ML050140247

From kanterella
Jump to navigation Jump to search

Flowserve RAL-7483 Rev 0 Design Modification Report Assy 93-14347, 10/26/2004
ML050140247
Person / Time
Site: Hope Creek PSEG icon.png
Issue date: 10/26/2004
From:
Flowserve Corp
To:
Office of Nuclear Reactor Regulation
References
TAC MC5111 RAL-7483, Rev 0
Download: ML050140247 (59)


Text

Anchor/Darling Valves SWA7P Valves FLOWSERVE,e Edward Valves Vahtek Control Products Worcester Valves Flow Control Division RAL-7483 Rev 0 Design Modification Report PSEG Nuclear LLC Hope Creek Generating Station Customer P.O. No: 4500257459 Size 20 Class 900 Carbon Steel Gate Valve S.O. 31042-02 Assembly Drawing 93-14347 Prepared by: Date:

Reviewed by: Date:

Approved by: Date:

"I, the undersigned, a Registered Professional Engineer experienced in the design of valves, verify that to the best of my knowledge, information, and belief, this design report complies with the requirements of the ASME Code for Nuclear Power Plant ComponentsSection III, 1974 Edition with Summer 1975 Addenda and the conditions of the design specifications. Pursuant to paragraph NCA-3350 of said Code, this certification is solely for the purpose of complying with paragraph NB-3560 of said Code and is not lo be construed as involving, modifying, or changing contractual relationships or legal liabilities."

Certified By: CertifiedDy: Date:

REPORT NO.: RAL-7483 FLOAISERVE REV. 0 DATE: 10/2612004 PAGE i Flow (:ontrnl Division Rale:igh. XVC Design Source:

  • Customer P.O.: 4500257459 Design Inputs: Design Specification: BFN-50-C-7105 Rev. 7 ASME Section III, 1974 Edition, Summer 1975 Addenda.

Literature Searches: Not Applicable Assumptions: None Computer Calculations/Programs: ANSYS Workbench 8.1 Valve Data:

Size 20 Class 900 Carbon Steel Gate Valve Sales Order 31042-02 Assembly Drawing 93-14347 Rev. D

REPORT NO.: RAL-7483 FLOV SE W E REV. 0 DATE: 1012612004 "I

tPAGE ii Flow Control Division Rale~igh. NVC RECORD OF REVISIONS Rev. Pages Description 0, 10-25-04 All Initial Issue

- REPORT NO.: RAL-74B3 FLOVWSERVE REV. 0 DATE: 1012612004

,, PAGE 3 Flow Control Division Raleigh. XC 1 DISCUSSION This report is prepared to provide analysis results that support a proposed modification (see Attachment 1) to the subject valve. The goal of the modification is to reduce the effect that vibration due to pump induced chugging has on the valve's bevel gear actuator cover assembly. Based on historical damage, the original configuration is subject to fatigue damage and fretting contact due to the vibration. It is assumed that, because the valve's natural frequency is in a range that matches chugging frequencies, significant accelerations can result.

This analysis may be considered a supplement to the existing Class I design and seismic analysis prepared by Anamet Laboratories Inc., Lab No. 79.016. It is concluded here that the valve can withstand the specified chugging loading in addition to the seismic loading addressed in the Anamet report.

The analysis was performed using the finite element based design simulation package called Workbench by ANSYS, Inc. along with the solid model design package Pro/E. The procedure involved creating the solid model of the valve extended structure in Pro/E, porting the model into Workbench, setting up analysis scenarios, solving the model, and preparing a report.

Attachment 2 contains the report that was generated from Workbench that documents the analysis performed. The report contains six scenarios: the first three address the proposed modification, while the last three address the original state. Each set of three scenarios address (1> natural frequencies of the valve extended structure, (2) response of the extended structure due to a broad spectrum acceleration input at the base of the extended structure, and (3) stress analysis due to conservative accelerations based on broad spectrum response at the top of the extended structure.

In addition to the workbench analysis, the capscrews that mount the actuator cover are investigated in section 2 using classical methods using input from the Workbench results. Only the original configuration is analyzed. The modified configuration is not addressed because the added struts add significant support due to their attachment to bevel gear housing, which greatly relieves the load on the capscrews.

The broad spectrum acceleration input (0.3 g's) is based on accelerometer measurements.

Measurements were taken at low frequency and high frequency pump speeds, and the high frequency speed resulted in the higher acceleration. The 0.3 g's input envelopes the square root of two times RMS measured values, which all parties involved have agreed is adequate input for evaluating fatigue damage. In addition, results are such that it may be concluded that response to peak input is not a critical design concern without performing additional analyses.

Due to the valve's extended structure height, the input acceleration is greatly amplified. The analysis uses the response at the top of the structure as input for the static stress analysis. This is conservative as the amplification decreases rapidly from structure top to bottom. For instance, results show that the amplification at the base of the stem protector is about half that at the top of the stem protector. Thus, results are extremely conservative for portions lower on the structure such as the yoke legs a-n'd ldyd;even so, stress is shown to be lovw in these structures.

Section 1.1 provides an overview of results. It is concluded that the proposed modification does not significantly increase the topworks natural frequency: the natural frequency of the original configuration meets the specified criteria. In addition, deflections are reduced slightly, but it may not be significant enough to reduce the possibility of fretting contact. However, it is demonstrated that the modified assembly improves the ability of the assembly to withstand the measured high cycle loading.

The given stress limits are based on allowed fatigue stress at one million cycles, which is considered infinite fatigue life, from the ASME Boiler and pressure vessel code,Section III appendicies, Appendix

9. Note that these fatigue curves are conservative by the greater of a factor of two on stress or a factor of 10 on number of cycles (RE Section III Code Appendix III).

0 REPORT NO.: RAL-7483 FLOWSERVE REV. 0 DATE: 1012612004

.. PAGE 4 Flow Cnimtm lDivision Raleigh. NC 1.1

SUMMARY

Description Value Limit Criteria (original/modified)

Natural Frequency [Hz] First: 94. / 106. > 90 Hz Second: 97.6 /115.

Peak Acceleration Response Gy: .91 /0.65 N/A

[g's] G,, 17.1 / 15.5 Gm: 12.2 /10.35 Stress Range in Topworks (Conservative), 6.0 /4.0 12.5 other than bolting [ksil (re fig. 1-9.2)

Capscrew Stress Range [ksi] 14.98 / N/A 20.

(re fig. 1-9.1)

Deflection at Top [in] 0.54 /0.36 N/A Other

Conclusions:

  • Because stress in the added struts is low at the locations of required welding, it is not required to provide weld metal equal in cross-section to the area of the strut. Conservatively, since the maximum topworks stress is one third the limit, it is permissible to provide weld area equal to only one third the strut area. However, it is important to place the welds at the corners of the struts for maximum strength.
  • Because the handwheel is loosely connected to the impactor by a retaining ring, it is highly recommended to remove the handwheel so as to remove potential fretting contact.

1V

4 REPORT NO.: RAL-7483 FLOWSERVE REV. 0 DATE: 1012612004 NoPAGE 5 Iglow Lontrol Division RAeigh. VC 2 ACTUATOR COVER MOUNTING BOLTING ANALYSIS The basic approach is to determine the axial force due to bending and thrust for one bolt located at the maximum distance from the pivot point. This assures that the maximum force is considered.

Reaction forces are determined using data from the solid model and from the analysis input.

Assumptions:

1. The stiffness of the flange is much greater than the stiffness of the bolts. Hence, Hooke's law and bolt spacing geometry are used to determine bolt forces.
2. The bending pivot point is located on the bolt circle.

Maximum Reaction Force Due to Moment (Al) for One Bolt:

1. Sum of Moments about pivot = 0 yields:

K M = g2F;Xj, K=n/2-1I.....................................2.1 ToLa1 oF NB BoiLs 601 PivoL 6 X/,-Po i nL Ff t 7 rA/ Bolts Xi 2F1k 2F1 2F1  ; R

- X1 1 t t Thr-usL IT I k d VIe Someng A I 1 Side View Showing Assumed Bolt Top View Showing Typical Bolt Pattern Deflections and Reaclion Forces

.1.

_ REPORT NO.: RAL-7483 FLOW'SERVE REV. 0 DATE: 10/26/2004 PAGE 6 FlowA Contriol Division Raleigh. NC Maximum Reaction Force Due to M: (Cont'd)

2. Applying Hooke's Law:

F = EA,(611L)

Fj1F, = (A,6/(Aj6.5) (AXd(Aj) ........................ 2.2 where A]J = Boltarea = 2AB forall ij E = Young's Modulus L = Bolt Length (All Assumed equal)

3. Maximum Moment Induced Bolt Force:

FK = M(AKXV1/(T,2X/Ad ........................ 2.3 For a four-bolt flange with all bolt areas equal, this reduces to F, = Al/f(X).

Stress in Bolt:

a = FKIAB + Thrus/l[nAa] ........................ 2.5 T = Shear/[nAB] + 2*Torquel[ndAa]....................... 2.6

REPORT NO.: RAL-7483 FLOVJS ERVE REV. 0 DATE: 1012612004

>.PAGE 7 IFlow lontrol Division Raleigh. NC 2.1 COVER CAPSCREWS ANALYSIS RESULTS (ORIGINAL)

Top Works Data Parameter Description Rld W Weight 68. lb Solid Model XV Vertical C.G. 12.9 in Solid Model XH Horizontal C.G. 2.6 In Solid Model GRII Acceleration 21.0 g's Analysis (resultant of horizontal values)

GRV Acceleration .91 g's Analysis (resultant of horizontal values)

External Forces rameter Description Value bnits Vi, Sh Force (WGRH) hear 1428. lb TN TItrust Force (WGRv) 61.88 lb MN Moment (WGRHXv) 18,421. in-lb QN Tcorque (WGRHXH) 3713. in-lb Bolting Properties rameter Description Value Units n NiLumber of Bolts 6 D BC olt Size .25 in A8 St ress Area of One Bolt 3.182E-2 in2 d Be 1t Circle Diameter 12.75 in olt Group I Pivot 7.509 in X2 B(Alt Group 2 Pivot- 18.13 in X3 B(Alt Group 3 Pivot 25.64 in Bolting Statics Analysis Results Parmeter escrintion Value Knin RQE r,K Max. Bolt Force From Moment - 667.3 lb 2.3 Bolting Stress Analysis Results Value Units B&L CT Bolt Axial 21.29 ksi 2.5 ri *B6ltSlhear 10.53 ks'i - 2.6 Ss<,AX Stress Intensity 29.95 ksi SI, Stress Range (SUAjx2)' 14.98 ksi

' Since the capscrews experience tension only, it is appropriate to divide the resulting stress by two to yield the appropriate alternating stress range for entering the design fatigue curve.

REPORT NO.: RAL-7483 FLOWSERVE REV. 0 DATE: 10/26/2004 PAGE 8 Flow Control Di~vision l.eg.N ATTACHMENT 1 SKETCH OF PROPOSED MODIFICATION

1-~REPORT NO.: RAL-7483 FLOWSE RVE REV. 0 DATE: 1012612004 PAGE 9 Ilox. (Cont)rol Divisioti Rea ik h. iVC FindJ Descriplion McIeriol Oly A Plale (3 x .375) C.S. 4 B Box Iron (2x2x.25) C.S. A 8.5 NOTE: MODIFICA7ION INCLUDES REMOVAL Or THE HANDWHEEL (26 LOS).

