ML18018A878

From kanterella
Revision as of 05:47, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Nine Mile Point, Unit 1 - Applicant'S Environmental Report Operating License Stage Conversion to Full-Term Operating License
ML18018A878
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 06/30/1972
From:
Niagara Mohawk Power Corp
To:
US Atomic Energy Commission (AEC)
References
Download: ML18018A878 (914)


Text

File+:RegulatoFf

.Riieelved av/Ltroatid~7+U.S.AtomicEnergyCommission Docket50-220APPLICANT'S ENVIRONMENTAL REPORTOPERATING LICENSESTAGECONVERSIONTOFULL-TERM OPERATING LICENSEincieoinUcearaion4nlJuneI972NIAGARAMOHAWKPOWERCORPORATION

Syracuse, NewYork13202 0

FOREWORDOnAugust22,1969,'iagaraMohawkPowerCorporation (NiagaraMohawk)receiveditsprovisional operating license(DPRNo.17)fromtheUnitedStatesAtomicEnergyCommission (Commission) tooperateNineMilePointNuclearStationUnit1at1,538MWt(500MWe).OnApril14,1971thepowerratingforthislicensewasincreased bytheCommission to1,850MWt(610MWe).PursuanttoSectionAofrevisedAppendixDto10CFRPart50,thisenvironmental reportaccompanies NiagraraMohawk'sapplica-tiontoconverttheprovisional operating licenseforNineMilePointUnit1toafull-term license.Thecontentsofthisreportgenerally conformtothe<<DraftGuidetothePreparation ofEnvironmental ReportsforNuclearPowerPlants"issuedbytheCommission February1971,asamended,including thesubstance oftheinformation requiredbytheMay1972<<GuidetothePreparation ofBenefit-Cost Analyses<<,Thoseotherpointsatwhichthisreportdeviatesfromtheaboveguidelines arenotedinthisForeword.

SinceUnit1isanoperating

facility, thereportdescribing itsenvironmental impactmustnecessarily differinbothscopeandcontentfromthatappropriate totheconstruction permitstage.Theprimaryconcernattheoperating licensestageiswhethertherehasbeenanyadverseimpacttodatefromtheoperation ofthefacilityorwhetheranyadverseimpactcanbepredicted fromitscontinued operation.

Consideration ofalternatives mustofnecessity belimitedtothosewhichhaveabearingoneitherofthesetwoimpacts.Thebenefitofthepossibleadoptionofanyofthesealternatives mustbebalancedagainstthecosttoNiagaraMohawkoftheirimplementation andtothepublicfrom.theinterruption ofservice.Afurtherdifference isthatthisreportfocusessolelyontheinteraction ofanoperating facilityuponitsenvironment.

Accordingly, analysisofthefacilitysimpactontheenvironment beginswithstart-upin1969untilthepresent.References topreconstruction siteenvironment aremadeonlyforcomparison tothesiteatpresent.Thediscussion ofconstruction effectsislimitedtocontemplated modificationsofthefacility.

Thisreportdescribes indetailthestepstakenbyNiagaraMohawkinthedesignandoperation ofthestationtoavoidadverseenvironmental effects.Alsodiscussed aretheeffortsbyNiagaraMohawktoenhancethesiteandthenearbyenvironment.

Someoftheinterpretations choseninpreparing thisdocument, whicharesupported bythelegislative historyoftheNationalEnvironmental PolicyAct,(83Stat.852,January1,1970)aswell

asbytheGuidelines issuedonApril23,1971bytheCouncilonEnvironmental Quality,aresummarized below:(a)(b)Thehumanenvironment includesthatcreatedbymanforhissubsistence, safety,andcomfortaswellasthatprovidedbynature.Thegeographical areaconsidered notonlyincludestheimmediate NiagaraMohawkservicearea,butalsotheareaservicedbytheNewYorkPowerPoolofwhichNiagaraMohawkisamember.Thus,thebenefittoresidents inthemajorpopulation centersintheNewYorkPowerPoolareafromusingthissourceofpowerforlighting, heating,andcoolingtheurbanenvironment hasbeencon-sideredappropriate forthecost-benefit analysisinvolvedinthisreport.(c)<<Long-term productivity<<

ispresumedtomeanproduc-tivityoveranextendedperiodtowardaneconomicorotherpurposegenerally acceptedasaconstructive useofsomepartofthenationalenvironment.

XnJune1972,NiagaraMohawkfiledanapplication withtheCommission toconstruct anew1,100MWenuclearpowergenerating facilityonitsNineMilePointsite.Thisproposedfacility(tobecalledNineMilePointStationUnit2),ifapproved, willbeconstructed adjacenttoUnit1andscheduled foroperation in1978.Thedescription oftheproposedUnit2anditsenvironmental impactarepresented inareportentitled<<NineMilePointNuclearStationUnit2Applicant's Environmental Report-Construction PermitStage,<<whichaccompanies itsconstruction permitapplication.

Jv1"~yHvrbk(iWLr~J4~'Ir'i'lvvt.I~i~~~'vrpgvQ~1rvijJf~J

TABLEOFCONTENTSSection.TitlePacae.1oFOREWORD~.oooo.~oo.oo~INTRODUCTION o~oooooooo~oii1o1111DESCRIPTXON OFOPERATING STATIONANDSITE12NEEDFORLOCATINGTHEPOWERSTATXONATTHESITEooo~ooooo~ooo1~111~212oTHESITEooooo~~ooooo~o2.1LOCATXONOFSTATXON2.1.1ProjectSite.2.1.2Transportation

..22HUMANACTIVITIES INTHEENVIRONS.

2.2.1HistoryofLandandWaterUse2.2.2Population 23HXSTORICSIGNIFXCANCE 2o11~2o112o112o112.2-12o2122-42o3124GEOLOGY2.41Topography 2.4.2Geology2.Q.3Seismicity 25HYDROLOGY 26CLIMATOLOGY ANDMETEOROLOGY 2.6.1DataSources.2.6.2GeneralClimatology 2.6.3Winds2.6.4Tornadoes andHurricanes.

2.6.5Turbulence Classes.2.6.6LapseRatesooo'o24-124-12.4-12.4-22.5-1-2.6-12.6-12.6-12.6-12.6-22.6-32.6-327272.7.2.7.2.72.7.2727BIOTAo1Terrestrial EcologyofSurrounding StationSite1.1Abandoned pastureandorchard1.2Overgrown land1.3Northernhardwoodforest,.1.4Clearedland..15AnimalAssociations.

2AquaticEcology.oAreaand2o712o72o722o722o722o732o732.7-42-8PRESENTRADIOLOGXCAL CONDITIONS ATTHESXTEANDINITSENVXRONMENT 2.8-1

TABLEOFCONTENTS(CONT'D)Section-TitlePacae.3.THESTATION~31EXTERNALAPPEARANCE 3&113&1132TRANSMISSION LINES..32-133REACTORANDSTEAMELECTRICSYSTEM..3.3-13.4WATERUSE34-135DESCRIPTION OFCOOLINGWATERSYSTEMDESIGN3.5.1IntakeSystem3.5.2Discharge System36RADWASTESYSTEM3.6.1WasteProcessing System.3.6.2GaseousRadioact=ive WasteSystem.3.6.2.1SourcesofRadioactive Gas3.6.2.1.1 ProcessOffgas.3.6.2.1.2 Mechanical VacuumPumpOffgas.3.6.2.1.3DrywellVentilation

.3.6.2.1.4TurbineGlandSeal3.6.2.1.5Miscellaneous BuildingServiceReleases.

~3.6.2.2Description oftheOriginalOffgasSystem3.6.2.2.130-.Minute DelayPipe.3.6.2.2.2 OffgasFilter(Aftercooler) 3.6.2.2.3 Radiation Monitors3.6.2.24St.ack.3.6.2.3Description ofUpgradedOffgasSystem.3.6.2.3.1 Catalytic Recombiner.

3.6.2.3.2 Condenser 3.6.2.3.3 DelayPipe.3.6.2.3.4 Dehumidification System.3.6.2.3.5 Pre-absorber 3.6.2.3.6 CharcoalAbsorbers 3.6.2.3.7 VacuumPump.3.6.3LiquidRadioactive WasteSystem3.6.3.1Description oftheOriginalLiquidRadwastSystem.3.6.3.1.1 WasteCollector Subsystem 36.3.1.2FloorDrainSubsystem 3.6.3.1.3Regenerant ChemicalSubsystem.

3.6.3.2Description oftheUpgradedLiquidRadwastSyst:em010~00000003.6.3.3OriginalandUpgradedSystemOperational AnalysisO 00000000003.6.3.4OriginalandUpgradedSystemOperational Evaluation 3.6.3.4.1Regenerant Chemicals Subsystem 3.6.3.4.2 WasteCollector Subsystem-3.5-135-13.5-23.6-13.6-13.6-23.6-23.6-23.6-23.6-33.6-336-43.6-43.6-43.6-43.6-53.6-53.6-53-6-636-63.6-63.6-63.6-63.6-63.6-73-6-736-73.6-73.6-83.6-83.6-83.6-936-143.6-143.6-15

TABLEOFCONTENTS(CONTEND)

Section-TitlePa<ac.3.6.3.4.3FloorDrainSubsystem 3.6.3.5ControlofWasteActivityMovement.

3.6.3.5.1 ReleaseofProcessed Waste.3.6.4SolidRadioactive WasteSystem.3.6.4.1SourcesofSolidWaste.3.6.4.2Processing andHandling3.6.4.3Performance Analysis3.6.5Transportation ofFuelandRadioactive 3.6.5.1Packaging Criteria3.6.5.2NewFuelShipping3.6.5.3SpentFuelShipping.

3.6.5.4Radioactive WasteShipping37CHEMICALANDSANITARXDISCHARGES 3.7.1LiquidChemicalDischarge 3.7.2SanitaryWasteSystem.38OTHERWASTESWastese.3.6-153.6-163.6-173.6-173.6-193.6-203.6-203.6-213.6-213.6-2236-2336-243&713&713&7338-14-5ENVIRONMENTAL EFFECTSOFCONSTRUCTION ENVIRONMENTAL EFFECTSOFSTATIONOPERATION

~.40-151-15.1EFFECTSOFOPERATION OFCOOLINGWATERINTAKEANDDISCHARGE FACILITIES 5.1.1IntakeStructure andOperation.

5.12Discharge Structure andOperation.

5.1.3EffectsonAquaticBiota.52EFFECTSOFRELEASEDRADIOACTIVE MATERIALS 5.2.1General5.2.2AqueousReleases5.2.2.1ExternalRadiation ExposurefromWaterRelatedActivities.

5.2.2.1.1Individual Exposure.5.2.2.1.2Population Exposure-Recreational.,

5.2.2.2InternalRadiation ExposurefromIngestion ofFoodandWater5.2.2.2.1 Individual Exposure.5.2.2.2.2 Population Exposure.5.2.2.3Radiation ExposureofPrimaryProducerandConsumerSpeciesfromDischarged Radionuclides 5.2.2.3.1 External-5.2.2.3.2 Internal.

5.2.2.4Radiation ExposureofFishfromDischarged Radionuclides.

5.2.2.4.1External.

51-1-5.1-251-25.1-55.2-152-152-25.2-35.2-35.2-55.2-652-652-752-105.2-105.2-105.2-115.2-11Vi

TABLEOFCONTENTS(CONT'D)Section.5.2.2.5.2.35.2.3.5.2.35245.2-55.2.5.5.2.5.Title4.2Internal.

Radionuclides Discharged toAmbientAir.1Individual.

2PlantsandAnimalsRadionuclide Contamination ofGroundWater.Individual ExposureEstimate1LiquidReleases2GaseousReleasesPacae.5.2-125.2-125.2-125.2-135.2-135.2-135.2-155.2-1553EFFECTSOFCHEMICALANDSANITARYWASTETREATMENT EFFLUENTS 5.3-15-4OTHERENVIRONMENTAL EFFECTS5.4.1Transmission LineEffects5.4.2Radioactive MaterialTransport Effects5.4.3NoiseEffects5.4.3.1PlantEnvironment 5.4.3.2PlantNoiseSources.5.4.3.3Acoustical Impact5.4.4MeasuresWhichWillBeTakenToPreserveExistingEnvironment orEnhanceitsUse5.4.5Interaction withNeighboring NewYorkStatePowerAuthority Facilities.

5.4.6DisposalofMiscellaneous SolidWaste5.4.7ChangesinSiteLandandWaterUse5.4.7.1LandUse5.4.7.2WaterUse5.4.8EffectsofReleasedCombustion products.

The54-15.4-15.4-25.4-35.4-35.4-35.4-45.4-85.4-105.4-55.4-55.4-55.4-654-755ASSESSMENT OFENVIRONMENTAL EFFECTSOFSTATIONOPERATION5.5-15.5.1FishDistribution

.5.5.1.1Fathometric Surveys.5.5.1.2FishNetting.5.5.1.3Foodpreference Surveys5.5.2BenthicStudies.5.5.3NutrientDistribution Studies5.5.4PlanktonDistribution andEntrainment 5.5.5Three-Dimensional ThermalSurveys.5.5.6FutureField,Laboratory, andMonitoriPx'ogramso oooooeooo5.5.6.1EffectsofEntrainment onFishEggsandLarvae.FishPopulation Study.BenthosandCladophora SurveyPhysical-Chemical AnalysisMeteorology Radiation Environment

.556.25.5.6.35.5.645.5.6.55.5.6.6ng55-155-25.5-35.5-45.5-45.5-65.5-755-855-85.5-855-95.5-1055-1055-1055-11

TABLEOFCONTENTS(CONT'D)SectionTitle.6.ENVXRONMENTAL EFFECTSOFACCIDENTS 6~1SCOPEeee~e~eee~ee6.1.1Probability inPerspective

.6.1.2Probability Categories 6.1.2.1.NormalCondition.

6.1.2.2UpsetCondition

.6.1.2.3Emergency Condition.

6.1.2.4FaultCondition

.6.1.3BasisforProbability Estimation

.6.1.4Transient andAccidentOccurrences ReactorFacility.e~00~0~~e~e0e~0Pacae6.1-161-161-161-261-26.1-26.1-261-261-361-362CLASS2-MISCELLANEOUS SMALLRELEASESOUTSIDECONTAINMENT 6.2.1EventXdentification 6.2.2Calculation ofSourcesandDoses..6.2.3Radiological Results.6.2.4EventProbability Considerations 6.3CLASS3-RADWASTESYSTEMFAILURES6.3.1LiquidRadwaste6.3.1.1Calculation ofSourcesandDoses6.3.1.2Radiological Results6.3.13EventProbability Considerations 6.3.2GaseousRadwaste6.3.2.1Calculation ofSourcesandDoses6.3.2.2Radiological Results6.3.2.3EventProbability Considerations 6.2-162-162-16.2-162-26.3-I63-16.3-163-16.3-26.3-263-363-26.-3-36.4CLASS4-EVENTSTHATRELEASEACTXVXTYINTOPRIMARYSYSTEM.;,......-.64-165CLASS5-EVENTSTHATRELEASEACTXVXTYINTOSECONDARY SYSTEM65-166CLASS6-REFUELXNG ACCIDENTS XNSXDE.CONTAINMENT6.6.1HeavyObjectDroppedontoCore6.6.1.1Calculation ofSourcesandDoses6.6.1.2Radiological Results6.6.1.3EventProbability Considerations 6.6.2SpentFuelCaskDrop.6.6.2.1Calculation ofSourcesandDoses6.6.2.2Radiological Results6.6.2.3EventProbability Considerations 67CLASS7-SPENTFUELACCIDENTOUTSIDECONTAINMENT00e~eeee00~~~~0e00\00'SECONDARY 0*~66-16.6-16.6-16.6-26.6-26.6-36.6-36.6-46.6-46.7-1viii

TABLEOFCONTENTS(CONT'D)Section.TitlePacae.6.8CLASS8-ACCIDENTINITIATION EVENTSCONSIDERED INDESIGN-BASXS EVALUATXON INTHEPRELIMINARY SAFETYANALYSISREPORT6.8.1Loss-of-Coolant Accident(LOCA)6.8.1.1Calculation ofSourcesandDoses68.1.2Radiological Results6.8.1.3EventProbability Considerations 6.8.2SteamLineBreakAccident(SLBA)6.8.2.1Calculation ofSourcesandDoses6.8.2.2Radiological Results6.8.2.3EventProbability Considerations 6.8.3ControlRodDropAccident(CRDA)6.8.3.1Calculation ofSourcesandDoses6.8.3.2Radiological Results6.8.3.3EventProbability Considerations 6.8.4Radioactive LiquidStorageTankAccident(LSTA)6.8.4.1Calculation ofSourcesandDoses6.8.4.2Radiological Results6.8.4.3EventProbability, Considerations 6.8.5OffgasSystemAccident(OGSA)6.8.5.1Calculation ofSourcesandDoses6.8.52Radiological Results6.8.5.3EventProbability Considerations 69RADIATXON BACKGROUND ANDRADIOLOGICAL IMPACT6.9.1NaturalRadiation

Background

6.9.1.1TotalRadiation fromNature6.9.1.2Man-RemfromNaturalRadiation

Background

6.9.2Man-MadeRadiation

Background

.6.9.2.1Man-RemfromMan-MadeRadiation 6.9.3TotalAverageRadiation

Background

6.9.4Man-RemfromNuclearPowerStations.6.9.5Radiological ImpactConclusion 6.8-168-168-16.8-26.8-36.8-36.8-368-46.8-46.8-46.8-468-56.8-56.8-56.8-56.8-66.8-66.8-66.8-668-76.8-76.9-16.9-16.9-16.9-16.9-16.9-26.9-26.9-36.9-470UNAVOIDABLE ADVERSEENVIRONMENTAL EFFECTSOFOPERATION 7.0-189'ALTERNATIVES TOTHEEXISTINGPOWERSTATIONBENEFXTCOSTANALYSIS91NOTPROVIDING THEPOWER92PURCHASXNG THEPOWER93ALTERNATIVE SITES9.4REPLACING THEPOWER80-19.0-19.1-1,9.2-19.1-1i92-193-194-1

TABLEOFCONTENTS(CONTtD)SectionTitle.Pacae95ALTERNATIVE COOLINGSYSTEMS9.5.1ExistingOnce-Through CoolingSystem9.5.1.1Economics oftheExistingSystem9.5.1.2Environmental Considerations oftheExistiSystmooo~ooooo9.5.1.2.1HeatDischarge toWaterBody.9.5.1.2.2 EffectsofIntakeStructure onWaterBod9.5.1.2.3 ChemicalDischarge toWaterBody9.5.1.2.4 Comsumption ofWater9.5.1.2.5 ChemicalDischarges toAmbientAir.9.5.1.2.6 SaltsDischarged fromCoolingTower9.5.1.2.7 ChemicalContamination ofGroundWater(Excluding Salts)9.5-1.2.8 Radiological Effects.9.5.1.2.9 FoggingandIcing.9.5.1.2.10Raising/Lowering ofGroundWaterLevels9.5.1.2.11 AmbientNoise.9.5.1.2.12Aesthetics.

9.5.1.2.13Permanent Residuals ofConstruction ACtlVltyoooooooo~o~9.5.1.2.14 CombinedorInteractive Effects..

9.5.2Once-Through CoolingSystemwithDiffuserDischarge 9.5.2.1Economic's ofthisSystem.9.5.2.2Environmental Considerations ofthisSyStemoooooososooooo9.5.2.2.1 HeatDischarge toWaterBody.9.5.2.2.2 EffectsofIntakeStructure onWaterBodyoo~oooo-~9.5.2.2.3 ChemicalDischarge toWaterBody.,9.5.2.2.4 Consumption ofWater.9.5.2.2.5 ChemicalDischarge toAmbientAir9.5.2.2.6 SaltsDischarged fromCoolingTower..9.5.2.2.7 ChemicalContamination ofGroundWater(Excluding Salts)9.5.2.2.8 Radiological Effects.9.5.2.2.9 FoggingandIcing.9.5.2.210 Raising/Lowering ofGroundWaterLevels9.5.2.2.11AmbientNoise.9.5.2.2.12Aesthetics.

9.5.2.2.13 Permanent Residuals ofConstruction o~ActlVltyo,oo~~ooooo9.5.2.2.14

Combined, orInteractive Effects.,

9.5.3Wet,CoolingTowerSystems9.5.3.1Economics ofWetCoolingTowerSystems9.5.3.2Environmental Considerations ofWetCoolingTowerSystems.9.5.3.2.1HeatDischarged toWaterBody..9.5.3.2.2 EffectsofIntakeStructure onWaterBodng9.5-19.5-19.5-19.5-29.5-29.5-49.5-69.5-69-5-69.5-69.5-69.5-795-79.5-795-79.5-89.5-895-89-5-89.5-99.5-99.5-995-1095-1095-1095-119.5-119.5-119.5-119.5-119.5-119.5-119.5-1195-119.5-129.5-1295-149.5-149.5-159.5-15

TABLEOFCONTENTS(CONTEND)

SectionTitlePacae.ChemicalDischarge toWaterBody.Consumption ofWater.ChemicalDischarges toAmbientAirSaltsDischarged fromCoolingTower.ChemicalContamination ofGroundHater(Excluding Salts)9.5.3.28Radiological Effects.9.5.3.2.9 FoggingandIcing.9.5.3.2.10Raising/Lowering ofGroundWaterLevels9.5.3.2.11 AmbientNoise.9.5.3.2.12Aesthetics.

9.5.3.2.13Permanent Residuals ofConstruction

~~Actlvltyoooeeeoooe.$.j.21$,Coa@ineg o~Interactive Effects..'5;5't8ofingPdsystem9.5.5.1Economics oftheCoolingPond9.5.5.2Environmental Considerations oftheCoolinPonde00Q009.5.5.2.1 EffectsonWaterBody9.5.5.2.2 Consumption ofWater9.5.5.2.3 ChemicalDischarge totheAmbientAir9.5.5.2.4 SaltsDischarged fromaCoolingTower9.5.5.2.5ChemicalContamination ofGroundWater(Excluding Salt).9.5.5.2.6FoggingandIcing.9.5.5.2.7 Raising/Lowering ofGroundWater.9.5.5.2.8 AmbientNoise9.5.5.2.9 Aesthetics 9.5.5.2.10 Permanent Residuals ofConstruction

~~Actlvltyeoo9.5.5.2.11 CombinedorInteractive Effects.9.5.6SprayPondSystem.9.5.7Supplemental CoolingSystem.9.5.3.2.3 9.5.3.2.4 95.3.2.59.53.2.69.5.3.2.796ALTERNATIVE CHEMICALEFFLUENTSYSTEMS9.6.1ExistingChemicalEffluentSystem.9.6.1.1Economics ofExistingSystem-96.1.2Environmental Considerations ofExistingSystem.9.6.2Evaporative ChemicalEffluentSystem.9.6.2.1Economics ofEvaporative ChemicalEffluentSystems0.0..I0QQ0009.6.2.2Environmental Considerations ofthisSystem.9.6.2.2.1ChemicalDischarge toHaterBody.9.6.2.2.2 Consumption ofWater.9.6.2.2.3 ChemicalContamination ofGroundWater(Excluding Salts)FoggingandIcing.AmbientNoiseAesthetics 9.5-169.5-169.5-179.5-1795-189.5-189.5-199.5-209.5-209.5-219.5-239.5-239.5-249.5-249.5-249.5-249.5-249.5-249.5-259.5-259.5-259.5-259.5-259.5-269.5-269.6-19.6-19.6-19.6-19.6-39.6-39.6-39.6-49.6-496-49.6-49.6-49.6-4X3.

TABLEOFCONTENTS(CONT'D)Section-Title.Pacae.9.6.2.2.7 Permanent Residuals ofConstruction Activity................

9.6-49.6.2.2.8 CombinedorInteractive Effects.....

9.6-597ALTERNATIVE RADWASTESYSTEMS....97-198ALTERNATIVE STATIONDESIGNS9.8.1ExistingPowerStationDesign.98.1.1BenefitsofExistingDesign.9.8.1.2Economics oftheExistingPowerStation9.8.1.3Environmental Considerations ofExistingDeslgnO~0.0~0ii~~=009.8.1.3.1HeatDischarge toWaterBody..9.8.1.3.2EffectsofIntakeStructure onWaterBod9.8.1.3.3 ChemicalDischarge toWaterBody.,9.8.1.3.4 Consumption ofWater.9.8.1.3.5 ChemicalDischarge toAmbientAir9.8.1.3.6SaltsDischarged fromCoolingTowers9.8.1.3.7 ChemicalContamination ofGroundWater.9.8.1.3.8 Radiological Effects.9.8.1.3.9 FoggingandIcing.9.8.1.3.10Raising/Lower ofGroundWaterLevels9.8.1.3.11AmbientNoise.9.8.1.3.12Permanent Residuals ofConstruction

~eActlvltyoiooeoooo~~9.8.1.3.12Aesthetics.

9-8-1.3..13Permanent ResidualsofConstruction Activity.9.8.1.3.14CombinedorInteractive Effects..

9.8.2StationDesignConsidered toproduceMinimumWaterImpact.9.8.3StationDesignConsidered toProduceMinimumLand/AirImpact.9.8.4StationDesignConsidered toProduceMinimumOverallEnvironmental Effect98-19.8-19.8-19.8-39.8-39.8-39.8-39.8-39.8-49.8-49.8-59.8-59.8-59.8-59.8-598-59.8-59.8-59.8-698-69.8-698-798-710LONG-TERM EFFECTSOFSTATIONOPERATION 10.0-111IRREVERSIBLE ANDIRREZRIEVABLE COMMITMENTS 12ENVIRONMENTAL APPROVALS ANDCONSULTATIONS LISTOFREFERENCES 11.0-1120-1APPENDICES A-Industrial FirmsinOswegoCounty.B-Inventory ofGameSpeciesinOswegoCounty.XllA-1B-1

TABLEOFCONTENTS(CONT~D)SectionTitlePacae.C-Inventory ofHistoric, Natural,andScenicSitesinOswegoCounty00.0.0~I0000C1D-Meteorological DataSummaries atNineMilePointNuclearStation~oo~eiooooE-PlantandAnimalSpeciesObservedatNineMilePointNuclearStationF-StudiesConducted asPartofNineMilePointLakeSurveillance G-Regulatory andReviewProcedures Documents G-1H-ThermalEffectsofHeatedDischarges onLakeOntario.H-1I-Meteorological Calculations forAssessing Environmental EffectsofAccidents

LISTOFFIGURES~FiureFrontispiece 1e11e~~~ePlotPlan.Title.AfterPacae..lli1e122e112e122e13LocationMap.SiteVicinityMap.Transportation Map.~~e2e112e112e122e212e222e2322-422-52.2-6EconomicViability ofFarmAreasFutureLandUseStudyArea'apAerialViewofNineMilePoint1970Population within50MilesPopulation Distribution

-5MileeeeRadius2e222e222e222e232.2-42.2-524-12.5-12.5-22.5-32.5-42.6-12e7128-12.8-23e213e223e233.2-43e313.4-13.5-13.5-235-33.5-4RegionalGeologicMapShowingPhysiographic provinces AverageMonthlyTemperature ofLakeLakeOntarioDominantCirculation Patterns.

PublicWaterSuppliesinVicinityofSitePrivateWaterWellsNearSiteAverageWindRose.Vegetation Categories.

LakeSamplingTransects andOn-SiteRadio-logicalMonitoring Stations.Off-SiteRadiological Monitoring StationLocations Transmission FacilityMapPhotographs ofTransmission LineRightOfWayeeeeeeeee~~Photographs ofTransmission LineRightofWayeeeee~eeeeeTransmission LineStructures NorthofClayandTypicalVegetation GrowtSimplifiedDiagram,NuclearBoilingWaterReactorStation.WaterUsageFlowDiagram.IPlan-Circulating WaterSystem.Profile-Circulating WaterSystemIntakeandDischarge Structures Details.Schematic DigramofScreenwell.

2.4-12.5-22.5-42.5-42.5-42.6-12e712.8-42.8-43'213e213e213e223e313.4-13.5-135-13.5-13.5-2

LISTOFFIGURES(CONTEND)

~PiereTitleAfterPacae3.6-13.6-236-336-4GaseousRadwaste SystemFlowSystemDesignGaseousRadwasteSystemFlowSystemDesignLiquid/Solid RadwasteSystemOriginalSystemDesign.Liquid/Solid RadwasteSystemUpgradedSystemDesigneFlowDiagram,36-73.6-7Diagram,Originaleeeee3e64Diagram,Upgradedeeceo3e65FlowDiagram,3e715-1-151-25.1-3BasicMechanism ofDilutionandFlowPatterns.

NineMilePointUnit1Three-Dimensional ThermalSurveySurfaceTemperatures C,7/13/71NineMilePointUnitThree-Dimensional ThermalSurveySurfaceTemperatures C,7/23/715.1-35.1-45.1-4MakeupWaterTreatment System.....

3.7-15.4-15.4-25.4-35.4-4SoundLevelMeasurement Locations.

SoundPressureLevels.TravelTimevsLakeCurrent.DilutionFactorvsLakeCurrent5.4-35.4-35.4-75.4-755-19519.5-29.5-39.5-49.5-595-69.5-79.6-1LakeSamplingTransects andOn-SiteRadio-logicalMonitoring Locations SeparateDiffuserDischarge.

Mechanical DraftCoolingTowerSchemeNaturalDraftCoolingTowerSchemeMechanical DraftCoolingTowerPlume.NaturalDraftCoolingTowerPlume.310-FootElevation CoolingLakeSite.Supplementary CoolingTowerEffectonCirculating WaterDischarge Temperatures SchemeforEvaporative Treatment ofRegeneration Wastes5.5-19.5-89.5-89.8-139.5-199.5-199.5-27.9.5-279.6-3xv

LISTOFTABLESTable.TitlePacae-1e2122NiagaraMohawkPowerCorporation Winter1971MaximumPowerCapabilities, (MW)NiagaraMohawkPowerCorporation Predicted PowerSupplyCapabilities forWinter1972-1973, Mw1-2-11.2-22e212o222e23Population ofOswegoandNeighboring Counties(Thousands);

OswegoCountyPopulation.

LocationandEnrollment ofSchoolsinOswegoCounty.2.2-42.2-52.2-72.5-125-22.5-3LakeOntarioWaterQualityData.....2.5-3PublicWaterSupplies........,2.5-4PrivateWaterSupplies.........2.5-526-12.6-22.6-3AverageTemperature,

Humidity, andPrecipitation atNineMilePointAnnualStability Frequency ofOccurrence withrespecttoWindDirection, PercentPercentOccurrence ofTotalObservations 2.6-22.6-42.6-52e71Provisional MaximumasCompatible withVariousSpeciesofAssociated BiotaTemperatures Recommended theWell-Being ofFishandTheir\eee~eoee2e7628-128-228-32.8-42.8-52.8-6Preoperational Environmental Monitoring ProgramSamples.and AnalysesSampleCollection AnalysisNineMilePointAquaticSampleRadloanalyses Radiation DoseMeasuredatEnvironmental SamplingDiagrams.

GrossBetaActivityofPrecipitation Sampleseeeee~e~eeeeEnvironmental AirSampleGrossBetaACtlVltleS eeeeeeeeee28-12.8-228-S2.8-928-928-103.6-13.6-2Estimated Quantities ofFission-Product IsotopesReleasedtotheEnvironsfromtheOffgasProcessing System......3.6-3Fundamental LiquidandSolidRadwasteXVl

LISTOFTABLES(CONT'D)Table-36-3TitleSystemConcentration forintheDischarge PointUnit1forUpgradedSystem00Significant IsotopesTunnelfromNineMileboththeOriginalandthePa<ac3.6-113.6-1936-43&715.1-1SolidRadioactive WasteShippingInformation ChemicalDischarges fromMakeupHaterTreatment EffectofEntrainment onFishLarvaePopulation forNineMilePointNuclearStationee~1...0000~3.6-263.7-45.1-95.2-15.2-25.2-35.2-45.2-552-65.2-752-85.3-1SummaryofDoseCalculations foranIndividual (mremperyear).Recreational Population Exposures, mrem/yr.Equilibrium LevelsinLakeOntariofortheContinuous Discharge ofRadionuclides Population ExposurefromNineMilePoint-Unit1LiquidReleasesSummaryofDosestoBiotaintheMa.xzngZoneTritiumReleaseData.GasReleaseRatesfromNineMilePointUnit1andCalculated WholeBodyDoseRateatOneMilesEastofStack.Individual ExposureEstimates (mrem/year) fromSiteEffluentReleasesforUpgradedUnit1.ChemicalDischarge fromMakeupWaterDemineralizer Regeneration

.5.2-45.2-65.2-85.2-95.2-105.2-125.2-145.2-165.3-25.4-1Comparison ofAmbientandMaximumTransformer NoiseatMeasurement SitesforUnit1,Decibels, AScale,Re0.0002.5.4-462-195-19.6-1SummaryofPopulation ExposurefromNaturalandMan-MadeBackground ComparedwithNuclearRadiological EffectsCostDescription ofAlternative CoolingSystemsCostDescription ofAlternative ChemicalEffluentSystems6.2-39.5-289.6-6

LISTOFTABLES(CONTEND)

TitleBenefitDescription ofAlternative StationDesignsCostDescription ofAlternative StationDesiqnsRegulatory andReviewProcedures

.IPacae9.8-99.8-1012.0-2

SECTION1INTRODUCTION NineMilePointNuclearStationUnit1isownedandoperatedbyNiagaraMohawkPowerCorporat,ion ofSyracuse, NewYork.-ThestationislocatedonthesouthshoreofLakeOntariointheTownofScriba,OswegoCounty,NewYork.Thestationsiteisapproximately 7milesnortheast ofthecityofOswego,NewYork,36milesnorthwest ofSyracuse, NewYorkand135mileseastofBuffalo,NewYork.Unit1isaboilingwaterreactor(BWR)licensedforoperation at1,850thermalmegawatts (MWt)andapproximately 610megawatts netelectric(MWe)outputfromthestation.Thestationhasbeeninoperation sinceDecember1969andhasgenerated approximately 4,858,000,000 kilowatts ofelectricity throughDecember31,1971,for1.24millionelectricity customers intheNiagaraMohawkelectricserviceareacomprising 24,000squaremilesofupstateNewYork..AsofDecember31,1971construction costsincluding construction modifications havetotalled$164,492,000..

Todate,environmental surveysoftheNineMilePointsitehavecostabout$400,000..NineMilePointUnit1sitesharesacommonsiteboundarywiththePowerAuthority oftheStateofNewYork(PASNY)whoseJamesA.FitzPatrick NuclearPowerPlantispresently underconstruction about3,300feettotheeastofUnit1,andwillgenerate821MWeofelectricity (Ref.1+).Itwillutilizeonce-throughcoolingdischarging intoasubmerged highvelocitydiffuser.

Anadditional nuclear-fueled unit,knownas"NineMilePointUnit2,"hasbeenproposedbyNiagaraMohawkforlocationontheNineMilePointsiteadjacenttoUnit1.ProposedUnit2wouldhaveanelectrical generating capacityof1,100MWeandaratedthermaloutputfromthereactorof3,300MWt.ThetwoNiagaraMohawkunitsandthePowerAuthority's FitzPatrick PlantwillbeoperatedbyNiagaraMohawk.11DESCRIPTION OFOPERATING STATIONANDSITEUnit1consistsofaGeneralElectricdirect-cycle boilingwaterreactorwhichproducessteamat1,000psigforuseinasteam-driventurbinegenerator.

Thestationrejectsheatfromthesteamcondenser byemploying aonce-through circulating watersystem.Wateriswithdrawn fromLakeOntario,passedthroughthecondenser, anddischarged tothelakethroughasubmerged

~References aregiveninthebibliography following Section12attheendofthisreport.

discharge system.Withtheconstruction ofproposedUnit,2thecirculating watersystemforUnit1wouldbemodifiedtoacombineddischarge forbothunits.TheUnit1sitecomprises about900acresofpartially woodedland.Ofthese900acres,about45areoccupiedbytheunitanditsauxiliary systems.Thesuccessful blendingofthesestructures intothesurrounding areacanbeseeninthefrontispiece.

Figure1.1-1showsaplotplanofthesite.Thesiteisgenerally aflatfeatureless plainwith.amaximumelevation of310feetat.the,southernextremity.

Unoccupied portionsofthesiteconsistofnaturalgrowthproviding avariegated habitatfordiversespeciesofwildlife.

Thesurrounding areahasapermanent population offewerthan200personslivingwithinatwo-mileradiusofthesite.

"II 12NEEDFORLOCATINGTHEPOWERSTATIONATTHESITEDuring1971,NiagaraMohawk'speakloadwas4,551megawatts (MW)andwasmetbyanelectricsupplysystemconsisting ofinstalled capacityandpowerpurchases asdescribed below:Table1.2-1NiagaraMohawkPowerCorporation Winter.1971MaximumPowerCaabilities.

MWConventional ThermalPlantsGasTurbineandDieselPlantsNuclearPlantHydroPlantsPurchasefromPowerAuthority PurchasefromOthers2,3953716106271,352316Total5,6711971WinterPeakLoadInstalled ReserveCapability, MWInstalled ReserveCapability, percent4,5511~12024.6Theusageofenergysuppliedtocustomers ofNiagaraMohawkinitsfranchised territory wasasfollows:residential

-27percent,commercial plusindustrial

-61percent,andothers,including municipalities, streetlighting, townsandschools12percent.In1972,NiagaraMohawk'speakloadisexpectedtoincreaseto4,910MW,aloadgrowthof359MWfrom1971.Thisprojection isconservative inthatitdoesnotincludespeculative additions whichmightappearthroughdemandsforservicebynew,largeindustries.

NiagaraMohawk'sgenerating resources in1972,including firmpowerpurchases andnewgenerating capacitywilltotal6,110MWwithNineMilePointUnit1inservice,and5,484MWwithNineMilePointUnit1notinservice.Thenewgeneration isNiagaraMohawk~s240MWportionoftheRosetonStation.Anadditional capacitypurchaseof275MWisexpectedfromtheBlenheim-Gilboa pumpedstoragestationwhichisnowbeingdeveloped bythePowerAuthority oftheStateofNewYork.Noretirements ofanysubstantial generating facilities arecontemplated inthenearfuture.Theloadandcapacitydatadescribed aboveareincludedinTable1.2-2.

I~lf~'IJ Table1.2-2NiagaraMohawkPowerCorporation Predicted Power.SulCaabilities foiWinter1972-73MW.WithNineMile-Unit.4 WithoutNineMile.Unit1..Conventional ThermalPlantsGasTurbines8DieselPlantsNuclearPlantsHydroPlantsPurchasefromPowerAuthority PurchasefromOthers1972WinterPeakLoadInstalled ReserveCapability, MWInstalled ReserveCapability, percent2i635(1)371(2)6106271i601(3)256.6~1004,9101i1902422,635(1)365(2)06271i601(3)2565i0864~91057411.7(1)IncludesNiagaraMohawk5sshare(240MW)ofRosetonPlant(2)Includes6MWNMPUnit1Diesel(3)Includes275MWshareofBlenheim-Gilboa PumpedStoragePlantTheaimoftheNewYorkPowerPoolmembercompanies isforeachmembertoattainaninstalled generating capacityreserveofatleast18percenttoallowpropermarginforreductions incapability causedbyforcedoutages,maintenance, ordailypartialderatings.

Asindicated inTable1.2-2,NiagaraMohawksresources withoutNineMilePointUnit1areclearlyinadequate becausetheywouldprovideaninstalled reserveofonly574MW,amarginof11.7percent.WithNineMilePointUnit1inservice,NiagaraMohawklsinstalled reservein1972wouldbe24.4percentenablingittoprovidereliableelectricservice.Lossofthisunitwouldhave8seriouseffectonNiagaraMohawk'sabilitytomeetitsobligations in1972andbeyond.NiagaraMohawkchosetoconstruct andoperateanucleargenerating unitattheNineMilePointlocationforseveralreasonsAmongtheseweretheexcellent environmental characteristics of'thesite,including absenceofseismicactivity; superiormeteorological ventilation; scarcityofpopulation andlanduseactivities; andtheabundance ofcoolingwater.Surveillance programsatthesite,bothbeforeandafteroperation ofthegenerating unit,haveverifiedthesefactorsandconfirmed theminimumimpactontheenvironment causedbythesefactors.Thesitealsohasreadyaccesstothehigh-voltage cross-state transmission systemItisatthemid-point ofthecompanysfranchise territory, thusproviding acentrallocationfromwhichtransmittal oftheunitoutputcanbedirectedtothe1w22

threemajormetropolitan loadcentersservedbythecompany:Buffalo,SyracuseandAlbany.NiagaraMohawkandtheothermembersoftheNewYorkPowerPool(CentralHudsonElectricandGasCorporation, Consolidated EdisonCompanyofNewYork,Inc.,LongIslandLightingCompany,NewYorkStateElectricandGasCorporation, NiagaraMohawkPowerCorporation, OrangeandRocklandUtilities, Inc.,Rochester GasandElectricCorporation, andthePowerAuthority oftheStateofNewYork)coordinate p3.ansforexpansion ofpowersupplyfacilities basedontheNortheast PowerCoordinating Council"BASICCRITERIAFORDESIGNANDOPERATION OFINTERCONNECTED POWERSYSTEMS."

Underthiscriterion, newgenerating capacityisplannedsuchthattheprobability oflossof.loadundercontingency conditions wouldnotexceedoneweekdayintenyears.TheNineMilePointUnit1isanintegralpartoftheNewYorkPowerPools~planformeetingthiscriterion onatotalPoolbasis.Theforegoing demonstrates thattheNineMilePointUnit1isvitaltoNiagaraMohawk~sabilitytomeetconservative projections ofitspowerdemandsin1972andbeyondandisalsoanintegralpartoftheNewYorkPowerPool'splantomeetgenerating supplyreliability criteriainusebythePoolandotherareasoftheNortheast PowerCoordinating Council.Retirement ofthisunitwouldtherefore haveanadverseimpactonthepcwersupplysituation throughout thisregion.1&23

SECTION2THESITE2~1LOCATIONOFSTATION2.1.1ProjectSiteTheprojectsitecomprises about900acresandislocatedonthesouthshoreofLakeOntariointhetownofScriba~Oswegocounty,NewYork,onlandownedbytheNiagaraMohawkpowercorporation.

TheNineMilePointNuclearStation-Unit1,including allUnit1buildings, switchyards, ProgressCenter,parkingareas,accessroads,andassociated facilities, occupiesabout45acresofthetotalsiteacreage.TheJamesA.FitzPatrick NuclearPowerPlant,whichiscurrently underconstruction forthePowerAuthority oftheStateofNewYork,islocatedona700-acreplotimmediately eastoftheprojectsite.Centerline-to-centerline distancebetweenUnit1andtheFitzPatrick plantisabout3,300feet..Mostofthelandimmediately tothesouthandwestofthesiteispastureorinactivefarmland.TheOntarioBibleConference operatesasummercamponthelake'ront adjacenttothewesternboundaryofthesite.Thegeneralandspecificlocations areshowninFigures2.1-1and2.1-2.Thenearest.population southwest ofthesite.Syracuseand135milesofinterestareshownoncenteristhecityofOswego,7milesThesiteis36milesnorthwest ofeastofBuffalo.OthertownsandpointsthemapinFigure2.1-2.Thenearestsignificant manufacturing facilitytotheNineMilePointsiteistheAlcanAluminumCorporation withabout750employees; itislocatedabout31/4milessouthwest inScriba.Thelargestmanufacturing plantsarethoseoftheNestleCo.andSealright Co.,bothlocatedinFultonabout15milessouthofthesite;neitherhasmorethan2,500employees.

2.1.2Transportation ThelocationofthestationonthesouthshoreofLakeontarioplacesitoutsideanynormalshiptrafficlanesassociated withvesselstraveling onLakeOntario.Vesselstraveling totheOswego,NewYorkarea,thenear'estcommercial port,passaboutsixmilesfromthesite.Thestationislocatedaboutonemilefromthenearestpublicroad,CountyRouteNo.29,whichformstheeasternboundaryoftheFitzPatrick plantsite.Aprivatehard-surface east-west roadbisectsthesiteconnecting withRoute29whichextendstoOswegotothewestandwhichconnectsontheeastwithU.S.Highway104,33/4milessouthofthesite.AspurofthePenn-CentralRailroadprovidesrailservicetothestation.

e'11<I

(~;iaafyr1PfiP.,'rr,'/rr(,)rAe)/I4Pr/2,y///'ONTARIOCO/J,/.;~,~),!(I<4~)~H)I~I'per/irr'\m+iIi-j.P~rr.~'e/-":,I)(e>(e(r(/n)

~I(W>Et<RSONCOgIr~a/PULASKIsaeeeoee.

IR>>eIRSiNINEMILEPOINTNUCLEARPOWERSTATIONif~FR(:I'(',:-'GEEI/SrOSCEOALTQiARe8NVILlE,',KAYUTAlAKE,r'C'Ir'EMSEN)rrP)(QI',(',IIIrPIGgwreel'~+I;<CREEKI')'g'/"igr,~'IHINCKlEY.RESERVOIR-OElTARESERVOIR

,((.Qi'RENTON-Q,Ke'1MEX)CO~v~a+OSWEGOa'4~.',",'.'i'ioRE.~>.-le'ej~MI)'eri'VGri)ARAROS,TO)er)/i~j,IICOVEY)f)~lSSJI~COUNTTj'/)'-=gg)AeRPGRTIr re,I/'4STATEPARK(2NESTECO.,/Ij,)')E3(SEARIGHTC.()i,',ANNO,COUN G)r/))ICHENW)',i)i'p',10>,IIII)~,i",))'r~)'II)i)I','),/ijl)eerr/iP\re/I)l,P-~)r,,SCAM'I)errESiR)rirr,erie,'l'(~,,'~ga~g~S/ri'//ek'-'ig.2.1-1 P

gE0yT'ARg0PROGRESSCENTERUNITININEMILEPOINTNUCLEARSTATIONJAMESA.FITZPATRICK I'UCLEARPOWERPLANT(UNDERCONSTRUCTiON)

(PRIVATEROAO)LakevlewIANIAGARAMOHAWKPOWERCORPORATION POWERAUTHORITY STATEOFNEWYORKoDOMINORROADLycomingGEARpEHHUNITI-CLAYTRANSMISSION RIGHTOFWAYSEEFIGURE3.2-ISCALE-MILESFIGURE2.I-2SITEVICINITYMAP

Thenearestmajorcommercial airportislocatedatSyracuse, about35milesfromthestation.AsmallprivateairportislocatedatFulton,approximately 15milessouthofthesite.SeeFigure2.1-3forroadsandraillinesinthevicinityofthesite.2'12

~~'t LyE0/0UNITIPROGRESSCENTERLakeview~1IIIIRRITATEII<<IIPLANT\III\IIi\ROADIIIIIILAMBROADTITCCRFXZPTII~4~Ozs+0+OO+qoNIAGARAMOHAWKPOWERCORPPROPERTYLINENINEMILEPOINTSITEBURTJAMESA.FITZPATRICK SITEIIINOROOOzROADPOWERAUTHORlTYOF THESTATEOFNEWYORKPROPERTYLINEL'ycomlng RIOOOOIIIOOLBIIIIloIcIHTIIIIIRFoONorthScribaROADIOOO\\IIOII04SCALE-MILESFIGURE2.I-STRANSPORTATION MAP

22HUMANACTIVITES INTHEENVIRONS2.2.1HistoryofLandandWaterUseThefirstEuropeans tovisitOswegoCountywereapartyledbySamueldeChamplain in1616,andFrenchmissionaries whoarrivedinthe1650s..FortswerebuiltbytheBritishin1727(Ft.Oswego)andin1755(Ft.Ontario).FortOntario,inOswego,wasdestroyed andrebuiltseveraltimes.Itwasrebuilt'ostrecentlybetween1839and1842.ItremainedanArmypostuntil1945andisnowastate-owned historicsiteandmuseum.Thefirstciviliansettlement wasbegunin1796..In1799theportofOswegowasestablished, andin1816theareabecameaCounty(Chapter16,Lawsof1816).Thefirst,incorporated villageswereOswego(1828)whichbecameacityin1848andPulaski(1832).ThenewestvillageisCentralSquare,incorporated in1889.Inthe19thcenturytheareawasprimarily agricultural.

Theprincipal productswere,andstillare,dairyproducts, poultryandlivestock, buttherelativeimportance ofagriculture hassteadilydecreased.

Thetrendinthecountysince1880hasbeenasteadydeclineinlanduseforfarmsandinagricultural employment andacorresponding increaseinmanufacturing employment.

Totalpopulation hasremainedconstantuntilrecently.

In1880,therewere7,500farmscoveringover500,000acres,whichwas80percentofthearea.In1964,which'wasthemostrecentcensusofagriculture, therewere1,592farmscovering210,555acres,whichis34percentofthecounty.In1880,improvedlandtotaled356,564acres.In1964,only153,532acreswereusedforcropsorpasture.Thenumberofdairycattledeclinedfrom37,752in1880to17,314in1964.Inthe30-yearperiodfrom1935to1964,thepopulation livingonfarmsdecreased from22,390to6,470.The1960censusindicated thatonly1,643personswereemployedinagriculture, whichwas8.4percentoftotalemployment.

Thesize,value,andefficiency ofremaining farms,however,hasincreased.

Theaveragefarmsizeincreased from67acresin1880to101in1949andto132in1964;thevalueofanaveragefarmincreased from$6,550in1949to$18,697in1964.Milkyieldperpersonemployedindairyingincreased morethan50percentbetween1959and1966..-Landuseforagriculture inthecountyisexpectedtodeclinefurtherinthefuture.TheStateOfficeofPlanningCoordination ina1969reportonfarminginNewYorkStatemadethefollowing commentaboutthearea:<<Poor,s'oilconditions andexpanding urbanization fromSyracusehavediscouraged newinvestments infarming,2&21

particularly indairying.

Landinfarmswillcontinuetodeclinemorerapidlyinthi'sregionthaninthestateasawhole.~~Thereportnoted,however,thattherearelimitedareasofresponsive mineralsoilsandscattered areasofmucklandwhichcouldbeintensively developed.

Theseareasareshownonthemapentitled"Economic Viability ofFarmAreasinNewYorkState,"alsopublished bytheOfficeofPlanningCoordination, partofwhichisreproduced hereasFigure2.2-1.Thereisnosuchareaonornearthesite.Thereisagoodsupplyoflandforindustrial, commercial, andresidential use..SeeMapofFutureLandUse,Figure2.2-2.MuchofthelandinOswegoCountywhichwasformerlyfarmedisnowcoveredwithsecond-growth treesorbrush.Suchareasnowconstitute abouthalfthelandinthecounty.About37,000acresareusedforcommercial forestry.

Aninventory ofindustrial firmsinOswegoCountywasprovidedbyOperation OswegoCounty,Inc.,andisreproduced asAppendixAtothisreport.Themajorconcentration ofindustrial facilities liesalongtheOswegoRiverinFultonandOswego,althoughotherplantsarescattered throughout thecounty.Manufacturing employment in1960was11,231,whichwas57.5percentoftotalemployment inthecounty.Othernuclearfacilities within50milesoftheNineMilePointUnit1sitearetheJamesA.FitzPatrick PlantownedbythePowerAuthority oftheStateofNewYorkcurrently beingconstructed adjacenttotheprojectsite,andtheRobertE.GinnaNuclearStationownedbyRochester GasandElectricCorp.andlocatedabout50milessouthwest ofNineMilePointStation.Therearenonuclearfuelmanufacturing orreprocessing facilities withinthe50-mileradius.OswegoCountyhas'widevarietyofrecreational andwildliferesources..

SeeStudyAreaMap,Figure2.2-3.LakeOntarioonthenorth,theOswegoRiver,OneidaLakeandtheNewYorkStateBargeCanalinthesouth,theSalmonRiveronthenorth,SalmonReservoir intheeastandthemanycoldwaterstreamsinbetween,provideareasforwater-based recreation.

StateparksatBattleIslandnearFultonandatSelkirkShorestenmilesnortheast oftheplantsiteattractover250,000visitorsayear.Inland,theabundance ofwetlands, forestedareasandabandoned farmlandareas,manyofthempubliclyowned,supplement thecounty<ssupply.ofrecreation orientedlandsandprovidesubstantial wildlifebenefits.

Thereisanabundance ofruffedgrouse,varyinghare,cottontail rabbit,muskratandmigratory waterfowl.Thesespeciesandothersfoundinthecountyandtheirlocations withinthecountyarelistedinAppendixB.2%22

\,~1'ktC1'IrIIIJ'E,IEfCA ECONOMICVIABILITY OFFARMAREASNISHNEOIUNT~LOWC3NOTCONNEACIALLY TANNED0$wtooIOSWEIijSCI5ISA>>NCOVNTYJEYYEASOoswESocduNTYIISOYLETONNEoncl.oIIIIIIIIIIIIII~AIIOYCKEEEIII--JII0NINEMILEPOINTNUCLEARSTATIONl~ALS~>>.INEWHAVEN'IIWsc<IINClo..<Jt4<'i)I~AllI5H6,5~IVWILLIANSTOWN ISA~lresIW/SCI0<<0lo~oN~/4I./TLOAENCE COON~)~TY~/ANSOY~~Q'~'/'-"-"HANNI'"II)III4III

)009)'>>(TL,IgIi)II(iIIINIAYWNIg(@II)'i (AL"1<I'PPAV5Iiywng/HASTINS'5 TR5PLONONDAOACOVNTYi.,~~1!/'CONSTANTIA

~//8/VIENNA-p:~.IONEIDAISHEII~tFIGURE2.2-IECONOMICVIABILITY OFFARMAREAS

rsttseSON

[OSR4nKOIIr~"CANNYCOCA.<<'l>"rrrr///YIII"II.ICNLANOI'r"~riLlfsrrLANDUSE-1990.rr'/r//r~KGNCOIVNINTCNSITY VNSANLOWINTCNSITY VASANSCTTLCOIIVSALK3SAANSKLYSCTTLCOAVAAL'~/X'r//////r:

';>FVLA~SIC/rrrr:::..':'.'.'.:~4:::!<

.'.'.:'r.!.r.'.'.'......'.'.jWILiIANST'OWN

~::rr~CQNISHYIASILITY YANNINSNINEIIILEPOINTNUCLEARSTATION/NCOIVNYIASILITY YAANINO/r~~;""f',NATvAALotcNstAcKgcgljlvclI

~r//rpLv~srrre/rSILILITI~~/CCNTAAL~i~~~~~~rrj:~~:~"~:~tAMSN~~r/r.<r~~~~~~~1.rAfW/rrrr//rwcsE.~~NOPAOC~M....r../~~~"/r'/'CIOA~OOAITY OVATEDNSYDACANEFIGURE2.2-2FUTURELANDUSE

NINEMILEPOINTNUCLEARSTATIONSAVOYCNCCXJEFFERSON fOSWEOOCOUNTYiSOYLSTONLACONAlI~JONNCLLCOUNTYTlRCOFICLOCIPI,g~lg5CL<<lk<<5<<OATS STA'lCAAA<<OSWCOOSCIVSANtWHAYCNlvtxleoVCXICOtHANINSAL loAANSYIHANNI4ALFVLTON/SkTTLCISLA<<4STAIC444<<Lo//SCHAOCFFCL ST's/HASTINOS///CCNTllLSOVAACIOSWEGOCOUNTYONONOAOACOUNTY~HOtNIT/X/I,QIHNCTTO(j~JYOLNCYFlLCANOWlk5<<IjI/ALSIONIglk'l~/sl-lLTVARf~~I/WILLIAVSTOWN 4~FARISH/Ir-/VONA~OC//CONSTANTIl

//g(]~N(gOk<<riOAO/RFy~//CANOCN5IVOYlktk4STOA>>VIC/FANSIATC444<<gggsskstkt<<OATSIAIION kktkC35TATCW>>OII<<tkktkFIGURE2.2"3STUDYAREAMAP 1C Mostcommercial fishingtakesplaceintheextremenortheast sectionofthelake.UnitedStatesfishlandingsaregenerally dominated bywhi,teperch.Eels,bullheads, andcarpmakeup.mostoftherestofthecatch.Canadianfishlandingsaredominated bythefollowingspecies,listedindecreasing orderofabundance:

carp,yellowperch,whiteperch,sunfish,eel,smelt,andbullheads..

Thefollowing statistics for1968through1970fishlandingsinpoundsanddollarvaluederivefromtheFisheryStatistics oftheUnitedStatesfor1968,1969,and1970,published bytheU.S.Department ofCommerce, NationalMarineFisheries Service:Year.~-Pounds-ThousUaSa~Canada-TotalValueThous..of-S U.S..CanadaTotal1968342',0092~3517128435519692932~2722~5654433638019703302~9053~23579429508InthetownsofScriba,wherethestationislocated,andNewHaven,whichisadjacent, slightlymorethanhalfthelandiscoveredwithbrushortrees.Aboutone-eighth isusedforpasture.Aboutone-fifth isfarmland,mostofwhichisinactive.

Residential, commercial, andindustrial usesaccountforlessthanone-thirtieth oflandusage.NiagaraMohawkpurchased the1,600acreNineMilePointsiteforpowergeneration purposesin1963andlatersoldabout700acrestothePowerAuthority oftheStateofNewYork.Figure2.2-4showsaerialphotographs oftheareain1963andwithUnit1nearlycompleted.

TheonlyothermajoruseinrecentyearswasasanArmyartillery post,whichoccupiedaportionofthelanduntil1957.Inadditiontherewereafewcottages, farmhouses, andarestaurant whichwereremovedafterthesitewaspurchased.

Thesiteshoreline providesaccessforsportfishing..

Small-mouthbass,yellowbirch,whiteperch,walleye,bullhead, andnorthernpikearetheprincipal sportfishes.Sincethelakebottomislargelybedrock,andsincetherearenoavailable beaches,thesiteisnotsuitableforswimming.

Strongwindsandsummerthunderstorms maketheareaneartheNineMilePointpromontory frequently hazardous forsmallcraft.Mostofthelandarea,exceptforthatintheimmediate vicinityofthegenerating station,hasrecreation possibilities.

TheNiagaraMohawk<<Progress Center,<<whichsharespartofthesitewestofUnit1,providesvisitorfacilities, including educational

exhibits, picnicandplayground areas,andnaturestudytrails.TheCenterofficially openedin1967andhasaveraged50,000visitorsannually.

2a23 P

NINEMILEPOINTl963cA$3flWHIr*NINEMILEPOINTSHOWINGUNITIFIGURE2.2-4AERIALVIEWNINEMILEPOINT

22.2Population Theareawithin,a50-mileradiusofthestationsitewasinvestigated andfoundtoinclude.allorpartoftencountiesinNewYorkStateandthreecountiesintheProvince'ofOntario.Thenearest.largesettlement isthecityofOswego,centeredabout7milessouthwest ofthesite,witha1970population of23,744.Population distribution basedonthe1970censusisshownonFigure2.2-5.Thepopulation ofOswegoCountyremainedfairlyconstantforthefirsthalfofthe20thcentury.Whilesometownsintheeasternpartofthecountyhaveshownadecreaseinpopulation since1910,thepopulation increaseinthetownsnearthemanufacturing centersofSyracuse(Onondaga Co.,),Fulton,andOswegohasmorethanoffsetthedeclineinthemoreruralsectionsofthearea.Thecountypopulation of77,181in1950increased 11.6percentto86,118in1960,andincreased another17.2percentto100,897in1970..Projected populations fortheareawithina50-mileradiusoftheNineMilePointsiteduringtheanticipated lifeoftheplantaregiveninTable2.2-1.Table2.2-1Population ofOswegoandNeighboring'ounties (Thousands)

--Actual-

'~~Pro-ected-Count.196019701980~199".200020102020.Cayuga73.9Jefferson 87.8Lewis23.2Madison54.6Oneida264.4Onondaga423.0Ontario68.1Oswego86.1Seneca32.0Wayne68.077488523.662.927304722788100.935.179482.691423375.12899525.894.9118.637097.385893.522.985.1301-2597.4111.4134440.5117-189696.622910233372684.71228157.1424139.7944100.223.1124.03782779.513571851441167.2993104.523.315024259889.3149.8218.446.0200.9Thepopulation for1960and1970arefromU.S.CensusBureaudata.The1980and1990statistics arefromprovisional population estimates madebytheStateofNewYorkOfficeofPlanningCoordination.

Thestatistics fortheyears2000,2010,and2020arecomputedfromprovisional estimates andpercentage increases obtainedfrom"Demographic projections forNewYorkStateCountiesto2020A.D.,~~published bytheOfficeofplanningCoordination.

Population figuresfrom1910to1970forcitiesandtownsinOswegoCountyaregiveninTable2.2-2.ThelandareawithinfivemilesofthestationlieswithinthetownsofScribaandNewHavenandthecityofOswego.Boththesite-andtheadjacentlandeastofthesite,whichisownedby2.2-4

NARANEEKINOSTON/4728SELLEVILLE TRENTONLAHESOMI.')H7'HIC)ROCHESTER (29(L255) ss.llr2047)10MII/Od/S0Ml./209/I798)9,247rrrWATERTOWN Ir',,(50,78r)8942lr)29,1965745II68914)4//158/t0ML/////CNrARlo/'NEWYORK//00/+0r~00IO0LI+Or0I0L~0I0ISIr~rr40Ml,50MlIOMI.000,5587IT04752I29)5.r/lgrrr(40Sig~gggttS~r0~/29840tssNssQMr20050r'489rfA0SCSruLTCN,/8559I'sti4((4,005)

IStrS402r~IS27552520ONEIDA,/IiROIIE59,555.SI4,562sYRAcusEIl,599(l97,208+

I5546l5,275r27,759S0,546O'TICA(slrsll)CANANOAISVA I.AKCrs,ssrAVSVKN~ISLSSSI~Ss.sst0YIscoiJMAICATCLCS LAKCOWASCOLAKEKCVKALAKCSCNCCALAKECAYuoALAKE20,75~FIGURE2.2-5I970POPULATIONWITHIN50MILES

thePowerAuthority oftheStateofNewYork,areuninhabited.

Thenearestdwellings areonLakeviewRoadapproximately onemilesouthwest ofthestation.Thepopulation distribution withinfivemilesofthestationisshowninFigure2.2-6onapolargridwith1-.mileradialincrements.,

Thenumberofpeoplelivingwithineachgridsegmentwasdetermined bysurveying thenumberofdwellings, in1971.Theaveragenumberofpeopleperdwellingwascalculated forthetownofNewHavenfromthe1970censuspopulation countandthetotalnumberofdwellings inthetownasgivenbytheOswegoCountyPlanningBoardmapofresidential landuseofNovember1970..Thisinformation gave3.57peopleperdwelling, whichgenerally agreeswiththeOswegoSchoolDistrictestimateof3.5.Becausethedwellingtypesoftheentireareawithinthe5-milecircleareverysimilar,thisvalueof3.57wasusedthroughout thearea.Table2.2-2OswegoCountyPopulation Town-AlbionAmboyBoylstonConstantia FultonCityGranbyHannibalHastingsMexicoMinettoNewHavenOrwellOswegoTownOswegoCityPalermoParishRedfieldRichland.

SandyCreekSchroeppelScribaVolneyWestMonroeWilliamstown 1,4727366672i02310i4802i0222i1482,3152i9821,4619292i67123,3681,2551s3118033i7912~1062i7072i1992,407915~~89619401i0944933651,53813i3632~2202,0102,3612~7101i0521,194806Ig97222i0621i1481r1995173,8481~8213i2192i1842,659731~7101960~1,1255242932,73014'613~7042,6734~4573,4351i2901i4786632,79622'551i6631i4393884,5542i5065i5542e4893,7851i417739~1970~1,4525572763,54714,00347183,1656i0424~174-1i6881i8458363i58323'442S3211,7823865i3242i6447i1533i6194i5202i535~883=Annual5Increase1910-1970-DecreaseDecreaseDecrease1.751~342331.472611.401.26Decrease1.970.031.851.36Decrease1401.252.641.651.88277DecreaseTotal71i66471,27586~118100~8972.2-5

(000loIgILE2'SIIS3gILES4MILE575glLES6I0,3//0,0~rII25IlIso0oIIIII(SITI;IllllSlllalI8l39II50892le/10w+2861291l:lll'Vf'III11I40775l07asIIIIII1///I.4.80ITK1a1/386/OSWEGOCITYBOUNDARY/////I263FIGURE2.2-6SCALE-MILES POPULATION DISTRIBUTION-5 Izl93I~)NOTE:NUMBERSREPRESENT TOTALNUMBEROFIIINHABITANTS INEACHAREASEGMENTIIIMllERADIUS

Inadditiontotheyear-round population displayed inFigure2.2-6,thereisaweekendandvacationpopulati.on thatoccupiesthefewcottagesalongthelake-shore inthewarmermonths.Asunmercampisoperatedona12-acreplotknownasLakeviewlocatedoutsidethestationsiteandabout4,500feettothesouthwest ofthestation.Groupsofupto500personsusethiscampandasmanyas1,500peoplemaygatherthereforshortperiodsonSundays.Thefacilityisunusedtherestoftheyearexceptforanoccasional weekendinthespringandfallTherearetwohospitals inOswegoCounty.TheOswegoHospital, locatedseven-miles southwest oftheplantsiteat110WestSixthStreet,Oswego,presently has176bedsandwillsoonopena38-bedextendedcareunit.TheLeeMemorialHospital, with60beds,islocated143/4milessouthoftheplantonSouthFourthStreet,Fulton.OswegoCountyformerlymaintained asanitarium inOrwell,butthisfacilityisnowaprivateinstitution foralcoholic s.OswegoCountyisdividedintoninepublicschooldistricts.

Therearealsotwoparochial schoolsinFultonandfourinOswego,andtheStateUniversity CollegeatOswegomaintains anurserythrougheighthgradeschoolonitscampuswhereitseducation studentsmaypracticeteaching.

TheStateCollegeitselfhas8,650students, ofwhich6,000arefull-time and4,000areresidents.

Studentenrollment ofOswegoCountyschoolsfor1971-72andschoollocationrelativetotheNineMilePointsite(approximate 30-mileradius)aregiveninTable2.2-3.Totalenrollment is37,817students.

2.2-6 H4Hs'17 Table2%23LocationandEnrollment ofSchoolsinOswegoCountySchool-Distance(Miles)andDirection*from-Station.

Enrollment.

Altmar..-~Parish-~Williamstown

-District.

AltmarElementary ParishElementary Williamstown Elementary A.P.W.MiddleHighCentral-Suare-District-PaulV.MooreHighMillardW.HawkJuniorHighCentralSquareElementary Brewerton Elementary Hastings-Mallony Elementary AnnaA.ColeElementary MainStreetFultonDistrict-G.RayBodleyHighErieStreetJamesR.Fairgrieve FourthStreetJamesE.LaniganOakStreetPhillipsStreetStateStreetVolneyElementary WalradtStreetFultonJuniorHighHannibalDistrict.

FairleyElementary CayugaStreetHannibalHighMexicoDistrict-MexicoAcademyJuniorandSeniorHighFravorRoadElementary MexicoElementary PalermoElementary NewHavenElementary 21E16ESE27ESE19ESE20SE21SE21SE23SSE19SE32SE21SE15S14S13S14S15S14S14S13S13S13S13S16SSW16SSW16SSW9.5ESE85ESE95ESE13SSE50SE3223771338691,255806544568'865993871~460217655/52311'70475154543898105554037481,2126874742453252%27

~q Table2.2-3~Cont;Schoo3.-Oswe0-DistrictDistance(Miles)andDirection-from.

Station.Enrollment.

OswegoHighOswegoMiddleFitzhughParkKingsford ParkMinettoCharlesE.RileyFredrickLeightonPhoenix-District-JohnC.Birdlebough HighEmersonJ.DillonCherryStreetElmStreetPennellville 7.5SW75SE60SW75SW10SSW6.5sw7.5SW20SSE20SSE20SSE21SSE18SSE1,7958667046084507435038391i042267893192Pulaski.District-PulaskiAcademyandCentralJunior-Senior HighSand-Creek.District-SandyCreekHighSandyCreekElementary

'ArwellElementary Parochial Schools-OswegoCatholicHighSt.Paul~s(Oswego)St.Mary'(Oswego)St.John~s(Oswego)FultonCatholicElementary FultonCatholicMiddle18ENE14ENE19NE29E21ENE6.5SW65SW72SW7.2SW13S13S89857050860899326312308139199171State-Universit ColleeatOsweoCampusSchoolCollege8SW8SW4708i65022-8 l\"p 23HISTORICSIGNIFICANCE TheOswegoCityLibrary,locatedonEastSecondStreet,wasdesignated aNationalHistoricSiteintheFederalRegisterofNovember2,1971.Thelibrary,giventothecitybyabolitionist GerritSmithin1855,isofarchitectural interestandisoneoftheoldestbuildings incontinuous useasapubliclibraryinthecountry.Atpresent,therearenootherNationalHistoricSitesinOswegoCounty,althoughtheOswegoMarketHouse,FortOntario,andseveralothersitesarebeingconsidered fordesignation.

Aninventory ofnatural,scenic,state,andlocalhistoricsitesfurnished bytheNewYorkStateHistoricTrustandtheOswegoCountyPlanningBoardandamapshowingtheirlocations aregiveninAppendixCtothisreport.Thisinventory indicates thattherearenodesignated Registered NationalHistoric.

Landmarks inthevicinityofthestationsite.TheNineMilePointsiteisofnomajorarcheological interest.

Thelake-shore beachesandstream-mouths totheeasthaveyieldedmanyrelicsofprehistoric Indianfishingencampments andvillages, buttherockybluffsoftheshoreatNineMilePointseemtohavebeeninhospitable tosettlement (Ref.2).2%31 iI~

24GEOLOGY2.4.1Topography TheNineMilePointsiteisagenerally flatfeatureless plainlocatedonthesouthshoreline ofLakeOntario..

(SeeFigures2.1-1and2.1-2.)Thesitearealandelevation rangesfrom260feetat-thestationareato310feetatthesouthernextremity ofthesiteaboutonemiledistant.Thesurfacesoilsconsistoffill,recentsediments, andglacialtill..Soildepthinthevicinityoftheplantareavariesfrom0to23feetbutisgenerally oftheorderof10to13feet.Thesitetopography isareflection oftheirregular bedrocksurface.Noperennial streamscrossthestationsite.Naturaldrainageisrelatively poor.Watercollectsinlocalswalesandlowareasandthepermeability ofsoilandrockissufficiently lowtopreventrapid'ercolation ofwaterintotheground.Localized bogsandswampyconditions existinthedepressed areas.2.4.2GeologyThestationsitearealieswithintheErie-Ontario LowlandsPhysiographic Province.

ThisprovinceisboundedonthesouthbytheAppalachian Upland,ontheeastbytheTugHillUplandandAdirondack Highlands, andonthenorthbytheCanadianShield.ThisisshowninFigure2.4-1.StrataoftheErie-Ontario LowlandarePaleozoic sediments whichareessentially undeformed.

Regionaldipistothesouthorsouthwest atanaverageslopeoflessthan2degrees.Nofoldsorfaultsofanyconsequence areknowninthegeneralsitearea.Thenearestsignificant faultistheClarenden-Linden Fault,90milestothewest.Thisfaulthasanorth-south trendwithamaximumdisplacement ofapproximately 200feet.Thesurfaceofthesiteismostlylevel,withgenerally athinsoilveneerconsisting offill,recentsediments, andglacialtill.Thesesoilsarecomposedofamixtureofsilts,sand,gravels,cobblesandboulders.

Theunderlying rockisflat-lying sandstone withsomeinterbedded shale.ItisofOrdovician AgeandknownastheOswegoSandstone.

(SeeFigure2.4-1.)Itisnotcommercially

valuable, andtherearenomineraldepositsofcommercial valueinorunderlying thearea.Theshalecontentincreases withdepth,andatapproximately 125feetbelowthesurface,theOswegosandstone gradesintotheunderlying LorraineGroup,whichispredominantly shalewithsomesandstone members.TheOswegosandstone isahard,competent
material, wellsuitedforfoundingoftheplant.Itismoderately jointed,thejointsbeingthemostcommonintheuppersurficial zone.Belowthatdepth,thejointsaremuchmorewidelyspacedandtight.Identifiable jointsetsstrikeNorth69degto80degEastandNorth25degto50degWest.24-1 I

CANADIANSHIELD~N/0IQP('a~it""~n,orERIE-ONTARIOLOWLANS'/yD0DC441I~sQOATKRTOIGDS<<a~<<<<LAKEDNTAR(D<<<<~<<a~<<<<DSDEDDCSI4'i,I',IVF6'Ck<<00Otoeoao<<04PPoapoepePOOooopoO1O4OOOPeOa OoooOooo~oooooooooooooooo04oOooooooooooooooo4o~OOOOOoOOOOOOOOOO0OO 0000oyooo01OO'0yeo~0000~40000~~0po01411"OOyOOaOeOe041OO0~~0OO~00~OOO010Oo~0ooo101041~0ayyo0Oo~0oo~oapoeooa1oOoooopopoea~ooOO~41yoyOOOOaO44OaOOO~4yy1040yo0ypop4000000~01O14OOOeppaDOO~~o0~00~oooo8oocta~~114ooooo0o~o~110o0000~010000~Op10001~1~0401~1440000~yeyt~~00~10400040~0~~44aay~114P0~0000~1y10~~10001400000yy1~~00010~a4~10~00Ooeot10~1o~410OeOOOO04000~0100~0~00000~~OO4O00~~1OoOOp1ppHIDIfpg4 01yp00000~11~acta00001000001104~014~ee40010oate0000,~01~~~0gf~~~1~p~10~00~01~44~~~~~4~~~~0~1~0~~4~al'~~>0eeee~0~~~~I~~01~~y~~4~4~0ye104~4tet4Tpo.ONAkagRO~00yap1yoo04Py0O,1'AeOO40OOrO'teO~OOOOOaOy14O'OOOOOo~1a~~oooo8000001~ea~~~~-100010opye4~4~0~ate~OI~40yy~4~~~~~1~~00eoo~~10~~~00~~001~00040yo4~4a~0~~4~~eo~0>~~4Oy~~0~~~~0~1~~~4o04o4~~~~4o,a41o~,4~.11~'at0yy00+041y10yeaa<(et40o04OOOOo0~010114y010000~1~1Pa000000400000140101oeoo000~~010~0pyaeoty00000oo,000'00~00pepI0ootoeeaoOa0op~0000~10100p00OO00000101yp 0pa0~0ObetOOOOOooq00OOOO00OoOOOeoop000000001~oOO1OOOpoOOe~oooo004<oo~at'4opt~000~01041~1000~000000004ooeoooayattyOOOO00400~0aoooooo1000~~0eyooPe010001110 oo~10ooe~~~~11ooOo~0Iae1~14001~0%0001yoe'Oooo00~~yOyy0~~100400041~y0~10~~0141~0~~~010011~~~0~tatty400,~0~O~01~1~~~0Oae~4'~1~~1~ey~04ay~1~~0~~004~0e~0,1~O~~0~4O4Oa,~1a~~4~0~~~1~to~04141040O0~140~144~0~~10a~~Oeat~~1~yaaote~~~00~~1~~'1~~t~~1'0~~ya~~~1~000e~~~404~0~ei~0ate~4~~~~Oeeo~00~00~~tI~~tjo~1'ooay~40~Oeea~440'0~~~~Oe~~04ty~1100~~~~00',o1~eOoa0o4~~~4oeataao~yp0000OOO4

~000ita~4000y0~0~011'0~0~yOo~ay~404O4<~~~otoe~4~~ooyetn,~~~4aaeplO~0o0~oa41haeeo,cove~a404o~1~00~~4o4~Oayaogtaat1010~~0~00144400~010~4~~~4~4~00yy~01~o~~4~0040~~ye~~~404~140~af+OhgM44~~~~4o00+~~0y00~0~0~~~~~Vay~11~~~~~4~4~~Op0'40~~~1~~~~~11~~4aa~~~~~1~40~1~11'4404~~y~~~aet4~pey~01~~OeOeo~0~1~0ao041~Oa0~~o,ao~~~~~4to~~~4~4~~~~~~ay~~40~~~01~01'1~11~~oe401~~t~~~1~01~1~0~~TIg4~4~~NEWYO.<FlicSAYRCPENNSYLVANIA

<<0~Oy0'ooy0~ceoEi~F0r~1ratTo2SCRANTON1111014~~1110~~O~~414-oKILToooa,o.o0e001ooo~~~14~101001~100~40~001~0~~100ooyanet<opoPooooataeae041001014~104010011~00001000' 01ooeooea~1ePO~OO1aept4'to~~00001000~1~~10noeacOooaa1~011taFt<QQDDL'DON REGIONALGEOLOGICMAPNEWJERSTYSHOWINGPHYSIOGRAPHIC PROVINCES

REFERENCE:

STATUTEMILESIO0IO20SO4050BASEMAPPRCPAREDFROMPORTIONSDt'DRLDAERONAUTICAL CHARTS'AKE ERIC(309)l967yHVDSCNRIVER(3IO)l967ANDST~LAWRENCERIVCR(263)l967.COLORDESCRIPTION BEDLDSYANDPHYSIDQRAPHY PRCoAREDFROMAMAPBYTHEVNIVCRSITY OFTHESTATCCFNCWYORKTHCSTATCEDVCATIDN DEPTyENTITLEDLANDFDRMS ANDBFDRDCKBKCLCDYDFN~YSTATFl99i~ORDOVICIAN:

SHALEStSANDSTCNES ANDLIMESTDNES CAMBRIAN:

SANDS'ICNL ANDCVARTZDSE DDLDSTDNE PRECAMBRIAN:

VNDIFFERENTIATCD

'0<<1~~1DEVONIANVNDIFFERENTIATED 44440~SH'ALIBIS SILTS'IDNI'S

~SANDS'INEANDLIMCSTONEI/////gSILVRIANI LIMCSTDNCg SHALEeSANDSTCNEe SALTBEDSKIEYTHRVSTFAVLTNORMALFAVLTVNCL*SSIFI EDFAVLT~maQa26%a'QhnlRI CXGUl<E2.4-1

2.4.3Seismicity Thesiteislocatedinaregionconsidered seismically inactive.

Earthquake activitywithin50milesofthesitehasbeeninfrequent andminorandnoearthquake damagehasresulted.

There"hasbeennoknownearthquake epicenter within50milesofthesite.,Mostofthereportedearthquakes intheareaareassociated withwelldefinedstructural zones.TheSt.LawrenceRiverValley,welltothenortheast, beyondtheMontreal/Quebec area,andabout135milesfromthesite,isextensively faultedandhasexperienced considerable earthquake activity.

Thelarger,St.LawrenceValleyshockswerefeltinNewYorkState,including thesitearea.Therehasbeensomeearthquake activitynearAttica,NewYork,about110milessouthwest ofthesite.Thisisbelievedtobeassociated withtheClarendon-Linden Fault.Theearthquake of1929(Intensity VII-VIII-Modified MercalliScale)damagedsomestructures attheepicenter, nearAttica,andmayhavebeenperceptible inthevicinityofthesite.Someminorearthquake

activity, whichhasnotbeenrelatedtoknerngeologicstructure, hasoccurredinthevicinityofBuffalo,NewYork,tothewestof,thesite.Itislikelythattheseearthquakes resultfromcrustalreadjustment intheareasoflocalstressconcentrations associated withreboundofthegeneralareafollowing retreatofthecontinental glaciers.

Theclosestearthquake (Intensity VI-Modified MercalliScale)whichcausedanydamageatitsepicenter occurredin1853nearLowville, NewYork,approximately 50mileseast-northeast ofthesite.Severalminorshocks(Intensity generally lessthanIII-Modified MercalliScale)havebeenreportedwithinabout30milesofthesite.Theseshockswererelatively insignificant.

2.4-2 I'l 25HYDROLOGY LakeOntario,theeasternmost oftheGreatLakes,isaninternational bodyofwaterformingpartoftheborderbetweentheUnitedStatesandCanada.Thelakeis193mileslongand53mileswideatitswidestpoint,andhasasurfaceareaof7,340squaremiles(4.7millionacres).Ithasamaximumdepthof802feet,anaveragedepthofapproximately 283feet,andavolumeof393cubicmilesor1.34billionacre-feet.

InflowintothewesternendofLakeOntarioaveragesapproximately 205,000cubicfeetpersecond(cfs).RunoffdirectlyintoLakeOntariofrom27,300squaremilesofwatershed inNewYorkStateandtheprovinceofOntarioamountstoanadditional 36,000cfs.ThemainfeederistheNiagaraRiver;theotherlargestriversdrainingintothelakearetheGeneseeandtheOswegofromthesouthshore,theBlackRiverfromtheeastshore,andtheTrentRiverfromthenorthshore.ThecombinedoutflowfromthelakeviatheSt.LawrenceRiveraveragesabout241,000cfs.Theaverageannualprecipitation inthesiteareaisabout36inches.Itisestimated thatapproximately 18inchesisdirectlyattributed torun-offasstreamflow.Oftheremaining 18inches,approximately 16inchesislosttoevaporation fromlandandwatersurfacesandtranspiration byplants.Thesetwoprocesses aregenerally referredtotogetherasevapotranspiration.

Theremaining twoinchesareavailable forgroundwater recharge.

Therelatively highrun-offcanbeattributed tothelowpermeability oftheglacialsoilsandrockformalions.Duringwinter,icecoverformsintheslackwaterbaysbutthelakeitselfisseldommorethan25percentice-covered andmostlyintheeasternendofthelakeonly.LakeOntario's outflowriver,thest.Lawrence, isice-covered fromlateDecemberuntiltheendofMarch,allthewayfromthelaketotheInternational BoundaryatMassena,NewYork.Priortothebeginning offlowregulation, theelevation ofthelakesurfacewascontrolled byanaturalrockweirlocatedabout4milesdownstream fromOgdensburg, NewYorkintheGalopRapidsreachoftheSt.LawrenceRiver.The111-yearrecordoftheU.S.LakeSurveyfrom1860to1970,indicates ameanlakesurfaceelevation of246.00feetabovemeantideatNewYorkCity,1935datum.+Overthisperiod,themaximummonthlylakesurfaceelevation was249.29feetandtheminimumwas242.68feet,arangeof6.61feet.Theannualrangeofelevations variesbetween3.58and0.69feet.~Allelevations inthisreportarereferredtotheU.S.LakeSurvey1935DatumToconvertelevations to1955International GreatLakesData,subtract1.23feet2.5-1

DamsontheSt.LawrenceRiver,underthesupervisory authority oftheInternational St.LawrenceRiverBoardofControl,arenowusedtoregulatethelakelevel.ThelowerlimitissetforE1..244onApril1andismaintained atoraboveE1..244forthenavigation season(April1toNovember30).TheupperlimitofthelakelevelisEl.248.TheNineMilePointsiteisatgroundelevation 260withthemaximumfloodlevelatelevation 263.Thislevelistheresultofaddingthewaverun-upandthewindset-upthatwouldoccurduringastormhavingareturnintervalofoncein10,000yearstothemaximumcontrolled stillwaterlevel.Theexistingdikeonthelakeshorewouldprotecttheunitfromthisflood.Themaximumfloodlevelinthescreenwell wasdetermined tobeEl.252.5fromaddingthemaximumshort-term riskoccurring in10,000yearstothemaximumcontrolled still-water level.Waveswillnotaffectthescreenwell waterlevelduetotheslurresponsetimeoftheintakeanddischarge tunnels.Essential stationequipment willbelocatedsothatextremewaterlevelswillnotaffectitsoperation.

Theminimumwaterlevelatthesiteiselevation 236.5.Thiswasdetermined bysuperposing thehypothetical minimumstillwaterleveloccurring intheabsenceofthepowerandseawayprojectsexistingontheSt.LawrenceRiverandtheonce-in-10,000 yrinstantaneous loweringofthestill-water levelduetothemaximumprobableseicheonthelake.'hese maximumandminimumelevations weredetermined byanalyticandstatistical methods.Watersurfaceset-upandseicheareproducedbywindsandatmospheric pressuregradients.

Theseshort-term lakefluctuations aregenerally oflessthantwofeetamplitude for10-to16-yearreturnperiods.Windsaredirectlyrelatedtotheformation ofsurfacewaves,themagnitude ofwhichtypically variesbetween0and15feetintotalheightduringagivenyear.Astronomical tidemagnitudes amounttolessthanoneinch.TheNewYorkStateDepartment ofEnvironmental Conservation monitorsthewaterqualityofLakeOntarioasdrawnintotheOswegoCitywatersupplyintake6,500feetoffshoreatadepthof40feet.The6-yearcumulative recordofthismonitoris.showninTable2.5-1.Theaveragemonthlywatersurfacetemperature ofLakeOntarioisshowninFigure2.5-1.Asnotedina1970International JointCommission Report,thelakeiscategorized asbeinginastageofeutrophication betweenoligotrophic andmesotrophic.

Theinshorewatersaremoreeutrophic thantheoffshorewaters.Thiscondition reflectstheshallower depthsinvolvedandtnefactthatmostnutrientinputs,bothnaturalandman-derived, enteralongtheshores.2.5-2 Ve),,tIVi1/'II4'IIIII 80~700LU+60XUJ50I-XO>40+30AVERAGEWATERSURFACETEMPERATURE 20JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECFIGURE2'.5-IAVERAGEMONTHLYTEMPERATURE OFLAKEONTARIO e*

Table2.5-1LakeOntarioWaterQualityDataRecordedatOswego,NewYork,CityWaterIntake6,000FtIntoLakeat40FtBelowLakeLevel*Parameter UnitsNoof~SamlesRecordofData~Concentrations.--

MaxMeanM'aximumConcentrations, USPHS.or-NYS=

Hardness(CaCO)Alkalinity (CaCO)Ammonia,Nitrogen(N)Calcium(Ca)Chlorides (Cl)Iron(Fe)Manganese (Mn)Magnesium (Mg)Nitrates(N)Nitrates(N)Phosphates (PO)Potassium (K)Sodium(Na)Sulfates(SO)pHTurbidity Temperature Dissolved Oxygen5-DayBODColorConductivity ColiformBacteriaCODDichromate Res.onEvap.(Total)Res.onEvap.(Fixed)Suspended solid(Total)Suspended Solid(Fixed)mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1ftFppmppmmmhosNo/100ppmppmppmppmppm54~16545454545451545454545454717170706668537051545151266/64-1/713/65-11/66 6/64-1/71 6/64-1/716/64-1/716/64-1/716/64-1/719/65-1/716/64-1/716/64-1/71 6/64-1/716/64-1/716/64-1/71 6/64-1/715/64-1/715/64-1/715/64-1/715/64-1/715/64-1/71 6/64-1/716/64-1/715/64-1/716/64-1/716/64-1/719/65-1/71 9/65-1/718/66-1/71112850.032.03.80.0.004.90.00.00.0.51.013.0721.0346.80.2213102.20.21287310146940.4744030306018.90.140.0050.191.616.63017.98449.31091.2585306567-92431351055.524010113154.055.5.9.1329.00.510.0291.6511445.05009025.07341443.020437024028153336744172500.30.31025015*DatarecordedbyNewYorkStateDepartment ofEnvironmental Conservation

WindsaretheprimarycauseoflakecurrentsinLakeOntario.Temperature gradients inthelakeproducecurrentsofconsiderably smallermagnitudes.

CurrentsareaffectedlocallybylakegeometryandCoriolisforces.Ingeneral,thecurrentsareonlyafewtenthsofafootpersecond.Thedirection ofcurrentisvariable, depending primarily onthedirection, magnitude, anddurationofwinds.Dominantcirculation patternsinthelakearecounterclockwise, westtoeast,pastthesiteasshowninFigure2.5-2.Onthebasisoftheannualinflowandoutflowofthelake,watershouldbereplacedeveryeightyears.However,becauseofcurrent,circulation, mixing,andstratification, actualreplacement timefor90percentofthelakewaterisestimated tobethreetimesaslong.Thereare16publicwatersupplieswithin30milesofthestationsite,asshowninFigure2.5-3andlistedinTable2.5-2.ThecityofOswegoandtheOnondagaCountyWaterDistrict(OCWD)drawwaterfromLakeOntariothroughacommonintake.Thereisonewellwithin10miles,threebetween10and20miles,andtenbetween20and30miles.Mostpublicsuppliesbeyonda10-mileradiusobtaintheirwaterfromwellsdrilledintoalluviumadjacenttolargerstreams.Allareupgradient fromtheproposedplantsite.Table2.5-2PublicWaterSupplies1OnondagaCountyWaterDistrict, OCWD2Oswego3Mexico4Pulaski5Fulton6SandyCreek7CentralSquare8Orwell9Phoenix10Baldwinsville 11Fairhaven 12Cato13Wolcott14Adams15BedCreek16Constantia Manyoftheresidents

'inthesitevicinityobtaintheirwatersupplyfromdugwellscompleted intheglacialoverburden.

Thesewellsnormallydonotyieldmorethan5to8gallonsperminute.Somewaterisobtainedfromdrilledwellsthatarecompleted intheupper5-to10-footfractured zoneoftheOswegosandstone.

Yieldsinthismaterialaverageabout.10gallonsperminute.Thenearestknownprivatewellisonemilefromthesite.Allprivatewellswithintwomilesofthesiteareupgradient fromtheproposedsite.Thelocations anddepthsofprivatewatersuppliesarelistedinTable2.5-3andshownonFigure2.5-4.2.5-4

}IJt'IEe~l$*

SURFACETREJVTRIVERKINGSTONIIIVIII6IIG6g.I.BLACK'IVER TORONTOE(~AiVIAGARARIVERNIAGARAFALLSo\4'-APNINEMILEPOINTOSWEGOOSIVEGORIVERROCHESTER GEAESEERlVERLOWERLEVELSBOTTOMFIGURE2.5-2LAKEONTARIODOMINANTCIRCULATION PATTERNS

'elaeevlfvIJaalu@OiyraaIOStonyPLHeHarTIr0sao$4eo*~pSmltli~0HeersonConteFndyCreep'tsBeevil!4skIv~4tIisbuManIleERodmaok4.Smartvllle PortOntarvrgxrcoBAYoo4PulseRichlandrgLycomingAltmaMapleViewNewHaveI,ogeweLansing~sar0VarmgioSe'nIIOMILECilffordo OColosseG0assrSouthwest gooarlshoaaIngsPalermooSterllVsIeyFaiavettl~FranceFultnIHasnnlballICreekannlbalntsrIlettoa0OBowensComeILEgHIn~a.ioThroeRiverslgluEuclid0aldwlnPrIdSp20olcottProWostburyIVictoryyloLysandef<ere~JAerldlsn IIllsCrossEako30MILESyCicero0roCenteroRoseSButler0NSyracuseefpoolmerlg4r0Conrluest

<tMaikwyGayvlllennellvgrICentralSquaroWMonCsghdeHvANIConstanti 0SalmonReserverIcaasoag4IWiiamstoWnAer/stanti/PanrkerLake~CentsBehsnSBay1Cleveia/4BridgeportNManausKtstrengoshVoMsumsoemphlsarn4rsJordanElIdgeCamlllusCa0Fslrmount aLotMarcousOnodsga0EastMlno<0SACSEKlrkvlllo My~nasoFayettevllle anliusrhoeusTyrooHalacyCpp0nacaFallsIThrvlllq0onett(Skanea4uburnSks44'telos~IlsMsfc41lus MoII~CedewaleoIesQBQS~rl4tteIIIIIOber0NsdrowD'AG~gssmesvtgoAlgFoyers0CsrI.t4rvalPopeyCener0CasenovlOra0LakeIPUBLICWATERSUPPLIESINVICINITYOFSITERr'FERENCETHISMAPwasPREPAREDFROMAPORTION Or'S0~5~STATEOrNEWVowerPATEMAPl957STATuTEMILES5IO1520NoteIRELLDATADcscnrocD INTA4LC252DAMaksgkMoogacsFIGURE2.5-3

LyE0nrT>RPROGRESSCENTERLakeviewUNITIIIR2.1\1YiIII1IlIIIRRIVATeI1I"IPLANT\I'1III'I1\ROpy)44CIIIIIROAD4647c+48I57271~75II'1IAO3NliQEMILEPOINTSITEMILE~5528URTOO6qO~NIAGARAMOHAWKIPOWERCORPPROPERTYLINEJAMESA.FITZPATRICK SITE~l6449774~76VIROR2382POg50<70Ox~79~676268I~668069I24/27881IT~222lh1I~60(OA6257~lieIO20~ol2335~33O55Lycoming~32$~303I~29~27264I42OI28I3ERAUTHORITY OFTHETATEOFNEWYORKPROPERTYNE42539~40tforthScrlba122InInIIIIIIODLeROADIOIOASCALE-MILESNOTEDATADESCRIBED INTABLE2.5-3FIGURE2.5-4PRIVATEWATERWELLSNEARSITE

Table2.5-3PrivateWaterSupplies~MaMo.WellDeth.Feet~MaNO.Well.Deth.Feet12346789101112131415161718192021222324252627282930313233343536373839401860501430401818221422126816291/2Shallow2515-3025402433104131261112245715358055823720(3201/2NoDatawells)Available 414243454647484950515253545556575859606162636465,666768697071727374to82Data182242401863426703032303030153015-20683718201229(3wells)15-1832590241031NotAvailable 2.5-5 PP1F 2~6CLIMATOLOGY ANDMETEOROLOGY 2.6.1DataSourcesAverageandextremevaluesofstandardmeteorological parameters wereobtainedfromtheU.S.WeatherBureauStationinOswego,whichceasedoperations in1960,andfromtheU.S.CoastGuardStationatOswego(windobservations 1936to1945).Dataonthemicrometeorology ofthesitewasobtainedfromaninstrumented 204-foottoweroperating duringatwo-yearstudy(1963-1964)atNineMilePoint.Theinstruments measuredtemperature at30-,64.5-,106.5-,and204-footlevels,windspeedanddirection at30and204feetandwindfluctuation at31feet.Tenyearsofhourlywind,temperature, andhumidityobservations takenatRochester (1955-64),

63milestothewestsouthwest ofNineMilePoint,aswellastheOswegoWeatherBureaudata,wereusedtodeveloptheclimatology ofthesite.Rochester isconsidered morerepresentative ofNineMilePointclimatology thanSyracusebecauseRochester islocatedneartheshoreofLakeOntariowhichhasaprofoundinfluence ontheclimate.2.6.2GeneralClimatology TheNineMilePointareahasrelatively shortcoolsummers,withaveragetemperatures near70F,andratherseverewinters,withaveragetemperatures near25Fandheavysnowfall.

