ML041100427

From kanterella
Jump to navigation Jump to search
Calculation No. GEO.HBIP.02.02, Revision 0, Determination of Liquefaction Potential at Hbip ISFSI Site.
ML041100427
Person / Time
Site: Humboldt Bay
Issue date: 05/24/2002
From: Cluff L, White R
Pacific Gas & Electric Co
To:
NRC/FSME
References
+sisprbs20051109, -RFPFR GEO.HBIP.02.02, Rev 0
Download: ML041100427 (30)


Text

PACIFIC GAS AND ELECTRIC COMPANY Calc Number GEO.HBIP.02.02 GEOSCIENCES DEPARTMENT Revision 0 CALCULATION DOCUMENT Date 05/22/02 Calc Pages: 30 Verification Method: A 117 . ....

. rl TITLE: Determination of Liquefaction Potential at HBIP ISFSI Site PREPARED BY: DATE b5/-/°e>-2.

I6 k7-I/1I1aRswA< J Printed Name Organization VERIFIED BY: DAA-*IL t DATE 5 l q'I0 2 I

Q -j ,rj- V, \.4 VZA-t, Printed Name Organization APPROVED BY: ok e 4lv DATE 5A41 /e 2-Printed Name I Organization Page 1 of 30

CALCULATION GEO.HBIP.02.02 Revision 0 Calculation

Title:

Determination of Liquefaction Potential at HBIP ISFSI Site Calculation No.: GEO.HBIP.02.02 Revision No.: 0 Calculation Author: Karthik Narayanan (Geomatrix Consultants)

Calculation Date: May 22,2002 PURPOSE The purpose of this calculation is to evaluate the liquefaction potential of soils in the vicinity of the IBIP ISFSI Site. Liquefaction is a soil behavior phenomenon in which a loose, saturated soil loses a substantial amount of strength due to high excess pore water pressures generated by strong earthquake ground shaking. Recently deposited (in geologic terms) and relatively unconsolidated soils below the groundwater table have a high susceptibility to liquefaction. Sands and silty sands are particularly susceptible. Silts and gravels are also susceptible, and some sensitive clays have exhibited liquefaction-type strength losses.

The analyses described in this calculation package are conducted in accordance with the Work Plan GEO 2002-01 (PG&E, 2002a).

ASSUMPTIONS The assumptions made to facilitate the analysis of liquefaction potential are:

1. Soils above the groundwater table are not liquefiable. Groundwater was assumed to be at elevation +6 feet, mean lower low water (MLLW). The groundwater elevation was evaluated based on the compression wave velocity profiles presented in PG&E (2002c) and shown on Figures 4 and 5. At elevation +6 feet, both wave velocity profiles show a rapid increase in compression wave speed (to about 5000 feet per second, the compression wave speed in water) without an accompanying increase in shear wave speed.
2. The soil profile has a constant unit weight of 125 pounds per cubic foot. This value is fairly typical for the subsurface conditions encountered in the borings (PG&E, 2002b).
3. Unless energy measurements were taken, SPT samplers driven with a safety hammer and rope and cathead arrangement were assumed to have an energy ratio of 60 okA1'dzxpz\Pctm5j000s\I 7.014ZEOHB!P.02.02-RkV4Xdc Page 2 of 30

CALCULATION GEO.HBIP.02.02 Revision 0 percent. According to Seed et al (1985), an energy ratio of 60 percent is fairly typical for this arrangement.

INPUTS A number of soil borings have been conducted over time in the vicinity of the ISFSI (Figure 1, as modified from PG&E, 2002d). The following screening steps were used in compiling the blowcount and laboratory data:

a) Seed et al (1985) discussed the importance of using standardized procedures for liquefaction evaluation. Only SPTs conducted with a standard sampler, and driven with a rope and cathead arrangement in borings drilled using rotary wash techniques were compiled.

b) samples classified as CL, CH, or MH were assumed not to be liquefiable, so their blowcounts were not included in the analysis.

c) Artificially high SPT blow counts occur when the sampler encounters cobbles or gravel.

Blowcounts were excluded from samples where particles greater than 1-inch in diameter were reported.

d) Fines content values were taken from grain size analysis conducted on the sample collected with the SPT sampler. If such information was not available, the fines content from a nearby sample in the same lithologic unit was used for the liquefaction evaluation. If no grain size information was available, a value was assigned (consistent with the soil classification) that would result in the smallest blowcount correction.

Based on these four criteria, blowcounts from the following borings were used for the liquefaction analysis:

1) Borings 99-1, 99-2, 99-3, 99-4, and 99-5 drilled in 1999 by Geomatrix Consultants (PG&E, 2002b).
2) Borings 1,2, 2A, 3,4, 5, 5A, 6, 7, 8, 9, 10, and 1OA drilled in 1973 by Dames and Moore (Dames and Moore, 1974).

%Noak Iod cCI5000s 5117.014\GEOMBP.02.02-RVOdoca Page 3 of 30

CALCULATION GEO.HBIP.02.02 Revision 0

3) Borings CH-1, CH-3, CH-4, and CH-5 drilled in 1980 by Woodward Clyde Consultants (Woodward Clyde Consultants, 1980).

The borings drilled by Geomatrix Consultants in 1999 consisted of five rotary wash borings, four of which (99-2, 99-3, 994, and 99-5) are in the immediate vicinity of the proposed ISFSI site (Figure 1). The data from these four borings are considered most representative of the conditions under the ISFSI site. The borings drilled by Dames and Moore and Woodward-Clyde are in the vicinity of Unit No. 3, located about 500 feet southeast of the ISFSI site (Figure 1), and were included in this analysis for comparative purposes.

Details of the drilling and sampling procedures for the borings drilled by Geomatrix Consultants in 1999 are presented in Data Report B (PG&E, 2002b). The soil descriptions, SPT blowcounts, and laboratory test results reported on the boring logs were used for this analysis.

Dames & Moore performed a number of rotary wash borings in the vicinity of Unit 3 to assess the potential for liquefaction at the site (Dames & Moore, 1974). The boring locations are shown on Figure 1. Field data such as standard penetration test (SPT) and U-type sampler blowcounts were collected, as well as laboratory-derived data such as dry densities and moisture contents.

Because Dames & Moore used the SPT sampler with a 140-pound harnmer falling 30 inches, it is believed that the SPT blowcounts obtained by Dames & Moore can be reasonably compared with SPT blowcounts obtained in later investigations. However, because a number of other factors believed important in standardizing SPT blowcounts are not described, such as hammer type and release mechanism, sampler configuration, and drilling procedure, and because these SP`T blowcounts were obtained prior to the time that these standardizations were in place, some variation between blowcount data sets can be expected due to differences in these factors. The U-type sampler, which was also used by Dames & Moore during their investigation, is proprietary to Dames & Moore and is significantly different in application from the SPT sampler, so the U blowcounts cannot be meaningfully compared with blowcounts obtained in later investigations and thus are not included in this evaluation.

Woodward-Clyde Consultants performed a number of additional rotary wash borings near Unit 3 to reassess site liquefaction susceptibility (Woodward-Clyde Consultants, 1980).

%\OakldkptdaMtliWW000\5 17.014\GEO.HBIP.02.02-RV-&doc Page 4 of 30

CALCULATION GEO.HBIP.02.02 Revision 0 Approximate locations of these borings are shown on Figure 1. Field data such as standard penetration test (SPT) blowcounts were collected, as well as laboratory-derived data such as dry densities and moisture contents. it is believed that the SPT blowcounts obtained by Woodward-Clyde Consultants can reasonably be compared with SPT blowcounts obtained in later investigations.

METHODS The method presented by Youd et al (2001) was used to evaluate liquefaction potential at the HBIP ISFSI site. The method is based on the analysis procedure outlined by Seed et al (1985) and revised by in a NCEER workshop (Youd and Idriss, 1997).