NET ADDED WEIGHT EQUALS 30 LBS.

01 TOPWORKS MODIFICATION SIZE 20 CLASS 900 GATE VALVE

REPORT NO.: RAL-7483 FLOaiW SE WvE REV. 0 DATE: 1012612004 PAGE 10 Flown Contrul Division Raleaigh. NC ATTACHMENT 2 ANSYS SIMULATION REPORT

I l., Summarv This report documents design and analysis information created and maintained using the ANSYSO engineering software program. Each scenario listed below represents one complete engineering simulation.

Scenario 1

  • Based on the Pro/ENGINEER' assembly 'zvhomelrfarreIlA31042 (20-900-FW)AFTXED.ASM.2".
  • Considered the effect of body-to-body contact, acceleration and structural supportS.
  • Calculated harmonic results.
  • No convergence criteria defined.
  • No alert criteria defined.
  • See Scenario 1 below for supporting details and Appendix Al for corresponding figures.

Scenario 2

  • Based on the Pro/ENGINEER' assembly vz:khome~rfarre11131042 (20-900-FWiFIXED.ASM.2'.
  • Considered the effect of body-to-body contact, acceleration and structural supoorts.
  • Calculated structural results.
  • No convergence criteria defined.
  • No alert criteria defined.
  • See Scenario 2 below for supporting details and Aooendix A2 for corresponding figures.

Scenario 3

  • Based on the Pro/ENGINEERO assembly "z:lhomelrfarreMl131042 120-900-fWM)FIXED.ASM.2 .
  • Considered the effect of body-to-body contact and structural supoOrts.
  • Calculated frecuenc results.
  • No convergence criteria defined.
  • No alert criteria defined.

See Scenario 3 below for supporting details and Appendix A3 for corresponding figures.

Scenario 4

  • Based on the Pro/ENGINEER 6 assembly 'z:jhome~rfarrel131042 oria (20-900-FWMIASMOOOI.ASM.13'.
  • Considered the effect of body-to-body contact, acceleration and structural supports.
  • Calculated harmonic results.
  • No convergence criteria defined.
  • No alert criteria defined.
  • See Scenario 4 below for supporting details and Appendix A4 for corresponding figures.

Scenario 5

  • Based on the Pro/ENGINEER 6 assembly z:\home~rfarreI\31 042 orig (20-900-FW)MASMOOO.ASM. 13".
  • Considered the effect of body-to-body contact, acceleration and stnictural supports.

. Calculated structural results. ..

No convergence criteria defined.

  • No alert criteria defined.
  • See Scenario 5 below for supporting details and Appendix A5 for corresponding figures.

Scenario 6

  • Based on the Pro/ENGINEERO assembly "z:\home~rfarrellA31042 oria (20-900-FW)MASMOOO.ASM.13".
  • Considered the effect of body-to-body contact and structural supports.
  • Calculated freQuency results.
  • No convergence criteria defined.
  • No alert criteria defined.
  • See Scenario 6 below for supporting details and Appendix A6 for corresponding figures.

PMI 2.1. "Supported Case" "Supported Case" obtains geometry from the Pro/ENGINEERO assembly "z:rhome~rfarrell\31042 (20-900-FW) FIXED.ASM.2*.

  • "HW[16]P was suppressed. Suppressed parts do not effect the results In this scenario In any way.

a The bounding box for all positioned bodies In the model measures 100.0 by 32.96 by 32.69 in along the global x, y and z axes, respectively.

  • The model has a total mass of 3,861.07 Ibm.
  • The model has a total volume of 13,603.56 in3 .

Table 2.1.1. Bodies Name Material Boundlna Box (in) I Mass (Ibm) lVolume (in 3 ) Nodes Elements "BODY(I]" 'Structural Steel' 28.0, 28.88, 28.88 1,799.28 6,339.34 2514 1192 "YOKE[2]" -Structural Steel- 36.16, 27.88, 27.88 670.62 2,362.78 3489 1603

-GEARBOX[3j1" "Structural Steel' 11.5, 22.98, 22.98 101.75 358.49 2685 1304 "GEARBOXCOVER[7]. "Structural Steel" 11.51, 9.25, 3.5 17.71 62.4 657 288 "STEM[12]" 'Structural Steel' 1.5, 1.5, 6.81 2.78 9.79 528 257 "IMPACTOR[13t3" "Structural Steel' 13.5, 5.0, 2.38 13.29 46.81 559 257 "COVER17)" 'cover___ 29.59, 16.5, 13.5 68.04 239.73 6187 2986 "STEM1VLVW[23J" "Structural Steel' 76.5, 6.06, 4.75 148.52 523.29 1001 455

'RHN017(29." 'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 lRHN017(33)" 'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHNO17[34)" 'Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 CLAMP[94]) "Structural Steel" 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "CLAMP[9861 'Structural Steelm 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "BONNETLUMPU20]" "Structural Steel" 8.0, 21.25, 21.25 787.88 2,775.89 1219 213 "BEVELLUAPY21]'" 'Structural Steel' 3.0, 12.0, 12.0 89.77 316.28 583 90 t SPURLUMP [223" -Structural Steel" 7.75, 7.75, 2.0 23.19 81.71 588 88

! TOP BRACESJ[93]" 'Structural Steel" 29.76, 23.51, 23.51 36.93 130.12 648 204 l Table 2.1.2. Body Groupings I

Name IBody i.names ;IBoundinn fox -(In) l Mass (Ibm) lVolume (in') INodes IElements Il 2.1.1. Contact

" 'Contact" uses a tolerance of 0.0 for automatic detection.

Table 2.1.1.1. Contact Conditions Name Iaeie Type Associated Bodies o NScope Stiff ness Mode Behavior l Formulation ermal Conductance Pinball Region

3 "Contact lBoKnded Region"c0nd-

'Contact B Region BonOde(d

!GEARBOX!

"YOEf[2]"and UOKYfl2" YOEE[2)"

31" and Face, Face Face, Face Progra m Program Controlled uPurePenalty Controlled Automatic Automatic Symmetric Symmetric S

Pure Penalty Pure Pe P

Program Controlled Program Program Controlled Program Controlled

'Contact B GEARBOXCOVERa Face, Program A Program Program Region Bonded Face, Pogram Automatic Symmetric Pure Penalty P l BGEARBOX[3]"a and Face Controlled lymmeric Controlled Controlled

'Contact I "CO VER(177)"and Face, Program Program Program Region Bonded RHE0R 7[3.an Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled C ct B STEM[12]' and Face, Program Automatic Symmetric Pure Penalty Pogram Program Region Bonded Automatic Symmetric Pure Penalty B" B GEARBOXCOVER[7] Face Controlled Controlled Controlled RCgniotnct Bonded "IMPACTOR[13 and Face, Program Automatic Symmetric Pure Penalty Program Program Regiont nded l Face Controlled ure enaY Controlled Controlled Re"Contact Bonded COVER [2" and Face Controlled Automatic Symmetric Pure Penalty Cogram CProgral Regontc 'RN1[9'ad FcPorm Progra rga 112on"

'Contact d CB ERV73 Face Controlled auai Symmetric Pure Penlty Controlled Controlled 15" "STEM...VLV[233" Face Controlled Controlled Controlled Region Bonde l "BRHNON 7L3' and Face, Program Automatic Symmetric Pure Penalty Program Program

' aHN017(34]" and Face, Program AProgram Program Rpebn lBonded laSTEM IVLV23] l Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regonont ded "CHNOI7(34)"and Face, Program Auoai ymti uePnly Program Program R7"on Bonded lSTELV[23" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Region Bode "BODY[.I)' Face Controlled Auoaic Symmetrc Pure Penaly Cotled onrld

'Contact 'CLAMP[98]'and Face, Program Atonrol Control 20" Regont Bonde 'CLAMP(98)" and Face, Program Auoai ymti uePnly Program Program 21io' onl "BOOKE(1J Face Controlled Auoai ymti uePnlyControlled Controlled

'Contact 'CLAMP[ 94)" and Face, Program ti ymti uePnly Program Program Region Bonded "YOKE[2]" Face Controlled Automati Symti uePnly Controlled Controlled

'Contact "CLAMP! 98) " and Face, Program Pnly Program Program Region Bonde CAP9]Fae onrled Automatic Symmetric Pure Penlt Controlled Controlled 430' "LPI[41 ae Cnrle "Contact IRegion Bonded

'TFBAE~[3'Fc, T .RAE93" Fc, Porm Por Manual

'S .Program SmercPure Penalty Cotled IProgram onrld G9&an"COVERt 1 7.] Face Controlled ControlledControlled

'Cnat'BONNETLUMP~J20]" Face, Program Program Program ReConac BnddadBDY]' Fc CotledAutomatic Symmeti PuePnalty Controlled Controlled

'"ContactI IRegion Bonded BVLUP[1" Fc, Por Automatic Symmetric Pure Penalty Po~a rga 19", and "GEARBOX[31" Face Controlled Controlled Controlled "Contact 'Bne SPURLUMP..122]" Face, 1Program Atmtc1Pr eat Program fProgram Region Boddand 'GEARBOX[3)' Face Controlled Auoatcsymmetric Pr eat otold Cnrle

4

'23- t1 - !'-!'-'

Rei'on Bnded TOP_BRACESJ[93]J Face, Program Program Program Region Bo~nde~d and LUMPRB ] l Face, Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Cnat'PRUP[2' Face, Crontroledm Program Program.,

16io Bonded "SanR EfIV[2)7" Face Prongraold Automatic Symmetric Pure Penalty Controlled Controlled Contact Bonded aBONNETLUMP20J" V Face, Program Automatic PurePenalty Program Program Rein Eoddand 'S&_VLV[23]` ac Controlled JuoatcSymmetric PuePnly Controlled Controlled ReIon Rgo I8 ondd "BEVELLUMU~21)"

Boiand "STEM.._VL V[23J' Face, Face Program Auoai Controlled Auoai I ymmetric Pure Penalty Program Controlled Program Controlled

_28 - . _ _ _ . - _ _ I _ I_ _ I_

2.1.2. Mesh

  • "Mesh"(Figure Ala), associated with 'Supported Case' has an overall relevance of 0.
  • 'Mesh' contains 35061 nodes and 17406 elements.

No mesh controls specified.

2.2. "Frequency Response"

'Frequency Response" contains all loading conditions defined for 'Supported Case" In this scenario.

Acceleration - Constant Linear Acceleration

  • Magnitude: 200.92 In/s2
  • Vector: [116.0 In/s2 x, 116.0 in/S2 y, 116.0 In/s 2

zI In the global coordinate system

  • The time type Is harmonic The following tables list local loads and supports applied to specific geometry.

2.2.1. Structural Supports Table 2.2.1.1. Structural Supports IName Type Associated Bodies "Fixed Support" Fixed Surface "BODY[I)"

2.:3:."'Sol'ution'" . -

'Solution' contains the calculated response for "Supported Case" given loading conditions defined in "Frequency Response".

It was selected that the program would choose the solver used in this solution.

