L-2010-096, Extended Power Uprate Data for NRC Confirmatory EPU Analyses

From kanterella
(Redirected from L-2010-096)
Jump to navigation Jump to search
Extended Power Uprate Data for NRC Confirmatory EPU Analyses
ML101590153
Person / Time
Site: Saint Lucie  NextEra Energy icon.png
Issue date: 06/04/2010
From: Richard Anderson
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-2010-096
Download: ML101590153 (104)


Text

Florida Power & Light Company, 6501 S. Ocean Drive, Jensen Beach, FL 34957 This document contains information to be withheld from public disclosure pursuant to 10 CFR 2.390(a)(4)

FPL June 4, 2010 L-2010-096 10 CFR 50.4 10 CFR 50.90 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 RE: St. Lucie Units I and 2 Docket Nos. 50-335 and 50-389 Extended Power Uprate Data for NRC Confirmatory EPU Analyses This letter provides data that is needed to build St. Lucie specific LOCA models for the NRC confirmatory analyses associated with Florida Power & Light's St. Lucie Extended Power Uprate (EPU) application submitted via FPL letter L-2010-078 dated April 16, 2010. This data is provided in Attachments I and 2. Attachment 2 contains proprietary information to be withheld from public disclosure per 10 CFR 2.390(a)(4). Attachment 3 contains a signed affidavit for the basis for the proprietary nature of Attachment 2.

Attachment 4 contains a non-proprietary version of Attachment 2.

Please contact Ken Frehafer at 772-467-7748 or Kathy Rydman at 772-467-7680 if there are any questions regarding this information.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Executed on - '1 ,2010.

Very truly yours, Richard L. Anderson Site Vice President St. Lucie Plant Attachments f\Q an FPL Group company

L-2010-096 Attachment 3 Page 1 of 3 AFFIDAVIT COMMONWEALTH OF VIRGINIA )

CITY OF LYNCHBURG )) ss.

1. My name is George L. Pannell. I am Manager, Product Licensing, for AREVA NP Inc. and as such I am authorized to execute this Affidavit.
2. I am familiar with the criteria applied by AREVA NP to determine whether certain AREVA NP information is proprietary. I am familiar with the policies established by AREVA NP to ensure the proper application of these criteria.
3. I am familiar with the AREVA NP information provided to the NRC in support of a Florida Power and Light letter number L-2010-096 entitled, "Data for NRC Confirmatory Unit 1 EPU Analysis." Attachment 2 of that letter is provided and referred to herein as "Document." Information contained in this Document has been classified by AREVA NP as proprietary in accordance with the policies established by AREVA NP for the control and protection of proprietary and confidential information.
4. This Document contains information of a proprietary and confidential nature and is of the type customarily held in confidence by AREVA NP and not made available to the public. Based on my experience, I am aware that other companies regard information of the kind contained in this Document as proprietary and confidential.
5. This Document has been made available to the U S. Nuclear Regulatory Commission in confidence with the request that the information contained in this Document be withheld from public disclosure. The request for withholding of proprietary

L-2010-096 Attachment 3 Page 2 of 3 information is made in accordance with 10 CFR 2.390. The information for which withholding from disclosure is requested qualifies under 10 CFR 2.390(a)(4) "Trade secrets and commercial or financial information".

6. The following criteria are customarily applied by AREVA NP to determine whether information should be classified as proprietary:

(a) The information reveals details of AREVA NP's research and development plans and programs or their results.

(b) Use of the information by a competitor would permit the competitor to significantly reduce its expenditures, in time or resources, to design, produce, or market a similar product or service.

(c) The information includes test data or analytical techniques concerning a process, methodology, or component, the application of which results in a competitive advantage for AREVA NP.

(d) The information reveals certain distinguishing aspects of a process, methodology, or component, the exclusive use of which provides a competitive advantage for AREVA NP in product optimization or marketability.

(e) The information is vital to a competitive advantage held by AREVA NP, would be helpful to competitors to AREVA NP, and would likely cause substantial harm to the competitive position of AREVA NP.

The information in this Document is considered proprietary for the reasons set forth in paragraphs 6(b), 6(c) and 6(d) above.

7. In accordance with AREVA NP's policies governing the protection and control of information, proprietary information contained in this Document has been

L-2010-096 Attachment 3 Page 3 of 3 made available, on a limited basis, to others outside AREVA NP only as required and under suitable agreement providing for nondisclosure and limited use of the information.

8. AREVA NP policy requires that proprietary information be kept in a secured file or area and distributed on a need-to-know basis.
9. The foregoing statements are true and correct to the best of my knowledge, information, and belief.

SUBSCRIBED before me on this __'_

day of -JIAAi ,2010.

Sherry L. McFaden NOTARY PUBLIC, COMMONWEALTH OF VIRGINIA MY COMMISSION EXPIRES: 10/31/10 Reg. # 7079129

$HUMY L.MCFMSN Commonwealth of Virginia 7079129

L-2010-096 Attachment I Page 1 of 59 ST. LUCIE UNIT 1 EPU Input Data Request to NRC for LOCA Model Item Parameter -Description Units Value Comments No.

1. Plant Operating Conditions la For rated power conditions (Current)
1. Primary and Secondary Flow rates:

1.1. Core flow Unc: +/- 14,945 gpm and gpm 410,922 min flow is 365,000 gpm 1.2. Main coolant pumps 95,000 (1A 1) gpm 96,000 (1A2) RCP Pump Test Data 94,000 (1B2) 1.3. Steam flow Ibm/s See Item la.7.1 1.4. Feedwater flow Ibm/hr See Item la.7.1 --------

1.5 SG recirculation ratio/boiler section  % Power Circ Ratic flow  % Power- 25 15.3 50 8.7 Circ Ratio 75 .9 90 4.9 100 4.3

2. Primary and Secondary Pressures: , , *, ,

2.1. Pressurizer Pressure range is 2225 to psia 2250 2275, with Unc: + 22 Normal, + 80 Accident r

L-2010-096 Attachment I Page 2 of 59 Item Parameter -Description Units Value Comments No.

2.2. Core inlet Estimate based on Rx S2285 vessel pressure losses of 35.4 psia and core outlet pressure.

2.3. Core outlet Assumed to be the same as the pressurizer.

2.4. Reactor coolant pump discharge Assume a 1 psi pressure psia 2286 drop from RCP discharge to core inlet.

2.5. Steam generator dome Steam Generator Outlet from Benchmarked Heat Balance plus pressure drop to Upstream Outlet Nozzle 2.6. Turbine control valve inlet Benchmarked Heat psia 816.4Banc Balance 2.7. Detailed primary loop pressure drop distribution psi See Section 4.1

3. Primary and Secondary Temperatures:

3.1. Hot leg Assumed to be the same as the core outlet temperature OF 599 since the Rx vessel does not have upper head injection.

3.2. Cold leg OF 549 Tcold temperature at full Unc: + 3°F power.

3.3. Core outlet OF 599 3.4. Upper Head Assumed to be the same as OF 599 the core outlet temperature since the Rx vessel does

L-2010-096 Attachment 1 Page 3 of 59 Item Parameter -Description No.

4. Water levels in the pressurizer and steam generators.

4.1. Pressurizer

% Tap Span See Figure L.A 4.2. Steam Generators Reference SG elevations from top of tubesheet.

5. Leakage flows (Bypass): Total value includes

% of vessel 0.19% bypass for core nof 3.9 support barrel plugs/patch assembly and crack clearances.

5.1. Outlet nozzle clearances percent 1.18 5.2. Downcomer to upper head percent 0.17 5.3. CEA shrouds Equivalent to a fraction of the leakage through guide tubes (item 1a.5.5. 1). This has not been quantified.

5.4. Upper head to upper plenum (guide This has not been structure holes) percent N/A quantified.

5.5. Core bypass (guide tubes, barrel-baffle) 5.5.1. Guide tubes percent 1.86 5.5.2. Barrel-baffle percent 0.50

L-2010-096 Attachment I Page 4 of 59 Item Parameter -Description Units Value Comments No.

6. Steam generator recirculation ratio Power- S eIe a15----

%CircRatio

7. Heat balance information, such as:  : >""

7.1. Feedwater and steam flows lbm/hr 11,851,050 Benchmarked Heat

/11,784,590 Balance 7.2. Feedwater temperature OF 435 Benchmarked Heat Balance 7.3. Turbine inlet pressure Benchmarked Heat Balance

1. Plant Operating Conditions lb. For EPU conditions.
1. Primary and Secondary Flow rates:  :,gs;,*,
1. 1. Core flow Nominal value based on the most recent gpm 410,922 measurement. Unc: -

15,000 gpm; TS Min flow is 375,000 gpm 1.2. Main coolant pumps 95,000 (IA1) gpmgpm 95,000 (1A2) 96,000 (11B 1) RCP Pump Test Data 94,000 (1B2) 1.3. Steam flow Ibm/s See Item lb.7.1 1.4. Feedwater flow Ibm/hr See Item lb.7.1 1.5. SG recirculation ratio/boiler section flow Power- Power %Circ Ratio 25 14.18 7.98

% CircRatio 5 50 7.92

L-2010-096 Attachment I Page 5 of 59 Item Parameter -Description Units Value Comments No.

75 5.32 90 4.38 1 3

2. Primary and Secondary Pressures:

2.1. Pressurizer psia 2225 to 2275 Unc: +/- 40 2.2. Core inlet psia 2285 Assumed to remain similar to current conditions.

2.3. Core outlet psia 2250 Assumed to remain similar to current conditions.

2.4. Reactor coolant pump discharge psia 2286 Assumed to remain similar to current conditions.

2.5. Steam generator dome psia 864.6 At 100% Power 2.6. Turbine control valve inlet psia Table 15 2.7. Detailed primary loop pressure drop psi See Section 4.1 distribution

3. Primary and Secondary Temperatures:

3.1. Hot leg OF 606.0 Assumes 10% SG tube plugging.

3.2. Cold leg 551 Corresponds to 100%

OF +/-Power. Tcold at 0% power is 5327F.

3.3. Core outlet OF 608.2 Assumes 10% SG tube 6 plugging.

3.4. Upper Head OF 608.2 Assumed to be the same as vessel outlet.

4. Water levels in the pressurizer and steam generators.

4.1. Pressurizer  % Tap Span See Figure 1.B 4.2. Steam Generators ft 35.0 Reference SG elevations ft 35.0 Lfrom top of tubesheet.

5. L ea ka ge fl o ws ( Byp a s s): _____ ____ I 1 __ __ _ _ ,_

L-2010-096 Attachment 1 Page 6 of 59 Item Parameter -Description Units Value Comments No.

5.1. Outlet nozzle clearances The total bypass flow value of 4.2% includes percent 1.27 also a value of 0.21% for core support barrel plugs/patch assembly and crack clearances.

5.2. Downcomer to upper head percent 0.18 5.3. CEA shrouds pThis has not been spercent N/A quantified.

5.4. Upper head to upper plenum (guide This has not been structure holes) percent N/A quantified.

5.5. Core bypass (guide tubes, barrel-baffle) 5.5. 1. Guide tubes Guide and Instrument percent 2.00 t r eeb 5.5.2. Barrel-baffle pecn .4Includes Core Shroud Bypass

6. Steam generator recirculation ratio .Power- SeItmIb1..----

%CircRatio

7. Heat balance information, such as: .... ..  :'... * .v;
7. 1. Feedwater and steam flows Ibm/hr See Table 15 ----

7.2. Feedwater temperature OF See Table 15 ----

713. Turbine inlet pressure I ncn I Vpp Tnhip 1; 1

2. Analysis Topical Reports
1. Topical Report on the licensing analysis of record for LOCA at rated power and EPU conditions.

L-2010-096 Attachment 1 Page 7 of 59 Item Parameter -Description Units Value Comments No. _ I Nuclear Company Evaluation Model Revised EXEM PWR Small Break Model",

  • EMF-2328(P)(A),

"PWR Small Break LOCA Evaluation Model, S-RELAP5 Based",

  • EMF-2087(P)(A),

"SEMIPWR-98: ECCS Evaluation Model for PWR LBLOCA Applications".

  • EMF-2514, Rev. 0, "St.

Lucie Unit I Large Break LOCA/ECCS Analysis," Dec. 2000.

