figure 8-l of Reference2,PNPPis located in the areaidentified as purple and pink, which indicatesthat 3-day snowfallsup to 36 inchesshouldbe anticipated.The maximum Z4-hoursnowfall observedwas 26.5inches,which occurredat Erie, Pennsylvaniain December1944. The minimum-recordedtemperaturein the areaaroundthe PNPPsite is -20oFand occurredin Genevaper Reference4,Table2.3-4. Therefore,snow and extremecold hazardsare applicableto the PNPPsite. Applicability of ice storms: The PNPPsite is a Level 3 regionas definedby Figure 8-2 of the NEI FLEX ImplementationGuide (Reference2). Therefore,ice stormsare applicableto the PNPPsite. In summary,basedon the availablelocal dataand Figures8-l and 8-2 of NE,l 12-06,the PNPPsite experiencessignificantamountsof sno% ice,,and extremecold temperatures. Therefore,snow,ice, and extremecold temperaturehazardsare applicableto the PNPPsite. Extreme Heat: PerNEI 12-06,all sitesmust addresshigh ternperatures.Virtually every statein the lower 48 contiguousUnited Stateshasexperiencedtemperaturesin excessof I10"F. Many stateshave experiencedtemperatures in excessof 120'F. Sitesshouldconsiderthe impactsof theseconditionson the FLEX equipmentand its deployment. 2of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 The maximum-recorded temperaturein the areaaroundthe PNPPsite was 103"Fand occurredin Clevelandper Reference4, Table2.3-4. In summary,basedon the availablelocal dataand industryestimates,the PNPPsite doesnot experience extremehigh temperatures.However,per NEI I 2-06, all siteswill addresshigh temperatures. Therefore,high temperatures are applicableto the PNPPsite. Selectionof FLEX equipmentthe PNPP site will considerthe site maximum expectedtemperaturesin their specification,storage,and deploymentrequirernents, including ensuringadequateventilationor supplementarycooling,if required. Key Site assumptionsto Provide key assumptionsassociatedwith implementationof implement NEI 12-06strategies. FLEX strategies: Ref: NEI 12-06Section3.2.1 NEI 12-06Assumptions Section3.2.1of NEI 12-06providesthe following assumptions. Initial Plant Conditions The initial plant conditionsare assumedto be the following: Al. Prior to the event the reactorhas beenoperatingat 100 percentratedthermal power for at least 100 daysor hasjust beenshut down from sucha power history as requiredby plant proceduresin advanceof the impendingevent. 1^2. At the time of the postulatedevent,the reactorand supportingsystemsare within normal operatingrangesfor pressure,temperature,and water level for the appropriateplant condition. All plant equipmentis eithernormally operatingor availablefrom the standby stateas describedin the plant designand licensingbasis. Initial Conditions The following initial conditionsare to be applied: 4 3 . No specificinitiating eventis used. The initial conditionis assumedto be a lossof offsite power (LOOP) at a plant site resulting from an externaleventthat affectsthe off-site power systemeitherthroughoutthe grid or at the plant with no prospectfor recoveryof off-site power for an extendedperiod. The LOOP is assumedto affect all units at a plant site. 1.4. All installedsourcesof emergencyon-sitealternatingcurrent(AC) power and Station Blackout(SBO) AlternateAC power sourcesare assumedto be not availableand not imminently recoverable. A 5 . Cooling and makeupwater inventoriescontainedin systemsor structureswith designsthat are robustwith respectto seismicevents,floods,and high winds, and associatedmissilesare available.

46. Normal accessto the UHS is lost, but the water inventoryin the UHS remainsavailableand robustpiping connectingthe UHS to plant systemsremainsintact. The motive force for UHS flow, i.e., pumps,is assurnedlost with no prospectfor recovery.

p^7. Fuel for FLEX equiprnentstoredin structureswith designsthat arerobustwith respectto seismicevents,floodsand high winds and associated missiles,remainsavailable. A 8 . Permanentplant equiprnentthat is containedin structureswith designsthat are robustwith respectto seismicevents,floods, and high winds, and associatedmissiles,are available. 3 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 A9. Other equipment,suchas portableAC power sources,portableback up direct current(DC) power supplies,sparebatteries,and equipmentfor 10 Code of FederalRegulations(CFR) 50.54(hh)(2), may be usedprovided it is reasonablyprotectedfrom the applicableexternal hazardsper Sections5 through9 and Section11.3of NEI 12-06and haspredetermined hookup strategieswith appropriateprocedures/guidance and the equipmentis storedin a relativeclosevicinity of the site. Al0. Installedelectricaldistributionsystem,including invertersand batterychargers,remain availableprovidedthey are protectedconsistentwith currentstationdesign. Al l. No additionaleventsor failuresare assumedto occur immediatelyprior to or during the event,includingsecurityevents. Al2. Relianceon the fire protectionsystemring headeras a water sourceis acceptableonly if the headermeetsthe criteriato be consideredrobustwith respectto seismicevents,floods, and high winds,and associated missiles. Reactor Transient The following additionalboundaryconditionsare appliedfor the reactortransient: Al3. Following the lossof all AC power,the reactorautomaticallytrips, and all rods are inserted. Al4. The main steamsystemvalves(suchas main steamisolationvalves,turbine stops, atmosphericdumps,etc.),necessaryto maintaindecayheatremovalfunctionsoperateas designed. Al5. Safety/ReliefValves (SRVs) initially operatein a normal mannerif conditionsin the reactor pressurevessel(RPV) so require. Normal valve reseatingis alsoassumed. A16. No independentfailures,,otherthan thosecausingthe extendedlossof all AC power/lossof normal accessto the ultimateheatsink (ELAP/LUHS) event,are assumedto occur in the courseof the transient. Reactor Coolant Inventory Loss Sourcesof expectedboiling water reactor(BWR) reactorcoolantinventoryloss include: Al7. Normal systemleakage. A18. Lossesfrom letdownunlessautomaticallyisolatedor until isolationis procedurallydirected. A19. Lossesdueto BWR recirculationpump sealleakage. A20. BWR inventorylossdue to operationof steam-drivensystems,SafetyRelief Valve (SRV) cycling, and RPV depressurization. Spent Fuel Pool (SFP) Conditions The initial SFPconditionsare: A21. All boundariesof the SFPare intact,includingthe liner, gates,transfercanals,etc. A22. Although sloshingmay occur during a seismicevent,the initial lossof SFP inventorydoes not precludeaccessto the refuelingdeck aroundthe pool. 1^23.SFPcooling systemis intact,including affachedpiping. A24. SFPheat load assumesthe maximum designbasisheatload for the site. Containment Isolation Valves A25. It is assumedthat the containmentisolation actions delineatedin current station blackout 4of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 coping capabilitiesis sufficient. Site SnecificAssumptions: The followins assumptionsare specific to the PNPP site: A26. PNPPwill be ableto identifo an ELAP conditionwithin I hour in orderto enableactions which placethe plant outsideof the currentdesignand licensingbasis. A27. Considerations for exceptionsto the site securityplan or other license/sitespecific requirementswill be includedin the FLEX SupportGuidelines(FSGs). A28. Flood and seismicre-evaluations pursuantto the 10 CFR 50.54(f)letterof March 12,2Al2 are not completedand thereforenot assumedin this submittal. As the re-evaluationsare completed,appropriateissueswill be enteredinto the correctiveaction systemand addressed on a schedulecommensurate with other licensingbaseschanges. A29. To support time sensitive FLEX actions, it is assumedadequatestaffing levels will be available. Requiredstaffing levelswill be determinedconsistentwith guidancecontainedin NEI l2-06 for each of the site specific FLEX strategies.Assumedavailablestaffing levels will be determinedconsistentwith Guideline For AssessingBeyond Design Basis Accident ResponseStaffingAnd CommunicationsCapabilities,NEI 12-01,as describedbelow. The eventimpedessite accessas follows: A. Posteventtime: 6 hours- No site access.This durationreflectsthe time necessaryto clearroadwayobstructions,usedifferenttravel routes,mobilize alternatetransportation capabilities(e.g.,privateresourceprovidersor public sectorsupport),etc. B. Posteventtime: 6 to 24 hours- Limited site access.Individualsmay accessthe site by walking, personalvehicleor via alternatetransportationcapabilities(e.g.,private resourceprovidersor public sectorsupport). C. Posteventtime: 24+ hours- Improvedsite access.Site accessis restoredto a near-normal statusand/or augmentedtransportationresourcesare availableto deliver equipment,suppliesand largenumbersof personnel. Theseresultswill be comparedto confirm this assumption,or adjustmentswill be madeto plant staffingor FLEX designto meetthis requirement. A30. This plan definesstrategiescapableof mitigatinga simultaneousloss of all AC power and lossof normal accessto the ultimateheatsink resultingfrom a beyond-design-basis eventby providingadequatecapabilityto maintainor restorecore cooling,containment,and SFP cooling capabilitiesat all units on a site. Thoughspecificstrategiesare beingdeveloped,due to the inability to anticipateall possiblescenarios,the strategiesare also diverseand flexible to encompassa wide rangeof possibleconditions. Thesepre-plannedstrategiesdevelopedto protectthe public healthand safetywill be incorporatedinto the unit emergencyoperating proceduresin accordancewith establishedEmergencyOperatingProcedure(EOP) change processes, and their impactto the designbasiscapabilitiesof the unit evaluatedunder 10 CFR 50.59. The plant TechnicalSpecificationscontainthe limiting conditionsfor normal unit operationsto ensurethat designsafetyfeaturesare availableto respondto a designbasis accidentand direct the requiredactionsto be takenwhen the limiting conditionsare not met. The resultof the beyond-design-basis eventmay placethe plant in a conditionwhere it cannotcomply with certainTechnicalSpecifications,andlorits SecurityPlan,as such,may warrantinvocationof 10 CFR 50.54(x)and/or10 CFR 73.55(p). A31 . lnstrumentationof FLEX equipmentwill be usedto confirm continualperformance. 5 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Extent to which the guidance, Include a description of any alternatives to the guidance, and JLD-ISG -2012-01and NEI 12- provide a milestonescheduleof planned action 06, are being followed. IdentiS any deviations to JLD-ISG-2012-01and NEI 12-06. Ref: JLD-ISG-2O12-0t NEI 12-06Section13.l PNPPplansto fully comply with the guidancein JLD-ISG-2012-01,Reference3, and NEI 12-06 Reference2, in implementingFLEX strategiesfor the PNPPsite. Milestonescheduleupdatesare now reflected in the six-month statusreports. Provide a sequenceof events Strategiesthot have a time constraint to be successfulshould be and identi$ any time identified with o technical basis and a justification provided that constraint required for success the time can reosonably be met (for example,a walkthrough of including the technical basis for deployment). the time constraint. Describe in detail in this sectionthe technical basisfor the time Reft NEI 12-06Section3.2.1.7 constraint identified on the sequenceof eventstimelineAttachment JLD-ISG-2012-01Section2.I ]A Seeattachedsequenceof eventstimeline (AttachmentIA). The sequenceof eventsand any associated time constraintsare identifiedfor PNPP Modes I through4 strategiesfor FLEX PhaseI throughPhase3. Theseactionsare boundingwhen comparedto Mode 5, asthey requirethe most personnel,actions,and time constraints.Seeattachedsequenceof events timeline (Attachrnent1A) for a summaryof this information. The times identifiedto initiateeach action in this sectionand in AttachmentlA are basedon resourceloadingto allow completionof all actionsprior to their individualtime constraints.The time and resourcesrequiredto completethese taskshavebeendevelopedusing plant staff walkthroughsand tabletopevaluations.The times stated are takento be the elapsedtime after the lossof power due to the externalevent. Time sensitive completiontimes are included. Discussionof tirne constraintsidentifiedin Attachment1A table.

l. Within 30 minutesperform crosstie of Unit I to Unit 2 Batteries
2. Prior to t hour,declareELAP (Tableitem 3). This declarationallows actionsto be takenwhich placeplant componentsoutsideof the currentlicensingbasis. This action is requiredat this time so that the FLEX load shedactionscan be initiatedat one hour after the event. As soonas the ELAP is declared,operatorswill contactthe National SaferResponseCenter(NSRC)

(formerly the RegionalResponseCenter(RRC)) to requestdelivery of off-site equipmentbe initiated.Declarationof an ELAP is time critical.

3. Within 3 hourscompleteDC load shedactions
4. Within 4 hoursprovidealternatecooling to ReactorCore IsolationCooling (RCIC) pump room by deploymentof portablegeneratorand fan.
5. At 5.5 hours,begin connectingRCIC suctionsourceto allow RCIC feed with an alternate sourceto the heatedSuppressionPool Water(Tableitem 1I and FigureA.3-1). This action providesan alternatewater sourcefor RCIC and core cooling.

6 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 6 . At 6 hours,start FLEX generator(s)to energize41601480 Vac vital buses(Tableitem l4). This is a critical task to power the plant 480 Vac equipmentrequiredfor Phase2. This equipment includespoweringthe batterychargersto ensurethe batteriesdo not depletewithin their 24 hour capacity. This allows motor operatedvalves(MOVs) to be remotelyoperatedincludingthe valvesfor SuppressionPool Make Up (SPMU), and the SuppressionPool CleanUp (SPCU) or AlternateDecay Heat Removal(ADHR) pump to provide "closed loop" containmentcooling (credited)or alternatively,to enablethe bleedfunction from the SuppressionPool and remove decayheat(non-credited). 7 . At 6 hours, after startingthe FLEX generator(s),start and operatethe FLEX Lake Water Pump(s)at the EmergencyServiceWaterPump House(ESWPH) (Tableitem 12). This is a critical activity to provide EmergencyServiceWater (ESW) flow through the ResidualHeat Removal (RHR) heat exchangeras cooling water and/or establishan alternatewater sourcefor the RCIC. Modular AccidentAnalysis Program(MAAP) analyses(Referencel) have demonstrated that the SuppressionPool temperaturewill not exceedthe value specifiedin Reference11 for RCIC operabilitybefore7.8 hrs. Establishingthis water sourceensures continuedcore cooling. 8 . At 6 hours,initiate SuppressionPool Makeupwith SPMU (Tableitem l6). The MAAP analysis of the coping strategiesperformedfor PNPPcreditsSPMU at 6 hoursto provide additional volume of water to the SuppressionPool. 9 . At 6.5 hours,initiatethe creditedclosedloop cooling strategyvia the use of the ADHR/SPCU pumps. 1 0 .At t hours,begin refuelingfor the small I l0 Vac portablegeneratorif RCIC Pump Room cooling is being accomplishedby providingair flow to the room using a portablefan powered by the portablegenerator. l l . At l6 hours,startand operatediesel-powered compressor(Tableitem 2l). Calculationshave determinedthat instrumentair receivertankscan supportoperationof the SRV valvesfor at least24 hours. This calculationis basedon designleakageand air usefor over 200 actuations. The coping analysisestimateslessthan 200 actuationsin24 hours. t 2 .At24 hours,transitionfrom "closedloop" cooling usingADHR/SPCU to ShutdownCooling using RHR (Table item23). 1 3 .At24 hours,begin SFP makeup(Thbleitem 24) it needed.Calculationsof the SFPheatup and boil offassuming inventorylossdue to seismicsloshingand maximum heat load determinedthe time to lower water levelsto l0 feet abovethe fuel is at least29 hours. The SFPemergency makeup systemcan be initiated remotely from the IntermediateBuilding at any time after the FLEX Lake WaterPump(s)have initiatedflow throughthe ESW system. TechnicalBases An analysisof the core cooling and containmentcooling copingstrategyhas beenperformedusingthe MAAP 4.0.7code. This analysisprovidesthe basisfor the core cooling and containmentcooling actionsand timing (Reference7). Additionally,an analysisof the spentfuel pool was performedto determineinventorylossdue to seismicallyinducedsloshingand the heatup and boil down of the inventoryin the pool. The analysis was performedusingthe maxirnumheatload in the pool assuminga full core offload (Reference8). 7 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Identify how strategieswill be Describe how the strategieswill be deployedin all modes deployed in all modes. Ref: NEI 12-06section 13.1.6 Deploymentof FLEX equipmentis describedfor eachFLEX function in the subsequent sectionsand coversall operatingmodes. The broad-spectrum deploymentstrategiesdo not changefor the different operatingmodes. The deploymentstrategiesfrom the storageareasto the OperationsAreas are identicaland includedebrisremoval,equipmenttransport,fuel transport,andpower sourcesand requirements.The only differenceis the utilizationof the RCIC as a high pressurecore cooling source for eventsinitiating during Modes I -4. The FLEX Lake Water Pump(s)will provide direct flow to the RPV in Mode 5 throughthe ESW',Low PressureCore Spray(LPCS),and High PressureCore Spray (HPCS)pipeswhen RPV makeupis needed.Fuel Pool Cooling and Cleanup(FPCC) alternatedecay heatremovalwill be usedto removedecayheat. Eachof thesestrategiesand the associatedconnection points are describedin detail in the subsequent sections.The electricalcoping strategiesare the same for all modes. PNPP will use deploymentpaths,which refer to the route from a storagelocation to the operations area(s)for generatorsand other equipment;and routing paths,which refer to the route from a staging locationto the point of connectionto existingplant equipmentfor hosesand cables. Deploymentpaths and routing pathsare shown in Attachment2 of this documentfor all strategies.Generatorstorageand operationsareasare shown on Figure43- I 7, ElectricalGeneratorStorageand OperationsAreas. To ensurethat the strategiescan be implementedin all modes,areasadjacentto the equipmentstorage and OperationsAreas,as well as the deploymentand hoserouting pathswill be maintainedclearat all times. Theserequirementswill be includedin an administrativeprogram. SeeReference16. Provide a milestoneschedule. The dates specifically required by the order are obligated or This scheduleshould include: committeddates. Other dates are planned datessubjectto change. Updateswill beprovided in theperiodic (six month) statusreports.

