ML033650202

From kanterella
Jump to navigation Jump to search
to GEO.HBIP.03.01, Development of Hbip ISFSI Refueling Building Spectrum Compatible Time Histories.
ML033650202
Person / Time
Site: Humboldt Bay
Issue date: 02/11/2003
From: Cluff L, Gregor N, Sun J
Pacific Gas & Electric Co
To:
Document Control Desk, NRC/FSME
References
+sisprbs20051109, -RFPFR GEO.HBIP.03.01, Rev 0
Download: ML033650202 (79)


Text

HBAP C-20 Attachment 7.1 Rev. 7A Page 1 of 1 HUMBOLDT BAY POWER PLANT CALCULATION COVER SHEET File No.:

Calculation No.: GEO.HBIP.03.01 fl Preliminary 0 Final Department/Group: HBPP/Geosciences Unit(s) 0 Structure, System or Component: ISFSI Geotechnical Type or Purpose-of Calculation: Development of HBIP ISFSI Refueling Building Spectrum Compatible Time Histories No. of Sheets: 77 + Appendices Signature Discipline/Dept Date Prepared by: B'v Geosciences 02/07/2003 Checked by: i ' Geosciences 02/11/2003_

Approved by (Supv): ,-?II pf g 04/05/2003_

Registered Engineer Approval: (Complete section A for Civil calcs. Complete A or B for others A. Insert Engineer Stamp or Seal Below B.

Engineer's full name:

By Geosciences Registration Number:

Expiration Date:

Expiration Date:

RECORDS OF REVISIONS Approval Revision Prepared Checked Regis. Engr. Supvr.

Number Date Reasons for Revision By cBy 0 02/11/03 Initial Issue Geosci. Geosci. Geosci. - Aig

Pacific Gas and Electric Company Calc Number: GEO.HBIP.03.01 Geosciences Department Calc Revision: 00 Calculation Document Calc Date: 02/07/03 Quality Related:

ITR Verification Method: A 1.0 CALCULATION TITLE: Development of HBIP Refueling Building Spectrum Compatible Time Histories 2.0 SIGNATORIES PREPARED BY: yt /,, Da.te:- Z/0?/03 Nicholas Gregor Consultant Printed Name Organization r

VERIFIED BY: 47,1e94> Date: -D- //O. -

Printed ame *Organization APPROVED BY: /j°11/V & , Date: O2./ai Printed ame Organization

, - i 1O3

Page: 2 of 77 GEO.HBIP.03.01, Rev 00 3.0 RECORD OF REVISIONS Rev. Reason for Revision Revision No. Date 00 Initial Calculation Document 02/07/03

=' t

+

t 4-

Page: 3 of 76 GEO.HBIP.03.01, Rev 00 4.0 PURPOSE The purpose of this calculation is to develop 4 sets of 3-component spectrum compatible time histories (i.e., a total of 12 acceleration time histories) for the Humbolt Bay Power Plant Refueling Building project. These acceleration time histories are to be matched to the current refueling building response spectra based on the requirements outlined in the AR A0568852 (PG&E, 2002).

Input seed time histories for the spectral matching procedure will be selected from previously recorded empirical strong ground motion recordings. These selected time histories will be chosen based on the magnitude, fault to site distance, source mechanism, and site soil classification of the recorded motions representing a large magnitude reverse mechanism earthquake at short distances.

The matched time histories will be made spectrum compatible to the 4%, 5%, and 7%

spectral damping design spectra. These time histories will be baseline corrected and shall comply with the matching requirements outlined in the SRP NUREG 1567 (March, 2000), NUREG 0800 Section 3.7.1 (1989), and ASCE 4-86 (1986). An additional requirement of the individual components (two horizontal and one vertical) for each set must be statistically independent with an absolute value of the cross-correlation of less than 0.3 must be maintained for the final spectrum compatible time histories.

5.0 ASSUMPTIONS 5.1 Log-Log Interpolation of the Target spectrum data points Digital values for the 7% spectral damping design spectra for the horizontal and vertical components of motion were provided by Larry Pulley (Memo dated December 5, 2002).

These 20 digital values defined the 7% spectral damping target spectra between the frequency range of 50 Hz (0.02 sec) to 0.25 Hz (4.0 sec). Digital values for the other design spectra at damping levels of 4% and 5% were not provided in the memo and are only provided in Figures C and D of the memo. The digital values for the 4% and 5%

horizontal and vertical design spectra were scaled off of these two figures.

The digitized design spectra will be interpolated to the suite of extended NRC frequencies as required in SRP 3.7.1 and discussed later in Section 7.1. This interpolation scheme is assumed to be a log-log interpolation. The basis for this assumption is the requirement that the interpolated design spectra is equal to the original design target spectra at all frequencies. The original design spectra, which were provided in Figures C and D of the memo, are plotted as a function of log frequency and log spectral acceleration. Therefore, any interpolation between the points given in the memo must be performed using a log-log interpolation scheme to replicate the original design spectra for frequencies between the original data points.

Page: 4 of 76 GEO.HBIP.03.01, Rev 00 5.2 Envelop of Horizontal Target Design Spectra between 2.0 to 2.5 Hz The horizontal design spectra accounts for a 25% reduction in the spectral acceleration levels for frequencies greater than 2 Hz (Pulley memo, dated December 5, 2002). This reduction is to account for the soil structure interaction causes a discontinuous jump in the design spectra at 2 Hz for the three spectral damping levels of interest. The same reduction is not applied to the vertical design spectra. For the spectral matching results presented in this calculation document, the discontinuous jump in the design spectra at 2 Hz is smoothed out by taking a straight line on the log-log plot of the design spectra between the larger spectral acceleration value at 2 Hz and the spectral acceleration value at 2.5 Hz. The basis for this assumption is that the smoothed spectra envelops the design spectra given in the memo from Larry Pulley and therefore is conservative and any time histories which satisfy the matching criteria for the smoothed spectra will also satisfy the matching criteria for the discontinuous spectra.

5.3 Input Time Histories Four recorded strong ground motion sets (three components each) listed in Table 6-1 below are assumed to be representative of the ground motion from a large magnitude reverse mechanism earthquake at short distances. Processed digital records of these ground motions are available from Pacific Earthquake Engineering Research Center (PEER) strong motion database at http://peer.berkeley.edu/smcat'.

These four sets of time histories were selected based on the similarity between the controlling seismic event for the design spectra (i.e., large magnitude -7 thrust earthquake at short distances less than -25 kIn) and their respective earthquake parameters listed in Table 6-1. Although none of these four sets of time histories specifically represents the design target event, the basis of the assumption of using these four sets of seed time histories is the understanding that the collective range in magnitude, distance, and time history phasing provides a valid representation of the target design event. Additional seed time histories could have been used for the spectral matching, however, the collective representation of the characteristic of empirical ground motion time histories would not have significantly changed.

The selection of these four sets of seed input time histories for spectral matching was subjected to peer review by N. Abrahamson (Attachment 1).

5.4 Modified Envelope Requirements for Spectral Matching In SRP 3.7.1 (NUREG-0800, 1989), a spectrum is considered to envelop a target spectrum if the spectral values at not more than 5 of the recommended 75 frequencies fall below the target spectrum and none of these points fall below 0.9 times the target spectrum. As discussed in section 7. 1, for this calculation, an additional 29 frequencies are considered. For the 104 frequencies used here, the number of points that are allowed to fall below the target is conservatively maintained at 5 with none of these points falling

Page: 5 of 77 GEO.HBIP.03.01, Rev 00 below more than 0.9 times the target spectrum. The basis for this assumption is conservative, in that the SRP 3.7.1 requires that no more than 5 points can fall below the target spectrum and this requirement is applied to the extended target spectrum with 104 frequency points. Therefore, by accepting this more conservative requirement, the spectrum compatible time histories will be acceptable under the SRP 3.7.1 guidelines.

6.0 INPUTS 6.1 Input Seed Time Histories Four sets of three component time histories were selected as the input seed time histories for the spectral matching procedure. The earthquake and station parameters for each of the four sets are listed in Table 6-1. Each of the four sets is identified as RFB 1 through RFB4. The selection of these four sets of seed input time histories for spectral matching was subjected to peer review by N. Abrahamson (Attachment 1). The digital values of the initial acceleration seed time histories are given on the enclosed CD-ROM.

Table 6-1. Input seed time histories selected for spectral matching.

Set Earthquake Mag Station Dist (km) Mechanism RFBI 1992 Cape Mendocino 7.1 Eureka 44.6 Thrust RFB2 1978 Tabas 7.4 Tabas 3.0 Thrust RFB3 1989 Loma Prieta 6.9 Hollister City Hall 28.2 Oblique RFB4 1999 Chi-Chi 7.6 TCU068 1.09 Thrust 6.2 Response Spectra for Humbolt Bay Power Plant Refueling Building The design spectra for the Humbolt Bay Power Plant Refueling Building (RFB) were received from Larry Pulley (Memo dated December 5, 2002). The digital values for 7 %

damping were provided for the frequency range 50 Hz (0.02 sec) to 0.25 Hz (4.0 sec).