For EPU, the SBLOCA Topical Report from above will be used. For LBLOCA, the EPU Topical Report is: EMF-2103(P)(A), Rev. 0, "Realistic Large Break LOCA Methodology for PWRs". Analysis results are in the UFSAR.

3. Safety System Logic, Setpoints and Delay :,

Times Critical Safety Parameters List (also called "Groundrules document") for the last reload

L-2010-096 Attachment 1 Page 8 of 59 Item Parameter -Description Units Value Comments No.

for: 11 See Table I

1. ESFAS See Table I See Table II See Table 11
2. RPS See Table 11 See Table 1I See Table 11
3. SGIS/MSIS See Table 11 See Table 11 See Table 11
4. PORV See Table 11 See Table 11 See Table 11
5. SRV See Table 11 See Table 11 See Table 11
4. Primary and Secondary Pressure Drops
1. Primary side pressure drop distribution with corresponding flow rate, including leakage See Table 14 See Table 14 flows (from design data or vendor analyses).
2. Secondary side pressure drop distribution with corresponding flow rate, including See Table 17 See Table 17 leakage flows (from design data or vendor analyses).
5. Core and Fuel Design
1. Number of assemblies N/A 217 ----
2. Dimensions Array: 14 x 14, N/A ~ ~Pitch:

8.18 in, ----

Length: 157.115 in

3. Spacer grid locations and K-factors K-factors See Table 4 for Core inlet region/ bottom Grid locations, grid = 3.530 N/A Mid-grid 7 spacers = 8.496 See Comments for Outlet region/top grid K-factors. 4.63 Bare rod = 3.971

L-2010-096 Attachment I Page 9 of 59 Item Parameter -Description Units Value Comments No.

4. Vessel pressure drops Current values:

a) Inlet nozzle & 90 degree a) 6.8 turn, psi b) 21.5 b) Downcomer, lower cb) 21. plenum, support structure c) 7.1 & fuel assembly, c) Fuel assembly outlet to outlet nozzle.

5. Bypass and leakage flows  % of total See Comment See items la.5.5 & 1.b.5.5 flow above
6. Number and location of fuel rods N/A 176 per Assy. See Figures 3 and 4 for 38,192 total location.
7. Number and location of guide tubes 4 guide tubes and N/A I instrument tube See Figure 3 for location.

per Assy.

6.. Equipment Drawings and Design Reports To confirm the calculation of flow path lengths ",

and elevations, flow areas, volumes, metal mass and surface areas (including pipe schedules),

and form loss (due to bends, contractions, expansions, orifices, etc.) for the following i.

equipment:

1. Reactor vessel and internals (identification of all core bypass flow paths and flow rates, See Table 6 including upper plenum or head to downcomer, if available).
2. Primary loop piping (hot leg, cold leg, --- See Table 6 pump suction).
3. Reactor coolant pumps. --- See Table 6
4. Steam generators and internals (U-tube --- See Table 6

L-2010-096 Attachment 1 Page 10 of 59 Item Parameter -Description Units Value Comments No.

lengths, separators, inlet and outlet plenum, etc.), (TH Design Report).

5. Pressurizer, surge line, spray lines, safety --- See Table 6 and relief valves and connecting lines, etc.
6. Main steam lines out to the turbine stop valves, including safety and relief valves and connecting lines, main steam isolation valves, flow restrictors, etc.
7. Main feedwater lines from the isolation valves to the steam generator inlet. See Table 6
8. Auxiliary feedwater lines and feedwater See Table 6 pump type, configuration and capacity.
9. Safety injection equipment including SITs, high and low pressure injection systems and --- See Table 6 connecting piping.
10. Charging and letdown system (CVCS). --- See Table 6
11. Residual heat removal system. See Item 6.9 for LPSI See Comment System. LPSI and RHR are the same system.
7. Reactor Vessel Internals Dry weight and surface area of reactor vessel internal structures:
1. Core support barrel Includes upper, center, and 103,500/ lower portions of the core Lbs / sq. ft. 1046 Inside support barrel; upper and 1106 outside lower flange; inner and outer nozzle areas.
2. Core shroud 34,900 / Includes vertical and Lbs / sq. ft. 590 Inside horizontal surfaces of the 1 865 outside core shroud. Weight

L-2010-096 Attachment 1 Page 11 of 59 Item Parameter -Description Units Value Comments No.

includes Tie Rods.

3. Lower core support plate Includes top and bottom surfaces; surface areas Lbs / sq. ft. 7,900 / 243 inside the holes of the plate.
4. Fuel alignment plate (Upper Core Plate) Includes top and bottom surfaces; surface areas Lbs / sq. ft. 8,900 / 238 inside the holes of the plate.
5. Upper guide structure Includes CEA shrouds with extensions; total Lbs sq. ft. 94,400 /6040 UGS plate, beam, &

cylinder areas; total fuel alignment plate area (Neglects guide tubes).

6. Core support assembly Includes vertical webs; Lbs I sq. ft. 47,800 /1371 flanges; cylinder; columns core support plate (Item 3 above); bottom plate.
7. Flow skirt Includes top and bottom surfaces; surface areas Lbs / sq. ft. 3,600 / 292 inside the holes of the plate.
8. Control element assembly (CEA) shroud 41,300 / Includes single and double Lbs / sq. ft. 1980 Inside shrouds.

2167 outside

9. Shroud extensions 3,000 / Includes single and double Lbs I sq. ft. 386 Inside shrouds.

476 outside

10. Grid assemblies 20.60 / 71.2892 Lbs / sq. ft.
8. [Steam Generator Internals

L-2010-096 Attachment I Page 12 of 59 Item Parameter -Description Units Value Comments No.

1. Weight of steam generator tube sheet and surface area of tube sheet exposed to primary side fluid.

1.1. Weight of Tube Sheet Includes base metal Ibm 94,334 (93,239 Ibm) and cladding (1095 lbm).

1.2. Area of Tube Sheet (Primary Side) ft2 75 Area for tube sheet only.

2. Weight and surface area of steam generator A wrapper.

2.1. Weight of SG wrapper Assume height of wrapper lbm 25,955 is 21.3 ft and material 3 density is 0.284 Ibm/in 2.2. Surface area of SG wrapper ft2 Inner: 842 Assume height of wrapper Outer: 850 is 21.3 ft.

9. Steam Generator Fluid Volumes . I "-
1. Inlet plenum ft3 222.026 Including Manway
2. Outlet plenum ft3 222.665 Including Manway
3. Active tubes, Outlet Inactive Tubes, Inlet ft 1129.04 (Active),

Inactive Tubes 36.635 (Outlet),

36.635 (Inlet)

4. Number of steam generator tubes N/A 8523 ----
5. Length of shortest and longest tubes ft 50.786 70.981
10. Steam Generator Parameters
1. Inventory and recirculation ratio versus load Power Secondary Inventory for clean, (essential at rated power conditions). Ibm Mass unplugged tubes at EPU 0 214393 conditions. Recirculation 25 178823 ratios provided in Item lb.

L-2010-096 Attachment 1 Page 13 of 59 Item Parameter -Description Units Value Comments No.

50 160630 1.5 75 147181 90 140456 100 136456

2. SG flow areas, K-factors and flows See Table See Table 17 See Table 17 17
11. MS Line Flow Restrictor
1. Restrictor flow area. ft2 3.69 per SG Outlet Nozzle Area 2.35 per SG Flow Venturi Area Steam Generator and Reactor Vessel
1. Heights ****** ':

I1. Volume versus height relationship for the steam generators, with downcomer and f13 VS. ft See Table 3 ----

boiler regions provided separately.

2. Volume versus height for the reactor vessel ft3 vs. ft See Table I with internals installed.
13. Reactor Coolant Pump Rated Conditions 7.
1. Head ft 273.5
2. Flow gpm 95,000
3. Torque lbf-ft 32,750
4. Speed rpm 886.25
5. Density Derived using values in lbs/ft3 46.90 13.1 - 13.4 above using an average efficiency of .8925
6. Homologous pump curves (four quadrant) N/A See Table 5
7. Pump inertia and friction (coefficients of lbm-ft2 101,900 polynomial in pump speed)

L-2010-096 Attachment 1 Page 14 of 59 Item Parameter -Description Units Value Comments No.

8. Coolant primary system fluid volume 112 within pump
9. RCP metal mass, excluding motor lbs 75,000 Dry Weight
10. Reverse rotation device operational for N/A Yes Device prevents reverse RCPs rotation.
11. Pump power to primary fluid 14.6 MWt MW (nominal),

20 MWt (max)

12. Coastdown characteristics N/A See Figure 2 Figure is provided for pr.marypcoant flow only.
13. Pump trip setpoints N/A Overcurrent Overload Trip.
14. Pump time delays and logic N/A N/A No safety related RCP trips.
14. Core Cooling System
1. HPSI and LPSI delivery curves See Revised SBLOCA does not use gpm Tables 12A, 12B LPSI flow in the analysis and 13 3
2. SIT total volume fW 2020
3. SIT initial pressure and liquid volume 230 psig was used as minimum value for psig / ft3 [200 to 280] SBLOCA analysis. All

/ [1090 to 1170] other analyses used a minimum of 200 psig.

4. CST minimum capacity gal 110,000
5. Charging pump flow versus pressure Reciprocal pump. Flow is 40 (nominal) to 49 per charging pump.

gpm (mimum) Nominal value does not include 4 gpm for RCP bleed off.

L-2010-096 Attachment I Page 15 of 59 Item Parameter -Description Units Value Comments No.

15.a Control Systems Rated power operation of the primary and secondary control systems for:

1. SG water level instrumentation and control t-I C-F, rU Ut*bW lPlLIU1lU UICtl (three-element) SG water level control system is provided in UFSAR Figure 7.7-5.

Additional information is N/A See Comment contained in System Description 0711408 "Steam Generators and Feedwater Control System"

2. SG pressure (including bypass and ADV) Pre-EPU description of the Steam Bypass Control System is contained in UFSAR Figure 7.7-6 (drawing 8770-883).

Additional information is contained in System N/A See Comment Description PSL OPS SYS 406 "Steam Bypass Control System". See Essential Valve Characteristics Table 19 for operation of Atmospheric Dump Valves

3. Pressurizer heaters and sprays Pre-EPU description of the N/A Se Coment Pressurizer Pressure Control System is provided in Figure 5

L-2010-096 Attachment I Page 16 of 59 Item Parameter -Description Units Value Comments No.

4. Pressurizer level Pre-EPU description of the Pressurizer Level Control System is contained in Figure L.A and Table 18
5. Auxiliary feedwater See Table 11 for Auxiliary Feedwater Actuation System setpoints.

N/A See Comment The Auxiliary Feedwater Actuation System logic is described in UFSAR Section 7.3.1.1.13 and UFSAR Figure 7.3-46

6. CVCS (charging and letdown) Pre-EPU description of the N/A See Comment CVCS System is contained in UFSAR Section 9.3.4 15.b Control Systems EPU condition operation of the primary and secondary control systems for:
7. SG water level instrumentation and control Feedwater Control System (three-element) will be rescaled to reflect new FW pumps, FW control valve modifications and an N/A See Comment expanded nominal flow rate. The post-trip transition logic for main to low power FW control valves will also be revised to improve SG level response.
8. SG pressure (including bypass and ADV) EPU does not change N/A See Comment ADV control logic or setpoints. Steam Bypass

L-2010-096 Attachment I Page 17 of 59 Item Parameter -Description Units Value Comments No.

valve capacity will be increased by EPU to restore design capacity in

%RTP. The SBCS will be functionally implemented in the plant Distributed Control System (DCS).

SBCS will be rescaled to match new valve Cv curves. Quick Open setpoint for sudden loss of load will be decreased from 30%to 15%.

Transition from Quick Open logic to Modulation control will be modified (through the use of controller output signal tracking) to smooth the steam header pressure response.

9. Pressurizer heaters and sprays EPU does not change the N/A See Comment Pressurizer Pressure control logic or setpoints.
10. Pressurizer level The Pressurizer Level Control Program will be rescaled to reflect the N/A See Comment increased Tavg range from 0 to 100% RTP. Program endpoints in terms of volume will remain as is.

See Figure L.B.

11. Auxiliary feedwater N/A See Comment EPU does not change the AFAS actuation logic or

L-2010-096 Attachment 1 Page 18 of 59 Item Parameter -Description Units Value Comments No.

setpoints.