Extremetemperatures of100Fand-23Fwereobservedduringthe90yearsendingin1960.TheexposureoftheareatoLakeOntarioandtheflatnessofthesurrounding terraincauseswindspeedstobehigheratthesitethanthoseexperienced inmostinlandareas.Precipitation ismoderateandratheruniformly distributed throughtheyear.Itconsistsmainlyofthundershowers duringthesummerandsnowduringthewinter.Wintersnowfallaverages1to2feetpermonthduringDecemberthroughMarch.Themaximum3-daysnowfallonrecordwas75to90inchesduringthewinterof1965-1966.

Table2.6-1showsmeantemperatures, humidityg precipitation andsnowfallatNineMilePoint.2.6.3WindsThesiteisnearthemeanpathofmanycyclonicwindsystemswhichcrossNorthAmericaattherateofapproximately 10permonth.Therefore, substantial tropospheric mixingoccursduringmostoftheyear.Stagnantconditions occurinfrequently.

Prevailing windsrangefromwesttosouthtosoutheast.

Theannualwind<rose~~showingpercentages ofwindsfromeachdirection atthesiteisshowninFigure2.6-1.Nonortherly compasspointhasafrequency ashighas10percent,exceptfornorthwest duringDecember.

2.6-1

NNWNWNEWNWIO%ENE'OTALWIND20%WSWSESWSSWSSSESESRI-10MPHI1-20MPH21-IOOMPHl965-l964NINEMILEPOINTFIGURE2.6-IAVERAGEWINDROSES

Table2.6-1AverageTemperature, HumidityandPrecipitation atNineMilePointRELATIVEPRECIPI-SNOW-TEMPERATURE

~F+HUMIDITY~

5TATION~IN.4+FALL~INMONTHMAX..MINMAX.MINJanFebMarAprMayJunJulAugSepOctNovDec32.732.541~854.767.878.282780373.061.147.435416715.524134.245.054.959757550.940.432021.08181817981848486878481817369645754525052555766702.702.622802.722.972.282.742.512.783.263.013.1723.621.412.72.3000000.473204Annual57.337.7836033.568814U.S.WeatherBureau,Rochester, N.Y.,1931-1960.

+~U.S.WeatherBureau,Oswego,N.Y.,1884-1960.

Themostprominent peakinthedistribution iswest-southwest, whichbecomesespecially markedinMayandJunewhentheoverallfrequency reachesmorethan20percentfromthisdirection.

Anabsolute3-minutepeakwindspeedof73milesperhourwasobservedduringtwoyearsofobservation atthesite.Monthlywindrosesandatmospheric stability frequency andprecipitation frequency asafunctionofwindspeedanddirection areshowninAppendixD.2.6.4Tornadoes andHurricanes IHighwindsintheLakeOntarioarearesultfromintensewinterstorms,remnantsoftropicalstorms,andseverethunderstorms.

Thenearesttornadoes shownonatornadosummarymapoftheareacompleted in1960occurredinJamestown (1945)andAlleganyCounty(1920),bothapproximately 150milessouthwest ofNineMilePoint.AtornadoinSinclairville, NewYork,onMay17/1969,about150milessouthwest ofthesite,didsubstantial damagetoresidential structures butcausednofatalities.

Remnantsofhurricanes andMilePointvicinity, butmovingtowardthesitesubstantially weakenedbytropicalstormshaveaffectedtheNinesuchoccurrences arerare..StormsfromtheNorthAtlanticOceanaretraveloverlandsothatwindsare2.6-2 0C~

reducedbelowhurricane force(75milesperhour)beforetheyreachthesite(Ref.3).2.6.5Turbulence ClassesTheclassification systemusedtodifferentiate stackeffluentdispersion regimeswasbasedonthedirectional fluctuations ofanaerovanewindinstrument (Brookhaven type)mounted204feetabovegroundontheNineMilepointmeteorological tower.Thefourturbulence classifications arerelatedtootherdescriptions ofturbulence inthefollowing way:NiagaraMohawkClass.-PasquillClassyBrookhaven

~Class.~-Qualitative IIIIIIIVABDFB2B1CDVeryUnstableUnstableNeutralStableTheBrookhaven classification isbasedonturbulence measurements fromstripchartsofthewindspeedanddirection.

Intheabsenceofonsitewindmeasurement, thePasquillclassification iswidelyusedasanapproximation ofturbulent conditions.

ThePasquillclassification isbasedonwindspeedandcloudcoverparameters thatareroutinely measuredatmostairports.

Ofthesevenpasquillclassifications (AthroughG)thefourlistedabovemostcloselycorrespond tothefourBrookhaven types,exceptthatBrookhaven ClassB2andB1,actuallycorrespond toPasquillClassesAandB.TheNiagaraMohawkclassifications aredefinedtobethesameasthecorresponding PasquillandBrookhaven classesaslistedabove.Stability frequency asafunctionofwinddirection isshowninTable2.6-2.Table2.6-3liststhefrequency ofwindspeedsobserve'd foreachwinddirection asapercentage oftotalobservations madel'oreachofthefourturbulence classifications.

2.6.6LapseRatesAnothermeasureofstability isthelapseratemeasurements takenbetweenthe30-and204-footlevelsonthetower.Thesearesummarized asmeandiurnallapseratesforeachmonthinAppendixD.Thesefiguresreflecttheimportance ofthelake-land relationship.

Inthewintermonths(December, January,andFebruary) themeandiurnallapserateneverpassesintotheinversion regime.However,inMayandJunethemeandiurnallapserateliesintheinversion regimecloseto75percentoftheday.2.6-3

Table2.6-2AnnualStability Frequency ofOccurrence withrespecttoWindDirection, PercentBrookhaven StabilitClass.TotalsWindDirection NNNENEENEB214.09.08.0203B1~2.793.562.35.78.90.05.31;17.0009D--1-04.84.76.50.724.024.803.361.301.74ESESESSESSWSWWSWNWNNWCalmTotal.15.44.891.13.3620.22.19.06I.06~11014182.054.663.044.333.366.107.968.094.764.492.79.0162.02.713.251.911.971743413.871.7933.19.04.0019.83.721.25.95.67.51.563.639.606.798.105.9710.27162.65.62.690313.0911.695.805.363.6305-.96~130126-4

PercentTable2.6-3Occurrence ofTotalObservations Brookhaven Turbulence ClassB2:Very641Observations UnstableWindDirec-tion1-34-7WindSpeed(Knots)8-1112-1920-29>30AllSp-NNNENEENEEESESESSESSSWSWWSWWWNWNWNNWCalmAll07.06.03.010105.03.05.12.08.0502.06.0303.03.0174.0502.03.01.0204.15.28~4416.09.1007.01.03031.53000201.00.01.01.00.00.00.00.0303~13.132231.25.32.07.05.04.02.070300.05.01.01.00.00.02-0186.99.00.00.00.0000.00.000300.00.00.00.01.00.000004.00.00.00.00.00.00.00.0000.00.00.00.00.00.00.00.00.14.09.08.02.03.1544.891.1336.20.22.19.06.06.11.014.18Brookhaven Turbulence ClassB1:Unstable9567Observations WindDirec-tion1-34-7WindSpeed(Knots)8-1112-1920-29>30AllSp.NNNENEENEEESESESSESSSWSWWSWWWNWNWNNWCalmAll22.1619.1809~1310.11.3921.30.1819122318.01.51.60'9.36.40.45.82.691.911.061.7412111856.63.582.9913.2938.52.60.17.29.621.24.981321.341.821931.2961.65.501301.40.75.06.12822.391.1971.751.782.742771.912.061.16142621.9137.8021.01.00.0311.07.00.00.411.411-951.19.82.367.74.01.0801.00.00.00.00.00.00.00.05497137.10.011.832.793.562.35.78.902.054.663044.333.366.107.968094.764.492~79.0162.022.6-5

Table-2.6-3Cont.Brookhaven Turbulence ClassC-3057Observations NeutralWindDirec-tion1-34-7WindSpeed8-1112-19(Knots)20-29>30AllSpNNNENEENEEESESESSESSSWSWWSWWWNWNWNNWCalmAll00.00.00.00.00~00.0100.00.00.01.01.00000000.00.03.0200.00.00.01.03.02043213.29.0502.0001.01.01.01.05.12.021300.00.03.05.10.53302.42.231.56.73.92.60101821.78.351.95.06.59.01.1604.08.01.01.953.3611.32.00.12.02.00.00.054908.00.00.451.14.87.15.0601344.0102.0000.00.0001.00..00.00.06.37.25.01.0000.73.05.31.17.00.09.713.251911.971743.413.871.7933.1904.001983Brookhaven Turbulence ClassD1998Observations StableWindDirec-tion1-34-7WindSpeed8-1112-19(Knots)26-29>30AllSpNNNENEENEEESESESSESSSWSWWSWWWNWNWNNHCalmAll26.13.08.02.03.14.47.1701.06.00.16.40.12.12.1416.12.12.11.22.25.40.36.06.08.03.31.42.0508.10.383233.23'4.2630~34.36.27.34.35.55~2330.23.191813.1413.07.11.08241219.13.1822.10.22.032465.132.872.31.05.0900.00.00.00.00.00.00.00.00.01.0703.02.00.27.00.00.00.00.00.00.01.00.00.00.00.00.00.0000.00.01104.84.76.5072.721.25.95.67.51.56.961.62.65.62690313.092.6-6

'I~P 27BIOTA2.7.1Terrestrial EcologyofSurrounding AreaandStationSiteThephysiographic regionsofOswegoCountycanbecategorized intothreebroadlandgroupings:

(1)theTugHillPlateauinthenortheast, (2)thelowOneidaPlainextending southofLakeOntario,and(3)anintermediate regionreferredtoastheTugHillTransition zone.ThisisshowninFigure2.4-1.Duetothedifferences intopography andelevation amongtheseregions,theplantandanimalspeciesineachregionarevariable.

TheOneidaPlainarea,whichincludestheNineMilePointStationsite,islowundulating land,muchofwhichhasbeenclearedinthepastforfarmingbutoverhalfofthefarmlandinthecountyhasbeenabandoned.

Thewildlifespeciesfoundinthisregionconsistofthetypicalfaunaassociated withmuchofthenortheastern UnitedStates.Thisareaisgoalrangeforwoodcock(Philchela

~minorand'I""abundance islow.Furbearers, including raccoon(Proc~onlotor),mink(Mustelavenison,redfox(Vuulesfulva),greyfox(UUroron.cinereoar enteus)andskunk(~Mehitism~ehitis) alsooccurontheOneidaPlain.ThesouthshoreofLakeOntarioisanimportant concentration areafordivingducksinthewinterwithlesserscaup(~Atheaaffinis)beingthemostabundantspecies.Dabblingduckssuchaswoodduck(Aix~sonsa).,

blackduck(Anasr~ubries),mallard(Anas.1strhchas),green-winged teal(Anascarolinensis) canbefoundonthemarshesandpondsoftheregion.TheDepartment oftheInterior, BureauofSportFisheries andWildlife, hascompiledalistof101speciesandsubspecies ofwildlifeintheUnitedStatesthatarenowthreatened withextinction.

Twoavianspeciesonthelistwhichhavebeenpreviously recordedinNewYorkStateincludetheAmericanww'agle(Haliaeetus leucocehalusleucocehalus)butneitheriscommontothesite.Thevegetation onthe.sitemaybedividedintofourcategories:

abandoned pastureandorchard,overgrown land,Northernhardwoodforestandclearedland.Thedivisionisbasedonthevarioussuccessional stagesinaplantcommunity asclearedlandrevertsbacktothenormalforestcondition whichistheclimaxstageforthearea.ThisisshowninFigure2.7-1.Alistofidentified plantandanimalspeciesassociated withthesehabitatareasispresented inAppendixE.2~71

$,'i'w+P'~.

~M;P~+gal~)i~j~+j<Qf..!f!gp

'(*NORTHERNHARDWOODFORESTABANDONED PASTURE6ORCHARDrI~jqyv<JOVERGROWN LANDPOWERLINE CUTCLEAREDFIGURE2.7-IVEGETATI0NCATEGORIES

2.7.1.1Abandoned pastureandorchardAbandoned pastureandorchardisthefirststageinlandsuccession afterabandonment.

Itischaracterized bylowgrassyandherbaceous vegetation withtheaverageheightbelowthreefeet.Extensive areasofthisvegetative stageappeareastandsouthoftheexistingpowerstation.Thereisalargeabandoned appleandpearorchardinthenorthwestern portionofthesite.thetallestvegetation inthissuccessional stage.Also,some(Rhus~thing)andpoplar(~Polussp.)arefoundinhedgerowsandothersmallpatchesofbrushthathadnotbeenclearedwhentherestoftheareawasusedforcommercial orchardorpasture.Thedominantvegetation inthissuccessional stageisorchards(~~.(~QAnne'lace(Daucus.carota).Asmallplantingofscotchpine('""'Sareasouthwest ofthestation.2.7.1.2Overgrown landThereisnodistinctdivisionbetweenthissuccessional stageandtheabandoned pastureandorchardstage,butitcangenerally beidentified wherelowwoodyvegetation hasreplacedthegrassesandherbs.Woody'vegetation becomesdominantshadingtheherbsandgrassescausingmanytodieoutduetolackofsunlight.

Thevegetation intheovergrown landisdense,providing goodcoverforwildlifewhichinhabitsthearea.Manysmalltransitional treespecies,including pincherry(Prunusennslvanica),

overgrown land.Someyoungforesttreessuchasredmaple(Acer.r~~e)andblackcherry(Prunusserotina) alsooccurinthisareaAl.der(Ainus.sp.)andwillow(Salixsp.)canbefoundinthewetterareas,especially alongthewesternboundaryoffLakeviewRoad.Thelowwoodyshrub,arrowwood (Viburnum sp.)andgrape(Vitis.sp.)areprevalent onovergrown land.Thisseraistageisprevalent alongtheperiphery ofthesite.2-7-1.3NorthernhardwoodforestThenorthernhardwoodforestistheclimaxcommunity inthisarea.Thisischaracterized byfourdominant+

species:sugarmaple(Acer.saccharum),

yellowbizch(setula~lutea,beech(Fa(aus-speciesthatarecommonareredmaple(Acer.rubrum),

whiteashcherry.Groundcoverinthematureforestislowandsparse.Canadamayflower (Maianthemum canadense),

five-leafed ivy9RHI2m72 aI partridge berry(Mitchella

~reens)andferns(polypodiaceae) aresomeofthemorecommongroundcoverplants.Morethanonethirdofthesiteisinforest,primarily inthecentralandeasternsection.2.7.1e4ClearedlandSectionsofthesitewereclearedfortheNineMilePoint,Station.Anareaapproximately 500feetwideextendsfromnorthtosouththroughthesiteandservesasatransmission linerightofway.Thetransmission linerightofwayhasagreatdiversity ofvegetation.

Thetimberhasbeencutandremovedgivingabrushyeffect.Somespeciesfromeachofthepreviously described sectionsoccurherewithsomeadditional speciesnotassociated withtheotherareas.Themostcommonplantonthisareaisblackberry (Rebuselleheniensis) whichformsthickcoverandprovidesabundantfruitforanimalsandbirds.Mullein(Verbascum

~thasus)~thistle(cirsium.

sp.)~andchicory(Cichorium

~intbus)arethreecommonspeciesinthisareanotoftenencountered intheotherareas.Severaldepressions ontheright-of-way containstandingwaterandsomespeciesofwaterlovingplants,including cattail(~Tphalatifolia),

smartweed 2.71.5Animalassociations TheNineMilePointStationsite,duetothediversity ofvegetation, provideshabitatsformanyofthetypicalwildlifespeciesfoundthroughout theNortheast.

Alargenumberofpredatory birdsappeartobeassociated withthemoreopenareasofthesite,atleastduringcertaintimesoftheyear.SparrowmHbeenobservedinthevicinityofthesite.Extensive tunneling inthegrassindicates thattheareasupportsalarge'population ofvoles(Microtus ennslvanicus)

.Thevoleisanimportant fooditeminthedietofmanyhawksaswellassomepredatory mammals.Twospeciesofgamebirds,ruffedgrouse(Bonasathesite.Severalspeciesofsmallbirdsarealsofoundthroughout thearea,including blackcapped chickadees (ParusI!alsoabundantinthearea.ManyotherspeciesofbirdsoftheNortheast arefoundonthesiteduringdifferent timesoftheyear.floridanus),

redfox(~Vulsfulva),raccoons(~proconlotor),2e73

(~Mehitis~mehitis)andmink(Mustelavison).Thevegetation onthesiteappearstobecapableofsupporting white-taileddeera-"'"'~.12.7.2AquaticEcologyTheGreatLakessupportawideranginganddiversified population offishspeciesasreportedbyHubbsandLagler(Ref.0),Beeton(Refs.5and6),andDambach(Ref.7).LakeOntariosupportsavaluablecommercial andsportfisheryasmentioned inSection2.2.Thecommercial landingsaredominated bywhite(Ictalurus.nebulosus),

yellowperch(Perca.flavescens),

whitefish

(~'"I!-(~Americaneel(AcCuillarostrate),

sunfish(I~amisspp.),andwalleye(Stizostedion

-vitreumvitreum).Theprincipal sportfishesarevariouspanfishes aswellassmallmouth bass""4"lucius),cohosalmon(Oncorhnchuskisutch),

andyellowperch.Thebluepike(Stizostedion vitreum~laucumislistedontheendangered specieslistoftheUnitedStatesDepartment ofInteriorandwasoncequiteabundantinLakeOntario.Thisspecies,however,hasnotbeenobservedinthevicinityofNineMilePointduringtheecological fieldsurveys.Acomprehensive researchprogram,designedtomonitorvariousparameters oftheaquaticenvironment inthevicinityofNineMilePointwasinitiated bytheNiagaraMohawkPowerCorporation in1963.Since1969thisprogramhasbeencloselycoordinated withstudiesinitiated bythePowerAuthority oftheStateofNewYorkfortheJamesA.FitzPatrick NuclearPowerPlant.Thesecontinuing lakesurveillance studieshaveprovidedmuchinformation regarding theaquaticecologyoftheregion.Thedetailedresultsofthesestudiesarepresented inSection5.5.Throughout theecological fieldstudiesatNineMilePoint,eighttotwelvespeciesoffishweregenerally encountered duringthenettingoperations.

Themajorspeciestakenindescending orderofnumbersare:AlewivesYellowperch$8iteperchNorthernredhorsesuckerRockbassSmallmouth bassBluegillBrownbullhead(Aloes-seudoharen s)(Percaflavescens)

(~H!(~reomismacrochirus)

(Ictalurus nebulosus)

Alsotakeninthenetshavebeenvariousminnows(~Notroisspp)andanoccasional carp,cohosalmon,walleye,smelt,gizzardshad2.7-4 CII'I Otherspeciesoffishbesidesthosecollected duringthefieldsurveysmayfrequenttheinshorewatersnearthesiteduringcertaintimesoftheyear.Someofthespecieswhichmayperiodically befoundinthevicinityofthesitecouldincludethefollowing:

otherspeciesofsunfishes(familyCentrarchidae),

speciesofpike(familyEsocidae),

largemouth (f'troutperches (familyPercopsidae),

sticklebacks (familyGasterosteidae),

killfishes(familyCyprinodontidae),

aswellasoccasional coldwater salmonids duringthecoldermonths.Ingeneral,'he mostabundantspeciesoffishcollected inthevicinityofthesiteareprincipally speciesindicative oftheshallowwaterregionsofLakeOntariowherenaturalsummer'water temperatures aresuitableforwarm-water fishpopulations.

Naturalmaximumwatertemperatures inthisregionduringthesummerapproachtheupperseventies (77F)whichisgenerally abovetheoptimumtemperatures forcold-water speciesoffish,suchasthesalmonids (Refs.8,9,10,and11).Undernaturalsummerconditions, itwouldbeexpectedthatthecold-water speciesoffishinLakeOntariowouldretreattomoreoptimumthermalstratainthedeeperoff-shore watersinpreference tothewarmerin-shoreregionsoftheepilimnion.

Table2.7-1presentsthemaximumtemperatures recommended bytheNationalTechnical AdvisoryCommittee totheSecretary oftheInteriorascompatible withthewell-being ofvariousspeciesoffish,someofwhichhavebeenobservedinthevicinityoftheNineMilePointNuclearStation.Fishlarvalabundance appearstobequitelow.TheonlyfishwhichappearstospawnactivelyinthevicinityofNineMiletotheshoreduringthespring.Foodpreference studiesoffishintheareaindicated thatsmallalewives, darters,minnowsandalewifeeggsaretheprimaryfoodsupplyinthespringoftheyear.Astheseasonprogresses thefreshwater amphipod(Gammarus) assumesgreaterimportance asafoodsource.Forsomeofthelessabundantfishspecies,crayfishandsmallforagefishcomprised amajorportionoftheirdietduringtheautumnmonths.Manyresearchers havestudiedthebenthiccommunities ofLakeOntario.Henson(Ref.12)reviewedthevariousresearchprogramsassociated withbenthosstudiesontheGreatLakes.NeilandOwen(Ref.13)andHerbst(Ref.14)described thedistribution ofregioninthevicinityofNineMilePoint.Brinkhurst (Ref.15)discussed thechangesinthebenthiccommunities ofLakeErieandOntarioinrecenttimes.TheGreatLakesLaboratory oftheState2.7-5

University CollegeatBuffalo(Ref.16)discussed interactions oflightandtemperature onthegrowth~'StheandTheFederalWaterPollution ControlAdministration statedin1966(Ref.17)thattherearesevenprincipal typesofbenthicinvertebrates presentinLakeOntario.TheAmphipoda-andOligochaeta accountforabout95percentoftheorganisms.

Theremaining fivepercentareSphaeriidae (fingernail clams),Tendipedidae (bloodworms),

Isopoda(aquaticsowbugs),Mysidacea (opossumshrimp),andHirudinea (leeches)

.Theamphipods arethepredominant invertebrates throughout thelake.Theabundance innumberoforganisms persquaremeterduringa1965surveyrangedfrom0to5,400indeepwatersamplingstations.

Table2.7-1Provisional MaximumTemperatures Recommended asCompatible withtheWell-Being ofVariousSpeciesofFishandTheirAssociated Biota93F:Growthofcatfish,gar,whiteoryellowbass,spottedbass,buffalo,carpsucker, threadfin shad,andgizzardshad.90F:Growthoflargemouth bass,drum,bluegill, andcrappie.84FGrowthofpike,perch,walleye,smallmouth bass,andsauger.80F75F:Spawningandeggdevelopment ofcatfish,buffalo,threadfin shad,andgizzardshad.Spawningandeggdevelopment oflargemouth bass,white,yellow,andspottedbass.68FGrowthormigration routesofsalmonids andforeggdevelopment ofperchandsmallmouth bass.55F:Spawningandeggdevelopment ofsalmonandtrout(otherthanlaketrout).48F:Spawningandeggdevelopment oflaketrout,walleye,northernpike,sauger,andAtlanticsalmon.From:TableIII-1,WaterQualityCriteria, ReportoftheNationalTechnical AdvisoryCommittee totheSecretary oftheInterior, April1,1968,Washington, D.C.gFederalWaterPollution ControlAdministration.

Thebenthicstudiesconducted atNineMilePointaspartoftheUnit1preoperational andpostoperational studiesindicatethat2.7-6 NIt1 themaximumbiomassoccurring alongthe10-footcontouranddecreasing rapidlydowntothe20-foot.depthcontour.Beyondthe20-footdepthcontourgrowthwassosparsethatadequatesamplesforanalysiscouldnotbeobtained.

Thebenthicanimalcommunity isdominated bythefreshwateramphipodofthegenusGammarus.

ThelargestbiomassofGammarusappearedtobeassociated withmaximalalgalgrowthalongthe10-footdepthcontour.Otherbenthicanimalsincludedthreespeciesofgastropods andthechircncmid larva,~Tendis.Ingeneral,thequantityofplantandanimalmaterialfoundalongtheNineMilePointpromontory islessthanotherareasinthelake.Waveactivityandbottomcomposition alongthepromontory probablyplayaroleinreducingthetotalbiomass.Asdiscussed byBeeton(Ref.5),LakeOntariohascharacteristics associated withbotholigotrophic andeutrophic conditions.

ThewaterqualitystudiesatNineMilePointindicatethatingeneral,concentrations ofnitratesandphosphates arelowandevenlydistributed offshorefromthepromontory.

Dissolved oxygenconcentrations werefoundtobehigh,evenduringthewarmestperiodoftheyear.TheUnitedStatesDepartment ofInterior(Ref.18)statedthatrecentsamplings haverevealedachangeinphytoplankton composition, indicative ofnutrientenrichment..

Surveysin1965indicated thatthephytoplankton population ofLakeOntariovariedfrom50to3,600organisms permilliliter.

ThedominantspeciesduringthespringwasScenedesmus, whileinJulyandSeptember thepopulation wasdominated byChlamdomonas.Anextensive bloomofAnabaenawasrecordedinmid-July.

Otherspeciesofplanktonidentified duringfieldstudiesin1964and1971includedthefollowing:

Copepoda'""K!-"'ES-"Cladocera

~Dahnia.dnbia.D.ga1eata.Bosmina.ionirostris.

aOstracoda Rotatoria Keratella-adrata.K..cochlearis

~Prachionus sp.2e77 l'

ProtozoaTraechelo lum.Amoeba-Gastrotricha Chlorophyta Pandorina-Volvox-Adetaileddiscussion ofeffectsofstationoperation isgiveninSection5.Ecological studiesandpreliminary resuitsaredescribed inSection5.5.2.7-8

2.8PRESENTRADIOLOGICAL CONDITIONS ATTHESITEANDITSENVIRONMENT Theradiological conditions atthesiteandinitsenvironment havebeenmonitored inanextensive programinitiated bytheNiagaraMohawkPowerCorporation in1967,twoyearspriortostartupoftheNineMilePointStation-Unit1.TheresultsofthisphaseoftheprogramwerereportedtotheAECinadocumententitled"Environmental preoperational Survey,NineMilepoint,<<datedDecember1969.Thescopeofthemeasurements madeissummarized inTable2.8-1..Presently theprogramyieldsoperational phasedatafortheNineMilePointStation-Unit1.Table2.8-1Preoperational Environmental Monitoring ProgramSamplesandAnalysesAirFilters-GrossbetaGammapulseheightanalysisonrepresentative samplesPreciitation.GrossbetaGammapulseheight'analysis onrepresentative samplesMilk-GrossbetaRoutineandspikedtestsamplestoberunforSr-90andI-131Theobjectiveofthepreoperational environmental monitoring programwastoassurethattherewerenoradiological anomalies inthesitearea.Thepresentradiological monitoring programisdividedintotwopartsaslistedinTable2.8-2.1.Aquaticsurveillance

-ofLakeOntariointhevicinityofthesite.2.Landsurveillance inareassurrounding thestationsite.Inthelakesurveillance, afterdetermination oftypes,abundance, anddistribution ofaquaticorganisms, samplesaretakenatrepresentative andrepeatable locations andanalyzedforthefollowing activities:

28-1

Table2.8-2SampleCollection AnalysisNineMilepointStation-Environmental Monitorin

~Proram.A.LakeProram(Described inAppendixD-4ofRef.19)TypeofSampleTypeofAnalysisCollection Frequency NumberofLocations 1.Fish2ClamsGBandSr-90GB,GSA,Sr-90SpringandFallSpringandFallTwoTwo3.Gammarus(FreshWaterShrimp)4.LakeWaterGB,GSA,Sr-90GBiGSASpringandFallWeeklyTwoDownstream ofEffluentDischarge Coding:GB-GrossbetaGSA-GammaspectralanalysisNotesonGradedProgram:A.Noenvironmental lakeprogramforeffluentdischarged atlessthan1x10-~uCi/mlaverageconcentration.

B.Standardenvironmental lakeprogramasshownforitems1thru3foreffluentdischarged between1x10-~to1x10-~uCi/mlaverageconcentrations.

C.Standardenvironmental lakeprogramasshownforitems1thru4foreffluentdischarged above1x10-~uCi/mlbutlessthanMpCinaccordance withAppendixB,TableII,Column2,ofCFR20andnote1thereto.D.Anappropriate numberofsamplesshallbetakenateachlocation.

Table2.8-2Continued B.LandProram(Fiveon-siteandsixoff-sitesamplingstationsareemployedasdescribed inAppendixD-4ofRef.19.)TypeofSample1.AirParticulates TypeofAnalysisCollection Frequency GSA(monthly)

WeeklyGB-all(24hrs.decay)NumberofStationsElevenLocation5on-site6off-site2.Precipitation GB8GSAMonthlyEleven5on-site6off-site3.FilmBadgesorTLD~sRadiation MonitorsGrossGammaGrossGammaMonthlyContinuous ElevenSix5on-site6off-site5on-site1off-site5FarmMilk6.AirborneHalogensGrossBeta,SR-90,I-131GSAMonthlyWeeklyAdjacentDairyHerdsElevenPlantVicinity5on-site6off-siteCoding:GSA-GammaspectralanalysisGB-GrossbetaGB8GSA-GrossbetaandgammaspectralanalysisNotesongradedProgram:A.Noenvironmental landprogramforstackreleaseslessthanapproximately 3percentofmaximumreleaserate.B.Standardenvironmental landprogramasshownforitems1thru5forstackreleasesbetweenapproximately 3to10percentofmaximumreleaserate.C.Standardenvironmental landprogramasshownforitems1thru6plusweeklyforfarmmilksamplesforstackreleasesbetween10to30percentofmaximumreleaserate.D.Environmental landprogramupgradedtotwiceweeklyonsiteforitem1,weeklyonsiteforitem2,bi-monthly on-siteforitem3andweeklyforitem5forstackreleasesgreaterthanapproximately 30percentofmaximumreleaserate.E.Aftersubstantiating dataisanalyzedforanyofthereleaseratelevels,theenvironmental landprogramisdegradedbyonelevel,i.e.,B.toA.,C.toB.andD.toC.

~~

GrossBetaGrossGammaCs-137Sr-90Zn-65Co-60Theresultsofradioanalyses ofaquaticsamplescollected through1971,arepresented inTable2.8-3.Fiveon-siteandsixoff-siteenvironmental monitoring stationswereoriginally provided; fouradditional on-sitestationshaverecentlybeeninstalled attheFitzPatrick Plantsiteforfutureuse.Theirlocations areshownon~Figures2.8-1and2.8-2.Locations havebeenselectedwherenoradiological anomalies existandwherethestationsareaccessible underallweatherconditions.

Theyhavealsobeenlocatedineachsignificant sectorrelativetothesite.Allmonitoring

'stations areequippedwithconstantflowparticulate airsamplers, rainandsnowfalloutcollectors, andintegrating gammadosimeters.

On-sitestationsandtheoff-siteSectorCstationalsoincludearecording gammaradiation monitor.Thisequipment hasbeenoperatedintermittently overatwo-yearperiodsinceunitstartup.Table2'-4showstheradiation exposuremeasuredwiththermo-luminescent dosimeters (TLD)fortheperiodfromJuly1970throughDecember1971,atthefiveNineNilePointNuclearStationenvironmental samplingstationsandthesixoff-sitesamplingstations.

(Nodataisavailable asyet.fromthefoursamplingstationsrecentlyinstalled attheFitzPatrick Plantsite)Thegrossbetaactivityofprecipitation samplescollected fromthreeon-siteandtwooff-sitestationsinJuly,September, October,andNovemberof1970,andforfiveon-siteand'ixoff-sitestationsinOctober,November, andDecember, 1971arepresented inTable2.8-5.Theradioactivity ofairisdetermined bypassingitthrougha2-inchfiberglassfilteratanominal.flowrateof2cfm,changingthefiltersweekly,andmeasuring theradioactivity after24hoursdecaytime.Resultsobtainedduringthesecondhalfof1970arelistedinTable2.8-6.ResultsobtainedduringtheperiodfromSeptember throughDecember1971arelistedinTable2.8-7.Theresultsofthedatacollected fromtheenvironmental monitoring programindicatethatnoanomalies existatthemonitoring locations.

Radiation levelshavebeenobservedtobegenerally consistent withdatacollected inNewYorkStatebytheDepartment ofEnvironmental Conservation.

2.8-4

LAA'EONTA8'lOWI)II)IIIE2EIIIIININEMILEPOINTNUCLEARSTATIONE3E4IIIIIE5E6E7IPROPERTYLINE3451IARDJAMESA.FITZPATRICK NUCLEARPOWERPLANTESIIIIIEeITOMEXICO1AYPROPERTYLAKEVIEWLINEAPPROXIMATE LAKEDEPTHSDISTANCEFROMSHORE50400600900I'I005000DEPTH(BELOWL.W.DATUM)612182450'000001COOSCALE-FEETFIGURE2.8"ILAKESAMPLINGTRANSECTS ANDON-SITERADIOLOGICAL'ONITORING LOCATIONS

r-.~iiMEXICOa,gDp\/8///\C/i0/l//r0ADiSITEr~I/OSWEGO)/(//Ir,L8>gI////E/Fl/\1PULASKIMILESglMONITORFIGURE2.8-2OFF-SITERADIOLOGICAL MONITORING STATIONLOCATIONS

  • 4 Table2.8-3NineMilePointAquaticSampleRadioanalyses Picocuries erramCi/m-d*weihtSampleTypeLoca-tionDateWeight(gms)wetdryGrossBetaGrossGamma('s137Zn<<('o60NorthernPike(Esoxlucius)6/692170482197%006102%0.110.15%002091%0050.34%0020.0%002BrownBullhead(Ictalarus nebulosus)

WhitePerch(Moroneamericana)

YellowPerch(Percaflavescens)

N.RedhorseSucker(Moxostoma macroiepidotum)

Alewife(Pomolobus pseudoharengus)

E-1E-1E-3E-1E-3E-3E-1E-1E-3E-0E-1E-3E-1E-1E-1E-3E-3E-1E-1E-3E-3E-16/696/706/718/716/696/706/716/716/716/718/716/6911/706/716/716/716/716/718/7111/716/696/7011/706/716/716/7111/716/696/706/716/718/7111/71481915115512731673636906628783802001501151535275491596307323973158019621588662146012643926111653414105241481696652101366287441150493514975119159242841012253685121386141845168.5821.517.572414%0.110.0%0.588.64%0.48 6.1%0~4204%0.094.1%0.3112i0.66.9%0.4311.6%0.610.1%0.513%12.94%0.13.88%0.21133%0714.7%0.79.35%0.56.37%0.411.3%0.610%1-5.0%0.31.58%0.087.0%0.45.7%0.1513.5%0.712.5%0.710.8%0.53.8%0.24.0%0.230.0%0.5813.5%0.8.12.2%0~712%112i20.93%0.090.30%0.08NDND189%0211.9%0.2ND.NDNDNDND2.04%0.22NDNDNDNDNDNDND0.81%0.09 0.46%0.03 NDNDNDND2.57%0.231.8%0.1NDNDNDND0.04%0.02 00%021.92%0.310.8%0.10.54%0.01 0.0%0.20.61%0.140.87%0181.5%0.230.64%0.15 0.2%0.1016%0.021.80%0.090.24%0.070.32%0.07 142%0.230.98%0.210.73%0.23 0.8%0.10.4%0.10.0%0.020-0%0.22.01%0.09 0.5%0.090.21%0.040.53%01506%0.10.19%0.010.0%0.20.54%0.150.14%0.050.8%0.20.0%0.10.73%0060.26%0.031.46%0.340.3%0.10.7%0.041.6%1.11.48%0~180.24%0.051.33%0.261.18%0.210.3%0.1208%0.10.39%0-04 0.6310.14249%0.220.3110.08111%0.210.97%0.170.2%0.10.5%0.10.33%0.030.99%0.22 0.51%0.050.52%0.074.95%0.66 0.32%0.06 10%0.22.0%0.47022i0.057.54%0.59 11.3%1.91.3%0.34.6%1.00.09%0.02 0.0%0.580.0%0.50.0%0.50.03io020.0%0580.0%0.50.0%0.50.0%0.50.0%0.50.0%0.50.03%0.02 0.0%0.580.0%0-50.0%0.50.0%0.50.0%0.50.0%0-50.0i0.50.0%0.50.03%0020.0%0.580.0%0.580.0%0.50.0%0.50.0%0.50.0%0.50.23%0.10.0%0.580.0%0.50.0%0.50.0%0.50.0%0.50.0%0.020.0%0.580.62%0.08 0.'6%0.10.06%0.02 0.0%0.58067%0.00.0%0.50.6%0.080.0%0.50.0%0.50.0%0.020.0%0.580.0%0.580.84%0.140.0%0.50.0%0.50.0%0.5++

0.0%0.020.0%0.580.51%0.08 0.44%0.07 0.0%0.52.3%0.4*+

0.0%0.020.0%0.580.0%0-50.56%0.100.0%0.50.0%0-50.0%0.50.0%0.500%05++*measuredasMn~~whichwasthemajorgammacomponent inthealgaesample.**co<<includesco<<ND-Nodetectable activityabovebackground andsystemsensitivity onentirewetsamplegammascan.

Table2.8-3(Cont)Picocuries erramCi/m-dweihtSampleTypeLoca-tionDateWeight(gms)wetdryGrossBetaGrossGammaCs137SrvoZnd5CodaSmallmouth Bass(Micropterus dolomieui)

RockBass(Ambloplites rupestris)

LampreyEel(Petromyzon marinus)Smelt(Osmerusmordax)MinnowSculpin(Cottussp.)E-1E-3E-3E-1E-1E-1E-3E-3E-1E-1E-1E-3E-3E-1E-1E-3E-1E-3E-3E-1E-1E-3W-26/696/706/716/716/718/716/716/716/718/7111/7111/716/7011/706/716/706/716/716/7111/7111/706/716/716/716/718/7111/716/706/716/717/7138527034975526281617511726441947019581542415295119.5592656.574.085.538187515.512.03905415230913029549379414615259231145.510.55.514613.517014.0104112.50.513.6i0.17.0i0.4105i0.58.74i0.49 4.94io.3611i14.75i0.36 7.39i0.44 6.53i0.42 13il3.8i0.24.9i0.3O.oi0.58114i111628i330.59i0.05153i1624.5i1.517.6i1.511il11.4i1.111.2i1018.1ii015.5i10236i1.310i214i31.4i0.416.6i2333.8i6122i51.68io.190.72i0.02 NDNDNDNDNDNDNDNDNDND29i1ND73+0.2NDNDNDNDNDNDNDNDNDND110i10NDNDND0.42i0.02 0.43i0.02 0.87io.180.49i0.14 0.74i0.180.7i0.10.41i0.12 223iO280~6io160.6i0.104i0.106io2'.29i0.073.44i0.09 162i130.48i0.03 3.28i0.81.41io.330.10i0.041.4io.46.19io400.11io041.19i0.280.54i0.15 0.90io.241.0i0.34.1i1.4O.oio.22.44i0.54 11.0i3.67.2i1.912io-319io2107i0.220.22i0.05 0.78io.100.2io.1112io210.88io.1712io220.3io.10.6io.10.9io.1O.oio.070.09io.026.29i1.95'.11io.020.81io.280.59io.170.98io.3207io13.16io.701.49io.361.05io.220.65io.190.65io.142.3i0.516i40.27io062.24i0.76 6.41i2.4019i4O.oio.02O.oio.58O.oio.50.Oio.50.Oio.50.Oio.50.Oio.50.Oio.5O.oio.5O.oio.5O.oio.5O.oio.5O.oio.58O.oio.58O.oio.5O.oio.58O.oio.5O.oio.50.Oio.50.Oio.5O.oio.58O.oio.5O.oio.5O.oio.50.Oio.5O.oio.50.9io.2O.oio.581.14io.240.Oio.53.3i0.5O.oio.02O.oio.580.52i0.07 O.oio.5O.oio.5O.oi0.5O.oio.5'.oio.50-Oio-5O.oio.5O.oio.5++

O.oio.5++

O.oio.58O.oio.580.8i0.19O.oio.580.95i0.180.67io.12O.oio.50.6io.1*e0.63io.12O.oi0.50.16io110.78io.12O.oio.5O.oio.52.5i0.4++

O.oio.580.74io~16O.oio.5O.oio.5Eel(Anguilla bostoniensis) 6/718393614.94io.36ND1.3i0.230.21i0.07 O.oio.5O.oio.5Carp(Cyprinus Carpio)6/718/713780293412627.31io.4415803.4i0.3NDND0.22io070.7io.10.15io.0401io.11.12io21O.oio-5O.oio.5O.oio.5*measuredasMnsdwhichwasthemajorgammacomponent inthealgaesample.Co<<includesCosdND-Nodetectable activityabovebackground andsystemsensitivity onentirewetsamplegammascan.

Table2.8-3(Cont)Picocuries er.ramCi/m~d-weihtSampleTypeWhiteBass(Roccuschrysops)

Loca-tionDate6/71Weight(gms)wetdryGrossBeta3711935.55i0.38 Gros'sGammaNDCsx3>0.43i0-130-43io.10Znss0.0i0.5Co<<0.0i0.5CalicoBass(Pomoxisnigromaculatus)

E-18/7140114878io4ND0.5io.10.110.10.0i0.50.0i0.5Sunfish(Lepomis-)GizzardShad(Dorosomacepedianum)

Freshwater Shrimp(Gammarus sp.)E-1E-1E-1E-1E-1E-36/718/7111/708/7111/716/696/706/716/7168283209061886700831111612.4iO.97110i17395.75i0.53 2746.6i0.45423.6i0.26.4i2.60.55.9i0.80.56.12i0.870.59.28i1.13NDNDND.0.95i0.24 0.5i0.12.03iO090.8i0.10.1i0.12.51i0.370.2io.10.47i0.050.1io10.3i0.10.Oi0.50.OiO.50.Oi0.580.Oi0.50.OiO.50.Oi0.50.0i0.50.0i0.580.0i0.50.0i0.5~+

Walleye(Yellow)E-1Pike(Stizostedion vitreum)8/7111025328.2i0.50.5i0.10.Oi0.10.Oi0.50.0i0.5CrayfishW-2E-18/718/71453188i19ND511i10ND19io91.9i0.719i432il31i0.50.0i0.51.2i0.21-710.5ClamsAlgaeW-2E-1W-2E-1E-1E-3E-1W-2E-1W-26/696/707/717/718/716/696/7011/706/716/718/718/7111/7111/71689380244142210182070843116223847920114363298168241286191411465230.15i0.05301i0.460.4iO.11.0i0.10.7i0.113.5i0.21.71107118.111.257.7i7.9112i1271i317i151i419i20.46i0.053.1io.1NDNDND35.6i5.935i185i2.5NDNDNDND(Allco60)ND0.16i0.020.0i0.570.2i0.102i0.10.1*0.10.2i0.010.0i0.571.14i01210.310.88.97iO.7617.9i2.52.1io.61.88i0.630.0i0.030.46i0.04 2.14io~131.7i0.10.4i0.13.2iO.12.4110.12054i0.010.15iO.0334.3i7.643.2i9.51.7io.41Oio2495i1092.02i0.45 0.29i0.02 0.0i0.580.0i0.50.0i0.50.0i0.50.07i0.02 0.0i0.580.0i0.5812.7i3.41.33i0.32 2.1io30.610.10.0i0.50.0i0.50.05i0.02 0.0i0.580.0i0.50.0i0.5.0.010.5*0.03i0.02 1.1810.0815-4io.915.1i2.5133i941i2441.8iO.2~*5.4i0.50.0i0.5~measuredasMns~whichwasthemajorgammacomponent inthealgaesample.Co<<includesCo<<ND-Nodetectable activityabovebackground andsystemsensitivity onentirewetsamplegammascan.

Table2.8-3(Cont)Picocuries erramCi/m-d-weiht.SampleTypeLoca-tionDateWeight(gms)wetdryGrossBetaGrossGammaCsi37Sr90ZnasCo<<Miscellaneous AnalsesBottomSedimentE-1(15ftdepth)E-1(Discharge area)E-4(20ftdepth)6/7037029719i2981305510.020.010.070.010.588.5%0.66/7060239013X169130-4810.29 0.0810-010.ORO.585.510.56/704233501.610.34.310.30.010.290.010.07O.OX0.580.010.58YellowpercheggsE-36/7129415.811.6ND2.14%0.430.66RO220.6510.13068%0.14MCOICO*measuredasMn~~whichwasthemajorgammacomponent inthealgaesample.**Co<<includesCo~~ND-Nodetectable activityabovebackground andsystemsensitivity onentirewetsamplegammascan.

Table2.8-4Radiation DoseMeasuredatEnvironmental SamplingStationsExosure-mremDurin-Period.of-Location7/70to9/70'0/70to12/701/71to3/714/717/71toto6/74-9/7110/71to12/71~D1on-siteD2on-siteEon-siteFon-siteGon-siteCoff-siteD1off-siteD2off-siteEoff-siteFoff-siteGoff-site2119141627182318161615201823172122262020'424121316161012161110122320.2020192022212219237.64.65.64.88.66.011.23.4526.08.012'615213.616.017.413.811.020013.612.4124Table2.8-5GrossBetaActivityofPrecipitation SamplesinUnitsof10-~uCi/ft~/month Period*SAMPLELOCAT IONS~.-..On-SiteStations.

D1D2EFJuly,1970September, 1970October,1970November, 1970October,1971November, 1971December, 197126.93310.923383.840.622.83.011.03.18.3522.55.228.2451917172861195.934-96362323Off-SiteStations.

July,1970September, 1970October,1970November, 1970October,1971November, 1971December, 197123.0686.54.89537.128-0D130.33410.2363.6435.5D2123.2.1E27.7222G5.8110.5.81581412.8-9

Table2.8-6Environmental AirSampleGrossBetaActivities (10->>uCi/cm~)Date7-14-707-21-707-27-708-4-708-11-708-18-708-24-709-8-709-15-709-21-7010-2-7010-12-7010-21-7010-26-7011-3-7011-9-7011-16-7011-24-7011-3-7012-7-7012-14-70~On-Site.-

D-1-0.328"39193.63.5201.2121.10.7100.70.6111.8110.80.60.60.6D~2~0.43.34.5224~2402.61.6151.6091.21.00.9152.71.31.30.70.908~Off-Site.

3.7334.22.34.24.2251.512130.60.50.5040.81.46.9070.50.40.63.52.93.72.13.93.5241.31.10.60.8070.6111.60.90.70.50.60.53.83939224.33.924141.51.30.81.00.90.8142.4111.00.60.70.72~8-10

Table2.8-7Environmental AirSampleGrossBetaActivities inunitsof10->>uCi/ccCollection Period-Weekof:D1-D2ED1D2SAMPLE~LOCATIONS ON-SITESTATIONS-OFF-SITE.

STATIONS-9/11/719/24/7110/1/71m10/8/71I10/19/7111/3/7111/10/7111/17/7111/24/7112/1/7112/8/7112/15/7112/22/710.700.960.860.700.200.611.492301.613.500.321.000-510480.690-490.150-350970500770331.641.371.660.800.730.730.590.371-060.981.351020.350.890.971.301.461.350.661151.421.090.430.891.091.331.541.090.701.171.051.441141.311.261.511.751-781.301.060.600.500.790.660.690.470.68-0.830.930.640.490320410.390360.300230.340.390.370340.240.440.450.390.390360.340.360.530.550.340.28068,.0720.570.740.690490.480.770.840.460.390420550.460480490410.420.530.650350.380.530.660.770.670.460.400.600.720.650.550.500-350530.450.420.460.280.400.500.560.350.32

't SECTION3THESTATION31EXTERNALAPPEARANCE OFTHESTATIONTheNineMilePointUnit1(seeFrontispiece) stationconsistsofseveralstructures ofvarioussizes.TheseincludetheProgresscenter,theadministration, reactor,turbine,andradwastebuildings, thescreenwell pumphouse,thesanitarywastetreatment plant,andthe350-footstackwhichrisesfromtheradwastebuilding.

Thetallestofthebuildings isthereactorbuilding, whichisapproximately 140feethigh..Allthebuildings, exceptfortheProgressCenterandsanitarywastetreatment plant,areinterconnected toformacomplexofbuildings.

Aplotplanofthestationsitewhichshowsthearrangement ofthestationfacilities ispresented inFigure1.1-1.Thearchitecture ofthestation'emphasizes thesimplerectangular formsofthecontainment structure, turbine,andauxiliary buildings.

Themassesaredefinedinacomposition ofpanelswhichrelatethebuildings toeachotherintreatment andscale.Particular consideration wasgiventomaterials andcolor.Aroundtheentirebase,precastconcreteunitsformastron'ghorizontal motifwhichlendsanappearance ofsolidityandunitytothecomplexofstructures.

Thedominantrussetcolorofthebasecontrasts wellwiththelightgraysandgreensoftheflutedmetalsiding.Anindependent landscape architect wasresponsible, fortheexternalappearance ofthestationgrounds.Initially, amasterlandscaping planfortheentiresitewasdeveloped.

Thevariousstructures havebeenlocatedforfunctional efficiency, andplantinghasbeenusedextensively tocreatevistas,establish

horizons, andeffectapleasingrelationbetweenbuildingandnaturalsurroundings.

~TheProgressCenter,locatedinthenorthwest portionofthesite,isacontemporary stoneandglass'anch-style structure whichisusedforpubliceducation andasatouristattraction.

Athree-part showisofferedonnuclear-electric power,thegrowthofenergyinupstateNewYork,thestoryofNiagaraMohawk,andtheoperation ofNineMilePointNuclearStation.TheexhibitsincludeaworkingscalemodelofUnit1,andanatomicfissiondisplay.Therearealsoexhibitsoflivegamefishcommontothearea.naturetrailsthroughthewoods,andpicnic'reas onbluffsoverlooking LakeOntario.Over50,000personsayearvisitandenjoytheProgressCenter'spresentations.

~fIIf1f) 32TRANSMISSION IZNESInconjunction withtheconstruction ofNineMilePointUnit1NiagaraMohawkconstructed twosinglecircuit345kVtransmission linesin.1965toconnectthegenerating stationoutputintoNewYork'scross-state transmission system.Figure3.2-1presentsamapofthetransmission route.Following areviewofsuitabletermination pointsoftheselines,atie-intoNiagaraMohawkPowerCorporation's existingsubstation inthetownofClay,NewYork,whichisabout27milessoutheast ofthesite,wasselected.

Thislocationprovidedreadyaccesstothecrossstate345kVgrid.Therouteselectedrunsduesouthofthesiteforadistanceofabout4miles,andthenabout23milessoutheast totheClaysubstation.

Thisroutecausedminimumdisruption toexistingprivate,homes,farms,andbusinesses andalsoofferedaccessibility andeaseofconstruction.

Theprobableneedforfuturetransmission linesfromthisgenerating arealedtothedecisiontopurchasearight-of-way 500feetwidewhichwassufficient toaccommodate NineMileUnit1needsandprovidespaceforfuture345kVlinerequirements.

Thetwo345kVlinesassociated withNineMilePointUnit1werepositioned inthecenterof'heright-'of-way.

Twosingle-circuit 115kVlinesarealsolocatedalongtheinitialreachoftheNineMilePointtoClayroute.Theselinesparallelthewestsideofthe345kVlinestoapointapproximately fourmilessouthofthesiteinthetownofScriba.Atthatpointthe115kVlinesjoinNiagaraMohawk'sLighthouse Hill-Oswego115kVlineswhilethetwo345kVlinescontinuesoutheasterly toClay.Photographs ofportionsoftherouteareshowninFigures3.2-2and3.2-3.The27-milelong345kVtransmission linetraverses terrainranginginelevatioh from250feetattheplantsiteto400feetattheClaystation.Itpassesthrough10milesofrelatively openfarmareasoftheTownsofScriba,Volney,.Palermo, Schroeppel, andClay.Approximately fourmilesofwetlandsandfivemilesofwoodedareas'ere encountered, particularly intheVolney-Palermo-Schroeppel areas..SeeFigure3.2-1.Right-of-way routepreparations consisted ofselectively cuttingawidthofapproximately 400feettoremoveundesirable woodspeciesandmaintainornamental typetreesandshrubs.Groundfoliagewasclearedthroughapplication ofstateapprovedherbicides.

Several,pinetreeplantations totalingabout10acresinthetownofSchroeppel wereleftundisturbed andcontinuetobefarmedasmultipleuseoftheright-of-way.

3~21

LA/I'0N7AR/0NINEMILEPOINTNUCLEAR'OWERSTATIONSCRIBAJAMESA.FITZPATRICK NUCLEARPOWERPLANT~le:IIIIIINEWIHAVENIIIIIIII/II/V0ILNEYII.IIIIII//IPALERM0I/II//I/III/III/iSCHIIIREPPLCLAYSUBSTATIONFIGURE3.2-ITRANSMISSION FACILITYMAP I~4 FIGURE3~2-2TRANSMISSION LINERIGHTOFWAY

F(GURE3.2-3TRANSMISSION LINERIGHTOFWAY

Woodpole,H-framestructures showninFigure3.2-4wereselectedtocarrythemajorportion(about25miles)ofthe345kVtransmission cables,whilelatticesteeltowerstructures supporttheinitial1.7mileoflinefromNineMilePointandthefinal0.3mileintotheClaysubstation.

Figure3.2-4alsoillustrates thetypicalvegetation growthintheright-of-way area.3~2-2 1

FIGURE3~2-4TRANSMISSlON LlNESTRUCTURES NORTHOFCLAYANDTYPIGALVEGETATION GROWTH

3.3REACTORANDSTFAMELECTRICSYSTEMNineMilePointUnit1isasingleunitnuclearsteamgenerating systemusingaGeneralElectricCompanyboilingwaterreactorwithathermalratingof1,850Mwandanetelectrical outputfromthestationofapproximately 610MW.TheunitwasdesignedbyNiagaraMohawkpowerCorporation andconstructed forNiagaraMohawkbyStone6WebsterEngineering Corporation, Boston,Massachusetts.

Thisunithasbeenincommercial operation sinceDecember, 1969.Theprincipal components aretheturbine-generator andnuclearsteamgenerating systemwiththelatterpresently usingnuclearfuelmanufactured byGeneralElectric.

Themajorcomponents anddiagramatic operation ofaBoilingWaterReactorareshowninFigure3.3-1.Thereactorfeedwater isheatedtosteamasitpassesthroughthereactorcoreofuraniumfuelelements.

Heatisdeveloped bycontrolled fissionofUranium-235, producing fissionproductswithslightlylesstotalmassthantheoriginaluranium.Thismassdifference isconverted toenergy.Thetrillions ofatomfissionstakingplaceeveryseconddeveloptheheattoconvertlargequantities ofwaterintosteam.Thissteamproduceselectricity intheconventional way,byspinningaturbinewhichdrivesanelectricgenerator.

Thispartoftheplantisinprinciple thesameasanyothersteam-electricstation.Thesteam,afterspinningtheturbine,iscondensed intowaterandrecycledtothesteamgenerators.

-Thenuclearreactortakestheplaceofaconventional boiler,andtheenergysourceisfissionofatomicfuelratherthancombustion offossilfuel.Theturbine-generator, alsomanufactured byGeneralElectricCompany,isatandemcompound6-flowunitconsisting ofahigh-pressure turbinesectiononthesameshaftwiththreelow-pressure turbinesectionsandtheelectricgenerator.

Theturbinecycleincludesfivestagesofregenerative feedwater heating,utilizing'extraction steamfromtheturbine.Steamexhausting fromtheturbineflowstothemainsurfacecondenser andiscondensed bycoolingwater.Theresulting condensate ispumpedtotheregenerative feedwater heaters.Theturbine-generator plantiscompletewithauxiliary systems,controls, instrumentation, electrical switchgear andfireprotection equipment.

Water'forcondenser cooling,thefireprotection systemandforauxiliary waterserviceisdrawnfromLakeOntariothroughanintakestructure andtunnelleadingfromthelaketothescreenwell andpumphousebuildingwherelargepumpingequipment islocated.Condenser coolingrequires250,000gpmandservicewaterrequires18,000gpm.Duringshutdowns, aservicewater-flowofabout6,000gpmisusedforreactorcooldown.

3M31

TRANSFORMER REACTORCORETURBINEREACTORINTAKEr)fSTRUCTURE CONTROLRODSFEEDPUMPDEMINERALI ZERCONDENSER DISCHARGE TUNNELDISCHARGESTRUCTURE FEEDWATER HEATERFIGURE3.3-ISIMPLIFIED DIAGRAMNUCLEARBOILINGWATERREACTORSTATION

34WATERUSECoolingwaterforthemaincondenser, auxiliary systems,reactorshutdownheatremoval,andforwatersystemmakeupiswithdrawn fromLakeOntarioviathesubmerged intaketunnel.Thiswateriscirculated bythemaincondenser circulating waterpumpsand/ortheservicewaterpumps.Theflowandheatdissipation ratesareindicated ontheWaterUsageFlowDiagram,Figure3.4-1.Duringnormalstationoperations, theclosedloopcoolingsystemheatexchangers areinuse.However,whenthestationisshutdown,thiswateruseisreduced.AtthistimetheShutdownCoolingSystemutilizesthebalanceoftheflerfromtheservicewaterpumps.Nochemicals orinhibitors areaddedtothecirculating waterorservicewatersystems.Chemicals inthequantities described inSection3.7areaddedinthemakeupwatertreatment system,analytical samplingsystem,anddecontamination system.Maximumflowsindicated forauxiliary heatexchangers andreactorshutdownarebasedonthemostsevereusageexpected, i.e.,~designheatloadsonexchangers and77Flaketemperature.

Threepumpsandexhangers arerunatthistimeratherthantwowhichareusedduringnormaloperation Thewaterflowratesfromwasteregeneration, residualheatremoval,makeupwater,domesticwater,laundry,andfloordrainwaterusagesarevariableandaredependent uponsuchthingsasthephaseofdemineralizer regeneration, timeofyear,andstationoperating statusConsumption ofwaterfurnished bytheCityofOswegowatersystemhasaveraged3300gpd.Allsystemswhichusewaterdischarge tothelake,andanexactdetermination ofwaterconsumption cannotbemade.However,itisestimated thatwaterconsumption duemainlytoevaporation wouldnotexceed0.02cfsor10gpm.Thisdoesnotincludeevaporation fromthelakesurfaceduetothermaldissipation ofthecirculating waterdischarge.

3.4-1 PI'!l"tltPt INTAKETUNNELFROMLAKEONTARIO268,000GPM(NORMAL)TTFMAX272s000GPM(MAX)250,0000PM(CONSTANT)(WHENOPERATING) 6000GPM(NORM)9000GPM(MAX)IBOOOGPM(NORM)22,000GPM(REGMAX)CONDENSER 4.0xI09BTU/HRSHUTDOWNHEATREMOVALSYSTEM3?.5xIOOBTU/HR(MAX)CLOSEDLOOPCOOLINGSYSTEMHEATEXCHANGERS CLARIFIER WASTEREGENERANT WASTESETTLINGBASINOVERFLOWWASTENEUTRALIZING SYSTEM100GPMMAX~20GPHLAA'E0A'AR10DISCHARGE STRUCTURE MAKE-UPDEMINERALIZER

.WASTEPRE-TREATMENT SYSTEMPOLISHING REGENERATION CLARIFIER%FORSYSTEMNOTINCONTINUOUS OPERATION CONDENSATE MAKE-UPAUXILIARY SYSTEMSMAKE-UPRADWASTESYSTEMDECONTAMINATED WASTES(FLOOR DRAINS>LAUNDRY)

RADWASTESHIPPINGCONTAINERS.

IOOGPMMAXCITYOFOSWEGOFLOWDOMESTICMETER~~WATERUSAGE3300GPDAVGSUPPLYSANITARYWASTETREATMENT SYSTEMTOLAKEONTARIO2400GPD(NORMAL) 3800GPD(MAX)FIGURE3.4-IWATERUSAGEFLOWDlAGRAM

3.5DESCRIPTION OFCOOLINGWATERSYSTEMDESIGNCirculating waterforNineMilePointUnit1isdrawnfromLakeOntariointoasubmerged inlet,circulated throughthecondensers, andreturnedtothelakethroughasubmerged hexagonal-shaped discharge structure.

Figure3.5-1showsthelocations oftheexistingstructures forUnit1inLakeOntario.3.5.1IntakeSystemCoolingwaterforUnit1iswithdrawn fromLakeOntario,atarateof600cfs(268,000gpm)intoahexagonal intakestructure locatedinawaterdepthofapproximately 18feetbelowthemeanlakesurfaceelevation of246.0feet(USLS'935 Datum)-Itisdesignedandlocatedtominimizethepossibility offishenteringitasdiscussed inSection5.1.Thestructure liesabout850feetfromtheexistingshoreline andisconnected tothescreenwell byatunnelbeneaththelakebedasshowninFigure3.5-1.Structural detailsoftheintakedesignareshowninFigures3.5-2and3.5-3.Thestructure iscoveredbyaroofofsheetpilingsupported onsteelbeamsandeachofthesixsideshasawaterinletaboutfivefeethighbytenfeetwide,withtheinletopeningsguardedbygalvanized steelracks.Thisdesignprovidesforwatertobedrawnequallyfromalldirections withaminimumofdisturbance andwithnovortexatthelakesurface,andalsopreventstheentranceofunmanageable flotsamtothecirculating watersystem.Thevelocityattheintakeopeningsisapproximately 2fpswhenthestationoperatesatmaximumoutput.Thereisabouta16-footclearance betweenthetopofthestructure andthelakesurfaceatmeanlowwaterlevel(assumedtobe244.0feet,USLS1935datum).Theintaketunnelrunsunderthelakefromtheintakestructure tothescreenwell andpumphouselocatedonshore,adjacenttotheturbinebuilding.

Thewaterdropsthroughaverticalconcrete-lined shafttoaconcrete-lined tunnelthroughwhichitflowstothefootofaconcrete-lined verticalshaftundertheforebayinthescreenhouse.

Thefootofthisshaftcontainsasandtraptocatchandstoreanylake-bottom sandwhichmaywashoverthesillsoftheinletstructure.

Thetunnel'has across-sectional areaofapproximately 74sqft,whichyieldsatunnelvelocityofapproximately 8.0fps.Therearetwomaincondenser circulating waterpumpsinthepumphouse,withatotalcapacityof250,000gpm.Theytakesuctionfromthreeseparateinterconnected baysinthescreenwell.

Beforereachingthepumps,thecirculating waterpassesthroughtrashracksandtraveling waterscreens.Thesystemdesignisflexibleandpartialflowcanbemaintained duringsystem3.5-1 N

g$5INTAKEgggOIIIIIIIIIIII2.'EIIIIIIIIIDISCHARGE

~IoII00>IIII00II~g50g,OIIIihIISTONEDIKEEL.263.0BUILDINGNORTH~SCREENANDPUMPHOUSEIO-57-07NOTE:ALLELEVATIONS AREREFERENCED TOUSLSI935DATUM0IOO200300400SCALEI=200FIGURE3.5-IPLAN-CIRCULATINGWATERSYSTEM

EL.228.5E.INTAKEEI..222.5LOWW.S.EL.244.0~STONEDIKEKAK.W.S.EL.242,0'CREEN HOUSEIII00INTAKETUNNEL(LOOKINGEAST)0EL.234.0'LDISCHARGE GAEL.230.0 EL.263.0'TONE DIKEaaaoaSCREENHOUSEETS44I565DISCHARGE TUNNEL(LOOKINGEAST)SECTIONI-I05IOSCALE-FEET SECTION2-20SIOSCALE-FEET NOTESIALLELEVATIONS AREREFERENCED TOUSLSI935DATUM400HORIZONTAL SCALE-FEET I00VERTICALSCALE-FEET EXCEPTWHERESHOWN200FIGURESS-2PROFILE-CIRCULATING WATERSYSTEM L

OhlONlOOITUNNELIIII0ITUNNELIgIOCVII27-8-2PLANIll22-6-PLANEL2226'LWEL244.0OEL2286EL2196LWEL244.00OEL250.0OIstlCV1't77lfEL227.0ELEVATIONELEVATION INTAKEDISCHARGE 0I0-020.0SCALE-FEET ALLELEVATIONS AREREFERENCED TOUSLS1955DATUMFIGURE5.5-3INTAKEBIDISCHARGE STRUCTURE DETAILS 1'

maintenance andservicing..

Figure3.5-4isa.schematic diagramofthescreenwell.

Therearealsotwoservicewaterpumpsinthescreenwell pump,housewhich..operate separately, eachratedat22,000gpmbut.generally throttled to18,000gpmsingle-pump operation..'lso locatedinthispumphousearetwo2,500gpm,125psigverticalturbinefirepumps.Onepump,isdrivenbyanelectricmotorandtheotherbyaseparatedieselengine..Thesepumpsaretestedonceaweekfor.atleast30minutes.3.52Discharge SystemStructural detailsofthedischarge designareshowninFigures3.5-2and-3.5-3.,Waterisreturnedtothe.lakeatapointabout0.1,mile,off-shore throughabell-mouthed outletsurmounted by.ahexagonal-shaped concretedischarge structure.

Thetopofthisstructure, isabout4feetabove.lakebottomand81/2feetbelowthe.lowestanticipated lakelevel..Thegeometryofthestructure closelyresembles theinletstructure, althoughreducedinsize..Thesixexitportsareabout3feethighby7feet4inches,feetwide.Unit1operatesatratedoutputwithamaincondenser flowof557cfs'250,000 gpm)andamaximumtemperature riseof32F,andaservicewaterflowof40cfs(18,000gpm)with.amaximumtemperature riseof20:F..To&1flowforUnit1.isthusapproximately 600cfs(268,000gpm),withatemperature

.riseof31.2F.Thesewaterflowsandtemperature increases remainessentially thesamethroughout theyear.Theseasonaltemperature variation ofthecoolingwatertemperature attheintakeisapproximately 33to77F.Adischarge tunnel,approximately 78sqftincross-section, runsunderthe.lakefromthescreenwell tothedischarge structure asshowninFigure3.5-1.Thedesignvelocityinthetunnelisapproximately 8fps.Thedischarge structure islocatedatapointabout535feetnorthofthescreenwell, inadepthofapproximately 12feetbelowthemeanlakelevelof246.0feet(USLS1935Datum).Thetotaltimeoftravelofwaterthroughthecoolingsystemisabout6minutesofwhichpassagethroughthecondenser aloneisabout14secondsandtraveltimefromthecondenser totheexitfromthedischarge structure is3minutes.Circulating wateralgicidetreatment hasnotbeenrequiredduringtheoperation ofNineMilePointUnit1.Thesilt(fineglacialtill)contentintherawlakewater hasprovensufficient topreventattachment ofbiological growthonexposedsurfaces(condenser tubes)ofthecoolingsystem.35-2

DISCHARGE SHAFTINTAKESHAFTIIIIIIIIIISCREENBACKWASH(lilTRASHRACKSCOLLECTION RECEPTACLES DISCHARGE FLUMEQTRAVELLING WATERSCREEN00SERVICEWATERAREA+fCWPUMPSFIGURE3.5-4SCHEMATICDIAGRAMOFSCREENWELL

Thetraveling screensarebackwashed withabout2,400gpmofservicewateronanautomatic timecycleof3minutesdurationevery30minutes.Screenwashingsaresluicedintothedischarge tunnel.Trashracksaheadofthescreensdeposittheircollected materials intoreceptacles.

Thisdebrisistruckedawayanddisposedofatastate-approved disposalsite.Withtheconstruction ofthepropesedUnit2,thecirculating watersystemforUnit1wouldbemodifiedtoacombineddischarge systemforbothunits,asdescribed intheNineMilePointUnit2Environmental Report(Ref.27).3.5-3 0

3~6RAINASTESYSTEMSTheradioactive wastesystemscollect,treat,anddisposeofanticipated andpotential radioactive wastesinacontrolled andsafemanner.Theoriginalradioactive waste(radwaste) systemasdescribed intheFinalSafetyAnalysisReport(FSAR)wasdesignedtocomplywiththelimitssetforthin10CFRPart20oftheAECregulations, whichwereineffectwhenUnit1wasconstructed.

Modifications areplannedtoupgradetheoriginalradwastesystemtoconformwiththelimitsestablished intheproposedAppendixItothe10CFRPM50guidelines.

Theradwastesystemsconsistofagaseous,aliquid,andasolidradwastesystem.Eachofthesesystemsisdiscussed inthissectionbothasitisdescribed intheFSAR(original systemdesign)andasitisplannedtobeupgraded.

Theradioactive inputtotheradioactive wastesystemsisdueto:a.Activation productsresulting fromirradiation ofreactorwaterimpurities.

b.Fissionproductsresulting fromuse-related perforations inthefuelcladdingoruraniumcontamination withinthereactorcoolantsystem.3.6.1WasteProcessing SystemsRadioactive wastesresulting fromstationoperation areclassified asgaseous,liquid,andsolid.Thesethreemajorcategories ofradioactive wastesaredefinedasfollows:a.GaseousRadioactive Wastes-Gasesorairborneparticulates ventedfromreactororturbine.equipment containing radioactive material.

b.LiquidRadioactive Wastes-Liquidreceiveddirectlyfromportionsofthereactorcoolantsystemorliquidswhichcanbecomecontaminated fromcontactwithradioactive materialwithinthestationc.SolidRadioactive Wastes-Solidsfromthereactorcoolantsystem,solidsincontactwithreactorcoolantsystemliquidsorgases,solidification ofliquidwaste,andsolidsusedinreactorcoolantandsteamandpowerconversion systemoperation ormaintenance.

FlowdiagramsforthegaseousradwastesystemareshowninFigure.3.6-1 fortheoriginalsystemdesignandinFigure3.6-2fortheupgradedsystemdesign.FlowdiagramsfortheoriginalandupgradedliquidandsolidradwastesystemdesignsareshowninFigures3.6-3and3.6-4,respectively.

3.6-1

3.6.2GaseousRadioactive WasteSystem3.6.2.1SourcesofRadioactive GasTheprincipal sourcesofpotentially radioactive gaswhichexistintheunitarelistedbelowanddescribed inthesectionsthatfollow:ProcessoffgasMechanical vacuumpumpoffgasDrywellventilation TurbineglandsealMiscellaenous buildingservicereleases3.6.2.1.1 ProcessOffgasNoncondensible radioactive processoffgasarecontinously removedfromthemaincondensers bythesteamjetairejectors.

Thisisthemajorsourceofradioactive gasandisgreaterthanallothersourcescombined.

Thecondenser offgasnormallycontainsactivation gases,principally N-16,0-19,andN-13.ThegasesN-16and0-19haveshorthalf-lives anddecayreadily.N-13withahalf-life of10minutesispresentinsmallamounts.Theprocessoffgasalsocontainstheradioactive noblegasparentsofthebiologically significant Sr-89,Sr-90,Ba-140,andCs-137.Theconcentration ofthesenoblegasesdependsontheamountoftrampuraniuminthecoolantaridonthecladdingsurfaces(usuallyextremely small)andonthenumberandsizeoffuelcladdingperformations.

Table3.6-1givestheestimated activityflowratesafter30minutesofholdupfortheoriginalsystemandafter20daysofholdupforxenonand33hoursforkryptonfortheupgradedsystem.3.6.2.1.2Mechanical VacuumPumpOffgasDuringunitstart-up, airisremovedfromthemaincondenser byamechanical vacuumpump.Thisvacuumpumpdischarges tothestackthroughsuitablepipingandisinserviceduringunitstart-upwhenlittleornoradioactive gasispresent.3.6-2

3.6.2.1.3DrywellVentilation Exposureofthedrywellairtoneutronleakagefluxesaroundthereactorvesselresultsinsomeactivation products.

Activitymayalsobeintroduced intothedrywellatmosphere bytheventingoftheprimarysystemreliefvalvesintothesuppression chamber.Thedrywellformsaclosedsystemthatmaybepurgedwithnormalreactorbuildingair,ifnecessary, whenaccessisrequired.

Thedrywellcanalsobeventedduringstart-uptoaccommodate theexpansion ofairasthetemperature increases.

Thisgasisdischarged tothemainstack.Table3.6-1Estimated Quantities ofFission-ProductIsotopesReleasedtotheEnvironsfromtheOffgasProcessingSystem~IsotoesHalfLifeActivityFlowRateofOriginalSystemAfter30MinutesHolduuCi/secActivityPlowRateofUpgradedSystemAfter20DaysHoldupforXenonand33HoursforKryptonuCl./secKr-83mKr-85mKr-85Kr-87Kr-88Kr-89Xe-131mXe-133mXe-133Xe-135mXe-135Xe-137Xe-138186hr4.4hr10.76yr76min2.8hr3e2ml.n12days2.3days527days16min9.2hr4.2min17min7501i45043,7504~500454702f0501,7255,5001f67552500.028.06402.001170.16144.8625~0004158.27~Forconservatism, avalueof50,000uCi/secwasusedasabasisforcalculating off-siteradiation exposures.

3.6.2.1.4 TurbineGlandSealMainsteamisusedfortheturbineglandsealsofNineMilePointUnit1.Althoughalargervolumeofgasesishandledbythissystemthanbytheprocessoffgassystem,thetotalactivitydischarged isconsiderably lessbecauseoftherelatively smallamountofsteamleakingthroughtheglandseals.Thelargervolumeresultsfromdilutionofthesteamwiththeairthatleaksintotheglandseals.Sincetheactivities arelow,thesteampackingexhaustgasesareheldupforonlyabout1.75minutes3.6-3

-I (essentially toallowN-16and0-19todecay)andthenexhausted tothestack.(SeeFigure3.6-1.)3.6.2.1.5 Miscellaneous BuildingServiceReleasesVentilation systemexhaustsfortheturbinebuilding, reactorbuilding, andthewastebuildingareindividually monitored byradiation detectors tolocateareasofactivitybeforebeingdischarged tothestack.Highefficiency particulate absolute(HEPA)filtersareinstalled intheexhaustductoftheradwastebuilding, inradiochemical laboratory hoods,andinmiscellaneous tankventsanddecontamination areaexhausts.

TheseHEPAfiltersremoveairborneparticulate activitybeforedischarge tothemainstack,asseeninFigure3.6-1.3.6.2.2Description oftheOriginalOffgasSystemTheprocessoffgasisamajorsourceofgaseousradioactive waste.Intheoriginalsystem,processoffgasisremovedfromthemaincondenser byasteamjetairejectorwhichprovidessufficient pressuretomovetheoffgasthroughthesystem.Theestimated volumeflowratesofoffgashandledbytheoriginalsystemare:DryairH202WatervaporNoblegases22scfm79scfm39scfmSaturated Negligible Total140scfmThesequantities wereusedasthedesignbasisfortheoffgassystem.Thesystemwasalsodesignedtoaccommodate variations inflewrateswithoutcompromising thesystemIscleansing abilities.

Thesystemincludes~the equipment described belowandisshowninFigure3.6-1.3.6.2.2.130-Minute DelayPipeThe30-minute delaypipeallowsforthehodupanddecayofshort-lived radioisotopes intheprocessoffgas.It~alsoallowsfortheagglomeration ofparticulate daughters sothattheymayberemovedbyfiltration.

3.6.222OffgasFilter(AfterFilter)Theoriginalprocessoffgasfiltersarehighefficiency

~'absolute type"(HEPA)filterswhichremovesoliddecayproductsbeforethegasisreleasedtothestack.BasedonaDioctyl-Phthalte (DOP)3.6-4

test,thistypeoffilterhasa99.97percentefficiency forparticulates largerthan0.3micron.3.6.2.2.3 Radiation MonitorsTwoflow-through offgasradiation monitorsareprovidedtomonitortheprocessoffgasinthegaseouswastesystemasseeninFigure3.6-1.Oneradiation monitorislocatedattheentrancetothe30-minute holduppiping.Thismonitorwouldautomatically closevalvesatthepipingexitiftheoffgasactivityisinexcessoftheallowable releaselimit.Asecondmonitorcontinuously measuresthegaseousactivitydischarged fromthestack.3.6.2.2.4 StackThebuildingserviceventilation

exhausts, togetherwiththatoftheoffgassystem,theglandsealvent,themechanical vacuumpumpsystem,andtheemergency ventilation system,arereleasedthroughthemainstack.Thestackisapproximately 350feethighandabout21/2timestheheightofsurrounding buildings, andhasanormaleffluentreleasevolumeofabout,130,000scfm.Thestackisareinforced concretestructure whichisdesignedtoensurethebestmixinganddilutionofthestationoffgases.

Thisisaccomplished byintroducing higheractivitywastegas(i.e.,processoffgasandglandsealexhaust)intothestackatapoint20feetabovetheentranceofthemaingasstreamcontaining negligible activity(i.e.,buildingventilation exhausts)

.3.6.2.3Description oftheUpgradedOffgasSystemTheproposedupgradedwastegassystemisshowninFigure3.6-2andwillincludetheadditional equipment described below.Theupgradedsystemprovidesaminimumof20daysdecayperiodforxenonisotopesand33hoursforKryptonisotopes.

Thedesignbasesareanassumedcondenser airinleakage of22scfmanda820,000uCi/seccontinuous activityflowratefornoblegasesmeasuredaftera30-minute decayperiod.Thisdesignbasisvalueisrecognized tobeaconservative onewhichisnotexpectedtobeapproached orexceededinstationoperation.

Thus,theactivityflewrateusedasadesignbasisishigherthantheactivityflowrateof25,000uCi/secgiveninTable3.6-1,whichisavalueconsidered morerepresentative fornormalstationoperation (seeSection5.2.1).3.6.2.3.1 Catalytic Recombiner Theprocessoffgasfromthemaincondenser airejectorswillbedilutedwithsteamtoamaximumhydrogenconcentration of4percentbyvolumeatallpowerlevels.Radiolytic hydrogenand3.6-5

oxygenwillcatalytically reactintherecombiner toformwater,thuseliminating thehydrogenhazardandreducingthevolumeofgastobehandledintherest,oftheoffgassystem.Thehydrogenconcentration downstream oftherecombiner willbelessthan0.1percentatalowairflowcondition of4scfmatallpowerlevels.3.6.2.3.2 Condenser Thegaseouswastesystemcondenser willbedesignedtoprovidethefollowing functions:

a.Condenseouttheexcesssteamprovidedinthesteamjetairejectorsforhydrogendilutionb.Condenseoutthewaterofreactionformedinthecatalytic recombiner c.Removetheexothermic heatofreactionwhichtakesplaceintherecombiner 3.6.2.3.3 DelayPipeIntheupgradedsystem,thefirsttwo-thirds oftheoriginaldelaypipewillbeusedtoprovide21/2hoursdelayaftertherecombiners.

Thefinalone-third oftheoriginalpipewillbeusedafterthecharcoaladsorbers toprovideanadditional delayof11/2hours.3.6.2.3.4 Dehumidification SystemThedischarge fromthe21/2-hourdelaypipewillflowthroughfreeze-outchillers.

Inpassingthroughthisdehumidification system,themoisturecontentofthegasstreamwillbereducedsothatessentially a<<dry<<gasisproducedbeforeitreachesthecharcoaladsorbers.

3.6.2.3.5 Pre-Adsorber Thedischarge fromthefreeze-out chillerswillflowthroughpre-adsorbers whichremovesoliddecayproducts.

3.6.2.3.6 CharcoalAdsorbers Thedischarge fromthepre-adsorber willflowthroughthecharcoaladsorbers whichwillprovideforselective adsorption ofthexenonandkryptonisotopesfromthebulkcarriergas(essentially air).Thisadsorption willdelaygasflowandpermitthexenonandkryptonisotopestodecayinplacetherebyreducingactivityreleasestothoseindicated inthelastcolumnofTable3.6-1.Aholduptimeof20daysforxenonand33hoursforkryptonwillbeprovided.

3.6-6

3.6.2.3.7 VacuumPumpTheliquidringtypevacuumpumpwillbeinstalled topulltheoffgasthroughtherecombiner charcoaladsorbersystem.Thisallowsthesystemtooperateatanegativepressurewhichpreventstheleakageofanyradioactive gasesintothebuilding.

Theoriginaloffgasfilters(Section3.6.2.2.2) willserveasafterfilters toremoveanysolidparticulates orcharcoalfinescarriedoutofthecharcoaladsorbers beforetheyreachthevacuumpumps.Theeffluentfromthevacuumpumpswilldischarge tothestack.3.6.3LiquidRadioactive WasteSystemTheliquidradioactive wastesystemcollects,

monitors, andprocesses forreuseordisposalallpotentially radioactive liquidwastesinacontrolled manner.Theoriginalsystemhasthecapacityandcapability ofprocessing thequantities andactivities ofliquidwastesresulting fromnormaloperation andmaintenance.

Discharges fromtheoriginalsystemmeettherequirements of10CFRPart20andarewellbelowtheMPC.(1.64percentofallowable, averagevalueforperiodJulythroughDecember, 1971.)Theproposedupgradedsystemwillhavethecapability ofprocessing theliquidwastesuchthatmostoftheliquidcanbereusedandsuchthatwastedischarges complywiththeproposedAppendixItothe10CFRPart50guidelines.

Theliquidradwastesystemisdividedintoseveralsubsystems sothattheliquidwastesfromvarioussourcescanbesegregated andprocessed separately.

Cross-connections betweenthesubsystems provideadditional flexibility forprocessing ofthewastesbyalternative methods.Thewastesarecollected, treated,anddisposedofaccording totheirconductivity, suspended

'olidscontent,and/orradioactivity.

Operation ofequipment isprimarily bymanualvalvesetupandstart,withautomatic stop.Simplified flowdiagramsareshowninFigure3.6-3fortheoriginalsystemandinFigure3.6-4fortheupgradedsystem.3.6.3.1Description oftheOriginalLiquidRadwasteSystem3.6.3.1.1WasteCollector Subsystem Wastesenteringthewastecollector subsystem havevariableactivitylevels,dependent ontheirsource,andrelatively lowconductivity (generally lessthan50umho/cm).

Radioactive materials areremovedfromthesewastesbyfiltration (insolubles removal)andionexchange(solubleandcolloidal removal).

Following batchsamplingandanalysis, theprocessed liquidsareeitherreturnedtothecondensate storagetanksforreuseintheplant,orreprocessed.

3.6-7

Wastecollector subsystem influents includedrainsfrompipingandequipment containing highqualitywaterwastesfromthereactorcoolantsystem,condensate system,feedwatersystem,offgassystemdrains,andassociated auxiliaries.

Influents alsoincludereactorexpansion drainageviathereactorwatercleanupsystem,selectedequipment drains,lowconductivity wastesfromthecondensate demineralizer regeneration system(resintransferandbackwashwater),andregenerant evaporator distillate.

Nonroutine processeffluents, suchaswaterofrelatively highradioactivity concentration (e.g.,greaterand10-~uCi/cc)arerecycledtothewastecollector tankorotherappropriate subsystems forreprocessing.

Sampleanalysisindicates whichmethodismostappropriate.

(RefertoSection3.6.3.5.)

3.6.3.1.2 FloorDrainSubsystem Potentially highconductivity wastesarecollected inthefloordraincollector tankfromradwastebuildingsumps,reactorbuildingfloordrainsumps,turbinebuildingfloordrainsumps,laboratory drains,centrifuge liquideffluent, anddecontamination areadrains.Floordrainsareasourceofrecoverable water,ifnotcontaminated withchemicals priortocollection.

Floordrainwastesareprocessed throughafiltertoproducefiltrates suitableforeitherrecoveryordischarge.

Thefiltersludgeispackagedforoffsitedisposalasdescribed inSection3'.6.4.1.Liquidswhicharetobedischarged arecollected inthefloordrainsampletanks,sampled,and,aftersuitablemonitoring, pumpedtothecirculating waterdischarge tunnelataflowratecontrolled toobtainsubstantial dilution.

Laundrywastesarecollected inlaundrydraintanks,sampled,and,aftersuitablemonitoring, arepumpedtothecirculating waterdischarge tunnelatacontrolled rate.3.6.3.1.3 Regenerant ChemicalSubsystem Chemicals resulting fromtheregeneration ofcondensate demineralizers arecollected, neutralized, andsampledinthewasteneutralizer tank.Theneutralized chemicalsolutionisthenprocessed throughthewasteconcentrator (evaporator)

.Concentrator bottomsarecollected intheconcentrate wastetankandthenpumpedtothemixerintheradioactive solidwastesystem(Section3.6.4).Concentrator distillate isroutedto.thewastebuildingequipment draintankfortransfertothewastecollector subsystem (Section3.6.3.1.1).3.6.3.2Description oftheUpgradedLiquidRadwasteSystemThefollowing proposedmodifications totheoriginalsystemwillbemadetolowerthereleaseofactivityintheliquidwasteeffluentfromthestation{seeFigure3.6-4).3.6-8 0

Additional pipinghasbeenaddedtoallowincreased flexibility inprocessing.

Thewastecollector subsystem hasbeenmodifiedsothatthefloordrainsfromthedrywell,whichhaveproventobeofhighquality,willflowdirectlytothewastecollector tank.Anewwasteconcentrator willbeinstalled forthefloordrainsubsystem orhighconductivity wastesystem.Floordrainsmaybeprocessed eitherthroughthefilterorconcentrated inthewasteevaporator asrequiredtoproducedistillate ssuitableforrecovery.

Inaddition, atraveling beltfilterhasbeeninstalled.

Thisfilterwillreducethebackwashwaterfromthefloordrainandwastecollector filters.Itshouldalsoreducetheoperation ofthewastecentrifuge inthesolidwastehandlingsectionwhich,inturn,willresultinareduction ofliquidradioactive wastefromthefloordrainwasteprocessing system.Anultrasonic resincleanerwillalsobeinstalled tocleanthecondensate demineralizer resinstoreducethefrequency ofchemicalregeneration.

Itwillreducethe'mountofresinregenerant liquidspresently processed bythewasteconcentrator.

3.6.3.3OriginalandUpgradedSystemOperational AnalysisTable3.6-2suppliesthefollowing information forboththeoriginalandupgradeddesignforeachmajorflowpathoftheliquidandsolidradwastesystems:Normaltimeperiodindaysper,batch VolumepernormalbatchAveragedailyvolumeMaximumactivityconcentration.

Onlysignificant contributions tovolumeandactivityareconsidered.

Thefollowing baseswereusedtodevelopthequantities estimated inTable3.6-2.1.Forconservatism, avalueof820,000uCi/sec(at30-minutes decay)hasbeenusedasthedesignbasis,andavalueof50,000uCi/sechasbeenusedincalculating radiation exposures inthestationenvironment.

2Areactorwaterfissionproductconcentration exclusive oftritiumofabout3.0uCi/ganda<carryover" inreactorsteamequivalent to1.0percentforhalogensand0.1percentforallotherisotopesbyweight.3.A20-hourminimumdecayforallstreamsbasedonrecycleofwatercontentofmostliquids,sumpandtanksizes,anddailyvolume.3.6-9

4.Creditfordecontamination duetoconcentrator anddemineralizer processing capability ofabout5,000and1,000,respectively.

Theactualdesigncapability isasfollows:Adesigndecontamination factor(DF)forthenewwasteconcentrator ofabout2,250calculated inthefollowing manner:DFVaordisenainXde-entrainment XsearationFeedconcentration ratioWherenumerical valuesare:900X1000X2DF=800Adesigndecontamination factorfortheexistingwasteconcentrator of2,250basedonasimilaranalysis.

Adesigndecontamination factorforthemixedbedwastedemineralizer of20forCs,Y,Nb,andZr,andof100forotherisotopes, basedoncontrolofintermediate activityandflushbed(nonregenerative) typeunits.36-10 0

Table3.6-2Fundamental LiquidandSolidRadwasteSystemA.OriinalStationDesinItem(~)234561'7Normaltime2.8periodperbatch,days1051.051.051.050830.83to1.60.83to1.6160.44Volumeper35,000normalbatch,gal24,00024,00024,00024,0009,6009,600to9,600to14,6009,60014i60014600Averagedaily12,500volumeggal/day10e40022e90022m90031e60031r6008e50011F50020,80020,8009,30021,800Maximum0-020.0450.0250.0232.3x10-<2.3x10-s2x10-*1.95x10-~0.4activity, concentration, uCi/cc1.7x10->0.41x10-~Normaltime2.8periodperbatch,days0.461111Volumeper24,360normalbatch,galAveragedaily8,700volume,gal/day10,50010,5002,5502,5509s6009,60020,0003,000-1,000500F0001~00050050505050Maximum04activity, concentration, uCi/cc0395.8x10-40.120.12<1x10-<1.7x10-~771x10->>1x10-s 1x10-401 i

Table3.6-2(Contend)

B..radedStationDesign.Item~<)23456~9Normaltime14periodperbatch,days0330330.330.33Volumeper35,000normalbatch,gal24~00024~00024~00024,000T,000Averagedaily2,50063,00071,97571,97571,97571,9751,000volume,gal/dayMaximum0025011activity,

.concentration, uCi/cc0.0390.0393.9x10-~5x10-~2x10-~It.em-1012345Normaltime5.6periodperbatch,days18353~538383.8Volumeper8,400normalbatch,gal9~6009~6009~600'~6009,6009~200900Averagedaily1,5004,0005,3002,7752,7002,5252,5252,425volume,gal/day100~Maximumactivity, concentration, uCi/cc0.0452.6x10-~2.6x10-~2.6x10-~2.3x10-~2~6x10->2.6X10-~8.8x10-412 0-0 Table,3.6-2Cont~dB.UpgradedStationDesign(Cont'd)Item~>>01240Normaltime3.2periodperbatch,days.2446.66.66.8511736Volumepernormalhatch,gal9,60024i36010s50010'0010i5002e5502e5509c6009,600.Maximumactivity, concentration, uCi/cc58x10->202.9Averagedaily3,0001,0001,6001,6001,55050volume,gal/day:1x10>302.915015.42,700<1x10-~2.3x10---Item.Normaltimeperiodperbatch,daysVolumepernormalbatch,gal3331,3001i0005005050Averagedaily5volume,gal/day1,3003005005050Maximumactivity, concentration, uCi/cc770.1x10-~<1x10-~1x10=~Q.1 00 5.6.Activityconcentrations incondensate demineralizer regenerants resultfromatwo-weekintervalbetweenchemicalregenerations fortheoriginalsystem,andathree-month intervalfortheupgradedsystemduetoultrasonic cleaningoftheionexchangeresins.Fortheupgradedsystem,activityconcentrations inultrasonic

-resincleanerwasteduetocollection ofcorrosion/activation productsoveratwo-weekperiodandsubsequent completeremovalfromthecondensate demineralizer resin.7.Filterdecontamination factorofabout5.0forcorrosion/activation products.

Inaddition, thefollowing processing assumptions havebeenmadewithregardtoFigure3.6-4andTable3.6-2fortheupgradedsystem:Alldrywellandturbineequipment drainshavebeenroutedtothewastecollector tank.2Upto92percentofallnormalwastecollector influentliquidwillberecycledtothecondensate storagetanks.About3percentofthecondensate demineralizer chemicalregenerant willbepackagedandabout3percentofcondensate whichcouldotherwise berecovered isassumedtobediscarded fromtheplantduetomismatchbetweenprocessing andplantinventory requirements.

Asaconservative estimateoftheeffectsofstart-upandinventory

mismatch, about10percenttheinfluentvolumeshowninTable3.6-2isconsidered discharged.

3Exceptforinitiallargequantities offloordrainsresulting fromshutdownorinitialstart-up, mostfloordrainscanberecovered.

Occasionally, conductivity andradioactivity willbesufficient towarrantevaporation.

43.6.3.4Themajorityofradioactivity enteringthesystemwillbecontained inthecondensate demineralizer regenerant chemicals.

Useofultrasonic resincleaningwillresult'inlongintervals betweenchemicalregenerations, thussubstantially reducingradioactivity enteringthesystembecauseradioisotopeswilldecayonthecondensate demineralizer resin,ratherthanintheradwastesystem.OriginalandUpgradedSystemOperational Evaluation 3.6.3.4.1Regenerant Chemicals Subsystem Thebulkof*radioactivity processing hasbeenidentifiedasregeneration chemicals fromtheccndensate demineralizer system.Thesechemicalwastesareevaporated inboththeoriginaland3.6-14 I

upgradedsystemsTheconcentrated liquidsremovedasbottomsfromthewasteconcentrator (evaporator) arepackagedforoffsiteshipmentasdescribed inSection3.6.4.Distillate producedfromtheevaporator isroutedtothewastecollector tankforrecoveryascondensate, hence,littleornoreleasesresultfromthetreatment ofregeneration chemicals.

Whenreleasesofcondensate aredeemednecessary tomaintainawaterbalancewithinthestation,preference willbegiventoreleaseofcondensate whichhasaminimumactivity.

Intheupgradedsystemtheuseoftheultrasonic resincleanerforthecondensate demineralizer resinswillresultinlongerintervals betweenregenerations andhenceadecreased liquidcontribution totheregenerant wastesubsystem.

3.6.3.4.2 WasteCollector Subsystem Themajorsourceofwastecollector volumeisfromtheequipment drains.Condensate demineralizer backwashequipment drainageandphase-separator tankdecantareintermittent innormaloperation.

Withtheupgradedsystem,theultrasonic resincleaningwillsupplement resinregeneration.

Someequipment drainagewillberoutedtothecondenser hotwellonconductivity control,andcleanupfilter/demineralizers willrequireinfrequent replacement ofresinsafterstart-up.

Theupgradedsystemincludesanewtraveling beltfilterwhichhasbeeninstalled toreducethebackwashwaterfromboththeexistingfloordrainandwastecollector filters,aswellassupplement theoperation oftheexistingcentrifuge inthesolidwastesystem.Thisfilterisdesignedtodischarge dampsolidwasteasacake,therebyreducingtherecirculating waterflowinthesystemthatwouldotherwise resultfromnormalbackwash.

3.6.3.4.3 FloorDrainSubsystem Thissubsystem hasinfluentactivity, conductivity, andvolumethatvarieswidelywithapointinreactorcycle.Duringstart-up,floordrainagecontainshighconductivity fromthegeneralcleanupofthestation,leaksfromequipment, orwashdownfromstart-upmaintenance.

Thesewastesdonotcontainsignificant radioactivity.

Theyarefilteredandheldfor-discharge pendingtheoutcomeofsamplingandanalysis.