The horizontal and vertical spectra are defined for a different set of frequency points, but both the horizontal and vertical 7% damping spectra are defined for the same frequency range of 50.0 Hz (0.02 sec) to 0.25 Hz (4.0 sec). For the 7% damping horizontal design spectra only the larger digital spectral acceleration ground motion value (i.e., only the digital value for the smoothed enveloped spectrum) was provided in the memo from Larry Pulley (December 5, 2002).

For 4% damping and 5% damping, only a figure was available (Pulley memo dated December 5, 2002), from which the digital values were digitized by hand. The digital values for the 7% damped horizontal and vertical spectra and the scaled values for the 4%

and 5% damping spectra are listed in Tables 6-2 and 6-3. For the horizontal design spectra only the smoothed enveloped spectra between the frequency range of 2.0 to 2.5 Hz (see Section 5.2 on the assumption for the smoothed enveloped spectra) was digitized

-1

Page: 6 of 77 GEO.HBIP.03.01, Rev 00 and is presented in the tables and figures below. These digitized design spectra for the three spectral damping levels are plotted in Figure 6-1 and 6-2 for the horizontal and vertical components, respectively.

Table 6-1. Horizontal design spectra at 4%, 5%, and 7% spectral damping for the Humbolt Bay Power Plant RFB.

Frequency Horizontal 4% damping Horizontal 5% damping Horizontal 7% damping (Hz) Sa(g) Sa(g) Sa(g) 0.25 0.242 0.227 0.220 0.60 0.510 0.473 0.408 0.90 0.732 0.641 0.580 1.20 0.960 0.854 0.740 2.00 1.437 1.264 1.120 2.50 1.264 1.149 1.014 3.50 1.212 1.101 0.986 5.00 1.161 1.066 0.940 7.00 1.132 1.022 0.888 9.00 1.078 1.000 0.860 11.00 0.900 0.839 0.772 13.00 0.800 0.732 0.696 15.00 0.716 0.670 0.632 18.00 0.613 0.576 0.560 20.00 0.553 0.531 0.520 23.00 0.500 0.478 0.480 26.00 0.447 0.437 0.440 30.00 0.409 0.400 0.400 33.00 0.380 0.380 0.380 50.00 0.380 0.380 0.380

Page: 7 of 76 GEO.HBIP.03.01, Rev 00 Table 6-2. Vertical design spectra at 4%, 5%, and 7% spectral damping for the Humbolt Bay Power Plant RFB.

Frequency Vertical 4% damping Vertical 5% damping Vertical 7% damping (Hz) Sa(g) Sa(g) Sa(g) 0.25 0.170 0.160 0.143 3.50 1.633 1.532 1.295 6.00 1.532 1.407 1.200 7.00 1.500 1.377 1.180 8.00 1.437 1.334 1.160 8.50 1.452 1.334 1.146 9.00 1.392 1.292 1.135 10.00 1.292 1.199 1.070 11.00 1.186 1.113 -1.010 12.00 1.124 1.044 0.960 14.00 1.000 0.932 0.860 15.00 0.954 0.900 0.830 16.00 0.900 0.835 0.792 17.00 0.835 0.817 0.764 20.00 0.748 0.716 0.692 22.00 0.700 0.670 0.652 25.00 0.644 0.617 0.600 30.00 0.576 0.551 0.536 33.00 0.500 0.500 0.500 50.00 0.500 0.500 0.500

Page: 8 of 77 GEO.HBIP.03.01, Rev 00 14 cm 0

a) 0 0

a) 0.

0.1 0.01 Frequency (Hz)

Figure 6-1. Humbolt Bay Power Plant RFB horizontal design spectra (smoothed enveloped spectra) for spectral damping levels of 4, 5, and 7%.

Page: 9 of 77 GEO.HBIP.03.01, Rev 00 j

C 0

a1) a)

C3 C.)

0 0

CL Frequency (Hz)

Figure 6-2. Humbolt Bay Power Plant RFB vertical design spectra for spectral damping levels of 4, 5, and 7%.

Page: lO of 77 GEO.HBIP.03.01, Rev 00 6.3 NRC Recommended Frequencies for Spectral Matching The suite of NRC recommended frequencies for spectral matching are taken from Table 3.7.1-1 of SRP 3.7.1 (NUREG-0800, 1989) and is reproduced below in Table 6-4.s Table 6-4. NRC recommended Frequency Sampling for the target spectrum (From SRP 3.7.1).

Frequency Range Increment (Hz) (Hz) 0.2- 3.0 0.10 3.0 - 3.6 0.15 3.6 - 5.0 0.20 5.0- 8.0 0.25 8.0- 15.0 0.50 15.0- 18.0 1.00 18.0 - 22.0 2.00 22.0 - 34.0 3.00 6.4 Definition of Envelop of a Spectrum In SRP 3.7.1 (NUREG-0800, 1989), the spectrum of a time history is defined to "envelop" a spectrum if the flowing conditions are met:

  • No more than 5 points may fall below the target spectrum
  • No points may fall more than 10% below the target spectrum 6.5 Statistical Independence of Time Histories Each set of 3-component time histories shall be statistically independent. To meet this criterion, the absolute value of the correlation coefficient of the three acceleration time histories shall be less than 0.3 (ASCE 4-86, 1986).

6.6 Spectral Matching Criteria If multiple time histories are used (option 2 in SRP 3.7.1, NUREG-0800, 1989), the requirements (page 7 in SRP 3.7.1) for spectral matching are:

  • At least 4 sets of time histories are required.
  • The average (linear average) of the spectra from the multiple time histories must "envelop" (see section 6.4 above) the design spectrum. The spectra from the individual time histories need not "envelop" the design spectrum by

Page: 11 of 77 GEO.HBIP.03.01, Rev 00 themselves.

  • There is no PSD requirement given if multiple time histories are used.

7.0 METHOD AND EQUATION

SUMMARY

The detailed steps in the approach and methodology to the development of the spectrum compatible time histories are given below.

7.1 Extend NRC Frequencies for Spectral Matching Additional frequency values were added to the suite of NRC frequencies (see Section 6.3 and Table 6-4) for the spectral matching procedure. The suite of NRC frequency values was augmented for frequencies less than 1.0 Hz and greater than 34 Hz. The refined frequency sampling is given below in Table 7-1. This frequency sampling defines a total of 104 frequency points between the frequency range of 100 Hz (0.01 sec) to 0.10 Hz (10.0 sec).

Table 7-1. Augmented NRC frequency sampling used in the spectral matching.

Frequency Range (Hz) Increment (Hz) 0.10 - 0.30 0.02 0.30 - 1.00 0.05 1.00 - 3.00 0.10 3.00 - 3.60 0.15 3.60 - 5.00 0.20 5.00 - 8.00 0.25 8.00 - 15.00 0.50 15.00- 18.00 1.00 18.00 - 22.00 2.00 22.00 - 34.00 3.00 40.00- 100.00 5.00 7.2 Spectra for 4% and 5% damping The horizontal and vertical spectra at 4% and 5% damping are scaled from the plot of the Humbolt Bay Power Plant RFB design spectra (Memo dated December 5, 2002) for the frequency range of 100 Hz (0.01 sec) to 0.10 Hz (10.0 sec).

7.3 Interpolation of Target Design Spectra Values

Page: 12 of 77 GEO.HBIP.03.01, Rev 00 Given the digital values for the 4%, 5%, and 7% horizontal and vertical target design spectra, a log-log interpolation was performed to interpolate the design spectra to the extended NRC frequencies (see Section 7.1 and Table 7-1 above).

7.4 Develop Spectrum Compatible Time Histories The validated program RSPMATCH (GEO.DCPP.02.01, 2002) is used to modify the input seed time histories listed in Table 6-1 to match the target design spectra.

The development of the spectrum compatible time histories uses the following steps:

1. Four sets of initial time histories are selected (see Table 6-1). The selection process considered magnitude, distance to fault, and duration characteristics.

This selection is subjected to peer review.

2. If needed, permanent tectonic displacements are removed from the time histories to obtain the transient portions of the ground motions (e.g., without fling).
3. For each of the four sets, the 3-component time histories are modified to match the target spectra at 5% spectral damping using the validated program RSPMATCH. These modified spectrum compatible time histories are subjected to peer review to determine that the non-stationary characteristics of the modified time histories are appropriate.

7.5 Check if Enveloping Criteria is Satisfied To check the enveloping requirement for the spectrum compatible time histories, the following step is performed:

1. The average (linear average) spectrum from the four sets of time histories is compared to the target spectrum at spectral damping values of 4%, 5%, and 7% to determine if the average spectrum "envelops" the target spectrum (as defined in Section 6-4) at all damping values for each component separately.

7.6 Compute Time Histories Cross-Correlations The cross-correlations of the final modified spectrum compatible time histories for each of the four sets of time histories are computed and checked against the cross-correlation requirements defined in ASCE 4-86 (1986).

The cross correlations are computed based on the following steps:

1. The cross-correlation of the 3-components acceleration time histories for each set is computed and checked that the absolute value of the cross-correlation is below 0.3 as required per ASCE 4-86 (1986).

