ML20214P692

From kanterella
Revision as of 23:23, 18 January 2021 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 0 to Supplemental Reload Licensing Submittal for Brunswick Steam Electric Plant Unit 1,Reload 5 (W/O Recirculation Pump Trip)
ML20214P692
Person / Time
Site: Brunswick Duke Energy icon.png
Issue date: 05/31/1987
From: Charnley J, Elliott P, Lambert P
GENERAL ELECTRIC CO.
To:
Shared Package
ML20214P628 List:
References
23A5814, 23A5814-R, 23A5814-R00, NUDOCS 8706030492
Download: ML20214P692 (31)


Text

-

23A5814 Revision 0 Class I May 1987 (23A5814, Rev. 0)

SUPPLEMENTAL RELOAD LICENSING SUBMITTAL FOR BRUNSWICK STEAM ELECTRIC PLANT UNIT 1, RELOAD 5 (WITHOUT RECIRCULATION PUMP TRIP)

A Prepared: . Am c o l P. A. Lambert Fuel Licensing

^

Verified: [/

P. E. Elliott Fuel Licensing

/ /

Approve : 44

. ~ Mey,"F!anager uel Licensing NUCLEAR ENERGY BUSINESS OPERATIONS

  • GENERAL ELECTRIC COMPANY SAN JOSE, CALIFORNIA 95125 0 8'"'"^'O'"'"

!PS88ugggga, "2 PDR

23A5814 Rev. O I

IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT PLEASE READ CAREFULLY This report was prepared by General Electric solely for Carolina Power cnd Light Company (CP&L) for CP&L's use with the United States Nuclear Regula-tory Commission (USNRC) for amending CP&L's operating license of the Brunswick Steam Electric Plant Unit 1. The information contained in this report is believed by General Electric to be an accurate and true representation of the facts known, obtained or provided to General Electric at the time this report was prepared.

The only undertakings of the General Electric Company respecting informa-tion in this document are contained in the Contract between Carolina Power and Light Company and General Electric Company for Reload Fuel Supply and Related Services for Brunswick Steam Electric Plant Unit 1, effective December 31, g

1982, as amended, and nothing contained in this document shall be construed as changing said contract. The use of this information except as defined by said contract, for any purpose other than that for which it is intended, is not authorized; and with respect to any such unauthorized use, neither General Electric Company nor any of the contributors to this document makes any representation or warranty (express or implied) as to the completeness, accuracy or usefulness of the information contained in this document or that such use of such information may not infringe privately owned rights; nor do they assume any responsibility for liability or damage of any kind which may result from such use of such information.

G 3/4

23A5814 Rev. 0 I

ACKNOWLEDGMENT The engineering and reload licensing analyses which form the technical basis of this Supplemental Reload Licencing Submittal, were performed by S. C. Moen, R. E. Polomik, and T. P. Lung of the Nuclear Fuel and Engineering Services Department.

D l

5/6

23A5814 Rev. 0 k

1. PLANT UNIQUE ITEMS (1.0)*

Information in Section 4 and Appendix A provided by Appendix A Carolina Power and Light Company Transient Operating Parameters: Appendix B Comparison of Calculated Operating Limit MCPR Appendix C to Technical Specifications:

2. RELOAD FUEL BUNDLES (1.0, 2.0, 3.3.1 AND 4.0)

Fuel Type Cycle Loaded Number Irradiated P8DRB285 3 20 P8DRB265H 4 72 P8DRB284H 4 72 P8DRB299 4 36

)

BP8DRB299 5 184 New BP8DRB299 6 176 Total 560

3. REFERENCE CORE LOADING PATTERN (3.3.1)

Nominal previous cycle core average exposure at end of cycle: 18,616 mwd /ST Minimum previous cycle core average exposure at end of cycle from cold shutdown considerations: 18,616 mwd /ST Assumed reload cycle core average exposure at end of cycle: 17,982 mwd /ST Core loading pattern: Figure 1

  • ( ) Refers to area of discussion in " General Electric Standard Application for Reactor Fuel," NEDE-240ll-P-A-8, dated May 1986. A letter "S" preced-ing the number refers to the U.S. Supplement, NEDE-24011-P-A-8-US, May 1986.