  . Modifications timeline o Phase1 Modifications o Phase2 Modifications o Phase3 Modifications
   . Procedure guidance developmentcomplete o Strategies o Maintenance
   . Storage plan (reasonable protection) r   Staffing analysis completion
   . FLEX equipment acquisition timeline
   . Training completion for the strategies
   . Regional Response Centers operational

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Ret NE I l 2 -0 6 S e c ti o nl 3 .l SeeSix Month StatusReportupdates. 9 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Identify how the programmatic Provide a description of the programmatic controls equipment controls will be met. protection, storage and deploymentand equipmentquality. See section ll in Ir{EII2-06. Storageof equipment, 11.3,will be Reft NEI 12-06Sectionl1 documentedin later sectionsof this templateand neednot be JLD-ISG -2012-01Section 6.0 included in this section. Seesection6.0 of JLD-LSG-2}12-01. Equipmentassociatedwith thesestrategieswill be procuredas commercialequipmentwith design, storage,maintenance, testing,and configurationcontrol in accordancewith NEI l2-06 Rev.0, Section I l. Programsand controlswill be establishedto assurepersonnelproficiencyin the mitigationof beyond-design-basis eventsis developedand maintainedin accordancewith NEI 12-06Rev. 0, Section11.6. ProcedureGuidance PNPPis a participantin the Boiling WaterReactorOwnersGroup (BWROG) and will implementFSGs in a timeline to supportthe implementationof FLEX by Spring 2015. The BWROG guidanceis to assistutilities with the developmentof site-specificproceduresto copewith an ELAP in compliance with the guidanceand requirementsof Reference2. The strategiesdescribedfor PNPPare consistent with the alternatemeansof heat removal strategiesdevelopedfor the BWR 6 Mark III plants (Reference10). The proposedimplementationstrategyalignswith the procedurehierarchydescribedin NEI 12-06 (Reference2) in that actionsthat maneuverthe plant are containedwithin the controlling strategic procedures,and the tacticalFSGsare implementedas necessaryto maintainthe key safetyfunctionsof Core Cooling, SpentFuel Cooling, and Containmentin parallelwith the strategicprocedureactions. The overall approachis symptom-based,meaningthat the controllingprocedureactionsand FSGsare implementedbasedupon actualplant conditions. PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon generic industryguidance. It is expectedthat the following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interface: o Operationof RCIC during ELAP conditions

    . AlternateRCIC SuctionSource o  DC Load Shed
    . Initial Assessmentand FLEX EquiprnentStaging
    . Loss of DC Power o  Long Term RPV Inventory and TemperatureControl
    . AlternateSFPMakeupand Cooling o  AlternateContainmentCooling o  Transitionfrom FLEX Equipment Maintenanceand Testing The FLEX mitigationequipmentwill be initially tested(or otherreasonablemeansused)to verifl, performanceconformsto the limiting FLEX requirements.It is expected'thatthe testingwill include the equipmentand the assembledsub-systemto meetthe plannedFLEX performance.Additionally, First EnergyNuclearOperatingCornpany,FENOC, will implementthe maintenanceand testing ternplateupon issuanceby the ElectricPower ResearchInstitute(EPRI). The templatewill be developedto meetthe FLEX guidelinesestablished        in Section11.5of Reference2.

l0 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 The unavailabilityof equipmentand applicableconnectionsthat directly performsa FLEX mitigatron strategywill be managedusingplant equipmentcontrol guidelinesdevelopedin accordancewith NEI 1 2 - 0 6R e v .0 , S e c t i o n1 1 . 5 . Staffing The FLEX strategiesdocumentedin the eventsequenceanalysis(Reference9) assume:

   . On-site staff areat administrativeshift staffing levels
   . No independent,           concurrentevents
   . All personnelon-siteare availableto supportsite response PNPPwill haveto addressstaffingconsiderations                    in accordancewith NEI 12-06(Reference2) to fully implementFLEX at the site.

Configuration Control PerNEI 12-06(Reference2) andthe Interim Staff Guidance(Reference3), the FLEX strategiesmust be maintainedto ensurefuture plant changesdo not adverselyimpact the FLEX strategies. The FLEX strategiesand basiswill be maintainedin an overall programdocument. Existing plant configurationcontrol procedureswill be modifiedto ensurethat changesto the plant design,physical plant layout,roads,buildings,and miscellaneousstructureswill not adverselyimpactthe approved FLEX strategies in accordance with NEI 12-06Rev. 0 SectionI 1.8. Describetraining plan List training plans for affected organizations or describe the plan for training development Trainingplanswill be developedfor plant groupssuchas the EmergencyResponseOrganization,Fire, Security,EmergencyPreparedness, Operations,Engineering,MechanicalMaintenance,and Electrical Maintenance.The training plan developmentwill be done in accordancewith PNPPproceduresusing the SystematicApproachto Training,and will be implementedto ensurethat the requiredPNPPstaff is trainedprior to implementationof FLEX. The training programwill comply with the requirements outlined in SectionI l.6 of NEI 12-06. Describe Regional Response Discussionin this section may include thefollowing information Center plan and will he.furtherdevelopedas the RegionalResponseCenter developmentis completed. o Site-specificRRCplan o ldentification of theprimary and secondaryRRC sites o ldentification of any alternate equipmentsites (i.e., another nearby site with compatibleequipmentthat can be deployed)

                                                . Describe how delivery to the site is acceptable r    Describe how all requirements in NEI 12-06 are identified The industrywill establishtwo NSRCsto supportutilities during beyonddesignbasisevents. Each NSRC will hold five setsof equipment,four of which will be ableto be fully deployedwhen requested, the fifth set will haveequipmentin a maintenancecycle. Equipmentwill be moved from an NSRC to the near site stagingare1 establishedby the StrategicAlliance for FLEX EmergencyResponse (SAFER) team and the utility. Communicationswill be establishedbetweenthe affectednuclearsite and the SAFER teamand requiredequipmentmovedto the site as needed.First arriving equipment,as I I of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 establishedduring developmentof the nuclearsite'splaybook,will be deliveredto the site within 24 hoursfrom the initial request. FENOC has signeda contractwith SAFER to meetthe requirementsof NEI 12-06,Section12. Notes: None 12of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Installed Equipment Phase1 Determine Baselinecoping capabilify with installed coping modifications not including FLEX modifications, utilizing methods described in Table 3-1 of NEI 12-O6z Reft JLD-lSG-2012-01 Sections 2 and 3 Provide a general description of the coping strategiesusing installed equipmentincluding station modffications that are proposed to maintain core cooling. Identifu methods(RCIC) and strategy(ies) utilized to achievethis coping time. Modes l - 4 PhaseI actionsinclude thosethat can be performedusing installedplant equipmentto extendinitial coping,building on the currentstationblack out response.The key functionsto protectare core cooling,containmentintegrity and spentfuel pool cooling. In somecases,actionsare requiredin supportof a safety function rather than directly serving a safety function. Reactorcore cooling and heatremovalis providedduring Phase1 by usingthe turbinedriven RCIC pump to supply water to the RPV and operationof SRVs to vent streamfrom the RPV to the Suppression Pool. The RCIC pump is poweredby the steamgeneratedin the RPV. The instrumentationand controlsrequiredto operatethe RCIC turbine are poweredby the Division 1 125 Vdc bus EDlA so the availabilityof the equipmentfor providingcore cooling is unaffectedby an ELAP. The RCIC pump is locatedon elevation574'6" of the Auxiliary (Aux) Building in a dedicated watertightroom. The Aux Building structureis SeismicCategoryI, and protectedagainstseismic events,floods,and high winds. The RCIC turbine,pump and supportingvalvesand piping are also seismicallyqualified. The RCIC pump and associatedpiping is expectedto be availablefor all hazards addressed by FLEX. The RCIC throttlevalve and SRVsare requiredto supportthis function. The RCIC throttlevalve is poweredby an attachedhydraulicsystemwith control providedby 125Vdc and will be usedto balance makeupflow to the RPV with the loss of inventory due to steamdischargethrough the SRVsto maintainthe water level in the RPV. This will minimize cycling of the RCIC systemvalvesand maintainthe RCIC pump operatingduring the event. As RPV pressureincreases, the SRVs (electricallycontrolled)will be usedto maintainRPV pressureby releasingsteamfrom the RPV to the Suppression Pool. The RCIC pump is designedto automaticallystartin the eventof an initiation signalfor RPV Low Level 2 (Reference4, Section5.4.6). If the automaticstartdoesnot occur,plant proceduresprovidethe operatoractionsrequiredto startthe pump from the Control Room or locally from the RCIC room. The normal water sourcefor the RCIC pump is the CondensateStorageTank (CST). However,the CST is not considered"robust" as definedin NEI l2-06 for protectionfrom seismicandtornadoevents. Therefore,the Suppression Pool is creditedas the sourcefor the RCIC pump. Suctionwill be aligned to the Suppression Pool if the CST is unavailableduring Phase1 per existingoperationsprocedure(s) (FSG 10.1). Makeupto the RPV is providedby the SuppressionPool inventoryand makeupwater to the Suppression Pool is not requiredduringPhase1 coping. During Phase1, all of the energyfrom the core decayheatand RPV sensibleheatwould be deposited in the SuppressionPool. This would resultin a temperatureincreasein the pool that could challenge the continuedoperationof the RCIC with respectto currentdesignbasislimits. A BWROG task has qualifiedthe ooerationof the RCIC up to a suctiontemperatureof 230'F (ReferenceI l). In orderto l3 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Installed Equipment Phase1 maintainthe operationof the RCIC to provide core cooling,equipmentwill be deployedfor use in Phase2 to providean alternatecold water suctionsupplyto the RCIC pump. If an ELAP occursduring Mode 4, waterin the vesselwill heatup. When temperaturereaches2l2oF, the vesselwill begin to pressurize.The turbine driven systemsare generallyavailablefor emergency use,thus during the pressurerise, RCIC can be returnedto servicewith suctionfrom the CST or SuppressionPool to provide injectionflow to the vessel. When pressurerises,the operatorswill control pressureusing an SRV to supportRCIC operation. The primary and secondarystrategiesfor Mode 4 arethe sameasthosefor Modes I - 3 as discussedabovefor core cooling. OnceAC electrical power is restored,the StandbyLiquid Control, SPCU,ADHR, and FLEX Lake Water Pump(s)are availableto provide for RPV makeupin the eventthe RCIC is not available. Modes 5 Core Cooling: An estimationof time to core uncoverywas performedwith the vesselfloodedto the vesselflange (Reference5) to boundthe time availableif the ELAP eventinitiatesin mode 5 whereRCIC is not available. This calculationshowedthat more than I I hourswere requiredto boil down to Top of Fuel. This allows adequatetime to arrangelow pressurecore cooling/injectionand otherresponses as Phase 2 or Phase3 actionsusingFLEX equipment. Details: Provide a brief description Confirm that procedure/guidanceexistsor will be developedto of Procedures / Strategies/ support i mplementat i on. Guidelines The following OffNormal Instruction(ONIs) and FSGscurrently exist and would be usedduring the initial phaseof the ELAP o ONI-RI0-2 Total Lossof AC Power

                                  . ONI-SPI D-3 CrossTying Unit I and Unit 2 Batteries
                                  . ONI-SPI D- I MaintainingSystemAvailability
                                  . ONI-SPI-D-2Non-essential   DC Loads o    ONI-SPI H-3, Instrumentation AvailableDuring Station Blackout.
                                  . ONI-EI2-2 Lossof DecayHeatRemoval
                                  . FSG 10.1RCIC FLEX Operation PNPPwill continueparticipationin the BWROG and will update plant proceduresupon changesto genericindustryguidance.The BWROG EmergencyProceduresCommitteehasdevelopedchanges to the EmergencyProcedureGuidesand SevereAccidentGuidance (EPG/SAGs,Referencesl2 and 13) to supportcontinuedoperationof RCIC during an ELAP. Thesechangeswere completedin EPG/SAGs Rev3.

Thesechangesrnodify RPV pressurecontrol guidanceto maintain RCIC operation. PNPP'sresponseto the ELAP assumesthat the operatorsfollow ONI-Rl0-2 Total Loss OfAC Powerguidancein the initiaf phaseof the eventto extendthe l25Ydc batterylife, establish ventilationto roomswith vital equipmentand to depressurizeand controlthe RPV pressureand level. 1 4o f 8 2

Planfor PerryNuclearPowerPlant,Revision1 OverallIntegrated Maintain Core Cooling & Heat Removal BWR Installed Equipment PhaseI It is expectedthe following FSGswill be incorporatedinto plant proceduresin orderto developthe FSG interfacefor Phasel:

                              . FSG 10.3RCIC SuctionAlternateSupply
                              . ONI-SPI D-3 Division3 To Division2 480 Volt Crosstie
                              . ONI-SPI D-3 Nonessential  DC Loads
                              . FSG 80.1 EstablishingFLEX Travel Paths Identify modifications    List modificationsand describehow they support coping time.

Thereare no modificationsrequiredto supportPhasel. Key Reactor Parameters List instrumentationcreditedfor this coping evaluationphase. o RPV Level o RPV Pressure

                            . RPV Temperature
                            . RCIC Flow Rate
                            . SuppressionPool Temperature
                            . Suppression Pool Level
                            . ContainmentPressure PNPPwill developproceduresto readthis instrumentationlocally, whereapplicable,using a portableinstrument,as requiredby Section 5.3.3of NEI 12-06.

Notes: None l5 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase2 Provide a generol description of the coping strategiesusing on-siteportable equipmentincluding station modfficationsthat ore proposed to maintain core cooling. Identify methodsand strategy(ies) utilized to achievethis coping time. The preferredcoping strategyfor Phase2 consistsof maintainingRCIC operationversus depressurizingtheRPV and injecting water with low pressurepumps to maintain RPV level. A connectionpoint is providedfrom the dischargepiping of the RHR heatexchangersthat can be connectedto the connectionpoint on the RCIC suctionline to allow Suppression Pool water that is being cooledby "ClosedLoop SuppressionPool Cooling" to supplythe RCIC system. The expected temperatureof the RHR heatexchangeroutlet during "ClosedLoop Suppression Pool Cooling" has beenevaluatedto be lessthan 140"F (RCIC suctiondesignbasistemperature). secondaryalternate A sourceof waterto the RCIC systemis providedby a connectionpoint on the ESW systemthat can be alignedto the RCIC pump suctionto allow the FLEX Lake Water Pump(s)to provide an indefinite injectablevolume (via Lake Water) to the RCIC system. With an alternativesuctionsourcealigned, RCIC systemoperationis not challengedby high temperatures of the processflow and RCIC operation continuesuntil ShutdownCooling can be establishedin Phase3. ShouldRCIC fail during Phase2, depressurizingtheRPV and using low pressureinjectionof Suppression Pool or lake water into the RPV usingthe SPCU,ADHR, or FLEX Lake Waterpump(s)is the secondarymethodof RPV injection. The actionsand modificationsrequiredto continueinjectingto the RPV are discussed below. The SuppressionPool heatremovalactionsand rnodificationswill be discussedunderthe Maintain ContainmentFunction. EstablishingFLEX equipmentto supply 41601480 Vac power to supportthesefunctionsis discussedin the SafetyFunctionSupportsection. Phase2 actionsincludethosewhich can be performedusing on-siteFLEX equipmentto furtherextend copinguntil externalsupportbecomesavailable. It shouldbe notedthat precursortasksmay be requiredto enableapplicationof requiredFLEX strategies.For example,in orderto deploy FLEX equipment,debrisremovalactivitiesmay needto be initiatedand partially completed,in orderto effectivelydeployequipmentto the appropriateOperationsArea. Establishingthe FLEX water source In order to establishthe FLEX water sourcefrom the UHS for variousapplications(componentcooling and/orsysteminjection),FLEX Lake WaterPump(s)will be "storedin a locationnearthe point of deployment"in the ESWPH. The ESWPH structureand associatedequipmentare SeismicCategoryI, and protectedagainstseismicevents,floods,and high winds and robustfor all FLEX events. The FLEX Lake WaterPump(s)('N'pump and 'N + I'pump) will be ableto supplythe requiredflow to eitherESW A(B) loop (or both can be usedif no equipmentfailuresoccur). The FLEX Lake Water Pump(s)will be electricallyconnectedand havea suctionhose(s)attachedand loweredto the ESWPH suctionbay and threedischargehosesconnectedfrom the FLEX Lake WaterPump(s)to the selected ESW loop to supplyapproximately3000 gallonsper minute (gpm) in the ESW Loop. Note that a portion of the dischargeof the FLEX Lake WaterPump(s)can also be usedintermittentlyvia a dedicatedhoseconnectionto spraydebrisoff the travelingscreensif blockageoccurs. The ESW systemnormally dischargesback to the lake but is designedwith return lines from the dischargeof ESW A and ESW B to return waterthat hasabsorbedheatfrom heatexchangersloadscooledby the ESW system,back to the ESW forebayduring periodsof cold laterwatertemperatures, where icing rnay be experienced, to preventbuildup of ice in the Forebayand Suction Bay of the ESWPH. TWomotor-drivenFLEX Lake WaterPump(s)will be "storedin a locationnearthe point of deployment"in the ESWPH('N'pump and 'N + I'pump). The storagelocationwill be the floor space which would havebeenoccupiedby the lJnit 2 ESW pump dischargepiping. The FLEX Lake Water Pump(s)will havedisch inins which will utilize four hoseconnections(threeconnectionsfor l6 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase2 ESW Supplyand one hoseconnectionfor auxiliary use). Additionally,correspondinghoseconnections will be providedto allow connectionof the FLEX Lake WaterPump(s)to the "A" and "B" trainsof ESW. The receivinghoseconnectionswill tie into the ESW Loop at the ESW Pump dischargepiping betweenthe pump dischargecheckvalve and dischargestrainer. Threeseparateconnectionpointswill be installedwith systemboundaryvalves,and associated piping (routingto convenientlocations)to eachESW Loop. Each connectionpoint will terminatewith a 5" hoseconnection. TWonew connectionpointswill be installedon ESW Supplyheaderpiping in the Auxiliary Building 599' 6" elevation. Thesehoseconnectionswill originatefrom 24" ESW SystemSupplyheaderpiping in the overheadof Auxiliary Building 599'6" elevationwhich suppliescooling water to the RHR Heat Exchangersand otherESW systemloads. One set of two connectionpointswill be installedon ESW A Loop, and anotherset on ESW B Loop. Additionally,two new dry standpipeswill be installedwhich vertically run throughall elevationsof the Auxiliary Building. The standpipeswill penetratethe 620' 6" floor slaband terminateon this elevation with an isolationvalve and a hoseconnection.The standpipeswill havetwo hoseconnectionsand a mid-pipe isolationvalve locatedon the 599' 6" elevation. Finally,the standpipeswill have isolation valvesand hoseconnectionson the 574'6" for the Westdry standpipeand 5686" elevationfor the Eastdry standpipeof the Auxiliary Building. One dry standpipewill be providedat the eastand west end of the Auxiliary Building. Both dry standpipeswill be designedand installedSeismicCategoryI, and protectedagainstseismicevents,floods,and high winds. Emergencybattery-backedlighting will be providedin the ESWPH. The lighting will be strategically placedto supportoperatoractionsin the ESWPH and will be capableof providing at least24 hoursof emergencylighting within the ESWPH. The cableand lighting boxeswill be designedand installed SeismicCategoryl, and protectedagainstseismicevents,floods,and high winds. This installationwill utilize the existingstructuralsteelthat supportsthe ESWPH southstaircase. Modes l - 4 In Phase2, corecooling is performedby maintainingRPV water level with high pressureinjection from RCIC. The robustwater supply is from the Suppression Pool to the suctionof the RCIC pump to maintainRPV water level. The SRV systemwill be usedto control RPV pressureand to discharge steamto the suppression pool. RCIC and the SRVsare controlledwith Division 1 125Vdcpower. An alternaterobustwater sourcefor core cooling is the RHR systemat the outlet of the RHR Heat Exchangers.The SPCU/ ADHR pump will be placedinto ClosedLoop SuppressionPool Cooling flowing water from the SuppressionPool to the Suppression pool via the RHR Heat Exchangers.The RHR systemcan be alignedto the RHR to FPCC Returnheadervia installedplant equipment.A new connectionpoint on the RHR to FPCC Returnheaderat Aux Building elevation599' 6" will be connectedto the suctionof the RCIC pump for core cooling (FiguresA3-2,A3-3) with a hose(via the dry standpipediscussedabove). A secondrobustalternatewater sourcefor core cooling is the lake water suppliedthroughthe ESW system.A connectorpoint on the ESW A or E,SWB SupplyHeaderpipe at Aux Building elevation 599' 6- will be connectedto the suctionof the RCIC pump for core cooling (FiguresA3-2,A3-3) with a hose(via the dry standpipediscussedabove). Other,non-robust,water sourcescan be usedto supply RCIC for core cooling if available. These includethe CST,the Mixed Bed StorageTank or the Two Bed StorageTank on the west side of the lantat el620' 6" If thesetanksare not availableor becomedepleted,the lake water supplied 1 7o f 8 2