Intheupgradedsystem,ifactivityissufficient towarrantevaporation, anewwasteconcentrator isemployedasneeded.Filtration andsubsequent demineralization inthewastecollector subsystem isprovidedtoallowrecoveryascondensate.

Withtheupgradedsystem,theoperation oftheultrasonic resincleaneronaregularbasiswillallowcrudfromthecondensate demineralizer resinstobecollected ataconcentration toohightoallowefficient filtration inthewastecollector subsystem.

Itisanticipated thatthelowflowperunitareaandprecoatstability characteristic ofthetraveling beltfilterwillbemoreamenabletocycleinterruption andgreatercrudremovalperpoundof36-15

precoat.However,unlessfissionpxoductsorsolublesareadsorbedonthecrud,thequalityofthefiltrateforrecoveryascondensate shouldremainhigh.Anestimateoftheconditions whichwouldguidethedisposition ofbatchesoffloordrainsareasfollows:1.Greaterthan1,000umho/cmconductivity:

evaporate andrecoverdistillate.

2.Lessthan10-4uCi/ccfissionproductactivityandgreaterthan50umho/cmconductivity:.

filteranddischarge.

3.Greaterthan10-~uCi/ccfissionproductactivityandlessthan50umho/cmconductivity:

filter,demineralize, andrecoverordischarge.

0.Greaterthan10-4uCi/ccfissionproductactivityandgreaterthan50to100umho/cmconductivity:

evaporate, demineralize, andrecover.3.6.3.5ControlofWasteActivityMovementIntheupgradedsystem,theprimarymethodofrestricting themovementofwasteactivitywillbetominimizethegeneration ofwastevolumepriortoandwithintheradioactive wastesystem.Themajorreduction inregenerant chemicalvolumeandactivitywhichwillbeaffordedbyuseofultrasonic resincleaningofcondensate demineralizer resinisthebestexampleofhowthesystemdesigncapability willbeimproved.

'notherwillbetheroutingofhighquality(lowconductivity) equipment drainstothehotwellofthecondenser insteadoftothewastecollector subsystem.

However,capacitywillberetainedinthewastecollector subsystem incaseconductivity ofequipment drainsishigherthannormal.Theuseofadrycakedischarge traveling beltfilterwillreducetheneedforprocessing offilterbackwash.

Whereverpossible, condensate, usedforflushingortransport ofsolids,suchascleanresinbeadsorspentfilter/demineralizer precoat,willbereused.Directpackaging ofdecontamination solutions wherepossiblewillfreeequipment fromexcessive flushingtoremovematerials whichwouldmakesubsequent, recoveryofinfluentwaterdifficult.

Insummary,wasteswillbecombinedtomakethemosteffective useofprocessing equipment available andtominimizethenumberoftimesthatabatchofwastemustbehandledpriortofinaldisposition.

Therecirculating loadofwaterwithintheradioactive liquidwastesystemwillberestricted totheminimumpossible.

3.6-16 00 3.6.3.5.1 ReleaseofProcessed WasteLiquidwastesarereleasedinthedischarge tunnelfromoneoftwowastedischarge sampletanksonabatchbasis.Eachbatchisanalyzedpriortoreleaseforgrossbetagammaactivityandtheresulting activityusedtodetermine thedischarge flowrate.Theintegrated totalactivitydischarged tothelakeisrecorded.

Completeisotopicanalysesofcomposites orretainedsamplesisdoneinaccordance withtheprocedures outlinedinAECSafetyGuideNo.21.Detailedadministrative recordsofallradioactive liquidreleasesaremaintained.

Table3.6-3presentsthedischarge tunnelconcentrations forsignificant isotopesfromUnit1forboththeoriginalandupgradedsystems.About20Ciperyear.oftritiumwillbereleasedfromthestation.Initially tritiumreleasesfortheupgradedsystemdesignwillbelowerthanfortheoriginalsystembecauselesswastewaterwillbedischarged.

However,reactorwatertritiumlevelswillbuilduptoanewhigherequilibrium concentration whichisexpectedtooffsetthereducedwastewaterflow.Therefore, itisassumedthatthetotalcuriesoftritiumreleasedisthesameforboththeoriginalandtheupgradedstationdesigns.Anaveragereleaserateofabout21,750gallonsofwaterperdayfortheoriginalsystemandabout3,000gallonsofwaterperdayfortheupgradedsystemisfinallyreleasedfromthestationafterbeingprocessed initsrespective liquidradwastesystem.ThefiguresinTable3.6-3forfissionproductconcentration arebasedonanoffgasactivityflowrateof25,000uCi/secat30-minutes delay.However,forconservatism, anoffgasactivityflowrateof50,000uCi/secwasusedforcalculating radiation exposures inthestationenvironment, andavalueof820,000uCi/secwasusedasadesignbasis.3.6.4SolidRadioactive WasteSystemThesolidradioactive wastesystemisdesignedtocollect,process,package,andprovidetemporary storagefacilities forsolidwas'tespriortoshipmentforoffsitedisposalasdiscussed inSection3.6.5.4.Thesystemisdesignedtoprovidecollection, processing, packaging, andstorageofsolidwastesresulting fromnormalstationoperations suchthatoperation andavailability ofthestationisnotlimited.Inaddition, boththeoriginalandtheupgradedsystemdesign:1.Includesequipment andadministrative controlswastescollected andnotresultinradiation inexcessofthelimitsinstrumentation, andutilizessuchthatthesolidradioactive preparedforoffsiteshipmentdoexposures tostationpersonnel setforthin10CFRPart20.3.6-17

2.Utilizes, wherenecessary, shieldedcaskswhichconformto10CFRPart71-Packaging ofRadioactive MaterialforTransport.

36-18

Table3.6-3Concentration ofSignificant IsotopesintheDischarge TunnelofNineMilePointUnit1forBoththeOriginalandtheUpgradedSystemACorrosion Products~zsotoeDischarge Conc.DCuCi/mlOricrinal

~UradedDischareConc./MPC Oricrinal

~UradedMn-56Ni-65Na-24Zn-69mP-32Cr-51Fe-59Co-58Zn-65Ag-110mCo-600.238E-09 0366E-070123E-070.136E-070.228E-070.205E-1340.112E-150.818E-120111E-130.266E-120.792E-110.136E-110886E-100.313E-110.113E-110.995E-110.791E-050.184E-040.245E-030151E-030.758E-030-205E-90.112E-110.272E-70-188E-90133E-70.395E-80271E-70.980E-60191E-90.374E-70.316E-6B.FissionProductsI-134Sr-90Cs-137I-132I-135I-133Np-239Mo-99I-131H-30.994E-100.569E-80.77E-090.897E-09 0.465E-08 0.432E-07 0.160E-180.352E-110370E-110.323E-090.763E-110.880E-100.107E-090.128E-100.243E-090432E-070.329E-30284E-30.770E-03 0.224E-040.155E-020.142E-040.441E-140.117E-040.185E-060.397E-050190E-050.880E-040.109E-050.320E-060.810E-030.142E-04+SymbolEwithsignednumeralmeansexponent.

of10;e.g.,0.205E-13 isequalto0.205x10-~3.3.6.4.1SourcesofSolidWasteRadioactive solidwastesresulting fromstationoperation usingeithertheoriginalortheupgradedsystemareasfollows:a.Absorbedconcentrated liquidwastesfromtheradwasteevaporator(s).

Mediumtohighlyradioactive (1to12uCi/cc).b.Spentresinsandfiltersludgefromthespentresintank.Mediumtohighlyradioactive (1to12uCi/cc)..3.6-19

c.Solidwastes,suchaspaper,airfilters,rags,etc.Lowradioactive level(<0.1uCi/ccor<100mr/hr).d.Solidwastes,suchascontrolrods,fuelchannels, etc.Highradioactive level()100mr/hr).3.6.4.2Processing andHandlingProcessliquidswhicharenotsuitablefordisposaltotheenvironment eitherbecauseofioniccontentorradioactivity areconcentrated intheradwasteevaporator(s)

.Theconcentrates arecooledpriortotransfertothepackaging facilities, mixedwithanadsorbent, loadedincontainers, andstoredforshipment.

Spentresinsfromthemixedbeddemineralizers areflushedtothepackaging facilities, dewatered, loadedintocontainers, andstoredforshipment.

Filtersludgefromtheexistingfloordrainandwastecollector filtersisdewatered, transferred intocontainers, andshippedoffsitefordisposal.

Xntheupgradedsystem,theadditionofthetraveling beltfilterisdesignedtoreducethebackwashwaterfromboththeexistingfloordrainandwastecollector filters,aswellastosupplement theoperation oftheexistingcentrifuge inthesolidradioactive wastesystem.Thisfilterisdesignedtodischarge dampsolidwasteasacakedirectlytothepackaging facilities therebyreducingtheamountofbackwashwaterwhichmuststillbeprocessed bytheexistingcentrifuge.

Backwashfromthereactorcleanupfilterdemineralizer isdecantedinthephaseseparator tankswherethesludgeisheldforradioactive decayandthentransferred tothespentresinstoragetank.Fromthere,thesludgeistransferred toashieldedshippingcontainer andstoredforshipment.-

Lowactivitysolidwastesareloadedintocontainers andstoredforshipment.

Highactivitysolidwastesarepackagedinapprovedshippingcontainers andstoredforshipment.

3.6.4.3Performance AnalysisThegeneralplanforhandlingofsolidwastesistopackageallsolidwastesincontainers foreventualoffsitedisposal.

Thecontainers areshieldedasnecessary.

Processwastecontaining mediumtohighlyradioactive solidsarepackagedwithsemi-remote handlingequipment.

Thesewastesconsistofconcentrated processfluids,filtersludges,andspentionexchangeresins.36-20

Theactivityofmostothercategories, ofsolidwastesislowenoughtopermithandlingofthepackagesbycontact.Thesewastesarecollected incontainers locatedinappropriate zonesaroundthestationasdictatedbythevolumesofwastesgenerated duringoperation andmaintenance.

Thecontainers aremonitored periodically duringfillingtoensurethatthedoseratedoesnot,exceedamaximumof200mremperhouronthesurfacebeforefinalpacking.Thecontainers arethensealedandmovedtoacontrolled accessenclosedstorageareafortemporary storage.Packagedwastesareshippedtoanapprovedoffsitefacilityforstorageorburial.Contaminated equipment toolargetobehandledinthenormalmanneristreatedasaspecialcaseatthetime.Handlingofsuchequipment dependsupontheradiation level,transportation facilities, andavailable storagesites.Suitableoperating procedures fordecontamination, shielding, storage,andshipmentofsuchitemsaredeveloped andfollowedforthesespecialcases.3.6.5Transportation ofFuelandRadioactive Wastes3.6.5.1Packaging CriteriaRefertoSection5.4.2forpossibleenvironmental effectsofradioactive materialtransport.

Theshipmentofallradioactive materials toandfromnuclearpowerstationsiscoveredindetailbyAtomicEnergyCommission (AEC)Regulation 10CFRPart71andbyDepartment ofTransportation (DOT)regulation 49CFRParts170-178.Theseregulations establish definiteperformance standards whichmustbemetifradioactive shippingcontainer designsaretoreceiveapprovaloftheAECandDOT.Thestandards areintendedtoensurethataradioactive materialpackagehassufficientintegrity toprovidedefinitesafeguard againstradiation hazardsduringtransportation.

Thepackagedesigncriteriatakeintoconsideration thetype,concentration, andamountofradioactive materialtobetransported inthegivencontainer.

Allpackaging mustmeetspecified shielding requirements duringnormalshipment.

Theshielding requirements for>>exclusive use>>vehicles, thenormalshipmentmodeusedbyanuclearpowerstation,includemaximumallowable radiation levelsduringnormalshippingof(1)1,000milliremperhourat3feetfromtheexternalsurfaceofthecontainer, (2)200milliremperhourattheexternalsurfaceofthevehicle,and(3)10milliremperhourat6feetfromthevehicle.Inadditiontotheseshielding requirements, thedesignofmanyofthecontainers mustprovethecontainer~s abilitytowithstand avarietyofpostulated normaluseandaccidentconditions; Theverystringent accidentconditions applytopackagesdesignedtotransport largequantities ofradioactive materials and>>fissile>>

3.6-21

materials.

Aseriesoftestswereformulated tosimulatepostulated accidentconditions.

Thesetestconditions include,insequence, a30-footfreefallontoacompletely unyielding surface,a40-inchdropontotheendofa6-inchdiameter'steel bar,30minutesina1,475Ffire,and,finally,immersion under3feetofwaterfor8hours.Atthecompletion ofthesetests,thedesignpackagemusthavemaintained sufficient shielding tolimitradiation levelsto1,000milliremperhourat3feetfromthepackagesurface.Itisalsostipulated thatduringandaftertheaccidenttests,themaximumreleaseofradioactive materials willbelimitedtoslightlycontaminated packagecoolantand1,000curiesofnoblegases.Maintenance ofsubcriticality, duringbothnormalshippingandthepostulated accidenttests,isalsoaveryimportant criterion placeduponcasksdesignedtotransport

<<fissile<<

materials.

Thissectionisnotintendedtobecomprehensive ofallstandards applicable tothetransportation ofradioactive materials.

Instead,thesection~s purposeistopointoutthatthesestringent regulations doexist.Packagesconservatively designedinaccordance withtheseregulations mustthenbeapprovedforusebytheAECandDOT.Thesecontainers mustprovidesufficient safeguards fortheenvironment againstradiation hazardsduringbothnuclearfuelandradioactive wasteshipment.

3.65.2NewFuelShippingThereactorcoreofNineMilepointNuclearStationUnit1contains532fuelassemblies.

Thereactorisrefueledannuallyandapproximately 25percentofthecoreor133fuelassemblies arereplacedduringeachrefueling period.Thenewfuelshipping, containers havebeendesignedandconstructed tomeetapplicable AECandDOTrequirements.

ThesepackagesareGeneralElectriccontainers, modelsRA-1,EQ2,andRA-3,knowncollectively astheRApackaging series.Authorization tousethesecontainers fornuclearfueliscontained inGeneralElectriclicenseSNM-1097(Wilmington, NorthCarolina)

Amendment 71-16.Thislicenseauthorizes useoftheRApackaging seriesundergenerallicensing Section71.7(b)of10CFRPart71.Thesecontainers aredesignedtoholdtwonewfuelassemblies andweigh2,800poundsinaloadedcondition.

Itisconsidered thattheloadedcontainers aieshippedtothestationbylegalweighttruck.Duetoweightlimitations, eachtruckhasthecapacityfor16containers loadedwith32newfuelassemblies.

Eachannualrefueling requiresapproximately fivetruckshipments ofnewfuel.Theseshipments areroutedbythemostdirectandfastestroutetominimizetheprobability ofaccidents.

Thenewfuelcontainers arefurnished bythenuclearfuelsupplierand,afterthefreshfuelhasbeenunloaded, theemptycontainers arereturnedtothefuelfabrication plantforreuse.3.6-22

Itshouldbeemphasized thatthenewfuelshippingcontainer, whichisbasically acushioned metalcontainer supported withinanouterwoodenbox,isprimarily designedtoprotectthenewassemblies fromphysicaldamageduetonormalhandlingandshippingvibrations.

Becausethenewfuel,uraniumoxide,containsnofissionproductsorradioactive gases,theexternalradiation willbeinsignificant.

Theresultsofanaccident, evenifthefuelshouldbedamaged,wouldbeonlyaneconomicloss3.6.5.3SpentFuelShippingDuetotherefueling requirements discussed intheprevioussection,thereisanannualrequirement toshipapproximately 133spentfuelassemblies.

Theseassemblies areshippedbyafuelreprocessor, undercontract, tooneofthereprocessing facilities presently locatedinWestValley,NewYork;Morris,Illinois; andBarnwell, SouthCarolina.

Avarietyofspentfuelshippingcasksarebeingdesignedandconstructed toaccommodate fuelassemblies ofthetypeusedinUnit1.Allofthesecasksaremassiveandtheirpayload-to-cask weightratioisextremely low(1to4percent).

About90percentofthecaskweightistheradiation shielding, withsupplemental weightintheauxiliary coolingequipment andadditional structural materialnecessary tomeetthestringent shippingrequirements Thereareseveralfeatureswhicharecommontoallspentfuelcontainers.

Theyconsistofheavystainless steelshellsontheinsideandoutsideseparated bydenseshielding

material, suchasleadordepleteduranium.Thecasksareequippedwithenergyabsorbing impactstructures, suchasfins,toabsorbenergyequivalent tothe30-footdroptestandtolimittheforcesimposedonthecasksandtheircontentsThecasksalsocontainabasketusedtosupportthefuelassemblies duringtransport.

Specialprovisions aremadeforhighexposurefuelthroughtheuseofaneutroncaptureshielding materialtolimitradiation fromthefastneutronsgenerated throughspontaneous fissionandalpha-neutron reactions ofthetransuranium isotopes.

Inthedesignofthespentfuelshippingcask,specialattention wasgiventotheremovalofdecayheat.Theshippingcaskhasextendedsurfaceareasforthedissipation of'ecayheatandifnecessary, auxiliary coolingequipment canbeconnected tothelargercaskstoassistinheatremoval.Inaddition, thefuelisallowedtodecayintheplant,underwater, inashieldedspentfuelstoragepoolforatleast100dayspriortobeingplacedinthecaskforshipment.

Thisdecaytimegreatlyreducesthelevelofdecayheatproducedby3.6-23

theassemblyandalsoreducestheradioactive fissionproducts, including Krypton-88andIodine-131, tolowlevels.Thenumberofannualshipments ofspentfuelassemblies isafunctionofthetypeofcaskandthemodeoftransportation selectedbythefuelreprocessor.

Onepossibility istheuseofalegalweighttruckcask(grossvehicle.weightnotexceeding 70,000pounds)iscapableofholdingonlytwoBWRfuelassemblies.

Thecaskinafullyloadedcondition weighsabout23tons.Useofsucha.caskwouldrequireabout67individual truckshipments peryear.Asecondtransportation possibility istheuseofoverweight trucks(grossvehicleweightupto110,000pounds).Acaskforthistypeoftruckcarries4to7BWRfuelassemblies andweighsbetween30and40tons.Theuseofanoverweight truckwouldrequire19annualshipments.

Disadvantages includeobtaining individual statepermitsforeachshipmentandprobablerestriction ofshippingtoperiodsoflighttrafficandgoodweather.Theuseoflargerrailcasksisathirdpossibility andisconsidered tobethemostappropriate transportation mode,particularly forlongershippingdistances.

Railfacilities areavailable attheNineMilePointsite.Thereareseverallargerailcasksinthedesignandlicensing stages,including theGeneralElectricIF300.Thisparticular caskwillbecapableoftransporting 18BWRspentfuelassemblies andwillweighabout70tonsinafullyloadedcondition.

Useofthiscaskcouldreducetheshippingfrequency toabouteightcasksperyear.Evenlargercasks,intheconceptual stagesofdesign,wouldholdupto32BWRfuelassemblies andweighabout115tons.Withsuchacask,annualshipments couldbereducedtoaboutfive.Theenvironmental effectsofspentfueltransport arediscussed inSection5.4.2.3.6.5.4Radioactive WasteShippingSolidradioactive wastematerialispackagedandshippedoffsiteforproperdisposalatAEClicensedradioactive wastedisposalfacilities.

Typicaldisposalfacilities currently available totheNineMilePointNuclearStationarelocatedinWestValley,NewYork;Aiken,SouthCarolina; andMoorehead, Kentucky.

Containers (drums)whichmeetappropriate AECandDOTrequirements areusedforthepackaging ofradioactive wastes.Thesecontainers

.providetherequiredcontainment ofthewastesduringnormalandaccidenttransport conditions andalsoprovidesufficient shielding forlowlevelradioactive wasteshipments tomeetAECandDOTexternalradiation levelrequirements.

Additional shielding, intheformofconcreteor'leadoverpacks, 36-24

areusedifrequiredfortheshipmentofhighlevelradioactive wastes.MostsolidwastesproducedatNineMilePointNuclearStationUnit1havearelatively lowradioactive concentration.

Thislimitedconcentration plusthesolidified natureofthewasteensuresminimalenvironmental effectsduringtransportation.

Solidwastesgenerated withhighradioactive concentrations areshippedinspecialcontainers (identified byDOTas"TypeBpackaging")

.Thesecontainers aredesignedtowithstand thevariousaccidentconditions asdescribed inSection5.4.2.Thecontainers aredesignedtominimizetheenvironmental impactofanaccidentduringthetransportation ofhighlevelradioactive wastes.Legalweighttrucksarethemodeoftransportation forsolidradioactive wastesfromNineMilePointNuclearStationUnit1.Overweight trucksandrailcarsarepossiblealternative modesofshipmentofradioactive wastes.Thenumberofyearlyshipments ofsolidradioactive wasteduringperiodsofnormaloperation hasbeenfrom20to40.Duringperiodsofunusualmaintenance oroperation, thenumberofannualshipments couldpossiblyapproach60.Table3.6-4presentsasummaryofthesolidradioactive wasteshipmenthistoryfortheperiodJanuary1,1971,throughDecember31,1971,attheNineMilePointNuclearStation.3.6-25 0

Table3.6-4~SolidRadioactive wasteshippingInformation TimePeriodvolumeTotalNumberofDrumsNumberofShip-CuriesNumberof~-~Per-Shiment<>>--~~------~-~-Curies/Ft~---

~-~-~~-Shipments<<

~ped(Ft~)<<>Shippedc~>Drums<>>AverageMaximumMinimumAverageMaximumMinimumJan.1,1971-June30,1971206,79267.2692446.2131149.9x10->168x10~2.1x10-sJuly1,1971Dec.31,19716,118133.9583234.775142.2x10-~1.2x10-~2.5x10"~Jan1,1971-Dec31,197112,910201211i75640131141.6x10-~1.68x10-~2.1x10-s(1)Numberofshipments, volumes,andtotalcuriesfromNineMilePointsemiannual reports(2)Numberofdrumsbasedon7.35ft~/55galdrum(3)Average,maximumandminimumnumberofdrumspershipmentarebasedontheactualwastevolumes(ft~)pershipmentasgiveninthesemiannual reports(4)Average,maximum,andminimumcuries/ft~

figuresarebasedonactualwastevolumes(ft~)andcuriecontentofeachshipmentasgiveninthesemiannual reports.Itshouldbenotedthatthemaximumallowable curies/ft~

tomeetlowspecificactivityrequirements is8.946Ci/ft~(0.3uCi/gram) 0'I 3.7CHEMICALANDSANITARYDISCHARGES Thissectiondescribes liquideffluents discharged fromthechemicalandsewagewastetreatment facilities servingtheNineMilePointNuclearStationUnit1.Theeffectsoftheseeffluents uponLakeOntarioarediscussed insection5.3.Allradioactive andpotentially radioactive liquidwastes,suchasdecontamination solutions, laboratory chemicals, condensate demineralizer regeneration wastes,andreactorandturbinebuildingfloordrainageareconveyedtotheradwastebuildingforprocessing andtreatment.

Theradwastesystemisdiscussed inSection3.6.3.7.1LiquidChemicalDischarge Circulating waterchlorination hasnotbeenrequiredsincethesiltcontentintherawlakewaterispresentinsufficient quantitytopreventattachment ofbiological growthsonexposedsurfacesofthecoolingsystem.Thechemicalwastetreatment systemhandlestheliquidwasteassociated withtheoperation ofthemakeupwatertreatment system.Duringnormaloperation themakeupwatertreatment systempxovides100gpmofhighqualitydemineralized waterforthenuclearsteamsystemandotherstationfacilities.

RawwaterfromLakeOntarioistakenfromthedischarge sideoftheservicewaterpumpsandconveyedtothemakeupwatertreatment system.Thistreatment systemconsistsofasludgerecirculating clarifier, clearwell,pressurefiltercontaining anthracite, activated charcoalfilter,and.cation, anionandmixedbedionexchangeunits.Thedemineralized waterfromthemakeupwatertreatment systemisstoredina36,000gallontankpriortouseinthereactorcondensate cycle.Aschematic diagramofthemakeupwatertreatment systemandassociated chemicalwastetreatment facilities isshowninFigure3.7-1.Inthesludgerecirculating clarifier, chemicals areaddedtothelakewatertopromoteflocculation andprecipitation ofsuspended material.

Inaddition, partialsoftening oftherawlakewaterisachieved.

Chemicalflocculant andsoftening dosesinclude50ppmofironsulfate(Ferrifloc) and150ppmoflime.Effluentfromtheclarifier isconveyedtotheclearwellwhichaffordssufficient headtosupplythedemineralizer feedpump.Fromtheclearwell,thewaterispumpedthroughapressurefiltercontaining gradedanthracite whichremovesremaining smallquantities ofresidualsuspended solids.Thewaterthenpassesthroughanactivated carbonfilterwhichadsorbsthesmallquantities ofdissolved organicmaterials presentinthelakewater.Effluentfromtheactivated carbonfilterpassesthroughademineralizer systemconsisting ofonecation,oneanion,andonemixedbedunitarrangedinseries.Thecationandanionunitsremoveessentially alldissolved solidsinitially presentinthe3~71 P

lakewater.Themixedbedunit,orpolishing demineralizer, removesremaining tracequantities ofdissolved solidswhichpassthroughthecationandanionunits.Highqualitydemineralized waterisconveyedtothedemineralized waterstoragetank..Thisstoragetankhasacapacityof36,000gallonspriortoutilization inthenuclearsteamsystem.Chemicalwastesassociated withthemakeupwatertreatment systemconsistofintermittent blowdownofsolidsfromtheclarifier, backwashings fromthepressurefilterandactivated charcoalfilterandneutralized spentacidandcausticsolutions resulting fromionexchangeresinregeneration cycles.Table3.7-1presentsthechemicalcharacteristics ofneutralized regenerant wastesfromthemakeupwatertreatment

facility, andpresentstheassociated chemicalwastedischarges.

Theclarifier blowdownofabout20gphisconveyedtoa13,500gallonsettlingbasinforsolidsthickening.

Approximately onetonofsolidsisdredgedfromthebasineverythreemonthsanddisposedofinaspoilareaonsite.Atsteadystate,about20gphofclearoverflowfromthewasteretention basinisconveyedtoLakeOntarioviaadrainageditch.Duringstationshutdown, about80gpmofclarified waterisallowedtooverflowfromtheclearwell andthenconveyedtoastormdrainpriortodischarge inLakeOntario.Theanthracite pressurefilterandtheactivated charcoalfilterarebackwashed 3to4timesamonthtomaintainacceptable pressuredropthroughthefiltersbyremovalofaccumulated solids.Wastewaterresulting fromthesebackwashing cyclesisconveyedtothestormdrainpriortodischarge inLakeOntario.Regeneration ofthemakeupdemineralizer systemincludesbackwashing, introduction ofdiluteacidorcausticsolution, andslowandfastrinsingofexchangeunits.Spentacidandcausticsolutions andassociated rinsewateraredrainedtoa20,000gallonneutralization tankforpHadjustment towithin6.5to8.5beforebeingdischarged atarateof100gpmtothelakeviathecirculating waterasseeninFigure3.7-1.Cationandanionunitsrequireregeneration approximately threetofourtimesamonth.Themixedbedunitrequiresregeneration onceortwiceamonth.priortodischarge tothecirculating water,thedissolved solidslevel(mainlysodiumsulfate)intheeffluentfromtheneutralization tankisabout9,000ppm.Themaximumaccumulation ofwastesresulting fromdemineralizer regeneration isabout16,000gallonswhichisroutedtotheregeneration wasteneutralization tank.Afterplantadjustment tobetween6.5and8.5byeitheracidorcausticasrequired, theeffluentisdischarged atarateof100gpmtothecirculating waterdischarge flowofabout268,000gpmwhereitisdilutedbyafactorofabout3,000.Aftercompletemixing,theincremental 3&72

increaseofdissolved solidsinthecirculating waterisabout3ppmasseeninTable3.7-1.NiagaraMohawkobtainedapermitin1965todischarge thesechemicalwastestothewatersofN'ewYorkState.AcopyofthepermitisincludedinAppendixG.Chemicalregeneration radioactive wastesfromthecondensate demineralizers arenotdischarged tothecirculating waterbutareprocessed intheradwastesystembyevaporator concentration andsolidification foroff-sitedisposalasdiscussed inSection3.6.Drainagefromroof,floor,andequipment drainswhichhasnopotential forradioactive contamination isconveyedtoLakeontarioviaastormdrain.Wastesfromthelaundering ofprotective clothingareprocessed intheradwastesystempriortodisposalbymixingwiththecirculating waterdischarge asdiscussed inSection3.6.Alowfoamingdetergent isusedcontaining about50percentbyweightofsodiumhexametaphosphate.

Duringnormaloperation, about100poundspermonthofthisdetergent isutilizedtoproducealaundrywasteofabout130gpd.Aftercompletemixingwiththecirculating water,theincremental increaseinthelevelofphosphates inthelakewatermeasuredasphosphorus isabout0.2partsperbillion(ppb).Duringscheduled outagesabout450poundspermonthofthisdetergent isutilizedtoproducealaundrywasteofabout1,700gpd.Aftercompletemixingwiththecirculating water,theincremental increaseinthelevelofphosphates inthelakewatermeasuredasphosphorus isabout07ppb.3.7.2SanitaryWasteSystemThesanitarysewagesystemcollectssanitarywastefromallnonradioactive sanitaryfixtureswithinthestation.Thissanitarywasteisconveyedtoanactivated sludgepackageplantoftheextendedaeration-type, followedbychlorination andoxygenation.

Thesanitarysewagepassesthroughacommunitor whichreducesthesolidstofineparticles priortoenteringtheactivated sludgeaerationtank.Digestedsewagefromthesludgetankisconveyedtoaclariferwhereinertsolidsareremovedandtheclearoverflowflowsintoachlorination tankfordisinfection bytheadditionofchlorine.

Thedisinfected liquidispumpedtoa2,800squarefootoxygenation pondwhichhassufficient surfaceareatorestoredissolved oxygentotheeffluentbeforeitcascadesoveraweirintoadrainageditch.Theditchcarriestheeffluenttoarivuletwhichflowsintothelake.3~73

Table3.7-1ChemicalDischarges fromMakeupWaterTreatment IonAnionsRemovedDuringOneRegen.Cycle*(Lb/Regen.)

CationsRemovedDuringOneRegen.Cycle(Lb/Regen.)

Chemicals AddedDuringOneRegen.Cycle(Lb/Regen.)

TotalChemicals AddedtoCirc.WaterDuringOneRegen.Cycle(Lb/Regen.

)Resulting CircWaterAnalysis***

atDischarge DuringRegen.Cycle(Ppm)AnalysisofLakeOntarioWater(Ppm)Incremental ChangeinCirc..Water AnalysisDuringRegen.Cycle(Ppm)HCO3ClSO+=Ca++Mg++Na+K+513351411867632451337274134294.11303832.1144.1089217551.6094.0030.3030.1044.0089016.601600110082.010100.020.95TotalDissolved Solids228.77225.50327+Regeneration cycleoccursfor3hourswithresultant effluentfromtheneutralization tankdischarged tocirculating waterat100gpm.*+Includes SO+associated withferricironsulfateadditioninclarifier.

+*~Priortodischarge ofchemicals associated withregeneration, thecirculating wateranalysisisidentical tothatofLakeOntariowater.Theresulting chemicalcomposition ofthecirculating wateriscomputedbymaterialbalance.

o Settledsludgefromtheclarifier isrecycledtankwhereitismixedwithincomingsewage.indicated thattheexcesssludgeisremovedonafromthestationbyalicenseddisposalfirmtoadisposalarea.totheaerationExperience hasquarterly basisstate-approved Thesanitarywastetreatment facilityhasacapacityof15,000gpd.Thenumberofemployees requiredduringnormaloperation ofUnit1isabout68.Inaddition, refueling andannualoverhauloperations mayrequirethepresenceofanadditional 40employees.

Basedonasanitaryflowofabout35gpdpercapita,themaximumanticipated flowwouldbeabout3,800gpd.Baseduponthenumberofemployees requiredduringnormaloperation ofUnit1,thenormalanticipated flowwouldbeabout2~400gpd.Sampleanalysishasshownthatthesewagetreatment facilityhasthecapability ofmeetingtheoperation requirements listedbelow:0ratinEfficienSettleable SolidsSuspended SolidsBOD(5Day)ChlorineResidual100%95%95%1.0ppmThedesignofthesewagetreatment facilityandassociated equipment conformstotheNewYorkStateDepartment ofHealthRequirements forWasteTreatment Works,Bulletin1,Part1,aswellastotherulesandregulations oftheTownofScriba,OswegoCounty.In1965NiagaraMohawkobtainedapermittooperatethewastetreatment facilityanddischarge wastestothewatersofNewYorkState.AcopyofthepermitisinAppendixG.3.7-5 SIlIN)0 3.8OTHERWASTESTwostandbydieselgenerators andonediesel-driven firepumpareavailable foruseduringemergency conditions.

Thegenerators provide.electrical powerforessential needswhennormalreserveandoffsitepowerareunavailable.

Thedieselgenerators aretestedonamonthlybasisandthefirepumponaweeklybasis.Thedieselsburnfueloilcontaining 0.4to0.7percentsulfurandanegligible amountofash.Thegenerator dieselenginesexhausttoatmosphere throughtheroofofthedieselgenerator room.Exhaustfromthedieselfirepumpenginepassesthroughtheupperportionofthescreenhouse sidewall.Overallcombustion productsreleasedfromthetwostandbydieselgenerators andthediesel-driven firepumpareinsignificant becausethisequipment isnormallydrivenonlyafewhoursamonthfortestpurposes.

Anelectrically heatedauxiliary boilerisusedforspaceheatingpurposes.

Therearenoemissions fromthissource.38-1

SECTION4ENVIRONMENTAL EFFECTSOFCONSTRUCTION Theconstruction phaseofNineMilePointUnit1wascompleted September 1,1969.Theunithasbeenincommercial operation sinceDecember, 1969.However,certainmodifications areplannedtoupgradetheoriginalradwastesystemtoconformtoproposedAppendixIto10CFRPart50oftheCommission~s regulations.

Thesemodifications willbetoconstruct anew.radwaste buildingandinstalladditional liquidandgaseousradwastecontrolequipment toupgradetheradwastetreatment systemasdescribed inSection3.6.Plannedmodifications tothestationarescheduled tobegin'ubsequent toAECapprovalandwillbecompleted inaccordance withtherequirements ofproposedAppendixI.Construction willrequireabouttwoyearstimeandabout75people..Thenewradwastebuildingwillbeabout80feetby60feetby30feetabovegradeand30feetbelowgrade.Excavation forthe'building foundation willbedonewithconventional earth-moving equipment androckblastingwherenecessary andpossible.

Anyblastingwillbecarefully plannedandexecutedtomaintainthestructural integrity ofthestationDustanddebrisfromblastingoperations willbecontrolled byprotective matsovertheblastingzone.Thematerialexcavated willbeusedforonsitegradingorforlandfillatoff-siteareasownedbyNiagaraMohawk.Duringtheconstruction ofthisbuilding, heavyequipment andtruckingnoiseswillbeproducedmainlytotheeastofthestation.Materialdeliveries tothesitewillbemadebytrucksusingtheexistingroadsinthearea,andnonewaccessroadstothestationarea,willberequired.

Sinceconstruction ispresently underwayontheJamesA.FitzPatrick PowerStationtotheeast,themodifications toNineMilePointUnit1willresultinonlymodestincremental disturbance tothearea.Thelimitednatureofthisconstruction activityisnotexpectedtohaveanyimpactonLakeOntarioortheterrestrial ecologyofthesiteorthesurrounding area.Maintenance ofthepresentsitegradewilleliminate thepossibility oflanderosiontothelake.Thenewbuildingwillhaveexternaltreatment andlandscaping thatwillblendwiththeaesthetic appearance ofthepresentstation.Theeffectsoftheradioactive releasesfromthemodifiedradwastesystemarediscussed inSection5.2.4.0-1 1

SECTION5ENVXRONMENTAL EFFECTSOFSTATIONOPERATION 5.1EFFECTSOFOPERATION OFCOOLINGWATERINTAKEANDDISCHARGE FACILITIES TheareaofthelakeinthevicinityofNineMilePointisdesignated waterqualityClass<<A<<byNewYorkState.TheOfficialCompilation oftheCodes,Rules,andRegulations ofthestateofNewYork,part701.3,Title6,definesthebestusageforthisclassasasourceofwaterfordrinking,

culinary, orfoodprocessing purposes.

Thestandards forClass<<A<<watersincludethefollowing specifications regarding heatedliquiddischarges:

Nonealoneorincombination withothersubstances orwastesinsufficient amountsoratsuchtemperatures astobeinjurious tofishlife,makethe,watersunsafe,orunsuitable asasourceofwatersupplyfordrinking,

culinary, orfoodprocessing purposesorimpairthewatersforanyotherbestusageasdetermined forthespecificwaterswhichareassignedtothisclass.(6NYCRR,701.3)TheNewYorkStateDepartment ofHealthissuedthecoolingwaterdischarge permitforNineMilePointUnit1,inApril1965(RefertoAppendixG).FouryearsafterthisapprovalNewYorkStateimplemented thewaterqualitystandardquotedabovewiththermaldischarge criteria~.

Thesecriteriaspecifically statethatthenumerical limitations

<<...areintendedonlytobeaframeofreference<<

forexistingdischarges.

(6NYCRR704.4).Therefore, whileUnit1isnotsubjecttothestrictapplication ofthespecificnumerical limitations contained inthe1969criteria, NiagaraMohawkbelievesthattheexistingcoolingwater'esignforUnit1conformstothe1967waterqualitystandards quotedabove.Thestudiesdiscussed inSection'5.5formthebasisforthisbelief.Thesestudies(Ref.20)indicatethatthethermaleffluenthasnotbeeninjurious tofishlifeandhasnotmadethewatersunsafeorotherwise unsuitable foranyusagewhichthestandards assigntothisclassofwaters.+Thesecriteriaaretheapplicable waterqualitystandardsunderSection21(b)oftheFederalWaterPollution ControlAct(33U.S.C.A.Section1171)See"NoticeofProposedRuleMaking"to40C.F.R.Part115,36Fed.Reg.23398,December9,1971.5.1-1

5.1.1IntakeStructure andOperation Thecirculating waterintakeforUnit1islocatedinabout20feetofwaterandhasanintakeapproachvelocityofabout2.0fps.Operating experience atthisstationsince1969indicates thatvelocities ofthismagnitude haveresultedintheentrapment ofonlyaveryfewfish,primarily

alewives, intheonshorescreenwell.

Theintakewasdesignedandisoperatedsothatwateriswithdrawn fromthelakeinthehorizontal plane.RefertoSection3.5.Asdiscussed byseveralauthors(References 21through26),flowinahorizontal planeintothestructure hasadvantages forhelpingfishsenseapositivevelocitygradient.

Itisalsobelievedthatthesteelbarracksatthefaceoftheintakestructures createturbulence andanup-current pressurewavewhichapprisesfishofanincreasing velocity.

Theconfiguration andrelativelocationoftheintakeanddischarge structures minimizerecirculation ofheatedwaterwhichmayattractfishtotheintake.Locationoftheintakestructure relativetothedischarge structure hasadirecteffectonplantefficiency.

Ifheateddischar'ge waterrecirculates totheintakestructure andtheintakewaterissignificantly warmed,theresultcouldbeadecreaseinplantefficiency aswellasattraction offishtotheintakearea.Itwasconsequently necessary tolocatetheintakeanddischarge structures some550feetrelativetoeachothertominimizerecirculation.

5.1.2Discharge Structure andOperation Theeffectsoftheplantdischarge onthetemperature distribution inLakeOntarioareminimized bytheuseofthedesigndescribed inSection3.5.Thepublished analytical andexperimental investigations onthemechanisms ofwarmVateidischarge intoalargebodyofreceiving waterformthebasisforageneralunderstanding ofthehydrothermal mechanism ofheatdispersion inthevicinityofthedischarge structure.

Comprehensive thermalfieldsurveys,asdiscussed indetailinsection5.5,wereconducted inthesummerof1970and1971afterthestationwasinoperation.

Theresultsofthesestudiesandinvestigations havebeenincorporated inthefollowing description ofthehydrothermal mechanism prevailing inthenearfieldandfarfieldareas.(Intheterminology ofthehydraulics field,"nearfieldarea~~referstothatareainthevicinityofthedischarge structure whereturbulence isthepredominant factorinthetemperature reduction ofthethermaleffluent.

Theterm~>farfieldarea~~referstothatareasomedistanceawayfromthedischarge structure whereheatlosstotheatmosphere isthepredominant factorinthetemperature reduction ofthethermaleffluent)

.5.1-2

Asmentioned inSection3.5,thestationcirculating waterflowis600cfswithamaximumtemperature riseofapproximately 32F.Thetotalwasteheat,amaximumof4.0x10~Btu/hratfullload,isdissipated intwoways.First,bythemixingofthewarmdischarge waterwiththeccolersurrounding ambientwaterandsecondly, bythetransferofheatfromthewatersurfacetotheatmosphere byradiation, evaporation, andconduction.

Eachoftheseheattransferphenomena contributes tothetotalcoolingeffectinvaryingdegreesdepending uponthecoincident meteorological andlakeconditions.

Theheatedwaterdischarges intothelakethroughahexagonal shapeddischarge outletwhichhasatotalopeningareaof152squarefeet..Theeffluenthasaninitialvelocityofapproximately 4fpswhichisgradually reducedbyshearforcesasitencounters therelatively quiescent receiving waterbody.Inconsequence, considerable turbulence developswhichcausesentrainment ofthecoolerambientwater.Theentrained flowmixeswiththestationdischarge and,lowers theoveralleffluenttemperature whileconsuming theenergyofthedischarge byturbulent mixing.Duetothebuoyancyoftheheateddischarge, theeffluentrisesto'hewatersurfaceandestablishes astratified flowsystem.Fieldmeasurements andhydrothermal datacollected duringstationoperation wereemployedinamathematical modelofthedischarge areaaspartoftheFitzPatrick Planthydraulic modelstudy.Theresultsofthisundistorted hydraulic sectormodelwereusedtodetermine thethermaleffectsofthenearfieldarea.Basedontheseresults,astratified flowsystemwasfoundtobewellestablished atabout75feetfromtheNineMilePointUnit1discharge outlet.Fieldmeasurements havedemonstrated thataconsistent dilutionfactorofaboutthreeisachievedandthatatemperature riseofabout11Faboveambientexistsatthewatersurfacewithaflowdepthofabout9feetatthe75-footdistance.

Thisagreesfavorably withtheresultsofthemathematical modelanalysis.

Figure5.1-1showsthebasicmechanism ofdilutionandflowpatternoftheNineMilePointNuclearStationdischarge inthenearfieldarea.Thethermalfieldsurveyshaveconfirmed thataftermixingwithambientlakewater,theheateddischarge plumeformsalighter,upperlayerwhichflowsinthedirection oftheprevailing lakecurrent(predominantly westtoeast-northeast) butvarieswithwinddirection.

Atthesametime,thecoldwatercurrentinducedtowardthedischarge plumeunderrides thelighter,upperlayerandistherefore available asdilutionwater.Asthesurfaceplumetravelsawayfromthedischarge structure, itexpandsinsizebutdecreases intemperature anddepth.The5.1-3

OFDISCHARGESTRUCTURE HEATTRANSFERTOATMOSPHERE RE-ENTRAINMENTENTRAINMENT DIFFUSION ANDMIXINGINDUCEDAMBIENTCOLDWATERDILUTEDWARMWATERSHEARINGSTRESSPFIGURE5.I-IBASICMECHANISM OFDILUTIONANDFLONPATTERNINNEARFIELDAREA A1~~,C stratification weakensasthetemperature difference betweentheupperwarmlayerandbottomcoldlayerlessens.Sincetwooftheopeningsofthedischarge structure aredirectedtowardtheshoreline, atemperature riseofabout6Faboveambientlakewaterwasexpectedalonga4500-foot totallengthofshoreline duetothepoordilutionexperienced withtheshallowbottomtopography.

Thetemperature infactdecreases withtheincreaseofthewaterdepthandthereisdistinctthermocline atabout5feetbelowthesurface.Theresultsofthissurveyindicatethatthesurfaceareaandvolumeofthelakewithinthe3Fisothermareapproximately 300acresand3,000acre-ft,respectively.

Theseresultsagreewiththedescriptions.

ofthehydrothermal mechanism prevailing inthefarfieldarea.NiagaraMohawkhasconducted acontinuing programofLakeOntarioecological studiestodetermine effectsofstationoperation upontheaquaticbiotaofthearea,including anumberofthermalfieldsurveys.Twelveofthese~~triaxial temperature surveys~~

wereperformed duringaperiodfromMaytoNovemberofboth1970and1971.Thesestudiesaswellasotherpertinent investigations andsurveyslistedinAppendixF,wereconducted byDr.JohnF.Storr,aconsultant inLimnology andAssociate Professor ofBiologyattheStateUniversity ofNewYorkatBuffalo.Adescription ofthemethodsemployedinconducting thethermalsurveysisdiscussed inSection5.5.5.Theresultsofthesesurveysindicatethatthesurfaceareaofthelakewithinthe3Fisothermcouldrangefromabout60to460acres,depending uponthemeteorological andlakeconditions asshowninFigures5.1-2and5.1-3.Inconclusion, thethermalconditions prevailing attheNineMilePointsitewiththeNineMilePointNuclearStationinoperation canbesummarized asfollows:1.Intheneak-field area,inthevicinityofthedischarge structure, thepredominant effectisthatofturbulent mixingofthebuoyantdischarge withthesurrounding water.Attheendofthisnear-field area,astratified flowsystemisdeveloped, withthewarmer,dilutedwaterflowingatthesurfaceinthedirection ofthepredominant lakecurrent.2.Inthefar-field area,whichextendstoadistancewherethetemperature riseaboveambientisinsignificant, thestratified flowsystempersists.

ThecoldwaterisinducedfromoffshoreinthelowerlayertoreplacethewarmerdilutedwaterflowingawayintheupperlayerInthisfax'-field area,thepredominant effectsareheattransfertotheatmosphere andinterfacial entrainment 5.1-4 rIII betweenthedischarge plumeandtheunderlying coldwater.3.Inthevicinityoftheintakearea,afairlystrongstratified discharge flowsystemprevails.

Thecenterline ofthe,intakeopeningsarelocatedabout'18feetbelowthemeanwaterdatum,andtheyareapproximately

'550feetfromthedischarge structure.

Thevelocityattheintakeopeningsisatmostapproximately 2fps.Withthecombination ofthestrongstratification andlowinducedintakeflowvelocity, therecirculation ofwarmwaterisnegligible undernormallakeconditions.

5.1.3EffectsonAquaticBiotaNoadverseeffecthasbeenobservedonaquaticbiotaintheNineMilePointareaduetothermal,chemical, orradioactive releasesfromthestation.Theeffectsofchemicalandradioactive releasesonthebiotaofthereceiving watersarediscussed inSections5.2and5.3,respectively.

Thermaleffectsaredescribed below.Asdiscussed inSection2.7.2thespeciesoffishcollected inthevicinityofthesiteduringthewarmestmonthsoftheyeararetypicalofwarm-water fishpopulations.

Naturalsummertemperatures sometimes reach77F,asreportedbyDr.J..F.Storr(Ref.20),soitwouldbeexpectedthatthecold-water speciesoffish,suchassalmonids, wouldinhabitthedeeperoff-shore watersratherthanthenaturally warmerin-shoreregionsoftheepilimnion.

Asdiscussed inSection5.1.2thethermalplumeisconfinedtothesurfacewatersinthevicinityofthepromontory..

Sincethedischarge islocatedinanopenareaofthelake,thethermaleffluentdoesnotcreateabarriertofishthatmayutilizetheadjacenttributaries, whichincludetheOswegoRivereight'miles westofthesite,thelittleSalmonRivereightmileseastofthesite,andtheSalmonRiverafewmilesfurthereast.Sincethedischarge doesnotaffectthesetributaries, andsincethereisampleroomforfishtotravelaroundtheplumeinthelakeproper,nointerruption offishmigration hasorwilloccur.Fishareabletoselectoravoidareasofthethermalplumeinresponsetopreferred temperatures.

Studiesatthestationsince1969haveverifiedthisphenomenon.

Duringthecoldermonths,thethermalplumeattractscertainspeciesoffish,including carp,smallmouth bass,sunfish,andalewives.,

Smeltandtroutperch donotappeartobeattracted tothevicinityofthethermalplume.Asambienttemperatures increas'e, thereappearstobenoattraction offishtotheplumeandsomespecies,alewivesandwhiteperch,appeartoavoidthewarmestportionsoftheplume.5.1-5

Itisalsorecognized thatsuddenplantshutdowns duringthecoldermonthsmaystressfishwhichareacclimated towarmertemperatures (Ref.28).Intheadventofanunplanned

shutdown, itwouldbeexpectedthatfishwhichareacclimated toelevatedtemperatures wouldfollowthedissipating plumetominimizethermalstress.Whenascheduled plantshutdownoccurs,thermalstressesareminimized bythecontinuing operation ofthecirculating watersystem.Thisallowsagradualreduction inthetemperature ofthedischarged water.Spawningofthespeciesoffishencountered inthevicinityofthesitegenerally occursinthespringwhennaturalwatertemperatures arelow.However,theonlyfishwhoseeggshavebeenobservedinthevicinityofthesiteisthealewife.Asdiscussed insections2.7.2and5.5,thefieldstudiesindicatethatthealewifespawnsanddepositsitseggsinthealgalmatclosetotheshore.Asdiscussed insection5.1.2alimitedareaoftheshoreline iselevatedbythethermalplume.Whethertheincreased temperatures adversely affectthedevelopment oftheseeggsisunknownatthissite.However,considering theabundanCe andfecundity ofalewivesinLakeontariothereisexpectedtobenoadverseeffectonthepopulation ofalewivesasawhole.Resultsoftheecological surveysperformed atthissitesince1963indicatethatmostofthebenthicplantandanimallifeisfoundbetweentheshoreandthe20-footdepthcontour.Comparison ofpre-andpostoperational resultsindicates thatproceedearlierinareaswithintheinfluence oftheplume.However,growthintheseregionstendstobesuppressed duringthesummer.~Theneteffectisthatthebiomassofalgaeproducedisessentially thesameinsideandoutsideoftheinfluence ofthethermaldischarge.

Thepredominant benthicinvertebrates areamphipods ofthegenusGammaruswhichareanextremely important foodsourceforfish.Thereappearstobeadirectrelationship betweentheabundance Gammarusappearstobehigherinareaswithinthethermaldischarge; however,morestudieswillbenecessary todetermine ifacause-effect relationship exists.Abundance anddistribution ofotherspeciesofbenthicinvertebrates donotappeartobeaffectedinareaswithinthethermalplume.Nutrientstudiesconducted byDr.J.F.Storr(Section5.5)during1969and1970indicated thatthereisnosignificant difference innutrientconcentrations withdepth.Theinducedbottomflowduetotheintakestructure therefore, hasnoeffectonverticalnutrientredistribution.

Preliminary planktondistribution studiesinthevicinityofthesite,conducted byDr.J.F.Storrin1964,(Section5.5)indicated thatplanktonconcentrations weregenerally higherin5.1-6 V

thesurfacewatersthaninthedeeperbottomwaters.Sincetheintakestructure drawswaterfromthedeeperdepths,theproportion ofplanktonic speciesinthecirculating waterflowwillbelowerthaninthesurfacewaters.Additional planktonstudieswereconducted in1971atNineMilePointNuclearStationUnit1toassesstheeffectsofentrainment ontheplanktonic speciesinLakeOntario(section5.5).ThestudieswerecarriedoutfromJunethroughautumnunderdifferent temperature andlakeconditions Bothzooplankton andmotilephytoplankton werecollected intheintakeanddischarge andheldforvaryingperiodsoftime.Theplanktonwereexaminedimmediately andagain6hoursand20hoursaftercollection.

Estimates ofthepercentkilledinpassingthroughthesystemwereestablished foreachgroupoforganisms.

Resultsofthestudiesvarieddepending ontimeoftheyear,waveconditions, temperature rise,anddurationofexposuretotheelevatedtemperatures.

Planktonentrained inthecoolingwatersystemforthestationaresubjected tomechanical andthermalstressforabout6minutesfromthetimeofenteringtheintaketothetimeofreachingtheboundaryofthemixingzone.Thepreliminary resultsofthisstudy,however,conservatively indicatethattheoveralllevelofmortality ofplanktonpassingthroughtheplantranges'from 19tolessthan30percent.Thishighervalueincludesnoallowance forsamplingerrors.Adetaileddiscussion ofthemethodsofestimating planktonmortality isinSection9.5.1.2.2.Asmentioned previously, thecirculating waterflowforthestationisapproximately 600cfs.Theintakeislocatedoff-shoreinanopenexpanseofthelake'here naturalprevailing currentswillpreventthedepletion oflocalplanktonpopulations.

Sincetheproportion ofthecirculating waterflowissmallcomparedtothefreeflowingvolumeofwateratthesiteand,sincethepreliminary planktonstudiesindicaterelatively lowmortality ratesonentrained org'anisms, thereisbelievedtobenosignificant effectontheplanktoncommunity inthevicinityoftheNineMilePointNuclearPowerStation.Althoughthestudiesconducted todatehaverevealednofisheggsorlarvaeintheintakeofUnit1,itisrecognized thatsomefisheggsandlarvaemaybeentrained inthecirculating watersystem.Littlequantitative dataisavailable, butthereisgeneralagreement thatconcentrations offisheggsandlarvaemightbefoundasfarastenmilesfromshorebecauseoftheupwellings inthisarea.Basedonlimiteddata,theeffectofentrainment onthefishpopulation hasbeenevaluated.

Theresultsofthisanalysisaresummarized inTable5.1-1.Threedifferent methodswereusedtoccmputemortality foraonce-5.1-7 If,a/~IIf~IVI,I/'I'\f throughcoolingsystem.Theassumptions ofthevariousmethodsareasfollows:1.ModelofEntireLake:Fishandlarvaeareequallydistributed throughout theentirelake.Watercontaining thesestagesoffishlifewillpassthroughthecondenser systemduringtheapproximately 90-dayspawningseason.2.TenMileInnerLakeFisheggsandlarvaearefoundequallydistributed inthewaterwithina10-milelimitfromshoreallaroundthelake,andnonearefoundintherestofthelake.Allwaterpassingthroughtheplantiswithdrawn fromthis10-mileinnerlake.Watercontaining thesestagesoffishlifewillpassthroughthecondenser systemduringtheapproximately 90-dayspawningseason.3.OneMileInnerLakeSimilartosecondmodel,exceptthelarvalformsarefoundonlywithina1-mileinnerlake.Foreachofthemodels,threecaseswereinvestigated, asrecordedinthecolumnslabeled<<100percentmortality,"

<<30percentmortality<<and

<<30percentmortality withselective withdrawal.<<The resultsinthefirstcolumnareforthecasewhereitisassumedthatallformsoffishlifepassingthroughthecoolingwatersystemwillbedestroyed.

Preliminary dataindicatethatapproximately 10tolessthan30percentmortality oflarvalformsoccursasaresultofpassagethroughthecoolingwatersystemsofsimilarunits.Thismortality ratemaybehighsinceitisnotpossibletodetermine themortality whichoccurredasadirectresultofthesamplingtechnique.

Whiletheseresultsarenotdirectlyapplicable totheNineMilePointStation,theydoprovideabasisforestimating anactualmortality rate.Similarly, preliminary dataindicatethatsurfacewatercontainshigherconcentrations offisheggsandlarvaethandolowerdepths.Theintakestructure isdesignedtodrawwaterselectively fromthedeeperwaterandtheresultslistedincolumn3inTable5.1-1reflectthisfactor.Evenonthebasisofthemostconservative modelinvestigated, lessthan0.2percentoffisheggsorlarvaecouldpotentially bedamagedbypassagethroughtheNineMilePointStation.5.1-8

Althoughmechanical andthermaleffectsareusuallyconsidered themajorcauseofplanktonmortality incirculating watersystems,recentstudies(Ref.29)indicatethatchlorineisresponsible forincreased mortalities ofzooplankton.

However,biocidesarenotusedinthecoolingwatersystemforcondenser cleaningsothatthisincrement ofplanktonmortality isnotafactor.RefertoSection3.7foradiscussion oftreatment topreventbiological growthinmakeupwater.Table5.1-1EffectofEntrainment onFishLarvaePopulation forNineMilePointNuclearStationCasePercentofReduction ofPoulationNineMilePoint23Direct100%Mortalit30%Mortalit30%Mortality withSelective Withdrawal-

~1.EntireLake0.00740.00220.00072.TenMileInnerLake0.01330.00400.00123.OneMileInnerLake0.1478004440.01335.1-9 48II~Jk~'l'lL10r 52EFFECTSOFRELEASEDRADIOACTIVE MATERIAL5.2.1GeneralNineMilePointUnit1isanoperating stationwhichwaslicensedpriortothepublication oftheproposedguideline AppendixIto10CFRPart50.,ThissectionwilldiscussboththelicensedUnit1stati'onasitwasoriginally designedanddescribed intheFSARaswellasthefutureUnit1stationaftertheradwastesystemisupgraded.

Theupgradedradwastesystemisdesignedandwillbeoperatedtominimizedischarge ofradionuclides totheenvironment.

Theconcentrations ofthereleasestothewaterandairwillcomplywiththelimitsspecified inTitle10,CodeofFederalReglulations (CFR)Part20,andwiththedesignobjectives specified intheproposedAppendixIto10CFRPart50..Thisreleasedradioactivity addsonlyveryslightlytothenaturalbackground radiation Toestimatethedosefromthesereleases, thefollowing factorsareconsidered:

1.Theisotopiccomposition andconcentrations released2.Dilutionofthedischarge intheairandwaterandremovalmechanisms, suchassedimentation andadsorption 3.Concentration inaquaticandterrestial foodchains4.Localenvironmen'tal characteristics, such.asmeteorology, hydrology, andlanduse5.Thedailyhabitsandactivities ofthepotentially exposedpopulation.

Allprincipal exposurepathwayshavebeenconsidered.

Theseare:1.Externalexposuretopeoplefromradionuclides inwaterandair2.Internalexposuretopeoplefromingestion offoodcon-tainingradionuclides andfromdrinkingwaterandmilk30Exposureoffishandprimaryproducerandconsumerspeciesinwaterfromradionuclides inwaterandinternally deposited 4.Exposureofplantsandanimalsdirectlyfromradio-nuclidesdischarged toairandindirectly fromdeposition 5.2-1

Eachofthesemodesofexposureisconsidered indetailinthefollowing sectionsastheyapplytotheaqueousandairborneradionuclide releases.

Itisappropriate heretoexplainthebasisforthediscussion ofreleaseratesofradioactive materials andfortheevaluation

,oftheresulting radiation exposures.

TheNineMilePointUnit1offgassystemdesignwasbasedonanobleradiogasactivityflowrate(sourceterm)of820,000uCi/secafter30-minute retention.

Thisdesignbasisvalueisrecognized tobeaconservative onewhichisnotexpectedtobeapproached orexceededinstationoperation.

Sincethegoalinfuelperformance istoachieveasourcetermbelowthedesignbasis,alowervalueisappropriate asabasisforthediscussion ofradioactive releaseratesasaveragedovertheyearsofstationoperation.

BasedonBWRoperating experience todate(abouttenplants),anaverageactivityflowrateoftheorderof25,000uCi/secasmeasuredafter30-minute delayishigherthantheaveragerateofflowexperienced attheoperating plants.Inestimating theexposures fromradioactive

releases, andinconformance withAppendixDof10CFRPart50,aconservative assumption offuelfailureisthatthegaseousactivityflowrateat30-minute delayis50,000uCi/sec,withthereactoroperating atsteady-state fullpowerandthecleanupsystematnormaloperation.

Radiation, exposures tothepublichavebeencalculated onthebasisofagaseousactivityflowrateof50,000uCi/secat30-minute delayforallprincipal radiological pathways.

Duetodesignfeaturesandsiteandenvironscharacteristics, theresulting doseestimatetoanymemberofthepublicislowcomparedtotheusefulbenchmark ofdosefromnaturalbackground radiation.

5.2.2AqueousReleasesDuringroutineoperation, NineMilePointUnit1releasesminuteamountsofradionuclides toLakeOntario.Theimportant isotopesandtheirdischarge concentrations forboththeoriginalandupgradedstationdesignsareaspresented inTable3.6-3.Thesumoftheratiosofthedischarge concentration tothemaximumpermissible concentration (MPC)foreachisotopeisalsopresented inthistableforbothstationdesigns.Theresulting magnitude ofexposure, whichisextremely smallforallexposurepathways, dependsontheradionuclides

~released, theconcentration ofeach,dilutioninLakeOntariotothepointofuse,theconcentration oftheradionuclides inbiota,andtherecreational anddietaryhabitsofpeopleinthevicinityoftheNineMilePointStation.5.2-2

Inestimating thedoseratetoindividuals andthegeneralpopulation, themodesorpathwaysofexposurethatmustbeconsidered are:1.Directexternalbetaandgammaexposurereceivedwhileengagedinsuchwater-oriented recreational activities asswimming, waterskiing,boating,andfishing.Commercial fishingmustalsobeconsidered.

2.Ingestion offishinwhichradionuclides mayaccumulate atconcentrations inexcessoftheconcentrations inwater.3.DrinkingwaterfromLakeOntarioorfromwellsinthevicinityoftheplant.4.Thefoodeatenfromcropsirrigated withLakeOntariowater.Aquaticbiotawouldbeexposedasaresultof:1-Submersion inwatercontaining radionuclides 2.Concentration ofradionuclides inbodytissue.5.2.2.1ExternalRadiation ExposurefromWaterRelatedActivities 5.2.2.1.1 Individual ExposureSincethedischarge fromboththeoriginalUnit1stationdesignandtheupgradedUnit1stationdesignutilizesthesamesubmerged discharge system,dilutionreducesthesurfaceradionuclide concentration byatleastafactorof3..Assumptions usedtocalculate individual radiation exposures fromrecreational activities are:(1)theswimmingseasonlastsonlyafewmonths,roughlyfromJulytoSeptember, and(2)-thedoseratetoawaterskierisabouthalfthedoseratetoaswimmer.Consequently, apersonwhospent200hoursperyearswimminginthemixingzonewouldreceiveroughlythesamedoseasanindividual whowaterskisfor400hoursperyearintheareaof-thedischarge.

Thesedoseestimates aresummarized

.inTable52-1Theexposureofindividuals boatingorfishinginthedischarge areawouldbeduetothepresenceofthegammaemittersinthewater.Arecreational fisherman orboatercouldbeexposedfor300hoursayear,orroughly16hourseachweekendfromAprilthroughSeptember.

Similarly, acommercial fisherman couldbeexposedforabout1,000hoursperyearwhilefishinginthemixingzone.Thesedoseestimates aresummarized inTable5.2-1.5.2-3 0

Table5.2-1SummaryofDoseCalculations ForAnIndividual (mrem/yr)

DueToAqueousReleasesA.UradedUnit1StationDesin<<iExsureMode.Dose~ThroidAdult-InfantBone-External.

Swimming(200hr/yr,MZC>>)WaterSkiing(400hr/yr,MZ)Boating(300hr/yr,MZ)Commercial Fishermen (1000hr/yr,MZ)Internal~0.00070.0007000030001NANANANANANANANANANANANANANA0000900020.060.26External.

DrinkingWater(2.2l/day<+i)

EatingFish(200gm/day<ii) 0.010.350.01B.OriinalUnit1Station.Desi0.002002Swimming(200hr/yr,MZ~>>)WaterSkiing(400hr/yr,MZ)Boating(300hr/yr,MZ)Commercial Fishermen (1000hr/yr,MZ)Internal0.010.010.0080.02NANANANANANANANANANANANANANADrinkingWater(2.21/day<ii)

EatingFish(200gm/day~+>)

0.0182.00.061280.271.10.0460.03033<<iBases:50,000uCi/secoffgasactivityflowrateafter30-minuite delayandanaqueousreleaserate(excluding tritium)of2Ci/yrfortheupgradedstationdesignand32.2Ci/yrbasedontheidentified radionuclides released(excluding tritium)obtainedfromactual1971operating datafortheoriginalstationdesign.<<>Gastro-Intestinal Tract~~iSeeSection5.2.2.2.1

<<>>MixingZoneNA-NotApplicable 5.2-4

Atotherreactorlocations, thecontamination offishinggearhasbeenapotential exposurepathwayforfishermen.

Sedimenthasbeenshowntobeonesourceofsuchcontamination.

Experience hasshown,however,thatthelevelofcontamination ofgearislikelytobeatleastoneorderofmagnitude lessthanthatinsediments (Ref.30).Thenatureofthelakeissuchthattherearenodepositsofsedimentintheimmediate vicinityofthedischarge.

Hence,thisparticular exposurepathwayisofnoconcern.Experience attheDounreayinstallation inBritainindicates thathempnetshaveactedasion-exchange resinsinsaltwaterwiththeresultthattheradionuclide contentofthenetexceededtheconcentration inthewater.Discharge ratesatDounreaywerefrom600to2,000curiespermonthin1965-66.Betaradiation doseratesmeasuredatexperimental netswerelessthan0.15mrad/hr.Becauseoftheseveralordersofmagnitude lowerreleasesfromNineMilePoint,thisexposurepathwayisofnoconsequence (Ref.31).Anotherpossiblemodeofexposureisfromthepresenceofradio-nuclidesonbeaches.Sincebeachesintheareaconsistofrelatively largegrainedandcoarsematerials, theabsorption ofradioactive materials isminorcomparedtobeachesconsisting ofsmallerparticlesizematerials, suchasmuds(Ref.32).Nosignificant buildupisexpected.

5.2.21.2Population Exposure-Recreational TheLakeviewSummerCamp,adjacenttothenorthwest cornerofthesite,providesaccesstothebathingbeachnearestthedischarge.

About500peopleusethecampdailyfromJunethroughSeptember, andabout1,500onweekends.

TheclosestpublicbeachatSelkirkShoresisabout10mileseastofthesiteandhasroughly1,000swimmersperweekthroughthesummer.Thefactor-of-three dilutionofthedischarge hasalreadybeenmentioned.

Transport andmixingoftheeffluentprovideadditional

dilution, whichisafunctionofthedirection andthedistancefromthedischarge.

Sincetheprevailing currentsarefromwesttoeast(Section5.4-7.2),

theproximity oftheLakeviewcampjustwestofthesiteisnotindicative

.ofthedilutionwhichcanbeexpected.

Assumingthateachpersonatthecampswimstwohoursperday,andthatthereisonlyathreefold effluentdilution, thetotaldosetothepopulation isaspresented inTable5.2-2.5.2-5

Table5.2-2Recreational Population Exposures, Man-rem/yr.

~OradedOricrinal.

2Swimming+

LakeviewCampSelkirkShoresFishing+MixingZone0.00050.000030.00070.0080.00050.017~Basis:SeeNote<<>ofTable5.2-1AtSelkirkShorestotheeastofthestation,dilutionisincreased byafactorof235(Section5.4.7.2).Typically, itwouldtakeover35hoursforthecurrent-carried discharge toreachthebeach.Neglecting radioactive decayinthistraveltime,andassumingadilutionof235andtwohoursperdayspentinthewater,thepopulation exposureatSelkirkShoresisaspresented inTable5.2-2.Asmanyas40fishingboatshavebeenobservedneartheNineMilePointUnit1discharge atthesametime.Ifitisassumedthatdilutionbyafactorof3.0occursandthattherearetwomenperboatfishingsixhoursadayfor20weeksayear,thedosetothepopulation fromrecreational fishingisaspresented inTable5.2-2.5.2.2.2InternalRadiation ExposurefromIngestion ofFishandWater5.2.2.2.1Individual ExposureFishtendtoconcentrate radionuclides intheirbodiesandthismustbetakenintoaccountindetermining thedosetomanduetotheconcentrations ofvariousisotopesinthewater.Themaximumpermissible concentration considering reconcentration (MPCC)istheconcentration ofaradionuclide inwaterthatwouldresultinanintakebymanfromeatingfishequaltothatwhichhewouldgetfromdrinkingwatercontaining themaximumpermissible concentration inwater(MPCW)ofthatnuclide.TheMPCCisdirectlyproportional totheMPCW,andinversely proportional totheproductofthequantityoffishingestedandaconcentration factor(K).Theconcentration factorKistheratiooftheradionuclide concentration inbiotatothatinwater.Therepresentative valuesofKcompiledbyChapmanetal(Ref.33)forelementsinfreshwater fishhavebeenusedfordosecalculations.

Anindividual whoobtained100percentofhisminimumdailyproteinrequirement of200gramsfromeatingfishwouldreceivedosestothegastro-intestinal (GI)tract,tothewholebody,tothebone,andtothethyroid,aspresented inTable5.2-1.Duetoseasonalconditions, itisassumedthathalfofthe5.2-6 1=,'<<ItI*<<ILCIIr~'1hJItl.~r'II-~<<Ir.,thJIh~Ih<<hrrIrli<<'IrrN-gtI<<llr<<J~Jhtr-Wtlgr'<<V"r'h*gP~t'<<1,,<<~<<'tlhrJ<<

individual' yearlyintakeisobtainedfromnearthestationdischarge, whilethebalancecomesfromsourcesoriginating randomlythroughout thelake.Thosefishobtainednearthestationdischarge areassumedtohavespenthalfoftheirlifeinthemixingzoneandhalfthroughout thelake.Duetotheseasonalresidency intheimmediate sitearea,thedosefromdrinkingwaterisbasedonanindividual drinkinghisdailyintake(infant1liter/day, adult2.2liters/day) fromthewateratthesiteboundaryduringonehalfoftheyearandfromtheOsewgowatersupplyduringtheotherhalfoftheyear.Basedonthesedailyintakes,adultsandinfantswouldreceivedosestotheGItract,tothewholebody,tothebone,andtothethyroidfaspresented inTable5.2-1.Eventhoughaninfantingestsasmallerdailywaterintakethananadult,itwouldreceiveasomewhatlargerthyroiddosebecauseofitssmallerthyroidmass.Theinfantthyroiddoseiscalculated usingtheMPCWfrom10CFRPart20.Theuseoflakewaterfortheirrigation offoodcropscouldresultinanuptakeofradionuclides bytheplantswhichcouldresultinanexposuretomanwhentheplantswereconsumed.

InOswegoCountyin1964,only1,660acreswereirrigated outofatotalof210,555acresfarmed(Ref-34).Oneortwoorchards, somefivemileseastofthesite,uselakewaterforirrigation (Section5.4.7.2).Becauseofthelimitedacreageirrigated andthedistancetothenearestuser,itisnotexpectedthatexposures aresignificant incomparison tothedosesreceivedviaotherpathways.

5.2.2.2.2 Population ExposureTheradionuclides discharged tothelakeataconstantratereachesanequilibrium valuegovernedbytheradiological half-lifeofeachnuclideandthemeanresidence timeofwaterinthelake.Thenormaldischarge ofwaterfromLakeOntariodowntheSt.LawrenceRiverisabout240,000cfs.Assumingthelakevolumetobe393cubicmiles,theeffectofwaterexchangewasexaminedwithanassumedturnoverrateof90percentin24years.Forallisotopes, exceptCo-60,Cs-137,andSr-90,theequilibrium levelofactivityinthelakeisgovernedbytheradiological half-life oftheradionuclides.

Expectedequilibrium levelsforselectedisotopesfortheexchangeandno-exchangeconditions arecomparedinTable5.2-3.Ifitisassumedthattheseradionuclides areuniformly distributed throughout thelakeandareconcentrated infishtothedegreepredicted bytheconcentration factor,apopulation exposureestimatecanbemade.Thisexposureestimateisbasedonavalueof3,235,000 poundsforthecombinedU.S.andCanadianfishcatchin1970(Section2.2).Thepopulation dosestothewholebody,GItract,thyroidandbonearegiveninTable5.2-4.5.2-7

Table5.2-3Equilibrium LevelsinLakeOntariofortheContinuous Discharge ofRadionuclides<

>>Euilibrium Activit-Ci~Isotoe.AnnualDischarge

~Ci/YrA.UradedUnit1Station-Desi n.Co-58Co-60Sr-89Sr-90I-131Cs-134Cs-137Ba-140Np-239H-300840.0090.050000604600.0040.0060.05001002000230.0650.0100.13440.0140.0120.148400020.00093000.0230.0330.0050.0420.0140.0100.04400020.0009130B.OriinalUnit1StationDesin.Co-58Co-60Sr-89Sr-90I-131Cs-137Ba-140H-36310.60.240.0462.22.60070201.7870.0480.94~0.06964*0.0033007440.0240.290.069190.003130+Activity after30yearsofdischarge

<<~35-year stationlifeandsamebasisasgiveninNote<>>ofTable5.2-1SincetheOswegoMetropolitan WaterBoardandtheOnondagaCountyHaterDistrictprovidepotablewaterfromLakeOntariotathegeneralpublic,ingestion ofwatermustbeconsidered asapassiblemodeofexposure.

Thewatersupplyintakeisabouteightmileswestofthesiteboundary.

Theprevailing lakecurrentsflowfromtheOCWDintaketowardtheunit'sdischarge.

Thesewatersuppliesserveasmanyas190,000personsperday(Ref.35).Anannualaveragedilutionfactorof4.9x10~isexpectedattheOswegointakefromdischarges forNineMilePointUnit1(ExhibitD-2ofRef.19).Instantaneous dilutionisbyafactorof156tothewatersupplyinlet.Ifthisdilutionfactorof156isassumedandthe30ormorehoursofdecayfromthedischarge totheinlet,aswellastheremovalofradionuclides 5.2-8

bywatertreatment andsubsequent decayinthedistribution systemareneglected, thedosetothepopulation isaspresented inTable5.2-4.Thetotalprojected population fortheyear2000within50milesofthestationisabout1,430,000.,

TheLakeOntario-City ofOswegowatersupplyintakeservesOswegoCountyandpartsofOnondagaCounty.Thesecountiesareexpectedtohaveabout930,000people,about65percentoftheirprojected year2000population, within50milesofthestation.Forestimating theprojected year2000population man-remdosesinTable5.2-4,afactorof4.9hasbeenused.Table5.2-4Population Exposure(man-remperyear)fromNineMilePointUnit1LiquidReleases<<>

Mode.ofEosure.~Theid.Bone.A.Uraded-Unit.1 Station-Desi n.Year-1970~Ingestion a.WaterbFish0-0870.0120.1700022120.16000002001Year.2000-Ingestion a.Waterb.Fish~>>0.430.0490.8300088580.800.00008004B.OriinalUnit1-Station.Desi n.Year1970~Ingestion a.WaterbeFish1.60445.60.0385232.760.000011.0<>>Bases:.

SameasgiveninNote<>>ofTable5.2-1.<<>Itisconservatively estimated thatfishcatchesincreasebyafactoroffoureventhoughthepast30-yeartrendhasbeeninthedirection ofdecreasing fishcatches.AreportbytheU.S.FishandWildlifeServicein1969estimates thatprojected demandforfisheryproductsfromU.S.landingsinLakeOntariowillincreasetoabout1.25to1.5millionpoundsannuallybytheyear2020(Ref.18).5.2-9

'

5.2.2.3Radiation ExposureofPrimaryProducerandConsumerSpeciesfromDischarged Radionuclides 5.2.2.3.1ExternalBenthicandplanktonstudieshavebeenconducted inLakeOntarioattheNineMilePointsite.Mostofthebenthicplantmaterialdepth.Oftheanimalspresent,thefreshwateramphipodGammarus.

wasmostabundant.

Limitednumbersofsnailsandinsectandfishinthevicinityofthedischarge demonstrated seasonalvariations innumbers(Ref.1,page52).Thesubmersion dosetotheseorganisms fromtheradionuclides inthemixingzonecanbeassumedtobethesameasthedosetowaterseveralgammamean-free pathsbelowthesurface.Usingamixingzonedilutionfactorof3andassumingyear-round residence inthisregion,thedosestobiotaareaspresented inTable5.2-5.Table5.2-5SummaryofDosestoBiotaintheMixingZone<<~A.UradedUnit1StationDesin.'osemradserearExternalInternalFishPrimaryproducers andconsumers 0.01500311.012.0B.OriinalUnit1StationDesinFishPrimaryproducers andconsumers 0.270.53400120~>>Bases:SameasgiveninNote~>>ofTable5.2-15.2.2.3.2 InternalRadionuclides canconcentrate inbiotatolevelsexceeding theirconcentrations inwater.Theinternaldosetotheprimaryproducerandconsumerspecies.canbecalculated usingtheradionuclide concentration inthemixingzoneandthelargerofChapman's values(Ref.33)ofconcentration factorsforeitherfreshwater plantsorinvertebrates.

Becauseofthenear-microscopic sizeoftheorganisms

involved, theinternalgammadoseisassumedtobezero.Theinternaldose,assumingdeposition ofallthebetaradiation energyintheorganism(Ref.36),isaspresented inTable5.2-5.5.2-10

5.2.2.4Radiation ExposureofPishfromDischarged Radionuclides 5.2.2.4.1 ExternalSurveysoffishspeciesimportant tosportfishing inLakeOntariointhevicinityofNineMilePointindicatethatfisharerandomlydistributed intheareaduringthedaytime.Atnighttheytendtoconcentrate atdepthsof20feetormore,withamaximumat30to40-footdepths.Thelargestfishconcentrations wereencountered inthespringoftheyearwhenalewiveswereactivelyspawninginthewarmerinshorewaterofthelake..Atthistimeofyear,alewivesandalewifeeggsaretheprimaryfoodsupplyforotherfish.Astheseasonprogresses, fishpopulations declinesharplyasthealewivesdisperseandmovefurtheroffshore.

Gammarus.then assumeagreaterimportance asafoodsupply.ByOctober,theinshorefoodsupplyhasgreatlydiminished andmostfishhavemovedoffshore(Section2.7.2).Takingintoaccountthesediurnalandseasonalpatternsofmovement, andassumingthatafishspendshalfofitslifetimeinthemixingzone,thedoseratecanbeassumedtobeabouthalfthatofthemixingzonewateroraspresented inTable5.2-5.5.2.2.4.2 InternalByassumingthatradionuclides concentrate infishasindicated bytheconcentration factordiscussed inSection5.2.2.2.1,thetotalactivityinafishofknownmasscanbecalculated.

Essentially alloftheenergyofthebetaparticles emittedfromauniformactivitydistribution isabsorbedinafish.Becauseofthelongmean-free pathofgammaradiation, onlyaportionofthegammaenergyisabsorbedbythefish.Thefractionoftheenergyabsorbeddependsontheshape,mass,anddensityofthefish,aswellasthedistribution ofactivityandtheenergyofthegammarays.Ifitisassumedthatafishisapproximated byaflatellipsoid withaxesintheratioof1:0.5:2.0, andthattheradionuclides areuniformly distributed throughout a2-kgmassofunitdensity,thentheabsorbedfractiondoesnotexceed0.2forgammaenergiesfrom0.05to2.75Mev(Ref.37).Employing theseassumptions then,andassumingalsothatthefishliveinthemixingzoneforhalftheyear,thedoserateisaspresented inTable5.2-5.Tritiumoccursnaturally frominteractions ofcosmicrayswithgasesintheupperatmosphere.

Itwasalsoproducedinabundance asaresultofnuclearweaponstestingandenteredthebiasphere throughprecipitation.

Thetritiumconcentrations ofLakeOntarioasmeasuredatthe.NineMileUnit1coolingwaterintakehasaveragedabout330pCi/1.Assumingthisconcentration isrepresentative oftritiumactivitythroughout thelake,thereareaboutonehalfmillioncuriesoftritiumpresentinthelake.5.2-11

Thereleaserateoftritiumintothelake,thedischarge concentration oftritiuminthemixingzone,andthepercentage ofthe10CFR20MCPWforthisconcentration aregiveninTable5.2-6forbothstationdesigns.Initially tritiumreleasesvillbelowerfortheupgradedstationdesignthanfortheoriginalstationdesignbecauselesswastewaterwillbedischarged.

However,tritiumlevelsinthereactorwaterwillbuilduptoanevequilibrium concentration whichisexpectedtooffsetthereducedwastewaterflow.Therefore, itisassumedthatthetotalcuriesoftritiumreleasedwillbethesameforboththeoriginalandupgradedstationdesign.Therearenoknovnmechanisms bywhichtritiumwouldconcentrate inbiotatolevelshigherthanthoseinwater.Hencethedosesfromdrinkingvaterandfromeatingfishfromthesamelocationwouldbeidentical.

Thetritiumcontribution tothewhole-body dosetoanindividual fromdrinkingwateratOswegoisalsopresented inTable5.2-6.Table5.2-6TritiumReleaseData<<>>1.Releaserate,Ci/day2.Discharge Concentration, uCi/cc3.Percentof10CFRPart20MPCWUpgradedStation-~Desin0.064.3x10-~0.002OriginalStationDesicen.0.064.3x10-80.0024.Contribution towholebodydose<<>,mrem/yr0.000020.00002<>>Basis:SeeSection5.2.2.4.2~>>FromdrinkingwateratOswego5.2.3Radionuclides Discharged toAmbientAir5.2.3.1Individual Theexternalradiation dosetoanindividual duetoreleasesofradioactivity totheambientatmosphere willdependonthereleaseratesofthevariousradionuclides, theheightabovegroundofthereleases, andthemeteorological conditions governing thelong-termaveragemovementofair-borne radioactivity acrossthesiteboundary.

Partofthemodifications to-bemadetoNMP1toconformtotheintentoftheproposedAppendixIto10CFRPart50istoincreasetheholdupwithintheoffgassystem.52-12

Table5.2-7givesthereleaseratesforfissionandactivation gasesfromthestackoftheoriginalstationdesign.Table5.2-7alsogivestheexpectedreleaseratesforfissionandactivation gasesfromthestackoftheupgradedstationdesignafteraholduptimeof33hoursforthekryptons, 480hoursforthexenons,and5hoursfornitrogen, argon,andtritium.Radionuclides, otherthanhalogens, whoseemissions arelessthan0.01uCi/sec,areconsidered negligible andareexcludedfromthistable.Thecalculations arebasedonafailedfuelbasiscorresponding toanoffgasactivityflowrateof50,000uCi/secafter30minutesdelay.Thesegasesarereleasedfromthemainstackandresultindosesaspresented inTable5.2-7attheeasternboundaryoftheFitzPatrick Plantsite1.2mileseastoftheNineMilePointUnit1stack.Thisdetermination isbasedonannualmeteorology andthesizeandshapeofthesiteitself.Theaverageannualground-level concentration atthispointmaybecalculated fromtheknownreleaseratesandtheannualaveragenormalized concentration, whichforthissiteis4.74x10-~sec/m~atthatsiteboundary.

Thecalculated ground-level concentrations atthislocationcanbeusedtoobtaintheannualaveragedosetoahypothetical mancontinuously locatedthere.Theimmersion dosemethodofCommittee IIoftheInternational Commission onRadiological Protection (Ref.38)wasusedtocalculate wholebodydosefromtheground-level concentrations..

Fortheseactivityreleases, nosignificant ingestion doseisexpected.

5.2.3.2PlantsandAnimalsTheexternalexposureofplantsandanimalsatthesiteboundaryisessentially thesameasthatcalculated forman.SeeTable5.2-7.Asistrueforhumans,nosignificant.

ingestion doseisexpectedforanimals.5.2.4Radionuclide Contamination ofGroundWaterWhiletherearenumerousprivatewaterwellsinthevicinityofNineMilePointUnit1,therearenoanticipated releasesthatcouldcausegroundwatercontamination.

SincethewatertableslopestowardLakeOntario,anychangesinthegroundwateratthesitedonotaffectwellslocatedup-gradient; Noexpectedincreaseinradiation levelsingroundwaterisanticipated, therefore, thereisnoexposuretopeople,plants,oranimalsfromthispathway.5.2.5Individual ExposureEstimateThevaluesforindividual radiation exposures inTable5.2-8represent aconservative estimateofstationoperation (i.e.,50,000uCi/secoffgasactivityflowrateafter30-minute delayandanaqueousreleaserateof20Ci/yr)whichishigherthanexpectedwiththeupgradedstationdes'ignpreviously described inSection3.6.Itisobviousfromthevaluespresented inthetablethatevenwithreleas'ed quantities of5.2-13

Table5.2-7GasReleaseRates<>>fromtheNineMilePointUnit1StationandCalculated WholeBodyExternalDoseRate<>>at1.2MilesEastofStackA.UradedUnit1StationDesin.Kr-88Kr-85mXe-133Xe-131mKr-85Total2.8hr4.4hr5.3days11.8days10.7yr2.816.8312.0247.60.0020.0030.022Negligible 0001~0028B.OriinalUnit1StationDesin.Radionuclide-Half-life.

ExternalWholeEmissionRateBodyDoseRateKr-83mKr-85mKr-85Kr-87Kr-88Kr-89Xe-133mXe-133Xe-135mXe-135Xe-137Xe-138N-13Ar-41H-31.86hr4.4hr10.76yr1.3hr2.8hr3a2min2.3days5.27days16min9.2hr4.2min17min9.96min1.83hr12m3yx'2502900800085001501002500400090004506751622.6040.0200.4619107.560-30900090.1740.8101.9703719.750.1400.002Total306C~)Basis:

50,000uCi/secoffgasactivityflowrateat30minutesdelay~>>Assumed tobecontinuous

<fence-post~~

exposureBesidestheoffgassystem,Unit1releasessomeradioactivity totheambientatmosphere throughturbineglandseals.Thedosecalculated fromthisreleaseis0.20mremperyear.5.2-14

radioactivity severaltimesinexcessofthatexpectedduringfacilityoperation, theradiation exposures toindividuals andthepopulation asawholemeettherequirements ofParagraph BoftheproposedAppendixIto10CFRPart50andisnegligible ascomparedtonaturalbackground.

5.2.5.1LiquidReleasesModifications totheUnit1liquidradwastesystemarebeingdesignedwiththeobjective thataftermodification thereleasedradioactivity concentrations willbeinaccordance withtheproposedAppendixIto10CFRPart50,SectionIIA.However,forconservatism, effluentreleasesemployedinTable5.2-8arearbitrarily basedonaqueousreleasesof20Ci/year.Therelativeisotopiccomposition wasassumedtobeasshowninTable36-3withappropriate adjustments toaccountfortheassumedreleaserate.Theindividual exposureestimates fromswimming, waterskiingandboatingarebasedonanindividual's exposureof200hr/yr,000hr/yr,and300hr/yr,respectively inthemixingzone.Duetotheseasonalresidency intheimmediate sitearea,thedosefromdrinkingwaterisbasedonanindividual drinkinghisdailyintake(infant1liter/day, adult2.2liter/day) fromthewateratthesiteboundaryduringonehalfoftheyearandfromtheOswegowatersupplyduringtheotherhalfoftheyear.Thedosesduetofishconsumption werecalculated assumingthatanindividual eats200gramsoffishperday.Duetoseasonalconditions, itisassumedthathalfoftheindividual syearlyintakeisobtainedfromnearthestationdischarge, whilethebalancecomesfromsourcesoriginating randomlythroughout thelakeThosefishobtainednearthestationdischarge areassumedtohavespenthalfoftheirlifeinthemixingzoneandhalfthroughout thelake.5.2.5.2GaseousreleasesTheoffgassystemof-theupgraded.

Unit1stationdesignisdesignedforaholdupof20daysforxenons,33hoursforkryptons, and5hoursforactivation gases.Theexternalexposures fromgaseouseffluents arecalculated tooccurattheeasternsiteboundaryduetotheprevailing winds.Theinhalation dosetothethyroidiscalculated tooccuratthesamepoint.Thethyroiddosefrommilkconsumption assumesthataninfantdrinksoneliteradayofundiluted milkfromthenearestdairyfarm.Incalculating exposures associated withtheturbinebuildingventilation system,a7-gpmleakrateintothebuilding, aniodinepartition factorof10,andabuildingexhaustrateof2buildingvolumesperhourareassumed.Theturbinebuildingventilation systemexhauststhroughthe350-footmainstack.52-15

Table5.2-8Individual ExposureEstimates (mrem/year)

FromSiteEffluentReleasesForUpgradedUnit1<<>ExternalExsuresA.GaseousEffluents<<~

WholeBodBetaSkin-OffgasTurbineBldg.Ventilation TurbineSteamSeals0.0130.0140.130-015000690.06B.LiquidEffluents~>>

SwimmingWaterSkiingBoating0.0070.0070003NaturalBackground 75(wholebody)and30(betaskin)ExternalExposureInternalExosuresA.GaseousEffluents Inhalation (infantthyroid)MilkConsumption (infantthyroid)B.LiquidEffluents 0.013017DrinkingWater(infantthyroid)FishConsumption G.I.TractWholeBody2.63.50.1NaturalBackground 20(K-40)InternalExposure<<>Exposures listedhereareestimates andinnoeventshalltotalexposures exceedthe(aslowaspracticable) operating requirements oftheproposedAppendixIto10CFRPart50.SeeSection5.2.2.2.1and5.2.5forbasesofthistable.C>>Exposures listedarebasedonaconservative offgasactivityflowrateof50,000uCi/secat30-minute delay.~~)Assumes adilutionfactorof3atthesurfacefromthedischarge structure andanaqueousreleaserateof20Ci/yr.5.2-16

5.3EFFECTOFCHEMICALANDSANITARYWASTETREATMENT EFFLVENTS Themostfrequentchemicaldischarges consistofneutralized spentacidandcausticsolutions resulting fromintermittent regeneration ofmakeupdemineralizers.

Themaximumquantityofwastesaccumulated duringdemineralizer regeneration isabout16,000gallonswhichcontain,afterneutralization, approximately 9,000ppnofdissolved solids,mainlysodiumsulfate.Thesewastes,neutralized toapHvaluebetween6.5and8.5,aredischarged tothecirculating waterat100gpmwheretheywillbedilutedbyafactorofabout3,000.Thedischarge normallyoccursforabout3hoursonceevery8days.Inadditiontodilutionofthewastesin'thecirculating water,rapiddilutionwiththereceiving lakewaterisachievedatthecirculating waterdischarge.

Table5.3-1presentstheresulting waterqualityanalysisoftheNineMilePointUnit1circulating wateraftercompletemixingwiththeneutralized demineralizer regeneration wastes.Table5.3-1alsopresentsthetotalincremental change(i.e.,about3ppm)inthedissolved solidscontentofLakeOntariowaterresulting fromtheadditionoftheneutralized demineralizer regeneration wastesfromUnit1.Thisslightincreaseindissolved solidscontentoftheneutralized effluentisexpectedtohavenoadverseeffectonLakeOntario.Effluentfromtheclarifier sludgesettlingbasin,described inSection3.7,isdischarged toLakeOntarioviaadrainageditchandhasawaterqualitycomparable tothatofLakeOntarioduetopriorclarification andsoftening operations.

Asdiscussed inSection3.7,thechemicalregeneration radioactive wastesfromthecondensate demineralizers arenotdischarged tothecirculating waterandconsequently havenoeffectonLakeOntario.Aftertheeffluentfromthelaundering ofprotective clothinghasbeencompletely mixedwiththecirculating water,itisnotexpectedtoincreasethelevelofphosphates inthelakewaterbymorethan0.7ppbmeasuredasphosphorus.

ThisslightincreaseisexpectedtohavenoadverseeffectonLakeOntario.Effluentfromthesanitarywastetreatment facilityservingUnit1,asdescribed inSection3.7.2,meetstherequirements promulgated bytheNewYorkStateDepartment ofEnvironmental Conservation andtheTownofScriba.Thedisinfected andaeratedtreatment effluentassociated withUnit1operation isconveyedtoLakeOntarioviaadrainageditchwhere,undercertainconditions, itreceivesintermediate dilutionfromnaturalrunoffpriortoenteringthelake.EffluentfromtheUnit1sanitarywastetreatment facilityisbelievedtohavenoadverseeffectuponLakeOntario5.3-1

Table5.3-1ChemicalDischarge fromMakeupDemineralizer Regeneration IonTotalChemicals AddedtoCirc.WaterDuringOneRegeneration Cycle~Lb/Reeneration Incremental ChangeInCirc,WaterAnalysisDuringRegeneration Resulting Circ.Water++AnalysisDis-ChargedDuringRegeneration Ccle-mAnalysisofDrinkingWaterLakeOntarioStandards ofWaterUSPHSandNYSmHC035101194.1194.00Cl-SO4=Ca++Mg++Na++K+33727413420.082.010.10002095303832.1144.108.9217.551.6030.3030-1044.0089016-601.60250250TotalDissolved Solids3i27228.77225.50500~Regeneration cycleoccursfor3hourswithresultant effluents fromtheneutralization tankdischarged tothecirculating waterat100gpm.*~Computed byaddingtheincremental changesduringregeneration totheconcentrations oftherespective ionspresentinLakeOntariowater.

k 54QZHERENVIRONMENTAL EFFECTS5.4.1Transmission LineEffectsThe27-milerouteforelectrical energytransmission fromNineMilePointUnit1totheClaysubstation inthetownofClay,NewYork,wasacquiredduringstationconstruction (1965)andhasatotalright-of-way widthof500feet.Thecenterofthisright-of-wayispresently occupiedbytwosingle-circuit345kVlinessupported bylatticesteeltowersforadistanceof1.7milesfromNineMilePoint.Woodpole,H-frametowers(Figure3.2-4)supportthelinestheremainder ofthedistancewiththeexception ofsteeltowersforthefinal0.3mileintotheClaysubstation.

TheNineMilePointUnit1transmission routeis.considered aruralcorridorwhichresultsinminimaldisturbance toprivatehomesandfarmlands.

Therouteavoidsestablished orproposedrecreation areas,wildliferefugesanddesignated historical orscenicareas.Thelandmassbeneaththelinesisacombination ofopenfarmland, wetlandandwoodedareas.Portions(about10acres)oftheright-of-way corridorcontinuetobecultivated aspinetreeplantations andfarmlandinkeepingwithNiagaraMohawk'spolicyofmultiplelandusefortransmission lines.Right-of-way maintenance alongthetransmission lineisperformed undersupervision ofNiagaraMohawkpersonnel insuchareasandatsuchtimesasisnecessary tomaintainsufficient clearance betweenexistingtreegrowthandtheconductors.

