CP-201101450, Core Operating Limits Report

From kanterella
(Redirected from CP-201101450)
Jump to navigation Jump to search
Core Operating Limits Report
ML11292A053
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 10/13/2011
From: Madden F
Luminant Power, Luminant Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CP-201101450, TXX-11130
Download: ML11292A053 (24)


Text

{{#Wiki_filter:Rafael Flores Luminant Power Senior Vice President P 0 Box 1002

                                                                & Chief Nuclear Officer                6322 North FM 56 rafael.flores@Luminant.com             Glen Rose, TX 76043 Luminant                                                                                                T 254 897 5550 C 817 5590403 F 254 897 6652 CP-201101450                                                                             Ref:       Tech. Spec. 5.6.5 TXX-11130 October 13, 2011 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

SUBJECT:

COMANCHE PEAK NUCLEAR POWER PLANT DOCKET NO. 50-445 CORE OPERATING LIMITS REPORT

Dear Sir or Madam:

Enclosed is the Core Operating Limits Report for Comanche Peak Nuclear Power Plant (CPNPP) Unit 1, Cycle

16. This report is prepared and submitted pursuant to Technical Specification 5.6.5.

This communication contains no new licensing basis commitments regarding CPNPP Units I and 2. Should you have any questions, please contact Mr. J. D. Seawright at (254) 897-0140. Sincerely, Luminant Generation Company LLC Rafael Flores By: /Fred W. Madden Director, Oversight & Regulatory Affairs Enclosure - Unit 1 Cycle 16 Core Operating Limits Report c- E. E. Collins, Region IV B. K. Singal, NRR Resident Inspectors, Comanche Peak A member of the STARS (Strategic Teaming and Resource Sharing) Alliance A-oct Callaway - Comanche Peak

  • Diablo Canyon - Palo Verde ' San Onofre ' South Texas Project - Wolf Creek

ERX-II-002, Rev. 0 CPNPP UNIT I CYCLE 16 CORE OPERATING LIMITS REPORT September 2011 Prepared: Date: 9iZz-2oI Jhathan M. Ralston Pincipal Engineer, Westinghouse Electric Co. Reviewed: ýŽ ýA% <-- . Ir v Date: ZZ OI Daniel E. Brozak>/ Principal Engineer, Westinghouse Electric Co. Reviewed: __ _ __ _ _ Date: _-_Z-zoj_ nrian L./Guthrie rincipal Engineer, Westinghouse Electric Co. Approved: ____________ Date: W. Jae es Boae right, Manager Westinghouse Engineering Services - Texas

DISCLAIMER The information contained in this report was prepared for the specific requirement of Luminant Generation Company LLC and may not be appropriate for use in situations other than those for which it was specifically prepared. Luminant Generation Company LLC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. By making this report available, Luminant Generation Company LLC does not authorize its use by others, and any such use is forbidden except with the prior written approval of Luminant Generation Company LLC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall Luminant Generation Company LLC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it. ii ERX-1l-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 TABLE OF CONTENTS DISCLAIMER ...................................................... ii TABLE OF CONTENTS ............................................... iii LIST OF TABLES .................................................. iv LIST OF FIGURES ................................................. v SECTION PAGE 1.0 CORE OPERATING LIMITS REPORT .............................. 1 2.0 OPERATING LIMITS .......................................... 2 2.1 SAFETY LIMITS ........................................ 2 2.2 SHUTDOWN MARGIN ...................................... 2 2.3 MODERATOR TEMPERATURE COEFFICIENT .................... 2 2.4 ROD GROUP ALIGNMENT LIMITS ........................... 3 2.5 SHUTDOWN BANK INSERTION LIMITS ....................... 3 2.6 CONTROL BANK INSERTION LIMITS ........................ 4 2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 .................... 4 2.8 HEAT FLUX HOT CHANNEL FACTOR ......................... 4 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR ................ 6 2.10 AXIAL FLUX DIFFERENCE ................................ 6 2.11 REACTOR TRIP SYSTEM INSTRUMENTATION .................. 6 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS .............................. 7 2.13 BORON CONCENTRATION .................................. 8