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase2 by the FLEX Lake WaterPump(s)throughthe ESW systemwould be alignedand providesan indefiniteinjectablevolume. Low PressureCore Cooling Core cooling can be maintainedafter the RPV hasbeendepressurizedtolessthan approximately50 psig with continuedcore boiling via low pressureinjection. This RPV pressurecan be achievedfrom deliberatepressurereductionby usingthe controlledopeningof an SRV (within the lO0oF/hr. cooldown rate),or by rapid depressurization usinga full division Automatic Depressurization System (ADS) initiation. The EmergencyOperatingProceduresprovide guidancefor useof the SPCU and ADHR pumpsto provide RPV injection. The SPCU/ ADHR pumpscan be alignedto inject Suppression Pool water directly to the RPV as AlternateInjectionSubsystems.The SPCU/ADHR pumpscan also be usedto inject to the RPV during ClosedLoop SuppressionPool Cooling by operationof the RHR to RPV injectionvalve and RHR to Suppression pool testreturn valvesto align flow from the outlet of the RHR heatexchangersbackto the RPV vice the SuppressionPool. If SPCU and ADHR pumps cannot be used for RPV injection; the FLEX Lake Water Pump(s)(ratedto supply 3000 gpm eachat 150psig) can provide RPV injectionto the RPV at oncethe RPV is depressurized to 50 psig. In this strategySRVswould be openedto maintaina low pressurecondition. SRVsare controlledusing DC power from the Control Room. For SPCU/ ADHR injectionno modificationsare required. Injectionflow pathsare via installed piping systems. For the FLEX Lake WaterPump(s)a flush connectionblankedflange is availableon the LPCS that will be convertedto a havea 5 inch hoseStorzconnector.The ESW A or ESW B systemwill be connected to the new LPCS Storzconnectorvia a hose. After the manualvalve FLUSH WTR TO LPCS PUMP DISCH LINE is openedand the LPCS INJECTION VALVE,is openedelectricallyor manually,the ESW water will be injectedthroughthe LPCS into the RPV. An additionalmethodfor low pressurecore cooling (or suppression pool inventoryaddition)is similar to the primary methodbut injectsthroughthe HPCS. Waterwould be suppliedfrom Lake Erie as the robustalternatewater supplyvia ESW B. The hoseconnectionto the RPV is via an existingflush point. ESW water will be providedby openingthe manualvalve HPCS PUMP DISCH LINE FLUSH CONN, then openingHPCS INJECTION VALVE. HPCS TEST VALVE TO SUPR POOL would be openedto supplythe SuppressionPool. Both MOVs can be openedor closedvia local manualaction and are in accessiblelocations.Note that this HPCSconnectionpoint requiresno modificationsand currentlyservesas the plant's "Fast Fire Water" injectionpoint. Mode 5 Core Cooling: Core cooling will be re-established in Phase2 by restorationof the FPCC systemflow with the systems heatexchangersin serviceto the ContainmentUpper Pools. This is the normal alternatedecayheat removalmethodusedduring Refuelingoperations.If pool makeupis required,or FPCC systemcannot be placedinto service,core cooling will be re-established usingthe low pressurecore cooling method describedabove. This alignmentof the FLEX Lake WaterPump(s)supplyingwaterthroughthe ESW systemto eitherthe LPCS or HPCS can provideat least250 gpm to the vesselwhich is sufficientto removedecayheat. A flow rate of at least 1000gpm will suppressboiling. The heatedwater can then be directedbackto the Suppressiorr Pool throughthe steamline and an SRV or up throughthe reactor cavity to the upperpool dependingon the level of the water in the cavity. (Reference9) 1 8o f 8 2

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase2 Details: Provide a brief description PNPPwill continueparticipationin the BWROG and will update of Procedures/ Strategies/ plant proceduresbasedupon genericindustryguidance.It is expected Guidelines the following FSGs(in additionto Phase1 FSGs)will be incorporated into existingplant proceduresin orderto developthe FSG interface for Phase2:

                                    .      EstablishingWaterSourcefrom Lake Erie to ESW in the ESWPH
                                    .      Aligning AlternateRCIC SuctionSource
                                    .      Establishing     ClosedLoop Suppression  Pool Cooling
                                    .      Low PressureCore Cooling Identifv modifications                       Install six inch isolationvalve(s)and Storzhoseconnection on the RCIC pump suctionpipe (FigureA'3-l)

InstallPipeconnections on ESW A and ESW B pipesin ESWPH Install Storzhoseconnectionson ESW A and ESW B pipesin Auxiliary Building(FiguresA3-2,A.3-3) Install hoseconnectionson Demin WaterSourceTanks o Two Bed StorageTank o Mixed Bed StorageTank Modifo LPCS Flangeto install 5" StorzConnection(Figure A3-7) Key Reactor Parameters List instrumentationcreditedfo, this coping evaluationphase. o RPV Level

                                     .      RPV Pressure
                                     .      RPV Temperature r      RCIC Flow Rate
                                     .      ContainmentPressure PNPPwill developproceduresto readthis instrumentationlocally, whereapplicable,,         using a portableinstrument,as requiredby Section 5 . 3 . 3o f N E l 1 2 - 0 6 .

Storage/ Protection of Equipment : Describestorage/ protectionplan or scheduleto determinestoragerequirements Seismic PNPPplansto storethe FLEX Lake WaterPump(s)and hosesand other FLEX equipmentin existingrobustbuildingsmeetingthe requirementsfor storageof FLEX equipment.The electricpumps will be storedin the ESWPH utilizing spaceoriginally designatedfor the Unit 2 ESW pumps(FigureA3-4). The ESWPH is Seismic Categoryl, and protectedagainstseismicevents,floods,and high winds. Both the Unit 2 EDG building and the Unit 2 Aux building were constructedto meetthe site seismicrequirements.Other satellite equipmentlocationswill alsobe in safetyrelatedstructures.FLEX equipmetrtwill be securedas appropriateduring SSEand will be l9 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase2 protectedfrom seismicinteractionsfrom othercomponents.No componentswill be stackedor at a raisedelevationas to cause interferencewith the deploymentof any FLEX equipment.A SSE havinga peakhorizontalgroundaccelerationof 0.15 g hasbeen selectedfor design(USAR Section2.5.2.6).The designbasisvalues from the USAR will be usedfor PNPP'sFLEX strategies.SeeFigure

                              ,A3-16(l thru 5) for storageand deploymentinformation.

Flooding Storagefor the FLEX lake Waterpumpswill be in the ESWPH. The Note: if storedbelow current ESWPH floor elevationis 580' 6." Maximum suctionbay water flood level, then ensure heightbasedupon maximum lake levelsand surgeheightsis 580'0" proceduresexist to move basedupon the location of the intake structuresapproximately l/2 equipmentprior to exceeding mile off shore. The ESWPH is designedto precludegroundwater in-flood level. leakagewith sealedpenetrations.The normal accessto the ESWPH is 620' 6" and is abovethe maximum site flood level of 620' 5". Incidentalin-leakagefrom groundwater or systemfailureswould be drainedbelow the 580'6" floor level by gratingopeningsabovethe suctionbay of the pump houseand back to the lake via the intake structure.Storagefor otherequipmentwill be in the Unit 2 EmergencyDieselGeneratorBuilding andlorthe Auxiliary Building at el. 620'6". The buildingsare sitedin a locationabovethe PMF grade(620'5" for PNPP). Other satelliteequipmentlocationswill also be in safetyrelatedstructures.SeeFigureA.3-16(l thru 5) for storageand deploymentinformation. SevereStorms with High The ESWPH,the lJnit2 EmergencyDieselGeneratorBuilding and Winds the Auxiliary Building are designedas SeismicCategoryI structures that meetsthe plant'sdesignbasisfor the SSE(e.g.,existingsafety-relatedstructure Snow, Iceoand Extreme PNPPsite is subjectto significantamountsof snoq extremelow Cold temperatures and existenceof largeamountof ice. PNPPstorage locationswill ensurethat all FLEX equipmentis providedgeneral protectionfrom the elementsat the site. FLEX equipmentis storedwithin buildingsthat will be maintained within a temperaturerangeto ensureits functionwhen calledupon. High Temperatures The FLEX storagebuildingswill includeadequateventilationto ensurethat high temperaturesdo not affect the functionality of FLEX equiprnent. 20 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase2 Deployment Conceptual Design (Attachment2 containsConceptualSketches) Upon declarationof the ELAP, personnelwill be dispatchedto connectthe FLEX Lake WaterPump(s) at their staginglocationin the ESWPH. The FLEX Lake WaterPump(s)do not needto be deployed from their storagelocation; however,alternatestrategiesrequire deploymentof electricalsupport equipment.The site hasbeenevaluatedfor soil liquefactiondue to a seismiceventand found to not be susceptible.Therefore,the routeswill be available. No significantdebrisis expected,howeverthe FLEX equipmentincludesdebrisremovalvehiclesthat can be usedto clearthe route. In addition,the site areais very openallowing blockagesto be avoided. Hosesand otherequipmentrequiredin the Unit I Aux Building will be deployedthe shortdistancebetweenthe Unit I and FLEX EquipmentBay 2 (Unit 2 Auxiliary Building) (Figure,A3-18)or will be storedin the Unit 1 Auxiliary Building. Strategy Modifications Protection of connections Identify Strategy including how Identify modifications Identify how the connection the equipmentwill be deployedto is protected thepoint of use. Core Cooling using RCIC and Install isolationvalvesand Connectionswithin Auxiliary Alternate Water Source. Storzhoseconnectionon Building (ESW and RCIC) RCIC Suction are protectedby a robust Two installedpumps Install Storzhose structure (SPCU/ADHR) will be usedto establishflow thoughthe RHR connectionon the RHR to Connectionsin the E,SWPH heat exchanges.The water FPCC ReturnHeader are protectedby a robust exiting the RHR Heat Exchanger Install Storzhose structure will be cooledand alignedto the connectionon ESW A and B pipe in Auxiliary Mixed Bed and Two Bed RCIC pump suctionto providea Building StorageTank connectionsare cleanwater sourceto the RCIC lnstall pipe connectionson not robustly protectedbut system. ESW A and B pipesin mav be available Two electricpoweredpumpswill ESWPH be stagedin the ESWPH. The Install Storzhose pumpswill take suctionfrom the connectionon Mixed Bed / ESWPH SuctionBay (from Lake Two Bed StorageTanks Erie) and dischargethroughthree InstallESW Dry 5" lines into correspondinghose (FiguresA.3-5, Standpipes connectionsthat connectto the

                                          ,{3-6)

ESW A and/orB pump discharge Modify LPCS Flangeto pipe in the ESWPH betweenthe install 5" StorzConnection pump dischargecheckvalve and ElectricalModificationsare the strainers. describedin the Safety In the Unit 1 Aux. building,hoses FunctionSupportsection will be affachedfrom ESW A to the RCIC suctionpipe. The alternatepath is from the E,SWB to the RCIC suctionpipe. 2l of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase2 Core Cooling using Low New LPCS Storzconnection PressureMethod and existingHPCS Storz connection arelocatedwithin Two installedpumps a robust structure(Auxiliary (SPCU/ADHR) will be usedto Building) provide RPV injectionusingthe Suppression Pool as the water sourceusing installedsystem piping. The connectionsfor the two electricpumpsto provide lake water to the ESW systemwas previouslydiscussed.Within the Unit I Auxiliary Building the ESW A would be connectedwith a hoseto the LPCS. The alternate connectionwould be from the ESW B to the HPCS in orderto provide lake water directly to the RPV. Notes: None 22 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase3 Provide a general description of the coping strategiesusingphase 3 equipmentincluding modificattons that are proposed to maintain core cooling. Identify methodsand strategy(ies)utilized to achievethis coping time. By Phase3, additional 4160Vacgenerator(s)will havearrivedfrom the NSRC and connectedto a Unit I 4160Vac vital bus,(Figure43-13). If not previouslyinitiatedin Phase2, direct decayheatremovalvia the ShutdownCooling (SDC) mode of RHR operationcan now be initiated. One RHR heatexchanger is requiredwith 3000 gpm of cooling water providedby the ESW systemfrom Lake Erie. Once SDC is established, the RPV will stop steamingand makeupto the vesselcan be terminated.In most cases,the most desirablestrategyin Phase3 will be to promptly proceedto cold shutdown. Operatorswill align and start an RHR pump, A or B. The associatedRHR heat exchangerwill havethe lake water alignedto it throughthe correspondingESW train. Normal plant line-ups(otherthan FLEX Lake WaterPump(s)at the ESWPH) can be followed with due considerationto the NSRC generator loading constraints. A secondarycore cooling path is to usethe RHR systemin Suppression Pool Cooling mode (cooledby the ESW suppliedby the FLEX Lake WaterPump(s)at the ESWPH). RCIC can be alignedto take suctionfrom the SuppressionPool or alternatively,from the connectionto the ESW system.Also, the low pressurecore cooling path can be usedto directly feed the RPV. This essentiallyextendsthe Phase 2 strategiesinto Phase3, with the distinctdifferencebeing the utilizationof the RHR Systemis a design basisalignment/configuration. Details: Provide a brief description Confirm that procedure/guidanceexists or will be developedto of Procedures/ Strategies/ support implementationwith a description of theprocedure/ strategy/ Guidelines guideline. PNPPwill utilize industrydevelopedguidancefrom the BWROG, EPRI, and NEI to developsite specificguidelinesfor the deployment and implementationof FLEX strategies,as well as the interfacesfor FLEX strategieswith existingplant procedures. r Transitionfrom High or Low PressureCore Cooling to RHR Cooling o FLEX alignmentof ESW flow throughthe RHR Heat Exchangers. Identify modifications List modificationsand describehow they support coping time. No additionalmodificationsare requiredfor Phase3 Core Cooling. Key Reactor Parameters List instrumentationcreditedft, this coping evaluationphase.