The liquefaction potential of the soils in the vicinity of the HBIP site was evaluated on the basis of standard penetration test (SPT) blowcounts. SPT blowcounts from the borings listed above ("Inputs") were compared to a limiting blowcount above which liquefaction would not occur. This limiting blowcount was based on the liquefaction susceptibility curves developed by Seed et al (1985), and adopted, with minor modifications, in a workshop on evaluation of liquefaction resistance of soils (Youd and Idriss, 1997) and was published by Youd et al (2001). The liquefaction susceptibility curves are shown on Figure 3. The liquefaction susceptibility curve for clean sands shows that at very high earthquake-induced cyclic stress ratios, values of (N1 )60 for clean sands asymptotically approach a limiting value of 30 blows per foot.

SPT blowcounts were normalized to (N0) 60 blowcounts. The parameter (N1 )60 represents the blowcount (N-value) from a "standard" SPT conducted in a soil boring, normalized to an effective overburden pressure of one atmosphere. A "standard" SPT blowcount or N-value is obtained from a SPT sampler driven 18 inches into the soil by a 140-pound hammer falling 30 inches. The recorded SPT blowcount is the number of blows required to drive the sampler the final 12 inches. When soil conditions did not permit the sampler to be driven a full 18-inches (i.e., refusal), the blowcount recorded for the fraction of the final 12-inches was extrapolated to obtain an "equivalent" 12-inch blowcount.

SPT blowcounts were normalized to an effective overburden pressure of one atmosphere by multiplying the blowcount by the factor CN, as defined by Youd et al (2001):

%%oak HBIP.02.02.RV.O.doc 1deara\PrqjectA50VDs\51 17.014%GEO Pg Page 5 off330

CALCULATION GEO.HBIP.02.02 Revision 0 C = a where P. = atmospheric pressure (2116 pounds per square foot)

'V = effective overburden pressure The subscript "60" in the notation (N0) 60 indicates that a "standard" blowcount is obtained using a hammer and a drop system that delivers 60 percent of the theoretical free-fall energy to the rods connecting the hammer to the sampler. The standard procedures were developed for blowcounts obtained with a rope and cathead system using a safety hammer and two wraps of the rope around the cathead. This "standard" system assumes an energy transfer efficiency of 60 percent. Blowcounts from borings 99-1 and 99-2 were obtained using a rope and cathead system. Energy measurements, which were taken in the upper 40 feet of boring 99-1, indicated an average energy transfer of about 50 percent (PG&E, 2002b). Therefore, blowcounts from borings 99-1 and 99-2 were multiplied by 50160 in order to adjust to the standard energy level. Blowcounts from borings 99-3 through 99-5 were obtained with an automatic trip hammer. Automatic trip hammers typically achieve higher energy delivery than rope and cathead systems. Energy measurements obtained in previous studies for automatic trip hammers indicate an average transfer efficiency of 70 to 80 percent (Seed et al., 1985). Since no site-specific energy measurements were made during this investigation, it was conservatively assumed that the energy delivered by the automatic trip hammer was equal to about 60 percent of the theoretical energy. Therefore, no corrections were made to the blowcounts from borings 99-3 through 99-5 to adjust them to the standard energy transfer efficiency of 60 percent.

Seed et al. (1985) developed the correlation further to include the influence of fines content.

The correlation shows that the penetration resistance for silty sands is less than that for clean sands, for a given cyclic resistance ratio (CRR). This is likely due to the greater compressibility and decreased permeability of silty sands, which can artificially reduce their field penetration resistance. Based on Youd et al (2001), the correction for fines content is (algebraically recast by the authors):

A(N 1 )6 0 = a + (D - 1)(ND60 Fork ldexj st5117.014\EO.HBI.2.02-RV-.doca Page 6 of 30

CALCULATION GEO.HBIP.02.02 Revision 0 where:

a =0, andJ= 1.0 for FC < 5%

a = exp[1.76 - (190/FC2 )], and ,B= [0.99 + (FC1 5 /1000)] for 5% < FC < 35%

a = 5, and 1.2 for FC > 35%

where FC is the fines content (percent). Thus, the fines-corrected blow count, (N0)60cs, is equal to (N0) 6 0 + A(N0) 6 0- It is noted that according to the equations listed above, A(NI)60 is a function of not only the fines content, but also the uncorrected blowcount. Since the liquefaction curves on Figure 3 become vertically asymptotic at high CRR values, the curves imply that the fines correction is limited by the distance between the curves for a particular fines content and the clean sand curve. Such a limitation does not exist in the equations listed above, so for this analysis, a cap was imposed on the blowcount correction. The cap was calculated as the distance between the asymptotic portions of the curves on Figure 3.

For example, for a fines content of 35 percent, the blowcount correction cap is 8.3 (the distance between the clean sand curve and the FC = 35 curve). Intermediate values were calculated by linear interpolation.

It is noted that soil classifications reported from the borings drilled by Dames and Moore (1974) do not appear to be consistent with ASTM Standard D2488, the current state of practice. This inconsistency should not effect the analysis when grain size test results are used either from the SPT sample or from a nearby sample in the same lithologic unit.

Inconsistency in classification could effect the analysis when grain size test results are not available for the SPT sample and must be assumed on the basis of the soil classification.

SOFrI0 ARE The calculations for the analysis of liquefaction potential were conducted in Microsoft Excel. The spreadsheet was verified by hand calculation, as described below.

ANALYSIS The calculations for the analysis of liquefaction potential were conducted in Microsoft Excel. The analysis spreadsheets are included in this calculation package. A hand check of the calculations was conducted for one data point and is presented in this calculation package. The hand check successfully duplicated the value in the spreadsheet.

hoak l\depida\Pmject)Os\5 117.014\GMH1BIP.02.02 RV O.doc Page 7 of 30

CALCULATION GEO.HBIP.02.02 Revision 0 RESULTS AND CONCLUSION With the exception of two values (22 and 24), the (NO 1 ) 6 0, blowcounts from borings 99-1 through 99-5 are greater than 30 (Figure 2). As previously described, data from borings drilled during previous studies in the vicinity of Unit No. 3 (located about 500 feet southeast of the ISFSI site) were analyzed and are presented on Figure 2 for comparison purposes.

Five blowcounts from the borings drilled by Dames and Moore (1974) fall below 30. No blowcounts from the borings drilled by Woodward Clyde in 1980 fall below 30. Since nearly all of the (N1)60,cs blowcounts are greater than 30, it is concluded that the site is not susceptible to liquefaction.

REFERENCES

1. Dames and Moore (1974), Evaluation of Liquefaction Potential, Humboldt Bay Power Plant, May 1974.
2. PG&E (2002a), Geosciences Work Plan GEO 2002-01, Completion of the Seismic Hazard Analysis Report for the Humboldt Bay ISFSI, Revision 0, February 27, 2002.
3. PG&E (2002b), Humboldt Bay Power Plant Data Report B, Boring Logs, Humboldt Bay Power Plant ISFSI, Revision 0.
4. PG&E (2002c), Humboldt Bay Power Plant Data Report C, Downhole Geophysics in ISFSI Site Area, Humboldt Bay Power Plant ISFSI, Revision 0.
5. PG&E (2002d), Humboldt Bay Power Plant Data Report A, Geologic Mapping in the Plant Area and ISFSI Study Area, Humboldt Bay Power Plant ISFSI, Revision 0.
6. Seed, H.B., Tokimatsu, K., Harder, L.F., Chung, R.M. (1985), The influence of SPT procedures in soil liquefaction resistance evaluations, Journal of Geotechnical Engineering, American Society of Civil Engineers, 111(12) pp. 1425-1445.
7. Woodward Clyde Consultants (1980), Evaluation of the Potential for Resolving the Geologic and Seismic Issues at the Humboldt Bay Power Plant Unit No. 3, October 1980.
8. Youd, T.L., Idriss I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J., Dobry, R.,

Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C.,

Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe, K.H. (2001), Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEERINSF workshops on evaluation of liquefaction zA l\dNepdala'1rojectV5000s.5117.014'GEO.HBP.02.02.RV.doc Page 8 of 30

CALCULATION GEO.HBIP.02.02 Revision 0 resistance of soils, Journal of Geotechnical and Geoenvironmental Engineering.