3.0 REFERENCES

             ................................................                                                                           8 iii                                                       ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 LIST OF TABLES TABLE PAGE 1 FQ(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD .......... 9 iv ERX-11-002, Rev. 0

COLR for CPNPP Unit-1 Cycle 16 LIST OF FIGURES FIGURE PAGE 1 REACTOR CORE SAFETY LIMITS .............................. 10 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER ............ 11 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT ............................................. 12 4 W(Z) AS A FUNCTION OF CORE HEIGHT - (150 MWD/MTU) . .......................................... 13 5 W(Z) AS A FUNCTION OF CORE HEIGHT - (2,000 MWD/MTU) ......................................... 14 6 W(Z) AS A FUNCTION OF CORE HEIGHT - (10,0.00 MWD/MTU) ........................................ 15 7 W(Z) AS A FUNCTION OF CORE HEIGHT - (14,000 MWD/MTU) ........................................ 16 8 W(Z) AS A FUNCTION OF CORE HEIGHT - (20,000 MWD/MTU) ........................................ 17 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER .................................. 18 V ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPNPP UNIT 1 CYCLE 16 has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications affected by this report are listed below: SL 2.1 SAFETY LIMITS LCO 3.1.1 SHUTDOWN MARGIN LCO 3.1.3 MODERATOR TEMPERATURE COEFFICIENT LCO 3.1.4 ROD GROUP ALIGNMENT LIMITS LCO 3.1.5 SHUTDOWN BANK INSERTION LIMITS LCO 3.1.6 CONTROL BANK INSERTION LIMITS LCO 3.1.8 PHYSICS TESTS EXCEPTIONS - MODE 2 LCO 3.2.1 HEAT FLUX HOT CHANNEL FACTOR LCO 3.2.2 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR LCO 3.2.3 AXIAL FLUX DIFFERENCE LCO 3.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION LCO 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS LCO 3.9.1 BORON CONCENTRATION 1 ERX-1-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5b, Items 1 through 4 and 7 through 15. These limits have been determined such that all applicable limits of the safety analysis are met. 2.1 SAFETY LIMITS (SL 2.1) 2.1.1 In MODES 1 and 2, the combination of thermal power, reactor coolant system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1. 2.2 SHUTDOWN MARGIN (SDM) (LCO 3.1.1) 2.2.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 with K,, < 1.0, and in MODES 3, 4, and 5. 2.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) (LCO 3.1.3) 2.3.1 The MTC upper and lower limits, respectively, are: The BOL/ARO/HZP-MTC shall be less positive than +5 pcm/*F. The EOL/ARO/RTP-MTC shall be less negative than -40 pcm/°F. 2 ERX-II-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 2.3.2 SR 3.1.3.2 The MTC surveillance limit is: The 300 ppm/ARO/RTP-MTC shall be less negative than or equal to -31 pcm/°F. The 60 ppm/ARO/RTP-MTC shall be less negative than or equal to -38 pcm/'F. where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2.4 ROD GROUP ALIGNMENT LIMITS (LCO 3.1.4) 2.4.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODES 1 and 2. 2.5 SHUTDOWN BANK INSERTION LIMITS (LCO 3.1.5) 2.5.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive. 3 ERX-1I-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 2.6 CONTROL BANK INSERTION LIMITS (LCO 3.1.6) 2.6.1 The control banks shall be limited in physical insertion as shown in Figure 2. 2.6.2 The control banks shall always be withdrawn and inserted in the prescribed sequence. For withdrawal, the sequence is control bank A, control bank B, control bank C, and control bank D. The insertion sequence is the reverse of the withdrawal sequence. 2.6.3 A 115 step Tip-to-Tip relationship between each sequential control bank shall be maintained. 2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 (LCO 3.1.8) 2.7.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 during PHYSICS TESTS. 2.8 HEAT FLUX HOT CHANNEL FACTOR (F. (Z) (LCO 3.2.1) RTP FQ 2.8.1 FQ(Z) - _ [K(Z)] for P > 0.5 P RTP FQ F0 (Z) S -< [K(Z)] for P S 0.5

