ML033650192

From kanterella
Jump to navigation Jump to search
to GEO.HBIP.02.05, Development of Hbip ISFSI Spectrum Compatible Time Histories.
ML033650192
Person / Time
Site: Humboldt Bay
Issue date: 12/26/2002
From: Abrahamson N, Ferre K, Sun J
Pacific Gas & Electric Co
To:
Document Control Desk, NRC/FSME
References
+sisprbs20051109, -RFPFR GEO.HBIP.02.05, Rev 0
Download: ML033650192 (190)


Text

HEAP C-20 Attachment 7.1 Rev. 7A Page 1 of 1 HUMBOLDT BAY POWER PLANT CALCULATION COVER SHEET File No.:

Calculation No.: GEO.HBIP.02.05 Cl Preliminary ED Final Department/Group: HBPP/Geosciences Unit(s) 0 Structure, System or Component: ISFSI Geotechnical Type or Purpose of Calculation: Development of HBIP ISFSI Spectrum Compatible Time Histories No. of Sheets: 187 + Appendices Signature Discipline/Dept Date Prepared by: By Geosciences 11/27/2002 Checked by: By Geosciences, 11/27/2002 Approved by (Supv): Ae z...... 12/26/2002 Registered Engineer Approval: (Complete sectn A for Civil calcs. Complete A or B for others A. Insert Engineer Stamp or Seal Below B.

Engineer's full name:

By Geosciences Registration Number:

Expiration Date:

Expiration Date: _

RECORDS OF REVISIONS Approval Revision Prepared Checked Regis. Engr. Supvr.

Number Date Reasons for Revision By By 0 12/26/02 Initial Issue Geosci. Geosci. Geosc.i

PACIFIC GAS AND ELECTRIC COMPANY Calc Number: GEO.HBIP.02.05 GEOSCIENCES DEPARTMENT Revision: 0 CALCULATION DOCUMENT Date: i I /-i /

Calc Pages: I i 7 Verification Method: A TITLE: Development of HBIP ISFSI Spectrum Compatible Time Histories PREPARED BY:_ _ _ _ .. DATE ___7_______

Norm Abrahamson Geosciences Printed Name Organization VERIFIED BY: ~~ L (2 5Z! /al 4= DATE I g/ n / L C/ -Z - _, /I .

Joseph Sun Geosciences Printed Name Organization APPROVED BY: DATE / 2 /% Z l1/

Kent Ferre Geosciences Printed Name Organization

/

xr V.,

  • Calculation No. GEO.HBIP.02.05 TITLE: Development of HBIP ISFSI Spectrum Compatible Time Histories Rev. Reason for Revision Revision No. Date 00 Initial Issue 11/27/02

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: I of 187 Date: 11/24/02

2. PURPOSE The purpose of this calculation is to develop 4 sets of 3-component spectrum compatible time histories for the HBIP to meet the requirements given in the Work Plan (GEO HBIP 2002-02, Rev 0).
3. ASSUMPTIONS 3.1 Spectral Period Extrapolation to 10.0 second Some of the subsource response spectra developed in calculations GEO.HBIP.02.04 are defined between the period range of 0.01 seconds (i.e., PGA) and 3.0 to 4.0 seconds. For periods greater than 3.0 to 4.0 seconds, the spectra were extrapolated based on a constant spectral slope in psuedo-spectral velocity.

The basis for this assumption is that it is slightly conservative. At long periods, the spectra typically exhibit a decreasing slope as a function of period in the period range of 4 to 10 seconds. Therefore, using a constant slope leads to some conservatism in the long periods range.

3.2 Little Salmon Fault Input Time Histories Four recorded strong ground motion sets (three components each) listed in Table 3-1 are assumed to be representative of the ground motion from a large magnitude reverse mechanism earthquake at short distances. Digital records of these ground motions are available from Pacific Earthquake Engineering Research Center (PEER) strong motion database at http://peer.berkeley.edu/smcat/).

The basis for this assumption is that these empirical time histories have similar magnitude, distance, and mechanism to the Little Salmon fault (LSF) subsource (see Table 4-1).

Table 3-1. Input time histories used for the Little Salmon fault spectral matching.

Earthquake Magnitude Station Distance (km) Mechanism 09/16/8 Tabas 7.4 Tabas 3.0 Reverse 09/20/99 Chi-Chi 7.6 TCU052 0.2 Reverse 09/20/99 Chi-Chi 7.6 TCU068 1.1 Reverse 09/20/99 Chi-Chi 7.6 TCU102 1 .8 Reverse

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 2 of 187 Date: 11/24/02 3.3 Cascadia Interface Event Time Histories Two recorded strong ground motion sets (three components each) were selected for the spectral matching to the Cascadia interface event target spectra. These empirical time histories were selected based on the magnitude, distance, and fault mechanism of the recorded events in relation to the parameters for the Cascadia Interface event. The two selected sets of time histories are listed below in Table 3-2.

The basis for this assumption is that these empirical time histories are from large subduction zone earthquakes. Recordings from larger magnitude earthquakes are not available. Digital records of these motions are available from the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) virtual data center at http:H/db.cosmos-eq.org.

Table 3-2. Input time histories used for the Cascadia interface event spectral matching.

Magnitude Distance Earthquake (Ms) Station (km) Mechanism 09/19/85 Michoacan, 8.1 La Union 27.3 Interface Mexico 03/03/85 Valpariso, 7.8 Vina Del Mar 31.9 Interface Chile 3.4 Relative Timing for Synchronous Rupture Time Histories.

For the synchronous rupture time histories the spectrum compatible time histories from the Little Salmon fault (LSF) event and the Cascadia interface event are added together.

The timing of these time histories is assumed to corresponding to two different cases in

  • rupture initiation locations. For the first case, the location of the initiation of rupture (hypocenter)on the Cascadia interface fault is assumed to be located near the southern end of the fault plane resulting in smaller time shift between the two events and thus place the initiation of LSF event near the first part of the Cascadia interface event. For the other case, the hypocenter is assumed to be at the northern end of the Cascadia subduction fault plane and thus place the LSF subevent toward the latter part of the Cascadia interface strong shaking. These two hypocenter scenarios capture the potential variation of the location of the initiation point of rupture. Conservatism in the synchronous ground motion is maintained by requiring that the LSF subsource occur during strong shaking from the Cascadia subsource.

3.5 Timing of the Fling The fling is assumed to arrive at the time of the beginning of the large velocity. The basis for this assumption is that it is conservative because it maximizes the constructive interference between the fling ground motion due to permanent displacement and the shaking due to transient displacement.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 3 of 187 Date: 11/24/02 3.6 Period of Fling The period of the fling is assumed to be the same as station TCU068 during the 1999 Chi-Chi earthquake. The basis for this assumption is that the magnitude of the Chi-Chi earthquake (M7.6) and the amplitude of the slip at TCU068 (8.4m) are similar to the LSF subsource (M=7.7, slip=8 m, see calculation HBIP.GEO.02.03) 3.7 Amplitude of the Fling For strike slip-faults (e.g. calculation GEO.DCPP.01.12), the amplitude of the fling was assumed to be equal on the two sides of the fault. For dip-slip faults, this assumption is not valid. The fraction of the fault slip that occurs on the hanging wall side is assumed to be represented by the observations from the 1999 Chi-Chi earthquake. Specifically, the ratio of the tectonic deformations at station TCU052 (hanging wall site) and TCU049 (footwall site) is assumed to be representative of the ratio of the amplitude of the fling for HBIP. The fraction of the total slip on the fault which is observed on the hanging wall is given by that ratio of the tectonic deformation at TCU052 divided by the sum of the tectonic deformation at stations TCU052 and TCU049.

The basis for this assumption is that stations TCU049 and TC052 are located at similar locations, close to the fault rupture, but on opposite sites of the fault from a large thrust event. The ratio of their tectonic deformations should be similar to that of other large dip-slip earthquakes.

3.8 Modified Envelope Requirements for Spectral Matching In SRP 3.7.1 (US NRC, 1989), a spectrum is considered to envelop a target spectrum if there the spectral values at not more than 5 of the recommended 75 frequencies fall below the target spectrum and no points fall below 0.9 times the target spectrum. As discussed in section 5.1, for this calculation, an additional 29 frequencies are considered.

For the 104 frequencies used here, the number of points that allowed to fall below the target is conservatively maintained at 5.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 4 of 187 Date: 1/24/02

4. DESIGN INPUTS 4.1 Subsource Event Parameters As described in GEO.HBIP.02.04, two seismic sources are considered in developing the deterministic ground motions: the Little Salmon fault and the Cascadia interface. The mean magnitudes and distances for the two sources based on the Carver model are taken from GEO.HBIP.02.04 (Tables 4-1 and 4-2). These values are listed in Table 4-1 below.

Table 4-1. Source parameters for deterministic events for the Little Salmon fault and the Cascadia interface subsources (from GEO.HBIP.02.04, Tables 4-1, and 4-2).

Little Salmon Cascadia fault zone interface Magnitude 7.7 8.8 Rupture Distance (ki) 0.0 7.0 Mechanism Reverse Interface Slip (m), 7.0 - 9.3 Dip (degreesy 40 - 50 _

Slip values taken from GEO.HBIP.02.03, Section 4.3.4 2 Dip values taken from GEO.HBIP.02.03, Section 4.3.2 4.2 Response Spectra for Subsources Calculation GEO.HBIP.02.04 developed response spectra for the synchronous rupture case. As intermediate steps in the development of the synchronous rupture spectra, spectra were developed for the individual subsources for the following cases:

LSF subsource horizontal rock spectra LSF subsource vertical soil spectra Cascadia subsource horizontal soil spectra Cascadia subsource vertical soil spectra These spectra (from Calculation GEO.HBIP.02.04) are listed in Tables 4-2 to 4-4.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 5 of 187 Date: 11/24/02 Table 4-2. Rock acceleration response spectra for the LSF subsource. (from Tables 7-10 and 7-11 in GEO.HBIP.02.04 Rev 0).

  1. 1 #2 Little Salmon Little Salmon fault Rock fault Rock Period Fault Normal Fault Parallel (sec) Sa(g) Sa(g) 0.000 1.509 1.509 0.020 1.509 1.509 0.030 1.535 1.535 0.050 1.976 1.976 0.075 2.465 2.465 0.100 2.868 2.868 0.150 3.587 3.587 0.200 3.896 3.896 0.300 3.667 3.667 0.500 2.854 2.854 0.750 2.167 1.918 1.000 1.860 1.510 1.500 1.400 0.899 2.000 1.111 0.601 3.000 0.839 0.302 4.000 0.669 0.180 5.000 0.516 0.132 7.000 0.317 0.081 10.000 0.191 0.049

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 6 of 187 Date: 11/24/02 Table 4-3. Horizontal spectral acceleration on soil for the Cascadia interface event (from Table 7-23 in calculation GEO.HBIP.02.04 Rev 0).

Period 84h Percentile (sec) Spectral Ace (g) 0.000 0.852 0.075 1.214 0.100 1.364 0.200 1.890 0.300 1.897 0.400 1.699 0.500 1.560 0.750 1.246 1.000 0.978 1.500 0.629 2.000 0.470 3.000 0.295 4.000 0.173

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 7 of 187 Date: 11/24/02 Table 4-4. Vertical soil acceleration response spectra for the LSF and Cascadia interface subsources. (from Table 7-27 in GEO.HBIP.02.04 Rev 0).

  1. 1 #2 Cascadia Interface Little Salmon fault Event, Period Vertical, Soil Vertical, Soil (sec) SA (g) SA(g) 0.000 1.302 1.051 0.020 1.302 1.051 0.030 1.832 1.438 0.050 2.802 2.102 0.075 3.225 2.842 0.100 3.114 2.630 0.120 2.962 2.304 0.150 2.689 1.960 0.170 2.564 1.790 0.200 2.338 1.591 0.240 2.120 1.305 0.300 1.828 1.024 0.400 1.547 0.737 0.500 1.335 0.571 0.750 1.097 0.383 1.000 0.865 0.279 1.500 0.564 0.171 2.000 0.421 0.138 3.000 0.281 0.102 4.000 0.211 0.071 5.000 0.169 0.054 7.000 0.120 0.035 10.000 0.084 0.022

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 8 of 187 Date: 11/24/02 4.3 Spectra for Synchronous Rupture The horizontal and vertical deterministic design response for synchronous rupture at 2%,

4%, 5%, and 7% damping are listed in Tables 4-5, 4-6, and 4-7 for the fault normal, fault parallel, and vertical components, respectively.

Table 4-5. 84 th percentile design spectra for the Fault Normal Component (from Table 8-1 in calculation GEO.HBIP.02.04).

Period 2% spectral 4% spectral 5% spectral 7% spectral (sec) damping damping damping damping 0.000 1.316 1.316 1.316 1.316 0.020 1.316 1.316 1.316 1.316 0.030 1.415 1.370 1.351 1.324 0.050 1.608 1.489 1.441 1.373 0.075 1.888 1.689 1.612 1.502 0.100 2.207 1.928 1.821 1.672 0.150 2.796 2.380 2.224 2.010 0.200 3.192 2.699 2.515 2.264 0.300 4.568 3.863 3.600 3.240 0.640 4.568 3.863 3.600 3.240 0.750 4.568 3.863 3.600 3.240 1.000 4.576 3.866 3.600 3.236 1.500 4.568 3.863 3.600 3.240 1.700 4.434 3.754 3.502 3.152 2.000 3.792 3.216 3.000 2.703 2.400 3.020 2.570 2.400 2.167 3.000 2.565 2.191 2.050 1.855 4.000 1.857 1.598 1.500 1.365 5.000 1.225 1.062 1.000 0.914 7.000 0.564 0.489 0.460 0.420 10.000 0.312 0.271 0.255 0.233

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 9 of 187 Date: 11/24/02 Table 4-6. 8 4th percentile design spectra for the Fault Parallel Component (from Table 8-2 in calculation GEO.HBIP.02.04).

Period 2% spectral 4% spectral 5% spectral 7% spectral (sec) damping damping damping damping 0.000 1.316 1.316 1.316 1.316 0.020 1.316 1.316 1.316 1.316 0.030 1.415 1.370 1.351 1.324 0.050 1.608 1.489 1.441 1.373 0.075 1.888 1.689 1.612 1.502 0.100 2.207 1.928 1.821 1.672 0.150 2.796 2.380 2.224 2.010 0.200 3.192 2.699 2.515 2.264 0.300 4.552 3.849 3.587 3.228 0.640 4.114 3.479 3.242 2.918 0.750 3.934 3.326 3.100 2.790 1.000 3.559 3.007 2.800 2.517 1.500 3.122 2.640 2.460 2.214 1.700 2.784 2.357 2.199 1.979 2.000 2.275 1.930 1.800 1.622 2.400 1.510 1.285 1.200 1.083 3.000 1.001 0.855 0.800 0.724 4.000 0.557 0.479 0.450 0.410 5.000 0.331 0.287 0.270 0.247 7.000 0.159 0.138 0.130 0.119 10.000 0.085 0.073 0.069 0.063

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 10 of 187 Date: 11/24/02 Table 4-7. 84 th percentile design spectra for the Vertical Component (from Table 8-3 in calculation GEO.HBIP.02.04).

Period 2% spectral 4% spectral 5% spectral 7% spectral (sec) damping damping damping damping 0.000 1.673 1.673 1.673 1.673 0.020 1.673 1.673 1.673 1.673 0.030 2.634 2.415 2.329 2.209 0.050 4.309 3.724 3.503 3.205 0.075 5.513 4.625 4.299 3.864 0.100 5.403 4.428 4.076 3.612 0.120 5.011 4.086 3.753 3.316 0.150 4.462 3.628 3.328 2.935 0.170 4.183 3.407 3.127 2.760 0.200 3.756 3.074 2.828 2.504 0.240 3.285 2.701 2.489 2.210 0.300 2.752 2.270 2.095 1.864 0.400 2.251 1.857 1.714 1.525 0.500 1.907 1.573 1.452 1.292 0.750 1.526 1.259 1.162 1.034 1.000 1.196 0.985 0.909 0.808 1.500 0.773 0.638 0.589 0.524 2.000 0.578 0.479 0.443 0.395 3.000 0.385 0.322 0.299 0.268 4.000 0.283 0.239 0.223 0.201 5.000 0.222 0.189 0.177 0.161 7.000 0.157 0.134 0.125 0.114 10.000 0.109 0.093 0.087 0.079

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 11 of 187 Date: 11/24/02 4.4 Site-Specific Amplification Factors The development of the site-specific soil amplification factors is discussed in GEO.HBIP.02.06. Three sets of amplification factors were developed based on the three soil profiles (median, lower bound, and upper bound). The average soil amplification factors for an input PGA of 1.4g and 1.6 g are taken from Table 8-1 of GEO.HBIP.02.06 for the median, lower bound, and upper bound soil profiles and are listed in Table 4-8.

Table 4-8. Average amplification factors (From Table 8-1 in Calculation GEO.HBIP.02.06 Rev 0)

Period Median Lower Bound Upper Bound (sec) 1.4g 1.6g 1.4g 1.6g 1.4g 1.6g 0.010 0.693 0.608 0.410 0.383 0.846 0.813 0.030 0.701 0.615 0.414 0.387 0.856 0.822 0.050 0.495 0.434 0.292 0.273 0.605 0.581 0.075 0.402 0.352 0.236 0.221 0.494 0.473 0.100 0.372 0.324 0.215 0.201 0.483 0.444 0.150 0.333 0.292 0.196 0.182 0.497 0.435 0.200 0.445 0.376 0.226 0.193 0.705 0.602 0.300 0.663 0.563 0.382 0.325 1.041 0.924 0.420 1.070 0.940 0.574 0.481 1.002 1.011 0.500 0.982 0.882 0.770 0.677 1.002 0.948 0.600 1.014 0.900 0.839 0.811 1.361 1.258 0.640 1.043 0.885 0.749 0.734 1.414 1.342 0.750 1.225 1.053 0.727 0.678 1.457 1.416 0.860 1.354 1.214 0.842 0.766 1.401 1.368 1.000 1.346 1.262 0.935 0.823 1.543 1.468 1.200 1.469 1.342 1.178 1.117 2.026 1.903 1.450 1.765 1.580 1.232 1.181 2.533 2.419 1.700 2.098 1.904 1.385 1.309 2.687 2.681 2.200 2.411 2.381 1.918 1.809 2.130 2.194 2.600 2.261 2.305 2.201 2.083 1.816 1.893 3.200 1.830 1.922 2.324 2.373 1.576 1.605 3.500 1.872 1.926 2.247 2.324 1.579 1.622 4.100 1.620 1.692 2.022 2.102 1.357 1.384 4.300 1.469 1.521 1.821 1.915 1.222 1.250 5.400 1.411 1.451 1.671 1.724 1.221 1.250 6.200 1.296 1.322 1.454 1.484 1.201 1.211 7.800 1.193 1.209 1.319 1.351 1.157 1.165 10.000 1.248 1.258 1.321 1.330 1.154 1.174

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 12 of 187 Date: 11/24/02 4.5 Empirical Constraints on the Spectral Shape Calculation GEO.HBIP.02.04 also included an empirical constraint on the short period spectral shape (developed in GEO.HBIP.02.06). The empirical constraints on the spectral shape are given in Table 4-9.

Table 4-9. Average Horizontal Spectral Shape Based on Northridge Strong Motion Recordings (From Table 8-2 in calculation GEO.HBIP.02.06 Rev 0).

Period Average Spectral Shape (sec) (Salpga) 0.010 1.000 0.020 1.000 0.030 1.016 0.050 1.095 0.075 1.225 0.100 1.384 0.150 1.690 0.200 1.911 0.300 2.368 0.500 1.980 0.750 2.049 1.000 1.682 1.500 1.036 2.000 0.765 3.000 0.451 4.000 0.208

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 13 of 187 Date: 11/24/02 4.6 NRC Recommended Frequencies for Spectral Matching The NRC recommended frequencies are taken from Table 3.7.1-1 of SRP 3.7.1.

Table 4-10. NRC recommended Frequency Sampling for the target spectrum (From SRP 3.7.1).

Frequency Range Increment (Hz) (Hz) 0.2 - 3.0 0.10 3.0 - 3.6 0.15 3.6- 5.0 0.20 5.0 - 8.0 0.25 8.0- 15.0 0.50 15.0- 18.0 1.00 18.0 - 22.0 2.00 22.0 - 34.0 3.00 4.7 Definition of Envelop of a spectrum In SRP 3.7.1, the spectrum of a time history "envelops" a spectrum if the flowing conditions are met:

No more than 5 points may fall below the target spectrum No points may fall more than 10% below the target spectrum 4.8 Statistical Independence of time histories Each set of 3-component time histories shall be statistically independent. To meet this criterion, the absolute value of the correlation coefficient of the three acceleration time histories shall be less than 0.3 (ASCE 4-86) 4.9 Spectral Matching Criteria If multiple time histories are used (option 2 in SRP 3.7.1), the requirement (page 7 in SRP 3.7.1) for spectral matching are:

At least 4 sets of time histories are required.