7 l

l 23A5814 Rev. 0

4. CALCULATED CORE EFFECTIVE MULTIPLICATION AND CONTROL SYSTEM WORTH - NO VOIDS, 20*C (3.3.2.1.1 and 3.3.2.1.2)*

Beginning of Cycle, Keff l Uncontrolled 1.125 1

Fully Controlled 0.968 <

Strongest Control Rod Out 0.991 l

j R, Maximum Increase in Cold Core Reactivity with 0.000 Exposure into Cycle,AK

5. STANDBY LIQUID CONTROL SYSTEM SHUTDOWN CAPABILITY (3.3.2.1.3)

Shutdown Margin (aK) ppm (20*C, Xenon Free) 600 0.036

6. RELOAD UNIQUE TRANSIENT ANALYSIS INPUT (3.3.2.1.5 AND S.2.2)

(Cold Water Injection Events Only)

Void Fraction (%) 41.7 Average Fuel Temperature (*F) 1097 Void Coefficient N/A** (d/% Rg) -6.991/-8.739 Doppler Coefficient N/A** (d/*F) -0.204/-0.194 Scram Worth N/A** ($) ***

  • See Appendix A.
    • N = Nuclear Input Data, A = Used in Transient Analysis
      • Generic exposure independent values are used as given in " General Electric Standard Application for Reactor Fuel," NEDE-24011-P-A-8, dated May 1986. g 8

l

23A5814 Rev. O I i

7. RELOAD UNIQUE GETAB TRANSIENT ANALYSIS INITIAL CONDITION PARAMETERS

' (S.2.2)

Fuel Peaking Factors Bundle Power Bundle Flow Initial Design Local Radial Arial R-Factor (MWt) (1000 lb/hr) MCPR Exposure: BOC 6 to EOC 6-2000 mwd /ST BP/P8x8A 1.20 1.56 1.40 1.051 6.651 109.1 1.20 Exposure: EOC 6-2000 mwd /ST to EOC 6 BP/P8x8R 1.20 1.47 1.40 1.051 6.245 112.2 1.29

8. SELECTED MARGIN IMPROVEMENT OPTIONS (S.2.2.2)

Transient Recategorization: No Recirculation Pump Trip: No Rod Withdrawal Limiter: No Thermal Power Monitor: Yes Measured Scram Time: No Exposure Dependent Limits: Yes Exposure Points Analyzed: 2

9. OPERATING FLEXIBILITY OPTIONS (S.2.2.3) o Single-Loop Operation: Yes Load Line Limit: Yes Extended Load Line Limit: No Increased Core Flow: No h Flow Point Analyzed: N/A Feedwater Temperature Reduction: No ARTS Program: No Maximum Extended Operating Domain: No LD l

l I

9 l

l

23A5814 Rev. 0

10. CORE-WIDE TRANSIENT ANALYSIS RESULTS (S.2.2.1)

Methods Used: GEMINI Exposure Range: BOC6 to EOC6 Flux Q/A aCPR Transient (% NBR) (1 NBR) BP/P8x8R Figure Inadvertent HPCI 123 118 0.16 2 Exposure Range: BOC6 to ECC6-2000 mwd /ST Flux Q/A _aCPR Transient (% NBR) (% NBR) BP/P8x8R Figure Load Rejection Without Bypass 333 115 0.13 3 Feedwater Controller Failure 237 112 0.10 4 Exposure Range: EOC6-2000 mwd /ST to E006 Flux Q/A ACPR Transient (% NBR) (% NBR) BP/P8x8R Figure Load Rejection Without Bypass 504 123 0.22 5 Feedwater Controller Failure 342 118 0.16 6

11. LOCAL ROD WITHDRAWAL ERROR (WITH LIMITING INSTRUMENT FAILURE) TRANSIENT

SUMMARY

(S.2.2.1)

(Generic Bounding Analysis Results)

ACPR Rod Block Reading (%) BP/P8x8R 104 0.13 105 0.16 106 0.19 107 0.22 108 0.28 109 0.32 110 0.36 Setpoint Selected: 107 10

23A5814 Rev. O I

12. CYCLI MCPR VALUES (S.2.2)

Non-Pressurization Events Exposure Range: BOC to EOC BP/P8x8R Inadvertent HPCI 1.23 Fuel Loading Error 1.20 Rod Withdrawal Error 1.29 Pressurization Events Option A Option B BP/P8x8R BP/P8x8R Exposure Range:

BOC6 ce T.0C6-2000 mwd /ST I

Load Rejection Without Bypass 1.30 1.23 Feedwater Controller Failure 1.23 1.21 Exposure Range:

E0C6-2000 mwd /ST to EOC6 Load Rejection Without Bypass 1.34 1.30 Feedwater Controller Failure 1.28 1.25 1

13. OVERPRESSURIZATION ANALYSIS SUMPR Y (S.2.3) s1 v Transient (psig) (psig) Plant Response MSIV Closure 1214 1248 Figure 7 l

(Flux Scram)

D 11 i _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

23A5814 Rei. 0

14. STABILITY ANALYSIS RESULTS (S.2.4)

Rod Line Analyzed: Extrapolated Decay Ratio: Figure 8 Reactor Core Stability Decay Ratio, x2 /*0: 0.85 Channel Hydrodynamic Performance Decay Ratio, x2/ x0 Channel Type BP/P8x8R 0.65

15. LOADING ERROR RESULTS (S.2.5.4)

Variable Water Gap Misoriented Bundle Analysis: Yes Event Initial MCPR Resulting MCPR*

Misoriented 1.18 1.07

16. CONTROL ROD DROP ANALYSIS RESULTS (S.2.5.1)

Bounding Analysis Results:

Doppler Reactivity Coefficient: Figure 9 Accident Reactivity Shape Functions: Figures 10 and 11 Scram Reactivity Functions: Figures 12 and 13 Plant Specific Analysis Results:

Parameter (s) not Bounded, Cold: None Resultant Peak Enthalpy, Cold: N/A Parameter (s) not Bounded, HSB: None Resultant Peak Enthalpy, HSB: N/A

  • The ACPR for this event was calculated using the GENESIS nuclear method, consistent with the last reload.

12

23A5814 Rev. O I

17. LOSS-0F-COOLANT ACCIDENT RESULTS (S.2.5.2)

LOCA Method Used: SAFE /REFLOOD/ CHASTE

" Loss-of-Coolant Accident Analysis Report for Brunswick Steam Electric Plant Unit 1," General Electric Company, November 1978, (NED0-24165, as amended).

I I

13

23A5814 Rev. 0 0 5 0 @

sMMMMMMMMHz
MMMMMMMMMMM
EMMMMMMMMMMMs

=MMMMMMMMMMMMM EMMMMMMMMMMMMM

=MMMMMMMMMMMMM CMMMMMMMMMMMMM CMMMMMMMMMMMMM

*MMMMMMMMMMM" l' MMMMMMMMMMM
"MMMMMMMMM"
"MMMMM" lIIIIIIIII 1 35 7 911131517192123252729313335373941434547495

FUEL TYPE C= D 28 =

Figure 1. Reference Core Loading Pattern 14

23A5814 Rev. 0 k

I hEuf ax  ! VES E. 'FES$ R:5E:8i 2 att ;5JiR e_ms n:t W 0s

  1. *':0 '

2 REL E' * *. v! 8.0 e J C 3. Be& 3. to.g[

. F.C.

v n' r* e c -* -r r-15 8. 8 'e-t g g s. g r_-

__7_-  ;

E

{a 188 8 168.9 lh 7,

k r

- $ 1. 8 g g, g

,r, , , ,

88 4. 0 _8 . .

C. 0 58.0 180.0 8.0 50.0 C' C

?!PE ISECC%'ll fl*E 15trc.%3; ILEt'.11N:= CEE-SEE-SmC') 3 v;;*

f 2 VCS!E; S'E awtc. 2 CO8E.s(s:?ivi's fE EEA:? W: '

Tus H %f. S'E a mi,; e 3,g:s.,- sga:v;g; v 156. e 3. r r . . t r _

3,3 ,7 _

e- . -

G E

- -i r 4C..

is:.s f e.c N - - -

. l; h .

=.

V. .

, o ~ -

?.