12. CVCS (charging and letdown) EPU does not change N/A See Comment CVCS control logic or setpoints
16. Reactor Vessel Upper Head Assume to be the same as
1. Upper head fluid temperature at normal OF See item 1.b.3.4 core outlet temperature operating conditions.,O above sneteR eslde not have upper head in jection.
17. Essential Valve Characteristics Number of valves, full open flow area, .

forward/ reverse flow coefficients (CV's), * -

open/close rate, minimum flow at rated i* s; conditions, logic for opening and closing the valves for: '

1. Pressurizer PORVs See Tables 2 & 19
2. Pressurizer safety valves See Tables 2 & 19
3. Main steam safety valves See Tables 2 & 19
4. Atmospheric dump valves See Tables 2 & 19
5. TCVs (turbine control valves) See Tables 2 & 19
6. Turbine bypass valves See Tables 2 & 19
7. TSVs, (turbine stop valves) See Tables 2 & 19
8. MFIVs See Tables 2 & 19
9. MSIVs See Tables 2 & 19 18 to Reactor Core Parameters 20

L-2010-096 Attachment I Page 19 of 59 Item Parameter -Description Units Value Comments No.

1. Control rod insertion versus time after seconds 3.1 Time for 90% insertion scram.
2. CEA worth versus insertion (with and without highest worth rod stuck out of N/A See Attachment 2 core).
3. Reactivity versus fuel temperature and N/A See Attachment 2 reactivity versus moderator density.
4. Moderator temperature coefficient. N/A See Attachment 2
5. Typical top peaked axial power profile. N/A See Attachment 2
6. Minimum and maximum average fuel clad gap conductivity at rated power conditions.
7. Minimum local gap conductance as a N/A See Attachment 2 function of LHGR.
8. Gap conductance. N/A See Attachment 2
9. Linear heat rate. N/A See Attachment 2
10. Fuel average and centerline temperature as a function of burnup for the hot rod in the N/A See Attachment 2 hot bundle.
11. Specifications for modeling a small break LOCA, in particular what models/ assumptions are used regarding loop seal clearing and hot channel conservatisms. The AREVA SBLOCA methodology topical report was provided and this is very useful. The FSAR or a report on the N/A See Attachment 2 analysis of record is needed to move from the generic methodology to the plant specific application. Plots of key variables for the EPU LBLOCA and SBLOCA analyses, including containment pressure for LBLOCA.

L-2010-096 Attachment I Page 20 of 59 Item Parameter -Description Units Value Comments No.

21. Operator Actions During LOCA
1. Reactor coolant pump trips (conditions to Accident analysis assumes trip pumps - automatic or manual) LOOP concurrent with Pumps LOCA, and pumps are not None automatically trip loaded onto EDGs or on LOOP manually operated. Same assumption for EPU analysis.
2. HPSI throttling criteria If HPSI pumps are operating, and ALL of the following conditions are satisfied:

- RCS subcooling is greater than or equal to minimum subcooling

- Pressurizer level is at None See Comment least 30%

and NOT lowering,

- At least ONE S/G is available for RCS heat removal with level being restored to or maintained between 60 and 70% NR,

- Rx Vessel level indicates sensors 4 through 8 are covered, or NO abnormal differences

L-2010-096 Attachment I Page 21 of 59 Item Parameter -Description Units Value Comments No.

(greater than 207F) between THOT and Representative CET temperature, Then, THROTTLE SI flow. Same assumption for EPU analysis.

3. MS line break auxiliary feedwater control. AFW is manually stopped Min 10 10 minutes after a MSLB event. Same assumption for EPU analysis.

Cycle 23 COLR provided to NRC via FPL letter L-

22. Core Operating Limits Report SeeSee Cmet Comment SeComment 20 10. EPUdated 2010-095, COLR May 5, mark-ups provided with FPL EPU submittal-For the various materials in the reactor
23. RCS Material Property Data coolant system (stainless steel, inconel, etc.):
1. Density lb/ft3 See Table 16 ----
2. Specific heat BTU/Ilbm-°F See Table 16 ----
3. Thermal conductivity BTU/hr-ft- See Table 16 OF
4. Emissivity versus temperature See Table 16 24 2. Power (New Re Level / Uncertainty nests)
1. Current Power Level MWth 2700

L-201 0-096 Attachment I Page 22 of 59 Item Parameter -Description Units Value Comments No.

2. Current Power Uncertainty  % 2 Applicable for both (LBLOCA/SBLOCA) LBLOCA and SBLOCA
3. EPU Power Level MWth 3020
4. EPU Power Uncertainty  % 0.3 Applicable for both (LBLOCA/SBLOCA) LBLOCA and SBLOCA

L-2010-096 Attachment I Page 23 of 59 Figure L.A PRESSURIZER LEVEL PROGRAM 100.0 80.0 Ck.

0)

.R 60.0 EU

-J w

N 40.0 U) w CL 20.0 0.0 506 522 538 554 570 586 602 VESSEL AVERAGE TEMPERATURE , TAVE (F)

Note: Values in the figure are nominal values.

L-2010-096 Attachment I Page 24 of 59 Figure 1.B PRESSURIZER LEVEL PROGRAM 100.0 80.0 60.0 40.0 20.0 0.0 4-506 522 538 554 570 586 602 VESSEL AVERAGE TEMPERATURE, TAVE (F)

Note: Values in the figure are nominal values.

o . PtOw TOTAL PRIMARY COOLANT tool

  • S fT 0 1 1 40 CQrC CC

L-2010-096 Attachment I Page 26 of 59 Figure 3 - Location of Fuel Rods and Guide Tubes in Fuel Assemblies p REACTOR VESSEL S

CORE SHROUD FUEL ROD 0.440" OD /-GUIDE TUBE J- t

-4 13 SPACES AT 0.580Y"

-4 EQUALS 7,15M" 460.5-"010 II I /II I f -

O FUEL RoD PITCH J1 7.080" OUTSIDE FUEL RODS WATEo.RGA S WATER GAP An. 3-7/85 FLORIDA Figure POWER & LIGHT CO. REACTOR CORE CROSS-SECTION St. Lucle Plant .4.1-2 Unit I

L-2010-096 Attachment I Page 27 of 59 Figure 4 - Location of Fuel Assemblies in the Core IW V I S R P NM LXJ~ HHO F 8E IC 1111111 1

-3q14-- - -- 6-- - - I- I- * ---. 21 V-.6I I I

I I I .... .. I 20 jO1.7 J-3 1 E-4 J, 881 I FEED D-4 f1l8 84 FEED[

CC1o '*

T-4 N-3 1 1134117 M IA49IT-16I AA68I1AA3 I CC121 CC35 8210 01C691 888 1CC431 :18 I W IAA62 - i 19 R-18 R-13 FEED FEED X-13 FEED B-13 FEED FEED G-13 D-7 I

AA5S- 00-10481 885 188281BB451BB52iBB39188SV18111 CCSO CC02 A 0-18 IFEED FEEDI "- D-13 G-19 IL-16 R-19 V-13 F-3 IFEEDIFEED D-16 A35 M12 CC57 8825 88 CC34 MES 0065 MA3 CC38 8O8 8830 0081 Mu AA3 6-5 M15 FEED F-6 T FEED S-9 FEED F- FEED E-15 S-6 FEED J-IS F-S MI6

-v -18

-I?

AA56 CC19 888 8838 CC52 AA1S 02 8827 CC24 ;A2 8867 819 006 AA31 CC48 C-0 FEED 0-16 E-17 FEED B-7 FEED L-5 FEED X-7 FEED -1 W-16 FEED W-9 8840 0049 821 0042 MAS M0 C27 AA21 A MA219 AM4CC33 6833 0055 8882 D-5 FEED N ED G-2 G L-20 6-11 FEED W-1 8-11 E-2 FEED .-4 FEED V-5 37-14 T-5 0020 83M ~ 05M402 71-ý 861 CC31 AA22 CC21 MAi0 8B53 81 B8 0 6-18 _1 FEED N-20 W-7 J-18 FEED L-3 FEED R-L5 FEED L-18 FEED N-16 7 J-20 FEE M29 8 "--13

-12 007 87858004 8831 004 0843 S51 8845 CC62 8824 L B841 0071 883 J-9 --II 2780 -f-8 AA39 0-18 FEED R-11 FEED E-Il FEED B-7 -7 0-15 FEED T-11 FEED G11 FEED V-4 S--10 N-13 0015888i 8884 ý MY 002 423 23 BB58 00628 M2ý8-00C28 83 8817 C01-6 M4_ FEED N- MIS J-6 FEED SL-6FD FEED L-18 FEED N- C-I J-2 FEED AA58 F4 B841 0054 883AA586 18 053 A262 Ml? AX 8850 88326 0058 8850 E-17 CC a D-17 FEED N-18 FEED G-2D X-11 0-11 FEED F-11 L-2 R-20 FEED J-8 FEED V-il -7 AA32 0013 B814 8842 0039 MO9 00286828 27 A10 0064 88 8812 =4 MA5 C-13 FEED C-S 1,-5 FEED B-15 FEED L-17 FEED X4I FEED G-5 W-S FEED W-13 MO A I CC0078835 BES C044 M73 0058 MOI 0047 8858 834 0061 AAI1 A41 8-17 N.7 FEED F-1 T-7 FEED 6.13 FEED F-13 FEED 8-78-16 FEED J-7 F-il M12 3ICC3 1C 36 126 11313134

.g1886 18851 1885 32 88181 CC87 C00 AA47 4 V-7 FEED FEED O89 D-9 G-3 L-7 R-3 V-9 V - 19 FEED FEEDI R.4 A%9 *,6 1CC9 I0C0 BB15 00721818100CC8660111 1 PA3 ,AAM7 3 V-15 R-9 FEED FEED X-9 FEED B-9 FEED FEED 0-9 G--4

'From Cycole4 A33 MA"4 AA51IAA38 BB5I CC5 BBI I0CC171884 2 E-0 J-19 E-18 FEED V-18 FEED T'-1 Fl1- T-0

= t , I = I t,...J.*...1--

FYif1 Ameorwly Idenfiler AAlI A34IAA531 AA36 I I ZZJ PreviouCycleLocatos 1W0 Florida Power & Light Company St. Lucie Plant Unit 1 St. Lucie Unit 1, Cycle 21 Core Loading Pattern Figure 4.3-45A Amendment No. 22 (05107)

L-2010-096 Attachment 1 Page 28 of 59 Figure 5 - PSL-1 Pressurizer Pressure Control Program Pressure (psia) 2500 Safety Valves Open (2500 psia)

- + I - -~

2400 High Pressure Trip (2400 psia)

-1* 1 PORVs Open (2400 psia) 2340 *Spray Valves Fully Open (Above 2340 psia)

High Pressure Alarm (2340 psia) 2300 Spray Valves Fully Closed (Below 2300 psia) 2275 Proportional Heaters "OFF" (2275 psia) 2250 Control Setpoint (2250 psia) 2225 Proportional Heaters "ON" (2225 psia) 2220 2200 Backup Heaters "ON" Below 2200 psia

-+ 1* I (Backup Heaters "OFF" Above 2220 psia) 2100 4.

Low Pressure Alarm (2100 psia) 0 Net Heat In Net Heat Out -* (Not To Scale)

Nominal Values Shown

L-2010-096 Attachment 1 Page 29 of 59 Table 1 Volume vs. Height for the Reactor Vessel with Internals Installed.