Page: 13 of 77 GEO.HBIP.03.01, Rev 00 7.7 Equations 7.7.1 Equation for log-log interpolation/extrapolation of response spectra The interpolation of the design target response spectral values is done using linear interpolation on the log spectral acceleration - log spectral period values. Given the spectral values Sal and Sa 2 at periods T, and T 2 , respectively, then using linear interpolation on the log-log values, the spectral acceleration at period T is given by ln(Sa(T)) = n(Sa(T1 )) + (nn(T) - (n(TS))

[ln(T 2 ) - ln(T )] 1 (7.7-1) 7.7.2 Cross-correlation The absolute value of the cross-correlation of two time series, x(t) and y(t), is given by (Kanasewich, 1981, page 84)

Cross Correlation = x(ty(t) (7.7-2)

SYXl(tj) '92(ti) 8.0 SOFTWARE The validated computer program RSPMATCH was used to perform the spectral matching calculations. This use of this program has been validated in calculation GEO.DCPP.02.01 (2002). There are two restrictions for the use of the program. First, the response spectra of the final modified time histories needs to be recomputed using a verified program, and the time histories need to be peer reviewed in terms of the non-stationary character of the waveforms. In compliance to these restrictions, the waveforms of the input seed time histories and the generated spectrum compatible time histories were peer reviewed by Norm Abrahamson and spectral values of the generated time histories were calculated using the verified SPCTLR program (GEO.DCPP.01.32, 2001).

Page: 14 of 77 GEO.HBIP.03.01, Rev 00 9.0 BODY OF CALCULATION 9.1 Extend NRC Frequencies for Spectral Matching The NRC recommended 75 frequencies for spectral matching (see Section 6.3). These frequencies were focused on high and moderate frequencies. A finer sampling of frequency points (see Section 7.1) was used in this project based on a finer sampling interval for frequencies less than 1.0 Hz and greater than 34 Hz. This finer sampling for a total of 104 frequency points is listed in Table 7-1.

9.2 Spectra for 4 % and 5 % Damping The spectral values were scaled from the two design spectra plots (Figures C and D) in the Memo dated December 5, 2002 from Larry Pulley. These smoothed enveloped (see Section 5.2) scaled digital values along with the 7% spectral damping values are listed in Table 9-1 for the horizontal component and Table 9-2 for the vertical component. These scaled digital values are also plotted a function of frequency in Figures 9-1 and 9-2.

These digital values were superimposed on the figures from the Pulley (2002) memo as a confirmation check of the hand scaling of the values.

Page: 15 of 77 GEO.HBEP.03.01, Rev 00 Table 9-1. Horizontal design spectra at 4%, 5%, and 7% spectral damping for the Humbolt Bay Power Plant RFB.

Frequency Horizontal 4% damping Horizontal 5% damping Horizontal 7% damping (Hz) Sa(g) Sa(g) Sa(g) 0.10 0.039 0.036 0.034 0.25 0.242 0.227 0.220 0.60 0.510 0.473 0.408 0.90 0.732 0.641 0.580 1.20 0.960 0.854 0.740 2.00 1.437 1.264 1.120 2.50 1.264 1.149 1.014 3.50 1.212 1.101 0.986 5.00 1.161 1.066 0.940 7.00 1.132 1.022 0.888 9.00 1.078 1.000 0.860 11.00 0.900 0.839 0.772 13.00 0.800 0.732 0.696 15.00 0.716 0.670 0.632 18.00 0.613 0.576 0.560 20.00 0.553 0.531 0.520 23.00 0.500 0.478 0.480 26.00 0.447 0.437 0.440 30.00 _ 0.409 0.400 0.400 33.00 0.380 0.380 0.380 50.00 0.380 0.380 0.380 100.00 0.380 0.380 0.380

Page: 16 of 76 GEO.HBIP.03.01, Rev 00 Table 9-2. Vertical design spectra at 4%, 5%, and 7% spectral damping for the Humbolt Bay Power Plant RFB.

Frequency Vertical 4% damping Vertical 5% damping Vertical 7% damping (Hz) Sa(g) Sa(g) Sa(g) 0.10 0.026 0.025 0.022 0.25 0.170 0.160 0.143 3.50 1.633 1.532 1.295 6.00 1.532 1.407 1.200 7.00 1.500 1.377 1.180 8.00 1.437 1.334 1.160 8.50 1.452 1.334 1.146 9.00 1.392 1.292 1.135 10.00 1.292 1.199 1.070 11.00 1.186 1.113 1.010 12.00 1.124 1.044 0.960 14.00 1.000 0.932 0.860 15.00 0.954 0.900 0.830 16.00 0.900 0.835 0.792 17.00 0.835 0.817 0.764 20.00 0.748 0.716 0.692 22.00 0.700 0.670 0.652 25.00 0.644 0.617 0.600 30.00 0.576 0.551 0.536 33.00 0.500 0.500 0.500 50.00 0.500 0.500 0.500 100.00 0.500 0.500 0.500 9.3 Interpolation of Target Design Spectra Values The digital design target spectra values given in Tables 9-1 and Tables 9-2 were interpolated to the extended suite of 104 frequencies points using a log-log interpolation (see Section 7.7.1 and equation 7.7-1). The interpolated spectral values for the 4%, 5%,

and 7% spectral damping for the horizontal and vertical components are listed in Table 9-

3. These interpolated 104 target design spectrum values are plotted as solid lines in Figures 9-1 (horizontal component) and 9-2 (vertical component) along with the digital values listed in Tables 9-1 and 9-2 (plotted as symbols).

Page: 17 of 77 GEO.HBIP.03.01, Rev 00 Table 9-3. Horizontal and vertical target spectra for the Humbolt Bay Power Plant RFB interpolated to the 104 NRC frequencies.

Horizontal Target Spectra Vertical Target Spectra Frequency 4% 5% 7% 4% 5% 7%

(Hz) 0.100 0.03900 0.03600 0.0340 0.02600 0.02500 0.02200 0.120 0.05608 0.05193 0.0493 0.03778 0.03617 0.03193 0.140 0.07624 0.07079 0.0675 0.05181 0.04943 0.04375 0.160 0.09947 0.09258 0.0886 0.06812 0.06478 0.05746 0.180 0.12578 0.11730 0.1126 0.08671 0.08224 0.07310 0.200 0.15515 0.14497 0.1396 0.10761 0.10181 0.09065 0.220 0.18759 0.17557 0.1696 0.13082 0.12349 0.11013 0.240 0.22310 0.20912 0.2024 0.15636 0.14730 0.13156 0.260 0.25022 0.23459 0.2262 0.17581 0.16546 0.14776 0.280 0.26652 0.24963 0.2383 0.18734 0.17630 0.15719 0.300 0.28264 0.26450 0.2502 0.19876 0.18703 0.16651 0.350 0.32229 0.30100 0.2789 0.22684 0.21341 0.18938 0.400 0.36110 0.33666 0.3065 0.25435 0.23925 0.21172 0.450 0.39919 0.37161 0.3331 0.28137 0.26463 0.23360 0.500 0.43666 0.40594 0.3588 0.30797 0.28961 0.25508 0.550 0.47358 0.43972 0.3837 0.33419 0.31423 0.27621 0.600 0.51000 0.47300 0.4080 0.36007 0.33853 0.29702 0.650 0.54771 0.50225 0.4373 0.38565 0.36254 0.31755 0.700 0.58511 0.53094 0.4664 0.41094 0.38629 0.33782 0.750 0.62222 0.55912 0.4952 0.43598 0.40979 0.35785 0.800 0.65905 0.58683 0.5237 0.46078 0.43306 0.37766 0.850 0.69564 0.61412 0.5519 0.48536 0.45613 0.39727 0.900 0.73200 0.64100 0.5800 0.50974 0.47901 0.41669 0.950 0.77027 0.67651 0.6072 0.53392 0.50170 0.43593 1.000 0.80842 0.71202 0.6341 0.55792 0.52422 0.45500 1.100 0.88441 0.78302 0.6874 0.60542 0.56878 0.49269 1.200 0.96000 0.85400 0.7400 0.65231 0.61277 0.52981.