American Society of Civil Engineers, 127(10) pp. 817-833.

9. Youd, T.L., Idriss, I.M., eds. (1997) Proceedings, NCEER workshop on evaluation of liquefaction resistance of soils, National Center for Earthquake Engineering Research.

State University of New York, Buffalo.

TABLE OF CONTENTS Cover 1 Calculation Summary 2 to 9 Figure 1 - Site Map 10 Figure 2 - Scatter Plot of Corrected SPT Blowcounts 11 Figure 3 - Liquefaction Susceptibility Curves 12 Figure 4 - Shear and Compression Wave Results, 99-1 13 Figure 5 - Shear and Compression Wave Results, 99-2 14 Liquefaction calculations 15 to 30 Wakldpaa\I\00s17.014\GEO.ILBIP.02.02.RV-&&c Page 9 of 30

IEar Ct lc-(--DO Gee-. i- iao; V. DE2. c:

M 0

z z

-j 0 100 SCALE IN FEET eWCC80-8 I

DER85-5

. A DER87-18AA'DER87-18B HAZARCC2'S WZASE SICRAGE ti 29:'1 /

.r I

V}

SITE MAP PARX I W4 LCT Determination of Liquefaction Potential at HBIP Site Humblodt County, California cm,

CALCULATION GEO.HBIP.02.02 Revision 0 Corrected blowcounts (N1)6 cs 0 40 80 120 160 200 I I I I I I I I . I 40 -

O Dames and Moore (1974) 30 - Ci Woodward-Clyde Consultants (1980)

A Geomatrix Consultants (1999) 20 -

10 -

A NA' 0-A

-10 - A 0 0 A OA 0 0 i~ c90 A a, 0 CD 0 LAN 0 0 0o 0 E 00 o A~ 0 0 0 0 A A A TO 0 0 00 0 0 0 CB 0 0 AL 0 9 0 A 0 aD 0 0 0 0

il A 0

0 00O 00 A 0 0 0

AL 0 0 0 0

-80 -

0 0 0

I[

-90 -

01 0

0

-100 -

0 0 00

-110 -

00 0 0

-120 - V1(N)60, = 30 FIGURE 2 - Scatter plot of corrected SPT blowcounts Page 11 of 30

I, I

0 z

0.6 131 295 Percent Fines 35 15 >5

£ 0.5 I o

l:X , A10 C 0.4 A20 a2 *31 1 11r SPT Clean Sand Base Curve 0*

°0.3 .20 ,,/II /,,

3,t i o9 *27 so I 59I5 W 9212 C)

¢ 0.2 6lB 0 1

.'. 757'a2/z FINES CO NTENT ' 5%

O~ 0.~ < '2lModified Chinese Code Proposal (clay content =S .

0. 2 s

. < Liquefaction Uiquefaction Uquefaction 0o

~¢ lo Adjustment Pan -America data

  • 0]

Recommende 02 Jpanese data

  • o o By Workshop Chinese data A 010 20 30 40 50
, ~Corrected Blow Count, (N1)6X c Project No.

z_ LIQUEFACTION SUSCEPTIBILITY CURVES (YOUD ET AL, 20012) 5117014P W tn CDetermination of Liquefaction Potential at HBIP ISFSI Slte E GEOMATRIX Humboldt County, California Figure 2_

~ 4. t 0 -~ '3O

U, G U- 0. we> %9 . C"L. CL 14--w. 0 M

z HUMBOLT BAY POWER PLANT BOREHOLE 99-1 Receiver to Receiver Analysis VELOCITY (METERSISECOND) 0 250 500 750 1000 1250 1500 1750 2000 2250 0

6. .... . .. . . .. . . .. . . . .... .

ow

! . .......... .. -... {:.

5

*: . : : j  : n Rl-R2 Vs 20

...- r...... ..... ...........

. I.. .. ..... _... .......

..... .... ... ... ...... .......... .?;''---'

~.. . . . I ............. ..,,,,,iLlL 30 10 a:

UJ40 LL .... L.........

I- I-c1 50 15 a.

60 20 1 70 .... ... ..

...1... . . . . . . . . . .. . . . . . . . . . . . . .. . 1..

80

... ...... ........ ....... _ .... _. _.. ... ..... 25 C

90 0 1000 2000 3000 4000 5000 6000 7000 9

0 VELOCITY (FEET/SECOND) c Project No.

SHEAR AND COMPRESSION WAVE VELOCITY PROFILE, 99-1 514 z

ef/.Y GEOMATRIX Determination of Liquefaction Potential at HBIP ISFSI SIte Humboldt County, California Figure 4

, 4 V ,D,%' ojr- 3 c

r- t- 0-.

Q 'Li-, t "

. n

-1 r-

- P. e.

. - a-n II.

.r' 6

('

cc HUMBOLDT BAY POWER PLANT BOREHOLE 99-2 Receiver to Receiver Analysis VELOCITY (METERSISECOND) 0 250 500 750 1000 1250 1500 1750 2000 2250 0

t.. 7 W&rzt ........ +/- 10 50 Ii...... . [ . ............... 20 VI -e-*-Rl-R2 Vp ... 30 100 40 150 50 en pUJ .. . . . . . .. .. . . . ... .

UL. 200 60 I- :r_

a.

0. _ ..... _ ....... ........... ............ 70 H 0 ;

250 ....... ...

.. ... .. ..... ... .. .. .. .. ... I .. .. .. .. . so I 80!

.I . .. _ ._ .... __...._

90 300 100 i 350 110 120 400 z

Cx 0 1000 2000 3000 4000 5000 6000 7000

.C.

VELOCITY (FEET/SECOND) 0 zo SHEAR AND COMPRESSION WAVE VELOCITY PROFILE, 99-2 51P17e014 P 1 Determination of Liquefaction Potential at HBIP ISFSI Site oSGEOMATRIX Humboldt County, California Figure

'5 5 Qcic4e0 \Nc1{b

5117.03- HBPP ISFSI (Geomatrix 1999 Borings)

Standardized Blow Count Data Worksheet For Calculating N60 Values (N60 Values corrected for sampler type and configuration. hammer efficiency. and rod length: no depth correction)

Key:

Sampler/HarnnerType s -smna7sarrpler (1.375-inch I D)andtfarnner(W140C; I-arge sarnerf2 5-mCnID Iand harnmetr(34C3.

Rodtlenrc C. e.-075to13t. 085to20tt 095to331t Sanoler w/out Liners: C-'. = 1.2. Borehole earneter Cb.i. -1.1 5 E 0) 0 0 a) a.-

E E E

= C CZ Nsmni Crods Cenergy Nsc 99-1 17.5 67 SPT 1 67 0.85 0.8333 47.5 99-1 26 54 SPT 1 54 0.95 0.8333 42.8 99-1 31 60 SPT 1 60 0.95 0.8333 47.5 99-1 36 78 SPT 1 78 1 0.8333 65 99-1 41 200 SPT 1 200 1 0.8333 166.7 99-1 48.5 200 SPT 1 200 1 0.8333 166.7 99-1 50.5 150 SPT 1 150 1 0.8333 125 99-1 56 78 SPT 1 78 1 0.8333 65 99-1 60.5 109.09 SPT 1 109.09 1 0.8333 90.9 99-1 66 150 SPT 1 150 1 0.8333 125 99-1 70.5 133.33 SPT 1 133.33 1 0.8333 111.1 99-1 75.5 109.09 SPT 1 109.09 1 0.8333 90.9 99-1 80.5 133.33 SPT 1 133.33 1 0.8333 111.1 99-2 35.5 109.09 SPT 1 109.09 1 0.8333 90.9 99-2 46 44 SPT 1 44 1 0.8333 36.7 99-2 61.5 78 SPT 1 78 1 0.8333 65 99-2 65.5 120 SPT 1 120 1 0.8333 100 99-2 75.25 171.43 SPT 1 171.43 1 0.8333 142.9 99-2 75.75 150 SPT 1 150 1 0.8333 125 99-2 120.5 140 SPT 1 140 1 0.8333 116.7 99-2 140.25 400 SPT 1 400 1 0.8333 333.3 99-3 41 57 SPT 1 57 1 1 57 99-3 46 49 SPT 1 49 1 1 49 99-3 53 24 SPT 1 24 1 1 24 99-3 61 130 SPT 1 130 1 1 130 99-3 77 84 SPT 1 84 1 1 84 99-4 46 39 SPT 1 39 i 1 39 99-4 62.5 98 SPT 1 98 1 1 98 99-5 41 37 SPT 1 37 1 1 37 99-5 60.75 200 SPT I1 200 1 1 200 CALCULATION GEO.HBIP.02.02 Revision 0 Page )i of _3 .