Region Elevation Volume vs. Height, Volume

( ft) (ft3 perf) ( ft3 )

UGS support plate to top of vessel 6.6 699 (Region V 6)

FAP to UGS support plate (Region 10.6 114.2 1210 V5)

Core Region (Fuel Alignment Plate (FAP) to CSP) (Regions V2, V3 & 12.8 69.7 892 V4)

CSB to vessel annulus (Region V1, 29.7 35 1039.5 Annulus)

Bottom of vessel to Core Support Plate (CSP) (Region V1, Lower 10 ---- 950.5 Plenum)

L-2010-096 Attachment I Page 30 of 59 Table 2 Component Data Required Component Flow Diagram Component Information Pressurizer PORVs V1402 8770-G-078 Sheet I 0A, Rev 30 8770-9676 Rev I V1404 8770-9677 Rev 2 8770-9678 Rev 1 8770-9679 Rev 2 8770-9680 Rev 4 8770-9681 Rev 7 8770-9682 Rev 2 8770-9683 Rev I Pressurizer Safety Valves V1200 8770-G-078 Sheet I IA, Rev 30 8770-13730, Rev I VI201 8770-13731, Rev 1 V1202 Main Steam Safety Valves V8201 8770-G-079, Sheet 1, Rev. 53 8770-993, Rev 4 V8202 8770-990, Rev 9 V8203 V8204 V8205 V8206 V8207 V8208 V8209 V8210 V8211 V8212 V8213 V8214 V8215 V8216 Atmospheric Dump Valves HCV-08-2A 8770-G-079, Sheet 1, Rev. 53 8770-12944, Rev I HCV-08-2B 8770-8971, Rev 1 Turbine Control Valves (Governor)

FC-8-4 870G09 he*,Re.4 7013 e FCV-08-644 I 8770-G-079, Sheet 2, Rev. 45 1 8770-103, Rev 7

L-2010-096 Attachment I Page 31 of 59 Component Flow Diagram Component Information FCV-08-645 8770-115, Rev I1 FCV-08-646 8770-116, Rev 24 FCV-08-647 Turbine By-Pass Valves PCV-8801 8770-G-079, Sheet 2, Rev. 45 8770-2082, Rev 10 PCV-8802 8770-2083, Rev 11 PCV-8803 PCV-8804 PCV-8805 Turbine Stop Valves (Throttle)

FCV-08-640 8770-G-079, Sheet 2, Rev. 45 8770-103, Rev 7 FCV-08-641 8770-115, Rev 11 FCV-08-642 8770-116, Rev 24 FCV-08-643 Main Feed Isolation Valves HCV-09-7 8770-G-080, Sheet 3, Rev 54 8770-14210, Rev 0 HCV-09-8 8770-14211, Rev 0 Main Steam Isolation Valves HCV-08-1A 8770-G-079, Sheet 1, Rev. 53 8770-9673, Rev 10 HCV-08-IB Main Steam Check Valves V08117 8770-G-079, Sheet 1, Rev. 53 8770-8950, Rev 4 V08148 8770-8951, Rev 2 8770-8952, Rev 0 8770-9673, Rev 10 8770-9674, Rev 8 Miscellaneous Components V2526 8770-G-078 Sheet 121A Rev. 38 V2501 8770-1380, Rev. 7 V2118 8770-1589, Rev. 9 V2623 8770-2699, Rev 2 V2500 8770-853, Rev 1 V2101 8770-1589, Rev 9 V2322 8770-G-078 Sheet 120B Rev 17 8770-1592 Rev. 10 SS (Suction 8770-9301 Rev. 1 Stabilizer for 8770-9302 Rev. 5 Charging Pump IC)

S S-02-IC CHG PP IC 8770-205 Rev. 0 (Charging 8770-364 Rev. 4 Pump IC) 8770-12137 Rev. 5 8770-12138 Rev. 0 PD (Pulsation 8770-9982 Rev. I

L-2010-096 Attachment I Page 32 of 59 Component I Flow Diagram I Component Information Damper on 8770-9981 Rev. 1 CHG PP IC)

V02134 8770-14099 Rev. 1 8770-14084 Rev. I V2336 8770-14345 Rev. I 8770-9379 Rev. I FE-2212 8770-2310 Rev. 0 V2429 8770-1588 Rev. 5 V2430 8770-1571 Rev. 8 MV-02-2 8770-10468 Rev. 0 Regen HT 8770-420 Rev. 2 EXCH (Regenerative Heat Exchanger)

V2319 8770-1592 Rev. 10 SS-02-1 B SS (Suction 8770-9301 Rev. 1 Stabilizer for Charging Pump I B) 8770-9302 Rev. 5 CHG PP IB 8770-12137 Rev. 5 (Charging 8770-205 Rev. 0 Pump I B) 8770-364 Rev. 4 8770-12138 Rev. 0 PD (Pulsation 8770-9982 Rev. l Damper on 8770-9981 Rev. I CHG PP IB)

V02133 8770-14084 Rev. I 8770-14099 Rev. I V2337 8770-14345 Rev. I 8770-9379 Rev. I V2316 8770-1592 Rev. 10 SS-02-1A SS (Suction 8770-9301 Rev. 1 Stabilizer for 8770-9302 Rev. 5 Charging Pump IA)

CHG PP IA 8770-12137 Rev. 5 (Charging 8770-364 Rev. 4 Pump I A) 8770-12138 Rev. 0 8770-205 Rev. 0 PD (Pulsation Damper on CHG PP IA)

V2339 8770-14345 Rev. 1 8770-9378 Rev. 0 V02132 8770-10883 Rev. 2

L-2010-096 Attachment 1 Page 33 of 59 Component I Flow Diagram [ Component Information V2338 8770-1588 Rev. 5 SE-02-2 8770-12507 Rev. 0 8770-12508 Rev. 0 2998-19678 Rev. 0 2998-19677 Rev. 0 V2433 8770-14084 Rev. 1 8770-14099 Rev. 1 SE-02-1 8770-12507 Rev. 0 8770-12508 Rev. 0 2998-19677 Rev. 0 V2432 8770-1570 Rev. 10 V2519 8770-926 Rev. 13 8770-858 Rev. 2 V2515 8770-928 Rev. 8 8770-860 Rev. 4 V2516 8770-928 Rev. 8 8770-860 Rev. 4 V2341 8770-G-078 Sheet 120A Rev. 023 8770-1588 Rev. 5 LCV-21 lOP 8770-16166 Rev. 0 8770-787 Rev. 4 V2342 8770-1588 Rev. 5 LTDN 8770-419 Rev. 2 (Letdown Heat Exchanger)

V2347 8770-1578 Rev. 4 PCV-2201Q 8770-971 Rev. 9 V2349 8770-1591 Rev. 5 FE-2202 8770-2301 Rev. 1 V2358 8770-1592 Rev. 10 Purif FLTR 8770-14147 Rev. 1 1A 8770-558 Rev. 3 (Purification 8770-8852 Rev. 2 Filter IA) 8770-8617 Rev. 3 V2360 8770-1592 Rev. 10 V2520 8770-853 Rev. 1 V2369 8770-1592 Rev. 10 V2370 8770-1589 Rev. 9 V2378 8770'1592 Rev. 10 V2382 8770-1592 Rev. 10 V2395 8770-1592 Rev. 10 S2900 8770-1480 Rev. 1 V2415 8770-1592 Rev. 10 V2418 8770-1592 Rev. 10 Purif FLTR 8770-14147 Rev. 1 1B 8770-558 Rev. 3 (Purification 8770-8852 Rev. 2

L-2010-096 Attachment I Page 34 of 59 Component [ Flow Diagram I Component Information Filter IB) 8770-8617 Rev. 3 V2452 8770-1592 Rev. 10 FE-801 I 8770-G-079, Sheet 1, Rev. 53 8770-965, Rev 5 FE-8021 8770-965, Rev 5 V09252 8770-G-080, Sheet 3, Rev 54 8770-5736, Rev 4 V09294 8770-7139, Rev 3 AFW PP IA 8770-G-080, Sheet 4, Rev. 41 8770-3044, Rev 3 AFW PP lB 8770-4409, Rev 0 8770-15879, Rev 0 AFW PP IC 8770-3183, Rev 7 8770-4408, Rev 0 V09139 8770-1398, Rev 6 V09140 8770-1257, Rev 3 FE-09-2C 8770-3544, Rev 0 8770-3294, Rev 4 MV-09-1 1 8770-6967, Rev 5 MV-09-12 8770-6967, Rev 5 V09151 8770-3775, Rev 6 V09157 8770-3775, Rev 6 V09152 8770-3774, Rev 3 V09158 8770-1251, Rev 2 V09123 2998-20110, Rev 1 V09107 8770-3775, Rev 6 V09108 8770-1251, Rev 2 V09124 8770-125 1,Rev 2 FE-09-2A 8770-3294, Rev 4 FE-09-2B 8770-3544, Rev 0 MV-09-9 8770-6966, Rev 5 MV 10 8770-6966, Rev 5 V09119 8770-3775, Rev 6 V09135 8770-3775, Rev 6 V09120 8770-3774, Rev 3 V09136 8770-125 1,Rev 2 V1403 8770-G-078 Sheet I 1A, Rev 30 8770-1374, Rev 10 V1405 8770-1374, Rev 10 V1406 8770-1750, Rev 5 V1407 8770-1750, Rev 5 PZR Quench 8770-898, Rev 3 Tank V1252 8770-1769, Rev 4 V1253 8770-1769, Rev 4 PCV-1 1OOE 8770-864, Rev 2 PCV-11OOF 8770-970, Rev 15 V1248 8770-6586, Rev 3 V1249 8770-6777, Rev 1 8770-16184, Rev 0

L-2010-096 Attachment 1 Page 35 of 59 Component I Flow Diagram I Component Information V1250 8770-1769, Rev 4 8770-16184, Rev 0 V1251 8770-1769, Rev 4 SO-03-13 8770-G-078 Sheet 130A, Rev 27 SO-03-14 SO-03-15 V3427 8770-1768, Rev 8 V3405 8770-1768, Rev 8 V3414 8770-1768, Rev 8 V3654 8770-1377, Rev 6 V3656 8770-1377, Rev 6 HCV-3616 8770-G-078 Sheet 13 1A, Rev 27 8770-1376, Rev 5 HCV-3626. 8770-1376, Rev 5 HCV-3636 8770-1376, Rev 5 HCV-3646 8770-1376, Rev 5 V3113 8770-12709, Rev 10 V3123 8770-1570, Rev 10 V3133 8770-1570, Rev 10 V3143 8770-1570, Rev 10 FE-3311 FE-3321 FE-3331 FE-3341 HCV-3615 8770-1375, Rev 6 HCV-3625 8770-1375, Rev 6 HCV-3635 8770-1375, Rev 6 HCV-3645 8770-1375, Rev 6 V3114 8770-1748, Rev 7 V3124 8770-1748, Rev 7 V3134 8770-1748, Rev 7 V3144 8770-1748, Rev 7 FE-3312 8770-2301, Rev 1 FE-3322 8770-2301, Rev 1 FE-3332 8770-2301, Rev 1 FE-3342 8770-2301, Rev 1 HCV-3617 8770-1376, Rev 5 HCV-3627 8770-1376, Rev 5 HCV-3637 8770-1376, Rev 5 HCV-3647 8770-1376, Rev 5 V3106 8770-G-078 Sheet 130B. Rev 31 8770-3646, Rev 1 V3107 8770-3646, Rev 1 V3206 8770-9348, Rev 3 V3207 8770-9348, Rev 3 FCV-3306 8770-861, Rev 2 8770-930, Rev 8 FE-3306 8770-2301, Rev I 1.

L-2010-096 Attachment I Page 36 of 59 Table 3 Secondary Side Volume per Unit Height (Wft'/t) 51.552 4.679 -- 4.679

-49.947 178.90 -- 178.960 41.677 282.67) 282.671

- 40.344 -- 239.1 37.679 275.779

-39.240

-35.000 32.583 67.227 210.601 -- 277.828 30.191 97.753 -- 164.980-28.833 129.294' -- 227,047 28.125 52.285 -- 150.038 25.573 22.271 10.178 70.432 80.610

-- 18.802 70.432 80.610 15.333 70.432. 80.610 11.865 70.432 80.610 8.396 70.432 - 80.610 4.927 69.829 -- 80.007 2,0 70.345 80.523 0+ +

HT ABOVE T/S DOWNCOMER RISER TOTAL SEC. FACE (rT)

L-2010-096 Attachment I Page 37 of 59 Table 4 Spacer Grid Locations Grid # Distance (in) 1 6.302 2 18.185 3 36.797 4 55.656 5 74.515 6 93.374 7 112.233 8 131.092 9 148.272 Notes: Measured from bottom of fuel assembly to top of grid.