2.3.1. Harmonic Results

,Table 2.3.1.1. Definition

5 Toble .2.3.1.2. Frequency Response Values Name Type Scope Multiple Minimum Maximum Maximum Inifes requencyFeqeny TpeeEntities Frquny Frequeny Ammpiudlitude I Frequent Amplitudety Max ge at Amplitude R

Max Amplitude at Max Amplitude "hequencfy Directional le;o1i7se Acceleration, Surface(s)on Use 30.0Hz 250.1z 2114.67in/sO 198.77Hz 52.270 131.37inis' 169.78in/s'

'AXU/' XAxis 'CO Yi/II?]" Average iY Directional Surfac1)o Use 395.06 *55..6io/s' fesPOI/I' Acceleration, SurVie/s)Ion UAerage 30.0Hz 250.0Hz 5,753.78in/sl 106.54Hz -B9.07° 28.6 s 73 inIs' leam( YA is Y~f1j vrg ,3.5ns Top.

-frequeotry Directional lleoooe Acceleration, Surface(s) an Use 30.3Hz 250.0Hz 3,749.96in/s/ 115.02Hz 795.440 *355.66in/s t 1 fumae ~ xi 'CO Y[1/'I 71/ Average 3,733.Clin/sl Top ___ __Axis__ __

Iha quelity Directianal AxIofeso SurfcV(s)/on AUse 30.0Hz 250.0Hz 59.22in/s ' 250.04Hz -5.130 58.98inIsO *5.29inIsO

_ .XAxis Average ftespw q Dielrectional Surface(s) on Use 3001 S~lz 1,766.3in/sl 106.34Hlz -09.070 28.62in/S2 t

leampon YAccleaion "COYWi/I?] Average 300z 25.H1,766.O7in/s lose" Of"fraqaq Directional fesponse AclrinSurface(s) on Use 30.0Hz 250.0Hz 1,876.62in/sl 169.76Hz .100.360 *337.55in/S2 JAcceleration, I ffcc Z ratisn 'CO VY[/I7]" Average 1,46.0Olinfs' Ifre queity Direcdianal lpore 'SrfAces)Y1Y?1' Aeag 4,643.62in/sl 301z0.0Hiz~)fe 106.44Hz -91.880 -15.4nhn 14,641.1 lIoWSl fhrer" YAxis11 B~og e 2....reunyR sos xa o Table 2.3.1.3. Frequency Response Axial Top I

6 136.69 119.60 . . . ..... ..

v--s 102.52 IC 85.43 L .. ...........

a~ 68.34

!&1.26 E

'4 34.17 17.09 n nnl -I 0.00b 31.25' 62.50. 93.75. 15.00 156.25 '187.50' 18.75 -250.00 Frequency- (Hz)

Ta~ble 2.3.1.4. Frequencv Response Axial @Top 43,99 -

27.7.6 -

.11.54 '

a; -4.69. -

,<-;20.92. -,

a) zm -37.15-

-.53.38 - -- - - -- --- -- - - -- --- -

-69.61- .. . . .. S. .. . .. .

-85.84 .1 I.

II i a1 I i I ii 0 .00 31.25 p2.50 93.75 .-125.00 156.25 187.50 218.75 -250.00 F~requency (Hz)

.Table 1-3.1.5. Fretuenew flesponse Beam @Tot)

7 4 201.8e -

. '. it it 'ft

. , .t .

  • 3676.65 - . f . f. .t *tf

, ,t .t - , .ft e'%3151.41 -

I.W

., *5 Il * * *t a e 2626.18 -

2---------* - t - t - t ft- - f .--*o-*-Z

--  ;--T---

LRO

.t. .t . ft , - .8 - . - .

la 2100.94 - .. .' -1

  • f*

- . - i ---- -f ~^--*---*---l--~----t---

ft fti ---

&1575'.7.1--

E c 1050.'47 -

. , t ft ' t ft.,

. Is . 4 .ft -. f ~

525.24 -

.ft * ..ft 0.00 d aI .t .t ,,,t .t i ft . fi .

0.00 31.25 62.50. 93.75 "125;00.156.25.187.50 218.75-250.00 Frequency (Hz).

Table 2.3.1.6. Frequency Response Beam @Top

17. 5.

-179;58B -ftt f X nt¢

.. ~

f* ft jt ft ftl,4 B94.B3 --- -- -- ....... ., *..... .. . . .

Rl it ' 9 44.96 YT .t , ' ft IA 4 .0.08 ---------- **^ a YA b - ---..........-- - - - - - r----r

-;7 -- - - - ..............

-89.67 --. -a.

Wal rqes Repos ..... Fram . @t-Top

... .... .f13 ....... f f 179.42 - . . . .- . ft 0 .oo 31.25 62.50 93.75 125.00.156.25 1B7.50218.75 250.00 l Freq~uency -(Hz) 2 7e f fTot . f

8

.5240.92_

, ,3 , ,. 3

'4 4585 .81 ..... ...

I-------

,3930.69- -

- ----------- .9- - .

.1 .... --

g2620.46 - - ----- ------ -

&1965.35 - -- - - -A 131 D 1310~~~~~~~.2_.

- ------- ---- --- -._.'. . .'._... '_. j.'.:....

655.12 - j  ; ji -

0.00 . I 0.00 31.25 62.50 93.75< 125.00.156.25 187,.50.218.75 250.00-Frequency!(Hz)

Table 2.3.1.8. Frequency Response Frame @Top 179.88 - , -

i' ,,S . . j j. j:.3 134.90. _ . ' 3

., .. . 3' wS'e $

89.92 - - ------- ...............

4 4 ,94 - ------------- - - - ------

-010

-to3.45.0.

-9v0 3. 3 --- v--wj -rl----l-- 3 &

3

-0.0 ... . .......

... I--- - ---- . ..

-179.9:6 Ji 0,00 31.25 62.50 93.75 i25.00 156.25 lB7.50 218.75 250.00 Freque ncy. )

'rabie 2.3.1.9. Frequency Response Axdal 2 Base

9

  • I 6 6 6 6 -

143.21 . . Tb

. . 6 . . v .

125.31

.* . 6 .6 N r- 107.41

,---4~ . .- -. . .4

. *-I . . ,

r 89.51 ,, .66 6

=1 l 71.61 a 53.70 E

' 35.80 17.90 n nn u.uu

-1 i - 1. . . I J . . ,. . 1, .1 0.00 31.25 62.50 93.75 125.00.156.25'187.50 218.75 250.00 Frequency (Hz)

Table 2.3.1.10. Frequency Response Axial a Base 69;14

.. 6 . .6 . .6 6 . ...6 6 .. .. ;......:,....av.

48.33 27.52 ' , , . . ,, .,

0 .:. .

.. 6 .. . . .... -. . ..... .

.;. ..... 6 w 6.71 . . . , .. .

.'I. I il'.'1... - .' ... ' .. L

< -14.10 o

fu -34.9.1 ----r--~-.* --- 6.XX]~-*-*

---*---r S.

-55.72

-76.53

. , , . 1 t .i I ,

-97.35 - -- --- ---- i IE I - - - I - I 0 .00 31.25 62.50 93.75 125.00 156.25 187.50 218.75 250.00 Frequency (FHz)

Table -. 3.1.11. Freqtaency flsponse Leam @ Base

10 19.16.31 7 1676.77. - S I

4irS 2- - .

...... 5 ...... .'-

........ .. a. ..-. ,

C 1197a69 -------- -------- ---- --.. a------- -------

2 I.L ' ., . S *. S S 958.15

<479.08 239.54 - ----- .

..... 4 S . S .1S.

0.00 -!

0.00 31.25' 62.50 93.75:125.00.156.25 187.50 218.75 250.00 Frequency (Hz) able 2.3.1.12. Frequency Response Beam @ Base 0'.00  : . '  :

  • ...S a . .....

-22.03 -- -- - -......_- _*-- ...... ......... .. ... --- ---


. F.. -- ; ... ,....... ----------------

-44..5--.-.5-

-66'.08.' . . ' .' -----.

7 6.,, . '. ., j , .

0,00 31.25 152,50 93.75 125.00 156.25 1a7.50 218.75 250.00 Frequency (Hlz)

,Table 2.3.1.13. Frequency Response Frame @ Base

2037.89 1 1783~~.15~............'..'.'...i, --------- .

1783.15 , ..


-Ia 2 3 6 - - - -- - --- - - -

. ...236

. . ... . . .I. . . . . .' . . ..........

ir 1018.94 - '. ' . ..

5127.68 - ------

!&764.21 ,. ai

. . . i, , .J i i ..1 ...... .


i 0

. iq -

5 0 9 47 ~~~~~- -.-.--- r - --- --- r---- - ---n- ;-- s~-~- --

254.74 o50.4o 0.0 -.

-i

-. --.--------- .i i,.............'i, 0.00 31.25. 62.50 93.75 :125 00.156;25 187.50218.75 250.00 Frequency (Hz)-

Table 2.3.1.14. Frequency Response Frame @ Base-0.00a 43765. . , - . .......

o- . . S

. . . . . . . '. . . S

.t-87;53----------------.tj_:,__, _*_ -- !'-'---

10.4.. .. .. _... 1... .. .... ...... ... _..

r.. . J n .. .. . I,....

.. _ _,i . . _ . ._. .

-175,05 f p'-

31.25 62.50 93.75 *0.00125.00156.25 187.50218.75 250.00 l Frequ~ency -(-Hz)

-. abie 2.3.1.1S. Frequency response Beam @ Finger

12 -

42 4.56

  • 0 0 .0 0 0 3608.99
  • 0 .0 0 l
  • 0 0 0 3 v-'3093.42 rI 0 uN-C.2577.85 .
  • 0 0

0 0 M:2062.28

  • 0 fl

.. 1546.71 0 0 3

.E 41031.14 515.57.

0.00 'I 1Ii. _ , . 4 . .. I '

1l 0.00 31.25 62.50 93.75 125;00:156.25 187.50 218.75 250.00 Frequency (Hz)

Table 2.3.1.16. Frequency Response Beam @Finger 178g.49 - ' b j T 00*. . .

44.-, . .......

~8. .. bS ,,_ ,,,,

.~...,}--  ; ,,_,.;_,.

. . .0.. -- 0...................

CL ' . - ,

_133877 - -- - 41*

-178.38 0,00 31,25 62.50 93075 125,00 156,25 1B7.50218.75 250,00 irequency '(Hz)

13

3. Scenario 2 3.1. "Supported Case" . . .

'Supported Case" obtains geometry from the Pro/ENGINEERO assembly "z:jhomekrfarrell\31O42 (20-900-FW)IFIXED.ASM.2'.

  • "HW[16]" was suppressed. Suppressed parts do not effect the results in this scenario in any way.
  • The bounding box for all positioned bodies in the model measures 100.0 by 32.96 by 32.69 in along the global x, y and z axes, respectively.
  • The model has a total mass of 3,861.07 Ibm.
  • The model has a total volume of 13,603.56 in3 .