5117.03- HBPP ISFSI (Geomatrix 1999 Borings)

Standardized Blow Count Data Worksheet For Calculating (Ni)60 Values 0 ~-.-

C)C a) O C X E0 E.

E 7 25 0

99-1 77 .

0 CZ C CZ __ _ _ CN (Nl)6o 99-1 99- 77 17.5 36 47.5 6 125 12 2188 450 1532 co0 1.17513 08888 56 5

99-1 7 26 42.8 125 3250 2064 1.01242 43 99-1 7 31 47.5 125 3875 2377 0.943424 45 99-1 7 36 65 125 4500 2690 0.886848 58 99-1 7 41 166.7 125 5125 3003 0.839366 140 99-1 7 48.5 166.7 125 6063 3473 0.78057 130 99-1 7 50.5 125 125 6313 3598 0.766869 96 99-1 7 856 65 125 1000 3942 0.732618 48 99-1 7 60.5 90.9 125 7563 4224 0.707768 64 99-1 7 66 125 125 8250 4568 0.680575 85 99-1 7 70.5 111.1 125 8813 4850 0.660515 73 99-1 7 75.5 90.9 125 9438 5163 0.640181 58 99-1 7 80.5 111.1 125 10063 5476 0.621616 69 99-2 34 35.5 90.9 125 4438 4344 0.69794 63 99-2 34 46 36.7 125 5750 5001 0.65046 24 99-2 34 61.5 65 125 7688 15972 0.595273 39 99-2 34 65.5 100 125 8188 6222 0.583172 58 99-2 34 75.25 142.9 125 9406 6832 0.556514 80 99-2 34 75.75 125 125 9469 6864 0.555243 69 99-2 34 120.5 116.7 125 15063 9665 0.467907 55 99-2 34 140.25 333.3 125 17531 10901 0.440575 147 99-3 37 41 57 125 5125 4875 0.658799 38 99-3 37 46 49 125 5750 5188 0.638618 31 99-3 37 (53 ) 24 125 6625 5627 0.5962 14 99-3 37 61V 130 125 7625 6127 0.571317 74 99-3 37 77 84 125 9625 7129 0.529664 44 99-4 37 !46 39 125 5750 5188 0.620867 24 99-4 37 62.5 98 125 7813 6221 0.566989 56 99-5 38 .141 ) 37 125 5125 4938 0.636426 24 99-5 38 60.75 200 125 7594 6174 0.56915 114 CALCULATION GEO.HBIP.02.02 Revision 0 Page Ik of 3 c

5117.03- HBPP ISFSI (Geomatrix 1999 Borings)

Standardized Blow Count Data Worksheet For Calculating 'Clean-Sand' (N1)60 Values Applies correction values for sands containing fines, converting (N1)60 values to 'equivalent' (N1)60 values in clean sand cc C'j Z I

,Cn~~~~0 patce(od- D r 0 0.

90 cc c:

1 36 99158 s0 .80 0. 5 -. 5 5 1.5 r 0 parice (bold 1 ( (

.4 ~ 6 EE 991 (Ni)4. US1S size(in) 0 sieve) 5 0 Z.

99-1 17.5 56 sm 0 14 4.58 4.14 60 -4.5 99-1 99- 26Ca 43 sw-smp 0 0 11 S 2.35 000 2.76 00 454 -13 2cc 99-1 31 45 sw-sm 0 11 2.40 2.76 47 -18 99-1 36 58 sp 0 0 0.00 0.00 58 -23 99-1 41 140 sp 0 5 0.00 0.00 140 -28 99-1 48.5 130 sp 0 5 0.00 0.00 130 -35.5 99-1 50.5 96 Sp 0 5 0.00 0.00 96 -37.5 99-1 56 48 sp 0 5 0.00 0.00 48 -43 99-1 60.5 64 Sp 0 3 0.00 0.00 64 -47.5 99-1 66 85 SW 0 3 0.00 0.00 185 -53 99-1 70.5 73 sW 0 3 0.00 0.00 73 -57.5 99-1 75.5 58 sp 0 0 0.00 0.00 58 -62.5 99-1 80.5 69 sp 0 0 0.00 0.00 69 -67.5 99-2 35.5 63 sp 0 48 17.60 8.30 71 6.5 99-2 46 24 sp 1 0 0.00 0.00 24 -4 99-2 61.5 39 sp-sm 0 141 2.24 2.76 41 -19.5 99-2 65.5 58 sp-sm 0 11 2.74 2.76 61 -23.5 99-2 75.25 80 SW 0 12 0.00 0.00 80 -33.25 99-2 75.75 69 SW 0 2 0.00 0.00 69 -33.75 99-2 120.5 55 sp-sm 0 8 0.99 1.38 56 -78.5 99-2 140.25 147 Sp 0 3 0.00 0.00 147 -98.25 99-3 41 38 sm 0 46 12.60 8.30 46 2 99-3 46 31 sm 0 34 10.77 8.12 39 -3 99-3 53 14 1ml 0 88 7.80 8.30 2-2 -10 99-3 61 74 sp-sm 0 10 2.47 2.30 176 -18 99-3 77 44 gP 0 1 0.00 0.00 44 -34 99-4 46 24 sm 0 35 9.80 8.30 32 -3 99-4 62.5 56 sw-sm 0 8 1.01 1.38 57 -19.5 99-5 41 24 ml 0 56 9.80 8.30 32 3 99-5 160.75 1114 1SW 0 0 0.00 0.00 114 -16.75 CALCULATION GEO.HBIP.02.02 Revision 0 Page Al of _3°

HBIPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating N60 Values Data Set:A3B1 C1 (N60 Values corrected for sampler type and configuration, hammer efficiency, and rod length; no depth correction)

Key:

Sampler Type: s

  • standard penetrometer wl 1.375-inch l.D.: c = California sarrpier wl 2.-inch l.D.: m 2 modified Calltomia sampler WI 2.5-inch l.D Sampler w/out Uners. y
  • no lners (tubes. rngs); n =ether sampler has no room for iners or sarrper wsn room lorliners and liners used Hammer Conficuration: rs =rope&cathead. safety fhamrrer. ws -wireline release, safety hammr ms =mechanical tnp. safety hammr. o =-oter, wr efficiency =

in D (eg rs.60)

Cl, 0

.0 o '