L-2010-096 Attachment 1 Page 38 of 59 Table 5 - Single Phase Homologous Head and Tor ue Curves CURVE 1 CURVE 2 CURVE 3 CURVE4 CURVE 5 CURVE6 CURVE7 CURVE 8 HAN Head HVN Head HAD Head HVD Head HAT Head HVT Head HAR Head Curve Curve Curve Curve Curve Curve Curve HVR Head Curve 0.0 1.580 0.0 -1.420 -1.0 3.150 -1.0 3.150 0.0 0.433 0.0 1.220 -1.0 -3.100 -1.0 -3.100 0.1 1.500 0.1 -1.215 -0.9 2.930 -0.9 2.810 0.1 0.474 0.1 1.182 -0.9 -2.550 -0.9 -3.010 0.2 1.420 0.2 -1.082 -0.8 2.700 -0.8 2.490 0.2 0.502 0.2 1.140 -0.8 -2.050 -0.8 -2.930 0.3 1.370 0.3 -0.912 -0.7 2.470 -0.7 2.180 0.3 0.512 0.3 1.085 -0.7 -1.600 -0.7 -2.810 0.4 1.330 0.4 -0.728 -0.6 2.300 -0.6 1.930 0.4 0.524 0.4 1.045 -0.6 -1.035 -0.6 -2.690 0.5 1.295 0.5 -0.494 -0.5 2.130 -0.5 1.720 0.5 0.546 0.5 1.000 -0.5 -0.830 -0.5 -2.520 0.6 1.270 0.6 0.000 -0.4 2.000 -0.4 1.550 0.6 0.583 0.6 0.950 -0.4 -0.513 -0.4 -2.340 0.7 1.240 0.7 0.208 -0.3 1.870 -0.3 1.440 0.7 0.641 0.7 0.900 -0.3 -0.246 -0.3 -2.150 0.8 1.182 0.8 0.435 -0.2 1.760 -0.2 1.345 0.8 0.712 0.8 0.870 -0.2 0.0112 -0.2 -1.960 0.9 1.105 0.9 0.708 -0.1 1.660 -0.1 1.285 0.9 0.800 0.9 0.865 -0.1 0.343 -0.1 -1.715 1.0 1.000 1.0 1.000 0.0 1.580 0.0 1.220 1.0 0.908 1.0 0.908 0.0 0.433 0.0 -1.420 CURVE 9 CURVE 10 CURVE 11 CURVE 12 CURVE 13 CURVE 14 CURVE 15 CURVE 16 BAN Torque BVN Torque BAD Torque BVD Torque BAT Torque BVT Torque BAR Torque Curve Curve Curve Curve Curve Curve Curve BVR Torque Curve 0.0 0.770 0.0 -1.450 -1.0 2.290 -1.0 2.290 0.0 -1.440 0.0 1.315 -1.0 -5.030 -1.0 -5.030 0.1 0.802 0.1 -1.112 -0.9 2.040 -0.9 2.120 0.1 -0.920 0.1 1.245 -0.9 -4.540 -0.9 -4.610 0.2 0.845 0.2 -0.872 -0.8 1.785 -0.8 1.960 0.2 -0.630 0.2 1.180 -0.8 -4.050 -0.8 -4.230 0.3 0.866 0.3 -0.648 -0.7 1.580 -0.7 1.830 0.3 -0.420 0.3 1.110 -0.7 -3.600 -0.7 -3.840 0.4 0.885 0.4 -0.442 -0.6 1.390 -0.6 1.720 0.4 -0.250 0.4 1.042 -0.6 -3.240 -0.6 -3.490 0.5 0.910 0.5 -0.270 -0.5 1.235 -0.5 1.640 0.5 -0.100 0.5 0.975 -0.5 -2.830 -0.5 -3.150 0.6 0.930 0.6 0.260 -0.4 1.090 -0.4 1.580 0.6 0.020 0.6 0.905 -0.4 -2.490 -0.4 -2.850 0.7 0.953 0.7 0.430 -0.3 0.980 -0.3 1.510 0.7 0.130 0.7 0.817 -0.3 -2.190 -0.3 -2.520 0.8 0.973 0.8 0.613 -0.2 0.880 -0.2 1.450 0.8 0.251 0.8 0.728 -0.2 -1.910 -0.2 -2.200 0.9 0.989 0.9 0.800 -0.1 0.810 -0.1 1.380 0.9 0.390 0.9. 0.628 -0.1 -1.660 -0.1 -1.850 1.0 1.000 1.0 1.000 0.0 0.770 0.0 1.315 1.0 0.562 1.0 0.562 0.0 -1.440 0.0 -1.450

L-2010-096 Attachment I Page 39 of 59 Table 6 Unit 1 Piping Isometric Drawings by P&ID Flow Diagram Isometric/Component Drawing Reactor Vessel 8770-G-078, Sheet 110B, Rev. 26 8770-44, Rev 5 8770-8862, Rev 0 8770-8863, Rev 0 8770-8864, Rev 0 8770-8865, Rev 0 8770-8873, Rev 1 8770-8874, Rev 0 8770-8877, Rev 0 8770-15672, Rev 0 8770-15673, Rev 0 Primary Loop Piping (RCS) 8770-G-078, Sheet I IOB, Rev. 26 8770-39, Rev 3 8770-40, Rev 3 8770-530, Rev 3 8770-781, Rev 3 8770-880, Rev 1 8770-1496, Rev 2 Reactor Coolant Pumps 8770-G-078, Sheet II IA, Rev. 15 8770-15, Rev 8 8770-G-078, Sheet II IB, Rev. 15 8770-178, Rev91 8770-G-078, Sheet II IC, Rev. 14 8770-54, Rev 9 8770-G-078, Sheet II ID, Rev. 16 Steam Generators 8770-G-078, Sheet 1 OB, Rev. 26 8770-13348, Rev I 8770-G-080, Sheet 3, Rev. 54 8770-G-079, Sheet 1, Rev. 53 Pressurizer/Surge Line/Spray Lines/Relief Lines 8770-G-078, Sheet I 10A, Rev. 30 8770-G-125 Sheet RC-AB-1, Rev 3 8770-15377, Rev 0 8770-15287, Rev 0 8770-15307, Rev 0 8770-16184, Rev 0 8770-1658, Rev 0 8770-15820, Rev 0 8770-6624, Rev 2 8770-15298, Rev 0 8770-15819, Rev 0 8770-B-124 Sheet RC-187, Rev 1

L-2010-096 Attachment I Page 40 of 59 Main Steam Lines Out to the Turbine Stop Valves 8770-G-079, Sheet 1, Rev. 53 8770-G-125, Sheet MS-L-1, Rev 6 8770-G-079, Sheet 2, Rev. 45 8770-G-125, Sheet MS-L-6, Rev 6 Main Feedwater Lines from the Isolation Valves to the Steam Generator Inlet 8770-G-080, Sheet 3, Rev. 54 8770-G-125, Sheet BF-M-06, Rev 4 Auxiliary Feedwater Lines 8770-G-080, Sheet 4, Rev. 41 J 8770-G-125, Sheet BF-M-07, Rev 6 18770-G-125, Sheet BF-M-08, Rev 10 Safety Injection 8770-G-078, Sheet 130A, Rev. 27 8770-G-125, Sheet SI-N-5, Rev 2 8770-G-078, Sheet 130B, Rev. 31 8770-G-125, Sheet SI-N-6, Rev 4 8770-G-078, Sheet 131A, Rev. 27 8770-G-125, Sheet SI-N-7, Rev 3 8770-G-078, Sheet 131B, Rev. 19 8770-G-125, Sheet SI-N-8, Rev 4 8770-G-125, Sheet SI-N-10, Rev 3 8770-G-125, Sheet SI-N-12, Rev 2 8770-B-124 Sheet SI-27 Rev 13 8770-B-124 Sheet SI-28 Rev 12 8770-B-124 Sheet SI-29 Rev 12 8770-B-124 Sheet SI-30 Rev 11 8770-B-124 Sheet SI-31 Rev 13 8770-B-124 Sheet SI-32 Rev 9 8770-B-124 Sheet SI-33 Rev 14 8770-B-124 Sheet SI-34 Rev 10 8770-B-124 Sheet SI-128 Rev 1 8770-B-124 Sheet SI-129 Rev 3 8770-B-124 Sheet SI-130 Rev 4 8770-B-124 Sheet SI-131 Rev 2 Charging and Letdown System (CVCS) 8770-G-078, Sheet I11B, Rev. 26 8770-G-125 Sheet CH-G-I Rev. 2 8770-G-078, Sheet 120A, Rev. 23 8770-G-125 Sheet CH-G-2 Rev I 8770-G-078, Sheet 120B, Rev. 17 8770-G-125 Sheet CH-G-3 Rev 4 8770-G-078, Sheet 121A, Rev. 38 8770-G-125 Sheet CH-G-4 Rev 0 8770-G-078, Sheet 121 B, Rev. 32 8770-G-125 Sheet CH-G-5 Rev 0 8770-G-088, Sheet 1, Rev. 51 8770-G-125 Sheet CH-G-8 Rev 2 8770-G-125 Sheet CH-G-9 Rev 4 8770-G-125 Sheet CH-G-12 Rev 6 8770-G-125 Sheet CH-G-13 Rev 1 8770-B-124 Sheet CH-1 Rev 2 8770-B-124 Sheet CH-2 Rev 2 8770-B-124 Sheet CH-3 Rev 3 8770-B-124 Sheet CH-4 Rev 4 8770-B-124 Sheet CH-37 Rev 2

L-2010-096 Attachment 1 Page 41 of 59 8770-B-124 Sheet CH-43 Rev 5 8770-B-124 Sheet CH-63 Rev 7 8770-B-124 Sheet CH-64 Rev 5 8770-B-124 Sheet CH-65 Rev 12 8770-B-124 Sheet CH-66 Rev 9 8770-B-124 Sheet CH-68 Rev 10 8770-B-124 Sheet CH-69 Rev 8 8770-B-124 Sheet CH-70 Rev 7 8770-B-124 Sheet CH-71 Rev 6 8770-B-124 Sheet CH-72 Rev 8 8770-B-124 Sheet CH-74 Rev 12 8770-B-124 Sheet CH-75 Rev 7 8770-B-124 Sheet CH-77 Rev 10 8770-B-124 Sheet CH-78 Rev 5 8770-B-124 Sheet CH-79 Rev 8 8770-B-124 Sheet CH-80 Rev 14 8770-B-124 Sheet CH-82 Rev 21 8770-B-124 Sheet CH-92 Rev 11 8770-B-124 Sheet CH-124 Rev 11 8770-B-124 Sheet CH-125 Rev 7 8770-B-124 Sheet CH-126 Rev 8 8770-B-124 Sheet CH-128 Rev 5 8770-B-124 Sheet CH-129 Rev 8 8770-B-124 Sheet CH-130 Rev 6 8770-B-124 Sheet CH-141 Rev 11 8770-B-124 Sheet CH-142 Rev 7 8770-B-124 Sheet CH-143-1 Rev 2 8770-B-124 Sheet CH-143-2 Rev 6 8770-B-124 Sheet CH-178 Rev 4 8770-B-124 Sheet CH-187 Rev I 8770-B-124 Sheet CH-188 Rev 0 8770-B-124 Sheet CH-189 Rev 0 8770-B-124 Sheet CH-193 Rev 2 8770-B-124 Sheet CH-232 Rev 0 8770-B-124 Sheet CH-264 Rev 0 8770-B-124 Sheet RC-I Rev 6 8770-B-124 Sheet RC-2 Rev 7 8770-B-124 Sheet RC-3 Rev 6 8770-B-124 Sheet RC-4 Rev 5 8770-B-124 Sheet RC-6 Rev I

L-2010-096 Attachment I Page 42 of 59 Table 7. TEMPERATURE vs. DOPPLER REACTIVITY WORTH Current Analysis Value EPU Analysis Value FUEL TEMPERATURE DOPPLER REACTIVITY FUEL TEMPERATURE DOPPLER REACTIVITY

(*F) (Ap) (OF) (Ap) 0.0 0.0*

250.0 0.0 400.0 -0.0037338 667.5 -0.0098574 808.1 -0.0128639 946.5 -0.0156432 No changes from current No changes from current

-0.0181490 analysis analysis 1077.9 1199.1 -0.0203649 1309.0 -0.0222887 1445.5 -0.0246159 5000.0 -0.0246159**

Notes:

  • assumed/extrapolated to be the same as the next value.
    • assumed/extrapolated to be the same as the previous value.