The average of the spectra from the multiple time histories must envelop the design spectrum. The spectra from the individual time histories need not envelop the design spectrum by themselves.

There is no PSD requirement given if multiple time histories are used.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 14 of 187 Date: I 1/24/02 4.10 Fling Parameters The fling from the 1999 Chi-Chi earthquake was evaluated as part of calculation GEO.DCPP.01.012. For station TCU068N, the amplitude of the fling was 843.5 cm and the time duration (straight line) of the fling was 3.7 sec (see Table 6-6 in GEO.DCPP.01.012). For site TCU052-150, the amplitude of the fling was 838.7 cm and the duration of the fling was 4.4 sec. For LSF, we used the shorter 3.7 sec, which would produce a larger amplitude of the fling in acceleration than if we used 4.4 sec.

Calculation GEO.DCPP.01.12 also gives a scale factor to compute the period of the fling (Tfling in eq. 5-6) from the straight-line time duration. This factor is 1.78 (GEO.DCPP.0 1.12, page 44)

Table 4-11. Fling Parameters from the 1999 Chi-Chi earthquake (from Table 6-6 in GEO.DCPP.01.12).

Station Fling Amplitude (cm) Time Duration (see)

TCU068 N 843.5 3.7 TCU052 - 150 838.7 4.4 TCU052 - 060 33.1 TCU049 N 41.2 TCU049 E 65.7

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 15 of 187 Date: 11/24/02

5. METHODS The design earthquake is a synchronous rupture of the Little Salmon fault zone and the Cascadia interface (GEO.HBIP.02.04 rev 0). The approach used to develop time histories for the synchronous rupture is to first develop spectrum compatible time histories for the individual sub-sources (e.g. Little Salmon and Cascadia) for soil site conditions. The time histories for the individual subsources are then added together in the time domain and the combined time histories are then rematched to the spectrum for the synchronous rupture.

Finally, the fling is added to spectrum compatible time histories for the fault normal and vertical components In calculation GEO.HBIP.02.04, rock spectra were developed for the individual subsources and soil spectra were developed for the synchronous rupture. For the development of the time histories, soil spectra for the individual subsources need to be developed, and then spectrum compatible time histories are developed.

The detailed steps in the approach to the development of the time histories are given below.

5.1 Extend NRC frequencies for spectral matching Additional frequency values were added to the suite of NRC frequencies (see Section 4.6) for the spectral matching procedure. The suite of NRC frequency values were augmented for frequencies less than 1.0 Hz and greater than 34 Hz. The refined frequency sampling is given below in Table 5-1.

Table 5-1. Augmented NRC frequency sampling used in the spectral matching.

Frequency Range (Hz) Increment (Hz) 0.10 - 0.30 0.02 0.30 - 1.00 0.05 1.00 - 3.00 0.10 3.00 - 3.60 0.15 3.60 - 5.00 0.20 5.00 - 8.00 0.25 8.00 - 15.00 0.50 15.00 - 18.00 1.00 18.00 - 22.00 2.00 22.00 - 34.00 3.00 40.00 - 100.00 5.00 5.2 Spectra for Little Salmon Fault Subsource In calculation GEO.HBIP.02.04, spectra were developed for the LSF subsource for rock site conditions for the horizontal components and for soil site conditions for the vertical

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 16 of 187 Date: 1 1/24/02 component. Therefore, the horizontal soil site spectra need to be developed using the site-specific amplification factors.

The development the soil spectra for the LSF subsource uses the following steps:

1. Estimate the HBIP site-specific amplification factors for the LSF subsource by interpolating the amplification factors based on the horizontal rock PGA for the LSF subsource.
2. Scale the fault normal and fault parallel components rock 5% damped spectra for the LSF subsource by the interpolated amplification factor from step 1.
3. Apply the high frequency spectral shape constraint to the 5% damped soil spectra from step 2.
4. Smooth the 5% damped soil spectra for fault normal and fault parallel components.
5. Interpolate the 5% damped horizontal and vertical soil spectra to the extended NRC frequencies (from 5.1 above) 5.3 Spectra for Cascadia Interface Subsource In calculation GEO.HBIP.02.04, spectra were developed for the Cascadia subsource for soil site conditions for both the horizontal and vertical components, but the horizontal spectrum had not been extrapolated from 4 to 10 seconds. Therefore, the horizontal soil site spectra do not need to be developed, as was the case for the LSF subsource.

The development the soil spectra for the Cascadia interface subsource uses the following steps:

1. The 5% damped horizontal soil spectrum for the Cascadia subsource is extrapolated to a period of 10 seconds.
2. Interpolate the 5% damped horizontal and vertical soil spectra to the extended NRC frequencies (from 5.1 above) 5.4 Spectra for Synchronous Rupture The soil spectra for synchronous rupture were developed in GEO.HBIP.02.04 for multiple damping values. The only modification needed is to interpolate the spectral values to the extended NRC frequencies for use in the spectral matching.

The development the soil spectra for the synchronous rupture used the following step:

1. Interpolate the horizontal and vertical soil spectra to the extended NRC frequencies (from 5.1 above)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 17 of 187 Date: 11/24/02 5.5 Time Histories for the LSF Subsource The program RSPMATCH is used to modify the time histories listed in Table 3-1 to match the LSF target spectra. The time histories for the LSF subsource will be combined with the time histories for the Cascadia subsource and rematched to the final design spectrum for the synchronous rupture. Therefore, the spectral matching for the subsources are not required to meet the numerical matching criteria given in SRP 3.7.1.

For the same reason, the matching for just the LSF subsource is only evaluated for 5%

spectral damping.

The development of the time histories for the LSF subsource used the following steps:

1. Four sets of initial time histories are selected (see Table 3-1). The selection process considered magnitude, distance to fault, duration, and fault normal displacement pulse characteristics. This selection is subjected to peer review.
2. Permanent tectonic displacements are removed from the time histories if needed to obtain the transient portions of the ground motions (e.g., without fling).
3. For each of the four sets, the 3-component time histories are modified to match the target spectra at 5% spectral damping using the program RSPMATCH. The modified time histories are subjected to peer review to determine that the non-stationary characteristics of the modified time histories are appropriate.

5.6 Time Histories for the Cascadia Interface Subsource The program RSPMATCH is used to modify.the time histories listed in Table 3-2 to match the Cascadia interface target spectra. The time histories for the Cascadia interface subsource will be combined with the time histories for the LSF subsource and rematched to the final design spectrum for the synchronous rupture. Therefore, the spectral matching for the subsources are not required to meet the numerical matching criteria given in SRP 3.7.1. For the same reason, the matching for just the Cascadia interface subsource is only evaluated for 5% spectral damping.

The development of the time histories for the Cascadia interface subsource used the following steps:

1. Two sets of initial time histories are selected (see Table 3-2). The selection process considered magnitude, distance to fault, and duration characteristics.

This selection is subjected to peer review.

2. For each set, the 3-component time histories are modified to match the target spectra at 5% spectral damping using the program RSPMATCH. The modified time histories are subjected to peer review to determine that the non-stationary characteristics of the modified time histories are appropriate.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 18 of 187 Date: 11/24102 5.7 Time Histories for Synchronous Rupture The program RSPMATCH is used to modify the synchronous rupture time histories to match the synchronous rupture target spectra.

The development of the synchronous rupture time histories used the following steps:

1. The time shift of the ground motions from the LSF subsource and Cascadia interface subsource are developed.
2. The time histories from the LSF subsource and the Cascadia interface subsource are combined in the time domain using the relative time shift from step 1.
3. For each set, the 3-component combined time histories are modified to match the target spectra at 5% spectral damping using the program RSPMATCH.

The modified time histories are subjected to peer review to determine that the non-stationary characterists of the modified time histories are appropriate.

4. The average of the response spectral values is determined at spectral damping values of 4%, 5%, and 7%.
5. The average spectrum is compared to the target spectrum at spectral damping values of 4%, 5%, and 7% to determine if the spectrum envelops the target spectrum at all damping values for each component.

5.8 Add Fling to Time Histories The fling component of ground motion is added to the fault normal and vertical time histories.

The development of adding the fling component of ground motion to the time histories used the following steps:

1. Determine the fling arrival time t, and transient motion polarity. An approximate arrival time of the S-wave is determined from the spectrum time histories due to transient displacements. The fling should arrive between the P and S waves. The arrival time of the fling (t 1 ) and the polarity of the transient motion are selected such that the fling velocity will constructively interfere with the velocity from the transient displacement.
2. Given tI from step 1, and the fling parameters (see section 4.10 and GEO.DCPP.01.012), the fling time history is computed using eq. (5-6).
3. Using the fling time history from step 2, the spectrum compatible synchronous rupture transient ground motion from 5.7, and the polarity for constructive

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 19 of 187 Date: 11/24/02 interference from step 1, the total fault normal and vertical time histories are computed using eq. (5-7). Since the polarity of the transient motion is selected such that the fling will constructively interfere with the S-waves, the polarity of the recorded ground motion is not considered. This is conservative since it always results in constructive interference.

4. Using the total fault normal and vertical time histories from step 3, the response spectrum is computed using the program SPCTRL.
5. The average spectrum (with fling) is compared to the target spectrum at spectral damping values of 4%, 5%, and 7% to determine if the spectrum envelops the target spectrum at all damping values for each component separately.

5.9 Compute Time Histories Cross-Correlations The cross-correlations of the final modified time histories are computed and checked against the requirements defined in ASCE 4-86.

The cross correlations are computed based on the following steps:

1. The cross-correlation of the 3-components acceleration time histories for each set is computed and checked that it is below 0.3 as required per ASCE 4-86.

5.10 Equations 5.10.1 Equation for log-log interpolation/extrapolation of response spectra The interpolation or extrapolation of the response spectral values is done using linear interpolation on the log spectral acceleration - log period. Given the spectral values Sal and Sa 2 at periods T, and T 2 , respectively, then using linear interpolation on the log-log values, the spectral acceleration at period T is given by ln(Sa(T)) = In(Sa(T1 )) + On(T) - ln(Tl)) In(Sa(T2)) - ln(Sa(T)) (5-1)

(~n(T) ln(Tj)) [ln(T2 ) - In(TI) 5.10.2 Equation for log-log interpolation amplification factors The interpolation of the amplification factors is done using linear interpolation on the log spectral amplification - log PGA. Given the amplification values Al and A 2 at PGA values of PGAI and PGA 2 , respectively, then using linear interpolation on the log-log values, the amplification at peak acceleration PGA 3 is given by

Calc Number:-GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 20 of 187 Date: 11/24/02 ln(A) = ln(A,) + (In(PGA3) - In(PGA)) ln(A2) - ln(A,) (5-2)

(ln(PA

3) n(PG 1 )) ln(PGA,) - ln(PGAM) 5.10.3 Converting Spectral Acceleration to Psuedo-Spectral velocity response spectrum A spectral acceleration response spectrum can be converted to a pseudo-spectral velocity (PSV) response spectrum based on the following equation (Hudson, 1979, page 60):

PSV(cms) = T *Sa(g) (980.5 cm/s(

where, PSV is in units of cm./sec, Sa is in units of g, and T is the spectral period in seconds. The inverse conversion from PSV to Sa is given by solving eq. 5-3 for Sa:

PSV *2rr( g Sa(g) = T 9O. (5-4)

Sa~g)

= T (980.5 cm/s) 5.10.4 Cross-correlation The absolute value of the cross-correlation of two time series, x(t) and y(t), is given by (Kanasewich, 1981, page 84)

Cross Correlation= I x(t,)y,) (5-5) 5.10.5 Equation for the Fling in Acceleration Using assumption 3.2 in Section 5.2.4 of Calculation GEO.DCPP.01.12, the fling acceleration time history is a sine wave when the time falls between ti and t1 + Tfling, where tj is the arrival time of the fling and Tfling is the duration of the fling. Therefore, the equation for the fling in acceleration is Accfling(t) = 0 for t< t<

Accfning(t) = A sin(wo(t- t1 )) for ti < t < ti + Tfling (5-6)

Accfling(t) = 0 for tI+ Tfling < t

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 21 of 187 Date: 11/24/02 where to = 2 7t / Tfling.

5.10.6 Time History with Fling The total fault parallel and vertical time histories are computed by adding the fling time history to the respective fault parallel and vertical time histories due to transient displacement with the polarity of the transient ground motion changed to result in constructive interference.

Acc(t) = polarity x Acctran(t) + Accfling(t) (5-7) 5.10.7 Equation for the Fling Amplitude in Acceleration The relations between the amplitude of the fling (A) in acceleration and the amplitude of the fault displacement (Dsitc)is given by A(cm/s2 ) D= ,2 (5-8) fling (from calculation GEO.DCPP.01. 12, eq 5-21 where Dsit, is the fault displacement at the site)

6. SOFTWARE The computer program RSPMATCH was used to perform the spectral matching calculations. This use of this program has been validated in calculation GEO.DCPP.02.02. There are two restrictions to the use of the program. First, the response spectra of the modified time histories needs to be recomputed using a verified program, and the time histories need to be peer reviewed in terms of the non-stationary character of the Waveforms. In compliance to these restrictions, the waveforms of the generated time histories were peer reviewed by Paul Somerville and spectral values of the generated time histories were calculated using the verified SPCTLR program (GEO.DCPP.01.32).

The response spectra of the final modified time histories were computed using the program SPCTLR. The use of this program has been validated in calculation GEO.DCPP.01.32.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 22 of 187 Date: 11/24/02

7. BODY OF CALCULATIONS 7.1 Estimation of the target spectrum at the augmented NRC frequencies.

The NRC recommended 75 frequencies for spectral matching (see Section 4.6). These frequencies were focused on high and moderate frequencies. Since the ISFSI work is concerned with low frequencies, a finer sampling of frequencies is used for frequencies less than 1.0 Hz. In addition, the sampling at very high frequencies (>40 Hz) is expanded.

The resulting frequency sampling is listed in Table 7-1.

Table 7-1. Augmented Frequency Sampling for Spectral Matching.

Frequency Range (Hz) Increment (Hz) 0.10 - 0.30 0.02 0.30 - 1.00 0.05 1.00 - 3.00 0.10 3.00 - 3.60 0.15 3.60 - 5.00 0.20 5.00- 8.00 0.25 8.00- 15.00 0.50 15.00- 18.00 1.00 18.00 - 22.00 2.00 22.00 - 34.00 3.00 40.00 - 100.00 5.00 7.2 Spectra for Little Salmon Fault Subsource 7.2.1 Step 1: Interpolate Soil Amplification factors -

The peak acceleration of the LSF subsource on rock is 1.509g (Table 4-2). The soil amplification factors given in Table 4-5 were interpolated for an input PGA value of 1.509 g using on eq. (5-2). The interpolated values are listed in Table 7-2.

These amplification factors were also interpolated (using eq. (5-1)) to the set of spectral periods that the horizontal rock target spectra are defined at (e.g., see Table 4-2). The amplification factors at a spectral period of 0.02 sec was set equal to the amplification factors at a spectral period of 0.01 sec. The interpolated values are listed below in Table 7-3 for each of the three soil profiles.

. Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 23 of 187 Date: 11/24/02 Table 7-2. Interpolated amplification factors to an input PGA of 1.509g.

Median Lower Bound Upper Bound Period #1 #2 #3 #4 #5 #6 #7 #8 #9 (sec) 1.4g 1.6g 1.509g 1.4g 1.6g 1.509g 1.4g 1.6g 1.509g 0.010 0.693 0.608 0.644 0.410 0.383 0.395 0.846 0.813 0.827 0.030 0.701 0.615 0.651 0.414 0.387 0.399 0.856 0.822 0.837 0.050 0.495 0.434 0.460 0.292 0.273 0.281 0.605 0.581 0.591 0.075 0.402 0.352 0.373 0.236 0.221 0.227 0.494 0.473 0.482 0.100 0.372 0.324 0.344 0.215 0.201 0.207 0.483 0.444 0.461 0.150 0.333 0.292 0.309 0.196 0.182 0.188 0.497 0.435 0.461 0.200 0.445 0.376 0.405 0.226 0.193 0.207 0.705 0.602 0.645 0.300 0.663 0.563 0.605 0.382 0.325 0.349 1.041 0.924 0.974 0.420 1.070 0.940 0.995 0.574 0.481 0.520 1.002 1.011 1.007 0.500 0.982 0.882 0.925 0.770 0.677 0.716 1.002 0.948 0.971 0.600 1.014 0.900 0.948 0.839 0.811 0.823 1.361 1.258 1.302 0.640 1.043 0.885 0.951 0.749 0.734 0.741 1.414 1.342 1.373 0.750 1.225 1.053 1.125 0.727 0.678 0.699 1.457 1.416 1.434 0.860 1.354 1.214 1.274 0.842 0.766 0.798 1.401 1.368 1.382 1.000 1.346 1.262 1.298 0.935 0.823 0.870 1.543 1.468 1.500 1.200 1.469 1.342 1.396 1.178 1.117 1.143 2.026 1.903 1.956 1.450 1.765 1.580 1.659 1.232 1.181 1.203 2.533 2.419 2.468 1.700 2.098 1.904 1.987 1.385 1.309 1.342 2.687 2.681 2.684 2.200 2.411 2.381 2.394 1.918 1.809 1.856 2.130 2.194 2.166 2.600 2.261 2.305 2.286 2.201 2.083 2.134 1.816 1.893 1.859 3.200 1.830 1.922 1.881 2.324 2.373 2.351 1.576 1.605 1.592 3.500 1.872 1.926 1.902 2.247 2.324 2.290 1.579 1.622 1.603 4.100 1.620 1.692 1.660 2.022 2.102 2.067 1.357 1.384 1.372 4.300 1.469 1.521 1.498 1.821 1.915 1.873 1.222 1.250 1.238 5.400 1.411 1.451 1.433 1.671 1.724 1.701 1.221 1.250 1.237 6.200 1.296 1.322 1.311 1.454 1.484 1.471 1.201 1.211 1.207 7.800 1.193 1.209 1.202 1.319 1.351 1.337 1.157 1.165 1.161 10.000 1.248 1.258 1.254 1.321 1.330 1.326 1.154 1.174 1.165

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 24 of 187 Date: 11/24/02 Table 7-3. Interpolated amplification factors to standard spectral periods.

Period (sec) Median Lower Bound Upper Bound 0.01 0.644 0.395 0.827 Set to value at 0.02 0.01 sec 0.03 0.651 0.399 0.837 0.05 0.460 0.281 0.591 0.075 0.373 0.227 0.482 0.1 0.344 0.207 0.461 0.15 0.309 0.188 0.461 0.2 0.405 0.207 0.645 0.3 0.605 0.349 0.974 0.5 0.925 0.716 0.971 0.75 1.125 0.699 1.434 1 1.298 0.870 1.500 1.45 1.659 1.203 2.468 1.5 1.724 1.231 2.513 Interpolated 1.7 1.987 1.342 2.684 2.0 2.235 1.646 2.344 Interpolated 2.2 2.394 1.856 2.166 2.6 2.286 2.134 1.859 3.0 1.998 2.282 1.671 Interpolated 3.2 1.881 2.351 1.592 -

3.5 1.902 2.290 1.603 4.0 1.696 2.100 1.406 Interpolated 4.1 1.660 2.067 1.372 4.3 1.498 1.873 1.238 5.0 1.455 1.757 1.237 Interpolated 5.4 1.433 1.701 1.237 6.2 1.311 1.471 1.207 7.0 1.252 1.398 1.183 Interpolated 7.8 1.202 1.337 1.161 10 1.254 1.326 1.165

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 25 of 187 Date: 11/24/02 7.2.2 Step 2: Apply amplification factors to the horizontal rock spectra for the Little Salmon Fault source Next the interpolated amplification factors for a PGA of 1.509g listed in Table 7-3 are applied to the fault normal and fault parallel rock target spectra for the Little Salmon fault (Table 4-2). The resulting scaled fault normal and fault parallel soil spectra are listed in Tables 7-4 and 7-5, respectively. These soil spectra are plotted in Figures 7-1 and 7-2.

Table 7-4. Fault normal soil spectrum for the Little Salmon fault source.