                                   . RPV Level o   RPV Pressure
                                   . RPV Temperature
                                    . RHR flow rate
                                    . SuppressionPool Temperature
                                    . Suppression Pool Level o  ESW flow rate 23 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Core Cooling & Heat Removal BWR Portable Equipment Phase3 Deployment Conceptual Design (Attachment2 containsConceptualSketches) No additionaldeploymentof FLEX equipmentis requiredin Phase3 for Core Cooling. Modifications Protection of connections Identifu Strategy including how Identify modifications Identify how the connection the equipmentwill be deployedto is protected thepoint of use. Deploymentof the NSRC None for Core Cooling FLEX Lake WaterPump(s) Generator(s)is describedin the ElectricalModificationsare to ESW connectionsare SafetyFunction SupportSection describedin the Safety describedin Phase2 section Initiate RPV Cooling Using FunctionSupportsection RHR pump The ESW train providing lake water will be redirectedto provide cooling to the RHR A or B Heat Exchangersusing normal lineups. The dischargeof ESW from the Heat Exchangerwill be directed back to the lake through its normal flow path. RHR will be alignedfor SDC usingFSG procedures. Initiate SuppressionPool cooling using RHR pump The ESW train providing lake water will be alignedto provide cooling to the RHR A or B Heat Exchangersusing normal lineups. The dischargeof ESW from the Heat Exchangerwill be directed back to the lake throush its normal flow path. RHR will be alignedfor SuppressionPool (SP) cooling usingFSG procedures. Notes:None 24 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant, Maintain Containment Determine Baselinecoping capability with installed coping modifications not including FLEX modificationsoutilizing methods described in Table 3-2 of NEI 12-06: BWR Installed Equipment Phase1: Provide a generol description of the coping strategiesusing installed equipmentincluding modifications that are proposed to maintain containment. Identi.fymethods (containmentspray/Hydrogen igniter) and strategy(ies)utilized to achievethis coping time. Containmentintegrity is rnaintainedby keepingcontainmentatmosphericpressurelessthan the design limit of l5 psig. Containmentintegrity will be establishedundertotal lossof AC conditionsby manuallyclosingthreevalves: CNTMT POOLS RTN OTBD ISOL, DW B/U PURGE OTBD ISOL, and MSL DM & MS IV BYP OTBD ISOL VALVE, per currentplant procedures. During Phasel, the Containmentpressureand SuppressionPool temperaturewould increaseto -1 I psig and213oF,respectively.This is due to the Suppression Pool water absorbingthe reactor'sdecayheatas the operatorspartially depressurize the RPV to -200 psig (Referencel4). This is within the containmentdesignpressureof l5 psig, but exceedsthe Suppression Pool temperaturelimit of 185"F. The containmentdesigntemperatureof 185'F for the Suppression Pool will likely be exceededwithin 5 hoursregardlessof actionsthat can be taken. This limit normally comprisespart of the considerationin maintainingContainmentintegrity;however,industryconsensusis that this limit shouldnot be inviolableat the conditionsand limited time periodcontemplatedfor FLEX. Containment function is not challengedearly in the event;therefore,no actionsare requiredin Phase1 in supportof containmentfunction. Mode 5 / Refueling Containmentfunction may be challengedthroughoutthe event due to moderatesteamreleaserate from the vessel.Action may be requiredto preventpressurization of the containment.Control of ContainmentPressureis addressed per the EmergencyOperatingprocedures. Details: Provide a brief description The following procedurescumentlyexist and would be usedduring the of Procedures/ Strategies/ initial phaseof the ELAP Guidelines o ONI-Rl0-2 TotalLossof AC Power

                                   . ONI-SPI D-3, CrossTying Unit I and UnitZ Batteries r   ONI-SPI D-1, MaintainingSystemAvailability
                                   . ONI-SPl-D-2,Non-essential    DC Loads
                                   . ONI-SPI H-3, Instrumentation   AvailableDuring StationBlackout
                                   . ONI-El 2-2,Lossof DecayHeat Removal PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustryguidance.It is expectedthe following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interfacefor Phase1:
                                   . Initial Assessmentand FLEX EquiprnentStaging Identify modifications           List modificationsand describehow they support coping time.

Thereare no modificationsrequiredto supportPhase1. 25 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Containment Key Containment List instrumentation credited ft, this coping evaluation phase. Parameters SuppressionPool Temperature

                          . Suppression  PoolLevel o   Drywell Pressure
                          . Drywell Temperature
                          . ContainmentPressure Notes:None 26 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision Maintain Containment BWR Portable Equipment Phase2: Provide a generol description of the coping strategiesusing on-siteportable equipmentincluding modificationsthat are proposed to maintain core cooling. Identifi methods(containment spray/hydrogen igniters) and strategy(ies) utilized to achieve this coping time. Modes 1-4 Decayheat is removedfrom the RPV via steamthroughone or more SRVsto the Suppression Pool. The primary methodof heatremovalfrom the Containmentduring Phase2 is "SuppressionPool Closed Loop Cooling" with cooling water sourcedfrom ESWPH via FLEX Lake Water Pump(s);electrical power providedfor processflow throughthe ADHR/SPCU systemsvia FLEX on-sitegenerators.See Figure A3-12 ClosedLoop Cooling During Phases2 and3 for flowpath details. Large4160Vac 1. 1 megawatt(MW) generatorswill be deployedin Phase2. A new generator"docking station"will be installedin a Unit 2 DieselGeneratorBay (curently the DieselMaintenanceShop). The 4160Vacgeneratorswill be connectedto the dockingstationvia singlephasecables. From the docking stationa new cable/conduitrun will be installedand will connectinto Bus EH-21. A'Jumper" will be installedto supportthe FLEX strategyso that Bus EH-21 will be ableto power busesEH-11/12/13 during a postulatedevent. SeeReferencel5 for details. A new Manual TransferSwitch will be installedfor the SPCU Pump and providededicatedpower suppliesto the ADHR and SPCU pumpsfrom bus EF-2-B. Unit 2 ESW power cablesrunning out to the ESWPH will be utilized, includingthe installationof a pump "docking station." The docking stationinstalledin the DieselGeneratorBay will also serveas the connectionpoint for the NSRC (Phase3) generator(s).The 4l60Vac generatorsprocuredfor Phase2 will be of the same makeimodelas the NSRC equipment. Thesegeneratorsare capableof automaticallysynchronizingand load sharing(i.e., running in parallel). The docking stationand cableruns will be capableof supporting multiple generatoroutputs. The useof 4l60Vacgeneratorswill allow electricalpower to be providedto a largecontingentof equipmentoffering versatilityand flexibility during a beyonddesignbasesevent. Early in Phase2, when 480 Vac power becomesavailablefrom a FLEX generator,the Upper Containmentpool will be dumpedinto the lower SuppressionPool by initiating SPMU. This requires manipulationof 480 Vac MOVs, and requiresre-energizingoneof the vital 480 Vac buses. If neededlater in Phase2 at about7 hours,Lake Erie water will be transferredto the Suppression Pool via the LPCS (primary) or HPCS (secondary)systemsand new ESW hoseconnectionsin the Auxiliary Building. Cool water from the Lake Erie can also be addedto the Suppression Pool to increase inventoryand reduceoverall bulk temperature.SeeFigureA3-8: LPCS SuppressionPool Inventory Addition Flowpathand Figure,A3-9:HPCS SuppressionPool InventoryAddition Flowpathfor flow paths. As describedabovethe primary methodof containmentheatremovalwill be "suppressionPool Closed Loop Cooling" with cool water sourcedfrom ESWPH via FLEX Lake Water Pump(s);electricalpower providedfor processflow throughthe ADHR/SPCU systemsvia FLEX on-sitegenerators(Figure43-ll). Several(threeto four) six inch riserswill be installedoff of the ADHR Pump dischargepiping in the LPCS PurnpRoom. The piping configurationwill originateat a tee installedin the ADHR pump dischargepiping and will consistof a I 0" systemboundaryvalve,with riser connectionpiping runs containingone riser isolationvalve per riser. Eachriser will terminateat a ftre hoseconnection. Portionsof the ADHR Systemwill be evaluated/upgraded to establisha seismicpedigreein accordance with the requirementsfor FLEX eventcooins eouioment (document-onlv changes)and new pipine will 27 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Containment be installedseismically. SeeFigureA3-10, ADHR Piping Modification Location for detailsof the modification. Mode 5 / Refueling Containmentfunction will not normally be challengedduring the eventdue to containmentintegrity being relaxedandthe containmentopenduring Mode 5 / Refueling. Theremay be brief periodsduring Mode 5 / Refuelingwhen containmentintegritymight be required, suchas during an operationwith a potentialto drain the reactorvessel. If a BDBEE occurredduring thesetimes the containmentfunctionwould not be challengedbasedon containmentresponseanalysis performedfor Modes I through4 which usescasesboundingfor Mode 5 due to the decreasein decay heat rate. Containment Hydrogen Control The PNPPMark III containmentatmosphereis not inertedand containsfree oxygenduring normal operation. An event that overheatsthe fuel can generatefree hydrogengasthat could causea violent hydrogen/oxygenreactionwhen within certain concentrationrangesin the presenceof an ignition source. To precludedamageto equipmentinside the Containment,hydrogen igniters are energizedto stimulateearly,non-violentreactionsof hydrogenand oxygenat low hydrogenconcentrations outside the explosiveranges. During the postulatedFLEX eventand response,no fuel damagewill occur but NEI 12-06requires considerationof hydrogencontrol during FLEX events. Primary Method InstalledDivision I hydrogenigniterswould be repoweredto suppresshydrogenbuildup in caseof zirconium/waterreactionfrom an overheatedcore. Normal power sourcesare from the Division I vital 480 Vac bus. Either division is adequatefor control of hydrogen. With the onsiteFLEX generator(s) connectedin Phase2, the currentdraw from the ignitersis consideredin the FLEX generatorload assessment (Reference9). Currentplant procedureswould be usedfor initiating hydrogenigniter operation.Portablesmall generatorsare also availablefor local 120Vac operationof the igniters. SecondaryMethod Division 2 hydrogenignitersare also adequatefor control hydrogenconcentrations.Like Division l, theseare poweredfrom the 480 Vac vital bus but small portablegeneratorsare availablefor backup use. Details: Provide a brief description Confirm that procedure/guidanceexists or will be developedto of Procedures/ Strategies/ suppor t impIementat i on Guidelines PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustryguidance.It is expectedthe following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interfacefor Phase2: r The useof ADHR/SPCU,poweredby onsiteFLEX generatorsto perform "closed loop cooling" of the Unit 1 suppressionpool

                                  . FeedingSuppressionPool from ESW A or B
                                  . Operationof ContainmentHydrogenIgnitersduring an ELAP Identifv modifications           List modificationsand describehow they support coping time.

28 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Containment CreateHoseconnectionsand hosepath for ESW A to LPCS (Via Dry StandPipe) CreateHoseconnectionsand hosepath for ESW B to HPCS (Via Dry StandPipe) Install Storzhoseconnectionto LPCS in Auxiliary Building (Figure A3-7) Install hoseconnectionson ADHR Pump Discharge Install hoseconnectionson FPCC SystemPiping Modification of ADHR pumpsdecontaminationconnectionfrom 2" to 3-5" Storz connectionsfor FLEX Evaluate/Upgrade SPCUto seismicallyrobustfor FLEX Evaluate/Upgrade ADHR to seismicallyrobustfor FLEX Key Containment Lisl instrumentationcreditedor recoveredfor this coping evaluation. Parameters

                               . U I Suppression Pool Level o   Ul SuppressionPool Temperature o   SPCU flow rate
                               . ADHR flow rate o   ContainmentPressure Storage/ Protection of Equipment:

Describestorage/ protectionplan or scheduleto determinestoragerequirements PNPPplansto storethe FLEX Lake WaterPump(s)and hosesand other FLEX equipmentin existingrobustbuildingsmeetingthe requirementsfor storageof FLEX equipment.The electricpumpswill be storedin the ESWPH utilizing spaceoriginally designatedfor the Unit 2 ESW pumps(Figure A3-4). The ESWPH is SeismicCategory l, and protectedagainstseismicevents,floods, and high winds. Both the Unit 2 EDG building and the Unit 2 Aux building were constructed to meetthe site seismicrequirements.Other satelliteequipment locationswill alsobe in safetyrelatedstructures.FLEX equipment will be securedas appropriateduring SSE and will be protectedfrom seismicinteractionsfrom other components.No componentswill be stackedor at a raisedelevationas to causeinterferencewith the deploymentof any FLEX equipment.A SSE having a peakhorizontal groundacceleration of 0.15g hasbeenselectedfor design(USAR Section2.5.2.6).The designbasisvaluesfrom the USAR will be used for PNPP'sFLEX strategies.SeeFigure43-16 (1 thru 5) for storage and deploymentinformation. Storagefor the FLEX lake Waterpumpswill be in the ESWPH. The ESWPHfloor elevationis 580'6." Maximum suctionbay water heightbasedupon maximum lake levelsand surgeheightsis 580'0" basedupon the locationof the intakestructuresapproximatelyll2 mlle off shore. The ESWPH is designedto precludegroundwater in-leakagewith sealedpenetrations.The normal accessto the ESWPH is 620' 6" and is abovethe maximum site flood level of 620' 5". 29 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Containment lncidentalin-leakagefrom groundwater or systemfailureswould be drainedbelow the 580'6" floor level by gratingopeningsabovethe suctionbay of the pump houseand back to the lake via the intake structure. Storagefor other equipmentwill be in the Unit 2 EmergencyD ieseI GeneratorBui lding and/or the Auxi Iiary Bui ld ing at el. 620'6". The buildingsare sited in a locationabovethe PMF grade (620'5" for PNPP). Other satelliteequipmentlocationswill also be in safetyrelatedstructures.SeeFigure43-16 (1 thru 5) for storageand deploymentinformation. SevereStorms with High The ESWPH,the Unit 2 EmergencyDiesel GeneratorBuilding and the Winds Auxiliary Building are designedas SeismicCategoryI structuresthat meetsthe plant'sdesignbasisfor the SSE(e.g.,existingsafety-related structure Snow, Ice, and Extreme PNPPsite is subjectto significantamountsof snow extremelow Cold temperaturesand existenceof large amount of ice. PNPP storage locationswill ensurethat all FLEX equipmentis providedgeneral protectionfrom the elementsat the site. FLEX equipmentis storedwithin buildingsthat will be maintained within a temperaturerangeto ensureits function when calledupon. High Temperatures The FLEX storagebuildingswill includeadequateventilationto ensurethat high temperaturesdo not affect the functionality of FLEX equipment. Deployment Conceptual Modification (Attachm ent 2 contains Conceptual Sketches) Hosesand other equipmentrequiredin the Unit I Aux Building will be deployedthe shortdistance betweenthe Unit 1 and FLEX EquipmentBay 2 (Unit 2 Auxiliary Building) (Figure,{3-18) or will be storedin the Unit 1 Aux Buildins. Strategy Modifications Protection of connections Identify Strategy including how Identifumodifications Identify how the connection the equipmentwill be deployedto is protected thepoint of use. Two electricpoweredpumpswill Electricalmodificationsare FLEX Lake WaterPump(s) be stagedin the ESWPH. The describedin the SafetvFunction to ESW connectionsare pumpswill take suctionfrom the Supportsection. describedearlier. ESWPH SuctionBay (from Lake Erie) and dischargethroughthree 5" lines into a correspondinghose connectionsthat connectsto the ESW A and/orB pump discharge pipe in the ESWPH betweenthe pump dischargecheckvalve and the strainers. 3 0o f 8 2

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Containment Within the Unit I Auxiliary Building the ESW A would be connectedwith a hoseto the LPCS. The alternateconnection would be from the ESW B to the HPCS. Theseconnectionsare to provide lake water directly to the SP. Notes: None 3l of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Containment BWR Portable Equipment Phase3: Provide a generol description of the coping strategiesusingphase 3 equipmentincluding modifications that are proposed to maintain core cooling. Identify methods (containmentspray/hydrogen igniters) and strategt(ies) utilized to achieve this coping time. Mode 5 / Refueling Containmentfunction may be challengedthroughoutthe event due to moderatesteamreleaserate from the vessel. Action may be requiredto preventpressurizationofthe containment. Control of ContainmentPressureis addressedper the EmergencyOperatingprocedures. Details: Provide a brief description Confirm that procedure/guidanceexists or will be developedto of Procedures/ Strategies/ suppor t implementati on Guidelines PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustryguidance.It is expectedthe following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interfacefor Phase3:

                                     . Alternate Water Sourcefrom Lake Erie to ESWPH
                                     . ConnectingLake Erie AlternateWaterSourceto ESW A or B
                                     . Operationof ContainmentHydrogenIgnitersduring an ELAP Identify modifications              List modificalionsand describehow they support coping time.

No additionalmodificationsare requiredto maintainContainmentin Phase3. Key Containment List instrumentationcreditedor recoveredfor this coping evaluation. Parameters o Suppression Pool Level

                                     . SuppressionPool Temperature r   RHR flow rate
                                     . ESW flow rate to RHR heat exchanger Deployment Conceptual Modification (Attachment2 containsConceptualSketches)

Strategy Modifications Protection of connections Identify Strategy including how Identfu modffications Identify how the connection the equipmentwill be deployedto is protected thepoint of use. ShutdownCooling using RHR and No additionalmodifications Connectionsfor RHR and FLEX cooling of Heat Exchanger. required. ESW A useexistingpiping within a robust structure (Auxiliary Building) 32 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Containment Suppression Pool Coolingusing No additionalmodifications Connectionsfor RHR and RHR and FLEX coolins of Heat required. ESW A useexistingpiping Exchanger within a robust structure (Auxiliary Building) Notes: Deploymentof the NSRC 4160Vacgeneratoris describedin the SafetyFunctionSupport Section. 3 3o f 8 2

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Spent Fuel Pool Cooling Determine Baselinecoping capability with installed coping modifications not including FLEX modifications, utilizing methods describedin Table3-2 of NEI 12-06: BWR Installed Equipment Phase1: Provtde a general description of the coping strategiesusing installed equipmentincluding modifications that areproposed to maintain spentfuel pool cooling. Identify methods(makeupvia portable iniection source)and strateg,t(ies)utilized to achievethis coping time. Spent Fuel Pool cooling is not challengedearly in the event;however,accessto the SFPareaas a part of PhaseI responsecould be challengeddue to environmentalconditionslocal to the pool and/or radiation levels from storedspentcontrol rod blades. Details: Provide a brief description The following procedurescurrentlyexist and would be usedduring the of Procedures/ Strategies/ initial phaseof the ELAP Guidelines o ONI-RI0-2, Total Loss of AC Power

                                    . ONI-SPI D-3, CrossTying Unit I and Unit 2 Batteries
                                    . ONI-SPI D-1, MaintainingSystemAvailability o    ONI-SPI-D-2,Non-essentialDC Loads
                                    . ONI-SPI H-3, InstrumentationAvailableDuring StationBlackout
                                    . ONI-El2-2, Loss of DecayHeat Removal PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustryguidance.lt is expectedthe following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interfacefor Phase1:
                                    . Initial Assessmentand FLEX EquipmentStaging r AlternateSFPMakeupand Cooling Identify modifications             List modificationsand describehow they support coping time.