Table 8. CHANGE IN REACTIVITY vs. MODERATOR DENSITY Current Analysis Value EPU Analysis Value CHANGE IN MODERATOR CHANGE IN MODERATOR REACTIVITY (Ap) DENSITY (lbm/ft 3 ) REACTIVITY (Ap) DENSITY (Ibm/ft3 )

-0.350 0.0 No changes from current No changes from current

-0.270 2.1 analysis analysis

-0.190 5.0

-0.100 10.0

-0.090 12.1

-0.060 15.0

-0.030 20.0

-0.020 22.1

-0.012 25.0

-0.005 30.0

-0.0001 32.1

-0.0000 35.0

+0.0020 36.7 0.0 40.0 0.0 43.0 0.0 45.0 0.0 1.0x106 Note: *** Reactivity corresponding to the most positive MTC @ HFP, BOC

L-2010-096 Attachment 1 Page 43 of 59 Table 9. RCS TEMPERATURE vs. MODERATOR REACTIVITY Current Analysis Value EPU Analysis Value RCS MODERATOR RCS MODERATOR TEMPERATURE ('F) REACTIVITY (Ap) TEMPERATURE (-F) REACTIVITY (Ap) 68.0 0.06345*

300.0 0.06345 No changes from No changes from 450.0 0.03959 current analysis. current analysis.

532.0 0.01627 572.0** 0.0000"*

Notes:

  • Assumed/extrapolated to be the same as the next value.
    • Assumed to the nominal temperature at which the MTC would be equal to 0.0.

Table 10. AXIAL HEIGHT vs. AXIAL POWER SHAPE Current Analysis Value EPU Analysis Value (WEC) (FPL)

AXIAL HEIGHT Axial Power Shape AXIAL HEIGHT Axial Power Shape (ft) ...... ~(*) t)...

2.2783 0.38000 2.278 0.81301 4.5566 0.710 4.556 0.92260 6.8349 1.370 6.834 1.00900 9.1132 1.635 9.112 1.21700 11.3917 1.020 11.390 1.04567 Notes:

FPL can not confirm the current values provided by Westinghouse for the Axial Power Shape data. FPL has provided values for the EPU from the current LOCA Containment Re-Analysis.

...... Axial height from the bottom of core.

L-2010-096 Attachment I Page 44 of 59 Table 11 - PSL Unit-I RPS, ESFAS and AFAS Setpoints and Safety A alysis Limits Functional Description Monthly Tech Spec Setpoint Current Setpoint or EPU Setpoint or Comments Surveillance Uncertainty Req. (current Uncertainty Requirement Setpoint cycle)

RPS PZR Press Hi 2397.5 psia < 2400 psia +/- 22 psi (Normal) +/- 40 psi (Normal) Current cycle safety analysis parameter document

+/- 80 psi (Accident) +/- 80 psi (Accident) includes a target analysis value of+/- 40 psi (Normal)

RPS Cont. Press Hi 3.175 psig _<3.3 psig +/- 1.3 psi +/- 1.3 psi RPS S/G Press Lo 626.1 psia > 600 psia E32 psi (Normal) +/- 40 psi (Normal) Current cycle safety analysis parameter document

+/- 80 psi (Worst Normal) includes target analysis value of+/- 80 psi (Worst Normal).

Worst Normal defined as Containment Temperature >

11 IOF but < 2000 F.

RPS S/G Level Lo 21.0% > 20.5% +/- 3% (Normal) +/- 5% (Normal) Monthly surveillance setpoint will be changed to 35.5%

+/- 14% (Accident) +/- 14% (Accident) and Tech Spec setpoint will be changed to >35% for EPU.

Current cycle safety analysis parameter document includes a target analysis value of +/- 5% (Normal)

RPS RCS Low Flow > 95% Design Flow 3.5% 4%

SIAS/CIS Cont. Press Hi 4.375 psig < 5.0 psig +/- 1.3 psi +/- 1.3 psi CSAS Cont. Press Hi-Hi 9.375 psig < 10.0 psig +/- 1.3 psi +/- 1.3 psi SIAS PZR Press Lo 1612.5 psia > 1600 psia +/- 22 psi (Normal) +/- 40 psi (Normal) -----

+/- 80 psi (Accident) +/- 80 psi (Accident)

MSIS S/G Press Lo 600 psig > 585 psig +/- 32 psi (Normal) +/- 40 psi (Normal) Current cycle safety analysis parameter document

+/- 80 psi (Worst Normal) t includes a target analysis value of+/- 80 psi (Worst Normal). Worst Normal is defined as Containment Temperature > 11 lIF but < 200('F.

RAS RWT Level Lo 48 inches 48 inches +/- 6 inches +/- 6 inches AFAS S/G Level Lo 19.5% > 19.0% +/- 3% (Normal) +/- 5% (Normal) Current cycle safety analysis parameter document

+/- 14% (Accident) +/- 14% (Accident) includes a target analysis value of +/- 5% (Normal)

AFAS S/G Press DP Hi 270 psid < 275 psid Not specified +/- 64 psi (Normal) Worst Normal is defined as Containment Temperature >

+/- 160 psi (Worst Normal) I 1OF but < 2000 F.

AFAS FW Press DP Hi 142.5 psid < 150.0 psid Not specified < 245 psid (setpoint)

AFAS logic time delay 235 see 170 sec 170 sec (minimum act. time)

PORV Open Pressure N/A 2400 psia (nominal) 2400 psia (nominal) For non-LTOP conditions, PORVs operate on RPS PZR (setpoint) Press Hi Main Steam Safety RV N/A 1000 psia (nominal) + 1%, - 3% (tolerance) +/- 3% (tolerance I'st bank) Current cycle safety analysis parameter document 1040 psia (nominal) 3% (accumulation) +2/-3% (tol. 2'nd bank) includes a target analysis value of+/- 3% (tolerance) 3% (accumulation)

PZR Safety RV N/A 2500 psia (nominal) + 3%, - 2.5% (tolerance) + 3%, - 2.5% (tolerance) -

3% (accumulation) 3% (accumulation)

Note: When revised, Safety Analysis limits are set equal to the Tech Spec setpoint plus or minus the defined uncertainty.

L-2010-096 Attachment I Page 45 of 59 Table 12A - Realistic LBLOCA LPSI Minimum Flow (1 pump and 2 valves)

  • RCS pressure Broken Loop Intact Loop I Intact Loop 2 Intact Loop 3**

psia gpm gpm gpm gpm 18.32 1287 0 0 1226 23.48 1261 0 0 1202 33.47 1210 0 0 1153 43.02 1158 0 0 1104 47.64 1132 0 0 1080 52.14 1107 0 0 1055 69.04 1005 0 0 957 87.73 877 0 0 835 103.73 748 0 0 713 117.05 620 0 0 591 127.72 492 0 0 469 135.41 364 0 0 347 140.64 236 0 0 225 143.98 82 0 0 79 144.37 31 0 0 30 144.44 0 0 0 0

    • Analysis conservatively assumes an additional 300 gpm reduction in the Intact Loop (3),

which is not reflected here.

Table 12B - Realistic LBLOCA HPSI Minimum Flow pump)j*

RCS pressure Broken Loop Intact Loop 1 Intact Loop 2 Intact Loop 3**

psia 9pm 9pm gpm gpm 15 160 151.7 151.7 151.7 315 137 130 130 130 615 109 103.7 103.7 103.7 815 85 81.3 81.3 81.3 1015 51 48.7 48.7 48.7 1115 16 15.3 15.3 15.3 1125 8 5.7 5.7 5.7 1129 0 0 0 0

    • Analysis assumes 0 gpm through Intact Loop 3, which is not reflected here.
  • Failure of I EDG or I Train of ECCS

L-2010-096 Attachment I Page 46 of 59 Table 13 - SBLOCA HPSI Minimum Flow (1 pump)*

Intact Loop1 + Intact Loop 2 + Intact Loop 3 RCS pressure Broken Loop Combined psia 9pm 9pm 15 160.6 455.7 315 138.4 392.9 615 110.6 313.8 815 88.6 251.2 1015 57.3 162.6 1115 32 87.5 1125 27.3 74.7 1135 17.8 48.6 1145 1.8 4.9 1145.5 0.3 0.7 1145.5 0 0.0

  • Failure of 1 EDG or I Train of ECS

L-2010-096 Attachment 1 Page 47 of 59 Table 14 Primary Loop Pressure Drop Distribution Current Best Estimate Conditions (4)

Location Pressure Drop Conditions Value (psi)

VESSEL INLET AVG "1) 6.395 REACTOR CORE 20.292 RC Pump Flow per Loop 75.69E6 lb/hr VESSEL OUTLET AVG 77 6.773 Total RC Pump Flow 401,885 gpm SG INLET NOZZLE AVG. rZF 4.907 Core Flow 151.4E6 lb/hr SG INLET PLENUM AVG.Iz) 0.960 Core Bypass Flow 3.9% of total core flow SG TUBE FRICTION AVG7yz 36.432 SG Tube Plugging 10%

SG TUBE BENDS AVG.(z2 0.434 SG OUTLET NOZZLE AVG. I' 0.812 RCS HOT LEG PIPING AVG.I13 0.956 RCS SUCTION LEG PIPING AVG. { 3.384 RCS COLD LEG PIPING AVG.{6 1.361 Notes:

(1) Four vessel inlet nozzles and two outlet nozzles.

(2) Two SG inlet nozzles, two inlet plenums, two tube friction, two tube bends, two outlet plenums, and four outlet nozzles.

(3) Two RCS hot legs, four suction legs, and four cold legs.

(4) The above pressure drop data could be used for the EPU analysis since a slight increase in RCS EPU temperature will not cause a large increase in pressure drops in the system, given that all other RCS parameters are expected to remain unchanged.

Table 15 EPU Heat Balance Information

% EPU Feedwater Steam Flow Feedwater Turbine Turbine Power Flow Ibm/hr (2 Temperature, Control Valve Inlet lbm/hr (2 SG) SG) F Inlet Pressure, Pressure, psia psia 100 13,303,150 13,236,690 436.2 806.2 751.4 90 11,834,340 11,767,890 427.0 818.6 664.6 75 9,666,014 9,599,566 410.5 834.7 538.4 50 6,199,094 6,132,645 375.3 852.9 337.5 25 2,972,477 .2,905,988 323.7 864.8 173.4

L-2010-096 Attachment I Page 48 of 59 Table 16 RCS Pressure Boundary Material Property Data Material Density Specific Thermal Emissivity Comment (Ibm/ft3 ) Heat Conductivity vs Temp (Btu/lbm-F) (Btu/hr-ft-F)

Carbon 483.8

  • 0.129* 22.92* 0.78-0.82 *SA-516 Gr 70 Steel @130-530 **smooth oxidized C** iron Stainless 499.4* 0.13* 10.44* 0.57-0.66 *304/304L SS Steel @230-870 **316 SS repeated C** heating Inconel 528.8 0.106 8.58 0.85-0.98 600 @480-1090 C Inconel 511.5 0.107 7.75 0.85-0.98 Emissivity assumed 690 @480-1090 C same as Inconel 600

L-2010-096 Attachment I Page 49 of 59 Table 17 Secondary Side Circuit Losses 100 % EPU 0% Plug Parameters Units 3034 MWt, Steam Flow Ibm/hr 6.6162E-+06

.Circulation Rabo 3.89 Riser Flow Ibm/hr 2.5737E+07 Feedwater Flow Ibm/hr 6.6607E+06 Blowdown Flow (Fraction) 0.0067341 SINGLE PHASE Annular Entrance i 0.200 Annular Friction psi 0.735 Bundle Entrance psi 1.939 Total Single Phase Losses psi 2,873 TWO PHASE Total Lattice Grid psi 0.723 Bundle Friction . psi 0,441 U-Bend psi 1.104 Neck Shock psi 0.021 Primary Cyclone psi 1.556 Total Two Phase Losses psi 3.844 Total Circulation Loss 6.717 Riser Static Head Losses

_Tubesheet--Support 1 psi 0,657 Support 1 - 2 psi 0.860 Support 2 - 3 psi 0.751 Support 3 - 4 psi 0.541 Support 4 - 5 psi 0.423 Support 5 - 6 psi 0.348 Support 6 - 7 psi 0.295 U-Bend psi 0.544 Neck including Primary Cyclone psi 0.613

.Separator Static Head Total Riser Static Head Loss psi 5.031

L-2010-096 Attachment I Page 50 of 59 Table 17 - (Continuation)

Secondary Separators and Steam Outlet Nozzle Losses and K-factors 100 %EPU 0% Plug Parameters Units 3034 MWt Steam Flow Ibm/hr 6.6143E+06 Pressure at Entrance to Secondary Cyclones psia 867.2 Secondary Cyclones Loss