Table 3.1.1. Bodies Name Material Bounding Box (In) Mass (Ibm) Volume (In') Nodes Elements "BODY[l]" 'Structural Steel' 28.0, 28.88, 28.88 1,799.28 6,339.34 2514 1192 "YOKEf2]." Structural Steel" 36.16, 27.88, 27.88 670.62 2,362.78 3489 1603 "GEARBOX[3)" 'Structural Steel" 11.5, 22.98, 22.98 101.75 358.49 12685 1304 GEARBOXCOVERf7)" "Structural Steel" 11.51, 9.25, 3.5 17.71 62.4 657 288 "STEM[12)" "Structural Steel" 1.5, 1.5, 6.81 2.78 9.79 528 257 "IMPACTOR[13]J 'Structural Steel" 13.5, 5.0, 2.38 13.29 46.81 559 257 "COVER[17r 'cover 29.59, 16.5, 13.5 68,04 239.73 6187 l2986 1"STEM_VLVI23)" "Structural Steel" 76.5, 6.06, 4.75 148.52 523.29 1001 455 iRHN017[29)" 'Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017[3319" Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017[34]" "Structural Steel" 0.64, 1.3, 1.3 0.12 0.42 2469 1407

-CLAMP[94]' 1 "Structural Steel" 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "CLAMP[98]" 'Structural Steel" 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "BONNETLUMP.J20]" -Structural Steel' 8.0, 21.25, 21.25 787.88 2,775.89 1219 213 "BEVELLUMP_21]" 'Structural Steel' 3.0, 12.0, 12.0 89.77 316.28 583 90

-"SPURLUMPU22]) "Structural Steel" 7.75, 7.75, 2.0 23.19 81.71 588 88 "TOP_BRACESJ[93)" "Structural Steel" l29.76, 23.51, 23.51 36.93 130.12 648 204 i~~~~~~~~~-

Table 3.1.2. Body Groupings Name I Body Names Bounding Box (in) Mass (Ibm) I Volume (in 3 ) Nodes Elements I 3.1.1. Contact

  • "Contact" uses a tolerance of 0.0 for automatic detection.

! Table 3.1.1.1. Contact Conditions I l Normal Scop e Thermal I Pinb l Name Type Associated Bodies Scope Scoe Behavior Formulation Thermal Peinball i I I I Stiffness 1Mode Conductance Rein

14

Cont ctBon lCotact Bonded Regiont t YOKE[21" and BODY[11" TFace, 1Controlled FCe Program Automatic A

Symmetric Pure Penalty Symmetric P Program Program 1Controlled Program Program Controlled "Contact t go j'YE GEARBOX(3]"

YOKE[2ded ]

and n

Face, Program FaCef controlled Automati c Pure Penalty Program Controlled CSymmetric Program Controlled

'Contact "GEARBOXCOVER[7Ja Face, Pogram Automatic Symmetric Pure Penalty Ponram Program Region Bonded and aGEARBOX[3nd Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regiontc Bonded GERBXO.R7n ac'Porr Automatic Symmetric Pure Penalty Cotled onrld

'Contact Region Bonde CO VER[17]3 and Face, Program Automatic Symmetric Pure Penalty Program Program

. "GEARBOX[31 l Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact "STEM[12J" and Face, Program Auoai ymti uePnly Program Program Region Bonded Automatic Symmetric Pure Penalty Controlled Controled F 8.

RegiotIPACTOR[13" l9.

Bonded "GEARBOXCOVER[7]"

- TEN[Z 2"]

and Face Face, Fac Controlled Program Controlled Autom atic Symmetric Pure Penalty Cont Program' ed Controlled Controlled Program Controlled "Contact 'ST EM.VL V[f23)" and Face, Program Program Program Region B OCOVER[17]" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 12"

'Contact RH072]ad FcPormProgram Program R~e"g[o2n3"Bonded ;dTEA f3j- Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled I6'Contact Region "Contact1 Regontc 17Region Bond Bode "RHNOI 7(33]' and "SE.LV2)

RHNOI 7(34)" and Bonded" STE VLV[23]"

Face, Fc ac Face, Face Program onrled Automatic Symmetric Pure Penalty onrledCntold Program Controlled Automatic Symmetric Pure Penalty Program Cotled Program Program onrld otrle Program Controlled Controlled 1 -

'Cegontac "CLAMP[94)' and Face, Program Program Program 20"io Bode BODYf I)" Face Controlled Automatic Symmetric Pure Penalty Controll ed Controlled

'Contact Bonded an ac, rgrmProgram Program 121io Bode BODY~l)" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Cegontc Bode CLAMPP[ 94)" and Face, Program AuoProgram Program 22gio Bodd YOKE[2]" Face Controlled Atmatic Symmetric Pure Penalty Controlled Controlled

' Contact 'CLAM'P[98)" and Face, Program Program Program Region Bonded~ YOKE[2J" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled 24' Regontc Bnde CLAMP(98J" and Face, Program AtmtcSmercPr eat rga rga 30"io Bode CLAMP[94J" Face Controlled Auoai ymti uePnly Controlled Controlled "Contact ITOPBRACES [93J" Face, Program Program Program Region Bonded an "C Ej17" Fc otoldManual Symmetric Pure Penalty Cotled onrld "ContactI

,Region Bonded "BONNETLUNFIL20J" Face, Program AtmicS metriclPr eat Program Program 8"and "BODY! 1)" race Controlled Atmic ym Pueenly Controllcd Conitrollad

'Contact Region Bonded "BVLUP.J211" and "GEARBOXf3)"

IBEE1LM1 Face, Face Program Controlled Automatic Symmetric Pure Penalty Program Program Controlled Controlled I "Contact Region Boe -SPURLUMPU22]"

and 'GEARBO(3)" IFace, Face IProgram Controlled Auoai 1 1Conroled ymti uePnlyJProgram Prgam Co.ntrrolled

15

_ _" _ _ I___ _ _ _ _0 . _ _ l _ _ 1 .I

'Contact 'ORCS9I ae rga

}_Region Donded anOPBRAEAR _[93]lFace, Program Automatic Symmetric Pure Penalty gram Program 2e5 and 'GEARO[3]' l Face Cootrolled Controlled Controlled

'Cnac SPURLUAIP_[223" Face, Program ~ 1 Pro gram -Program Region Bonded and '"COVER(1[73] Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled ReContc BondedUMU 0] Face, Program Program Program 27gio Bonedand "STEt'LVLV(23)" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled

'Contact ` BEVELLUMPJ[21)" Face, Program Aua* S r 1 Pro gram Program Region Bonded and "STEMVLV[23j' Face Controlled omic Symmetric Pure Penalty Controlled Controlled 28" _

3.1.2. Mesh

  • "Mesh'(Figure A.3), associated with "Supported Case" has an overall relevance of 0.
  • 'Mesh' contains 35061 nodes and 17406 elements.

No mesh controls specified.

3.2. "Stress Analysis" "Stress Analysis' contains all loading conditions defined for "Supported Case" in this scenario.

Acceleration - Constant Linear Acceleration

  • Magnitude: 7,215.43 In/s2
  • Vector: [250.0 in/s2 x, 6,000.0 in/s2 y, 4,000.0 In/s 2 Z] In the global coordinate system The following tables list local loads and supports applied to specific geometry.

3.2.1. Structural Supports Table 3.2.1.1. Structural Supports NameNae Tp Reaction Reaction Force lReaction lReaction Moment Type Force Vector l Moment Vector "Fixed Fixed [2,499.64 Ibf x, [-12,015.7 lbf'in x, Support/ Surface 72,144.02 Ibf 59,991.41 Ibf y, 2.09x106 Ibf-In 1.16x106 Ibf'in y, -

39,994.27 Ibf z) 1.73x 106} Ibfin :]

3.3. "Solution" "Solution' contains the calculated response for "Supported Case" given loading conditions defined In "Stress Analysis".

It was selected that the program would choose the solver used in this solution.

3.3.1. Structural Results

16

  • Convergence tracking not enabled.

17

4. Scenario 3 4.1. "Supported Case" -' .

'Supported Case" obtains geometry from the Pro/ENGINEERO assembly "z:jhomejrfarrel131O42 (20-900-FW)jF1XED.A5M.2-.

  • "HWf16.)" was suppressed. Suppressed parts do not effect the results In this scenario In any way.

N The bounding box for all positioned bodies in the model measures 100.0 by 32.96 by 32.69 In along the global x, y and z axes, respectively.

a The model has a total mass of 3,861.07 Ibmn.

a The model has a total volume of 13,603.56 In.

Table 4.1.1. Bodies Name Material ]Bounding Box (in) Mass (Ibm) Volume (in 3 ) Nodes Elements "BODY(I)" "StructuraflSteef" 28.0, 28.88, 28.88 1,799.28 6,339.34 2514 1192 "YOKE[2]" SrcuaSte'316 27.88, 27.88 670.62 2,362.78 3489 1603

-GEA4RBOX[.3)"- 'Structural Steel" 11.5, 22,98, 22,98 101.75 358.49 2685 1304

'GEARBOXCOVER[7]" 'Structural Steel" 11.51, 9.25, 3.5 17.71 62.4 1657 288

-STEM[12]" 'Structural steel' 1.5, 1.5, 6.81 2.78 9.79 528 257 "IMPACTORt1.3)" *Structural Steel' 13.5, 5.0, 2.38 13.29 46.81 559 257

'CO VER (. 7)" coe 29.59, 16.5, 13.5 68.04 239.73 6187 2986

-ST-EMJL/L[23.1" "Structural Steel" 76.5, 6.06, 4.75 148.52 523.29 1001 455

-RHN017(291" "Structurat Steel* 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017f.33]- "Structural Steel' 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "RHN017f34.1" "Structural Stee~l" 0.64, 1.3, 1.3 0.12 0.42 2469 1407 "SAP[9]'ntructural Steel' 2.5, 32.96, 5.4 14.8 48 1.8 2124 "CLAMP[98)" "Structural Steel" 2.5, 32.96, 14.88 50.48 177.85 3498 2124 "BONNETLUMP..120) "Structural Steel' 8.0, 21.25, 21.25 787.88 2,775.89 .1219 213 I "EVELLUMPJ_21)" "Structural Steel" 3.0, 12.0, 12.0 89.77 316.28 583 90

["SPURLUMPJ22J" "Structural Steel' J7.75, 7.75, 2.0 23.19 81.71 588 88 "TOP..BRACES_[93)" J "tructural Steel" 29.76, 23.51, 23.51 36.93 130.12 j648 204

.1Table 4.1.2. Body Groupings .-- --- . . . .. -.- --- .---- -

3 IName Body Names Bounding Box (in) Mass (Ibm) Volume (in ) Nodes Elements 4.1.1. Contact Contact" uses a tolerance of 0.0 for automatic detection.

18 Region Cntc1 n

T Bonded YOKE[2]"and "BODY[lJ"

[Face, Face 1Program Controlled Auomti Symti.

Automatic Symmetric ur1 eat Pure Penalty Program Controlled  !