0.5 where

P = LHERMAL POWER RATIED THERMAL POWER 4 ERX-II-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 FRTP 2.8.2 F = 2.50 2.8.3 K(Z) is provided in Figure 3. 2.8.4 Elevation and burnup dependent W(Z) values are provided in Figures 4, 5, 6, 7 and 8. For W(Z) data at a desired burnup not listed in the figures, but less than the maximum listed burnup, values at 3 or more burnup steps should be used to interpolate the W(Z) data to the desired burnup with a polynomial type fit that uses the nearest three burnup steps. For W(Z) data at a desired burnup outside of the listed burnup steps, a linear extrapolation of the W(Z) data for the nearest two burnup steps can be used. 2.8.5 SR 3.2.1.2 If the two most recent FQ(Z) evaluations show an increase in the expression maximum over Z [ F0 c(Z) / K(Z) J, the burnup dependent values in Table 1 shall be used instead of a constant 2% to increase FQW(Z) per Surveillance Requirement 3.2.1.2.a. A constant factor of 2% shall be used for all cycle burnups that are outside the range of Table 1. 5 ERX-1I-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (F"AH) (LCO 3.2.2) 2.9.1 FNAH -- FRTPAH [1 + PFAH (1-P) where: P = THERMAL POWER RATED THERMAL POWER 2.9.2 FRT PAH = 1.60 for all Fuel Assembly Regions 2.9.3 PFAH = 0.3 2.10 AXIAL FLUX DIFFERENCE (AFD) (LCO 3.2.3) 2.10.1 The AFD Acceptable Operation Limits are provided in Figure 9. 2.11 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION (LCO 3.3.1) 2.11.1 The numerical values pertaining to the Overtemperature N-16 reactor trip setpoint are listed below; Ký = 1.15 K, = 0.0139 I/F K3 = 0.00071 /psig TC 0 = indicated loop specific TC at Rated Thermal Power, °F P1 > 2235 psig T1  ! 10 sec 12 < 3 sec fJ(Aq) = -2.78 -{(qt-qb) + 18%) when (qt-q,) 5 -18% RTP

                       =   0%    when -18% RTP <         (qt-qb)   < +10.0% RTP
                       = 2.34 * {(qt-qb)          -  10.0%)    when     (qt-qb)  > +10.0% RTP 6                           ERX-II-002,    Rev. 0

COLR for CPNPP Unit 1 Cycle 16 2.12 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING (DNB) LIMITS (LCO 3.4.1) 2.12.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the surveillance limits specified below: 2.12.2 SR 3.4.1.1 Pressurizer pressure

  • 2220 psig (4 channels) 2222 psig (3 channels)

The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels. 2.'12.3 SR 3.4.1.2 RCS average temperature 5 588 'F (4 channels) 5 588 'F (3 channels) The RCS average temperature limits correspond to the analytical limit of 591.9 'F which is bounded by that used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels. 7 ERX-II-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 2.12.4 SR 3.4.1.3 The RCS total flow rate shall be > 403,700 gpm. 2.12.5 SR 3.4.1.4 The RCS total flow rate based on precision heat balance shall be

  • 403,700 gpm.

The required RCS flow, based on an elbow tap differential pressure instrument measurement prior to MODE 1 after the refueling outage, shall be greater than 327,000 gpm. 2.13 BORON CONCENTRATION (LCO 3.9.1) 2.13.1 The required refueling boron concentration is 1894 ppm.