.PD*,=! K..*(w/A,*,)'/ (2*rh0*g,*144)

Where, K*, - resistance factor 5.918 Area_ Ak, _9 18.77590 rho - saturated steam density Ibm/ft' 2.3717 w - flow Ibm/s 1837.30

_ - gravitational constant, Ibm-flt/bf-sec 2 32.174 Secondary Cyclones Loss, PD r psi 2.58 Steam Pressure Upsteam of Outlet Nozzle psia 864.60 Steam Outlet Nozzle Loss PDl),= Kr,,.*(w/A,o)^2/ (2*rho*gq*144)

Where, K,,, - resistance factor 0.8462 Area, A,,, f1 6.3514 rho - saturated steam density Ibm/ft3 1.9122 w - flow Ibm/s 1837.30 gravitational constant, Ibm-ft/lbf-sec 2 32.174 Steam Outlet Nozzle Pressure Loss, PD,., psi 4-.00 Steam Outlet Stagnation Pressure, P,,, psia 860.60

L-2010-096 Attachment I Page 51 of 59 Table 17 - (Continuation)

Feedwater System Irrecoverable Pressure Losses and K-factors 100 % EPU Parameters Units 3034 MWt Feedwater Flow Ibm/hr 6.66074E+06 Feedwater Temperature deg. F 436.20 rho - feedwater density at 924 psia Ibm/ft3 52.3076 w - flow Ibm/s 1850.21 gc - gravitational constant, Ibm-ft/lbf-sec 2 32.174 Inlet Nozzle Loss PDn,0,= K00zz*(w/A.z) 2/ (2*rho*gc*144)

Where, Kn,0 - resistance factor 0.0112 Idnozz (straight section) in 14.31 Area, Anozz ft 1.11688 Inlet Nozzle Loss, PDno. psi 0.06 Gooseneck Loss PDn= Kn*(w/An) 2/ (2*rho*g'o144)

Where, K0n - resistance factor 0.645 Id,, in 14.31 Area, A0n ft2 1.11688 Gooseneck Loss, PDQf psi 3.65 Tee Intersection Loss Equation [3] PDee= Kte.*(w/At,,) 2/ (2*rho*g,*144)

Where, Ktee - resistance factor 1.189 Idte (at inlet) in 14.31 Area, At., (each leg) ft 2 1.11688 Tee Intersection Loss, PD., psi 6.73 Header and J-tubes Loss PDhdr= Khdr*(W/Ahdr) 2/ (2*rho*g*144)

Where, Khdr - resistance factor 2.157 ldhd, (ID of header ring) in 11.37 Area, Atee (each leg) ft2 0.70510 w - flow (equal flow split in each leg) Ibm/s 925.10 Header and J-tubes Loss, PD_,, psi 7.66 Total FW System Irrecoverable Loss 2

PD4= Kf*(w/A wl ) / (2*rho*g' *144) ........

Where, Kt. - resistance factor for entire FW system 3.2 Idt, (typical ID) in 14.31 Area, Af, (area selected to determine K-factor) ft2 1.11688 Total FW System Irrecoverable Loss, PDfw psi 18.12

L-2010-096 Attachment I Page 52 of 59 Table 17 - (Continuation)

Average Fluid Flow Areas (ft 2 )

6.31 STEAM OUTLET NOZZLE CAVG.

(OUM WUSTABOVE SEC. DECK)

DECk:

1.12 FEEDI4ATER I)OWNCOMER JUST ABOVE FW HEADER) 125.29

-0.71 -EADER OWINCOHER ANN4ULUS 10.18--'

AT LATTICE GRID LATTICE GRIDS IWEADER TUBE INLET TUBE OUTLET PRIMARY' INLET NOZZLE P E.N\

PIPE ENO PRIMARY C4TLET NOZZLE

L-2010-096 Attachment I Page 53 of 59 Table 18 -PSL-1 Pressurizer Level Error Setpoints (Deviations from nominal level)

Deviation (% Tap Span) 1 -3%/-1% (LC-1110-1) 2 -4%/-2% (LC-1110-2) 3 +10% (LA-IIIOXH,YH) 4 -5% (LA-IIIOXL,YL) 5 +3.6% (LC-1I1OXH,YH) 6 -5% (LA-I 1IOXL,YL) 8 -1% (LIC-I IIOX) 9 +9% (LIC-IIIOY)

1. Start/Stop 1st Charging Pump
2. Start/Stop 2 d Charging Pump
3. High Level Error Alarm
4. Low Level Error Alarm, All Charging Pumps on.
5. Pressurizer Proportional Heaters Cut-off (Energized)
6. Backup Signal to Start All Charging Pumps
8. Minimum Letdown
9. Maximum Letdown Note: No credit was taken of this control system in the safety analysis. When used to make events worse, a margin allowance of>2% was used in the conservative direction.

L-2010-096 Attachment 1 Page 54 of 59 Table 19 - Unit I Essential Valve Characteristics Component Full Open Flow Forward/ Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions Pressurizer 0.00761 Ft 2 N/A I sec open (this 153,000 Ibmlhr per valve PORVs are actuated on high PZR pressure using PORVs This is an effective value is for non- 2/4 logic (same bistables as used for RPS). The area, back LTOP evaluations) nominal (TS) setpoint is <2400psia. This calculated from the setpoint will not change for EPU. See Table 11I identified flow rate. for additional information.

PORVs are also actuated by the LTOP logic.

The LTOP logic is shown in Figure 7 below along with existing and EPU setpoints.

Pressurizer Safety 0.008997 Ft2 N/A 0.05 sec open 200,000 lbm/hr per valve Spring loaded valve that opens at nominal set Valves This is an effective @ setpressure + 3% pressure, achieves full open position at 103% of area, back accumulation setpressure; recloses at a pressure of 99% to 85%

calculated from the of setpressure; see Table 11 for additional identified flow rate. information Main Steam 0.10469 Ft 2 for the N/A 1.0 sec open 743,481 lbm/hr per valve Spring loaded valve that opens at nominal set Safety Valves 1000 psia valves. @ 1000 psia pressure, full open at 103% of setpressure; This is an effective 773,242 lbm/hr per valve recloses at a pressure of 99% to 90% of area, back @1040 psia setpressure; see Table 11 for additional calculated from the information identified flow rate; 0.1046 Ft2 for the 1040 psia valves.

This is an effective area, back calculated from the identified flow rate.

L-2010-096 Attachment I Page 55 of 59 Component Full Open Flow Forward/ Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions Atmospheric Open / Close (sec)

Dump Valves HCV-08-2A 0.0989 sq ft per 408 12.4-20.6 / 626,646 lbm/hr @900 ADV control is via pressure indicating valve, effective 14.1-23.4 psia; 80,000 Ibm/hr @ controllers PIC-08-IA & PIC-08-1B. In the area back 115 psia (design capacity) Manual mode of operation, the controller is used HCV-08-2B calculated from 13.1-21.7 / to directly set valve position. In the Automatic identified flow rate. 17.5-29.1 mode of operation, valve position is varied to maintain the desired pressure. PSL1 ADV controllers are normally maintained in Manual during full power plant operation. This normal control mode is based on PSL-2 TS LCO 3.7.1.7 and Unit standardization. ADV control will not change for EPU.

Turbine Control 1256.6 sq in Data N/A 12,266,130 lbm/hr at EPU Valves close on Turbine Trip. Trip logic Valves (Governor) for 4 valves unavailable, for total of four valves includes: Reactor Trip, High-High SG Level, was not used in Overspeed, Generator Lockout and various design equipment protection functions.

Turbine governor valves are currently operated in Sequential Valve mode with valve position controlled by the DEH computer. Various control strategies (feedback loops) are available including: Impulse Pressure, Megawatt Control and Speed Control.

As part of EPU main turbine upgrades, the governor valves will be operated in Single Valve mode.

Turbine By-Pass Not available due An upgraded valve An upgraded system Steam Bypass Control System (SBCS) has both Valves to planned valve open time in the, capacity of approximately modulation and quick open control modes. A capacity upgrade quick open mode 6.9E6 Ibm/hr. is planned control block diagram, including setpoints where of approximately 2 as part of EPU applicable, is shown in Figure 6 below.

sec is planned as Minor changes to the SBCS logic are planned as part of EPU part of EPU. QO load rejection setpoint will be reduced to -15%. Valve demand curves will be revised to reflect new valve capacities and valve trim. Transition from QO to modulation mode will be enhanced.

L-2010-096 Attachment I Page 56 of 59 Component Full Open Flow Forward/ Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions Turbine Stop 2375.8 sq in Data 0.26 sec (close) 12,266,130 Ibm/hr at EPU Valves close on Turbine Trip. Trip logic Valves (Throttle) for 4 valves unavailable; for total of four valves includes: Reactor Trip, High-High SG Level, requested from Overspeed, Generator Lockout and various vendor equipment protection functions.

Turbine stop valves are normally full open during power operation. The stop valves are opened in a DEH speed control mode during

-_ _ initial turbine startup.

Main Feed 1.576 Ft2 22700 Close stroke time 13,303,150 lbm/hr 100% MFIVs close on either SIAS or MSIS. See Table Isolation Valves (Estimate based on 7.9 to 14.0 sec. Flow 11 for SIAS/MSIS actuation signals and full flow of 20" associated setpoints.

Sch 120 pipe)

Main Steam 4.508 sq ft N/A After MSIS signal 13,236,690 lbm/hr 100% MSIVs close on MSIS. See Table 11 for MSIS Isolation Valves is generated. 6.9 Flow actuation signals and associated setpoints.

sec- value includes sensor response time of 0.9 secs and valve closure time of 6.0 secs.

L-2010-096 Attachment I Page 57 of 59 Figure 6 - Unit 1 SBCS Simplified Block Diagram I I t,,

Unit I SBCS Simplified Block Diagram/Notcs.-

&l~, ~

I-Ibut 1.( -1 I ~ o I J, a~ 1L L-- -- ------

ATM KYft LEI-- - -

131-t t I- 4 2'TV ("VPY -0ANI

,)NI 4

L-2010-096 Attachment I Page 58 of 59 Figure 7.- LTOP PORV ACTUATION SCHEMATIC

+125 VDC 63X P- 102 HS-1402 117-7 55 120 VAC I

N L /

SS/117-1 CLOSEDIN LOWRANGE 11 11T-I T

HS 1402 117

/

NORM /

8

/

TA-1115 CLOSEt CLOSE*

F --

1 TA-1115 16T-1

/

218° F

/

/

/

PORV V- 1402 PA-1103 - 6 CLOSEP*I-- 11 03 /.

(ENERGIZE TO OPEN) CLOSE4 7 524PSIA - 17 1 344 PSIA 74-2 3-1 N DISABLES H21 ACTUATES UPON PORV PORV -1402ý/

ACTUATION AND (P/lI&CII-IMP-O1.21/Fig3-1,Rev.0,1f) ACTUATES H22 Note: Existing TA-I 115 Setpoints (218/307'F) will be changed for EPU to 200/3000 F.

L-2010-096 Attachment I Page 59 of 59 Appendix A - Calculation of Fuel Assembly Grid Weight and Surface Area AREVA GRID WEIGHT AND SURFACE AREA HTP Ztrc-4 weight gms Ref 1. 1046 Zirc 4 density gm/cc Ref. 2. 3 6.6 vol cc 158.48 wt in pounds 2.306 453.592 gm/lb Strip thickness inches Ref 1. 0.017 Note 1.