1.300 1.02264 0.90812 0.7897 0.69864 0.65622 0.56643 1.400 1.08427 0.96127 0.8386 0.74447 0.69920 0.60259 1.500 1.14498 1.01355 0.8869 0.78983 0.74174 0.63832 1.600 1.20484 1.06502 0.9345 0.83476 0.78388 0.67366 1.700 1.26393 1.11576 0.9817 0.87929 0.82563 0.70863 1.800 1.32228 1.16580 1.0282 0.92345 0.86703 0.74327 1.900 1.37996 1.21520 1.0744 0.96725 0.90811 0.77759 2.000 1.43700 1.26400 1.1200 1.01074 0.94887 0.81162 2.100 1.39726 1.23791 1.0959 1.05391 0.98934 0.84536 2.200 1.36038 1.21354 1.0734 1.09679 1.02953 0.87884 2.300 1.32606 1.19069 1.0524 1.13939 1.06947 0.91207 2.400 1.29401 1.16923 1.0326 1.18173 1.10915 0.94506 2.500 1.26400 1.14900 1.0140 1.22381 1.14859 0.97783 2.600 1.25783 1.14330 1.0107 1.26566 1.18781 1.01038 2.700 1.25191 1.13784 1.0075 1.30728 1.22681 1.04273 2.800 1.24624 1.13260 1.0045 1.34868 1.26561 1.07487 2.900 1.24079 1.12757 1.0016 1.38987 1.30420 1.10683 3.000 1.23555 1.12274 0.9987 1.43085 1.34261 1.13861 3.150 1.22805 1.11581 0.9947 1.49197 1.39987 1.18595 3.300 1.22094 1.10925 0.9908 1.55267 1.45674 1.23292 3.450 1.21418 1.10301 0.9872 1.61298 1.51325 1.27954

Page: 18 of 77 GEO.HBIP.03.01, Rev 00 3.600 1.20789 1.09819 0.9823 1.62756 1.52520 1.28985 3.800 1.20005 1.09283 0.9752 1.61717 1.51223 1.28003 4.000 1.19265 1.08776 0.9685 1.60737 1.50003 1.27079 4.200 1.18566 1.08297 0.9622 1.59811 1.48852 1.26205 4.400 1.17903 1.07841 0.9562 1.58933 1.47763 1.25378 4.600 1.17273 1.07408 0.9506 1.58098 1.46729 1.24593 4.800 1.16673 1.06995 0.9452 1.57303 1.45746 1.23845 5.000 1.16100 1.06600 0.9400 1.56545 1.44810 1.23133 5.250 1.15675 1.05950 0.9323 1.55642 1.43698 1.22287 5.500 1.15271 1.05335 0.9250 1.54787 1.42647 1.21485 5.750 1.14886 1.04750 0.9180 1.53974 1.41649 1.20724 6.000 1.14520 1.04193 0.9115 1.53200 1.40700 1.20000 6.250 1.14169 1.03661 0.9052 1.52346 1.39899 1.19467 6.500 1.13832 1.03153 0.8992 1.51530 1.39134 1.18957 6.750 1.13510 1.02667 0.8935 1.50749 1.38402 1.18469 7.000 1.13200 1.02200 0.8880 1.50000 1.37700 1.18000 7.250 1.12430 1.01890 0.8840 1.48318 1.36557 1.17471 7.500 1.11691 1.01591 0.8802 1.46711 1.35461 1:16962 7.750 1.10981 1.01303 0.8766 1.45174 1.34410 1.16472 8.000 1.10298 1.01025 0.8730 1.43700 1.33400 1.16000 8.500 1.09005 1.00496 0.8663 1.45200 1.33400 1.14600 9.000 1.07800 1.00000 0.8600 1.39200 1.29200 1.13500 9.500 1.02684 0.95380 0.8354 1.33975 1.24341 1.10117 10.000 0.98055 0.91195 0.8126 1.29200 1.19900 1.07000 10.500 0.93845 0.87385 0.7916 1.23660 1.15418 1.03885 11.000 0.90000 0.83900 0.7720 1.18600 1.11300 1.01000 11.500 0.87223 0.80909 0.7510 1.15391 1.07720 0.98414 12.000 0.84645 0.78145 0.7314 1.12400 1.04400 0.96000 12.500 0.82243 0.75583 0.7131 1.08974 1.01309 0.93244 13.000 0.80000 0.73200 0.6960 1.05781 0.98426 0.90670 13.500 0.77693 0.71511 0.6785 1.02796 0.95729 0.88261 14.000 0.75534 0.69921 0.6621 1.00000 0.93200 0.86000 14.500 0.73507 0.68420 0.6466 0.97633 0.91558 0.84461 15.000 0.71600 0.67000 0.6320 0.95400 0.90000 0.83000 16.000 0.67770 0.63509 0.6055 0.90000 0.83500 0.79200 17.000 0.64359 0.60396 0.5816 0.83500 0.81700 0.76400 18.000 0.61300 0.57600 0.5600 0.80330 0.77995 0.73786 20.000 0.55300 0.53100 0.5200 0.74800 0.71600 0.69200 22.000 0.51628 0.49426 0.4924 0.70000 0.67000 0.65200 25,000 0.46331 0.44972 0.4524 0.64400 0.61700 0.60000 28.000 0.42690 0.41743 0.4188 0.60084 0.57510 0.55937 31.000 0.39878 0.39300 0.3930 0.54863 0.53289 0.52333 34.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 40.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 45.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 50.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 55.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 60.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 65.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 70.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 75.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 80.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 85.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 90.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 95.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000 100.000 0.38000 0.38000 0.3800 0.50000 0.50000 0.50000

Page: 19 of 77 GEO.HBIP.03.01, Rev 00 1

C 0

ID a) a CU i) a)

Co 0.1 0.01 Frequency (Hz)

Figure 9-1. Comparison of interpolated spectral values (Table 9-3) with the target spectra (Table 9-1) for the horizontal component and the three levels of spectral damping (4%, 5%, and 7%).

Page: 20 of 77 GEO.HBIP.03.01, Rev 00 n

I Eli.' ___

_ I!

IL 1 ____ -F jF C ____ ____ I I ____

0

____ _ I K ____ -. 1-C

.E a) 0

-0 0.

Cl, A I  ; . . , - . . . I i I

If/ o Vertical Target (4%damping) 7r i IE _ _

JZ~~~~~~~~~~~---

- Interpolated Target (4% damping) o Vertical Target (5%damping)

- Interpolated Target (5% damping) o Vertical Target (7%damping)

- Interpolated Target (7% damping)

I 1 I I I 0.01 I I I I I I I I I I I I

1 0.1 10 100 Frequency (Hz)

Figure 9-2. Comparison of interpolated spectral values (Table 9-3) with the target spectra (Table 9-2) for the vertical component and the three levels of spectral damping (4%, 5%, and 7%).

Page: 21 of 77 GEO.HBIP.03.01, Rev 00 9.4 Develop Spectrum Compatible Time Histories 9.4.1 Step 1: Selection of Initial Input Seed Time histories The initial input seed time histories selected for the spectral matching procedure were listed in Table 6-1 and is listed again in Table 9-4 below. A peer review by Norman Abrahamson (see Attachment 1) was performed for the selection of these initial four sets of input acceleration seed time histories. The digital values of these initial time histories are given on the enclosed CD-ROM.

Table 9-4. Input seed time histories used for the spectral matching.

Set Earthquake Magnitude Station Distance (km)

RFB1 1992 Cape Mendocino 7.1 Eureka 44.6 RFB2 1978 Tabas 7.4 Tabas 3.0 RFB3 1989 Loma Prieta 6.9 Hollister City Hall 28.2 RFB4 1999 Chi-Chi 7.6 TCU068 1.09 9.4.2 Step 2: Remove Permanent Tectonic Diplacements One of the four sets of selected recordings had permanent displacements in the ground motions (station TCU068 from the Chi-Chi earthquake). In calculation GEO.DCPP.0 1.12 (2001), the permanent tectonic displacements (fling) were removed from the acceleration time histories. The parameters used to remove the fling are listed below in Table 9-5.

Table 9-5. Parameters estimated for the fling for the two sets of ground motions that include fling (from Table 6-6 in GEO.DCPP.01.12, 2001)

Set Earthquake Station I Comp D (cm) tj (sec) T, (sec)

LSF4 Chi-Chi I TCU068 I 000 l 844 l 33.8 l 3.7 9.4.3 Step 3: Spectral Matching The validated program RSPMATCH is used to modify the input seed time histories to approximately match the 5% damping target spectrum. For each component of each set, three plots are shown: (a) the initial seed time history, (b) the spectra scaled to the target PGA for the initial and the spectra from the modified time history compared to the target spectrum and (c) the modified time history. The plots for the 12 components (4 sets x 3 components/set) are shown in Figures 9-3 to 9-14.

Page: 22 of 77 0 3 . 01

, Rev 00 GEO.I-1BIP IS U

-e C) f 40 for Set history e (sec for spectral matching Timtime

  1. seed nPut 9-3a.

Figure niRia 1oi. na nt #

e 9 Fi. Initial N-

Page: 23 of 77 GEO.HBIP.03.01, Rev 00 11 C

tM

.)

0.

I CO CI) 0.01 0.001 Perod (sec)

Figure 9-3b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for horizontal #1 from Set RFB 1.

Page: 24 of 77 GEO.HBIP.03.01, Rev 00 0

0 Time (sec) cn Time (sec)

V-,

40-

_ 20-E 5 0-

- Dis (cm)

-- I . i 1 T i i . IT I . I 0 5 10 15 20 25 30 35 40 45 Time (sec)

Figure 9-3c. Modified horizontal #1 time history for Set RFB 1.

Page: 25 of 77 GEO.HBIP.03.01, Rev 00 0.2-cn C.)

Time (sec)

. l -.