3.0 REFERENCES

Technical Specification 5.6.5. 8 ERX-II-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 Table 1 F,(Z) MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD Cycle Maximum Decrease Burnup In FQ(Z) MARGIN (MWD/MTU) (Percent) 4873 2.00 5088 2.27 5302 2.49 5517 2.37 5732 2.04 5947 2.00 Note: All cycle burnups outside the range of the table shall use a constant 2% decrease in FQ(Z) margin for compliance with the 3.2.1.2.a Surveillance Requirements. Linear interpolation is acceptable to determine the FQ(Z) margin decrease for cycle burnups which fall between the specified burnups. 9 ERX-II-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 Figure 1 Reactor Core Safety Limits 680 660 640 U-0. E 620 I-- CO) 600 580 560 0 20 40 60 80 100 120 140 Percent of Rated Thermal Power 10 ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240 i . ! , i i i, .. . .. i.. .. !1 1 11. 1 i ! i i ' . . . . i ! '. I " I -HI 220 (25.3,218) .(96218: I I I I I I I I .. ' I I 200 III/BANK B -- -- 180 'C

.- 160

-,-I (10146) 04 a 140 4.) BANK COl 02 S120 H H ro o04 100 m 80 O' I 0 60 40 20 I  ; I/ 0 0 10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THERMAL POWER NOTES: 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 218 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn.

ii ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 FIGURE 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.1 1 1 11 1 1 1 11 11 11 1 1 1 (0.0,1 (6-0,1.0) 1.0 I [T -Ttýý 4 iL III 0.9 IF777 (12.0,0.925) 0.8 0.7 0 ~z 0.6

           ..........I................ ..........iiiiiiiii........

0.5 0.4 0.3 ...................................................... ALL.-1.1-11111 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node K(z) Node K(Z) Node K(Z) Node K(Z) 61 0.9250 53 0.9450 45 0.9650 37 0.9850 60 0.9275 52 0.9475 44 0.9675 36 0.9875 59 0.9300 51 0.9500 43 0.9700 35 0.9900 58 0.9325 50 0.9525 42 0.9725 34 0.9925 57 0.9350 49 0.9550 41 0.9750 33 0.9950 56 0.9375 48 0.9575 40 0.9775 32 0.9975 55 0.9400 47 0.9600 39 0.9800 1 - 31 1.0000 54 0.9425 46 0.9625 38 0.9825 Core Height (ft) = (Node - 1)

  • 0.2 12 ERX-11-002, Rev. 0

COLR for CPNPP-Unit 1 Cycle 16 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.1853 30 1.1324 16 1.2377 57 1.4055 43 1.1866 29 1.1347 15 1.2522 56 1.4119 42 1.1837 28 1.1473 14 1.2728 55 1.4118 41 1.1800 27 1.1578 13 1.3000 54 1.4005 40 1.1781 26 1.1673 12 1.3269 53 1.3841 39 1.1758 25 1.1761 11 1.3529 52 1.3651 38 1.1725 24 1.1840 10 1.3781 51 1.3404 37 1.1709 23 1.1909 9 1.4016 50 1.3121 36 1.1672 22 1.1970 8 1.4233 49 1.2820 35 1.1615 21 1.2021 7 1.4428 48 1.2498 34 1.1538 20 1.2069 6 1.4591 47 1.2186 33 1.1452 19 1.2118 5 1.4707 46 1.1975 32 1.1386 18 1.2173 1 - 4 45 1.1870 31 1.1342 17 1.2263 Core Height (ft) = (Node - 1)

  • 0.2 13 ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (2,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 Ri', 1.400 1.350 1.300