08 8 3, e

___ : g I

S. 8

-2.8

0. 9 g g. g g ;;, g g, g g ,g it

?!*( (SECC%;51 fl*E tSE:0% $1 Figure 2. Plant Response to Inadvertent Activation of HPCI 15

23A5814 Rev. O i

t i 2uEsp.4 i t o.~. e
t - r c.x i i st:st. rats * -:ss:as:-

l

s=t- ....r r. .

ll i a ccst Nc1 h<e. 3, i ] [E: Er *:-j :-?-

l

/W' b ,,e.,

S h' P

N 4

153.s Ng e .t 'N I 1

+

Q

4. 5 [ ,

2.; 4.t t.

i.t 2.0 9.5 6.8 C. C fl'E (SEC0%25) TI"E 'SE:0NES' 3

I LE nE6 f lM -FEr-5Es.s.st : F 6 LE*:'.*-lT' 2 T ' E' EE*E'I*;

I 2 WESEEL S'E $8sts

)[hI![,'$.ffQLC'

,c ,' ' *b E

f[ I a /

. 4 a

i n

[' -

s s i i

lh '\  : j i M).s. v _ J-ri E

v i..

i

.\\

W l'

\ i I

-2.0 .

20 4.C f.t C. : 2* 4C II fl*C SE CN;53 f1Pt isEtc%051 Figure 3. Plant Response to Generator Load Rejection Without Bypass (EOC 6-2000 mwd /ST) 16 l

23A5814 Rev. 0 152.9

,% "'I5 '!!

8 hEJ80% 4/8 I VE b * **'I'~*

2**t '*r 4 * D " 2 5lE

~I% E f 3 SEdE#

ge g, g 3. r-c C05 <c ~~= iC* \ 4 evr s ' t ' ' ..l

$* 5 0[.:' '.

i l\

l

  • i \

i t

i ce. .

l 1

\

y l l

fP l,'c.,.' =a b [

l l )/'

~

l 1

l i

{ (N ,

j;;

E u.e t 4 ,

I

&. i I

C. C l

e. e _

2:. e c. : 2:

,,, i e. ,

II II T1=[ (5(:C%25)

I 1 LEsl;,(!N> EE8 -St8 +E' ' **

2 vES :Eu S*E*"r.Os { {Sh jp n,;g'rk,)- ' {

2 us n st*2 s't a* C. i.. _ .-

go g. , r;r - _'- g i

i s s  ;

} ', f;

i L-

/ I a i f

,,,', , 1 E ce =s 6.4 ^

~,

IV

[e p\ fh i /4  ;

I t

iI E -

.h l 7 in .

. . , d  !# -1 e

,\ \ s ,

sliV D

\

l \

h Y  : I; l h l '.:

c. c 1 >: ,

.c e~ c

.c cI I I' I f ; *E 5E :Nf '

Y:=t ( SE C N51 Figure 4. Plant Response to Feedwater Controller Failure g (EOC6-2000 mwd /ST) 17

23A5814 Rev. O i NE ...w 3 i vtssE.

2 e.Est i:sE.:.3:

5arEM ts.it r :

2 a vE EN a:E .4 a ? FLt,y

,3 , , , 2 mE 1* t' f c' 3,,., 2 N!! !"-1 ::9:

5 i... . y b 2.

E s .t A

~- '

i....

\ ,N

! l.

se . _ _ _ _ _

2.. 4.e s.: i.e 2. e *' u tlpg (ggccg:g) flPE ($1CCId 51 3

1 LE) E.t IN:s.ptr.S 2 *E S$r. S'E *Prgc,tr-SP R') 2 0'0  !! "E 0cc.EE '!IT N EE aI  !

  • I *'I' Y 3 TvEii!NE STEP
  • ~c r

%' ,', 3 55" !!*!'N 'I" 200.8 E:

-V i

~

  • I E h I see.e ,

. E ** s4

s. :

l iy .i. e \ -

A, i y i

. s t l. 8 .;. 8 ec  :. c *'

s., 2., <e s.t ti.e isE::,,:s3 tiet ist::*:5) l l

l Figure 5. Plant Response to Generator Load Rejection Without Bypass (EOC6) 18

23A5814 Rev. O I

    • f.C NE*i. 8:*. 8,( a \ l sE
5,5!E.88E5['8
T!

2 A vE! Sper s, , g e- r,ti 68.6 r,;.

3 COE' !%I' rE'

.t :

at t. C ' ' - IN! rC.'.