20-

-g 10-0 -

> -lo-

-20 V~~ Vel (cmn/s)Il

~~~~~~

3AnI

-ov-Q~j I I I I I I I I I ., . I. . . I I I I I I I I I I . I I I I 0 5 10 15 20 25 30 35 40 45 Time (sec) 15- .

1 0-5-

-10 V~~~~~~~~~~ l Dis (C m)l

-16.'o

_11:.

20 2'5

. .I . . .

3.

35 40 45 Time (sec)

Figure 9-4a. Initial horizontal #2 seed input time history for spectral matching for Set RFBI.

Page: 26 of 77 GEO.HBIP.03.01, Rev 00 0

L.

C.)

C.)

0.

E-U, C.)

U) 0.0 Perod (sec)

Figure 9-4b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for horizontal #2 from Set RFB 1.

Page: 27 of 77 GEO.HBIP.03.01, Rev 00 tn C.)

20 25 Time (sec) 120 -i 60-V) 0-

- Vel (cmls)I II i 0 5 10 15 20 25 30 35 40 45 Time (sec)

E 0

5 10 15 20 25 30 Time (sec)

Figure 94c. Modified horizontal #2 time history for Set RFB 1.

Page: 28 of 77 GEO.HBIP.03.01, Rev 00 0.05-0-

-0.05-0 5 10 15 20 25 30 35 40 45 Time (sec) 10-0,

-1 Time (sec) 5 10 15 20 25 30 35 40 4' Time (sec)

Figure 9-5a. Initial vertical seed input time history for spectral matching for Set RFB 1.

Page: 29 of 77 GEO.HBIP.03.01, Rev 00 1A-

_ { L 1 ~--_ t __ _ . jiit.

1 o

Cu 1)

C.)

0 Vertical Tat- Spcr % damping Ir H a.

(n 0

Cd, 0.

1--

  • Moife Tl!ime History Initial lme History Scaled to Target PGAl llllllll 0o0*1- 1 ! ! 1111- !4! I !I1  !

. 01 0.1 1 I1(3 Period (sec)

Figure 9-5b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for vertical from Set RFB 1.

Page: 30 of 77 GEO.HBIP.03.01, Rev 00 C.

C.)

Time (sec) flu-30-a) an~~~~~~~~~~~~~

I {K d Ve cm/sn)1 ru -

I . I _Ie I_ -1 ^ , 1 ,, _

ID 5 10 15 20 25 30 35 40 45 Time (sec)

E 5 10 15 20 25 Time (sec)

Figure 9-Sc. Modified vertical time history for Set RFB 1.

Page: 31 of 77 GEO.HBIP.03.01, Rev 00 0.

cm 0)

-0.

35 Time (sec)

E Time (sec)

E 0

Time (sec)

Figure 9-6a. Initial horizontal #1 seed input time history for spectral matching for Set RFB2.

Page: 32 of 77 GEO.HBIP.03.01, Rev 00 cm C

0 a) 0, 0

0 e

5Z 0

a, CD)

Period (sec)

Figure 9-6b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for horizontal #1 from Set RFB2.

Page: 33 of 77 GEO.HBIP.03.01, Rev 00 CD C)

Time (sec)

.2. 0-Time (sec) a Time (sec)

Figure 9-6c. Modified horizontal #1 time history for Set2.

Page: 34 of 77 GEO.HBIP.03.01, Rev 00 CD 0

C)

Time (sec)

Cfl E Time (sec)

C.)

C.)

Time (sec)

Figure 9-7a. Initial horizontal #2 seed input time history for spectral matching for Set RF.B2.

Page: 35 of 77 GEO.HBIP.03.01, Rev 00 nA

. --i-  ; . I 7  ;  ; . . I I

Ll 11 _L I

.2 r_

0.

a, 0

iU a) 0.

C',

0.*

Horizontal Target Spectrum (5% damping)

-- rModified Time History

.. .Initial - -- History Scaled to Target PGA

--- - Time 0.0' _- , i ~ I I I i! Ii~ I ilti 0.01 0.1 i 10 Period (sec)

Figure 9-7b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for horizontal #2 from Set RFB2.

Page: 36 of 77 GEO.HBIP.03.01, Rev 00 n x U.n 0.25-

,Z 0 cm C)

-0.25-l Acc ()l

-u .Ov I I. I I I I I I I I

  • I I,I I, 1- I I 0 5 10 15 20 25 30 35 Time (sec)

E c)

U

-Vet (cm/s)

-120- . . . 01 20 25 30 . I 0 5 10 15 20 25 30 35 Time (sec)

E g0 5 10 15 20 2 35 Time (sec)

Figure 9-7c. Modified horizontal #2 time history for Set RFB2.

Page: 37 of 77 GEO.HBIP.03.01, Rev 00 0.75-

-0.57

-0.75- f . . I. § i 5 10 15 20 25 30 35 Time (sec) 50*

25-

-Vel (cm/~s) 0 5 10 15 20 25 30 35 Time (sec) 20-

-010 l Dis (cm)l oin x w T ' l lI 0 5 10 15 20 25 30 35 Time (sec)

Figure 9-8a. Initial vertical seed input time history for spectral matching for Set RFB2.

Page: 38 of 77 GEO.HBIP.03.01, Rev 00 in-

____ 'Ii ____ I _______

i1 .1 I I

0 a) 0 0.

cI) cL "S

uD 0.1-

,-I .- *t Io  ! I

_ _I _ _ I i I I _ _I _ I 11 Vertical Target Spectrum (5% damping)

--

  • Modified Time History

- ---- . Initial Time History Scaled to Target PGA 0.01 ~~~

................. ~ ~ 1?rr

).01 0.1 1 10 Period (sec)

Figure 9-8b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for vertical from Set RFB2.

Page: 39 of 77 GEO.HBIP.03.01, Rev 00 0.6-0.3-C.)

-0.3a

-0.6 0 5 10 15 20 25 30 35 Time (sec) 80-40 0O VelmcsUJ 0 5 10 15 20 25 30 35 Time (sec)40-20_

0 a-0 0 5 10 15 20 35 Time (sec)

Figure 9-8c. Modified vertical time history for Set RFB2.

Page: 40 of 77 GEO.HBIP.03.01, Rev 00 0.

CD) 0)

A:

-0.

Time (sec)

Time (sec)

E 0

15 20 25 30 35 Time (sec)

Figure 9-9a. Initial horizontal #1 seed input time history for spectral matching for Set RFB3.

Page: 41 of 77 GEO.HBIP.03.01, Rev 00 a

0 C.)

E5 a)

U C. .

al) 0.

Perod (sec)

Figure 9-9b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for horizontal #1 from Set RFB3.

Page: 42 of 77 GEO.HBIP.03.01, Rev 00 0.5 0.25-0 i

-0.25-

-0.5 0 5 10 15 20 25 30 35 40 Time (sec) 100-50-0 0

-50

-Vel (cm/s)

-100- , , I I 0 5 10 15 20 25 30 35 40 Time (sec) 60-30-0 0 5 10 15 20 25 Time (sec)

Figure 9-9c. Modified horizontal #1 time history for Set RFB3.

Page: 43 of 77 GEO.HBIP.03.01, Rev 00 0

C.

40 Time (sec) 0 0 Time (sec) 0,n Time (sec)

Figure 9-0a. Initial horizontal #2 seed input time history for spectral matching for Set RFB3.

Pace: 44 of 77 GEO.HBIP.03.01, Rev 00 1

cm a

0 0) 0 Q

E-0 a) 0.

0.

0.01 -

.t Perod (sec)

Figure 91Ob. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5%damping) for horizontal #2 from Set RFB3.

Page: 45 of 77 GEO.HBIP.03.01, Rev 00 0.5.

0.25-

<m 0o-Thw

-0.25

-0.5.

0 5 10 15 20 25 30 35 40 Time (sec) 100-50-

.2-0

-100- *, *]*,

ffiokVl ffi

  • , s 0 5 10 15 20 25 30 35 40 Time (sec) 40.

20A 0 A.

Time (sec)

Figure 9-lOc. Modified horizontal #2 time history for Set RFB3.

Page: 46 of 77 GEO.HBIP.03.01, Rev 00 0.25-

-a i0

-0.25 0 5 10 15 20 25 30 35 40 Time (sec) 15-oD10.

- 5

-10 F- Vel (cm/s)

I I I I . I I 0 5 10 15 20 25 30 35 40 Time (sec) 8-4A E)

-0 Time (sec)

Figure 9-11a. Initial vertical seed input time history for spectral matching for Set RFB3.

Page: 47 of 77 GEO.HBIP.03.01, Rev 00 C

0 E)

C)

C.)

C) a)

C)

<W 0.

0.0-Perod (sec)

Figure 9-lib. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for vertical from Set RFB3.

Page: 48 of 77 GEO.HBIP.03.01, Rev 00 la C)

Time (sec)

EC)

Time (sec)

I,\

20-10 E

0-0

-10 t Dis (cm) l

-30, i , , 'i . I I I I I 0 5 10 15 20 25 30 35 40 Time (sec)

Figure 9-lic. Modified vertical time history for Set RFB3.

Page: 49 of 77 GEO.HBIP.03.01, Rev 00

-CD Q

U Time (sec) la Time (sec)

-5 0c Time (sec)

Figure 9-12a. Initial horizontal #1 seed input time history for spectral matching for Set RFB4.

Page: 50 of 77 GEO.HBIP.03.01, Rev 00 CD 0

FO a)

Z8 U

a)

CD, 0.1 0.01 Perod (sec)

Figure 9-12b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for horizontal #1 from Set RFB4.

Page: 51 o 77 GEO.HBIP. 0 3 .0 , Rev 00 1

0.5 0.25

-0.25

-0.5 ' a-*-$ -r_

-0.50 10 20 30 40 ~~~ ~~~~~~~60 70 Time (sec) 80 40

-40

-80 0 10 20 ~~~ 40

~~30 5060o Time (sec) 60 30 0