Fault Amplification Factor Soil Spectra (g)

Normal (Fr Im Table 7 -2)

Rock Sa(g) Lower Upper Lower Upper (from Median Bound Bound Median Bound Bound Envelope Period Table Sa(g)

(SeC) 4-2) 0.596 1.248 1.24 0.010 1.509 0.644 0.395 0.827 0.972 0.596 1.248 1.248 0.020 1.509 0.644 0.395 0.827 -0.972 0.596 1.248 1.248 0.030 1.535 0.651 0.399 0.837 0.999 0.612 1.285 1.285 0.050 1.976 0.46 0.281 0.591 0.909 0.555 1.168 1.168 0.075 2.465 0.373 0.227 0.482 0.919 0.560 1.188 1.188 0.100 2.868 0.344 0.207 0.461 0.987 0.594 1.322 1.322 0.150 3.587 0.309 0.188 0.461 1.108 0.674 1.654 1.654 0.200 3.896 0.405 0.207 0.645 1.578 0.806 2.513 2.513 0.300 3.667 0.605 0.349 0.974 2.219 1.280 3.572 3.572 0.500 2.854 0.925 0.716 0.971 2.640 2.043 2.771 2.771 0.750 2.167 1.125 0.699 1.434 2.438 1.515 3.107 3.107 1.000 1.860 1.298. 0.87 1.5 2.414 1.618 2.790 2.790 1.500 1.400 1.724 1.231 2.513 2.414 1.723 3.518 3.518 2.000 1.111 2.235 1.646 2.344 2.483 1.829 2.604 2.604 3.000 0.839 1.998 2.282 1.671 1.676 1.915 1.402 1.915 4.000 0.669 1.696 2.1 1.406 1.135 1.405 0.941 1.405 5.000 0.516 1.455 1.757 1.237 0.751 0.907 0.638 0.907 7.000 0.317 1.252 1.398 1.183 0.397 0.443 0.375 0.443 10.000 0.191 1.254 1.326 1.165 0.240 0.253 0.223 0.253

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 26 of 187 Date: 11/24/02 Table 7-5. Fault parallel soil spectrum for the Little Salmon fault source.

Fault Amplification Factor Soil Spectra (g)

Parallel (Fom Table 7-)

Rock Sa(g) Lower Upper Lower Upper (from Median Bound Bound Median Bound Bound Envelope Period Table Sa(g)

(sec) 4-2) 0.010 1.509 0.644 0.395 0.827 0.972 0.596 1.248 1.248 0.020 1.509 0.644 0.395 0.827 0.972 0.596 1.248 1.248 0.030 1.535 0.651 0.399 0.837 0.999 0.612 1.285 1.285 0.050 1.976 0.46 0.281 0.591 0.909 0.555 1.168 1.168 0.075 2.465 0.373 0.227 0.482 0.919 0.560 1.188 1.188 0.100 2.868 0.344 0.207 0.461 0.987 0.594 1.322 1.322 0.150 3.587 0.309 0.188 0.461 1.108 0.674 1.654 1.654 0.200 3.896 0.405 0.207 0.645 1.578 0.806 2.513 2.513 0.300 3.667 0.605 0.349 0.974 2.219 1.280 3.572 3.572 0.500 2.854 0.925 0.716 0.971 2.640 2.043 2.771 2.771 0.750 1.918 1.125 0.699 1.434 2.158 1.341 2.750 2.750 1.000 1.510 1.298 0.87 1.5 1.960 1.314 2.265 2.265 1.500 0.899 1.724 1.231 2.513 1.550 1.107 2.259 2.259 2.000 0.601. 2.235 1.646 2.344 1.343 0.989 1.409 1.409 3.000 0.302 1.998 2.282 1.671 0.603 0.689 0.505 0.689 4.000 0.180 1.696 2.1 1.406 0.305 0.378 0.253 0.378 5.000 0.132 1.455 1.757 1.237 0.192 0.232 0.163 0.232 7.000 0.081 1.252 1.398 1.183 0.101 0.113 0.096 0.113 10.000 0.049 1.254 1.326 1.165 0.061 0.065 0.057 0.065

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number 27 of 187 Date: 11/24/02 A

I I I I I lI I 11 i i!!tlt I 11 II t 1 i i~iit


Envelope SA (g)

_ . - Median SA (g) 3.5-Lower Bound SA (g) 1/ \1 1I I I

~

Upper Bound SA(g) iI\E I I 1 31 - 11 I I 11I I I II Ii ; Ni WMV i i i i i i+H

'R2.

0

.5 _ - __ _ _ ,__7,r0___

U 5- =---4--l -- = 7 V) 1.

5-~~ 111_- 4__

. _ IL O. __ I-- =-- 7 I__

O~~- I- _ _ _ _ _ I _ _ -

5-~_ ~ - -___,

0.01 0.1 i 10 Period (sec)

Figure 7-1. Horizontal fault normal soil spectra for the Little Salmon fault subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 28 of 187 Date: 11/24/02

'4-.........- .. ......

Ii I I I I lI I1i i 1 1 i I i1j f 0 0 i

  • M I . *.

Envelope SA (g) I 11 I I I I

- . - Median SA (g) I I I 3.5-

-- - Lower Bound SA (g)

Upper Bound SA(g) - - I I I 3- I I J -- I -1II I-H -- II V I- I I II I I I I I I 11 it I I r!r!hl II I I I, I I I I I I I 11 W I.- I A I !-I Ii

/

I I I "C02. 5, - -

'4 C)

U 2_ It'lm X $ ]ll1 5- ___ -- -  : M --

_ _ 71L --

.- __-_ _ =- - -1 0.

0- -_ .- _ -.

0.01 0.1 I 10 Period (sec)

Figure 7-2. Horizontal fault parallel soil spectra for the Little Salmon fault subsource.

Calc Number GEO.HBIP.02.05 Rev Number 0 Sheet Number: 29 of 187 Date: 11/24102 7.2.3 Step 3: Apply Empirical High Frequency Spectral Shape The empirical spectral shape (see Section 4.5) was next scaled to the soil spectra PGA.

The scaled empirical spectral shape spectra are plotted in Figure 7-3. For frequencies between 5-30 Hz the empirical spectral shape constraint controls both the fault normal and fault parallel soil spectra.

7.2.4 Step 4: Smooth the spectra Finally, the envelope of the soil spectra presented in Tables 7-4 and 7-5 and shown graphically in Figures 7-1 and 7-2 were smoothed to give a more typical spectral shape.

The smoothed soil target spectra for the fault normal and fault parallel component are listed in Table 7-6 and plotted in Figures 7-3a and 7-3b.

Table 7-6. Scaled smooth horizontal soil spectra for the Little Salmon fault subsource.

Period Fault Normal Fault Parallel (sec) SA (g) SA (g) 0.010 1.248 1.248 0.020 1.248 1.248 0.030 1.285 1.285 0.050 1.370 1.370 0.075 1.529 1.529 0.100 1.727 1.727 0.150 2.109 2.109 0.190 2.342 2.342 0.200 2.513 2.513 0.300 3.572 3.572 0.600 3.380 2.950 1.500 3.518 2.259 2.000 2.604 1.409 3.000 1.915 0.689 4.000 1.405 0.378 5.000 0.907 0.232 7.000 0.443 0.113 10.000 0.253 0.065

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 30 of 187 Date: I 1/24/02 3.5 -. ___

02)5

,21111iM1100iX1110I C.)

I*111Ld11 0.a)C, 144411 Perod (sec)

Figure 7-3a. Smoothed spectrum for the Fault Normal component for the LSF subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 31 of 187 Date: 11/24102 4-4-- _ _ _ _ _ _ - - _ _ _- _ _ _ _ _ _ __

3.5-2 3o- _--

1.5~~~~~~~~~~~~

0)

. _, _ _ _aul~t Panr;llel Enve lope_ .. _____

0.5- Empirical Constraint _ ___

Smoothed Fault Parallel _

0.01 0.1 I 10 Period (sec)

Figure 7-3b. Smoothed spectrum for the Fault Parallel component for the LSF subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 32 of 187 Date: 11124/02 7.2.5 Step 5: Interpolate LSF Subsource Spectra to Extended NRC frequencies The smoothed horizontal soil spectra from Table 7-6 and the vertical soil spectrum from Table 4-4 are interpolated to the frequency interval given in Table 7-1 using eq. (5-1).

The interpolated spectral values at 5% spectral damping for the three components for the LSF subsource are given in Table 7-7.

Table 7-7. LSF subsource spectra at 5% spectral damping.

Period (sec) Fault Normal Fault Parallel Vertical 0.0100 1.248 1.248 1.302 0.0105 1.248 1.248 1.302 0.0111 1.248 1.248 1.302 0.0118 1.248 1.248 1.302 0.0125 1.248 1.248 1.302 0.0133 1.248 1.248 1.302 0.0143 1.248 1.248 1.302 0.0154 1.248 1.248 1.302 0.0167 1.248 1.248 1.302 0.0182 1.248 1.248 1.302 0.0200 1.248 1.248 1.302 0.0222 1.258 1.258 1.423 0.0250 1.268 1.268 1.571 0.0294 1.283 1.283 1.802 0.0323 1.297 1.297 1.946 0.0357 1.313 1.313 2.118 0.0400 1.332 1.332 2.327 0.0455 1.354 1.354 2.588 0.0500 1.370 1.370 2.802 0.0556 1.410 1.410 2.906 0.0588 1.432 1.432 2.964 0.0625 1.455 1.455 3.027 0.0667 1.481 1.481 3.096 0.0690 1.495 1.495 3.133 0.0714 1.509 1.509 3.171 0.0741 1.524 1.524 3.211 0.0769 1.545 1.545 3.215 0.0800 1.571 1.571 3.200 0.0833 1.599 1.599 3.184 0.0870 1.628 1.628 3.167 0.0909 1.659 1.659 3.150 0.0952 1.692 1.692 3.133 0.1000 1.727 1.727 3.114 0.1053 1.771 1.771 3.070

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 33 of 187 Date: 11/24/02 0.1111 1.819 1.819 3.025 0.1176 1.871 1.871 2.978 0.1250 1.928 1.928 2.910 0.1290 1.958 1.958 2.870 0.1333 1.990 1.990 2.830 0.1379 2.024 2.024 2.789 0.1429 2.059 2.059 2.746 0.1481 2.096 2.096 2.704 0.1538 2.133 2.133 2.663 0.1600 2.170 2.170 2.624 0.1667 2.210 2.210 2.583 0.1739 2.252 2.252 2.531 0.1818 2.297 2.297 2.468 0.1905 2.350 2.350 2.404 0.2000 2.513 2.513 2.338 0.2083 2.604 2.604 2.287 0.2174 2.701 2.701 2.236 0.2273 2.808 2.808 2.183 0.2381 2.923 2.923 2.129 0.2500 3.050 3.050 2.063 0.2632 3.188 3.188 1.994 0.2778 3.341 3.341 1.924 0.2899 3.467 3.467 1.870 0.3030 3.569 3.562 1.817 0.3175 3.556 3.517 1.769 0.3333 3.542 3.470 1.720 0.3448 3.533 3.437 1.686 0.3571 3.523 3.404 1.652 0.3704 3.513 3.370 1.618 0.3846 3.502 3.335 1.583 0.4000 3.491 3.299 1.547 0.4167 3.480 3.262 1.506 0.4348 3.468 3.224 1.464 0.4545 3.456 3.185 1.422 0.4762 3.443 3.144 1.379 0.5000 3.429 3.102 1.335 0.5263 3.415 3.059 1.302 0.5556 3.401 3.013 1.269 0.5882 3.385 2.966 1.234 0.6250 3.386 2.915 1.198 0.6667 3.396 2.861 1.161 0.7143 3.406 2.804 1.123 0.7692 3.417 2.744 1.074 0.8333 3.429 2.681 1.006

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 34 of 187 Date: I 1/24/02 0.9091 3.442 2.614 0.936 1.0000 3.456 2.542 0.865 1.0526 3.464 2.504 0.819 1.1111 3.472 2.465 0.774 1.1765 3.481 2.425 0.729 1.2500 3.490 2.382 0.684 1.3333 3.500 2.338 0.639 1.4286 3.511 2.291 0.594 1.5385 3.426 2.167 0.550 1.6667 3.151 1.900 0.507 1.8182 2.877 1.648 0.464 2.0000 2.604 1.409 0.421 2.2222 2.404 1.170 0.379 2.5000 2.199 0.950 0.337 2.8571 1.987 0.751 0.295 3.3333 1.710 0.553 0.253 3.5714 1.587 0.479 0.236 3.8462 1.466 0.410 0.219 4.1667 1.297 0.346 0.203 4.5455 1.093 0.286 0.186 5.0000 0.907 0.232 0.169 5.5556 0.725 0.185 0.152 6.2500 0.564 0.144 0.135 7.1429 0.429 0.110 0.118 8.3333 0.337 0.086 0.101 10.0000 0.253 0.065 0.084

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 35 of 187 Date: 11/24/02 7.3 Spectra for the Cascadia Interface Subsource 7.3.1 Step 1: Extrapolation of Cascadia Subsource Snectrum The horizontal acceleration response spectrum for spectral periods of 0.02 and 0.03 seconds are set equal to the PGA spectral acceleration value.

For spectral periods greater than 4.0 seconds, the acceleration response values were computed by extrapolation using eq. 5-1 using the spectral acceleration values at T=3 and T=4 seconds. The extrapolated horizontal soil spectrum used in the spectral matching procedure for the Cascadia source is listed in column #3 of Table 7-8 and plotted in Figure 7-4.

Table 7-8. 84h percentile soil horizontal response spectrum for the Cascadia interface event extrapolated to 10 seconds period (5% spectral damping).

____________ #1 #3 84 h Percentile Extrapolated Spectral 8 4th Percentile Period SA (g) Spectral (sec) (From Table 7-8) SA (g)

PGA 0.8520 0.852 0.02 0.8520 Set equal to PGA value 0.852 0.03 0.8520 Set equal to PGA value 0.852 0.075 1.2144 1.214 0.1 1.3638 1.364 0.2 1.8896 1.890 0.3 1.8975 1.897 0.4 1.6987 1.699 0.5 1.5601 1.560 0.75 1.2459 1.246 1.0 0.9778 0.978 1.5 0.6290 0.629 2.0 0.4699 0.470 3.0 0.2951 0.295 4.0 0.1733 X 0.173 7.0 --- Extrapolated 0.062 10.0 --- Extrapolated 0.032

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 36 of 187 Date: 11/24/02 2 . . . . . . .

I I I I I I I-1 1 111 I L I I H ill I I I I0 1 A 1

I I1 I1 I1 III1 1 1I111 /4--

I A Ix II II IIII II II II II II II I 1.4- - I I I 00 1.2-

.E W

U 0.8.-

0.6-I I I I I I I I I - I I 0.4 --P. I I -

II III I I N I I -

- -U - II N'I I I IV / - . . . . . . - . . . . - - - . - . . . . . . .

,,,, - I I I . . .

, ,s, I - Cascadia Horizontal Soil Target Spectrum I I I . I I. I i i i !i  ! i iq

~ ~ I~ ~ I ~

U..,

I. .I ..11111 I I I I I......

- a -I 0.01 0.1 i 10 Period (sec)

Figure 7-4. Horizontal soil response spectrum for the Cascadia interface subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 37 of 187 Date: 11/24/02 7.3.2 Step 2: Interpolate Cascadia Subsource Spectra to Extended NRC frequencies The Cascadia subsource horizontal soil spectra from Table 7-8 and the vertical soil spectrum from Table 4-4 are interpolated to the frequency interval given in Table 7-1 using eq. (5-1). The interpolated spectral values at 5% spectral damping for the horizontal and vertical components for the Cascadia interface subsource are given in Table 7-9.

Table 7-9. Cascadia interface subsource spectra at 5% spectral damping.

Period (sec) Horizontal Vertical 0.0100 0.852 1.051 0.0105 0.852 1.051 0.0111 0.852 1.051 0.0118 0.852 1.051 0.0125 0.852 1.051 0.0133 0.852 1.051 0.0143 0.852 1.051 0.0154 0.852 1.051 0.0167 0.852 1.051 0.0182 0.852 1.051 0.0200 0.852 1.051 0.0222 0.852 1.140 0.0250 0.852 1.249 0.0294 0.852 1.416 0.0323 0.876 1.518 0.0357 0.911 1.637 0.0400 0.952 1.781 0.0455 1.000 1.958 0.0500 1.038 2.102 0.0556 1.081 2.273 0.0588 1.105 2.372 0.0625 1.131 2.482 0.0667 1.160 2.604 0.0690 1.175 2.670 0.0714 1.191 2.741 0.0741 1.208 2.816 0.0769 1.227 2.823 0.0800 1.246 2.793 0.0833 1.267 2.762 0.0870 1.289 2.731 0.0909 1.312 2.698 0.0952 1.337 2.665 0.1000 1.364 2.630

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 38 of 187 Date: 11/24/02 0.1053 1.397 2.534 0.1111 1.433 2.436 0.1176 1.472 2.337 0.1250 1.515 2.237 0.1290 1.538 2.186 0.1333 1.562 2.135 0.1379 1.587 2.083 0.1429 1.613 2.031 0.1481 1.641 1.978 0.1538 1.671 1.924 0.1600 1.702 1.870 0.1667 1.735 1.816 0.1739 1.770 1.761 0.1818 1.807 1.705 0.1905 1.847 1.648 0.2000 1.890 1.591 0.2083 1.891 1.522 0.2174 1.891 1.453 0.2273 1.892 1.385 0.2381 1.893 1.316 0.2500 1.894 1.248 0.2632 1.895 1.181 0.2778 1.896 1.113 0.2899 1.896 1.063 0.3030 1.890 1.012 0.3175 1.856 0.960 0.3333 1.822 0.908 0.3448 1.798 0.873 0.3571 1.774 0.839 0.3704 1.750 0.805 0.3846 1.725 0.771 0.4000 1.699 0.737 0.4167 1.673 0.703 0.4348 1.646 0.670 0.4545 1.618 0.637 0.4762 1.589 0.604 0.5000 1.560 0.571 0.5263 1.516 0.543 0.5556 1.472 0.515 0.5882 1.426 0.487 0.6250 1.379 0.458 0.6667 1.330 0.430 0.7143 1.280 0.402 0.7692 1.220 0.372

Calc Number: GEO.HBIP.02.05 Rev Number 0 Sheet Number: 39 of 187 Date: 11/24/02 0.8333 1.140 0.341 0.9091 1.060 0.310 1.0000 0.978 0.279 1.0526 0.925 0.262 1.1111 0.872 0.246 1.1765 0.819 0.229 1.2500 0.767 0.213 1.3333 0.715 0.197 1.4286 0.663 0.181 1.5385 0.613 0.168 1.6667 0.565 0.158 1.8182 0.518 0.148 2.0000 0.470 0.138 2.2222 0.416 0.128 2.5000 0.364 0.117 2.8571 0.312 0.106 3.3333 0.243 0.089 3.5714 0.213 0.082 3.8462 0.186 0.075 4.1667 0.161 0.068 4.5455 0.137 - 0.061 5.0000 0.115 0.054 5.5556 0.095 0.047 6.2500 0.076 0.041 7.1429 0.060 0.034 8.3333 0.045 0.028 10.0000 0.032 0.022

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 40 of 187 Date: 11/24/02 7.4 Spectra for Synchronous Rupture The soil spectra for synchronous rupture were developed in GEO.HBIP.02.04 for multiple spectral damping values. The only modification needed is to interpolate (using eq. (5-1)) the spectral values to the extended NRC frequencies for use in the spectral matching.

7.4.1 Step 1: Interpolate the horizontal and vertical soil spectra to the extended NRC frequencies The synchronous rupture soil spectra from Tables 4-5, 4-6, and 4-7 are interpolated to the frequency interval given in Table 7-1 using eq. (5-1). The interpolated spectral values at 4%, 5%, and 7% damping for the three components are given in Table 7-10. As a check of the interpolation, the spectral values are plotted in Figures 7-5a, 7-5b, and 7-5c for the fault normal, fault parallel, and vertical components, respectively.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 41 of 187 Date: 11/24/02 Table 7-10. Synchronous rupture soil spectra interpolated to the extended NRC frequencies.