6 El 3 EEjt is**. =[

4ecri k e kN f ij t ec. c I .f\'

i 'l I l

\,i)x

,,,,, c_cwsm .

N g

\ ,/ I

/

b -

f:

'f

. St.t  ! (

l C

- 5 c. c  !

l

  • . s

.A s

^l f

9. e .

.' s-

t. C 15.0 2;.( C. c I L. C 2
    • ! (SC;;%:i! '!*i f $t :N:1 Lt *..;N: etc.igt g.:  ; y;,; sg ; ,, -

h 2 vE!,Et! 5:EA=r.C. 2 DNt_EE Ef * ^

F le g. e 3 c'L4_;

r- st 5

_' Esc.".

1 _

,E 3 --

s:se- sE 40i. l v *

. - . ~ , -

=

i i

t

e. I 14;.s 6

i j l'1 8

6. t

' ~ _ _g - e i 's st \; f ' \

9 c l

\\

nY l

i i

(,'

a t

i j 3,

=

l l' S t. e _

g(! k_ h.i.e i f~  !

M xy

!n fi p;

I.' \ 1 , .

, \ t i 84 3 h , ng ,

O. C 1: ( .C t. :  ?

a t iuas:s t :st::s:

Figure 6. Plant Response to Feedwater Controller Failure (E0C6)

D 19 i

23A5814 Rev. 0 1 NEUThC% r,un t ggsst, esg $c s:?E 2 ave $Jreg mga* rggs  ; e ar t , v et,t r g,' *!

3 COE[ INLE' F.Ce 3 RE. Er watgg r .

[ A' 3Ct.C 't -'**r '

!? p. 4 -

300.4 -- -

2 00. C AN N

I E \

C

  • 53.0 i n: - \

' c : _

j u .

i 8C 88 ,I ,

m.

0. 0 S.O t.O  !.C t : E < st :Nesi t: E isE::N:s:

'4 '-

1 Lent.(IN:b Ef f-i 1/ . s.ca

itsst. sP-r.:.l s-sa E' e / b co: 0 E St E 8.:":.: . -
3. .h s B I N.E.mFE *"; : e 3 S.:s** GEaI,' h; i.e . /,.

. =- -

- /

.s e ac, 4 -1 e

i t a. e t . ,,.

N -- ;mq

-?

- V i t

M W+ \.' ._

l, .1 o . .

ii t

I

  • 2e \ \
e. e s.c ea -

f !'E ( SE C ON!!)  ?!*f 8 5! :%:5 Figure 7. Plant Response to MSIV Closure (Flux Scram) 20

23A5814 Rev. O A NATUPALI N E 105 PER[CIRCULATI:

E'.' R CD L I NE C UL T . PEI: ::MANCE LIM: T 1.00 C +

)

o ,

./eJ R y

N N

X C

e .m ste,

< n L'

L.- p' o

l l

.40 -

l k

j 0.00 i

0. 0 20.0 40.0 60.0 60.0 100.0 12;. 0 FE;.:EN POWE;.

l l

Figure 8. Reactor Core Decay Ratio D

21

23A5814 Rev. 0

0. 0

-5.0

-10.0 -

, [ 1

^

-25.0  !

J Z

LJ f G -20.0 I

sO f

~,

g -25.0 /

d s i b

U

-30.0

/

-35.0 A C A L C i.l AIED VAmUh-CCC 6 CALCULATED VALUE-HS9 C E0JND VAL 280 CAL /G CC_C

'O BOUND VAL 280 Cr L/G "EE

-40.O C. 0 500.0 1000.0 1500.0 2000.0 2500.0 300;.C FUEL TEMPERATURE DEG C.

Figure 9. Fuel Doppler Coefficient in 1/a*C 22

23A5814 Rev. 0

C. C 17.5 15.0 WOC 0 m

C 1

Y 12.5

/

r g 10.0

^ ^

> 7.5 #

C /

u

5. c _

2.5 A ACCIDENT 1 UNCT10N B BOUNDING YALUE 280 CAL /C-

0. 0 -
0. 0 5.0 10.0 15.0 20.0 ROC POSITION, FEET OUT Figure 10. Accident Reactivity Shape Function, Cold Startup 23
l. .