Program Controlled Regon o GEARBOX[3]" and Face, Program l Automatic SmtrP Penalty Prolgram CProgram Redd B " 'YOKE(2J" Face Controlled Aymmericlure Controlled Controlled

'Contact R4giobn Bonded "GEARBOXCOVER[77 " Face, Program Automatic Symmetric Pure Penalty Program Program and 'GEARBOX[3)" Face Controlled Aomtc y eeny Controlled Controlled

'Contact 'CO VERF[I7J" and Face, Program AutomProgram Program Regiont Bonded GEARBOX] a Face Controlled Automatic Symmetric Pure Penalty Controlled Controgr Regiontact

."EA 9"

RegCon n

onnded STEM[12and

[3J" "GTEMRBXCOE]f.lFace STEA ICTO[2)J and Face, Face, Conrol Program Controlled Program A matic !Symme Automaticr Smmetric Pu r P reny Pet t

Program PControlled Controlled Program Program Controlled Controlled Program

'Contact 1'STEACTORV[23)" and Face, Program ProgaPrrm Reio 12'-

Region "Contact f5"onded Bonded

.TMV~2]"

'CO VERan FaePorr Face, Automatic Sym metric loProlled Automatic Symmetric Pure Pena ltyCotled Pure Penalty Cogram onrld Controlled Region Bonded Z 729 Face, Program Automatic Symmetric Pure Penalty Program Program 12" lonVef COS 7) d Face Controlled y c U Y Controlled Controlled RIont Reio l Bonded Bonded "LM9B RN017[3 ad and Face, Fc Program aual lCotledAutomatic etric lPure Penalty lSymmetric Pure Penalty Program PrgaPorm Program Region l"STEALVLVf23)

Bondd l Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regontc 'RN07[41an aticPoga Program Program ReCionact "HNEA [23"an Face Crontraolmed Autom Symmetric Pure Penalty Controlled Controlled Region Bonded "R-BOYIN07f4 ad Face, Ponrogrem Auoatic SymmercPePnat Corled otold

'R"Contact l'CANI941'and

'Contat __CetPrici Face aureacPenaltyamPro Progrmi Program gram Program Program Rei7" one "STODYVL(1]" Face Controlled AutomatcSmerc uePnlyControlled Controlled

'Contact [91"an.1ce.Poga ICA Proga Program I

Region Bode YOKEM[94 an l

Face Ponrogram I . . ..

Autoatic SymmercPe Penalty

.___. , .01-Controlled Controlled

'Contact 'CAP9]ad FcPormProgram Program Region Bonded "CLAMP[94 an Face, Ponrogram Automatic Symmetric Pure Penalty Controlled Controlled Regontc Bonded]'an Fce Program aiSymProgram Program 24 Re Bode ,CYOKEP(94] Face Controlled AutomatcSmetric Pure Penalty Controlled Controlled

'ContactPrra

'Tol-BRAES~J3]'Face ProramProgram Program Rein0 ode"n "CO.MP[194)" Face Controlled Manutom Smetric Pure Penalty Controlled Controlled

-Contact Region Bonded "SONNRAETSUMU20" Face, Program MAnutoali Symti IPur Pealty Pro gram Program 2"and "COVEP.(l7) Face Controlled mmrc ue ny Controlled Controlled Region Bonded Programatic Symmetric Pure Penalty Cotled onrld 19.1 and 'GABODXfi)" Face Controlled Cotuted Cotole Regontc Bonded "BEVELLUt'1P22)" Face, Program Auoatic symmetric Pure Penalty Crontrolle Conrolle Region and 'GEARBOX(3]" lFace IControlledIIICotled O

19 i 'Ciontact ed TOP _BRCE5_j93]- Face ' Plrogiram utmatic Symmetricl PurePenalty Progiraml Progtraml Region Bonded "nd -EARBOX[]- Fac Ceontrolled Autom~i ConmtriclPued CeaIy rgontrolled 2 8 _ _ _ f I

_____________`_FaceControlled and 27'Cotc loncled "S NTEUM VL_[20))" Fa ce, Program Automatic Symmetric lPure Penalty Program Program

!Reg orn de"EELM_2]"Fc, Bondried Automa tic Symmetric Pure PenalIty Controlled Cront r~olled 4.1.2. Mesh

  • 'Mesh"(Figure A232), associated with 'Supported Case' has an overall relevance of 0.
  • "Mesh" contains 35061 nodes and 17406 elements.

No mesh controls specified.

4.2. "Natural Frequency" "Natural Frequency" contains all loading conditions defined for "Supported Case" In this scenario.

The following tables list local loads and supports applied to spedfic geometry.

4.2.1. Structural Supports ITable 4.2.1.1. Structural Supports I Name Type Associated Bodies "Fixed Support" Fixed Surface 'BODY[f]I 4.3. "Solution"

'Solution" contains the calculated response for "Supported Case" given loading conditions defined in "Natural Frequency".

It was selected that the program would choose the solver used in this solution.

4.3.1. Frequency Results Frequency results apply to all active bodies in "Supported Case".

Table 4.3.1.1. First 6 Natural Frequencies Narne Figure Mogde Frequency Alert Criteria list Frequency Mode In Range" A31 1 1 06.34 Hz none "2nd Frequency Mode In Range"jA32 j2 114.8 Hz .Jnone

20 A"3rd Frequency Mode In Range' [None j3 1152.03Hz Inone "4th Frequency Mode In Range' None 4 l153.9 Hz Inone l5th Frequency Mode In Range' None 5 159.36 Hz Inone 06th Frequency Mode In Range' None 6 162.43 Hz I none a Convergence tracking not enabled.

21

$, Scenario 4 .i. "Original Case" "Original Case obtains geometry from the Pro/ENGINEERO assembly "z:jhomejrfarrell~31042 orig (20-900-FW)\ASM0001 .ASM.13".

  • The bounding box for all positioned bodies In the model measures 100.0 by 29.75 by 34.29 in along the global x, y and z axes, respectively.
  • The model has a total mass of 3,858.39 Ibm.
  • The model has a total volume of 13,594.1 In3.

'Table 5.1.1. Bodies Name Material Bounding Do (In) Mass (Ibm) Volume (In 3) Nodes Elements "BODY[l]- "Structural Steel" 28.0, 28.68, 28.88 1,799.28 6,339.34 2532 1215 "YOKE[2)" 'StructuralSteel' 36.16, 27.88, 27.88 670.62 2,362.78 3740 1747 l "GEARBOX!3]- 'Structural Steel" 11.5, 13.5, 17.0 84.29 296.96 2182 1037 "GEARBOXCOVER[7]" "Structural Steel" 11.51, 9.25, 3.5 17.71 62.4 657 288 I -StructuralSteel" 1.5, 1.5, 6.81 2.78 9.79 528 257 I1A7,PACT70R[13.71 7STEM[12.1" "Structural Steel" 13.5, 5.0, 2.38 13.29 46.81 559 257 "HW[16)" 'StructuralSteel" 20.0, 20.0, 1.05 26.13 92.06 16565 9137 IBONNETLUMP[20J" "COVER[I73" lBEVELLUMP[21)"

"StructuralSteel" 29.59, 16.5, 13.5

'Structural Steel" "Structural Steel' 8.0, 21.25, 21.25 3.0, 12.0, 12.0 93.62 787.88 89.77 329.86 2,775.89 316.28 4019 1219 583 1904 213 90 "SPURLUMP[22J" 'Structural Steel" 7.75, 7.75, 2.0 23.19 81.71 588 88 "STEMLVLV[23]' "Structural Steel" J76.5, 6.06, 4.75 148.52 523.29 1003 451 "RHN017[29]) 'StructuralSteelw 0.64, 1.3, 1.3 0.12 0.42 2469 1407

-RHN017[33]- 'Structural Steel" 10.64, 1.3, 1.3 0.12 0.42 2469 11407 "RHN017[34)" 'Structural Steel" 0.64, 1.3, 1.3 0.12 l0.42 2469 1407 "StructuralSteel" 2.5, 14.88, 32.96

'CLAPP94]" 50.48 177.85 1662 850

_CLAMP_98_

CLP[8"Strtua "Structural Steer 2.5,_14.88, 32.96 50.48 177.85 I1662 850 Table 5.1.2. Dody Groupings I Name Body Names Boundina Box (in) Mass (Ibm) Volume (i3') 1Nodes Elements 5.1.1. Contact w "Contact" uses a tolerance of 0.0 for automatic detection.

I Table 5.1.1.1. Contact Conditions I

NaeAsoiteI Jtp ode coeINormal Stiffness Scope Mode I r IorlainThermal Conductance Region IPinball I

22

'ContactBne

,Region" Bonded

'YOKe.E! 2] and "BODY[1"l Face, Face 1 Progra m I uoai Controlled l AUtoatic ly Srnmetric Pureaty JProg ram Pure enay Controlled Program Controlled Contact l'BONNETLUMP[201 l Face, Program Symmetric Pure Penalty Program Program Bonded CL "BDY "Conta ct BoddlCoDgp[4 Region and P[9" and Face, Fac~e, Controlled Automatic Progtramd 'Automatic SmerclPr Penalty Conrolled Controlled Region Bonded "BODYrI Face Controlled Symmetric Pure Penalty Controlled Controlled "Contact "CLAMP(94]" and Face, Program Program Program Region nedZERO[]

Bonded

_ GBODY['1- n I Face ae mgaIe Pmgram uoacSmercPr Automatic Symmetric eat Pure Penalty Program Controlled CPogtramle Controlled I9' lContact Bndd"GRB X 1and Face, Program I Program Program Region Bonded "PYOKl] Jn" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Contact Bonde, GEARBOX[ d Face, Cogram Program Program Region Bonded YLEMPa2]" Face, Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Contact CLAMP[94]' and Face, Pmgram Program Program Region Bonded "CLYO 9E 8an Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled jRegon Bonded GCEAMRBOXCO anR d Face, Program Automatic Symmetric Pure Penalty Program Program Regon

'Contact Bonded OGABXOE[1 GOKE2Of 3 Face ac, Controlled PormProgramAutomatic Symmetric Pure Penalty Controlled Controlled Prga Region Bonded 7 and Face, Progra Automatic Symmetric Pure Penalty Controlled "Contact l GE and ERBOX[3]1 Face Controlled Controlled Controlled Region Bonded "EELM[1" Fc, Por Automatic Symmetric Pure Penalty Cotled onrld 9 andGEARBOX[3)" Face Controlled Ponrogram Ponrog lem "Contact -BEURLLUMIP[21J'an Face, Program A t etc P t Program Program Reg ion So .rid an GEARBOXf 3)' Face Controlled Automatc Symmeri Pure Penaly Controlled Controlled 6-Regonon nded "SPUELMP122]'and Face, Program Automatic SmercPure Penalty CrgamPontrolle Re2io Bode GEARBOXCOVE[7J'Face Controlled SmercControlled Cnrle I'egonBo ndedt"ISTMPA R[13)"and Face, Program Pl Pro gram Program 13"o one "STEAR(XC2)R" -Face Controlled Automatic Symmetric Pure Penaty Controlled Controlled I'Contact Region Bonded IMATR3]adFc,

'HW(M1 ]" n Face, PormProgram Ponrogram Auoatic Symmeti uePnly Controlled Program Controlled Regio Boned JMPACTORf13)" Face Controlled Automai Smetric Pure Penalty Cotled onrld Regontc Bode SPURLUMP!22)" and Face, Program Auoai ymProgram Program Reio Bode CO VERf1 7]' Face Controlled Auomti Smetric Pure Penalty Controlled Controlled "ContactPrgaPorm Reio Bndd STLVLV[23)" and Face, ProgramPrgaPorm 16"io Bodd CO VEPl 7)' Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled "Contactm PrgaPorm Region Bonded "STEI'LVLV(23J" and Face, Program Automatic Symmetric Pure Pealy Crontrolle Crontrolle

.17' "BOfINETLUMPf2O]" Face Controlled Contr____le____Controlled____

"ContactamIPrgaPorm Region Bonded "ST&tLVLV[23.1" and Face, Progra Automatic'SymmetrcPue Penalty Crontrolle Crontrolle 1""EELtP(1' Face Controlled Conrtro

_____ed_ Controlled "Contact IRegion IDoded I "RHNOIJ7[29]"

"nSTVILVLV(23J" and Face, Face IProgram Controlled I At utomatic

. Pe S~ymmetric 1Pure Pealy It Program Controlled IProgram Controlled

23 ReiContact n RHN017[33] and Face, Pogram Automatic Symmetric Pure Penalty Program Program 20io BonSdedSTEALVLVF23;` Face Controlled matic Symmetric Pure Penalty Controlled Controlled 1Contact RHN01 7[3l an4] d Face, l Program Prongram Program Regi Bode STEAL V/LV[23]' Face Controlled Automatic Symmetric Pure Penaly Controlled Controlled Region Bonded 'CAM[9]and Face, Program Automatic Symmetric Pure Penalty Prgram Prga 22" "CLAMP[94] j Face Controlled Controlled Cnrle 5.1.2. Mesh

" HMesh"(Figure A43) , associated with 'Original Case' has an overall relevance of 0.