Fault Normal Fault Parallel Vertical Period 4% 5% 7% 4% 5% 7% 4% 5% 1 7%

(sec) 0.0100 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0105 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0111 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0118 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0125 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0133 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0143 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0154 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0167 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0182 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0200 1.3160 1.3160 1.3160 1.3160 1.3160 1.3160 1.6730 1.6730 1.6730 0.0222 1.3298 1.3250 1.3181 1.3298 1.3250 1.3181 1.8404 1.8232 1.7983 0.0250 1.3455 1.3352 1.3204 1.3455 1.3352 1.3204 2.0475 2.0071 1.9495 0.0294 1.3673 1.3493 1.3236 1.3673 1.3493 1.3236 2.3721 2.2917 2.1792 0.0323 1.3863 1.3634 1.3309 1.3863 1.3634 1.3309 2.5683 2.4681 2.3289 0.0357 1.4095 1.3811 1.3405 1.4095 1.3811 1.3405 2.7997 2.6772 2.5082 0.0400 1.4358 1.4010 1.3514 1.4358 1.4010 1.3514 3.0821 2.9309 2.7241 0.0455 1.4660 1.4238 1.3637 1.4660 1.4238 1.3637 3.4349 3.2461 2.9900 0.0500 1.4890 1.4410 1.3730 1.4890 1.4410 1.3730 3.7240 3.5030 3.2050 0.0556 1.5386 1.4836 1.4054 1.5386 1.4836 1.4054 3.9397 3.6944 3.3646 0.0588 1.5662 1.5073 1.4233 1.5662 1.5073 1.4233 4.0619 3.8026 3.4545 0.0625 1.5959 1.5327 1.4426 1.5959 1.5327 1.4426 4.1956 3.9209 3.5524 0.0667 1.6283 1.5603 1.4633 1.6283 1.5603 1.4633 4.3429 4.0508 3.6597 0.0690 1.6455 1.5750 1.4744 1.6455 1.5750 1.4744 4.4223 4.1207 3.7174 0.0714 1.6636 1.5904 1.4859 1.6636 1.5904 1.4859 4.5060 4.1944 3.7780 0.0741 1.6825 1.6065 1.4979 1.6825 1.6065 1.4979 4.5944 4.2721 3.8419 0.0769 1.7088 1.6294 1.5162 1.7088 1.6294 1.5162 4.6073 4.2789 3.8411 0.0800 1.7399 1.6567 1.5386 1.7399 1.6567 1.5386 4.5801 4.2479 3.8060 0.0833 1.7729 1.6856 1.5622 1.7729 1.6856 1.5622 4.5519 4.2160 3.7697 0.0870 1.8079 1.7163 1.5871 1.8079 1.7163 1.5871 4.5226 4.1829 3.7323 0.0909 1.8453 1.7489 1.6137 1.8453 1.7489 1.6137 4.4923 4.1486 3.6936 0.0952 1.8852 1.7837 1.6419 1.8852 1.7837 1.6419 4.4608 4.1130 3.6536 0.1000 1.9280 1.8210 1.6720 1.9280 1.8210 1.6720 4.4280 4.0760 3.6120 0.1053 1.9801 1.8676 1.7114 1.9801 1.8676 1.7114 4.3290 3.9824 3.5262 0.1111 2.0365 1.9181 1.7539 2.0365 1.9181 1.7539 4.2270 3.8861 3.4379 0.1176 2.0978 1.9729 1.8001 2.0978 1.9729 1.8001 4.1218 3.7868 3.3469 0.1250 2.1650 2.0328 1.8503 2.1650 2.0328 1.8503 3.9981 3.6714 3.2428 0.1290 2.2010 2.0649 1.8772 2.2010 2.0649 1.8772 3.9310 3.6091 3.1870

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 42 of 187 Date: 11/24/02 0.1333 2.2388 2.0985 1.9053 2.2388 2.0985 1.9053 3.8630 3.5460 3.1303 0.1379 2.2785 2.1339 1.9349 2.2785 2.1339 1.9349 3.7938 3.4818 3.0728 0.1429 2.3205 2.1711 1.9660 2.3205 2.1711 1.9660 3.7235 3.4166 3.0144 0.1481 2.3647 2.2104 1.9987 2.3647 2.2104 1.9987 3.6521 3.3503 2.9550 0.1538 2.4065 2.2482 2.0312 2.4065 2.2482 2.0312 3.5822 3.2863 2.8987 0.1600 2.4481 2.2862 2.0644 2.4481 2.2862 2.0644 3.5123 3.2228 2.8434 0.1667 2.4922 2.3265 2.0995 2.4922 2.3265 2.0995 3.4411 3.1580 2.7870 0.1739 2.5390 2.3692 2.1368 2.5390 2.3692 2.1368 3.3583 3.0833 2.7226 0.1818 2.5888 2.4146 2.1765 2.5888 2.4146 2.1765 3.2651 2.9997 2.6511 0.1905 2.6420 2.4631 2.2188 2.6420 2.4631 2.2188 3.1704 2.9146 2.5783 0.2000 2.6990 2.5150 2.2640 2.6990 2.5150 2.2640 3.0740 2.8280 2.5040 0.2083 2.7982 2.6075 2.3472 2.7972 2.6065 2.3463 2.9862 2.7483 2.4350 0.2174 2.9055 2.7075 2.4372 2.9034 2.7055 2.4353 2.8974 2.6676 2.3650 0.2273 3.0220 2.8161 2.5349 3.0186 2.8129 2.5319 2.8075 2.5858 2.2941 0.2381 3.1489 2.9344 2.6413 3.1440 2.9298 2.6371 2.7163 2.5029 2.2221 0.2500 3.2878 3.0638 2.7577 3.2812 3.0577 2.7521 2.6165 2.4118 2.1422 0.2632 3.4403 3.2060 2.8856 3.4319 3.1982 2.8784 2.5140 2.3181 2.0600 0.2778 3.6088 3.3631 3.0269 3.5982 3.3532 3.0178 2.4103 2.2233 1.9767 0.2899 3.7472 3.4921 3.1429 3.7348 3.4805 3.1323 2.3317 2.1514 1.9136 0.3030 3.8630 3.6000 3.2400 3.8439 3.5822 3.2237 2.2541 2.0804 1.8510 0.3175 3.8630 3.6000 3.2400 3.8201 3.5600 3.2038 2.1821 2.0139 1.7919 0.3333 3.8630 3.6000 3.2400 3.7953 3.5369 3.1830 2.1090 1.9465 1.7319 0.3448 3.8630 3.6000 3.2400 3.7782 3.5210 3.1687 2.0597 1.9010 1.6914 0.3571 3.8630 3.6000 3.2400 3.7605 3.5045 3.1539 2.0099 1.8550 1.6505 0.3704 3.8630 3.6000 3.2400 3.7423 3.4875 3.1386 1.9595 1.8086 1.6091 0.3846 3.8630 3.6000 3.2400 3.7235 3.4700 3.1229 1.9085 1.7616 1.5673 0.4000 3.8630 3.6000 3.2400 3.7041 3.4519 3.1066 1.8570 1.7140 1.5250 0.4167 3.8630 3.6000 3.2400 3.6840 3.4331 3.0898 1.8015 1.6628 1.4794 0.4348 3.8630 3.6000 3.2400 3.6631 3.4137 3.0723 1.7453 1.6110 1.4334 0.4545 3.8630 3.6000 3.2400 3.6415 3.3935 3.0541 1.6886 1.5586 1.3868 0.4762 3.8630 3.6000 3.2400 3.6189 3.3725 3.0353 1.6311 1.5056 1.3397 0.5000 3.8630 3.6000 3.2400 3.5955 3.3506 3.0156 1.5730 1.4520 1.2920 0.5263 3.8630 3.6000 3.2400 3.5710 3.3277 2.9950 1.5293 1.4117 1.2561 0.5556 3.8630 3.6000 3.2400 3.5453 3.3038 2.9735 1.4846 1.3703 1.2193 0.5882 3.8630 3.6000 3.2400 3.5184 3.2787 2.9510 1.4387 1.3280 1.1816 0.6250 3.8630 3.6000 3.2400 3.4900 3.2523 2.9272 1.3916 1.2844 1.1429 0.6667 3.8630 3.6000 3.2400 3.4390 3.2049 2.8845 1.3431 1.2397 1.1031 0.7143 3.8630 3.6000 3.2400 3.3724 3.1430 2.8288 1.2932 1.1936 1.0621 0.7692 3.8633 3.6000 3.2397 3.2966 3.0724 2.7649 1.2321 1.1372 1.0118 0.8333 3.8641 3.6000 3.2385 3.2054 2.9866 2.6868 1.1508 1.0621 0.9447 0.9091 3.8650 3.6000 3.2373 3.1092 2.8960 2.6044 1.0684 0.9860 0.8768 1.0000 3.8660 3.6000 3.2360 3.0070 2.8000 2.5170 0.9850 0.9090 0.8080 1.0526 3.8656 3.6000 3.2365 2.9579 2.7545 2.4765 0.9323 0.8605 0.7649 1.1111 3.8652 3.6000 3.2370 2.9070 2.7074 2.4345 0.8799 0.8121 0.7220

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 43 of 187 Date: 11/24/02 1.1765 3.8648 3.6000 3.2376 2.8541 2.6584 2.3909 0.8276 0.7639 0.6792 1.2500 3.8644 3.6000 3.2382 2.7991 2.6074 2.3454 0.7.756 0.7159 0.6367 1.3333 3.8639 3.6000 3.2388 2.7417 2.5542 2.2980 0.7238 0.6681 0.5943 1.4286 3.8634 3.6000 3.2395 2.6816 2.4986 2.2484 0.6722 0.6206 0.5520 1.5385 3.8407 3.5795 3.2220 2.5801 2.4045 2.1643 0.6221 0.5744 0.5111 1.6667 3.7711 3.5157 3.1658 2.3998 2.2376 2.0145 0.5744 0.5307 0.4725 1.8182 3.5215 3.2840 2.9580 2.1701 2.0238 1.8228 0.5267 0.4868 0.4338 2.0000 3.2160 3.0000 2.7030 1.9300 1.8000 1.6220 0.4790 0.4430 0.3950 2.2222 2.8250 2.6369 2.3788 1.5256 1.4239 1.2842 0.4320 0.4000 0.3571 2.5000 2.4960 2.3317 2.1062 1.1926 1.1141 1.0060 0.3850 0.3568 0.3191 2.8571 2.2689 2.1220 1.9192 0.9348 0.8743 0.7907 0.3378 0.3135 0.2808 3.3333 1.9520 1.8285 1.6580 0.6916 0.6481 0.5880 0.2887 0.2686 0.2412 3.5714 1.8096 1.6965 1.5404 0.6019 0.5645 0.5130 0.2688 0.2503 0.2251 3.8462 1.6683 1.5653 1.4233 0.5184 0.4867 0.4431 0.2489 0.2321 0.2090 4.1667 1.4829 1.3928 1.2684 0.4362 0.4099 0.3737 0.2290 0.2138 0.1930 4.5455 1.2645 1.1891 1.0848 0.3572 0.3358 0.3067 0.2089 0.1954 0.1770 5.0000 1.0620 1.0000 0.9140 0.2870 0.2700 0.2470 0.1890 0.1770 0.1610 5.5556 0.8328 0.7840 0.7163 0.2282 0.2147 0.1965 0.1697 0.1587 0.1445 6.2500 0.6347 0.5972 0.5455 0.1765 0.1662 0.1521 0.1505 0.1405 0.1281 7.1429 0.4727 0.4447 0.4060 0.1330 0.1254 0.1147 0.1313 0.1225 0.1117 8.3333 0.3664 0.3447 0.3148 0.1011 0.0954 0.0872 0.1121 0.1047 0.0953 10.0000 0.2710 0.2550 0.2330 0.0730 0.0690 0.0630 0.0930 0.0870 0.0790

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 44 of 187 Date: 11/24/02 cm C:

0 C)

C) 0.

U, 0.

Perod (sec)

Figure 7-5a. Comparison of interpolated spectral values (Table 7-10) with the target spectra (Table 4-5) from Calculation GEO.HBIP.02.04 for the fault normal component.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 45 of 187 Date: 11/24/02 in-

.. t 1 1--.

I. XA Cn a-0

£1) 0

- .L . .... -.....

C,, o 4% damping 0.1- o 5% damping o 7% damping I I III II I I III

- 4% damping - interpolated I

- 5% damping - interpolated

- 7% damping - interpolated 0.01 I -* I I 0.I C).01 0.1 1 10 Period (sec)

Figure 7-5b. Comparison of interpolated spectral values (Table 7-10) with the target spectra (Table 4-6) from Calculation GEO.HBIP.02.04 for the fault parallel component.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 46 of 187 Date: 11/24/02 10- i 0)

C 0

a)

C.)

0.

C'a o 4% damping 0.1 o 5% damping- -

o 7% damping

- 4% damping - interpolated - -

- 5% damping - interpolated

- 47%damping - interpolated

. l 5%dampin - inerpolaed L1_ l l l _

0.0' 0.01 0.1 10 Period (sec)

Figure 7-5c. Comparison of interpolated spectral values (Table 7-10) with the target spectra (Table 4-7) from Calculation GEO.HBIP.02.04 for the vertical component.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 47 of 187 Date: 11/24/02 7.5 Time Histories for the LSF Subsource 7.5.1 Step 1: Selection of initial Time histories The initial time histories selected for the LSF subsource are given in Table 3-1 and are also listed in Table 7-11. The selection of these initial time histories was subjected to a peer review by Paul Somerville (Somerville, July 2002). The digital values of the initial time histories are given on the enclosed CD-Rom.

For the Chi-Chi earthquake time histories, the fling was removed from the recorded ground motion using the models developed in GEO.DCPP.01.12. The time history for the TCU052 station from the Chi-Chi earthquake was rotated to 060 degrees. The basis for this rotation is that the fling model fit was greatly improved for this rotation since it is close to a principal axis for displacement (see Calculation GEO.DCPP.01. 12).

Table 7-11. Input time histories used for the Little Salmon Fault spectral matching.

- Set Earthquake Magnitude Station Distance (km)

LSF1 09/20/99 Chi-Chi 7.6 TCU052 0.2 LSF2 09/16/78 Tabas 7.4 Tabas 3.0 LSF3 09/20/99 Chi-Chi 7.6 TCU102 1.8 LSF4 09/20/99 Chi-Chi 7.6 TCU068 1.1

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 48 of 187 Date: 11/24/02 7.5.2 Step 2: Remove Permanent Tectonic Displacements Two of the four sets of selected recordings have permanent displacements in the ground motions (station TCU052 and TCU068 from the Chi-Chi earthquake). In calculation GEO.DCPP.01.12, the permanent tectonic displacements (fling) were removed from the acceleration time histories. The parameters used to remove the fling are listed below in Table 7-12.

Table 7-12. Parameters estimated for the fling for the two sets of ground motions that include fling (from Table 6-6 in GEO.DCPP.01.12)

Set Earthquake Station Comp D (cm) tj (sec) Tning (sec)

LSF1 Chi-Chi TCU052 150 -839 33.0 4.4 LSF4 Chi-Chi TCU068 000 844 33.8 3.7 7.5.3 Step 3: Spectral Matching for the LSF Subsource The program RSPMATCH is used to modify the time histories to approximately match the target spectrum. Since the time histories will be combined with the Cascadia interface time histories and rematched to the synchronous rupture target spectra, the numerical criteria for enveloping a spectrum as defined in SRP 3.7.1 is not applied.

For each component of each set, three plots are shown: (a) the initial time history, (b) the spectra for the initial and final time history compared to the target spectrum and (c) the modified time history. The plots for the 12 components (4 sets x 3 components/set) are shown in Figures 7-6 to 7-17.

The average of the fault normal, fault parallel, and vertical components spectra for 5%

spectral damping are plotted in Figures 18a, b, and c, respectively. For comparison, the corresponding LSF soil target spectra are also plotted in each figure.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 49 of 187 Figure 7-6aFigure 7-6a. TCU052 fault normal starting input time histories. Date: 11/24/02 0.30 C) 0.00 C.)

-0.30 0 10 20 30 40 50 60 70 80 Time (sec) 87.00 O

(0 0.00

-87.00 10 20 30 40 50 60 70 80 Time (sec) 41* AM [ -I I I I I a I I I i I I I . I . I . . I . I I I I j I I . I i I I I I I

0) 0.00 A

-118.00

, I I I I I I I , , I I " I I I I I i I I I I i t It I I I I , I I I PISI(CMI) I -

0 10 20 30 40 50 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 50 of 187 Date: 11/24/02 Figure 7-6b.

CDi C

0 (a

C)

I-0.

I I

Period (sec)

Figure 7-6b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault normal component for the Little Salmon fault subsource for set LSFI.

. ..._.. .. .- .7 - - .

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 51 of 187 Figure 76c. Figure 7-6c. TCU052 fault normal modified time history for the Little 1iM6n4'Pult sourcE& .

2.00

-0.00

-2.00 It I I I I i 0 10 20 30 40 50 60 70 80 Time (sec) 373.00 ' I 0.00

-373.00 0 10 20 30 40 50 60 70 80 Time (sec) 328.00 0.00 E .r

-328.00 I I , , , , , , I , p5 (cm) 0 10 20 30 40 50 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 52 of 187 Figure 7-7a. Figure 7-7a. TCU052 fault parallel starting time histories. Date: 11/24/02 0.60 . . I

  • I I I I I I 0.00

-0.60 1 I II 0 10 20 30 40 50 60 70 80 Time (sec) 168.00 42 E 0.00

-168.00 I I jVel (cntsec) 0 10 20 30 40 50 s0 70 80 Time (sec) 89.00 . . I

  • I a
  • S I U I .

0.00

-89.00 I t I, I I I. I I I I I I .... Pscm, 0 10 20 30 40 50 60 70 so Time (sec)

L

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 53 of 187 Date: 11/24/02 Figure 7-7b.

10.00*

ht I-l ,_

.I--

-rLL -

I 1

.,I 7

i-i .

2--r I -1

-j

_. -+----- ! - -- 4- I I i -r I t .

. .t. . .

-a, I1- I 1.0 Cn 0

4-o--1 ___ 1 1 C/,

0.1 I

--- L i,___

j I

LSF-utPrle

__--r tagt Spetrum I. .

i I_-_-_

1 1- r-- I1 11-I1 i II 0.0 0.010 0.100 1.000 10.000 Period (sec)

Figure 7-7b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault parallel component for the Little Salmon fault subsource for set LSFI.

I

I Figure 77c.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 54 of 187 Figure 7-7c. TCU052 fault parallel modified time history for the LittlPISlWM/Plault source.

2.00 0.00 0

-2.00 0 10 20 30 40 so 60 70 80 Time (sec) 280.00 I

0 CD 0.00 E6

-280.00 I ~ , ~, ~I ~~ ~ ~ ~~~~~~~

  • 1de cI Ie 0 10 20 30 40 50 60 70 80 Time (sec) 98.00 E

0.00 C.

-98.00 0 10 20 30 40 50 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 55 of 187 Figure 7-8a Figure 7-8a. TCU052 vertical starting time histories.

Date: 11/24/02 0.20 0n 0.00 0

-0.20 0 10 20 30 40 So 60 70 80 Time (sec) 44.00 0

Cl)

,0.00 44.00 0 10 20 30 40 50 60 70 80 Time (see) 44.00 E

0.00 C0 44.00 0 10 20 30 40 50 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 56 of 187 Date: 11t24/02 Figure 7-8b.

In nn_

lU .UU _ _

.Lt 1 4 ...... I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 -Ut CD u- _=_: I I ___ I - -- _ '.,, _

0 (U i--__ I-----!-t - i t --- -r ,-t

-a

r---0;11.1+

-~ _¢__4- -1 I

_ _, 0 ~~____ tI _ ____ t C,, _ __ X _____'

_ , i! . __ i _ _ ___>

0.1(

I Si

__zz_ z t-~~ -i.r--1 l _ _ _ -

.  ; Ii

__ _ I t__. j __ ._ 4 __. !ji!

4.-. LSF- Vertical Target Spectrum t -!.---I

  • ---- Initial Time History Scaled to Target PGA ll tlI Modified Time History I T I' i__

0.0' I- I. I , . '0.1 0 I 1I l. l 0.010 0.100 1.000 10.000 Period (sec)

Figure 7-8b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the vertical component for the Little Salmon fault subsource for set LSFI.

. .. W`....I .

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 57 of 187 Figure 7-8c. Figure 7-8c. TCU052 vertical modified time history for the Little SaIAMi RIgfis~ource.

2.00 C-) 0.00 U

-2.00 0 10 20 30 40 50 60 70 so Time (sec) 101.00 U

0)

(I)

U 0.00 0)

-101.00 0 10 20 30 40 50 60 70 80 Time (sec) 97.00 , ,I, , I,, I, I II I , I I 4, 1 I I I E . I T-I I I . Is I i I I I(

E 0 0.00

-97.00 0 10 II, IIIIII- I- I, II III, , I, I f. . , plS.