U 40 M Figure 9 -12c. Modified horizontal #I time hi sfSet IF4

Page: 52 of 77 GEO.HBIP.03.01, Rev 00 M

no 6

Time (sec)

(0 Time (sec)

ECM 0

D 40 Time (sec)

Figure 913a. Initial horizontal #2 seed input time history for spectral matching for Set RFB4.

Page: 53 of 77 GEO.HBIP.03.01, Rev 00 0)

ED 0)

U)

U, C.)

CIS 0.

C, Cn 0.1 Period (sec)

Figure 9-13b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for horizontal #2 from Set RFB4.

Page: 54 of 77 GEO.HBIP.03.01, Rev 00 0.5-0.25-o 0

-0.25-

-0.5 0 10 20 30 40 50 60 70 Time (sec) 120-80-401 E

Time (sec) 80-40-0 0 10 20 30 40 I 70 Time (sec)

Figure 9-13c. Modified horizontal #2 time history for Set RFB4.

Page: 55 of 77 GEO.HBIP.03.01, Rev 00 a

0.2-0)

C) n 0-C)

-0.2-l _ Acc (9):l n A

-J. .-

I I . I I I I .* I I I I I II I I[ fI . . . .

10 20 30 40 50 70 Time (sec) 4 Arn 50-a

- 0l 10- Vel (CMrs) I

  • 100 1.. ., ... , , l ,

10 20 30 4(3f 50 60 70 Time (sec) a

-1

-1 0 10 20 30 40 50 60 T3 Time (sec)

Figure 9-14a. Initial vertical seed input time history for spectral matching for Set RFB4.

Page: 56 of 77 GEO.HBIP.03.01, Rev 00 CD C.

0 CIS 0

-a 16 CL Wn Perod (sec)

Figure 9-14b. Comparison of the initial seed input time history spectra (5% damping) scaled to the design target PGA, the modified time history spectra (5%

damping), and the target design spectra (5% damping) for vertical from Set RFB4.

Page: 57 of 77 GEO.HBIP.03.01, Rev 00 0.75 1 0.5

-0.25- ---

0

-0 110 20 30 40 50 60 70 Time (sec) 100-50-

-3 0-

- Vel (cm/s)

-100- I- I 0 10 20 30 40 50 60 70 Time (sec) 60-30, E

0 0

Time (sac)

Figure 9-14c. Modified vertical time history for Set RFB4.

Page: 58 of 77 GEO.HBIP.03.01, Rev 00 9.5 Checking if Enveloped Criteria is Satisfied The program SPCTLR was used to compute the acceleration response spectra for the four sets of spectrum compatible time histories. The response spectra were computed for spectral damping levels of 4%, 5%, and 7%. The linear average response spectra for each component of motion at each damping level was checked against the corresponding target spectra for acceptance (see Section 6.4).

The number of points of the averaged response spectra for the spectrum compatible time histories which fall below the target spectra are given in Table 9-6 for each of the three components. The linear average spectra for each of the three components of motion are given in Tables 9-7, 9-8 and 9-9. These linear average response spectra from the spectrum compatible time histories and the corresponding targets are plotted in Figure 9-15, 9-16, and 9-17 for the three components of motion. The digital values for the final spectrum compatible acceleration time histories are listed in the Attachments and are included on the CD-ROM.

Table 9-6. Comparison of modified spectrum compatible time history response spectra to the target spectra.

Number of points below tareet spectra l Component of average 4% damping 5% damping 7% damping of 4 time histories Horizontal #1 2 1 1 Horizontal #2 2 1- 1 Vertical 3 3 2

Page: 59 of 77 GEO.HBIP.03.01. Rev 00 Table 9-7. Linear average of the four sets of spectrum compatible time histories for . i the Horizontal #1 component of motion at the three levels of spectral damping: 4%, 5%, and 7%.

Horizontal #1 Avr-ap .inPar.Qnectrn Frequency 4% 5% 7%

(Hz) 0.100 0.03553 0.03437 0.03258 0.120 o.o872 0.05581 0.05078 0.140 0.08602 0.08101 0.07231 0.160 0.10246 0.09883 0.09382 0.180 0.14010 0.13055 0.11953 0.200 0.17533 0.16512 0.14930 0.220 0.20178 0.18953 0.17269 0.240 0.24037 0.22925 0.20899 0.260 0.27241 0.25930 0.23563 0.280 0.29004 0.27394 0.24709 0.300 0.30915 0.28980 0.26194 0.350 0.34336 0.32874 0.30257 0.400 0.38651 0.36765 0.33984 0.450 0.42447 0.40551 0.37644 0.500 0.46915 0.44685 0.40809 0.550 0.50212 0.47619 0.43687 0.600 0.55568 0.51721 0.46688 0.650 0.58784 0.55323 0.50294 0.700 0.61059 0.57964 0.52733 0.750 0.65620 0.61654 0.55237 0.800 0.67720 0.64020 0.57893 0.850 0.69656 0.66503 0.60601 0.900 0.75657 0.70587 0.62821 0.950 0.77417 0.73132 0.66771 1.000 0.82981 0.78546 0.71270 1.100 0.90171 0.85305 0.77246 1.200 1.00213 0.93506 0.84445 1.300 1.04869 0.98489 0.89546 1.400 1.09684 1.05174 0.96786 1.500 1.16427 1.11455 1.02616 1.600 1.20127 1.15903 1.07532 1.700 1.28704 1.22555 1.12040 1.800 1.38264 1.27805 1.13521 1.900 1.43496 1.32996 1.18860 2.000 1.47604 1.37271 1.21723 2.100 1.44662 1.35122 1.21691 2.200 1.41310 1.32892 1.19424 2.300 1.39019 1.29967 1.16490 2.400 1.35788 1.27675 1.16375 2.500 1.31785 1.25648 1.15910 2.600 1.30220 1.24372 1.13718 2.700 1.30190 1.24476 1.14160 2.800 1.28621 1.23497 1.14030 2.900 1.30178 1.23180 1.13422 3.000 1.31578 1.23127 1.13087 3.150 1.29880 1.21905 1.13355

Page: 60 of 77 GEO.HBIP.03.01, Rev 00 3.300 1.30114 1.20893 1.12413 3.450 1.28178 1.20676 1.10606 3.600 1.31282 1.20971 1.08590 3.800 1.30294 1.20817 1.06272 4.000 1.26944 1.18518 1.07329 4.200 1.24759 1.18847 1.08626 4.400 1.24051 1.18594 1.08618 4.600 1.24576 1.18236 1.07474 4.800 1.26948 1.17945 1.04853 5.000 1.26746 1.16363 1.04526 5.250 1.21984 1.16107 1.06012 5.500 1.21809 1.15543 1.06587 5.750 1.23556 1.15836 1.06321 6.000 1.20733 1.12039 1.03443 6.250 1.19555 1.13323 1.03902 6.500 1.19521 1.13316 1.02992 6.750 1.20046 1.12767 1.02649 7.000 1.17960 1.12606 1.03432 7.250 1.17723 1.12369 1.03144 7.500 1.16617 1.11372 1.02366 7.750 1.17417 1.11396 1.01980 8.000 1.15720 1.10364 1.01935 8.500 1.14726 1.10330 1.02189 9.000 1.17525 1.10378 0.99787 9.500 1.08937 1.04353 0.96197 10.000 1.07136 1.00197 0.90671 10.500 1.02819 0.96839 0.88701 11.000 0.96559 0.93144 0.87388 11.500 0.90319 0.88278 0.84117 12.000 0.87017 0.85256 0.81744 12.500 0.85148 0.83110 0.79527 13.000 0.81988 0.80487 0.77412 13.500 0.81282 0.79035 0.75358 14.000 0.78326 0.76328 0.72913 14.500 0.75040 0.73266 0.71237 15.000 0.73156 0.71906 0.69809 16.000 0.70802 0.69475 0.67244 17.000 0.67016 0.65549 0.63509 18.000 0.62777 0.61645 0.60249 20.000 0.59001 0.58144 0.56692 22.000 0.54544 0.54219 0.53448 25.000 0.51256 0.50115 0.48781 28.000 0.47285 0.46430 0.45629 31.000 0.45316 0.44391 0.44016 34.000 0.44946 0.43996 0.43649 40.000 0.44811 0.43992 0.43791 45.000 0.44703 0.43939 0.43672 50.000 0.44277 0.44044 0.43795 55.000 0.44306 0.44032 0.43772 60.000 0.44167 0.43876 0.43693 65.000 0.44321 0.44057 0.43849 70.000 0.44713 0.44422 0.44096 75.000 0.44557 0.44412 0.44207 80.000 0.44404 0.44192 0.44089 85.000 0.44737 0.44557 0.44323 90.000 0.44486 0.44474 0.44392

Page: 61 of 77 GEO.HBIP.03.01, Rev 00 95.000 1 0.45089 1 0.44879 1 0.44589 l 100.000 1 0.44872 1 0.44810 1 0.44645 Table 9-8. Linear average of the four sets of spectrum compatible time histories for the Horizontal #2 component of motion at the three levels of spectral damping: 4%, 5%, and 7%.

Horizontal #2 Average Linear S ectra Frequency 4% 5% 7%