E a ,0 C I- 0 Z CD o C. E M en n E rG I Crods Csamrpler Cnomners Cenergy N60 DM73-1 31 89 s n rs 1 1 1 1 89 DM73-1 37 175 s n rs 1 1 1 1 175 DM73-1 48 41 s n rs 1 1 1 1 41 DM73-1 56 33 s n rs 1 1 1 1 33 DM73-1 62 113 s n rs 1 1 1 1 113 DM73-2 31 300 s n rs 1 1 1 1 300 DM73-2 37 198 s n rs 1 1 1 1 198 DM73-2 51 256 s n rs 1 1 1 1 256 DM73-2 67 194 s n rs 1 . 1 1 1 194 DM73-2 77 300 s n rs 1 1 1 1 300 DM73-2 87 300 s n rs 1 1 1 1 300 DM73-2A 28 48 s n rs 1 1 1 1 48 DM73-2A 32 119 s n rs 1 1 1 1 119 DM73-3 26 105 s n rs 1 1 1 1 105 DM73-3 31 39 s n rs 1 1 1 1 39 DM73-3 34 400 s n rs 1 1 1 1 400 DM73-3 42 42 s n rs 1 1 1 1 42 DM73-3 47 105 s n rs 1 1 1 1 105 DM73-3 52 64 s n rs 1 1 1 1 64 DM73-3 56 300 s n rs 1 1 1 1 300 DM73-3 61 400 s n rs 1 1 1 1 400 DM73-3 66 600 s n rs 1 1 1 1 600 DM73-3 76 300 s n rs 1 1 1 1 300 DM73-4 27 59 s n rs 1 1 1 1 59 DM73-4 32 300 s n rs 1 1 1 1 300 DM73-4 37 159 s n rs 1 1 1 1 159 DM73-4 42 162 s n rs 1 1 1 1 162 DM73-4 57 300 s n rs 1 1 1 1 300 DM73-5 42 59 s n rs 1 1 1 1 59 DM73-5 47 17 s n rs 1 1 1 1 17 DM73-5 52 163 s n rs 1 1 1 1 163 DM73-5 62 171 s n rs 1 1 1 1 171 DM73-5 67 128 s n rs 1 1 1 1 128 DM73-5 77 67 s n rs 1 1 1 1 67 DM73-5 107 300 s n rs 1 1 1 1 300 DM73-5A 45 208 s n rs 1 1 1 1 208 CALCULATION GEO.HBIP.02.02 Revision 0 Page 17 of 3c

HBIPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating N60 Values Data Set:A3B1 C1 (N60 Values corrected for sampler type and configuration, hammer efficiency, and rod length; no depth correction)

Key:

Sampler Type: s . standard penetrometer wt 1.375-inch l.D.: c = Caldfornia sampler wl 2.0-inch I.D.: m = modified California sampler wr2.5-inch l.D Sampler wlout Liners: y = no liners (tubes, rings): n = either sampler has no room for liners or sampler wnni room for liners and liners used Hamrrer Configuration: rs rope&cafhead. safety harnmer- ws =reline release, safety harnr-. ras .mecnanhcal trp. safety hamrnmro sotner. wl ellicency =

in % (eg. rs=6()

0Z 0 D3 27 4 D3 6ss E 0~(

Z L. L

'a a CL a, E, S E D7 M E Co EZ co C cn T Crods Csa32ler Cnoliners Cenergy N6s DM73-6A 50 350 s n rs 1 1 1 1 350 DM73-5A 60 35 s n rs 1 1 1 1 35 DM73-5A 65 197 s n rs 1 1 1 1 197 DM73-6A 75 102 s n rs 1 102 DM73-6 27 40 s n rs 1 1 1 1 40 DM73-6 32 82 s n rs 1 1 1 1 82 DM73-6 36 200 s n rs 1 1 1 1 200 DM73-6 42 600 s n rs 1 1 1 1 600 DM73-6 47 31 s n rs 1 1 1 1 31 DM73-6 52 400 s n rs 1 1 1 1 400 DM73-6 77 400 s n rs 1 1 1 1 400 DM73-6 91 600 s n rs 1 1 1 1 600 DM73-7 23 168 s n rs 1 1 1 1 168 DM73-7 30 86 s n rs 1 1 1 1 86 DM73-7 35 113 s n rs 1 1 1 1 113 DM73-7 42 171 s n rs 1 1 1 1 171 DM73-7 52 91 s n rs 1 1 1 1 91 DM73-7 57 149 s n rs 1 1 1 1 149 DM73-7 61 240 s n rs 1 1 1 1 240 DM73-7 67 141 s n rs 1 1 1 1 141 DM73-8 32 115 s n rs 1 1 1 1 115 DM73-8 42 149 s n rs 1 149 DM73-8 47 67 s n rs 1 1 1 1 67 DM73-8 59 200 s n rs 1 1 1 1 200 DM73-9 22 106 s n rs 1 106 DM73-9 27 49 s n rs 1 1 1 1 49 DM73-9 32 180 s n rs 1 1 1 1 180 DM73-9 42 200 s n rs 1 1 1 1 200 DM73-9 47 400 s n rs 1 1 1 1 400 DM73-1OA 32 52 s n rs 1 1 1 1 52 DM73-1 37 22 s n rs 1 1 1 1 22 DM73-1 42 240 s n rs 1 1 1 1 240 DM73-1 47 231 s n rs 1 1 1 1 231 DM73-1 52 300 s n rs 1 1 1 1 300 DM73-1 57 400 s n rs 1 400 DM73-1 A 32 41 s n rs 1 1 1 1 41 CALCULATION GEO.HBIP.02.02 Revision 0 Page nof So0

HBIPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating N60 Values Data Set:A3B1 C1 (N60 Values corrected for sampler type and configuration, hammer efficiency, and rod length; no depth correction)

Key:

Sampler Type: s ' standard penetrometer w. 1.375-inch I.D.: c . Caliloria sampler wl 2.O-nch I.D.: m . mod led California sarnpler wl 2.5-irch 1.0 Sampler w/out Liners: y

  • no liners (tubes. rings): n = either sampler has no room for liners or sampler wrth room for iners and bners used Hammer Configuration: rs *mDe&cathearJ. safety hammer. ws =wireline release, salety hamnmr-rs .mechanical trp, safety hammr. o 0otner, vi efficiency =

in % (ec rs=60)

Cl, 0, . Z C 3 OA 37 s. n r Z (D 0 S;E 'a E

) a) 0L n 0s C.

E E o co 0 Ca c .

DM73-1rods OAsamper 2no0inerSsenergy n s1 1o DM73-1 OA 36 117 s n rs 1 1 1 1 117 DM73-1 OA 42 106 s n rs 1 1 1 1 106 DM73-1 OA 52 200 s n rs 1 1 1 1 200 DM73-10A 62 116 s n rs 1 1 1 1 116 DM73-1 A 72 138 s n rs 1 1 1 1 138 DM73-1A 81 400 s n rs 1 1 1 1 400 DM73-13A 97 300 s n rs 1 1 1 1 300 WC80-1 38 120 s n rs 1 1 1 1 120 WC80-1 90 160 s n rs 1 1 1 160 WC80-3 52 114 s n rs 1 1 1 1 114 WC80-4 30 94 s n rs 1 1 1 1 94 WC80-4 35 93 s n rs 1 1 93 WC80-4 40 97 s n rs 1 1 1 1 97 WC80-4 45 98 s n rs 1 1 1 1 98 WC80-4 50 99 s n rs 1 1 1 1 99 WC80-4 75 88 s n rs 1 1 1 1 88 WC80-4 80 99 s n rs 1 1 1 1 99 WC80-4 85 204 s n rs 1 1 1 1 204 WC80-4 90 211 s n rs 1 1 1 1 211 WC80-4 95 229 s n rs 1 1 1 1 229 WC80-4 100 196 s n rs 1 1 1 1 196 WC80-4 105 300 s n rs 1 1 1 1 300 WC80-4 110 260 s n rs 1 1 1 1 260 WC80-4 115 253 s n rs 1 1 1 1 253 WC80-4 120 218 s n rs 1 1 1 1 218 WC80-4 125 209 s n rs 1 1 1 1 209 WC80-4 130 282 s n rs 1 1 1 1 282 WC80-5 30 57 s n rs 1 1 1 1 57 WC80-5 35 102 s n rs 1 102 WC80-5 40 66 s n rs 1 1 1 1 66 WC80-5 45 94 s n rs 1 1 1 1 94 WC80-5 50 114 s n rs 1 1 1 1 114 WC80-5 75 85 s n rs 1 1 1 1 85 WC80-5 80 91 s n rs 1 1 1 1 91 WC80-5 85 150 s n rs 1 1 1 1 150 WC80-5 90 141 s n rs 1 1 1 1 141 CALCULATION GEO.HBIP.02.02 Revision 0 Page 2o of So

HBIPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating N60 Values Data Set:A3B1C1 (N60 Values corrected for sampler type and configuration, hammer efficiency, and rod length: no deptn correction)

Key:

Sampler Tyve: s = standard penetrometer w/ 1.375-inch I.D.: c - Calilomia sampler wl 2.0-inch I.D.: m . mod~tred Caliomia sampler w! 2.5-inch l.D Sampler wlout Liners y - no liners Itubes. nngs): n . ether sampler has no room for liners or sampler with room for liners and liners userd Hammer Configuration: rs .rope&cathead. safety hartrmer: ws =wirelne release, safety hammr. ms -mechanical tnp. safety hammrn.o =other. wt efficiency =

in %(eg. rs.60)

CID 0 0 7

- Cj CD C Z a, c WC0-5 1 2 E W o

0 F-0 E anco WCa an Eo n U) 'E Crods Csampier Cnotlners Cenergy N1o WC80-5 95 166 s n rs 1 1 1 1 166 0

WC80-5WC05 1 100 209 200 ss0 n n(

rssl1l1l 1 1 1 1 200 WC80-5 105 155 s n rs 1 1 1 1 155 WC80-5 110 209 s n rs 1 1 1 1 209 WC80-5 115 146 s n rs 1 1 1 1 146 WC80-5 120 209 s n rs 1 1 1 1 209 WC80-5 125 229 s n rs 1 i 1 1 229 WC80-5 130 253 s n I's 1 i 1 1 253 CALCULATION GEO.HBIP.02.02 Revision 0 Page 2.1 of 30

HBIPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating (NI)60 Values CL.

LJ00'-V W C)

=

E) C) .0C-- 72 C) ) co ) Oc>

Et C, O C) E *N .2A_ CN .N16 C)

D o 0.Q

>85 -

C 3

DM73- 6 310 89 15 235 0951 8 45 C1 60 39 C

. E > 'C) C) )

DM3-1 o2 6 31C6 60 75 12 465 4C269. 0 .86 (N 5i)0 M 0D cn <.~ - n w Cn DM73-2 6 31 89 125 3875 2315 0.9561 85 DM73-i 6 37 175 125 4625 2690.6 0.8868 155 DM73-1 6 48 41 125 6000 3379.2 0.7913 32 DM73-1 6 56 33 125 7000 3880 0.738-5 24 DM73-i 6 62 113 125 7750 4255.6 0.7051 80 DM73-2 6 31 300 125 3875 2315 0.9561 287 DM73-2 6 37 198 125 4625 2690.6 0.8868 176 DM73-2 6 51 256 125 6375 3567 0.7702 197 DM73-2 6 67 194 125 8375 4568.6 0.6806 132 DM73-2 6 77 300 125 9625 5194.6 0.6382 191 DM73-2 6 87 300 125 10875 5820.6 0.6029 181 DM73-2A 6 28 48 125 3500 2127.2 0.9974 48 DM73-2A 6 32 119 125 4000 2377.6 0.9434 112 DM73-3 6 26 105 125 3250 2002 1.0281 108 DM73-3 6 31 39 125 3875 2315 0.9561 37 DM73-3 6 34 400 125 4250 2502.8 0.9195 368 DM73-3 6 42 42 125 5250 3003.6 0.8393 35 DM73-3 6 47 105 125 5875 3316.6 0.7988 84 DM73-3 6 52 64 125 6500 3629.6 0.7635 49 DM73-3 6 56 300 125 7000 3880 0.7385 222 DM73-3 6 61 400 125 7625 4193 0.7104 284 DM73-3 6 66 600 125 8250 4506 0.6853 411 DM73-3 6 76 300 125 9500 5132 0.6421 193 DM73-4 6 27 59 125 3375 2064.6 1.0124 60 DM73-4 6 32 300 125 4000 2377.6 0.9434 283 DM73-4 6 37 159 125 4625 2690.6 0.8868 141 DM73-4 6 42 162 125 5250 3003.6 0.8393 136 DM73-4 6 57 300 125 7125 3942.6 0.7326 220 DM73-5 6 42 59 125 5250 3003.6 0.8393 50 DM73-5 6 47 17 125 5875 3316.6 0.7988 14 DM73-5 6 52 163 125 6500 3629.6 0.7635 124 DM73-5 6 62 171 125 7750 4255.6 0.7051 121 DM73-5 6 67 128 125 8375 4568.6 0.6806 87 DM73-5 6 77 67 125 9625 5194.6 0.6382 43 DM73-5 6 107 300 125 13375 7072.6 0.547 164 DM73-5A 6 45 208 125 5625 3191.4 0.8143 169 CALCULATION GEO.HBIP.02.02 Revision 0 Page Zz' of 3 c

HBlPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating (N1)60 Values

.0 C) U

0) V C)

DM73C) 0 CZ>. >~~C~(I6 6 6 35 025 750 43.C.18 2 E3 6C 00

.03- 6. 27 40 12 35 0461.14 4 DM73- C 6 50 35 125 6250 3504.4 0.7771 27 zM36 6 3 82 125 40.0 237.6 .44 7 0

DM73-A

.

  • 66 65 36 20.o3-197 125 15 8125 50 4943.4 22U 0.6901 087 1365 7

DM73-5A 6 75 102 125 91375 50694 0.6046 6 DM73-5A 6 60 350 125 7500 4302.4 0.71358 205 DM73-6 6 6 23 54 27 165 31 408 125 2875 3375 6550 1814.2 2064.6 3164.6 1.0824 0.7988 1.012 181 25 401 DM73-6 6 52 32 340 82 125 4000 7500 3293.6 2377.6 0.7635 0.9434 305 77 DM73-A DM73-6 6 6736 200 240 125 9625 4350 4194.3 256284 0.89732 0.6381 125 179 DM73-6 6 97 42 160 600 125 1375 5250 560.7 3003.6 0.6046 0.8393 36 5044 0M73-6 6 52 910 125 6500 3629.6 0.7635 695 DM73-6 6 57 1490 125 7125 31942.6 0.73826 109 DM73-6 6 32 113 125 4000 2377.6 0.9434 103 DM73-7 6 42 171 125 5250 3003.6 0.8393 154 DM73-7 DM73-9 66 23 91 106 200 125 28750 7375 17514.2 4107 1.099 0.7104 117 174 DM73-7 6 67 14 125 8375 2468.6 10.6062 9 DM73-7 6 32 115 125 4000 2377.6 0.9434 108 DM73-7 6 42 149 125 5250 3003.6 0.8393 125 DM73-7 6 47 27 1497 1125 125 5875 3375 3316.6 2064.6 0.7988 1.6012 54 50 DM73-7 DM73-9 6 6 59 32 120 180 125 7375 4000 2407.6 2377.6 0.7321 0.9434 149 170 DM73-7 6 22 210 125 7625 4195.6 0.809 110 DM73-i8 6 32 520 125 4000 2377.6 0.9434 149 DM73-8 6 42 210 125 5250 3003.6 0.8393 168 DM73-8 DM73-9 6 47 37 400 220 125 5875 4625 3316.6 2690.6 0.7988 0.8868 250 270 DM73-9 6 42 240 125 5250 3003.6 0.8393 216 DM73-9 6 47 231 125 5875 3316.6 0.7988 185 DM73-10 6 52 300 125 6500 3629.6 0.7635 229 DM73-10 6 57 400 125 7125 3942.6 0.7326 293 CALCULATION GEO.HBIP.02.02 Revision 0 Page '23 of 3 c-

HBIPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating (Ni)60 Values 0 CD E 00 DM0 l 6 l - 0 0 .