20 30 40 50 60 (cm)

I 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 58 of 187 Figure 7-9a. Figure 7-9a. Tabas fault normal starting time histories. Date: 11/24102 883.00 0.00 0

-883.00 10 20 30 40 50 60 Time (sec) 107558.00 a,

(D 0.00

-107558.00 0 10 20 30 40 50 60 Time (sec) 55494.00 E

lu 0.00 0

-55494.00 0 10 20 30 40 50 60 Time (sec)

-: '-7'--

Calc Number GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 59 of 187 Date: 11/24/02 Figure 7-9b.

CD 0

a.).

ci, Period (sec)

Figure 7-9b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault normal component for the Little Salmon fault subsource for set LSF2.

I . '. . ..: . '.' s - .

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 60 of 187 Date: 1 1/24/02 Figure 7-9c. Figure 7-9c. Tabas fault normal modified time history for the Little Salmon Fault source.

2.00 o0.00 ACT(()

-2.00 I I Vei(cn seI 0 10 20 30 40 so Time (sec) 589.00

~0.00 0 10 20 30 40 so Time (sec) 0.00

-284.00 0 10 20 30 40 5 Time (sea)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 61 of 187 Figure 7-1 Oa. Tabas fault parallel starting time histories. Date: 11/24/02 Figure 7-lOa.

959.00 IU 0.00

-959.00 0 10 20 30 40 50 60 Time (sec) 104113.00 0

Ca, 0.00

.104113.00 0 10 20 30 40 50 60 Time (sec) 70555.00 0.00 0

-70555.00 0 10 20 40 50 60 Time (sec)

. .. :I I. 4

. 4 .. . .

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 62 of 187 Date: 11/24/02 Figure 7-1 Ob.

10.00 l

_ _ _ _-iL ,- -i I -4

- ! Ii II I II

!I.

i I

-i- .-

I i i IF ,. t i I

_.__,_ 1.

--s -i.:

._L I

' i: ' I I

i-- ,  ! '-

i I i i T r~~L..:

._. I_ ._. L

-.______ 4 . ,.'--:.<i

"-1 -

1.1I H I

_ WL I 11411 . . . I  : . .1  ! VA i I I Cn 0 t,'t_ __ ii I . I_5 1u I-co U)

_ _ _ . L______ _____i ____

0.'

1 _. ,._I _._,. I_ _ _ _ _ _ _ _ _

- - LSF - Fault Parallel Target Spectrum

.----Initial Time History Scaled to Target PGA _ __ .

Modified Time History 0]. 01- ,

______________ ,, _ , ,- .rt.,. *-r T,, ,

0.010 0.100 1.000 10.000 I Period (sec)

Figure 7-lOb. Initial response spectrum scaled to the target PGA value, modified response

, spectrum and target response spectrum for the fault parallel component for the Little Salmon fault subsource for set LSF2.

Calc Number GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 63 of 187 Figure 7-loc. Figure 7-1 Oc. Tabas fault parallel modified time history for the LittlEd lrFh1W?'flult source.

2.00 cm 0 0.00 U

I

-Acc (g)

-2.00 0 10 20 30 ' 40 50 Time (sec) 159.00 0

(I) 0.00

.159.00 0 10 20 30 40 50 Time (sec) 71.00 0

0.00 a,

O

-71.00 0 10 20 30 40 50 Time (sec)

.. , .o

. . .. . .... .i 1 , '.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 64 of 187 Figue 711 Figure 7-1 1a. Tabas vertical starting time histories. Date: I 1/24/02 0.70 cm 0.00 8

-0.70 0 10 20 30 40 Time (sec) 45.00 C.)

0.00 I I I Ia I I I I I I I I I ~ ~~~~~~~~~~~Vel (crn/sec)

.45.00 0 10 20 30 40 Time (sec) 16.00 E

0.00 a,

.16.00 0 10 20 30 40 Time (see)

. . : . 1. . ' .

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 65 of 187 Date: 11/24/02 Figure 7-1 lb.

In I V.

nn - J 00u- I__'_1__-I '

1.

!_;_ _i _._ _........

i _ _i__1_ _._...

I _ 1_

CD 0

a) 10-_ _ _,_ ,' 1*--......... _ .___ .

_ . _}_. .

_ ... F1 --

. __ .__ inif

- -- ij 0 C.)

C.)

01)

C,,

o.

0 1i*

  • iz! j l , l i_

L-SF - Vertical Target Spectrum

.r-Initial Time History Scaled to Target PGA 1

-Modified Time History o.

0.010 0.100 1.000 10.000 Period (sec)

Figure 7-1 lb. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the vertical component for the Little Salmon fault subsource for set LSF2.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 66 of 187 Figure 7-1 Ic. Figure 7-11 c. Tabas vertical modified time history for the Little SaIrdlkf 1 urce.

2.00 CD U 0.00 U

-2.00 0 10 20 30 40 Time (sec) 121.00 I IA I I I I I I II I I I I I I I 0)

C.)

C) 0.00 Vel (CnVsec)

-]ZI.U' 0 10 20 30 40 Time (sec) 59.00 E

0.00 0t C]

-59.00 0 10 20 30 40 Time (sec)

Calc Number. GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 67 of 187 Date: 11/24/02 Figure 7-12t Figure 7-1 2a. TCU 102 fault normal starting time hisltones.

0.40 0

C.) 0.00 Q

-0.40 L . I I I I . . .

I I I I I

I . . .

I I -

I .

. I I . . . . .

I

^Cc (g9 I . . . .

0 10 20 30 40 50 60 70 80 Time (sec) 92.00 U

a) a)

0.00

-92.00 0 10 20 30 40 so 60 70 80 Time (sec) 140.00 E IIt III I. a . i I I . I . I . I I I I 6 I I I I j I I ~I~ (I I

." 0.00

-140.00 0 10 20 30 40 50 60 70 80 Time (see)

.1. . . ..

,; . , , . . . .. - I ..I .

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 68 of 187 Date: 11/24/02 Figure 7-12b.

1 0.00 --

ci 0

C.)

C.)

C')

Period (sec)

Figure 7-12b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault normal component for the Little Salmon fault subsource for set LSF3.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 69 of 187 Figure 7-12c. Figure 7-12c. TCU1 02 fault normal modified time history for the Litt~alA~VPault source 2.00 o 0.00 S

  • 2.00 0 10 20 30 40 50 60 70 s0 Time (sac) 490.00 U

CD

'0.00

-490.00 0 10 20 30 40 50 70 80 Time (sac) 353.00 0.00 t) 0

-353.

0 10 20 30 40 50 60 70 80 Time (sac)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 70 of 187 Date: 11/24/02 Figure 7-13a. Figure 7-13a. TCU102 fault parallel starting time his,tories.

0.30

. 0.00 C.

-0.30 0 10 20 30 40 50 60 70 80 Time (sec) 74.00 0) 20.00

-74.00 0 10 20 30 40 50 60 70 80 Time (sec) 48.00 E

0.00 I I I

  • I I I I I I I I I I I tI I I I I I - ' I~ "l I 0

48.00 0 10 20 30 40 50 60 70 s0 Time (sec)

Calc Number GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 71 of 187 Date: 11/24/02 Figure 7-13b.

4 n nn I U.U U _ _ _ _ _ _ _ _ _ _ _ _ _L l '-/

i -on~~~i I i l . j i, ,' i I i "' Th C) __._ __ tI i -t~ t_,ii ii., js C) 0: __ ii t ___ I ! I..L..i.

_ -_ t-Ii

_~~~~~~~~~~~~~I

_ii l z

I,;i I !I ri i I-II i *is

=___ ___!______ I II

- LSF -Fault Paralleli Target Spectrum I . I I

. ---. Initial Time History Scaled to Target PGA lj I

-Modified Time History l i, O.( _ TTITJ'.rIzi-0.010 0.100 1.000 10.000 Period (sec)

Figure 7-13b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault parallel component for the Little Salmon fault subsource for set LSF3.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 72 of 187 Figure 713c. Figure 7-1 3c. TCU1 02 fault parallel modified time history for the LitIItSdlI0(P?:ault source.

2.00 jul I

  • I I I
0) 0.00

-2.00 0

I 10 I I I 20 a lI 30 l I 40 lI 50 I . I 60 I .. 70IC~(g" I §l I I i, 80 l I I @ I l i I

Time (sec) 194.00 I I I I I j I I I I I I I CD) a)

CD)

-194.00 0 10 20 30 40 S0 60 70 80 Time (sec) 91.00 0.00 0 10 20 30 40 s0 60 70 so Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 73 of 187 Date: 11/24/02 Figure714& Figure 7-14a. TCU1O2 vertical starting time histories I.

0.20

-a U 0.00 C.

-0.20 0 10 20 30 40 So 60 70 80 Time (sec) 69.00 0

0)

U) 0.0o

-69.00 0 10 20 30 40 50 60 70 80 Time (see) 54.00 4 I . . I . I I I I I I I . . . I I I I j I I I I I . I I . I I I I I I I 0

o 0.00 U) is (cm)

I I I I I . I I I I I I I I I I I I . I I I , , I I I I I I I I I . p A f

-54.00 0 10 20 30 40 50 60 70 80 Time (sec)

I-

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 74 of 187 Date: I 1/24/02 Figure 7-14b.

10.00,--

-B C

0 I.-

a, I)

CO 0.

Period (sec)

Figure 7-14b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the vertical component for the Little Salmon fault subsource for set LSF3.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 75 of 187 Figure 7-14c. Figure 7-1 4c. TCU1 02 vertical modified time history for the Little Sa~iri nlAII0source.

o.

0.0 0.0

-2.00 . . I . I I . . ,I , .'cctg) 0 10 20 30 40 50 60 70 80 Time (sec) 100.00

~0.00 CD

.100.00I I I 0 10 20 30 40 50 60 70 80 Time (sec) 81.00 . . . I 0.00 02

-81.00 . I I . I I . I .. , I , ()

0 10 20 30 40 50 60 70 80 Time (sec)

I 4

i Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 76 of 187 Figure 7-15a. Figure 7-15a. TCU068 fault normal starting time histories. Dt:I1/40 0.60 cm 0.00 0

-0.60 0 10 20 30 40 50 60 70 Time (sec) 136.00 0

a, cn 0.00 vel (cn-sc),

.136.00 I D ~~10 20 30 40 s0 60 70 Time (sec) 194.00 I i I I I I I . I I . I I . I I . . I I - I I . I I . I I 0E 0.00

.L n

O

, I II I I I II .I I I t t I I I I I I t I t I -L- I I ls (cm )

.194.00 0 10 20 30 40 50 60 70 Time (sec)

.I I . . ...7~~~~~~~~~~~~~~

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 77 of 187 Date: 11/24/02 Figure 7-15b.

1 0.00-p-C 0

I-a)

C',

10.000 Period (sec)

Figure 7-15b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault normal component for the Little Salmon fault subsource for set LSF4.

Calc Number: GEO.HBlP.02.05 Rev Number: 0 Sheet Number: 78 of 187 Figure 7-15c. TCU068 fault normal modified time history for the LitfttSah~tWMFault source.

Figure 7-15c.

2.00 0

0.00 0

to

-2.00 10 20 30 40 50 60 70 Time (sec) 411.00 E

0 0.00 a,

-411.00 0 10 20 30 40 50 60 70 Time (sec) 314.00 E

0 0.00 iI I I i I . . I . . I I I. I I I

  • DII I I)

-314.00 0 10 20 30 40 50 60 70 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 79 of 187 Figure 7-16a. Figure 7-16a. TCU068 fault parallel starting time histories. Date: 11/24/02 0.50 C) o.o0 0

-0.50 0 10 20 30 40 50 60 70 80 Time (sec) 98.00 I I I I I I I I I ~I I II

  • III I I I I ~

0 8) to) 0.00 V el,(clrvsec)

-98.00 0 10 20 30 40 50 60 70 80 Time (sec) 103.00 E

0.00 0e 0

-103.00 0 10 20 30 40 50 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 80 of 187 Date: 1 1/24/02 Figure 7-16b.

1 0.00 -r-0)

CD 0

C.)

U)

Period (sec)

Figure 7-16b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault parallel component for the Little Salmon fault subsource for set LSF4.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 81 of 187 Figure 7-16c. Figure 7-1 6c. TCU068 fault parallel modified time history for the Lie atrmnFault source 2.00 tM C. 0.00 U

-2.00 0 10 20 30 40 50 60 70 Time (sec) 220.00 0

(A 0.00 II I ~ ~ ~ ~ ~ ~ ~ ~~

I I 1 I I

-220.00 0 10 20 30 40 50 60 770 Time (sec) 99.00 E

0.00

-99.00 0 10 20 30 40 50 60 70 Time (sec)

Caic Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 82 of 187 c Date: 11/24/02 Figure 7-17a Figure 7-17a. TCU068 vertical starting time histories .

2 0.30 o 0.00 O.

-0.30 0 10 20 30 40 50 60 70 Time (sec) 79.00 U

CD, a, 0.00

-79.00 0 10 20 30 40 50 60 70 Time (sec) 112.00 e)

Ci 0.00 *I I II I i I* I I I I I I iI I *I I *

-112.00 0 10 20 30 40 50 60 70 I Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 83 of 187 Date: 11/24/02 Figure 7-17b.

1 0.00 ~Fi -- - --- - ;3 ;I tI . I .. T .

! t-I

_ _ .._ i _. _. . _ , _-_ ..

-f - t--I i- - _I - 1.L I, ....nAn CD 0.

Ci, 0.10

.1 I fl, I t'1 ~i ___ ___ ___

LSF -Vertical Target Spectrum

.InitialTime History Scaled to Target PGA

-Modified Time History r i 0.01 __

0..010 0.100 1.000 1 0.000 Period (sec)

Figure 7-17b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the vertical component for the Little Salmon fault subsource for set LSF4.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 84 of 187 Figure 7-17c. Figure 7-1 7c. TCU068 vertical modified time history for the Little Samrnon 1 alffsource.

2.00

  • I I
  • I I I I I 00 0.~

-2.00 . I I I AC (g).70 o 10 20 30 40 50 60 70 Time (sec) 103.00 E 0.00

-103.00 ,I*

0 10 20 30 40 50 60 70 Time (sec) 133.00 0.00

-t33.00 . I0 0 0 0 70 o 10 20 30 40 so 60 70 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 85 of 187 Date: 11/24/02 Figure 7-18a.

A I I i I i?