Developand install an SFPLevel Monitoring system Key SFP Parameter List instrumentationcredited or recoveredfor this coping evaluation. SFPLevel PerOrderEA 12-051 PNPPwill developproceduresto readthis instrumentationlocally, where applicable,usinga portableinstrument,as requiredby Section 5 . 3 . 3o f N E I 1 2 - 0 6 . Notes: None 3 4o f 8 2

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision Maintain Spent Fuel Pool Cooling BWR Portable Equipment Phase2: Provide a general description of the coping strategies using on-siteportable equipment including modificationsthat are proposed to maintain spentfuel pool cooling. Identifu methods(makeupvia portable injection source)and strategy(ies)utilized to achievethis coping time. In Phase2, the SpentFuel Pool will heatto the boiling point and the level in the pool will continueto reduce. Calculationshave beenperformedto determinethe time to heatup the SFPand boil down to 10 ft. abovethe fuel usingthe maximum heatload associatedwith a full core offload. After reducingthe pool inventorydue to seismicallyinducedsloshing,the time to reach10 feet abovethe fuel was over 29 hours(Reference9). A new emergencyinventorymake-upsystemfor the SFP(calledthe SpentFuel Pool Emergency Makeup System)will be installed. The systemwill essentiallyconsistof a dump line to the SFPwith an individually isolablehoseconnectionpoint. New piping will be installedseismically.The systemwill consistof a new piping riser that will originatefrom Unit 2 EmergencyClosedCooling piping (the safetyrelatedcooling water sourcefor the FPCC Heat Exchangers).The riser will penetratethe IntermediateBuilding (lB) 620'6" floor slab (in the Unit 2 Annulus ExhaustGasTreatmentSystem"8" Fan Room) and Fuel Handling Building west wall. The piping will run alongthe pool deck and terminatenearthe edgeof the pool. Prior to enteringthe Fuel Handling Building an individually isolatablehoseconnectionpoint will be providedto permit the connectiontemporaryoscillatingmonitor nozzlesfor pool spray application. In Phase2 actionswill be takento align make-upto the pool using lake water suppliedthroughthe ESW pipesto a new emergencymakeupheaderadjacentto the spentfuel pool (FigureA3-11). Make-upwill be establishedsuchthat cooling will be maintainedthroughoutthe event. FLEX Lake WaterPump(s)will be stagedin the ESWPH using spaceoriginally designatedfor the Unit 2 ESW pumps. Storzconnectionswill be addedto the ESW lines and hoseswill connectthe pumpsto the ESW via the installedStorzconnectorson the ESW A or alternatelythe ESW B pump discharge pipesto allow the lake waterto flow to the IntermediateBuilding. Within the IntermediateBuilding, a new pipe with supplyvalveswill be constructedto direct flow from the ESW systemto provide makeup to the SpentFuel Pool. Details: Provide a brief description Confirm that procedure/guidanceexistsor will be developedto of Procedures/ Strategies/ support implementat i on Guidelines PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustryguidance.It is expectedthe following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interfacefor Phase2:

                                    . SpentFuel Pool EmergencyMakeup Using ESW for FLEX Identify modifications           List modificationsand describehow they support coping time.

Constructa SFPmakeupheadersuppliedby ESW A and ESW B (Figure,A3-ll). Kev SFP Parameter List instrumentation credited or recovered for this coping evaluation. SFP Level Per Order EA 12-051 3 5o f 8 2

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision Maintain Spent Fuel Pool Cooling PNPP will developproceduresto readthis instrumentationlocally or where applicable,using a portableinstrument,as requiredby Section 5 . 3 . 3o f N E l 1 2 - 0 6 . Storage/ Protection of Equipment: Describestorage/ protectionplan or schedule to determinestoragerequirements PNPPplans to storethe FLEX Lake Water Pump(s)and hosesand other FLEX equipmentin existingrobustbuildingsmeetingthe requirementsfor storageof FLEX equipment.The electricpumpswill be storedin the ESWPH utilizing spaceoriginally designatedfor the Unit 2 ESW pumps(Figure A3-4). The ESWPH is SeismicCategory l, and protectedagainstseismicevents,floods,and high winds. Both the Unit 2EDG building and the Unit 2 Aux building were constructed to meetthe site seismicrequirements.Other satelliteequipment locationswill also be in safety relatedstructures.FLEX equipment will be securedas appropriateduring SSEand will be protectedfrom seismicinteractionsfrom other components.No componentswill be stackedor at a raisedelevationas to causeinterferencewith the deploymentof any FLEX equipment.A SSE,having a peakhorizontal groundaccelerationof 0.15 g hasbeenselectedfor design(USAR Section2.5.2.6).The designbasisvaluesfrom the USAR will be used for PNPP'sFLEX strategies.SeeFigure,A3-16(l thru 5) for storage and deploymentinformation. Storagefor the FLEX lake Water pumps will be in the ESWPH. The ESWPHfloor elevationis 580'6." Maximum suctionbay water heightbasedupon maximum lake levelsand surgeheightsis 580'0" basedupon the location of the intake structuresapproximately ll2 mile offshore. The ESWPH is designedto precludegroundwater in-leakagewith sealedpenetrations.The normal accessto the ESWPH is 620' 6" and is abovethe maximum site flood level of 620' 5". Incidentalin-leakagefrom groundwater or systemfailureswould be drainedbelow the 580'6" floor level by gratingopeningsabovethe suction bay of the pump houseand back to the lake via the intake structure.Storagefor otherequipmentwill be in the Unit 2 EmergencyDieselGeneratorBuilding andlorthe Auxiliary Building at elr.620'6". The buildingsare sited in a locationabovethe PMF grade (620'5- for PNPP). Other satelliteequipmentlocationswill also be in safetyrelatedstructures.SeeFigure43-16 (l thru 5) for storageand deploymentinformation. SevereStorms with High The ESWPH is designedas safetyrelatedSeismicCategoryI structure Winds that meetsthe plant'sdesignbasisfor the SSE(e.g.,existingsafety-relatedstructure) PNPPsite is subjectto significantamountsof snow,extremelow temperatures and existenceof largeamountof ice. PNPPwill ensure 36 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Maintain Spent Fuel Pool Cooling that all FLEX equipmentwill be storedin locationsthat provide generalprotectionfrom the elementsat the site. FLEX equipmentis storedwithin buildingsthat will be maintained within a temperaturerangeto ensureits function when called upon. High Temperatures The FLEX storagebuildingswill includeadequateventilationto ensurethat high temperaturesdo not affect the functionality of FLEX equipment. Deployment Conceptual Design (Attachment2 containsConceptualSketches) Strategy Modifications Protection of connections Identifu Strategy including how Identify modifications Identifi how the connection the equipmentwill be deployedto is protected thepoint of use. SpentFuel Pool Cooling using A new emergencyinventory ConnectionsbetweenESW A ESW make-upsystemfor the SFPwill or ESW B and new SFP be installed,suppliedby ESW A emergencymakeupheader ESW A andESW B will be andE,SWB. will be within robust connectedthroughinstalledpipes structures(Auxiliary and valvesto the new SFP Building, Intermediate emergencymakeupheaderwithin Building, and Fuel Handling the IntermediateBuilding. The Building.) valve manipulationsto initiateor control SFPemergencymakeup will be in the Intermediate Building, remoteto the SpentFuel Pool. Notes: None 37 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision Maintain Spent Fuel Pool Cooling BWR Portable Equipment Phase3: Provide a general description of the coping strategies using phase 3 equipment including modifications that are proposed to maintain spent.fuelpool cooling. Identify methods(makeupvia portable iniection source)and strategt(ies) utilized to achievethis coping time. The makeupfor SFPinventoryloss establishedin Phase2 would be continuedin Phase3 until normal cooling is restoredusingthe FPCC System. The water suppliedto the SFPemergencymakeupheader concurrentwith 2000 gpm to the RHR heatexchangerand250 gpm to the RPV is within the 3000 gpm capacityof eachof the FLEX Phase2 purnps. Calculations(Reference9) haveshownthat initiatingmakeupflow to the SFPprior to 29 hourswill prevent fuel uncovery assumingmaximum heat load from a full core offload. Details: Provide a brief description Confirm that procedure/guidanceexistsor will be developedto of Procedures/ Strategies/ support implementation Guidelines PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustry guidance. It is expectedthe following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interfacefor Phase3:

                                   . SpentFuel Pool EmergencyMakeup Using ESW for FLEX Identify modifications            List modifications No additionalmodifications Kev SFP Parameter                 List instrumentationcredited or recoveredfor this coping evaluation.

SFPLevel PerOrderEA l2-051 PNPPwill developproceduresto readthis instrumentationlocally, whereapplicable,usinga portableinstrument,as requiredby Section 5.3.3of NEI 12-06. Deployment Conceptual Design (Attachment2 containsConceptualSketches) Modifications Protection of connections Identifu Strategy including how Identify modifications Identify how the connection the equipmentwill be deployedto is protected thepoint of use. SpentFuel Pool Coolingusing No additionalmodificationare Connectionsare discussedin ESW requiredfor Phase3 Phase2 Notes:None 3 8o f 8 2

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Safety Functions Support Determine Baselinecoping capability with installed coping modifications not including FLEX modifications. BWR Installed Equipment PhaseI Provide a general descriptionof the coping strategiesusing installed equipmentincluding station modfficationsthat are proposedto maintain and/or support safetyfunctions. Identifi methodsand strategy(ies)utilized to achievecoping times. Support to the safety functions during PhaseI is providedby continuedobservationof conditionsby operatorsusing specificinstrumentsand coordinatingactivitiesfrom the Control Room. Maintaining indicationsand control requiresmaintenanceof safety relatedbattery power, which is extendedby cross Uing Unit I and Unit 2 safetyrelatedbatteriesand performing a load shedon the DC buses. Instrument function and Control Room habitability are supportedby establishingappropriateControl Room ventilation. Control Room lighting is poweredby the plant batteriesand adequateportablelighting is providedto supportactivitiesoutsideof the Control Room. Essentialinstrumentationfor monitoring core and containmentparameterswill be fed from 125 Vdc bus ED-l-A, which is poweredby a 125Vdc batterybank. The SBO proceduredirectsthat the ED-2-A batterybank in Unit 2 tobe crosstied to Unit 1 and then load sheddingis performedsuchthat all non-essentialcircuit breakerloadsare openedwithin threehoursof the event. The maximum missiontime for the battery bank is then greaterthan 24 hours per stationcalculations. In conjunctionwith cross tying to the Unit 2 Division I batteriesand load sheddingthe DC busesprovide greaterthan24 hoursof power to essentialinstrumentationand RCIC control. Therefore,on-siteportableequipmentmust be deployed,staged,and ableto power essentialinstrumentationwithin 24 hoursof the eventfor purposes of maintainingavailabilityof DC power. The temperaturein the RCIC room, the HPCS valve room, and other vital plant areasare not expectedto be abovelimits defined in USAR Chapter3 within the first 6 hours. Concernsfor ventilationin theseareaswill be addressedin Phase2. Details: Provide a brief description The following procedurescurrentlyexist and would be usedduring the of Procedures/ Strategies/ initial phaseof the ELAP Guidelines

                                     . ONI-Rl0-2, Total Loss of AC Power
                                     . ONI-SPI D-3, CrossTying Unit I and Unit 2 Batteries
                                     . ONI-SPID-1, MaintainingSystemAvailability o   ONI-SPI-D-2,Non-essentialDC Loads
                                     . ONI-SPI H-3, Instrumentation AvailableDuring Station Blackout.
                                     . ONI-E I 2-2, Lossof DecayHeatRemoval PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustryguidance.It is expectedthe following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interfacefor Phase1:
                                     . Initial Assessmentand FLEX EquipmentStaging Identify modifications           List modifications;Nonerequiredto supportPhaseI Key Parameters                   List instrumentationcredited.forthis coping evaluationphase: None Notes:None 39 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Safety Functions Support BWR Portable Equipment Phase2 Provide a general descriptionof the coping strategiesusing on-siteportable equipmentincluding station modfficationsthat are proposed to mointain and/or support safetyfunctions. Identify methods and strateg,,(ies)utilized to achievecoping times. Supportto the safety functions is continuedby observationof conditionsby operatorsusing specific instrumentsand coordinatingactivities from the Control Room. Maintaining indicationsand control requiresmaintenanceof batterypower, which is extendedby the initiation of the onsite FLEX generators,usedto repowerthe batteries,and supportthe electricalneedsof otherequipmentdescribed above. The generatorsare also usedto establishforcedcirculationin the batteryroomsrequiredonce battery rechargeoperationsare initiated to maintain conditionswithin the rangesrequiredby the equipmentcontainedtherein. Instrumentfunction and Control Room habitability do not require further actionbeyondthat takenin Phasel. The 4160Vacgeneratorswill provide power for the lJnit2 Division I 4l60Vac Bus EHzl, Unit 1 DivisionI 4l60VacBus EHl1, Unit I DivisionZ 4160Vac Bus EHl2 andUnit I Division3 Bus EH13. BussesEHI I, EH12,EHl3, andEHzl will supplytheir respective480 Vac bussesand required480 Vac loads. Amodification in Bus EHZI will permit Bus EH2l (poweredfrom the FLEX Generators)to power Bus TH2l . Bus TH2l is one of the two off site sourcesof power to Unit I Class I E switchgear. SeeFigure43-13: FLEX GeneratorHookupsand Cable Routingfor an overview of the 4160 Vac generatorhookup and electricaldistribution. Load KW NORMAL BATTERY CHARGER EFD-I.A, I R42-SOO6 50.0 NORMAL BATTERYCHARGER EFD-I-8, I R42-SOO8 50.0 NORMAL BATTERY CHARGER EFD-I -C, I E22-SOO6 25.0 FUEL OIL TRANSFERPUMP #I , I R45-COO IA 11.5 FUE,LOIL TRANSFERPUMP #I, 1R45-COO1B 11 . 5 ADHR Pump,or SPCU Pump 186.0 DistributionPanelF 1C08 134.0 RCIC PUMP ROOM COOLER, 1M39-BOO4 4.0 LPCS PUMP ROOM COOLER, IM39-BOO6 15.0 HPCSPUMP ROOM COOLER, IM39-BOO3 20.0 DIV I H2 IGNITER,IM56-S2OI1 12.0 ESW TRAVELING SCREENA, P4g-DOOIA I1.5 ESW SCREENWASH PUMP A. P49.COO2A 37.5 FLEX Lake WaterPump(s) 300.0 Control Room VentilationFans(2 total) 105.0 Control ComplexVentilation(3 Fans) 165.0 FHB HVAC EXH FAN A, M40-C002A and B (2 Fans) 60.0 120Vac Logic and control power (6 busses) 70.0 Control Room Lighting 12.0 Misc. transientloads(valves) 30.0 Total Load 1310.0 This table providesminimum FLEX loadingrequirements(Reference9). Generatorsizing is to accommodate the ADHR or SPCU pump and FLE,XLake WaterPump(s)to run simultaneouslyalong with operationof su uinment. Theseloadsbv themselves requiresliehtlymorethan 1300kw. 40 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Safety Functions Support BWR Portable Equipment Phase2 To provide additional capacityfor temporary lights, portablefans, an existing plant battery charger, hydrogenigniters,RCIC control and variousMOVs, the useof two 1.1 MW,4160 Vac generatorswas chosen. This provides2,200KW of capacityfor 1,310KW load. Severalportablefans will be required to provide cooling to RCIC and the Control Room. The portablefans will placea small load on the generator(s). The generatorloadingis evaluatedwith up to l0 fans at 2 horsepowereach. TWo l.l MW generatorsare specifiedby PNPPand in compliancewith the N+l policy, an additional generatorwill be storedon site. SeeFigureA3-16 (l thru 5) for storageand deployment.The portable generatorswill havea primary connectionon Unit 2 atEH-21. The deploymentlocationfor these generatorsis the Unit 2 EmergencyDieselGenerator(EDG) building in one of the Unit 2 EDG bays. The 4160 Vac generatorswill connectthroughsingle-phase cablesat the identifieddocking stations. During Phase2, portabledieselpoweredair compressors will be deployedto re-establishthe air capabilityto control componentsat the plant. As existing plant calculations(Reference9) show that this is not an urgentrequirementduring Phase2, a small oil-free air compressorof greaterthan 10 cubic feet per minute (cfm) at 150psig will suffice. The primary connectionto the A train instrumentair is an existingfitting on the A train at the 599' 6" elevationin the lntermediateBuilding. The secondary connectionto the instrumentair systemis an existing fitting on the B train at the 620' 6" elevationof the Auxiliary Building(FiguresA.3-14,,A3-15). Tasktiming estimatesare providedfor the dieselfuel oil makeupstrategy.Thesestrategiesdescribethe meansto provide fuel from the on-sitedieselfuel storagetanksto all the FLEX equipmentthatrequires dieselfuel. Thesefueling strategieswill be implementedbeforeon-boardFLEX fuel suppliesare depleted. The FLEX generatorsdo not have an onboardfuel tank and eachgeneratorusesabout I l0 gallonsper hour (gph) of dieselfuel underfull load. The generatorsare equippedwith fuel pumpsthat can be used to take a suctionon an externalsupply. For the "N" set of dieselsthat will be usedat OperationsArea I (outsidethe Diesel Building), a hosewill be connectedto the day tank drain valve on one of the three day tanks. Any of the day tankscan be usedand selectionwill be eventspecificbasedupon availability. Each day tank has approximately3 hours' worth of fuel supply before the auto transferof fuel oil from the storagetank to the day tank is disableddue to low tank level. From the time that the FLEX generatoris starteduntil the critical 480 Vac divisionalbussesare energizedis estimatedto be lessthan t hour. This is sufficienttime to restorepower to the associateddivision critical 480 Vac to allow the fuel oil transferpumpsto be restoredto normaloperationand automaticallysupplymakeupneedsof the day tank. As an alternate,any of the three in-groundfuel oil storagetanks can be usedby running a hoseto the tanksdewateringor dipstickconnectionsand purnpingfuel directly to the generator. Establishingthe fuel oil supply is a matterof connectinga hosefrom the% inch drain valve (1R45-F507 A(B) / lR45-F566) and routing the hoseto the FLEX generatorand connectingthe hoseto the generator fuel oil connection.Stagingof the FLEX generatoris to occur betweenT+l and T+5, this is sufficient time (4 hours)to stagethe generatorsoutsidethe FLEX EquipmentBay I (DieselBuilding), establish the fuel oil supplyand connectthe requiredcablingusingtwo infield personnel.SeeFigures,{3-16, SheetsI -5, for deploymentroutes. For the "N+l" generatorthat will be usedat the E,SWPHif an "N" generatoris unavailable,the "N*1" generatorwill be moved from the FLEX EquipmentArea 2 (Unit 2 Auxiliary Building) and stagedat OperationsArea I (outsidethe Diesel Building) to replacethe failed N Generator.If accessto OperationsArea I (outsidethe DiesetBuilding) is precludeddue to debristhe "N*1" generatorwill be movedfrom FLEX EquiprnentArea 2 (Unit 2 Auxiliary Building) and stagedat OperationsArea 2 (outsidethe ESWPH). As part of this deploymenta portablefuel oil tank will be stagedby the generator to serveas the fuel oil tank for the senerator.Provisionsfor transportingfuel oil havebeenmade 4l of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Safety Functions Support BWR Portable Equipment Phase2 placinga tank in the bed of the debrisremovaltrucks. This tank providesan initial fuel load to allow at leastan hour of generatoroperation. Once the generatoris stagedat the ESWPH, actionsto refuel the generatorare startedby transferringfuel oil from the in-ground fuel oil storagetanks to the portable storagetank using the tank in the bed of the debris removal trucks to transportthe fuel oil to Operations Area 2 (outsidethe ESWPH). Threepumpsare providedto assistin this transferof fuel oil: a I l0 Vac pump, a l}Ydc pump and a handpump are provided. Portable1l0 Vac generatorsare availableto be usedto power the I l0 Vac pump. The Phase2 demandon installeddieselfuel is:

    . FLEX GeneratorI I 10 gph X l8 hr. :                        1980gal o  FLEX Generator2 110 gph X l8 hr. :                          1980gal
    . PortableAir compressorI .5 gph X 12 hr. :                    18 gal
    . PortableI l0 Vac GeneratorI .5 gph X 20 hr.:                 30 gal Total 4008 gal Total refuelingdemandfrom on-siteresourcesis then about4000 gallons(assumingl8 hoursof FLEX generatoroperationat fuel load). The 184,220gallons(Tech Specminimum values)in the threefuel oil storagetankscould then supportwell over 24 hoursof Phase2 operations.