23A5814 Rev. 0 l

2 0. C 17.5

!!. 0 m  ; C o A,h D 0

?

,hJ 1;.:

er n g 1(. 0 ,

A d

> 7.5 4

o w

cr

!.0 ,

2.5 -

A ACCIDENT FUNCTION B BOUNDif43 'fALUE 280 CN/C

0. 0
b. C 5.0 10.0 15.0 20.0 RCD POSIT!ON, FEET OUT Figure 11. Accident Reactivity Shape Function, Hot Standby 4

24

23A5814 Rev. 0 40.0 A SCRAM FdNCTION O BJJNDIN VALUE 260 CAL /G 35.0 30.0 C

h

  • 25.C

,[ ,

Ld c "

- 20.0 e

U z

v

} C 15.t ,

E -

/

o u 10.0 cr

5. 0 )

/

^

c.0 -.a 0.0 1.0 2.0 3.0 4.0 5.0 6.0 ELAPSED TIME, SECONDS Figure 12. Scram Activity Function, Cold Startup 25

23A5814 Rev. 0 50.0 A SCRAM FLNCTION B BOUNDING VALUE 280 CAL /G A 0. :

C I

W x r f < 30.0 J) w a

e E"

- 20.0 C

E u

w e

10.0 '

r

0. 0 , -

a

0. 0 1.0 2.0 3.0 4.0 5.0 6.C ELAPSED TIME, SECONDS Figure 13. Scram Reactivity Function, Hot Standby 26

23A5814 Rev. O APPEhTIX A This cold shutdown margin design evaluation was performed by Carolina Power and Light Company personnel using NRC approved methodology

  • applied in conformance with Carolina Power and Light Company's Quality Assurance Program.

This evaluation provides a high degree of confidence that greater than the Technical Specification requirement of 0.38% aK/K cold shutdown margin will be maintained throughout the cycle, and that 0.38% AK/K plus "R" will be measured during the beginning of cycle shutdown margin demonstration.

I

  • Letter from Domenic B. Vassallo to E. E. Utley, " Brunswick Reload Licensing h Methodologies", Docket Nos. 50-325/324, May 18, 1984.

27/28

l 23A5814 Rev. O APPENDIX B TRANSIENT OPERATING PARAMETERS All of the transients and overpressure protection analyses were run considering a power uncertainty of 2%. The uncertainty in the ODYN transient analysis is included in the statistical adjustment factors and the transient is initiated at 100% rated power, as approved in Reference B-1. The other initial conditions given in Table S.2-6 of NEDE-24011-P-A-8-US reflect this initial power level.

REFERENCE:

B-1. Letter, G. C. Lainas (NRC) to J. S. Charnley (GE), " Acceptance for Referencing of Licensing Topical Report NEDE-24011-P-A, ' General Electric Generic Licensing Reload Report,' Supplement to Amendment 11,"

March 22, 1986.

I 29/30

l l

23A5814 Rev. O I

APPENDIX C COMPARISON OF CALCULATED OPERATING LIMIT MCPR TO TECHNICAL SPECIFICATIONS The operating limit MCPRs (OLMCPRs) shown in Section 12 are based on GEMINI transient analysis methods and have a different statistical scram speed distribution dependency than those calculated by the GENESIS methods. The Tcchnical Specifiction formulation for calculating the OLMCPR as a function of scram time is based on GENESIS statistical factors. The following demon-ctrates that the OLMCPRs in the Technical Specifications bound those calcu-lcted by GEMINI methods for Cycle 6. Therefore, the OLMCPRs in the Technical Specifications may be conservatively applied to the operation of Cycle 6.

C.1 TECHNICAL SPECIFICATION OLMCPR The OLMCPRs in the Technical Specifications submitted for NRC approval for Cycle 6 are as follows:

I Non-Pressurization Transients:

Exposure Range Limit BOC - EOC 1.29 Pressurization Transients:

Option A OLMCPR Option B OLMCPR Exposure Range BP/P8x8R BP/P8x8R BOC to EOC-2000 mwd /ST 1.36 1.21 E0C-2000 mwd /ST to EOC 1.44 1.32 For Option B limits, the average 20% scram time (t ,) must be less than the Option B scram time (TB) where TB is determined by:

1/2 TB= u + 1.65 , (o )

([N

\ i=1 g/

)

31

23A5814 Rev. O where, p = 0.834 seconds (GENESIS) o = 0.059 seconds (GENESIS) i = surveillance test number th N g = number of rods in the i surveillance test Ny = number of rods in the beginning-of-cycle surveillance test.