-_ _ - _ _ _ _ ~J .4 4_ _ ___ _

.-.--L.- -L--L- L.,',

3.5 -4 --- I I-t i -II

++

F-'-----

~~~~~I___

?sJ I

7%61b-~

I A

-- t; ; I, I !I H..

? I

.1 I If I~~~~~~~~~~~~ in I I

. __ -I k' j{i - i izXji,. ?

.__,_____i__i Z I , _ _ I i i Ijj_

___..__ --- ii iZ ,-ss if ,jt__.__

oo 2.5- , I i 4 - Ii 0 . __ .  ?

CE!

CU 2- i l I 1II _ _ L t I-2.5-_.?

1. 'i i ?5 Ci I- __ _i 2 - _ _ -F a l N o r mal a g S p ect r u m iT

. _ _ _ _ _ _ _ _ _  : !i , Il l  ! [

__________~~~~~~~~~~~~~~~~~~~~i I i

_ -- ~LSF -Fault Normalf Target Spectrum -l Average Fault Normal Match __ I 1.00~~~~11 .

0.01 0.10 1.00 10.00 Period (sec)

Figure 7-1 8a. Compairson of average 5% spectral damping response spectrum for the fault normal componet and the soil target spectra for the LSF subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 86 of 187 Date: 11/24/02 Figure 7-1 8b.

'1.-i -

I;____ _____

I ivizzII _____ ______VFP I

.3 I I I' &\ l1i i.-__ _ _  ! I__ t_+_. ~ ~ .l i __

.3-

. _ _ _I I _ _ _ _ _ I. i  ! j l '

3~ _ _ _I_ _ I ' i . -

..-- ,I ;ti ii\\ X<1 _ _ _ i I i ,i

.5-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 Q02

__ _ I =_ I

I'1 v1g41 C.2 C.) 2 - _ _; I II

- _ fi - II 7 11j

____, / - __ -__ , ,1 l m , I

' _ _ I_ ___,_I, . , I I I, IX I

_____ I__tj I t I ~i1 I

_ 5 - i l ,1 1 I I II - li n -

O.

1- LSF -Fault Parallel Target Spectrum


Average Fault Parallel Match i V~~~~~- - - IS^IrIIIsWTr

-00 0.01 0.10 ' 1.00 10.00 Period (sec)

Figure 7-18b. Compairson of average 5% spectral damping response spectrum for the fault parallel componet and the soil target spectra for the LSF subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 87 of 187 Date: 11/24/02 Figure 7-18c.

-- -- -- -- ---- 4 ---- .- -- I- I . .

i !. i. I I .. ; I I lI !-j- I

I ! I .i I  ! 6 I I I i I I ' 1 . 11 i

I 3.' - i I .

i . I 4-- - - - ... ...j -- ____ . ------ .--- I4-- -- -I II---aI I I .  !  ! I I I

__________ - I --- II1 ......... ...... lii III fN It**

I 1 1 i-*-I-I--i j

i I

'44-

-j_

_____ £ I IiI'I I J1K29 Ivi

, rI 0 I=.J1- '. i*t4

    • X*i I
  • e Q

0 2-2 __

ii- -- ,i§ _m I--I-ei

.2 _____ 7l Z1T L 2aT .1L

&, 1.5 / =__ i -

1-~~~~ i ' 1X I 0.5- __ _ .  !

_- LSF - Vertical Target Spectrum t I FT I

- - - Average Vertical Match 0.01 0.10 1.00 10.00 Period (sec)

Figure 7-18c. Compairson of average 5% spectral damping response spectrum for the vertical componet and the soil target spectra for the LSF subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 88 of 187 Date: 11/24/02 7.6 Time Histories for the Cascadia Interface Subsource 7.6.1 Step 1: Selection of initial Time histories The initial time histories selected for the Cascadia interface subsource are given in Table 3-2. The selection of these initial time histories was subjected to a peer review by Paul Somerville (Somerville, July 2002). The digital values of the initial time histories are enclosed on the CD-Rom.

7.6.2 Step 2: Spectral Matching for the Cascadia Interface Subsource The program RSPMATCH is used to modify the time histories to approximately match the Cascadia interface subsource target spectra. Since the time histories will be combined with the LSF time histories and rematched, the numerical criteria for enveloping a spectrum as defined in SRP 3.7.1 is not applied.

For each component of each set, three plots are shown: (a) the initial time history, (b) the spectra for the initial and final time history compared to the target spectrum and (c) the modified time history. The plots for the 6 components (2 sets x 3 components/set) are shown in Figures 7-19 to 7-24.

The average of the two horizontal, and vertical components spectra for 5% spectral damping are plotted in Figures 25a, b, and c, respectively. For comparison, the corresponding Cascadia interface subsource soil target spectra are also plotted in each figure.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 89 of 187 Figure 7-19 Figure 7-19a. La Union fault normal starting input time histories. Date: 11/24/02 0.20 1,,,a I, .,, I ,-I I I,,, I I , I ., I, I

- .I~All o 0.00-0

--19 I I I r I I I * . I I I I II r I II I . II I I I Acc(gI

-0.20 l 0 10 20 30 40 50 60 70 Time (sec) 14.00 CO 0.00

.14.00 0 10 20 30 40 50 60 70 Time (sec) 7.00 E

CO MO A

-7.00 ILIIIIw 0 10 20 30 40 50 60 70 Time (sec)

I I

Calc Number: GEO.HBIP.02.05 I

Rev Number: 0 I Sheet Number: 90 of 187 Date: 11/24/02 Figure 7-19b.

IA An i - i I I' 1  ; ; : I , 1' '


-.. r-.-- -4 --44-41-- i I l

' --- ;I +

.~~~~~~~~* _ ______

__ _ _  !  :  : - -- -  :*t *- \ ... I.7_ _ ~

1-n 0

a, a-C,, :_ __ I ___,  ! -ilZ[Ij 0.1 0 _ _

- t--t

- Hi -g

_ _ - - - Spectrum. I i - i i ~ - laIi I

2r 0.0 I..*

1 -~..

_ Cascadia

- Horizontal Target Spectrum

-- Initial Time History Scaled to Target PGA-_

Modified Time History

,, I . . , , I I I tIi_

A~~~~~~~~~~~~~ _ _ . _

I. 0.01 0.10 1.00 10.00 Period (sec)

I i

i

. . 1 Figure 7-19b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault normal component for the Cascadia I

subsource for set CAS 1.

il F

II il

.. I .

Calc Number GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 91 of 187 Figurm7-19c. Figure 7-19c. La Union fault normal modified time histories. Date: 11/24/02 0.90 co

!g 0 0.00 C)

-0.90 0 10 20 30 40 50 60 70 Time (sec) 70.00 0

0) co 0.00

.70.00 0 10 20 30 40 50 60 70 Time (sec) 27.00 E

- 0.00 20 .

C] -0 0 10 20 30 40 50 s0 70 Time (sec)

I .n,. --- l-,

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 92 of 187 Figure 7-20a Figure 7-20a. La Union fault parallel starting input time histories. Date 11/24/02 0.20 cm 0 0.00 C.

-020 0 10 20 30 40 50 60 70 Time (sec) 22.00 C,

02 E

0 0.00

-22.00 0 10 20 30 40 50 60 70 Time (sec) 15.00 E

O 0.00

-2 a

-15.00 0 10 20 30 40 50 60 70 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 93 of 187 Date: 11/24/02 Figure 7-20b.

l Iv.vII IH ItI- I

' .-- j j . , -- ,I - I1.

__  ! .I: _ _ _iI_,_i___ _ ______

allow;~~L

__i_- K-

_-lj .

A 1.

0 .

^^

I iti I I.

0 I.-

s..

M 0

4-C.)

0.

CL) 0.1

_ _  : 1I E I I I :I I Cascadia - Horizontal Target Spectrum 1

.-- Initial Time History Scaled toTarget PGA Modified Time History ,

O.C 0.01 o.1o 1.00 10.00 Period (sec)

Figure 7-20b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault parallel component for the Cascadia subsource for set CAS 1.

I I 7 . '., ,

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 94 of 187 Date: 11/24/02 Figure 7-20c. Figure 7-20c. La Union fault parallel modified time h istories.

0.90 t 0.00 t.

.0.90 0 10 20 30 40 50 60 70 Time (sec) 83.00 a,

Co 0.00 43.00 0 10 20 30 40 50 60 70 Time (sec) 37.00 E

0 0.00

-37.00 0 10 20 30 40 50 60 70 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 95 of 187 Date: I11/24/02 Figure 7-21a. Figure 7-21a. La Union vertical starting input time histories.

0.20 I hi o 0.00

-0.20 0 10 20 30 40 50 60 70 Time (sec) 16.00 . .,1

-0.00 0 10 20 30 40 50 60 70 Time (sec) 15.00 0.00

-15.00

  • I I
  • t
  • I ,
  • I I
  • I I II I 0 10 20 30 40 50 60 70 lime (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 96 of 187 Date: 1 /24/02 Figure 7-2 lb.

10.

0.

___ _' -iI,-Vrtic-a__T__r____t .Spectrum i -, i, .

oo I <

--- i '-M x . j-2-,_

-~~

Time H-is-t-o-r . .-- .

I- I )

XL .

1 ,.

1.'

Cn 0

0) 8 .~~ ~Inta. Tim ....Hitr Scle to Tage I

___~ ~ Ii I. il-t _ t _

ts a) i~l Ii I XX a.

(I) 0.1

.0 _ _ a Vri

- Csai c  ! I~agtpcrmT i

-__ Moiie-m Hsoyi 01- ~ ! __ .L . . I L r'l. . *  !

O.(

Cas a a- Veti a Ta ge Spe tru 0.01 U.10 1.oo 1 0.00 Period (sec)

Figure 7-21b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the vertical component for the Cascadia subsource for set CAS 1. .-

Calc Number: GEO.HBIP.02.05 Rev Number 0 Sheet Number: 97 of 187 Date: 1.1/24/02 Figure7-21c. Figure 7-21c. La Union vertical modified time histormes.

0.80 I

0 0.00 C)

-0.80 0 10 20 30 40 50 60 70 Time (sec) 42.00 0, 0.00

-42.00 0 10 20 30 40 50 60 70 Time (sec) 28.00 E

0 0.00 la

-28.00 0 10 20 30 40 50 60 70 Time (sec)

." . . . I '- - - 1. : .. - .. i .. .'. - . ..

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 98 of 187 Figure 7-22a. Figure 7-22a. Vina Del Mar fault normal starting input time historiesate: 11/24/02 I

0.40 CD 0.00 I

-0.40 10 20 30 40 50 60 70 80 0o 100 110 Time (sec) 31.00 C) 0)

to lu 0.00

-31.00 0 10 20 30 40 50 60 70 80 90 100 110 Time (sec) 6.00 E

0.00 0

-6.00 10 20 30 40 50 60 70 80 90 100 110 Time (sec)

-, , t, - Z.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 99 of 187 Date: I 1/24/02 Figure 7-22b.

10.00,--

.. t --

I.
1
i

! -- 1-! -- -

I I 4-4-1------,

iI I

_________________~ ~~

- -.----- - I I

.4 nnr I. .UU1 I

-. .* I K I  ;-.-- I- I . -

I i., . I I i 1~~~1~~I 11111l! -J  ! T 0

FU C.)

U) o.1 ,'1 ' I '1t14 i'~~~~~~~~~~~~~

I i1 .

- Cascadia - Horizontal Target Spectrum I I

. Initial Time History Scaled to Target PGA f i '

- _ Modified Time History 1 l l 0.130- _,' *;

0.01 0.10 1.00 10.00 Period (sec)

Figure 7-22b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault normal component for the Cascadia subsource for set CAS2.

<-I

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 100 of 187 Date: 11/24/02 Figure 7-22c. Figure 7-22c. Vina Del Mar fault normal modified time histories.

0.90 la C) 0.00 0

-0.90 0 10 20 30 40 s0 60 70 80 90 Time (sec) 68.00 0

CD 2 0.00 468.00 6

0 10 20 30 40 So 60 70 80 90 I

Time (sec) 30.00 0

E (I,

0.00

.30.00 0 .10 20 30 40 s0 60 70 80 9o Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 SheetNumber: 101 of 187 Date: F1/24/02 Figure 7-23a. Figure 7-23a. Vina Del Mar fault parallel starting input time histories.

0.30 cm S

-0.30 0 10 20 30 40 50 60 70 80 90 100 110 Time (sec) 26.00 i 0.00

-26.00 0 10 20 30 40 50 60 70 80 90 100 110 Time (sec) 5.00 E

c) 0.00 01 c:

-5.00 0 10 20 30 40 50 60 70 80 90 100 110 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 102 of 187 Date: I 1/24/02 Figure 7-23b.

C 0

a)

U, Perod (sec)

Figure 7-23b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the fault parallel component for the Cascadia subsource for set CAS2.

I.

Caic Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 103 of 187 Date: I11/24/02 Figure 7-23c. Figure 7-23c. Vina Del Mar fault parallel modified time histories.

0.90 a o 0.00 01020304050607080~~~~~~~~~~~~~~~~~~Ac g

-0.90 )O Time (sec) 76.00

~0.00

-76.00 I I f I I t t t i IV c~e 0 10 20 30 40 50 60 70 s0 90 Time (sec) 32.00 I*

0.00

-32.00f I I II I I 0 10 20 30 40 50 60 70 , 80 90 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 104 of 187 Figure 7-24a. Figure 7-24a. Vina Del Mar vertical starting input time histories.

0.20 c 0.00 C.)

II

-020 0 10 20 30 40 50 60 70 so 90 100 110 Time (sec) 9.00 E o~oo 0

.9.00 0 10 20 30 40 50 60 70 80 90 100 110 Time (sec) 3.00 0 0.00 C.

-3.00 D 10 20 30 40 50 60 70 £0 90 100 110 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 105 of 187 Date: 11/24/02 Figure 7-24b.

I U.UU I

4--- - ---.- I . : i I

-- ri 1 I l 1  :  !  !

1.00-C 1 III I 0 i I

0)

O 0.10-1II I O 'II I I I III

-a ___ it ___ I i I' CD, _________

I I

I .1 j'II I

II i

0.01-T i go 4 I i I I I I

- Cascadia - Vertical Target Spectrum I i____ 1 i~iIllE

-- Initial Time History Scaled to Target PGA Modified Time History II i l II ilT I

I. I%~

U-tXi J

I i I I I I* i I i 0.01 0.10 1.00 10.00 Period (sec)

Figure 7-24b. Initial response spectrum scaled to the target PGA value, modified response spectrum and target response spectrum for the vertical component for the Cascadia subsource for set CAS2.

4. ..

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 106 of 187 Figure 7-24c. Figure 7-24c. Vina Del Mar vertical modified time histories. Date: 11/24/02 0.80 I I I o 0.00

-0.80 0 10 20 30 40 so 60 70 80 90 Time (sec) 41.00 E 0.00 41.00 t^°OOOO+I,,~~~~~~~~~~~~I~~~arl/secM~~~~~v, (]sc 0 10 20 30 40 S0 60 70 80 90 Time (sec) 22.00 0.00 22.0 ' ' ' I ' ' I' ' I ' ' ' ' I ' ' I ' ' ' ' I ' ' I ' I ' ' ' osn ,

co 0 10 20 30 40 so 60 70 80 90 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 107 of 187 Date: 11/24/02 Figure 7-25a

. I .

I I I I .~~~ ,'~. I I

.1 IN  ! I 4 -

8 II I i

___ 1 _____ ___

______ - -- -.--i jj I I

1. e n .~--

! i  ; . I I

.- ~ I.. i"! ,- I I i

  • .V I 1 ._ j 1.

I Ii i

I ' I i i I *I I I__ [ i IZ ijj I-.  : i. I i 1 I.. :#~~~ _'.-,.1S1.2~*~31 i ^ .,. 1\11 _T. -HT> _ -- --

0

.H eo T - I K

W a- . _ _ _ i I _ i__ 'IS1

_ I I i \l 1h, 1.2-1-__ _____ I_ I ,_ i

- Hizota

_are

_____i S

__ Ii ripecit um.

I i i!. i i i I i1i L!

0.4__ ii_____.: I II ili

_ _. _ _ , ._ _ _ _ _\ i 2 0.6- ,. -  ! i asIAerag Hoiona dia-oiotl~re~etrm #1 iMatch .t _ l ,

2\i i___'_

____ Average Horizontal_ Mac,l  ! II o ~~ ~ ~~

0.01 0.10 1.00 10.00 Period (sec)

Figure 7-25a. Compairson of average 5% spectral damping response spectrum for the horizontal

  1. 1 componet and the soil target spectra for the Cascadia interface subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number 108 of 187 Date: 11/24/02 Figure 7-25b.

II I I1 i I ? _ I I! I i I I 1It A' t 1,  ! I ii l i I-_ --IT--[-

i 1 1

-- , ~. i

Z I i i i ii !

, . I1, 4 II 1.,o - .--

II

______ -__________ ~

~~~~~~~L-r- zz~zi iz tz!EL LI-- -wfail j I . -

I I 1i- 1.f i - j I . -1 I

. I. ..

ItI t - --

I I Ir 1!

I .

II i ---I----I I

I  ! I lk  ! l I

r-lF / ~~~~~~~~~~~~~~~~~~I i -Ii 'I 1..4- ___ __ _ 1 I_<[ I.

2 - _ _ iih \ ll I l !t i u ?

Co

c. ______!_ I I I I Ir!

a-.

__i_. I I IF ]f t LIi 1 C.)

. 'Jr I !l t 11 -' I ij i l i ' II 1- __ __ __ 1 ' 1 I t i *I __i________

0 0.

V)

.6-

,I '_ j!'I I,

I l

I l  !

_____t IIIi i I _11 0.

^_ , . , l I _I I  ! l l i n

0.2-0_2___

_ - - Cascadia I

- Horizontal Target Spectrum

__ -- ~ ff i~

Average Horizontal #2 Match _ .ra 0- _ . .-  ; .i.1, ,1;t= jT 0.01 0.10 1.00 10.00 Period (sec)

Figure 7-25b. Compairson of average 5% spectral damping response spectrum for the horizontal

  1. 2 componet and the soil target spectra for the Cascadia interface subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 109 of 187 Date: 11/24/02 Figure 7-25c.

-I 4

j1 'JIII

-I

___ 1 I: _____ liii ______ ____

1 3 I _____ I'll II

_____ it ______ iii _______ ____

____ ____ 'I] .L222

___ __ III ___ J __

I .6- 1

_________ I IZii

____ ___ __ __________ I _____ ____

1 4 ____ T ___ Ii on

,_,i iiIiit II I

.2 a-U 0

.8-

  • _____ iii-'-+/- 'I L..4. . I I i I !I I Ii uo- ~ ~~~~

, .. , h.I , .. I, , .,,, .....

-- I I - ___ I8 I I I 0.2-~~~~~~

0.2 - i ~ ~Cascadia - Vertical Target Spectrum , I I

_ --- Average Vertical Match I 0- _  ; .s. . , .11i1 I ! I 7 U.U1 U.10 1.00 10.00 Period (sec)

Figure 7-25c. Compairson of average 5% spectral damping response spectrum for the vertical componet and the soil target spectra for the Cascadia interface subsource.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 10 of 187 Date: 11/24/02 7.7 Time Histories for the Synchronous Rupture 7.7.1 Sten 1: Relative Timing for LSF and Cascadia interface Subsources.

The relative timing of the LSF and Cascadia interface time histories were computed based on two locations of the rupture from the Cascadia interface subsource (see Section 3.4) and the assumption that the fling will occur during the time of largest velocity (see Section 3.5). The relative time delay for the LSF subsource time histories are listed in Table 7-13 for each of the four synchronous rupture time history sets.

Sets 2 and 4 assume the initial rupture of the Cascadia would occur interface near it southern end and thus create a shorter time shift between the two events. This would place the LSF event close to the first part of the Cascadia interface strong ground shaking portion. Sets I and 3 assume a northern rupture and would thus place the LSF event near the latter part of the strong ground shaking portion of the Cascadia interface event.

Table 7-13. Relative timing delays and LSF and Cascadia interface subsource combinations for the four synchronous rupture cases.

LSF Subsource Cascadia Interface Subsource Set LSF Station Time shift of the LSF time CAS Set Station Set history relative to the start of Cascadia time history (sec)

I LSFI TCU052 10.0 CASI La Union 2 LSF2 Tabas 6.0 CAS2 La Union 3 LSF3 TCU 102 7.0 CAS3 Vina Del Mar 4 LSF4 TCU068 0.0 CAS4 Vina Del Mar 7.7.2 Step 2: Combine time histories Using the time shift from step 1, the time histories from the Cascadia interface and LSF subsources are combined to develop four sets of synchronous rupture time histories. The four sets are listed in Table 7-13. The horizontal components of motion from the Cascadia interface subsource time histories were combined to the fault normal and fault parallel components of motion for the LSF subsource as given in Table 7-14.

Table 7-14. Horizontal combination of the Cascadia interface subsource and LSF subsource time histories.

Set Fault Normal Fault Parallel 1 LSF1 (Fault Normal) + LSF1 (Fault Parallel) +

La Union (Comp 090) La Union (180) 2 LSF2 (Fault Normal) + LSF2 (Fault Parallel) +

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: I i I of 187 Date: 11/24/02 La Union (Comp 090) La Union (180) 3 LSF3 (Fault Normal) + LSF3 (Fault Parallel) +

Vina Del Mar (Comp 200) Vina Del Mar (290) 4 LSF4 (Fault Normal) + LSF4 (Fault Parallel) +

I Vina Del Mar (Comp 200) Vina Del Mar (290) 7.7.3 Step 3: Spectral Matching for the Cascadia Interface Subsource The program RSPMATCH is used to modify the time histories to match the synchronous rupture target spectra. The input and output files used in the spectral matching are given on the enclosed CD-ROM (enclosure #1). For each component of each set, three plots are shown: (a) the initial time history, (b) the spectra for the initial and final time history compared to the target spectrum and (c) the modified time history. The plots for the 12 components (4 sets x 3 components/set) are shown in Figures 7-26 to 7-37. As required by the Work Plan, base line correction was performed for each component. The results can be seen from these Figures that show both velocities and displacements approach zero toward the end of the time histories.

The average of the fault normal, fault parallel, and vertical components spectra for 5%

spectral damping are plotted in Figures 38a, b, and c, respectively. For comparison, the corresponding synchronous rupture soil target spectra are also plotted in each figure.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 1 12 of 187 Figure 7-26a. Figure 7-26a. Synchronous Setl fault normal starting input time his~t)ed/ 2 4 /02 2.00 0.00

-2.00 0 10 20 30 40 50 60 70 so Time (sec) 3719.00 (D

~0.00

-379.00 0 10 20 30 40 50 60 70 80 Time (sec) 310.00 0.00

-310.00 , I , I . I, I .I I I .I I I , I , . . . Pis',(a) 0 10 20 30 40 50 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 113 of 187 Date: 11/24/02 Figure 7-26b.

10.00

__________________________ I! L. { .. 4

_______ ____ ____ ____ ii I

I ________________

I - - -.---

__________ ___________ I I 1*

1T I Ii ____ ____ 'II,.!. IIII

_________ I ______ I . jjf .

II .

1 I

_______________ IL.:I I.'I II *I.

N I

- '....t.....r ____ I ____ II II II

.,.....................i.....

0 4-1..

I 11 I 1.00I. 4 .- ---.

v-I i I

_______ II -- - LI 1 . 114

-a _____ -1II I. II 0.

CL. _______________ I ________

co ______ iii-. If I II

___ I Iii I T

__________ _____ I I I - -- ---

I IT T

- Synchronous - Fault Normal Target Spectrum  ! ' i I I .

I Initial Synchronous ..... Setl (FN) Time History

- Modified Time History n

V.

irev- I-I I I I .

I F I II I I 0.010 0.100 1.000 10.000 Period (sec)

Figure 7-26b. Initial response spectrum, modified response spectrum and target response spectrum for the fault normal component for the synchronous rupture source Set1.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 114 of 187 Date: 11/24/02 Figure 7-26c. Figure 7-26c. Synchronous Setl fault normal modified time histories.

2.00 cm a 0.00 A:

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 418.00 0

C) 02 0.00

-418.00 0 10 20 30 40 50 60 70 80 Time (sec) 343.00 E

0.00 0

M

-343.00 I I I , *

  • I , , . . PlS,(Cn )

0 10 20 30 40 50 60 70 80 Time (sec)

- - ~. '.;

Calc Number GEO.HBIP.02.05 Rev Number 0 Sheet Number: 115 of 187 Figure 7-27& Figure 7-27a. Synchronous Setl fault parallel starting input time hi!R8i&b!V 24102 2.00 o 0.00 U

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 281.00 0

U)

(I 0.00

-281.00 0 10 20 30 40 50 60 70 80 Time (sec) 104.00 E

0 0.00 a)

-104.00 0 10 20 30 40 50 60 70 80 Time (sec)

  • ~~~~~. ......

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 116 of 187 Date: 11/24/02 Figure 7-27b.

n4nAn I U.

1.

0)

C

_____4 I I , r a)

I-.

0.

O.

Synchronous -Fault Parallel Target Spectrum{

.Initial Synchronous i l Setl (FP) Time History

-Modified Time History 0.

I_ I II I i1 I U.U1 v U.1UU 1.UUu 10.000 Period (sec)

Figure 7-27b. Initial response spectrum, modified response spectrum and target response spectrum for the fault parallel component for the synchronous rupture source Setl.

I i

Calc Number: GEO.HBIP.02.05 I Rev Number: 0 I Sheet Number: 117 of 187

.1 Date: 1/24/02 Figure 7-27c. Figure 7-27c. Synchronous Setl fault parallel modified time histories.

2.00 cm 0

0.00 40M

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 296.00 I I T-

-- I - -I - - -a , I , I I III 06 Q) a, 0.00 I I I I I I I I I * . . I .*

I I , * , . jM (Crm -)Isc

-296.00 0 10 20 30 40 50 60 70 80 Time (sec) 108.00 0

0.00 02

-1 08.00 0 10 20 30 40 50 60 70 so Time (sec) 77

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 18 of 187 Figure 7-28a. Figure 7-28a. Synchronous Setl vertical starting input time historieJst. 11/24/02 2.00 l)

) 0.00 A:

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 109.00 E

(. 0.00

.109.00 10 20 30 40 50 60 70 80 Time (sec) 93.00 I I I I I . I i . I I . I . I . . I . I I . I I I . I 1 4 4

-93.00 I I I I I I . . I I t . I t I I I f I I I I I I I . . . . I . . . . P '. (CT )

0 10 20 30 40 50 60 70 80s Time (sec) t I

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 1 9 of 187 Date: 11/24/02 Figure 7-28b.

1 0.00-r-

___ __ ___ __ I j--i iI -I -F --- I----4 .. - -L -~ --r T . l -.-

VrT[

............ 1i . i..1.[, ...

1.

M C

0 Ii I-a)

________ _ _ F 1 1 . i l i F; l

a

(/)

o.