" 'Mesh' contains 44906 nodes and 22605 elements.

No mesh controls specified.

5.2. "Frequency Response"

'Frequency Response" contains all loading conditions defined for "Original Case' In this scenario.

Acceleration - Constant Linear Acceleration

  • Magnitude: 200.92 In/s2
  • Vector: (116.0 in/s2 x, 116.0 In/s2 y, 116.0 In/s2 z] In the global coordinate system
  • The time type Is harmonic The following tables list local loads and supports applied to specific geometry.

5.2.1. Structural-Supports Table 5.2.1.1. Structural Supports Name I Type I Associated Bodies

'Fixed Support' Fixed Surface "BODY[!])

5.3. "Solution" "Solution" contains the calculated response-for "Original Case" given loading conditions defined in 'Frequency Response".

It was selected that the program would choose the solver used in this solution.

5.3.1. Harmonic Results

24

Superposition I i Table 5.3.1.2. Frequency Response Values Nlame Type Scope E n Multipleltiples Minimum Maximum MinimuentMaximum Maximum MAxmpiude Frequency at Mttz ase at AnlexMs Real Max at Imaginary oMx Entities Frequency Frequency Amplitude Amplitude Max Amplitude Amplitude

'to AIerotionl e Suraces)a Use 30.0OHZ 250.013z 33.58iii/s? 174.43Hz *74.64' 8.9in/sl -32.38in S' Axial X"i COFill/1/ Average OoDirectional Sufcs)o Ue Acceleration, -CO7,'Xi71 A 3 250.0HZ 6,572.05in/s' 94.21 Hz .95.12° 5801.01in/sl -6,545.17in/1s e Direional Surface(s) an Use 300H 2 463203i 94.lH l933B° . 623 9Tn's fme Acceerafioin, Average O~z 250.0H12 4,6.03os? 9.15z -9.3 .273.13in/s' 4,62.974 RAm' Om Directioanl Acceleration, Surface(s)

'Ofito I if an Use Average 30.0Hz 250.0Hz 1.Oins 147.1z 17.1z *1n10.710

-2.83in/sl

-7.4lin/s' Dire.

Actleionral Surface(s) on use 30.0HI 250.0Hz 1,252.01in/s' 175.910Hz l9 12.7*° 483.2in/s' -1,12s11.1als' froeAmec'3 Ac ration, 'YOVEI,7' Average U 30.1_z 230 03z 2,_ i.33in/Y IA3.314t *98.7' -2_ill_9in/

I*1.Iis

_ _339_5_in/sl

'Z7qrDirectional Surface(s) an Use ,i~

t.eam' (Axertion, 'STIAL VI YV/7J" Average 30.0Hz 250.0Hz 4,829.64in/s7 94.15Hz l93.71e -312.09in/s -4954i

,A is .,. . ....

Table 5.3.1.3. Tot) Axial 4596J;64 a:

. .. '. ' . -  : I 4022.06 * . .61 I 6

  • - 3447.48 -j- - - --  : - -

1AUt1

.. . ,i .

.C 2872,90 Ci * ~ 6 6.

. . I M-2298.32

- 1723.74

  • * * . t ..

6 6

< 1149;16 ---

.6 r

6 6 l .

_.__ ___ 6_ _._.6 __t4. '____l_

574.58

-_jI 0.00 '. -

It 0.00 31.25 62.50 93.75 125.00.156.25 187.50 218.75 250.00 Frequency .(Hz)

25

,_Tabe 5.3.1.4. Top Axial 179.80- ,

135.04 - -------

90.28 .

45.52 - ..-.---------..-----. . . . ..

M -44.00 ---- ---- v- '-r- -- -T'-- 't-'-

-133. 5 2

-178;28 0.00 .31.25 6.50 93.75 -- 25.00i5625 187.50218.75 250.00 Frequency (Hz)

Table 5.3.1.5. Top Beam 4565.35

  • . _ .. I.

3994.68 -

_ , - .. ;_: . .. .. ... a.

r'%3424.01 -

,1 , - . , a.-

I11* - -r----*--___,_ ^;a*~~@ ~ '-_.__ .__, _

- 2853.35 - w. f

__ .__.-___ _~~~~~~~~~~~~ _.._ a.___'._..._...................... __._ _

u 2282.68 - i @ a.  %

a^

m-1712iOi - ~~~~~~~~~~~~~~~-.._______ ,____g.._._______.__

E

,_,,1 ,__ *' _1-. ... 'l...

.a ' j' §aj

- 1141.34 -

a a!J~'~j' 'h-1 _ ........................ _ _,,r,,

570.67 . .

0.00 - -1l I l - I i IT i-- -- I--1

.0.00 31.25 62.50 93.75 125,00 156.25 187;50 216.75 250,00 Frequency (Hz)

'Table 5.3.1.6. Top Beam

26 179.05-134.32 - --- ---

89.60 --- -- - . .. . .. .. . . .. . .. . . -.. ...

w j44.88 --- I 0 . 5-- - -- - - -- .. . .. . .I- - -- -- - -

-4457 ----------

ar 9 0 - -----

- --- .30---------.

Table 5.3.1.7. Top Frame 4370 .2Ei.

-3824.OCI t--%3277.71 C 273'i.4'-I *... . .. ..

M.218.5;1~ I

&1638 .8E M~1092.5~ F -

546.29 0.00 0.00 31,25 62.50 93.75 125.00,156,25 187.50 218.75 250.00 Frequency (Hz)

F

Table 5....Top Frzme

27 179. 52

. . .- . '.I 134.64 ---------- --- ------- ........

-875 * ,. . ..F .I

  • 3eo\R .

e.

89.75 - .>-------. I

  • 3 4 83 . Z  ;. I ............  ; . ...;-.P u -443 71 - --- ~- ----- i----- -- -------rw--- ...................

-3 .9 . . '.r - ;--.- ............... .

-134 68 - * -

I~. . S

-179 .5 I.

0'.00 '31'.25 :6:2.'t0 '93.75.125'.00.15'6.25.187.50,218.75 250 .00 Frequency :(Hz)

_. ___.. _--. 1 _I.._.. _ ._...._ - _------ -o _-- -.._. __.._

Table 5.3.1.9. Base Axial 1300.51

, . . .3 ,@.,. I,,, .. # P 1137 4 V @ .3 I S. r . 41.,

.3 P 'j '

  • I S. 3_____. _ _ __-.-'4'!

3__ _ S__ _ .

r%975.38

'.w M . . .

.812.82 la 650.25 t! . ,

. . ~~ ..

. .3 .-

M 487.69 E

'< m325:13 162;56' 0.00 I

0.00 31.25 O2.50 I .

93.75 125.00-156;25 187.50 218.75 250.00 Frequencyr (Hz)

. I.,., F'.

I i P F

,Table 5.3.1.1. Base Axial

28 179.5X _

13l0~w~ew @wx* ,s a,p.1.,I** e  ; S sXoe*

9 S. . . . .

135.59 45.59 -

_ 90.34---- -----

0383 v

-:- 5.5.8520 - - -

Frqc43.93 -.-Hz) i A.

-88.68.1- *w - ** I r---o-o- -m---

-133.44 ~~roZ t -* @ z ---- ,,,_

-i78.20 *0i< - , t.......

0.00 31.25 .62 50 -93;7.5 125.00 156:25 18B7 50f218.b75>25000

  • Frequency (Hz)

Table 5.3.1.11. Base Beam 2134.8E 1867.,9c

  • 4 _ . _ .... .................__,.
  • ~ 1 1- a r" 1601.1, g~~1 -: .. -;L.

---.. --4-.

"4-C 1334.2E

_ . & X a I Si 2 - -------- -------- l ---------- w---

p 1067.4,

._ * *[ - - I . o EB00.57 _ -__--

. . .. ._IG .. . .. . _-------t---\-w-

. S . *. . . . _ .F -

2-'-----w-----t------ - - - -- _

E

¢q 533.71

266.86 0.00 31.°S*.00 62.50 93.75 -12.00156.25 IB7.50 218.75 250,0 Frequency (Hz) iTable 5.3.1.=. Drse Beam

29 178.77 134.23 ---------

89.70 ................. ....... ......................

C14 5 , 1 7 . -9 - ... --------

-8b6 3 - - - --------------

... * ~' . ,

tW-43.90 -- *------- -~. -r

-132.97

-17.7.50. -'

0.00 31.25 62.50 :r93,75 125.00 156.25 187.5i0218.75 250.00 Frequency (Hz)

ITable 5.3.1.13. Base Frame 1527.96-  ::

.1336.97 e-%,1145.97 --------.  : ---

M954.98 .I . .,-' --- j .j

............ ,. ... AR CL57 -.99 , -------------j ---- -

._ I.: i  :.  : . I  :

CZ9.938 1.....

-3 7 6 3;90I-@

.. .._ ,...... ... ....... .:*::. ,.; ,,_-----e-r *

... , jI 1 1 -

0.00

<;381.99 --..-.- ,--*.-,, - $ -'-< 19 1.0 .. . l.A.

                                                                                                                                                                          .          ... ... ,.Z i   obl653.1.49                as8            rm 0,0,                                                              I                                                 I         J 0.00.00                     31.25                 62.50              93,75            125,00       156,25             187.50         218.75             250.00 F~requency                     (Hz2)
,Table      5.3.1.1       4. Base            Frame                                                                                                                                              j

30 176.09-133.42 - ----- -------- ---- ---- ---- *--------

       .88.76                                            --.......            ...------

44'09 - ----------- '-'-'--- '------- '--'------'--- 4.05 - ... L....----.. -.-.. m -45.23 --

        - 89.90                 w;-   --       ------                r-       --r--*                         ----      -
        -17,9.22 -                                                                                -           -

0.00 31.25 62.50 93 75 125 00 15625 187.50 218.75 250.00 Frequency (HIz) Table 5.3.1.15. Flnqer Beam 2909.27, .

  • 2545.61 - -. _.- -
    '-.2181..96               -        _.                                                            ....-..

1818.30- 1J .

        .1454.64.                                                      --        -- - - I             -----                 -

og1090.98 . .............. _-. .......