If T,y, is greater than TB, the adjusted OLMCPR (MCPRadj s equal to 1.29 or the following adjusted value, whichever is greater.

T -T MCPR adj Option B + T Option A

-" Option B A -*B where T A = 1.05 seconds and MCPR Option A and MCPR Option B are the limits l derived from the pressurization transient events.

1 C.2 GEMINI SCRAM SPEED DISTRIBUTION The formulas used to determine the Option B scram time (T B) and the adjusted OLMCPR (MCPRadj) do not change for GEMINI methods. However, the GEMINI statistical adjustment factors are based on a different statistical scram speed distribution than those derived for GENESIS. Therefore, the values of the mean (u) and the standard deviation (c) used in determining f change for GEMINI methods. The values for GEMINI methods are as B

, follows:

p = 0.813 seconds (GEMINI) o = 0.018 seconds (GEMINI).

The value of t A remains the same. Thus, for any I!2 l

[N -

n y

NEN \ i=1 g/

]

32

23A5814 Rev. O I

the t f r GEMINI methods is quicker (smaller) than the r B IIC bib B (

methods.

C.3 COMPARISON OF CYCLE 6 RESULTS TO TECHNICAL SPECIFICATIONS To assure the Technical Specification OLMCPR values as a function of t,y, bound the GEMINI OLMCPR a value for Ny J =l n N

i=1 g/)

is assumed. For calculation of the Technical Specification OLMCPR, a minicum value for a given t ,y, is obtained when J is equal to 1.0. ne maximum GEMINI OLMCPR value is obtained when J is equal to 0.0 for a given t ,y,.

I The Technical Specification OLMCPR calculated as a function of T ave with J = 1.0 is presented in Figure C-1 along with the GEMINI Cycle 6 OLMCPR value with J = 0.0 for the BOC to EOC-2000 mwd /STU exposure range. These MCPR values are presented in Figure C-2 for the E0C-2000 mwd /STU to EOC exposure range. From these figures, it can be seen that the conservatively calculated (minimum) Technical Specification OLMCPR value is never less than the conserve-tively calculated (maximum) GEMINI Cycle 6 OLHCPR value. Thus, the MCPRs submitted for NRC approval (see Section C.1) which dictate the OLMCPRs, are conservative and bound the calculated GEMINI OLMCPR results for Cycle 6.

I 33

23A5814 Rev. 0 1.40 j

1,38 -

1.36 -

BOC TO EOC - 2000 mwd /ST TECH SPEC 1.34 -

1.32 -

TECHSPEC 1.30 -

41.2 9)

I1.291 1.28 -

C6 RWE C6 LR W/O 8P g 1.26 -

ts 3

~

C6 FWCF

- (1.23)

(1.23) 1.22 -

(1.21) 1.20 -

1.18 -

1,16 -

1.14 -

1.12 -

1.10 -

1 I i i 1.0e fs2 r,g r, ave Figure C-1. Comparison of BOC to EOC-2000 mwd /ST OLMCPR Results (

with Technical Specification Values (

34

23A5814 hv. 0 1.50 1.48 -

1.46 - EOC - 2000 mwd /ST TO EOC 1.44 - (1.44) 1.42 -

1.40 -

TECH SPEC 1.33 .

1.36 -

C6 LR W/O BP O g , (1.34) 11.3 2) 1.32 (1.30) C6RWE 1.30 (1 29)

(1.29)

~ C6FWCF (1.28) 1.26 -

(1.25) 1.24 -

1.22 -

1.20 -

i ,

1.1s fs2 r St TA I

ave l

Figure C-2. Comparison of Cycle 6 EOC-2000 mwd /ST to EOC OLMCPR Results with Technical Specification Values 35 (FINAL)

__ . . _ _ . _ _ _ _ . - . ._ _ ___ _ _ . _ .. _ , _ . _ . _ _ __ _ _ _ _ . _ ___ . _ .