Approximately 30milesofunpaved,dirtroadsplacedadjacenttothetransmission linerouteduringlineconstruction continuetobeused.Theseroadsprovideaccessforlineinspection andserviceandaremaintained foryear-round accessbyNiagaraMohawkpersonnel.

Periodicremovalofgrowthalongportionsoftheright-of-way isaccomplished onascheduled basisandthroughnecessity includesthoseareaswheregrowthwasinitially retainedorselectively clearedMaintenance operation inallareasisaccomplished byselective useofherbicides approvedforsuchusebyappropriate governmental

agencies, supplemented bymechanical clearing.

Theprincipal objective oftheright-of-way maintenance programistopromoteservicereliability.

NiagaraMohawkhasendeavored toencourage naturalgrowthofdesirable speciesoftrees,shrubs,andgroundcovers,whichinturn,shouldpreserveandenhancetheecological valueoftheright-of-wayandfosterandsustainwildlifehabitat.Environmental disruptions whichmayhaveoccurredduringlineconstruction havesincebeenneutralized andthebalanceofterrestrial ecologyhasbeenrestored.

5.4-1 sJJ1'ft 5.4.2Radioactive MaterialTransport EffectsAdherence totheAECandDOTregulations andvariouscontainment requirements discussed inSection3.6.5increaseassurance ofminimization ofadverseenvironmental effectsduringtheshipmentofreactorfuelsandradioactive wastestoandfromtheNineMilePointNuclearStation.Duringnormalshippingconditions, thereisnoreleaseofanyradioactive materials fromnewfuel,spentfuel,andsolidradioactive wasteshippingcontainers.

Theonlyeffectanticipated wouldbetheinsignificant directradiation exposureofthepopulation locatedalongtheshippingroute.Atthemaximumpermitted levelof10mremperhourat6feetfromthenearestaccessible surface,anindividual standingascloseas100feetfromtheshippingvehiclecouldbeexposedtoagammaradiation doserateof0.2mremperhour.Thisradiation dosewoulddecreasefurtherto0.01mremperhouratabout300feet.Considering realistic exposuretimesforindividual membersofthegeneralpublic,theresulting dosesareverysmallandwouldbeentirelynegligible atgreaterdistances.

Radioactive materialshipments arelabeledassuchinaccordance withgoverning regulations, toalertshippersandotherindividuals inthevicinityoftheshipmentoftheirproximity totheradioactive

material, therebyfurtherminimizing exposuretoradiation.

ActualUnit1shippingexperience hasshownexternaldoseratesbelowthemaximumlevelsspecified bytheregulations.

Radioactive materialshippingcontainers andpackaging procedures aredesignedtorestrictthereleaseofradioactive materialtoaminimumunderthemostsevereaccidentconditions.

Inaddition, themechanical properties ofthereactorfuelandfuelassemblyreducetheconsequences ofanaccidentbytheirtendencytobindthefissionproductswithinthebasicfuelassembly.

Ifaradioactive wasteshipmentwereinvolvedinanaccident, thereleaseofradioactive nuclideswouldbeminimized bythe"solidified" natureofthematerials andtheshippingcontainer integrity.

Anotherimportant consideration indiscussing thetransportation ofradioactive materialistheoutstanding safetyrecordachievedbythenuclearshippingindustry.

Comprehensive recordsofshippingincidents involving radioactive materials havebeenmaintained andreportedbytheAEC(AECU/3613,TID-16764 including Supplements 1and2).Overthepast20years,therehavebeenveryfewincidents, mostofwhichresultedinlittleornoradioactive releases.

Itisanticipated thatthesafetyrecordoffutureradioactive materialshipments willequal,andprobablysurpass,thepresentsafetyrecord.ThisfuturerecordwillreflectthemorerigorousAECandDOTregulations summarized inSection3.6.Thecontinuing effortsoffuelreprocessors, fuelsuppliers, andwastedisposalcontractors torouteshipments bytheshortestand5.4-2 I,Cf'l04E'II 1quickestroutesandtominimizetherequirednumberofshipments reducetheprobability ofshippingincidents.

Insummary,whenallaspectsofshippingradioactive materialareconsidered, itmustbeconcluded thatnoadverseenvironmental effectsresultfromthenormalshipmenttoandfromNineMilePointNuclearStation-Unit1.Itmustalsobeconcluded thatbecauseofpackagedesignonlyinsignificant environmental effectscouldresultfromashippingaccident.

5.4.3NoiseEffectsThere"arenumeroussourcesofnoisewithintheNineMilePointstation,butthisnoiseisconfinedtothestructure sinteriorbythedouble-walled insulated sidingonthestation.Theonlynoisesignificant enoughtobeconsidered isthemainpowertransformers.

Thissectiondiscusses noisefromthetransformer andcomparesitwiththepresentbackground level.5.4.3.1PlantEnvironment Dayandnightambientsoundlevelsurveyswereconducted inthevicinityoftheplantin1971bythenoiseservicesgroupofBolt,BeranekandNewman,Inc.,Cambridge, Massachusetts.

Figure5.4-1showsthelocationofeachofthemeasurement sites.Theentireareaisruralorsemirural, butwithsomeresidences alongthecountryroads.Theambientoctavebandsoundlevelmeasurements fromeachofthesitesareshowninFigure5.4-2Thesemeasurements weretakenbetweenmidnightand2:00a.m.onacalm,clearmorningandrepresent theminimumlevelsatthattime.TheNineMilePointUnit1Stationwasnotonline,buttheplantventilation fanswereoperating.

Therewasalsoadieselenginerunningatlowspeed3,200feeteastofthesite.Thelevelsatsite1arehighestbecauseofthecloseproximity ofthestationandminorconstruction noise.Thestationandconstruction noisewasfirstbarelyaudibleatmeasurement sitesNos.2,3,5,and6ofFigure5.4-1sothelevelsshowninFigure5.4-2areessentially background levels.Thepeakinthedataat4,000Hzisfromthechirpingofcricketswhichraisedtheambientmeasurements approximately 10decibels, Ascale(dBA),Re0.0002microbaratsomeofthelocations.

5.4.3.2PlantNoiseSourcesAsecondnoisesurveywasconducted inthevicinityofUnit1withUnit1inoperation.

Detailedmeasurements indicated thatthemaintransformer istheonlysignificant noisesourceandthatthemaximumUnit1transformer noiseexpectedatthepropertylineisasshowninTable5.4-1.Thetransformer noisefromUnit1isthuslessthanorequaltotheexistingambient5.4-3

C.APt'ONTAR'0i2pO,rpOgs!I!PROPERTYLINE!!I'K1IIBURTMINORROADUJILIhCNORTHBANKERROADFIGURE5.4-1SOUNDLEVELMEASUREMENT LOCATtONS

IL<<CLQOKOFNOOO0WKClKIIJUJhJMCOUJ0Cl'zDOCODtQUJI-OO6050403020IO031.563I25250600IOOO200040008000OCTAVEBANDCENTERFREQUENCIES INHZSITEISITE2SITE3SITE4SITE5SITE6FIGURE5.4-2SOUNDPRESSURELEVELS

levelafterit.hasbeencorrected tocompensate forcricketnoise.Mostneighbors, however,actuallyreceivesignificantly.lessnoisebecauseofintervening treesandterrain.Table5.4-1Comparison ofAmbientandMaximumTransformer NoiseatMeasurement SitesforUnit1Decibels, AScale,Re0.0002SitesMeasuredambientCorrected ambientMaximumtransformer 3829393828333723272926343722242228305.4.3.3Acoustical, ImpactThepeaktransformer noisefromthestationisequivalent toorlessthanthebackground levelat,themeasurement locations andthestationisusuallyinaudible atthepropertyline.5.4.4MeasuresTakenToPreserveTheExistingEnvironment OrEnhanceItsUseNiagaraMohawk'sProgressCentersharespartofthesitewestofUnit1andhasaveraged50,000visitorsayearsinceitofficially openedin1967.Sightandsoundexhibitscombinerealistic soundeffectsandaudio-visual techniques todemonstrate thehistoricevolution ofenergyfromwaterwheelstonuclearpower.Theexhibitsincludeanexact-scale modeloftheNineMilePointStation,thelargestsuchmodelintheU.S.,andexhibitsoflivegamefish.TheCenter'swallsarebuiltofstonefromoneoftheworld'srichestfossildepositsnearAlbanyandclearlyshowwell-preserved specimens ofmarinelifedatingback400millionyears,when'muchofNewYorkStatelaybeneathaninlandsea.Afullyequippedclassroom isavailable forvisitingschoolandcollegeclasses.AlongthebluffandwoodswestoftheCenterarenature-study trails,andpicnicfacilities withasweepingviewofLakeOntario.Partofthesitewasestablished asanaturalwildliferefugein1969bypostingthenorthwest cornerofthesite.Theremainder ofthesite,including theshoreline sportfishingaccessarea,isopenforpublicuseexceptduringconstruction periods.Offshoresportsfishermen arealsoundisturbed.

5.4-4 S

5.4.5Interaction withNeighboring NewYorkStatePowerAuthority Facilities TheJamesA.Fitzpatrick NuclearpowerplantownedbythePowerAuthority oftheStateofNewYorkisbeingconstructed onlandimmediately adjacenttoNiagaraMohawk'scaste~propertyboundary.

NiagaraMohawkpersonnel willoperatetheFitzPatrick PlantundercontracttothePowerAuthority.

Plantoperation isscheduled tobeginin1973.TheNiagaraMohawkUnitandthePowerAuthority Plantarelocatedontwodistinct, butadjacentsites.Theywouldbeoperatedasacommonsite,multiple-unit station.5.4.6DisposalofMiscellaneous SolidWasteSolidwaste,suchasfloatingdebrisandtrashcollected onthecoolingwaterinlettrashracks,lunchroom waste,officewastepaper,andmachineshopscraps,aretruckedoff-sitefordisposalataState-approved wastedisposalsite.5.4.7ChangesinSiteLandandWaterUse5.4.7.1LandUseAsdescribed inSection2.1.1,NiagaraMohawkpurchased the1,600-acre NineMilePointsitein1963andlatersoldabout700acrestothePowerAuthority oftheStateofNewYork.Themostrecentlandusehadbeenasanartillery rangeuntil1957.Therewereonlyeightfarmhouses andafewsummercottagesandasmallrestaurant onthesite;thesewereremovedwhenNiagaraboughtthesite.Useofthesiteasanartillery rangeprevented useofthelakeshoreforotherpurposes.

Asdescribed inSection2.2,theshorefronthasneverbeensuitableforyear-round residence orforsummerhomes.Onlyabout5percent,or45acres,oftheremaining 900acresareactuallyusedforpowergeneration ortransmission forUnit1,including theProgressCenter.Plansforuseofportionsofthesiteasawildliferefuge,andforeffectsonshoreline andoff-shoresportsfishing,arediscussed inSection5.4.4.5.4-5

5.4.7.2WaterUseTheonlywaterresourcewhichcanbeaffectedbyoperation ofthestationisLakeOntario.ThelakeisborderedonthesouthandeastbyNewYorkStateandonthenorth,west,andsouthwest bytheProvinceofOntarioinCanadaTheoperation ofthestationdoesnotaffectCanadianwatersorthewatersofotherstates.Therearenostreamsonthesite,andsincethegroundwater gradientslopestowardthelake,groundwaterusersarenotaffected.

Thehydrology ofLakeOntarioisdescribed inSection2.5andbrieflysummarized belowAsshowninFigure2.5-1,LakeOntariowatertemperature atthesurfacesometimes reaches77Fduringlatesummeranddropstoawinterminimumofslightlyabove32F.Thereisverylittlediurnalchangeinwatertemperature.

Thelakeisstratified duringthesummerandearlyfall.Icecoverformsintheslackwaterbaysinwinter,butthelakeitselfisseldommorethan25percentcoveredwithice,whichisusuallyconcentrated intheeasternendofthelake.LakeOntario~s outflowriver,theSt.Lawrence, isice-covered fromlateDecemberuntiltheendofMarch,allthewayfromthelaketotheInternational BoundaryatMassena,NewYork.ThesupplytoLakeOntarioismadeupofabout85percentfromtheupperGreatLakesand15percentfromtheLakeOntarioBasin.Precipitation onthelakeexceedsevaporation byabout6inchesannually:

30inchesvs.24inches.Recordsdatingbackto1860indicatethatthelong-term averagesupplytoLakeOntariofromtheupperGreatLakeshasbeenabout200,000cfs,andthattheaverageoutflowfromLakeOntariointotheSt.LawrenceRiverhasbeen240,000cfs.Unit1utilizesabout600cfs,ofwhichapproximately

0.0 2cfsmightbeconsidered

torepresent consumptive use,asdiscussed inSection3.4.Lakecurrentsintheareaaregenerally lessthan0.5fps.Dominantcirculation patternsareshowninFigure2.5-1.Currentsneartheshoreinthevicinityofthestationsitearegenerally fromthewest.Thetidaleffectisminimalandismeasuredininchesonly.A1970reportbytheInternational JointCommission, whichisresponsible forsettlingquestions involving useofboundarywatersbetweentheU.S.andCanadaforwaterpower,navigation, sanitation, andirrigation, notesthatthelakeisinastateofeutrophication betweenoligotrophic andmesotrophic.

TheCommission alsonotesthatthein-shorewatersaremoreeutrophic thantheoff-shore watersduetotheshallower depthsandthefactthatmostnutrientinputsenteralongtheshores.5.4-6 I~V~iph Lakeshorerecreational areasareshownonStudyAreaMap(Figure2.2-3).ThenearestisSelkirkShoresStatePark,tenmileseastofthesite.ThenearestpublicwatersupplyintakeusinglakewaterisforthecityofOswegoandtheOnondagaCountyWaterDistrictandislocatedabout8mileswestofthesiteata40-footdepth,6,000feetoff-shore.

Oneortwoorchards, 5mileseastofthesite,uselakewaterforirrigation.

Traveltimesforthedilutedstationdischarge totheOswegointakeandSelkirkShoresStateParkareshowninFigure5.4-3.DilutionfactorstotheOswegointakeandSelkirkShoresStateParkareshowninFigure5.4-4.Thetypeofdischarge usedforUnit1anditscloseproximity totheirregular shoreline maketheresultsofadetermination ofthefarfielddilutionfactorsextremely questionable usingpresently available methods.Consequently, ajetdiffusertypedischarge, withdoubletheheatloadtoaccountfortheexistingboundary(shoreline) effects,wasusedfordilutionfactoranalysis.

Thisanalysisisassumedtoberepresentative ofactualdilutionfactorsresulting fromstationoperation.

Foracurrentof0.4footpersecond,thetraveltimesare29hourstotheOswegointakeand35hourstotheStatePark.Withthiscurrent,theunitdischarge isdilutedbyafactorofapproximately 156bythetimesitreachestheOswegointakeandafactorof235bythetimeitreachestheStatePark.5.4.8EffectsofReleasedCombustion ProductsOverallcombustion productsreleasedfromthetwostandbydieselgenerators andonediesel-driven firepumpdiscussed inSection3.8areinsignificant becausethisequipment isnormallyoperatedonlyafewhoursamonthfortestpurposes.

Consequently thesedischarges donotaltertheairqualityoftheregionasestablished bytheEnvironmental Protection AgencyandtheNewYorkStateDepartment ofEnvironmental Conservation.

5.4-7 C

IOSELKIRKSHORESSTATEPARKOSWEGO/OCWD PUBLICWATERINTAKElO00.20.40.60.8I.OLAKECURRENTSPEED-FT.PERSEC,FIGURE5.4"3TRAVELTIMEVS.LAKECURRENT

XXOOOIKOI-OU.K0I-DOIOXRSELKIRKSHORESSTATEPARKOSWEGO/OCWDPUBLICWATERINTAKE000.2040.60.8I.OLAKECURRENTSPEED-FT.PERSEC.FIGURE5.4-4DILUTIONFACTORVS.LAKECURRENT

5.5ASSESSMENT OFENVIRONMENTAL EFFECTSOFSTATIONOPERATION Ecological andaquaticsurveillance studieshavebeenconducted alongthetwo-milestretchoftheNineMilePointpromontory since1963toobtaindataregarding theeffectsofheateddischarges uponthelakeecology.Thesestudiesarebeingcloselycoordinated betweenthePowerAuthority oftheStateofNewYorkfortheJamesA.FitzPatrick NuclearPlantandNiagaraMohawkforNineMilePointUnit1.In,1970and1971,thestudiesprovidedpostoperational information reflecting theoperation andactualheatdischarged fromNineMilepointNuclearstation-Unit1.Thesestudiesarebeingconducted byDr..JohnF.Storr,Consultant inLimnology andOceanography andAssociate Professor ofBiologyatthe.StateUniversity ofNewYorkatBuffalo.Theoriginalprogramofstudieswasplannedwiththecooperation oftheDepartment ofEnvironmental Conservation.

Asthestudiesprogressed, variousrefinements andextensions havebeenadoptedtoprovideamorecompletedescription ofthestudyarea.NiagaraMohawkwillcontinuetocooperate withtheU.S.BureauofSportFisheries andWildlifeandotherinterested Stateand-Federalagenciesonecological studiesuntilithasdemonstrated conclusively thatnosignificant adverseconditions exist.Thefieldprogramhascoveredfishdistribution andfoodpreference studies,benthicstudiesincluding attachedalgaeandinvertebrates, nutrientdistribution studies,andstudiesofplanktondistribution andentrainment.

-Thevariousstudiesconducted aspartoftheNineMilePointsurveillance programarelistedinAppendixF.Twelvenorth-south transects extending offshoreofthesitewereestablished forsamplingpurposes(seeFigure5.5-1).Thetransects farthesteastandwestofthesite(E-9andW-3)arelocatedfarenoughfromthestationtomonitorconditions outside;ofitsinfluence.

Samplingofaquaticorganisms isconducted, alongeachtransecttoprovidebaselineinformation whichwillbe.usedasacomparison withstudiesconducted duringUnit2operation.

55.1FishDistribution Twotypesoffishdistribution studieswere-conducted from1968to1971todetermine thetotalnumber,locationandspeciesdistribution offishatthesite:(1)fathometric surveysand(2)fishnetting.Inadditiontothesestudies,aprogramwasinitiated in1970todetermine thebasicfoodhabitsofthedominantfishspeciesinthevicinityoftheplant.Thesestud'iesareperformed fourtimesperyear,oneeachspringandfall,andtwoinsummer.5.5-1 lll/

LA/t'ONTA8'OWl)III)I)E2EIIIIIIIE3r-345<l<IE4IIIIE5E6ETIIPROPERTYLINEEdEtITOMEXICOSAYggl\NINEMILEPOINTNUCLEARSTATIONJAMESA.FITZPATRICK NUCLEARPOWERPLANTPROPERTYLAKEVIEWLINEAPPROXIMATE LAKEDEPTHSDISTANCEFROMSHORE50400600900II003000DEPTH(BELOWL.W.DATUM)6I2182430600e001%N)SCALE-FEETFIGURE5.5-ILAKESAMPLINGTRANSECTS ANDON-SITERADIOLOGI CALMON)TORINGLOCATIONS 0f 5.5.1.1Fathometric SurveysFathometric surveysweremadeduringthedaytimealongallthetransects usingafine-line recording echo-sounder.

Tracingswerealsomadealongtwoofthetransects everyfour,hoursduringa24-hourperiodtoobtainboththemaximumconcentration andthediurnalpatternoffishmovement.

Eachfishwasrecordedintermsofbothverticallocationandrelativesize.Interpretation ofthetracingswasbasedonthefishnetstudiesandgeneralsizedistribution offish.Theecho-sounding surveydataindicated thatfishweredistributed randomlyintheareaduringthedaytimewithsomegeneraltendencyforthefishtoconcentrate alongthe25-footdepthcontourorinslightlydeeperwater.Pocketsofconcentration werefoundatmanylocations otherthanthe25-footcontourandattimessuchconcentrations couldbeassociated withbottomstructural features.

Z,argerconcentrations offishwererecordedinMayandJuneoverthe1969-71periodthanatanyothertimeintheyear.Alewivesandsmallforagefishweremostabundantatthistimeofyearandthealewiveswereactivelyspawninginthealgalgrowthonthebottom.Activefeedingonboththealewivesandalewifeeggsbyotherspeciesoffishoccurredatthistime.InJunethroughAugustof1969to1971,thenumbersoffishsharplydeclinedandveryfewwererecordedinOctober(1971datanotcompletely analyzed).

Thisappearsto'etheresultofbothmovementoffshoreandlackofactivityasthefoodsupplydiminishes intheinshorewaters.The24-hourfathometric studiesindicated majorfishconcentrations inthe20-footdepthandbeyond,withmaximumconcentrations betweenthe30-to40-footdepthsdeveloping inthemiddleportionofthenightbetween10p.m.and3am.Fishconcentrations werelowerandactivityreducedintheareaduringthedaylightperiod.Theecho-sounding tracesindicated thatthepercentage offishofasizelargerthanaboutsixinchesvariedconsiderably.

InMay1970,onlyabouteightpercentofthefishcountedwerelargerthansixinches.Thisnumberincreased toover40percentinAugustanddeclinedagaintobelow30percentinOctober.Theaveragenumberoffishlargerthansixinchesforthefourstudiesmadein1970wasabout18percent.Anothermethodofcalculating fishdistribution usingtheecho-sounder wasdeveloped in1970.Thismethodentailsmountingthetransducer oftheecho-sounder onasubmerged polesothatscanningcanbedonehorizontally aswellasvertically.

Circularscansoutasfaras100feetweremadeinthearea.Althoughtheirregular natureofthebottommakesinterpretation difficult, thismethodgivesanaccuratecountoffishina.definedareaandisusefulinshallower waterof7to15feetforcomparative values.5.5-2

Surveysusingthistechnique wereconducted inJulyandAugust,1970and1971..Theresultsin1970showedagradualincreaseinnumbersoffishfromshallowwater(lessthan10feet)todeeperwater(morethan20feet)byafactorofabouttwo.DuringAugustintheareaoftheNineMilePointUnit1discharge, thenumberoffishintheshallowwaterwasslightlygreaterthanatthe15-footdepthcontour.5.5.1.2FishNettingThefishnettingprogramgenerally consisted ofsamplingwithfiveexperimental gillnetstodetermine thespeciesdistribution offshorefromthesite.Onenetwassetonthebottomasclosetotheshoreaspractical; twonetsweresetatthe15-footdepthzonewithonenetsuspended atthesurfaceandtheotherplacedonthebottom,andtwonetsweresimilarylocatedatthe30-footdepthzone.Netsweresetintheafternoon andremovedthenextmorningforfourtofiveconsecutive days.Foreachnet,thefishwereidentified, countedbyspecies,andeachfishweighedandmeasured.

(RefertoSection2forlistofspecies.)

In1971,thenettingpxogramwaschangedand6netsarenowsetineach24-hourperiod.Fortwodaysnetsweresetatshoreandinthe15-footdepthclosetothelocationoftheNineMilePointandFitzPatrick discharge structures, andfortwomoredaysatshoreandinthe30-footdepthsonbothtransects.

Whiletheactualnetplacements areunchanged, thenewprogramhasmadepossibleabettercomparison betweentheareas,sincesame-daycatchesarecomparedineachcase.Alewivesweretakeninthegreatestnumber,withyellowandwhiteperchnextinorderofoccurrence.

Relatively fewalewiveswerecaughtinthenetssetonthebottom,asthesefisharewiderangingandnormallystayfairlyclosetothe'lakesurface.In1969,thenumberofalewivescaughtinAugustwerefewcomparedtothosecaughtinJune.InAugust,thegreatestnumberswerefoundinthetopnetsfarthestfromshore,whileinJunethealewivestendedtobealongtheshore.Perchalongwithminnowswereprimarily takenintheshorenets.Thereappearedtobesomereduction inthenumberofthosefishcaughtintheshorenetsinAugustascomparedtoJune.Exceptforalewives, veryfewfishwerefoundnearthesurface.Thefishnettingprogramin1970and1971indicated somechangesfromthestudiesin1968and1969.ThecatchesofalewivesinMay1970wereonly5to10percentofthenumbercaughtduringthesameperiodin1969.Comparably lownumbersremainedthroughout 1970.Thesetrendsareprobablyattributable tothenaturalmortality ofalewivesthatoccurredovertheentirelakethroughout thespringof1970.%herewasanincreaseofgizzardshadinthefallofthesameyear.Thereduction ofthealewifepopulation, whichformspartofthefoodsupplyforlargerfish,alsoappearedtobringaboutalessening offishactivityinthe5.5-3

latterpartoftheyearandadispersal ofthefishthroughout thelake.Preliminary resultsin1970and1971indicatethatthethermalplumefromNineMilePointUnit1tendstoattractcertainspeciesoffish,including carp,sunfish,smallmouth bassandalewives, duringthecoolermonths.Shenambienttemperatures arehigh,thereappearstobenoattraction offishtotheplumeandsomespecies,suchaswhiteperch,appeartoavoidwarmerportionsoftheplume.In1971,thenumberofsmallmouth bassobservedinthevicinityofthedischarge increased significantly.

Observations bydiversindicatethatsmallmouth bassmadeupasignificant portionofthefishpopulation over6inchesinlength.Theonlyfishwhichappearstospawnintheareaisthealewifematisconcentrated primarily inwaterlessthan10feetdeepandisessentially absentbeyondthe20-footdepth.Hence,spawningtakesplacewellinshoreofthedischarge andnoeffectonthereproductive potential ofthisspeciesisanticipated.

5.5.1.3PoodPreference SurveysAprogramwasinitiated in1970todetermine thefeedinghabitsofthemajorfishesintheareaandtoascertain anyrelationship betweenthesefishspeciesandtheirfoodsupplies.

Theyellowperchwasselectedastheprimaryspeciesofinvestigation sinceitwasoneofthefewfishespresentintheareainsufficiently largenumberstoobtainsignificant resultsonfeedingbehaviorthroughout theyear.Otherspeciesoffishwerealsoexaminedduringthelatterpartoftheyear.Lengthfrequency distributions weretabulated andthevariousfooditemsnotedforthedifferent sizegroups.Anumberofspeciesoforganisms areusedasforagebythefishpopulation.

Thestudiesindicatethatsmallalewives,

sculpins, dartersandalewifeeggsaretheprimaryfoodsourcesinthespringoftheyear.Astheseasonprogresses, thefreshwater amphipod.(Gammarus-sp)assumesgreaterimportance inthefoodchainCrayfishappeartobeanimportant component ofthedietforsomefishspeciesintheautumn,suchassmallmouth bass.AsGammarusabundance declinesintheautumn,smallforagefishbecomeamajorfoodsource.5-5.2BenthicStudiesDuringAugustof1968,andJuneandAugustof1969,1970and1971,samplesofbottomorganisms werecollected bydiversat5,10,15and20-footdepthsalongthesame12transects usedforthefathometric fishcountstudies.Threesamplesofbenthicorganisms werescrapedfromrocksateachdepth.Inthelaboratory, eachsamplewasseparated intoplantandanimal5.5-4

material.

Plantmaterialwasdried,ashedandweighed..

Animalspecieswereseparated andcounted.wstructure (i.e.flatrocks) supportaheaviergrowthofthesealgaethanothersandtheplantistherefore veryirregularly distributed overthebottom.Waveactivitytendstodiminishthebiomassinwater5feetdeeporless,anddecreasing lightpenetration atthe15and20-footdepthsproducesacorresponding decreaseingrowth.At20feet,growthwassoshortandscattered thatasamplelargeenoughforanalysiscouldseldombecollected.

Generally, theheaviestgrowthisatthe10-footdepth.ByAugust,changesinlightandintemperature reducedthealgalgrowthconsiderably ascomparedtoJune.Theamountofgrowthobservedatanytimewasnotheavy,butrathersparseandscattered, andtherockbottomwasvisibleatalltimes.In1970,thesurveyresultsindicated thattheNineMilePointUnit1effluenttendedtoeliminate theirregularities ingrowthalongthepromontory.

Algalgrowthgenerally declinedmoresharplyinAugust,1970,ascomparedto1969.Intheareaimmediately inshoreofthethermaldischarge (400feetoffshore) algalgrowthinthe5-footdepthwasfoundtobesomewhat65F(Ref.16).Withnaturallaketemperatures inthemid70'sandthewatertemperature atshoresomewhatmoreelevatedbythethermaldischarge, thegrowthforadistanceofseveralhundredfeetalongtheshorewasbelowthatfoundelsewhere.

Themajor15and20-footdepths,whichisbelowanyinfluence ofthethermaldischarge.

SeveralfactorsusuallytendtoreducethealgalgrowthinAugust.Thelongfilaments developed inJunetendtobecomefragileandbreakoffbecausethelightpenetrates lessdeeplyinlatesummer.Also,therearefewer'ours ofsunlightandwatertemperatures areconsiderably aboveoptimumforgrowth.closelywiththeearly1970survey.Thebiomassofalgaein1971,however,wasgenerally higheralongthesamplingtransects thanpreviousyears.Totalbenthicanimalabundance remainedaboutthesameduring1969and1970.Oftheanimalspresent,Gammaruswasfoundinabundant.

Thegreatestconcentrations appearatthe10-footdepthalongwiththemaximalalgalgrowth.Considerably moreGammaruswerefoundduringtheAugustsurveysthaninJune.Snailsofthreespecieswerefoundonlyinsmallnumbers,tendingtoconcentrate atthe15-footdepth.Themidgeflylarvae~Tendisoccurredinanentirelyirregular patternandwerelessabundantinlatesummer.5.5-5

Resultsoftheearlybenthicsurveyin1971indicatethatGammarusabundance wasgreatlyincreased intheareaofthethermalplume.~Tendiesahundance wasalsohigherin1971thanpreviousyears;however,thenumberalsoincreased onthetransects outsideoftheareaofinfluence fromthedischarge, suggesting thatthatincreasewasprobablyassociated withsomefactornotrelatedtotheoperation ofUnit1.Themajoreffectofthethermaldischarge onthebenthos,therefore, istodepressalgalgrowthinlatesummer.Inaddition, thepopulation ofGammarusappearstohaveincreased inthezoneofthethermaldischarge.

Thesearepreliminary results/whichwillhavetobeverifiedbycontinuing studiesinordertobeconclusive.

5.5.-3NutrientDistribution StudiesToassessthemagnitude ofapossiblechangeinthedistribution ofnutrients atthesiteduetoflowpatternsestablished bythecoolingwaterflowoftheNineMilePointUnit1,surveysofthenutrientdistribution weremadeinAugust1969,andMay1970..Aseriesofwatersampleswerecollected offshorefromtheFitzPatrick powerplantinwaterdepthsof30and100feet.Atthe30-footdepthlocation, watersamplesweretakenfromthesurfaceandateach10-footdepthto30feet.Atthe100-footdepthlocation, watersamplesweretakenfromthesurfaceandat25-footintervals to100feet.Thewatersampleswereanalyzedfornitrateandtotalphosphorus content.TheresultsoftheAugust1969,surveyindicated thatatthe30-footdepthsamplingstation,theconcentration ofnutrients wasquitelowandfairlyuniformly distributed indepth.Thesurfaceconcentration ofnitratewas0.275milligram perliter(mg/l)withconcentrations at10to30feetvaryingbetween0.102and0.115mg.Somedecreaseinnitratewasevidentwithincreasing depth.Theconcentration oftotalphosphorus fromtoptobottomrangedfrom0.015to0.024mg/l.Atthe100-footdepthsamplingstation,theconcentration oftotalnitratesintheupperwatercolumnwaslessthanattheshallower stationandrangedfrom0.080mg/latthesurfaceto0.047mg/lat75feet.At100feettheconcentration washigher,risingto0.920mg/l.Thismaybeattributable toareleaseofammoniafromdecayingorganisms inthebottomsediments.

Concentrations ofphosphorus weresimilartothosefoundinshallower waterrangingfrom0.019to0.011mg/l.Thenutrientlevelsfoundduringthespring1970surveysweregenerally higherthanthosefortheprevioussummer.Atthe30-footdepthsamplingstation,surfaceandbottomnitrateconcentrations hadincreased two-andsix-fold,respectively, overthefall1969values.Theconcentrations ofphosphorus wereslightlyhigherthanthoseofthepreviousfall,rangingfrom0.020to0.022mg/lfromsurfacetobottom.Thenitrate5.5-6

concentration atthe100-footdepthsamplingstationrangedfrom0.60-0.89 mg/1fromsurfacetobottom.'Phosphorus concentrations at100feetwereslightlyhigherthanthefallsamplingperiod.Theincreaseinnutrientconcentrations inspringistobeexpectedfollowing breakdown ofthethermocline inlatefall.Xngeneral,theconcentrations ofnitratesandphosphates arelowandevenlydistributed offshorefromthesite.Therefore, flowpatternsinducedbypumpingfromthe30-footdepthzoneshouldhavenoeffectontheredistribution ofnutrients inthisregion.Dissolved oxygenmeasurements havebeenmadeinthedischarge areaduringthefishnettingsurvey.Asthesummerprogresses, oxygensothatevenduringthewarmestperiodoftheyearlevelsofdissolved oxygenof11to12ppmarenotuncommon, with'odiminution atnight.Nosignificant lossinoxygenhasbeenobservedbetweentheintakeanddischarge ofUnit1.5.5.4PlanktonDistribution andEntrainment Apreliminary samplingprogramwasconducted fromearlyJunetolateOctober1964.Planktonsampleswerecollected atthreelocations directlyoffshore(500feetout-30feetdeep;7,500feetout100feetdeep;and10,000feetout-200feetdeep)fromthesiteandweregenerally dominated by~Co)~eoda-andCladocera Preliminary resultsindicated thatpopulations drifttowardshorewithonshorewindsandbecomelessabundantnearshorewithoffshorewindsandcurrents.

Thepatternofmovementwillbeaffectedbytheoperation oftheplants,becausetheintakeswilldrawinwaterradially, whilethedischarge willmaintainasteadyoffshoremovement.

Itisanticipated thatsincemorebottomwaterthansurfacewaterwillbedrawntowardshoreandintotheintake,fewerplanktonwillbeentrained thanwouldnormallybeexpected, sincestudiesindicated higherplanktonconcentrations inthesurfacewaters.Veryfewfishlarvaeweretakeninthe1964planktonstudy.Itisnotanticipated thatmanyfishlarvaewillbeentrained, withthepossibleexception ofsomealewivelarvae.Additionalplanktonstudieswereconducted atNineMilePointUnit1fromspringthroughautumn1971toassesstheeffectsofstationoperation onplanktonpassingthroughthecirculating watersystem.Waterfromtheintakeanddischarge lineswassampledinthescreenhouse andthepercentmortality ofplanktonic organisms determined forvariousgroupsofzooplankton andmotilephytoplankton.

Samplesofplanktonfromthedischarge werealsoheldfor6to24hourstodetermine thetime-temperature relationship onplanktonmortality.

.Therotifersgenerally dominated theplanktoncommunity duringtheseinvestigations.5.5-7

'L Resultsofthestudieswerevariable, depending ontimeoftheyear,waveconditions, temperature rise,anddurationofexposuretotheelevatedtemperatures.

Thepreliminary resultsofthisstudy,however,indicatethattheoveralllevelofmortality ofplanktonpassingthroughtheplantisconservatively estimated tobebetween10and30percent.5.5.5Three-Dimensional ThermalSurveysThree-dimensional thermalsurveyswereconducted byDr.JohnF.Storrinconjunction withhisecological studiesinLakeOntario.(RefertoSection5.5).Thesesurveysconsisted oftowingalineoffoursubmerged thermistors alongpreselected courses.Temperatures weremeasuredatdepthsof0.3,3.7,7.1and10.5feetalongthesame12transects whichwereusedintheecological surveys.Temperature measurement runswerealsomadeonindividual passesoverthedischarge structure.

Atotalof12thermalstudiesaslistedinAppendixF,weremadein1970and1971.In1970,fourthree-dimensional thermalstudieswereconducted inmid-Julyafterthestationwasreturnedtoanon-linecondition afterashutdownformaintenance.

In1971,eightstudieswereconducted beginning onJune19andcontinuing toNovember16.Thesetemperature measurements werecombinedtoformcontourplotsoflaketemperatures atvariousdepths.Areaswerefairlywelldefinedintermsofphysicaldimensions inwhichthethermaleffectscouldbeevaluated.

Theresultsofthesesurveysandthe,environmental effectsarediscussed inSection5.1.5.5.6FutureField,Laboratory, andMonitoring ProgramsTheenvironmental studydatathathasbeencollected andevaluated todatedemonstrates thattheenvironmental impactofNineMileUnit1operation hasbeeninsignificant.

Futureprogramswillcontinueeffortsintheareatocorroborate theinformation previously gatheredandtogainfurtherknowledge.

Specificstudiesplannedfor1972arediscussed inthesectionsthatfollow;theseprogramsmaybemodifiedasinformation isobtained.

5.5.6.1EffectsofEntrainment onFishEggsandLarvaeThepurposeofthesestudiesistodetermine theamountoffisheggsandlarvaethatentertheintakeandthemortality rateoftheseorganisms attributed totheirpassagethroughthestation's circulating watersystem.Inaddition, themortality rateresulting frompassagethroughthesystemwouldberelatedtotheavailable population inthelake.Thefirstobjective willbeaccomplished bydetailedfieldandlaboratory experiments, whilethesecondwillrequiretheuseofmathematical modelsandstatistical analysis.

5.5-8 4

Oneofthemajordifficultieswithentrainment studiesisdevisingasamplingprocedure thatwillnotcauseasignificant mortality oftheorganisms beingcollected.

Unlessthemortality duetosamplingiskepttoaminimum,itmaynotbepossibletoassociate anystatistical confidencetotheestimated mortality ratesoftheeggsandlarvae.Collection methodsforfishlarvaehavebeendeveloped overthepastfewyearsthatdoensureasatisfactory samplingerror;however,thesetechniques mustbeinvestigated todetermine theirapplicability attheNineMilePointStation.Fisheggsandlarvaewillbecollected attheintakeanddischarge ofNineMileUnit1andinLakeOntariooffshoreofthesite.Differential mortality ratesbetweenintakeanddischarge willbedetermined and,ifsignificant, anattemptwillbemadetodetermine whetherdamagetotheseorganisms resultsfromthermal,mechanical orpressurestress.Aprogramofdetailedobservation willbeconducted during1972tomeasurefishcollected ontrashracksandtravelling screens.5.5.6.2FishPopulation StudyFishsurveyswillbeconducted atthesitefromAprilthroughNovemberat1-monthintervals, resulting inatotalofeightsurveysduringtheyear.Fishwillbecollected bytrawlingalongtransects inthelake.Trawlswillbemadeoffshoreofthesiteandwestofthesite.Thewesttrawlwillbeusedasacontrol,i.e.,thistransectwillbelocatedatapointwherethedischarge doesnotsignificantly affectthelakeambienttemperature.

Thus,thecondition andrelativeabundance offishalongthecontroltransectcanbecomparedwiththefishinthepresence'f thethermaldischarge inordertodetermine whethertheplantdischarge hasanysignificant effectsonthefish.Fishtrawlswillbemadeatthesurfaceandnearthebottomofeachtransectduringthemorning,mid-afternoon, andevening.Fathometric fishtraceswillbemadealongeachtransect, simultaneously withthetrawlrun,inordertodetermine areasofunusualfishconcentrations.

Fieldanalysisofthefishwillincludetaxonomic identification andlength,andweightanalysis.

Asubsample ofthefishfromeachsurveywillbepreserved forfoodpreference, fecundity andageclassification.

Length-weight relationships, age,specificreproductive ratesandfoodpreference canbederivedfromtheabovedatabase.Differences amongvariousregionsandamoungsubsequent yearsdatawillprovideabasisforevaluating ecological impactsofthestation~s discharge.

Changesingrowthrates,reproductive 5.5-9 II rates,etc.,canbeusedasanindicator ofstressonfishpopulations.

5.5.6.3BenthosandCladophora SurveyPrevious'fishsurveysatotherLakeOntariositesindicatethatcrayfishappeartobeasignificant foodsourceforthefishinthearea.Therefore, apopulation estimatewillbemadebasedondiveroperations orcatchperunitefforttechniques.

Thecrayfishinvestigation wouldbeconducted witheachfishtrawlingsurvey.Inadditiontothecrayfish, theotherbenthicorganisms wouldbesampledthreetimesduringanyoneyear.Sampleswillbecollected bydiversatvariousdepthsalongthesametransects usedforthefishsurveys.Thesampleswillbepreserved andsenttoalaboratory wheretheywillbesorted,identified andanalyzed.

Simultaneously withthebenthicsurveys,qualified diverswillsite.Sampleswillbecollected inordertomeasurethegrowthofthisalgawithdepth.5.5.6.4physical-Chemical AnalysisWatersampleswillbecollected andanalyzedattwostationsinthedischarge structure areaatthelakesurfaceandbottominordertodetermine variability ofwaterqualitywithdepth.Watersampleswillalsobecollected inthescreenwell areafromtheintakeanddischarge ofUnit1andfromthesanitarywastetreatment facilityeffluentoutfall.Thesampleswillbeanalyzedinalaboratory todetermine biochemical oxygendemand(BOD),chemicaloxygendemand(COD),totalnitrogen, totalphosphrous,

nitrates, ammonia,solids,phenols,sulfates, chlorides, andtracemetals(chromium andzinc).Dissolved oxygen,temperature andpHmeasurements willbemadeinthefield.5.5.6.5Meteorology Meteorological datawascollected atNineMilePointduring1963-64insufficient guantityanddetailtopermittheevaluation ofUnit1environmental impact.Additional meteorological datawillbecollected foratleastonemoreyear.A204-footmeteorological towerisinuseatthesiteandisinstrumented formeasurement ofwindvelocityanddirection, anddrybulbanddewpointtemperatures atthe30-,100-,,and200-footlevels.Additional drybulbanddewpointtemperature measurements willbemadeatthe248-and340-.foot levelsontheUnit1stack.Precipitation willalsobemeasuredatthesiteandcorrelated towinddirection andvelocity.

5.5-10

5.5.6.6Radiation Environment Theprogramofradiological samplingandmonitoring discussed inSection2.8hasbeenexpandedtoaddfourmonitoring stations(toatotalof15)andincreasethesurveillance areatomonitortheoperation oftheJamesA.FitzPatrick PowerPlantscheduled forstartupin1973aswellasNineMilePointUnit1.5.5-11 y,4 SECTION6ENVIRONMENTAL EFFECTSOFACCIDENTS 6~1SCOPEThissectionconsiders theradiological environmental risksduetoabnormaltransients andpostulated accidents asrequiredby10CFRPart50,AppendixD,(Ref.39),andasdirectedbytherecentlyissuedSupplement (Ref.40)tothedraftAECguideforthepreparation ofenvircnmentalreports(Ref.41),hereinreferredtoastheguide.Thisinformation ispresented inthefollowing manner:a.Adescription

,andinterpretation oftheprobabilistic considerations oftheradiological effects.b.Anexamination ofcharacteristics ofthestationwithrespecttothesuggested AEC-environmental reporteventclassification.

c.Adetermination oftheradiological effectsandtheirsignificance foreachAECclassification categoryasitappliestoaboilingwaterreactor(BWR).andd.Anevaluation ofenvironmental impactsoftheradiological effects.Datasupporting meterological diffusion calculations andradiological dosecalculations areincludedasExhibitsAandBinAppendixI.Asummaryofradiation exposurefromnaturalbackground andman-madesourcesofradiation ispresented inSection6.9.6.1.1Probability inPerspective Consideration oftheyearlyprobabilities ofabnormalconditions is,ofcourse,entirelynecessary toanassessment ofenvironmental riskforthecbviousreasonthatsuchconditions arenotexpectedtooccurasoftenasonceayearorevenonceinaunitlifetime.

Comparison ofaccidentexposures withtheman-'rems peryearfullyexpectedfromnaturalsourcesandnormaloperation oftheunitrequiresthattheformerbeweightedbytheirannualfrequencies inordertopredictanaverageannualeffect.Itwillbenoted,however,thattheanalyseshaveconcentrated principally onprediction ofpopulation exposures giventhe.occurrence oftheaccident; probabilities.

ofoccurrence ofeachincidenthavebeencalculated andgroupedintobroadcategories explained below,butnoattempthasbeenmadetocalculate 6.1-1

~,

man-remsperyearforeachclassnortosumthesefigurestoaunittotal.Thereasonforthistreatment istwo-fold:

(1)It,emphasizes thefactthatradiological exposures duetotheaccidents are,infact,acceptably lowinthemselves, withoutadditionally complicating theissuewithprobabilities; (2)The"classes~~

ofaccidents tendtobelesshomogeneous intheirprobabilities thanintheirreleases; thus,toproposeatoo-signif icantfigureprobability as"typical" ofaclasswouldbenotonlyinaccurate butmisleading aswell.6.1.2Probability Categories Toalleviate theproblemofinhomogeneity mentioned above,theprobability ofoccurrence ofeach<<class~~ofaccidents andincidents hasbeenplacedinabroadprobability categoryabouttwodecadeswide.Thesystemchosenforthiscategorization isderivedfromSectionIIIoftheASMEBoilerandPressureVesselCode(Ref.42).TheseclassesareusedbytheGeneralElectricCompanyindesignsafetyanalysesandhaveappearedinsafetyanalysisreportsforseveralstations.

Abriefdescription ofeachclassisgivenbelow.Ineachcase,Prepresents theexpectedfrequency ofoccurrence perreactoryear.6.1.2.1NormalCondition (P=1)Anormalcondition isanyplannedandscheduled eventthatistheresultofdeliberate unitoperation according toprescribed procedures.

6.1.2.2UpsetConditions (1>P>2.5x10-~)

Anupsetcondition isadeviation fromnormalconditions thathasamoderateprobability ofoccurring duringa40-yearunitlifetime.

Theseconditions typically donotprecludesubsequent unitoperation.

6.1.2.3Emergency Condition (2.5x10->>P>2.5x10-~)

Anemergency condition isadeviation fromnormalunitoperation thathasalowprobability ofoccurring duringa40-yearunitlifetime.

Emergency condition eventsaretypifiedbytransients causedbyamultiple-valve blowdownofthereactorvesselorapiperuptureofanauxiliary system.6.1.2.4FaultCondition (2.5x10-~>P>2.5x10-8)

Afaultcondition isadeviation fromnormalconditions thathasanextremely lowprobability ofoccurring duringa40-yearunitlifetime.

Thesepostulated eventsincludebutarenotlimited6.1-2

,H'4 to,themostdrasticthatmustbedesignedagainst(thelimitingdesignbasis).6.1.3BasisfarProbability Estimation Theoccurrences described inthisanalysisareofsuchanaturethattheirfrequencies cannotbederivedfromhistorical data.Asaresult,probabilities onmosteventsmustbeinferredfromknowledge ofotherevents.'IThebroadclassification ofprobability rangesandtheassignment ofeacheventtoacategorydoesquantifythebestthatisknownabouttherelativefrequency ofoccurrence ofmanyeventsandisinformative andusefulonacomparative basis.Following 10CFRPart50,AppendixDAnnex(Ref.40)guidanceoftheninedifferent accidentclasses,twoarenotcoveredhere.TheyareClass1,normaloperation trivialaccidents, andClass9,hypothetical sequenceoffailuresmoreseverethanwhatisassumed~forClass8accidents andsufficiently remoteinprobability thattheenvironmental riskisextremely low.6.1.4Transient andAccidentOccurrences intheReactorFacilityThissectionfollowstheguidewhichpointsoutthatitisnotpractical toconsiderallpossibleaccidents, soaspectrumofaccidents issuggested whicharedividedintoclasses.Eachclassischaracterized byanoccurrence rateandasetofconsequences.

Assuggested bytheguide,typicaloraveragecharacteristics foreachclassareused.Thecalculation methodsandassumptions utilizedinthisreportutilizetheavailable technical information andanalytical techniques thatareappropriate foraBWRstation.Insomeinstances, suchasmeteorology, thedetailedassumptions differfromtheDecember1,1971annexto10CFRPart50,AppendixD,sincemoresuitabledataareavailable forassessing onarealistic basis,theenvironmental impactofthevariouseventsinClasses2through8.Thenatureoftheoccurrence, theoperating conditions atthetimeoftheoccurrence, andajustification ofitsuseastypicalofitsclassispresented.

Afewclassesencompass eventsofsuchwidelydifferent consequences andfrequencies ofoccurrence thattwoormoreeventsarestudied,nosingleonebeingqualified tobecalledtrulytypicaloftheentireclass.Inparticular, eachofthedesignbasisaccidents described inthePreliminary SafetyAnalysesReportistreatedindividually bothinClasses6and8.Subsequent partsofthissectionwilldescribethesourceanddosecalculation techniques, theresulting population exposures expressed inman-rem,andastatement oftheprobability withwhichtheparticular eventcouldoccur.6.1-3 4l,11I Theexposures werecomputedforthepopulation to50milesasextracted fromthe1970census,andextrapolated totheyear2000..Furthermore, theexposurecalculations arebasedonacoolantradioactivity inventory consistent withanoffgasactivityflowrateof50,000gCi/secaftera30minutedelay.61-4 il8 62CLASS2-MISCELLANEOUS SMALLRELEASESOUTSIDECONTAINMENT 62.1EventIdentification Avarietyofleakagepaths,andhencetypeofleaks,couldexistinanoperating unit.Suchreleasesarevariableandcouldrangefromtrivialleakstoasteamorwaterleakofseveralgpm.Forthissectionacontinuous 7gpmleaklocatedintheupperturbinebuildingfloorhasbeenassumedtogetherwithareactorcoolantinventory consistent witha30-minute old50,000uCi/secoff~asreleaserate.Sincethisclassofeventsmustoccurwithintheturbinebuildingtheymustmanifestthemselves eitherinthebuildingdrains(inwhichcasenoreleasetotheenvironment occurs)orinthebuildingventilation.

Thischaracterization oftheclassofeventsissimplystatedintermsofbuildingventilation content.Thereleasetotheenvironment occursfromthemainstack.6.2.2Calculation ofSourcesandDosesAleakrateof7gpmanda10percentiodinereleasetotheenvironswouldresultinanenvironmental releaserateof0.013uCi/secofI-131forthisunitaftercondensation-plateout, withcorresponding releasesofI-132toI-135.Duetothelimitedmobilityoftheparticulate fissionproducts, theseproductsexistinlesserquantities ineffluents andsotheircontribution totheoverallenvironmental effectsisnegligible andtherefore neglected inthisanalysis.

Depending onthetypeofleak(i.e.,steamorliquid),thepotential fornoblegasreleasemayormaynotexist.Iftheleakwerebetweenthemainsteamlineisolation valveandmainsteamturbine,onecouldexpectareleaseofnoblegasactivity; whereasiftheleakwereliquid,duetotherelativeinsolubility ofnoblegasesinwater,onewouldexpectnogaseouscontribution fromthissource.Fortheiodineactivitytheenvironmental effectsweredetermined bycomparing theaverageannualconcentrations atvariousradialdistances in16sectors(22.5degreespersector)totheMaximumPermissible Concentration inAir(MPCA)assetforthin10CFRPart20AppendixB,TableII,column2.SeeExhibitAofAppendixIforthemathematical modelwhichwasusedinthecalculations.

6.2.3Radiological ResultsAsshowninTable6.2-1thecumulative 50-milethyroidexposureis8.9thyroidman-rem.Forthepurposeofthisevaluation thethyroidexposureiscomparedonthesamelevelasthewholebodyexposures.

Asillustrated inTable6.2-1,evenusingthisconservative approachthecumulative thyroidman-remexposures areordersofmagnitude belowthewholebodyexposures receivedfromnormalbackground.

6.2-1

Thewholebodyexposureforthiseventis5to6ordersofmagnitude belownormalbackground.

Itcan,therefore, beconcluded thattheenvironmental effectsfromasmallleakexternaltotheprimarycontainment areofnoimportance withrespecttothegeneralpopulation exposure.

6.2.4EventProbability Considerations Experience withmechanical equipment showsthatsmall,sometimes evenundetectable, steamleaksdooccurfromtimetotime.Thus,thisclassisjudgedtofallintothe<<upset"category.