  • 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 44 1.1675 30 1.1286 16 1.2511 57 1.4794 43 1.1651 29 1.1371 15 1.2775 56 1.4643 42 1.1607 28 1.1501 14 1.3064 55 1.4441 41 1.1558 27 1.1616 13 1.3349 54 1.4186 40 1.1535 26 1.1719 12 1.3630 53 1.3901 39 1.1520 25 1.1815 11 1.3916 52 1.3602 38 1.1501 24 1.1900 10 1.4196 51 1.3277 37 1.1500 23 1.1975 9 1.4458 50 1.2938 36 1.1480 22 1.2042 8 1.4699 49 1.2594 35 1.1443 21 1.2098 7 1.4916 48 1.2251 34 1.1384 20 1.2149 6 1.5102 47 1.1943 33 1.1321 19 1.2186 5 1.5238 46 1.1769 32 1.1293 18 1.2222 1 - 4 45 1.1699 31 1.1271 17 1.2317 Core Height (ft) = (Node - 1)
  • 0.2 14 ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (10,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 RI 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W (Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.2378 30 1.1312 16 1.1826 57 1.4204 43 1.2348 29 1.1315 15 1.2004 56 1.4141 42 1.2290 28 1.1382 14 1.2205 55 1.4042 41 1.2232 27 1.1435 13 1.2403 54 1.3904 40 1.2195 26 1.1476 12 1.2600 53 1.3730 39 1.2155 25 1.1515 11 1.2793 52 1.3517 38 1.2102 24 1.1552 10 1.2978 51 1.3275 37 1.2059 23 1.1581 9 1.3152 50 1.3021 36 1.1993 22 1.1602 8 1.3312 49 1.2748 35 1.1902 21 1.1624 7 1.3455 48 1.2496 34 1.1792 20 1.1651 6 1.3574 47 1.2368 33 1.1663 19 1.1679 5 1.3653 46 1.2379 32 1.1518 18 1.1701 1 - 4 45 1.2394 31 1.1369 17 1.1723 Core Height (ft) = (Node - 1)

  • 0.2 15 ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT (14,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 Riý1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 069 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node w(Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 44 1.2137 30 1.1673 16 1.1658 57 1.3788 43 1.2216 29 1.1678 15 1.1729 56 1.3767 42 1.2264 28 1.1709 14 1. 1866 55 1.3681 41 1.2295 27 1.1721 13 1. 2003 54 1.3491 40 1.2308 26 1.1717 12 1.2140 53 1.3227 39 1.2300 25 1.1708 11 1.2273 52 1.2989 38 1.2271 24 1.1694 10 1.2401 51 1.2874 37 1. 2220 23 1.1667 9 1.2522 50 1.2759 36 1.2162 22 1.1630 8 1. 2633 49 1.2609 35 1.2115 21 1.1595 7 1.2734 48 1.2432 34 1.2060 20 1.1593 6 1.2816 47 1.2249 33 1.1974 19 1.1610 5 1.2862 46 1.2174 32 1.1865 18 1.1617 1 - 4 45 1.2126 31 1.1723 17 1.1642 Core Height (ft) = (Node - 1)

  • 0.2 16 ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 FIGURE 8 W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 MWD/MTU) 1.650 1.600 1.550 1.500 1.450 1.400 1.350 1.300 1.250 1.200 1.150 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W (Z) Node w(Z) Node w(Z) Node w(Z) 58 - 61 --- 44 1.2213 30 1.2235 16 1.1718 57 1.3507 43 1.2295 29 1.2197 15 1.1744 56 1.3455 42 1.2389 28 1.2205 14 1.1859 55 1.3435 41 1.2474 27 1.2238 13 1.2000 54 1.3354 40 1.2562 26 1.2252 12 1.2137 53 1.3184 39 1.2637 25 1.2244 11 1.2271 52 1.2999 38 1.2689 24 1.2217 10 1.2401 51 1.2834 37 1.2736 23 1.2171 9 1.2524 50 1.2664 36 1.2751 22 1.2108 8 1.2641 49 1.2450 35 1.2731 21 1.2030 7 1.2750 48 1.2272 34 1.2681 20 1.1941 6 1.2840 47 1.2231 33 1.2602 19 1.1843 5 1.2893 46 1.2186 32 1.2495 18 1.1762 1 - 4 45 1.2181 31 1.2352 17 1.1745 Core Height (ft) = (Node - 1)

  • 0.2 17 ERX-11-002, Rev. 0

COLR for CPNPP Unit 1 Cycle 16 FIGURE 9 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100

                   '(-,15, 100)                                  A   (10,100) l ll l          li                  i              "

90 UNACCEPTABLE UNACCEPTABLE OPERATION OPERATION 80

1-ACCEPTABLE OPERATION -

70 94 0 60 50 0Z4 (-30,50) (30,50) 40 0 30 P4 20

                                                    -i                          ---

10 if 11 0

        -40      -30             -20         -10         0      10         20          30      40 AXIAL FLUX DIFFERENCE     (%)

18 ERX-11-002, Rev. 0}}