Syn u - Vertirca Target Spectrum i J

.... Initial Synchronous Setl (Vertical) Time History - I till

- Modified Time History 0..01-0.010 0.100 1.000 10.000 Period (sec)

Figure 7-28b. Initial response spectrum, modified response spectrum and target response spectrum for the vertical component for the synchronous rupture source Setl.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 120 of 187 Figure 7-28c. Figure 7-28c. Synchronous Setl vertical modified time histories. Date: 11t24/02 2.00 cn 0 0.00

-2.00 0 10 20 - 30 40 s0 60 70 80 Time (sec) 98.00 0

0)

.i3 0.00

-98.00 0 10 20 30 40 so 60 70 so Time (sec) 71.00 II . I I I I I I I I I

  • I a I I S I S I I I IS I I U

0.00 CO ae

-71.00 II I t#I II fi II I I a I I I I I f I t - - - I . . . P s,(CT) 0 10 20 30 40 s0 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number 121 of 187 Figure 7-29& Figure 7-29a. Synchronous Set2 fault normal starting input time hisR*F.P/2 4 10 2 2.00 o 0.00

-2.00 19 0 10 20 30 40 50 60 70 Time (sec) 609.00

~0.00

-609.00 I I I I I 9 I i t I I I II *~

0 10 20 30 40 50 60 70 Time (sec) 302.00 I

  • 0.00

-32.00 I I I , I I I 0 10 20 30 40 50 60 70 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 122 of 187 Date: 11/24/02 Figure 7-29b.

1 0.00 --

C 0

4-a, 0

Cl)

Perod (sec)

Figure 7-29b. Initial response spectrum, modified response spectrum and target response spectrum for the fault normal component for the synchronous rupture source Set 2.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 123 of 187 Figure 7-29c. Figure 7-29c. Synchronous Set2 fault normal modified time historiegate: 1 /24102 2.00 oq 0 0.00 O

-2.00 0 10 20 30 40 50 60 70 Time (sec) 634.00 n

X 0.00 D

-634.00 0 10 20 30 40 50 60 70 Time (sec) 320.00 E

0.00 0

.e az

-320.00 0 10 20 30 40 50 60 70 Time (see)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 124 of 187 Figure 7-30a. Figure 7-30a. Synchronous Set2 fault parallel starting input time hipfiey!'2 4 /0 2 2.00 C.0

-2.00 I I I *

  • I *
  • I 0 10 20 30 40 50 60 70 Time (sec) 178.00 I 1 0.0

-178.00 0 10 20 30 40 50 60 70 Time (sec) 56.00 0.00 0 10 20 . 30 40 50 60 70 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 125 of 187 Date: 11/24/02 Figure 7-30b.

in nn_

.u11vu1 i K. 12 i -i i- I

-- i__i.!55i ', _ ,

i..uunn...

CD . il UI_-1!!I _ i C

0 15.

a) 8 a-(I, _ .i . I IIl 0.10

_ _ __ _] _ T!Z rr- _ _ _ _ _Xj

- - Synchronous - Fault Parallel Target Spectrum _ _

0.01

.----Initial Synchronous Set2 (FP) Time History Modified Time History

~I I J *I T 7 I z 0.010 0.100 1.000 1 0.000 Period (sec)

Figure 7-30b. Initial response spectrum, modified response spectrum and target response spectrum for the fault parallel component for the synchronous rupture source Set2.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 126 of 187 Figure 730c Figure 7-30c. Synchronous Set2 fault parallel modified time histori~a.te: 11/24/02 2.00 C 0.00

-2.00 0 10 20 30 40 50 60 70 Time (sec) 171.00 I I .*

  • a I I I I a I I I
  • I I I I I I 0

0 0.00

  • * , I * * * * * ~~~~~~~

Vel (cn sec)

.171.00 0 10 20 30 40 50 60 70 Time (sec) 77.00 E

0.00 0

M

-77.00 0 10 20 30 40 50 60 70 Time (sec)

Calc Number GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 127 of 187 Figure 7-31 a. Synchronous Set2 vertical starting input time historinate: 11/24/02 Figure 7-31 a.

2.00 Cn 0.00 C)

-2.00 0 10 20 30 40 50 60 70 Time (sec) 115.00 C.)

I 0.00

-a

-115.00 0 10 20 30 40 so 60 70 Time (sec) 82.00 E

0.00 C

-2.00 0 10 20 30 40 50 60 70 Time (sec)

. ..- . . . . . .. .  ?.e7 -

-~~~~~~~~~~~~~~~~~

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 128 of 187 Date: 11/24/02 Figure 7-31b.

0)

.0 am a) a.)

(a 0.1 Perod (sec)

Figure 7-3 lb. Initial response spectrum, modified response spectrum and target response spectrum for the vertical component for the synchronous rupture source Set2.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 129 of 187 Figure 7-31c. Figure 7-31c. Synchronous Set2 vertical modified time histories. Date 11/24/02 2.00 tM 0.00 O

-2.00 0 10 20 30 40 50 60 70 Time (sec) 103.00 M

(a 0.00

-103.00 0 10 20 30 40 50 60 70 Time (sec) 61.00 0.00 a,

61.00 0 10 A 20 30 40 50 60 70 i Time (sec) i I

ii I

I II

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 130 of 187 Fgure 7-32a. Figure 7-32a. Synchronous Set3 fault normal starting input time hiRM6AM 1 24 10 2 2.00 cm

a. 0.00 U

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 500.00 a,

a) 0.00

-500.00 0 10 20 30 40 50 60 70 80 Time (sea) 348.00 E

.348.00 0 10 20 30 40 so 60 70 80 Time (sec)

. ? . . . .. -'.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 131 of 187 Date: 1 1/24/02 Figure 7-32b.

10.00-r-C 0

U, Perod (sec)

Figure 7-32b. Initial response spectrum, modified response spectrum and target response spectrum for the fault normal component for the synchronous rupture source Set3.

.. - - I

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 132 of 187 Date: 11/24/02 Figure 7-32c. Figure 7-32c. Synchronous Set3 fault normal modified time histories.

2.00 o 0.00 0

2.00 0 10 20 30 40 50 60 70 80 Time (sec) 501.00 0

a) 2 0.00

-501.00 0 10 20 30 40 50 60 70 80 Time (sec) 353.00 E

0.00 oa

.]

I . i - i tv .- . t i - t - - i . . . . i - - - , pi .* ., ,. . P'.(cT)

I I ,

-353.00 0 10 20 30 40 50 60 70 s0 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 133 of 187 Figure 7-33a. Figure 7-33a. Synchronous Set3 fault parallel starting input time hi itnes.'241 02

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 191.00

~0.00

.191.00 T

  • el(cn~sec) 0 10 20 30 40 50 60 70 80 Time (sec) 86.00 0.00

-86.00 II iI

  • I I I* . . . . P i( )..

0 10 20 30 40 s0 s0 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 134 of 187 Date: 11/24/02 Figure 7-33b.

10.00, .--

1.

tM C

0 a) a)

c-)

Cn 0.

Period (sec)

Figure 7-33b. Initial response spectrum, modified response spectrum and target response spectrum for the fault parallel component for the synchronous rupture source Set3.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 135 of 187 Figurt 7-33c. Figure 7-33c. Synchronous Set3 fault parallel modified time historik~te: 11/24/02 2-00 0,

U 0.00 O

-2.00 10 20 30 40 50 60 70 80 Time (sec) 215.00 U

'I) 0.00

-215.00 0 10 20 30 40 so 60 70 80 Time (sec) 91.00 C.) 0.00 5

-91.00 0 10 20 30 40 so s0 70 80 Time (sec)

- .. . 1... .- I-. . .- ... ."-.-. t -- ,," '"" ,",,-, -

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 136 of 187 Figure 7-34a. Figure 7-34a. Synchronous Set3 vertical starting input time historiegate: 11/24/02 2.00 . . . I I S I I I I l o 0.00

-2.00 l l I l l l Ace )

0 10 20 30 40 50 60 70 80 Time (sec) 92.00

~0.00

.92.00 I I * *

  • I
  • 0 10 20 30 40 50 60 70 80 Time (sec) 73.00 I 0.00

-73.00 lo (CT, 0 10 20 30 40 so 6 70 An Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 137 of 187 Date: 11/24/02 Figure 7-34b.

4I ^ff r

I J.UV L

I liftII I

I ii H

II, I

I I I lI j *1 I II

  • I

-t-I -__1 IL i7 a) 0 Ii C., .,- 1- 1 1 1I~fT1 ,<t~i-

. -Ii lt i 4 a fjlt! I .. - l l l l C,,

0.

10 ___. I~ s l i If . l * ~ .l _- I

  • Synchronous - Vertical Target Spectrum i

- Initial Synchronous Set3 (Vertical)Time Historyl Modified Time History l lK ll 0.1 fl ,a , 11 0.010 0.100 1.000 10.000 Period (sec)

Figure 7-34b. Initial response spectrum, modified response spectrum and target response spectrum for the vertical component for the synchronous rupture source Set3.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 138 of 187 Figure 7-34c. Figure 7-34c. Synchronous Set3 vertical modified time histories.

2.00 I I ' I l l l I o 0.00

-2.00 0 10 20 30 40 50 60 70 80I Time (sec) 82.00 0.0

-82.00 0 10 20 30 40 50 60 70 80 Time (sec) o 62.00 \ 4 I I E

0.00

-62.00I I I t I II t 0 10 20 30 40 50 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 139 of 187 Figure 735La Figure 7-35a. Synchronous Set4 fault normal starting input time hisd?1AP2410 2 2.00 0 0.00 0

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 403.00 0

CD co 0.00 403.00 0 10 20 30 40 50 60 70 80 Time (sec) 260.00 E

0.00 0

-260.00 0 10 20 30 40 so 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 140 of 187 Date: 11/24/02 Figure 7-35b.

.d I ^^d IIj IJ ItLI-. -

i I1I

. I _ia Ir T l i I Istory

_ _ I _il I f fi J C

0 Snhoos- Faut Noma Tage Spectrum a).

0)

C.) 1.1 I-U, S..~~~~~~~~~~~~~~~~~~~~~~~~~~ .

Modified Time History o.

10 I ;i t i lil! ll

- I 0.010 0.100 1.000 1 0.000 Period (sec)

Figure 7-35b. Initial response spectrum, modified response spectrum and target response spectrum for the fault normal component for the synchronous rupture source Set4.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 141 of 187 Figure 7-35c. Figure 7-35c. Synchronous Set4 fault normal modified time historiea.te 11/24/02 2.00 o 0.00 C)

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 442-00 C-0, CO E 0.00 U~:

-442.00 0 10 20 30 40 50 60 70 80 Time (sec) 323.00 E

0.00 I I i I I I *I I I a i a I a i i I I- I I I I I ptsIcI lI at

-323.00 0 10 20 30 40 so 60 70 8o Time (sec)

4 Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 142 of 187 7-36a-Fiue7-36a.

Figoure 7-36a. Figure 7-36a Figure Synchronous Snho usSet4 Set4 fault parallel strig input starting ipttime himeate: 11/24/02 s~ories.

2.00 o 0.00

-2.00 0 10 20 30 40 So 60 70 80 Time (sec) 211.00 a)

I 0.00

-211.00 0 10 20 30 40 50 60 70 80 Time (sec) 98.00 C

0.00 0

-98.00 0 10 20 30 40 so 60 70 80 Time (sec)

.0 . ; -

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 143 of 187 Date: 11/24/02 Figure 7-36b.

0 am as C.)

0.

i, Perod (sec)

Figure 7-36b. Initial response spectrum, modified response spectrum and target response spectrum for the fault parallel component for the synchronous rupture source Set4.

Figure 7-36c. Synchronous Set4 fault parallel modified time histories.

2.00 CY)

U 0.00

-2.00 0 10 20 30 40 50 60 70 80 Time (sec) 246.00 U

a)

U) 0.00

-246.00 0 10 20 30 40 50 60 70 80 Time (sec) 96.00 E

U) 0.00 M

-96.00 0 10 20 30 40 50 60 70 80 Time (sec)

-39£-Lt aim1 LS I jo t'I :joqwnNR iaas Al :.MQU.MJ AaW 9~ ~ ~ ~~II*QQ:l~fN~~

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 145 of 187 Figur 737igure 7-37a. Synchronous Set4 vertical starting input time historieg.e 11/24/02 2.0.0 0.00 I *I ITT~~ **~cg

-2.00 8p 9 0 10 20 30 40 s0 60 70 80 Time (sec) 107J.00 , , , . I F I

-107.00 0 10 20 30 40 so 60 70 so Time (sac) 149.00 0.00

-149.00 , , . . I , \ . . * *. . . .~C 0 10 20 30 40 50 60 70 80 Time (sec)

. . .~~~~~

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 146 of 187 Date: 11/24/02 Figure 7-37b.

14 (L) i3)

C.

El)

(a L-co, Perod (sec)

Figure 7-37b. Initial response spectrum, modified response spectrum and target response spectrum for the vertical component for the synchronous rupture source Set4.

Calc Number. GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 147 of 187 Figure 7-37c. Figure 7-37c. Synchronous Set4 vertical modified time histories. Date 11/24/02 2.00 la 0.00 I iLl I II11 01i hIL O I - 41 0

-2.00 0 10 20 30 40 50 80 70 80 Time (sec) 93.00 0

U) 0.00

-93.00 0 10 20 30 40 So 60 70 80 Time (sec) 91.00 0.00 I a a , a I

, I . I pI I In 0s

-91.00 0 10 20 30 40 50 60 70 80 Time (sec)

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 148 of 187 Date: 11/24/02 Figure 7-38a.

______ - 'I

___ _I

___ I I ___ I ii 1 :1' I Ii 3.

____ _______ I ii ______ _____ *11 ____

II 3 _____ _______ I ji

_____ II -- I--i I

____ II I -: IIL

_____ _____ .1 i.........-.' 'I

- - _____ L -

5- ___ I en 2.

_______ II I I -, I *j-*j****j

______ I

____ - I IIJ 0

El I. -

2 I I 'I Ii I III I

I ii K-

.f-...............j I A  ! I I I- Is

.1 i{ i i ~i I I

-r I. IXj I .f I ______ I 'I .t---..-.--.-.I I

_______________ ' 1 -..-....-.--...--..........

i I ________________ .1 I. *1 I liii

______ i I 5

I I

I I - -

I _____

I I I I 1ii

___ I r

I Ij!

- I Ii I L-i - Synchronous - Fault Normal Target Spectrum I.I I~

A 0-1

_~~~~

I I.

Average Fault Normal Match a

I I I I . I 1 0 0.I

, I

  • I I .0

- I - II 1. 0 00 0.01 0.10 1.00 10.00 Period (sec)

Figure 7-38a. Compairson of average 5% spectral damping response spectrum for the fault normal componet and the soil target spectra for the synchronous rupture.

dv.

Calc Number. GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 149 of 187 Date: 11/24/02 Figur 7-38b.

LI.-.

I II iI II !

. 11  ! I ' I II l J.-___________ ____________ , I0 i -l1l 3-.

35._

t -

t-- - --<

/ 5-~ t r' ; i W II t' l i f l I iI 3- I - { 11 1t1: X ' 1li-2.5-0 E-2- _ i 1l I-1.5- _ _ _ , I 1- i_ I',  ; H I! ' i 15'

- - Synchronous - Fault Parallel Target Spectrum i I il !i

_ --- Average Fault Parallel Match tI 0-~~~~~~~~~

0.01 0.10 1.00 10.00 Period (sec)

Figure 7-38b. Compairson of average 5% spectral damping response spectrum for the fault parallel componet and the soil target spectra for the synchronous rupture.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 150 of 187 Date: 11/24/02 Figure 7-38c.

A C l j 32--

4 ___ II Ii Iit 2- ~ ~ ~ ~ -4 -

3.5 0 I -~~~-~-I~~~ 1-ik (j!

_ _ _ __ _ _ _ J

____ ____ honos -Verica TagetSpetru

3. 'IiiAercr VetialMac 0.01 0.10 1.00 10.0e Period (sec)

Figure 7-38c. Compairson of average 5% spectral damping response spectrum for the vertical componet and the soil target spectra for the synchronous rupture.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 151 of 187 Date: 11/24/02 7.8 Addition of Fling Time Histories to the Fault Normal and Vertical Components 7.8.1. Step 1: S-wave arrival times The approximate arrival times of the S-waves is estimated by visual inspection of the fault normal component velocity time histories. The selected arrival times are listed in Table 7-14.

Table 7-14. Arrival time of fling for synchronous rupture.

Approximate Arrival Time Arrival time of of fling (to)

Set S-waves (sec) (sec) Reference for S-wave time 1 23 sec 20.9 (Figure 7-26c) 2 14 sec 12.75 (Figure 7-29c) 3 1 20 sec 18.7 (Figure 7-32c) 4 9 sec 7.2 (Figure 7-35c)

A fling arrival time is selected by visual inspection of the interference of the velocity of the transient motion and the fling on the fault normal component (Figures 7-39a, 7-41 a, 7-43a, and 7-45a). The selected fling arrival time are listed in Table 7-14.

The same fling arrival time is used for the vertical component. If the fling on the vertical component resulted in destructive interference with the velocity, then the polarity of the vertical component (without fling) was flipped. This occurred only for set 2.

Since the HBIP is on the northeast side of the LSF (on the hanging wall), the permanent tectonic deformation at the site will be positive up and to the southwest. In the time histories the fling has a positive polarity. Therefore, the positive direction of the fault normal time history is to the southwest and the positive direction of the vertical time history is up.

7.8.2. Step 2: Flin! Time Historv The period of the fling, Tfljng, is assumed to be equal to the period of the fling for station TCU068N from Chi-Chi (assumption 3-6). The value of Tfling for TCU068N is given by 3.7 x 1.78 (input 4-10) which equals 6.59 sec.

The amplitude of the fling ground motion is computed using the fault slip (input 4.1), and the relative tectonic deformations at stations TCU052 and TCU049 (input 4.10) and assumption 3.7). From input 4.10, the tectonic deformation at the hanging wall station TCU052 is given by the vector sum of the amplitude on the two components:

AMPwcl10 52 =;838.72 +33.12 =839.4 cm AMP6u549 4 65.72 +41.22 =77.5cm

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 152 of 187 Date: 11/24/02 The total tectonic deformation is the sum of these two values, so the fraction of the total deformation that occurs on the hanging wall side is given by AMPM1r0os2 839.4 =0.915 AMPTC(1052 + AMP7r-1049 839.4 + 77.5 From input 4.1, the slip on the fault is 7.0 - 9.3 m. The mean of this range is 8.15 m.

Multiplying this mean fault slip by the ratio 0.915 gives the tectonic deformation on the hanging wall side:

Ampltiude Fling = 8.15m x 0.915 = 7.5m Since the fault has a mean dip of 45 degrees (input 4.1), this total tectonic deformation is separated onto the fault formal and vertical components (multiplied by I/sqrt 2).

Therefore the amplitude on the vertical and fault normal components is 5.3m (Dsite).