6.2-2 tA Table6.2-1SummaryofPopulation ExposurefromNaturalandMan-MadeBackground ComparedwithNuclearRadiological EffectsCumulative Whole-Body Man-Rem<<>

~~~Versus~DistanceIntegrated AnnularDistance, MilesPopulation, Thousands (year2000Radiation

Background

NaturalMan-MadePostulated Accidents andOccurrences Class2Class3Liquid<<>GaseousClass4Class5Class6Refueling CaskDropCI,ass7Class8LOCASLBACRDALSTAC2>OGSA10203040505052.3133.93159901424142400470.0620.06700720.074890-025Negl.NANA0.058Negl.Negl.Negl.Negl.Negl.Negl.0.011NA0.011NANA0.12Neg1.Neg1.Negl.Negl.Neg1.NA0.018NA0.012NANA0.18Negl.Negl.Negl.Negl.Negl.NA0.021NA0.013NANA0.31Neg1.Negl.0.012Negl..Negl..NA0.027NA0013NANA0.36Negl.Negl.0014Negl.Negl.NA0.029Negl.0053Negl.NANegl.Negl.Negl.Negl.5.0NeglNegl.Negl.7,32018,80044,100139,000199,000(199,000) 5,23013~39031,50099,000142~400(142~400)

<<~Man-rem/year forradiation background; man-rem/event forpostulated accidents andoccurrences

<<>>Population affectedisthatpopulation drinkingwaterobtainedfromLakeOntariointheyear2000(about930,000people)NOTE;"NA'~meansnotapplicable;

<<Negl.~~meansnegligible, i.e.,lessthan0.01man-rem6.2-3

6'CLASS3RADWASTESYSTEMFAXLURESpincethemechanisms leadingtosignificant accidental discharges ofliquidandgaseousradwastearedifferent, twoeventswereselectedtorepresent thisclass.6.3.1LiquidRadwasteAradwastetankcontaining aconcentration of0.002uCi/ccisassumedinadvertently pumpedtothedischarge

.tunnelatapumpingrateof170gpmfor20minutes,atwhichtimetheerrorisdetectedandthesituation corrected.

Thisoccurrence couldarisethroughanyofthreesingleoperatorerrors:(1)theoperatorcommencespumpingwithouttakingabatchsample,aprocedural error;(2)abatchsampleisincorrectly analyzedortheresultsoftheanalysisareincorrectly communicated totheoperator:

or(3)theoperator, havingbeennotifiedofanacceptable batchsample,pumpsthewrongtankbymistake.Thisaccidenthasbeenselectedastypicalofitsclassprincipally onthebasisofitsprobability ofoccurrence..

Sinceradwasteequipment ismanuallyoperated, itisnottypically subjecttooperational transients wheremalfunctions couldleadtoinadvertant releaseofsystemcontents.

Thechanceandconsequences ofhumanerroroverwhelms thatofmechanical failure.6.3.1.1Calculation ofSourcesandDosesTheradiological effectsforthiseventarebasedontheassumption

'hat.theradwastetankisinadvertently pumpeddirectlytothecirculating waterdischarge.

Annualaveragedischarge flowratesandthemostunfavorable short-term lakedilutionfactorareused.Considering thenearestpointofpublicwatersupplyfortheCityofOswego-Onondaga CountyWaterDistrict(OCWD),whoseintakeislocatedabout6,000feetoutandSOfeetbelowthelakesurface,andacumulative reduction factorof10fortheeffectsoffissionproductdecay,settling, andwatertreatment pl'antfiltration, theresultant radiological exposures areaspresented inTable6.2-1.Additionally, theprevailing lakecurrentsflowfromtheOCWDintaketowardtheunit'sdischarge.

Thedrinkingwaterpopulation withinthisareaisassumedtogrowtoabout930,000bytheyear2000.6.3.1.2Radiological ResultsTheradiological exposures resulting fromthiseventarepresented inTable6.2-1.AsshowninTable6.2-1,theseexposures arenegligible incomparison'to thoseexistingeffectsfromnormalbackground.

6.3-1 OI'l~gIE'1rIIA%'~

6.3.1.3EventProbability Considerations Recentdataonoperatorerrorsofthetypespostulated fortheliquidradwasterelease(Ref.43)suggesttheassignment ofthe<<emergency<<

categoryofprobability asdefinedin6.1.2.3above..6.3.2GaseousRadwasteExamination oftheequipment contained intheoffgassystemrevealsthattheonlysourceofpotential release,otherthanthenormaleffluentpath,isviathedrainlines.Drainlinesfortheremovalofcondensed steamarelocatedincloseproximity totheinletandoutletoftheholduppipeandnormallyhaveawatersealtopreventgaseousleakage.6.3.2.1Calculation ofSourcesandDosesForthisevent,itisassumedthatthewatersealtotheinletdrainlineislostanda2-minute-old gaseousdiffusion mixtureisavailable forrelease.Considering thediameters ofthedrainlineandtheholduppipeandassumingthattheflowinthedrainlineisproportional tothearearatios,approximately 0.2percentofthe2-minute-old mixisreleasedviathedrainline.Sincegaseouseffluents fromthedrainlinearenotpositively contained inanystoragetanks,thegaseouseffluentisreleasedtotheenvironment fromthemainstack.Itisassumedthattheoffgasactivityflowrateis50,000uCi/secdiffusion mixasmeasuredat30minuteswhichisapproximately equalto212,000uCi/secat2minutes.6.3.2.2Radiological ResultsConsidering that0.2percentoftheoffgasactivityflowratemeasuredattwominutes,i.e.,424uCi/sec,isreleasedtotheenvironment underthesameenvironmental conditions asthenormalstackeffluent, theresultant off-siteexposureisaveryinsignificant increaseintheexposures receivedfromthemainstackeffluentundernormalnon-accident conditions.

Inadditiontothe424uCi/secoffissionproductgases,approximately 13uCi/secofN-13,1.4uCi/secofN-16,and118uCi/secof0-19willbereleasedtotheenvironment.

Considerati'on oftheenergyspectrum, abundance, andtransport timetoanyreceptoroffsite,resultsintheconclusion thatthesesourcesareminor.Whiletheradiological exposures forthiseventarebasedona15dayreleaseperiod,whenconsideration isgiventotherelatively smallamountoftimethatthiscondition wouldprobablyexistbeforebeingdetected, theactualdoseeffectswillbeevenlowerthanthosepresented inTable6.2-1.6.3.2.3EventProbability Considerations Anassignment ofthe<<emergency<<

categoryofprobability asdefinedin6.1.2.3aboveisgivenforthisevent.6.3-2 t,~PV'I 6.4CLASS4-EVENTSTHATRELEASEACTIVITYINTOPRIMARYSYSTEMEventswhichleadtoreleaseofradioactive material(activity) intotheprimarysystemmustbeassociated withfuelcladdingdefectsorperforations whichinturnpermitsescapeoftheactivity.

Claddingdefectsorperforations canoccurasarandomdefectduetomanufacture orasaresultoftransitory stresswhichexceedsthecladdingmaterialmechanical properties.

Thefuelcladdingisdesignedtoeliminate randomdefects;however,thepossibility ofdefectsisconsidered undernormalfacilityoperations.

Unitdesignbases,asdescribed intheSafetyAnalysisReport,includetherecyxirement thatanyanticipated transient eventconcomitant withasingleequipment malfunction orsingleoperatorerrormustnotresultinaminimumcriticalheatfluxratiolessthan1.0foranynormalunitoperating mode.Sincethedesignbasescorrelation (Ref.44)usedindetermination ofthecriticalheatfluxisconservatively selectedwithalargemarginbetweenpredicted andobservedcriticalheatflux;fuelwhichexperiences aminimumcriticalheatfluxratioof1.0isnot,likelytohavecladdingfailure.Unitdesignassuresthatsucheventsdonotreleaseactivityintotheprimarysystem.Thus,therearenoeventsidentified intheSafetyAnalysisReportwhichfitintoClass4.64-1 I

65CLASS5-EVENTSTHATRELEASEACTIVITYINTOSECONDARY, SYSTEMInthedirect-cycle BWR,~~Secondary System~~isinterpreted tomeanthesecondary sidesofheatexchangers whoseprimarysides'ontain primarysystemcoolant:inparticular, themaincondenser shellandtheservicewatersideofthe.residual heatremovalheatexchangers.

Themaincondenser isprotected againstoutleakage duringunitoperation bynormalvacuum.Theresidualheatremovalexchangers; with.thesystemoperating intheshutdownmode,isprotected againstoutleakage bya20psigservicewaterpressuredifferential.

Eitherofthetwoservicewaterpumpsiscapableofdelivering thefulldifferential pressureindependently oftheother.Differential pressures lessthan15psigarealarmedinthecontxolroom,asareabnormalsignalsfromradiation monitorsonthesecondary systemdischarge lineandinthedischarge canal.Theunit'sstandbydieselgenerators powertheservicewaterpumpsintheeventoflossofoff-sitepower.Failureofonedieselgenerator wouldnotonlydisabletheservicewaterpumps,butwouldalsodisabletheresidualheatremovalpumponthatloop,therebypreventing outleakage.

Duetotheprevention ofoutleakage itisconcluded thattherearenoeventsidentified inClass5whichareapplicable forthisunit.65-1 I

66CLASS6.-REFUELING ACCIDENTS INSIDESECONDARY CONTAINMENT Refueling accidents areoftwoessential types:droppingaheavyobjectontothecoreanddroppingaspentfuelcask.Theseeventswillbetreatedinthissection.6.6.1HeavyObjectDroppedOntoCoreTheaccident.

chosenastypicalofthiscategoryisthedesignbasisrefueling

accident, whereinanequipment failureallowsafuelbundletodropontothecorefromthemaximumpermissible height,resulting inperforation ofamaximumof49rods.Thiseventischosenbecausethefuelassemblyistheonlyheavyobjectwhichisroutinely suspended overthecoreand,ifdropped,couldcausedamagetothecore.6.6.1.1Calculation ofSourcesandDosesTheenvironmental consequences ofthisaccidentaredependent uponmanyinterrelated parameters, suchas:.decaytimebetweenshutdownandfueltransfer, numberofrodsexperiencing damagesufficient toreleasestoredactivity, typeandquantityofactivityreleased, safetysystems(passiveandactive)inoperation, meteorological conditions existingduringthesubsequent releaseperiod,andthelike.Theassociated valuesassumedapplicable fortheaboveparameters are,definedasfollows:1.Decaytime-4daysbetweenshutdownandcommencement offueltransfer2.Rodsexperiencing fueldamage-493.Safetysystems4a..Passive-Waterintherefueling cavity,plateout.

inthe'secondary containment, andthesecondary containment asaneffective holdupbarrier.b.Active-Emergency Ventilation System(initiated onhighradiation)

Parametric valuesapplicable toabovesafetysystems:a.Water-Partition Factorof10+(Ref.45)b.Plateout-c.Emergency Ventilation SystemFilterEfficiency-99.9percentforiodine,0percentfornoblegas(Ref.45)66-1 0I'~F 5.TypeandRef.,45.fractional activityreleasedasspecified in6.Methodforanalysisofthemeteorology,

-asspecified inAppendixIwhichisbasedondatacollected atthesitein1963and1964.7.Breathing Rates-232cclsec8.Volumetric leakratefromreactorbuildingtoenvironment 100percent/day.

9.ReleaseHeight-106metersThecalculation modelsusedtodefinetheenvironmental doseeffectsforthiseventarethesameasthoseusedforNormalReactorFacilities Operation off-gaseffluentcalculations presented inExhibitAandBofAppendixI.6.6.1.2Radiological ResultsAsnotedinTable6.2-1,theintegrated man-remexposureforthisaccidentisbetween5and6ordersofmagnitude belowthoseexposures receivedfromnormalradiation background.

Itcan,therefore, beconcluded thatthiseventisofnosignificance withregardtotheenvironmental effects.6.6.1.3EventProbability Considerations Spentfuelistransferred fromthereactortothefuelpoolbymeansoftherefueling hoist.Eachfuelbundletoberemovedisgrappledinthereactor,liftedvertically untilthebottomofthefueltransferchanneliscleared,andthentransported acrossthefuelpool,stillunderwater.Abrakeisprovidedtopreventexcessive dropvelocity.

Alimitswitchisprovidedtopreventexcessive liftingvelocity.

Theaccidentpostulated assumesthataspentfuelbundledropsfromthemaximumheightabovethecore,fallsthroughthewater,anddamagesnotonlysomeofitsownrodsuponimpactbutalsosomeofthoseofbundlesstillinthecore.Fortheaccidenttooccur,eitherthehoistmustmalfunction oroneofthesupporting equipment components mustfail.Forthehoisttomalfunction, thelimitswitchmustfailtodecelerate thebundle'sfallingrate.Theprobability ofeitheroftheseeventsoccurring wouldconstitute afaultcondition.

Arandomfailureofthecable,grapple,handle,ortierodwouldbenomorelikelythananemergency condition andprobablyclosertoafaultcondition.

Sincethereislessthanonechanceinfourthatsuchafailurecouldoccurwhilethefuelisatthemaximumheightabovethecore,thecombinedeventwouldbenomorelikelythanafaultcondition foreachbundletransferred.

Assumingthatone-fourth 6.6-2 4%1v4w\>

ofthecoreistransferred eachyear,thelikelihood oftheeventbecomesthatofanemergency condition.

6.6.2SpentFuelCaskDropItisrecognized thatthepresentplanshavethespentfuelcaskcompletely transported fromthereactorspentfuelpooltothereprocessing plantinamotortransport cask.However,ifrailtransportation couldbeundertaken, thecasksizewouldbegreatlyincreased tohandleasmanyas16timesthefuelassemblies percask.Consequently, thedropofarailcaskcouldbeamoresignificant consideration.

Therefore, forthisevaluation themoreseriousaccidentistherailcaskdroppage.

Afullyloadedspentfuelcaskisassumeddroppedwhilebeingloweredtoawaitingflatcar.Thiseventischosentorepresent itscategorybecauseithasthepotential fordroppingthefuelcaskfromthemaximumheightandbecausethefuelcouldloseitscontainment ifthecaskintegrity islost.Ifthecaskweredroppedinsidethefuelpool,therewouldbenodamagetothereactorbuildingandthecaskintegrity wouldstillbeassuredwithnoreleasefromthecaskoccurring.

Thereactor,ifoperating, isassumedshutdownviathemainturbineheatsink.Thecaskisconsidered asdroppingfromaheightofabout99feettoayieldingsurface(theflatcarandpointsbelow)resulting inareleasewithinthelimitsof10CFRPart71.6.6.2.1Calculation ofSourcesandDosesTheradiological consequences ofthecaskdropaccidentarebasedonthefollowing considerations:

a.Therailcarfortransportaion willbeinpositionunderthecaskbeinglowered,thusproviding ayieldingtypeofimpactsurface.(The10CFR,Part71,30-footcaskdropdesigncriteriaisonanonyielding impactsurface.)b.Thecaskwillbeloadedwithamaximumof32fuelelementswhichhavebeenoutofthereactorforaminimumperiodof90days.c.Thefuelisdesignedtowithstand animpactof500Gandthecask270G.d.Themaximumdeceleration ofthecaskafterfalling99feetisapproximately 148G.e.Uponimpactwiththeyieldingsurfaceoftherailcar,thecaskclosureheadwillremainintact,thuspreventing thespillingoffuel.6.6-3

f.Basedonthecaskdesignandfuelcapability, nofueldamagewillresultasaconsequence ofthisevent.Whileitisexpectedthatnoreleaseoffissionproductswilloccurasaresultoftheaccident, theassumption is1,000curiesofnoblegasactivity, asper10CFRPart71criteria, areassumedtobereleasedtotheenvironment viatheunit'sstack.6.6.2.2Radiological ResultsAsnotedinTable6.2-1,theintegrated man-remexposureforthisaccidentisnegligible.

incomparison tothoseexposures receivedfromnormalradiation background.

Itcantherefore beconcluded thatthisaccidentwillhavenosignificant influence ontheenvironment..

6.6.2.3EventProbability Considerations Fuelistransferred fromthereactorfuelpooltoarailroadflatcarbymeansofthereactorbuildingcrane.Thecraneliftsthe.loadedcaskfromthereactorbuildingfuelpool,andafterdecontamination lowersitthroughahatchtotheflatcar99feetbelow.Alltransfercomponents aretestedunderweightedconditions justpriortotheactualtransfer.

Itisanticipated thatanaverageoftencasktransfers areperformed eachyear.Inorderforthepostulated accidenttooccur,thehoistbrake,cablecranehook,liftingyoke,casktrunnion, orsupportringmustfailwhilethecaskissuspended fromthemaximumheight,andthecaskmustrupturewhenitimpactsupontherelatively yieldingflatcarbelow.Theprobability thatadropcouldoccurfromanyheightaftersuchcarefulplanningandtestingof.equipment isexpectedtobelow.Thecaskdesignissuchthat,evenintheeventofadrop,ruptureisnotlikely.'his eventis,therefore, assignedtothefaultcategoryofprobability.

6~6-4

  • l 6.7CLASS7-SPENTFUELACCIDENTOUTSIDESECONDARY CONTAINMENT Thisclassappliestothemovementofaspentfuelcaskonarailroadflatcarfromthetimeitleavesthereactorbuildinguntilitreachesthesiteboundary.

Inaddition, accidental releasesatoff-siteareasarealsoconsidered butarediscussed inSection5.4.2.Spentfuelmovementoutsidethesecondary containment isalwaysperformed withthefuelinsidethecask.Theengineering andprocedural precautions takenduringthemovementofspentfuelon-site,essentially precludethepossibility ofthecaskdroppingon-siteduetoinstability, improperattachement tothebedoftheflatcar,orderailment; further,evenifsuchadropweretooccur,itwouldbefromsuchaheightthattheshippingcaskwouldeasilysustainit..Thecaskcouldconceivably bedamagedbyfire,butthesitearrangement precludes movementofthecarinareasofappreciable firehazard.Thoughfiresaboardrailroadcarsduetooverheated bearingshaveoccurred, itisextremely unlikelyinthiscase,considering thevelocityatwhichsuchmovementwilloccur.Firesaboardtheswitching engineorotherform.oflocomotion, themselves highlyunlikely, posenohazardtothecask.'Thus,exposuretothepublicduetoon-sitemovementofspentfueloutsidethecontainment isnotexpected.

67-1 r0 68CLASS8-ACCIDENTINITIATION EVENTSCONSIDERED INDESIGNBASISEVALUATION INTHESAFETYANALYSISREPORTTheseeventsareasdescribed inSection14oftheSAR,andarebrieflydetailedinthefollowing paragraphs.

Theseincludetheinsidecontainment loss-of-coolant accident(recirculation pipebreak),theoutsidecontainment loss-of-coolant accident(steamlinebreak),andthereactivity excursion accident(controlroddrop).Thedesignbasisrefueling accidentfallsinClass6andhasbeentreatedinSection6.6..Twonondesign basisaccidents (catastrophic failuresofaliquidradwastetankandoftheoffgasholdupsystem)arealsotreatedhere,inorderthatClass8containsoneeventofeachtypewhichcouldresultinsignificant releasestotheenvironment.

6.8.1Loss-of-Coolant Accident(LOCA)Asuddencircumferential breakisassumedtooccurinarecirculation line,permitting thedischarge ofcoolantintotheprimarycontainment frombothsidesofthebreak.Concurrent withthisfailure,theworstsingleactivecomponent failureproducing themaximumdamagetothecore,isalsoassumedtooccur.Thisisfailureofthelowpressurecoresprayinjection valveistheunaffected recirculation looptoopen.6.8.1.1Calculation ofSourcesandDosesThecalculation ofcoreheatupfollowing thedouble-ended recirculation linebreakwaspredicted onarealistic basis,assuggested bytheguide,byapplyingtheresultsofparametric studiestothestandardcoreheatupmodelscurrently inuse(Ref.46)Theapproachinthethermal-hydraulic analysiswastoselectrealistic valuesforthosekeyassumptions normallyusedintheSafetyAnalysisReport(SAR)inwhichveryconservativ'e estimates aremade.Otherassumptions whichareoflessersignificance usevaluesasdescribed intheSARorinAECsafetyguides.Whereparameters arenotspecifically mentioned, AECassumptions, whoseinherentconservatism hasbeenwelldocumented, havebeenemployedThevaluesassumedforuseinthethermal-hydraulic calculations forLOCAareidentified asfollows:68-1

~4rII/J BestEstimateAEC=Assum tions1023045.6.Metal-Water ReactionSteamCoolingBlowdownFlowRateCoreSprayWettingTimeDurationofNucleateBoilingLowerPlenumFlashingHeat.TransferBakerx0.5IncludedMoodyx0.7Transient DataRewetting DataBakerNoCreditMoodyt+60secSteady-State DataGroeneveld Correlation Peakcladtemperatures werecalculated foraspectrumofbreaksizesutilizing theassumptions listed.Therealistic coreheatupanalysisshowsnoheatupoffuelintotheperforation rangeexceptforthatcausedbythedouble-ended recirculation pipebreak.Perforation eveninthiscasewillbelimitedto2.5percentorless.Theresultant radiological effectsareafunctionofthequantityandtypeofactivityreleased, naturalfissionproductremovaleffects,containment leakrate,etc.Theseeffectsarebasedonreleaseoftheprimarycoolantactivitytotheprimarycontainment andsubsequent releaseviaprimarycontainment leakagetothesecondary containment.

Thosevaluesassumedapplicable fortheradiological doseeffectsareidentified asfollows:1.Fuelrodsdamaged-2.5percentcore2.Fissionproductsavailable forreleaseasspecified inReference 45[13.Primaryc'ontainment leakrate-0.5percent/day initial,with.average30-dayreleaserateof0.2percent/day.

4.Plateout-condensation effects-10(Ref.45)5.Partition factorsuppression pool-10~(Ref.45)6.Mixingsecondary containment

-100percent7.Emergency Ventilation Systemefficiency

-99.9percentforIodine(Ref.45).8.Methodforanalysisofthemeteorology

-asspecified inExhibitAinAppendixIwhichisbasedondatacollected atthesitein1963and1964.9.Breathing rate-232cc/sec10.Releaseheight-106meters6.8-2

>)0 Thecalculation methodsforthe8hourand30-daywholebodydosesandthyroiddosesarepresented inExhibitsA6BofAppendixIofthisreport.6.8.1.2Radiological ResultsTheresulting population radiation exposures forthisaccidentarepresented inTable6.2-1.Asnoted,theexposures arenegligible.

Itcantherefore beconcluded thattheenvironmental effeets,asaconsequence ofthisaccident, areofnosignificance.

6.8.1.3EventProbability Considerations Theprobability ofalargebreakseverance shouldfallwithintherangeofanemergency condition basedonestimates ofpipefailureratesandonthenumberofpipesthatsatisfytheconditions foralargebreakdesignbasisaccident.

Theprobability thatthelowpressurecoresprayinjection valvewillfailwhencalleduponshouldalsofallwithintherangeofanemergency condition basedonananalysisusingfailurerates,(Ref.47,48,and49),considering anticipated downtimeandtheintervalbetweeninjection valvetests.Sinceeachprobability islowandtheoutcomesarenotcritically interdependent, thejointprobability ofpipebreakandinjection valvefailureisexpectedtobe~verlow,placingthiseventinthefaultcondition.

6.8.2SteamLineBreakAccident(SLBA)Thepostulated accidentisasudden,completeseverance ofonemainsteamlineoutsidethedrywellwithsubsequent releaseofsteamandwatercontaining productstothepipetunnelandtheturbinebuilding.

Sincethisaccidentdoesnotresultinanyfueldamage,theenvironmental effectsarelimitedtothoseradiolgoical doseswhichmaybereceivedasaconsequence ofexposuretotheactivityassociated withtheprimarycoolant.6.8.2.1Calculation ofSourcesandDosesThemassofcoolantreleasedduringthe4-secondisolation valveclosuretimeis47,400pounds.Asaconsequence ofdepressurization, approximately 30percentofthereleasedliquidwillbeflashedtosteam.Duetotheaffinityofiodineforwater,itisnotexpectedthatanyadditional iodinewillbereleasedfro'm'heremaining coolant.Therefore, theiodinereleasedtotheturbinebuilding, asaconsequence oftheaccident, willbeproportional tothatquantityofwaterflashedtosteam.Duetothecondensation, plateoutwilloccuronsurfaceswithwhichthesteamwillcomeincontactpriortoreleasetothegeneralenvironment.

Itisassumedthataniodine6.8-3 P'

removalfactoroftwoisapplicable totheseeffects.Theiodineactivityassociated withthecoolantflashedtosteamisbasedonanoblegasreleaserateof50,000uCilsecofadiffusion mix,asmeasuredat30minutesdecay.6.8.2.2Radiological ResultsThepopulation radiation exposures forthisaccidentarepresented inTable6.2-1.Duetothetypeofactivityreleased, theprimarydose'ffect fromthisaccidentisinhalation thyroidexposure.

AsnotedinTable6.2-1,thecumulative thyroidexposureis5ordersofmagnitude belowthenormalbackground wholebodyexposure.

Itcantherefore beconcluded thatthisaccidentdoesnotresultinanyenvironmental effectsofsignificant concerntothegeneralpopulation.

6.8.2.3EventProbability Considerations Thedesignbasismainsteamlineruptureaccidentpostulates completeseverance ofoneofthemainsteamlineswhilethereactorisatpowerfollowedbytotalisolation ofthebreakfromthereactorwithin4seconds.Theprobability ofthiseventisessentially theprobability oftheseverance.

Baseduponestimates ofpipefailureratescontained intheliterature (Ref.50),andconsidering thenumberoflocations wheretherupturecouldoccurinthemainsteamsystem,theprobability ofpipeseverence shouldbewellwithinthe'~emergency category."

6.83ControlRodDropAccident(CRDA)Thepostulated accidentisareactivity excursion causedbyaccidental removalofacontrolrodfromthecoreataratemorerapidthancanbeachievedbytheuseofthecontrolroddrivemechanism.

Inthecontrolroddropaccident, afullyinsertedcontrolrodisassumedtofalloutofthecoreafterbecomingdisconnected fromitsdriveandafterthedrivehasbeenremovedtothefullywithdrawn position.

Thedesignofthecontrolrodvelocitylimiterlimitsthefreefallvelocityto3ft/sec.Basedonthisvelocityandassumingthereactorisatfullpower,themaximumrodworthisapproximately 1percent,andthepostulation assumesperforation of10fuelrods.Itisexpectedthatnonewillactuallyfail.6.8.3.1Calculation ofSourcesandDosesInadditiontotheassumedfailureof10rods,theradiological effectsarealsobasedonratedsteamandrecirculation flow,aniodinecarryover fractionof1percent,andamainsteamlineisolation valveclosuretimeof4seconds.Inadditiontoisolating themainsteamline,themainsteamlineradiation monitorsalsoisolatethenormaloffgassystem,therebycontaining theactivitybetweenthemainsteamlineisolation 6.8-4

valvesandtheoffgasisolation valves.Theprimarysourceofleakagefromthesystemwilltherefore beviatheturbineglandsealsandwillbeduetochangesinenvironmental pressurewithrespecttotheturbinecondenser.

Theactivityair-borne inthecondenser isafunctionofthepartition factor,volumeofairandwater,andchemicalspeciesofthefissionproductactivity.

Thevaluesassociated withtheseparameters are:apartition factorof10~foriodine,acondenser plusturbinefreevolumeof99,200ft3,andacondensate volumeof7850ft~.6.8.3.2Radiological ResultsAsnotedinTable6.2-1,thepopulation radiological exposures forthisaccidentareordersofmagnitude belowthoseeffectsreceivedfromnormalbackground.

Itcantherefore beconcluded thatenvironmental effectsfromthisaccidentareofnosignificant concerntothegeneralpopulation.

6-8.3-3EventProbability Considerations Inorderforarodtodropfromthecore,itmustfirstbecomedetachedfromthedrive,remainlodgedinpositionwhilethedriveiswithdrawn fromthecore,andthen,whilethedriveisstillwithdrawn, becomedislodged andfallfreely.Thisisacomplexseriesofevents,therebeingmanypossibleactions(orinactions) thatareinterrelated, butthisisoffsetbythemanyannunciators andprocedures thataremeanttoindicatetheoccurrence andavoidsuchanevent.Conservative judgmentandactualoperating experience indicatethatthiseventshouldbeassignedtotheemergency condition category.

6.8.4Radioactive LiquidStorageTankAccident(LSTA)Thecondensate storageandhighlevelwastetanksaretwopotential sourcesofradioactive waterspillagepresentinthestationdesign.The200,000galloncondensate storagetank(containing 5x10-5uCi/cc)ispartially abovegradelevel,which,posesapotential problemoftheliquidspillreachingoutsidethefacilities..

Thehighlevelradioactive wastetanks,however,arelocatedbelowgradeintheradwastebuildingbasement, thusassuringcompletecontainment ofanyspill.6.8.4.1Calculation ofSourcesandDosesTheactivityreleasedfromthefailureofthecondensate storagetankisassumedtobeemptiedintoLakeOntariooveraperiodof10minutes.Theshort;term lakedilutionfactorof156betweenthepointofdischarge andthedrinkingwaterintakeatOswegoisconsidered applicable duringthiseventtogetherwiththe6.8-5

population servedasindicated inSection6.5.2.Thenearestpointofpublicwatersupplyisabout8milesfromtheunit.Considering filtration bytheprocessing facilities ofthepublicwaterworksaswellasradioactive decayandsettling, afactorof10isappliedtotheseeffectsinevaluating thepopulation radiological exposures whichcouldresultfromtheconsumption ofthiswater.6.8.4.2Radiological ResultsTheradiological effectsresulting fromthiseventarepresented inTable6.2-1.Asnoted,theseeffectsareordersofmagnitude belowthoseexistingfromnormalbackground effectsandaretherefore ofnosignificant concernwithregardtotheeffectsonthegeneralenvironment.

6.8.4.3EventProbability.

Considerations Thecondensate storagetanksareunpressurized accumulators.

Therearenovalvesorpartsotherthanpipingattachedtothetank.Althoughthetankisnotapressurevessel,itisdesignedingeneralaccordance withappropriate AmericanPetroleum Institute Code650.Sincetheprobability ofoccurrence ofareleasetotheenvironment fromacondensate storagetankfailureissoverylow,itisplacedinthefaultcategory.

6.8.5Off-GasSystemAccident(OGSA)Thepostulated accidentforthiscategoryisanignitionofradiolytic hydrogenandoxygenintheoffgasholdupvolume,followedbyadetonation ofsufficient impulsetorupturetheholduppipe.Theactivityreleasedtotheenvironment wouldtherefore bethatactivitycontained withintheholdupvolume.6.8.5.1Calculation ofSourcesandDoses\Thesourcetermsapplicable tothebaseinputtothesystemaswellastheparameters appropriate toreleaseanddispersion areasfollows:1.BaseInput212,000uCi/secofa2minuteolddiffusion mixwhichat30minutesisequivalent to50,000uCi/sec.2.Releaseof100percentnoblegasactivitycontained inpipeand10percentoftheIodine.3.Heightofreleases-106meters.4Meteorology

-themethodforanalysisofthemeteorology isasspecified inAppendixIandisbasedondatacollected atthesitein1963and1964.6.8-6

6.8.5.2Radiological ResultsTheradiological exposures receivedasaconsequence ofthishypothetical accidentarepresented inTable6.2-1.Asnoted,theenvironmental exposures areordersofmagnitude belowthoseexposures receivedfromnormalbackground.

Itcantherefore beconcluded thattheenvironmental exposurewhichcouldtheoretically bereceivedasaconsequence ofthisaccidentareofneglibible importance incomparison totheactualexposures receivedfromnormalbackground.

6.8.5.3EventProbability Considerations Thenoblegasesgenerated inthenuclearprocessareallowedtodecayforapproximately 30minutesbeforedischarging upthestack.Thesmallamountofnoblegasesareaccompanied byamixofhydrogenandoxygen,alsogenerated inthenuclearprocess.Thishydrogen-oxygen mixtureissubjecttoignitionandtheoretically coulddetonateunderproperconditions.

Ifthemixtureignites,itburnsrapidlyandforcesasubstantial portionofthenoblegasinventory outthestackwithlessthannormaldecaytime.Ignitionhasoccurredinoperating reactorswithoutH-0recombiners ataratethatshouldbeclassified asanupsetcondition.

Detonation isfarlesslikelybecauseitcanoccuronlyunderratheridealconditions ofpressure, mixture,andpipinggeometry.

Arupturediscisinstalled intheholduppipetoprotectthepipefromrupture.Xgnitions andmostdetonations wouldnotcreateahighenoughpressuretorupturethedisc.Adetonation ofsuchforceastorupturethediscorthepipeisexpectedtohavealowprobability, probablyatthelowendoftheemergency categoryinplantswithoutH-0recombiners.

6.8-7

6~9RADIATION BACKGROUND ANDRADIOLOGICAL IMPACT6.9.1NaturalRadiation

Background

Everydaywereceiveradiation fromthesky,theground,theairaroundus,andthefoodweeat.Themagnitude ofthisradiation levelisstronglyinfluenced bywherewelive,whatwedo,andeveninwhatkindofhouseweliveFormostlocations aroundtheUnitedStates,thisnaturalradiation levelaveragesabout140mrem/year.

Thevariouscomponent contributions ofthistypicalvaluearediscussedbelow.Dataispresented inTable6.2-1.6.9.1.1TotalRadiation FromNatureThefollowing tablesummarizes thevariouscontributions inarrivingatanaveragenaturalradiation background of140mrem/year forpeoplelivingintheUnitedStates.CosmicRays50Ground(1/4time)15Buildings (3/4time)45AirFoodandWater24~140mrem/year 6.9.1.2Man-RemFromNaturalRadiation

Background

Calculations ofthetotalexposuretothepopulation asaresultofnaturalradiation background havebeenmade.Certainly itisobviousthatifitisassumedthateverypersonintheUnitedStatesreceivesanaverageof140mrem/year thenthetotalpopulation exposurewouldbeabout30millionman-rem/year However,itisnotappropriate tocomparethe'adiological effectsoftheoperation ofanyonenuclearpowerstation,asnegligible astheyare,withthetotalman-rem/year totheentireUnitedStatespopulation.

Therefore, theman-remcomparisons aremadeforthepopulation withina50mileradius.Ifthereareonemillionpeoplelivingwithina50mileradius,thenaturalradiation background willresultinabout140,000man-rem/year.

Table6.2-1listsman-rem/year fromnaturalbackground forthepopulation distribution attheNineMilePointSite.6.9.2Man-MadeRadiation

Background

Manhasaddedtohisradiation exposurefromnatureinanumberofways.Thelargestcontribution byfarhasbeenfrommedical6.9-1

exposure.

Ithasbeenestimated (Ref.51)that94percentofman-madeexposureisfromthisradiation andofthis,90percentisattributed todiagnostic X-rays.Typically, anaverageof55mrem/year isreceivedbytheaverageUnitedStatescitizen.However,recentreports(Ref.52)indicatethat100mrem/year isamoreappropriate average.Additional smalllevelsofradiation canbereceivedfromluminouswatchdials(about2mrem/year) andtelevision viewing(1to10mrem/year)

..Therefore, theresultant man-maderadiation receivedbytheaveragecitizenrangesbetween50to100mrem/year.

6.9.2.1Man-RemFromMan-MadeRadiation Totalpopulation exposurefromman-madesourcesismoredifficult toevaluatesincetherecanbeanindividual choicemadeastowhethersuchradiation isreceived.

However,reasonable assumptions canbemadeinordertomakeestimates ofman-rem/year sinceitisnotfeasibletomonitorthepopulation dosebymeasuring thedosetoindividuals.

Thepopulation doseasaresultofviewingtelevision toasamplemillionpeoplecanbeestimated.

Typically anindividual wouldreceiveabout1to10mrem/year fromwatchingTV.Saytheaveragedosereceivedis5mrem/year

,thenthisresultsin5,000man-rem/year.

Lookingatthissamepopulation onecandetermine theman-remasaresultofexposurefromluminous-dial watches.~Ifonly10percentofthissamplepopulation areexposedto2mrem/year, thentheresultant population doseis200man-rem/year.

TheuseofmedicalX-raysisbyfarthelargestcontributor topopulation exposurefromaman-madesource.Againconsidering thesamplemillion-person population, diagnostic X-rayswouldresultinabout100,000man-rem/year assumingthateachpersonreceivedanaverageof100mrem/year.

However,ifonly10percentofthispopulation receivedan'nnualchestX-rayof200mremperexamination, theresultwould,be20,000man-rem/year.

Insummary,medicalexposureresultsinthelargestman-rem/year contribution fromman-madesources.However,theexamplesoftelevision viewingandwearingluminouswatchesdocontribute topopulation exposureandshouldbeincludedwhencomparing theimpactonmanfromtheseandotherman-madesources.Table6.2-1liststheman-rem/year forthesesourcesappropriate forthestationlocation.

6.9.3TotalAverageRadiation

Background

Thetotalbackground radiation exposurereceivedbytheaveragecitizenisthesumofthecontributions receivedfromnatural6.9-2 l1tI*hl6IV0 background andmanmadesources.Theresultant totalisthe140mrem/year fromnaturalsourcesand50to100mrem/year

.fromman-madesourcesgivingabout200to250mrem/year totheaverageresidentoftheUnitedStates.6.9.4Man-RemFromNuclearPowerStationsTheradiological impactofnuclearpowerstationsiscomparedwiththealreadyradioactive environment inwhichwelive.Thereisabasicdifference betweentheman-remreceivedfromnaturalandman-maderadiation background andthatfromthenuclearpowerstations.

Thatis,everyonewithina50mileradiusisassumedtoreceivetheaveragebackground

exposure, whereaseveryonedoesnotreceivethesamecontribution fromthepowerstation.Thereasonisthatthenaturalatmospheric dispersion effectsreducetheradiation sourcethefartheroneisfromthestation.Asimpleanalogyshouldhelpinexplaining this.Letussaythatabottleofperfumeisopenedandissprayedintotheairwhileonestandstenfeetdownwind, thenchancesarethattheodorfromtheperfumewouldbedetectedatthatdistance.

At100feetawaythereisonlyahintofperfumeintheairandat1,000feet,itisimpossible todetectanyeffect.Overtheyear,thewinddirections, windspeedsandatmospheric stability changetodisperseanairbornesourcesothatoutto50milesfromthereleaselocation, theradiological effectisnotmeasureable butonlyestimated bymeansofacalculation.

Liquidsourcesaretreatedsimilarly tothegaseousoneinthatonly,aportionofthetotalpopulation outto50milesactuallycouldbeinfluenced fromsmallamountsofradioactivity discharged fromtheunit.Considering drinkingwaterastheprimarymodeofexposuretoman,severalfactorsaffecttheresult.Forexample,someoftheseareeffectsofwaterdilutionanddispersion inthelake,distancebetweenstationandlocations wherewaterisdrawnfordrinking, watertreatment priortotransport intothedomesticwatersupply,andthenumberofpeopleusingthiswaterfordrinkingwaterpurposes.

Thetotalman-remtothepopulation outto50milesfromthestationforthevariousaccidentconditions evaluated inSection6aresummarized onTable6.2-1.Thislistincludestheman-remresultsfornormalstationoperation considerations, transportation considerations, variousabnormalconditions andpostulated designbasisaccidentconditions.

Oneshouldnotaddtheman-remfromeachcondition sincetheprobability ofoccurrence wasnotappliedtoallconditions.

Thereasonisthatitisnotcorrecttoaddman-rem/year withman-rem/event withoutfirstconsidering thefrequency ofoccurrence (suchasone-millionth ofanoccurrence peryear).6.9-3

6.9.5Radiological ImpactConclusion Thegeneralconclusion thatisdrawnfromthe'total population exposure(Table6.2-1)foreachcondition isthatthereisanegligible contribution fromthenuclearpowerunitwhencomparedtothenaturalandothermanmadeexposures receivedbythepopulation.

Thehighestdosetoanindividual neartheunitislessthanafewpercentofnaturalbackground.

Thisdosewouldapproachnegligible proportions atadistanceof50miles(twotothreeordersofmagnitude less).Asmentioned above,thenaturalbackground andcertainman-madesourcesofradiation overshadow theradiation exposurecontribu-tionfromnormaloperation andthepostulated accidents discussed inthissection.6.9-4

SECTION7UNADVOIDABLE ADVERSEENVIRONMENTAL EFFECTSOFOPERATION Althoughitisinescapable thatoperation ofUnit1affectstheenvironment, NiagaraMohawkbelievestheseeffectsarenotadverse.Identification ofthesechangesisimportant sincemanyoftheirpossibleenvironmental problemsareonlyrecentlybeginning tobeunderstood.

Theseareasofalteration maybecategorized asfollows:a.Physicalpresence-aesthetic effects,noise,trafficb.Landuse-recreational, historical c.Waterquality-liquidreleases-chemicalwasted.Airquality-gaseousreleases-radioactive, otherExceptforthereleaseofverysmallquantities ofradioactive effluents, alloftheaboveeffectsarecommon,invaryingdegrees,toanylargethermalgenerating plant,largemanufacturing

facility, largecommercial
building, andevenlargeapartment buildingorcomplex.Thissectionofthereportdiscusses thenatureofeachofthesealterations.

Publicawareness ofnuclearpowerstationshasnaturally increased asthenumberofstationsincreases.

Alongwiththisawareness hasbeenanincreasing concernoverthequalities ofthehumanenvironment.

Fornuclearpowerstations, thisconcernhasfocusedprimarily ontheirlccationandtheeffectoftheirphysicalpresenceontheirimmediate environments.

Everyefforttominimizetheintrusion ofthisfacilityanditscomponent partsuponitsenvironment hasbeenmadebydesigning thestructures tobeasaesthetically pleasingasiseconomically possibleandbycontaining majornoise-producing mechanisms withintheplantbuildings.

Twooftheprincipal questions oftenaskedaboutnuclearpowerstationsconcernwasteheatrejection andradioactive releases.

Aspreviously indicated inSections5.1.2and5.5,thelastingtemperature increaseoverambientlakeconditions ofthecoolingwaterreturnedtothelakewillbeslight,basedonLakeOntariostudiesintheNineMilePointareathathavebeenconducted since1963,andonUnit1operation todate.Theenvironmental effectsofliquidandgaseousradioactive releasesfromUnit1andtheirinteraction withotherfacilities 7.0-1

intheareahavebeendiscussed inSections5.4.5and5.4.6.Theresulting ambientlevelsofcontaminants areexpectedtobewellbelowthoselevelsconsidered harmfulbylocal,state,andfederalstandards.

Preliminary dataresulting fromwatersamplescollected fromNineMileUnit1(Section5.5.4)indicated thatasmallpercentage offishlarvaearelostinpassingthroughthecirculating watersystem.Becauseoftherelatively fewfishinthevicinityoftheexistingintakestructure, andtheprecautions takeninthedesignofthelakestructures, nosignificant lossofmorematurefishisanticipated inproportion tothefishpopulation asawhole.Onlyabout45acresofthe900-acresitehavebeenunavoidably removedfromexistinglandusesforUnit1.Theremainder ofthesiteservesprincipally asahabitatfornativewildlife.

Powerunits,suchasNineMilePointUnit1,aredesignedassuppliers togeographically extensive systems.Suchpowerstationsdonotofferanygreaterincentive todevelopment intheimmediate vicinityofthestationthaninanyotherlocationwithinNiagaraMohawkisservicearea.7.0-2

~1 SECTION8ALTERNATIVES TOTHEEXISTINGPOWERSTATIONTheNineMilepointUnit1NuclearpowerStation-is anexistingfacilitywhichstartedcommercial operation inDecemberof1969.,Therefore, itisevidentthatnotasmanyfeasiblealternatives existforthisfacilityaswouldbeavailable ifanewunitwereunderconsideration.

However,everyefforthasbeenmadetoevaluatealternatives totheextentthattheycanbeproperlyassessed.

Theenvironmental considerations ofthevariousfeasiblealternatives arediscussed indetailalongwithasummaryofenvironmental costtabulations intheBenefitCostAnalysis, Section9..Alternatives totheexistingpowerstationincludenotproviding thepowerordecommissioning thestationandreplacing thepowerbypurchasing thepowerfromothersystems,rebuilding thestationatothersites,orproviding thepowerbyanalternative meansofgeneration..

Section9considers thebenefitsandcosts,bothenvironmental andeconomic, ofthesealternatives.

Fortheexistinggenerating system,therearealsoseveralalternatives available, forhandlingthecoolingwater,chemical, andradioactive wastes.Thesesubsystem alternatives fortheexistingfacilityarealsoevaluated inSection9fromthestandpoint ofbotheconomicandenvironmental costs.8.0-1

SECTION9BENEFITCOSTANALYSISThedecisiontoplaceaboilingwaterreactorattheNineMilePointsiteandtocontinueitsoperation involvestrade-offsamongvariousenvironmental effectsandeconomiccosts.NiagaraMohawkchosetoconstruct andoperateanucleargenerating unitattheNineMilePointlocationforseveralreasons.Amongtheseweretheexcellent environmental characteristics ofthesite,including absenceofseismicactivity; superiormeterological ventilation; scarcityofpopulation andlanduseactivities; andtheabundance ofcoolingwater.Thesiteconsistsmostlyofscrubforestandrockyshoreline makingitlesssuitableforrecreational orfarmusesthantheothersitesinvestigated Thecommitment tobuildanuclearstationatNineMilePointwasmadeinlate1963.Morethanayeaxpriortothatcommitment, environmental studieswereinitiated toprovidedataonthemeteorological, aquatic,seismic,geological andhydrological characteristics atthesite.Theloadgrowthestimates atthetimeofthecommitment indicated theneedforanewlargebase-load unit.Thedecisiontobuildanuclearunitratherthanafossil-fuel unitwasmadebasedonabalanceofenvironmental andeconomicconsiderations.

Operation ofthestationsince1969hasprovidedampleevidencethattheeconomics ofnucleargeneration havebeenachievedwithminimalenvironmental impact.DuringthedesignoftheNineMilePointNuclearStation-Unit1manytrade-offs weremadetominimizeenvironmental impacts.Stackheightwasdetermined bybalancing themeteorological dispersion characteristics andtheaesthetics ofatallerstack.Theflutedmetalsidingonthebuildingwallswascolortreatedtoharmonize withthesurroundings.

Alternative coolingwatersystems,suchassurfacedischarge andvarioussubmerged diffuserschemeswerealsocarefully investigated toarriveatadesignwhichwouldavoidunacceptable thermaleffects.Thissectionpresentsabenefitcostdiscussion ofthealternatives totheexistingpowerstation.Thosealternatives whicharefeasibleattheNineMilePointsiteandarewithinavailable technology aretabulated withrespecttobenefitsandcosts.Thesebenefitsandcostsaredeveloped withinthetextofSection9.Inusingthetables,reference shouldbemadetotheappropriate partofthetextforthefullexplanation oftheenvironmental costs.Thesetabulations aresimilartothosesuggested in<<Proposed AECGuidetothePreparation ofBenefit-CostAnalysistobeIncludedinApplicant's Environmental Reports(ForDefinedClasses*ofCompleted andPartially Completed Nuclear9.0-1

Facilities),"

issuedinJanuary1972.Assuggested bytheGuide,thetabulations areoftwotypes.Thefirstcomparesincremental generating costsandenvironmental costsofvariouspractical subsystems whilethesecondcomparesbenefitsandcostsofalternative stationdesigns.Theincremental generating costsandenvironmental costsofvariouspractical subsystems aretabu3,ated following thediscussion ofthesesubsystems.

Thesetabulations areusedtoderivethealternative stationdesignswhichresultinminimumwater,air,andlandeffects.Thesealternative stationdesignsaresummarized intabulations attheendofSection9.8.Duringthefinalstagesofpreparation forthisreporttheAtomicEnergyCommission issue'dafinalguideinMay1972.-Thisreviseddocument, "GuideforSubmission ofInformation onCostsandBenefitsofEnvironmentally RelatedAlternative DesignsforDefinedClassesofcompleted andpartially completed NuclearFacilities,~~

hascertaindifferences fromthepreviously proposedJanuary1972guideinbothcontentandformatpresentation'.

Theadditional information requested inthisfinalAECguideisdiscussed andincorporated inappropriate sectionsoftheBenefit-Cost Analysisbutisnottabulated inbenefitcosttables.Thereasonisthattheformatusedthroughout thebenefit-cost tablescloselyfollowsthetextpresentation andtheearlierJanuary1972guide,anditisnotconsidered feasibletosubstantially changethisformatatthislatedate.9.0-2

91NOTPROVIDING THEPOHERTheNiagaraMohawkPowerCorporation (NMPC)isaregulated publicutilityoperating underthePublicServiceLawoftheStateofNewYork,whichobligates theCompanytoprovidesafeandadequateelectrical servicetoitscustomers.

-TheCompany~splanstomeetfuturerequirements underthisLawaxe.,descxibed i,nSection1.2.Thissectiondemonstrates thenecessity forthegenerating capacityofUnit1.92PURCHASING THEPOWERSection1.2demonstrates thattheNineMilePointUnit1isnotoddlynecessary forNMPCtomeetserviceobligations onitsownsystembutisalsoanintegralpartoftheNewYorkPowerpool'sgenerating capacity.

Amongotherfunctions, thePoolcoordinates plansfornewgeneration insuchamannerthatamplereservesareprovidedwithintheState.Long-term powerpurchasefromwithinNewYorkStateisnotanalternative tocontinued operation ofthisunitintermsoftheNewYorkPowerPoolplan,asdescribed inSection1.2.Evenifnewgeneration weretobeconstructed elsewhere intheStatefromwhichNMPCmightconceivably purchasepower,environmental costsspecifictothesealternate locations couldnotbeavoided.TheNewYorkPowerPoolanditsmembershavefoundthatpossibilities foraddi,tional long-term powerpurchases donot,realistically existoutsidethePool,particularly duringthewinterwhenNMPCexperiences itspeakload.Thereisnoindication thateitheroftheadjacentPowerpoolsintheUnitedStates,thatis,thePennsylvania-Jersey-Maryland

.,(PJM)ortheNewEnglandPowerPool(NEPOOL),

orOntarioHydroinCanada,willhavecapacityavailable forsaleforanextendedperiodonafirmbasis.Accordingly, itisconcluded thatpurchasing poweronalong-term basisfromeitherwithintheNewYorkPowerPoolorfromoutsidethePoolisnotafeasiblealternative tothecontinued operation ofNineMilePointUnit1.9.1-1/9.2-1

'4 93ALTERNATIVE SITESevaluation ofalternative sitesforUnit1mustconsiderthatthisunithasbeenincommercial operation atNineMilePointsinceDecember, 1969.Thecostsofdecommissioning thisunit,abandoning theNineMilePointsite,movingtoanewlocale,andrebuilding thestationwouldbeoverwhelming.

Foramoredetaileddiscussion ofthesecosts,seeSection9.'.The'nvironmental effectsassociated withlocatingUnit1atitspresentsiteonLakeOntariohavebeendiscussed inprevioussections.

Therefoxe, thissectionislimitedtoadiscussion ofreasonswhytheNineMilePointsiteispreferable

'overothersitesforthelocationofagenerating plant.Projected demandsoftheNiagaraMohawkPowerCorporatiOn systemindicatethatincreased loadrequirements forthe'omingdecadearetobeinthecentralandwesternregionofthesystem.Alternative sites,therefore, mustbelimitedtoNiagaraMohawk~scentralandwestern'divisions.

Theavailability'of adequatesuppliesofcoolingwaterwhilestayingwithintheprojected growthareafurthernarrowsthechoiceofalternative sitestothoseontheSt.LawrenceRiverorontheshoreofLake'ntario.

ThethermaleffectsatanewsiteonLakeOntarioshouldbesimilartothoseoccurring attheNineMilePointsite.Theenvironmental effectsonariversuchastheSt.Lawrence, however,wouldbedi,fferent framthoseoccurring onthe.lake.Althoughitisnotfeasibletoquantifytherivereffectsbasedononlythepreliminary investigations thathavebeenmade,by'iagara Mohawk,itisestimated thattheoveralleffectsofthermalandliquiddischarges wouldbeminimalbecauseofthelargevolumeflowoftheriver.Theeffectsofanuclearunitonairqualityshouldbeessentially thesameatanyofthepossiblealternative sites.Radioactive releasestotheairateachsitewouldbethesame,andaccordingly, itisestimated thattheindividual doseswouldbecomparable.

Pxecisedoses,however,havenotbeencalculated sincedetailedmeteorological studieshavenotbeenconducted forthealtexnate sites.NineMilePointhasadefiniteadvantage overothersitesintermsoflandusage.Inthefirstplace,thelandispresently beingusedforpowergeneration.

Relocating Unit1atanothersitewouldrequirethatnewlandbeobtainedanddedicated tothegeneration ofpower.Also,additional landwouldhavetoberequiredfortheunit'stransmission lineright-of-way.

Secondly, construction associated withUnit1hasterminated atitspresentlocation.

MovingUnit1toone'ofthenewsiteswouldinitiateconstruction anewatthealternate localewithallofitsattendant effects.Construction atanalternative sitewouldrequirethedisturbance ofadditional landandwouldfinallyresultintheutilization ofthesameamountofland93-1 tg1~

presently allocated topowergeneration attheNineMilePointsite.Clearly,goodlandusagedictatesthecontinued operation oftheexistingfacilityattheNineMilePointsite.TheNineMilePointsiteisseismically stableandhasgoodmeteorological dispersion characteristics asdiscussed inSection2.Itconsistsofmostlyscrubforest.androckyshoreline, makingitlesssuitableforrecreational orfarmusesthantheothersitesconsidered.

Itisrelatively largeandremote,therebyminimizing offsiteenvironmental impact.Noneofthealternative sitesoffersignificant improvement inanyoftheaforementioned factors.Inaddition, environmental dataforNineMilePointhasbeencollected and'valuated since1962..Tocollectsimilarpreoperational dataforeachalternative sitewouldbeamajorundertaking costing$750,000andwouldtakeuptotwoyears.Tocollectthedataandtooptionthelandwouldalsotakeabouttwoyears.Itwouldbeanothersevenyearsbeforetheunitwereconstructed andinoperation.

=Astheunitwouldbedecommissioned duringthebeginning ofthistimespantorecapture asmuchofthehardwareaspossibleforlocationatthenewsite,the610MWeoutputfromthisstationwouldbelosttothepublicforaboutsevenyears.Theimpactofsuchalossisdiscussed inSection1.2andthepossibilities formakingupthatlossbypurchasing poweronalong-term basisarediscussed inSection9.2.Thepossibilities ofreplacing thepowerarediscussed inSection9.4.Therefore, intermsoftheeconomicandenvironmental advantages, themostrealistic alternative istocontinueoperation ofUnit1atitspresentsite.9.3-2 E1II~sI 94REPLACING THEPOWERThereplacement ofpowerfromNineMilePointUnit1wouldinvolvethefollowing foursteps:ABCDDecommissioning oftheexisting610MWnuclearunitShort-term purchaseofpowerInstallation andoperation ofgasturbinesConstruction ofafossilunitinadditiontoexpansion forloadgrowthVariousmodesofdecommissioning theunit,rangingfromleavingthereactorsealedinplacetocompleteremovalofallstructures andfoundations, canbeconsidered.

Previously decommissioned demonstration reactorplants,suchasPiqua,Hallam,andBonushavebeenleftmoreintactwiththeUtilityplayingacaretaker roleforprotection ofthepublicfromresidualradioactivity.

AtpresenttheAECisconsidering aproposalforthecompletedismantling oftheElkRiverreactorinMinnesota.

Amoredetaileddescription oftheproposeddismantling planmaybefoundinthei'DraftEnvironmental Statement

-ElkRiverReactorDismantling

-Wash-1516<<,submitted bytheUnitedStatesAtomicEnergyCommission inDecember1971.TheElkRiverreactorwasconstructed in1960bytheAECaspartofthepowerreactordemonstration program,andhasathermalpowerratingof58.2MW.Thetechniques andexperience forcompletely dismantling commercial reactorsofthesizeofNineMilepointUnit1arenotpresently available.

Therefore,noattempthasbeenmadetopreparedetailedglansandcostestimates forthecompletedismantling ofNineMilePointUnit1.Itiscertain,however,thatcompletedismantling oftheunitwouldbever'ycostly,probablybeseveraltimesmorethanthecostofpermanently shuttingdownthefacilityandmaintaining itinasafecondition.

Thiswouldbeduetotheimmensecomplexity whichwouldbeinvolvedincompletely decontaminating, dismantling, andsafelydisposing ofallreactorinducedradioactivity fromthemassiveconcretestructures andequipment whichexistatNineMilePointUnit1.Forthepurposesofthisreport,decommissioning oftheexistingUnit1,willbeassumedtomeanthatthereactorandturbineunitswillbeshutdownpermanently, sealed,andmaintained inasafecondition.

Upondecommissioning NineMilePointUnit1boththeinstalled capacityandenergyproducedwouldhavetobereplaced.

Duringthefirstyearafterdecommissioning only310MWcanbesuppliedbyolderfossilfuelunits,leavingadeficitof300MWeininstalled capacity.

Thisisbasedonanobjective of18percentinstalled generating capacityreservetomaintainadequatesystemreliability asdiscussed inSection1.2.Purchasing poweronalong-term basisisnotafeasiblealternative asdiscussed inSection9.2.Newgeneraticn alternatives necessary entailconstruction time.Therefore, ifNineMilePointUnit1wereto9.4-1 nI"I'IIPHI bedecommissioned atthistimeacapacitydeficiency wouldexist.Lossoftheunitwouldhaveaseriouseffectonreliability andNiagaraMohawk'abilitytomeetitsobligations in1972andbeyond.Withinayearafterdecommissioningitisassumedthatgasturbinescouldreplacethecapacitydeficiencycreatedbytheearlyretirement ofNineMilePointUnit1.Thefull610MWecapacitywouldhavetobereplacedtoaccountforloadgrowthovertheintervening year.Anadditional baseload610MWeunitcouldbeinstalled asreplacement capacityforthedecommissioned nuclearunit.Forthepurposesofth5.sanalysisitisassumedthatanoil-firedbaseloadunitisinstalled by1976.Thiswouldbeinadditiontoplannedcapacityadditions intendedfornormalloadgrowth.Theenergyexpectedtobegenerated bythe610MWNineMilePointUnit1is.4.54x10~kWhrperyear.Itisassumedthatallofthisenergywillbereplacedbyenergyfromtheexistingfossilunitsnormallyheldinreserve.Thehighenergycostgasturbineswouldonlybeusedinemergencies.

Infact,however,thesegasturbineswouldprobablyberequiredtogeneratesignificant amountsofenergyduringmaintenance andforcedoutagesoftheseunits.Afterthereplacement base.loadoilfiredunitisinoperation in1976,energywouldcomefromthatunit.Theestimated costofdecommissioning NineMilePointUnit1in1972isabout$2000,000.Theestimated annualcostofmaintaining thefacilityinasafecondition isabout$150,000..

Sinceallalternatives includedhereandinsubsequent sectionswillbecompleteby1976,thatyearhasbeenselec'ted asthebasisforpresentworthcalculations.

Thepresentvalue(1976)ofdecommissioning andmaintaining theunitinasafecondition, basedona9.6percentcostofcapital-andtheremaining 21.75yeareconomiclife¹willbeabout$4,860,000..

Itisassumedthattheenergythatwouldhavebeengenerated byNineMilePointUnit1isreplacedbyolderfossilunitsuntil1976whenanewoil-fired unitisplacedinoperation.

Thisreplacement powerwouldcostabout7.04mills/kWhr orabout$32,000,000 annuallyforthekWhrstobereplaced.

Thepresentvalue(1976)ofthisannualcostata9.6percentrateofreturnwillbeabout$182,300,000.

Theestimated costofinstalling 610MWeofgasturbinesin1973isabout$48,800,000 basedonaninstallation costof$80/KW.Sinceitisassumedthatallreplacement energywillbesupplied¹NiagaraMohawk'semployment ofa25-yearservicelifefornucleargenerating equipment depreciation computation hasbeenadoptedbytheNewYorkStatePublicServiceCommission inratemakingprocedures.

9.4-2

bythelowerenergycostexistingfossilstations, onlyannualcapitalrelatedchargesareincluded.

Theestimated annualcostofthegasturbines, including capitalinterest, depreciation, andotherfixedchargeswillbeabout$8,300,000..

Thisannualcostwouldonlybechargedasacostofdecommissioning until1976whenthereplacement oil-fired unitisinoperation.

Thepresentvalue(1976)oftheseannualcostsata9.6percentcost.ofcapitalwillbeabout$35,600,000.

Acompletely newfossilunitatadifferent locationontheNineMilePointsitecouldbeconstructed by1976.Useofexistingequipment withanewfossil-fired boilerisimpractical.

Theexistingturbinecouldnotaccommodate thehigh-pressure, high-temperature steamfromafossilboiler.Sincestructures suchasthereactorbuildingcontaininducedradioactivity intheirstructural members,itisnotfeasibletousesomebuildings foranewfossilplant.Locationofthesebuildings wouldrequirethattheybetomdowntomakeroomfortheboilerroomandotherstructures.

Tearingdowntheseunuseable structures, buildingnewstructures intheirplace,andtryingtoaccommodate anewfossilunitwithintheuseableexistingstructures wouldtakemoretimeandwouldcostmorethanbuildingacompletely newfossilunit.Theestimated totalconstruction costofa610MWfossilfuelunitatNineMilePointforDecember1976operation wouldbeabout$200,000,000.

Capitalcostshavebeenescalated fromthepresentdateatarateof5.5percentayear.Theestimated annualized costofcapitalincluding

interest, depreciation, andotherfixedchargeswouldbeabout$36,800,000.

Theestimated annualfuel,operating, andmaintenance costwouldbeabout$31,393,000..

Thesecostsarebasedonafixedcharge'ate of18.4percent,afuelcostof5.6mils/kWhr, operating andmaintenance costof1.2mils/kWhr, andacapacityfactorof85percent.Thetotalestimated annualized costofthefossilunitwouldbeabout.$67,700,000.

Thepresentvalueofthisannualized cost'ta9.6percentcostofcapitalandanamortization overtheremaining 18yeareconomiclifeofUnit1wouldbeabout$570,000,000.

Therefore, thegrandtotalpresentvalue(1976)ofdecommissioning NineMilePointUnit1,maintaining thefacilityinasafecondition, andreplacing theinstalled capacityandenergyrequirement, wouldbeabout$793,000,000.

Inconclusion, thealternative ofdecommissioning theexistingstationandreplacing thepowerisnotrealistic forseveralreasons.First,itisnoteconomically norenvironmentally desirable todecommission anexistingstationwhichissupplying muchneededpowerwithaminimumenvironmental impact.Also,sinceonly310MWeofinstalled capacitycouldbereplacedduringthefirstyearafterdecommissioning, a300MWedeficiency ininstalled capacitywouldexistbasedonanobjective ofan9.4-3

installed generating capacityreserveof18percent.,

Thisdeficiency wouldnotbeoffsetbypowerpurchased fromothersourcesandtherefore wouldresultinalostbenefit.Further,gasturbinesaregenerally unsuitedforcontinuous operation asbaseloadunits.Theyhavearelatively lowavailability duetomaintenance requirements andhighfuelcosts.Finally,ifafossilstationweretoreplacetheexistingnuclearstation,evenundertheCleanAirAmendments of1970,suchaplantcouldannuallyemit3.7x10~poundsofsulfurdioxides, 1.3x10~poundsofnitrogenoxides,and0.44x10~poundsofparticulate matter.Theseemissions wouldbe.prevented bythecontinued operation oftheexistingnuclearstation.Hencethedecommissioning oftheexistingstationandsubsequent replaceme'nt ofthepowerisnotafeasiblealternative andisnotconsidered furtheringreaterdetail.94-4 JlII 95ALTERNATIVE COOLINGSYSTEMSTheexistingcoolingsystemfortheNineMilePoint1stationemploysonce-through coolingwhichtakeswaterfromLakeOntario,usesitforthemaincondenser, primaryandauxiliary coolingwithinthestation,andreturnsittothelake,undiminished inquantitybutincreased intemperature.

Adiffusersystemwouldbedesignedtocombinethecoolingwaterdischarges frombothUnit1andtheproposedUnit2,plannedforoperation in1978.Apresentation ofthisdiffusersystemisfoundintheNineMilePointNuclearStationUnit2Environmental Report(Ref.27),Utilization ofthisdiffusersystemiscontingent uponconstruction ofUnit2.However,forthepurposesofthisreportonlyalternative coolingsystemsfortheUnit1discharge aloneareconsidered.

Theseincludeaonce-through systemwithdiffuserdischarge, anaturaldraftcoolingtowersystem,amechanical draftcoolingtowersystem,andacoolingpondsystem.Adrycoolingtower,aspraypond,andsupplementary coolingarediscussed butarenotconsidered tobefeasiblealternatives.

Alternative condenser sizesfortheonce-through system(i.e.lowertemperature risesacrossthecondenser andhighercirculating waterflows)werenotconsidered, sinceentrainment studiestodateatUnit1indicatethatmechanical effectsarethemajorcauseofplanktonmortality rate.Onlythosevariouscoolingsystemswhichareconsidered feasiblearediscussed indetailinthefollowing sectionsandformthebasisforthecomparative tabulation ofenvironmental costspresented inTable9.5-1attheendofSection9.5.9.5.1ExistingOnce-Through CoolingSystemTheintakeanddischarge structures associated withtheexistingonce-through coolingsystemarediscussed indetailinSection3.5andareshowninFigures3.5-1through3.5-3.ThissystemwasdesignedsothattheeffluentwouldcomplywiththeNewYorkWaterQualityThermalStandards of1967(6NYCRR701) asdiscussed inSection5.1.9.5.1.1Economics oftheExistingSystemTheNineMilePointNuclearPowerStationUnit1isanexistingfacilitywhichcommenced commercial operation inDecemberof1969.Therefore, thetotalcostsassociated withtheconstruction oftheexistingonce-through systemwillnotbequantified, butwillinsteadserveasabasecost.Thecostsforthealternative coolingmethodswillbepresented asanincremental costtothebasecostoftheexistingsystem.Thesecostswilltherefore reflecttheamountnecessary totransform theexistingonce-through coolingsystemtothealternative coolingwatersystem.9.5-1 II.~,P 9-5.1.2Environmental Considerations oftheExistingSystem9.5.1.2.1HeatDischarge toWaterBodyTheexistingOnce-through systemdiscussed inSection3.5hasatotalcirculating waterflowofapproximately 600cfs.Tpetotalheatrejection rateisapproximately 4x10~Btu/hr.Studiesoftheexistingsystemasdiscussed inSection5.1haveshownthata3,000acre-feet volumeofwateriscreatedwithina3Ftemperature increaseisothermwithasurfaceareaoflessthan300acres.Aspresented inSection5.5,theecological studiespreparedbyDr.Storrhaveshownthatthisdischarge conformstotheNewYorkStateWaterQualityThermalStandards of1967(6NYCRR701) asdiscussed inSection5.1.Thesevaluesforthevolumeandareaaffectedbythethermaldischarge aresmallincomparison tothevolumeandareaofLakeOntario,whichare1.3px10~acre-feet and4.7x10~acres,respectively.

Asdiscussed inSection5.5.3,dissolved oxygenmeasurements havebeenmadeinthedischarge areaduringthefishnettingsurvey.Asthesummerprogresses, theamountsofphytoplankton andf'warmestperiodoftheyearlevelsofdissolved oxygenof11to12ppmarenotuncommon, withnodiminution at,night.Nosignificant lossinoxygenhasbeenobservedbetweentheintakeanddischarge ofUnit1.SincetheheatreleasedtothelakeandthesurfaceareaandvolumeofthelakeaffectedbyUnit.1aresmallincomparison tothelake'snaturalcharacteristics, noadversethermalimpactonthewatersofLakeOntarioasawholehasorisexpectedtooccur.However,forthepurposesofthisreportanenvironmental impacthasbeenassumedbasedontheareaaffectedbytheexistingstationdesignandthedistribution ofthefisheryresourcefortheU.S.portionofthelake.Theareaofthestation~s impactwasbasedontheNewYorkStatecriteriaforthermaldischarges whichassumethatincreases inambientlaketemperature oflessthan3Fwillnotadversely affecttheaquaticbiota.Byusingthe300-acresurfaceareawithinthe3Fisothermastheareawhichcouldadversely affectcommercial fishproduction, itispossibletoassesstheimpactofthisfacilityonthecommercial fisheryof,LakeOntario.LakeOntariosupportsalimitedcommercial fisheryasdescribed inSection2ofthisreport.Commercial fishingintheUnitedStatesfromLakeOntarioforthethreeyears1968,1969and1970(Section2.2.1)amountedtoapproximately 322,000poundsperyearforanaverageannualvalueof$65,000.AreportbytheU.S.FishandWildlifeServicein1969(Ref.18)estimates thatprojected demandforfisheryproductsfromU.S.landingsinLakeOntariowillincreasefour-fold toabout1.25to1.5mi3.lj.on poundsannuallybytheyear2020.9.5-2

'f01'III

,Themajorityofthecommercial landingsintheU.S.portionofthelakearefromChaumontBayandthenearbyshoala'reasinthenortheastern portionofthelakeover30milesfromthesite.Theremaining fishingeffortisgenerally inthelakeproperfromtheOswegoRivereastwardtotheSt.LawrenceRiver.However,forenvironmental'ost quantification, itisassumedthatthemajorityofthecommercial U.S.fishingis,wi4hinthe100footdepthcontour,ofthelakefromtheOswegoRivertothenortheastern U.S.boundaryincluding thebaysandshoalareasintheU.S.portion'ofthelakeTherearethenapproximately

.350,000acresofwateravailable forcommercial fishing.Thepxojected annualU.S.commercial landingsforthe.year2020is1.5millionpoundsoffishperyear.Uniformly spreadover.the350,000acresresultsinanaveragerateofexploitation of5poundsoffishperacreofwater.Actualstudiesof.thetemperature distribution andaquaticlifeinthevicinityoftheexistingNineMilePointUnit1havedemonstrated thattherearenodetrimental effectstofishlife.However,forpurposes.ofthis.evaluation itisassumed,perhapsunrealistically, thatallfishwithina3Fisotherm, areadversely affected.

IfUnit1affects300surfaceacres,approximately 1,500poundsoffishcouldbelosttothecommercial fisheryeachyear.Information ontheutilization ofLakeOntarioforsportfishingwasalsoderived.fromtheU.S.Fishand-Wildlife Service~(Ref.18)Thereareapproximately 2,000,000 surfaceacresintheU.S.portionofthelakeplusthousands ofacresoftributary areawhichofferfishermen avarietyofwarmandcoldwaterspeciesofsportfish.Theestimated totalfisherman daysexpendedin1960was3.2million;thisnumberisexpectedtodoublebytheyear2020.The1965NationalSurveyofFishingandHuntingestimates thatthetangibleexpenditures perfreshwater

-fisherman in1965averaged$88.71peryear.ThismakessportfishingavaluablesourceofrevenueintheLakeOntarioRegion.TheNewYorkStateDepartment ofEnvironmental Conservation andtheGreatLakesBas'inCommission arepresently determining thedistribution ofsportfishingeffortinLakeOntario.However,thisinformation isnotyetavailable andthesportfishingintensity inthevicinityofNineMilePointcannotbeassessed.

Therefore, onlyaqualitative judgmentcanbemadeoftheimpactoftheheateddischarge onsportfishing.SincetheareaofLakeOntarioaffectedbytheheateddischarge fromUnit1,lessthan300acres,issmallincomparison tothe2,000,000 acresavailable forsportfishing,Unit1isnotexpectedtohaveanadverseimpactonsportfishing.CTheinfluence ofthethermaldischarges fromtheexistingsystemonthemigratory patternsofthefishinthelakeandadjacentriversystemswasalsoconsidered.

Theadjacentriversarecomprised oftheOswegoRiverapproximately eightmileswestof9.5-3

thesite,theLittleSalmonRivereightmileseast-,ofthesite,andtheSalmonRiverafewmilesfurthereast.'heNewYorkStateDepartment ofEnvironmental Conservator.on expectstodevelopthefisheries associated withthesexivers.Temperature increases intheareaoftheseriversduetothedischarge fromthisunitwouldbeimmeasurable becauseoftheirdistancefromthesite.Inthelakepropertheinfluence ofthedischarge willbelimitedtoalocalized area.Fishwillbe'bletomove'reelyaroundthewarmest.portionsoftheplume.Thethermalflowfromthesiteisdescribed inmoredetailinSection5.1ofthisreport.Sincethethermaldischarge willnotaffecttheadjacentriversandsincethereisampleroomforfishtotravelaroundtheplume,noimpaixment offishmigration isanticipated.-

Aspreviously described inSection2.7-1,thesouthshoreofLakeontarioisanimportant concentration areafordivingducksin'hewinter.Itisnotanticipated that,thisduckpopulation wouldbeadversely affectedbythethermaldischarge sincetheresultsofthepreoperational andpost-operational surveys.indicatethattheeffectsonpotential foodsources,suchas-attached macrophytes andassociated invertebrates, aresmallandlocalized.

Likewise, theeffectsonanytransient biotawhichmayutilize:the lakearebelievedtobeminimal.9.5.1.2.2EffectsofIntakeStructure onWaterBodyStudies'avebeenconducted at-theNineMilePoint,NuclearStationUnit1toevaluatetheimpactofthecondenser

'coolingwatersystemonentrained plankton.

Thesestudiesaredescribed inSection5.5.Thetotalweightoforganisms percubicfootofwaterwascomputedasthesumoftheaverageweightsofthespecifictaxonomic groupsofthezooplankton andphytoplankton,collected fromelevensamplingperiodsfromJunetomid-November.

Theaverageyeightof'plankton forthesamplingperiodwasestimated tobe0.548gram/cubic foot.Thisvalueistaken'.to",berepresentative oftheentireyear.However,theaverageannualbiomassisactuallylowersincethebiomassconcentration isprobablylessduringthewintermonths.These'estimates arebelievedtoaccount,forapproximately 90percentoftheplanktonbiomass.Smallunabundant formswerenotincludedin.thisanalysis.iTwoseparatemethodswereusedtocomputethemortality ofplanktonpassingthroughthecondenser coolingsystem.Thefirstmethoddependson-countingthedifference innumberofdead,'rganisms inthedischarge

'ndintake.structures foreachtaxonomic group.Theresultsshowedthat0.047gramofplanktonwerekilledpercubicfootofwaterpassingthroughthecoolingsystem.However,deadorganisms maydisintegrate orsettle.out 9.5-4 l,lIa' inthesystemandcouldreducethenumberofdeadorganisms countedinthedischarge.

Thismaybiasthesampleandlowerthecomputedmortality rate.Thesecondmethodfordetermining themortality isbasedonthenumberoflivingorganisms percubicfootmeasuredinthedischarge andintakestructures.

Thedifference isassumedtobethenumberoforganisms killedinthecoolingsystem.Thismoreconservative methodresultsinamortality rateof0.161gramofplanktonpercubicfootofwaterpassingthroughthecoolingsystemhavingacondenser temperature riseof32F.Basedonthismoreconservative mortality rateandaflowof600cfsforUnit1,thetotalweightofplanktonkilledannuallyisestimated tobe6.7x10~poundsperyear.Furtherstudiesarebeingcontinued in1972.Theimpactofthismortality ontheplanktonpopulation canbestbeassessedbyconsidering severalfactors.Thefirst,andprobablymostimportant factor,isthatplanktonpopulations aregenerally shortlived(daystoafewweeks)andhaverapidregeneration times.Furthermore, thesiteislocatedinanopenareaofthelakewherethereisacontinual renewalofwatersso-localpopulations shouldnotbecomedepleted.

Theincreaseintemperature inthevicinityofthedischarge mightalsoaccelerate planktonproduction duringthecoldermonths.Inadditiontothesefactors,thedeadplanktonwouldnotbelosttothefoodchain.Observations bydiversatUnit1indicatethatmanysmallfishesareattracted tothedischarge areaandappeartobefeedingonplanktondetritus.

Forthesereasons,theimpactofthismortality ontheecosystem ofthelakeisexpectedtobeminimal.The.effectoftheintakeandcondenser coolingsystemonthefisheries ofthelakecanbeevaluated bydetermining thenumberoffishthatenterthesystemandbecomeentrapped inthescreenwell andthenumberofjuvenileformswhichmayexperience lethalconditions inpassingthroughthesystem.Fisheggsorlarvaewerenotcbservedintheplanktonsampleswhichwerecollected atUnit1duringtheentrainment studiesconducted frommid-Junetomid-November in1971.Asdescribed inSection2,theonlyfishwhichhasbeenobservedtospawnintheareaisthealewife.Alewifeeggsaredeposited on-thebottomandadheretothebottomstrata.Assuch,theseeggswouldgenerally notbeentrained inthecondenser coolingsystem.ManyoftheotherfishspeciesfoundinLakeOntario,alsohavesinkingeggsandwouldnot,therefore, beentrained inthecondenser coolingsystemduringthislifehistorystage.Estimates oflarvalfishabundance duringtheearlyspringinthevicinityofNineMilePointarenotpresently available.

Studiesasdiscussed inSection5.5,wereinitiated intheSpringof1972inordertoestablish thenumberandmortality oflarvaewhich9.5-5 Dk maybeentrained inthecondenser coolingsystem..However,duetotheprevi.ously mentioned factors,,

itisanticipated thatlarvalabundance wouldbe.lowandwouldbeprimarily composedofalewi.ves.

Theeffectsofthecirculating waterintakesystemuponfishlifehavebeendiscussed inSection5.Occasional observations atNineMilePointUnit1duringthefirsttwoyearsofoperation (1970-71) indicatethatonlyafewfishhavebeencollected fromthetrashracks.Aprogramofdetailedobservations.

inthisarea(i..e.,trash racksandtraveling screens)willbeconducted during1972tomeasurefishcollection.

9.5.1.2.3 ChemicalDischarge toWaterBodyNochemicaltreatment isassociated withtheonce-through coolingsystemtocontrolorganicgrowthsinthecondenser..

Thesiltentrained inthewaterissufficient tocleanthecoolantpassageways.

Thiscoolingsystemtherefore doesnotincreasechemicalconcentrations inLakeOntarioanddoesnotproduceanyenvironmental impact.Anychemi.cal concentrations thatarereleasedareduetomixing,ofthestationschemicaleffluents withthecirculating water.However,thesereleasesareconsidered tobepartofthechemicaltreatment systempresented inSections3.7and9.6andnotapartofthecoolingsystem.9.5.1.2.0Consumption ofWaterThiscoolingsystemreturnsallthecooli.ngwatertothelake.Noconsumption ofwaterhasorisexpectedtooccurfromthecontinued useofthiscoolingsystem.9.5.1.2.5 ChemicalDischarge toAmbientAirTheexistingonce-through coolingsystemdoesnotproduceanyparticulate matterintheformofdrift,anddoesnotreleaseanygasesorodors.Thissystemtherefore doesnotadversely affectambientairquality.9.5.1.2.6SaltsDischarged fromCoolingTowersThisareaofenvironmental concernisnotapplicable tothiscoolingwatersystemalternative.

9.5.1.2.7 ChemicalContamination ofGroundWater(excluding Salts)Theexistingonce-through coolingsystemi.si.solated fromthegroundanddoesnotcontaminate groundwater.9.5-6 0

9-5-1-2.8 Radiological EffectsTheradiological effectsthatareproducedfromthestationarepresented indetail.inSection5.2.9.5.1.2.9 FoggingandIcingTheexistingpowerstationusesaonce-through coolingsystemtorejectwasteheatfromthestation.Thiscoolingmethoddoesnotrelyonevaporation orthetransferofsensibleheattotheatmosphere, andtherefore, thisstationdoesnotcreateafoggingoricingproblem.95.1.2-10Raising/Lowering ofGroundwater LevelsAspreviously discussed, allliquidsystemsareisolatedfromthegroundandnoalteration ofgroundwaterlevelshasorisexpectedtooccur.9.5.1.2.11AmbientNoiseTheprimarysourcesofnoisefortheunitwiththeexistingonce-throughcoolingsystemarethemaintransformer andturbinehall.Thetransformer soundlevelsversusdistanceaxecalculated fromthetransformer NEMArating.Turbinehallnoiseisestimated fromthesoundlevelsanticipated withintheturbinehallcorrected forthetxansmission lossofthewalls.Thesoundfieldinthevicinityofthestationiscalculated byaspecialcomputerpxogram.Thisprogramdetermines thesoundpowerlevelforeachsoundsource,thedistancefromeachsoundsourcetoreference pointsonapolarcoordinate gridsystem,andtheoctavebandsoundpressurelevelcontribution foreachsoundsourceateachreference point.Corrections aremadeforsourcedirectivity, molecular absorption, andhemispherical radiation.,

Ateachreference pointtheindividual sourcecontributions areconverted todBAvaluesandsummedtodetermine thetotalsoundlevelatthatpoint.'onstant soundlevelcontourlinesmaybedrawnthroughthereference grid.Thesecontourswereusedinconjunction withtheproposed<<HUDCriteriaGuidelines forNonaircraft Noise,<<Department Circular1390.2toestimateareasofacousticacceptability intheregionsurrounding thesite.TheHUDcriteriagivesoundlevelswhichcorrespond tothecategories

<<clearlyunacceptable,"

<<normally unacceptable,"

and<<normally acceptable.<<

Basedontheseguidelines andtheconstantstationsoundlevel,the"normally acceptable<<

levelwastakentocorrespond toanareareceiving 45to65dBAandthe<<normally unacceptable<<

levelwastakentocorrespond toanareareceiving over65dBA.This.combination ofnoiseguidelines andsoundcontoursweresuperimposed upon"topographic mapsoftheareatoestimatethe9.5-7 lg numberofresidences, schools,andhospitals receiving anacoustical impactfromthesite.Theresultsoftheacoustical impactstudyfortheonce-through coolingwatersystemhasdetermined thatnoresidences, schools,orhospitals arewithinanareareceiving asoundlevelgreaterthan65dBA..Inaddition, ithasbeendetermined thatnoresidences, schools,orhospitals arewithinanareareceiving asoundlevelbetween45and65dBA.Therefore, theacoustical impactoftheexistingonce-through coolingwatersystemisassumedtobeneglible.

9.5.1.2.12Aesthetics Thiscoolingsystempresentsnovisiblestructures andtherefore hasnoeffectontheaesthetics ofthearea.9.5.1.2.13 Permanent Residuals ofConstruction ActivityTheconstruction activitypertaining totheexistingonce-through coolingsystemhasalreadybeencompleted.

Thequantities ofexcavated materialhavebeenusedasbackfillaroundstructures orforsitegrading.Theintakeanddischarge structures donotinterfere withshippingorwatertransportation inthearea.Therefore, nopermanent.

residuals ofconstruction activityisconsidered toexistatthesite.9.5.1.2.14CombinedorInteractive EffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequately indicated bymeasuresoftheseparateimpacts.9.5.2Once-Through CoolingSystemWithDiffuserDischarge Aonce-through coolingsystemwithdiffuserdischarge isoneofseveralfeasiblealternatives whichmaybeutilizedtodecreaseenvironmental impact.Withthissystemthewatercirculated throughthecondensers wouldbereturnedtothelakethroughsubmerged jetdiffusers.

Thesystemusestheexistingintaketunnel,condenser andauxiliary systems.However,thediffuserschemewouldrequiretheinstallation ofanewdischarge shaftadjacenttothewestsideoftheexistingscreenwell, andanewdischarge tunnelextending about1400feetoffshore.

Atthispointthewaterdepthatmeanlakelevelisapproximately 35feet,asshowninFigure9.5-1.Thenewdischarge tunnelwoulddivideintotwoequalbranchtunnelsbymeansofateesection.Thecombinedtotallengthofthesebranchtunnelswouldbeabout,195feet.Eachbranchtunnelsectionwouldalsocontaintwodiffuserheadsspacedabout9.5-8

-~1>>I~'IL.40,I4~+

NEWDISCHARGE STRUCTURE (2.5DiaNOZ2LES4PAIRS)2IODIFFUSERHEAD>gOEXISTINGINTAKESTRUCTURE NEWDISCHARGE TUNNELEXISTINGDISCHARGE STRUCTURE

  • OOONEWDISCHARGE SHAFTII0iiIIIUNITISCREENWELLFIGURE9.5-IONCE"THROUGHCOOLINGSYSTEMWITHDlFFUSERDlSCHARGE

I01.ARouPUMPWELL60tSERVICEWATERLINEPROGRESS-CENTERII4tINTAKELINE48tSLOWDOWNLINEI4"tDISCHARGE LINEUNITIEXISTINGSCREENWELL STRUCTURE OOO~~FFwNI,883,000 84t84t84tBALANCELINETOWERDISC.STRUCTURE (TYP)NOTESFEQUIPMENT FORCHEMICALADDITIONS TOBELOCATEDINEXISTINGSCREENWELL.

MECHANICAL DRAFTCOOLINGTOWER288x55(TYP)SWITCHYARD MAKE-UPOBTAINEDFROMSERVICEWATERDISCHARGE.

SLOWDOWNCONTROLLED BYWEIRATTOWERBASIN,WITHDISCHARGE INTOEXISTINGDISCHARGE SHAFTINSCREENWELL.

OOOeIe~~wNI,883,000 OOOel'IF0I00ZOOSEXI.EEEETFIGURE9.5-2MECHANICAL DRAFTCOOLINGTOWERSCHEME 0

45feetoncenterandconnected tothebranchtunnelbyverticalrisers.Inturn,eachdiffuserheadwouldconsistoftwin2.5footdiameternozzleswhichwouldenable,.the coolingwatertobedischarged inahorizontal direction.

Thewallssurrounding theexistingdischarge flumeat.thescreenwell wouldberaisedtoaccommodate theincreased discharge headcreatedbytheinstallation ofthenozzles.Also,themotorsontheexistingcirculating waterpumpswouldbereplacedwithlargermotorstoefficiently operateagainstthisincreased discharge head;,Installation ofthenewtunnelshaft,tunnel,diffuserandstructural changestothescreenwell couldbeaccomplished withouthindering thecontinued operation oftheunit.However,themotorreplacement andtheconnection ofthenewdischarge shafttotheexistingdischarge:flume wouldhavetobeaccomplished duringastationoutage.9.5.2.1Economics ofthisSystemForthepurposesofthisreportisisassumedthatthissy'temcouldbeplacedinoperation by1976.Theestimated totalconstruction costoftransforming theexistingcoolingwatersystemtotheonce-through" diffuserdischarge systemforoperation in1976'isabout$5,770,000..

Capitalcostshavebeenescalated fromthepresentdateatarateof5.5percentayear.Theestimated annualized costofthisalternative including capital,interest, depreciation, andotherfixedchargesisabout$1,160,000.Theestimated annualfuel,operating andmaintenance costofthealternative wouldbeabout"$55,000..Thesecostsarebasedonafixedchargerateof20.1percent,afuelcostof2.8mills/kWhr, anoperating andmaintenance costof0.3mill/kWhr andacapacityfactorof85percent.Thetotalestimated annualized costisabout$1~215~000 Totalestimated presentvalueofthisalternative ata9.6percentcostofcapitalandanamortization overtheremaining 18-year'conomiclifeofthestationisapproximately

$10i230i0009.5.2.2Environmental Considerations ofthisSystem9.5.2.2.1HeatDischarge toWaterBodyTheheatrejectedfromUnit1throughitsonce-through coolingsystemisapproximately 4x10~Btu/hr.Thisquantityofheatwouldbedischarged throughthenewdiffuserdischarge structure topromoterapiddilution, asseeninFigure9.5-1.Thesurfaceareawithinthe3Fisothermabovenaturallaketemperature would.beabout6.0acresandthevolumewithinthe3Fisothermwouldbelessthan150acre-feet..

Sincethisquantityofheatedwater'ssmallincomparison tothelargevolumeofwaterinLake9.5-9

Ontario,nomeasurable thermalimpactonthewatersofLake.Ontario,asthewhole,areexpected.

Asdiscussed inSection9.5.1.2.1,nosignificant lossofoxygenhasbeenobservedfromtheresultsofthedissolved oxygenmeasurements whichhavebeenmadeinthedischarge areaduringthefishnettingsurvey.Therefore, itisconsidered thatthedischarge fromthissystemwouldhavenoadverseimpactontheoxygenavailability ofLakeOntario.Actualstudiesofthetemperature distribution andaquaticlifeinthevicinityoftheexistingNineMilePointUnit1discharge systemhavedemonstrated thattherearenodetrimental effectstofishlife.However,forpurposesofthisevaluation itisassumedthatallfishwithina3Fisothermareadversely affected.

Itisestimated thatthesurfaceareaaffected, 6.0acres,couldresultinalossofapproximately 30poundsoffishperyeartothecommercial fishery.Thisisbasedonarateofexploitation of5poundsoffishperacreofwaterasdiscussed inSection9.5.1.2.1.Inaddition, theimpactofthedischarge onthesportfisheryisalsoconsidered tobeneglible, andisjudgednottoimpairthemigration offishinLakeOntarioortheadjacentriversystems,asdiscussed inSection9.5.1.2.1.,Asdiscussed inSection9.5.1.2.1theresultsofthepreoperational andpostoperational fieldsurveysindicatethattheeffectsonpotential foodsourcesforwildlifeandtransient-biotaaresmallandverylocalized.

Therefore, it.isconsidered thatthedischarge fromthissystemwouldhavenoadverseimpactontransient biotaandassociated wildlife.

9.5.2.2.2 EffectsofIntakeStructure onWaterBodyThisareaofenvironmental concernfortheonce-through coolingsystemwiththediffuserdischarge wouldbethesameasthatpresented inSection9.5.1.2.2.9.5.2.2.3 ChemicalDischarge toWaterBodyThisarea'fenvironmental concernfortheonce-through coolingsystemwiththediffuserdischarge wouldbethesameasthatpresented, inSection9.5.1.2.3.9.5.2.2.4 Consumption ofWaterThiscoolingsystemreturnsallthecoolingwatertotheLake.Noconsumption ofwaterisexpectedfromthissystemandtherefore noimpactisexpectedtooccur.9-5-10 0

9.5.2.2.5 ChemicalDischarge toAmbientAirThiscoolingsystemwouldnotproduceanyparticulate matterintheformofdrift,andwouldnotreleaseanygasesorodors.,.Thissystemwouldnotadversely affectambientairquality.9.5.2.2.6 SaltsDischarged fromCoolingTowersThisareaofenvironmental concernisnotapplicable tothiscoolingwatersystemalternative.

9.5.2.2.7 ChemicalContamination ofGroundWater(excluding salts)Thisonce-through coolingsystemwouldbeisolatedfromthegroundandwouldnotcontaminate groundwater.9.5-2.2.8 Radiological EffectsTheradiological effectsthatwouldbeproducedfromthestationwhenaonce-through coolingsystemwithdiffuserdischarge isemployedwouldbethesameasthosepresented inSection5.2.9.5.2.2.9 FoggingandIcingThisonce-through coolingsystemwouldnotrelyonevaporation ofwatertoreleaseheattotheatmosphere.

Therefore, thissystemwouldnotcreateafoggingoricingproblem.9.5.2.2.10 RaisinglLowering ofGroundWaterLevelsSincethiscoolingsystemwouldbeisolatedfromthegroundnoalteration ofgroundwaterlevelscouldoccur.9.5.2.2.11 AmbientNoiseTheacousticimpactofUnit1usingtheonce-through coolingsystemwiththediffuserdischarge wouldbethesameasthatinSection9.5.1.2.11.9.5.2.2.12 Aesthetics Thiscoolingsystemwouldpresentnovisiblestructures andtherefore wouldhavenoadverseeffectontheaesthetics ofthearea.9.5.2.2.13Permanent Residuals ofConstruction ActivityTherewouldbenopermanent effectsofinstalling theonce-through coolingsystemwithadiffuserdischarge.

Construction ofthenewdischarge systemwouldrequireessentially nodowntimebeyondthatrequiredduringnormalrefueling operations.

Thequantities ofexcavated materialwould9.5-11

beusedasbackfillaroundstructures orforsitegrading..

Tunneling activitywouldhavenoeffectonlakewaterqualityalthough, theremaybesomedisturbance ofbenthicorganisms withinasmallareaduring.installation ofthedischarge diffusers.

Thediffuserrisershaftswouldbedrilledratherthanblastedintothelakebottomandthesteellinersgroutedandthe,largediffusershaftlinersinserted.

Thedrillingwouldbeconducted fromatemporary surfaceplatformsimilartoa<<TexasTower<<.Thebenthosinthevicinityofthe.diffuserriserswouldberemovedasaresultofthedrillingactivity.

However,theaffectedareaissmall(lessthan0.1acre)andis,therefore, notexpectedtoadversely affecttheoverallbenthiccommunities inthevicinityof,NineMilePoint.Following placement ofthediffusershafts,theplatformwouldbedisassembled andremovedfromthelake.Theintakeanddischarge structures wouldnotinterfere withshippingorwatertransportation intheareasincethestructures wouldbemorethan12feetbelowthelowwaterdatum.9.5.2.2.14 CombinedorInteractive EffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequately indicated bymeasures'oftheseparateimpacts.9.5.3WetCoolingTowerSystemsWetcoolingtowersremoveheatbypassingambientairthroughthecoolingwater.Heatisreleasedtotheatmosphere byacombination ofsensibleandlatentheattransfer.

Thecoolingtowerperformance isthusdependent onmeteorological conditions.

Wetcoolingtowerschemesarepresented belowthatareclosedloopsystemsandrejectallofthepowerstation's wasteheattotheatmosphere.

Coolingtowerscouldalsobeusedasasupplementary coolingsystemincombination withaonce-through coolingsystem.Adiscussion ofthistypeofsystemispresented inSection9.5.7.Amechanically induceddraftcoolingtowerschemeforUnit1wouldconsistoftwoseparatetowerunitseachhavingninecells.Eachunitwouldhaveanapproximate lengthof288feetandawidthofapproximately 55feet.Thetowerswouldbeapproximately 65feethigh,whichincludesan18-footstackheightforeachcell.Thesedimensions assumeadesignwetbulbtemperature of74.Fwithadesigncoldwaterapproachof14F.This74Fwetbulbtemperature isrepresentative ofdesignconditions forthesummermonths,andthe14Fcoldwaterapproachisthevaluewhichhasbeenassumedtoberepresentative ofoptimumconditions foraunitofthissizeinthisclimate.Thisschemeispresented inFigure9.5-2.9.5-12

AnaturaldraftcoolingtowerschemeforUnit1wouldhaveasingletowerapproximately 360feetindiameterand370feethighforanatmospheric designcondition of74Fwetbulbtemperature and60percentrelativehumidity.

Theseconditions arerepresentative ofsummertime designconditions..

Duringtheseconditions, thetowerisdesignedtooperateatan18Fapproachwhichisestimated tobeoptimumforthistypeoftowerinthisclimate..

Thiscoolingtowerdesignschemeispresented inFigure9.5-3Forthewetcoolingtowerschemes,LakeOntariowouldbeusedforsupplying reactorandturbineservicewaterandmakeupwatertothetowerforevaporation lossandblowdown.

Thelakealsowouldserveasareceiving bodyfortowerblowdown.

Additional circulating waterpumpswouldbeinstalled inpumpwellsforeachtowerschemeandwouldpumpwaterthroughaclosedlooppipingsystembetweentheccolingtowersandthecondenser.

The40cfs-auxiliary systemservicewaterwouldbeobtainedfromLakeOntariofromtheexistingintaketunnelasshowninFigure3.5-2andbereturnedtothe.lakebywayofthetowerblowdownline.Anadditional screenwell structure wouldberequiredin.thevicinityoftheexistingscreenwell fortheauxiliary servicewatersystem.Theauxiliary systemservicewaterwouldbeintroduced asmakeuptothetowersbycombining theauxiliary systemwaterandmaincondenser discharge.

linesdownstream ofthecondenser.

Thedesignflowratesinthecoolingtowerswouldbeasfollows:,for acirculating waterflowof600cfs,therewouldbeabout20cfsforevaporative anddrift1'ossesand20cfsforblowdown.

Therequiredmakeupwatertothetowerswouldbe40cfs.Thesedesignconditions wouldproducea2timesreconcentration oflakedissolved solidsinthecoolingtowers.Thepreliminary designsofthetowershavenotincludedadditives tocontrolscalingoralgalgrowth.Intheeventthatthiswouldbecomeaproblem,anontoxicnonphosphate scalinginhibitor wouldbeusedthatwouldconformtotheFoodandDrugAdministration criteria.

Algalgrowthswouldbecontrolled bytheadditionofanalgicideinquantities thatwouldconformtoNewYorkStateWaterQualityStandards.

Theuseofcoolingtowerswouldrequiremodifications totheproposedradwastetreatment system(Section3.6)sincelesswaterwouldbeavailable fordilutingtheradwasteeffluentthanwiththeonce-through coolingsystem.Toachievetherequireddischarge concentrations, thecuriesofradioactivity releasedwouldbereducedbyaddingatraysectiontotheregenerant chemicalevaporator andaddingasetofdemineralizers totheradwasteeffluenttreatment.

Thismodification wouldproduceconcentrations thatwouldbewithinthelimitssetforthin10CFRPart20andtheproposedAppendixIofthe10CFRPart50guidelines, whentheeffluentiscombinedwiththe20cfsblowdownflowfromthetowers.9.5-13 0

I0R60"$SERVICEWATERLINEll4$INTAKELINE~PUMPWELL484BLOWDOWN LINEII40DISCHARGE LINEEXISTINGSCREENWELL STRUCTURE OOOlOlalPROGRESSCENTER3604NATURALDRAFTCOOLINGTOWERTOWEROSC.STRUCTURE UNITINl,283,000CENTEROFCOOLINGTOWERISNl>283,000E545,000SWITCHYARD NOTES:I.EQUIPMENT FORCHEMICALADDITIONS TOBELOCATEDINEXISTINGSCREENWELL 2.MAKE-UPOBTAINEOFROMSERVICEWATERDISCHARGE.

SLOWDOWNCONTROLLED BYWEIRATTOWERBASIN,WITHDISCHARGE INTOEXISTINGDISCHARGE SHAFTINSCREENWELL.

Nls282i000OOOIAIAUJOoOCOlOILI0l00E00SCALE~FEETFIGURE95-3NATURALDRAFTCOOLINGlQWERSCHEME

9.5.3.1Economics ofWetCoolingTowerSystemsThefollowing modifications arenecessary totransform theexistingcoolingwatersystemofSection9.5.1.tothenaturaldraftcoolingtowersystem.Thesemodifications

.includeanaturaldrafthyperbolic tower;aseparatemakeupandservicewaterscreenwell; modifications totheexistingcirculating waterscreenwell, circulating waterpumps,andmotors;acirculating waterpumpwell.and associated equipment; circulating waterpipingconnecting thecoolingtower,pumpwell, condenser, andvariousscreenwells fortowermakeupandblowdown; andthemodifications totheliquidradwastesystemasmentioned inSection95.3.Theestimated totalcapitalcostoftransforming theexistingcoolingwatersystemtothenaturaldraftcoolingtowersystemwouldbeabout$16,960,000 foroperation in1976..Capitalcostshavebeenescalated frompresentdateattherateof5.5percentayear.Theannualized costofthisalternative including capital,interest, depreciation andotherfixedchargeswouldbeabout$3,409,000.

Theestimated annualfuel,operating andmaintenance costwouldbeabout$568,000..

Theannualcapability losscomparedtotheexistingstation's generating capability wouldbeabout$1,096,000 duetoahighercondenser inlettemperature.

Thesecostsarebasedonafixedchargerateof20.1percent,afuelcostof2.8mills/kWhr, anoperating andmaintenance costof0.3milVkWhr, andacapacityfactorof85percent.Totalannualized costwouldbeabout$5,073,000..

Thetotalpresentvalueofthenaturaldraftcoolingtowerschemeata9.6percentcostofcapitalandanamortization overtheremaining 18-yeareconomiclifeofthestationwouldbeapproximately

$42,700,000.

Themechanical draftcoolingtowersystemwouldconsistofequipment similartothatofthenaturaldraft-tower,withtheexception thattwomechanical drafttowerswith.fansandmotorswouldreplacethehyperbolic coolingtower.Theestimated totalcostoftransforming theexistingcoolingwatersystemtothemechanical draftcoolingwatersystemwouldbeabout$11,850,000 foroperation in1976.,Capitalcostshavebeenescalated frompresentdateatrateof5.5percentayear.Theannualized costofthemechanical draftcoolingtowersystem,including capital,interest, depreciation, andotherfixedchargeswouldbeabout$2,382,000.

Theannualfuel,operating andmaintenance costwouldbeabout$690,000.Annualcapability losscomparedtotheexistingstation~s capability wouldbeabout$854,000duetoahighercondenser inlettemperature.

Thesecostsarebasedonafixedchargerateof20.1percent,afuelcostof2.8mills/kWhr, anoperating andmaintenance costof0.3mill/kWhr, andacapacityfactorof85percent.Totalannualized costwouldbeabout$3,926,000.

Thetotalestimated presentvalueofthemechanical draftcoolingtowerschemeata9.5-14

9.6percentcostofcapitalandanamortization overthe18-yeareconomiclifeofthestationwouldbe$33,040,000..

9.5.3.2Environmental Considerations ofWetCoolingTowerSystems9.5.3.2.1 HeatDischarged toWaterBodyItisestimated thattheblowdownfromeitherthemechanical draftornaturaldraftcoolingtowerswouldcontainapproximately 1.4x10~Btu/hr.Thisblowdownwouldbedischarged fromtheexistingdischarge tunneltopromoterapiddilution..

Thesurfaceareawithinthe3Fisothermabovenaturallaketemperature wouldbeabout0.72acreandthevolumewithinthe3Fisothermwouldbelessthan2.2acre-feet..

Sincethisquantityofheatedwaterissmallincomparison tothelargevolumeofwaterinLakeOntario,noadverseeffectstothewaterqualityofthelakeareexpected.

Asdiscussed inSection9.5.1.2.1,nosignificant lossofoxygenhasbeenobservedfromtheresultsofthedissolved oxygenmeasurements whichhavebeenmadeinthedischarge areafortheexistingonce-through systemduringthefish,nettingsurvey.Becauseoftheturbulent contactbetweenthecoolingwaterandtheambientairwithinthewetcoolingtowersystem,significant aerationwouldoccur.Therefore,

.itisconsidered thatthissystemwouldnotadversely affecttheoxygenavailability inthecoolingwaterbutcouldconceivably increasethedissolved oxygencontent.Itisestimated thatthesurfaceareaaffected, 0.72acre,couldresultinalossofapproximately 4poundsoffishperyeartothecommercial fishery.Thisisbasedonarateofexploitation of5poundsoffishperacreofwaterasdiscussed inSection9.5.1.2.1.Theimpactofthedischarge onthesportfisheryisalsoconsidered tobenegligible.

Theheatedwaterisalsojudgednottoimpairthemigration of,fishinLakeOntarioortheadjacentriversystems.Asdiscussed inSection9.5.1.2.1theresultsofthepreoperational andpostoperational fieldsurveysindicatethattheeffectsonpotential foodsourcesforwildlifeandtransient biotaaresmallandverylocalized.

Therefore, itisconsidered thatthedischarge fromthissystemwouldhavenoadverseimpactontransient biotaandassociated wildlife.

9.5.3.2.2 EffectsofIntakeStructure onWaterBodyTheestimateofplanktonmortality forthecoolingtowerschemesisbasedon'heassumption thatallplanktonic formsinthemakeupwaterwouldbekilledinpassagethroughthetower.Ithasbeenestimated thatthereare0.548gramofplanktonper95-15

cubicfootoflakewaterasexplained inSection95.1.2.2.Combining thisvaluewiththe40cfsmakeupwaterflowresultsintheapproximation that1.5x10~poundsofplanktonwouldbekilledinthecoolingtowersannually.

Theenvironmental impactofplanktonmortality

'onlakepopulations isbelievedtobeminimalasdiscussed inSection9.5.1.2.2.

Theeffectsoftheintakeandcondenser coolingwatersystemonthefisheriesofLakeOntarioarebasedontheinformationavailable fromoccasional observations madeat.NineMilePointUnit1asdiscussed inSection9.5.1.2.2.

Assumingthatthefishlostinthecoolingtowermakeupsupplysystemisproportional tothetotalcirculating waterflowrate,thenevenfewerfishwillbelostinthescreenwell tothetowersystemthanwouldbelostintheexistingonce-through system.Thissmallquantitywouldhavenoeffectonthefisheries ofLakeOntario.Completeinformation ofthelossoflarvalfish.through thecondenser coolingsystemisnotpresently available asdiscussed inSection9.5.1.2.2.However,preliminary studiesconducted atNineMilePointUnit1indicatethatthemortality oflarvalfishisexpectedtobeminimalwithacoolingtowerscheme.9.5.3.2.3 ChemicalDischarge toWaterBodyThe20cfstowerblowdownwouldcontain2timestheconcentra-tionsofchemicals foundinthenaturallakewaterduetoevaporation andrecirculation ofthecoolant.SeeTable2.5-1foralistingofambientwaterqualitydataforLakeOntario.Afterdischarge intothelaketheeffluentwouldbedilutedwiththeambientlakewater.Approximately 10dilutions wouldoccurbeforetheeffluentwouldreachtheboundarydescribed bythe3Ftemperature increaseisothermasdiscussed inSection9.5.3.2.1.Thechemicalconcentrations intheblowdownwouldthenbevirtually thesameasthoseinthenaturallakewater.Therefore, noadversechemicaleffectsonthepeopleusingthewater,aquaticbiota,waterqualityorwildlifeareexpected.

Theeffectsofcombining thechemicaleffluents fromthestationwiththeblowdownisdiscussed inSection9.6.9.5.3.2.4 Consumption ofWaterWaterlossfromthepowerstationresulting mainlyfromevapora-tionfromthecoolingtowerswouldbenearly20cfsduringpeakmeteorological conditions.

Additional consumption fromnormalstationoperations wouldnotexceed0.02cfs,asdiscussed inSection3.4.Ifthepeakconditions werecontinuous throughout theyear,thetotalconsumption ofwaterfromLakeOntariowouldbeabout4.8x10~gallonsperyear.9.5-16