To transportthe fuel oil, a truck with one 100 gallon tank will be storedin the FLEX EquipmentBay2 (Unit 2 Auxiliary Building). The diesel-drivenair compressorwill havesubstantialon-boardfuel storageand its small size(-10 cfm) will not requireprompt refueling. The portablelight standswill be availablefor use and are similar in having approximatelya 60 hour operationalfuel supplyon-board. Portable25 gallonhanddollies are availablefor refuelingtheseloads. Provide a brief description Confirm that procedure/guidance exists or will be developedto of Procedures/ Strategies/ support implementation with a description of the procedure / strategy / Guidelines guideline. PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustryguidance.It is expectedthe following FSGswill be incorporatedinto existingplant proceduresin orderto developthe FSG interfacefor Phase2:

                                    . Deploying FLEX 4160Vac Generators
                                    . EnergizingUnit 1 4160 Vac and 480 Vac buseswith FLEX Generators
                                    . EnergizingUnit 2 4160Vac and 480 Vac buseswith FLEX Generators
                                    . Operationof SPCU pump from IJ2 480Vac during ELAP
                                    . Operationof ADHR pump from UZ 480Vac during ELAP o Installationof portableair compressortie in to the lnstrumentAir systemin the Auxiliary Building Identify modifications             List modificationsnecessaryfor Phase2 o 4160Vac Connectionsto Unit 2 Bus EH-21 42 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Safety Functions Support BWR Portable Equipment Phase2 Jumperinstallationto allow Bus EH-21 to power BusesEH-t1ltzlt3 TransferSwitch for SPCU crosstie to U2 480 Vac TransferSwitch for ADHR crosstie to U2 480 Vac Kev Parameters List instrumentationcredited or recoveredfor this coping evaluation.

                                     . FLEX generatoron-boardload Storage/ Protection of Equipment:

Describestorage/ protectionplan or scheduleto determinestoragerequirements The Primary andAlternate4160Vac Generatorswill be storedin FLEX EquipmentBay 1 (Unit 2EDG Building) and FLEX EquipmentBay 2 (Unit 2 Auxiliary Building). The portablecompressors will be storedin FLEX EquipmentBay 2 (Unit 2 Aux Building). The portablelights will be storedin eitherlocation. PNPPplans to storethe FLEX Lake Water Pump(s)and hosesand other FLEX equipmentin existingrobustbuildingsrneetingthe requirementsfor storageof FLEX equipment.The electricpumps will be storedin the ESWPH utilizing spaceoriginally designated for the Unit 2 ESW pumps(FigureA3-4). The ESWPH is Seismic Categoryl, and protectedagainstseismicevents,floods,and high winds. Both the Unit 2 EDG building andthe Unit 2 Aux building were constructedto meetthe site seismicrequirements.Other satelliteequipmentlocationswill also be in safetyrelated structures.FLEX equipmentwill be securedas appropriateduring SSE and will be protectedfrom seismicinteractionsfrom other components.No componentswill be stackedor at a raised elevationas to causeinterferencewith the deploymentof any FLEX equipment.A SSE having a peakhorizontalground accelerationof 0.15 g hasbeenselectedfor design(USAR Section 2.5.2.6).The designbasisvaluesfrom the USAR will be usedfor PNPP'sFLEX strategies.SeeFigure,A.3-16(l thru 5) for storage and deploymentinformation. Flooding Storagefor the FLEX lake Waterpumpswill be in the ESWPH. Note: if storedbelow current flood The ESWPHfloor elevationis 580'6." Maximum suctionbay level, then ensureproceduresexist to water height basedupon maximum lake levelsand surgeheightsis move equipmentprior to exceeding 580'0" baseduponthe locationof the intakestructures flood level. approximatelyI12 mile off shore. The ESWPH is designedto precludegroundwater in-leakagewith sealedpenetrations.The normal accessto the ESWPH is 620' 6" andis abovethe maximum site flood level of 620' 5". Incidentalin-leakagefrom ground water or systemfailureswould be drainedbelow the 580'6" floor level by gratingopeningsabovethe suctionbay of the pump house and back to the lake via the intake structure. Storagefor other equipmentwill be in the Unit 2EmergencyDieselGenerator Buildins andlorthe Auxiliary Building at eL.620'6".The 43 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant, Safety Functions Support BWR Portable Equipment Phase2 buildingsare sited in a locationabovethe PMF grade(620'5" for PNPP). Other satelliteequipmentlocationswill also be in safety relatedstructures.SeeFigureA.3-16(1 thru 5) for storageand deploymentinformation. SevereStorms with High Winds The E,SWPH,the lJnit2 EmergencyDieselGeneratorBuilding and the Auxiliary Building are designedas SeismicCategoryI structuresthat meetsthe plant's designbasisfor the SSE(e.g., existing safety-related structure) Snow, Ice, and Extreme Cold PNPPsite is subjectto significantamountsof sno% extremelow temperatures and existenceof largeamountof ice. PNPPwill ensurethat all FLEX equipmentwill be storedin locationsthat provide generalprotectionfrom the elementsat the site. FLEX equipmentis storedwithin buildingsthat will be maintained within a temperaturerangeto ensureits functionwhen called upon. High Temperatures The FLEX storagebuildingswill includeadequateventilationto ensurethat high temperaturesdo not affect the functionality of FLEX equipment. Deployment Conceptual Design (Attachm ent 2 contains Conceptual Sketches) The FLEX portable 4160Vac generatorswill be storedin FLEX EquipmentBay I (DieselBuilding) and FLEX EquipmentBay 2 (Unit 2 Aux Building) and deployedat the 620'6" elevationat OperationsArea I (outsidethe DieselBuilding) or OperationsArea 2 (outsidethe ESWPH). Operatorswill connectthe generatorsto dedicateddockingstations(lXl l-50001 and lXl l-S0002) to feedthe Unit 1 and Unit2 Class I I E 4l 60 V Load centersafter the declarationof an ELAP. The FLEX portablecompressors will be storedin FLEX EquipmentBay 2 (Unit 2 Auxiliary Building). The compressorwill be deployedto its OperationsArea(s)3 or 4, at the 62A' 6" elevationoutsideof the Unit 1 Aux Building stairwelldoor. Figure,A3-18showsthe shortdistancebetweenFLEX Equipment Bay 2 (Unit 2 Auxiliary Building) and the Unit 1 Aux Building. As the site is considereda "dry" site, flooding will not impair the deploymentof FLEX equipment.Also, site evaluationshave determined that no soil liquefactionwill occur during a seismicevent. Any debrison the deploymentpath will not hinderdeploymentor will be removed. Strategy Modifications Protection of connections Identify Strategy including how Identify modifications Identify how the connection the equipmentwill be deployedto is protected thepoint of use. Energize U2 480 Vac using o 4160Vac Connectionto Bus DockingStation1Xl 1-50001 FLEX Generators EH-21 for connectingthe FLEX

                                        . 4l60Vacbus'Jumper"              generatorswill be locatedin betweenBreakersEH210l          FLEX EquipmentBay l.

and EH2l02 This is a robuststructure. Replenish Instrument Air o N one The connectionof the Receiver Tanks portableair compressorto 44 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Safety Functions Support BWR Portable Equipment Phase2 existingconnectionslocated in the Unit 1 Auxiliary Building or Intermediate Buildings which are robust structures. DieselFuel Distribution . None Day tanks are installed in the DieselGeneratorBuilding which is a robust structure. Notes: Portablelights will be availablefor useas needed. 45 of82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Safefy Functions Support BWR Portable Equipment Phase3 Provide a general description of the coping strategiesusingphase 3 equipmentincluding modifications that are proposed to maintain and/or support safetyfunctions. Identifu methodsand strateg,t(ies) utilized to achievecoping times. Off-site equipmentfrom the NSRC will arrive on-siteto supply Phase3 coping capabilities. Electrically,this includestwo 4160 Vac generatorscapableof providing additionalpower to the 4160 Vac buses. There will be two connectionpoints for the 4160Vac generatorsthat will be protectedfrom all BDBEE. A"Docking Station"lXll-50001, will be installedinthe FLEX EquipmentArea1 (Diesel Building). This docking stationwill havea DistributionCenter(portableSwitchgear)(similar to NSRC equipment)that will allow four 4160 Vac generatorsto feed into the docking station. Two connection pointswill be usedby on-siteequipmentallowing the useof the othertwo connectionpointsto be used for off-site equipment. The NSRC has estimatedthat they will be able to provide two large generators. During Phase3 the 4160Vacgeneratorswill enablethe useof the RHR pumpsto establishShutdown Cooling or Suppression Pool Cooling (if not previouslyre-established). The Unit 1 Phase3 electricalcoping strategyis to provideadditionalpower for the 4160 Vac Division 1 and Division2 busesEH-11 and EH-12. A uoss-tie betweenthe busesexists. This enablesthe primary or alternateconnectionpoint to supply all loads. The primary connectionwill be to bus EH-21. The FLEX onsiteand NSRC generatorfuel needscan be reasonablysuppliedfrom the existing day tanks/ undergroundtanks. Large fuel trucks will be deliveredfrom the NSRC to provide indefinite coping for the fuel supply andto allow transferfor minor needssuchas the air compressorand the portablelighting stands. Provide a brief description Confirm that procedure/guidanceexistsor will be developedto of Procedures/ Strategies/ support implementationwith a description of the procedure / strategy / Guidelines guideline. PNPPwill continueparticipationin the BWROG and will updateplant proceduresbasedupon genericindustryguidance.It is expectedthe following FSGswill be incorporatedinto existingplant proceduresin order to developthe FSG interfacefor Phase3: o Setupand OperationofNSRC 4160VacGeneratorfor ELAP

                                   . EnergizingUl 4160Vac from FLEX Generator
                                   . Procedurefor refuelingthe NSRC generator Identifv modifications           List modificationsnecessaryfor phase 3
                                   . Installationof 4160 Vac load docking stationsfor FLEX Key Parameters                   List instrumentalioncreditedor recoveredfor this coping evaluation.
                                      . On Board 4160VacGeneratorload 46 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision Safety Functions Support BWR Portable Equipment Phase3 Deployment Conceptual Design (Attachm ent 2 contains Conceptual Sketches) Two NSRC 4160Vac generatorswill arrive on-siteand be deployedto the generatorOperationsArea outsideof the Unit 2 EDG building. They will be connectedto the EH-21 4160Vac bus via load docking stationsin the Unit 2 EDG building. Strategy Modifications Protection of connections Identify Strategy including how Identify modifications Identfy how the connection the equipmentwill be deployedto is protected the point of use. Provide additional power to the o Installationof 4160 Vac load The "Docking Station" for Division I and Division 2 4160 dockingstationsfor FLEX the 4160Vac connections Vac with the NSRC Generators will be locatedin the U2 EDG Building which is a robuststructure. Notes: None 47 of82

a a a (t) (r) a (r.) a c) nr q) l\// (D t/(D tv C) *0) tvO t^t/ ()

                                                                                                              &9         &9

() \-- f I o() iii 6 f-'r 6 irr q) i,r C) i'r 0.) rr.r g i,i c) r!g G 3F F'i  ;= B.E F'= t

            )
           +.       GI'        ;C)

F'= 93

                                                         ; ' =f
                                                         ;^r
                                                        =c)
                                                        =Lr B'=

qr 3* sr 9E J0) I CB e)= c) a.l Ec) c,' o) ,) cl o) a .- ell-

t
                               '=      A.
                                            .Sa.        .sE        Ss           qe.                <o- <o                ^qo K-A 7tr         vtr        7tr          >.a/                          K.

C) () c) () () () c-) C,) eg () bI) L q) (t') C) bI) or) a o o Oa a (, L la\ A F _- c) (n c ) - >rQ E b 0' A () rsQ () ,r .9 I

             -                 \-/      6.y  L) s/            E5o               .C) t+i     c) a

.9, 6 trp0 trss ov X{: C) c) L bo.q \o O oa c..l t O3 (t') L q) s (n o {i c co N er o a (L o I 3 (\ - o () X X X X (L o 0 o) c! q) a (s I I q) H

     +.

o I o c.i

=      --                                                                                                                           oo z

t. oo FF :G -f, o - E q) L ) - X X X X v) T o G q) o tr

      +J              0 c      L (5           q)
    -{        0 o-   -tl L

() E - o - G

     -rS o)                tr CN X          X                                         X o

c x () F. ([ o +i I

             +)       c) o             +.

I q) - FI 6l X X X X X X X

                     +.

FI T

               -    U o

0 E X X X X X X X U q) ( ) oa. (,) v) a EE a

                                                                     ! L
                                                                                      .9c c! e)       O=

L -o sF c) 92

                                                                    '-a                d L
                                                                                 -1:CoJZ               a           ()

LE ycg x.o SrrC) o) p c) 9P- v.rL 9 b -k1 ? v - a 3..+ () ,'b (l) or -Q

                                                                    -4 9
                                                                           \ O.

E tY -- p'E*' (-)

                     'iu ) Fq)

Y C)o - i5u w ! FI FA F.J F

c"l 0.) a C) () 5a a

                                                      =oi (t)
                 )
                +.
                                                      ?,cr A     t-r
                                                      ?,H z               *c)

C) o a a& 9o..

                                =bo v)           a z

O

                .-G                          b0          bo                              0,)       ()

L c)

                +)              F            a           a

() () L rn \n U - () .: bt .F b( CJ \Y/ rl\

                                                        \:_/                                       Y  A c                I ri          d C2 CJ     qJ    n)
                                                                                                  ,FJ

.o E () O .9, L

                                \o b0          O
0) ()

a q o L $ a a

u. c)

Fr cn i a a {i E G (L ?a () o v) 3 6t u1 (t) X X X o - q) o TL +. I () (o c) - F (J I f o N a z H

                     +.

(B

                     'ai.
                                                                                                            +i t

T q) o X X

X $

o c! (L +. 0 q) I L h o {., o - () a a ath c -ft. L (5 q) (L -

     -^fr -

E l\. o Fl (5 tr X X X X X X a o) o N q) c  !-

 $          cg I             c) o          c) t F

o +J x 6l X X X X X X

                      .f..
          -              I U

() 4) q) L X X X X X X U {) o oo-a

                                                                    .-9 (t)
                                 .(6a                                  lr--

E C) c! q) O= =a qJ)c d d o () trE \o( I c-'. /1'^C a p ea - L i () 11) I l-'l F g

                                                                             - . r l+.-

(l) Fo .i v bn(.)) O 6 d q)

                      .'i O()
                                 .BO x.=           J i:tV
                                                                       '\

d (f r, t ir H l-

C u) .9 q) .9, o z E. {i c a () G o- .- f o -

=     -

o - E IL Q

    \.

G () o () q) q) o q) t t - x - d E - d f z z z z z c{ oo z +r t- - lrl o a) 0 o- - 0 q) c -fl. (u ra (L C) (a E G .9 o a o o) FEq e tbro+di = a t ' rl -9 c)

  • c) c FI q)

E tr+EE --i

                                                                                                               +r-CE tron I

(E -*r E F;= = F :d +v : X - ! F X9O. ir) I 3E BtE.EE 0.)F C) (D a tr

                                                                                                              . H V i\

FI 9g -q) v x o F] H b FE >.. v U Y'!- .rA E=.='JE6= 8F -sw rt)l<

                                                                                    - w v

d L -

                                                                                                                 ^ t 7 ! -

orJ =C,)9 5F.v v V ' <

                                                                                                              'n trl 2 E E h E E 1; T
                                                              ;\(C.)                                                      -      r-<
                                                              ;3        H t #

o"= d; ao

                                                                              !F tr(,)
                                                                                    \.1<

oqr,P EEBE 2 E E

                   <.l.=  E                                =        l-r q                          9            XsE                      =()()

E a'E i;  ; a= U.9 .i r== . t s =

                                                                                - H E      [i-          E            AF                a o
                                                   )'o    4a           => v   EA            g   .?              ? <f, F                  - l v Fr -'E+EE'=                  F' .:5
                                                 .-                          .-              rl)    r l ; . j                   P bl Q)+:tr 6t  I E       = c..t 'i sw                6)

EaSbJp'T&, EI t& oo F. 5+h q) u SrLx rdr-u =88 cn - I

                                                                             -tl.                                                         F tr.o                               aa                                                 E    ..

Eo...... L q) 6l () L

                 *-6l                            U                            fr FF l-l                                  Q

c a .9 ()

         *J

.9, z o t {i c a () (U IL FI o -

=     t F

o (L U (U I q) c) () I a I E E F f - z z I t- trl o q) ah o-o a a () c .l a (6 -l ta l< o-v () lJ Ft U) E () f-o t1 H C) G o0

                                        -()

o) o .C)- a c v F q) -:) (s -u D - a a o P a o

                                        . H H

Ft {r) bo g  ?, .10

                - . ! i F r h SbrJEolX       lv  ':-        v q0,q          E     c,, h
              '=2trE+Y ilj!()cBX 0()tr-EmLrl S....