DM73-1 OA 6 'D C) Ca E c-

.0 0 (A 0 E Ca, C)

M CD3 cn U) < - U) W DM73-10A 6 32 41 125 4000 2377.6 0.9434 39 DM73-1 A 6 36 117 125 4500 2628 0.8973 105 DM73-1 OA 6 42 106 125 5250 3003.6 0.8393 89 DM73-1 OA 6 52 200 125 6500 3629.6 0.7635 153 DM73-1 OA 6 62 116 125 7750 4255.6 0.7051 82 DM73-1 OA 6 72 138 125 9000 4881.6 0.6584 91 DM73-1 OA 6 81 400 125 10125 5445 0.6234 249 DM73-1 OA 6 97 300 125 12125 6446.6 0.5729 172 WC80-1 6 38 120 125 4750 2753.2 0.8767 105 WC80-1 6 90 160 125 11250 6008.4 0.5934 95 WC80-3 6 52 114 125 6500 3629.6 0.7635 87 WC80-4 6 30 94 125 3750 2252.4 0.9692 91 WC80-4 6 35 93 125 4375 2565.4 0.9082 84 WC80-4 6 40 97 125 5000 2878.4 0.8574 83 WC80-4 6 45 98 125 5625 3191.4 0.8143 80 WC80-4 6 50 99 125 6250 3504.4 0.7771 77 WC80-4 6 75 88 125 9375 5069.4 0.6461 57 WC80-4 6 80 99 125 10000 5382.4 0.627 62 WC80-4 6 85 204 125 10625 5695.4 0.6095 124 WC80-4 6 90 211 125 11250 6008.4 0.5934 125 WC80-4 6 95 229 125 11875 6321.4 0.5786 132 WC80-4 6 100 196 125 12500 6634.4 0.5648 111 WC80-4 6 105 300 125 13125 6947.4 0.5519 166 WC80-4 6 110 260 125 13750 7260.4 0.5399 140 WC80-4 6 115 253 125 14375 7573.4 0.5286 134 WC80-4 6 120 218 125 15000 7886.4 0.518 113 WC80-4 6 125 209 125 15625 8199.4 0.508 106 WC80-4 6 130 282 125 16250 8512.4 0.4986 141 WC80-5 6 30 57 125 3750 2252.4 0.9692 55 WC80-5 6 35 102 125 4375 2565.4 0.9082 93 WC80-5 6 40 66 125 5000 2878.4 0.8574 57 WC80-5 6 45 94 125 5625 3191.4 0.8143 77 WC80-5 6 50 114 125 6250 3504.4 0.7771 89 WC80-5 6 75 85 125 9375 5069.4 0.6461 55 WC80-5 6 80 91 125 10000 5382.4 0.627 57 CALCULATION GEO.HBIP.02.02 Revision 0 Page 'LJof SO

HBIPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating (N1)60 Values Ied) C 0 =3

.0 co.>

Z) Z )0

.03' v-> 7 n 0U 56540.05 9 WC80-56 85 0E 10 t12 1062 0 ) 0)0a WC0-Wz0-CZ 6 0 14 14 2CD 125 1120 0

12060. 60040.594 .53 84 8

WC80-5 6 95 166 125 10625 56321.4 0.6095 91 WC80-5 6 100 200 125 12500 6634.4 0.5648 113 WC80-5 6 105 155 125 13125 6947.4 0.5519 86 WC80-5 6 110 209 125 13750 7260.4 0.5399 113 WC80-5 6 115 146 125 14375 7573.4 0.5286 77 WC80-5 6 120 209 125 15000 7886.4 0.518 108 WC80-5 6 125 229 125 15625 8199.4 0.508 116 WC80-5 6 130 253 125 16250 8512.4 0.4986 126 CALCULATION GEO.HBIP.02.02 Revision 0 Page .25 of I c

HBIPLIquef action Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating 'Clean-Sand' (N1)60 Values Applies correction values for sands containing fines. converting (N1)60 values to 'equivalent' (Nl)60 values in clean sands Fines Fines 'CIean-Sand' Boring Sample Correction Correction (Ni)eo-. capped Sample Number Depth (ft) (Ni)ao USCS %fines (Youd. et al) Cap at 200 Elev (ft)

DM73-1 31 85 sp-sm 6 0.43 0.46 85 -19 DM73-1 37 155 sp-sm 6 0.76 0.46 155 -25 DM73-1 48 32 sw-sm 6 0.18 0.46 32 -36 DM73-1 56 24 sp 11 1.84 2.76 26 -44 DM73-1 62 80 sp 11 3.33 2.76 83 -50 DM73-2 31 287 sp 18 22.28 5.16 200 -19 DM73-2 37 176 sm 4 0.00 0.00 176 -25 DM73-2 51 197 sp 6 0.95 0.46 197 -39 DM73-2 67 132 SD 18 11.99 5.16 137 -55 DM73-2 77 191 sp 8 2.71 1.38 192 -65 DM73-2 87 181 sp 8 2.58 1.38 182 -75 DM73-2A 28 48 sp 7 0.53 0.92 49 -16 DM73-2A 32 112 Sp 8 1.71 1.38 113 -20 DM73-3 26 108 sp-sm 11 4.07 2.76 111 -14 DM73-3 31 37 sp-sm 11 2.19 2.76 39 -19 DM73-3 34 368 sp 5 0.00 0.00 200 -22 DM73-3 42 35 sp 5 0.00 0.00 35 -30 DM73-3 47 84 sp 8 1.36 1.38 85 -35 DM73-3 52 49 sp 33 13.68 7.93 57 -40 DM73-3 56 222 sp 7 2.01 0.92 200 -44 DM73-3 61 284 sp 7 2.54 0.92 200 -49 DM73-3 66 411 sp 7 3.62 0.92 200 -54 DM73-3 76 193 sp 9 3.84 1.84 195 -64 DM73-4 27 60 sp-sm 29 13.41 7.19 67 -15 DM73-4 32 283 sp-sm 6 1.36 0.46 200 -20 DM73-4 37 141 S 0o 0.00 0.00 141 -25 DM73-4 42 136 sp 0 0.00 0.00 136 -30 DM73-4 57 220 se 0 0.00 0.00 200 -45 DM73-5 42 50 sp 25 10.04 6.45 56 -30 DM73-s 47 14 Sp 7 0.24 0.92 14 -35 DM73-s 52 124 sp 7 1.18 0.92 125 -40 DM73-s 62 121 Sp 8 1.83 1.38 122 -50 DM73-s 67 87 sp 8 1.40 1.38 88 -55 DM73-s 77 43 sp-sm 18 6.09 5.16 48 -65 DM73-5 107 164 sp 46 37.80 8.30 172 -95 DM73-5A 45 169 sp 23 21.01 6.08 175 -33 DM73-5A 50 272 sp 8 3.73 1.38 200 -38 DM73-5A 60 25 sp 0 0.00 0.00 25 -48 DM73-5A 65 136 sp 0 0.00 0.00 136 -53 DM73-5A 75 66 sp 0 0.00 0.00 66 -63 DM73-6 27 40 sp 3 0.00 0.00 40 -15 DM73-6 32 77 sp 3 0.00 0.00 77 -20 DM73-6 36 179 sp 23 22.01 6.08 185 -24 DM73-6 42 504 sp 3 0.00 0.00 200 -30 CALCULATION GEO.HBIP.02.02 Revision 0 Page VI, of 3

HBIPLIquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating 'Clean-Sand' (N1)60 Values Applies correction values for sands containing fines, converting (N1)60 values to equivalent (Ni160 values in clean sands Fines Fines 'Clean-Sand" Boring Sample Correction Correction (N,)so.. capped Sample Number Depth (ft) (Ni)w USCS %fines (Youd, et al) Cap at 200 Elev (ft)