Thisquantityisabout0.001percentofthewatercontained inLakeOntariowhichisapproximately 4.4x10~~gallons.ItisnotexpectedthatthissmallquantityofwaterremovedperyearfromLakeOntariowouldhaveanyeffectsonthepeople,property, orindustries usingthelakewater.9.5.3.2.5 ChemicalDischarge toAmbientAirDropletsofthecoolingwaterwouldbeentrained intheairthatpassesthroughthecoolingtower.Thesedroplets, calleddrift,wouldcontainthechemicals thatoccurinthelakewaterthathavebeenallowedtoconcentrate toamaximumof2times.Theamountoftheseparticulates discharged fromthetopofthecoolingtowercanbeestimated byassumingthatthedriftis0.005percentofthetotalcirculating waterflowinthetowers.Thiswouldproduceadriftof14gpmthathasadissolved solidsconcentration ofapproximately 450ppm.Thetotalemissionrateofsolidswouldbeabout0.05poundperminute.Assumingthatthesesolidswouldbeuniformly distributed inthe'airflowfromthecoolingtowers,therewouldbeaconcentration ofapproximately 9micrograms percubicmeteratthetopofthecoolingtower.Ifthisconcentration wascontinually experienced atthegrounditwouldproduceaconcentration wellbelowtheannualaverageNewYorkStateandFederalsecondary ambientairqualitystandards whichare55and60micrograms percubicmeter,respectively.

Furthermore, theactualconcentrations experienced atthegroundwouldbemuchlessthantheconcentration atthetopofthecoolingtowerduetoplumeriseandatmospheric dispersion.

Therefore, ambientairqualitywouldnotbesignificantly alteredbythesolidsconcentrations producedfromthecoolingtowers.Inaddition, noodorsareassociated withtheoperation ofthecoolingtowers.9.5.3.2.6SaltsDischarged fromCoolingTowersThe0.05poundperminuteofsolidsreleasedtotheatmosphere fromthecoolingtowersareassumedtobesalts.Apreliminary studywasperformed toestimatethedistribution ofthesesaltsinthevicinityofthesite.Thisstudyindicates thatsaltdeposition ratesfromnaturaldrafttowerscouldbeapproximately 1pound/acre/year atadistanceof1,200feet,theapproximate distancetotheclosestsiteboundary.

Thedeposition ratewoulddecreasetoabout0.4pound/acre/year atadistanceofonemile.Saltdeposition fromamechanical drafttowerisexpectedtobeapproximately 120pounds/acre/year atadistanceof1,200feet,andapproximately 11pounds/acre/year atadistanceofonemile.Thehighersaltdeposition ratesofthemechanical drafttowerareduetothelowerheightofthistowerascomparedtothenaturaldrafttower.Theeffectofthesaltdistribution onpeopleandpropertybeyondthesiteareaisexpectedtobeminorsincetheannualambientsaltconcentrations wouldbebelowtheannualaverageNewYork9.5-17

StateandFederalSecondary AmbientAirQualityStandards forsuspended solids.Theimpactofthisfalloutonsurrounding vegetation hasnotbeendetermined, sincespecificstudiesarenotavailable oneffectsoflong-term exposureofthespecificsalts.However,LakeOntarioisusedforirrigation andthechemicalconcentrations inthewaterappeartobesuitableforterrestial vegetation.

Itisconsidered thatsincethereconcentration ofchemicalconstituents inthecoolingtowerdriftisonly2timesthatofambientlakewater,theeffectofdriftonterrestial vegetation wouldprobablybeminor.9.5.3.2.7 ChemicalContamination ofGroundWater(Excluding Salt)Thecoolingtowerwouldbecompletely isolatedfromtheground,exceptforthereleasesduetodrift.Thisdriftwouldbedilutedbynaturalrainfallwhichamountstoapproximately 35inchesayear.Thisrainfallcombinedwiththeestimated maximumsolidsdeposition of120pounds/acre/year fromamechanical draftcoolingtowerwouldresultinagroundlevelsolidsconcentration ofapproximately 15ppm..Similarly, themaximumgroundlevelsolidsconcentration fromanaturaldraftcoolingtowerwouldbeapproximately 0.1ppm.Itisanticipated thatthesesolidsconcentrations percolating tothegroundwaterwouldnotadversely affecttheusesofthisresource.

9.5.3.2.8 Radiological EffectsTheeffectsoftheproposedradwastesystemmodifiedforuseinconjunction withcoolingtowershavebeeninvestigated.

Gaseousreleasesandconsequent environmental effectswouldbethesameasfortheproposedradwastesystemdesign.Thesereleasesareexplained inSection5.2.Withtheuseofcoolingtowers,lesswaterwouldbeavailable fordilutingtheradwasteeffluent.

Therefore, themodifications totheproposedradwastesystemasdiscussed intheintroduction toSection9.5.3wouldberequiredtoreducethetotalactivityoftheliquidradioactive releasesbyabout10percent.Thecombination ofthisreducedeffluentactivityanddecreased coolantflowwouldresultinessentially thesameactivityconcentrations whichresultfromtheproposedradwastesystemdesignpresented inSection3.6.Asaresult,theindividual andpopulation doseswouldcorrespond tothosepresented inSection5.2withtheexception ofthemanremperyearfromfishconsumption.

Sincethe,annualreleaseratewouldbereducedbyafactorof10,theexpecteddosefromthispathwaywouldbe10percentofthetabulated values.9.5-18

9.5.3.2.9FoggingandIcingThefrequency andextentoffoggingcreatedbycoolingtowerswouldbedependent uponmeteorological conditions attheNineMilePointsite.Generation ofvisiblevaporplumesisenhancedunderconditions ofhighrelativehumidityandlowambientairtemperature.

Theshapeandrangeofavisibleplumeishighlydependent onwindvelocity.

Anumerical analysiswasperformed whichuseslocalweatherdatainconjunction withtowerperformance curvestomodelthebehaviorofvisibletowervaporplumes.Figures9.5-4and9.5-5summarize theresultsoftheanalysisforbothmechanical draftandnaturaldrafttowers.Thefigurespresentthefrequency thatvisiblevaporplumeswouldoccuratagivendistanceandaltitudefromthetower,assumingthatthewinddirection isconstantthroughout theyear.Variations inwinddirection would,however,tendtoreducetheoccurrence offogineachdirection byafactorapproximately equaltotheannualfrequency ofthewindfromthatdirection.

Thewinddirection frequencies arepresented inAppendixD.Vaporplumesproducedbyanaturaldrafttowerwouldnotbeexpectedtoreachtheground,dueprirrarily totheheightatwhichtheplumeisdischarged.

Mechanical drafttowers,however,couldproducegroundlevelplumesandforthepurposeofestimating theextentofsuchgroundlevelfogging,visiblevaporplumesataltitudes ofapproximately 100feetorless,wereconsidered tobeessentially groundlevel.Duringadverseweatherconditions asseeninFigure9.5-5,groundlevelfogfromamechanical drafttowercouldextendtoasfaras1,200feetwithafrequency of5percent.Asaresult,anareaofabout140acresaroundthetowersitecouldbesubjecttogroundlevelfogatvarioustimesoftheyear.Thisarealieswithinthe.NineMilePointpowersite,andextendsapproximately 800feetontoLakeOntario.Driftandfogproducedbyacoolingtowerwhichimpingesuponthegroundcouldcontribute tosurfaceicing.Ztisconsidered thattheonlyareaandroadwhichwouldbeaffectedbyicingduetocoolingtowerdriftinthecoldermonthslieswithintheboundaries oftheNineMilePointsite.Theplumesfromthecoolingtowerswouldnothamperair,ground,orwatertransportation sincetherangeoftheplumeswouldbelimited.Elevatedplumeswouldnotinterfere withcommercial airportssincetherearenonewithintherangeofthevisibleplume;groundtransportation wouldonlybeaffectedoccasionally withinthesiteareabygroundlevelplumesfrommechanical draftcoolingtowers;watertransportation wouldnotexperience thecoolingtowerplumesbeyond800feetfromtheshore.9.5-19

2000TOWERDESIGNDATAT4WB~14APPHEIGHTGSFT.I750NOTESTHEFIGURESDENOTEPERCENTOFTIMETHATVISIBLEPLUMEEXTENDSTOCONTOURONLTONEDIRECTION ISCONSIDERED FORWINOSPEEDSI500I25010'/o15%I000UIII75025'/o20'Yo5'Yo50o/o250500750IGOO1250I500I75020002250250027503000325035003750HORIZONTAL DISTANCE-FEET FIGURE9$-4MECHANICAL DRAFTCOOLINGTOWERPLUME

,I 22502000TOWERDESIGNDATATiWB,l84APP.HEIGHTSTOFT.I750l0%NOTESTHEFIGURESDENOTEPERCENTOFTIMETHATVISIBLEPLUMEEXTENDSTOCONTOVRONLYONEDIRECTION ISCONSIDERED FORWINDSPEEDSI50015'/ol250IVIIIIOOOX25%20%75050'/o)p%250FIGURE95-5NATURALDRAFTCOOLINGTOWERPLUME250500750IOOO1250l500I750HORIZONTAL DISTANCE-FEET25002750325035003750

Itisalsoconsidered thatthecoolingtowerswouldnotproducemeasurable effectsonvegetation duetofoggingandicinginthearea.Somesunlightattenuation bytheplumeswouldoccurbuttheeffectswouldbecomparable tothoseproducedbyclouds.Anyicingfromthecoolingtowerswouldbeproducedduringthecoldermonthswhenthevegetation wouldnotnormallybesusceptible todamagefromfreezing.

Icebuilduponplantsandtreesonthesitecouldoccurfromdriftfromanaturaldrafttowerand,fromdriftandfogfromamechanical drafttower.Thenaturaliceloadingsduetosnowfallandfreezingrainswouldbeslightlyaugmented bytheoperation ofthecoolingtowers.Themechanical drafttowerwouldhaveagreatereffectthanthenaturaldrafttowersinceitislowerinheightanditsfogwouldoccasionally reachthegroundanditsdriftdeposition wouldbehigherclosertothetower.Nostudiesarepresently available ontheeffectsoficebuilduponvegetation butconsidering thesiteclimatology theadditional effectsofthecoolingtowersisexpectedtobeinsignificant,.

9.5.3.2.10 Raising/Lowering ofGroundWaterNowaterforthecoolingtowersisrequiredfromgroundwellsormunicipal sources,andblowdownfromthecoolingtowersisreturnedtoLakeOntario.Therefore, nochangeinthegroundwaterlevelsisexpected.

9.5.3.2.11 AmbientNoiseNoiseisgenerated innaturaldraftcoolingtowersbythecascading water.Inmechanical draftcoolingtowers,fannoiseisaddedtothenoiseofthefallingwater.Coolingtowersoundlevelsaredetermined frommanufacturers'ata orpublished references ontowernoise.Inordertoassesstheacoustical impactofthesecoolingwateralternatives onthesurrounding area,contoursofconstantsoundlevelweredetermined forbothnaturaldraftandmechanical draftcoolingtowersystemsutilizing thetechnique described inSection9.5.1.2.11.Basedonthenoiseguidelines discussed inSection9.5.1.2.11andtheconstantstationsoundlevel,the~~normally acceptable" levelwastakentocorrespond

'toanareareceiving 45to65dbAandthe"normally unacceptable" levelwastakentocorrespond toanareareceiving over65dbA.Foreithercoolingtowersystemitwasdetermined thatnoresidences, schools,orhospitals wouldreceiveasoundlevelgreaterthan65dbA.Tenresidences wouldbewithinthe45to65dbArangewithanaturaldraftcoolingtowerandfortyresidences wouldbewithinthisrangewithamechanical draftcoolingtower.Itshouldbenotedthattheestimates usedtodetermine thesoundlevelcontoursareconservative anddonotincludeattenuation 9.5-20

fromtrees,terrain,ormeteorological conditions whichwouldreducetheoffsiteareasaffectedbythenoisegenerated.

9.5.3.2.12 Aesthetics Ofthetwotypesofcoolingtowersconsidered inthisreportthenaturaldrafttowerwouldbethemoreaesthetically pleasingbecauseofitshyperbolic shape.Themechanical drafttowerswouldbemorenumerousandwouldcreateamoreindustrial-like appearance, buttheywouldbelessnoticeable frombeyondthesiteboundary.

Plumesfromeitherofthetowerschemesmaybeunappealing inappearance.

9.5.3.2.13Permanent Residuals ofConstruction ActivityCoolingtowerswouldrequireuseofadditional landareaonthesite;about2.1acresforthemechanical drafttowersand2.3acresforthenaturaldraftcoolingtower.Theseusesoflandwouldnotaffectwildlifeoraffectanyhistorical orarcheological sitesofinterest, sincetherearenoneinthesitearea.Valuesofsurrounding propertyandusesofadjacentlandarealsonotexpectedtobeaffected.

Construction ofthecoolingtowerswouldnotrequiremodification oftheshoreline ortopography ofthearea,andtherefore, wouldnotcontribute tofloodinganderosionintheregion.9.5.3.2.14CombinedorInteractive EffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequately indicated bymeasuresoftheseparateimpacts.9.5.4DryCoolingTowerSystemDrycoolingtowersrejectsensibleheatdirectlytotheatmosphere andthusdonotdependupontheevaporation ofwaterfortheirperformance..

Anindirectdrycoolingtowersystemwasexaminedwhichwouldbeusedinccmbination withadirectcontactspraycondenser tocondensetheturbine's exhauststeam.Cooledwaterfromthetowerwouldbebroughtintocontactwiththeturbine's exhauststeam,andafractionofthecondensate formedwouldthenbereturnedtobecooledinthetower.Theremainder ofthecondensate wouldrecirculate tothereactor.Anoptimumdrycoolingtowersystemoperateswithturbineback-pressures intheorderof8to12inchesHgabs.However,U.S.manufacturers donotplantomarketaturbinethatiscompatible withthistowerdesignuntil1978.Thestateoftheartfordrycoolingtowersislimited.Thelargestexistingplantwhichusesadrycoolingtowerofthistypeisonlya200MWeunit.Thelackofexperience withaunit9.5-21

thesizeofNineMilePointUnit1,haseliminated thissystemfromfurtherconsideration.

9.5.5CoolingPondSystemAcoolingpondisalargecoolingwaterstorageareausedtorejectheatdirectlytotheatmosphere bythetransferofbothsensibleandlatentheat.ApondlargeenoughtoremovethewasteheatfromtheNineMilePointUnit1wouldhaveasurfaceareaofabout880acresandavolumeof19,000acre-feet.

ApossiblelocationforthecoolingpondwouldbeonsiteslightlysouthofthestationbetweenLakeRoadonthenorthandthePennCentralRailroadonthesouthasshowninFigure9.5-6.TheeasternedgeofthepondwouldbeparalleltoandneartheboundarywiththepropertyofthePowerAuthority oftheStateofNewYork(PASNY).Thewesterlyedgeofthepondwouldbeformedbyadikefollowing thehigherknollsandlyinginasouthwesterly-northeasterly direction andslightlywestofLakeviewRoad.Thesouthernboundaryofthispondwouldbeformedbythe310-footcontourwhichliesroughlyeastandwestindirection andparalleltothePennCentralRailroad.

Adikeapproximately 40to50feethighwouldtherefore berequiredalongtheeast,north,andwesternboundaries toretainthecontentsofthecoolingpond.Anapproximately threemilelongcirculating pathforthecoolingwaterwouldbeestablished byconstructing baffledikestoseparatetheinletfromtheoutlet.Theearthwork requiredforconstructing theboundaryandbaffledikeswouldamounttoapproximately 3,000,000 cubicyardsofearthmaterial.

Thecirculating waterwouldhavetobepumpedadistanceofapproximately twomiles.Twopipeswouldberequiredtocarrythewatertoandfromthepond.Rockexcavation wouldberequiredifthesepipesaretobeplacedbeneaththegroundsurfaceinordertominimizestressesduetotemperature changesanddrainageinterference.

Themakeupwaterflowwouldbe40cfsandtheevaporation couldrangeuptoapproximately 30cfs.Thiscouldresultinablowdownintherangeof10to20cfs.Theproposedradwastesystemwouldbemodifiedtothesamedegreeaswouldberequiredinconjunction withcoolingtowersbecauseofthereducedcoolantdischarge.

Dilutionpumpingmayalsoberequiredoccassionally forperiodsoflowerblowdownflow.Thisalteration intheradwastesystemispresented inSection9.5.3.9.5-22

C733IUNITISWITCHYARD IIV~l~0gLAKEVtEWRD.lqlg~gPROPERTYLINEINCLUDING REQUIREDAQVISITION~V~PENHCEHTRALFIGURE9.5-6.COOLINGLAKEAT310FOOTELEVATION(880.ACRES)FROMSARGENT6LUNDYREPORTSL-2775

9.5.5.1Economics oftheCoolingPondThefollowing modifications arenecessary totransform theexistingcoolingwatersystemofSection9.5.1tothecoolingpondsystem:Pondstructures (dikesandspillways),

circulating waterpumpsandmotorswithassociated screenhouseequipment, circulating watexpipingtoandfromthepondandthecondenser, makeupservicepumphouse,makeupandblowdownlines,chemicaltreatingequipment formakeupwatertreatment andthemodifications totheradwastesystem.Theestimated totalconstruction costforoperation in1976wouldbe$21,600,000.

Capitalcostshavebeenescalated fromthepresentdateattherateof5.5percentperyear.Theannualized costofthecoolingpondalternative including capital,interest, depreciation, andotherfixedchargeswouldbeabout$4,342,000.

Theannualfuel,operating, andmaintenance costwouldbeabout$312,000.Thisincludespumppower,chemicaltreatment andpondmaintenance.

Annualcapability losscomparedtothegenerating capability oftheexistingstationwouldbe$1,241,000 duetohighercondenser inlettemperatures.

Thesecostsarebasedonafixedchargerateof20.1percent,afuelcostof2.8mills/kWhr, anoperating andmaintenance costof0.3mill/kWhr andacapacityfactorof85percent.Totalestimated annualized costwouldbeabout$5,895,000.

Thetotalestimated presentworthofthisalternative ata9.6percentcostofcapitalandamortization overtheremaining 18-yearlifewouldbeapproximately

$49,620,000.

9.5.5.2Environmental Considerations oftheCoolingPondSystemManyoftheenvironmental considerations foracoolingpondaresimilartothoseforacoolingtowerexplained inSection9.5.3.2.Thoseareasofenvironmental concernthatareapplicable toacoolingpondarepresented below.9.5.5.2.1 EffectsontheWaterBodyAtthepresenttimeitisnotpossibletodetermine thedissolved oxygencontentinthecoolingpondblowdown.

However,sincethequantityofblowdownwhichwouldbedischarged fromthepondissmall,thereisexpectedtobenoadverseimpacton,theoxygenavailability ofLakeOntario.Itisassumedthatthereisacompletemortality oftheplanktondrawnintothecoolingpondfromthelake.Inactuality specialized planktoncommunities wouldprobablydevelopinthepondandbereturnedtothelakeintheblowdown.

However,forenvironmental costquantification themortality ofplanktoninthe40cfsmakeupwaterisconsidered tobe100percent.Thiswouldresultinapproximately 1.5x10~poundsofplanktonbeingremovedannuallyfromthelakebasedonaplanktondensityof9.5-23

0.548gramofplanktonpercubicfootofwater.Anassessment oftheenvironmental impactofthisplanktonmortality isinSection9.5.1.2.2.Theeffectsofthissystemoncommercial andsportfishingandlarvaewouldbethesameasthoseofthecoolingtowers.Theseimpactsarepresented inSection9.5.1.2.2.9.5.5.2.2 Consumption ofRaterThecoolingpondcouldhaveanevaporation rateofabout30cfs;thisnaturalevaporation wouldbehigherthantheforcedevaporation fromcoolingtowersTheremovalofwaterfromLakeOntariowouldbeabout7.1x10~gallonsperyear.Thisisabout0.0016percentoftheapproximately 4.4x10~4gallonsofwaterinthelakeandnoadverseenvironmental impactisexpectedfromthiswaterconsumption.

9.5.5.2.3 ChemicalDischarge totheAmbientAirCoolingpondswouldnotproduceanydriftsinceairwouldnotbepassedthroughthecoolantTherewouldthusbenochemicaldischarge orodortotheambientair.9.5.5.24SaltsDischarged fromaCoolingTowerThisareaofenvironmental concernisnotapplicable tothecoolingpondalternative.

9.5.5.2.5 ChemicalContamination ofGroundwater(Excluding Salt)Althoughstudieswereconducted andsomeboringshavebeenmade,insufficientinformationispresently available withrespecttothesuitability oftheareafortheconstruction ofthecoolingpond.Therefore, itisnotpossibletoproperlyassesstheenvironmental impactatthistime.However,itisconsidered thatchemicalconcentrations wouldbereducedbypassingthroughtheoverburden.

9.5.5.2.6 FoggingandIcingAnalytical modelsfortheproduction anddispersion offogfromcoolingpondshavenotbeendeveloped andtestedtothesamedegreeashavethoseforcoolingtowers.Experience indicates, however,thatcoolingpondsarearelatively diffusesourceoffogandthatdownwindevaporation wouldbefairlyrapid.Driftfromthecoolingpondwouldbepractically nonexistent Therefore, thecoolingpondswouldnotbeexpectedtocreateanyfoggingoricingproblems.

9.5-24

9.5.5.2.7 Raising/Lowering ofGroundwaterAlthoughstudieswereconducted andsomeboringshavebeenmade,insufficient information ispresently available withrespecttothesuitability oftheareafortheconstruction ofthecoolingpond.Therefore, itisnotpossibletoproperlyassesstheenvironmental impact.Assumingconditions aresimilartothosearoundthestation,suchasrelatively impervious overburden onsandstone, itcanbeexpectedthatariseinthegroundwatertablewouldresultinthevicinityofthepond.However,atthistimeitisnotpossibletoestimatetheeffectsortheextentofthisrise.9.5.5.2.8 AmbientNoiseSincenoiseisnotproducedbycoolingponds,thestationwouldgeneratenoiselevelsthatarecomparable tothoseproducedbytheexistingonce-through coolingsystemexplained inSection9.5.1.2.11.

Nohouses,schoolsorhospitals wouldreceiveasoundintensity ofgreaterthan65dbA,aftertheconstruction ofacoolingpond.9.5.5.2.9 Aesthetics Thelargecoolingpondmightheanattractive additiontothecountryside.

Carefullandscaping couldminimizethevisualeffectofthedikes.9.5.5.2.10Permanent Residuals ofConstruction ActivityThecoolingpondwouldrequireapproximately 880acresofonsitelandlocatedb'etweenone-halfandtwomilessouthofthestation.Sincethecoolingpondcontainsthecoolingwaterabovegroundthereisapotential forfloodingofthesurrounding area.Becauseofthis,allpartsofthepondsystemrelatedtoimpoundment wouldbedesignedtomeettherequirements ofClass1seismicconditions.

Inaddition, allembankments andareasofpossibleerosionwouldbeplantedandseeded.Inundating

.thelandwouldaffectwildlifeinthearea.Thenumberandspecifictypesofwildlifeinthe880acresoflandhas,however,notbeendetermined.

Carefulconsideration wouldhavetobegiventotheimpactoffloodingthelandonpresentandpotential wildlifeuses.Thecoolingpondmayhoweverprovideanareaforincreased recreational use.Fishingandboatingmaybepractical onthepond.9.5.5.2.11 CombinedorInteractive EffectsWhereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequately indicated bymeasuresoftheseparateimpacts.9.5-25

9.5.6SprayPondSystemExperience withspraypondsforunitsof250MReandaboveisextremely limited,andalthoughsomelargesystemsarebeingdeveloped, thereisnotenoughperformancedatapresently available toadequately designaspraypondforan610MWeunit.Thedesignsthathavebeenevaluated indicatethatthelandarearequiredandtheeconomiccostofspraypondsisnearlythesameasforwetcoolingtowers.Thereareknownproblemswiththistypeofpond,however.Thespraymoduleshavetobecarefully spacedtoensureadequatesuppliesofambientairforevaporative coolingforefficient performance.

Furthermore, somestudiesofexistingsmallerspraypondsshowthatseveredriftingofthewatersprayoccurs.Inwinterthiswouldresultinsevereicingconditions onsiteandoffsiteFurtherconsideration ofthespraypondshasbeeneliminated becauseofthelimitedexperience withpondsoftherequiredsizeandthepossibleenvironmental impactsofthiscoolingsystem.9.5.7Supplemental CoolingSystemInprinciple, wetcoolingtowersandcoolingpondsmaybeusedasasupplemental coolingsystem.Inthistypeofsystem,theonce-throughsystemwouldbe.supplemented bytowersorpondsduringthosetimeswhentheheatrejecticn tothelakeneededtobereduced.Partofthestationwasteheatwouldberejectedtotheatmosphere bythetowersorponds.However,sincetherearewidevariations oftheatmospheric wetbulbtemperatures, ascomparedtowatertemperatures attheNineMilePointsite,thereareinherentlimitations intheperformance ofasupplemental coolingsystem.Atcertaintimes,ambientatmospheric wetbulbtemperatures wouldbesuchthatonlyasmallfractionofthetotalheatcouldberejectedbythesupplemental coolingmethodandtheremaining heatwouldbedischarged toLakeOntario.Toclarifythis'point,astudywasmadebasedontheuseofasupplemental mechanical draftcoolingtowersystem.Thetowerwassizedsuchthatitscoldwaterdischarge temperature wouldbe3Fabovetheambientlaketemperature atthepointofdischarge duringaperiodwhentheatmospheric wetbulbwouldbe74F,andthelaketemperature wouldbe77F.Thedesigntemperatures wereselectedonthefollowing basis:1.The3Fdifferential corresponds tothe1969NewYorkStatethermalcriteriawhichassumethatanincreaseinambientlaketemperature oflessthan3Fwillhavenoadverseeffectontheaquaticbiota.2.74Fwetbulbtemperature isthattemperature whichisusedfordesignconditions forthesummermonths.9.5-26 1,

3.77Flaketemperature isthattemperature.

whichisusedfordesignconditions forthesummermonths.Oneyearofmeteorological datathathadbeenrecordedinthevicinityofthesitewasusedinthisstudy.Theyear1950wasselectedasatypicalyearwithrespecttowetbulbtemperature.

Averagemonthly.laketemperatures wereusedinthisstudybecauseoftherelativestability ofthelake.Usingthesedesigncriteriaanddata,thedailyperformance ofthesystemwasdetermined foraone-yearperiod.TheresultsofthisstudyaredepictedinFigure9.5-7.Thegraphshowsthatthe,3Frisewillbeexceededforextensive periodsduringtheyear,particularly inthespringandfall.Therewereseveralperiodswhenlargethermaldischarges tothelakewouldhaveoccurred; forexample,onApril4,1950,whenthelaketemperature was40F,andtheambientwetbulbtemperature was56F,thetemperature differential betweenthetowerdischarge andthelakewouldhavebeen22.5F.Thissupplemental system,then,wouldnotmeetitsstatedobjective oflimitingthedischarge tolessthan3F.Acoolingpondorawetcoolingtowerusedinasupplemental systemwouldalsoresultinalargefractionofthetotalheatoccasionally beingdischarged intothelake.Forthesereasons,supplemental coolingsystemshavenotbeenconsidered infurtherdetail.9.5-27 00 IIOIOONOTE-TOWERDESIGNDESIGNINLETWATERTEMP-I07DESIGNDISCHWATERTEMP"80DESIGNWETBULB-7490I4Iz8024JCGz4ITPIJJILIILJ4JGJepIJIIILSO4J4JI40OISCIIARGE WATERTEMPERATURE AMSIEJITLAKETEMPERATVRE JAN.FEB.MAR.APR.MAYJUNEJULY1950AUG.SEPT.OCT>>NOV.DEC.FIGURE9.5-7SUPPLEMENTARY COOLINGTOWEREFFECTONCIRCULATING WATERDISCHARGE

-TEMPERATURES

96ALTERNATIVE CHEMICALEFFLUENTSYSTEMSTheexistingsystemfortheNineMilePointUnit'1releasesthechemicaleffluenttothecirculating wateroftheexistingonce-throughcoolingsystem.Analternative totheexistingsystemwouldemployevaporation toeliminate thedischarge ofchemicaleffluents to,LakeOntario.Thesevariouschemicaleffluentsystemsarediscussed inthefollowing sectionsandformthebasisforthecomparative tabulation ofenvironmental costsaspresented inTable9.6-1attheendofSection9-6.9.6.1ExistingChemicalEffluentSystemEffluentfromtheexistingchemicaleffluentsystemasdescribed inSection3.7isreleasedtothecirculating wateroftheexistingonce-through coolingsystem.Ifanalternate coolingsystemweretobeemployed, thentheeffluentwouldbereleasedtotheblowdownofthecoolingtowerorcoolingpond.9.6.1.1Economics ofExistingSystemTheNineMilePointNuclearPowerStationUnit1isanexistingfacilitywhichcommenced commercial operation inDecemberof1969.Therefore, thetotalcostsassociated withtheconstruction oftheexistingchemicaleffluentsystemwillnotbequantified, butwillinsteadserveasbasecost..Thecostsforthealternative chemicaleffluentsystemwillbepresented asanincremental costtothebasecostoftheexistingsystem.Thesecostswilltherefore reflectthetotalamountnecessary totransform theexistingchemicaleffluentsystemtothealternative chemicaleffluentsystem.9.6.1.2Environmental Considerations ofExistingSystemTheeffluentfromtheexistingsystemisdischarged toLakeOntarioafterdilutionwiththecirculating coolingwater.Onlythoseenvironmental impactswhichdirectlyrelatetothissystemarepresented below.Chemicaleffluents associated withoperation ofthemakeupwatertreatment systemdescribed inSection3.7consistof(1)neutralized spentacidandcausticwastesresulting fromdemineralizer regeneration; (2)clarified overflowfromthesettlingbasin;and(3)clarified waterfromtheclearwell duringshutdownoperation.

Theeffectsofthechemicaleffluentaredependent upontheamountofwateravailable fordilutionpriortodischarge.

Theexistingonce-through coolingsystemprovides600cfsofcirculating waterfordilution.

Whenthechemicaleffluentismixedwiththisflow,theoutfallcontainsaconcentration ofdissolved solidsofapproximately 230ppm.Combination ofthechemicaleffluentwiththe20cfsblowdownfromacoolingtower9.6-1 t~'4Vt orcoolingpondwouldresultinadissolved solidsconcentration ofabout544ppm.Thisisduetothecombination ofarelatively lowblowdownflowandaconcentration ofdissolved solidsinthecoolingtowerblowdownduringnormaltoweroperation ofapproximately twicethatexistinginambientlakewater.Acomparison ofthechemicaleffluents expectedtobereleasedfromNineMilePointUnit1undertheexistingandalternate coolingwaterdesignsarepresented in,thefollowing table,alongwithLakeOntarioconcentrations andapplicable drinkingwaterstandards:

ExistingChemicalDischarge asAffectedbyAlternative CoolingMethods~ExistinAlternative-DilutedwithCirculating DilutedWi;thDrinkingTowerorPondWaterLake-Gntario.

Waxer.Blowdown.

Standards-Ca++HCO~Cl-44.0094.003030160Na+16.60SOW=3010Mg++8.9044.1094.11,30.388.9216017.5532.11ppm90.40190.1062.60183033060.60118.60ppm250250TotalDissolved Solids225.522877543.90500Theseconcentrations arefurtherdilutedwithambientlakewaterafterbeingdischarged.

Whentheexistingonce-through coolingsystemisused,thechemicalconcentrations aredilutedwithlakewaterapproximately 10timesattheboundaryofa300acresurfacearea.Ifacoolingtowerorpondschemewereusedtheconcentrations wouldbedilutedabout10timesattheboundaryofa0.72acresurfacearea.Attheboundaries ofthesesurfaceareastheintermittent chemicalconcentrations fromeachcoolingsystemwouldbeclosetolakewaterconcentrations.

Itis,,therefore, expectedthattheseconcentrations wouldnotadversely affectpeoplewhousethewater,aquaticbiota,orwaterquality.9.6-2

Sincethechemicalconcentrations intheexistingcoolingwatersystemareessentially thesameasambientlakewater,itisbelievedthatthereisnoadverseimpactontheutilization of,thelakebyassociated wildlife.

Similarly, considering thattheblowdownconcentrations areclosetodrinkingwaterstandards andwillbefurtherdilutedwithinaverysmallarea,thereisexpectedtobenoeffectonwildlifeutilization oflakewaters.Thereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequately indicated bymeasuresoftheseparateimpact.9.6.2Evaporative ChemicalEffluentSystemAnalternative totheexistingtreatment wouldemployevaporation toeliminate chemicaleffluents resulting fromdemineralizer "regeneration cycles.Theevaporation processwouldrequireuseofafallingfilmevaporator andanadequately

designed, lined,lagoontostoretheconcentrated brinebottomsproducedintheevaporator.

Alternate treatment ofchemicaleffluents resulting fromthesettlingbasinoverflowandclearwellbypasswouldnotberequiredsincetheirchemicalcomposition subsequent topHadjustment wouldbecomparable tothatofLakeOntario.Asimplified sketchofthesystemisshowninFigure9.6-1.9.6.2.1Economics oftheEvaporative ChemicalEffluentSystemThefollowing modifications arenecessary totransform theexistingchemicaleffluentsystemtotheevaporative chemicaleffluentsystem.Theseincludeafallingfilmevaporator forhandling750gallonsperhour,acondensing unit,andthelinedlagoonforstoringsolidsfromtheevaporator.

Theestimated capitalized costoftheequipment foroperation in1976wouldbeabout$857,000.Capitalcostshavebeenescalated fromthepresentdateattherateof5.5percentayear.Theestimated annualized costofthisalternative including capital,interest, depreciation, andotherfixedchargeswouldbeabout$172,000.Theestimated annualcostoffuel,operating andmaintenance, andchemicaltestingwouldbe$50,000.Thesecostsarebasedonafixedchargerateof20.1percent,apowercostof12mills/kwhr,andacapacityfactorof85percent.Totalestimated annualized costwouldbe$222,000.Totalestimated presentvalueofthisalternative, at9.6percentcostofcapitalandamortization overtheremaining 18-yeareconomiclife,wouldbeabout$1,870,000.

9.6.2.2Environmental Considerations ofthisSystemAreasofenvironmental concernaffectedbytheapplication ofanevaporative treatment fortheregenerative wastesarepresented below.9.6-3 IJV7I NOTE:THEOPERATION OFTHISSYSTEMISINTERMITTENT ANDISREOUIREDONLYUPONACCUMULATION OFLIOUIDSINTHEREGENERATION WASTENEUTRALIZATION TANKSFALLINGFILMEVAPORATOR PRODUCTWATERITDS=5PPMDEMINERALIZER REGENERATION WASTESI3)000PPMTDSWASTEBRINE200)000PPMELECTRICAL ENERGYLINEDONSITEPONDCLEARWELL IFIG.3.7I)I)IIIIIII\)MAKEUPWATERDElllNERALIZATION SYSTEM(FIG.3.79)IREGENERATION WASTENEUTRALIZATION TANKS(FIG.3.7-I)FIGURE9.6-ISCMEMEFOREVAPORATIVE TREATMENT OFREGENER'ATION WASTES n1If' 9.6.22.1ChemicalDischarge toWaterBodyTheevaporative treatment wouldnotreleaseanychemicaleffluentsassociated withdemineralizer regeneration cyclestoLakeOntario.Overflowfromthesettlingbasinandbypassfromtheclearwell wouldhaveachemicalcomposition, afterpHadjustment, comparable tothethatofJakeOntario.Therefore, noadverseenvironmental impactisexpected.

9.6.2.2.2 Consumption ofWaterIthasbeenestimated thattheevaporative chemicaleffluenttreatment wouldremoveabout16,000gallonsofwaterperyearfromLakeOntario.Thissmallquantitywouldhavenoeffectonpeople,propertyortheecosystem ofthelake.9.6.2.2.3ChemicalContamination ofGroundWater(Excluding Salts)Thebrinestorage,pondwouldbelinedtopreventthechemicals fromreachingtheground.Thus,nocontamination ofgroundwaterwouldbeexpectedtooccur.9.6.2.2.4 FoggingandIcingThe',onlypartofthissystemwhichwouldbeopentotheatmosphere andcouldproducefogoricingproblemswouldbethebrinestoragepond.However,thispondwouldbesmallandfogwouldbelocalized.

Also,thebrinewouldhaveahighconcentration andthiswouldretardevaporation.

Therewould,therefore, benofoggingoricingproblemscreatedbythissystem.9.6.2.2.5AmbientNoiseTheevaporators wouldbecompletely enclosedandwouldnotproducenoiselevelsabovethatproducedbynormalstationoperation.

9.6.2.2.6 Aesthetics Theevaporators wouldbehousedinabuildingthatwouldblendinwiththeotherstationstructures, andnoadditional visualimpactwouldbeproduced.

Thebrinestoragepondwouldcoverabout0.25acreandmightappearobjectionable.

Plantings aroundthepondcouldlessenthevisualimpact.9.6-4 l~A,MIP 9.6.2.2.7 Permanent Residuals ofConstruction ActivityTheevaporator wouldbehousedinabuildingthatwoulduseapproximately 800squarefeetofland.Thebrinestoragepondwouldrequireanadditional 10,000squarefeet.Thislandusageisminorandemployment ofthissystemwouldnotaffectwildlife,landvalues,orproduction inthearea.Erosionandfloodcontrolintheareawouldnotbeaffectedbythesmallamountoflandusedforthissystem.9.6.2.2.8 CombinedorInteractive EffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultin-atotaleffectwhichisnotadequately indicated bymeasuresoftheseparateimpacts.96-5

TABLE9+6-1COSTDESCRIPTION ALTERNATIVE Q9MCALEFFLUENTSYSTEMSNINEMILEPO'ATNUCLEARSTATIONUIKZ1ReportDate:Juno1@72ExistingChemicalEffluentSystem(l)

Evaporative ChemicalEffluentSystem(2)

BaseCase$1,870,000 9.6.2.1ENVIRONMElFZAL COSTSPrimaryImpact1.Heatdischarged towaterbodyPopulation orResourceAffected1.1Coolingcapacity1.2Aquaticbiota1.3Migratoxy fishnoeffectnoeffectnoeffectnoeffectnoeffectnoeffect2.Effectsonwaterbodyofintakestructure andcondenser coolingsystem3.Chemicaldischarge towaterbody4.Consumption ofwater5.Chemica1discharge toambientair2.1Primaryproducers 8econsumers 2.2Fisheries 3.1People3,2Aquaticbiota3.3Waterquality-chemical4.1People4.2Property5.1Airquality-chemical5.2Airquality-odornoeffectnoeffectnoadverseeffect9.6.1.2noadverseeffect9.6.1.2noadverseaffect9.6.1.2noeffectnoeffectnoeffectnoeffectnoeffectnoeffectnoadverseeffect9.6.2.2.1 noadverseeffect9.6.2.2.1 noadverseeffect9.6.2.2.1 noeffectnoeffectnoeffectnoeffect6.Salts'ischarged fromcoolingtowers6.1People6.2Plants'ot applicable notapplicable 6.3Propertyresources notapplicable notapplicable notapplicablc notapplicable 7.Chemicalcontamination ofroundwaterexcluding salt)8.Redionuclides discharged towaterbody7,1People7.2Plants8.1People-cxtcrnal contact8.2People-ingestion noeffectnoeffectnotapplicable notapplicable noeffectnoeffectnotapplicable notapplicable 9.6.2.2.3 9.6.2.2.3 8.4Fishnotapplicable 8.3Primaryconsumers notapplicable notapplicable notapplicable 9.6-6

TABLE.6"1CONT'DCOSTDESCRIPTION ALTEQGLTIVE CHEMICALE1VLUENTSISTERNINEMILEPOINTNUCLEARSTATIONIHGT1ExistingChemicalEffluentSystem(1)

Evaporative ChemicalEffluentSystem(2)

PrimaryImpact9,Radionuclides discharged toambientair10.Radionuclides contamination ofgroundwater11.Fogging5icing12.Raising/lowering ofgroundwaterlevels13.AmbientnoisePopulation orResourceAffected9.1People-external contact9.2People-ingestion 9.3Plantssndanimals10.1People10.2Plantaandanimals11.1Groundtransporta-tion11.2Airtransportation 11.3Watertransporta" tionI1.4PlantsI2.1People12.2Plants13.1Peoplenotapplicable notapplicable notapplicable notapplicable notapplicable noeffectnoeffectnoeffectnoeffectnoeffectnoeffectnoeffectnotapplicable notapplicable notapplicable notapplicable notapplicable noeffectnoeffectnoeffectnoeffectnoeffectnoeffectnoeffect9.6.2.2.4 9.6.2.2.4 9.6.2.2.4 9.6.2.2.4 9.6.2.2.5 14,Aesthetics 14.1Appearance noeffectbrinestoragearea9,6.2,2,6 15.Pezmanentresidu81$

ofconstruction activity15.1Accessibility ofhistorical sites15.2Accessibility ofarcheological sitesnoeffectnoeffectnoimpact9.6.2.2.7 noimpact,9.6.2.2,7 15.3Settingofhistorical sites15.4Landuse15.5Property15.6Floodcontrol15.7Erosioncontrolnoeffectnoeffectnoeffectnoeffectnoeffectnoimpactlo,8OOft2negligible noeffectnoeffect9.6.2.2.7 9.6.2.2.7 9.6.2.2.7 9.6.2.2.7 9.6.2.2.7 Refertothefollowing sectionsforadiscussion oftheenvironmental costs:1)Section9.6.12)Section9.6.29.6-7

9.7ALTERNATIVE RADWASTESYSTEMSTheexistingradwastesystemforNineMilePointUnit1willbemodifiedasdiscussed inSection3.6andwillcomplywiththelimitssetforthin10CFRPart20andtheproposedAppendixIof10CFRPart50guidelines.

Inaccordance withtheAEC's.mostrecentguideforthepreparation ofbenefitcostanalysespublished inMay1972,nootheralternative radwastesystemsneedtobeconsidered iftheproposedsystemisincompliance withtheseregulations.

Anymodification oftheproposedliquidradwastesystemwhichwouldberequiredinconjunction withtheuseofcoolingtowersorcoolingpondsduetothereducedquantityofcoolingwateravailable fordilution, areconsidered tobeintegralpartsofthecoolingsystemandaredescribed intheapplicable portionsofSection9.5.Therefore, forthepurposesofthebenefitcostanalysis, boththeexistingandproposedradwastesystemsareconsidered tobeintegralpartsofthestationdesignandarethuspresented inTable9.8-2ofthe"Alternative StationArrangements~~

inSection9.8.Detaileddescriptions andacomparison oftheenvironmental effectsofboththeexistingandproposedradwastesystemsaredeveloped inSections3.6and5.2.9.7-1 0~,1IILf 98ALTERNATIVE STATIONDESIGNSThepurposeofthissectionistocomparethebenefitsandcostsofalternative stationdesigns.Includedforcomparative discussion inthissectionaretheexistingpowerstationdesign,thestationdesignconsidered toproducetheminimumwaterimpact,thestationdesignconsidered toproducetheminimumland/airimpact,andtheproposedstationdesignforthelicenserequest.Theresultsofthesecomparisons aresummarized inTables9.8-1and9.8-2attheendofSection9.8.9.8.1ExistingPowerStationDesignThedescription, characteristics, andenvironmental effectsoftheexistingfacilityattheNineMilepointSitearepresented inthepreceeding sectionsofthisreport.However,theeconomicbenefitsandenvironmental considerations arefurtherdeveloped hereinordertofacilitate comparison withalternative systemdesigns.9.8.1.1BenefitsoftheExistingDesignThemainbenefitoftheexistingNineMilePointNuclearStationUnit1isthegeneration

'of610MWeofelectrical energytoNMPCresidential, commercial andindustrial customers.

Annualproduction ofelectricity basedonanannualcapacityfactorof85percentisabout4.54x10~kW-hours.

Thetablebelowindicates thedistribution ofelectrical poweramongthecustomers.

Thebenefittocustomers in'termsofdollarsisestimated byassumingthateachcustomergainsadollarbenefitequaltothecostoftheelectricity.

Customer.

PercentofElectricity PowerUsed-Used'.kWhr/YrRate4/kWhr++BenefitinDollars-Residential Commercial-Industrial Other27.3g1.24x10~2.62$3249x10~60.65*~~2.75x10~$44.00x10<12.1%0.55x10~$10.28x10+4.54x10>$86.77x10~+Basedon1971usage-Thishasnotbeenadjustedforgrowthofelectrical demands.++BasedontheratesofJanuary10,1972-Noadjustment hasbeenincludedforpossiblefutureratechanges.+++AscombinedinFPCAnnualReportForm1.9.8-1 fPII1I Theminimumestimateofpresentvalueofpowerbenefitsisdetermined bymultiplying thebenefitsof$86.77x10~bythepresentworthfactor,9.03,foraremaining economiclifeof22yearsandaninterestrateof9.6percent.Thisresultsinapresentvalueofpowerbenefitof$783,500,000.

Theexistingstationbenefitsthelocalregionbycontributing approximately

$3,000,000 intaxeseachyearbasedonthe1971taxrate.Thissubstantially increases thetaxbaseforarearesidents.

Inaddition, thestationoperation creates68jobsinallphasesofthestationactivities.

Thepayrollofthefacilityisapproximately

$1,020,000 peryear,andfringebenefitsestimated at$400,000areprovidedAdditional jobsarecreatedawayfromthesiteareainactivities relatedtotheproduction, shipmentanddisposalofradioactive materials.

Thestationfacilities alsoprovideeducational benefitstothegeneralpublic.TheProgressCenterhasanexcellent presentation ofthedevelopment ofelectrical energywhichattractsabout50,000peopleperyear.Thebenefit'fthisProgressCentercanbeexpressed intermsofthe50,000peoplevisitingthecenterandenjoyingthepicnicareaperyear.Buildingandoperating thepowerstationhaveresultedinmanyenvironmental studiesthatareofscientific interest.

Thefollowing studiesarepartofacontinuing efforttoevaluatetheeffectsofnuclearpowerstationsandtoconfirmtheenvironmental impactonthesiteanditssurroundings:

Aquaticsurveillance studiestoidentifythespeciesintheareaandtodetermine theeffectofheatreleasesPlanktonstudiestoevaluatetheeffectsofplantoperation ontheorganisms passingthroughthecoolingsystemMeteorological studiestoevaluatethedispersion characteristics inthesiteregionHydrological studiesLakeOntariotodetermine thedispersal ofheatinGeological studiesoftheseismicity oftheareaTerrestrial ecologystudiestoidentifythedominantfaunaandfloraoftheareaRadiological studiestomeasurebackground radiation, thepotential build-upofradionuclides inaquaticandterrestrial organisms andtomonitorstationemissions 9.8-2

Thecostofthesestudiesisapproximately

$400,000.However,someofthesestudieshaveprovidedinformation thatisdirectlyapplicable onlytothisproject.Therestofthestudieshaveprovidedinformation thatwillaidthegeneraldevelopment ofpowergeneration andprediction ofenvironmental effects.Thesestudieswhichhaveawiderrangeofscientific interestcostapproximately

$300,000,andarethebasisforestimating thescientific benefitofthepowerstation.Theultimatedollarbenefitfromthisincreased scientific knowledge cannotbeassessed.

However,forthepurposeofbenefitquantification itisassumedthatthebenefitgainedequalsthecostofthestudies.Theoperation ofanuclearpowerstationinsteadofafossilfuelunitprovidesabenefitofproducing powerwithouttheemission.

oflargequantities ofaircontaminants.

Forexample,ifanoilfiredstationweretoreplacetheexistingstation,theplantcouldemitannuallyabout3.7x10~poundsofsulfurdioxides, 1.3x10~poundsofnitrogenoxides,and0.44x10~poundsofparticulate matterunderthecleanairamendments of1970.Theseemissions areprevented bytheuseofthenuclearpowerstationandthisprevention canbeconsidered tobeasavingstotheenvironment.

9.8.1.2Economics oftheExistingPowerStationTheNineMilePointNuclearStationUnit1isanexistingfacilitylicensedunderSection104oftheAtomicEnergyActof1954,asamended,andwhichcommenced commercial operation inDecember, 1969.Thetotalcostsassociated withtheconstruction oftheexistingstationdesignareabout$164,492,000 asofDec.31,1971andserveasabasecost.Thecostsforthea1ternative stationdesignswillbepresented asanincremental costtothebasecostoftheexistingstationdesign.Thesecostswilltherefore reflecttheamountnecessary totransform theexistingstationdesigntothealternative stationdesign.9.8.1.3Environmental Considerations ofExistingDesign9.8.1.3.1HeatDischarge toWaterBodyTheheatrejectedfromUnit1throughitsonce-through coolingsystemisapproximately 4x10~Btu/hr.Effectsofthisdischarge ontheoxygenavailability, commerical andsportfishing,fishmigration, andwildlifearediscussed indetailinSection9.5.1.2.1.9.8.1.3.2 EffectsofIntakeStructure onWaterBodyThisareaofenvironmental concern-isdiscussed indetailinSection9.5.1.2.2.

9.8-3

9.8.1.3.3 ChemicalDi,scharge toWaterBodyDetaileddescriptions ofthechemicaltreatment systemsarecontained inSection3.7.Thecirculating waterdischarged fromUnit1consistsoflakewaterandtheintermittent chemicaleffluentfromthemakeupdeminexalizer associated withthemakeupwatertreatment system.Nobiocidesareaddedtothecirculating waterforcondenser treatment.

Theconcentrations ofchemicals thatarereleasedfromthedischarge systemarelistedinTable5.3-1alongwiththenaturallakeconcentrations andtheapplicable drinkingwaterstahdards.

Theseconcentrations areonlyslightlyaboveambientlakeconcentrations, andaredilutedapproximately 10timeswithlakewaterattheboundaryofa300-acreareasurrounding thedischarge point.Furthermore, theseconcentrations couldoccuronlyfor3hoursonceeveryeightdayswhenthedemineralizers areregenerated.

Whennochemicaleffluentismixedinthecirculating water,thedischarge concentrations arethesameasthatofthelake.Forthesereasons,'o adverseeffectsareanticipated onpeople,aquaticbiota,associated

wildlife, oronwaterquality.ThesanitarywastefromUnit1istreatedinasystem,described inSection3.8,thathasbeendesignedtocomplywithNewYorkStateregulations forsanitarywastes.Nodetrimental effectsareanticipated onpeople,aquaticbiota,associated wildlifeorwaterqualityfromthereleasesofthesanitarytreatment facility.

9.8.1.3.4 Consumption ofWaterThesystemsoftheexistingstationdischarge tothelakeandanexactdetermination ofwaterconsumption hasnotbeenmade.Itisexpectedthatthewaterconsumption principally duetoevaporation wouldnotexceed0.02cfsorapproximately 10gpm,asdiscussed in'Section3.4.Thisamountstoabout5.0x10~gallonsofwaterconsumedperyear.ThisisasmallamountcomparedtothevolumeofLakeOntariowhichisabout4.4x10i~gallons.Therefore, noimpactisexpectedonwaterqualityorwaterusers.9.8.1.3.5 ChemicalDischarge toAmbientAirNineMilePointUnit1isnotapotential sourceofaircontamination sinceitdoesnotutilizethecombustion offossilfuels.Theauxiliary heatingboilerwillbeelectrically firedandwillnotproduceaircontaminants.

Standbydieselgenerators willburndieselfuelwith0.7percentorlesssulfurcontentandanegligible ashcontent.Thesedieselsareusedinfrequently andarecontrolled sothatambientconcentrations ofcontaminants areinsignificant.

98-4

Theonce-through coolingsystemoftheexistingstationdoesnotreleaseanyparticulate matterintheformofdrift,andonlyasmallquantityofgaseousradwastes isreleasedfromthestack.Theseradioactive releasesandtheirimpactarediscussed inSection5.2.Also,theexistingstationhasnosourceofodorthatwouldbenoticedbeyondthesiteboundaries..

Inconclusion, thisstationhasanegligible effectonlocalairquality.9.8.1.3.6 SaltsDischarged fromCoolingTowersThisareaofenvironmental concernisnotapplicable totheexistingstationdesign.9.8.1.3.7ChemicalContamination ofGroundwaterTheexistingpowerstationhasnoreleasestothegroundfromthechemical,

sanitary, radwasteorcoolingwatersystems.Therefore, contamination ofgroundwaterisnotexpectedtooccur>>9.8.1.3.8 Radiological EffectsTheexistingliquidandgaseousradwastesystemsaredescribed inSection3.6.Theradiological effectsandtheirdetermination arepresented indetailinSection5.2.Thereisnocontamination ofgroundwaterfromtheradioactive releasesfromNineMilePointUnit1asdiscussed inSection5.2..9.8.1.3.9 FoggingandIcingTheexistingpowerstationusesaonce-through coolingsystemtorejectwasteheatfromthestation.Thiscoolingmethoddoesnotrelyonevaporation orthetransferofsensibleheattotheatmosphere, andtherefore thisstationdoesnotcreateafoggingoricingproblem.9.8.1.3.10Raising/Lowering ofGroundWaterLevelsAspreviously discussed, allliquidsystemsareisolatedfromtheground,andnoalteration ofgroundwaterlevelshasorisexpectedtooccur.9.8.13.11AmbientNoiseTheacousticimpactofNineMilePointUnit1isdiscussed indetailinSection9.5.1.2.11.9.8-5

9.8.1.3.12Aesthetics Thearchitectural description oftheexistingpowerstationispresented inSection3.1ofthisEnvironmental Report.Carefuldesignandlandscape treatment hasbeenappliedtoenhancetheaesthetic appearance ofthestation.9.8.1.3.13Permanent Residuals ofConstruction ActivityConstruction activities havebeencompleted sinceSeptember, 1969.Theexistingfacilities utilizeapproximately 45acresofthe900acresiteforbuildings, switchyard, andacessroads.Theseareasaredevotedtopowergeneration andarenotavailable forotheruses.Aspreviously discussed inSection2.2.1,thisareawasutilizedasanartillery testingrangepriortostationconstruction andtherefore wasoflimitedvalueasawildlifehabitat.Anyterrestrial-species whichwouldhavepreviously utilizedportionsofthesitenowoccupied, couldstillutilizetheremaining 855acresofthesitewhichhavenotbeenalteredbyconstruction orstationoperation.

Itisconsidered thatnopermanent residuals ofconstruction activityexistoutsidetheareautilizedbythefacility.

Thedetailsofanyfutureconstruction activities astheymayaffecttheenvironment duetoadditional modifications totheexistingstationdesignarediscussed inSection4.Inaddition, sincetherearenoknownarchaeological sitesintheareaandthenearestNationalHistorical siteisintheCityofOswego,thereisnoimpactonsuchsites.9.8.1.3.14CombinedorInteractive EffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequately indicated bymeasuresoftheseparateimpacts.9.8.2StationDesignConsidered toProduceMinimumWaterImpactAnattempthasbeenmadetoidentifyanalternative nuclearstationdesignwhichwouldresultinaminimumdetrimental effectonthewaterbody.Thisalternative designwouldemploytheexistingstationasabasedesign.Eitheranaturaldraftormechanical draftcoolingtoweroracoolingpondcouldbeusedtominimizeimpactstoLakeOntarioForthisanalysisanaturaldraftwetcoolingtowerwasselectedtocoolthecondenser coolingwatersinceitwouldalsolimitotherenvironmental effectsassociated withthealternative coolingmethods.Thechemicaltreatment systemwoulduseanevaporative systemtotreatwastesfromtheregeneration ofthemakeupwaterdemineralizer.

9.8-6 ll~t'E Theconcentrated brinefromthistreatment wouldbestoredinabrinepondandtherewouldbenodischarge toLakeOntarioofeffluentassociated with.thedemineralizer regeneration wastes.Discharges ofradioactivity toairandwaterareimprovedbyaddingtheproposedradwastesystemmodifications mentioned inSections3.6and9.5.3toassurethatallsuchdischarges arewellwithinthelimitsof10CFRPart20andtheproposedAppendixIto10CFRPart50guidelines.

Thebenefitsofthisalternate stationdesignareincludedinTable9.8-1.Theeconomicandenvironmental costsareshowninTable9.8-2.ThedataincludedinSections9.5and9.6,"Alternative CoolingSystems"and"Alternative ChemicalEffluentSystems~~

havebeenusedinderivingthealternative designwhichresultsinminimumdetrimental effectsonthenaturalwaterbody.98.3StationDesignConsidered toProduceMinimumLand/AirImpactAnattempthasbeenmadetoidentifyanalternative nuclearstationdesignwhichresultsinminimumdetrimental effectstoambientairandland.Thisalternative designwouldbethesameasthestationdesignproposedforlicenserequestasdescribed inSection9.8.5.ThedataincludedinSections3.6,5.2,and9.8.1havebeenusedinderivingthealternate designwhichresultsintheminimumdetrimental effectsonlandandair.Thequantified resultsappearinTables9.8-1and9.8-2.9.84StationDesignConsidered toProduceMinimumOverallEnvironmental EffectThetwoprevioussectionshaveattempted toidentifystationdesignsconsidered toproduceminimumeffectsonairandland,andminimumeffectsonthewaterbody.Thedesignwhichisconsidered toproduceaminimumimpactontheaquaticenvironment usescoolingtowersandanevaporative chemicaldischarge system.Thesesystemsuseappreciable landareaandhaveseveralimpactsonambientair.Asdiscussed inSection9.5.3.2.9 coolingtowerdriftmayresultinfoggingandicingwithconsequent effectsontransportation andvegetation.

Driftalsocontainssaltswhichcontribute toambientairparticulate concentrations.

Thestationdesignwhichisconsidered toproduceaminimumeffectonlandandairretainsboththeexistingonce-through coolingsystemandtheexistingchemicaleffluentsystem,butincorporates theproposedmodifications totheradwastesystem,asdescribed inSection3.6.Thestationdesignwhichwouldreduceenvironmental effectsinoneareaoftheenvironment may,inturn,produceeffectsonotherareasoftheenvironment.

Itisbutasubjective judgment9.8-7

't astowhichareaoftheenvironment ismore.significant.Therefore nofurtherattempthasbeenmadetoidentifyadesignwhichresultsinminimaloverallenvironmental effects.9.8.5ProposedStationDesignforLicenseRequestTheproposedstationdesignforlicenserequestretainsboththeexistingonce-through coolingsystemandtheexistingchemicaleffluentsystem.Theproposedstationdesigntocontrolradioactive discharges totheairandwaterconsistofthemodifications discussed inSection3.6.Thesemodifications assurethatallsuchdischarges arewithinthelimitssetforthin10CFRPart20andtheproposedAppendixItothe10CPRPart50guidelines.

ThebenefitsoftheproposedstationdesignareincludedinTable9.8-1.Theeconomicandenvironmental costsareshowninTable9.8-2.-Thedevelopment ofthesebenefitsandcostsarefoundinSections3.6,5.2,and9.8.1.98-8

~~l'llIIIIIL~1 TABLE9eS-1BENEFITDESCRIPTION ALTERNATIVE STATIONDESIGNSNINEMILEPOINTNKIZARSTATXON)T)IT1ReportDate:June1972ExistingStationDesignStationDesignthatPzoducesHin)znzsWaterDzpactStationDesignthatProducesMin)nun~A)rlnpactProposedStatic>DesignforLicenseRequestELec.Po>>erPzoducedf>Sold:Industrial d>Gccnezcial<<

Residential OtherUsesReliability Index2.75x109kvhr/yr9.8.1.11.24z109kvhr/yr9.8.1.10.55x109kvhr/yr9.8.1.19996)59.12.75x109kvhr/yz9.8.1.11.24z109)orhr/yr9.8.1.10.55x109kvhr/yr9.8.1.199.96159.12.75x109kvhr/yr9.S.1.11.24x109kvhr/yr9,S.1.10.55x109kvhr/yr9.8.1.19996159.12.75xlPkvhr/yr9.8.1.11.24z109kvhr/yr9.8.1.10.55x109kvhr/yr9.8.1.19996159.1ProcessSteanSoldEnv)ronnental Enhances>cnt

)Recreation nonepicnicareas9.8.1.1picnicareas9,8l,lnonepicnicareas9,8,1,1picnicareas9,8,1,1Navigation stackisavisualaidcoolingtoverisavisualaidstackisavisualaidstackisavisualaidAirQuality:Savingsas~dtoan610)tWOQ.FiredPoverStation:Particulates 1.3x107lb/yr9.8.1,10.44z10lb/yr9.8.1.11.3x10lb/yr9.8.11Oi44z107lb/yr9,8,1,13.7z107lb/yr9.8.1.13.7z107lb/yr9.8.1,13.7x107lb/yr9.8.1.11.3z107lb/yr9.8.1.10.44xl07lb/yr9.S.1.13.7z107lb/yr9.8.1,11.3x107lb/yr9.8.1.1044z107lb/yr9.81.1Education ResearchRegionalGzossProductLocalTaxes~ntOtherBenefits25,000PeoPIe/yr 9.8.1.125,000pecpl\>/yr 9.8.1.1$3>000,0009811<<<<<<9.8,116Sonsite9.8.1.168onsite9>8,1,1Jobsoffsite9.8.1.1Jobsoffsite9.8.1.1$1>020>000/yr 9.8.1.1$1>020>000/yr 9.8.1.125,000people/yr 9.8.1.1$300,000$1>020>000/yr 9.Salmi9.8,1,168onsite9.8.1,1Jobsoffsite9,8,1,168onsite9.8,1,1Jobsoffsite9,8.1,125,000people/yr 9.8.1.14300,000$1>020,000/yr 9.8.1.198,1,1<<AsccobinedinFPGAnnualReport-Fuzz>1<<<<SeeSection9.8.4fordiscussion ofstationdesignconsidered topzodncethenin)nuuoverallenvironuental istpact<<<<<<Anyincreaseintaxesisnot>B>sntifiablc

TABLE98-2COSTDESCRIPTIOH ALTEIQIATIVE STATIOHDESIGHSHIRENIIZPOIHTHIXKZARSTATIOHIEIIT1ReportDate:Jane15rI2ExistingStationDesignStationDesignthatProducesNizdzzunWaterIzrpactStationDesignthatProducesNhdnrzzLangdAIrI~ProposedStationDesignforLicenseRequestSUBSYSTEMS zAlternative CoolingSysteuRahrasteSystenAlternative ChenicalEffluentSystcnExistingOnce~(1)ExistingChenicalEffluentteaHaturalDraftCoolingTover(3)Evaporative ChcnicalEffluentten$51r320r000 ExistingOnceThrough(2)ExistingChezdcalEffluentteaSgr330r0cxrr""

EzistingOncethrough(2)ExistingChazicalEffluent, terap330rONZr~~

Population orResourceAffectedl.Heatdischarged 1.1Coolingcapacitytovaterbody4zIO9Btu/hr9.8.1.3.1 3,000acre-ft14x10Btu/hr9.5.3,2.1 2.2acre-ft4xIO9Btu/hr3,000acre-ft9,8,1,3,1 4zI09Btu/hr3,000acre-ft9.8.13ol1.2Aquaticbiotaccczzercial fish9.8.1.3.1 lr500lb/yrsportfish-insignificant" ccenercial fish-9,53,214lb/yrsportfish-negiigible

~~iaifish-9,8,1,3,1 1,500lb/yrsportfish-insignificant ccanercial fish-9.8,1.3.1 lr500lb/yrsportfishinsignificant 1.3Nigratozy fishnoinyaiznent 9.8.1.3.1 noI~ant9.5,3.2.1 noInyairnent 9.8.1.3.1 noinyaiznent 9.8.1.3.1 2.Effectsonvater2.1Prinaryyzoduccrs bodyofintsIce4conscaers structure audcondenser 2.2Fisheries coolingsystenlazvae-"adultsfev9.8.1.3.2 6.7x10lb/yr9.8.1.3.2 1.5x10lb/yr9.5.3.2.1 larvae-e9o5,3,21adults-veryfevIarvae-"adults-fev9.8,1,3,2 6.7x10lb/yr9.8.1.3.2 larvae-eadults-fcv9.8.1.3.2 6+7xlb/yz'Bolo3o23.Cbenicel3.1Peopledischarge tovaterbody3.2Aquaticbiota3,3Waterqualitychcnical4.Consusytion of4.1Peoplevater4.2Proyertynoadverseeffect9.8,1.3.3 noadverseeffect9.8.1.3.3 noadverseeffect9.8.1.3.3 50zlitgal/yr9Bele3e45.0zgal/yr9.8.1.3.4 48x109gal/yr953,2,45,0z10gal/yr9.8.1.3.4 4,8z109gal/yr9.5,3,2,4 5,0x10gal/yr9,8,1,3,4 5.0x106gal/yr9.8.1.3.4 5.0z106gal/yr9.8.1.3.4 noadverseeffect9.6.2.2.1 noadverseeffect9.8.1.3.3 noadverseeffect9.8.1.3.3 noadverseeffect9.6.2.2.1 noadverseeffect9.8.1.3.3 noadverseeffect9.8.1.3.3 noadverseeffect9.6.2.2.1 noalverseeffect9.8.1.3.3 noadverseeffect9.8.1.3.3 5.Chcniceldischarge tocabientair5.1Airqualitychcnical5.2Airqualityodorinsignificant 9.S.1.3.5 9.8.1.3.5 drift&.05 lb/nin9.5.3.2.5 ofsolids9,5,3,2,5 none9.8.1.3.5 none9.8.1.3.5 insignificant 9.8.1.3.5 insignificant 9.8.1.3.5 6.Saltsdischarged 6.1PeoPlefzcncoolingtovers6.2Plants6.3Propertyresources 7.Chenical7.1Peoplecontenination ofgzcrundvater7.2Plantsexcludisaltnotapplicable 9.8.1.3.6 noeffect9.8.1.37noeffect9.8.1.3.7 nctapplicable 9.8.1.3.6 notapplicable 9.8.1.3.6 ninereffect9.5.3.2.6 notapylicable 9.8.1.3.6 notapplicable 9.8.1.3.6 noadverseeffect9.5.3.2.7 noeffect9.8.1.3.7 noeffect9.8.1.3.7 noadverseeffect9.5.3.2.7 noeffect9.8.1.3.7 noeffect9.8.1.3.7 zzinoreffect9,5,3,2,6 notapplicable 9.8.1i3.6 notapylicable 9i8,1,3,6 ninoreffect9.5.3.2.6 nctapplicable 9.8.1.3.6 notayylicahle 9.8.1.3.6

/"

TABIZ9oS-2(COSY'D)COSTXESCRIPTIOH ALTERHATIVE STATIOHDESIGHSHIREIGIZFOIEHOCIZARSIATIOHIIIX'ExistingStatfcaDesignStationDesfgnthatProducesMafmmWaterImpactStaticaDesignthatProducesMinie'Afr ImpactPropose4StationDesigaRadfonuclidesdischarged tovaterbodyPopulation orResourceAffected8.1People-external contact8.2People-fngestfca 2oOmcm/yrmaxfadfvfdualvbolebodydose28ares/yrmaxindividual GIT9.S.1.3.8 0.02mcs/yr9.8,1,3,8 maxindividual 0.008mern/yrmaxiadfvidualvholebodydose0+23mern/yrmaxindividual GIT9.5.3.2.8 0.0007nrem/yr9.5.3.2.8 msxfndfvidual0.001mern/yrmaxiadividual 0.01mcm/yrmaxfadfvfdualvholebo4ydose0.35mern/yrmaxfn4fvidualGIT9.8,1389.8.1.3.8 0.01mern/yrmaxin4ividual vbolebodydose0.35mern/yrmaxfndividual GIT9.8.1.3.8 0001mern/yl9~8'y38maxiadividual 8.3Primaryconsumers external.53mrads/yrinteraal120mradk/yr9.8.1.3.8 exteraal0.02mads/yrfnteznal8mads/yr9.5.3.2.8 external0.03mads/yrinternal12mrads/yr9.8.1.3.8 external0.03mradk/yrinternal12mrads/yr9.8.1,3,8 8.4Fishexternal.27mrads/yrinternal400mrads/yr9.8.1.3.8 external0.01msds/yrintaraal7+3mads/yr9+5o3.2+8 external9.8,1,3,8 0.015mads/yrfntemal11msds/yrexternal0.015mads/yrfnteruadllmra4s/yr9,8,1,3,8 11.Fogging4icing11.1Groundtransportation 11.2Airtrsnsportatfon ll3Hatertransportation 11.4Plants9.Rcdionucfides9.1People-external discharged tocontactsuhfentair9.2People-ingestfon 9.3PlantsandanLalsRcdfonucffdcs IOrlPeoplecontsmfnatf onofgroundvater10.2Plantssadanfnals30.6~hr9.8.1.3.8 neglfgible 9.8.1.3.8 30.6mern/yr9.8.1.3.8 neglfgible 9.8.1.3.8 ncgligfble 9.8.1.3.8 noeffectnoeffectnoeffect9.8el+3,9 9,8,1,3,9 9o8,1,3,9 noeffect9.8.1.3.9 0.028mads/hr9.5.3.2.8 0.028madk/yr9.8.1.3.8 0.028mads/yr~9.8.1.3.8 neglfgfble 9.5.3.2.8 neglfgible 9.8.1.3.8 negligible 9.8.1.3.8 0.028mern/yr9.5.3.2.8 0.028nrem/yr9.8.1.3.8 0.028ares/yr9.S.1.3.8 negligible 9.5.3.2.8 negifgfble 9.8.1.3.8 negUgiblc 9,S,1,3.8 noeffectnoetfect9.8.1.3.9 noeffect9.5.3.2.9 noeffect9.8.13,9noeffect9.8.1.3.9 9e8,1,399.5.3.2.9 noeffect9.8,1,3.9 noeftect9.8.1.3.9 iasfgnificant ottsfte95329aoeffect9,8,1,3,9 noeffect9.8.1.3.9 negligible 9.5.3.2.8 negligible 9.8.1.3.8 negligible 9.8.1.3.8 noeffect95329noeffect12.Raising/12.1Peoplelowcrfngofgroundvatcr12,2Plantslevelsnoalteration 9.8.1.3.10 noalteratfoa 9.S.1.3.10 noalteration noalteration 9.5.3.2.10 noalteration 9.8.1.3.10 noalteratioa 9.81,3,109.5.3.2.10 noalteration 9.8.1.3.10 aoalteratioa 9.8.1.3.10 13.JhbfcatnoiseI3.1People4H5dBA-0houses981.3.1145<5dBA-10houses95+321145%5dBA-0houses9,S,1,3,11 45454BA-0houses98.1.31114.Aesthetics lb.lAppearance notsfgafffcatly 9.8.1.3.12 altersiteappearance visiblecooling9.5.3.2.12 notsfgnificantly 9.8.1.3.12 aotsignificantly 9.8.1.3.12 tokeraltersitealtersiteappcaraacc appearance

TARLE982(CORTrD)COSTDESCRIPTIOR ALTERRATIVE STATICSIKSIGRSExistingStationDesignStationDesignthatProducesMnimunWaterImpactStationDesignthatPzoduces)GnhzumLand/AirImpactIkeProposedStationDesignforLicenseRequest15.Permanent residuals ofconstruction activity15.1Accessibility ofhistorical sites15.2Accessibility ofazeheological sites15.3Settingofhistorical sites15.4LanduseRoimpactnoimpactnoizrpsct45acres9,8,1,3.13 nohrpact9.5.3.2.13 9.8.1.3.13 noimpact9.5.3.2.13 9'8,1,313noimpact9.5.3.2139.8.1.3.13 45acresplus9.5.3.2.13 2.3acresforthetowernoimpact45acres9.8ilo3,13 9.8.1.3.13 9,8olo3e13 9,8,1+3.13 9+8.lo3+13 noimpact9a8.1.3+13 9.8e1.3o13 9.8.1.3.13 15.5Pzoperty15.6Ploodcontzol15.7Erosioncontrolnot,aproblez9.8.1.3.13 notapzobles9.53.2.13protectica isprovided9.8.1.3.13 protection willbe9.5.3.2.13 pzovide4negligible 9.8.1.3.13 negligible 95.3.2.13negligible 9.8.1.3.13 notaproblez9,81.3,13protection wm.be9.8.1.3.13 pzovidednegligible 9,8.1.3.13 notapzoblez9,8.1.3.13 protection willbe9.8.1.3.13 pzovide4(1)Originalradrraste systeadesigndescribc4 inSection3.6(2)Upgradedradwastesysteadesignwhichmeets10CPRPARl50,Appen4ixI,fortheonce~coolingsystesdescribe4 inSection3.6(3)Radwastesystemdesignwhichmeets10CPR,PART50,AppendixI,foranaturaldraftcoolingtowersystezdescribed inSection9.5.3"Aqualitative discussion ofenvironmental costiscontained inthea~topartofSection9.0~RefertoSection9.8.4foradiscussion ofstationdesignconsidere4 toproducetheminimumoverallenvtrozmental impacta~Totalpresentvalueofupgrade4radwastesyst<<abase4ona20.1'$fixedchargerate,a6.5I(annualescalation factor,a9.6'ostofcapital,au4anamortization overthe~ining18yeareconomiclifeofthestation."~~DosesfortheExistingStationDesignonlyarebase4ontheidentified radionuclides zeleasedfzomtheRiceNilePointUnit1actual19(loperating data.

LONG-TERM EFFECTSOFSTATIONOPERATION Thelocal"short-term~~

useoftheoverallprojectinvolvesthe'seofthestationareaoverthelifeofthestation.NiagaraMohawkbelievesthattherearenonegative, cumulative, long-term effectsfromstationoperation.

Theinvestigations andstudiesoftheenvironmental effectsofstationoperation aredetailedinSection5.5.Itisbelieved, basedupontheresultsofthesestudies,thattherewillbenoinjurious effectstoaquaticspeciesdistribution orlakebottomproductivity norwillthewaterqualitybeimpairedasaresultofcontinued stationoperation.

Theheatenergycontentinthedischarge waterdecayscontinuously astheenergytransfers totheatmosphere andanycumulative heateffectsofNineMilePointUnit1effluentalonewillbeverysmall.InAppendixH,itiscomputedthatthetotalexistingandexpectedthermaldischarges intoLakeOntariofromallsourceswithinthenext10years,including powerstations,'ndustrial plants,andsewagetreatment plants,willproduceanoveralllaketemperature riseof0.08Fovertheoriginal'ndisturbed ambient.Long-range projections ofheatdischarge indicatethattheoveralllaketemperature risewillincreaseto0.28Fbytheyear2000..Superimposed ontheselong-range projection valueswillbeanadditional 0.1Friseduetoflowintothelakeatthewesternend.Ifonlytheeasternendofthelakeisconsidered, the'existing andproposeddischarges willproduceatemperature riseof0.17Foverthenext10years,andaprojected temperature riseof0.60Fbytheyear2000..Inconsidering thermaldischarge effects,thequestionoflong-terminfluence onthefishandotheraquaticlifeisoftenraised.Itisnotexpectedthatchangesinfishpopulation orcondition accruefromthethermaldischarge sincethetemperature increases aresmallandlocalized.

Inconsidering long-term effectsuponwaterqualityLakeOntariowaterisreturnedtothelakeinessentially thesamecondition asthatinwhichitiswithdrawn.

The'seofthelandonwhichtheNineMilePointUnitislocatedmaybeconsidered ashort-term useforthenormallifeexpectancy ofanucleargenerating station.,10.0-1

Concerning themaintenance andenhancement of.long-term productivity ofthe.landandadjacentwater,thepresentuseofthesiteforpowergeneration purposesdoesnotprecludeitsuseforotherproductive short-orlong-term purposesinthe,future..Amongtheseare:thepossibilities ofdevelopment forrecreational or'residential use,bothofwhichare.impractical.

orunsuitable.

atpresent..

Theresources ofwaterandlandremainessentially unimpaired

'egardless of-theshort-term useasapowergenerating station..

Beneficial usesoftheareaforindustrial purposeswillbe.reducedonlytotheextentthatthe,assimilative

.capacity oftheenvironment isreduced.NiagaraMohawkisoftheopinionthattherangeofbeneficial usesofthesurrounding environment isnotnarrowedbytheproject.Littlechange,ifany,isanticipated withrespecttowildlifeinthevicinity, orthegeneralecosystem..

100-2

SECTION11IRREVERSIBLE ANDIRRETRIEVABLE COMMITMENTS Theoperation oftheNineMilePoint"NuclearStationUnit1hasbeenconducted tominimizetheirreversible andirretrievable-commitments ofresources, materials, land,andlakebottomAsdescribed inSection4,modifications tothestationwillhavenopermanent environmental effectsfromconstruction oftheradwastebuilding.

Withrespecttolakebottom,theintakeanddischarge structures, occupying afewthousandsquarefeet,wouldprobablyremainafterretirement ofthestation.Althoughtheycouldberemoved,itwouldmostlikelybedecidedthattheworkrequiredtoremovethemwouldhavemoreofanimpactontheenvironment thantoleavethemastheywereinstalled.

Landusedforthestationcouldconceivably bereclaimed byremovalofallbuildings andotherrelatedstructures, suchastransmission towers.Thelandwouldthenreturntoitsnaturalstate.Thesmallarea(aboutthreeacres)occupiedby-thereactorfacilities couldbeplacedonpermanent restriction accessand,therefore, wouldbeirretrievably losttothecommunity.

Mostofthematerials usedtoconstruct thestationwouldbeforallpractical purposesirretrievable.

Exceptfortheconcrete, whichwouldbeconsidered lostforanythingbutsanitarylandfillorsimilaruse,mostofthematerials couldbeusedelsewhere fortheirintendedpurpose.However,thecostofretrieving themwouldusuallyfarexceedthepurchasepriceofnewmaterials.

Allstructural components ofthereactorfacilities willhavebecomeradioactive throughactivation andcontamination and,assuch,willbeirretrievably lost.Thesecomponents andotherradioactive wastesproducedandaccumulated throughout stationoperation willbeburiedonapermanently committed offsitelandarealicensedandapprovedbytheAECfordisposalofradioactive waste.Thestationpresently usesapproximately 527kilograms peryearofUranium-235.

Thisincludesthedepletion of392kilograms peryearofU-235,therecoveryof135kilograms peryearofU-235,andtheproduction of112kilograms peryearoffissileplutonium.

Studiesproposedandmeasurestakeninthedesignofthefacilityfortheprotection oftheterrestrial andaquaticecosystems willassurethattheimpactonthesecommunities willnotbeirreversible.

11.0-1 H

SECTION12ENVIRONMENTAL APPROVALS ANDCONSULTATION Theapplicant hascontinued tomaintainbothformalandinformalcontactsanddissemination ofinformation withconcerned

-partiessincetheoutsetoftheNineMilePointNuclearStationproject.Particular emphasishasbeenplaceduponconsultation withregulatory agenciesatFederal,Stateandlocallevelsregarding thevariouspermitsandapprovals necessary totheconstruction andoperation offacilities atthissite.Themajorapprovals obtainedastheresultoftheseconsultations andapprovals arelistedinTable12-1andattachedasAppendixG.Aspartofthecontinuing programofauditingfacilityoperations specificinformation regarding stationperformance andenvironment monitoring isroutinely collected.

Thisdatahasbeenmadeavailable tointerested governmental agenciesfortheirinformation anduse.NiagaraMohawkiscurrently seekingtwoadditional authorizations connected withtheoperation ofthisfacility:

(1)N.Y.StateWaterQualitycertification (Section21(b)ofFederalWaterPollution ControlActasamended)Daterequestfiled:June29,1971andOctober15,1971(2)U.S.ArmyCorpsofEngineers "RefuseAct~'ischarge permits(Section13,1899RiverandHarborsAct)Dateapplication filed:June29,1971andSeptember 30,1971Application numberassigned:

070/OX2/2/000/174 July26,1971EPAandCorpsofEngineers reviewandapplication returned:

November17,1971Application revisedandresubmitted:

June197212.0-1 r

Table12-1Regulatory andReviewProcedures Documents TitleofAuthorization, PermitLicenseAroyaletc.Source.of-IssueDateofIssue-Installation ofTemperature Measuring DevicesinLakeOntarioU.S.CorpsofNovember1962Engineers

-U.S.CoastGuardInstallation ofSubmerged CurrentMetersinLakeOntarioU.S.CorpsofEngineers

-U.S.CoastGuardAugust,1963Construction Permit-Circulating WaterSyst:emIntakeandDischarge TunnelsU.S.ArmyCorpsOctober1964ofEngineers CorpsofEngineers Con-struction PermitIntake-Discharge Structures, Tunnels,Shoreline Pro-tectionU.S.Coast.GuardNovember1964CoolingWaterDischarge PermitNewYorkStateApril1965Dept.ofHealth-BureauofWaterResources Construction Permit-NuclearStationandAssociated Facilities (CPPR-16)

U.S.AtomicEnergyCommis-sionApril1965ISanitary, SewageDisposalSystemNewYorkStateMay1965Dept.ofHealth-BureauofWaterResources StackEffluentDischarge PermitNewYorkStateApril1966Dept.ofHealth-AirPollution ControlBoardApprovals ofStackConstruction FederalAviationOctober1966Administra tion,U.S.DeptofTransportation LicensetoPossessandUseBy-Product MaterialU.S.AtomicEnergyCommis-sionJune196712.0-2

LicensetoPossessandUseSpecialNuclearMaterialU.S.AtomicEnergyCommis-sionAugust.1967Provisional NuclearStationOperating License(DPRNo.17)U.S.AtomicEnergyCommis-sionAugust1969Amendment No.2toProvisional Operating LicenseNo.DPR-17U.S.AtomicApril14,1971EnergyCommis-sionTransmission LineHighwayCrossingPermitTransmission LineHargeCanalCrossingPermitNewYorkStateDecember6,1966Department ofPublicWorksNewYorkStateApril1,1965Department ofPublicWorks12.0-3

LIST.OFREFERENCES Reference

--NoPowerAuthority oftheStateofNewYork,Environmental Report,Operating LicenseStage,JamesA.FitzPatrick NuclearPowerPlant,May.1971.

24Personalcommunication, Mr.,GordonD'Angelo, NewYork.,StateDepartment ofTransportation,

Syracuse, NewYork.,ReferralbyRobertFunk,StateArcheologist, NewYorkStateMuseum,Albany,NewYork.34Thorn,H..C.~S.,TornadoProbabilities, MonthlyWeatherReview(October-December 1963)..4~~Hubbs,C..L.,andLagler,K..F.,FishesoftheGreatLakesRegion..Cranbrook Institute ofScience,BulletinNo.26(1958)5.Beeton,A.M.,Eutrophication ontheSt.LawrenceGreatLakes.,LimnologyandOceanograph y,10(2):.240-254(1965)6~70Beeton,A.M.,ChangesintheEnvironment andBiotaoftheGreatLakes,in<<Eutrophication:

Causes,Consequences, Correctives.'!

NationalAcademyofSciences, Washington, DC.pp.150-187(1969)Dambach,C.A.,ChangesintheBiologyoftheLowerGreatLakes.,Proceedings oftheConference on-Changes intheBiotaofLakesErieandOntario.BuffaloSoc.Nat.Scipp1-17(1969)8FederalWaterPollution ControlAdministration, WatergualityCriteria, ReportoftheNationalTechnical AdvisoryCommittee totheSecretary oftheInterior, April1,1968,Washington, D.C.(1968).9Ferguson, R.G.,ThePreferred Temperature ofFishandtheirMidsummerDistribution inTemperate LakesandStreams..

J.FishRes.BoardCanada15:607-624 (1958).10Fry,~F.E.J,In"Handbook ofPhysiology,<<Edited

'byDB.Bill,E.F.Adolph,andG.C.Wilbur.AmericanPhysiol.Soc.,Washington, D.C.715-728,(1964).Gibson,E.S.andFry,F.E.J,ThePerformance ofLakeandOxygenPressure.

Can.J.drool.32:252-260,(1954).R-1

12-Henson,E.B.,AreviewoftheGreatLakesBenthosResearch.

Publ..GreatLakesDiv.,Univ.ofMichigan, 14:37-54(1966).13.Neil,J.H.andOwen,G.E.,Distribution, Environmental

~.I!-Lakes.GreatLakesResearchDivision, Univ.ofMichigan, 11:113-121(1964).14Herbst,R.P.,Ecological FactorsandDistribution ofs-'MidlandNaturalists.

82(1):90-98(1969).15.Brinkhurst, R.O.,ChangesintheBenthosofLakesErieandOntario.Proceedings oftheConference onChangesintheBiotaofLakesErieandOntario.BuffaloSoc.Nat.Sci.pp.45-71(1969).16.17.18.19.2021GreatLakesLaboratory, Interactions ofTemperature ands'uffalo,pp.1-29(1970).FederalWaterPollution ControlAdministration, Statement onWaterPollution intheLakeOntarioBasin,preparedfortheNationalResources andPowerSubcommittee onGovernment Operations.

Region5,Rochester, NewYork(1966).UnitedStatesDepartment ofInterior, FishandWildlifeasRelatedtoWaterQualityoftheLakeOntarioBasin,Aspecialreportonfishandwildliferesources, FishandWildlifeService(1969).FinalSafetyAnalysisReport(FSAR),NineMilePointNuclearStation,(June1967)Storr,J.F.,Limnology Study,NineMilePoint,LakeOntario,May1963.Kerr,J.E.,StudiesinFishPreservation attheContraCostaSteamPlantofthePacificGasandElectricCompany.FishBulletinNo.92,Calif.FishandGame,Sacramento (1953).22Weight,R.H.,OceanCoolingSystemfor.800MwPowerStation.ASCEJ.PowerDiv.PO6:84(1888):1-22.R-2 cIII~A>*P 23.24~Adams,J.R.,ThermalEffectsandOtherConsiderations atSteamElectricPlants,Res.ReportNo.6934.2-68.PacificGasandElectricCompany,Department ofEngineering Research(1968).Zeller,R.W.andRulifson, R.L.,AsurveyofCalifornia CoastalPlants,FWPCANorthwest RegionalOffice,Portland, Oregon(1970).25-26.27.Bainbridge, R.,TheSpeedofSwimmingofFishasRelatedtoSizeandtotheFrequency andAmplitude oftheTailbeat.

J.Exp.Biol.35:109-133(1958)..Weaver,C.R.,Influence ofWaterVelocityuponOrienta-tionandPerformanceofAdultMigrating Salmonids.

FisheryBulletin63(1)97-122(1963).ExhibitE,NineMilePointNuclearStationUnit2-Applicant~s Environmental ReportConstruction PermitStage-NiagaraMohawkPowerCorporation,

Syracuse, NewYork13202(June1972)28Alabaster, J..S.,EffectsofHeatedDischarge onFreshwater FishesinBritain.In."Biological AspectsofThermalPollution" EditedbyP.A.KrenkelandF.L.Parker.Vanderbilt Univ.Press,354-370(1969).29.30.Heinie,D.R.,Temperature andZooplankton, Chesapeake Sci~,10(3/4):186-209(1969)International AtomicEnergyAgency,Radioactive WasteDisposalintotheSea,IAEA,Vienna,p.137(1961).3132PanelonRadioactivity intheMarineEnvironment publication, Radioactivit in.the.Environment, NationalAcademyofSciences, p.253(1971).Eisenbud, M.,<<Environmental Radioactivity,

<<McGraw-Hill BookCo.,NewYork,(1963).33.Chapman,W.H.,etal.,Concentration FactorsofChemicalElementsinEdibleAquaticOrganisms,

.UCRL-50564, (1968).3435.Bratton,C.A.,CensusofAgriculture, OswegoCounty:Department ofAgricultural Economics, CornellUniversity, Ithaca,N.Y.,October1967(A.E.Ext.475-33),(1964).DamesandMooreGeotechnical StudiesReport,NineMilePointNuclearStation-Unit2fortheNiagaraMohawkPowerCorporation (February 11,1972).R-3

/

36.Auerback, S.,Nelson,D.,Kaye,S.,Reichle,D.,andCoutant,C.,Ecological Considerations inReactorPowerPlantSiting,IAEA-SM/146/53, (1970).37.Burnett,T.J.,HealthPhysics,18,p..73(1970).38~International Commission onRadiological Protection.

ReportofCommittee IIonPermissible DoseforInternalRadiation, 1CRPPub.No.2,Oxford,PergamonPress.(1959)39.CodeofFederalRegulations, Title10,Chapter1,AtomicEnergyCommission Part50,Licensing ofProduction andUtilization Facilities, AppendixD-<<InterimStatement ofGeneralPolicyandProcedure:

Implementation oftheNationalEnvironmental PolicyActof1969(PL91-190)

"(September 9,1971).40.U.S.AtomicEnergyCommission, "ScopeofApplicants'nvironmental ReportswithRespecttoTransportation, Transmission Lines,andAccidents,<<

(September 1,1971).41.U.S.AtomicEnergyCommission,

<<Draft-GuidetothePreparation ofEnvironmental ReportsforNuclearPowerPlants,"issuedforcommentsandinterimuse,February, 1971.42AmericanSocietyofMechanical Engineers, BoilerandPressureVesselCode,SectionIII,(1971).43.Garrick,B.J.,Gekler,W.C.,Goldfisher, L.,Shimizu,B.,Wilson,J.H.,TheEffectofHumanErrorandStaticComponent FailureonEngineered SafetySystemReliability, HN-194,HolmesandNarver,Inc.,LosAngeles,California, (November 1967).44.DesignBasisforCriticalHeatFluxinBoilingWaterReactors, APED5286,GeneralElectricCompany,SanJose,California, (September 1966)45.Horton,N.Analytical AspectsofAPED-5756, California, R.,Williams, W.A.,andHoltzclaw, J.W.,MethodsforEvaluating theRadiological theGeneralElectricBoilingWaterReactor,GeneralElectricCompany,SanJose,(March1969).46.Slifer,B.C.,andHench,J.E.,Loss-of-Coolant AccidentandEmergency CoreCoolingModelsforGeneralElectricBoilingWaterReactors; NEDO-10329, GeneralElectricCompany,SanJose,California, (April1971).

4748Garrick,B..J.,Shimizu,B.,GeklerW.C.,Wilson,J.H.,Collection ofReliability DataatNuclearPowerPlants,HN-199,HolmesandNarver,LosAngeles,California, (December 1968).Garrick,B.J.,Gekler,N.C.,Baldonado, O.C.,Behrens,E.H.,Shimizu,B.,Classification andProcessing ofReliability DatafromNuclearPowerPlants,HN-193,HolmesandNarver,Inc.,LosAngeles,California, (February 1968).4950..FailureDataHandbookforNuclearPowerFacilities, Vol.1,FailureDataandApplications Technology, Vol.II,FailureCategoryIdenitifcation andGlossary, LiquidMetalEngineering Center,Revised,(June,1970).Vandenberg, S.R.,ReactorPrimaryCoolantSystemRuptureStudy,Quarterly ReportNo.22,GEAP-10207-22,GeneralElectricCompany,SanJose,California, (July-September, 1970).51.52.Morgan,K.Z.,IonizingRadiation:

BenefitsVersusRisks.HealthPhysics17,p.539(1969).HearingsbeforetheJointCommittee onAtomicEnergy,"Environmental EffectsofProducing ElectricPower,~~January27-30andFebruary24-26,1970.,R-5

IW APPENDIXAINDUSTRIAL FIRMSINOSWEGOCOUNTY1971

APPENDIXAINDUSTRIAL FIRMSINOSWEGOCOUNTYMININGDaviesSand6GravelCo.GeneralCrushedStoneCo.FOODANDKINDREDPRODUCTSOswegoLaconaWashedsandandgravelSandandgravelMexicoMexicoBorden~sFarmProducts(Div.ofTheBordenCo.)B.W.B.Foods,Inc.(GrandmaBrown'sBakedBeans)CitrusFruitJuiceCo.FultonGeneralFoodsCorp.Fulton(BirdsEyeDiv.)McPhailCandyCo.Oswego(OswegoCandyCo.)TheNestleCo.,Inc.FultonMilkprocessors BakedbeansFruitjuicesFrozenvegetables Confectionery

products, peanutbutterChocolate productsTEXTILEMILLPRODUCTSBreneman, Inc.ColumbiaMills,Inc.OswegoMinettoWindowshadecloth,windowshades,in-dustrialfabricsBookbindings, in-dustrialfabrics,artificial leathersAPPARELANDOTHERRELATEDPRODUCTSConnKnittingMills,Inc.AlmaFoundations, Inc.OstedManufacturing Co.LUMBERANDWOODPRODUCTSA.C.DuellKennethFishAlfredPierceRaydersMillOswegoOswegoOswegoMexicoSandyCreekHannibalWilliamstown Knitsportswear andunderwear Women'sfoundation garmentWomen'scottondressesWoodpalletsSawingandplanningmillSawmillLoggingA-1 I'i,HJI' WhitingHilton6SonsCliftonD.YerdenWebbLumberCo.FURNITURE ANDFIXTURESBlountLumberCorp.Wm.P.Curtis6SonsWebb-WayWoodProductsOrwellRedfieldBernhard's BayLaconaRichlandBernhard's BayLadders,wooddowels,rollingpins,cratesLoggingSawmillInfant'sbathequip-mentWoodoffice,schoolandrestaurant tablesandchairsHardwoodproductsin-cludingwall"Plankets,"

bedslats,surveyorstakes,etc.PAPERANDALLIEDPRODUCTSArmstrong Cork'Co.BurrowsTissueCorporation Container Corporation ofAmericaHammermill PaperCo.Schoeller Technical Papers,Inc.Papertronics, Inc.(Subsid.ofHammermill)

Robertson PaperCo.(Subsid.ofNorthEndPaperSealright Co.,Inc.,Packaging (Subsid.ofPhillipsPetroleum Co.)FultonPhoenixFultonOswegoPulaskiOswegoFultonCo.)FultonFlooring, felts,fabricated industrial feltsandgasketmaterialTissuepaperCorrugated shippingcontainers, paperproductsFinepapersDuplicating papersConverted rollpaperproductsWhiteandcoloredtis-suesSanitarysingleser-vicepaperboard, plastic-coated paper-boardandallplasticpackaging including themanufacture ofpackaging machinery toform,sterilize andsealPRINTINGANDPUBLISHING AcmePlateBowerPrintingCo.TheCorsePress,Inc.EconomyPrintingCo.TheFultonPatriot,Inc.OswegoOswegoSandyCreekOswegoFultonPrintingplatesLetterpress andoff-setprintingNewspaper,

magazine, catalog,commercial printingCommercial printingNewspaper, commer-cialprintingA-2 0

Holstein-Friesan World,Inc.D.F.JamesPrintingCo.LincolnPrintingCo.MexicoIndependent, Inc.(OswegoCountyWeeklies)

W.P.MitchellPrintingCo.TheMorrillPressOswegoPrintingCo.,Inc.OswegoValleyNewsPalladium-Times, Inc.ThePhoenixPressPoisonPress'ontiacPhotoEngraving Co.PulaskiDemocratPublishing Co.ToddBros.CHEMICALS ANDALLIEDPRODUCTSSandyCreekOswegoFultonMexicoOswegoFultonOswegoFultonOswegoPhoenixFultonOswegoPulaskiOswegoPrintingandpubli-shingCommercial printingCommercial printingNewspapers, catalogsCommercial printingFlexiblepackaging, printingandconver-tingCommercial printingWeeklynewspaper Dailynewspaper, letterpress andoff-setprintingLetterpress andoff-setprintingCommercial printingPhotoengraving, flatandwrap-around Weeklynewspaper, commercial printingCommercial printingEverbrite Paints,Inc.MinettoPaints,varnishes, industrial finishesPETROLEUM ANDCOALPRODUCTSAlliedChemicalCorp.LoganLongCo.Tri-State PaintCo.FultonFultonFultonBituminous concretepavingmaterials Asphaltslateshing-les,roolroofing,plasticsandcoatings, asphaltpaintsAsphaltproductsforroofingandindustrial useSTONEiCLAYANDGLASSPRODUCTSHuronPortlandCementCo.,Inc.Marsellus CasketCo.,Inc.(Subsid.Marsellus Vault6SalesCo.)MassaroCo.,Inc.OswegoValleyCon-structors, Inc.OswegoMexicoFultonMinettoPortlandandmasonrycementConcretevaultsBlocks,sandandgravelPrecastmasonryformsA-3

PRIMARYMETALSAlcanAluminumCorp.ScribaAluminumrerollandplatestockFABRICATED PRODUCTSAluminumProductsCorp.FultonCoppexweld SteelCo.(Flexo-Wire Div.)OswegoFosterBros.Cutlery,Inc.FultonBoilerWorks,Inc.FultonSheetMetalWorksFultonPulaskiFultonJSKBoilerCo.,Inc.OswegoOswegoCastingsCorp.(Subsid.Oberdorfer Foundries Inc.)OswegoSectional Structures, Inc.Williamstown Irrigation Inc.OswegoWilliamstown MACHINERY (exceptelectrical)

PulaskiMetalProducts, Inc.PulaskiMetalstampings, drawnaluminumcans,tubes,screwcapsandclo-sures,shieldcoversFlexiblecables,finesizesofcoppercoveredsteelwire,copper,bronzeandothermetalsButcherknivesandcleaversSteamboilersSheetmetalfabrica-tionBoilers,heatingandplumbingsupplies, sheetmetalfabri-cationAluminumpermanent molds,aluminumdiecast-ingsHighspeedandcarbiderotaryfilesModularstructures Irrigation systems(p3.peqpumpsgfEt-tings),wheelchairs,walkers,canes,aluminumconveyors Black-Clawson Co.,Inc.(DiltsDiv.)Bud-AirCo.,Inc.Car-WellCorp.FultonPulaskiPhoenixPaperandplasticsmachinery andstaticregenerative electricdrivesAirpoweredtreepruners,accessories andparts,compres-sors,airchainsaws,unloaders, greasegunsMachineshop,experi-mentalwork,specialequipment A-4

OswegoPackageBoilerCo.,Inc.(Cyclotherm Div.)D.K.Machine6ToolCo.,Inc.OswegoFultonFultonMachine6ToolCoFultonIndustrial Precision

Products, Inc.(Kingsford Foundry6MachineWorks)Lagoe-Oswego Corp.LeppertMachineToolCo.,Inc.MacCordyMachineTool8DieCorp.OswegoOswegoFultonFultonNorthernSteelCorp.FultonManufacturing Div.(RMPCorp)OswegoFultonOswegoSheetMetalWorks,Inc.PhoenixGageCo.OswegoPhoenixSawyerFoundryandMachineWorksWestSideMachine8Tool,Inc.MinettoFultonBurtonG.Cross,Inc.PhoenixPorterCableMachineCo.Pulaski(Subsid.Speedmatic Research8Equipment Corp.)ReydunKnife-Machine Co.FultonPackagedsteamgene-ratorsproduction machining, specialmachinery andmachineshopPrecision, experimental tools,jigs,fix-tures,diesMachineshop,cen-trifugalpumpsMachineshop,specialmachinery Toolsanddies,specialmachinery Tools~dies~gzgfixture,gages,specialmachinery Steelfabrication Papermillandlabo-ratoryproduction machinery andcon-vertingequipment Conveyors, belts,screwfeeders,ven-tilationcomponents MachineworksandgagesConcreteandmortarmixers,firingpinsandassemblies Machineknivesforpulpandpaper,agriculture, steelandwoodworking vises,grayironcas-ting,snowplowshoesMachinedesign,de-'velopment andpro-ductionPapermachinecylin-dersanddandyrollsPLASTICSANDRELATEDPRODUCTSElconPlastics, Inc.OswegoPlastics, Inc.EmpireSignCompany,Inc.OswegoOswegoFulton,PlasticsignsSiliconeandrubberwaxpadsandmiscel-laneoussiliconemouldedproductsplasticandmetalsignsA-5

MISCELLANEOUS MANUFACTURING INDUSTRIES PearsonInstrument Co.Pollution Abatement ServicesofOswego,Inc.FultonInstrument Co.,Inc.(DivofWillRoss)PulaskiOswegoFultonScientific instruments Incineration ofliquidindustrial wasteClinicalthermometers INDUSTRIAL SERVICESThereisawidevarietyofindustrial servicesavailable toOswegoCountymanufacturers providedbyfirmslocatedwithintheCounty.Servicesincludeaccounting, architecture, contracting (generalandspecialized),

industrial oilsandgases,businessandmanagement consulting, truckingand.otherspecialities.

Inaddition, Oswego~spositionontheperiphery oftheSyracus-OnondagaCountyindustrial complexprovidesrapidaccesstoitsmanyindustrial servicefirms.Preparedby:Operation OswegoCounty,Inc.22WestVanBurenStreetOswego,N.Y.13126A-6 A,1'C APPENDIXBINVENTORY OFGAMESPECIESINOSWEGOCOUNTY

APPENDIXBINVENTORY OFGAMESPECIESOSWEGOCOUNTY~seciesAbundance Management Potential.

GameRangeZonesSee.Fire-B-1Cottontail RabbitHigh-popu-Goodonextensively lationsManagedclearlandfluctuate A,BandWesternCGreySquirrelRingneckPheasantRuffedGrouseGenerally lowlocallyhighGenerally lowlocallyhighHigh-popu-lationsfluctuate Limitedtowoodlotscontaining beech,cherryandoaksGoodonintensively cultivated rowcroplandLimitedtoclearingedgesandnewhard-woodforestsonidlefarmlandA,BandWesternCA,moresparseinBCounty-wide, huntedmainlyinCandDWoodcockModeratelocallyhighLimited-Birdsaremigratory.

Poorpasturemanagement attractsflightbirdsinfallCounty-wide-StreamvalleysandbrushyswampsVaryinghareWaterfowlHigh-popu-lationsfluctuate HighGood-Extensive coniferplantations concentrate haresinwinterGood-Population andhabitatmana-gementtechniques arewellestablished C,D.Anareaofintermingling withcottontail rabbitsoccursalongWesternCHighestinA6B.SomewhatmorelimitedinCMuskratsHighGood-Registered marshprogrampro-vides,for localmanagement onpri-vatemarshesCounty-wide.

BesthabitatinAandB I'

JCFFCNSON COUNTYOS'NCOOCOUSANOTCNCCXJONNCLLNINEMILEPOINT.NUCLEARSTATIONINCNNAYCN)NCXICOSCINSAALSIONgl".<ah/Wu.IANSTONNQONSTSHANNISALLTULTON:ls~lgII1OSWCOOCOUIITYONCSIOAOA COUNTYci/hALCANO///SCNNCCSKL HASTSISS/////CCNTNAL///TLOSCNCC

///r-/CONSTANTIA

//jl~S////CANDCNFIGUREB-IGAMERANGEZONEOSWEGOCOUNTY

~secies.Abundance.

Management Potential.'.

GameRangeZonesSeeFire-B-)..MinkModerateLimited-Population management possibleonmarshesbutstreampopulations limitedbyamountofgoodqualitystreamCounty-wide.

BesthabitatinAandBWhite-tailed LowdeerLimited-DeepsnowmajorlimitingfactoronTugHill.Peopleanddogsmajorproblem,elsewhere incountyCounty-wide.

BesthabitatCMostcommon,DBeaverModerateGood.Currently acounty-wide nuisanceproblem.HighvaluefurbearerCounty-wide RedFoxModerateGood.Currentsocialattitudeprecludes goodrecreational use.LowvaluefurbearerCounty-wide.

BesthabitatinclearedlandsBobcatOtterLowLowGood.Currentsocialattitudes nowpermitgoodrecreational useofthisfinegameanimalLimited.Dependent upongoodqualitystreamsD.AsforestsdevelopinC,thisshouldalsobecomeoptimalCandDFisherLowLimitedtolargetractsofnatureforestC(increasing)

RaccoonModerateLimited.Prefersswampforestsnearvegetable operations inOswegoCounty.LowvaluefurbearerCounty-wide.

BesthabitatfoundinAandBB-2

~SeciesCoyoteAbundance-LowManagement Potential Limited.Socialat-titudesgreatlypre-judiced.Easilytrappedbyskillfulpeoplebutdifficult tohunt.Mistakenly identified asdan-'erous deerpredatorGameRangeZonesSeeFiureB-1CandDB-3

~p APPENDIXCINVENTORY OFHISTORIC'ATURAL, ANDSCENICSITESINOSWEGOCOUNTY I(4 APPENDIXCINVENTORY OFHISTORIC(H)gNATURAL(N)gANDSCENIC(S)SITESMapNoi~Nameor~XdenhihOswegoCityLibrary(H)

Town.OswegoHicih~aDescription andPresent-Use-NationalHistoricSite.Notablearchitecture andoneofoldestcon-tinuallyusedcitylibraries inthecountry.GiventoOswegobyGerritSmithin1855.FortOntario(H)OswegoMarketHouse(H)OswegoOswegoMainentranceviaEast7stSt.Builtin1755,firstEnglish.footholdinallGreatLakesregion.Statehistoricsite.JusttotheeastisoldmilitarycemeterydatingfromFrenchandIndianwar.Builtin1835,itisunderconsideration asaNationalHistoricSite.FortOswego(H)OswegoCornerofWest1st6VanBurenStreetsBuiltbyBritishin1727anddestroyed byFrenchin1756.Sitemarkedwithstonemarker.OswegoHarbor(H)

OswegoEast1stStOswegoharboristhemostimportant portontheAmericansideofLakeOntario.Herethrivedatremendous watercommerceandanextensive millingindustryinthelatterhalfofthe19thcentury.

MapNameorwo.-~xodent~~

.Town"HicihHwar.Description andPresent.Use-6FortHastingsBrewerton(H)

US-11atnorthsideofOneidaRiverFortwasbuiltbytheBritishtoguardthesupplyroutefromAlbanytoFortOntario.Reputedoutlineofthefortification maybeseen.BattleIslandGranbyStatePark(H)SpyIsland(H)

MexicoNYS-48NYS-104BSiteofskirmishbetweenBritishsupplyforceandaFrenchandIndianscoutingforceattempt-ingtocutoffthefortsatOswegoin1756.IsnowaStateParkwith18-holegolfcourse.SpyIslandatthemouthoftheLittleSalmonRiveristhelocationofthegraveofSilasTowne,Revolutionary WarspyforGeneralWashington.

ArthurTavern(H)MexicoCo.Rt.16Builtabout1839byAlexDanby.,Stillinuseasatavern.10Allen-Conklin MexicoHouse(H)5284ChurchStMexicoNeo-classical housein1842byWarrenAllen,stillinuseasaresidence.

11Chandler-Brown-Roop-House(H)MexicoNorthSideofMainSt.atChurchStMexicoGeorgianstonehousebuiltbyPeterChandlerin1838,stillusedasaresidence.

12ShubalandMexicoLucindaAlfredHouse(H)WestMainSt.(exten-sion)MexicoOldesthouseinMexico.Builtabout1811,nowpartofalargerresidence.

C-2 pg'j~P<v'V\Pg7l4IPI" MapNameorNo~Identit13Colosse(H)TownMexicoHicih~aUS-11Description andPresentUse-.-Townhastheoldestchurch(stillstanding) inOswegoCounty.Townisnotedforitscheese.14FruitOswegoValleyCommunity (H)15SelkirkRichlandLighthouse(H)

US-104WestNYS-3Community containsgrave-yardwithburialplaceofDr.MaryWalker,notedfeministandwinnerofCongressional MedalofHonorforservingasaCivilWarNurse;andahousereputedtohavebeenastationontheUnderground Railroadaidingtheescapeoffugitiveslaves.Builtin1828inexpec-tationofdevelopment ofamajorlakeportatmouthofSalmonRiver.Despiteearlylumbertrade,permanent com-.mercialgrowthneverfollowed.

Nowafishing,boating,andcampingarea.16CountyCourtRichlandHouse(H)Court8Jefferson

'Sts.iPulaskiBuiltin1819,rebuiltandenlarge'd in1859.Stillinusetoday,itsharesCourtdutieswithOswegoCourtHouseinOswego,NewYork.OneofonlytwoexistingdualCourtHousearrangements inNewYorkState.17VillageofSandyLacona(H)CreekCo.-Rts.48622Birthplace ofI.J.Case,inventorofthereaperwhichrevolutionized grainharvesting.

C-3 JII MapNoeNameor~IdentitTown-Hicihwar.Description andpresentUse-18GeorgeScribaConstantia House(H)NYS-49BuiltinConstantia during1792byScriba,whohadpurchase499,999acresofpubliclandsfor$1.00anacrewhichlaterbecameOswegoCounty.Heiscreditedwithhavingdonemoretodeveloptheregionthananyothermanoftheearlydays.Frenchman

'Island(H)ConstantiaOneidaLake1milenorthofSouthBaySettledbyDesVatinesFamilyfromPrancein1791.Atonetimearesortlinkedbysteam-boattoOneidaLakePort.s.20Cleveland(H)

Constantia, NYS-49Villagewithathrivingglassindustryintheolddays.Cleveland glassware isnowindemandbycollectors.

21LittlePrance(H)HastingsCoRts.846'37Atinycommunity settledbyacolonyofpeoplefromPrance.Interest-ingcemeterylocatedthere.22RailCity(H)SandyCreekNYS-3Oneofthenation'smostcompleterailroadmuseums.23VanBurenHouseandVanBurenTavern(H)VolneyNYS-57atVanBurenDr.JohnVanBuren,cousinofMartinVanBuren,hiswifeandfoursonsbuilttavernandbrickneo-classifical struc-tureonOswegoRiverShoreatFulton,NewYorkin1796.SecondfamilytosettleinFulton.

I~~

MapNameorNo.~IdentatTownDescription andHiciHhwa~PresentUse24TugHill(N)Redfield,Boylston, OrwellandWilliams-townCo.Rt.17Heavilyforestedlowhillsandridgesover1,000ftinelevation.

Thisistheultimateinwilder-nessformanypeopleandaboundswithnumerousspeciesofwildbirdsandanimals.25NorthandSouth(NiS)SandyCreekCtRt15Long,narrowstripofundeveloped sandbeachseparates NorthPondfromLakeOntario.26KasoagLakesWilliams-townCo.Rt.30Scenicseriesofsmalllakes.27SalmonRiverOrwellFalls(S)FallsRoadPicturesque waterfalls knowntobehigherthanNiagaraFalls.28MadRiverFalls(S)RedfieldPicturesque waterfallsinundeveloped wilder-nessarea.29BeaverMeadowsMucklandRegion(S)

Schxoeppel BarnardRoad400acresofdeveloped muckland.

Especially scenictopeoplewhohavenotseenlargeareasofthisrichblacksoil.30HappyValleyParish,GameAlbion,Management Williams-Area(N)townandAmboyNYS-126The8,620acresare75%coveredwithhardwoodandconiferforest.Theremaining acreageismaintained openfields,greenstrips,managedwildlifemarshes,andponds.Manyspeciesofwildlifearepresent.C-5

MapNO431Nameor~1dentitLittleJohnGameManagement Area(N)RedfieldandBoylstonDescription andHicih~a.Present.Use.Ct.Rt.17The8,020acresare90$coveredwithhardwoodandconiferforest.Theremaining 10$oftheacreageisbrushyfields,oldbeavermeadows,andswamps.Manyspeciesofwildlifearepresent.32ThreeMileWestMonroeToadBayGameandHarborManagement Constantia RoadArea(N)Theareaconsistsof2,300acresofswampforest,oldfield,500acresofformerlyclearedmuck-landandopenmarsh..Theareawillsoonbemanagedintensely forwaterfowl production.

33PeterScottSchroeppel.

Swamp(N)SwampRoadSeveralhundredacresofundeveloped marshland.

C-6 eNg 4ANOYCACCNhH..<<JKSFCRSON tOSTYCGO4OYLSTONLAOONAliNCOTICLO3IN28Sl5H04WCNINEMILEPOINTNUCLEARSTATION4NCWNAVCN)&XICOH(OHIIHI,)~g/AALCANOL7/NANNIAALLTIJLTONll.OSWEGOGOINTYONONOAGAGOLNITY/'f-2QSClCCNTNAI.4OOANT)i//7tNANNWAL~CRANNY7Hil7HJONWCLLI~IRASNI16JI27$/ALOIONtALTNAN/~~I42AIN//WILLIANSTOWN I~26$f/TLOACNCC

//r-~/CONSTANTIA

//Sl"VICNNA~CAATtIOAl9HLitt30NRANIWI~~J//NANISN/CANOCNFIGUREC-1OSWEGOCOUNTYSHOWINGHISTORICAL, NATURALORSCENICSITES

'\

APPENDIXDMETEOROLOGICAL DATASUMMARIES ATNINEMILEPOINTNUCLEARPOWERSTATION

NNWNNENWNEWNWENEI0%20'/o"30o/o707ALW/rVDJANUARYWSWESESWSESSWSSEMI-IOMPH'Il-20MPH2I-IOOMPH'NWNNENWNEWNWENE20%I0%30%TOTA/W//I/DFEBRUARYWSWESESWSESSWSSCNOTE:NINEMILEPOINTWEATHERDATAFIGURE0"IAVERAGEWINDROSESJANUARY6FEBRUARYl963-l964NIAGARAMOHAWKPOWERCORPORATI0N I

NNWNNENWNEWNWENEl0%20%30%TOTALJVINDMARCHWSWESESWSESSWSSEMI-IOMPHII-20MPH2I-IOOMPHNNWNNENWNEWNWENE20%l0%30'OTALWIA'DAPRILWSWESESWSESSWNOTE!NINEMILEPOINTWEATHERDATAFIGURED"2AVERAGEWINDROSES~MARCH6IAPRILl963-l960 NIAGARAMOHAWKPOWERCORPORATION

~I NNWNNENWNEWNWENEWI0%20/o30o/oTOTALO'INDMAYWSWESESWSESSWSSEMI-IOMPH'll-20MPH2l-IOOMPHNNWNNENWNEWNWENEIO'/ZOo/o30%TOTALlVINDJUNEWSWESESESSENOTE:NINE'ILEPOINTWEATHER~AAFIGURED-3AVERAGEWINDROSESMAY6IJUNEl963-I964 NIAGARAMOHAWKPOWERCORPORATION ICfl~k/~~14,14T~1CfI~V NNWNNENWWNWENEI0%20%30%TOTALJf'INDJULYWSWESESWSESSWSSEIOMPHII-20MPH2I-IOOMPHNNWNNENEWNWENEIO/20%30~/oTOTALiYINDAUGUSTWSWESESWSESSWSSE'OTE:NINEMILEPOINTWEATHEROATAFIGURED"4AVERAGEWINDROSESJULY6IAUGUSTI963-I964NIAGARAMOHAWKPOWERCORPORATION 1'4~Jl NNWNNENWNEWNWENEI0%50%20oTOTALWINDSEPTEMBER

'SWESESWSESSWSSERIIOMPH'II-20MPH2I-IOOMPHNNWNNENWNEWNWENEI0%20o50%TOTALWINDOCTOBERWSWESESWSESSWSSENOTE:NINEMILEPOINTWEATHERDATA,FIGURED"5AVERAGEWINDROSESSEPTEMBER 6OCTOBERl965"l964 NIAGARAMOHAWKPOWERCORPORATION

'rIf'J(

NNWNNENWNEWNWENE104/,30oI20%TOTALWINDNOVEMBERWSWESE,SWSESSWSSEI-10MPHII20MPH21-100MPHNNWNNENWNEWNWENE20oIo10oI30oIoTOTALWINDDECEMBERWSWESESWSESSWSSENOTc..MILEPOINTWEATHERDATA.FIGURED-6AVERAGEWINDROSESNOVEMBER6DECEMBERl963"l964NIAGARAMOHAWKPOWERCORPORATION lt t2+I4.04Jcc:0Icu0ocv4JI-cl5cilCL4IX4JcJJCL-20246'IOI2I4I6I8202224HOURSJANUARY63-64t2+I404JolcJIcuocu4JI-CIzoCJJ4J4JcllCL-20246-8IOI2I4I6IS202224HOURSFEBRUARY63-64NOTE:NINEMILEPOINTWEATHERDATAFIGURE0"7AVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION

+2+ILL.0LUIL:0Nl<<CI0OCULUI-ChtLLUXLUEOLL.02468IOI2I4I6I8202224HOURSMARCH63-64+ILL.0LUoDI(vLU0cuLUICIOCOLLLURLUChLL.-202468IOI2I4I6I8202224HOURSAPRIL63-64'NOTE:NINEMILEPOINTWEATHERDATAFIGURE0-8AVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION

+ILJ.0wff0IOOlwI-<<IOElfffwX-2024'8IOI214HOURSMAY63-64I618202224t2+ILL0woI-CVW0O.ofwI-<<lzOCOLIJwV)0-202468LOI2l4l6IS202224HOURSJUNE63-64NOTE:NINEMILEPOINTWEATHERDATAFIGURED-9AVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION

+2+ILL4ICL:0IclILL.0NWI-CIILL:4JXLUcoLL.-2,"'2468IOI2l4l6IS202224HOURSJULY63-64+ILL0LLIOIcuwOcuUJI-<<7IIROco4JKIIJcilQ.<<C-202466I0I214I6IB202224HOURSAUGUST63-64NOTENINEMILEPOINTWEATHEROATAFIGURED-IOAVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION "C'I

+III.0LJJCL0IOILIJ(400C4LIJI-ROCOCLLIJIJJCOCJ.202468IOI2I4I6I8202224HOURSSEPTEMBER 63-64t2+ILI0LJJoIOI-C4LIJ0LIJI-clROCOLIJR02468LOI2I4I6IS202224HOURSOCTOBER6'5-64NOTE:NINEMILEPOINTWEATHERDATAFIGURE0-IIAVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION

4'2+I4.04Jcc0IOIcuOCIILIJclVJIJ:4JX4JVJQ.-202,468IOI214I6I8202224HOURSNOVEMBER63-64+I40LIJCJ:IOICII4J04JI-CIOV)LLIz4JV)a.I6I820222402468IOI2I4HOURSDECEMBER62-63Decemberdatabasedon62plus63data(64dataunovaItabte becauseofInstrument malfunction)

NOTE:NINEMILEPOINTVjtEATHEROATAFIGURED-I2AVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION 0

APPENDIXEPLANTANDANIMALSPECIESOBSERVEDATNINEMILEPOINTNUCLEARPOWERSTATION

APPENDIXEPlantsandAnimalSpeciesObservedatNineMilePointNuclearPowerStationPLANTSAbandoned.

Pamilkweedchicorybuttercup daisyQueenAnne~slacegoldenrod asterragweedthisselpokeweedpurplenightshade blackberry raspberry yarrowlilachawthornpoplarapplepearredosierdogwoodscotchpineburdockredcloverfoxtailorchardgrassstaghornsumacstrawberry stures.adOrchard-(Ranunculus sp.)(Chrsanthemum-3.eucanthenum (Dancescarota)(Aster-sp.)L(Cirsiumsp.)(Solanumdulcamara)

(Rubus-sp)(Achillea millefolium)~Serioavulcuaris)

(~Poulussp.)~prusmalus)(~prus~cmmunis)

(Comusstolonifera)