L E

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 References

l. WestinghouseCalculation LTR-US-BWR-I4-18,Rev.0, PERRY Unit 1 Supplemental FLEX Coping Time Analysis.

2 . NEI l2-06, Revision0, "Diverse and Flexible Coping Strategies(FLEX) ImplementationGuide," August 2012. 3 . NRC JLD-ISG-2012-01,Revision0, "Compliancewith Order EA-I2-049, Order Modiffing Licenses with Regardto Requirementsfor Mitigation Strategiesfor Beyond-Design-Basis ExternalEvents," August 2012. 4 . Perry Power StationUnit I UpdatedSafetyAnalysis Report(USAR). 5 . WestinghouseCalculation,LTR-AEO-13-004,Revision0, "Perry Mode 4 andMode 5 Boil Off Calculations,"January31, 2013

6. Site Procedures
    . ONI-RID-Z,TotalLossof AC Power
    . ONI-SPI D-3, CrossTying Unit 1 and Unit 2 Batteries
    . ONI-SPID-1, MaintainingSystemAvailability
    . ONI-SPI-D-2,Non-essentialDC Loads o    ONI-SPI H-3, InstrumentationAvailable During StationBlackout.
    . ONI-EI2-2, Loss of Decay Heat Removal o   EOP-01,RPV Control
7. WestinghouseCalculationNote, CN-AEO- 12-0001, Revision0, "Perry FLEX-Coping Time Analysis,"January31, 2013
8. WestinghouseCalculationNote CN-SEE-II-12-45,Revision 0, "Determinationofthe Time to Boil for the Perry Nuclear Power Plant Unit I SpentFuel Pool after an Earthquake,"December2l, 2012.
9. FLEX IntegratedPlan for the PerryNuclear PowerPlantRevision0
10. GE HitachiReportNED0-33771,Rev l, "GEH Evaluationof FLEX Implementation Guidelines,"

January2013.

11. GEH/BWROG, RCIC Pump and Turbine Durability Evaluation- Pinch Point Study,revision0 1 2 . E P GI s s u eN u m b e r1 1 0 3 3
                                      , 11l12
13. EPG IssueNumberll19,3lll12
14. FLEX MechanicalDesign Reportfor the PerryNuclearPowerPlant,Revision 1, May 2014
15. FLEX ElectricalDesignReportfor the PerryNuclear Power Plant,Revision l, May 2014
16. FLEX ProgrammaticControlsfor the PerryNuclearPowerPlant(PNPP),Revision 1, July 2014 52 of 82

Planfor PerryNuclearPowerPlant,Revision1 OverallIntegrated ACRONYMS AC AlternatingCurrent ADHR AlternateDecay Heat Removal ADS AutomaticDepressurization System BDBEE Beyond-Design-Basis ExternalEvents BWR Boiling Water Reactor BWROG Boiling Water ReactorOwner's Group CFM Cubic Feetper Minute CFR Code Of FederalRegulations CST CondensateStoraqeTank DC Direct Current EDG EmergencyDieselGenerator ELAP ExtendedLoss Of All AC Power EOP EmergencyOperatingProcedure EPG EmergencyProcedureGuide EPRI Electric Power ResearchInstitute ESW EmergencyServiceWater ESWPH EmergencyServiceWater Pump House FENOC FirstEnergyNuclearOperatingCompany FLEX Flexibleand DiverseCoping Mitigation Strategies FSG FLEX SupportGuideline FHB Fuel HandlingBuilding FPCC Fuel Pool Coolingand Cleanup GPM Gallonsper Minute GPH Gallonsper Hour HPCS High PressureCore Spray ISG lnterim Staff Guidance LOOP Loss Of Offsite Power LPCS Low PressureCore Spray LUHS Loss Of Norrnal Accessto The Ultimate Heat Sink MAAP Modular Accident AnalysisProgram MOVs Motor OperatedValves MW Megawaff NEI NuclearEnergyInstitute 5 3o f 8 2

OverallIntegrated P lanfor PerryNuclearPowerPlant,Revision1 NSRC National SaferResponseCenter OBE OperatingBasisEarthquake ONI Off Normal Instructions PMF ProbableMaximum Flood PNPP PerryNuclear PowerPlant PSIG Poundsper squareinch, gauge RCIC ReactorCore IsolationCooling RHR ResidualHeat Removal RPV ReactorPressureVessel RRC RegionalResponseCenter SAFER StrategicAlliance for FLEX EmergencyResponse SAG SevereAccidentGuidelines SDC ShutdownCooling SBO StationBlackout SFP SpentFuel Pool SP SuppressionPool SPCU Suppression Pool CleanUp SPMU SuppressionPool Make Up SRV Safety/ReliefValve SSE Safe ShutdownEarthquake USAR UpdatedSafetyAnalysisRePort UHS UltirnateHeat Sink Vac Volts AlternatingCurrent Vdc Volts Direct Current OPEN ITEMS There are No Open Items Identified 54 of 82

  • F UE E o) tr,g g o.t I

tr9) dl ,o EfiE t X t- 7= 5 (l) ca) a

                                                          .=R                E-E,a Te             E Ctr tr (Bs I
                                                                                                                                    'Eg
Es;Eg E
                                                                           - t - v P
                                                          +:q
                                   +.             z        (r) O                                           -a U'F                                           'E                  c\                  -

F a: cg tr aa L- P c.) Egr!Er f r CE ox ..Yo () 0) *- A V s5 N s6 \J(l) .EF egil E 06 E;:E 3r L< L -(.) o.o .fi

                                                          .E6                                            l-.f (c                  (j,   aC v1            o                                                        b.o

() SgEl sE-,8 F cQ) Et.sHEsE; g X 3 t< 6X C)X .=a E [r.r L 6) bog gB ts tr g 9 6c) FI

0) Hv oa)

HAFSgTiE da: o $r 'to rYl l+i ti a 9c)

                                   -/1. o\      a-4                                                                       { J F F()

cs=

                                                                            -i;s'l EH;o E                {-? [i

( tr {Y C

                                                                                                                                      -( E 0.)

Eis: s;.5tr E AL a v

                                                                                                                     - a t c                                                  CX oa                                              v 6 v
                                                                                                            , \ F . P o

'.4 :9xeL I cBX() C<l.i C;)O

                                                            )r'i 9-i          =

tt\ o o ovq or<x

                                                                                                                                      >E

()11; AF /\ H F V

                                                          ---     fY ff,gE                     f        \ . q
                                                                                                         ! ( g t !

o t tr 0)'= {i Eq) \o x .) tBs 0 c .=e C) (s e)c!tr O C) n Eig (D tri$ s8 F

- c) Z ,q) Z U)

Z 0.= \,/ - o) a E () .CB 69 (LE g)o

                                                                                                                                       'E r-      1'   ;-              :                                                                                                       e-9 RJ           F               .Ia                                                                                                   qr Iri        Or a'!

X*, g ocB? tt -r- t - = oF xtrE  :\ { aX c..t t t r) o 1 ir 3g z 2 z z CA oo) 00

                                                                                                                                                              +r

( ) P

- - U EH l..l il()rH
 \t/-A tra                    tr)

It bY v .i) I!5

 .i-)             A:                                                                                                               !l           at) 9a r5F4  x ter r.q)             dHE< 2 z                                        z                                                  Z
                                                                                                                                    .F

() (D t-r 6= TI FF-3t 'iE ILU ze N 2 d !L = r . _ ioo eq, t sidc ) o (u ,:llE HirL (.) o cn Eqq) o) U)+ (l) o bo

                                                                                                                                    . i - ' i
                                                                                                                                    -tr                   hD c                                                 l-.1                                                                               yo!2 g                                                                                  c6nsl (tr                                             ()                o                                                    a              9Hf;
                                                                                                                                    .= Ex o                                                 +                (t)

U) P ;o E ri a ()ti o F () (.) C) a a bo E(g c )

  • r t-r A Scscs F

0.) oo tr  : EE I F I H a H t< c) ra gEb F J X aO$r a frl o) cOl,lC)

                                             +-r                                                                                     -.rta a        tra             F o) l,<                        >.
  • g U 4 a \ -

q c) H Sr O (l) () .= F t T I ei o) r ci (oDE)zi r

                                                                                                                                        , .
  • E cE H'x tr
                                                                                                                                     .ir          ar      G5 gai ?                                                                                                     # 4 9 v -

o ^F 3,E3

                         -FE                                                                                                         sEb
                                                                                                                                        &8 5 l;rl           \'

H E V FI () c.l co s E

                                                                                    ',i      oo oc                                             E.E                  X rrl a
                                                                                    '*E                                                                         L<
0) bo bo (l) 2tr J fr **

A d

                                                                                                                                                 ' F goE Hh a t H                             CC(D c)                    aR
                                                                                    'Eq                                           6                            O-tsB                        L)
                                                                                                                                                                >.Q dE                     X G'

FX V H Fa c'l Fl c. =-c-l lr (L) P V

                                      -r v 1
                                          \?/            L   Jr<

tLl H:5 Ptr cc^ A q l+<

                                                                                                                                                            -   E5                  =
                                                                                                                                                              \A G                                                                - A                                  t/                        =
                                      *-    F V                                                       v bo.E                  :bo; CJ
                                    ' oo=A+              g bo.E
                                                             .Eqr (1            l-s! t              t<
                                                                                                          .Ecl Fr               Lr    o-'=x

(-'!

                                                                                                                                                              +ig                   s)
                            -         Fb                      a i
                                                                            .\)     .!J=                 7,9                       0.2,4                       b*                ,5 C)
                                                             .r*
                                                             =    o)                 c)-              (l)
                                                                                                          . l -

5g

                                                                                                                                    =5'h U   }bx                     B5.               E ta t,      E;ryf                      -
                                                             ! A 6g tr9-o
                                                                                     ;=s                   6( l g) o )             egE                          o ga 9p5 r*            ,o 6

o L 3ee'.U oo) (t) FE* a

                                                                                                                             -     gt r oPo t) r              '=Lr   a'r
                                                                                                                                                              ' b =ti" o.

ar FEU a) 3 L 9-hE a s l _

  • E 9Fir hE (n=H E

o iio 5a o

                            & 3x 8 8 AR                    cu)O
                                                                                                      <.l                     O                               Cgo +)               o v      oE                      Eb                                     a v
                                    .O[IJ-q t'x:
                                                         ,-    F{

U)e

a. 'o rl o)

U) 9 6 o eE I o-F E Zds {JY E+  ;! 2 c F-H

                                           -r,\v C)    c]l(l)                3 a^s( . )

E gbog fio.B E H tr= .9 .9,

                                    .5Fi E H

9F (t)

                                                             .eg 8
                                                                     .        (,)
                                                                                  . Bo &                  .e; a        C       ()
g. F'gEss 8.dB I 3:F *'

o E f F fr ss

                                                             -tEl x .=F f-        q, X

rrl

                                                                                                          .EX F          6 X

tr-l ?Ef,Ffr cnFgtrl t {i Eot c ()6tr

                        .=cJ (5

(L Et g { { l- .\ tri$ z z z z z OY 3.= v-o'i o-Y F t-- +. (547-. a OJ F .Ia oct? Oa P\H trh= { { {  :\ Jl;- 2-l 11 (D q) ir 3g I - - z z z z Z 2 L - - - f U r- t EEI ^o E IlGO

         +.

Fr:

              .4r hE        o
 -l

($9

            - deez
               }F        H' z                    z                        z                       z                            z                      z ra!r5-          c)-Y ztJ Ec) oa G                                                                                        L

() o) (.) t< o X V) ()= c (n O a't 3< o) () F gEl- {-, L) (5 a i

                                                                                                                 ,ti E c.r (D                                               o)

B a bo C) a r'ro \o s o +. fr'l

                                                                                        '= c) 5a
i oD X I (1.

(t) () O )<- frl 0.) /nF jp J L r- li a t- o0'o () lr cq) oiJ F g F; ?9 (l) tr6 E a E9 a6x trl >.,!l r! .9 -9 >. H (g erA A" =6) a0 b O *v o ()O EE no

  • a 4 v ts C)(l)

E-9b  ? a.rl F.E3 c.l c.l .f,

                    -FS         \,

IIl FI o (.r \o t-. oo

                            +i F

I sEaaEgE ep

                                                                   .=9                                                       I
                                                                   =#

v oLra +lCtr a*,

                                       "a!E:H              ee       L)

I f)A Y-a. tri:0) P 'AE

                                                                                                                              -.=           :,=
                                       't'ErEg            F'PE r.\                                               '==
                                                                                     '-                                                      E
                                                                                                                                                   \o f                                    v _ r v
                                         =-a,F'(r                                \o             -o H                                        i+

a.l= dE EEg, b a.l cr t-3 il tuu-

                                                                                                       ^'-

r 5F K^a= cq I iguEHu$C$'i 6

                                                                    = ^ ' ^-

R : A L \ 0

                                                                  ;- -. = 3 P I - E i
                                                                                           =
                                                                                                  !r<
                                                                                                  =<

vo i+/ U) L

                                                                                                                 = sF;Es (t) t-r aHiE{            FEi      F - . Y X r-                           =           AS             ,ir^.6        al R ?;

a (1.

                               \u)
                                                                  .a
                                                                  =6 X     (.)      ca     ei5 o.l                               $=E       c\

t.. L f;sEEe =E?  ! ?_

                                                                   - l : e L - u 6X()'=a.ls C)       0)     B F.

A r I po; &'?S f-o

                               /1.      *E*E il[fniEF=sg :
                                                          *i E    P 95.e+Eg Otr(l)d.f)

F'=

                                                                   .97-;

x di H H h h 5 o- Y F iJ E r- F'a

                                                                                           / ) G '-^
                                                                                           /-r

{:

                                                                                                  ? o
i.9

() a t e E &fi3Es;

                                                                                                                             '= 'e sP>..go3 9==h6                 8     (J d

a o c E=gEeA:EE .P 6  !? co.F a :E g trR o o' I (!:T 7i c >rL .9 .9 6 6 = E-F E. a c) S:AlEE EgF= $ E:U 6

                                                                                  * ()3 (r\o t!
                                                                                                  =:               L
                                                                                                                 .,r      J I 4 I U D H
                                                                                                                                                    '/

trl (J o {i Eql o\ o\ o\ c .=(J (l) o () (It c)Gtr I (J (J ES g r-(L c) () { tri$ 0.) Lr

                                                    ,C) tr
                                                                                      ,C)                  z                         s<
                                                                                                                                    ,!)                z l-o=
              .\

C;) H o (.)

 =.=                       v-o; o.Z            x t--

(u1;- +. OJ F ocB?

                           .ia 9+re               trh=                            \o                                \o                                            \o                 $

z J F - l ir Eg E p - z z 6 u L - , l U r-aEE

^oE,-

IlGO hE o }E iEE= E

 -T                                                                                                        Z                                           z (E9 rn !- 5 rO             q) ZU oa G

(,) o) L o) a o P c C) (h (J c) l< (s J< () Lr tr C) a'1 a a J l-r o) o) 0,) X F a0 P ( o I frl Jr,. (l) x 6 ('D rr] C) () E T;' 6) J bo P

                                                                                   *i :Fm                  X ir.     =

X (l) rrl 9-, rr l 9.9 G6 frl J trr

                                                                                                                                >.s O

J (l L<

                                                                                                                                \o      q.)                t<

(J v) -N a) -, H tr L.,l F - F. :FO ta) 5O +jC O& Qfu Ao) e::

-F-l-l -

u? (a)

                                                                                       \o                  \o                       \o                  \o F                                                                                                                     tal c.t                 cn                        $

o {.)

                                 -l

J v Cv) 9E A9 SL () tr

                                                                                                                                                                                                         ;O
                                                     ' F a0                                                                                                    o                                  (l)
                                       < - H                                                                                                                                                              (r
                                     \o              \o       =                 ;c)                          (D\o F

(.)H 3,h O h^ (.) a nc.l \z/

                                                                                                                                       + F 9 (i     ,,^

qY= :v tr E ^(, X r.r:OO cd rrr (D

                                                                                                                                               -E                C)=                                      !J
                                                                                                                                                                                                          !v
                                                                                                                                                                                                                      \o
                                     *R C ,            o,'    Fl            r-               trf-            aa)                       r-                                                                             (\l 6 S5 l^l    JLr tr.            7 l i ' l ^ r i H A
                                                                                  - v L

o)- C) l-i g/

                                                                                                                                         - v v i     .().

cg rig F= x (J (6)H= n I hoF -c (l) *\o oclP x,p  ? CB e P P ( D 6

                                                              .E             o)  ^=

i'x c) k V H i H

                                                                                                            -o-9 F         F
                                                                                                                                    -o   O a2 X!

C)- gH - ? cgs?o , g e x s;i H V 2,0 (4 l-76,*Y 2.J .\/

                                                                                                                                                  ;\
                                                                                                                                                            -t
                                     .-A
                                                              . d -

H x;= t-r a S'E E

                                                              =C)

XFg ab s L J - UVFT t-v, -o

                                                                                                             ! - n l
                                                                                                                                                                                            .!            i:          -o u) t, Ee gg                                g   v) .=

t-49 c) A F 8:N l-i l-

                                                                                                                                       -4 0)e           +' .Z                   -r    $ 8.*. E I

oc) o*,.9 iY h06i* tro)j5 EE o& L Qg u) lvJJ ^v e( ) ( D

  • X a- v = ) = c g d . .1 Eq ()OA
                                                                                                                                                                                        'si ' i s 6o 3 lt 9*

g  ?,.v 3il

                                                                                                            ,et sR: 9 E 6.=            r          hE                                                                      9IJ F        -

F

                                     '-5                                           t A !                                                 F        H         -

x o )  !? Jl 6.e rl= x t9 E.:A'9 .1' Ag u E E E.q r \ - Y ' l E i-u s f{. v

                                                                                                             ^Xcdctr H                                    4 J V                                         n.-ha V ^ P I jjE H< = ;

ilE r:

                                                                                                                                                               - v A -

A+) v=e F F V v g t - o)-tr-i c)X aa g" ; o H:HE o.E -9 E'o c o(I) tr= -a S.9 s =

                                     'XAFCB 5 69                                          .E     o           f>           E
                                       ; E .Eq o>

I VE (J .o g g 6.() FECI ( ) ( ) . x= X E E.Eu-E iEq s (t) 6 I >-!) o o. 0.)'= .a PU d< <

                                                              .r+?t4

_cx FILLI 2-2 Li(JX

                                                                                ,Ar -
                                                                                \J           (.)

q r:i II1 n n n v v rv \ O. A.* J AITI XX X E x ot o t {i Eo o\ t o\ o\ c .=e o () () () C) (s e)cqtr (J

                                                 .'1 q)

O (4 L Etg o o) c) { tri$ tr

                                                ,!l                     z                    ,!)

o tr

                                                                                                                        ,(l)                   z                               ,!l                           z La\

o= 0) (D H o) (.)