(Hz) 0.100 0.03518 0.03373 0.0313 0.120 0.05577 0.05293 0.0496 0.140 0.07945 0.07651 0.0711 0.160 0.10641 0.10222 0.0954 0.180 0.13859 0.13175 0.1212 0.200 0.16546 0.15967 0.1503 0.220 0.20828 0.19944 0.1836 0.240 0.24933 0.23241 0.2131 0.260 0.27858 0.25946 0.2323 0.280 0.29886 0.27680 0.2479 0.300 0.32693 0.29848 0.2600 0.350 0.35366 0.33254 0.2984 0.400 0.39899 0.38097 0.3530 0.450 0.43441 0.41451 0.3844 0.500 0.48531 0.45868 0.4232 0.550 0.51486 0.49326 0.4638 0.600 0.55211 0.53077 0.4948 0.650 0.59050 0.56871 0.5290 0.700 0.61582 0.59655 0.5610 0.750 0.66742 0.62831 0.5791 0.800 0.69138 0.65928 0.6193 0.850 0.71602 0.69451 0.6548 0.900 0.73656 0.71937 0.6834 0.950 0.79071 0.76472 0.7183 1.000 0.83639 0.79864 0.7407 1.100 0.94998 0.88324 0.7895 1.200 1.02642 0.96481 0.8588 1.300 1.12974 1.02767 0.9052 1.400 1.16887 1.07999 0.9632 1.500 1.22222 1.15328 1.0399 1.600 1.28026 1.19941 1.0746 1.700 1.33764 1.26277 1.1315 1.800 1.37554 1.31014 1.1861 1.900 1.46393 1.37248 1.2315 2.000 1.51157 1.42436 1.2809 2.100 1.48075 1.40217 1.2685 2.200 1.44466 _1.35527 1.2305 2.300 1.44034 1.35652 1.2347 2.400 1.39514 1.31305 1.2074 2.500 1.37855 1.30058 1.1934 2.600 1.36992 1.29638 1.1970

Page: 62 of 77 GEO.HBIP.03.01, Rev 00 2.700 1.33281 1.28156 1.1955 2.800 1.33460 1.28149 1.1897 2.900 1.35555 1.28767 1.1769 3.000 1.29766 1.24088 1.1480 3.150 1.31565 1.26334 1.1686 3.300 1.30141 1.25274 1.1619 3.450 1.31252 1.23890 1.1425 3.600 1.33334 1.23029 1.1094 3.800 1.31146 1.22697 1.0985 4.000 1.30269 1.22995 1.1036 4.200 1.29125 1.21593 1.1124 4.400 1.27640 1.21803 1.1136 4.600 1.28263 1.21857 1.1072 4.800 1.27559 1.20592 1.0893 5.000 1.29331 1.21221 1.0827 5.250 1.28890 1.19112 1.0724 5.500 1.29537 1.19447 1.0595 5.750 1.27451 1.19598 1.0674 6.000 1.27219 1.18004 1.0685 6.250 1.24316 1.17550 1.0559 6.500 1.27960 1.17297 1.0247 6.750 1.23659 1.14178 1.0092 7.000 1.24042 1.16035 1.0329 7.250 1.22041 1.15634 1.0478 7.500 1.21227 1.14252 1.0393 7.750 1.21432 1.14700 1.0366 8.000 1.20163 1.13686 1.0347 8.500 1.18045 1.12735 1.0300 9.000 1.18961 1.12015 1.0096 9.500 1.15762 1.07468 0.9803 10.000 1.08679 1.03685 0.9489 10.500 1.01643 0.97762 0.9105 11.000 0.96844 0.93853 0.8808 11.500 0.94374 0.91051 0.8578 12.000 0.91641 0.88850 0.8409 12.500 0.87946 0.85856 0.8193 13.000 0.84086 0.82417 0.7934 13.500 0.82137 0.79941 0.7696 14.000 0.80081 0.78371 0.7537 14.500 0.80431 0.77652 0.7392 15.000 0.78742 0.76070 0.7218 16.000 0.72424 0.71091 0.6868 17.000 0.69637 0.68084 0.6548 18.000 0.66416 0.65191 0.6308 20.000 0.60605 0.59972 0.5860 22.000 0.57222 0.56547 0.5540 25.000 0.51837 0.51341 0.5095 28.000 0.48354 0.47920 0.4766 31.000 0.45643 0.45130 0.4510 34.000 0.44831 0.44783 0.4477 40.000 0.45728 0.44747 0.4454 45.000 0.45032 0.44590 0.4451 50.000 0.45210 0.44500 0.4441 55.000 0.45270 0.44668 0.4450 60.000 0.44965 0.44639 0.4448 65.000 0.45820 0.45279 0.4469

Page: 63 of 77 GEO.HBIP.03.01, Rev 00 70.000 0.44725 0.44519 0.4441 75.000 0.44790 0.44527 0.4436 80.000 0.44615 0.44523 0.4442 85.000 0.44608 0.44566 0.4449 90.000 0.44640 0.44596 0.4453 95.000 0.44678 0.44626 0.4455 100.000 0.44630 0.44605 0.4455 Table 9-9. Linear average of the four sets of spectrum compatible time histories for the Vertical component of motion at the three levels of spectral damping:

4%, 5%, and 7%.

Vertical Average Linear Spectra Frequency 4% 5% 7%

(Hz) 0.100 0.02700 0.02568 0.02336 0.120 0.03939 0.03726 0.03377 0.140 0.05332 0.05080 0.04720 0.160 0.07186 0.06758 0.06149 0.180 0.08803 0.08417 0.07846 0.200 0.10805 0.10407 0.09675 0.220 0.13237 0.12673 0.11648 0.240 0.16554 0.15365 0.13843 0.260 0.18624 0.17375 0.15434 0.280 0.19783 0.18558 0.16462 0.300 0.20865 0.19084 0.16962 0.350 0.23929 0.22196 0.19689 0.400 0.25799 0.24430 0.21959 0.450 0.29704 0.27511 0.24043 0.500 0.31549 0.29440 0.26075 0.550 0.35162 0.32792 0.28873 0.600 0.36995 0.34547 0.30654 0.650 0.39939 0.37382 0.33483 0.700 0.42442 0.39717 0.35906 0.750 0.44773 0.42001 0.37500 0.800 0.48601 0.44917 0.39834 0.850 0.51477 0.47983 0.42250 0.900 0.52917 0.49395 0.43306 0.950 0.54348 0.51556 0.46375 1.000 0.59122 0.54881 0.48477 1.100 0.64294 0.58373 0.50510 1.200 0.67517 0.62864 0.55149 1.300 0.73190 0.68802 0.61247 1.400 0.77602 0.72346 0.64097 1.500 0.83782 0.76255 0.67408 1.600 0.89331 0.82100 0.71334 1.700 0.94196 0.86507 0.76298 1.800 0.99952 0.90793 0.78668 1.900 0.99581 0.94064 0.84329 2.000 1.07505 1.00205 0.88304 2.100 1.09225 1.02408 0.90761

Page: 64 of 77 GEO.HBIP.03.01, Rev 00 2.200 1.13112 1.07080 0.964B2 2.300 1.19765 1.11726 0.99422 2.400 1.25580 1.16653 1.04525 2.500 1.25953 1.19716 1.08144 2.600 1.30230 1.22530 1.10705 2.700 1.38138 1.27559 1.12898 2.800 1.41799 1.30065 1.14102 2.900 1.47647 1.34917 1.18783 3.000 1.57368 1.42385 1.21370 3.150 1.56475 1.44748 1.25598 3.300 1.65119 1.51529 1.31210 3.450 1.70211 1.56365 1.35800 3.600 1.72084 1.58516 1.38031 3.800 1.68110 1.55526 1.36156 4.000 1.67796 1.57564 1.40247 4.200 1.62057 1.54219 1.39063 4.400 1.64185 1.54458 1.38301 4.600 1.62212 1.52097 1.35432 4.800 1.59938 1.49054 1.32119 5.000 1.59120 1.49917 1.33188 5.250 1.61422 1.49532 1.31981 5.500 1.63529 1.47540 1.27722 5.750 1.60445 1.46927 1.26444 6.000 1.60297 1.46777 1.26985 6.250 1.60608 1.46644 1.27105 6.500 1.52540 1.42720 1.28235 6.750 1.51044 1.43593 1.30125 7.000 1.50240 1.43190 1.30317 7.250 1.49901 1.42661 1.29801 7.500 1.47887 1.40522 1.28385 7.750 1.48970 1.41102 1.28130 8.000 1.48362 1.40302 1.26473 8.500 1.52764 1.38012 1.20483 9.000 1.43332 1.34753 1.19998 9.500 1.39440 1.30053 1.16934 10.000 1.30853 1.24669 1.13475 10.500 1.26675 1.19669 1.08937 11.000 1.24580 1.16410 1.05601 11.500 1.19444 1.12278 1.03333 12.000 1.15731 1.09383 0.99760 12.500 1.11824 1.05809 0.97491 13.000 1.07465 1.02123 0.94349 13.500 1.07923 0.99799 0.90610 14.000 1.04714 0.97434 0.88649 14.500 1.01542 0.94442 0.87971 15.000 0.96120 0.91707 0.85634 16.000 0.90228 0.86380 0.81759 17.000 0.87240 0.84025 0.79138 18.000 0.82449 0.80408 0.77288 20.000 0.77313 0.74629 0.72045 22.000 0.72245 0.70110 0.67683 25.000 0.60854 0.60130 0.59500 28.000 0.56877 0.55979 0.55374 31.000 0.54444 0.53152 0.52803 34.000 0.52825 0.52345 0.51924 40.000 0.52832 0.52105 0.51960

Page: 65 of 77 GEO.HBIP.03.01, Rev 00 45.000 0.52740 0.52351 0.51989 50.000 0.53578 0.52953 0.52247 55.000 0.52706 0.52532 0.52307 60.000 0.53675 0.52814 0.52167 65.000 0.53474 0.52630 0.52206 70.000 0.53312 0.52675 0.52267 75.000 0.53253 0.52718 0.52309 80.000 0.52986 0.52641 0.52257 85.000 0.52513 0.52388 0.52316 90.000 0.52862 0.52716 0.52517 95.000 0.53214 0.53035 0.52758 100.000 0.53679 0.53462 0.53113

Page: 66 of 77 GEO.HBIP.03.01, Rev 00

10. -

l l l 111 - - - - i I , _ M I IIII -1 F 1- .0/ -

9 LW1l l 0 I r sl { I I I 1  : 11. c I i--I i-I1 1;

I (U

a)

._- Horizontal Target Spectrum (4%Damping) -

- Horizontal #1Average (4%Damping) 0.1 I 10 100 Frequency (Hz)