(Arctium~laa)(Trifolium

~ratens(Setaria-sp.)

s(Rhus~thing)OverrownlandThepreviously mentioned following woodyspeciesplantsarebeingdominated bytheredcedaralderhawthornPoplarstaghornsumacapplepear(Alnussp.)(~Poulus.sp.)(Rhus~thing)(~prus~mlus)(~pruscommunis)

E-1

willowarrowoodmeadowsweet groundpine grape(Salix.sp.)(Viburnum sp-)te'-1-'Vitis~sp)Northernhardwoodforest.TreeswhitebirchyellowbirchblackcherryhemlockwhiteashblackashbeechPoplarredmaplesugarmapleredoakmusclewood Ironwoodwallow(Setula~utes)(Prunus.serotina)

(TTsuaacanadensis)

(Fraxinus nina)(~poulus.sp.)(Acerrubrum)(Acersaccharum)

(()nereus rubra)'"""')t-'um~(Salixsp.)Groundcoverfive-leafed ivypartridge berryfernspoisonivycanadamayflower (Nitchella

~reens)(Polypodiaceae)

(Rhustoxicodendron)

(Maianthemum canadense)

Powerline rihtfwaMulleingoldenrod QueenAnne'sL'aceredcloverthisselpincherrystaghornsumacredosierdogwoodraspberry blackberry hawthornmeadowsweet arrowoodrushsedgeswhitesnakeroot butter-and-eggs smartweed (Daucuscarota)(Trifolum

~ratens)(Cirsiumsp.)(Prunusennslvanica)(Shun~thing)(comusstolonifera)(Rubussp.)(Rubusalleheniensis)

(~Sirealatifolia)

(~Viburnu

~s.)(Juncuseffusus)(Cyperaceae)

(Linaria~lqaris)E-2

brackenfernsensitive fermpurplenightshade purpleloostrife pokeweedteaselcottailcardinalflowerjewelweed (Solanumdulcamera)

(~~halatifolia)(Lcbeliacardinalis.

KVERTEBRATE ANIMALSBirdsred-tailed hawksparrowhawkkildeerkingbirdbaltimore orioleyellowshaftedflickerrobinbluejaywhite-breasted nuthatchmourningdovegoldfinch ruffedgrousepurplegracklecrowred-winged blackbird Easternmeadowlark (zcterus)(albula.

)~sinustristis>(Bonasa-umbellus)

(Corvus.brachrhchos-Mammals.white-tailed deercottontail rabbitchipmunkvoleOdocoileus viriniana)Slvilasfloridanus-(Tamias~triatus) watersnake snappingturtle~Retiles(Natrix~siedan)grassfroggreenfrog(Rang~iiens(Rangclamitans)

E-3 Nf APPENDIXFSTUDIESCONDUCTED ASPARTOFNINEMILEPOINTIAKESURVEILLANCE 0

1964-1969

~APPENDIXFSTUDIESCONDUCTED ASPARTOFNINEMILEPOINTLAKESURVEILLANCE EstimateoftheEffectsofWaterCurrentPatternsonthePlacement oftheIntakeandOutflowStructures fortheProposedPowerPlantatNineMilePointSupple-mentalReport¹1Temperature LakeWaterSamplesLimnological Studies1964Limnological Studies1964(Summary)

DilutionFactorThermalEffectsonAquaticOrganisms PhysicalFactorsAffecting Zooplankton Composition andDistribution inEasternLakeOntarioSummaryofVariousAspectsoftheDisper-sionofHigherTemperature WaterandThermalEffectsonAquaticOrganisms Discussion ofDilutionFactoratOswegoWaterIntakeSeasonalFluctuations ofElementsoftheZooplankton Population inLakeOntarioLimnology ReportLimnology Report,DilutionofEffluentonRisefromDischarge Structure Biological ProgramAnalysesofDr.Storr'sChapteronDilutionBiological StudiesCarriedonatNineMilePointAreaTemperature Variation withDepthJuly-September 1963April1,1964May15,1964May28,1964May28,1964June-October 1964December1,1964December10,1965January4,1966December22,1966December22,1965January7,1966June26,1968F-1

~ReortTemperature Profile-NineMilePoint(ProfileoftheTemperature fromMay1toNovember1usingdatafrom1964and1963combined)

Date-ofStudOctober15,1968SummaryofReportsandStudiesSubmitted August4,1969toNiagaraMohawkPowerCorporation WhichContainMaterialRelatedtoThermalEffectsSummaryofEcological andEcologically RelatedStudiesinLakeOntarioOfftheNineMilePointNuclearPowerStationFishDistribution Study,NineMilePoint,July27,1968Ecological BenthicStudyoffNineMilePoint,LakeOntario,August12-16,1968December15,1969December15,1969December15,19691970-FishNetStudyYellowPerchFoodPreference AnalysisNitrateandTotalPhosphorus StudyFishDistribution StudyBenthicStudyFishDistribution StudyFishNetStudyYellowPerchFoodPreference AnalysisPreliminary Temperature SurveyFinalTemperature SurveyFishNetStudyFishDistribution StudyYellowPerchFoodPreference AnalysisMay26-29,1970May26-29,1970May29,1970May28-29,1970June26-28,1970July9-10,1970July8-11,1970July8-11,1970July22,1970July22,1970August.18-22,1970August18-20~1970August19~1970

BenthicStudyTemperature Survey~ReortTemperature SurveyTemperature SurveyTemperature SurveyFishDistribution StudyFishNetStudyYellowPerchFoodPreference AnalysisDate.ofStudAugust14-20,1970August141970August16~1970September 23,1970October21,1970October21-23,1970October21-24,1970October21,19701971FishSunearyReportFishFoodPreference StudyFishNetStudyFishDistribution StudyFishNetCatchStudyFishFoodPreference StudyBenthicStudyMarch13,1971June1-2,611-12, 1971June'1-12,1971June1-12,1971June29-July2,1971June29-July2,1971July7-12,1971Physiological FactorsAffecting Zooplankton June-October 1964Composition andDistribution inEasternLakeOntarioPlanktonStudies-NineMilePointNuclearStationFishNetCatchStudyNineMilePointBenthicStudy,NineMilePointFishDistribution StudyNineMilePointFishDistribution Study,NineMilePointJune14-17August17-20August31toSeptember 1June30-July1June30-July1PlanktonStudy,NineMilePointJuly1,1971F-3

~ReertPlanktonStudy,NineMilePointNuclearPowerStation$1DateofStudJuly14-15,1971PlanktonStudy,NineMilePointFishDistribution, NineMilePointPlanktonStudyFishFoodPreference StudyFishFoodPreference StudyPlanktonStudy,NineMilePointJuly29,1971August,17-19,1971August.16'971August,17-20'971November2,4,6,1971August24i1971PlanktonStudy,NineMilePointFishDistribution Study,NineMilePointThreeDimensional ThermalStudiesOctober9,1971November1,2and5,1971February15,1972

POWERAUTHORITY.

OFTHESTATEOFNEW.YORK.REPORTSLISTEDBYTITLEANDDATEDate.ofIssue-December, 1969Title.LakeStructure, Hydrothermal EffectsandEcological ReportoftheJamesA.FitzPatrick NuclearPowerPlantDecember, 1969November1,1969September 2,1969August'.3,1970September 2,1969July31,1969June,1970June15,1970May,1970August25,1969February, 1970November10,1969FishDistributi.on StudiesUsingFathometric TracingRecordsNineMilePoint,Summer1969Ecological BenthicSurveyoffNineMilePoint,August11-15,1969Ecological BenthicSurveyoffNineMilePoint,June9-19,1969SummaryofFishNetStudiesfor1969forPASNYFishNetCatchReportforNineMilePoint,October7-10,1969FishNetCatchReportfromNineMilePoint,August12-15,1969FishNetStudiesoffNineMilePointJune1969forPASNYNitrateandTotalPhosphorus StudyoffNineMilePointArea,August13,1969PASNYSupported Cladophora Study:CommentsonPASNYSupported Cladophora StudybyGreatLakesLaboratory Great.LakesLaboratory

-Interactions ofTemperature andLightontheGrowthandReproduction ofCladophora Glomerata (L.)KutzJune-August, 1969NitrateandPhosphate StudyoffNineMilePointArea,August13,1969Cladophora StudyforPASNY.Supplemen-talReportonSecondTemperature-GrowthStudy,June-August 1969Cladophora Study-Preliminary Report.F-5

February1,1969Permanent CurrentMeterStudyReportforPASNY,November5,1963toFebruary26,1964F-6

APPENDIXGREGULATORY ANDREVIEWPROCEDURES DOCUMENTS

TABLE-QF-CONTENTS-1.Installation "ofTemperature Measuring DevicesinLakeOntario,CorpsofEngineers, U.S.CG.,November, 19622.Installation ofSubmerged CurrentMetersinLakeOntario,CorpsofEngineers, U.S.C.G.,

August,19633.CorpsofEngineers Construction PermitIntake-Discharge Structures, Tunnels,Shoreline Protection, October,19644..U.S..CoastGuardIntakeandDischarge Structure

Approval, November, 1964..'5.NYSCoolingWaterDischarge, April,19656.AECConstruction Permit,April,19657.NYSSewageTreatment PlantPermit,May,19658..NYSStockDischarge Permit,April,19669.FederalAviationAgencyStackApproval,
November, 196610.AECByProductMaterialLicense,July,196711.AECSpecialNuclearMaterialLicense,August,196712..AECProvisional Operating License,August,196913.Amendment No.2toProvisional Operating License,April,197114.Transmission LineHighwayCrossingPermit,December, 196615.Transmission LineBargeCanalCrossingPermit,April,1965.

X9.~U.S.ARMYENGINEERDISTRICT.

BUFFALOCORPSOFENGINEERS.

FOOTOFBRIDGESTREETBUFFALO7.NEWYORK26NOVlS62NCBODJ.H,Erart~ChiefSystemsProjectEngineerNiagaraMohawkPowerCorporation Buffalo3~NewYork

DearSir:

Inaccordance

~rithyourrequestdated19Septerher 1962,thereisinclosedDepartment oftheArmypermittoinstallate~rature measuring deviceinLakeOntario~atNine.H.lePoint~TownofScriba,OswegoCounty,NewYork.Yourattention isparticularly invitedtocondition (i)con-tainedinthepermitwhichreauiresthatthisoffice'oeinormedofthecommencement and.completion ofth'eauthorized srork.Formsforthispurposeareinclosed.

Shouldanymat-~.".1 chan~esinthelocationorplansoftheproposedworkbefoundnecessary on'ccount ofunforeseen oralteredconditions orot¹r~zserevisedplansshouldbepror.ptly submitted tothisofficetotheendtnattheserevisedplans,iffounduno'o-jectionable fromthestandpoint ofnavigation mayrce'vetheapprovalrequiredbyla"rbeforeconstruction isbegun.Acknowledgment oftheinclosedpetitis'requested.

Verytrulyyours,4Incls1.Permit';r/print atchd2~Form63.Form94oCeo~NoticeLEONJ.HAMEBLYColonel,CorpsofEngfnoeeII DestructEngineex

DEPARTMENT OFTHEARMY.NOTE.-Itistobeunderstood thatthisinstrument docsnotgiveanypropertyrightseitherinrealestateormate-rial,oranyexclusive privileges; andthatitdoesnotauthorize anyinjurytoprivatepropertyorinvasionofprivaterIghts,oranyinfringement ofFederal,State,orlocallawsorregulations, nordoesitobviatethenecessityof obtaining Sfotgeggcnttotheworkauthorized.

ITMERELYExPREssEs THEAssENT0FTHEFEDERALGovER.(MENT soFARAscoN-cERNsTHEPUBLIcRIGHTs0FNAvIGATioN (SeeCummingsv.Chicago,188U.S.,410.)totgtcoNC30D.PERMITU.S.Armp'ngineer DistrictBuffaloCorpsofEngineers.

Buffalo7s'tewYork21Novemberl962NiagarailohawkPowerCorporation Buffalo3,NewYorkGentlemen:

IIReferring tolsrittenrequestdated19September 1962,addressed tothe~~Di.strict mgineersU.S.~a.g~ineerDistricts Bufflo,Buffalo,NewYorksIhavetoinformyouthat,upontherecommendation oftheChiefofEngineers, andundertheprovisions ofSection10oftheActofCongressapprovedMarch5,1899,entitled"Anactmakingappropriations fortheconstruction, repair,andpreservation ofcertainpublicvorksonriversandharbors,andforotherpur-poses,'ou areherebyauthorized bytheSecretary oftheArmy.toinstallatemperature measuring device(Heredescribethenronoecdstructure orwork.)inLakeOntario(Heretobenamedtheriver.harbor.orwaterwarconcerned.)

ati;inealePoint,To;InofScriba,OswegoCounty,Ne;IYork(Heretobenamedthenearestwellknownlocantr-nreferablr atownorcity-andthedistancelnreliesandtenthsfromsomedcanltenolnt inthosame,statingwhetheraboveorbeloworgivingdirection brpointsofcomnass.)

inaccordance withtheplansshovmonthedrawingattached heretomarked:HDetail(Ordrawings; givealennmbcrorotherdean(tofdenttecatlon marks.)I@ptoAccompany Apo~wcation byNiagara.'.ohawkPowerCorp.>>orProposed'nstallation ofTemperature

.'!easer~~

Deviceati!inc~ePointwnofScibaNewYorkSeptember 19,1952"Subjecttothefollowing conditions:

0 (a)Thattheworkshallbesubjecttothesupervision andapprovaloftheDistrictEngineer, CorpsofEngineers, inchargeofthelocality, whomaytemporarily suspendtheworkatanytime,ifinhisjudgmenttheinterests ofnavi-gationsorequire.(b)Thatanymaterialdredgedintheprosecution oftheworkhereinauthorized shallberemovedevenlyandnolargerefusepiles,ridgesacrossthebedofthewaterway, ordeepholesthatmayhaveatendencytocauseinjurytonavigable channels'or tothebanksofthewaterw'ay shaHeleft.'fanypipe,'w'ire',"or'cable'hereby authorized islaid'natrench,theformation ofpermanent ridgesacrossthebedofthe.waterwayshallbeavoidedandthebackfillingshallbesodoneasnottoincreasethecostoffuturedredgingfornavigation.

Anymaterialtobedeposited ordumpedunderthisauthorization, eitherinthewaterwayoronshoreabovehigh-water mark,shallbedeposited ordumpedatthelocalityshownonthedrawingheretoattached, and,ifsoprescribed thereon,withinorbehindagoodandsubstantial bulkheadorbulkheads, suchaswill'preventescapeofthematerialinthewaterway.

Ifthemate-rialistobcdeposited intheharborofNewYork,orinitsadjacentortributary waters,orinLongIslandSound,apermitthereformustbepreviously obtained.

fromtheSupervisor ofNewYorkHarbor,NewYorkCity.(o)Thatthereshallbenounreasonable'interference withnavigation bytheworkhereinauthorized.

(d)Thatifinspections oranyotheroperations by.theUnitedStatesarenecessary intheinterestofnavigation, aHexperises connected therewith shallbebornebythepermittee.

(e)Thatnoattemptshallbemadebythepermittee ortheownertoforbidthefullandfreeusebythepublicofaHnavigable watersatoradjacenttotheworkorstructure.

(f)Thatiffutureoperations bytheUnitedStatesrequireanalteration, inthepositionofthestructure orworkhereinauthorized, orif,intheopinionoftheSecretary oftheArmy,itshallcauseunreasonable obstruction tothefreenavigation ofsaidwater,theownerwillberequireduponduenoticefromtheSecretary oftheArmy,toremoveoralterthestructural workorobstructions causedtherebywithoutexpensetotheUnitedStates,soastorendernaviga-,tionreasonably free,easy,andunobstructed; andii,upontheexpiration orrevocation ofthispermit,thestructure, 3tH,excavation, orothermodification ofthewatercourse herebyauthorized shallnotbecompleted, theownersshall,withoutexpensetotheUnitedStates,andtosuchextentandinsuchtimeandmannerastheSecretary oftheArmymayrequire,removeaHoranyportionoftheuncompleted structure orfillandrestoretoitsformercondition thenavi-gablecapacityoithewatercourse.

NociaimshallbemadeagainsttheUnitedStatesonaccountofanysuchremovaloralteration.

(g)ThattheUnitedStatesshaHinnocasebeliableforanydamageorinjurytothestructure orworkhereinauthorized whichmaybecausedbyorresultfromfutureoperations undertaken bytheGovernment fortheconserva; tionorimprovement ofnavigation, orforotherpurposes, andnoclaimorrighttocompensation shaHaccruefromanysuchdamage.I(h)Thatifthedisplayoflightsandsignals,onanyworkherebyauthorized isnototherwise providedforbylaw,suchlightsandsignalsasmaybepres".'bedbytheU.S.,CoastGuard,shaHbeinstalled andmaintained byandattheexpenseoftheowner.(i)Thatthepermittee shallnotifythesaiddistrictengineeratwhattimetheworkwillbecommenced, andas,farinadvanceofthetimeofcommencement asthesaiddistrictengineermayspecify,andshallalsonotifyhimpromptly, inwriting,ofthecommencement ofwork,suspension ofwork,ifforaperiodofmorethanoneweek,resumption ofwork,anditscompletion.

(j)Thtifthestructure orwogghereinauthorized isnotcompleted onorbefore@~~Vs.=..:".;.'.:.ST....'...

dayof.~.'=.",19.,thispermit,ifnotpreviously revokedorspecificaHy

extended, shallceaseandD<CF".R~R

-),benullandvoid.C:-Byauthority oftheSecretary oftheArmy:QNJA'.~TvColonel,CorpsofengineerDistrict""n~ineer 1sEp481721(Civil)T~~-~~s~Eoy~vs4atedzLvr48.~ldcbmszbouseduntGexhale<<LEbx1146-9408

~,L<<HCEaaOIT Nlloa4OltlCCId1$lQI

RETURNToENG!NEER~NG DEPARTMENT UN)yEgSyA>ESCOALGUARD~SIACtLVta>~COMMANDER

  • ~COASTOMAADDISTRICTMAINPOSTOFFICPGtDO.CLRVPLAND IS,OHIOKr.Z.N.EwartsneerChiefSystemProjectEn~inagexaII'ohavk'i'overCorporation Buffalo3,NewYorko<%1/~1Serialsoan10292JI,December1963

Dearhr.i:

vart:EnclosedisanapprovedPrivateAidtoNavimannanceoftheaidsdescribed thereinreinetoYourattention isinvitedtthNitihoothefirthetoeRulesandHessheetoftheapplication form,Pleaseinformthisofficevhentheaidshavehavebeenestablished sothattheirconducted.

eNoticestoMarinersandaninspection Sincerely yours,cvin".Chief,Aidsto.'taviationBranchBgdirection oftheDistrictColander>nels(1)FormCG-25@,i)<>p~zPy'(iif'I/4+<<~~""()"~~~'liyi>7('h(/7) 7'~f/))(;~+~/i~'/

7P(jjyj)g'j//)~//$(QocPsfg.l~/)Hy~)7))(gg,)J~;f)j~(,~~fhju(-

&>A>~f~j~yrg'i'c's1)Ip/(.Q)7'/77/77((

~

N 4<<RYDEPhRTMEN<

PRIVATEAIDSTONAVIGATION APPLICATION

'COhSTGUARD(Soufnstnrctions onreversoofettechedcopyofCodeofFe<f.Reff.,554(Rev.3-62)Tltfo33,Chop.I,Sect.66.)L~.PormapprovedBudgetBureau:r,trNo.48R379,'oTIQNREQUESTED fQRPRIVATEAIDSTONAVIGATION A.QfSTABLISH ANDMAINTAINB.+DISCONTINUE C.+CHANGEO.QCHANGEQSHFRSHIP 2-DATEACtIONTOSTART6November19633.PERIODAIDSwlLLBCOPERATCQA.THROUGHOUT YEAR8.+TEMPORARILY UNTILC.QANNUALLYFROMTO4.NECESSITYFORAID(Continue inccotorka)

StudiesforsteampowerplantCols.AondBforDistrictCommender'5 use5CORPSOFENGINEERS AUTHORIZCOTHISSTRUCTURE ORBUOYBy~PERIIITOR~LETTERDATEDAppllconl willfillInopplfcubicremoinln9 columns6.LIGHTSLIGHTI.I5I'UMBERORPAGEANAMEOfAIOrLASHt.CNCTHCCCI.IrSCICNCTH0CHARACTERISTICS COLORI'OSITlONCANDLEPOWERILLUMINANT VOLTSANPCACSLENSJKEE'ILIGH'tLISTNUMBERORPAGEANAMEOFAIONINE1lILSPOINZOBSERVJL1 IONBOvYA7.BUOYSNUMBERORLETTERCPOSITION(4608offshore) 8.FOGSIGNALSDAlat,43o31'3"Wlong.6o24804"750.31'rom

'eteorological tovertNlat,4331T26"wlongt624'llaDEPTHOFWATERETYPEI2"Maby10'g.buoy extend-ingap-proxe4abovevatertiber1COLORInter-nationalora~eandvtLLteEIoriz,bandedREFLECTOR COLORH3viclehorixesilverbandsat12"cent-'erEErLIGHTLISTNUMBERORPAGEANAMEOFAIONuu~ca5Teocc5oe~LASTCrcetoo~LASTLCNOTNECHARACTERISTICS POSITIONTYPERANGEKETLIGHTLISTNUMBORgANAMEOFAIONUMBER<<QRLETTERC9.STRUCTURESNOSITIONWATERDEPTHIFMARINE5ITEEHCIOHTASOVCHCANHICHVATCAFTYPECOLOR5kaccIcoLoeJDAYMARKIOA.NAMEANDADDRESSQfPERSONINQIRfc'tCHARGEOfAID~leW.Morris,NiagaraMohawkPwrBox4188OswegopNY-13126Corp.IIA.NAMEANDADDRESSOFPERSONORCORPORATION ATWHOSEEXPENSEAIDISMAINTAINED NiagaraHohavtcPoverCorp.300ErieBlvcl~WestSyracusep HY-13202JB.TELEPHONE NUMBERPI32110>RRVIDB5L'OITIDHS ARCDIISDlETC118.THEAPPLICANt AGRECSTOSAVETHCCOAStGUARDHARQLESSwlTHRESPECTTOANYCLAIMORCLAIMSTHATMAYRESULTARISINGFROMTHEALI,EGEOGLIGENCEOFTHEMAINTENANCE OROPERATIONS OFTHf.APPROVEDAlOISIII+5vlc+o3llo,SIQNAtURE AlluTIIe'.czeLQ~L s<<NINGClLI.efSystenr~rogect in+neer

-

12FIRSTEHDORSEMEHT FORUSEBYDISTRICTCOMMANDER (SERIALNO.A.TotCommandant (OAN)YESc.Approvalisrecommended o.NoticetoMarinerswillbeissuedE.LightListshouldbecorrected

.13.FORUSEBYCOMMANDANT (OAH)RECD.NoRETD.s.FRDMICommander F.CHARTSAFFECTEDH.DATEI~'SIGNATURE CoastGuardDistrictG.CLASSIFICATION OFAIDSClassTTP~,g@zMAN CHARTACTIN>N'l4.SECONDENDORSEMENT I.~N~AIW.N~M~CARDIND.FILEA.TOICommander

.C.ApprovedApprovedascorrected E.Disapproved REMARKSCoastGuardDistrictF.DATEDECI~1863sIFRourCommandant (OAN)G.SIGNATIIREBydirection

~~@.~A'7'EilSZiUD Foreaelec~a-generating plantatT'XneI@i.ePaintverequirecertainXahostudiae,meofvhichinvolvesthemaatlramat ofeatertexq;craturc DATEREFERENCE ACTIONANDRBAARKSJForAIOIiIlIrMAM3JASONDLIGHTLISrNo~PAGE

.-"'.~a48.8

,"o;rfOm>F-r&la~SUOyer~('-re"BaL:ar!@,Orange) e,5&'*-<'I'.o.~~.I!IJTempera.e..e ouib'++yWire2ope~..Ig\~ON~~~p~a'O~Co..Co.".j+iake59-.'ame,.Ee~!ONCArII,-.CCATS2.19ir5ubp;arln Cab.'e'----

--jramifIS;rurcI

'ouseL~~~~raIIC"4<~IA!rc"a~.j(a',larov&)D.."-.E~~~~~'>~e"=+~ON"(3+ra)ggO'Ip~~r~-ee!0YO-.e:~~.a'."ovo'n;es iwa!e~'evels-.'~errnre~'rA.~nlarerl~~.ogl'1ar(lieI~OatrLNQrjoI/PJ/D~~A~~Q+.5-06SSB3er!ro[GQ'\~6~alf"4"'~"'8earear~a~Vrt~C~I~0v.~0c!<~~'~0Q~irC~e4~AV,s'oinlii-oiL.04c~~~r~..LOg~gr+rr~WWrsaa~)p:CQ~~~ClUIP'NI'o'IAGARA MOHAWKNIAGARAMOHAWKPOWERCORPORATION BUFFALO,N.Y.~~~I~~rArrAOVtoI.r:.~rr~CKI.IOaetArrAOVtoSCALt~,ro~ilottv~raOATtOVaitvltioie CK.Arr.arrrnvtoArrroVf0SVLLivAae MCKttcaee Co..Ieec.IIurrALOaeo.iooo.aeCLCAAiwiaevTAAciaaorarerlooa~I A9Id/!N

'P,'384Ucg9zgy()'PAUGl963U.S.ARMYENGINEERDISrRICT, BUFFALOCORPSOFENGINEERS FOOTOFSRIOOESTREETBUFFALO7.NEwYORR14297hKeltTo'CBODJ.H.Evart,ChiefSystemPro)ectEngineerNiagaraMohavkPowerCorporation Buffalo3,NevYork

DearSir:

Reference ismadetoyourletterdated16July1963andtheaccompanying plans,relativetoyourtemporary installation oftvosubmerged currentmetersinLakeOntarioatNineMilePoint,TownafScriba,OsvegoCounty,NewYork.ThisofficeviU.interpose noob)ection tothefnstaPation ofthetvocurrentmetersprovidedtheyare'nstalled inaccordance withyourletterofapplication andthea'cca'npanying plans.Yourattention isinvitedtothefactthatthetypeandchar-acteristics ofthemarkerbuoysmustbeapprovedbytheCanmander NinthCoastGuardDistrict, MainPostOfficeBuilding, Cleveland 13,Ohio.Itistobeunderstood thattheaboveactiondoesnotgiveanypropertyrightseitherinres1estateormaterial, oranyexclusive privQ.eges; andthatitdoesnotauthorize anyin)urytoprivatepropertyorinvasionofprivaterights,oranyinfringement ofFederal,State,orlocallavsorregu1ations, nordoesitobviatethenecessity ofobtaining Stateassenttotheproposedvork.Itmerelyexpresses theassentofthisoffice"insofar astherightsofnavigation areconcerned.

Itisrequested thatthisofficebenotifiedofthecanmence-mentandcaapletion oftheabovevork.Verytru1yyours'TII'tUNTChief~Eaginseri~

kivie10%

AOOREOIItCtLYlOs~COMMANDER SttICOASTOUAItQ DISTRICTMAINPOSTOFFICESLQOoCtCVKLANQ IS.OHIO'NlTEDSTATESCOASTGUARD'gt~'Jggl/05326~Serialsoan34.23January1964.Mr.J.N.EwartChiefSystemProjectEngineerNiagaraMohawkPowerCorooration Buffalo3,'ewYorkD88rMroEwart~EnclosedisanapprovedPrivateAidtoNavigation Application authorizing theestablishment andmaintenance oftheaidsdescribed therein,Yourattention isinvitedtotheRulesandRegulations Governing PrivateAidstoNavigation shownonthefirstsheetoftheapplication form,Pleaseinformthisofficewhentheaidshavebeenestablished sothattheirexistence maybepublished intheNoticestoMarinersandaninspection conducted.

Sincere+yours,'Encl'1)FormCG-2554,M~JOcdMi>>LiutenantComrwnder, US.CoastGuardActingChief,AidstoNavigation BranchBydirection oftheDistrictCommander

ASURYDEPARTME'NT S.COASTGUARD2SS4(Rev.3-62)PRIVATEAIDSTONAVIGATION APPLICATION (SeeInatntcttona onreverseofattachedcopyofCodeofFed.ROII.,Tftle33,Chap.f,Sect.66.)FormepproredBudgetBureeuNo.OS-ICS79CTIOHREOUESTED FORPRIVATEAIDSTONAVIGATION A.tiESTABLISH ANOMAINTAINB.QDISCONTINUE C.QCHANGK0.+CHANGEOWNERSHIP 3.CRIODAIDSWILLBEOPERATKOA.+THROlIGHOU.T YEARBI+TEMPORARILY UNTIL,STgQggQ+,.ILPJP$

5..C.+ANNUALLYPRES2.0~ATACTION<'TO STARTffoveniber

..5~1963TO4NECESSIWY FORAI0(Continuo InrrmerkeJToueaeureXekeOntario'e currentCols.AondBforDistrictCommender'5 use5CORPSOFENGINEERS AUTHORIZED THISSTRUCTURE ORBUOYBY~PERMITORgjLETTERDATED........--...M............13.............-..'

AppllcontwillfillInoppllcobl

~romolnln9 columns6.LIGHTSLIGHTLISTNUMBERORPAGEA,NAMEOFAID'0CHARACTERISTICS FLAsHccLIpseICNOTHLCNOTH0'COLORPOSITIONIF~a~HclourCANDLEPOWERLENSILLUMINANT AurcscstoLT5LIGHTLISTNUMBERORPAGEANAMEOFAIDHIlESQLEPOX?COBKRVATXOki BUGYSNEcStNBSBBtrLETTER",C7.BUOYSPOSITION4331'0"M)'/624'04331'5"N;'l62Io'9"DEPTHOFWATERE52tTYPE32"Round.MarkerBuay'OLOR XntexnationalorangeSEwhiteHorisbandedREFLECTOR COI.DRHLIGHTLISTNUMBERORPAGEANAMEOFAIOCHARACTERISTICS Nuo~Ce5reoc55Oe~LAST~LA5rPCNIOOLCNOTH8.FOGSIGNALSPOSITIONTYPERANGESETLIGHTLISTNUM(ANAMEOFAIDNUMBER~rIIIILBTIIER'9.STRUCTURES IPOSITIONWATERDEPTHIFMARINESITEEHCIOHrASOVCIICANHIOHVergeFTYPEOAYMAIICOLORr~~~5HAPCI'I~COLONJIOA.NAMEANDADDREss0FPERsoNINDIREcTcHARGK0FAIDIIA.NAMEANDADDREss0FPERsoNoRcORPDRAtloN ATNHosEExPENsEAIDIsMAINTAINED Hre~leMeISrrienagaraIfohavkPowerCorporation BoxJ+18Oswego,hewYork13126100.TELEPhONE NUMBERFI-'3-2110 Exte296P'SKVIOLI5KVITIONSArtK0050LKTKP'fagaraY~havkPowerCorporation 300ZrieBlvd.M.Syracuee, HewYork$3202110.THEAPPLICANTAGREESTOSAVETHECOASTGUARDHAROLESSWlTHRESPECT.TOANY~CLAIMORCLAILISTHATMAYRESULTARISIIIGFROIiITHKALLEGEDNEGLIGENCE OFTHEMAINTENANCE OROPERATIONS OFINEAPPROVEDAIOlSl.11C.DATE110.SIIPIATURE ANDtlTJEOgQFFICIALICN<gemoter13,196~

00 ToICommandant (OAN)s.FROM:Commander ItIRSTEHDORSEMEHT FORUSEBYDISTRICTCOMMANDER SERIALNo.CoastGuardDistrict~c,Approvalisrecommended D.Noticetohlariners willbeissuedE.LightListshouldbecorrected 13.FORUSEBYCOMMAHDANT (OAN)RECO.CHARTACTION1*SECOHDENDORSEMENT yESNOF.CHARTSAFFECTEDUSLS22H.DATERETD.L~N~M.W.N~II.I~5IGNATURECARDIND~G.CLASSIFICATION OFAIDSClassZPVeCOIZiiQLN Bdirection A.TotCommander CoastGuardDistrictatFR0M:Commandant (OAN)c.ApprovedApprovedascorrected E.Disapproved REMARKSF.DATEG.SlGNATUREKLzwszugDATEREFERENCE ACTIONANDREhIARKSJJAS0N0V>+IoLIGHTLISTNo~PAGE

U.S.ARMYENGINEERDISTRICT, BUFFALOCORPSOFENGINEERS FOOTOFBRIDGESTREETBUFFALo7.NKwYoRK.ZIPcode142+.JcsiIjg4.58RareTo)~NCBOD19October1964J.H.Ewart,ChiefSystemProjectEngineerNiagaraMohawkPowerCorporation Buffalo,NewYork14203

DearSir:

Inaccordance withyourrequestdated21July1964thereisinclosedDepartment oftheArmypermittoconstruct submerged waterintakeanddischarge structures, shoreconnection tunnels,approximately 975linearfeetofrubblemound stonedikeandtodredgeinLakeOntario,atNinellilePoint,TownofScriba,OswegoCounty,NewYork,about6-1/8milesnortheasterly ofOswegoHarbor,NewYork,Yourattention isparticularly invitedtoconditions (b)and(i)contained inthepermit.Incompliance withcondition (b)norefusepilesorridresshallbeleftonthebedofthewaterway.

AsweepsurveywilLbemadewhentheworkiscompleted andtheNiagaraHohawkPowerCorporation willbereouiredtoremoveanyexcavated materialthatextendsabovetheundisturbed existinglakebottom.TheNiagaraHohawkPowerCorporation willbechargedf'rthecostofthissurveyandanyfurthersurveysorinspections toinsurethattheconditions ofthepermitarecompliedwith.Caremustbeexercised duringconstruction toinsurethattheintake.anddischarge structures providetheclearance belowlowwaterdatumshownontheapprovedplans.Condition (i)requiresthatthisofficebeadvisedofthecommencement andcompletion oftheproposedwork.Formsforthispurposeareinclosed.

Shouldanymaterialchangesinthelocationorplansoftheworkbefoundnecessary onaccountofunforeseen oralteredcondi-tions,oroth'ermse, revisedplansshouldbepromptlysubmitted tothisofficetotheendthattheserevisedplans,iffoundunobjec-tionablefromthe,standpoint ofnavigation, mayreceivetheapprovalrequiredbylawbeforeconstruction isbegun.

NCBODJ.H.Ewart,ChiefSystemProspectEngineerAcknowledgment ofreceiptoftheinclosedpermitisrequested."

Verytrulyyours,4Incls1.Permitw/prints(3)atchd2.Form83.Form94.C.G.NoticeRWILSONNEPPColonel,CozpsofEnglI1BBzs DlstzfctEngineez

~z('.-(DEPARTMENT OFTHEARMYNOTE-Itistobeunderstood, thatthisinstrument doesnotgiveanypropertyrightseitherinrealestate,ormate-rial,oranyexclusive privileges; andthatitdoesnotauthorise anyinjury,toprivatepropertyorinvasionofprivaterights,oranyinfringement ofFederal,State,orlocallawsorregulations, nordoesitobviatethenecessityof obtaining Statettesenttotheworkauthorised.

ITbIEREIYEZPREssEs THEAssENToFTHEFEDERAI.GovERNMENT soFARAscoN-CERNRTHEPUBLICRlGHTsoPNAvIQATIQN.

(SeeCtttttmittge v.Chicago,188U.S.,410.)IotslsoeContractNo.iR-30-023-CIVENG-65-18 PERMITU.S.ArneEngineerDistrict, Buffalo.CorpsofEngineers.

Buffalo,NewYork14207~1October,lg64.NCBODNiagaraIIohawkPower'Corporation Buffalo,NewYork14203Gentlemen:

Referring towrittenrequestdated21July1964,addressed totheDistrictEngineer, U.S.ArmyEngineerDistrict, Buffalo,Buffalo,NewYorkIhavetoinformyouthat,upontherecommendation oftheChiefofEngineers, andundertheprovisions ofSection10oftheActofCongressapprovedMarch3e1899,entitled'Anactmakingappropriations fortheconstruction, repair,and,.preservation ofcertainpublicworksonriversandharbors,*and forotherpur<<poses,"youareherebyauthorized bytheSecretary oftheArmy.toconstruct submerged waterintakeandsubmerged waterdischarge structures, (HeredescribetbeDroooecst structure otwork,)twoshoreconnection tunnels,approximately 975linearfeetofrubblemound stonedikeandtodredgethedredgedmaterialtobedeposited shoreward oftheproposedstonedikeinLakeOntario(Heretobenames)tberiver.harbor,orwaterwayconcerned.)

atNinelabilePoint,TownofScriba,OswesoCounty,NewYork,about6-1/8miles(Heretobenamedtbenearest<<ellknownlocality-pre(erably atownorctty-andthedistancelnmllesandtenthskernsomedeanltePointlnthesame,stattnewhetheraboveorbeloworsiriusstlrectlon byyolntaoIcomyass)northeasterly ofOswegoHarbor,NewYorkinaccordance withtheplansshownonthedrawingattachedheretointhreesheets(Ordraw!nest Sivaslenumberorotherdeenttetdenttttcatfon marks.)marked"Application byNiagaraMohawkPowerCorp.ForProposedIntakeEcDischarge Tunnels,Dike,andBargeS'IioatNinealePointJuly21,1964eusub)ecttothefollowing conditions:

(a)Thattheworkshallbesubjecttothesupervision andapprovaloftheDistrictEngineer, CorpsofEngineers, inchargeofthelocality, whomaytemporarily suspendtheworkatanytime,ifinhisjudgmenttheinterests ofnavi-gationsorequire.(b)Thatanymaterialdredgedintheprosecution ofthe'workhereinauthorized shallberemovedevenlyandnolargerefusepiles,ridgesacrossthebedofthewaterway, ordeepholesthatmayhaveatendencytocauseinjurytonavigable channelsortothebanksofthewaterwayshallbeleft.Ifanypipe,wire,orcableherebyauthorized islaidinatrench,theformation ofpermanent ridgesacrossthebedofthewaterwayshallbeavoidedandthebackfillingshallbesodoneasnottoincreasethecostoffuturedredgingfornavigation.

Anymaterialtobedeposited ordumpedunderthisauthorization, eitherinthewatervray oronshoreabovehigh-water mark,shallbedeposited ordumpedatthelocalityshownonthedrawingheretoattached, and,ifsoprescribed thereon,withinorbehindagood"andsubstantial bulkheadorbulkheads, suchaswillpreventescapeofthematerialinthewatervray.

Ifthemate-rialistobedeposited intheharborofNewYork,orinitsadjacentortributary waters,orinLongIslandSound,apermitthereformustbepreviously obtainedfromtheSupervisor ofNewYorkHarbor,NewYorkCity.(c)Thatthereshallbenounreasonable interference withnavigation bytheworkhereinauthorized.

(d)Thatifinspections oranyotheroperations by.theUnitedStatesarenecessary intheinterestofnavigation, allexpensesconnected therewith shallbebornebythepermittee.

(e)Thatnoattemptshallbemadebythepermittee ortheownertoforbidthefullandfreeusebythepublicofallnavigable watersatoradjacenttotheworkorstructure.

(f)Thatiffutureoperations bytheUnitedStatesrequireanalteration inthepositionofthestructure orworkhereinauthorized, orif,intheopinionoftheSecretary oftheAnny,itshallcauseunreasonable obstruction tothefreenavigation ofsaidwater,theownerwillberequireduponduenoticefromtheSecretary oftheArmy,toremoveoralterthestructural workorobstructions causedtherebywithoutexpensetotheUnitedStates,soastorendernaviga-tionreasonably free,easy,andunobstructed; andif,upontheexpiration orrevocation ofthispermit,thestructure, fillrexcavation, orothermodification ofthewatercourse herebyauthorized shallnotbecompleted, theownersshall,withoutexpensetotheUnitedStates,andtosuchextentandinsuchtimeandmannerastheSecretary oftheArmymayrequire,removealloranyportionoftheuncompleted structure orfillandrestoretoitsformercondition thenavi-gablecapacityofthewatercourse.

NoclaimshallbemadeagainsttheUnitedStatesonaccountofanysuchremovaloralteration.

(g)ThattheUnitedStatesshallinnocasebeliableforanydamageorinjurytothestructure orworkhereinauthorized whichmaybecausedbyorresultfromfutureoperations undertaken by.theGovernment fortheconserva-tionorimprovement ofnavigation, orforotherpurposes, andnoclaimorrightto'compensation shallaccruefromanysuchdamage.(h)Thatifthedisplayoflightsandsignalsonanyworkherebyauthorized isnototherwise providedforbylaw,suchlightsandsignalsasmaybepre-robebytheU.S.CoastGuard,shallbeinstalled andmaintained byandattheexpenseoftheowner.(i)Thatthepermittee shallnotifythesaiddistrictengineeratwhattimetheworkwillbecommenced, andasfarinadvanceofthetimeofcommencement asthesaiddistrictengineermayspecify,andshallalsonotifyhimpromptly, inwriting,ofthecommencement ofwork,suspension ofwork,ifforaperiodofmorethanoneweek,resumption ofwork,anditscompletion.

(j)Thatifthestructure orworkhereinauthorized isnotcompleted onorbefore..tl)iit'rX".QXQt'r.........

dayofDCCallbeI'.............,

19..67.,thispermit,ifnotpreviously revokedorspecifically

extended, shallceaseandbenullandvoid.Byauthority oftheSecretary oftheArmy:R.':JILSOll NEF."Colonel,CornsofEngineers DistrictEngineerj7g)(Q~yjj)Tbbtermsuperseded EDperm95,dered1hyrdd.whichmsrbeuseduniaezhsurred.

~.e.eorraasret re>sueaerricrididled.dEM1145-&403 l

lA~0~11L+P~QQQ/QlI~

OPPgyfhIpgtUNITEDSTATESCOASTGUARDPi)4~IKHYTO>,COMMANDER OmCOASTOUA!%DDISTRICTMAINPOSTOFFICESLDCiI%%STTHIRDANDPIIOSPECT STS.CLÃIIELAND 13,OHIOb'264Serial:oin8903November1964Mr,K.C,SwansonChiefStructural DesignEngineerNiagaraMohawkPowerCorporation Buffalo',

NewYork14203

DearMr.Swenson:

.Yourletterof26October1964forwarded acopyo'faCorpsofEngineers Permitwhichauthorized construction ofasubmerged waterintakeanddischarge structures inLakeOntarionearNineMilePoint,NewYork.TheCoastGuardhasnoobjection toyourprojectandnavigational markingwi11notberequired.

However,shouldthestructures becomeobstructions tonavigation duringtheconstruction oruponcompletion, lightingwillbenecessary.

latheeventyoudecidetoestablish navigational aidsforyourownpro-tectionagainstpossibleliability claims,priorapprovalforsuchprivateaidstonavigation mustbeobtainedfromtheCOImandsnt, U.S.CoastGuardviathisoffice.Pleasecontactusifwemaybeoffurtherservice.Sincerely yours,Mc.DBME,W.CONANCommander, U.S.CoastGuardChief,AidstoNavigation BranchBydirection oftheDistrictCaanander I

SHORNToKNGfNEERfNQ DEt'ARTMENf HOLLIS5IHGRAHAMy MeDoCOMMISSIONKR STATEOFHEWYORKDEPARTMENT OFHEALTH84HOLLANDAVENUEALBANY,N.Y.12208April28,1965'PJv*DIVISIONOFENVIRONMENTAL HEAL'THSERVICESMEREDITHHTHOMPSON~DKNO,ASSISTANT COMMISSIONKR BUREAUOFTIATKRRESOURCESERVICESAHSELMOF.DAPPERT,MoS.S.E.DIRKCTORNiagaraMohawkPowerCorporation 300ErieBoulevard VestSyrac'use, NewYork13202Attention.

JohnV.Keib,AttorneyGentlemen:

Re!ApprovalofFinalPlansCoolingWaterDischarge andIndustrial WasteTreatment WorksNineMilePointNuclearStationScriba(T),On)egoCountyVeareenclosing apermitissuedthisday,andareforwarding underseparatecoverapprovedplans,consisting of2B/tfsheets,fortheabovereferenced project.Thepermittee's attention isdirectedtotheconditions whicharepartoftheaccompanying permit.Alloftheconditions areimportant andyouareaovisedthatthevalidityofthepermitiscontingent uponcompliance.

Sincethisfacilityprocesses nosanitary'ewage, acertified operatorundertheNewYorkStateSanitaryCodeisnotrequired.

How-ever,thefacilitymustbeoperatedatalltimesinconformity tothePublicHealthLawandStateHealthDepartment regulations.

Aspectsoftheproposeddischarge areasfollows.'.

Heat,fromthecondensor coolingfacility, whichatfullloadisstatedtocausea32Ftemperature riseinaflowof'50,000 gallonsperminute;2.Salts,fromapproximately 2,500gallonsperdayofacidic.andcausticionexchangeresinregeneration whichreultwhentheset;:.omTIonents areheldandmixedforneutraliza-tionbeforedischarge; and 1

NiagaraMohawkPowerCorporation April28,19653,Discharge fromthe"hold-and-decay tankswhosefunctionistomonitorpossibleradioactive materialaccidents, andwhoseoperational procedures havebeenapprovedundertheNuclearSafetyHazardsAnalysissubnitted totheAtomic-EnergyCommission.

Thestormsewersarenotpartofthisapproval.

Sincetheseshallreceiveonlytheresultant runofffromnaturalprecipitation, andasmaU.quantityofscreenwashwater towhichnocontaminants orpollutants areadded,thennopermitisrequiredfortheirinstallation anduse.Thetotalflowatfulloperational capacityis385milliongallonsperday,or275,000gallonsperminute.Verytrulyyours,I~ljy.JosephJ.Kosman,P.E.SeniorSanitaryEngineerMunicipal-Industrial VastesSectionEnclosure cc:SyracuseRegionalOfficeSyracuseDistrictOff'JuliusA.Lind,P.E.

gllt'I Checktypeotworksanddischarge ttmttctpst

'gSutfaceDischarge Institutional

+GroundtfatetPrivate(individual)

Private(other)industrial WasteNineMilePointNuclearPowerStationScriba(T)g]Sewers+Addltlons otAlterations Tteatment worksggpumptogstationOtherountyOsageoNEWYORKSTATEDEPARTMENT, OFHEALTHPERMITTODISCHARGE SEWAGEORWASTES'INTO THEWATERSOFTHESTATEThispermitisissuedundertheprovisions ofhrticle12ofthePublicHealthLawinconnection withapprovalofplansfortcheprojectdescribed below:NamebLocationofStorks(city,village ortown)ChesNameendAddressofBoard,Corporation, individual orOflicemakingppllcstlon NiagaraMohawkPowerCorporation 300ErieBoulevard IieetSyracuse, NewYork13202Nameofreceiving watercourse.Ifsurfacewaters:ifsubsurface, namofwatercoursetowhichgroundwaterlstributary LakeOntarioNameofCity,VillageorTownlnwhichpointofdischarge lslocatedOswe.oNameofmajordrainagebasinlnhlchpointofdischarge i~locateLakeOntario~scription ofworkssuchasnumber,namesndcapacityofunitsCoolingMter250,000gpnService$1ater25,000gpn;including ionexchangeresinregeneration andholdingtankdischarge hpprovalofplansandpermittodischarge isgrantedoncondition:

Estimated costofworkss22400,000Designflowgals.perday385.)GDI.THhTchispermitshallberevocable acanytimeorsubjectcomodification orchangewheninthejudgmentoftheDepartment ofHealthsuchrevocacion, modification orchangeshallbecomenecessary.

.I.wastetreatment II~THhT'heproposedKiQQQeigc worksshownontheplansapprovedthisdayshallbefullyconstructed incompleteconformity withsuchplansorapprovedamendments thereforuncerthesupervision ofalicensedProfessional

~npineer.

)ct)ljaxc(mown&

Qs(OGxdcx.

~~LIV.TllhTthe~worksshallbeoperatedocmaintained atalltimescothesatisfaction ofcheDepartment ofHealth.V.THhTthisper'mitshallbedeemednulla:.dvoidunitsstheworksforwhichitisissuedshallhavebeenfullycompleted byAnril28lc70andacertificateofconstruction ccmpliance ubnittedtoandapprovec'8p'theSyracueDistrictOffice,NetsYorkStateDepartment ofHealth,'ithin thirty(30)daysaftercompletion ofconstruction.

III,THATonlythetp~anavolumeofvastescoveredbytheEngineer'Report,entitledExhibitA,undated,andtheSafetyHazarcsAnalysisreport,andnosanitarycage,stormwater,orsurf'acevaterfrcmstreets,roofs,orotherareasshallbeac)nitted tothewastetreatment

@or'ks.issuedfortheStateCommissioner ofHealth:Date~,~Cd'~,z'/54/2s/BDirectors'ureau of+terResource~Scrvtc~eFOR:Sano2(Reved/d2)Dl~trlbutlont S/hiteApptlcentPinkCentralOffice(%PCS)

YellowFHe(LHOorDHO)GreenOther1 t'~'0E,I UNITEDSTATESATOMICENERGYCOMMISSlONWASHINGTON, D.C.20545gl4rE0INIAGARAMOHAWKPOWERCORPORATION DOCKETNO.50-220PROVISIONAL CONSTRUCTION PERMITConstruction PermitNo,'PPR-16

?1.PursuanttoSection104boftheAtomicEnergyActof195II,asamended(theAct),andTitle10,Chapter1,CodeofFederalRegulations, Part50,Licensing ofProduction andUtilization Facilities, andpursuanttotheorderoftheAtonicSafetyandLicensing

'Board,theAtomicEnergyCommission (theCommission) herebyissuesaprovisional construction permittoNiagaraMohawkPowerCorporation (theapplicant) forautiliza-tionfacility(thefacility),

described intheapplication andamendment theretofiledinthismatterbytheapplicant andasmorefullydescribed inthe'evidence receivedatthepublichearinguponthatapplication.

Theutilization facilityisasinglecycleboiling,lightwatexreactorwhichispartofafacilitydesignedtooperateat1538megawatts (thermal) tobelocatedon'LakeOntariointheTownofScriba,NewYork.2.Thispermitshallbedeemedtocontainandbesubjectto'heconditions specified inSections50.5IIand50,55ofsaidregulations; issubjecttoallapplicable provisions oftheAct,andrules,'regulations andordersoftheCommission noworhereaftex ineffect;'andissubjecttothecon-ditionsspecified ozincorporated below:A,Theearliestdatefoxthecompletion ofthefacilityisDecember1,1966,andthelatestdateforcompletion ofthefacilityisDecember1,1967.B.Thefacilityshallbeconstructed andlocatedatthesiteasdescribed intheapplication asamended,intheTownofScriba,NewYork.C.Thisconstruction permitauthorizes theapplicant toconstruct thefacilitydescribed intheapplication andthehearingrecordinaccordance withtheprincipal architectural andengineering criteriasetforththerein.3.Thispermit.isprovisional totheextentthatalicenseauthorizing oporation ofthefacilitywillnotbeissuedbytheCommission unless:(A)theapplicant submitstotheCommission, byamendment totheapplica-tion,thocompletefinalhazardssummaryreport,portionsofwhichmaybesubmitted andevaluated fromtimetotime;(B)theCommission findsthatthefinaldesignprovidesreasonable assurance thatthehealthandsafetyofthepublicwillnotbeendangered bytheoperation ofthefacilityin

-~

accordance withprocedures approvedbyitinconnection withtheissuanceofsaidlicense;and(C)theapplicant submitsproofoffinancial protec-tionandtheexecution ofanindemnity agreement asrequiredbySection170oftheAct.4.PursuanttoSection50,60oftheregulations inTitle10,Chapterl,CFR,Part50,theCommission hasallocated totheapplicant foruseintheoperation ofthereactorl4321kilograms ofuranium235contained inuraniumintheisotopicratiosspecified intheapplication.

Estimated schedules ofspecialnuclearmaterialtransfers totheapplicant andreturnstotheCommission arecontained inAppendixAwhichisattachedhereto,Transfers bytheCommission totheapplicant inaccordance withcolumn2inAppendixAwillbeconditioned upont'eapplicant's returntotheCcmmission ofmaterialsubstantially inaccordance withcolumn3(including thesub-columns headedScrapandDepletedFuel)ofAppendixA.FORTHEATOi~fICENERGYCOP>'HISSION R.L.Doan,DirectorDivisionofReactorLicensing

Attachment:

AppendixADtofIanc:

~1 AD@URNTOP,'G!'"RING'.IDIPRRTMENT STATEOFNEWYORKDEPARTMENT OFHEALTHMEREDITHH,THOMPSOII, DrENOIA55I5TANT COMMI55IONER I7.y'QD-Z~~DIVISIONOFENVIRONMENTAL HEALTHSERVICESHOLLISS.IHQRAHAM, M.D.C0MMI55I0NEI%84HOLLANDAVENUEAL8ANY,N.Y.12208May0,196'UREAU OFWATERRESOURCESERVICESANSELMOF.DAPPERT,M.S.S.E.DIRECTORNiagaraMohawkPowerCorporation 300ErieBoulevard

>TestSyracuse, NewYork13202Attention:

Mr.JohnV.KeibAttorneyGentlemn:

Re:ApprovalofFinalPlansSewageTreatment WorksNineYd.lePointNuclearStationScriba(T),OswegoCounty':Teareenclosing apermitissued,thisday,andareforwarding underseparatecoverapprovedplans,consisting of6B/Hsheets,fortheabovereferenced project.Theperiod.ttee's attention isdirectedtotheconditions whicharepartoftheaccompanying permit.Alloftheconditions areimportant, andyouareadvisedthatthevalidityofthepermitiscontingent uponcompliance.

Aqualified GradeIX-AOperatorshallbecontinuously employedtosupervise operation ofthesewagetreatment plantasoutlinedinPart11ofthet'.ewYorkStateSanitaryCode.Neadvisethattheoperatorbeengagedpriortoconstruction offacilities sothathe,willbefand.liar withthetreatII.ntunitsandtheirproperoperation.

Laboratory analysesanddeterminations shallbemadetoindicatewastecharacteristics, treatment efficiencies, andcom-pliancewithreceiving waters'tandards.

Analysesshouldincludedeterminations forsettleable, total,andsusoended solids,(SS),biochemi.cal oxygendemand,(BOD),dissolved oxygen,(DO),and'pHoftherawandpartial+treatedwastesandfinaleffluent; chlorineresidualandcoliformofthetreatedwastes;blanketmeasurement ofthesludge;anddissolved oxygenandsettli.ng indexofthemixedliquor.Certainanalysesmaybecontracted outuponapprovalofthelocalhealthofficeindicated below.P<rr'a~pre,gg~rr/),srwp'~rpterr'0r'r'ICVrr/rr0C.r'.<Sg8r'gi-SS3-C'rL/L?-rrP'-3-~-".">>>7 4>.ih'I Niagara1hhawkPowerCorporation Nay4,1965Information andinquiries shouldbedirectedtoNr.PeterGuala,F.E.,DistrictEngineer, SyracuseDistrictOffice,333EastWashington Street,Syracuse, regarding thefollowing:

1~Selection,

.supervision, andtrainingofthetreatment plantoperator.

2.Certificate ofconstruction compliance.

3~Detailsandfrequency oflaboratory ana~esanddeterminations.

Submission ofmonthlyoperation reports.Theplanthasbeendesignedtoreceiveanaverageflowof15,000gpdfromanexoectedpopulation of150persons.Approvalhasbeengrantedonthebasisthattheplantplusoxidation pondwillremove95percenteachoftheinfluentsuspended solidsandbiochemical oxygendemand.Inordertoexpediteapprovaloftheseplans,wearemakingparthereofoneaspectofdesign.thatdidnotappearonsaidplans.Thatistheperipheral railingfortheaerationtank.Asyouhaveagreedtoprovidethisitem,'wewillassumeitsomXssionfromtheplanswasanoversight.

Itistherefore incumbent upon'outoinstallsai"milinginthefinallyconstructed plant.Veryt~yours,IJosephJ.Kosman,P.E.SeniorSanitaryEngineerMunicipal-Industrial WastesSectionEnclosure c/cSyracuseR.O.SyracuseD.O.JuliusA.Q.nd,P.E.

NEWYORKSTATEDEPARTMENT.OF HEALTHPERMITTODISCHARGE SEWAGEORWASTES'I)4TO THEWATERSOFTHESTATEChecktypeofworkssnddischarge ItImklpat

~*QgSmfsceDischarge InsTliuilonsl

+GroundWaterPrivate(individual)

Ptlve'ie(other)ilIndusitlal WasteNimeMilepoint-NuclearPowerStationScriba(T)PgSewersQAdditions orAlietauons

+XTreatment Works+PumpingStation+OtherountyOswecfoThispermitisissuedundertheprovisions ofArticle12ofthePublicHealthLawinconnection withapprovalofplansforttheprojeccdescribed below:NameSIIocattonoflforks(cuy,village ottown)CheckTO:frameendAddres~ofBoard,cofIIorstton, Indivfduat orofficemakingppllcailon NiagaraMohawkPowerCorporatioTj 300ErieBoulevard

>lestSyracuse, New,York13202gameofteceivlng waistcourse,lf~'Uflac~waiefs'l~ubsutfsce

~nsmofwatercoursetowhichgtound'wei@tlatributary LakeOntarioframeofCityVillageorTown'inwhichpointofdischarge lslocated)fameofmaJordrainagebasinlnhlchpointofdischarge lalocateLakeOntarioesctlpilon ofworkssuchssnumber>nameandcapacityorunitedSeeReverseSideEsuuIsied costofwofks5II8,000Designflowgals.petday15,000hpprovaiofplansandpermittodischarge isgrantedoncondition:

ITHATthispermitshallberevocable atanytimeorsubjectcomodification orchangewheninthejudgmentofcheDepartmenc ofHealthsuchrevocation, modificacion orchangeshallbecomenecessary.

THhTtheproposedsewerageworksshownontheplansapprovedthisdayshallbefullyconscructed incompleteconformity withsuchplansorapprovedamendmencs thereto.f underthesupervisien ofali.censed P.ETHhTonlysewageandnoground'water, stormwater,coolingwater,orsurfacewaterfromscreets,foundations, roofsorotherareasshallbeadmiccedtotheproposedsewerageworks.iTllhTthesewageworksshallbeoperatedormaincained acalltimescothesacisfaction oftheDepartment ofllealth.THhTthisperinitshallbedeemednullOI8voidunlesstheworksforwhichitisissuedshallhavebeenfullycompleted by1~&~,1970,andacert-'icate of.constructi.on compliance submitted toandapprovedUp"Syracuse DistrictOffi.ceoftheStateHealthDepartment aithinthirty(30)daysaftercompletion ofconstruction.

VI.THATtheleakageoutwardortheinfiltration shallnotexceed500gallonsperinchofsewerpipediameterpermileperdayforanysectionoftheseweragesystem.VII.TFAT'sufficient personnel meetingtheaualifications for'sewagetreatment worksoperators asreauiredbythellewYorkStateSanitaryCode,shallbeemployedtosatisfactorily operatethetreatment facilities.

VIII.THATchlorineshallbeappliedcontinuously tothesewageatapointindicated ontheapprovedplansataratesufficient tomaintainatalltimesaminimumresidualoffive-tenths partspermillion(0.5p.p.m.)ofchlorineorgreaterinthefinaleffluenttoprovideforeffective disinfection.

IX.THATmonthlyreportsonthedailyoperation ofthesewagetreatment worksshallberegularly submi.tted totheDepartment qfHealthonformsfurnished byorsatisfactory totheDepartment ofHealth.IssuedprtheStoleCommissioner ofHealth:Date:5/4/65ty~Dltectoto Buttau0Walel'eeo CeaSetVIC~Slv~ssn.2(Rev.d/d2)Dl~ttlbutlonf WhiteAPPlkantPln'kCentralOffice('WPCS)Yellow-plf~(I.HOotDHO)Green-Other

%I 8.'StateOfNewYorkDepartment OfHealthAIRPOLLUTION CONTROLBOARDs4HOLoLAH0Avso~hleSAHY~NeY>>April25,l966Mr.J.N.EwartChiefSystemProjectEngineerNiagaraMohawkPowerCorporation 535Washington StreetBuffalo,NewYork14203APPROVALOFCONSTRIJCTXON'

'Application havingbeenmade,asrequiredbytheRulestoPreventNewAir'ollution, theinstallation described below,'Plan No.HA"66O88Stackforventilation airandprocessgasesdischarged.to atmosphere NiagaraMohawkPowerCorporation NineMllePointNuclearStation(T)Scrlba,OswegoCounty,NewYorkisapprovedsubject'to thefollowing conditions:

1.Theapprovalshallberevocable atanytimeorsubjecttomodification orchangewhen,inthejudgmentoftheBoard,suchrevocation, modification, orchangeshallbecomenecessary.

2~Theproposedconstruction shallbecompleted inconformity withthedescrip-tioninthereportorasshownontheplansapprovedthisday,orinaccord-'ancewithanyapprovedamendments.

3WheneverrequiredbytheBoard,additional ormoreeffective airpollution controldevicesor.systemsshallbeinstalled andputintooperation, reportsorplansforwhichshallfirstbesubmitted totheBoardforapproval.

4~Thisapprovalshallnotbetransferable eitherfromonelocationtoanother,d'orfromonepieceofequipment toanother.5~TheBoardshallbe.notifiedinwritingwithin30daysafterthecompletion ofthisinstallation thatitiscompleted andplacedorwillbeplacedinopera-tion,andofthetimeandplaceofanyteststobep'erformed.

6~Thisapprovalshallbecomeinvalidiftheworkforthisapprovedinstallation isnotcomPleted byNovemberI,19687~Thisapprovalinnowayprecludes therightofanygoverning bodyofanymunicipality toimposeadditional requirements forthecontrolofairpollution.

8,lfotherthantheaboveIsinstal'led, anewapplication lsrequired.

APCB3(rev.11/64)sit',/(q(OVER)

K pVlhty+trrsot+FEDERALAVIATIONAGENCYBOSTONhREh'FFICE Building¹3Northwest Industrial ParkC0Burlinyon, Mauachuset(s 0(80(.:,~"~'>2~~'7~Iir.0.K.BrotInChiefElectrical En+neerMni,amYohn~ikPowerCorp.535)1nshington St.buffalo~IIYNattLYareatoBQQ-520CaseNo.13O"-OR-66-365 RHINO

DearNr.Brown:

Thisroforstoyour1"ormPAA-117,HoticoofFroposcdConstruction orAlterations, datedOctober14~1966,forthefo&owinCdescribed construction:

TYPESidUCTUBZ:

LOCATIONLntitudeLongitude ConcreteChimneyLycoming, N.Y.4331'7"76'4t36"ABOVBIKL610Anaeronautical studyconducted inaccordance withFart77'ederal AviationRo~~tions, hasresultedinaQotemination thntthoconstruction oralteration vrouldnotexceedanvstandardof'ubpart Cand.wouldnotbenhazardtoairnavigation.

Supplomontnl noticetothisofficeisrequiredwithinfivedaysaftertheconstruction oralteration reachesitsGreatestheight.Hoticeformisenclosed,.

Thestructure shouldbemnrIcodnndlightedinnccorQnnce withthestandards inFAA'sIinnunl,"Obstruction Iinrlcinc and,L1~".tine.

uUnlessother~rise revisedortered.nntcd, thi"determination trillemireonliny3,1963~oruponearlierabandonment oftheconstruction proposalSincoro1y yours,SidneyL.,ChiofAirTrafficranch

9.Thatportionofwasteswhichinc1udesradioactive materials shallnotbedischarged inamountsorconcentrations whichexceedthe1lmltsspecified lnSection10oftheCodeoftheFedera1Regulations, Part20.STATEOPNEWYORKAIRPOLLUTION CONTROLBOARDWl111amL.0'onnor,P.E,SeniorSanitaEnineerjAlexander Rihm,Jr.,P.E.ForExecutive Secretary 1gg Page1ofDPagesLicense'e U.S.ATOMICENERGYCOMMISSION BYPRODUCT MATERIALLICENSE'j'":;.',PursuanttotheAtomicEnergyActof1954andTitle10,CodeofFederalRegulations, Chapter1,Paris30,32,33,34,and35,andinrelianceonstatements andrepresentations heretofore madebythelicensee, alicenseisherebyissuedauthorizing thelicenseetoreceive,acquire,own,possess,transferandimportbyproduct male-riallistedbelow;andtousesuchbyproduct materialforthepurpose(s) andattheplace(s)designaled below.Thisliceneshallbedeemedtocontaintheconditions specified inSection183ofthoAtomicEnergyAciof1954,andissubjecttoallapplicable rules,regulations, andordersoftheAtomicEnergyCommission noworhereafter ineffectandtoanyconditions specified below.NiagaralhhawkPowerCorporation 2.300ErieBoulevard, liestSyracuse, NewYorlc132023.Licensenumber31<<07489-02 4.Expiration dateJuly31]9)8.Reference No.6.Byproduct material(elementandmassnumber)7.Chemicaland/orphysicalform8.Maximumamountofradioac-tivitywhichlicenseemaypossessatanyonetimeA.Cobalt60BCobalt60C.Cobalt60D.Cobalt60E~Strontium 90F~Iodine131G.Cesium137H.Anybyproduct materialwithAtomicNos.be>>tween3and83,inclusiveI.Antimony122-124J.Americium 241~~A.Sealedsource(AECLHodelC-163)B~Sealedsource(Nuclear-Chicago liodel850213)C.SealedsourcesD.AnyE.AnyF.AnyG.AnyHAnyI.SealedsourcesJ~SealedsourceA.24curiesBE400millicuries CD5sourcesnottoexceed100microcuries eachD.10lmillicuries ED3millicuries F~101millicuri.es G~102millicuries H.13millicuries I.5sourcesnottoexceed2,500curieseachJ~6curiesAuthorized useA.andB.Tobeusedincalibration wellstocalibrate instruments.

C,throughli.Instrument calibration andcheclcing, sourcefabrication andtechnician training.

I.andJ.Storageonly.

-~

FORMAKOi$7<8A(8~IIU.S.ATOMICENF<RGYCOMMISSION BYPRODUCT MATERIALLICENSESupplementary SheetPage~of~PagesLicenseNumber31~Or<8902CONDITIONS 10,Byproduct materi.al mayonlybeusedatandi.nconnection wi.ththeoperation ofthelicensee's facilityattheNineMilePoi.ntNuclearStation,Oswego,NewYork.11.Theli.censee shallcomplywiththeprovisions ofTitle10,Part20,CodeofFederalRegulations, Chapter1,"Standards forProtection AgainstRadiation."

12.Byproduct materialshallbeusedby,orunderthesupervi.sion of,P.AllisterBurt,MelvinA.Silliman, orRichardk.Bowers.13,A(1)Eachsealedsourcecontaining byproduct

material, otherthanHydrogen3,withahalf-life greaterthanthirtydaysandin'nyformotherthangasshallbetestedforleakageand/orcontamination atintervals nottoexceedsixmonths.Intheabsenceofacertziicate fromatransferor indicating thatatesthasbeenmadewithinsixmonthspriorCothetransfer, thesealedsourceshaL,Lnotbeputintouseunti1.tested.(2)Notwithstanding theperiodicleaKCestrequiredbyt1ieprec<'wpparagraph, anyl.icei.seu seaLeasou-cecontai.ning" byproduct materialisexemptedfromperiodicleaktestsprovidedthequantityofbyproduct materi.al contai.ned i.nChesourcedoesnotexceedtentimesthequantityspecified forthebyproduct material9.nColumnII,ScheduleA,Section'1'00,10CFR31'3)Theperiodi.c leaktesCrequiredbythiscondiCion doesnoCapplytosealedsourcesthatarestoredandnotbeingusedThesourcesexceptedfromthistestshallbetestedforleakagepriortoanyuseortransfertoanotherpersonunlesstheyhavebeenleaktestedwithinsixmonthspri.ortothedateofuseortransfer.

,VJ' SrOIIIIAtCoSY4AIaasIU.S.ATOMICI;NERGYCOMMISSION BYPRODUCT MATERIALLICENSESupplementary Sheet.Page..of...Pages3...3LicenseNumbeP1-07489"0213.continued COi'EDITIONS BThetestshallbecapableofdetecting thepresenceof0.005microcurie ofradioactive materialonthetestsample.Thetestsampleshallbetal:enfromthesealedsourceorfromthesurfacesofthedeviceinwhicnthesealedsourceispermanently mounted'rstoredonwhichonemightexpectcontamination toaccumulate.

.recordsoflealctestresultsshallbekeptinunitsoimicrocuries andmaintained forinspection bytheComlaission.

C,Ifthetestrevealsthepresenceof0.005microcurie ormoreofremovable contamination, thelicenseeshallimlaediately withdrawthesealedsourcefromuseandshaLlcauseittobedecontamina-tedandrepairedortobedisposedofinaccordance'with Co>nmission reulations, Areportshallbefiledwithin5daysoftiletestwiththeDirector, Divisionof&Iaterials Licensing, U~S.AtomicEnergyCommission,

'lashington, D.C~,20545,describing theequipment

involved, thetestresults,andthecorrective actiontaken.Acopyofsuchreportsha1.1alsobesenttotheDirector, l<egionI,DivisionofCompliance, USAEC,376lludsonStreet,llewYork,NewYork,10014.D.Testsforleakageand/orcontamination shallbeperformed bythelicenseeorbyotherpersonsspecifically authorized bytheCommission oranagreement Statetoperformsuchservices.

14,Exceptasspecifically providedotherwise bythislicense,thelicenseeshallpossessandusebyproduct materialdescribed inItems6,7,and8ofthislicenseinaccordance withstatements, representations andprocedures contained in.application datedJune6>1567andtelegramfromI."~J.Schneider receivedJune30,1967.DateJULForthe.P.S.AtomicEnergyCommission

-j<::f'cz,",

gi;.z.BrnhDtvtstonofMaterials Llcenslng Washtnlfton.

D.C.20SS5

'I rottsnAEC-401(u-ss)UNITEDSTATESATOMICENERGYCOMMISSION SPECIiLLNUCLEARMiLTERIRL LICENSEPursuanttotheAtomicEnergyActof1954andTitle10,Codeof.FederalRegulations, Chapter1,Part70,"SpecialNuclearMaterialRegulations,"

alicenseisherebyissuedauthorizing thelicenseetoreceiveandpossessthespecialnuclearmaterialdesignated below;tousesuchspecialnuclearmaterialforthepurpose(s) andattheplace(s)designated below;andtotransfersuchmaterialtopersonsauthorised toreceiveitinaccordance withtheregulations insaidPart.Thislicenseshallbedeemedtocontaintheconditions specified inSection70.32(a)ofsaidregulations, andissubjecttoallapplicable rules,regulations, andordersoftheAtomicEnergyCommission noworhereafter ineffectandtoanyconditions specified below.1.Name2.AddressLicenseeNiagaraMohawkPowerCorporation 300ErieBoulevard WestSyracuse, NewYork132023,LicenseNo,SNM-10284.Expiration DateDecember31,1968,oruponconversion

+cont.nextageS.DocketNo.70-,10726.SpecialNuclearMaterialUraniumenrichedintheU-235isotope;and.plutonium.

7.MaximumquantityofspecialnuclearmaterialwhichlicenseemaypossessatanyonetimeunderthislicenseU-235:2230.2kilograms contained in540fuelelements, and,5.54gramscontained inin-coredetectors.

+cont.nextae)8.Authorised useFuele1ements:

Forstorageand.inspection on1yinaccordance iththestatements, representations, andconditions specified.

inthelicensee's pplication dated.July7,1967,andsupplement submitted bythelicensee's t.oncesLeBceufLamband.Leibdated.Aust1016.econt.nex~tae9.Quantityofspecialnuclearmaterialallocated tolicenseepursuanttoSection70.31(b)ofsaidpart~eAeICONDITIONS 10.Unlessotherwise specified, theauthorised placeofuseisthelicensee's addressstatedinItem2above.Authorized placeofstorageforthefuelelements:

Thefreshfuelvaultandthespentfuelpoolatthelicensee's ReactorBuilding, NineMilePointNuclearStation,Scriba,NewYork.Authorized placeforinspection ofthefuelelementsandforusingtheotherspecialnuc1earmateria1listedinItem7,above:TheNineMilePointNuc1earStation,Scriba,NewYork.

'4hI141 Ij'OI4Ah4401/410A U.S.ATOMICENERGY.COMMISSION Page2of2PagesSPHClALNUCLEARMATERIALLICENSESupplementary SheetLicenseNumber11.Pursuantto10.CFR70.24(d)thelicenseeisexemptedfromtherequirements of10CFH70.24(a)(1

)inthespentfuelstorageareaduringtheperiodoftimethatthespentfuelpitisflooded,providedthattheprocedures described inthelicensee's supplementary application submitted bythelicensee's attorneys, LeBoeuf,Lamb,'Leiby,dated.August10,1967,arefollowed.

J'12.Thelicenseeshallcomplywiththe'attached leaktestcondition forthesealed.plutonium source.+4.ofConstruction PermitCPPR-16toanoperating license,whichever isearlier.Plutonium;

1.0 microgram

contained inplateddiscsand,480milligrams encapsulated asaPu-Beneutronsource.+8,Xn-coredetectors, plateddiscs,andthePu-Beneutronsource:Foruseinaccordance withtheprocedures described inthelicensee's application datedJuly7,1967,andsupplement submitted bythelicensee's attorneys, LeBoeuf,Lamb,hLeiby,datedAugust10,1967.FortheU.S.AtomicEnergyCommission DateAugust16,1967b~RobertL.LettleldDlvlalonofMaterials Llaanalnp Waahlnpton, D.C20545 II-CCCCIpp+~+~~+~EAtt$CIUNITEDSTATESATOMICENERGYCOMMISSIONWASHINGTON, D.C.20545NIAGARAMOHAWKPOWERCORPORATION DOCKETNO.50-220PROVISIONAL OPERATING LICENSE'LicenseNo.DPR-17TheAtomicEnergyCommission (theCommission) havingfoundthat:a.Theapplication forprovisional operating license(application Amend-mentsNos.2through13,datedMay29,1967,July14,1967,September 6,1967,May16,1968,September 27,1968,October14,1968,November4,1968,January17,19lI9,January17,1969,March10,1969,March28,1969andApril10,1969,respectively) complieswiththerequirements oftheAtomicEnergyActof1954,asamended,andtheCommission's regulations setforthinTitle10,Chapter1,CFR;b.Thefacilityhasbeenconstructed inaccordance withtheapplication, asamended,andtheprovisions ofProvisional Construction PermitNo.CPPR-16;c.Thereareinvolvedfeatures, characteristics andcomponents astowhichitisdesirable toobtainactualoperating experience beforetheissuanceofanoperating licenseforthefulltermrequested irtheapplication; d.Thereisreasonable assurance (i)thatthefacilitycanbeoperatedatpowerlevelsnotinexcessof1538megawatts (thermal) inaccord-ancewiththislicensewithoutendangering thehealthandsafetyofthepublic,and(ii)thatsuchactivities willbeconducted incom-pliancewiththerulesandregulations oftheCommission; e.Theapplicant istechnically andfinancially qualified toengageintheactivities authorized bythislicense,inaccordance withtherulesandregulations oftheCommission; f.Theapplicant hasfurnished proofoffinancial protection tosatisfytherequirements of10CFRPart140;g.Theissuanceofthislicensewillnotbeinimical.to thecommondefenseandsecurityortothehealthandsafetyofthepublic;Provisional Operating LicenseNo.DPR-17ishereby'ssued toNiagaraMohawkPowerCorporation (NiagaraMohawk),asfollows:1.ThislicenseappliestotheNineMilePointNuclearStation,asinglecycle,forcedcirculation, boilinglightwaterreactor,andelectric

generating equipment (thefacility)

.ThefacilityislocatedontheNineMilePointsiteonthesoutheast shoreofLakeOntarioinOswegoCounty,NewYork,approximately sevenmilesnortheast oftheCityofOswegoandthirty-six milesnorthwest ofSyracuse, andisdescribed inlicenseapplication Amendment No.2,"FinalSafety.AnalysisReport,"assupplemented andamended(Amendments Nos.3through13).2.Subgec'ttotheconditions andrequirehents incorporated herein,theCommission herebylicensesNiagaraMohawk:A.PursuanttoSection104boftheAtomicEnergyActof.1954,asamended(theAct),andTitle10,.CFR,Part50,,"Licensing ofProduction andUtilization Facilities,"

topossess,use,andoperatethefacilityasautilization facilityatthedesignated locationontheNineMilePointsite;B.PursuanttotheActandTitle10,CFR,Part70,"SpecialNuclearMaterial,"

toreceive,possessanduseatanyonetimeupto<3800kilograms ofcontained uranium235inconnection withopera-tionofthefacility; C.PursuanttotheActandTitle10,CFR,Part30,"RulesofGeneralApplicability toLicensing ofByproduct.Materia1.,".to receive,possess,anduseinconnection.

withoperation of.the.facility~'24curiesofCobalt60asasealedsource;430.millicuries ofCobalt60astwosealedsourcesofnotmore.than400.millicuries and30millicuries each;~500 microcuries ofCobalt60,asfivesealedsourcesnottoexceed100microcuries each;X01millicuries Cobalt60,3millicuries Strontium 90,101millicuries Iodine131,3.02millicuries Cesium137,and3.3millicuries ofanybyproduct materialwithAtomicNos.between3and83,inclusive, inanychemicaland/orphysicalform;12,500curiesAntimony122-124asfivesealedsourcesnottoexceed2,500curieseach;andsix'uries Americium 241asasealedsource;andD.PursuanttotheActandParts30and70,topossess,butnottoseparate, suchbyproduct andspecialnuclearmaterialasmaybeproducedbyoperation ofthefacility.

3~Thislicenseshallbedeemedtocontainandissubjecttothecondi-tionsspecified inthefollowing Commission regulations in10CFRPart20,Section30.34ofPart30,Section40.41ofPart40,Sections50'4and50.59ofPart50,andSection70.32ofPart70,andissub-jecttotheadditional conditions specified below:A.MaximumPowerLevelNiagaraMohawkisauthorized tooperatethefacilityatsteadystatepowerlevelsuptoamaximumof1538megawatts thermal.

B.Technical Secifications TheTechnical Specifications contained inAppendixAattachedheretoareherebyincorporated inthislicense.NiagaraMohawkshalloperatethefacilityatpowerlevelsnotinexcessof1538megawatts thermalinaccordance withtheTechnical Specifi-cations,andmaymakechangesthereinonlywhenauthorized bytheCommission inaccordance withtheprovisions ofSection50.59of10CFRPart50.C.~ReorrsInadditiontothereportsotherwise requiredunderthislicenseandapplicable regulations:

(1)NiagaraMohawkshallinformtheCommission ofanyincidentorcondition relatingtotheoperation ofthefacilitywhichprevented orcouldhaveprevented anuclearsystemfromperforming itssafetyfunctions asdescribed intheTechnical Specifications.

Foreach'such occurrence, NiagaraMohawkshallpromptlynotifybytelephone ortelegramtheappropriate AtomicEnergyCommission RegionalCompliance OfficelistedinAppendixDof10CFR20,andshallsubmitwithinten(10)daysareportinwritingtotheDirector, DivisionofReactorLicensing (Director, DRL),withacopytotheDivisionofCompliance.

(2)NiagaraMohawkshallreporttotheDirector, DRL,inwriting,withinthirty(30)daysofitsobservedoccurrence anysub-stantialvariancedisclosed byoperation ofthefacilityfromperformance specifications contained intheFinalSafetyAnalysisReport(safetyanalysisreport)ortheTechnical Specifications.

(3)NiagaraMohawkshallreporttotheDirector, DRL,inwritingwithinthirty(30)daysofitsoccurrence anysignificant changesintransient oraccidentanalysisasdescribed inthesafetyanalysisreport.(4)Assoonaspossibleafterthecompletion ofsixmonthsofoperation ofthefacility(calculated fromthedateofinitialcriticality),

NiagaraMohawkshallbeginsubmitting reportsinwritinginaccordance withtherequirements oftheTechnical Specifications.

D.RecordsNiagaraMohawkshallkeepfacilityoperating recordsinaccord-ancewiththerequirements oftheTechnical Specifications.

4~PursuanttoSection50.60,Title10,CFR,Part50,theCommission hasallocated toNiagaraMohawkforuseintheoperation ofthefacility14,321kilograms ofuranium235contained inuraniumintheisotopicratiosspecified intheapplication.

-Estimated schedules ofspecialnuclearmaterialtransfers toNiagara,Mohawk.and returnstotheCommission arecontained inAppendixBwhich.isattachedhereto.Transfers bytheCommission toNiagaraMohawkin,accordance withcolumn2inAppendixBwill'econditioned uponNiagaraMohawk'sreturntotheCommission ofmaterialsubstantially inaccordance withcolumn3(including thesubcolumns headed"Scrap"and"Depleted Fuel")~5'Thislicenseiseffective asofthedateof.issuanceandshallexpireeighteen(18)monthsfromsaiddate,unlessextendedforgoodcauseshown,orupontheearlierissuanceofasuperseding operating license.FORTHEATOMICENERGYCOMMISSION IhfalnaTsignalSyF,Rchroeder PeterA.Morris,DirectorDivisionofReactorLicensing

Enclosures:

.AppendixA-Technical Specifications w/Attachment AAppendixB-SNMTransferScheduleDateofIssuance:

gUg823969

'7 UNITED.STATES.ATOMICENERGYCOMMISSION DOCKETNO.50-220NIAGARAMOHAWKPOWERCORPORATION

.NOTICEOFISSUANCEOFPROVISIONAL OPERATING L'ICENSENoticeisherebygiventhatnorequestforahearingbytheappli-cantorpetitionforleavetointervene byanyinterested personhavingbeenfiledfollowing publication.

ofthe-noticeofproposedactionintheFEDERALREGISTER, theAtomicEnergyCommission (theCommission) hasissuedProvisional Operating LicenseNo.DPR-17toNiagaraMohawkPowerCorporation (NiagaraMohawk)authorizing thelicenseetopossess,use,andoperatetheNineMilePointNuclearStation,asinglecycle,forcedcirculation, boilingw'aternuclearreactor,locatedontheNineMilePointsiteonthesoutheast shoreofLakeOntariointheTownofScriba,OswegoCounty,NewYork.Thelicenseauthorizes NiagaraMohawktooperatethereactoratthermalpowerlevelsnottoexceed1538megawatts, inaccordance withtheprovisions ofthelicenseandtheTechnical Specifications (Appendix A)appendedthereto..TheCommission hasinspected thefacilityandhasdetermined thatithasbeenconstructed inaccordance withtheapplication, asamended,andtheprovisions ofConstruction PermitNo.CPPR-16.Theprovisional operating licensewasissuedassetforthintheNoticeofProposedIssuanceofProvisional Operating Licensepublished intheFEDERALREGISTERonJune5,1969,34F.R.8977,exceptformodi-ficationoftheTechnical Specifications assetforthinAttachment A

totheTechnical Specifications asissuedwithProvisional Operating LicenseNo.DPR-17.Thesemodifications (1)deletetherequirements forthenondestructive testingofsafetyvalvessinceallofthesetestshavebeencompleted, and(2)modifythepressureforperforming aleakratetestonamainsteamlineisolation valvetopermittestingatthesamepressurespecified forthecontainment test.AcopyofLicenseNo.DPR-17,completewithTechnical Specifications andAttachment Athereto,isavailable forpublicinspection attheCommission's PublicDocumentRoomat1717HStreet,N.W.,Washington, D.C.DatedatBethesda, Maryland,.this R<dayofAugust,1969.FORTHEATOMICENERGYCOMMISSION

~."!~':~"8CyF.ScF.-.aetna PeterA.Morris,5irector,Division ofReactorLicensing P'

C0y+>>14)[CUNITEDSTATESATOMICENERGYCOMMISSION WASHlNGTON, D.C.20545NlAGARAMOHANPOHERCORPORATION DOCKETNO.50-220AMEND".IENT TOPROUISIONAL OPERATING LICENSELicenseNo.DPR-17Amendment No.2TheAtomicEnergyCommission

("theCommission"

)hasfoundthat:A.Theapplication foramendment datedApril20,1970,assupplemented byAmendments 1through5theretoandletterdatedNovember23,1970,complieswiththerequirements oftheAtomicEnergyActof1954,asamended("theAct"),andtheCommission's regulations setforthin10CFRChapterI;B.Thereisreasonable assurance (i)thatthefacilitycanbeoperatedatpowerlevelsupto1850megawatts (thermal) inaccordance withthe'license, asamended,withoutendangering thehealthandsafetyofthepublic,and(ii)thatsuchoperation willbeconducted incompliance withtheregulations oftheCommission, andC,Theissuanceofthisamendment willnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic.Accordingly, Provisional Operating LicenseNo.DPR-17issuedtoNiagaraMohawkPowerCorporation foroperation oftheNineMilePointNuclearStationisherebyfurtheramendedtorestatesubparagraphs 3.A.,3.B.,and3.C.intheirentiretytoreadasfollows:3.A.MaximumPowerLevelNiagaraMohawkisauthorised tooperatethefacilityatsteady-state powerlevelsuptoamaximumof1850megawatts (thermal)

~3.B.Technical Secifications TheTechnical Specifications contained license,asmodifiedbyChangesNos.1No,4appendedheretoasAttachment A,inthislicense.NiagaraMohawkshallinAppendixAtothethrough3andChangeareherebyincorporated operatethefacility

inaccordance withtheseTechnical Specifications.

Nochangesshallbemadein'theTechnical Specifications unlessauthorized bytheCommission asprovidedinSection50.59of10CFRPart50.3.C.'ReortsNiagaraMohawksha11makecertainreportsinaccordance withtherequirements oftheTechnical Specifications.

Thisamendment iseffective.

asofthedateofissuance.

FORTHEATOMlCENERGYCO>iMISSXON PeterA.Morris,DirectorDivisionofReactorLicensing Attachment A-ChangeNo.4totheTechnical Specifications DateofXssuance:

April14,1971

LlNlTEDSTATESATOMIC"'NERGY',COMMISSION WASHINGTON, D.C,ROSisDocketNo.50-220~April14,1971NiagaraMohawkPowerCorporation ATTN:Hr.ThomasJ.Brosnan.300Erie'oulevard MestSyracuse, NevYork13202Gentlemen:

Xnresponsetoyourapplication datedApril20,1970,andamendments thereto,AmendsentNo.2toProvisional Operating LicenseNo.DPR-17isenclosed,

'Theamendment authorizes operation ofyourNinedefilePointNuclearStationatpowerlevelsupto1850megawatts (thermal) andincorporates changestotheTechnical Specifications toprovideforsuch.operation.

Acopyofarelatednoticethathasbeenforvarded totheOfficeoftheFederalReg'ister forpublication isalsoenclosed.

Sincerely, PeterA.Horris,Director~DivisionofReactorLicensing

Enclosures:

l.Amendment No.2toLicenseNoDPR-17v/ChangeNo42.FederalRegisterNoticeccw/enclosures:

ArvinE.Upton,EsquireLeBoeuf,La=b,Leiby&>fcRae1821Jefferson Place,N.M.Mashington,'.

C.20036

~~

olcl.cy~anyoitSN)TLO',SPATE8"ATOMICENERGYCOMMISSION WASHINGTON, D.C.20545NIAGARA'OHAWK POWERCORPORATION DOCKET-NO.50-220A~KND~iIENT TOPROVISIONAL OPERATING LICENSELicenseNo.DPR-17Amendment No.2TheAtomicEnergyCommission

("theCommission"

)hasfoundthat:A.Theapplication foramendment datedApril20,1970,-assupplemented byAmend,.ents 1through5theretoandletterdatedNovember23,1970,complieswiththerequirements oftheAtomicEnergyActof1954,asamended("theAct"),andtheCommission's regulations setforthin10CFRChapterI;'.Thereisxeasonable assurance (i)thatthefacilitycanbeoperatedatpowerlevelsupto1850megawatts (thermal) inaccordance withthe'license, asamended,withoutendangering thehealthandsafetyofthepublic,and(ii)thatsuchoperation willbeconducted in.compliance withtheregulations oftheCori5iiission, andC.Theissuanceofthisamendment willnotbeinimicaltothecommon.defenseandsecurityortothehealthandsafetyofthepublic.Accordingly,'rovisional Operating LicenseNo.DPR-17issuedtoNiagaraNohawkPowerCorporation for.operation oftheNine~H.lePointNuclearStationisherebyfurtheramendedtorestatesubparagxaphs 3.A.,3.B.,and3,C.intheirentiretytoreadasfollows:3.A.XiaximumPowerLevelNiagarahhhawkisauthorized tooperatethefacilityatsteady-state powerlevelsuptoamaximumof1850megawatts (thermal)

.3.B.Technical Sccifications TheTcchnical Specifications contained inAppendixAtothelicense,asr::odified byCh-ngesNos.1through3andChangeNo.4appendedheretoasAttachment A,areherebyincorporated inthislicense.Niagax'a~<<ohawkshalloperatethefacility n4Jvt<<f inaccordance withtheseTechnical Specifications.

NochangesshallbemadeintheTechnical Specifications unl'essauthorized bytheCommission asprovidedinSection50.59of10CFRPart50.'3.C.~Reorrs'iagara Mohawkshallmakecertainreportsinaccordance with'herequirements oftheTechnical Specifications.

Thisamendment iseffective asofthedateofissuance.

FORTHEATOMICENERGYCOiiQHSSION pm',7=-DivisionofReactorLicensing Attachment A-ChangeNo.4totheTechnical Specifications DateofIssuance:

April14,1971

~ansHdC27otelse64)PermitFee.Ins.FeIsTotalReceivedSTATEOFNEWYORK-,DEPARTMENT o~4sOFPUBLICWORKS~HWrermitNo.g8603DepositRec'dforCk.orM.O.~DatedI4.Ck.orM.O.~~DatedHIGHWAYWORKPERMITorchargeable toIthmovnt)Liability Ins.BondgPolicy~~evUndertoking onfile.ExpiringUndertheprovisions oftheHighwayLaw,permission isherebygrantedto(nameolPcrmsttee) whoseadd,ess.,

-COrJ.R'.:.0:.1.Cr=ru

';...4.-,.-,-.-0."..-.t,to(CQ.s~in('.09.Cs'@GING-:gg Q)Ol1XT19cl{:rOQSVsr<OssS!:s.r"...".~

)briefsvmmoryotworkovshotired including typeofinstottotion ondnumberotfees)Of'.m~~"irZ'~OozX~~CI11"OQ,~63.onSHNo.lt"~s~Countysmr'~cassetforthandrepresented intheattachedopplica-tion;ottheparticular locationororea,orovertheroutesasstatedtherein,ifrequired; andpursuanttothecon-ditionsandregulations, whethergeneralorspecial,andmethodsofperforn)ing.work, ifqnyfoilofwhicharesetforthintheopplication andformpartofthispermit.ggfn!cCEstimated DoteofCompletion~

Superintendent ofPublicWorksDotedatDote,NewYorkByDistrictEngtneer, Dist,IMPORTANT THISPERMIT,WITHAPPLICATION ANDDRAWING(ORCOPIESTHEREOF)ATTACHED, SHALLBEPLACEDINTHEHANDSOFTHECONTRACTOR BEFOREANYWORKISSTARTED.NOTICE-It isahsalately necessary thatthepermittee nayrfy~cssVZknn'~no.

~t'n,ResidentEngineer, whoseaddressiss:0-Telbeforeworkisstartedanduponitscompletion.

Theissuingauthority reservestherighttosvspondorrevokethispermit,atitsdiscretion withoutohearingorthenecessity ofshowingcause,eitherbeforeorduringtheoperations authorized.

Thepermittee willcovseanapprovedcopyoftheapplication tobeondremoinattachedheretountiloilworkunderthepermitissotisfoctorily com-pleted,inoccordonce withthetermsofIheottochedapplication.

ISEEOTHERSIDE) 0 rona4iR,sate<iP~~No5~0STATEOFNEWYORKyq,.aDEPARTMENT OFPUBLICWORKS*39fbidioII of8yeratioII arrbNailltellaIICe REVOCABLE PERMITIssuedPursuanttoArticleXoftheCanalLawAlbrr>>yAprQ2sQC19.'iagaraNoh-;>kPowerCoaa.300ErieBlvd.hest,Syracuse, VewYork,'3202,thereinafter referredtoasthe"lieensec,"

hasmadeapplication forpermission tutainnnaerialcrossin~ofStateCanallandsoftwnc.lrictictrans..icsinc linncit-cuitsofapotential 345KVcarriedinsixpowerwiresandfourst.",ticwiresa"sitcomonh"fpCdrawingC-7229-C, intheTownofClay,eastofLoclc23atCenterMneStatinns2930+29and2929+12,andhasfilcdinthisoffiecmaps,phnsandprofile,showingthestatelandatthelocationreferredtoandthedetailsoftheworkproposedtobedone.THEREFORE, permission isherebygrantedtosaidlicenseet'""or"rcrossi~ofSta~rt'17".~nnf'>>>tr~".gi~Qdofaotential345KVcarriedinsixowerY"..csnrdfourstaticwfrennsnliotr.oF~~Cdrawinr'-72?9-C intheTctmofClnerstnfTnck'23ntCont2930+29nnd2929+12.asaskedforinsaidapplication anddescribed above,aconditions andrestrictions:

wn'ostandexpense,uponthefollowing 1st.Thispermitshallnotbeassignedortransferred withoutthewrittenpermission ofthcSuperintendent ofPublicWorks.2nd.Allworkauthorized bythispermitshallbedoneinaccordance withthcmaps,plansandprofilcnowonfileinthisofifice,andinaccordance withthespecialandgeneralconditions hereinafter setforth,ordirections whichmaybcgivenbytheSuperintenden ofPublicWorks.Arystructures erecteduponcanallandsbyrightofthispermitshallnotbechangedinanywaywithoutfirstrcceivirg writtenperinission oftheSuperintendent ofPublicWorkstodoso.

I~"4IIt 3rd.Allworkauthorized bythispermitshallbedoneunderthesupervision oftheSupcrintcndcnt ofPublicWorksoranInspector tobeappointed byhim.Theworkshallnotbecommcztccd untilsuchtimeastheoflieiallv signedcopyofthepermitisreceivedbythelicensee.

TheworkshallbedoneatsuchtimesasthcSuperintcndcnt ofPublicWorksshalldirect,soasnottointerfere withthefreeandperfectuscofthecanals,orendangerthclivesorpropertyofanypersons,andparticularly ofthoseengagedinrepaiv'ng, operating ornavigating thccanal.4th.Inthceventthatanyvesselorfloatissubjected todelaybyreasonoftheworkauthorized bythispcr-mit,thelicenseeshallpaytotheownerofsuchvesselorfloatsodelayed,suchamountaswillfairlycompcnsatc suchownerforthedelayorlossoftimeoccasioned tobirnbythcoperations hcrcinauthorized; andinthccvcntthatthelicenseeandtheownerareunabletoagreeastothcamountofcompensation tobepaidforsuchdelaytheamountofsuchpaymentshallbedetermined bytheSuperintendent ofPublicWorks.Thcsumfixcdbyhimshallebindinguponandpaidbythelicenseetosuchowner.TheInspector appointed bythcSupcrintcndcnt ofPublicWorkspursuanttothethirdparagraph ofthispermit,shallascertain whetherornotanyboatshavebeendelayedbythcworkhereinauthorized, andshalldetermine theextentofthcdamagessuffered, andshallreportsuchfactstothcSuperintendent ofPublicWorks,forhisfinaldetermination.

5th.Anyandall'canal banksorotherstructures whichmaybedisturbed'or interfered withduringthcitsprogressoftheworkshallberestoredtoaperfectcondition bythclicenseeaowncostandexpense.6th.Exceptinsofarastheyarespecifically modifiedherein,therulesandregulations governing terminals andtherulesandregulations governing navigation onthcNcwYorkStateCanals,archerebymadeapartofthisSPECIALSPECIFICATIONS ANDCONDITIONS:

(a)irctrarenisaion HreshaGbekplscedan"u.aintaincd ontltestateproperty.

inac-cordat:cc witnDrawingC-722o~onfMcinthisofiiceordirections whichtnaybegivenbytheSurexintcndc".t oCPubliclor'~orhisxpzsc:ntativc.

(b)Kointcrxerencc shQlbchadwithravigation interests orwithanyrepairor~rove>>tacnttrorkcnorcormectcd wit)tthccanal.(c)Zfdcc:.cdtobencccssa~>,

suit"bleard*p:vipb"'afety devicesshallbcprov:dedbythcliccnsccatitscnatcostandcxpcnse,inforatobcapprovedbytheSupcrintcndcnt ofPub3.ichoxltsorhisrepresentative.

(d)TncSupcrintcndcnt oCPub'tacloxk"rcservcstherightat'nytirteduringtheperiodinwhichtltispc+itvyrenninir.forcestoattaclttotxan=dsaicn lirao'r'alas"ts'angercab3.c,wires,crossaxns, fixtures>

ctc.asr".gbcrcc,uircd

.:irthcuscofthcdepart;.nt,I".hercw~benocltax'gctothcSt"0ofl<s:iYorkfortbcaboveattac.lt:.antes if."--.".arcrado<(e)neliccrsceshU~ccrc>lywitha31xti3es,3ai<sardxcgDations cCthcSt-"tc"philic"ble totii<<const ctionorcvtcns.on oftrans:aission lines.(f)Itistobeun".crstncd enclagreed<<!tatthistr;<nsrtission linecvcrst'a"epro~:!rt<i isnottnbexeconst;.ctcd inaryway,withetfirstreceiving thewrittenpenEsaion ofthcSuac.ri"-:ender<t ofPublici<or'."orni"rcprc"cntative.

(")ThcStateslinkocprotected agains<.clai".Lss clKQcsctcsascoveredbyUndcrtahirg dartedJuly2Ss9SSssub'cabythe3.ic<'nso.e andcnfilewiththisdcpa&cnt<

(h)ThelicenseeshQ1paytotheStateoC-?:cwYor?cthxouglttneSuperint'cndcnt oC.PublicVoxt'sanissuancefecor"$28.00ardq2.6.00pcryearorfractionthcrcof,pay."..cnt t'ober.:adeinadv"ncc.ttercw&lalsobearenewalCccoC.v5.00duceachyearonthear".'vcrsary c.atcoCticepcx.".it.

~drhamndsSiadddS7th.TheuseofsaidlandshagbesubjectatalltimestotheinterestoftheStateinthcmakingofimprovementsandrepairstothccanalsystemorworkinconnection therewith.

TheSuperintendent ofPublicWorks,hisagents,<<mployecs andcontractors, shallatalltimeshavethcrightofentrythereon,ifin'hejudgincnt ofthe"Superintcndcnt ofPublicWorkstheState'sinterestshallrequire.Sth.Thelicenseeundertakes andagreestoindemnify andsaveharmlesstheState,itsofficers, oremployees, fromanyandallchims,demandsandrecoveries arisingoutoftheuseormannerofusemadebythelicenseeofthepropertywhichisthcsubjectmatteroEthispernut.9th.Thcworkauthorized bythispermitshallbecommenced promptlyandprogressed tocompletion withoutdelay;andintheeventthatsuchworkisnotsocommenced andprogressed tothesatisfaction oftheSuperintendent oEPublicWorks,thispermitshallbedeemedtoberevoked,andsaidworkshallnotbcresumedwithoutarenewalofthispermitinwritingbytheSuperintendent ofPublicWorks.10th.TheSuperintendent oEPublicWorksreservestherightatanytimetorevokeandannulthispermit,heeuponhehattheeomethedutyoftheheentee,a~emotedeapente,fothtth\aremaeprothcpropertywhichisthesubjectmatterofthispermit,anyandallworksandstructures crcctcdby1,t:thcrcon,andvacatdandsurrcndcr tothcStatepossession thereof.Uponfailureoftheliccnscctorcmovesuchworksandstructures, thcSuperintendent ofPublicWorksmaysummarily enteruponandremovefromsaidprcmiscsanyandallcncroachmcnts andpr'opcrty ofthelicensee, atthelicensee's owncostandcxpcnscssedt'NoNoticeofrevocation maybcgiventothclicenseepersonally, orbymailingtctIcctenclosedinapostpaidwrapperaddreBlVad~lee~aeae'oticeothat11th.Thispermitshallnotbecomeeffective, norshallanyworkbecommenced underthcsarnc,untilthclh~Ioriginalthereofhasbeenexecutedbytheapplicant, signedbythcSuperintendent ofPublicWorks,thcofficialsealofthcStateofNewYorkattachedhereto,andanexecutedcopyoftheperinitreceivedby thcliccnsce.

12th.Inaccepting thispermitthcsaidlicenseehasinmindthepossibility ofthcsaleorotheiwisc disposalbythcStateofthclandreferredto,withoutnotice,andinsucheventthepermission hcrcbygrantedwillauto-matically tcrminatc.

13th.Norefundwillbcinadetothelicenseeorotherparty,ofanyportionofthefeepaidforthcuscoftheStatepropertyshouldthispermitbecancelled withinthespecified tiineforwhichthefeehasbeenpaid.INTEsrtstoNY WttEREOFIhavehereuntosetmyhandandaffixcdthcofficialsealofsaidonce,thedayandyearfirstabovewritten.J.BURCHMcMORRANSpdprripitrxdrpit ofPilieIYorks.dhaa4superintendent odOperation Mhdnhnlananen ACCEPTANCE OFPERMITThcundersigned herebyacceptstheforegoing revocable permitandagreesfaithfully tocon:plywithallthetermsandconditions thereoE.SyracusoN.Y.,Auri.l20196+tlIAG~fta

."Blitt'odM co<0"aTIo'tVopresident

sheetc(Acknowledgment, ifanindividuaL)

STATEOFNEWYORKCOUNTYoFOnthime,thesubscriber, personally appeareayof19beforetomeknowntobethepersondescribed in,andwhoexecutedthcforegoing instrument, andhedulyacknowledged toInethatheexecutedthesame.NotaryPublic(Acknowledgment, ifacorporation.)

STATEOFNEWYORKCoNTYOFOnthime,thesubscriber personally cam)-ayof19!6~beforetomcknown,whobeingbymcdulysworn,diddeposeandsaythathcresidesi;thatheisthVicePresident NiagaraÃohattkPovorCorporation thecorporation described inandwhichexecutedthcforegoing instrument; thatheknowsthesealofsaidc'orpora-bylikeauthority.

tion;thatthesealaffixedtosaidinstrument issuchcorporate seal;thatitwassoafiLxcdbyauthority ofthcBoardrofDirectors ofsaidcorporation, andthathesignedhisnamether(Acknotvlcdgment, ifafirmorco-partnership.)

STATEOFNEWYORK$$.1COUNTYOFt0RTJ.MNotaryPublicRTJ.McttAMARA NOtitrVilleIOIltoSl~teotitveotlfleewoakMqo4IoooooCoHo541810551cootottiitoo eeettoeu'iCI,50OnthiIne,thesubscriber, personally appcareayof19before,toIneknownandknotvntometobctheindividual whoexecutedthcforegoing instrument asametnberoftheco-partnership ofdiddeposeandsaythatheresidesitheabove-named co-partnership whichiscomposedofhimselfan,who,beingbyIncdulysworn,'hathcisamcmbcroi;whoareallthepersonsinterested therein;thatheexecutedtheforegoing instrument onbehalfofthesaidco.partnership andasametnberthereof;thathe'wasauthorized toexecutethesame;andheacknowledged tomethatheexecutedthcsameonbehalfofthesaideo.partnership forthepurposesthereinstated.NotaryPubhc 1P APPENDIXHTHEEQGQEFFECTOFHEATEDDISCHARGES ONLAKEONTARIO

APPENDIXHTHERIACEFFECTOFHEATEDDISCHARGES ONLAKEONTARIO1~THEENTIRELAKETheapproximate heatloadexpectedwithinthenext10yearsfromtheexistingandpresently proposedpower(including theoperating NineMilePointUnit1andtheproposedUnit2),steel,andsewageplantslocatedonLakeOntariois1,800x10~

BTU/day(seeTableH-1).Itispredicted thatthisloadwillproduceanoveralllaketemperature riseof0.08Fabovetheambientlaketemperature thatexistedbeforetheadditionofheatofartificial origin.Along-range projection ofheatdischarge tothelake(Ref.H-1)givesafigureof6,350x10~

BTU/daybytheyear2000.Itispredicted thatthisloadwillproduceanoveralltemperature riseof0.28F.Inaddition, theresidualtemperature riseinwaterenteringthelakeatitswesternendintheyear2000ispredicted tobeabout0.1F.Theseeffectswerecomputedbyuseofaratherconservative model(Ref.H-2)ofheattransport anddissipation inthelake,including heatlosttotheatmosphere.

Completemixinginthehorizontal planeofthelake~ssurfaceandoversufficient depthtosupportthelakethroughout isassumedinthemodel.Themodelconsistsofasteadystateheatbalanceoverthelake.Thelaketemperature riseduetolakeheatsources,isdesignated

~Tandisreferenced tothelakeinlettemperature.

SeeTableH-2fortherelationships involved.

Anestimateof'heyearlyaverageoverallheattransfercoefficient, K,is100BTU/sqft/dayF.LakeOntariosurfacearea,Az,is7,500sqmiles.Yearlyaverageflow,Q,intheSt.LawrenceRiverattheoutletofLakeOntarioisapproximately 240000cfs2THEEASTERNENDOFLAKEONTARIOAsimilarcomputation canbeperformed fortheportionofLakeOntarioadjacenttoNineMilePoint.Onlytheplantsintheeasternendofthelakeareconsidered.

TheyincludeNiagaraMohawk'sUnits1-4and5atOswego,andUnits1and2atNineMilePoint,PASNY'sFitzPatrick Plant,anassumedplantatSterlingandthesewageplantatOswego.H-1

Plant.TableH-1ThermalInputsIntoLakeOntarioHeat,Rejec-CapacityDischarge TAboveLaketiontoLake-.MW.--FlowCfsAmbient-F-10~.BTU/Hr.--

NMPC-Oswego,Fossil,4units40776212.42..114NMPC-Oswego,Fossil,Unit589063528.6409NMPC-NineMilePoint,Nuclear,Unit1610NMPC-NineMilePoint,Nuclear,Unit,2',1005971~188'31.230.94.188.21PASNY-J.AFitzPatrick, Nuclear85082531.55~714RGSEC-Russell,Fossil28223919.61.051RGSEC-Ginna,Nuclear47077919.6(design)2.975OntarioHydro-RichardL.Hearn,Fossil1,2001i76016.06.325OntarioHydro-Lakeview,FossilOntarioHydro-Pickering, Nuclear2i4002~1602~8103,92117.020.0"10.72717.614SterlingSite(Assumed)

Stelco,Hamilton, Ont.'(SteelCo.)SewagePlant,Oswego,N.Y.1,0001,00032.07.1871.25~H-2 0'I SewagePlant,Rochester, N.Y.SewagePlant,Somerset, N.Y.SewagePlane,Toronto,Ont.41980Projection

.0~9+70.837TableH-2AModelofHeatTransport andDissipation inaLakeSteady-state heatbalance:H-Wj)QQT-KAQT=0coo(1)where:H=Heatdischarged intothelake,BTU/dayfC=DensityxHeatcapacity, BTU/cf/FQ=Lakeoutflow,cfdQT=Surfacetemperature rise,FK=Overallsurfaceheattransfercoefficient, BTU/sgft/day/FA<=Lakesurfacearea,sqftRearranging:

bTH/(PCpQ+KAs)soo(2)Theapproximate heatloadtobedischarged bytheaboveplantsintothelakeis760x10~BTU/day.Thisloadwillproduceatemperature riseforthisportionofthelakeof0.17F,whenitisassumedthatthereisnomixingwiththerestofthelake.Projecting totheyear2000,aspreviously, theoveralltemperature risefortheeasternendofthelakeiscomputedtobe0.6F.Theabovetemperature risesarefortheplantsoperating continuously at100percentofcapacity.

H-3

3-THEEFFECTOFNMP1~NMP2~ANDFITZPATRICK ONLAKEONTARIOInanalyzing theeffectofallthreeplantsonthelake,itwasapparentthat.thedistancebetweentheplant'discharge facilities istoogreattopermittheassumption thattheirinputwasonelargedischarge flow.Therefore, theareainvolvedasbrokenupintotwosections, onefortheNMP1-NMP2 complexandtheotherfor'heFitzpatrick plant.TheNMP1-NMP2 complexwillhaveadischarge flow,of1,788cfswithaneffluenttemperature of30.9Fabovetheambientwatertemperature.

Theseconditions, alongwithanozzleheaderof57Sfeetwillproduceaheatedlayerwithamaximumsurfacetemperature oflessthan3Fabovetheambientwatertemperature.

Byutilizing mathematical modelsandanalysesmadeofexistinghydraulic modelsofotherplants,thehydrothermal patternsthatwillbeproducedoffshorefromtheNMP1-NMP2complexcanbedetermined.

Amathematical analysis(Ref.H-3)preparedbyQLSMprovidesamethodforpredicting surfacetemperature contourlinesfromdischarges.

(SeeTableH-3).FortheNMP1-NMP2 complex,thedistancealongthecenterlineofthedischarge plumetothe0.5Fsurfacetemperature contourisapproximately 4,800feetunderzerolakecurrentconditions.

Underzerolakecurrent,conditions, thevelocityofthejetsfromthesubmerged multiport nozzleheaderisrapidlyreducedasthesurrounding lakewaterisentrained.

whencurrentsoccurinthelake,theflowpatternsofthedischarge fromtheNMP1-NMP2 complexwillchangebecausethecoolingwaterdischarges aredeflected inthedirection oftheprevailing current.Theseflowpatternsarestretched outinproportion tothecurrentvelocity.

(Ref.H-4)Usingcurrentvelocities rangingfrom0.2fpsto0.8fps,mathematical analysisshowsthatthedistancetothe0.SF6Tcontourhasamaximumvalueof21,000feetdownstream fromthedischarge jet(seeFigureH-1).(Iftheboundarybetweenthe"near"thermalfieldandthe~~far~~fieldisthatlinewheretheinitialjetreachesthelakesurface,the0.5FQTcontourcanbesaidtobeboundarybetweenthe"far~~fieldandthe"remote<<field.)H-4

0.01.020x4.00O5.0OI-C7u.6.0l--z2FPSJl=.8FPSAI=.5FPS50<<Cv60OCP~70oI-Q80zO~901002OQ~825DISTANCEALONG0OFPLUME-IOFT308.09.010.0II.O0I2345678910II121314151617181920DISTANCEALONG%OFPLUME-10FTFIGUREH-IDILUTIONFACTORVS.DISTANCEALONGCENTERLINE OFPLUME-FEET

TableH-3dT[~]dimensionless temperature rise=QTjrtemperature riseatdistancerfromsourceModelforPredicting SurfaceTemperature ContourLinesg(En)=-KnY)(~)(nQ2.temperature riseatsourcedimensionless radialdistance=E(r)temperature dissipation coefficient radialdiffusion coefficient QDintegerparameter obtainedby.roundingoff2.~DEplantcoolingwaterdischarge flowdepthofthedischarge layeranglebetweeneffluentoutletboundaries K(E)=modifiedBesselfunctionof2ndkind,ofargument4 andordernAlso,foragivenpointdownstream, thewidthsoftheflowpatternsdecreaseasthecurrentspeedsincrease.

SeeFigureH-2.AttheFitzPatrick plant,therewillbeadischarge flowof825cfswithaneffluent, temperature of31.5Fabovetheambientwatertemperature.

Also,thenozzleheaderwillbeapproximately 800feetlong.TheFitzPatrick report(Ref.H-5),describes certainflowpatternsthatwerepredicted onthebasisofhydraulic testingandmathematical models.Thosedescribed herefortheNMP1-NMP2 complexaresimilar.Themagnitudes oftheflowpatterndimensions differbecausethemagnitudes ofthedischarges differ.(Ref.H-5)Therangeofdistances fromtheNMP1-NMP2discharge jetstothe0.5F6Tcontourisbetween4,000feetfornolakecurrentconditions and35,000feetfora0.8fpscurrentintheeastwarddirection.

Duetothecomplexity ofthecurrentsintheeasternendofthelake,anextensive limnological studyprogramwasconducted byJohnF.StorrinMay,1963(Ref.H-6).Theprogram's objectives H-5

O0UOxIO2ll=02fpsM=0.5fpsN=0.8fps50I2345678910II121314151617181920OISTANCEALONG%OFPLUME(IOFT.)FIGUREH-2WIDTHOFFLOWFIELDVS.DISTANCEALONGCENTERLINE OFPLUME

wereasfollows:.(1)definetheoffshorecurrentsatNineMilePoint,(2)correlate thesecurrentswithvariouswindregimens, and(3)determine thedilutionfactorsapplicable tothewaterleavingtheNineMilePointsite.Thelimnological studywasbasedonthedischarge ofOswegoRiver(located7mileswestofNMP1-NMP2 complex)intoaprimarily eastwardlakecurrent.SincetheOswegoRiverhasagreatersalinitythanthelake,itwaspossibletomakemeasurements downstream, thus,determining thepercentmixingpermile.Basedontheseexperimental results,mathematical computations indicatethatthe"remote"fieldbeginsbetween27,000and42,000feetdownstream.

Thisrangeisofthesameorderofmagnitude asthevalueof21,000feetobtainedbythemathematical modelofRef.H-4(FigureH-1),andsomewhatlargerthanthevaluesthatthemodelofRef.H-2(FigureH-2)wouldpredict.4INTERACTION BETWEENADJACENTPLANTSANDRECIRCULATION TheeffectofNMP1-NMP2 complex's thermal,discharge onFitzPatrick dependsentirelyonthedirection offlowandthetimeoftravelfromtheoutfall.Asthetraveltime(whichisbaseduponcurrentandwindvelocities) isreduced,higherwatertemperatures appearatFitzPatrick withsmallerdepthsofheatedlayersovertheintakeandthedischarge structures.

Thermalstudieswereconducted betweenJulyandOctober,1970intheNMP1area(Ref.H-7).Theplantwasoperating withradialflowdischarge at1/3ofthecapacityofthetotalproposedNMP1-NMP2 complex.Also,thesurfacetemperature contoursintheimmediate vicinityofthedischarge wereconsiderably higherthanfortheproposedcomplex.Thestudiesweremadeusingthermistors thatwerelocated.indepthsupto10feetbelowthesurface.Thesemeasurements wereusedtoprovidetemperature contoursintheNMP1area.Theresultsofthestudiesindicated thatNMP1'sradialdischarge didnotmaterially affectthelocalityoftheFitzPatrick intake.FitzPatrick wasnotconstructed atthetimeofthesethermalstudies,andtheinfluence ofitsintakeflowwasnotestablished intheprevailing temperature contours.

TheproposedNMp1-NMp2complexisdesignedwithadiffusersystem,andhasajetvelocity.

andadilutioneffectmuchgreaterthantheexistingNMP1discharge.

Furthermore, fieldmeasurements oftheexistingsystemindicated insignificant recirculation.

Therefore, itisassumedthatnorecirculation willoccur.H-6 4Ilt Usingamathematical modeldeveloped byBrooks(Ref.H-4),dilutions of3.6,1.7,and1.3arefoundfordischarge flowsat3,200feetdownstream (distance betweenNMP1-NMP2 complexandFitzPatrick) undercurrentconditions of0.2,0.5,and0.8fps,respectively.

Thesedilutions producesurfacetemperature risecontoursrangingfromaminimumof0.8Ftoamaximumof2.3Fatthe3,200-foot distance.

According toalimnological study(Ref.H-6)performed intheNineMilepointareaundertheinfluence ofaneastwardcurrentinthelake,itisfoundthatthepercentmixingpermileforadistanceof3,200feetdownstream rangesbetween25and42.Thismixingestablished dilutionfactorsbetween1.14and1.24producing surfacetemperature risecontoursof2.63and2.42,respectively.

Thecombined, discharge ofNineMilePointUnits1and2will,byvirtueofthejetvelocity, yieldasurfaceplumewithastonglakewardtrend.Itwouldrequireasoutheasterly currenttoovercomethistrendanddiverttheplumetothevicinityoftheFitzPatrick intake.Furthermore, asstatedabove,itwouldrequirea'urrentvelocityof0.8fpstoyieldasurfacetemperature riseofapproximately 2.5Fatadistanceof3,200feetdowncurrent.

Lakemeasurements (PASNYreport)showthatsoutheasterly currentsofanystrengtharerare,andcurrentsoftherequiredintensity inthisdirection extremely so.Takingallthesefactorsintoaccount,theactualtemperature risesensedintheFitzPatrick plantintakewillbeonlyafractionofthisfigure,forafewhoursayear.Usingamathematical analysispreparedbyQLSM(Ref.H-8)describing the'characteristics ofthedischarge jet(suchasjetdiameter,

velocity, flow,temperature, anddilutionalongthecenterlineoftheplume),oneobservesthattheresulting surfacetemperature risecontourvaluesareincreased byapproximately onetenthoftheincreaseintemperature attheintake.Hence,theareawithinacontourofgivenvalueisincreased.

However,theNewYorkStatecriteriaapplicable tothedischarge ofheatedliquidstoLakeOntarioarestillnotcontravened.

Analyzing FitzPatrick' effectontheNMP1-NMP2complex,onehaspractically thesameconditions asaboveexcepttheproposedintakeislocatedinabout23feetofwaterwhichisgreaterthantheintakedepthatFitzPatrick.

Accordingly, theheatedlayerovertheintakehasamaximumtemperature ofabout2.5Finadepthapproximately 1/3ofthetotaldepthattheintake.Themaximumtemperature riseintheintakewouldbe0.8Fandthesurfacetemperature risecontourswouldincreasebyapproximately 0.1F.Itshouldbenotedthattheincreaseinthesurfacetemperature risecontoursispartlyduetothefactthatthedilutedflowfromtheadjacentplantwillmixwiththeotherplant'sdischarge jetsastheyreachthesurface.H-7

Also,themajorportionofthetotaljetdilutiontakesplacenearthejetnozzles,wheretherelativevelocities arehighest.Thisexamination ofin-situ-studies, mathematical analysesandhydraulic modelsrevealsthatthecriteriaestablished bytheStateofNewYorkwillbemetbytheproposedNMPI-NMP2 complexwithoutanyproblem.5REFERENCES H-1.Acres,H.G.,Limited.,

ThermalInputstotheGreatLakes,1968-2000.NiagaraFalls,Ontario(February, 1970).H-2Lawler,J.P.,Leoprati, J.L.,andLawler,P.J.Receiving WaterTemperature Distributions fromPowerPlantThermalDischarges

-ALakeModel.Presented atthe5thAnnualEnvironmental HealthResearchSymposium, Albany,NewYork,May,1968.H-3LetterofMay10,1971toMr.,Charles V.ManganofNiagaraMohawkPowerCorporation fromDr.JohnP.LawlerofQuirk,Lawler6MatuskyEngineers.

Subject:

<<NineMilePoint-CoolingWaterDischarge Schemes."H-4.Brooks,N.H."Diffusion ofSewageEffluentinanOceanCurrent,"

PreenIn.ternational Conference onWaste~DisosalintheMarine~Environment,

Pergamon, Press,NewYork,(1960).H-5.PowerAuthority oftheStateofNewYork.Engineering andEcological StudiesforDesignofIntakeandDischarge Structures, (January1970)H-6.Storr,J.F."Limnology Study-NineMilePoint,LakeOntario,<<

May,1963.H-7..Storr,J.F.<<ThreeDimensional ThermalStudies-NineMilePoint,<<July'-October,1970.H-8.Quirk,Lawlers;MatuskyEngineers.

EffectofCirculating WaterSystemsonLakeOntarioandOswegoHarborWaterTemperature andAquatic~Biology,ReportpreparedforNiagaraMohawkCorporation, April1971.H-8 I0 APPENDIXIMeteorological Calculations forAssessing Environmental EffectsofAccidents