Volume in3 9.671 Area in2 568.88 wetted area X2 1137.76 Wetted area sq ft 7.90 HMP Inconel 714 weight gins Ref 1. 976 Inconel density lb/in3 Ref 4. 0.296 Strip thickness inches Ref 1. 0.0125 Note 2.

wt in pounds 2.15 Volume in3 7.27 AREA in2 581.54 Wetted area X2 1163,09 Wetted area sq ft 8.08

Reference:

1. Areva Document 32-0979930-000 PSL-1 Cycle 22
2. Zirconium Associatiion Bulletin # 6, "General Data Covering Zirconium and Zirconium Alloys"
3. ATI Wah Chang,Technical Data Sheet Properties of Zircaloy-4
4. Special Metals Handbook Notes:
1. Assume that all 56 strips are the same thickness 0.017 in. (4 side strips 0.025 inthick)
2. Assume that all 56 strips are the same thickness 0.0125 in. (4 side strips 0.025 in thick)

Per Assembly Weight lbs Area ft2 HTP 18.45 63.2092 HMP 2.15 8.08 Total 20.60 71.2-62 2*"7Z2Zihu Performed By: lIZZI-21WOW

/ -

Verified By:_/~

HTP HMP Grid wis Area,xis

L-2010-096 Attachment 4 Page 1 of 41

L-2010-096 Attachment 4 Page 2 of 41 18.2. CEA worth vs. insertion (with and without hiahest worth rod stuck out of core)

RLBLOCA I

SBLOCA 0 Time after scram vs. normalized worth Normalized Normalized Time (sec) Scram Worth Time (sec) Scram Worth 0.00 0.0000 1.56 0.0212 0.50 0.0000 1.62 0.0230 0.56 0.0010 1.72 0.0263 0.60 0.0017 1.80 0.0293 0.72 0.0038 1.88 0.0326 0.80 0.0051 2.00 0.0394 0.84 0.0058 2.14 0.0492 0.88 0.0064 2.28 0.0619 0.94 0.0071 2.43 0.0856 1.00 0.0084 2.56 0.1101 1.04 0.0093 2.72 0.1770 1.07 0.0100 2.80 0.2047 1.12 0.0111 2.84 0.2185 1.16 0.0118 2.91 0.2853 1.20 0.0126 2.96 0.3339 1.28 0.0145 3.04 0,4112 1.36 0.0163 3.10 0.4694 1.41 0.0174 3.25 0.7144 1.48 0.0189 3.40 1.0000 I j

L-2010-096 Attachment 4 Page 3 of 41 18.3. Reactivity vs. fuel temperature and reactivity vs. moderator density (Note: AREVA NP's model does not model reactivity feedback)

RLBLOCA and SBLOCA AREVA does not separate moderator temperature and density. The reactivity effect of both is correlated against density with the temperature impact imbedded.

o Based on Tech. Spec. HZP MTC = +7 pcm/0 F

/-

L-2010-096 Attachment 4 Page 4 of 41 o Based on Tech. Spec. HFP MTC = +2 pcm/°F 18.4. Moderator temperature coefficient (Note: AREVA NP's model does not model reactivity feedback)

RLBLOCA and SBLOCA

  • Moderator temperature coefficient (Tech. Spec., HFP positive limit) = +2 pcm/°F
  • Moderator temperature coefficient (Tech. Spec. / Core Operating Limits Report, negative limit) =

-32 pcm/IF 18.5. Typical top peaked axial power shape RLBLOCA

[ SBLOCA See below for a typical axial power profile:

t I

L-2010-096 Attachment 4 Page 5 of 41 18.6. Minimum and maximum average fuel clad gap conductivity at rated power conditions RLBLOCA K

~~2

L-2010-096 Page 6 of 41

L-2010-096 Attachment 4 Page 7 of 41 See "Additional Information with regards to 18.6, 18.8, and 18.10" (below) for more supporting information.

SBLOCA

L-2010-096 Attachment 4 Page 8 of 41 18.7. Minimum local gap conductance as a function of LHR RLBLOCA

L-2010-096 Attachment 4 Page 9 of 41

[SBLOCA I

See response to 18.6 (SBLOCA).

18.8. Gap conductance RLBLOCA See response to 18.6 (RLBLOCA).

See "Additional Information with regards to 18.6, 18.8, and 18.10" (below) for more supporting information.

SBLOCA See response to 18.6 (SBLOCA).

18.9. Linear heat rate RLBLOCA The table below presents the LHRs used by the 59 RLBLOCA uncertainty analysis runs, and is provided below.

The corresponding S-RELAP5 output files would provide additional information.

L-2010-096 Attachment 4 Page 10 of 41 Note: The LHGR could vary from about .3 times the average KW/ft for the plant to FQ times the average KW/ft for the plant. It seems unlikely that this would be considered responsive. The peak linear heat rate used in the limiting LBLOCA analysis for the hot rod will be sufficient.

SBLOCA Tech. Spec. COLR peak LHR limit = 14.7 kW/ft 18.10. Fuel averaue and centerline temperature as a function of burnup for the hot rod in the hot bundle RLBLOCA The values desired are those that are used for LOCA conditions.

See "Additional Information with regards to 18.6, 18.8, and 18.10" (below) for more supporting information.

SBLOCA Not applicable to SBLOCA.

L-2010-096 Attachment 4 Page 11 of 41 Additional Information with regards to 18.6, 18.8, and 18.10 (RLBLOCA ONLY)

/-

-I

L-2010-096 Attachment 4 Page 12 of 41 HOT U02 ROD

L-2010-096 Attachment 4 Page 13 of 41 HOT 6% GAD ROD

L-2010-096 Attachment 4 Page 14 of 41 AVERAGE ROD

L-2010-096 Attachment 4 Page 15 of 41 18.11. Additional Supporting Data NRC request - Specifications for modeling a small break LOCA, in particular what models/assumptions are used regarding loop seal clearing and hot channel conservatisms. The AREVA SBLOCA methodology topical report was provided and this is very useful. The FSAR or a report on the analysis of record is needed to move from the generic methodology to the plant specific application. Plots of key variables for the EPU LBLOCA and SBLOCA analyses, including containment pressure for LBLOCA.

  • t The following pages contain plots for the key variables. Plots for the RLBLOCA analysis are presented in Figures 1 through 12 (these figures represent the limiting case: Case No. 3, 6% gad rod, PCT = 1672 'F). Plots for the SBLOCA analysis are presented in Figures 13 through 26 (these figures represent the limiting 0.06 ft2 case, which has a PCT of 2072 'F).

L-2010-096 Attachment 4 Page 16 of 41 Figure 1 Break Flow for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 17 of 41 Figure 2 Core Inlet Flow for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 18 of 41 Figure 3 Core Outlet Flow for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 19 of 41 Figure 4 Void Fraction at RCS Pumps for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 20 of 41 Figure 5 ECCS Flow (includes SIT, HPSI, and LPSI) for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 21 of 41 Figure 6 System Pressure for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 22 of 41 Figure 7 Collapsed Liquid Level in the Downcomer for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 23 of 41 Figure 8 Collapsed Liquid Level in the Lower Plenum for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 24 of 41 Figure 9 Core Liquid Level for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 25 of 41 Figure 10 Containment and Loop Pressures for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 26 of 41 Figure 11 Hot Rod PCT Independent of Elevation for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 27 of 41 Figure 12 PCT Independent of Elevation for the RLBLOCA Limiting Case

L-2010-096 Attachment 4 Page 28 of 41 ID:37051 2Apr2010 04:00:52 sla_epu_0.06ft2_DMX 0.06ft2 Break 120 110 Actual Reactor Power 100 90 p-0' 80

.0 (D 70 0

o- 60

  • 50 40 L)

< 30 20 10 0 . . . . . .

0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 13 Reactor Power for 0.06 ft2 Break

L-2010-096 Attachment 4 Page 29 of 41 ID:37051 2Apr2010 04:00:52 slaepu_0.06ft2_DMX 0.06ft2 Break 2400 2200 2000 1800 1600

  • 1400 2 1200 U,/'

S1000 *----" *-

800 600 400 200 0

0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 14 Pressurizer and Steam Generator Pressure for 0.06 ft 2 Break

L-2010-096 Attachment 4 Page 30 of 41 ID:37051 2Apr2010 04:00:52 slaepu_0.06ft2_DMX 0.06ft2 Break 1.00 0.90 0.80 0.70 c0 0.60 CO, 0 LL0.50

_o.5o

> 0.40 0.30 0.20 0.10 0.00 - '

0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 15 Break Void Fraction for 0.06 ft 2 Break

L-2010-096 Attachment 4 Page 31 of 41 ID:37051 2Apr2O10 04:00:52 sla-epu_0.06ft2_DMX 0.06ft2 Break 2000 , ,

___ Break Flow Rate 1500 E

1000 LL 500 0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 16 Break Flow Rate for 0.06 ft2 Break

L-2010-096 Attachment 4 Page 32 of 41 ID:37051 2Apr2010 04:00:52 sla_epu_0.06ft2_DMX 0.06ft2 Break 1.00 .

0.90 "

0 .9 ........ ....

0.80 0.70

- 0.60 0.50 "0" --. Loop 1A - Loop Seal Void Fraction

> 0.40 . Loop 1B - Loop Seal Void Fraction

- -* Loop 2A - Loop Seal Void Fraction 0.30 - A-Loop 2B - Loop Seal Void Fraction 0.20 0.10 0.00 ' = --oo"-- - '- ' =

0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 17 Loop Seal Void Fractions for 0.06 ft2 Break

L-2010-096 Attachment 4 Page 33 of 41 ID:37051 2Apr2010 04:00:52 sla_epu_0.06ft2_DMX 0.06ft2 Break 110 , ,

100

- - Loop 1A Flow Rate 90 .......... m Loop 1B Flow Rate

- -* Loop 2A Flow Rate 80 - A-Loop 2B Flow Rate 70 60

,50 0

U-40 30 20 10 0 ........

0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 18 RCS Loop Flow Rate for 0.06 ft 2 Break

L-2010-096 Attachment 4 Page 34 of 41 ID:37051 2Apr2O10 04:00:52 sla epu_0.06ft2_DMX 0.06ft2 Break 110 . ,

100

-- SG-1 MFW Flow Rate 90 . SG-2 MFW Flow Rate 80 70 u- 60 0 50 40

  • ~40 CU 3: 30 30 20 10 10

--1 0 , , , , i . . , . , . , , . . I , , , , I , , , , J . .

0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 19 Main Feedwater Flow Rate for 0.06 ft 2 Break

L-2010-096 Attachment 4 Page 35 of 41 ID:37051 2Apr2010 04:00:52 sla-epu_0.06ft2_DMX 0.06ft2 Break 50

-- SG-1 AFW Flow Rate 40 m SG-2 AFW Flow Rate 30 U)

E

-o a a EUa a E U -E - a BE U 20 0

10 0 1 - - -

-10 0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 20 Auxiliary Feedwater Flow Rate for 0.06 ft2 Break

L-2010-096 Attachment 4 Page 36 of 41 ID:37051 2Apr2010 04:00:52 sla epu_0.06ft2_DMX 0.06ft2 Break 170000 160000 150000

" 140000 2 130000 120000 110000 100000 0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 21 Steam Generator Total Mass for 0.06 ft 2 Break

L-2010-096 Attachment 4 Page 37 of 41 ID:37051 2Apr2O10 04:00:52 slaepu_0.06ft2_DMX 0.06ft2 Break 100 . .

90

___ Total I 80 70 Z-Ln60 E

50 0

40 U-30 20 10 0

0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 22 Total HPSI Mass Flow Rate for 0.06 ft2 Break

L-2010-096 Attachment 4 Page 38 of 41 ID:37051 2Apr2010 04:00:52 sla_epu_0.06ft2_DMX 0.06ft2 Break 300 ,

___ Total SIT Flow Rate 250 200 E

S150 0

U-100 50 50 0 . . . . . . . . . . . . . . * , , ,

0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 23 Total SIT Mass Flow Rate for 0.06 ft 2 Break

L-2010-096 Attachment 4 Page 39 of 41 ID:37051 2Apr2010 04:00:52 slaepu_0.06ft2_DMX 0.06ft2 Break 500000 450000 400000 350000 300000 E

t" 2500000 2000001L 150000 100000 .

50000 0

0 500 10( 0 1500 2000 2500 3000 Time (sec)

Figure 24 RCS and Reactor Vessel Mass Inventories for 0.06 ft 2 Break

L-2010-096 Attachment 4 Page 40 of 41 ID:37051 2Apr2010 04:00:52 slaepu_0.06ft2_DMX 0.06ft2 Break 14 . . . . .

12 Hot Assembly Collapsed Liquid Level 10

-.J 8 2"

0~

4 2

0 0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 25 Hot Assembly Collapsed Liquid Level for 0.06 ft 2 Break

L-2010-096 Attachment 4 Page 41 of 41 ID:37051 2Apr2010 04:00:52 sla epu_0.06ft2_DMX 0.06ft2 Break 2200 . ,

2000 Hot Sr 1800 1600 2 1400 E 1200 CL I--

1000 800 600 400 0 500 1000 1500 2000 2500 3000 Time (sec)

Figure 26 Hot Spot Cladding Temperature for 0.06 ft2 Break