=.=                     !,/ -                                                                                           &
-r-

,'r-rJ-o d I r*H

                         +.

G1)-. t OJ F .Ia

                 ,) eq ?

oa -*) trt= t-. { t- \o .f, { J l - 2-L t1 (D ir Eg I - - z z c.l z

           )

t-r-

       -a z\

U t EEI ,".o E IlGO niE HE O

 -T (g9
           -  d HEU                                                     z                                                                      z                                                             z r.r-FF H' e,Y r!5 ze Ec) o(n (5                                                                                       koo                             a0                                                                               (l) a o)                                                                                                                                             tr                                                         (l) o                                                                   a                  \,/ x (D                    a a                          tr s                                              --\                  frl                                                                        ()

t< (J (D a7 x () f4 F a a

                                                                     ,F q)                nx (4

() (J z c) - - a i.l tr I O

                                                                                        <'a                               a                                                C) o                              +.

(') F OX

                                                                                        ,a
o) (-

(l) u) c)

                                                                                                                                                                                                        \o (l).=               c(t) )
  • frl

() 9r l-< o :f, J1

                                                                      =O
                                                                      =o)                  ()^     (t)                  X                           I
                                                                                                                                                                          +f
                                                  -                                     'o.

frI (.) t-i a) X f r'l J a Qg trO ft C,) oo J:i a a o- va

                                                 -(.)

a

                                                                      ).r r no)
                                                                                                                                                 >'                        9(l) csh                             >.      CB
                                                                                        -=         v)                   -o                                                                              -=         a)

RJ o.o () oo) a'1 Ao -EF a frl 65 Er, ? c.l \o $ 3,E3 \o c.l

                                                                        \o                     trr                                                                                                             N
                    -iFE          \t Ll
                                 -               \o                     t-.                                             o\                                                                                    c.l
                                 )                                                                                                            a.l                              c.l                            o.l
                              -+.

a0 t-

                                                    'l-
                                     +..f                                .2      I t<

o g E-q q o .ic* oo

                                     &K rF E                     .o6s                                 N    ob
                              -      t/          =

B E"F tr 5 t-GI o I A I Lrtr eo r ] Y  ?'= U) Oa

                               -     dc.t
                                                    .=

E = o t-r (D u( )5o x v)X () (t oE aO

c)

H : ar (\I .9 o.r () L l 1

                                                                                                                   -c{

a -.: X U) l:'(l)r\x 9 t\. oP Ytr-1f,o 4 lr o)0) O. C,) de e 5 (l) {= (B t 9. 9 9 EE O.t vo ( ) d I o E o.?';

                                                       - J i \

K c.lF og RF (rP tr() il no  ; J cd  :-L' o.l a ac)

                                                    - (, uP- -( Rr + f                csr/)                        Xg Ctrfr Eo e                                            HE a9 c                                     v)        fi     0()- tr 9 ( * =                                F(D 50E           o)e

.9 E}.EF =6 3( 9) '@= .s B. E.Eg

                                     -rX                                              FX              (l)X (t)       (.    &r!

o

                                                    - J V . i t

{i :q) o\ c .=e C) (5 e)crtr I L EtsE { (l) { l- r\ Fi$ z ,q) z z Z o= O

 =.=                     \,, -

o; (L: F t-- E H

Fl
                         .ia

(!)G? q! I Et = { { { = 1 qt)r( u tr i:39 z C-l z z z L E r\ U r- t IjEJ ^oE,.. rlGo Pr: hE q) 4e c:tr (E9 d HEK 5 E2rl 7 z z z

                  =H       =-

L+ o_a zv Ec) oa ([ o) F a o Trl I c

6) t< (t) \o (E ;c) r r'l c) F.t a X (J o +.

q.)

                                       \J NX C)                 ,t' a.

rr l J J F a 9-r^r Cg o) la (.) L. I {= 0) J

                                                                                        !v      +)

CB or a)i: Qa) B a O

                                                                                       #6)               t t l o                   Yo0 o)

Lr F b00 a0 () (d (//) C) c) 6z a a 9i't  ? \o s oo oo F,E3 iiFS c\ c.l N c.l c\ l-a \- F q) c.l s ra) \o t*r

                                +.          c{                        cn                    c.l           N               c.i F{

c .9 .9, o t J t-l

-l
=tf)

J4 o_\ - oq0

==

oo (L=

.-                4 6t-l*r            I cg O    *)  t-l Etr-!"           -

ti^ 'H

=a 6l a i'l q) h=t +J

^u {:: I!!X S't I q)

                 'F h

C-

 $G 6-=        '{iJ EA OO 69t-          -(

o)o gU c g 0) o

     ,Al ctt
     .=
     =
         =

r o c t- .9 .g .9 I x II o = t {i c ao (0 (5 lo (L -: l- Y o o *,g

 =

o II o (L o. l-G tr o II o {r, o 9 c \00

 =       r9 z         tr+r go b       o    F"r l-o    o\o IL        -
         ?

o e l-II C' c = (s o (L o {ra (E E tr o L

+-,

(u o a I l-o) o

+t c    I
-      o (5

t, L a t o T-I (o o o L

          =
       ,9 lt

r ie c 60 ro .9 UN .(2 io o + E, h tn {i g s c +: T' (U H c

        =

(L !o o l-

        'C rI o    q                              o 5
 =                                 3n o

(L I (s L-o -o t, o +, o c\

 =

z b l-o o\o (L uI c.i e l-I fo c (U o TL L 3 lf

+,

o (U fis$ .9 IL r{ l-C') T

+t o              = GL?

s II E5g

           >[
-          E.          t O. r-       tt.

(U O* r-l- fis 5tu o s8 {s vl cl o  :

       .O er          BI vr IU gt gr rn E0
       ,g
       =

5 x 5 {

          $     o cLi iI Ll o

P l n $ or 3 i r io c -e

.9   (o rn
.(2 o   (o t    +

r\ E J C t.r) - E, (U o0 o (L .c P tr E

     '=

(J o l- L) CL {.,

                                                     .I o   ao    lJ-                                          C' 3    x                                                 =

o f o tL I l-(U o o t o +, o f c\ z or b l-o o\o (L lrJ l-Grt .9 (v) I c (5 TL o It E

                                                       =

o * :rDADA3 .9

+t (o                                                  lt l-o) o
+t I

I c CL >l I -- - E. .> o-(o o CL l-

                         =(ll                 CL r-l-       +.,           vr Tt                 r(1, o        ln o             oE                   vr -ct o    -ro   3             3-VI IJJ 3r
                                             .t,
    -Ot                                      l'rJ CIl                        (JO l-rn                         (J.lJ o-(o oo                       l!o
    .=                         O-E                          FC
    '5                         E,=

co x

      =
      /r-\

w

f I I
      =                i JI               I
      \rrl I
      -g                    rrt n

tr; C $* w I T

        +rf              *g lr r           ru             r

.9 c :f .9 o +rf ru ctt t ($ t- {J c

                                  =

{i c o a - {rt E o tr, (L o l-o 3 5 {t rt, o L

                                  =

o IL o o H fs HO CL l-(U ]-- ct =

                 .g               o o          w    -VI=           .-

(E o f ff = c\ z z- o (J +, L o (E q-i o

                                        \f,
                                        \o l-o         (J                  i>

TL t, { o ,9 l-

                                   =

Irr! .cr c (d o G t TL io E t-t l l T o (Y)

+t o

z (5 l- o o) Lt

                                   =

o

+t c     r*r                     .9 o

o Il l-o fi ffi o o J tf-o (- l - o {r, r CI) t-t

          *rt
        =

Planfor PerryNuclearPowerPlant,Revision1 OverallIntegrated Figure A3-5: West Dry Standpipe 65 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Aux BuildingEastDry Standpipe AuxBuilding 620'6" Aux Building599' 6 A u x B u i l d i n e5 6 8 '6 ' ' FigureA3-6: East Dry Standpipe 66 of 82

ir (r T rFil (f('t t f1 c(D GI ll I F GI EIL tt cl E lL r c .9 .9, o t ,Al rO o {i c - ------ ----l N -(f,' r o  ! (L C\ o l- (v) o \/

 =                                                                                        C o

o II L {J (, l-K 6 GI o

 $         I                     (t                                                        tr o         0                     ul                                                        tr E           <[                                                                              o
 =         cl                                                                           o$

z F o.^! \., t.' l-oI: o N m I." TL f{ t I n nl a l-o IL trr n t rf fix. o lts gl -J tL \ lrJ o-frl J c (U I

                                                                                            ! l (L                            N                                    nl                     N a                                  \                     CY)

I E d d

+,

o J o G L t- a N I fv

                                                                                            =

C') o (D \ .9

+,

c

                                       -                            d                    ]L Gt tr           VgIgJ l-o o

z-Ig .9 JlrJ F. lrE dX. gf,r

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 Hose Connection Point I F 1 F6tO LJ ul. ol-2 FEIT Lr f-To SuppressionPoolvia RHR ReturnHeader I X FEte E j-r iA I tto*l L I I I r-l

                                                                             ?"'r an'
                                                                           *Jo,     rFEr3 rLX r--'l FigureA3-8: LPCSSuppressionPool InventoryAdditionFlowpath(302-0705) 68 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 oseconnection point t/2'l l ltfz' Prt..F4t6E Eu.6e8'-g' u1 Fslil FEtz* t H LX lFStaa 0!-i F6?e LX Nmifi{ TAIER LIVEI EL.Se3'-g' FEH.TF{glE el.rrt" -r' FigureA3-9:HPCSSuppressionPool InventoryAdditionFlowpath(302-0701) 69 of 82

6D Er (fi B Eu-i (n tr m SJ s r c A (0 .9 rf .9, N o o (\ I t o (Y) {i Y c tr (u o IL *3 *,(E I I l-o

  • o
 =

lJf o o H .rfi J TL tr F& o l-o *,(E II o o o l - lF z

f E

o l- = l-o ct) C IL II l-CL tF o it c t ([ I o- o o

+,

o G; G l-F I o) (Y)

+r, o

c (tr o L r*l = l-E gt} H

                                                  -:tt           .9 o                zu                                           lr.

ts o * (\l I tr-J (.\l\1] f\' I E n rr .

                                           .F6 glgj-lld             i* - {-.'*FI

{ f *;\.-lF .'i: {.D 1 {f,}

                                        =

tt trt lr

                   'i sT7                    s es 3l+i'+                 +

E+ E. d It_ En 1 ! rJ

               =?            is{i Us            l=l

r c .9 .9, o t +t c (5 ED (L II tr

     +.

t- = o o 3 t, o L (L o l- tt (o TE o o t E -(\

' = oct z ltH Z" o-:

l- lJ. r-o U' (L a l l- rF ,9 F I c fa lg o (L L E =

+,

o .9 o IL l-o)

+,

o c (5 l-o o

E e i rLo NE {HHH} E/wmocerl fiz r c .9 (Y) .a tt tr o (E t (\ {i fo o c ci o G o (u F IL r-F l-o o-3 ctt o II tr o- ct = L

                                                                                                =

l- E 3 (J r

                                                                           *l
                                                                            $                o G             o-          o-                       I
-9             n g                                               ffi                  ct) o                                                  I                      lCI                  -

e z f H I Fl o I I o, s f, Es o (J (\l r 8GI fi G ,t O+r o F t-l- o

                           !f o                          rs lr                f;                   CL c\

r-(L o t( o { 5 o l- J tF o E c o (u o o (L fit g tF o E o o

+,

(5 F I a r a-z o c.i r t- tt, o 0 I o)  : o s a (v) o

+,

c $l$ { r-+' CL E o- I r) I o c) tfl

                                                                                    'F

{p u* o L

                                                                                                =

O rfl G a I o '(f .9 t) I &. l-o o-J I E (lt lJ. o F o vl

t ol s-()

IF ar o o ft t IL a o H tf :3 (t  ; ffi (L sr .g N o ..tt

    ,g
          >                                                    UJ t*

t UI

    .E}.c                                                                               uJ TE                                                                           ft E]
                                                                                 =l
o TL rrtg
    - . 4 e(E                                                                        XI zj=                                                                         ull J'

TJ-(t mn) pod rroocoddrE

r c

.9                  ctt
.9               .I tr
                 +,

o 3 tr o

+t tr c               -g G               lt (L                  o L-o o               T'
 =                  c o                  $

(L o f-CL o = T

-o                  o C) f o   c\

z E oo L (+r b o o {r, ca l- IU o o L fr. (L tr l-o .g o c o x u IL J tt T' o

+,

(U l-o) o

+,

c (U l-o o o vl J

             -o ct E
              =

o-3 ta xz urc u, dE L'C EO Elo 72 l ! c dE L ) - frd 2re

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 ffif, ftffi,f;f8fi 80trf*fff,trf ruffirf$g F0nffiR ffiprtr N(4t$11$S

                          ^{.115 rc RfiRTT STEAftI ruNNEL ffifrrt     ilcilAt{s Rofll AHffiN,ffi ACCESS DOOR f,x-tl ftfr,*

fiC{.JfifffiAtrt' AUNIH,NT BUII"U}IS ELEl/.020' FigureA3-14: HoseRouting- PortableAir Gompressorto InstrumentAir 74 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 P882 ATI.IOSPHERE F5t88 l t/2' 3/4'. F5Z?/8 F52IB 3/4', 314. Ffi228 F5t68 tN0 l,lC FsI78 rfr 3/4', 3/4', FffiTffiE AIR F5478 FS46F cYLIl,ffiRCO{iCTION l.lc NO u, [' L2- 4 L2-3 TC 3/4' I F5578 Note: The ADS A air headeris the sameconfigurationand connectionpoint is representative of both the Primary and SecondaryConnectionPoints Figure A3-15: PortableAir GompressorConnection Point 75 of 82

OverallIntegratedPlanfor PerryNuclearPowerPlant,Revision1 Untl CmfhrTostr w trnce Roed*rY llorlscbtnk St4ingArea Opcr.tklntArcI l-il'Rf,IGclrrorj Undsr Grourid fual Oil Tar*t l-t+1'ftCIGcrter*c l - fhrlmrd Port* 6mrda/ Alr Ce'/t'.Cttr F[fXEqdrnentBaY a - lfrrflrrrc FrSh nfl r! / AtoCoorrss 5' fbrtltfr tE?ril tootlcr PunO Trarel Route FigureA3-16,Sheet1: DeploymentRoute 1 for Maior FLEXEquipment 76 of 82

OverallIntegratedPlanfor PerryNuclearPowerPlant,Revision1

    ,,ffi.!                                      I                      fence "nfrlTurbirrlrr{diq ti I                                                         Roaduray Flan-Seisrnfc Staging Area                                    OprjrtktnsArclt tll' I -       ftft      Ga*rrtorc Un&r  Grournl Fuel Oil Tanhs 2 - 1l+l'      flEI    Gtocrrtor 3 -'Hctrrcd          gortdlr       Garffdr/     lur tolnrrlcor F[fX Equiprnent    Bay    4 - AltGmilG         Fort Dl" Gcornlor        / lir Co{lFrts
5. PortrHr Oird too!ilr firn9 trrarel Rotrte
r--ll
lJll lscryictluddhll 3 llnan'l t I L:'*,.-*-* '
                       ----J I                                                                                                                                           I I          Urrft Z lurblne   luitfrj

{ I I I I I I I I I I I a I I t I I I Figure A3-16,Sheet 2: DeploymentRoute2 for MajorFLEXEquipment 77 of 82

OverallIntegrated Planfor PerryNuclearPowerPlant,Revision1 FigureA3-16,Sheet3: DeploymentRoute3 for MajorFLEXEquipment 78 of 82

OverallIntegratedPlanfor PerryNuclearPowerPlant,Revision1 fence Roadway Non-Seismrc Stirging Area OpcratiofirArc5 l - af ruf G*rdorc Under Grourxl Fuel Oil Tanks 2 - al+l- FI.CIGersrtor I - hcfcrrrd Fort-k 6.n rrta/ltirfuryrrrsq FI^EXEquiprnent Bay 4 - Altcr,nelc Fortatlc 6mrrlor/ Air Com3rrrfr 5" Port blt OictcNtoo$.r Pllrrro Travel Rsute ,.--_.' f i I I 1 I I unit I Turl*ne luildia I I I I I II I I I I I J Figure A3-l 6, Sheet 4: DeploymentRoute4 for MajorFLEXEquipment 79 of 82

OverallIntegratedPlanfor PerryNuclearPowerPlant,Revision1 Key Ience Roadway Non'Sebmic Staglng Area Operations Areas t -'tl" FLEX GGlt.trtorr ffi Under Ground Fuel Oil Tanks 2 -'!& l' Fl-[X Crcoarator 3 - Prefencd Porteth 6enorelor / Air Comprersor

                                 ,:i!iiii:l:ii;:i:iii:i:i:;iiii!iii ilii:i,:       FLEX Equipment 8ay       4 - AhGrnrtc     Portiblc  Genrrelor     / An Crrmptcl6d 5- PortrUc    DtesC    Eoostt   Pump
                                        -**_,,___J I

t Travel Route FigureA3-16,Sheet5: DeploymentRoute5 for Major FLEX Equipment 80 of 82

Planfor PerryNuclearPowerPlant,Revision1 OverallIntegrated Figure A3-172ElectricalGeneratorStorageand OperationsAreas 8l of82

OverallIntegratedPlanfor PerryNuclearPowerPlant,Revision1 Figure A3-18: ilain FLEX Storago, Staging, and Access 82 of 82}}