        .727.32                                                                                                    ....-

363.66 - - --------- .. 0.00 31.25 62.50 93.75 125.00 156;25 .187.50 218.75 250.00 Frequency (Hz) ',Table 5.3.1.ri. Flnger Beam

31 178.82 134;12 . .89.43 - ------ ..- - -- .--- ..7. ............l 8:.4.73 . .-....... y 0,04 q ,~~.......... .. r._.. _._

       -178*79.                 ......      I    .

0.O 0 31.25 {62.50 ,93J7.5 :125.0O i56.25 1i8B75b5 218.'75 25 0.00 Frequency : Hz)

32

6. Scenario 5 6.1. "Original Case" "Original Case' obtains geometry from the Pro/ENGINEERO assembly "z:lhomelrfarie/131042 orig (20-900-FW)\ASM0001.ASM.13".

a The bounding box for all positioned bodies In the model measures 100.0 by 29.75 by 34.29 In along the global x, y and z axes, respectively.

  • The model has a total mass of 3,858.39 Ibm.
  • The model has a total volume of 13,594.1 in3 .

l Table 6.1.1. Bodies Name Material Bounding Box (in) Mass (Ibm) Volume (In') Nodes Elements j "BODOYf" 'Structural Steel' 28.0, 28.88, 28.88 1,799.28 6,339.34 2532 1215 "YOKE[2." "Structural Steel' 36.16, 27.88, 27.88 670.62 2,362.78 3740 1747 "GEARBOX[3]) OStructural Steel" 11.5, 13.5, 17.0 84.29 296.96 2182 1037 "GEARBOXCOVER[(]1 "StructuralSteel' 11.51, 9.25, 3.5 17.71 62.4 657 288

   'STEM[12]"                            "Structural Steel" 1.5, 1.5, 6.81                      2.78           9.79            528   257
   -IMPACTOR[13]"                        "Structural Steel'       13.5, 5.0, 2.38               13.29          46.81           559   257 "HWfI 61                              "Structural Steel 20.0, 20.0, 1.05                     26.13          92.06           16565 9137 "COVERtI       7)"                    "Structural Steel" 29.59, 16.5, 13.5                   93.62          329.86          4019  1904 OBONNETLUMP[20)"                      "Structural Steel" 8.0, 21.25, 21.25                   787.88         2,775.89        1219  213 "BEVELLUMP[21]'                       "Structural Steel" 3.0, 12.0, 12.0                     89.77          316.28          583   90 iSPURLUMP(22]"                        ^Structural Steel"       7.75, 7.75, 2.0               23.19          81.71           588   88 "STEMVLV[23]"                         "Structural Steel' 76.5, 6.06, 4.75                    148.52         523.29          1003  451 "RHN017[29)"                          "Structural Steel" 0.64, 1.3, 1.3                      0.12           0.42            2469  1407 lRHN017[33)"                          'Structural Steel" 0.64, 1.3, 1.3                      0.12           0.42            2469  1407 "RHNOI7f34)"                         "Structural Steel"        0.64, 1.3, 1.3               0.12           0.42          ]2469   1407 "CLAMP[94J"                          'Structural Steel"        2.5, 14.88, 32.96            50.48          177.85          1662  850
    -CLAMP[98)"                          "Structural Steel 2.5, 14.88, 32.96                    50.48          177.85        l 1662  850 l 6             .            .. .o . n I Table     6.1.2. Body             Groupings                                                                                  I f    _4     -     - . . _- ._.....

GodNam Name punBox - (In Mass (lbmn) Volu ie (In)0 oe Elements am. Do .. lr _~~ oe 6.1.1. Contact a "Contact" uses a tolerance of 0.0 for automatic detection. ITable 6.1.1.1. Contact Conditions I II eStfNerm s Mcode vir1IThermal IPinball Name;1I Tye I Associated Boi scoe I omScopes I Stfn I o e BehavirFormulation IIIo CnutneIRgo d ca c Rgo I

33

   'Contact IRegion'          Bonded      YOKE[2] and Face, m               1            ..

Controlled Automatic ISymmetric IPure Penalty Prog.. Cogram Program Controller Region Bonded BONNETLUMP[201' Face, Program Automatic Symmetric Pure Penalty Program Controe 2; l and BODY(1"a Face Controlled Controlled Controlled

  'Contact lRegion         Bonded                      and       Face          CCLAMPo9]l Prograed    Automatic Symmetric Pure Penalty           Cogram         Program i            B           BODYf1            a       Face          Controlled                                             Controlled     Controlled Contact B d             "CLAP[98]" and              Face,         Program                                                Program        Program Region          Bonded    "BODYl.]"                   Face          Controlled Automatic Symmetric Pure Penalty            Controlled     Controlled
 'Cegontc        Bode        GEARBOX 3].) and          Face,         Program     AomProgram                                                Program
    .            8           YOKE[2."                  Face          Controlled         atic Symmetric Pure Penalty         Controlled     Controlled "Contact Rego            Bode        CLAMP[94)" and            Face,         Program       uoai         ymti           ueP at       Program        Program gion        Bonded      YOKER[2]                  Face          Controlled Automatc Symmetric Pure Penalty             Controlled     Controlled Cegonct Bonded            CLAMP[98J and             Face,         Program     Automatic Symmetric Pure Penalty           Program        Program 7egi]on'                                               Face         Contr                                        Penarlty  Controlled     Controlled
  'Contact                   GAROCVR7                  Fc,           PormProgram                                                           Prga Region          Bonded GEARBOXCOVER(7J"                Face,        Pogram      Automatic Symmetric Pure Penalty                  trolled Program S.                        and "GEARBOX[3]"             Face         Controlled                                             Contrlld       Controlled Region         Bonded "COVER[17) and                  Face,        Program     Automatic Symmetric Pure Penalty           Program        Program BGEARBOX(3]"                 Face         Controlled                                             Controlled     Controlled
  'Contact1 Region         Bonded -BEVELLUMP[2J]a                 Face,        Program     Automaic Symmetric P                       Program        Program Jo"            BGEARBOX[3J]

and Face Controlled AutomaticCymmerncure enay Controlled Controlled I"ontact Region Bonded lSPURLUMP[22' and Face, Program Automatic Symmetric Pure Penalty Controlled Controlled IIGEARBOX[3]" Face Controlled Automtrogram Ponrogram Regontc Bode STEM[12])"and Face, Program At ai ymti uePnly Pro gram Program Region londd lGEARBOXCOVER[7)]" Face Controlled uAtomatjc Symmetric Pure Penalty Controlled Controlled "Contact Region Bonded "IMlPA CTOR[1 3)"and Face, Program Automatic Symmetric Pure Penalty PrgaPorm 13" "STEM[12]- Face Controlled Controlled Controlled Regontc Bode W[1 6)" and H"- Face, Program acSymProgram Program 14"io Bonde -MPA CTOR(13]- Face Controlled Automai Smetric Pure Penalty Controlled Controlled

  'Contact Region         Bonded "SPURLUMP[22])"and CVE[7 Face, Fc Program CotledAutomatic          Symmetric Pure Penalty IProgram Controlled Program Controlled Regontc        Bode         STEM...VLV[23]' and    ~Face,          Program         A
  • PrPelt Program~ Program Region B ~vEflij

___ "CO 7 Face Controlled Automatic Symmetric PuePnly Controlled Controlled "Contact Bd ' STEP.LVLW23)" and Face, Program Pro gram Program rReoion Bonded "BONWETLUMIPf20J" Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled Regontc Bode STEDLVLVt23)" and Face, Program Arotram ProPrt "CgonBotacdt "BEVELLUMP[21)" Face Controlled utomatic Symmetric Pure Penaly Poga rga Controlled Controlled Region iBonded "Cotac IRNI"S TEN... VL 29"an V[23J" I____Face,_______ Face ae Program___ Controlled Prga 1A__to__atic orac Att SymeticPue I ue enaty ny Prgrm Controlled rga ro Controlled rga -

34 Contact "HO~3J n ae rga . rga rga 20Regi BdedRHN017[33j"a Face, nd Proraed m Automatic Symmetric Pure Penalty Program Program ReinSodd~ TEA~LVLV23]- Face CoenrolledControlled Controlled

 'Contact               "RHN017[343" and        Face,    Program    Atmic'y                ercPueenly Program                       Program I Region       lBo!de    "STEMiVLV[23j"          Face     Controlled Automatic Symmetric Pure PenaltyControlled                      Controlled 21P "Contact              "CLAMP[98)"and          Face,    Program                                                     Program         Program Region      Bonded-LM[4-Fc                                otold    Automatic Symmetric Pure Penalty                 Controlled      Contrld 22"                     CAP9yFae                        Cnrle 6.1.2. Mesh
           *"Mesh"(Figure   A4.3) , associated with "Original Case' has an overall relevance of 0.
           '"Mesh" contains 44906 nodes and 22605 elements.

No mesh controls specified. 6.2. "Stress Analysis" "Stress Analysis" contains all loading conditions defined for 'Original Case' In this scenario. Acceleration - Constant LInear Acceleration N Magnitude: 8,110.02 In/s2

  • Vector: (350.0 In/s 2 x, 6,600.0 In/s2 y, 4,700.0 in/s2 z) in the global coordinate system The following tables list local loads and supports applied to specific geometry.

6.2.1. Structural Supports Table 6.2.1.1. Structural Supports Reaction Reaction Force Reaction ReactIon Moment Associated Name Type Force Vector Moment Vector Bodies "Fied xed[3,495.83 Ibf x, [-18,803.9 Ibf-in x, support surFae 81,003.67 Ibf 65,921.4 Ibf y, 2.36x 106 lbf-ln 1.37x 106 ibf in y, - "BODY[fi) Supr'Srae46,944.03 Ibf z) 1.92x 106 Ibf-ln z] ______ 6.3 . "Solutionn" . ... . .... ...

  "Solution' contains the calculated response for 'Original Case" given loading conditions defined in 'Stress Analysis".

It was selected that the program would choose the solver used in this solution. 6.3.1. Structural Results Table 6.3.1.1. Values l I Name Figure Scope Minimum Maximum Alert Criteria

35

  • EquivalentStress' A5.1 All Bodies In Case1.39 psi l 9,992.79 psi lNone 1Original Total Deformations All Bodies In 'Original Casqeg 0.0 in 0.05 In None Convergence tracking not enabled.

36 7" Scenario 6 7.1. "Original Case"

'Original Case' obtains geometry from the Pro/ENGINEERO assembly ^z:\homejrfarrell\31042 orig (20-900-FWJ)\ASM0001.ASM. 13".

a The bounding box for all positioned bodies In the model measures 100.0 by 29.75 by 34.29 in along the global x, y and z axes, respectively.

  • The model has a total mass of 3,858.39 Ibm.
  • The model has a total volume of 13,594.1 in3.