DM73-6 47 25 sp 3 0.00 0.00 25 -35 DM73-6 52 305 sp 3 0.00 0.00 200 -40 DM73-6 77 255 sp 0 0.00 0.00 200 -65 DM73-6 91 354 sp 5 0.00 0.00 200 -79 DM73-7 23 181 sp 7 1.66 0.92 182 -11 DM73-7 30 83 sp 14 5.72 4.14 87 -18 DM73-7 35 103 sp 9 2.31 1.84 105 -23 DM73-7 42 144 sp 0 0.00 0.00 144 -30 DM73-7 52 69 sp 0 0.00 0.00 69 -40 DM73-7 57 109 sp 0 0.00 0.00 109 -45 DM73-7 61 170 sp 0 0.00 0.00 170 -49 DM73-7 67 96 Sp 0 0.00 0.00 96 -55 DM73-8 32 108 sm 13 5.87 3.68 112 -20 DM73-8 42 125 sw 14 7.50 4.14 129 -30 DM73-8 47 54 sw 4 0.00 0.00 54 -35 DM73-8 59 144 sm 13 7.20 3.68 148 -47 DM73-9 22 117 sp 5 0.00 0.00 117 -10 DM73-9 27 50 sp-sm O 0.00 0.00 50 -15 DM73-9 32 170 sp-sm 6 0.83 0.46 170 -20 DM73-9 42 168 sp 6 0.82 0.46 168 -30 DM73-9 47 320 6 1.53 0.46 200 -35 DM73-10 32 49 sp-sm 25 9.92 6.45 55 -20 DM73-10 37 20 sp-sm 10 1.30 2.30 21 -25 DM73-10 42 201 sp-sm 10 5.22 2.30 200 -30 DM73-10 47 185 9P 7 1.70 0.92 186 -35 DM73-10 52 229 sp O 0.00 0.00 200 -40 DM73-10 57 293 sp O 0.00 0.00 200 -45 DM73-1 OA 32 39 sm 8 0.79 1.38 40 -20 DM73-10A 36 105 sm 8 1.62 1.38 106 -24 DM73-10A 42 89 sm 17 8.36 4.97 94 -30 DM73-1 OA 52 153 sp 0 0.00 0.00 153 -40 DM73-1 OA 62 82 sp 0 0.00 0.00 82 -50 DM73-1 OA 72 91 sm 12 4.43 3.22 94 -60 DM73-10A 81 249 sp 28 38.96 7.01 200 -69 DM73-10A 97 172 sp 0 0.00 0.00 172 -85 WC80-1 38 105 sp-sm 5 0.00 0.00 105 -26 WC80-1 90 95 sp-sm 5 0.00 0.00 95 -78 WC80-3 52 87 sp-sm 5 0.00 0.00 87 -40 WC80-4 30 91 sp-sm 5 0.00 0.00 91 -18 WC80-4 35 84 sp-sm 5 0.00 0.00 84 -23 WC80-4 40 83 sp-sm 5 0.00 0.00 83 -28 WC80-4 45 80 sp-sm 5 0.00 0.00 80 -33 WC80-4 50 77 sp-sm 5 0.00 0.00 77 -38 WC80-4 75 57 sp O 0.00 0.00 57 -63 CALCULATION GEO.HBIP.02.02 Revision 0 Page 21 of Sc

HBIPLiquefaction Study - Borings of Dames and Moore (1974) and Woodward Clyde (1980)

Standardized Blow Count Data Worksheet For Calculating 'Clean-Sand' (N1)60 Values Applies correction values for sands containing fines. convering (Nl)60 values to 'equivalent' (Nl)60 values in clean sands Boring i Sample Fines Fines 'Clean-Sand' Correction Correction (Ni)6o.. capped Sample Number Depth (ft) (Ni)eo USCS %fines (Youd, et al) Cap at 200 Elev (it)

WC80-4 80 62 s 0 0.00 0.00 62 -68 WC80-4 85 124 sp-sm 5 0.00 0.00 124 -73 WC80-4 90 125 sp-sm 5 0.00 0.00 125 -78 WC80-4 95 13 2 sp-sm 5 0.00 0.00 132 -83 WC80-4 100 111 sp-sm 5 0.00 0.00 111 -88 WC80-4 105 166 sp-sm 5 0.00 0.00 166 -93 WC80-4 110 140 sp-sm 5 0.00 0.00 140 -98 WC80-4 115 134 sp-sm 5 0.00 0.00 134 -103 WC80-4 120 113 sp-sm 5 0.00 0.00 113 -108 WC80-4 125 106 sp-sm 5 0.00 0.00 106 -113 WC80-4 130 141 sp-sm 5 0.00 0.00 141 -118 WC80-5 30 55 sp-sm 5 0.00 0.00 55 -18 WC80-5 35 93 sp-sm 5 0.00 0.00 93 -23 WC80-5 40 57 sp-sm 5 0.00 0.00 57 -28 WC80-5 45 77 sp-sm 5 0.00 0.00 77 -33 WC80-5 50 89 sp-sm 5 0.00 0.00 89 -38 WC80-5 75 SS sp 0 0.00 0.00 55 -63 WC80-5 80 57 sp 0 0.00 0.00 57 -68 WC80-5 85 91 sp-sm 5 0.00 0.00 91 -73 WC80-5 90 84 sp-sm 5 0.00 0.00 84 -78 WC80-5 95 96 sp-sm 5 0.00 0.00 96 -83 WC80-5 100 113 sp-sm 5 0.00 0.00 113 -88 WC80-5 105 86 sp-sm 5 0.00 0.00 86 -93 WC80-5 110 113 sp-sm 5 0.00 0.00 113 -98 WC80-5 115 77 sp-sm 5 0.00 0.00 77 -103 WC8O-5 120 108 sp-sm 5 0.00 0.00 108 -108 WC80-5 125 116 sp-sm 5 0.00 0.00 116 -113 WC80-5 130 126 sp-sm 5 0.00 0.00 126 -118

.1. J .1.

CALCULATION GEO.HBIP.02.02 Revision 0 Page ZY of 3 C

Subject -IP3F LtLcuAdec,N1i ICA^4A Project No.

P o 511 7 7 1- 1}q Task P,In ,Wu.

GJoF;0 I1A G P.C-By 1t4 Checked By Filk NIn ativ. 0 I. ,. .- W. .. _ _

Sheet 2 -5 of 3 0 Date S/l4/oZ Date CAL-..C LAT N% C- EC- c F L- i P FAc TosCDJ SP -E -%G£,

G) c-,2- C 9'O'l - ici-K 1 1Cqqc ItC )

DsI-r- H6 SP1 5AMPL  ? 1 E- ze. :. SM C = * ° J

O5FPTH=t =>-F+-z /11 03 M > Io,C - RODS -= 1 0 p>ER- Y/OvD7 J E'T A " Z°°>) I/ p. 7242 ZJ 3 LE Z o pEIZ DA-, I. RF-P.r A, EJsrc-f = Ec /D

.. = 5°/60 -

-- l 67w I.-

  • w ["'J60 = h c- = L+LyO<0-2s33 =36 C-R Oux')Vk-E.' PEpT . ._

.= 3S _.

4 Ft C:.

QA-S*omv-1

. ..... 5 EX . ASS utlF;'7 Ie

  • Y-TO7AL = 125 pc S E~A mFj-. T1Iosi$ t 6 -* JS 71° a C* = C)'rERN.t'.EI LfRR7cc- (YIou- F.7 ,Al? 2aoD I TzF rN 1' .2c>'---

!C CCt( ( 2 .0 °s - u U) o pe GEOMATRIX CONSULTANTS

Riihict 13 P l.o I- FAC i VAL.,AI0 Project No. i1/

q4 Task No. G .O1.C-By J Checked By File No. t2.-. C Date 5/0 0Z Date Sheet <' of 3 c sc C " = 3 66 7 .6 E = 23 23X 21-

-(NIJO

  • F R40r" ~C-3(ZtNj G- U-& So C~ . I ( WAI . FIIJ5 -C -7/:-% j7L1A AJC:i PIE-AS.r-,J- '°( '

ASS~t,,)C- FC- 0/

VD =a -4 4 sACO ZVA o-V, I"JE EioVA_,

w, E 'A'SsLPF *S - . IC-r7\J 9 P5 f te t N1

ti.L r4 Y1 L)El G1 A L_, ZGO (N 1)60cs = C;\+6 (" ),,:

Po FC G- cA = c5, ,63 .

LO 0 4 1i.

0= (23.3) " 2z N =-FtIJES 4Ce: e ECZi C.tC = Q')LC-o15j - ( (\,)6~0 GEOMATRIX CONSULTANTS