In acceleration, the amplitude of the fling is given by eq. 5-8 Aml 2)) = D~

A(cm/s D1swe2;rr659scm 2 =76.68cm/s2 = 0.0782g 530cm2n Using eq. 5-6 with A=0.0782g, Tfling = 6.59 sec (co=0.9534 rad/sec), and the t1 values in Table 7-14, the fling time history is determined. The computed fling time histories are shown in Figures 7-39 through 7-46 for the fault normal and vertical components.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 1.5- Rhpept Nizmhi-r 1S1 nf 87 Fi ure 7-39a Fault Normal Time 02 1.0 - Fling Time History 0.5-00.0-

-0.5 AM A o~~~s 11M111 ~~~~~11 IlrllI' l

-1.50 0 10 20 30 40 50 60 70 80 250.0-AIXAA *h E

-250.0-

>°~~~~~IV A.AO

-Vi~yllvR1Z-

  • .~

LA *J l

aA/

r Fault Normal Time Historyt

- Fling Velocity Time History

. 1500.0-I , , 5 7 80 JU-0 10 20 30 410 50 6'0 710 8-0 600.0_ ,-

300.0-0

-300.0- - Fault Normal Time Historyl

. l Displacement Time Historl

~~~~~~~~~Fling

-600.0-6 I . I I I . I 0 ~~10 20 30 40 50 60 70 80 Time (sec)

Figure 7-39a. Synchronous Set1 fault normal modified acceleration time history and the fling acceleration, velocity and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 154 of 187 0)

M C

JU, E

0 800.0 400.0-0 0.0-a

-400.0-

- Fault Normal Time History with Fling

-Ann -I I I IS I I I i I I I i 0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-39b. Synchronous Setl fault normal modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 155 of 187 ZO. _ r~~~~~~~~~~~~~~~~~~~~p; ~~~~~~112/ /02 1.5 ure 7-40a Vertical Time History 1.0 -_ Fling Time History 0.5-C.,-

CD)

  • 2.0- , 0 , { , & . & , d fi § ,

U W1U a Ouf 14U Ou au (U Ws (A,

E a

600.1nI I

,v 300.0-U 0.0- _

0

-300.0-7

- Vertical Time History

- Fling Displacement ime History

-I 1 r~~~~~nn I -'I II -

0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-40a. Synchronous Setl vertical modified acceleration time history and the fling acceleration, velocity and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 156 of 187 CD kn e n%

MIU-1i .

300.0-

'In E

C.

-300.0-I- Vertical Time History with Fling I

-600.0 I 3 4I I I I I 0 10 20 30 40 , 50 60 70 80 Innf% I%-

c~uuItj 400.0-/

C.,

Q E' I0.0-

-400.0-

-_ l Vetical Time History with Flir 191

-800.0 I I l 0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-40b. Synchronous Setl vertical modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 157 of 187 r-... II ^b'tair cm (o

C.)

0.0-II III

-0.5-

-1.0-

-1.5-700.0-350.0-E U 0.0- h 1"N' cz W V UT -

-350.0- - Fault Normal Time History

- Fling Velocity Time History

-700.0- . . .

-I ' I I I I .1 0 10 20 30 40 50 60 70 80 E

0U) 0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-41 a. Synchronous Set2 fault normal modified acceleration time history and the fling acceleration, velocity and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 158 of 187 U

MP EC.

E (0

Cn Time (sec)

Figure 7-41 b. Synchronous Set2 fault normal acceleration, velocity, and displacement time histories with fling.

Calc Number GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 159 of 187

4. U - S--, ,/Zz

/02 1 ure 742a Vertical Time History 1.5-1.0 l - Fling Time History 0.5-CD a 0.0- U yre ill C-

  • 0.5- 11
  • 1.01

-1.5-

-2.0- A. I II I 6 10 20 30 40 50 60 70 E

0 0

0 10 20 30 40 50 60 70 Time (sec)

Figure 7-42a. Synchronous Set2 vertical modified acceleration time history and the fling acceleration, velocity and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 160 of 187 2.1 e%

l Vate: I I/24102 Ft cure 7-42b 1.5- I - Vertical Time History with Fling 1.0-0.5- lo .j'. .. 1 I. I C.) 0.0-

<-0.5- ., I 'I I

-1.0-11'I

-1.5-

-~I-t1I-i I , I . I , I , I I 0 10 20 30 40 50 60 70 80 Co-E a.

800.1rm LiI 400.0{

C.e 0.0-

-400.0 l- Vetical Time History with Flir 191

-800.0-0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-42b. Synchronous Set2 vertical modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 161 of 187 1.5- Bette, I IJ;q /02 F gure 7-43a Fault Normal Time History 1.0- - Fling Time History 0.5

-0.5-

-1.5-0 10 20 30 40 50 60 70 80 600.0-300.0-S.-

E

-300.0- - Fault Normal Time History

- l Fling Velocity Time History

-600.0- I I I 0 10 20 30 40 50 60 70 80 600.0-300.0-0.0-O ~~~~~A 0 10 20 30 40 50 60 . 7O Time (sec)

Figure 743a. Synchronous Set3 fault normal modified acceleration time history and the fling acceleration, velocity and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 162 of 187

- Fault Normal Time History with fling 0 0.0

-0.5

-1.0

-1.5 Ann n uvv. v 400.0-E 0

-400.0-

- Fault Normal Time History with fling]

f%

-800.1 S I - I I I I I I I 7 0 10 20 30 40 50 60 70 E3 800.0-400.0-E 0

0.0-0

-400.0-I - Fault Normal Time History with fling I onn *

-rL IL 1A J-4 I . , . , I

  • I
  • i
0. 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-43b. Synchronous Set3 fault normal acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 163 of 187 2.0- s _ .

. a1 :

x x I

l B A

/z ;

1 5 Fl ure 7-44a - Vertical Time History 1.5-1'. - Fling Time History 1.0-0.5- .. I II I. I 11 i

I. rIAII1 II1 I cm U 0.0-(3

-0.5- I 1111.

-1.0-

-1.5- I

-2.0- _-

I I I I I1 l

. _ I - -- I 0 10 20 30 40 50 60 70 I E0 JUI)

E U 0.0-

> -60.0-E U)

'a

.cn 0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-44a. Synchronous Set3 vertical modified acceleration time history and the fling acceleration, velocity and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 164 of 187 r-.v- - snow. . , uz M.ure 7-"b 1.5- I.- Vertical Time History with Fling 1.0-0.0:51 1 I I -A"WAMMI CD

~~~~~~~~~~~~~~~~'I,

-0.5- -77"91

-1.0-

-1.5-

-2.0 -4 I I 30 I . 0I 6 70

)o 10 20 30 40 50 60 70 80 In-E 0

Time (sec)

Figure 7-44b. Synchronous Set3 vertical modified acceleration, velocity, and displacement time histories with fling.

Calc Number GEO.HBIP.02.05 Rev Number: 0 Sheet Number 165 of 187 1.5- 1^1 I ure 745a - Fault Normal Time History 1.0-

- Fling Time History 0.5-o 0.0- th~~~~~~~~~ffr 1r v T,111.-. S

-0.5-

-1.0-

-1.5- _ (

I I I I Y

I I I . i . I 10 20 30 40 50 60 70 80 IVI E

U

-5 0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-45a. Synchronous Set4 fault normal modified acceleration time history and the fling acceleration, velocity and displacement time histories.

Calc Number: GEO.HBIP.02;05 Rev Number: 0 Sheet Number: 166 of 187 Date: 11/2Fln 02 Fault Normal Time History with Fling Il 0) 0 0

E C.)

C,)

  • 0a 0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-45b. Synchronous Set4 fault normal modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 e% f Sheet Number: 167 of 187 4.U-I V02 gure 7-46a - Vertical Time History Lt 1.5-

- Fling Time History 1.0-0.5-

^w 0) 0.0-

,aJ IWAiA 6 UAkJ6h KIW 11,1111alik L;-Ij.111 ft jj41jhkMkj C. rMTPF'jTjqM

-0.5- . . . I I I I- I a

-1.0- I'I

-1.5-

-2.0- I I I I l 6 10 20 30 40 50 60 70 80 aI E

0 0

6 10 20 30 40 50 60 7o 80 Time (sec)

Figure 7-46a. Synchronous Set4 vertical modified acceleration time history and the fling acceleration, velocity and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 168 of 187 C.,

cny a:

600.0 300.0-E C. 0.0-

-300.0-

- Vertical Time History with Fling I

-600.0- 4. , - . .

0 10 20 30 40 50 60 70 0 C,ct C]

0 0 10 20 30 40 50 60 80 Time (sec)

Figure 7-46b. Synchronous Set4 vertical modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 169 of 187 Date: 11/24/02 7.9 Checking of Enveloped Time History Spectra for the Modified Synchronous Rupture Time History Sets The program SPCTLR was used to compute the acceleration response spectra for the four sets of synchronous rupture time histories. The response spectra were computed for spectral damping levels of 4, 5, and 7%. The average response spectra for each component of motion at each damping level was checked against the corresponding soil target spectra for acceptance (see Section 4.7). The number of points of the averaged response spectra falling below the target spectra are given in Table 7-15 for the synchronous rupture cases. The final synchronous rupture time histories for the fault normal, fault parallel, and vertical components are plotted in Figures 7-47 through 7-50 for the four cases. Fault normal with fling and the vertical with fling time histories are the same as shown previously in Figures 7-39 through 7-46. The average response spectra and the corresponding targets are plotted in Figure 7-51 and numerical values of the computed average spectra are included in the enclosed CD-Rom.

Table 7-15. Comparison of synchronous rupture time history response spectra to the soil target spectra.

Number of points below target spectra l Component of average 4% damping 5% damping 7% damping of 4 time histories _

Fault Normal 1 I 1 Fault Parallel, 3 1 1 Vertical 0 1 4 Fault Normal with Fling 0 0 0 Vertical with Fling 0 0 4

Calc Number: GEO.HBIP.02.05 Rev Number: 0 1.5- Sheet Nunbar 1-In of 1 ,7

)2 Figure 7 7a. - Fault Normal Time History with Fling 1.0-0 10 20 30 40 50 60 70 80 600.0-300.0l E

>-300.0- 1~;5>

-Fault Normal Time History with Fling

-600.0-, . . , , , , . l ,

0 10 20 30 40 50 60 70 80 800.0-400.0-

. 0.0-

-400.0-

- Fault Normal Time History with Fling

-800.0-0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-47a. Synchronous Setl fault normal modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0

-1 .0 I.

-1 .5 600.0-300.0 Cl)

E U 0.0

-300.0

- Fault Parallel Time History

-600.0 0 10 20 30 40 50 60 70 8C 200.0-100.0-0* 0.0-

-100.0-

- Fault Parallel Time History I ron n_

-ouv.v-0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-47b. Synchronous Setl fault parallel modified acceleration, velocity, and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 CD 8

'I)

E 0) 0 Time (sec)

Figure 7-47c. Synchronous Setl vertical modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 0) 0 0.0- JILASULL,

[ME'"

-0.5-

-1.0-

-1.5-800.0-400.0-I0)

E 0.0-

-400.0-

- Fault Normal Time History with fling

-800.0- T jr I I I

  • I I I 10 20 30 40 50 60 70 )

E (1) a Time (sec)

Figure 7-48a. Synchronous Set2 fault normal acceleration, velocity, and displacement time histories with fling.

. . . .. ~~~~~~..

~~~~~

Calc Number: GEO.HBIP.02.05 Rev Number: 0 1.5- he lme-14o 1 7 Figure778b. Fault Parallel Timenl t&q'l 2 1.0-0.5-c,0.0-

-0.5-

-1.0-

-1.5 0 10 20 30 40 50 60 70 80 400.0-200.0-E l- Fault Parallel Time Historyl 0 10 20 30 40 50 60 70 80 200.0-

_ l- Fault Parallel Time History B400.0- I1 100.0-0.0 0 10 20 30 40 50 60 70 1 Time (sec)

Figure 7-48b. Synchronous Set2 fault parallel acceleration, velocity, and displacement time histories.

. m . I -. --: - -

Calc Number: GEO.HBIP.02.05 Rev Number: 0 2.0- HStor wit h Fl in Figlrv 8c. I Vrtcal Time !History with Fling 1 (2 1.0 111 111 0.5 I.i 1, II I~, 0.0- _L_ II-A.I.-,Pa. -0 - - --

4

-C C-0.5 ' III

-1.0- Il IF

-1.5-O'n_

-c.v I.II . I 0 10 20 30 40 0 60 70 U-1 E

0 E

0 a

Time (sec)

Figure 7-48c. Synchronous Set2 vertical modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 176 of 187

- Fault Normal Time History with fling 0)n Q:

E 0

-400.0-

- Fault Normal Time History with fling I elfI ^ Is.,,,,,

-%Jvvv.% - I I -nuu~~ I I- - I 0 10 20 30 40 50 60 70 80 800.0 4 0 0 .0 -

E (0

0.0-0

-400.0-l- Fault Normal Time History with fling

-800.0- T l Il I I I I I I I l 0 10 20 30 40 50 60 70 80 Time (sec)

Figure 7-49a. Synchronous Set3 fault normal acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 1.5- 1 7 Figtre7 9b. - Fault Parallel TimeP1VstbW 4 2 0.5-o0.0-

-0.5-

-1.5 0 10 20 30 40 50 60 70 80 400.0-200.0-

-200.0-

- Fault Parallel Time History

-400.0- , , , , I I, I I 0 10 20 30 40 50 60 70 80 200.0-100.0X 0

0 10 20 30 40 50 60 70 Time (sec)

Figure 7-49b. Synchronous Set3 fault normal acceleration, velocity, and displacement time histories.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 n ,

-.-I

_.V,

- .1 .l L I J . .A .- ,

Figjli5 9c. I - Vertical Time History with FlinigIteI 1/4 I 2 1.0-I 0.5- III LI..L.I .IL. I11 I S .....

(: 0.0-N

-0.5- *111 I '.

-1.0-

-1.5- I

-2.0-0 10 20 30 40 50 60 70 80 600.0.

300.0-(0 E

-a) 0 . 0 -j

-300.0-

- Vertical Time History with Fling I

-600.0 r I TI I I I TI I I 0 10 20 30 40 50 60 70 E)

C.,-

E

.0 0 10 20 30 40 50 60 80 Time (sec)

Figure 7-49c. Synchronous Set3 vertical modified acceleration, velocity, and displacement time histories with fling.


I.. -n--- -

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 179 of 187 Date: 11t244 2

- Fault Normal Time History-with Fling IT 0

C.)

M

£10 E

U 0

0) 0 10 20 30 40 50 60 70 Time (sec)

Figure 7-50a. Synchronous Set4 fault normal modified acceleration, velocity, and displacement time histories with fling.

i -

Calc Number: GEO.HBIP.02.05 Rev Number: 0 CD 8.

X-S E

(.3 U)

Time (sec)

Figure 7-50b. Synchronous Set4 fault parallel modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0

2. A.U- S NumberI llCM aI of i7 FigTft 5M 0C. Vertical Time History with Fli yte 11/24/ 2
1. 0-
0. 5-C 5-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C0

-0.!5- I

-1 .1 O-

-1 .'

-1.:

-2.'

U 1U  ;& U 4U WU OzU (U MsU At f% f.

'4.IjtJ-t -Y 200.0-E

> 0.0-

-200.0-

- Vertical Time History with Fling I

-400.0- I I I . I 6 10 20 30 40 50 60 70 80 onn% ^

OUU.UTI 400.0-E 0.0-U) 0

-400.0-

- Vetical Time History with Fling I

-nfjl-tIj- .1 0 10 20 30 40 50 60 770 80 Time (sec)

Figure 7-50c. Synchronous Set4 vertical modified acceleration, velocity, and displacement time histories with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 182 of 187 Date: 1 1/24/02 Target (4%)

Target (5%)

Target (7%) _ _ -

Average (4%) . - -

3.5__

_-- - - Average (5%) _

........ Average (7%

C 0

CU a)~

a)

Co 0.5- - T 0.01 01 _ 10 H LlL~~~~~eLdod1 LseI_

Period 1(7secV)U I = _= = _ ___Is 0.01 Figure 7-5 1a. Comparison of average response spectra for the spectral damping levels of 4%, 5%, and 7% and the target spectra for the fault parallel component.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number. 183 of 187 Date: 11/24/02 4.!C

- a I ~.p -. .

Target (4%) - -- _

r-_ (5%)

Target - _ - -

_ ~~Target (7%)= __-__;_____

Average (4%) _ - - - -

3.

_- - - - Average (5%) __=

- - . Average (7%) _

3- -

0) a I TII ~~~ITTI I If

-M I=2 5-___ _-

m 2-= __ 1 is cn_

1.5- I*~-I I _ _ = I _II- I I-1- L ~

0. - ----.-J- I I I 4-4-+AY..'A-4-4 I I I I 1 1 11 I II I I I I E!n 4 1 1 1 1 1 1 1 11 1 1 1 1 1 1 111 1 1 1 1 j I I I I I I I II I I I I I I III I I I I n I U *- - - . Ii-. --- .

! I

- I 0.01 0.1 I 10 Period (sec)

Figure 7-5 lb. Comparison of average response spectra for the spectral damping levels of 4%, 5%, and 7% and the target spectra for the fault normal component with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 184 of 187 Date: 11/24/02 a- . - . ., U f , , ff :s l , ,,

1 I IzliiI I I lz! I I nI l

- ~ Target (4%)

II'l A =F K-IN _ r Target (5%)

r. _; .

_ _s

_ _ 4 m _ s 1. \o g_ _ _ _ _ _, - Target (7%)

. = = 7; _ , , X >>

N_ = =I = _

--- Average (4%)

- - - - Average (5%)

14~~~~~~~~~~~ _ .- -- - - Average (7%)

f/ M I It, V I I I I II .. . . . .. ..

C

) A 1 IM! FFH INV itEI1 I'M '. % ,

n I 1I EE1I nI IIm1II 0

(a L-

'a . 7 t IrE t I 7_7~~V.1i 0.

CO 2-_x KV&- l {1 1.5__ _ ___ 1!1!

0. = 1 _5QSR1

- I 0.01 0.1 10 Penod (sec)

Figure 7-5 1c. Comparison of average response spectra for the spectral damping levels of 4%, 5%, and 7% and the target spectra for the vertical component with fling.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 185 of 187 Date: 11/24/02 7.10 Statistical Independence of Time Histories The work plan requires that 3 components for each set of ground motions be statistically independent. This cross correlation is computed using eq. (5-5). The resulting absolute values of the cross-correlation are listed in Table 7-16. All of the sets meet the criteria that the cross-correlation is less than 0.3.

Table 7-16. Cross-correlation of acceleration time histories between fault normal (FN),

fault parallel (FP), and vertical (Z) components.

Set FP-FN FN-Z FP-Z 1 0.152 0.036 0.031 2 0.035 0.053 0.030 3 0.050 0.084 0.014 4 0.058 0.033 0.015

8. RESULTS The four sets of synchronous rupture time histories on the attached excel file meet the spectral matching requirements of SRP 3.7.1 and the statistical independence requirement of the work plan (following ASCE 4-86).
9. CONCLUSIONS The time histories on the attached excel files represent the ground motion due to transient displacements for the synchronous rupture of the LSF and Cascadia subsources. The fault parallel component is not affected by permanent displacement for a pure thrust fault earthquake. The fault normal and vertical components do include the ground motion due to permanent tectonic deformation (fling) and these time histories are also included in the excel files.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 186 of 187 Date: 11/24/02

10. REFERENCES ASCE 4-86, Seismic Analysis of Safety Related Nuclear Structures and Commentary on Standards for Seismic Analysis of Safety Related Nuclear Structures, American Society of Civil Engineers, Sept, 1986 Hudson, D. E. (1979). Reading and interpreting strong motion accelerograms, Earthquake Engineering Research Institute, Monograph, 112 p.

GEO.DCPP.01.012 Development of Fling Model for Diablo Canyon ISFSI, Rev 1, Sep 26,20021.

GEO.HBIP.02.04 Development of Response Spectra for HBIP, Rev 0, GEO.HBIP.02.03 Source Characterization for HBIP, Rev 0, Kanasewich, E. R. (1981). Time Sequence Analysis in Geophysics, Third Ed.,

University of Alberta Press, 480 p.

Somerville, P.G. (2002). Review of HBIP time histories dated July 23, 2002.

Calc Number: GEO.HBIP.02.05 Rev Number: 0 Sheet Number: 187 of 187 Date: 11/24/02 Appendices Al Contents of file "setl fn.acc" on the CD-ROM (enclosure 1)

A2 Contents of file "setl fnf.acc" on the CD-ROM (enclosure 1)

A3 Contents of file "setlfp.acc" on the CD-ROM (enclosure 1)

A4 Contents of file "setlz.acc" on the CD-ROM (enclosure 1)

A5 Contents of file "setlzf.acc" on the CD-ROM (enclosure 1)

BI Contents of file "set2_fn.acc" on the CD-ROM (enclosure 1)

B2 Contents of file "sea fhf.acc" on the CD-ROM (enclosure 1)

B3 Contents of file "set2 fp.acc" on the CD-ROM (enclosure 1)

B4 Contents of file "set2_z.acc" on the CD-ROM (enclosure 1)

B5 Contents of file "set2_zf.acc" on the CD-ROM (enclosure 1)

CI Contents of file "set3_fn.acc" on the CD-ROM (enclosure 1)

C2 Contents of file "set3_fnf.acc" on the CD-ROM (enclosure 1)

C3 Contents of file "set3 fp.acc" on the CD-ROM (enclosure 1)

C4 Contents of file "set3_z.acc" on the CD-ROM (enclosure 1)

CS Contents of file "set3_zf.acc" on the CD-ROM (enclosure 1)

DI Contents of file "set4_fn.acc" on the CD-ROM (enclosure 1)

D2 Contents of file "set4_fnf.acc" on the CD-ROM (enclosure 1)

D3 Contents of file "set4_fp.acc" on the CD-ROM (enclosure 1)

D4 Contents of file "set4 z.acc" on the CD-ROM (enclosure 1)

D5 Contents of file "set4_zfacc" on the CD-ROM (enclosure 1)

11. ENCLOSURES AND ATTACHMENTS CD-ROM Containing all of the input and output files and programs used in computing the time histories. The contents of the CD-ROM are listed in Tables 1, 2, and 3 in .