Table 7.1.1. Bodies Name Material Bounding So (In) Mass (Ibm) Volume (In3 ) Nodes Elements "BODYtI)" 'Structural Steel" 28.0, 28.88, 28.88 1,799.28 6,339.34 2532 1215 "YOKE[23" "Structural Steel^ 36.16, 27.88, 27.88 670.62 2,362.78 3740 1747

-GEARBOX[3]"              "Structural Steel"   11.5, 13.5, 17.0        84.29          296.96            2182    1037 "GEARBOXCOVER[71'         !"StrcturalSteel'    11.51, 9.25, 3.5        17.71        j62.4               6 57    288 "STEMf12]"               "Structural Steel'   1.5, 1.5, 6.81          2.78           9.79              528     257 "IMPACTOR(13J"           "Structural Steel" 13.5, 5.0, 2.38           13.29          46.81             559     257 "H W(163"                 "Structural Steel" 20.0, 20.0, 1.05          26.13          92.06             16565   9137 "COVER[17]"               "StructuralSteel"   29.59, 16.5, 13.5       93.62          329.86            4019     1904 "BONNETLUMPf20)           "Structural Steel'  8.0, 21.25, 21.25       787.88         2,775.89          1219    213
 -BEVELLUMP[21]"           "Structural Steel'  3.0, 12.0, 12.0         89.77          316.28            583     90 "SPURLUMPr22]J            "Structural Steel'  7.75, 7.75, 2.0         23.19          81.71             588    188 "STEMVLV[23)".            "StructuralSteel'   76.5, 6.06, 4.75        148.52         523.29            1003   1451 "RHN017[29]"              'Structural Steel" 0.64, 1.3, 1.3           0.12           0.42              2469     1407
 -RHN017[33j"              "Structural Steel" 0.64, 1.3, 1.3           0.12           0.42              2469     1407 "RHN017[34]J              ^Structural Steel" 0.64, 1.3, 1.3           0.12           0.42              2469     1407 "cLAMPr94]"               "Structural Steel"  2.5: 14.88, 32.96       50.48          177.B5            1662     850 "CLAMPP98]"              _StructuraI    Stl_  2.5, 14.88, 32.96       50.48        l177.85            11662     850 Table 7.1.2. Body Groupings
                                                                        ._ _       N       e.___s__
                                                                                              .Elements
                                                                                                         -I lName          S Nae Ia        BNiensBX (inj Mss (lbm )m)   l Volunie Id (hn3) 7.1.1. Contact U   "Contact" uses a tolerance of 0.0 for automatic detection.

IITable 7.1.1.1. Contact Conditions I lAssociated Bodies l Scope l Normal Scope Formulation ThermaluPinbal IName lType 1onucance I StiffnessIMode I Behavior eaI or I~nut I RegIon

37

 'Contct Bonded                YOKE[2]) and              Face,  Program         Automatic      Symmetric Pure Penalty     Program           Program I "Contact Region        Bonded 1"BONNETLUMP(20)"

ad"ODY[f]' 1Face, Face Progtramie Automatic l ymti Pur Pen1t Controlled Automatic Symmetric Pure Penalty 1 nProgram Ponrolram Controlled Controlled lTContact Region Bonded 1 aBODY![]) and MCPMPf94)" Face, Face Program Controlled Automatic Symmetric Pure Penalty Program Controlled Program Controlled

 'Conac taRgio                CLAMP[943" and
                             'oi~                        Face,  Program                                                   Program           Program R__egion t                  "ODnd    Yf[]

e~giotn Bonded "GEARBOX[" ' and Face Face, Controlled Automatic Program Automatic Symmetric Pure Penalty Symmetric Pure Penaty Controlled Program Controlled Program

 '      t    lYOKE([2J"                                  Face   Controlled              atic   Symmetric Pure Penalty     Controlled        Controlled
 'RContact Baonded Region21 Bonded
                                  'GERB      X3     d    Face,  Pgram            Autom                                    Program           Program
 'Con tact                    YO             "           Face   Controlled       Automatic     Symmetric Pure Penalty     Controlled        Controlled IRe~g~iotn~t Bonde 6"Contlldaonrole             GCLAMP[94]' and            Face,  Program          Autom                                    Pogram            Pogram Region       Eonde         "YOKEf2)               a    Face   Controlled Automatic           Symmetric Pure Penalty     Program oControlled Re'onBonded                 "GEARBOXCOVERand            Face,  Program          AtmProgram                                                 Program B             Bonded        agn JM        E    BO[3]"      Face   Controlled       Automatic     Symmetric  Pure Penalty    Controlled        Controlled Regontc                     'GEACO XCVER [7])"anFace,          Program                                                   Program           Program anContact

___FacCotroledControlled Controlled egio n Bonded Face Crolled Automatic Symmetric Pure Penalty Controlled Controlled Region Bonded lBEV.ELLU J21an Face, Program Automatic Symmetric Pure Penalty Proram Ponram l9.

  'Contact                         GERBOXf3)
                             -BEVELLUMP(21)"an           Face Face,  Controlled Program             _

AomProgram . _ _ _ . _ . ed. Controlle. Program Region Bonded and Face rRBOXf3)" Controlled Automatic Symmetric Pure Penalty Controlled Controlled 12gio Bode GEARBOXCOVE(7J"Face Controlled Automatic Symmetric Pure Penalty Controlled Controlled CRegon Bonded l STEM1[2] and Face, Program Program Program

 'Contact ReioSon                   TdEMPACOR23J"and       Face,  Program                 atcPyrontrolle                                      Crontrolle 13io"           one          GSEARBXCOER[]-Face                Controlled Automai Smetric Pure Penalty                   Ponrogram         Ponrogram Regontc       Bonded                     THRf13)" and   Face,  Program                 aiSymProgram                                        Program 14"     'Co Bondedndadt sPHW "Cgontc BoddAutomatic L16] P[and ATEMO[12    3" adFace, Face   Program Controlled      IAutomatic Symmetric Syrmmnat
                                                                                                       *P Pure Penalty Pt        Program Controlled        Program Controlled Regio                       "IPCO TOR[13]"              Face   Controlled                                                Controlled        Controlnaled_____

15gio Bode- .. R-7 Fc Cotole uoatc-meti ue eat Controlled Controlled "Contact_ 16gio B Conded ae onrlldAutomai Smetric Pure Penalty PrrrrPoga ReioCone STER 7]vv23 n Face, Ponrogrmlatceyd Controlled Controlled

 'ContactI-                                                           -I Region        Bonded        "STDtL1VLV(23.1" and        Face,  Program          Automatic Symti           uePenalty      Program           Program 17'                         'BOVNNETIUMP[2Q0)"          Face   Controlled                     SmercPu                    Controlled        Controlled Regio "Contact Reg      _____d~

Bode "STEMLVLVf23J" and BEVELLLUMP[21)" Face, Face Program Controlled Automatic 1Pnl 1 SmercPr eat rga rga

                                                                                                                      'Controlled rga rga Controlled I
 "Contact 'Bonde'd            RHNOI17129)" and           Face,  Program         1111Program AtmicSymmetric                                            IProgram Controlledt

38 'Contact RPHN017[33)" and Face, Program Auoac Symmetric Pure Penalty Program Program Region Bonded SEAV[21 Fae CnrldAuotic Controlled Controlled 21 STEM..VL V[23]' Face Controlled ymlueControlled Controlled

'Contact Region      Bonded   -CLAMP[941- n JCAP91-ad Fc Face, Prga Ponrogram   'Automatic IProgram Symmetric Pure PenaltyCotled Program onrld 22"                   CA4[4"                 jFc         otole                                             otold          Cnrle 7.1.2. Mesh OMesh"(Figure A5),associated with 'original Case' has an overall relevance of 0.
          'Mesh' contains 44906 nodes and 22605 elements.

No mesh controls specified. 7.2. "Natural Frequency"

'Natural Frequency' contains all loading conditions defined for 'Orlglnal Case' In this scenario.

The following tables list local loads and supports applied to specific geometry. 7.2.1. Structural Supports Table 7.2.1.1. Structural Sup ports Name 1Type Associated Bodles

'Fixed Support'   Fixed Surface    "BODY[i]"

7.3. "Solution"

'Solution' contains the calculated response for 'Original Case" given loading conditions defined in 'Natural Frequency'.

It was selected that the program would choose the solver used In this solution. 7.3.1. Frequency Results Frequency results apply to all active bodies In "Original Case'. Table 7.3.1.1. First 6 natural Frequencies Name Figure Mode Frequency Alert Criteria] f 1st Frequency Mode In Range" A6.1 1 94.03 Hz none ("3rd Frequency Mode In Range" Aone 2 764H nn "2nd Frequency Mode In Range" Non2 2 197.647 Hz none "4th Frequency Mode In Range" None 4 4.7z Jnone

39 None

"5th Frequency Mode In Range' None 6th Frequency Mode In Range" I None 16 160.2 Hz Inone I 164.59 Hz I none *1 a Convergence tracking not enabled.

40 Appendices Al. Scenario 1 Figures T-......

41 A2. Scenario 2 Figures Tigure A2.1. "Equivalent Stress" Contours I

42 ,I

43 A3. Scenario 3 Figures A4. Scenario 4 Figures

44 f

45 A5. Scenario 5 Figures

                                                ,;I : ;.:'v-
                                                       --. . 1  ,,       .

rot.;. _ N'. - M  :., r I'Figure. A5.2.

             . .:. .. t Deformat-lon" "Trotal  D. .oa .t Contours
                                        .C n.t

46 A6. Scenario 6 Figures 2w

47

                                                         .22JI3Xln)  y      '*

A7. Definition of "Structural Steel" Table A7. 1. "StructuralSteel" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9x101' psi Poisson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent 0.28 Ibm/in3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10' 1/°F I Thermal Conductivity Temperature-Independent 8.09x104 BTU/s in-°F !Specific Heat Temperature-independent 0.1 BTU/lbm*°F A8. Definition of "cover" Table A8.1. "cover" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9xlO7 psi Poisson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent 0.28 Ibm/in 3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10' 1/F Thermal Conductivity Temperature-Independent 8.09x 10- BTU/s in-°F Specific Heat Temperature-independent 0.1 BTU/lbm °F

48 A9. Defcinition of "bonnet lump" Table A9.1. "bonnet lump" Properties Name Type Value I Modulus of Elasticity Temperature-Independent 2.9x 107' psi Poisson's Ratio Temperature-Independent 0.3 T I Mass Density Temperature-Independent 0.41 Ibm/in 3 lCoefficient of Thermal Expansion lTemperature-Independent 6.67x10-' 1/°F Thermal Conductivity l Temperature-Independent 8.09x104 BTU/s in °0F I Specific Heat Temperature-Independent 0.1 BTU/lbm*°F A1O. Definition of "bevel lump" Table A10.1. "bevel lump" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9x107 psi Poisson's Ratio Temperature-Independent 0.3 Mass Density Temperature-Independent, 0.3 Ibm/in 3 Coefficient of Thermal Expansion Temperature-Independent 6.67x10' 1/°F Thermal Conductivity Temperature-Independent 8.09x10 4 BTU/s.in*°F Specific Heat Temperature-Independent 0.1 BTU/lbm-°F All. Definition of "spur lump" Table A11.1. "spur lump" Properties Name Type Value Modulus of Elasticity Temperature-Independent 2.9x10 psi Poisson's Ratio DTemperature-Independent 0.3 Mass Density Temperature-Independent 0.3 Ibm/in3 i Coefficient of Thermal Expansion Temperature-Independent 6.67x104 1/OF Thermal Conductivity- Ternperature-lndependent 8.09xl0o BTU/s in;°F Specific Heat iTemperature-Independent 0.1 BTU/lbm.°F}}