~~~r.01~c APPENDIXIEXHIBITARADIATION EXPOSUREMODELS1.WHOLEBODYEXPOSUREThebasicmathematical modelusedtocalculate thewholebodyexposures is.definedinReference I-1andmodifiedasfollows:413/$5c(c'pxG~Y~z~T(Eq-1)~where:9CgC.IGICloudgammadose(rem)Conversion factor(3.7x10+Dis/sec-ACi)

Fluxtodoseconversion factorfortheiisotope(rem/sec-Y/cc)

Numberofphotonsofthei'sotopeemittedperdisintegration

($'s/dis).thDoseattenuation kernelfortheiisotope(dimensionles s)(Eq-2)where:XAverageannualisotopicair-borne concentration oftheiisotope(pCi/cc)Accumulative frequency forwindspeed,stability, andsector(dimensionles s)QiPlantreleaserateoftheiisotope(ACi/sec)

I'I

~y,~q=Horizontal and,verticaldiffusion coefficients (cm)YZ=Windspeed(cm/sec)=Horizontal andverticaldistances fromplumecenterline(cm)=Sectorangleoverwhichplumeisaveraged(radians)

R=Distancefromreleasepointtodetectorpostion(cm)Equation1providestheyearlyoffsitedosetoadetectorlocatedadistanceofR-cmfromthereleasepointandwithinasectorangleofpradians.Theman-rem/yrisdetermined bymultiplying theresultofEquation1bythepopulation densitylocatedwiththesectorofconcern.ValuesofsectordoseatadistanceofR(cm)areassumedtobeapplicable toallindividuals locatedinthatsectorfromadistanceofR~RtoR+bR.InTable6.2-1,thecumulative man-remforanyradialdistanceisdetermined bysummingthedosecontributions fromallsectorsfortheadditional radialdistances andaddingthistothepreviousradialman-remexposures.

2THYROIDEXPOSURES Mathematically thepopulation radiological exposures canbedescribed asfollows:hyroiJ(Eq-3)@R(MPC)where:ThyroidThyroiddose(rem/yr)DoseConversion factor(i.e.,~<<<.

=1=1-Sr/yr)rIotherparameters aspreviously defined.Equation3appliestothedoseinagivensectorataradialdistanceR.Therefore, todetermine theintegrated population exposureitisnecessary tomultiplyEquation3bythepopulation distribution inagivensectorandatthegivendistanceRandsumthisproductforallsectorsanddistances to50miles.Concerning thewholebodydoseeffectsfromthereleaseofnoblegasactivity, thesteamandhenceactivityreleaserateisbasedonanequivalent 7gpmwaterleak.Thecloudgammaexposures arebasedonmathematical modelsandarepresented inTab'le6.2-1.I-2 C

EXHIBIT-B.

DIFFUSION-

-DOSEMQDELS~1..0-8HOURATMOSPHERIC DIFFUSION MODEL20-8HRCLOUDGAMMADOSEMODEL(Eq.5)where:Q;=Activityoftheiisotopereleasein0-8hoursD~~=Cloudgammadosereceivedin8hours(rem)3~THYROIDINHALATION DOSE(0-8HOURS)(Eq-6)-=Thyroidinhalation dose"receivedin8hours9~=Breathing rate(cc/sec)Qz=Doseconversion factor(rem/ci)(rem)

4.THYROIDINHALATION DOSE(8HOURS-30DAYS)jf35where:=Inhalation dosereceivedbetween8hoursand30days(rem)in5REFERENCE I-1.May,M.T.,andStuart,I.F.,<<Comparison ofCalculated andMeasuredlongtermGammaDosesfromaStockEffluentofRadioactive Gases,<<inEnvironmental Surveillance intheVicinityofNuclearFacilities, W.C.Reining,ed.',Springfield, Ill.,CharlesC,Thomas,c..1970..

APPENDIXHTHERMALEFFECTOFHEATEDDISCHARGES ONLAKEONTARIO

INTRODUCTIONSupplement 1totheNineMi.lePointNuclearStationUnit1Environmental Reportisinreplytorequeststransmitted toNiagaraMohawkonFebruary1,1973.

4II 1.BIOLOGICAL REQUEST1-1Provideallavailable information tosubstantiate thestatement "Operating experience since1969indicates thatvelocities ofthismagnitude (2fps)haveresultedintheentrapment ofonlyaveryfewfishprimarily

alewives, intheonshorescreenwell,"(p.5.1-2).~ResonseThestatement wasbaseduponinfrequent observations offishinthescreenwell area.'Astudyprogramwasinitiated inMay,1972andiscontinuing todetermine byactualcountandphysicalexamination thenumberandcondition offishentrapped inthisarea.Atotalof12,987fishhavebeencollected inatotalof146hoursofmonitoring, spreadovereightmonths.Ofthese,5,932werealewives.

TableSl-llistsmonthlyaveragefishimpingement rates,andindicates thattheaveragerateforallspecies,fortheentiresamplingperiod,was89fishperhour.Usingthemonthlyaveragerates,andassumingaveragefishweightsof0.75ouncesforalewives, 0.25ouncesforrainbowsmeltsand0.4ouncesforallothers,thetotalfishimpingement fortheeightmonthsoftheprogramsofar,is:AlewivesRainbowSmeltAllOthers12,500pounds1,800pounds2,700poundsToprovidesomeperspective ofwhatthesevaluesmean,thefollowing comparisons areoffered.Thetotalcommercial catchofallfishfromLakeOntarioduring1970was3,235,000 poundsasshowninSection2.2oftheEnvironmental Report.Thisquantitydoesnotincludealewiveswhichareconsidered tohavenocommercial orsportvalue.Therefore, theamountof4,500poundspresented aboveasanestimateoftheeightmonthpoundageofimpingedfish,excluding thealewife,isonly0.14percentofthetotallandings.

REQUEST1.2Providedetailsandrationale ofyourfishimpingement monitoring program.~ResonseAfishimpingement monitoring programwascarriedoutduringthesummerandfallof1972andearly1973attheNineMilePointNuclearPowerStationUnit1,with-;the following objectives.

1Al TABLESl-lFISHIMPINGEMENT RATESNumberofFish/Hour MonthAllSpeciesAlewivesRainbowSmeltOthers'Max.Ave.Max.Ave.Max.Ave.hoaxAveJuneJulyAugustSeptOctNovDec145912113519309562985331522755679131322747287544314188245171538230972112681821173411872311Averageforentiresamplingperiod853931Sl.1-2

Todetermine thenumberoffishenteringtheexistingintakestructure andretainedonthetraveling screens.b.Toidentifydiurnalandseasohalvariations inthenumberoffishimpingedperday.Torelatethemonitoring programresultstothedesign,andassessthepotential forfishimpingement attheproposedUnit2intake.Thegeneralprocedure fortheimpingement studiesistoexaminetheback-washingsofthetraveling screens.Screenbackwashing isdoneautomatically forthreeminuteseveryhour,andallthreearebackwashed simultaneously.

Materialwashedfromthescreensflowsintoacommontroughrunningtrans-verselyacrossthescreenhouse.

Itthenentersaconduitrunningnorthalongonewallofthedischarge channelatanelevation abovethatofthecoolingwaterflowinginthedischarge channel.Atapointstillinsidethescreenhouse theconduitendsandthewashingsdropintothecoolingwaterdischarge channel.Atthispointinthescreenhouse floorthereisaremovable trapdoorthroughwhichasteelbasket.isloweredtocatchthescreenwashingsbeforetheyenterthedischarge channel.Thebasketislinedwithnettingof14inchmeshsizetocapturesmallorganisms.

Itisremovedaftercompletion ofanhourlyscreenbackwashcycle,andthecollected fishareexaminedforphysicalappearance, sized,speciated, andthequantities andweightsrecorded.

Inordertoidentifydirunalfluctuations inimpingement, andanyseasonalvariation inthetimeofdayofpeakrates,intensive runs,lastingtwelvehoursandmore,areperformed atapproximately quarterly intervals.

Inter-spersedbetweenthese,longruns,dailyprogramsareruntwiceamonth,con-sistingoftwoorthreehoursineachofthethreeshifts.Inaddition, duringeachshift,thetrashracksarerakedtocaptureanylargerfishthatmayhaveenteredtheintake.Sofar,anylargefishseenhavebeeneasilyabletosquirmofftherakesanddropbackintothescreenwell.

Finally,duringeveryrun,appropriate plantdataisrecorded.

Thisincludeslaketemperature, intakescreenwell temperature, coolingwaterflowrate,stationpoweroutput,andambientweatherandlakeconditions.

Sl.1-3 I

REQUEST1.3Providenumberandkindsoffishcollected atthebarracksintheintakebaysforeachdayofobservation.

S~esonseThestudiesoffishimpinging onthetraveling screenswereconducted onsixteendaysbetweenMay30,1972andJanuary30,1973.Thenumberoffishimpingedonthescreensduringaonehourperiodwerecollected fromfourtofourteentimesadayforatotalof146hours.Thetotalcatchforthemonitoring periodislistedinTableSl-2,Alewivesandrainbowsmeltconstitute morethaneightypercentofthetotal.Studiesofdailyfishmovementinthelakehaveshownthatthedensityofthefishpopulation closeinshorereachesamaximumduringthenighthours.Itseemedreasonable toexpectthatthenumberoffishremovedfromthescreenswouldshowasimilarmaximum.Consequently, thefirststudywasmadefrom10:00p.m.to8:30a.m.onthenightofMay30-31.Thescreenbackwash(i.e.,allthematerialthathadaccumulated onthescreensduringthehourprevious) wascollected eachhour.ThestudywasrepeatedonthenightofJune22-23,from6:30p.m.to6;30a.m.withallplantsystemsinoperation.

Athirdextendedstudywasperformed onJuly14from9:30a.m.to10:30p.m.FiguresSl-l,S1-2,andS1-3areplotsofthenumbersoffishimpingedper.hourduringthethreeextendedruns.Themaximumcatcheswererecordedbetween11:00p.m.and3:00a.m.inthesestudieswhiletheminimumcatchestendedtooccurduringthelatemorninghours.Afterthethreeinitialstudiesadditional studieswerescheduled fortwodaysamonth.Duringthosedays,backwashings werecollected for2or3hoursatatimeineachofthethreeoperating shifts.Thefishanalysiswasexpandedtomeasuring thelengthandweightofpractically everyfish,determining itssexandrecording itsappearance.

Thesemonthlystudieswereconducted undervariousconditions ofwaves,windsandotherweatherconditions.

TableS1-3summarizes thetotalcatchaccording todateofcaptureandspecies.Thetableshowshowmanyhoursofmonitoring wereperformed oneachday.REQUEST1.4Givepercentage offishescollected onthetraveling screenswhichhavebeenfoundtobealive.~ResonseNostudies.wereconducted todetermine theactualsurvivalrateofimpingedfish,butvisualobservation indicates thatmanyfisharealiveatthetimeofcollection.

In1973,studieswillbedonetoevaluatethesurvivalfordifferent modesofscreenoperation.

Thesestudieswillbedonethroughout theyear.

nJl' TABLES1-2TOTALFISHIMPINGEMENT CATCHMay30,1972toJan.30,1973~secieeAlewifeRainbowSmeltThree-spine Stickleback JohnnyDarterMottledSculpineSpottailShinerYellowPerchTroutperch GizzardShadWhitePerchEmeraldShinerSunfishRockBassSmallmouth BassCarpAmericanEelLampreyEelCommonShinerWhiteSuckerBrownBullheadMudMinnowLongnoseChubGoldfish1ofeachof7speciesNumber5,9324,7097833552872322321321006854242010~7776543227PercenttoTotal45.6736.266.032.732.211.791:791.020.770.520.420.180.150.080.050.050.05TOTAL12,98799.77S1.1-5

200NINEMILEPOINTNUCLEARPOWERSTATI0NFISHIMPINGEMENTSTUDYg490180VALUESPLOTTEDARENOS.OFFISHCAUGHTINTHEHOURENDINGATTHETIMESHOWN(APPROX.)I40SPECIESOTHERTHANALEWIVESSMELTG.LMOTTLEDSCULPIN3-SPINESTICKLEBACK CENTRALJOHNNYDARTERCENTRALMUDMINNOWBLACKSCULPINWHITEPERCHI20ALLFISH0LLIQ380IKIALEWIVESOTHERTHANALEWIVES022000200040006000800~IOOOl25-3O-5-3I-72TIMEFigureSl-1

NINEMILEPONTNUCLEARPOWERSTATIONFISHIMPINGEMENT STUDYVALUESPLOTTEDARENOS.OFFISHCAUGHTINTHEHOURENDINGATTHETIMESHOWNI600l400ALLFISHl200l000Cl800600z400200l///////////4JALEWIVESII7mOTHERTHANALEWIVES0I8002200000002006-22-726-23-72040006000800TIMEFigureS1-2 I4"/-A'tc'F~7r~'Ip NINEMILEPOINTNUCLEARPOWER.STATIONFISHIMPINGEMENT STUDYJULYI4,I972VALUESPLOTTEDARENOS.OFFISHCAUGHTINTHEHOURENDINGATTHETIMESHOWN130120IIO100O9OALLFIS80hJCL70M6OALEWIVESLLJ40Z302010OTHERTHENALEWIVES:

I.E:TR.PERCH,SMELT,3-SP.STICKBKS.SHINER'M.

EEL7C.J.DARTER'.SHINER,G.L.M.SCULPINW.SUCKERSLAMPREY,ROCKBASS09001000IIOO12001300140015001600170018001900200021002200KKOTIMEFigureS1-3

]II,.yf~I4Akc

~~I~~I~~~~~~~~~~~~~~-I~~~~~~~~~~

"Il REQUEST1.5Provideinformation onthespacingsbetweenthebarsofthebarracks-(a)attheoffshoreintake(b)intheintakebayonshore~Resonse(a)Intheintakestructure, thebarracksarefabricated of~~>inchbars,spaced10inchoncenters.(b)Intheintakescreenwell, thetrashracksarefabricated of3/8inchx3inchbars,spaced3.5inchoncenters.REQUEST1.6Providemeasurements ofintakevelocityatthefaceoftheverticaltraveling screens.~ResonseNomeasurements havebeenmadeofapproachvelocitytothetraveling screens.Avelocityof0.85fpshasbeencomputedfromthedesigncoolingwaterflowrate,theknowngeometryoftheintakescreenwell, andanestimated waterdepthinthescreenwell.

REQUEST1.7Describetheextentofparticipation ofNYStateEnvironmental Conservation Department, U.S.BureauofSportFisheries andwildlife, andotherStateandFederalagenciesinplanningofecological studies.(p.5.5-1).~ResensePriortothebeginning ofthesestudies,theaquaticprogramwassetupanddiscussed indetailwiththeNewYorkStateDepartment of.Environmental Conservation.

Somefieldworkwascarriedoutinconjunction withtheirpersonnel.

Sincethen,conferences havebeenheldwiththatDepartment, annualreportshavebeenreviewedbythemandresultsoftheprogramhavebeendiscussed.

Somechangeshavebeenmadeintheprogramatthesuggestion oftheDepartment ofEnvironmental Conservation.

Someconta'cts withtheU.S.BureauofSp'ortFisheries andWildlifehavebeenmade.Therehavebeenpersonalconversations withtheirconsultant andoccasional telephone conversations withthebureau.Somelimitedcontactswithlocalrepresentatives oftheU.S.Environmental Protection Agencyhavealsobeenmade.

ILIfIPI RE/VEST1.8Describewhichportionofstudiesconducted since1963hasbeendesignated asproviding "baseline information."

Givetheextentofnaturalvariability andsamplingerrorforvariousparameters beingmeasured.

Explainexactlyhoweachofthesemeasuredparameters willbeusedtoassesstheoperational effectsoftheplantinviewofsuchnaturalvariability andsamplingerror.~Resensea.BaselineInformation Noportionofthestudieshasbeendesignated as"baseline information"=

becasueofextensive naturalvariability.

LakeOntarioisapproximately 7,244squaremilesinsurfaceareawith857linearmilesofshorelineand413cubicmilesofwater.Thelakemaybeconsidered asaninfinitebiological sourceforanyonepointalongtheshoreandasvariableinbiological concen-trationasanyoceancoastalpoint.Thelakeisalsolargeenoughtohaveconsiderable naturalvariability duetoheavystorms,rains,lightconditions andotherfactors,similaragaintovariability ofanoceancoastalsite.i<idevariability hasoccurredinthesamplings ofthevariousbiological parameters asdescribed below.Threeexamplesservetoshowtheimpracticality ofestablishing a"baseline".

(1)Intheplanktonstudiesof1964,itwasSoundthatonanyonedayitwaspossibletofinddifferences inzooplankton numbersupto100timesbetweentheshoreareaandapoint2milesoffshoreandasmuchasafactorof8betweentwopointsamileapartalongtheshore.(2)TaggingstudiesoffishinAugust1972showedthatindividual fishwereonlyresidentintheareaforashortperiodoftimeandtaggedfishhavebeenpickedupasmuchas10milestotheeastand20milestothewest.Thereis,therefore, noresidentpopulation toforma"baseline".

(3)Inearly1970,amassivekillofalewives, probablyduetoextendedcoldconditions inthespring,reducedthealewifepopulation tobetween5and10percentofthatoftheyearbefore.Thisinturnaffectedthesizeofthepopulations oflargerfishintheareawhichweredependent (inpart)onthealewivesforfood.Sincethen,somepopulations ofotherspecieshavechangeddramatically alongthesouthernshoreofthelakeincluding thatpartwhichisoutofanyinfluence ofthestation.Sl.1-8

\AI\

b..NaturalVariability andSamplingErrorInanoncontrolled biological population, itisimpractical toseparatethenaturalvariabi'lity ofagivensamplefromanysamplingerrorwhichmayexist.Examplesofnaturalvariability andsampleerrorcanbeseenusing,asabenthicparameter, thetotalorganicweightofthealgaeC~ladoheraglomerata collected inagiventimeperiod,ataspecified depthforalltransects combined.

TableSl-4showstherangeoftotalweightsforearlysummerdivingatthefivefootdepth.Thestandarddeviation ishalfofthemeanvalueforearlysummerdivesandexceedsthemeanforlatesummerdives.ThenumberoffishnettedshownintableSl-Sisarepresentative parameter ofthenaturalvariability offishpopulations.

Thedataisfromtransient E-3shorenets.c.Operational Assessment Inthestrictest sensetheconceptof"baseline" wouldbetheactualamountofbiomassatanyonelocationaveragedoveraperiodofyears.Whilesuchinformation isvaluableinfollowing thetrendsinnaturalvariability,'he comparison ofthevariousbiological parameters betweentransects andthevariations inthepre-andpostoperational periodshaveprovedtobemostusefulinassessing theimpactofthedischarge ontheenvironment.

Thevariousbiological parameters havebeencomparedatthetransectnearestthedischarge (E-1)withthatattransectE-3,2,000feettotheeast,anareaalmostfreeofimpactbythedischarge, yetsimilarecologically.

Itisthesecomparisons forthepre-andpostoperational periodswhich,havebeenusedtoassessimpactofthedischarge.

Thismethodovercomes theproblemresulting fromnatural'ariability andthenecessity tousebaselineinfor-mationatanyonepointforcomparative studies.Ifsomepointfarremovedfromthe'ischarge wereusedasthecontrol,thedifferences innaturalvariability betweenthecontrolandthedischarge wouldbesogreatthatnoinformation couldbederivedfromcomparison ofthemeasurements.

Sl.1-9 C0C' TableSl-4TotalWeight-Cladophora Clomerata Season1969Weight(grams)*197019711972MeanStandardDeviation (grams)EarlySummer35.211.4474~535.1LateSummer72.70.727.527.8*Onlymaximumandminimumaveragesareshown 1Kf'II'C TableSl-5FishNetStudiesSeason,1969Number(Fishernet)*197019711972MeanStandardDeviation (Fishpernet)Spring139.811.590.875.7EarlySummer63.089.077.913.4LateSummer69.3.33.052.117.7Fall94.336.655.9*Onlymaximumandmin~urnaveragesareshmn t'I)

REQUEST1.9Providerationale forselecting 12transects inatwomilestretchoftheshore.~ResonseTheNineMilePointPromontory isabouttwomilesinlength.Preliminary physicallimnology studiesin1963-64hadshownthatcurrentpatternsintheareawouldcarxythethermaldischarge fromNineMilePointUnit1toeitherend,ofthepromontory, depending oncurrentdirection, andthenoutintothelakeineitheraneastorwestdirection.

Itwasdecidedthattenlakewardtransects wouldbeestablished alongthepromontory andthattwoadditional transects wouldbelocatedontheeastandwestsidesofthepromontory outoftheinfluence ofanydischarge effluent.

Thetentransects wererequiredandhavebeenusefulforseveralreasons.(a)Itwasimportant toestablish theextentofvariability occurring alongthepromontory sothatthemoredetai,led datacollected alongtheprimarytransect(E-1)andthecomparative transect(E-3)couldbeinterpreted withsomedegreeofaccuracyandintelligence.

Themajorconcentration ofworkisalongthetwotransects E-1andE-3.Theworkalongtheothertransects isofamoni,toring nature.(b)(c)Theworkhasnotbeenlimitedtoassessing thedischarge atNineMilePointUnit1buthasalsoprovenvaluableasapreliminary studyfortheFitzPatrick station.Thethermaldischarge doesextendasfarastheendsofthepromontory ineitherdirection andthetransects providerepeatable locations todetectandmonitoranymeasureable effects.(d)Thetransects arealsousedassightingpointsforthethreedimensional thermalstudies.REQUEST1.10Givereasonsfornotshnchronizing datacollection forvariousbiological andwaterchemistry parameters.

~ResonseThereisveryactivemixinginthelakeandthepurposeinmeasuring thewaterchemistry parameters wastosubstantiate thefactthatmixingwastakingplace.Otherparameters suchastemperature, waveactivity, variability oflight,andwatercurrentsareofsuchmajorimportance andproducesuchaconsiderable fluxinbiological parameters that,bycomparison, anyfluxcausedbychemicalvariability isofmuchlesserimportance atthissite.Inaddition, thethermaldischarge isdirectlyaffectedandmodifiedbythephysicalparameters andtemperature foundinthelake;butnotbythechemicalparameters.

REQUEST1.11Providequantitative datatosubstantiate thestatement "IngeneralthequantityofplantandanimalmaterialfoundalongtheNineMilePointpromontory islessthanotherareasinthelake."(p.2.7.7).~ResonseThereisnopublished quantitative datawhichshowthatthequantityofplantandanimalmaterialfoundalongtheNineMilePointpromontory islessthanotherareas.Thisstatement xesultedfromresearchbyDr.JohnF.StorrWhohasstudiedthisxegionofLakeOntarioforseveralyears,.including underwater walksfordirectobservations oflakebottomconditions.

Itcontinues torepresent hisprofessional judgement ofthecharactexistics ofthispromontory.

REQUEST1.12Providedataanalysesandrecordsofobservations whichshowthat"NoadverseeffecthasbeenobservedonaquaticbiotaintheNineMilePointareaduetothexmal,chemical, orradiological xeleasesfromthestation."

(p.5,1-5).~ResonseThestatement wasmeanttoindicatethatnoadverseeffecthasbeenobservedonaquaticbiotaintheNineMilePointareaduetotheoveralloperation of.NineMilePointUnit1.Resultsofradiological samplingofaquaticspeciesarepresented inTable2.8-3oftheEnvironmental Report.Waterqualitysampleswerecollected andanalyzedduringthe1972ecological investigations.

Surfaceandbottomsamplesweretakenattwolakelocations.

Grabsamplesatthecoolingwaterintakeanddischarge andacomposite sampleattheplantcompositor werealsotaken.Thesuxveywasconducted forsixmonthsbetweenAprilandNovember1972(MayandOctoberexcluded) withsamplestakenmonthly.Theanalysesperfoxmed andtheresultsoftheanalysesarepresented inTableS1-6whichliststhelowestandthehighestofthesixvaluesforeachlocation.

Similarmeasurements weremadeinthelakeatOswegotocollectdatainanaxeanotinfluenced bytheStationdischarge.

Thenitrate-nitrogen valuesatNineMilePointrangedfrom0.02mg/l.toOe4mg/1anddonotappeartobesignificantly different fromvaluesobservedatOswegoin1970and1973.Theaveragevalueof0.19mg/1in1972SorNineMilePointcomparesto0.18mg/1in1970and0.22mg/1in1972atOswego.Phosphorous valuesrangedfrom0.01mg/1to0.28mg/1,beinggenerally loweratNineMilePointthanatOswego,withaveragesof0.06versus0.20mg/1respectively.

Thefivedaybiological oxygendemand(BOD5)valuesofthelakewateratNineMilePointin1972wexesimilartovaluesobservedatOswegoin1970and1972.Theyrangedfrom0to5mg/1with"anaverageof1.9mg/1in1972atNineMilePoint,whereastheaverageBOD5valueatOswegoin1970wasreportedas1.2mg/l.

0 TABLES1-61972WATERQUALITYMEASUREMENTS

-LAKEONTARIONEARNINEMILEPOINTNUCLEARSTATIONSITE30-footWaterDeth40-footWaterDethUnit1SuraceBottomSuraceBottomInteDischaeompos1teAlkalinity ColorUnitsng/1869086907787818483907289868820-3030-4020-3Q40-5010-2030-40203030401P2P304P0-3030-4020-3020-30Sp.Conductivity, who/cnTurbidity Phenolmg/1mg/1mg/1NH3-NNitrateNT-Phosphorous ng/1Nng/1Nng/1PChlorideSulfateng/1ng/1TotalSolidsTotalSSng/1ng/1OrthoPhosphate ng/1PT.VolatileSolidsng/129836023294396443Q2319243143542434134424347367263263302402.251524207.504.712130425102.2010241301.3000.040.32133400301.70.040.400312514434102.503.2504.500.602.3000.040.360.040.300.020.300.040.300.040.280.020.110.005"109133227226.531266302050.030.100.010*90111238323.231.21972970110.010.090.020.100.010.110.005*95187227528.4362503240.14001~821142462263022330909Q.Q10114141287224.53028429105p.pl0.280.010.120.01*134153265826.8292713060160.01*112153363923.5-332553000901.5101.3201.4501.3202.15.01.38Beryllium CadmiumChroniumCopperLeadMercuryVanadiumZincug/1ug/1ug/1ug/1ug/1ug/1ug/1ug/1<15<112<15<2slS<15<2<11<60<60<2<2188.0*<20164<20<1<115<14<1410<1<15<15<15<15=<1517s2<2<2<20<20<20<<202<11<1429<60353<6028<2752268<2<225<205017<15353<609352820<2<2<20s20<6040424<280'.0*68*8.0*88<1<114<<17$15"<15<15<15<113<14<15<15<213S20<20<12S6011626328.0*Temperature oF6670.5626865.57261*61"~87.8'ecalStreptococci a/100nl10.6*108*10.8*~singlevalue**takenatscreenhouse discharge channel30.8i1Q,B*

Thealkalinity, color,specificconductivity, turbidity andsulfatevaluesshowedonlyminorvariations duringthe1972survey.Thechlorideconcen-trationvariedfrom22mg/1to83mg/1withanaverageof45mg/1,comparedtotheaveragechlorideconcentration of48mg/1reportedforOswegoin1972.Theresultsofthemetalsanalysesindicatethat'hemajorityofsamplesanalyzedwerebelowthedetection limitsoftheanalytical procedure.

Astatistical analysisofthedatawasmadetodetermine whateffectsamplinglocationhadoneachwaterqualityparameter withintheNineMilePointarea.Thetechniques employedwere"Analysis ofVariance" and"Multiple Comparison".

Inall'ases, thedataforaparticular samplingstationforanyparameter wasgroupedbythenumberofobservations takenoverthecourseoftheyear.Thus,itwasassumedthatthevalueofanyparameter atanystationwasnotafunctionoftime.Anyvaluesbelowtheappropriate detection limitswerenotusedintheanalysis, eventhough,insomecases,thisresultedincertainstationsbeingomittedfromtheanalysis.

Theresultsofthestatistical analysisindicated thatzincwastheonlymeasuredparameter thatexhibited asignificant difference atthe95percentconfidence levelwithinthesamplingarea.Theaveragevalueforzincwas36pg/1,witharangefromlessthan9g/1to75pg/l.Allinall,thewaterqualityoftheNineMilePointareadoesnotappeartobedrastically different fromthewaterqualityobservedatOswegoin1970and1972.Asdiscussed intheresponsetorequest1.8,true"baseline" dataforevaluation ofthermaleffectsdoesnotexist.However,thecomparison ofthevariousbiological parameters betweentransects withintheinfluence oftheplumeandtransects outsidethisinfluence havebeenuseful.Thebasicdatatoshowthatnoadverseeffectshaveoccurredduetothethermalaspectsofthedischarge arecontained inallthestudyreportslistedinAppendixFoftheEnvironmental Report.Ingeneral,thesestudiesshowthattheareaofthethermaldischarge hasbecomemoreheavilypopulated withfishandforagematerialforfish.Ithasbecomeanimportant fishingspotforfishermen fromasfarawayasSodusBay(approximately 40miles).Itisapparentfromtheincreaseinnumbersofthesmallbottomfishandcrayfishintheimmediate vicinityofthedischarge thatplanktonkilledinpassagethroughthecoolingcyclearebeingusedasfood,andinturntheseareattracting thelargerfish..'he impingement ofthewarmerwaterfromthedischarge ontheshoreareahasresultedinadecreaseinoverallCladohoragrowthinthearea,butGammarushasincreased about6times(ascomparetoareasoutsidetheinfluen~ce othedischarge) andarebeingusedheavilyforfood.Allthekeyorganisms intheshorearea,withtheexception ofCladophora, havetemperature preferendum higherthanthemaximumsummertemperatures ofthelake.Thethermaldischarge is,therefore, enhancing thethermalaspectsoftheshorearea.Sl.1-15

i&iletheconcentration offishintheareaisgenerally low(exceptforthezoneclosetothedischarge),

thetotalnumberoffishinthegeneralareaislarge.Excluding fishsuchasdartersandsculpinwhicharetooclosetothebottomfordetection, theestimated numberinthe'reatwomileslongandouttothe50footdepthcontourisatleast5,000,000.

Thiscalculation isbaseduponactualcountsmadebyarecording echo-sounder alongtransects.

Inthesummerthisnumbermaydwindletoabout350,000.IBycomparison, thenumberoffishbeingentrained intheintakeperdayissmall.Thespeciesdistribution ofthesefisharealewives(50percent),

smelt(33percent),

stickleback, darters,sculpin,thespottailshiner(14percent),

andothers(3percent).

Yellowperch,themostabundantfishtakeninthegillnets,madeuponlyaboutonepercentofthetotalnumberoffishentrained overasixmonthperiod.Thisindicates thattheseabundantsportfisharenotbeingtrapped.Morethan98percentofthefishare,therefore, foragefishandevenifentrained, theyarereturnedtothelakefromthebackwashofthetraveling screens.Anumberoftheentrained fishundoubtedly arereturnedtothelakeineitheradeadordyingcondition.

Despitethis,thenumberofdeadfishseenonthebottomintheareaofthedischarge isverysmall,2-3atmostonanyoneextendedexploratory dive.Alsotheyarenotobservedatthelakesurface.Itcanonlybeconcluded thatalmostalldeadordyingfisharebeingusedasfoodbythelargerfishandwaterfowl.Sincethesefisharebeingusedasfoodinsteadoflivingfish,theactualeffectofentrainment onthefishpopulations wouldappeartobeverylimited.Itmaybeconcluded, thatsincethereisapositivefactorinattraction offish,andanincreaseinamountsofforageorganisms forthesefish,andalso,lowdetrimental effectsofplanktonandfishentrainment, thattheoverallimpactisminimal.REQUEST1.13Providequantitative information tosubstantiate thestatement "Fishlarvalabundance appearstobequitelow."(p.2.7-5).~ResenseThisstatement wasbasedona1971-72analysisofone-liter planktonsamplestakenfromtheNineMilePointUnit1screenwell.

Nofishorlarvaewerefoundinthesesamples.Additionally, bothplanktontowsmadeinthelakein1964,andtheplanktonsamplestakeninthe1971-72Unit1screenwell entrainment studiesindicated anabsenceoffishlarvae.Duringbenthicsamplingconducted inthelakefrom1968through1972,alewifefeetofwater.ThisoccurredonlyduringthemonthsofJuneandJuly.Sincetheyarepelagicandpositively phototropic, alewifelarvaewouldbeexpectedtobefoundnearthesurfaceandnotsubjecttoentrainment.

Sl.1-16

REQUEST1.14Ifthefishlarvalabundance isquitelowexplainhowwerethelarvaeobtainedforentrainment studiesandhowwerethestudiesconducted.

Dischssthesignificance oftheseentrainment studiesifthelarvalabundance isquitelow.~ResonseEntrainment studiestodatehaveconcentrated oneffectsonplankton.

Planktontowcollections wereexaminedforpresenceoffishlarvawithlittlesuccess.However,recognizing thatsomefisheggsandlarvaemaybeentrained inthecirculating watersystem,asimplemodelwasusedtohypothetically evaluatetheeffectofentrainment uponthefishpopulation.

Thismodelisdesctibed inSection5.1oftheEnvironmental Report.Itisintendedtoconductadditional fishlarvaestudies,examining andemploying newmethods.\REQUEST1.15Providereasonsfornotproposing phyto-and zooplankton entrainment studies.~ResonsePhytoandzooplankton entrainment studieshavebeenconducted andwillcontinue.

However,thestudiesasperfoxmed todatehavenotprovidedcompleteanswersconcerning theeffectsofplanktonentrainment.

Theyhavebeenconsidered pilotstudiesandhavebeenusedasanattempttodetermine thebestmethodofcollection andanalysisofdata.Thedatawouldbeusedincalculating theimpactofthecoolingcycleontheplanktoncommunity andthelakeecosystem asawhole.Whenthesepilotstudiesindicatethepossibility ofmethodswhichwouldyieldmorecompleteanswers,additional programswillbedeveloped tomeasurethetotaleffectofplanktonentrainment.

Sl.1-17 k\

REQUEST1.16Thepreliminary resultsofentrainment studyconservatively indicated planktonmortality.

between10'oand30'o(ambienttemperature, bT,andresidence timenotmentioned)

.ProvidethefinalresultsforhT,of32Fandaresidence timeofover4minutesforvariousambienttemperatures (including 77oFambient).~ResenseThemortality rateindicated mustbeviewedinrelationship tothespeciesinvolved.

Theintakeisinwaterofabout25footdepth,andthemajorspeciesbeingentrained arerotifers.

Thesespeciesaremoresusceptible tomechanical damagethancopepodsorcladocerans.

Inaddition, therotifercommunity intheholdingtanksusedintheexperiments havebeenshowntocompletely changeinspeciesmake-upattheendofthe24hourholdingperiod,indicating theirrapidreproduction rate.liliththisrateofregen-eration,theeffectofmortality isoflesserimpact.Ambienttemperature, temperature difference andresidence timearetakenintoaccountinthestudies.Thedischarge sampleisroutinely placedinaholdingt'ankand'temperature decaytakesplaceeithernaturally orwiththeassistance ofcoolingcoils.Themaximumtemperature ismaintained forfarlongerthanthenormalresidence timeexperienced bytheorganisms inpassingfromthecondenser tothepointofdischarge.

Thetimelapsebetweeninitially placingthedischarge sampleintheholdingtankandthepointatwhichambienttemperature isreachedisbetween2and6hours.Intheexperiments

reported, nothermaleffectcouldbefoundwithtemperature differences upto20F.i0hentemperature differences werebetween20Fand27F(1971data),noobviousthermaleffectcouldbedetected.

However,whenthesedataweresubjected tomathematical teststherewasanindication thattherewasaprobability thatsomemortality wasoccurring duetothermalimpact.Inthe1972data,whentemperature differences ofover31Fwereoccurring, survivalrateswereaboutthesameorderasforlowertemperature differences whenambienttemperatures werelow.However,100percentmortality occurredwhenmaximumdischarge temperatures reached105Formore.Subsequently, laboratory experiments werecarriedouttorelatemortality tothetemperature rangefrom80Fto105F.Thisexperiment showedthatthermalkillwasrelatedtouppertemper'ature limits.Sl.1-18

REQUEST1.17Explainhowtheplanktondatafrom1964canbeusedinassessing theimpactofplantoperation onplanktonpopulat'ion.

~ResonseTheresultsofthe1964planktonstudiesareusefulintwoways.(a)Theyaresufficiently detailedtoindicatethatthereisasequenceindominance ofspeciesovertheyear,andalsoindicatewhichspeciesweredominant.

(b)Thequantitative resultswereofsuchanatureastoshowthatintheareaofNineMilePoint,variability innumbersbetweensamplepointscouldbeasmuchas100timesinanyoneday.ThisisduetothefactthatstrongcurrentsalongtheOswego-Nine MilePointshore,whichareaverypersistent feature,willresultinupwellings alongtheNineMilePointshoreintheareaoftheintake.Slightchangesinwinddirection willalsoresultineithersinkingorupwelling alongtheshore.Allofthesephysicalfactorsplusthenormalrandomclumpingoftheplanktonwhichoccursinthelakemakeanyattempttoestablish a"background" levelafrustrating impossibility.

Attemptsarebeingmadetodevelopstudieswhichwillindicateandmeasuresomeaspectsofimpactofanyplanktonkillonthelakeecosystem.

REQUEST1.18Providethedirunalandseasonaldistribution patternforzoo-andphytoplankton inthevicinityoftheintakestructure atvariousdepths.~ResenseThethxustoftheentrainment studieswastodetermine theeffectofmechanical andthermalkillofplankton.

Inaddition, thedatafromthesestudiesindicate, inpart,thevariability inbothspeciesandnumbersofplanktonbeingentrained onaseasonalbasis.Studieshavebeenmade'inthelaketoattempttoestablish somepatternofthedistribution ofplanktonintheareaofthedischarge andrateofrain-outdeadplankton.

Thesestudieshavehadinconclusive resultsduetopoorweatherandotherconditions.

REQUEST1.19Explainifthe20footdepthcontourcoversalltheareaunderlying 1FATisothermofthethermalplume.~Resonse~sThe20footdepthcontourdoesnotcoverallofthearea'underlying the1F4Tisothermofthethermalplume.The20footdepthisthecompensation point 1t REQUEST1.20Givethesizeoftheareasampledforeachofthebenthossamplestakenbythedivers.~ResonseThesizeofthebenthicareasampledbythediversis25x25centimeters.

REQUEST1.21Explainusefulness ofweighingashedplantmaterialanduseofthisparameter inevaluating powerplantoperational effects.~Resonsemajordiscrepancies incomparisons ofdryandashedsampleswerenoted.Itwasobviousthatanycomparison ofsamplesbasedoneitherdryorwetweightswould,therefore, containalargesampleerrorduetothefactthatveryfinesiltisengrained intheCladohorasampleandincorporated intotheCladohorafilaments.

Repeatedwashingsoftesampleremovedsomeofthissilt,utalsotendedtobreakupthefilaments whichwerelostinthewashingprocess.Themethodofpreparation ofthesamplewaschanged.Samplesarewashedtoremoveexcessive siltandthendriedandweighed.Thesesamplesaresubse-quentlyashed,andthedifference betweenthedryweightandashedweightgivestht;weightofth'eorganicmateriallostbyashing.Comparison of.theorganicweightseliminated theerrorintroduced bythesiltcontent.Theashedweightwasnotuseddirectlyinevaluating theimpactofplantoperation, butonlyobtaining aparameter (organicweight)whichwasalmostentirelyfreeofasamplingerrorencountered inthelaboratory analysisofthesamples,Usingthisorganicweightparameter, apatternofdistribution ofCladophora couldbeestablished andcomparison oftheseweightshasgivenboththepatternofimpactandthefactorofimpactofplantoperation.

Theserepresent "standing crop"asseenintheenvironment.

The"instantaneous" thermalimpacthasbeendetermined bylaboratory experimentation andtheconstruction ofagraphicmathematical modelintowhichvarioustemperature differences canbeinsertedtodetermine thevariations ingrowthunderambienttemperature conditions withintheseasonalrateofgrowthpattern.Sl.1-20 II REQUEST1.22Explainthereasonfornotusingeasttransectasacontrolfortrawlsamplingforfishes..(p.5.5-9).~ResonseAsdescribed intheresponsetorequest1.8anEasttransect(E-3)hasbeenusedasacontrolformanyofthestudiesofeffectsofstationoperation.

Thistransectis2000feettotheEastofthedischarge andisanareaalmostentirelyfreeofimpactbythedischarge.

TheareaoftransectE-3issimilarecologically tothedischarge area.TogetatrawlingareatotheEastwhichwasaslargeasdesiredwouldresultintrawlingmuchfurtherEastthantheEastcontroltransectE-3.ThiswouldplacethetrawlingareainMexicoBay,anareathatisnotsimilaringormorphological characteristics toNineMilePoint.Nhilenorelatively largeareacouldbeselectedthatwouldbeexactlyliketheNineMilePointpromontory, thelaketotheNestwasconsidered tobemorelikethatareathanMexicoBay.TheNestcontrolwasalsoselectedtoaidinestablishing abroadpictureofthelakeshore.SampleswerealsotakenatOswegoandabout2milesNestofOswego.Thefoursamplingsitescoverabout11milesofthelakeshorewithoutleavinganylargeareasoflakeshoreunmonitored.

REQUEST1~23Providerationale fortrawlingalongthewholetransects.

Thisassumesnochangeinpopulations fromnearshoreareasto40ft.depth(endoftransect) whichmaynotbetrue.~ResonseThetwelvelakewardtransects werenotsetupfortrawling, butforothermethodsoffishpopulation study,i.e.,gillnetting,andfishpopulation densityestimation byfathometer.

Attheoutsetofthe1972ecological program,onesetoftrawlswasperformed alongonelakewardtransectlocatedatNineMilePointUnit1andonecontroltransecttothewest.Theresultswereinconclusive and,thereafter, trawlingwasdoneparalleltoshorealongthe20and40footcontoursatthesurfaceandbottom.Trawlingwasconducted duringthedaytimeandthenighttime toaidinevaluating diurnalfishmovements.

Anecho-sounding fathometer wasusedformaintaining courseonthecontourselected.

Thelengthof.therunwasapprox-imatelyonemile,extending fromNiagaraMohawk'sProgressCentertotheJamesA.FitzPatrick NuclearPowerPlant.Netsaretrawledjustbelowthesurface,and5feetabovethebottomforcomparison withgillnetcatches.Sl.1-21 I

REQUEST1.24Providecompletedetailsofstudiesconducted since1969whichhaveverifiedthephenomenon that,"Fish areabletoselectoravoidareasofthethermalplumeinresponsetopreferred temperatures."

(p.5.1-5).~ResonseThedetailssubstantiating thebehavioroffishinrelationship tothethermaldischarge arecontained inthereportsoffishnetting,fishdistribution andecological surveillance referenced inAppendixFoftheEnvironmental Report.CopiesofthesereportshavebeenprovidedtotheAtomicEnergyCommission Staffandtheirconsultants fortheirinformation.

Thepatternofattraction oravoidance tohighertemperatures hasbeenshowntobeverycomplex.Itisrarely100percentattraction oravoidance andishighlymodifiedbytheflowofthewaterinaplumeandtheamountoffoodavailable intheplume,Ithasalsobeenrecordedthatthestimulusforattraction tooravoidance ofareasofslightlydifferent temperatures isweakerinthelowertemperature rangethanintheuppertemperature range.REQUEST1.25Providequantitative information obtainedfromdiverstudieswhichhaveshownsignificant increaseinthesmallmouthbasspopulation inthevicinityofthedischarge.

Atwhatlevelweretheseobservations significant?

(p.5.5-4)~ResonseNoquantitative measurements weremadebythediverssincethiscouldhavebeennomorethanacountwithinatimeperiodduringwhichfishwouldcomewithin8feetofthediver,themaximumvisualrange.Priortoplantoperation, theeventofseeingonebasswasrecordedasanunusualoccurrence.

Inthepostoperational period,adiverwillsee5to10bassconstantly whiledivingintheareabetweentheshoreandthedischarge.

Priortooperation, fishermen intheareawereararesight.Inthepostoperational period,asmanyas40boatsatonetimehavebeencounted.Oneofthefieldcrewcapturedandtagged267fishinonedaybystandingonshoreandcastingwitharodandreel.Alargemajorityoftheseweresmallmouth bass.Therestweresunfish.Sl.1-22

REQUEST1.26Providecopiesofdatarecordsthatshownosignificant lossinoxygencontentofwater(mg.ofoxygen/liter ofwater)duringthewarmestperiodoftheyear,givingexactlocations ofsampling.

(p.5.5-7).~ResonseThemajorityoftheoxygenmeasurements weremadeduringthefishnetstudiesreferenced inAppendixFoftheEnvironmental Report.Theinformation onoxygenlevelsofthedischarge iscontained inthedatafortheshorenetattransectE-1.Thesedataarecollected atthesurfaceatapointabout30feetfromthedischarge wheresurfacewatertemperatures arethoseexperienced atthepointofupwelling fromthedischarge.'hese oxygenvalueshavebeencomparedtothosefoundatthe7to10meter'epth attransectE-1,thegenerallocationoftheintake.InTableS1-7,aseriesofrecordshavebeencomparedforperiodswhentherewasathermaldischa'rge.

Thedatesofthesereadingsaregivenalongwiththenumberofreadingsonthatdate.Thethirdcolumngivesthemeandifference betweentheoxygenvaluesatthesurfaceandthe7to10meterdepth.Thelasttwocolumnsgivethesaturation valuesfortheparticular temperature inwhichtheoxygenreadingwasmade.Oxygenlosswasnotedwhensaturation valuesneartheintakewerehigh.Oxygengainedwasnotedwhenthesesamevalueswerelow.REQUEST1.27Listanyrareandendangered speciesofplantsandanimalsfoundinyourterrestrial surveyoftheplantareaandtransmission right-of-way.

Givenamesofplantsandanimalsandtheirlocations.

Describeprecautions takentopreservethem.~ResonseAcursoryterrestrial surveywasperformed ofthesiteareatonoteandrecordpresenceoffloraandfauna.Norareorendangered speciesofplantsandanimalswerenotedeitherasaresultofthesitesurveyoraliterature searchregarding thesitearea.Sl.1-23

TABLES1-7NetOxygenChangeSurfacevs.IntakeDepthTransectE-1No.of~ReadinahumeanO2Saturation

('o)0~pmDischarge 7to10m.June10-11,1971June29-July1,1972August17-18.1971August2,1972August5,1972November5,19710.0-2.3+3.7+0,8+l.2-1.0113.9114.7138.0100.0113.9107.5103.4105.679.377.471.697.3Total14+0.14S1.1-24

2.TRANSMISSION LINESREQUEST2.1Providethenumberoftransmission lineswhichwillultimately becarriedintheright-of-way.

Givetowerdimensions.

TheEnvironmental Reportstatesthatthe27mileright-of-way passesthrough10milesoffarmland, 4milesofwetland,and5milesofwoodedareas.Describetheenvironment thelinepassesthroughintheother8miles.Providenumberofhomesremovedduringconstruction oftheright-of-way.

~ResoeseTheright-of-way, whichwasacquiredatthetimeoftheconstruction of.NineMilePointUnit1hasatotalwidthof500feetsuitableforfour345KVsinglecircuit lines.Thecenterofthisright-of-way ispresently occupiedbytwosingle-circuit 345,KVlines.Twosingle-circuit 115KVlinesarealsolocatedalongtheinitialpartoftheNineMilePointtoClayRoute.Theselinesparallelthewestsideofthe345KVlinestoapointapproximately fourmilessouthofthesiteintheTownofScriba.Atthatpoint,the115KVlinesjoinNiagaraMohawk'sLighthouse Hill-Oswego 115KVlineswhilethetwo345KVlinescontinuesouth-easterly toClay.Futureuseofthisright-of-way contemplates theinstallation oftheproposed765KVtransmission lineassociated withNineMilePointUnit2.Thisfuturelinewouldusetheeastsideoftheexistingright-of-way andanadditional 120footwidestripoflandadjacenttotheeasternedgeoftheexistingright-of-way.

Theconstruction ofthenewlinewillparalleltheexisting345KVlinesfromNineMilePointUnit1totheproposedVolneyStationsiteabout,9milessouthofNineMilePoint.Useoftheremaining right-of-way isdependent uponthedevelopment ofgenerating sitesinthearea.Thetangentstructure usedalongmuchofthe'ineMilePoint-Clay Tran..mission Lineisthestandardwoodpole"H"frame.Towerdimensions forthisstructure areshownonFigureS1-4.Thelatticestructure wasusedatallstrainlocations suchasatanglesintheline.Towerdimensions forthesestructures areshownonFigureS1-5.Theright-of-way forthetransmission lineis27mileslong.Thelinespassthroughtenmilesoffarmland, fourmilesofwetland,fivemilesofwoodedareasandeightmilesoffalloworpastureland.Duringthelocationofthe500footcorridorfortheNineMilePoint-Clay Transmission Lineten(10)homesweredisplaced.

Sl.2-1 4

WOOD'H'RAMESINGLECIRCUIT2626VO,LTAGE:

345kvMATERIAL:

Wood(treated)

AVERAGESPAN:700FOUNDATION:TobebackfilledwithcrushedstoneMINIMUMHEIGHT:80MAXIMUMHEIGHT:100Scale1=15FigureSl-4

LATTICESTEELTOWERSINGLECIRCUIT28-628-6VOLTAGE:345I<VMATERIAL:

Gal'vanized SteelAVERAGESPAN:800FOUNDATION:

GrillageorReinforced ConcreteMINIMUMHEIGHT:61'(tocrossarm)

MAXIMUMHEIGHT:95(tocrossarm)Scale1=16'igureSl-5 hI REQUEST2'Describeherbicides usedformaintenance oftheright-of-way.

Givedetailsoflocationandscheduleofuse.~ResonseHelicopter application ofTordon101withthickener wasmadetothenorthern4milesinthesummerof1966.Thebalanceoftheright-of-way wasgivenafoliarapplication of2,4.5-Tinwaterfromthegroundinthesummerof1970.Futureapplication willbeonthegroundatfive(5)yearintervals withapprovedherbicides.

REQUEST2,3Provideinformation ifthetransmission facilities follow:(a)The"Environmental CriteriaforElectricTransmission Systems,"

published byU.S.Depts.ofInteriorandAgriculture.

(b)TheNewYorkPublicServiceCommission andDepartment ofEnvironmental Conservation RulesandRegulations affecting transmission lines.(c)FederalPowerCommission's "Guidelines fortheProtection ofNatural,Historic, ScienceandRecreational ValuesintheDesignandLocationofRight-of-1fay andTransmission Facilities."

~ResonseThelocationandclearingoftheoriginal500footcorridorandconstruction ofthetwoNineMilePoint-Clay 345KVTransmission Lineswasdonebefore1965andpriortothepublication oftheaboveguidelines.

'owever,ingeneralthefollowing guidelines wereconsidered duringdesignandconstruction:

(a)Low-lying wetlandsormarsheswereavoidedwhereverpossible.

(b)Areasofexistingorfuture(totheextentdefinable) highdensitylandusew'ereavoided.(c)Themoreheavilytraveledhighwaysencountered werecrossedperpendicularly whereverfeasible.

(d)Onlythecentralpartofthe500footwidecorridorwasclearedleavingexistingvegetation attheedgetoprovidevisualscreening untilsuchtimeasadditional transmission lineswouldberequired.

(e)Incertainareascontinuing agricultural useoftheright-of-way bytheoriginalownersispermitted providing thattheuseisconsistent withmaintenance ofthereliability ofthet'ransmission line.(f)Thenumberoflargeanglesrequiring largersteeldeadendstructures inthelinewasminimized.

Sl.2-2

~~l' 3.CHEMISTRY ANDSANITARYWASTESREQUEST3.1Givethevolumeoftheoxygenation pond(2800sq.ft.area)usedforsewageeffluent.

~ResenseOperation isatselecteddepthsbetweentwoandfivefeet.Basedonthemodeofoperation, thevolumeofthepondwillbebetween5,600cubicfeetatatwofeetdepthand14,000cubicfeetatafivefeetdepth.Duringwinter'operation, theoperating levelcanbeloweredbeforeiceformation andgradually increased tofivefeetbytheretention ofwinterflows.Inthespring,thelevelcanbeloweredatthetimesurfacerunoffanddilutionwateraregenerally atamaximum.REQUEST3.2Ifitbecomesnecessary tocleanthecondenser orservicewatersystem,describetheprocesswhichwillbeused.~ResonseIfcleaningofthecondenser orservicewatersystembecomesnecessary, ahighpressurewaterflushorothermechanical cleaningmethodwillbeused.Therewillbenochemicalcleaning.

REQUEST3.3Providedataonaverageflowofmakeupwaterthroughthedemineralizer.

~ResenseTheaverageflowofmakeupwaterthroughthedemineralizer is600,000gallonspermonth.REQUEST3.4Describeprovisions preventing oilwhichentersfloorandequipment drainsfrombeingdischarged intoLakeOntarioviaastormdrain.~ResonseNoequipment drainsintheStationaredischarged viastormdrains.Onefloordrainfromtheadministration buildingshopandstoresareaentersthestormdrainbywayofaneightinchtiledrain.I(hilesomesmallamountsofoilcouldpossiblyenterthedraintheamountisminimal.Nootherfloordrainsenterthestormdrain.Sl.3-1 JI~

REQUEST3.5Describelocationinthelakewherethedetergent phosphorous concentration ismeasured.

Giveadetailedcalculation showinghow0.2ppbconcentration forphosphorous wasobtained.

Ifthelaundrywastedischarge isnotcontinuous, givefrequency ofdischarge andmaximumphosphorous concentration atthepointofdischarge.

s~ResonseAwaterqualityanalysisrecordedbytheNewYorkStateDepartment ofEnviron-mentalConservation givestheminimum,maximum,andmeanphosphorous concen-trations.

ThedatathatwasrecordedwasbasedonsamplestakenatOswego,NewYork,6000feetintothelakeatadepthof40feet.Thisinformation isinTable2.5-1oftheEnvironmental Report.Thefigureof0.2ppbreportedinSection3.7.1oftheEnvironmental Reportistheaverageconcentration whichisisthedischarge (abovetheconcentration alreadyexistinginthelake)priortomixinginthelake.Thecalculation isbasedupon100poundsofdetergent releasedpermonth,fiftypercentofwhichissodiumhexametaphosphate, andcompletemixinginthedischarge tunnel.Thelaundrywasteisdumpedinbatchesonafrequency ofaboutoneper3.33daysasshowninTable3.6-2oftheEnviron-mentalReport.Eachbatchis1000gallons,Ifthemaximumpumprateof50gpmisassumed,thenthemaximumincreaseintheconcentration inthedischarge tunnelis0.038ppm.Thiscomparestoameanlakephosphorous concentration of0.12ppm.Actually, thepumprateinpumpingoutatankisabout20gpm.Therefore, as"arule,theincreaseinphosphorous concentration whiledischarging wouldbeontheorderof0.015ppm.Thedetailedcalculations fortheaverageconcentration arebasedoncompletemixingof100poundspermonthofdetergent inthedischarge canal.Halfofthisishexametaphosphate (NaP03).Themoleweightsofthecomponents andthecompoundare:Na=22.99P=30.970=16.00NaP03=101.96MoleweightMoleweightMoleweightMoleweightThefractionofphosphorous (P)inthecompound(NaP03)is30.97/101.96 or0.303.Thisresultsin15.2poundspermonthofphosphorous discharged.

Thenormalcirculating waterflowis600cfs.Atadensityof62.32poundspercubicfootthisrepresents 9.68x1010poundspermonthofwaterdis-charged.Theratioofphosphorous discharged tocoolingwateris15.2/9.68 x10or1.57x10-10.Thisisaverageconcentration ofphosphorous inthedischarge (0.16ppb).Asimilarcalculation isdonetodetermine themaximumconcentration ofphosphorous inthedischarge.

Thenormalbatchfrequency isninepermonth.At15.2poundsofphosphorous permonthandthenormalbatchfrequency thereare1.69poundsofphosphorous perbatch.Thevolumeofthebatchis1000gallonsandthemaximumflowratetothedischarge canalis50gpm.Atthisflowrateittakes20minutestotransferthebatchtothecanal.Sincethecirculating waterflowis600cfsthebatchismixedwith4.48x107poundsofwater.Assumingcompletemixingresultsinamaximumphosphorous concen-trationof1.69/4.48 x10or3.8x108(0.038ppm).S'1.3-2

4.NEEDFORPOWERREQUEST4.1Providethe1972summerandwinterelectrical powerpeakloadsforthefollowing NewYorkStatePowerPoolmembersandotherutilities:

~ResonseCentralHudsonGasandElectricCorp.Consolidated EdisonCo,ofN.Y.,Inc.LongIslandLightingCompanyNewYorkStateElectricandGasCorp.NiagaraMohawkPowerCorporation OrangeandRocklandUtilities, Inc.Rochester GasandElectricCorporation PowerAuthority oftheStateofNewYorkJamestown Municipal ElectricSystemLongSault,Inc.VillageofFreeportThepeakelectrical powerloadsfortheNewYorkStatePowerPoolmembersandotherassociated utilities arelistedbelow.Theseareforthesummerof1972andthewinterof1972-1973.

UtilityCentralHudsonConsolidated EdisonLongIslandLightingNewYorkStateElectric5GasNiagara-MohawkOrange5RocklandRochester Gas5ElectricPowerAuthority JamestownLongSault,Inc.VillageofFreeportTotalMWSummer1972566787226201421439257985480060273419225MWWinter1972-73603*61042277*1724*482748182789456142917836*January1973PeaksS1.4-1

REQUEST4.2Provideatabulation bymonthsofthepowerproduction ofNineMilePointUnit1during1971and1972.~ResonseAtabulation bymonthofthepowerproduction ofNineMilePointUnit1isshownbelowfor1971and1972.MonthKw-Hrs1971Kw-Hrs1972JanuaryFebruaryMarchAprilMayJuneJulyAugustSeptember OctoberNovemberDecemberYearlyTotal2951320003308110003728730002406800072460001847840002817060003448990002106170005273500040305800042944000029373690003537620003779610003750080005053000988750003412920003659960002400550003130250003991750004321040003242306000S1.4-2 b'lJll~AI' REQUEST4.3Describeproblemsandtheirresolution (ifany)encountered byNiagaraMohawkinproviding fortheelectrical load,duringperiodswhenNineMilePointUnit1wasnotoperating orwasoperatedatlessthan80<epowerin1971and1972.Discussanyadditional problemswhichNiagaraMohawkwouldencounter ifUnit1wereshutdown.R~eeonseWhenNineMilePointUnit1isshutdownorifthecapacityislimitedtolessthan80percent,thedeficiency mightbemadeupbyincreasing theoutputofconventional steamstations, operating gasturbines, ormakingpurchases fromanyothersourcesavailable, Ananalysiswasmadeforthosetimesduring1971and1972whenNineMilePointwasshutdownoroperating atlessthan80percentpower.AlthoughNiagaraMohawkwasabletoadequately meetitscustomers requirements withoutloadcurtailment orvoltagereduction duringtheseparticular years,itwasnecessary onseveraloccasions toresorttogasturbineoperation andrelianceonpowerpurchases, ThesedetailsareprovidedonTableS1-8.Themaximumpurchaseduringthistimeperiodwas460WduringNovember1972.SinceNiagaraMohawkisamemberoftheNewYorkPowerPoolandtheNortheast PowerCoordinating Council(NPCC),ithasanobligation tocoordinate plansforexpansion ofpowersupplyfacilities basedontheNPCC"BasicCriteriaforDesignandOperation ofInterconnected PowerSystems".

Underthiscriterion, newgenerating capacityisplannedsuchthattheprobability of.lossofloadundercontingency wouldnotexceedonedayintenyears.SinceNineMilePoint1isanintegralpartoftheNewYorkPowerPool'splanformeetingtheabovecriterion, ashutdownofthefacilitywouldresultinNiagaraMohawk'sinability tomeetitsreserveobligation totheNewYorkPowerPool,therebyjeopardizing systemreliability.

IfNineMilePointUnit1wasshutdown, boththeinstalled capacityandenergyproducedbytheunitwouldhavetobereplaced.

AsstatedinSection9.4oftheEnvironmental Report,a300hÃinstalled reservedeficiency wouldbecreatedinitially bytheshutdown.

Lead-time constraints restrictthecon-sideration ofnewgeneration fortheshortterm.Attemptswouldbemadetopurchasecapacityonashorttermbasistoprovideforthisdeficiency.

However,powerpurchases, asdiscussed inSection9.2oftheEnvironmental Reportcannotbeconsidered asafeasiblealternative onlongtermbasis.Therefore, ifUnit1weretobeshutdown, acapacitydeficiency wouldexistresulting indegradation ofsystemreliability.

Sl.4-3

TABLES1-8GASTURBINEGENERATION ANDPURCHASED POWERDURINGPERIODSOFNINEMILEUNITNO.1REDUCEDOUTPUTORSHUI'DOWNS Year1971Jan.Jan.Feb.AprilJuneJulyAug.Aug.Sept.Dec.Period13-1924115-June142016-2218,1929,3019-Oct.2831MaximumGasTurbineGeneration (MW)26084298262None217249285262238AmountofPurchased Power(MW)NoneNoneNone275MWNoneNoneNoneNone150None1972Jan.1Jan,11-17Feb.8Feb.28-hIar.6Mar.23April1-July2July7-July24July26-Aug.1Aug,5Aug.26-Sept.13Sept.21-27Oct.7-9Oct.28-31Nov.19-25None136hNNone292None190NoneNoneNone228250202237255None295MWNoneNoneNoneNoneNoneNoneNone30040100200460Sl.4-4

Withinayearaftershutdown, itisassumedthatgasturbinescouldreplacethecapacitydeficiency createdbytheshutdown.

Thefull610MWwouldhavetobereplacedtoaccountforloadgrowthovertheintervening year.Anadditional baseloadunitofatleast610MWcouldbeconstructed asareplace-mentforNineMilePointUnit1.Forthepurposesofthisanalysisitwasassumedthatanotheroil-fired baseloadunitwouldbescheduled for1976inadditiontotheOswegoUnit6whichisalreadycommitted forthatyear.Insummary,asdiscussed inSection9.4oftheEnvironmental Report,thegrandtotalpresentvalue(1976)ofshuttingdownNineMilePointUnit1,maintaining thefacilityinasafecondition, andreplacing theinstalled capacityandenergyrequirement wouldbeapproximately

$793,000.000.

Sl.4-S 4

S.GENERALREQUEST5.1Givetheacreagefoundinthetemporary gamerefuge.Describethestatusoftheplansforcreationof,apermanent gamerefuge.~ResonseApproximately 130acresofthesitewereestablished asanaturalwildliferefugein1969bypostingthenorthwest cornerofthesite.Thispostinghasbeenmaintained.

Therearenoplansforcreationofalargerrefuge.REQUEST5.2Provideinformation ifthelandscaping ofUnit1iscomplete.

DescribeanyerosionontheStationsiteoralongtransmission linesincetheplanthasbeenoperating.

~ResonseThelandscaping forUnit1wascompleted in1969,althoughreplacement ofinjuredordyingshrubbery continues asnormalmaintenance.

Nosignificant erosiononthesiteoralongthetransmission routehasbeenobserved.

Landdisturbed duringtheconstruction phase(1965-1969) haslongsincereestablished naturalregrowthofgroundcoverwhichactsasanerosiondeterent~REQUEST5.3Provideinformation anddescribenavagational buoysmarkingintakeanddischarge structures

.~ResonseTheNineMilePointUnit1coolingwaterintakeanddischarge tructures, in-accordwith.U.S.CoastGuardapproval, arenotmarkedwithnavagational buoys.Thisapprovalwasincludedasitem4inAppendixGoftheEnvironmental Report.REQUEST5.4Thehorizontal scaleonFigure3.5-2isinconsistent withthedrawing.Providecorrectscale.Givedistancefromtheshoreline tothedischarge structure.

The0.1milestatedinSection3.5.2appearstobeinerror.~ResonseFigure3.5-2presentsanincorrect scale.Arevisedfigureisattached.

Dimensions indicated arecorrect.The0.1miledistancerepresents 585feetfromscreenwel1todischarge structure.

N04I"

%.INTAKEEL.228.5'L.222.5 2'LOWW.S.EL.2440NAX.W.S.EI..248.0'L 283Oi~STONEOIKESCREENHOUSEIII00INTAKETUNNEL(LOOKINGEAST)EL.234.0'LDISCHARGE pEL.230.0'L.283.0'TONE DIKESCREENHOUSEA0880I585DISCHARGE TUNNEL(LOOKINGEAST)SECTIONI-I05IOSCALE~FEETSECTION2-205IOSCALE~FEE'YNOTES!ALLELEVATIONS AREREFERENCEOTOUSLSI935OATUNI00SCALEFEEI'XCEPT WHERESHOWN200S1FIGURE3$-2PROFILE-CIRCULATING WATERSYSTEM

REQUEST5.5Providecurrentstatusofauthorizations, permitsandlicensesconnected withtheoperation ofthefacility.

~ResenseLicenseorPermitAuthorizing AgencyCurrentStatusStateofNewYorkCoolingWaterDischarge StateofNewYorkSewageTreatment PlantStackApprovalLicensetoPossessorUseBy-Product MaterialLicensetoPossessorUseSpecialNuclearMaterialStateofNewYorkRadioactive MaterialLicenseStateofNewYorkDepartment ofHealthStateofNewYorkDepartment ofHealthUSFederalAviationAgencyUSAECUSAECStateofNewYorkAtomicEnergyCouncilIssuedApril28,1965-Still ValidIssuedMay4,1965-Still ValidIssuedNovember3,1966-Still ValidActiveunderParagraph 2.CofProvisional NuclearStationOperating LicenseNo.DPR-17,August,1969.ActiveunderPara'graph 2.BofProvisional NuclearStationOperating LicenseNo.DPR-17,August,1969.Active-renewed August28,1972Provisional NuclearStationOperating LicenseNo.DPR-17USAECActive-amendment No.2Apri1,1972FullTermNuclearStationOperating LicenseUSAECFiledJuly,1972WaterQualityCertification StateofNewYorkDepartment Environmental Conservation FiledmostrecentrequestNovember, 1972LiquidlfasteDischarge Permit(NPDES)USEPAFiledmostrecentinformation October,1972Sl,5-2 0

REQUESTSe6ProvideresultsofallthermalsurveysmadeintheNineMilePointarea.~ReeonseThematerialcontaining theresultsofallthermalsurveysintheNineMilePointareaisquitevoluminous.

Sortingofreportsandstudiesconcerning thermalsurveysisinprogressandthemostpertinent willbetransmitted underseparatecover.S1.5-3

~Ap~

U.S.AtomicEnergyCommission Docket50-220APPLICANT'S ENVIRONMENTAL REPORTOPERATING LICENSESTAGECONVERSION, TOFULL-TERM OPERATING LICENSEI8AllA8UC8arOIAaIOASUFFLEMEWT2APRIL1973NIAGARAMOHAWKPOWERCORPORATION

Syracuse, NewYork13202 A

INTRODUCTION Supplement 2totheNineMilePointNuclearStationUnit1Environmental Reportisinreplytore-queststransmitted toNiagaraMohawkonApril9,1973.

REQUEST1.Providefuel,operating andmaintenance costbreakdown forNineMilePointUnit1facilityforcalendaryears1971and1972.~ResonseNineMilePoint,UnitNo.1CostBreakdown

  • Fixed0&MFuel19719.43mills/kwhr 0.942.2419728.60mills/kwhr 0.852.89Total12.6112.34CapacityFactor63.36%60.51%*FromFinancial ReportsandSemi-Annual ReportofOperations REQUEST2.ResponsetoRequest1.12:2.1ProvidethephysicallocationinLakeOntarioatwhicheachofthemeasurements weretaken.(TableSl-6).2.2Provideallavailable fecalcoliformdataasclosetothesewagedischarge aspossible.

(TableS1-6).2.3provideactuallocationinLakeOntariowheresimilarmeasurements weremadetocollectdatanotinfluenced bytheStationdischarge.

(p.Sl.l-13).

~ResonseTherequestreferstoResponse1.12previously submitted bythetApplicant aspartofSupplement No.1totheNineMilePointUnit1Environmental Report.

I'III 2.1.Thephysicallocations inLakeOntarioof'thevariousmeasurements presented inTableSl-6ofSupplement 1areillustrated onFigureS2-1"Sampling Locations NineMilePoint1972".2.2Fecalcoliformandtotalcoliformconcentrations weremeasuredina24hourcomposite samplecollected fromtheeffluentoftheUnit1sanitarysewagetreatment plantoxygenation pondinSeptember 1971.During1972sixsamplescollected atthelocations showninFigureS2-1wereanalyzedforFecalStreptococci.

Averageconcentrations oftheseanalysesarepresented belowincluding dataresulting fromanalysisoflakewaterbroughtintoUnitl.OxenationPondOutletUnit1LakeXnletFecalColiform(I/100ml)TotalColiform(5/100ml)4309300149300Unit1SurfaceBottomSurfaceBottomInletDisc.FecalStrep.(8/100ml)10.610.810.810.910.810.62.3Similarmeasurements ofwaterqualityof.areasnotinfluenced bytheUnit1discharge weremadeintheOswegoarea,lake-wardofNiagaraMohawk'sOswegoSteamStation.Specificsamplelocations areshownonFiguresS2-2andS2-3.(TheOswegoSteamStationislocatedonthelakeshore abouteightmileswest,ofNineMilePoint).

4' REQUEST3.ResponsetoRequest2.2:Providespecificherbicides plannedforuseontheentiretrans-missionlineright-of-way.

~ResenseThisrequestalsoreferstodatapreviously submitted bytheAppli-cantaspartofSupplement l.TheApplicant's guidesfortheuseof.herbicides areasfollows:a)Useherbicides suchas2,4,5-Torsimilarcom-poundswhichareapprovedforusebytheU.S.Department ofAgriculture, U.S.FoodandDrugAdministration andU.S.Environmental Protec-tionAgencyforthepurposeintendedandaspre-scribedanddirectedbyregistered label.b)Usenoherbicides which.areontheNewYorkStateDepartment ofEnvironmental Conservation restricted uselist.c)Usenoherbicides within100feetof.water-coursesorstatereforestation areas.d)Employselective useofherbicides tomaintain"tightgroundcover"whichwillallowgrowthofcompatible weedsandwoodyspeciesanden-couragewildlifehabitatgrowth.

(0pqPVH~~8.~POQLS%+g~.(jgO/-INTAKEaiDISCHARGE

/NINEMILEPOINTNUCLEARPOWERSTATION(NMPC.)NINE.!ILEPOINT//,PLEASNPOINT~'i)/~~~ggi'I~~I~f)-ymir.-'i~cp~NEP'/C'O'AP'ALCANCO.0RADIOMEASTWSGO0FIGURE'S2-10,000SCALEINFEETROOOOOSVJEGOTRAV/LINE GSTATIONSGiLLNETTiNGSTATiONS9WATERQUALITYSTATIONSSAI~APLlNGLOCATl0'.I3NINEMILEPOI!7I972QUIRK,LAWLER8fs'.ATUSKY EYGINEERS TAPPANsNEVlYORK

  • \4~I,0il1III4IHJrlli~I0' nqLAEE0/Y7APi/0~40<<3530l52025258BEAK':VALL 20~wiINTAKE8DISCHARGE~

OSVtEGOHAR80R0500IOOOl5002000SCALE-FEETQWATERQUALITYSAMPLINGSTATIONSXBENTHICSAMPLINGSTATIONSOSWEGOSTEAMSTATION(NMPC)FIGURES2-2WATERQUALITYANDBENTHICSAMPLINGLOCATIONSOSWEGOSTEAMSTATIONl972QUIRi<,LAWLER8VATUSKYENGINEERS TAPPAN2N.Y e

Q8c@lb9lcg,ldIfg,le.(@laFISVOTER8TEtfiPEt;.ATURE 6iINTAKE8DISCHARGE OSVIEGOSTEAMSTATION(NMPC.)Q5SAMPLINGLOCATIONS-OSWEGOSTEAis]STATIONI97ILOTEL

~IsLI'kytP'pitr)'

REQUEST1tProvidecapitalcostof.Unit1attimeoffirstcommercial operation in1969.~ResonseAtthetimeoffirstcommercial operation onDecember13,1969thetotalcapitalcostofNineMilePointNuclearStationUnit'was$164,385,253.

Thisincludesthecostofland,structures, equipment, engineering, interestanddistributable costs.The.costofthesubstation isalsoincluded.

REQUEST2Providethecapitalcostofmodifications totheradwastesystemattimeofcompletion andestimated timeofcompletion.

~ResonseThecostsofradwastesystemmodifications andestimated oractualcompletion datesarelistedinTableS3:l.REQUEST3~'rovideestimated annualfuelcost,levelized overlifetime, andassumedcapacityfactor.~ResonseTheestimated levelized annualfuelcostoverlifeis2.8millsperkilowatthouratacapacityfactorof85percent.RESPONSE4Provideestimated annualoperation andmaintenance cost,levelized overlifetime.

~ResonseTheestimated levelized annualoperating andmaintenance costoyerlifeis0.3millsperkilowatthouratacapacityfactorof85"percent.REQUEST5Providethelevelized fixedchargeratesapplicable toUnit1andthebreakdown intoitscomponents

.~ResonseThelevelized fixedchargeratesapplicable toUnit1modifications areshowninTableS3.2.'Iheseassumecompletion ofmodifications in1976andaremaining economiclifeof18years.

IC TableS3.1RadwasteSysternModificationsSystemCostComletionDateUpgradedOffgas83,9SS,OOO Summer,1975Upgraded'LiquidRadwasteTraveling BedFilterDrywellFloorDrainsRemaining Modifications 193>000$1,200$1,081,000 April,1972April,1972Spring,1974

TableS3.2FixedChargeRates(levelized)

(AnnualCharges-PercentofInitialInvestment)

CostofCapitalFederalIncomeTaxDepreciation OtherTaxesInsurance iforkingCapitalTotal6.33.95.63.60.50.220.1Notes:a.Economiclifetimeremaining

-18yearsb.Incremental costofnewcapitalis9.6percentc.Depreciation isstraightline 4'0~,r(.