Figure 9-15a. Comparison between the linear average of the final modified Horizontal

  1. 1 spectra (4% damping) and the horizontal target design spectrum (4%

damping).

Page: 67 of 77 GEO.HBIP.03.01, Rev 00 C

0 0

a)

C)

C) a)

0.

a) en, 0.0-Frequency (Hz)

Figure 9-15b. Comparison between the linear average of the final modified Horizontal

  1. 1 spectra (5% damping) and the horizontal target design spectrum (5%

damping).

Page: 68 of 77 GEO.HBIP.03.01, Rev 00 C

0 10 a) 0.

a)

C, 0.1 0.0 Frequency (Hz)

Figure 9-15c. Comparison between the linear average of the final modified Horizontal

  1. 1 spectra (7% damping) and the horizontal target design spectrum (7%

damping).

A

Page: 69 of 77 GEO.HBIP.03.01, Rev 00 c

0 a,

e

.2 a,

0.

C, Frequency (Hz)

Figure 9-16a. Comparison between the linear average of the final modified Horizontal

  1. 2 spectra (4% damping) and the horizontal target design spectrum (4%

damping).

Page: 70 of 77 GEO.HBIP.03.01, Rev 00 C

0 as a) 0

-U 0.

CL en 0.0 Frequency (Hz)

Figure 9-16b. Comparison between the linear average of the final modified Horizontal

  1. 2 spectra (5% damping) and the horizontal target design spectrum (5%

damping).

Page: 71 of 77 GEO.HBIP.03.01, Rev 00 10- , , {, i_ - i - ---.-'---__ =- 1-L _ A - -

__4__ I 11 ~ ~~I C

I __

Horizontal Target Spectrum (7% Damping) '

Horizontal #2 Average (7%Damping)l Il 0.01- . ' . 9 II.

Frequency (Hz)

Figure 9-16c. Comparison between the linear average of the final modified Horizontal

  1. 2 spectra (7% damping) and the horizontal target design spectrum (7%

damping).

Page: 72 of 77 GEO.HBIP.03.01, Rev 00 C

a)

.2 0

CI)

C.)

a)

Ln C,

0.

0.0 Frequency (Hz)

Figure 9-17a. Comparison between the linear average of the final modified Vertical spectra (4% damping) and the vertical target design spectrum (4%

damping).

Page: 73 of 77 GEO.HBIP.03.01, Rev 00 1

_q a

c)

Q 0

i>

ax 0) 0.

CD 0.

0.01 Frequency (Hz)

Figure 9-17b. Comparison between the linear average of the final modified Vertical spectra (5% damping) and the vertical target design spectrum (5%

damping).

Page: 74 of 77 GEO.HBIP.03.01, Rev 00 C

0 1o a)

E n

O as a)

C,,

0.

0.01 Frequency (Hz)

Figure 9-17c. Comparison between the linear average of the final modified Vertical spectra (7% damping) and the vertical target design spectrum (7%

damping).

Page: 75 of 77 GEO.HBIP.03.01, Rev 00 9.6 Compute Time Histories Cross-Correlations The work plan requires that for each set of spectrum compatible time histories the 3 components of ground motions must be statistically independent. The test for the statistical independence of the components is performed by calculation the absolute value of the cross-correlations between individual components. The absolute value of the cross correlation is computed using equation (7.7-2). The resulting absolute values of the cross-correlation are listed in Table 9-10. All of the four sets of spectrum compatible time histories meet the criteria that the cross-correlation is less than 0.3.

Table 9-10. Absolute values of the cross-correlation of acceleration time histories between Horizontal #1 (HI), Horizontal #2 (H2), and vertical (UP) components.

Set 111- H H - UP H2 - UP RFB1 0.0829 0.0849 0.0065 RFB2 0.1022 0.0411 0.0092 RFB3 0.0030 0.0116 0.0744 RFB4 0.0907 0.0463 0.2365 10.0 RESULTS AND CONCLUSIONS

'The four sets of spectrum compatible time histories (see Attachments 2 through 13) meet the spectral matching requirements of SRP 3.7.1 (NUREG-0800, 1989) and the statistical independence requirement of the work plan (following ASCE 4-86). These final acceleration time histories have been baseline corrected.

11.0 LIMITATIONS The suite of four sets of spectrum compatible time histories satisfy the requirements of using multiple time histories as specified in SRP 3.7.1 (i.e., option 2). However, this does not mean that a one set of these spectrum compatible time histories would satisfy the requirements of only using a single set of time histories. Therefore, the spectrum compatible time histories presented in this calculation document are limited in the fact that the entire collection of four sets must be used in any future analysis which requires the spectrum compatible time histories to satisfy the option 2 of the SRP 3.7.1 (NUREG-0800, 1989).

12.0 IMPACT EVALUATION At the date of this calculation documentation, there are no current impacts on any other Geosciences calculations.

Page: 76 of 77

'GEO.HBIP.03.01, Rev 00

13.0 REFERENCES

Abrahamson, N. A., (2002). Review of HBPP RFB time histories dated December, 2002.

ASCE 4-86 (1986). Seismic Analysis of Safety Related Nuclear Structures and Commentary on Standards for Seismic Analysis of Safety Related Nuclear Structures, American Society of Civil Engineers, Sept, 1986 GEO.DCPP.02.01, Rev 1, Verification of Computer Code RSPMATCH for Spectral Matching, September 5, 2002 GEO.DCPP.01.012 (2001). Development of Fling Model for Diablo Canyon ISFSI, Rev 1, September 26, 2001.

GEO.DCPP.01.32, Rev 0, Verification of Computer Program SPCTLR.EXE, August 15, 2001.

Kanasewich, E. R. (1981). Time Sequence Analysis in Geophysics, Third Ed.,

University of Alberta Press, 480 p.

NUREG-1567 (2000). Standard Review Plan for Spent Fuel Dry Storage Facilities, March 2000.

NUREG-0800 (1989). Section 3.7.1, Seismic Design Parameters, Rev. 2, August 1989.

Pacific Gas and Electric (2002). Action Request A0568852, Dated December 6, 2002.

Pulley, L. (2002). Humbolt Bay ISFSI Project Refueling Building Seismic Spectra, memo from Larry Pulley to Rob White dated December 5, 2002.

I Page: 77 of 77 GEO.HBEP.03.01, Rev 00 14.0 ATTACHMENTS : Peer review by Norman Abrahamson of the selection of the four initial seed input time histories for spectral matching.

Total Number of Pages = 2 : Contents of File "SETIHI.acc" on the CD-ROM.

Total Number of Pages =31 : Contents of File "SETI_H2.acc" on the CD-ROM.

Total Number of Pages = 31 : Contents of File "SETl_UP.acc" on the CD-ROM.

Total Number of Pages = 31 : Contents of File "SET2_Hl.acc" on the CD-ROM.

Total Number of Pages = 23 : Contents of File "SET2_H2.acc" on the CD-ROM.

Total Number of Pages = 23 : Contents of File "SET2_UP.acc" on the CD-ROM.

Total Number of Pages = 23 : Contents of File "SET3_Hl.acc" on the CD-ROM.

Total Number of Pages = 27 : Contents of File "SET3_H2.acc" on the CD-ROM.

Total Number of Pages = 27 0: Contents of File "SET3_UP.acc" on the CD-ROM.

Total Number of Pages = 27 1: Contents of File "SET4_UP.acc" on the CD-ROM.

Total Number of Pages = 46 2: Contents of File "SET4_UP.acc" on the CD-ROM.

Total Number of Pages = 46 3: Contents of File "SET4_UP.acc" on the CD-ROM.

Total Number of Pages = 46 4: The contents of the CD-ROM are listed in this attachment.

Total Number of Pages = 6